
Cristina Alcaraz
Liqun Chen
Shujun Li
Pierangela Samarati (Eds.)

LN
CS

 1
34

07

Information and
Communications Security
24th International Conference, ICICS 2022
Canterbury, UK, September 5–8, 2022
Proceedings

Lecture Notes in Computer Science 13407

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Cristina Alcaraz · Liqun Chen · Shujun Li ·
Pierangela Samarati (Eds.)

Information and
Communications Security
24th International Conference, ICICS 2022
Canterbury, UK, September 5–8, 2022
Proceedings

Editors
Cristina Alcaraz
University of Malaga
Malaga, Spain

Shujun Li
University of Kent
Canterbury, UK

Liqun Chen
University of Surrey
Guildford, UK

Pierangela Samarati
University of Milan
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-15776-9 ISBN 978-3-031-15777-6 (eBook)
https://doi.org/10.1007/978-3-031-15777-6

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0545-3191
https://orcid.org/0000-0001-5628-7328
https://orcid.org/0000-0003-2680-4907
https://orcid.org/0000-0001-7395-4620
https://doi.org/10.1007/978-3-031-15777-6

Preface

This volume contains the papers that were selected for presentation and publication at
the 24th International Conference on Information and Communications Security (ICICS
2022), which was jointly organized by the University of Kent (UK), theUniversità degli
Studi di Milano (Italy), the University of Surrey (UK), and the University of Malaga
(Spain). The conference was held at the main campus of the University of Kent, Can-
terbury, UK, during September 5–8, 2022. Due to post-pandemic conditions and travel
limitations in some countries, the conference was held as a hybrid event, offering both
in-person and remote participation options for attendees.

ICICS is one of the mainstream security conferences with the longest history. It
started in 1997 and aims at bringing together leading researchers and practitioners from
both academia and industry to discuss and exchange their experiences, lessons learned,
and insights related to computer and communication security. This year’s Program
Committee (PC) consisted of 114members with diverse backgrounds and broad research
interests. A total of 150 valid paper submissions were received. The review process was
double blind, and the paperswere evaluated on the basis of their significance, novelty, and
technical quality. Practically all the papers were reviewed by four or more PC members
and then discussed among the Program Committee. The discussions were held online
intensively over more than three weeks. Finally, 34 papers were selected for presentation
at the conference giving an acceptance rate of 22.7%.

Following the reviews, two papers were selected for the Best Paper Award and
the Best Student Paper Award, respectively. Both awards were generously sponsored
by Springer. The conference also selected winners of four additional awards, a Best
Presentation Award, a Best Artifact Award, a Best Poster Award and a Best Demo
Award, all sponsored by the Institute of Cyber Security for Society (iCSS), University
of Kent. Additionally, ICICS 2022 was honored to offer three outstanding keynote talks
by Ross Anderson, University of Cambridge (UK), Nicholas Carlini, Google (USA),
and Guang Gong, University of Waterloo (Canada). Our deepest and sincere thanks
to Ross, Nicholas, and Guang for sharing their knowledge and experience during the
conference. The conference also called for posters and demo presentations of “already
published/accepted work”, which were presented at a Poster/Demo session. In addition,
a panel discussion was also organized at the conference.

For the success of ICICS 2022, we would like to first thank the authors of all sub-
missions and the PCmembers for their great effort in selecting the papers. We also thank
all the external reviewers for assisting the reviewing process. For the conference orga-
nization, we would like to thank the ICICS Steering Committee, the Publicity Chairs,
Kalikinkar Mandal and Ding Wang, the Local Arrangement Co-Chairs, Budi Arief and
SanjayBhattacherjee, thePoster/DemoChairs,ÖzgürKafalı andVineetRajani, thePanel
Chair Zonghua Zhang, the Local Award Judging Chair Keenan Jones, the Sponsorship

vi Preface

Chairs, Fauzia Idrees and Clare Patterson, and the VI (Visual Identity) Designers, Yin-
glong He and Zhonghai Liu. Finally, we thank everyone else, speakers, session chairs,
and volunteer helpers, for their contributions to the program of ICICS 2022.

September 2022 Cristina Alcaraz
Liqun Chen
Shujun Li

Pierangela Samarati

Organization

Steering Committee

Jianying Zhou Singapore University of Technology and Design,
Singapore

Robert Deng Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Javier Lopez University of Malaga, Spain
Qingni Shen Peking University, China
Zhen Xu Institute of Information Engineering, Chinese

Academy of Sciences, China

General Chairs

Shujun Li University of Kent, UK
Pierangela Samarati Università degli Studi di Milano, Italy

Program Chairs

Cristina Alcaraz University of Malaga, Spain
Liqun Chen University of Surrey, UK

Local Arrangement Chairs

Budi Arief University of Kent, UK
Sanjay Bhattacherjee University of Kent, UK

Publicity Chairs

Kalikinkar Mandal University of New Brunswick, Canada
Ding Wang Nankai University, China

Poster/Demo Chairs

Özgür Kafalı University of Kent, UK
Vineet Rajani University of Kent, UK

viii Organization

Panel Chair

Zonghua Zhang Huawei Paris Research Center, Huawei
Technologies France S.A.S.U, France

Sponsorship Chairs

Fauzia Idrees Royal Holloway, University of London, UK
Clare Patterson University of Kent, UK

Local Award Judging Chair

Keenan Jones University of Kent, UK

VI (Visual Identity) Designers

Yinglong He University of Birmingham, UK
Zhonghai Liu Guangdong Vgreen Intelligent Home Technology

Co., Ltd., China

Organization ix

Program Committee

Chuadhry Mujeeb Ahmed Singapore University of Technology and Design,
Singapore

Man Ho Au University of Hong Kong, Hong Kong
Zhongjie Ba Zhejiang University, China
Joonsang Baek University of Wollongong, Australia
Guangdong Bai University of Queensland, Australia
Jia-Ju Bai Tsinghua University, China
Diogo Barradas University of Waterloo, Canada
Yinzhi Cao Johns Hopkins University, USA
Guangke Chen ShanghaiTech University, China
Rongmao Chen National University of Defense Technology,

China
Ting Chen University of Electronic Science and Technology

of China, China
Xiaofeng Chen Xidian University, China
Xun Chen Samsung Research America, USA
Sherman S. M. Chow Chinese University of Hong Kong, Hong Kong
Mauro Conti University of Padua, Italy
Nora Cuppens-Boulahia Polytechnique Montréal, Canada
Jose Maria de Fuentes Universidad Carlos III de Madrid, Spain
Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Wenrui Diao Shandong University, China
Changyu Dong Newcastle University, UK
Constantin Catalin Dragan University of Surrey, UK
François Dupressoir University of Bristol, UK
Afonso Ferreira CNRS - Institut de Recherches en Informatique

de Toulouse, France
Debin Gao Singapore Management University, Singapore
Fei Gao Beijing University of Posts and

Telecommunications, China
Xing Gao University of Delaware, USA
Joaquin Garcia-Alfaro Institut Polytechnique de Paris, France
Amrita Ghosal University of Limerick, Ireland
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of Piraeus, Greece
Le Guan University of Georgia, USA
Fuchun Guo University of Wollongong, Australia
Shuai Hao Old Dominion University, USA
Jiaqi Hong Singapore Management University, Singapore
Hongxin Hu University at Buffalo, SUNY, USA
Pengfei Hu Shandong University, China

x Organization

Jun Huang City University of Hong Kong, Hong Kong
Xinyi Huang Fujian Normal University, China
Jinyuan Jia Duke University, USA
Chenglu Jin CWI Amsterdam, The Netherlands
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Doowon Kim University of Tennessee, USA
Hyoungshick Kim Sungkyunkwan University, South Korea
Costas Lambrinoudakis University of Piraeus, Greece
Wenjuan Li Hong Kong Polytechnic University, Hong Kong
Kaitai Liang Delft University of Technology, The Netherlands
Feng Lin Zhejiang University, China
Jingqiang Lin University of Science and Technology of China,

China
Xiangyu Liu Alibaba Inc., China
Zhuotao Liu Tsinghua University, China
Javier Lopez University of Malaga, Spain
Kangjie Lu University of Minnesota, USA
Rongxing Lu University of New Brunswick, Canada
Bo Luo University of Kansas, USA
Xiapu Luo Hong Kong Polytechnic University, Hong Kong
Haoyu Ma Xidian University, China
Christian Mainka Ruhr University Bochum, Germany
Daisuke Mashima Advanced Digital Sciences Center, Singapore
Jake Massimo Royal Holloway, University of London, UK
Weizhi Meng Technical University of Denmark, Denmark
Jiang Ming University of Texas at Arlington, USA
Yuhong Nan Sun Yat-sen University, China
Siaw-Lynn Ng Royal Holloway, University of London, UK
Jianbing Ni Queen’s University, Canada
Jianting Ning Singapore Management University, Singapore
Liang Niu New York University, USA
Rolf Oppliger eSECURITY Technologies, Switzerland
Manos Panousis University of Greenwich, UK
Günther Pernul Universität Regensburg, Germany
Joachim Posegga University of Passau, Germany
Elizabeth Quaglia Royal Holloway, University of London, UK
Giovanni Russello University of Auckland, New Zealand
Nitesh Saxena Texas A&M University, USA
Shawn Shan University of Chicago, USA
Vishal Sharma Queen’s University Belfast, UK
Qingni Shen Peking University, China

Organization xi

Wenbo Shen Zhejiang University, China
Purui Su Institute of Software, Chinese Academy of

Sciences, China
Hung-Min Sun National Tsing Hua University, Taiwan
Kun Sun George Mason University, USA
Willy Susilo University of Wollongong, Australia
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg
Yuzhe Tang Syracuse University, USA
Luca Viganò King’s College London, UK
Ding Wang Nankai University, China
Haoyu Wang Huazhong University of Science and Technology,

China
Lingyu Wang Concordia University, Canada
Ting Wang East China Normal University, China
Xiuhua Wang Huazhong University of Science and Technology,

China
Zhe Wang Institute of Computing Technology, Chinese

Academy of Sciences, China
Jinpeng Wei University of North Carolina at Charlotte, USA
Weiping Wen Peking University, China
Zhe Xia Wuhan University of Technology, China
Dongpeng Xu University of New Hampshire, USA
Jia Xu NUS-Singtel Cyber Security R&D Lab, Singapore
Toshihiro Yamauchi Okayama University, Japan
Guomin Yang University of Wollongong, Australia
Kang Yang State Key Laboratory of Cryptology, China
Zheng Yang Southwest University, China
Xun Yi RMIT University, Australia
Qilei Yin Tsinghua University, China
Meng Yu Roosevelt University, USA
Xingliang Yuan Monash University, Australia
Chuan Yue Colorado School of Mines, USA
Fan Zhang Zhejiang University, China
Jiang Zhang Institute of Software, Chinese Academy of

Sciences, China
Kehuan Zhang Chinese University of Hong Kong, Hong Kong
Tianwei Zhang Amazon Web Services, USA
Yuan Zhang Fudan University, China
Liang Zhao Sichuan University, China
Qingchuan Zhao City University of Hong Kong, Hong Kong
Yongjun Zhao Nanyang Technological University, Singapore

xii Organization

Yunlei Zhao Fudan University, China
Yongbin Zhou Nanjing University of Science and Technology,

China

Additional Reviewers

Bai, Weiheng
Biswas, Partha
Cao, Nhat Quang
Chen, Chenyang
Chen, Jinrong
Chen, Tianyang
Lin, Chengjun
Cui, Hongrui
Du, Minxin
Ehsanpour, Maryam
Eichhammer, Philipp
Empl, Philip
Feng, Qi
Fernandez, Carmen
Fouque, Pierre-Alain
Friedl, Sabrina
Gao, Yiwen
Gholipour, Mahmood
Glas, Magdalena
Gong, Borui
Guo, Hui
Guo, Xiaojie
He, Xu
Jia, Xiangkun
Jiang, Anqi
Jin, Renjie
Kabir, Mohammad Ekramul
Kailun, Yan
Kelarev, Andrei
Knittel, Lukas
Kumar, Gulshan
Lai, Qiqi
Lee, Moon Sung
Lepore, Cristian
Li, Bingyu
Li, Rui
Li, Xinyu
Li, Yannan
Li, Yongqiang

Limniotis, Konstantinos
Lin, Chao
Little, Rachael
Liu, Lin
Liu, Xiaoning
Liu, Yuejun
Lou, Xin
Lu, Xingye
Luo, Junwei
Lv, Chunyang
Ma, Mimi
Mladenov, Vladislav
Mui, William H. Y.
Muñoz, Antonio
Nissenbaum, Olga
Nowroozi, Ehsan
Pakki, Aditya
Pei, Weiping
Pöhls, Henrich C.
Rios, Ruben
Schlette, Daniel
Shen, Jun
Shi, Wenhao
Song, Qiyang
Song, Shang
Spielvogel, Korbinian
Spolaor, Riccardo
Tao, Yang
Tefek, Utku
Tian, Guangwei
Tian, Guohua
Torabi, Sadegh
Tricomi, Pier Paolo
Tsohou, Aggeliki
Wang, Jiafan
Wang, Shu
Wang, Tianyu
Wang, Xinda
Wang, Yi

Organization xiii

Wei, Jianghong
Wong, Harry W. H.
Wu, Huangting
Xiang, Binwu
Xu, Xin
Xue, Haiyang
Yan, Di
Yang, Haining
Yang, Rupeng
Yang, S. J.
Yang, Shishuai

Yang, Zhichao
Yu, Mengyang
Yu, Zuoxia
Zhang, Kai
Zhang, Yudi
Zhang, Zidong
Zhao, Zhe
Zheng, Yubo
Zhou, Yuyang
Zhu, Fei

Contents

Cryptography

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 3
Jinzheng Cao, Qingfeng Cheng, Xinghua Li, and Yanbin Pan

Calibrating Learning Parity with Noise Authentication for Low-Resource
Devices . 19
Teik Guan Tan, De Wen Soh, and Jianying Zhou

New Results of Breaking the CLS Scheme from ACM-CCS 2014 37
Jing Gao, Jun Xu, Tianyu Wang, and Lei Hu

A Note on the Security Framework of Two-key DbHtS MACs 55
Tingting Guo and Peng Wang

Maliciously Secure Multi-party PSI with Lower Bandwidth and Faster
Computation . 69
Zhi Qiu, Kang Yang, Yu Yu, and Lijing Zhou

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 89
Siwei Chen, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang

Fast Fourier Orthogonalization over NTRU Lattices . 109
Shuo Sun, Yongbin Zhou, Rui Zhang, Yang Tao, Zehua Qiao,
and Jingdian Ming

Secure Sketch and Fuzzy Extractor with Imperfect Randomness:
An Information-Theoretic Study . 128
Kaini Chen, Peisong Shen, Kewei Lv, and Chi Chen

Tight Analysis of Decryption Failure Probability of Kyber in Reality 148
Boyue Fang, Weize Wang, and Yunlei Zhao

Authentication

Improving Deep Learning Based Password Guessing Models Using
Pre-processing . 163
Yuxuan Wu, Ding Wang, Yunkai Zou, and Ziyi Huang

xvi Contents

Exploring Phone-Based Authentication Vulnerabilities in Single Sign-On
Systems . 184
Matthew M. Tolbert, Elie M. Hess, Mattheus C. Nascimento,
Yunsen Lei, and Craig A. Shue

FRACTAL: Single-Channel Multi-factor Transaction Authentication
Through a Compromised Terminal . 201
Savio Sciancalepore, Simone Raponi, Daniele Caldarola,
and Roberto Di Pietro

Privacy and Anonymity

Lightweight and Practical Privacy-Preserving Image Masking in Smart
Community . 221
Zhen Liu, Yining Liu, and Weizhi Meng

Using Blockchains for Censorship-Resistant Bootstrapping in Anonymity
Networks . 240
Yang Han, Dawei Xu, Jiaqi Gao, and Liehuang Zhu

Repetitive, Oblivious, and Unlinkable SkNNOver Encrypted-and-Updated
Data on Cloud . 261
Meng Li, Mingwei Zhang, Jianbo Gao, Chhagan Lal, Mauro Conti,
and Mamoun Alazab

Privacy-Aware Split Learning Based Energy Theft Detection for Smart
Grids . 281
Arwa Alromih, John A. Clark, and Prosanta Gope

Attacks and Vulnerability Analysis

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises . . . 303
Makoto Yuito, Kenta Suzuki, and Kazuki Yoneyama

Autoencoder Assist: An Efficient Profiling Attack on High-Dimensional
Datasets . 324
Qi Lei, Zijia Yang, Qin Wang, Yaoling Ding, Zhe Ma, and An Wang

TZ-IMA: Supporting Integrity Measurement for Applications with ARM
TrustZone . 342
Liantao Song, Yan Ding, Pan Dong, Yong Guo, and Chuang Wang

FuzzBoost: Reinforcement Compiler Fuzzing . 359
Xiaoting Li, Xiao Liu, Lingwei Chen, Rupesh Prajapati, and Dinghao Wu

Contents xvii

Secure Boolean Masking of Gimli: Optimization and Evaluation
on the Cortex-M4 . 376
Tzu-Hsien Chang, Yen-Ting Kuo, Jiun-Peng Chen, and Bo-Yin Yang

DeepC2: AI-Powered Covert Command and Control on OSNs 394
Zhi Wang, Chaoge Liu, Xiang Cui, Jie Yin, Jiaxi Liu, Di Wu, and Qixu Liu

Artificial Intelligence for Detection

ODDITY: An Ensemble Framework Leverages Contrastive Representation
Learning for Superior Anomaly Detection . 417
Hongyi Peng, Vinay Sachidananda, Teng Joon Lim, Rajendra Patil,
Mingchang Liu, Sivaanandh Muneeswaran, and Mohan Gurusamy

Deep Learning Based Webshell Detection Coping with Long Text
and Lexical Ambiguity . 438
Tongjian An, Xuefei Shui, and Hongkui Gao

SimCGE: Simple Contrastive Learning of Graph Embeddings
for Cross-Version Binary Code Similarity Detection . 458
Fengliang Xia, Guixing Wu, Guochao Zhao, and Xiangyu Li

FN2: Fake News DetectioN Based on Textual and Contextual Features 472
Mouna Rabhi, Spiridon Bakiras, and Roberto Di Pietro

Malware Detection with Limited Supervised Information via Contrastive
Learning on API Call Sequences . 492
Mohan Gao, Peng Wu, and Li Pan

Semi-supervised Context Discovery for Peer-Based Anomaly Detection
in Multi-layer Networks . 508
Bo Dong, Yuhang Wu, Micheal Yeh, Yusan Lin, Yuzhong Chen,
Hao Yang, Fei Wang, Wanxin Bai, Krupa Brahmkstri, Zhang Yimin,
Chinna Kummitha, and Verma Abhisar

Peekaboo: Hide and Seek with Malware Through Lightweight
Multi-feature Based Lenient Hybrid Approach . 525
Mingchang Liu, Vinay Sachidananda, Hongyi Peng, Rajendra Patil,
Sivaanandh Muneeswaran, and Mohan Gurusamy

TapTree: Process-Tree Based Host Behavior Modeling and Threat
Detection Framework via Sequential Pattern Mining . 546
Mohammad Mamun and Scott Buffett

xviii Contents

Network Security and Forensics

Dependency-Based Link Prediction for Learning Microsegmentation
Policy . 569
Steven Noel and Vipin Swarup

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 589
Pegah Nikbakht Bideh and Nicolae Paladi

Study on the Effect of Face Masks on Forensic Speaker Recognition 608
Georgiana Bogdanel, Nadia Belghazi-Mohamed,
Hilario Gómez-Moreno, and Sergio Lafuente-Arroyo

Video Forensics for Object Removal Based on Darknet3D 622
Kejun Zhang, Yuhao Wang, and Xinying Yu

Author Index . 639

Cryptography

BS: Blockwise Sieve Algorithm
for Finding Short Vectors

from Sublattices

Jinzheng Cao1 , Qingfeng Cheng1(B) , Xinghua Li2 , and Yanbin Pan3

1 Strategic Support Force Information Engineering University,
Zhengzhou 450001, China
qingfengc2008@sina.com

2 School of Cyber Engineering, Xidian University, Xi’an 710071, China
3 Key Laboratory of Mathematics Mechanization, Academy of Mathematics

and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Abstract. The Shortest Vector Problem is a crucial part of the lattice
theory and a central lattice problem in analyzing lattice-based cryptog-
raphy. This work provides a new algorithm that finds a short vector
by calling the sieve oracle in projected sublattices orthogonal to each
other. We first propose the Block Sieve algorithm. With blockwise siev-
ing, proper insertion and reduction, the coordinates of the right end of
vector v can be recovered. The algorithm moves the block to recover
the other coordinates. We continue to optimize the algorithm and pro-
pose the Progressive Block Sieve algorithm, employing techniques such as
skipping to accelerate the procedure. In a d-dimensional lattice, smaller
sieve calls in (d − Θ(d/ ln d))-dimensional sublattices are enough to find
a short vector. We compare the experimental results on different lattices
to test the performance of the new approach. On challenge lattices, our
algorithm takes less time and fewer tours than original reduction algo-
rithms to reach a similar outcome. As an application of the new algo-
rithm, we test the performance of solving Learning With Errors problem.
Our algorithm is able to solve the instances about 5% faster than sieving.

Keywords: Lattice · Shortest vector problem · Blockwise reduction ·
BKZ · Sieving

1 Introduction

Lattice-based cryptography is one of the most promising candidates for the post-
quantum cryptography standard. A lattice L in R

m is a discrete subgroup of
R

m, defined as the set of all integer linear combinations of d linearly indepen-
dent vectors b1, . . . , bd ∈ R

m. The matrix B = [b1, . . . , bd] form a basis of the
lattice. The hardness of the Shortest Vector Problem (SVP) is at the center
of estimating the security of lattice-based cryptosystems. Given a lattice basis,
SVP asks to find the shortest non-zero vector in the lattice. Such a problem
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-15777-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_1&domain=pdf
http://orcid.org/0000-0001-9168-2438
http://orcid.org/0000-0001-6149-4807
http://orcid.org/0000-0002-5583-4155
http://orcid.org/0000-0002-5591-0234
https://doi.org/10.1007/978-3-031-15777-6_1

4 J. Cao et al.

is proved to be NP-hard under certain assumptions. The extended applications
of SVP lead to a list of variants, such as approximate SVP and unique SVP.
To find the shortest vector, two classes of algorithms are proposed. One is the
accurate approach, namely enumeration [23] and sieving. The algorithms aim
to directly find a vector shorter than a certain upper bound, and are usually
assumed to be able to recover the shortest vector. Enumeration was first initi-
ated by Pohst, who proved that the shortest vector could be recovered by the
algorithm with time complexity 2Θ(d log d) and polynomial memory. The sieve
algorithm was initiated in 2001, and is faster in theory at the cost of exponential
memory. Both algorithms have been closely reviewed and are accelerated with
a list of practical techniques. The other, approximate, approach is referred to
as basis reduction, e.g. Lenstra-Lenstra-Lovász (LLL) algorithm [18] or Block-
wise Korkine-Zolotarev (BKZ) algorithm [26]. Such algorithms output a reduced
basis, with basis vectors short and nearly orthogonal to each other. Sieving and
enumeration have an exponential time complexity, while basis reduction algo-
rithms usually have lower complexity determined by parameters.

Most lattice-based cryptosystems do not explicitly rely on SVP to design
their algorithms and parameters, but other hard lattice problems [2,16] instead.
Among the many hard problems in lattice, the Learning With Errors (LWE)
problem has been used to construct a series of KEMs and digital signatures.
Introduced by Regev in 2005 [24], the problem makes it possible to build LWE-
based primitives. In the third round of NIST PQC project, the security of several
candidates such as Kyber and FrodoKEM is based on variants of LWE. Recent
study has been focused on using lattice reduction and SVP solvers to implement
and optimize the primal strategy.

1.1 Related Work

Most hard problems in lattice can be reduced to large instances of SVP. Thus,
the algorithms for SVP lie at the core of the security analysis of lattice cryptosys-
tems and have been closely studied over decades. The approximate approach to
SVP mainly refers to lattice reduction algorithms. Such algorithms take in a
basis as input and output another basis satisfying certain qualities. The first
practical lattice reduction algorithm, LLL, was first proposed in 1982. The algo-
rithm is still in active use today. In polynomial time the algorithm is able to
produce a reasonably short lattice vector, but usually far from the shortest in
high dimensions. Schnorr and Euchner proposed BKZ, which has a time com-
plexity ββ/(2e)+o(β), but outputs a better lattice basis and consequently a shorter
lattice vector. While BKZ is the main-stream algorithm for lattice reduction, its
actual behavior is a more complicated matter [15].

A line of studies and improvements on lattice reduction algorithms concen-
trated on the running time and the optimization of strategies and parameters.
The work of Chen and Nguyen [10] analyzed the behavior of blockwise reduction
by simulation and proposed a new variant of blockwise reduction algorithm, BKZ
2.0. The algorithm employed techniques such as extreme pruning and auto-abort,
along with other fixes. This variant performs well in practice, and the algorithm

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 5

has been the most recognized variant of lattice reduction algorithm. A vari-
ant of progressive reduction was proposed in 2016 [7], suggesting that BKZ-like
reduction algorithms may achieve a better output when the block size is prop-
erly updated according to simulation result. Slide reduction [12] was initiated
in 2008 by Aggarwal et al., and recently reviewed in 2020 [1]. The algorithm
is based on Mordell’s inequality, reaching a rather small approximation factor
in theory. With techniques such as relaxation, a new enumeration-based reduc-
tion algorithm was proposed in 2020 and analyzed in 2021 by Albrecht et al.,
achieving a small Hermite factor with a lower-dimension SVP solver [3,4]. They
suggest a new aspect that the context in which a reduction solver is called may
be decoupled from the block, where the SVP solver is called.

Enumeration and sieving are two categories of accurate SVP algorithms. Enu-
meration is known to have an asymptotical complexity dd/(2e)+o(d) [20] and poly-
nomial memory cost. The enumeration can be optimized with pruning [14], which
accelerates the speed while lowering the probability of success. Sieving, how-
ever, has a time complexity ranging from (4/3)d+o(d) to (3/2)d/2+o(d) considering
different techniques and strategies [8,17]. However, sieving has a (4/3)d/2+o(d)

memory complexity, making it hard to solve larger instances. Variants of sieving
have been proposed to improve the practical performance of sieving. In 2018,
Ducas proposed Subsieve [11], combining sieve and Babai’s Nearest Plane algo-
rithm. The algorithm can find the shortest vector by sieving in a context of rank
Θ(d/ log d). In 2019, Albrecht et al. gave an implementation of the algorithm,
along with a general kernel for sieving [5], and achieved several new records of
SVP challenges. With the development of new sieving variants, it is possible to
use sieve algorithm as the SVP solver in certain cases.

1.2 Our Contribution

We summarize this paper’s contribution in this subsection. Three main contri-
butions are concluded as following.

– We extend Albrecht et al.’s approach of solving uSVP to the random lattices
and propose the Block Sieve algorithm (BS). For a BKZ-preprocessed basis,
we heuristically show that some projection of a short vector v can be found by
a sieve call. With a projected vector found, the block can be moved leftwards
recursively, until recovering all coordinates with sieving.

– In addition to the baseline algorithm described above, we adopt several other
techniques and propose the Progressive Block Sieve algorithm (PBS). The
improvements include Babai’s algorithm to find coordinates in an extended
context and combining progressive reduction, as well as skipping.

– We illustrate the performance of Block Sieve algorithm by experiments on
various lattice challenges and comparing it to other algorithms (such as BKZ
and Progressive BKZ). On lattices of SVP challenge, the progressive variant of
the algorithm takes less time than BKZ to reach a similar norm and requires
fewer tours and a smaller β at preprocessing stage. When applied to LWE,
PBS is able to solve the instances about 5% faster than sieving.

6 J. Cao et al.

1.3 Organization of the Paper

Preliminaries about lattice and hard problems are described in Sect. 2. In Sect. 3,
we briefly review some important results of solving uSVP from previous literature
and generalize the strategy to propose Block Sieve algorithm. Section 4 compares
the performance computing costs of different algorithms in solving approximate
SVP and LWE. We summarize the paper in Sect. 5.

2 Preliminaries

In this section, we introduce the basic notions concerned in the following sections.
We provide the basic concepts about lattice and necessary assumptions. More
details about lattice are introduced in [22].

2.1 Lattice

Definition 1 (Lattice). Let b1, b2, . . . , bd ∈ R
d be linearly independent vectors,

the basis matrix B = [b1, b2, . . . , bd] and the lattice generated by B is L(B) =
{∑d

i=1 xibi : xi ∈ Z}.
The 2-norm ‖ · ‖ of lattice vectors is called the length. The determinant of L

denotes the volume of the fundamental area detL = detB = ‖b∗
1‖‖b∗

2‖ . . . ‖b∗
d‖.

Definition 2 (Projection). For a given basis B of lattice L, πi(v) is the pro-
jections of vector v orthogonal to the span of b1, b2, . . . , bi−1. Further, the Gram-
Schmidt orthogonalization of basis B is B∗ = [b∗

1, b
∗
2, . . . , b

∗
d], where b∗

i = πi(bi).

The projected lattice L[l:r], where 1 ≤ l < r ≤ d is defined as the lattice
with basis B[l:r] = [πl(bl), . . . , πl(br)]. We refer to L as the full lattice compared
with the sublattice generated by the submatrix of full basis B. We use λ1 (L)
to denote the length of the shortest non-zero vector in L, and λ2 (L) the length
of the second-shortest non-zero vector that is linearly independent of the first
shortest vectors.

Most hard lattice problems can be reduced to the Shortest Vector Problem.
The problem is to find a non-zero lattice vector of minimal length.

Definition 3 (Shortest Vector Problem, SVP). Given a basis B of a lattice
L, find a non-zero lattice vector v ∈ L of minimal length λ1 (L) = min0 �=w∈L ‖w‖.

In practice, approximate versions of SVP are usually used, where we aim to
find a vector longer than the shortest vector by a polynomial factor. Another
widely used variant is unique-SVP, where the shortest vector has a small norm.

Definition 4 (unique SVP, uSVP). For a lattice L satisfying λ1(L) �
λ2(L), finding the shortest vector in L is called unique SVP (uSVP). The γ-
unique SVP (γ-uSVP) is to find the shortest vector in L, where γλ1(L) < λ2(L).
If the gap λ2(L)/λ1(L) is bigger, it is easier to find the shortest vector.

To analyze the problems on lattice, heuristic assumptions are necessary to
estimate the quality of a lattice. We will rely on the following Gaussian heuristic
[21] to explain our analysis in the rest of the paper.

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 7

Heuristic 1 (Gaussian). Let K ⊂ R
d be a measurable body, then there is

|K ∩ L| ≈ vol(K)/det (L). When applying the heuristic to a d-dimension ball of
volume det (L) we obtain that

λ1 (L) ≈ Γ
(

d
2 + 1

) 1
d det (L)

1
d

√
π

≈
√

d

2πe
det (L)1/d

.

We denote the length as gh (L) or GH(L) in short. In a random lattice L, we
assume the shortest vector will have norm GH(L).

2.2 Lattice Reduction Algorithms

The first widely applied reduction algorithm is LLL. Given the basis of a lattice
L, LLL outputs a basis B = [b1, b2, . . . , bd] with the following statements hold:

(1) ∀1 ≤ i ≤ d, j < i, |μi,j | ≤ 1/2.
(2) ∀1 ≤ i < d, ‖δb∗

i ‖2 ≤ ‖μi+1,ib
∗
i + b∗

i+1‖2.

LLL has been widely used in attacks on several public-key cryptosystems. The
algorithm has a polynomial time complexity, but the quality of output basis is
limited. BKZ algorithm is commonly used to get a basis better than LLL. A BKZ-
reduced lattice basis B for block size β ≥ 2 satisfies b∗

i = λ1(L[i:min (i+β,d)−1]), i =
1, . . . , d − 1. The BKZ algorithm takes the lattice basis B and block size β
as input. In its process, BKZ calls an SVP oracle on every projected block of
dimension β. The BKZ algorithm achieves a good balance between the quality of
reduced basis and running-time, and is the most commonly used lattice reduction
algorithm to analyze the lattice. Hermite Factor (HF) is adopted to measure the
quality of a reduced lattice basis [13]. The Hermite Factor has the form

HF(b1, . . . , bd) = ‖b1‖/det(L)1/d. (1)

To obtain a basis of better quality, we expect the Hermite factor to be as
small as possible. This is done by stronger reduction algorithms. To analysis the
quality of the basis independent of dimension n, the Root-Hermite factor (RHF)
is defined.

δ = RHF(b1, . . . , bd) = (‖b1‖/det(L)1/d)1/d. (2)

The RHF describes the relation of the given basis and the short vector output
by the lattice reduction algorithm. From the definition, the first vector of some
reduced basis has norm ‖v‖ = δd · det(L)1/d. For LLL algorithm, δ ≈ 1.0219.

For BKZ-β, δ =
(

β
2πe (πβ)

1
β

) 1
2(β−1)

[9]. The problem of finding a non-zero lattice

vector of length ≤ γ · det (L)1/d is called Hermite-SVP with parameter γ (γ-
HSVP). To analyze the behavior of BKZ algorithm and predict the quality of
the reduced basis, Schnorr’s Geometric Series Assumption (GSA) is introduced
to describe some reduced lattice basis [27].

8 J. Cao et al.

Heuristic 2 (Geometric Series Assumption). For a BKZ-reduced basis of lattice
L, ‖b∗

i+1‖/‖b∗
i ‖ ≈ α, i = 1, . . . , d − 1, where 3

4 ≤ α2 < 1.
From GSA, the norms of the Gram-Schmidt vectors satisfy ‖b∗

i ‖ = αi−1‖b1‖.
The definition of the Root-Hermite Factor implies ‖b1‖ = δd det(L)1/d. The
determinant of the lattice det(L) =

∏d
i=1 ‖b∗

i ‖. Therefore, we can get α =
δ(β)−2d/(d−1) ≈ δ(β)−2 [19].

2.3 Learning with Errors

Definition 5 (Learning with Errors, LWE). Let n, q ∈ Z, χ be a discrete
Gaussian distribution on Z of standard deviation σ. Matrix A ∈ Z

m×n
q and

secret vector s ∈ Z
n
q are uniformly sampled. Vector e is sampled from χ. Given

A ∈ Z
m×n
q and secret b ≡ As + e mod q ∈ Z

n
q , the search-LWE is to compute s

and e. The decision-LWE is to decide whether e is sampled from χ or from the
uniform distribution.

For an LWE instance (A, b), the row vectors correspond to samples (Ai, bi),
where Ais + ei ≡ bi mod q. The amount of samples is denoted as m. LWE can
be solved via reducing it to other lattice problems. The primal strategy views
LWE as a Bounded Distance Decoding (BDD) instance on a q-ary lattice, and
reduce it to the unique-shortest vector problem on a basis defined by Kannan’s
embedding technique [6].

3 Block Sieve Algorithm

In this section, we introduce our main work, Block Sieve algorithm (BS). The
goal is to find short vectors in L(B). Combined with BKZ preprocessing, the
algorithm is able to solve the approximate SVP. In the first subsection, we intro-
duce the basic version of BS algorithm. A modified variant, Progressive Block
Sieve algorithm (PBS), is introduced in the second subsection.

3.1 Basic Block Sieve Algorithm

We describe our algorithm to find short vectors in a lattice. Suppose the unique
shortest vector v is drawn from a spherical distribution, not skewed to any
particular subspace. Thus, when v ∈ R

d is projected to a subspace R
k, the

projection has expected length
√

k/d‖v‖. The problem of searching for origi-
nal v’s coordinates can be performed by the size-reduction subroutine of LLL.
According to Gaussian heuristic the norm of the shortest vector v is estimated as

‖v‖ = λ1(L) ≈
√

d
2πe det (L)1/d. We also assume that v’s projection to L[d−η+1,d]

has length ‖πd−η+1(v)‖ =
√

η/d‖v‖ ≈ √
η

2πe det (L)1/d. Instead of running one
sieve call on a block L[d−η+1,d], we construct different projected blocks, and
update the basis by calling sieve procedures on each of them.

Assuming we have found the projection of the shortest vector v in L[d−η+1,d],
the last η coefficients of v over basis [b1, b2, . . . , bd] are also recovered. We go on to

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 9

recover the rest of the coefficients of v. Instead of simply using Babai’s method,
we project the vectors on orthogonal blocks, and find the coefficients by finding
the shortest projected vectors in each of them.

The algorithm requires that πd−η+1(v) is the shortest vector (or up to an
approximate factor α) in L[d−η+1,d], so that it can be found by a call of sieve, and
inserted at d−η+1. Then we continue to move the block to [d−2η+2, d−η+1].
Since

πd−2η+2(v) =
∑d

i=d−2η+2
νiπd−2η+2(bi) ∈ Ld−2η+2,

where νi ∈ Z with v =
∑d

i=1 νibi, and bnewd−η+1 is recovered and inserted, it holds
that

πd−2η+2(v) ∈ L(πd−2η+2(bd−2η+2, . . . , bd−η+1)).

Therefore, v’s coefficients νd−2η+2,...,d−η can be recovered via another call of
SVP solver on the projected sublattice L(πd−2η+2(bd−2η+2, . . . , bd−η)). Continue
this process until the block reaches the left end, indicating a vector in L is
recovered. Operations in the next block will not affect the previous block. In
fact, projected basis vectors [b∗

1, . . . , b
∗
d−η] and [b∗

d−η+1, . . . , b
∗
d] are orthogonal,

so sieving and lifting in L[1,d−η] will only change the coefficients of the first d−η
elements.

Particularly, an SVP solver can find a short vector within a much smaller
context, which is useful in terms of updating the basis at the early stages of
lattice reduction. For a BKZ reduced basis, the sublattice generated by the first
few vectors may contain a short vector that can be used to update the basis. For
k ∈ {1, 2, . . . , d − 1}, vol(L[1,k]) = ‖b∗

1‖‖b∗
2‖ . . . ‖b∗

k‖ = δ(β)
dk(d−k)

d−1 vol(L)k/d ≈
δ(β)k(d−k)vol(L)k/d, where δ(β) is the Root-Hermite Factor of the reduced basis
by BKZ-β. Following the Gaussian heuristic, this sublattice contains a vector

of length λ(L[1,k]) =
√

k
2πeδ(β)d−kvol(L)1/d. By sieving in the k dimensional

block, we obtain a vector of length

λ(L[1,k]) =

√
k

d
δ(β)d−kλ(L).

For example, set k = [2dδ(β)2(k−d)], then it is possible to recover a vector of
norm ≈ √

2λ1(L). Even if the sieve call in L[1,k] does not produce the shortest
vector of L, it is still possible to update the basis and increase δ. When the sieve
produces a vector with norm

‖v‖ ≈ λ(L[1,k]) =

√
k

2πe
δ(β)d−kvol(L)1/d = δdvol(L)1/d, (3)

the δ value is updated as

δ =
(

k

2πe

) 1
2d

δ(β)
d−k

d . (4)

10 J. Cao et al.

Therefore, after every sieve call on a block, shorter vectors are produced, and
the quality of the basis is updated. The algorithm continues to reduce the basis
by calling sieve on projected blocks, until a vector short enough is found.

Based on the discussion about recovering vectors via blockwise sieving, we
present a new algorithm to find a short vector. The algorithm takes a BKZ-
reduced basis as input. Sieve procedures are recursively performed on projected
blocks L[r−η+1,r]. Insertion is applied following each sieving call to update the
basis. Continue the process until all coordinates are found for a short lattice
vector.

Algorithm 1 Block Sieve, BS
Require: L with BKZ reduced basis B of dimension d, parameters η and k
Ensure: short vector v

set r = d
while r > k do

Sieve(L[max(r−η+1,1),r])
insert output vector v′ into index r − η
LLL(L)
r = max(r − η+1, 1)

end while
Sieve(L[1,k]), insert output vector v into index 1

Remark 1. Unlike previous algorithms like [6,11], which rely on one SVP call on
a projected block, the new algorithm projects the lattice over a list of orthogonal
sublattices and use sieve calls on the blocks consecutively. Heuristically, the
shortest vector is still a short vector when projected on a sublattice. Thus, by
calling sieve on each block, we are able to obtain a better local quality of the
basis, and progressively reach a shorter vector in the full lattice.

3.2 Progressive Block Sieve Algorithm

Algorithm 1 illustrates the basic procedure of BS. There is a list of possible
improvements to the approach. As a result of the improvements, we will propose
a practical variant of BS.

Progressive Algorithm. One single call of Algorithm 1 may not recover a
vector short enough, partly because of a small δ. We BKZ-reduce the basis with
a larger block size β in every tour. With an updated δ, we are able to recover a
shorter lattice vector by sieving.

Simplified Tour. The expected behavior of BS is to run a sieve call in every
projected sublattice L[l,r]. However, the local sieve is too expensive and can
hardly recover a shorter vector. To simplify the algorithm, we merge the several
sublattices in the middle into a few blocks and use Subsieve [11] to run sieve to
lower the cost.

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 11

Skipping. The analysis of the sublattices and norm of vectors rely on the quality
of the lattice basis. In fact, we assume the input basis follows GSA after BKZ
reduced. After sieving, however, with short vectors inserted back into the basis,
the structure of basis is different from expected. To maintain the structure of the
basis between sieve calls, we skip some sieve calls and use stronger BKZ instead
to ensure the quality of the lattice basis.

Improving on the basic BS algorithm with the techniques, we present the
progressive version of Block Sieve algorithm.

Algorithm 2 Progressive Block Sieve, PBS
Require: L with basis B of dimension d, list of block sizes L, free dimension f ,

skipping index I
Ensure: short vector v

for all β ∈ L do
BKZ-β reduce B
if β /∈ I then

calculate η and k
set r = d
while r > k do

Sieve(L[r−η+1,r])
size-reduction(L[r−η−f+1,r])
insert output vector v′ into index r − η − f
LLL(L)
r = max(r − η+1, 1)

end while
Sieve(L[1,k]), insert output vector v into index 1

end if
end for

Remark 2. In the PBS algorithm, we see the BKZ reduction as a part of the
preprocessing, and let the block sizes in L increase by an interval, for example
up to 60 when d ≤ 200. In our experiments, we determine f according to the
analysis in [5], and set I so that a sieve procedure is called every 3 blocks. The
size of the sieving context η affects the possibility and efficiency of recovering
a short lattice vector. Generally, sieving has an exponential time complexity, so
a smaller η is preferred. However, the conditions may not hold for a smaller η.
In fact, for solving uSVP, η is affected by δ(β), as the Gaussian heuristic for
Ld−η+1 is determined by the quality of reduced basis. The desired condition is√

η/d‖v‖ < GH(Ld−η+1) ≈ δ(β)2β−dvol(L)1/d.

4 Analysis of BS and PBS

4.1 Complexity Analysis

We start from the choice of η, which is the size of sieve calls in BS. For an average-
case basis which follows the Gaussian heuristic, the norm of πd−η+1(v) has the

12 J. Cao et al.

estimated value
√

η
2πe det (L)1/d. Choosing η is then about comparing the pro-

jected norm to the shortest projected vector GH(Ld−η+1) ≈ δ(β)2η−ddet(L)1/d.
Then, we find the maximum t that satisfies the inequality 4

3δ(β)2t−dvol(L)1/d >
√

t
2πedet(L)1/d as the η value. The condition indicates that the shortest pro-

jected vector is shorter than the Gaussian heuristic of sublattice, thus can be
found via a sieving call. Note that with every updated basis B, parameters η and
k should be adjusted according to the updated δ(β), in order to acquire better
performance. The time cost of calculating the parameters can be neglected, so
the total running time of the algorithm will rely mainly on reduction and sieving.

For a certain basis, we assume BS calls sieve oracle on Θ(d/η) sublattices.
Further, PBS calls sieving for poly(d/η) times. According to the work of Ducas
et al. [11], when the basis is BKZ-d/2 reduced, then d − η = Θ(d/ ln d) is a
sufficient condition for solving SVP. In that case, our strategy solves the problem
for at most poly(d/η) times the cost of Sieving in dimension Θ(d − d/ ln d).

Using GSA we calculate the volume of Ld−η+1,d:

vol(Ld−η+1,d) =
d∏

i=d−η+1

α
d−1
2 −i = α−η(d−η)/2.

Recalling that πd−η+1(v) =
√

η
2πe det (L)1/d, then the condition of algorithm

is reorganized as
√

η

2πe
≤

√
4
3

·
√

η

2πe
α−(d−η)/2.

Taking logarithms on both sides, the condition is rewritten as (d − η) ln α ≤
ln 4

3 . Following the analysis of Subsieve, we choose β = d/2, to make sure
a negligible cost of preprocessing. Therefore, according to definition, lnα =
Θ(β/ ln β) = Θ(d/ ln d). For some η = d − Θ(d/ ln d), the condition is sat-
isfied. Thus, we heuristically claim that BS has the time complexity Θ(d/η)
times of sieve in dimension Θ(d − Θ(d/ ln d)), and the PBS algorithm will
find the shortest vector for a cost of poly(d/η) calls of sieve in dimension
Θ(d − Θ(d/ ln d)). In particular, to analyze the sieve in L[1,k], we assume the
dimension k = d/2. Compared with BKZ, which outputs a vector of length
≈ (

β1/2β
)d · det (L)1/d, a sieve call on a sublattice will give a vector of norm

√
k

2πeδ(β)d−kvol(L)1/d ≈
√

k
2πe (β1/2β)

d−k
det(L)1/d. Therefore, a shorter vector

is produced by BS when k >
log(

√
k/2πe)

log(β1/2β)
.

4.2 Performance on Challenge Lattices

In this subsection, we implement the BS algorithm and show with experimen-
tal data how it actually performs. We implement the Block Sieve algorithm
in Python. Namely, we implement the lattice operations based on FPLLL and

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 13

FPYLLL packages [28,29], and sieve algorithms based on G6K package [30]. For
each parameter set, we run multiple experiments and get the average result. In
the implementation of the algorithm, we preprocess the basis with BKZ of one
tour in order to save time. For every tour, we let the BKZ block size β increase
progressively.

Testing Basic BS on Challenge Lattices. We first analyze the performance
of basic BS on challenge lattices. The lattice instances are selected from the TU
Darmstadt SVP challenge [25]. The dimensions of the lattices are 140, 160, and
180. We compare the average norm of the first output basis vectors to test the
performance of the algorithms, and compare the average running time to test the
efficiency. We take the 140-dimension lattice as an example. When preprocessed
with BKZ with block β = 30, BS will output a vector of average norm 10706.8,
while the average norm after preprocessing is 14995.1. That is a 28% improve-
ment, illustrating the effectiveness of our algorithm. In the experiments, we set
the size of sieve subroutine the same with BKZ block size β. The d represents
the dimension. The L1, T1 in the table represent the average norm and time cost
of the algorithm after BKZ preprocessing but before sieve. The L2, T2 represent
the average norm and time cost after sieve is called. The results are listed below
in Table 1.

Table 1. Performance of basic BS

d β L1 T1 L2 T2

140 30 14995 0.2 s 10706 1.0 s

140 40 12503 0.4 s 9411 1.3 s

140 60 5062 15.8 s 4994 16.4 s

160 20 24007 0.3 s 17211 1.6 s

160 40 22186 1.1 s 11584 2.6 s

160 60 6284 29.2 s 5897 30.2 s

180 40 35358 1.6 s 26908 3.0 s

180 50 12502 9.4 s 10540 10.6 s

Remark. When a single call of BS is concerned, the running time is relatively
longer than BKZ. In fact, the BS algorithm includes BKZ preprocessing, so the
time for BKZ reduction is also counted. We also notice that with a larger block
size β, the time cost of BKZ reduction is not negligible. In that case, the running
time of BS and BKZ are relatively close. On average, BS will output a vector
30% shorter than BKZ, with time cost 2.4 times of BKZ.

Testing PBS on Challenge Lattices. Previous experiments are conducted
with relatively small blocks and only take account of one tour of the algorithm.

14 J. Cao et al.

We move on to run PBS and compare its performance with Progressive BKZ
(PBKZ) [7]. Take the 160-dimensional lattice as an example. Let β increase
progressively in [40, 60], PBS outputs a vector of norm 5797.06 in 164 s. The
Progressive BKZ with the same β setting, however, outputs a vector of norm
≈6300 in 4 min. In fact, when β is up to 68, the Progressive BKZ will finally
reach the norm ≈6000 even in 13 min (Fig. 1).

Table 2. Performance of PBS and Progressive BKZ (PBKZ) on SVP challenges

d Method β Norm Time d Method β Norm Time

140 PBS 30–50 5171 14 s 160 PBS 40–60 5797 164 s

140 PBKZ 30–58 5187 36 s 160 PBKZ 40–68 5987 795 s

140 PBKZ 30–50 5895 7 s 160 PBKZ 40–60 6284 276 s

160 PBS 20–40 7813 18 s 180 PBS 30–50 9918 36 s

160 PBKZ 20–50 7888 27 s 180 PBKZ 30–54 10450 44 s

160 PBKZ 20–40 10452 6 s 180 PBKZ 30–50 12100 27 s

180 PBS 40–58 8615 111 s 180 PBS 40–60 7636 201 s

180 PBKZ 40–58 9142 97 s 180 PBKZ 40–60 8639 127 s

Fig. 1. PBS compared with PBKZ on 160-dimensional lattice

We tested the performance of Progressive BS and Progressive BKZ on lattices
of different sizes, the result is listed in Table 2. For the same β, BS returns a
vector 15% shorter than Progressive BKZ, with time cost 15% more on average.
To reach the same output norm, Progressive BKZ has to run several more tours
of reduction with larger blocks, thus costing more time. Note that in the process
of BS, most computation is still done in BKZ reduction. Set β = 50 and call
BS on a 180-dimensional lattice. Progressive BKZ takes 7.6 s while sieving takes

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 15

1.00 s. With a relatively small cost compared with Progressive BKZ reduction,
BS is able to recover a considerably short vector.

4.3 Performance of PBS on LWE Instances

In this subsection, we use PBS to solve LWE instances, in order to put the algo-
rithm into practical context. We generate different instances, with q = 256, σ =√

8 and n ∈ [60, 80]. The matrix A is uniformly distributed. The instance’s error
rate σ/q ≈ 0.011 indicates the hardness of the instances. To solve the instances,
we adopt the primal strategy, reducing LWE to a BDD instance on a q-array
basis, and implement the embedding technique to convert it to solving uSVP on
a (m + 1) × (m + 1) lattice basis. We compare the performance of our approach
with the sieving implementation from [5] and BKZ from FPYLLL.

To solve the LWE instances in practice, we run a subroutine to let η run
from 0, to get the largest possible value. To be exact, we check the inequality√

η ·σ ≤ √
4/3 ·GH(L[d−η+1,d]) until maximizing η. We also set an upper bound

for η to let sieving end at an acceptable time cost.

Table 3. Average time cost of solving LWE

n 60 65 65 70 70 75 80

m 130 150 170 170 190 190 200

Subsieve 75 s 194 s 131 s 939 s 901 s 2107 s 27154 s

PBS 68 s 189 s 127 s 804 s 645 s 2072 s 25780 s

Remark. We also tried to solve the instances with BKZ. BKZ successfully
solved the 60-dimensional instance in 131.69 s, slower than both sieving and
PBS. For larger instances, we did not manage to solve them at an acceptable
time cost. In fact, these instances require larger β, adding to the overhead.
From the experimental results listed in Table 3, PBS succeeded in solving the
instances. On average, PBS is about 5.5% faster than sieving (preprocessing
time included). The advantage of PBS is more oblivious when a larger instance
is concerned. We heuristically explain that a smaller instance allows for only a
small sieving context size η, reducing the effectiveness of the sieve subroutine.

5 Conclusion

This paper reviewed the sieving approach to uSVP and adapted the strategy to
solving SVP in an average case. For a BKZ-preprocessed basis of some δ, it is
possible to generate projected sublattice blocks where the projections of the short
vector v can be found by a sieving call. Based on the idea, we propose the basic
Block Sieve algorithm and the optimized Progressive Block Sieve algorithm. To

16 J. Cao et al.

test the efficiency of our approach, we run experiments on different lattices. On
lattices of SVP challenge, the basic BS is able to reach a shorter vector than BKZ
with a slightly higher time cost. When the progressive variant is concerned, PBS
takes less time than BKZ to reach a similar norm and requires fewer tours and a
smaller β as preprocessing. As an application of the new approach, we go on to
accelerate the primal strategy of solving LWE with PBS. Our algorithm is able
to solve the instances about 5% faster than sieving.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China (Grant Nos. 61872449, 62125205).

References

1. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction,
revisited—filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 274–295. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 10

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Albrecht, M.R., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster
enumeration-based lattice reduction: root Hermite factor k1/(2k) time kk/8+o(k).
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
186–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 7

4. Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice reduction with approximate
enumeration oracles: practical algorithms and concrete performance. Cryptology
ePrint Archive, Report 2020/1260 (2020). https://eprint.iacr.org/2020/1260

5. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

6. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

7. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 30

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp.
10–24. Society for Industrial and Applied Mathematics (2016)

9. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. Ph.D. thesis, Higher Normal School - PSL (2013). https://www.
theses.fr/2013PA077242, thèse de doctorat dirigée par Nguyen, Phong-Quang
Informatique Paris 7 2013

https://doi.org/10.1007/978-3-030-56880-1_10
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-030-56880-1_7
https://eprint.iacr.org/2020/1260
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-662-49890-3_30
https://www.theses.fr/2013PA077242
https://www.theses.fr/2013PA077242

BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices 17

10. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

11. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

12. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC 2008, pp. 207–216. Association for Computing Machinery, New York (2008).
https://doi.org/10.1145/1374376.1374408

13. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

14. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

15. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

16. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

17. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

18. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261, 515–534 (1982). https://doi.org/10.1007/BF01457454

19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

20. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, pp. 276–294. Society for Industrial and Applied Mathe-
matics (2015)

21. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 31

22. Nguyen, P., Valle, B. (eds.): The LLL Algorithm. Springer, Berlin (2010). https://
doi.org/10.1007/978-3-642-02295-1

23. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull. 15(1), 37–44 (1981).
https://doi.org/10.1145/1089242.1089247

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009). https://doi.org/10.1145/1568318.1568324

25. Schneider, M., Gama, N.: SVP challenge. [EB/OL]. https://www.latticechallenge.
org/svp-challenge. Accessed 25 June 2021

26. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5 51

https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.1145/1568318.1568324
https://www.latticechallenge.org/svp-challenge
https://www.latticechallenge.org/svp-challenge
https://doi.org/10.1007/3-540-54458-5_51

18 J. Cao et al.

27. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

28. T. F. Development Team: FPLLL, a lattice reduction library, Version: 5.4.1 (2021).
https://github.com/fplll/fplll

29. T. F. Development Team: FPYLLL, a Python wraper for the FPLLL lattice reduc-
tion library, Version: 0.5.6 (2021). https://github.com/fplll/fpylll

30. T. F. Development Team: The general sieve kernel (g6k) (2021). https://github.
com/fplll/fpylll

https://doi.org/10.1007/3-540-36494-3_14
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://github.com/fplll/fpylll
https://github.com/fplll/fpylll

Calibrating Learning Parity with Noise
Authentication for Low-Resource Devices

Teik Guan Tan(B) , De Wen Soh , and Jianying Zhou

Singapore University of Technology and Design, Singapore, Singapore

teikguan tan@mymail.sutd.edu.sg

Abstract. Learning Parity with Noise (LPN) is an attractive post-
quantum cryptosystem for low-resource devices due to its simplicity.
Communicating parties only require the use of AND and XOR gates
to generate or verify LPN cryptogram samples exchanged between the
parties. However, the LPN setup is complicated by different parame-
ter choices including key length, noise rate, sample size, and verification
window which can determine the usability and security of the implemen-
tation. To address advances in LPN cryptanalysis, recommendations for
ever increasing key lengths have made LPN no longer feasible for low-
resource devices. In this paper, we use a series of experiments to simulate
and cryptanalyze LPN authentication under different parameter values
to arrive at recommended values suitable for low-resource devices. We
also examine the impact of limiting the key lifespan of the LPN secret
vector as a means to balance security while keeping key lengths relatively
short.

Keywords: Learning Parity with Noise (LPN) · Cryptanalysis ·
Machine learning · Post quantum cryptography

1 Introduction

Learning Parity with Noise (LPN) [4] is already a decades-old problem. How-
ever, it has received renewed interest by the research community of late due
to awareness and activities related to post-quantum cryptography. LPN has its
roots in code-based cryptography and can also be seen as a special case of a
lattice-based Learning-with-Error problem, both of which are still being evalu-
ated by National Institute of Science and Technology (NIST) as possible can-
didates for post-quantum cryptography standardization [27]. What is attractive
about LPN is the simplicity in its computation, requiring only AND and XOR
gates to compute the cryptogram, which makes it a quantum-secure alterna-
tive for authenticating communications in low-resource devices such as sensors,
wearables and radio-frequency RFID tags.

LPN, however, is not a typical cryptosystem. The security of most cryptosys-
tems is solely proportional to the size of the secret key1. In LPN, a higher key
1 In the case of LPN, the key is also referred to as the secret vector. For this paper,

we will use key and secret vector interchangeably for readability purposes.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 19–36, 2022.
https://doi.org/10.1007/978-3-031-15777-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_2&domain=pdf
http://orcid.org/0000-0003-3373-699X
http://orcid.org/0000-0001-6490-6467
http://orcid.org/0000-0003-0594-0432
https://doi.org/10.1007/978-3-031-15777-6_2

20 T. G. Tan et al.

length reduces the chance of key recovery, but it is not the only factor that deter-
mines the security of an LPN implementation. Esser et al. [9] describes LPN to
be a “two-parameter problem” whose hardness is determined at setup by the size
of secret vector and the noise rate. Higher noise rates at constant key lengths
decrease the chance of an adversary being able to guess the secret vector while
lower noise rates work vice versa. In the extreme case of zero noise, the LPN
secret vector can be recovered in polynomial time using Gaussian elimination.

The security of an LPN implementation is also affected by the number of sam-
ples obtained during runtime. Much research [9,24,28] on the security strength
of LPN has assumed an unbounded number of samples available for cryptanal-
ysis, thus recommending larger key lengths and even larger number of sam-
ples per cycle in order to thwart the ever-growing cryptanalysis capacity of the
adversary’s machine. This inadvertently increases the compute and bandwidth
overheads of LPN implementations beyond the reach of low-resource devices, a
common concern echoed by other researchers [12,25]. We ask if restricting the
key lifespan by putting a limit on the total number of samples generated is a
feasible means to mitigate against key recovery attacks.

Just as how authentication systems can be adjusted (e.g. different password
combinations and lengths, number of features in a facial biometric minutiae, etc.)
according to the application’s needs for security versus convenience, we want to
calibrate the values of these three (or more) LPN parameters: key length, noise
rate, and number of samples per cycle along the same purpose. In this paper, we
will use statistical bounds, algorithmic analysis and computational simulations
to examine the inter-dependencies among the parameters, and attempt to arrive
at optimal recommendations for deciding the parameter values while balancing
practical constraints against security requirements. Our contributions are:

– Execution and analysis of over 70,000 node-hours of LPN simulation and
cryptanalysis on a high-performance computational cluster.

– Use of machine-learning algorithms, specifically Extremely Randomized Trees
and Genetic Algorithms, to attempt LPN key recovery.

– Introduction of a key lifespan parameter as the mitigating means to keep key
lengths and sample sizes sufficiently low while maintaining security.

– Validated list of recommended LPN parameters for low-resource devices.

The organization of the paper is as follows. Section 2 covers LPN basics and
assumptions. Section 3 uses the authentication concept of “precision” to model
the LPN parameters for determining false-acceptance rates (FAR) and false-
rejection rates (FRR). Section 4 explores how limiting the key lifespan could
mitigate the need to increase key length against key recovery attacks. Section 5
summarizes the findings and concludes the paper.

2 Preliminaries

2.1 Notation

For positive integers i, j ∈ N, we denote v ∈ Z
i
2 as a vector with i binary elements

and M ∈ Z
i×j
2 as a two-dimensional matrix with i rows and j columns of binary

Calibrating LPN Authentication 21

elements. vi represents the ith element in vector v, and Mi is a vector representing
the ith row in matrix M . The hamming weight of vector v is denoted by ‖v‖1
and represents the number of “1” elements in the vector. log denotes the binary
logarithm, while ln denotes the natural logarithm.

For a real number τ ∈ [0, 1], we use v ← Beri
τ and M ← Beri×j

τ to denote
a vector v of i binary elements and a two-dimensional matrix M of i by j
binary elements respectively where each of the vector and matrix elements are
randomly chosen to follow a Bernoulli distribution where Pr[vi == 1] = τ and
Pr[Mi,j == 1] = τ .

2.2 LPN Basics

Definition 1 (LPN). When given access to a LPN oracle O
k
τ which possesses

a secret vector s ∈ Z
k
2 and returns n pairs of samples in the form {Ai, bi =

Ai · s ⊕ ei} where Ai ← Berk
0.5, bi, ei ∈ {0, 1}, Pr[ei = 1] = τ , 0 ≤ τ < 0.5 and

i = {1, 2, ..., n}, the ε-hardness of the LPN (search) problem is defined as the
probability that a polynomial running-time algorithm S can return s.

Pr[S(A, b) → s] ≤ ε (1)

The HB [17] protocol is a vanilla construction of the LPN problem embodied
in an identification protocol between a Verifier and Prover.

Verifier (with s) Prover (with s′)

A ← Bern×k
0.5

e ← Bern
τ

b = A · s′ ⊕ e

Compute()Compute()

b ∈ Z
n
2

w = ‖A · s ⊕ b‖1

(w < (1 + δ)n ∗ τ)?accept : reject

Verify()Verify()

Fig. 1. The HB protocol [17]

Figure 1 shows the interaction between the Verifier and Prover where the
Verifier is assured to a degree that the Prover has knowledge of the shared
secret vector s of length k. It goes as follows:

1. Noise rate τ is pre-agreed. Verifier possesses s and Prover possesses s′, both
vectors of length k.

22 T. G. Tan et al.

2. Verifier sends a n by k binary challenge matrix, A, to the Prover. A is ran-
domly generated and each element has equal probability of being 1 or 0.

3. Prover generates an error vector e ∈ Bern
τ where Pr[ei = 1] = τ and com-

putes the response vector b = A · s′ ⊕ e. Prover sends b to the Verifier.
4. Verifier has a verification window parameter δ ∈ R where 0 ≤ δ ≤ 1. Verifier

computes the hamming weight w = ‖A · s ⊕ b‖1, and accepts that s = s′ if w
does not exceed (1 + δ) ∗ n ∗ τ . And rejects otherwise.

We note that over and above the LPN parameters of key length k, noise rate
τ and sample size per cycle n, there is an additional verification window δ that
affects the authentication outcome. Assuming c represents the total number of
authentication cycles exchanged between the Prover and Verifier, we define the
lifespan of the key N = n ∗ c which represents total number of samples gener-
ated in the life of the key. HB is only secure against passive attacks where the
values of Ai are random and not under the influence or control of any adversary.
Subsequent protocols such as HB+ [18], HB++ [8], HB# [12] and many more
evolve from HB and attempt to address active attacks and man-in-the-middle
attacks. Other constructions on improving LPN security include Ring-LPN [15]
which replaces the binary field with a ring, using a subspace of the secret key
[20] on which to build a MAC scheme, and moving to a 3-round LPN [25].

2.3 Assumptions

For our investigations, we have chosen to use the original HB [17] protocol as it is
a common denominator to the subsequent LPN protocols and derived schemes. It
allows our findings which are related to precision and key lengths to remain rel-
evant to as many LPN-based implementations as possible. We therefore assume
a passive attacker who cannot influence or modify the values of matrix A. The
binary values in matrix A and secret vector s are randomly generated with
equal probability to be 1 or 0. The values in noise vector e follows a Bernoulli
distribution where Pr[ei == 1] = τ in which τ is the LPN noise rate.

ISO 18000-6:2013 [1] provides the interface communication standard for
RFID-based equipment and software. We adopt the standard’s ultra-high fre-
quency data rate of 40Kbits/s and set key lengths k to start from 80 bits.
Assuming one cycle of authentication over the HB protocol happens in under
one second (which is almost an eternity by today’s standards), this gives an
approximate range of maximal samples per cycle to be n ≤ 40000

80 = 500. While
the standard is silent on the maximum number of cycles, we checked for available
product specifications from multiple companies2 that produce RFID products
and found that 100,000 cycles is the specified norm.

3 Exploring Precision

Since LPN, by design, can be made statistically secure [19] by proper choice
of key length, noise and number of samples, we want to create an applicable
framework for LPN projects to suitably choose these parameters.
2 Including 3M, EM Microelectronic, Fujitsu, NXP and Rockwell Automation.

Calibrating LPN Authentication 23

Definition 2 (Precision). Generalizing from Definition 1 in Hopper and Blum
[17] and referring to Fig. 1, we envision an identification system of two parties,
Verifier and Prover, where the Verifier has in possession a secret vector s ∈ Z

k
2

and the Prover has in possession a secret vector s′ ∈ Z
k
2 . The Verifier is required

to accept the identity of the Prover if s == s′ and reject otherwise. We define
precision as the measure of two limits:

False-Acceptance-Rate (FAR) represents the probability that a Verifier will
accept a Prover with a different secret vector:

FAR = Pr [V erify() → accept|s 	= s′] (2)

False-Rejection-Rate (FRR) represents the probability that a Verifier will
reject a Prover with the same secret vector:

FRR = Pr [V erify() → reject|s == s′] (3)

FAR represents the authentication security of the system where a very low
FAR represents a system which adversaries are unable to spoof. FRR represents
the usability of the system where higher FRR rates cause unhappiness to valid
users, who are forced to retry the authentication.

3.1 Statistical Bounds

Levieil and Fouque [24] attempted to address precision by using a completeness
error Pc (defined similarly to FRR) and soundness error Ps (defined similarly
to FAR). The computations of Pc and Ps using Stirling’s formula, where u =
(1 + δ)τ , are shown in Eq. 4.

g(x, y) =
(

x

y

)x (
1 − x

1 − y

)1−x

FRR = Pc ∼ g(u, τ)−n

FAR = Ps ∼ g(u,
1
2
)−n

(4)

The approach in Eq. 4 considers the set of all possible answers consisting of
correct and incorrect answers, and then accounts for the probability Pc that an
answer from a valid Prover may not be accepted due to noise and the probability
Ps that an adversary could consecutively guess the correct answer for each sam-
ple. Levieil and Fouque then proposed that for Pc < 2−40 and Ps < 2−80, several
pairs of [noise,samples] are listed: {[0.01,159], [0.05,249], [0.125,441], [0.25,1164],
[0.4,7622], [0.49,554360]}. Note that the proposed number of samples for τ ≥ 0.25
already exceeds what is feasible in ISO 18000-6 (see Sect. 2.3).

On the other hand, Kübler in his PhD thesis [22] defines α and β in the same
definition as FRR and FAR respectively, and uses Chernoff Bounds and Piling-
Up Lemma to propose a different hypothesis test for verifying LPN. Following

24 T. G. Tan et al.

Theorem 2 and Lemma 7 of [22], and using t = (1 + δ)nτ we have:

FRR = α = Pr[wt(As′ + b) > t] ≤ e− 1
2 δ ln(1+δ)nτ

FAR = β = Pr[wt(As′ + b) ≤ t] ≤ e− 1
2 δ2nτ

(5)

By setting α = β = e−k, Kübler’s recommendations are for n = 4k(12 − τ)−2

and t = n ∗ τ +
√

k ∗ m. From a configuration standpoint, the Kübler’s system
is rigid as it fixes both false error rates to be below e−k. Furthermore, relying
solely on the key length k to determine the precision means that the FAR/FRR
for such LPN systems cannot be controlled dynamically after deployment.

We argue that fixing both FAR and FRR before computing number of
samples per cycle n may not be the optimal approach since there are inter-
dependencies observed between them. Using n = 500 and δ on the x-axis, Fig. 2
shows plots using www.desmos.com for Eq. 4 on the left and Eq. 5 on the right.
FRR in depicted blue and dotted-green, and FAR in depicted red and dotted-
orange with noise rate τ = 0.125 and 0.4 respectively.

(a) Using Stirling’s formula (b) Using Chernoff bounds

Fig. 2. FAR and FRR for n = 500 (Color figure online)

Referring to Fig. 2a, for τ = 0.125, the cross-over range where FRR and
FAR are both below 0.01 happens for 0.43 < δ < 2.38. However, for τ = 0.4,
the lowest cross-over range for FRR and FAR is 0.135 when δ = 0.124. It will
require n > 900 before the cross-over range falls below 0.01. While in Fig. 2b,
both FRR and FAR have very similar values for the same noise rate τ . For
τ = 0.125, FRR and FAR are below 0.01 if δ > 0.42. Increasing τ to 0.4 causes
the curves to narrow, thus allowing δ to be at least 0.226 in order to keep FRR
and FAR below 0.01. The effect of increasing sample size n from 500 to larger
values causes the curves to narrow, allowing for an even smaller δ to keep FRR
and FAR low. These bounds seem to suggest that FRR and FAR can be kept
low if 0.5 < δ < 1, which we want to confirm in our Experiment 1 below.

3.2 Computational Simulations

Experiment 1. We design a HB protocol experiment to explore how close the
statistical bounds of FAR and FRR are to actual execution. The parameters
used are as follows:

www.desmos.com

Calibrating LPN Authentication 25

– Values of noise rate τ = {0.01, 0.05, 0.125, 0.25, 0.4, 0.45, 0.49}
– Values of sample size per cycle n = {50, 100, 200, 350, 500, 900.}
– Values of key length k = {100, 200, 300, 400, 500}
– Values of verification window δ = 0.0 to 1.0 in increments of 0.1.

The FAR/FRR measurement algorithm is found in Algorithm1 in
AppendixA. It takes in four parameters—noise rate τ , number of samples
n, key length k and verification window δ. The FAR/FRR measurement
algorithm performs the HB protocol to generate A, e and compute b as per
Fig. 1. We ran 1,000 simulations for each of the parameter values to mea-
sure FAR and FRR, and the results are plotted in Fig. 3 and Fig. 4 respec-
tively. The y-axis represents the number of errors (either false-accept or false-
reject) that happened out of 1,000 simulations which ideally should be zero.
The x-axis represents the range of sample sizes tested for each of the noise
rates indicated. The different δ values are depicted by family of colours where
{colour = δ} = {maroon = 0.0, red = 0.1, orange = 0.2, yellow = 0.3, light-
green = 0.4, green = 0.5, light-blue = 0.6, blue = 0.7, indigo = 0.8, purple = 0.9,
grey = 1.0} respectively. The observations are:

– Key lengths k do not affect FAR/FRR.
– For noise rate τ ≤ 0.125, FAR can be kept low with practical sample sizes

regardless of δ. For τ ≥ 0.25, far higher values of sample sizes with δ = 0 is
needed to keep FAR low.

– It is not possible to find low FAR for τ > 0.4 for practical sample sizes.
– δ = 0 cannot be used as FRR ∼ 50% regardless of sample size.
– A combination of higher δ, higher noise rate τ and much larger sample sizes

n is needed to keep FRR low.

3.3 Summary of Precision Results

With both statistical bounds and computational simulations analysed, we are
now ready to recommend appropriate [τ, n, δ] combinations with low FAR and
FRR. The methodology used is:
Step 1: From Fig. 3, extract the combinations of [τ, n, δ] with FAR < 1.
Step 2: From Fig. 4, extract the combinations of [τ, n, δ] with FRR < 1.
Step 3: From the intersection of the two sets from Step 1 and Step 2, compute

the statistical FAR and FRR using Eq. 4 and Eq. 5.
Step 4: Remove combinations whose FAR and FRR are above acceptable sta-

tistical bounds.
Assuming the acceptable statistical bounds for FAR and FRR are set at 2−40,
the final set of recommended [τ, n, δ] combinations is found in Table 1.

Table 1. Verification window δ values for acceptable [τ, n] combinations.

τ n = 200 350 500 900

0.05 – 0.9–1.0 0.8–1.0 0.6–1.0

0.125 0.8–0.9 0.6–1.0 0.5–1.0 0.4–1.0

26 T. G. Tan et al.

4 Exploring Key Lengths

While we have established that key lengths k does not impact precision, it is
directly correlated to the hardness (or difficulty) of key recovery of a LPN prob-
lem. This is a well-studied topic where related research has provided recommen-

Fig. 3. (Experiment 1) computational simulation of FAR

Fig. 4. (Experiment 1) computational simulation of FRR

Calibrating LPN Authentication 27

dations into the choice of key length versus the intended security bit-strength.
For 80-bit security, key length recommendations range from k = 512, τ = 1

8 by
Levieil and Fonque [24], k > 1090 by Bogos et al. [6] and k ≥ 2048 by Esser et al.
[9]. Since these results are based on cryptanalysis techniques with access to large
quantities of collected samples (A, b), we continue our research into how limiting
the key lifespan can be used as a mitigation tool to maintain LPN security for
small key lengths such as k = 80.

We take direction from the key length selection framework by Lenstra and
Verheul [23] which uses the Wassenaar Arrangement to evaluate the appropriate
LPN key length. The topics explored are the key length recommendation, the
effectiveness of important known (i.e., published) attacks, guessing and incom-
plete attacks, and any expected cryptanalytic progress.

4.1 Key Length Recommendation

Since the HB protocol is symmetric-key based, the Wassenaar Arrangement asks
for key-lengths not exceeding 64-bits for retail or mass-market sold products.
This is less than the 80-bit size in our assumptions (equivalent to RSA-1024),
and thus susceptible to brute-force attacks.

4.2 Effectiveness of Known Attacks

The noise rate τ , in addition to key length k, impacts the outcome of LPN
cryptanalysis. When τ = 0, the LPN problem becomes polynomial-time solvable
using Gaussian Elimination when the number of samples n ≥ k and are linearly
independent. However, when τ > 0, the errors in b increases quadratically (by the
Piling-up Lemma [26]) with each round of elimination, thus making the problem
intractable in polynomial-time.

Blum et al. [5] describes the BKW algorithm that works similarly to Guassian
Elimination, but reduces the cumulative errors by searching for and eliminating
partial sequences instead of individual elements. The total number of samples
needed is shown computationally to be 2k/log k

τ by Esser et al. [9]. Levieil and
Fouque [24] improved on BKW by applying the Walsh-Hadamard Transform
(WHT) in the solving phase of their algorithm LF1. This has an effect of increas-
ing the time and memory complexity while reducing the total samples needed
which is shown to be 4k log 2

(1−2τ)2 [28]. Guo et al. [14] introduced the use of covering
code, subspace distinguishing [3] and WHT in a five-step CC algorithm which
has an effect of reducing the query complexity to 4k log 2

τ2 . The only algorithm we
found that starts from the basis of a limited pool of samples is a hybrid-BKW by
Beläıd et al. [2] which uses a birthday-paradox heuristic to select edge-case sam-
ples with assumptions before using WHT to solve a partial solution. In another
approach, Esser et al. [9] proposes a Well-pooled Gaussian algorithm (WPG)
by analyzing the samples and pooling their commonalities to solve smaller sub-

sets of the secret vector. The query complexity of WPG is O(1
(1−τ)k)

1
1+log(1

1−τ
)).

28 T. G. Tan et al.

Table 2. Selected known total samples used for cryptanalysis algorithms.

Algorithm Key length k, noise τ

64, 0.25 80, 0.1 135, 0.25 200, 0.125 512, 0.125

BKW [5] – 227.3 [6]a – – –

LF1 [24] 220.7 [6]a 217.98 [6]a – – 275.2 [14]

CC [14] – – 233 [9] 231.2 [28] 265 [14]

WPG [9] 232.56 [6]a – 233 [9] – –
aBased on sparse secret.

We tabulate selected known total samples used from related research discussed
above in Table 2.

The effectiveness of the attacks arise from the availability of large-enough
samples which allow the adversary to perform dimension reduction to retrieve a
subset of the key. We therefore replicate the first reduction step from BKW as
the basis for checking the boundaries of limited sample sizes.

Experiment 2. We perform an experiment to find blocks of size k
log k

τ

(rep-
resenting a good probability of cryptanalysis success) for different sample sizes
using codes provided by Esser et al. [9] hosted at https:// github.com/Memphisd/
LPN-decoded. We vary the following parameters:

– Values of noise rate τ = {0.05, 0.125, 0.25,0.4}
– Values of total sample size n = {1k, 5k, 10K, 50K, 100K, 500K, 1M, 5M,

10M, 50M} where K= thousand, M=million.
– Values of key length k = 16 to 52 in steps of 4.

Fig. 5. (Experiment 2) BKW reduction for limited sample sizes

Experiment 2 is repeated for each key length & noise rate, starting with the
lowest total sample size. The total sample size is then increased if no vector
survives the reduction after ten independent attempts. Figure 5 shows the graph
for the minimum total sample size needed for at least one vector to survive the

https://github.com/Memphisd/LPN-decoded
https://github.com/Memphisd/LPN-decoded

Calibrating LPN Authentication 29

reduction for each of the key length values. The required total sample size grows
exponentially with key length and exceeds 50 million after k > 52 while the
noise rate τ does not materially affect the total number of samples needed to
complete the first reduction step.

4.3 Effectiveness of Guessing

We envision that the modern adversary has more tools in the arsenal compared
to when Lenstra and Verheul wrote the article [23] some 20 years ago. Beyond
random-guessing which the adversary has a 1

2k chance in guessing the right secret
vector, we want to know if an adversary can make use of machine-learning to
predictably guess the secret vector. Kübler [21] provided an experimental walk-
through using Extremely Randomized Trees (ERT) [11], an ensemble learning
technique, to successfully predict the value of s for a LPN implementation with
parameters k = 16, τ = 0.125, n = 100000. Informally, ERT works by randomly
splitting samples into independent tree structures based on a subset (instead
of all) of the data attributes. Such a method has a possible effect of ignoring
the noise impact on some of the computed responses in vector b and allow the
predictor to guess a correct secret vector s.

Experiment 3. We design a HB protocol experiment (see Algorithm2 in
AppendixA) around Kübler’s ERT implementation with the following param-
eters:

– Values of noise rate τ = {0.05, 0.125, 0.25, 0.4}
– Values of total sample size n = {10K, 50K, 100K, 500K, 1M, 5M, 10M, 50M}

where K= thousand, M=million.
– Values of key length k = {16, 20, 24, 28, 32}

Fig. 6. (Experiment 3) Key guessing using ERT machine-learning

Experiment 3 is repeated for each key & noise rate, starting with the lowest
total sample size. The total sample size is then increased if ERT fails to guess

30 T. G. Tan et al.

the correct key after 100 attempts. We chose the ceiling of 50 million samples as
it represents the total of 100,000 cycles with 500 samples in each cycle as per the
assumptions in Sect. 2.3. Figure 6 shows the total number of samples needed for
ERT to correctly guess the correct key. When k = 16, only 10,000 samples (or
10000
500 = 20 cycles) will allow an adversary to guess the secret vector. However,

the difficultly increases exponentially with each small increase in key length. As
expected, ERT performs better for lower noise rates. Hence, if a secret vector s
is not used over to compute over 50,000,000 samples, then key lengths of k > 28
are safe from machine-learning guessing.

4.4 Effectiveness of Incomplete Attacks

We use Genetic Algorithm (GA) [16], a meta-heuristic method of improving a
partial solution through multiple cycles of evolution, to answer the question if
the noise parameter τ can change LPN’s susceptibility to incomplete attacks
where an adversary is able to obtain a partially-correct secret vector s′.

Intuitively, the existence of partial solutions would mean the adversary has
some form of indication about the proximity of s′ to s. This can be mapped
into GA’s fitness function and allow an adversary to arrive at the correct secret
vector faster than a brute-force search. The fitness function (see Algorithm3 in
AppendixA) is designed to mimic the V erify() function in the HB protocol (see
Fig. 1) which returns 1 if the response vector b is within the verification window
and the reciprocal of the difference otherwise.

Experiment 4. We design a HB-protocol experiment using GA to attempt to
recover the LPN secret vector. We build on the python library provided by pygad
[10] and use the following parameters with Algorithm3 as the fitness function:

– Values of noise rate τ = {0.05, 0.125, 0.25, 0.4}
– Number of generations = {10, 50, 100, 500, 1K, 10K, 50K, 100K, 500K, 1M,

5M, 10M} where K= thousand, M=million.
– Sample size = 500, number of solutions per generation = 10
– Number of mating parents = 4, % of mutation = 10%
– Values of key length k = {12, 16, 20, 24, 28}

Fig. 7. (Experiment 4) Scatter graph results of key recovery using GA

Calibrating LPN Authentication 31

Experiment 4 is run five times for each key length & noise rate, starting with
the lowest generation. The number of generations is then increased if GA fails to
find the correct key after 20 attempts. Figure 7 shows the results of the experi-
ment plotted in a scatter-graph where the y-axis shows the minimum number of
generations needed for each of the five runs for each of the key length and noise
values, while the x-axis is the key length used. As a reference, we include a line
function representing the statistically-computed number of generations needed
if brute-force, instead of GA, is used to guess the secret vector. Our experiment
confirms that LPN is not susceptible to incomplete key attacks. In fact, GA
increasingly performs poorly as the size of key increases which we suspect is due
to repetitions in the mutated solutions during GA evolution.

4.5 Cryptanalytic Progress

We first examine the possibility of an adversary carrying out a brute-force attack
to recover the secret vector. Taking a conservative approach where each LPN
sample takes one clock cycle to compute and the adversary has access to a super-
computing cluster with 10,000 nodes running at 3GHz each, we give an estimated
breakdown of time needed T to brute-force (BF) a LPN setup with sample size
of n = 500 per cycle in Eq. 6.

k = 64 : T =
263 ∗ 500

10000 ∗ 3000000000 ∗ 3600 ∗ 24 ∗ 365
= 4.87 years

k = 80 : T =
279 ∗ 500

10000 ∗ 3000000000 ∗ 3600 ∗ 24 ∗ 365 ∗ 1000
= 319 millennia

(6)

Expected Developments. Since we are preparing to use LPN in the post-
quantum era, we cannot discount the possibility of attacks using quantum com-
puters. The LPN problem is closely related to decoding random linear codes and
solving worst-case hardness nearest-codeword problem can be reduced to LPN
[7]. Esser et al. [9] propose the use of quantum-based Grover algorithm within
their (WPG) algorithm to improve the execution time and query complexity by
a factor of 2

3 . Grilo et al. [13] application of quantum-based Bernstein-Vazirani
algorithm on a Q2 LPN oracle could yield results with exponentially less queries,
but the Q2 oracle counts as an active attack and falls outside the scope of our
assumptions.

4.6 Summary of Key Length Results

We summarize in Table 3 the various key length evaluation results from this
section, and apply a 50% margin to take into account any improvements, espe-
cially in the area of quantum computation.

32 T. G. Tan et al.

Table 3. Recommended settings for smaller key lengths.

Algorithm k = 64 k = 80 Remarks

BKWa 500,000 samples 50,000,000 samples Experiment 2

ERT a >50,000,000 samples >50,000,000 samples Experiment 3

GAb =BF =BF Experiment 4

BF <2.4 years >10 years Eq. 6
aThese results are based on actual cryptanalysis on full sample sizes.
bThese results are extrapolated from lower key sizes.

For k = 64, we recommend that it be used only for systems with short usage
period of less than one year and for < 1000 authentication cycles. For k = 80,
it can be used for five years but limited to a maximum of 100, 000 cycles (i.e.
50, 000, 000 samples) before the secret vector needs to be changed.

5 Conclusion

We have used a series of experiments to calibrate LPN authentication for low-
resource devices using the HB protocol. Such devices can only handle small
sample sizes per authentication cycle and small key lengths due to bandwidth and
computational restrictions. By using the authentication concept of precision, we
have identified appropriate noise rate and verification window values for sample
size per cycle ≤500. To mitigate against key recovery attacks, we have proposed
to limit the lifetime of a secret vector to less than 100,000 cycles (or a total of
50,000,000 samples) for key length k = 80.

Our next steps will be to apply the recommended values on derivative HB
protocols such as HB+, HB++, HB#, etc. and provide a usability study on a
real-world implementation of LPN authentication using RFID devices.

Acknowledgement. This project is supported by the Ministry of Education, Sin-
gapore, under its MOE AcRF Tier 2 grant (MOE2018-T2-1-111). The computational
work for this article was partially performed on resources of the National Supercom-
puting Centre, Singapore (https://www.nscc.sg).

The work is also supported by A*STAR under its RIE2020 Advanced Manufac-
turing and Engineering (AME) Industry Alignment Fund - Pre Positioning (IAF-
PP) Award A19D6a0053. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of
A*STAR.

https://www.nscc.sg

Calibrating LPN Authentication 33

A Algorithm Pseudocode

Algorithm 1: FAR/FRR measurement algorithm.

1 begin
2 τ ← noise rate; n ← number of samples per cycle;
3 k ← key length; δ ← verification window;
4 Generate matrix A = Random(n ∗ k, 0.5);
5 Generate secret vector s = Random(k, 0.5);
6 Generate noise vector e = Random(n, τ);
7 Compute b = A · s ⊕ e;
8 Create s′ = s with random 2 bits changed;
9 if ‖A · s′ ⊕ b‖1 < (1 + δ)τn then

10 FAR error = TRUE;
11 end
12 if ‖A · s ⊕ b‖1 > (1 + δ)τn then
13 FRR error = TRUE;
14 end
15 end

We assume the existence of a function Random(n, p) that returns a binary
matrix/vector of size n where each element has a probability p to be 1. The
secret key s is randomly generated.

Algorithm 2: ERT algorithm for LPN Key Recovery
1 begin
2 τ ← noise rate; n ← number of samples; k ← key length;;
3 Generate matrix A = Random(n ∗ k, 0.5);
4 Generate secret vector s = Random(k, 0.5);
5 Generate noise vector e = Random(n, τ);
6 Compute b = A · s ⊕ e;
7 Create ERT = ExtRaTree classifier with n

k
estimators ;

8 Call ERT .fit(A, b);
9 Create I = Identity Matrix of size k by k;

10 s′ = ERT .predict(I);
11 if s′ == s then
12 Key Recovery = TRUE;
13 end

14 end

34 T. G. Tan et al.

Algorithm 3: Fitness function for GA
1 begin
2 τ ← noise rate; n ← number of samples; δ ← verification window;
3 s′ ← vector to be tested; A ← challenge matrix; b ← response vector;
4 Compute w = ‖A · s′ ⊕ b‖1;
5 if w ≤ (1 + δ)τn then
6 return 1
7 else
8 return 1

w−(1+δ)τn

9 end
10 end

We performed a sub-experiment to measure the efficacy of the fitness function
by varying the number of erroneous bits in s′ and noise rate to find any advantage
that adversaries may be able to uncover.

Fig. 8. Return values for simulated fitness function for k = 64, δ = 0.5

Figure 8 shows the graph which plots the return values of the fitness function
for error bits in s′ from 0 to k

2 in increments of 1 and for noise rate τ = {0.05,
0.125, 0.25, 0.4}. For clarity purposes, we have fixed k = 64, δ = 0.5, n = 500.
It clearly shows that the fitness function is unable to tell the difference in the
number of error bits for partial solutions since the fitness values become close to
zero once there is at least one error bit in s′.

References

1. 2013, I...: Information technology-radio frequency identification for item manage-
ment-part 6: Parameters for air interface communications at 860 MHz to 960 MHz
general (2013)

2. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff, E.:
Improved side-channel analysis of finite-field multiplication. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 20

https://doi.org/10.1007/978-3-662-48324-4_20

Calibrating LPN Authentication 35

3. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36140-1 10

4. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM (JACM) 50(4), 506–519 (2003)

6. Bogos, S., Tramer, F., Vaudenay, S.: On solving LPN using BKW and variants.
Cryptogr. Commun. 8(3), 331–369 (2016)

7. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-case hard-
ness for LPN and cryptographic hashing via code smoothing. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 619–635. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 21

8. Bringer, J., Chabanne, H., Dottax, E.: HB++: a lightweight authentication proto-
col secure against some attacks. In: Second international Workshop on Security,
Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU 2006), pp.
28–33. IEEE (2006)

9. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

10. Gad, A.F.: PyGAD: An Intuitive Genetic Algorithm Python Library (2021)
11. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.

63(1), 3–42 (2006)
12. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: increasing the security and effi-

ciency of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-
3 21

13. Grilo, A.B., Kerenidis, I., Zijlstra, T.: Learning-with-errors problem is easy with
quantum samples. Phys. Rev. A 99(3), 032314 (2019)

14. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 1

15. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34047-5 20

16. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
17. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)

ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 4

18. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 18

19. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM
(JACM) 45(6), 983–1006 (1998)

20. Kiltz, E., Pietrzak, K., Venturi, D., Cash, D., Jain, A.: Efficient authentication
from hard learning problems. J. Cryptol. 30(4), 1238–1275 (2017)

21. Kübler, R.: Where Machine Learning meets Cryptography (2020). https://
towardsdatascience.com/where-machine-learning-meets-cryptography-
b4a23ef54c9e. Accessed Mar 2022

https://doi.org/10.1007/978-3-642-36140-1_10
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-540-78967-3_21
https://doi.org/10.1007/978-3-540-78967-3_21
https://doi.org/10.1007/978-3-662-45611-8_1
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/3-540-45682-1_4
https://doi.org/10.1007/11535218_18
https://towardsdatascience.com/where-machine-learning-meets-cryptography-b4a23ef54c9e
https://towardsdatascience.com/where-machine-learning-meets-cryptography-b4a23ef54c9e
https://towardsdatascience.com/where-machine-learning-meets-cryptography-b4a23ef54c9e

36 T. G. Tan et al.

22. Kübler, R.J.: Time-memory trade-offs for the learning parity with noise problem.
Ph.D. thesis, Ruhr University Bochum, Germany (2018)

23. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4),
255–293 (2001)

24. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 24

25. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 18

26. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

27. NIST: Post-Quantum Cryptography: Round 3 Submissions (2019). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions. Accessed
Mar 2022

28. Wiggers, T., Samardjiska, S.: Practically solving LPN. In: 2021 IEEE International
Symposium on Information Theory (ISIT), pp. 2399–2404. IEEE (2021)

https://doi.org/10.1007/11832072_24
https://doi.org/10.1007/978-3-642-40084-1_18
https://doi.org/10.1007/978-3-642-40084-1_18
https://doi.org/10.1007/3-540-48285-7_33
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

New Results of Breaking the CLS Scheme
from ACM-CCS 2014

Jing Gao1,2, Jun Xu1,2(B), Tianyu Wang1,2, and Lei Hu1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
xujun@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100093, China

Abstract. At ACM-CCS 2014, Cheon, Lee and Seo introduced a par-
ticularly fast additively homomorphic encryption scheme (CLS scheme)
based on a new number theoretic assumption, the co-Approximate Com-
mon Divisor (co-ACD) assumption. However, at Crypto 2015, Fouque et
al. presented several lattice-based attacks that effectively devastated this
scheme. They proved that a few known plaintexts are sufficient to break
both the symmetric-key and the public-key variants, and they gave a
heuristic lattice method for solving the search co-ACD problem.

In this paper, we mainly improve in terms of the number of sam-
ples, and propose a new key-retrieval attack. We first give an effective
attack by Coppersmith’s method to break the co-ACD problem with
N = p1 · · · pn is known. If n is within a certain range, our work is the-
oretically valid for a wider range of parameters. When n = 2, we can
successfully solve it with only two samples, that is the smallest num-
ber of needed samples to the best of our knowledge. A known plaintext
attack on the CLS scheme can be simply converted to solving the co-ACD
problem with a known N , again requiring fewer samples than before to
retrieve the private key. Finally, we show a ciphertext-only attack with
a hybrid approach of direct lattice and Coppersmith’s method that can
recover the key with a smaller number of ciphertexts and without any
restriction on the plaintext size, but N is needed. All of our attacks are
heuristic, but we have experimentally verified that these attacks work
efficiently for the parameters proposed in the CLS scheme, which can be
broken in seconds by experiments.

Keywords: co-ACD problem · Lattice · LLL algorithm ·
Coppersmith’s method

The work of this paper was supported in part by the National Natural Science Foun-
dation of China (No.61732021).

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 37–54, 2022.
https://doi.org/10.1007/978-3-031-15777-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_3

38 J. Gao et al.

1 Introduction

The approximate common divisor problem (ACD) is firstly presented by
Howgrave-Graham [21], and its variants are utilized to prove the security of
the proposed homomorphic encryption schemes over the integers [4,7,12,13,16].
There are many analyses of the ACD problem, such as [3,6,14,18].

At ACM-CCS 2014, Cheon et al. [5] first presented the co-approximate com-
mon divisor problem (co-ACD) and a new additive homomorphic encryption
scheme (CLS scheme), which includes both symmetric key version and public
key version. This scheme is based on the inverse function of Chinese remainder
theorem under a co-ACD assumption that is divided into decisional co-ACD
assumption and search co-ACD assumption. They claimed that, due to the sim-
plicity of the operations in encryption and decryption, their scheme was the
most efficient additive homomorphic encryption scheme compared to those of
the same type. In this scheme, a plaintext M ∈ ZQ (Q is the size of the plain-
text space) is encrypted as (C1, C2) = ((M + eQ) mod p1, (M + eQ) mod p2),
where the prime numbers p1 and p2 are large enough to form the secret key.

In the latter part of CLS, they also took into account the hardness of their
assumptions and presented a few attacks to validate these assumptions. They
utilized Chen-Nguyen’s attack [2], orthogonal lattice [31,32] and Coppersmith’s
method [6,8–10] to show that these attacks cannot break CLS scheme with their
parameters.

At Crypto 2015, Fouque et al. [17] presented three attacks that completely
and devastatingly broke the CLS scheme. The first attack is a known-plaintext
attack. If only one plaintext is unknown and a few other plaintexts are all known,
then this attack can retrieve the unknown plaintext. It breaks both the sym-
metric key and public key versions of CLS, as well as the underlying decisional
co-ACD assumption with an orthogonal lattice attack [31,32]. The second attack
is a ciphertext-only attack on the symmetric key CLS scheme. If the plaintexts
are small, then even if any plaintext is unknown, the attack can also retrieve the
plaintexts by doubly orthogonal lattice technique [30]. The third attack com-
bines direct lattice and Coppersmith’s method together to break the public key
scheme and solve the search co-ACD assumption by factoring the known mod-
ulus N and revealing the entire private key pi. In these attacks, only the first
one is rigorous, while the other two are heuristic, but they are all effective in
practice.

Our Contributions. In this paper, we mainly attack the CLS scheme and
its underlying co-ACD problem by Coppersmith’s method, which reduces the
number of required samples and improves on some restrictions compared to the
previous attacks.

First, we describe how to solve the search co-ACD problem in Sect. 3. That
is, the factorization of modulo N can be obtained with a small number of sam-
ples. We construct the equations about some unknown noise ej and use Copper-
smith’s method to solve small roots to find ej . Then we can obtain the factors
of N by a simple calculation of the greatest common divisor. Compared with

New Results of Breaking the CLS Scheme from ACM-CCS 2014 39

previous work, our attack only requires two samples for N = p1p2, and when
N = p1 · · · pn, we can theoretically complete the attack for larger ρ if n is within
a certain range. For the known plaintext attack, if we substitute the known mes-
sages into the equation, the attack is converted to solving the search co-ACD
problem.

Next, we present a ciphertext-only attack on the CLS scheme in Sect. 4. We
propose a method combining the direct lattice and Coppersmith’s method [17]
to attack the case that only the ciphertexts and N are known without knowing
any corresponding plaintexts. The main idea is to construct a relevant matrix to
get the approximate short target vector, and then further get the exact target
vector by Coppersmith’s method. This attack also needs a smaller number of
samples than the previous work, and there are no other size requirements for
the plaintexts.

Our attack algorithm is a heuristic polynomial time algorithm. We have
experimentally verified that the co-ACD problem and the CLS scheme can be
broken with a smaller number of samples by recovering the secret key when N
is known and n = 2. Although the CLS scheme has been completely broken
[17], we present attacks that can be done with a smaller number of samples, and
recover the key with any sized plaintext.

In this paper, we mainly use Coppersmith’s method, which was originally pro-
posed by Coppersmith in 1996 to solve univariate modulo polynomial equations
[9] and bivariate integer polynomial equations based on lattice basis reduction
[8] and was summarized in 1997 [10]. After years of continuous improvement
[1,20,22,26], Coppersmith’s method is now widely used in cryptanalysis, such as
RSA [19,24,28,33], CRT-RSA [11,15,23,29] and hidden number problem [34].

Organization. The paper is organized as follows. In Sect. 2, we introduce pre-
liminary information related to basic knowledge. Section 3 describes the detailed
attack to break the search co-ACD assumption and retrieve pi. We give only
ciphertext attack in Sect. 4. Section 5 is a conclusion.

2 Preliminaries

2.1 Notation

For x ∈ R, rounding down the number x is denoted by �x�. For an integer n,
Zn is the ring of integers modulo n. We use the letter �v to denote the vector
(v1, · · · , vn) ∈ Z

n. The �2-norm of vector �v is denoted by ‖�v‖, and the �2-norm
of the polynomial coefficient vector is denoted by ‖f(x1, · · · , xn)‖. In addition,

a
$←− A denotes uniformly sampling an element a from a finite set A. When A is

a distribution, a ← A means to sample a according to A, and �v ← An means
that in the vector �v each element vi is sampled from the distribution A.

2.2 co-ACD Problem

Definition 1 (co-ACD problem [17]). Let n,Q, η, ρ ≥ 1 and denote π the
uniform distribution over the η-bit prime integers. The co-ACD distribution for

40 J. Gao et al.

a given �p = (p1, · · · , pn) ∈ Z
n is the set of tuples (eQ mod p1, · · · , eQ mod pn)

where e
$←− (−2ρ, 2ρ) ∩ Z.

The search co-ACD problem is: for a vector �p ← πn and given arbitrarily
many samples from the co-ACD distribution for �p, to compute �p.

The decisional co-ACD problem is: for some fixed vector �p ← πn and given
arbitrarily many samples from Zp1 × · · · × Zpn

, to distinguish whether the sam-
ples are distributed uniformly or whether they are distributed as the co-ACD
distribution for �p.

The original paper [5] assumed that solving the decisional co-ACD problem
was hard, i.e., it is not solvable in polynomial time, and proposed an efficient
additive homomorphic encryption scheme based on this assumption.

2.3 CLS Additive Homomorphic Encryption Scheme

The CLS scheme encrypts a message by adding an error and performing modular
reductions with two hidden primes respectively. Then the ciphertext is decrypted
by using CRT and removing the error using a modular reduction. The parameters
used in the scheme show that η is the bit-length of pi’s, ρ is the bit-length of
the noise e and Q is the size of the plaintext space ZQ in Table 1. The specific
symmetry-key scheme is as follows.

Key Generation: Generate two random distinct prime integers p1, p2 of η bits
and a positive integer Q for the plaintext space which satisfies gcd(Q, pi)=1. Set
N = p1p2. Output the private key sk= {p1, p2}.

Encryption: For any plaintext M ∈ ZQ, the sender generates a random noise
e ← (2−ρ, 2ρ) ∩ Z, and outputs the ciphertext vector �C = (C1, C2) = (M +
eQ mod p1,M + eQ mod p2).

Decryption: The receiver decomposes �C into (C1, C2) and calculates e′ =
C1p1 + C2p2 mod N , where p1 = p2(p−1

2 mod p1) and p2 = p1(p−1
1 mod p2)

are the CRT coefficients. Then, outputs e′ mod Q = M .

Table 1. Parameters in the CLS scheme for λ = 128 bits of security

Parameters λ η ρ log Q

Set-I 128 1536 1792 256

Set-II 128 2194 2450 256

Set-III 128 2706 2962 256

New Results of Breaking the CLS Scheme from ACM-CCS 2014 41

2.4 Lattice

A lattice L is a discrete subgroup of Rm. Given n linearly independent vectors
�b1,�b2, · · · ,�bn ∈ R

m, the lattice generated by them is defined as

L(�b1,�b2, · · · ,�bn) = {
∑

xi
�bi|xi ∈ Z}.

The set {�b1,�b2, · · · ,�bn} is referred to as a basis of the lattice L. Equivalently,
define B as the n×m basis matrix whose rows are the basis vectors �b1,�b2, · · · ,�bn

which can be written as B = [�bT
1 , · · · ,�bT

n]T . Then the lattice generated by B is

L(B) = {�xB|�x ∈ Z
n}.

The dimension and determinant of L when n < m are respectively

dim L = n,det L =
√

det BBT .

When n = m, the lattice is called full rank and detL = |det B|. λ1 denotes the
length of the shortest nonzero vector in the lattice, and λi is the i-th successive
minimum. The celebrated LLL lattice reduction algorithm [25] can output a
reduced basis satisfying the following property (please see e.g. [27] for proof).

Lemma 1 (LLL). Let L be a n-dimensional lattice. Within polynomial time,
the LLL algorithm outputs reduced basis vectors �v1, . . . , �vn that satisfy

‖�v1‖ ≤ ‖�v2‖ ≤ · · · ≤ ‖�vi‖ ≤ 2
n(n−1)

4(n+1−i) (det L)
1

n+1−i , 1 ≤ i ≤ n.

In practice, LLL algorithm tends to output the vectors whose norms are much
smaller than theoretically predicted. The Gaussian heuristic gave the approxi-
mate norm of the shortest vector in L.

Assumption 1 (Gaussian heuristic). Let L be a random n-dimensional lat-
tice of Zm. Then, with overwhelming probability, the length of the shortest non-
zero vectors in L is asymptotically close to:

GH(L) =
√

n

2πe
det(L)

1
n .

2.5 Coppersmith’s Method

Coppersmith’s method can be used to solve modular polynomial equations with
small roots. The first step is to construct more modular polynomials with the
same desired roots. The second step is to construct a lattice with coefficients of
these polynomials. Finally, utilize the lattice reduction algorithms such as the
LLL algorithm to obtain integer polynomials over Z with the desired roots. In
these processes, the following lemma, reformulated by Howgrave-Graham [20],
is needed.

42 J. Gao et al.

Lemma 2 (Howgrave-Graham). Let f(x1, . . . , xm) be an integer polynomial
that consists of at most ω monomials. Let t be a positive integer and the Xi be
the upper bound of |xi| for i = 1, · · · ,m. Suppose that

1. f(x1, . . . , xm) = 0 (mod pt),
2. ‖f(x1X1, . . . , xmXm)‖ < pt

√
ω
,

then f(x1, . . . , xm) = 0 holds over Z.

Note that ‖f(x1X1, . . . , xmXm)‖ in Lemma 2 also stands for the �2-norm of
the corresponding row vector in the involved lattice. Therefore, according to
Lemma 1 and Lemma 2, in order to obtain at least m polynomials with the
common desired root (x1, . . . , xm), there is the following condition:

2
ω(ω−1)

4(ω+1−m) · (det L)
1

ω+1−m <
pt

√
ω

where ω = dim L. (1)

Finally, in order to find the desired root (x1, . . . , xm) by utilizing the resul-
tant method or the Gröbner basis technique, we expect that the obtained inte-
ger polynomials are algebraically independent. However, we cannot prove such
an argument. Thus, the following assumption is necessary and often used by
Coppersmith-type cryptanalysis [22].

Assumption 2. Let g1, · · · , gm ∈ Z[x1, · · · , xm] be the polynomials that are
found by Coppersmith’s method. Then the variety of the ideal generated by g1(x1,
· · · , xm), · · · , gm(x1, · · · , xm) is zero-dimensional.

3 Strategy for Solving Search co-ACD Problem

In this section, we break the search co-ACD problem by using Coppersmith’s
method when N = p1 · · · pn is public and gcd(Q,N) = 1. Given m co-ACD
samples (Qej mod p1, · · · , Qej mod pn), where j = 1, · · · ,m and m ≥ n, our
goal is to retrieve the specific pi’s with these m samples, in other words, fully
factorize the modulus N .

3.1 Solution for N = p1 · · · pn

Construct Modular Polynomials with Same Roots
In the case of N = p1 · · · pn, each sample is denoted as (Cj1, · · · , Cjn) =
(Qej mod p1, · · · , Qej mod pn) for j = 1, · · · ,m and m ≥ n.

The first type of polynomials fj(xj) for 1 ≤ j ≤ n−1 are collected as follows.
To begin, multiply these n equations Qej − Cji ≡ 0 mod pi together and obtain
a new equation (Qej −Cj1) · · · (Qej −Cjn) ≡ 0 mod N . Rearrange this equation,
then acquire

n∑

i=0

(−1)iσi(Cj1, · · · , Cjn)Qn−ien−i
j ≡ 0 mod N.

New Results of Breaking the CLS Scheme from ACM-CCS 2014 43

Here, σi(x1, · · · , xn) =
∑

1≤s1<s2<···<si≤n

xs1xs2 · · · xsi
is the i-th elementary sym-

metric polynomial on variables x1, · · · , xn, such as σ1(x1, · · · , xn) = x1+· · ·+xn

and σn(x1, · · · , xn) = x1 · · · xn. Let the coefficient of en
j be 1, then the following

equation can be obtained

enj + (−1)σ1(Cj1, · · · , Cjn)Q−1en−1
j + · · · + (−1)nσn(Cj1, · · · , Cjn)Q−n ≡ 0 mod N.

We construct the following n − 1 polynomials

fj(xj) := aj0 + aj1xj + · · · + aj,n−1x
n−1
j + xn

j (2)

where j = 1, · · · , n − 1 and aji = (−1)n−iσn−i(Cj1, · · · , Cjn)Qi−n mod N for
0 ≤ i ≤ n − 1. Apparently, ej is the root of fj(xj) mod N .

Next, we construct the second type of polynomials fk(x1, · · · , xn−1, xk) for
n ≤ k ≤ m. Denote pi := (p1 · · · pi−1pi+1 · · · pn) · ((p1 · · · pi−1pi+1 · · · pn)−1 mod
pi) mod N for i = 1, · · · , n. From

Qej ≡ Cj1 mod p1, · · · , Qej ≡ Cjn mod pn,

utilizing the Chinese remainder theorem, we arrive at the following modular
equation:

Q

⎛

⎜⎜⎜⎝

e1
...

en−1

ek

⎞

⎟⎟⎟⎠ ≡ p1

⎛

⎜⎜⎜⎝

C11

...
Cn−1,1

Ck1

⎞

⎟⎟⎟⎠ + · · · + pn

⎛

⎜⎜⎜⎝

C1n

...
Cn−1,n

Ckn

⎞

⎟⎟⎟⎠ mod N.

For simplicity, denote Cn,k as a n×n matrix

⎛

⎜⎜⎜⎝

C11 C12 · · · C1n

...
...

. . .
...

Cn−1,1 Cn−1,2 · · · Cn−1,n

Ck1 Ck2 · · · Ckn

⎞

⎟⎟⎟⎠ . We

can rewrite the above equation as

Q

⎛

⎜⎜⎜⎝

e1
...

en−1

ek

⎞

⎟⎟⎟⎠ ≡ Cn,k

⎛

⎜⎝
p1
...

pn

⎞

⎟⎠ mod N. (3)

Assume that matrices Cn,k are invertible in ZN ; otherwise, a non-trivial fac-
tor of N can be easily obtained. Because −nN < det(Cn,k) < nN accord-
ing to the standard determinant calculation method, the probability that
gcd(det(Cn,k), N) = N holds is extremely low. If det(Cn,k) is a multiple of
N , reselect a set of samples. Left multiply C−1

n,k by both sides of (3) and get

QC−1
n,k

⎛

⎜⎜⎜⎝

e1
...

en−1

ek

⎞

⎟⎟⎟⎠ ≡

⎛

⎜⎝
p1
...

pn

⎞

⎟⎠ mod N. (4)

44 J. Gao et al.

Note that pi ≡ 1 (mod pi) and pj ≡ 0 (mod pi) for j �= i. Then the congruence
p1 + · · · + pn ≡ 1 (mod N) holds. Thus, left multiply the n-dimensional row
vector (1, · · · , 1) by both sides of (4) and get

Q(1, · · · , 1, 1)C−1
n,k

⎛

⎜⎜⎜⎝

e1
...

en−1

ek

⎞

⎟⎟⎟⎠ ≡ 1 mod N.

Let (bk1, · · · , bk,n−1, bkn) := Q(1, · · · , 1, 1)C−1
n,k mod N , then we can rewrite the

above equation as

bk1e1 + · · · + bk,n−1en−1 + bknek ≡ 1 mod N.

Multiplying the equation by b−1
k,n produces the following polynomials:

fk(x1, · · · , xn−1, xk) := ak0 + ak1x1 + · · · + ak,n−1xn−1 + xk (5)

where ak0 = −b−1
kn mod N and aki = bkib

−1
kn mod N for 1 ≤ i ≤ n − 1. Clearly,

(e1, · · · , en−1, ek) is a root of fk(x1, · · · , xn−1, xk) mod N .

Solve ei by Coppersmith’s Method
Given some positive integer t, which is the power of modulo N t, we generate the
following polynomials for any integers s1, · · · , sm satisfying 0 ≤ s1+. . .+sm ≤ t:

gs1,...,sm
(x1, . . . , xm) := N

(t−
n−1∑

j=1
� sj

n �−
m∑

k=n

sk)
n−1∏

j=1

x
(sj−n� sj

n �)
j

n−1∏

j=1

f
� sj

n �
j

m∏

k=n

fsk

k .

It is obvious that gs1,...,sm
(e1, . . . , em) ≡ 0 mod N t. Then we construct the lattice

Ln(m, t) spanned by the coefficient vectors of the polynomials

gs1,··· ,sm
(Xx1, · · · ,Xxm), 0 ≤ s1 + . . . + sm ≤ t.

In order to make the involved basis matrix be lower triangular, we define
the following orders. First, variables x1, · · · , xm are arranged according to x1 <

· · · < xm. The monomials xs1
1 · · · xsm

m and x
s′
1

1 · · · xs′
m

m are arranged by terms of

xs1
1 · · · xsm

m < x
s′
1

1 · · · xs′
m

m ⇔ (s1, · · · , sm) ≺lex (s′
1, · · · , s′

m),

where (s1, · · · , sm) ≺lex (s′
1, · · · , s′

m) denotes that the lexicographic order of
(s1, · · · , sm) is lower than that of (s′

1, · · · , s′
m). In the case of m = 3 and t = 2,

we have
x1 < x2

1 < x2 < x1x2 < x2
2 < x3 < x1x3 < x2x3 < x2

3.

Therefore, xs1
1 · · · xsm

m is obviously the leading monomial of gs1,··· ,sm
(Xx1, · · · ,

Xxm).

New Results of Breaking the CLS Scheme from ACM-CCS 2014 45

Lemma 3. The basis matrix of lattice Ln(m, t) spanned by the coefficient vec-
tors of the polynomials gs1,··· ,sm

(Xx1, · · · ,Xxm) is triangular if the monomials
corresponding to the coefficient vectors are arranged according to the monomials
order defined above.

Proof. The polynomials gs1,··· ,sm
(Xx1, · · · ,Xxm) and gs1,··· ,sm

(x1, · · · , xm) are
in one-to-one correspondence, so we can prove this lemma by illustrating that the
coefficients of gs1,··· ,sm

(x1, · · · , xm) form a triangular matrix. The proof relies
on mathematical induction.

First, when s2 = · · · = sm = 0 and s1 goes from 0 to t, the leading mono-
mial of the polynomial gs1,··· ,sm

(x1, · · · , xm) corresponds to 1, x1, · · · , xt−1
1 , xt

1

respectively. It is easy to see that the matrix formed by these t + 1 polynomials
is lower triangular.

1 x1 x2
1 · · · xt−1

1 xt
1⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

g0,0··· ,0 N t 0 0 · · · 0 0
g1,0,··· ,0 0 N t 0 · · · 0 0
g2,0,··· ,0 0 0 N t · · · 0 0

...
...

...
...

. . .
...

...
gt−1,0,··· ,0 ∗ ∗ ∗ · · · N t−� t−1

n � 0
gt,0,··· ,0 ∗ ∗ ∗ · · · ∗ N t−� t

n �

The symbol ∗ indicates some value about N , a10 and a11.
Assume that for some s1, · · · , sm, all polynomials gt1,··· ,tm

(x1, · · · , xm) whose
t1, · · · , tm satisfy xt1

1 · · · xtm
m ≤ xs1

1 · · · xsm
m form a lower triangular matrix. Then,

in the order we defined above, add a new polynomial gs′
1,··· ,s′

m
(x1, · · · , xm) such

that (s′
1, · · · , s′

m) is the next sequence of (s1, · · · , sm). The only new mono-
mial is x

s′
1

1 · · · xs′
m

m , and all other terms xt1
1 · · · xtm

m in the new polynomial that
satisfy xt1

1 · · · xtm
m ≤ xs1

1 · · · xsm
m < x

s′
1

1 · · · xs′
m

m are the leading monomials of
gt1,··· ,tm

(x1, · · · , xm), which is part of the previously constructed triangular
matrix. Therefore, after adding the new polynomial, the matrix is still lower
triangular.

In conclusion, the lemma is proved.

Next, we analyze the dimension and determinant of Ln(m, t). The dimension
is the number of combinations of (s1, · · · , sm) satisfying 0 ≤ s1 + . . . + sm ≤ t.
Therefore, the dimension of Ln(m, t) is equal to

dim Ln(m, t) =
∑

0≤s1+...+sm≤t

1 =
(

m + t

m

)
.

From the entries on the diagonal

N
(t−

n−1∑

j=1
� sj

n �−
m∑

k=n

sk)

X

m∑

k=1
sk

,

46 J. Gao et al.

we can get the determinant of Ln(m, t) is

det Ln(m, t) = NwN XwX ,

where

wN =
∑

0≤s1+...+sm≤t

(t −
n−1∑
j=1

� sj

n � −
m∑

k=n

sk),

wX =
∑

0≤s1+...+sm≤t

m∑
k=1

sk.

The specific calculation of wN and wX is shown in AppendixA. Then the upper
bound of detLn(m, t) can be expressed as follows:

det Ln(m, t) < N
−mn−2n+n2+1

n (m+t
m+1)+(t+n−1)(m+t

m)Xm(m+t
m+1). (6)

Substituting ω = dimLn(m, t), det Ln(m, t) and
(

m+t
m+1

)
= t

m+1ω into the
inequality (1), the result is:

X < 2− ω−1
4t ω− ω+1−m

2ωt N1− (n−1)2

mn − (n−1)(m−1)
mt − m2−1

mw .

For a sufficiently large N , the powers of 2 and ω are negligible, and thus we only
consider the exponent of N :

1 − (n − 1)2

mn
− (n − 1)(m − 1)

mt
− m2 − 1

mw
,

where ω =
(
m+t
m

)
= (m+t)!

m!t! =
∏m

i=1(t+i)

m! > mt, which is proved easily by induc-
tion. Thus, above formula can be lower bound by

1 − (n − 1)2

mn
− (mn + 1)(m − 1)

m2t
.

Therefore, we obtain

X < N1− (n−1)2

mn − (mn+1)(m−1)
m2t .

By plugging log2 X = ρ and log2 N ≥ n(η − 1) into the inequality above with
(mn+1)(m−1)

m2t as an error term ε, we obtain

ρ < n(η − 1)(1 − (n − 1)2

mn
− ε),

where the error term ε > 0 is any positive number that satisfies t ≥ (mn+1)(m−1)
m2ε .

In summary, we get the result as follows.

Result 1. Given an integer N = p1 · · · pn with unknown factors pi, and m co-
ACD samples (ejQ mod p1, · · · , ejQ mod pn). Under Assumption 2, as long as
m ≥ n and ε > 0, co-ACD problem can be solved in polynomial time when

ρ < n(η − 1)(1 − (n − 1)2

mn
− ε). (7)

New Results of Breaking the CLS Scheme from ACM-CCS 2014 47

Remark 1. When n = 2, we can solve the co-ACD problem with two samples,
whereas [17] requires m > 3η−ρ

2η−ρ . If m = 2, this will cause η > ρ, which does not
meet the conditions for the selection of the parameters of the co-ACD problem.
Therefore, they are unable to solve the problem when m = 2. As m tends to
infinity, we approximately need to satisfy ρ < 2η, which is the same as the bound
ρ < (2 − 1

m−1)η in [17].
When n ≥ 3, we can solve it when m > (n − 1)2. In the asymptotic case, we

only need satisfy ρ < n(η−1), which corresponds to ρ < (n−1+1/n)η in Sect. 5.2

of [17]. As a result, when n(η − 1) > (n − 1 + 1/n)η, that is 3 ≤ n <
η+

√
η2−4η

2 ,
the theoretical bound of ρ in our work outperforms previous work.

Remark 2. If M1,M2, ...,Mm are m known messages, their ciphertexts are �C1, ...,
�Cm that satisfy �Cj = (Mj +Qej mod p1, · · · ,Mj +Qej mod pn), for j = 1, ...,m.
As we already know Mj , we can obtain Qej −C ′

ji ≡ 0 mod pi, which is the same
as the co-ACD problem.

3.2 Experimental Results

We ran the above attacks over 500 times in SageMath 9.0 on a PC with an
Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, 16 GB RAM, and Windows 10
to ensure success for n = 2 which is the parameter of the CLS scheme. The
attack works efficiently since the main cost of the attack is LLL algorithm, and
they need only six lattice dimensions, which can run very fast with only a few
tenths of a second. We compare our work with [17] in the number of samples
m and running time. Please see Table 2 for details, and the symbol − indicates
that the corresponding experiments were not given in [17].

Table 2. Attack of the search co-ACD problem for N = p1p2

Parameters Minimal m Running time Success rate

This work Set-I 2 0.16 s 100%

Set-II 2 0.19 s 100%

Set-III 2 0.20 s 100%

[17] Set-I 3 0.31 s 100%

Set-II 3 0.57 s 100%

Set-III − − −

4 Ciphertext-Only Attack

In this section, we attack the scheme with unknown plaintexts, and there is no
restriction to the plaintexts. That is, any unknown plaintext Mi ∈ ZQ can be
attacked. The main idea is to construct the lattice using known equations, hoping
that information about the unknown variables can be obtained by finding the
short vector in the lattice.

48 J. Gao et al.

4.1 Solution for N = p1p2

For the first two samples,
{

M1 + e1Q − C11 ≡ 0 mod p1

M1 + e1Q − C12 ≡ 0 mod p2
and

{
M2 + e2Q − C21 ≡ 0 mod p2

M2 + e2Q − C22 ≡ 0 mod p1
,

let xi = Mi + eiQ for i = 1, · · · ,m, we can multiply the two equations in each
row correspondingly to obtain:

{
x1x2 − C22x1 − C11x2 + C11C22 ≡ 0 mod N

x1x2 − C21x1 − C12x2 + C12C21 ≡ 0 mod N
.

If we eliminate the same variable x1x2, these two equations can be combined
into one equation:

(C21 − C22)x1 + (C12 − C11)x2 + C11C22 − C12C21 ≡ 0 mod N.

Normalize the coefficient of the variable x2, then

(C12 −C11)−1(C21 −C22)x1 +x2 +(C12 −C11)−1(C11C22 −C12C21) ≡ 0 mod N.

Then we multiply the remaining m−2 samples with the first sample, respectively,
by the same operation as above, and we can get m − 1 equations,

Aix1 + xi + Di ≡ 0 mod N,

where i = 2, · · · ,m, Ai = (C12 − C11)−1(Ci1 − Ci2) mod N and Di = (C12 −
C11)−1(C11Ci2 − C12Ci1) mod N .

Next, we construct a lattice B which is spanned by the row vectors of the
matrix:

B =

⎛

⎜⎜⎜⎝

1 A2 · · · Am

0 N · · · 0
...

...
. . .

...
0 0 · · · N

⎞

⎟⎟⎟⎠ ,

whose determinant is Nm−1. The lattice B contains two short vectors,

�v1 = (C12 − C11,−(C22 − C21), · · · ,−(Cm2 − Cm1)),

�v2 = (x1 − C11,−(x2 − C21), · · · ,−(xm − Cm1)).

It is easy to see that �v1 = (C12−C11)×�z1 mod N and �v2 = (x1−C11)×�z1 mod N
where �z1 is the first row vector of B. So the �2-norm of �v1 and �v2 is ‖�v1‖ ≈ 2η and
‖�v2‖ ≈ 2ρ+256. In addition, the target vector �v2 satisfies the following equation:

�v2 = α�b1 + β�b2,

where �b1 and �b2 are the first two vectors of the LLL-reduced basis of B. The
details are as follows.

New Results of Breaking the CLS Scheme from ACM-CCS 2014 49

Let �ui denote the i-th shortest vector in lattice B. When m is large enough,
there is ‖�v1‖ � ‖�v2‖ � GH(B), which illustrates that �v1 and �v2 are much
shorter than other independent vectors in B according to Gaussian heuris-
tic assumption. At this point, �v1 = γ�u1 and �v2 = β�u2 + α�u1 hold with
high possibility. Since γ is the greatest common factor of the coefficients
(C12 − C11, k2, · · · , km) of �v1 = (C12 − C11, k2, · · · , km)B, the shortest non-zero
vector �u1 = (C12−C11

γ , k2
γ , · · · , km

γ)B = 1
γ�v1, and γ = gcd(C12 − C11, k2, · · · , km)

is very small with high probability. Then ‖�u1‖ ≈ ‖�v1‖ ≈ 2η.
Under the average sense, ‖�u2‖ ≈ ‖�v2‖

β , because ‖�v2‖ ≥ β‖�u2‖ sin(�u2, �u1) and
the distribution of the angle between vectors �u1 and �u2 converges to a normal
distribution with mean π

2 and variance proportional to 1√
m

, that is, ‖�v2‖ ≈
β‖�u2‖. According to the property of LLL algorithm, when ‖�u1‖ � GH(B), �b1 =
�u1. When π1(�u2) � GH(π1(B))1, �b2 = �u2. To sum up, if π1(�u2) � GH(π1(B))
is satisfied, then �v2 = α�b1 + β�b2, that is,

√
m

m+1‖�u2‖ � √
m
2πe (det(B)

2η)
1
m . If we

omit the constant term, then ‖�v2‖ = 2ρ+256 < (det(B)
2η)

1
m approximately.

Therefore, when we apply the LLL algorithm to matrix B, we can get an
equation about variables α and β, according to v21 = x1 − C11 ≡ 0 mod p1:

v21 = αb11 + βb21 ≡ 0 mod p1.

Due to αb11 = v21 − βb21, there is approximately α < v21
v11

≈ 2ρ−η+256 = Xα and
the bound of β is Xβ = O(1) for the same reasons as γ. Then the bounds of α
and β satisfy condition logN |α| + logN |β| ≈ ρ−η+256

2η = 256
η < (12)2 − ε, where

modulo p1 ≥ N
1
2−ε′

. So we can solve α and β using Coppersmith’s method by
Theorem 7 in [26], and p1 is gcd(αb11 + βb21, N).

Finally, in order to meet the above condition, we need to have ‖�v2‖ =
2ρ+256 < (det(B)

2η)
1
m , where det(B) = Nm−1. Then the condition of m is as

follows:
m >

3η

2η − ρ − 256
.

Result 2. Given the integer N = p1p2 with unknown factors p1 and p2, and
m ciphertexts (Mi + eiQ mod p1,Mi + eiQ mod p2). Under Assumption 2, the
secret key p1 and p2 can be retrieved in polynomial time when

m >
3η

2η − ρ − 256
.

Remark 3. For the ciphertext-only attack, we can retrieve the secret key p1 and
p2 as long as the number of samples m satisfies m > 3η

2η−ρ−256 with known

N , while [17] requires the plaintexts to be small ‖ �M‖ ≈ 2μm1/2 and m �
3 + log Q+ρ+3

log Q−μ > 3 + log Q+ρ+3
log Q , but it is not necessary to know the value of N .

When ρ > 1065, their number of samples is much larger than ours.

1 π1 denotes the projection onto 〈�b1〉⊥.

50 J. Gao et al.

4.2 Experimental Results

We carried out the attack described in Sect. 4. Compared with [17], our attack
has no restrictions on plaintexts; that is, any Mi ∈ [0, Q) can be attacked suc-
cessfully, but N is required. We still conducted 500 experiments on each set of
parameters, and the specific experimental results are in Table 3.

Table 3. Ciphertext-only attack of the CLS scheme

Parameters m Running time Success rate

Set-I 3 0.05 s 100%

Set-II 3 0.22 s 100%

Set-III 3 0.27 s 100%

5 Conclusion

In the case where N is known, we study the co-ACD problem and key recovery
attacks against CLS scheme, which can be accomplished with a smaller number
of samples, and the arbitrary size of plaintext is unknown. We work with a better
theoretical result on the range of ρ when n is in a certain range. However, for
the case where N is unknown, how to complete the key recovery attack or solve
the co-ACD problem is the research direction of our future work.

Acknowledgements. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was supported by the
National Natural Science Foundation of China (No.61732021) and the National Key
R&D Program of China (No.2018YFB0803801 and No.2018YFA0704704).

A Calculation of wN and wX

First, we compute wX :

wX =
∑

0≤s1+...+sm≤t

m∑

k=1

sk =
∑

0≤s1+...+sm≤t

(s1 + · · · + sm)

=
t∑

l=0

∑

s1+···+sm=l

l =
t∑

l=0

l

(
m + l − 1

m − 1

)

= m

(
m + t

m + 1

)
.

New Results of Breaking the CLS Scheme from ACM-CCS 2014 51

Since that s1, · · · , sm are identical in terms of value and weight,
then

∑
0≤s1+...+sm≤t s1 = · · · =

∑
0≤s1+···+sm≤t sm. This way, we can get

∑

0≤s1+...+sm≤t

si =
1
m

∑

0≤s1+...+sm≤t

m∑

k=1

sk =
(

m + t

m + 1

)

Next, we compute wN =
∑

0≤s1+...+sm≤t

(t −
n−1∑
j=1

� sj

n � −
m∑

k=n

sk). Clearly,

∑

0≤s1+···+sm≤t

t = t
∑

0≤s1+···+sm≤t

1 = t

(
m + t

m

)
.

Denote � sj

n � = sj

n − δj where 0 ≤ δj < 1, then

−
∑

0≤s1+...+sm≤t

n−1∑

j=1

�sj

n
� =

∑

0≤s1+...+sm≤t

(
−s1 + · · · + sn−1

n
+ δ1 + · · · + δn−1

)

= −n − 1
n

(
m + t

m + 1

)
+

∑

0≤s1+...+sm≤t

(δ1 + · · · + δn−1)

< −n − 1
n

(
m + t

m + 1

)
+ (n − 1)

(
m + t

m

)
.

Moreover,

−
∑

0≤s1+...+sm≤t

m∑

k=n

sk = −(m−n+1)
∑

0≤s1+...+sm≤t

sk = −(m−n+1)
(

m + t

m + 1

)
.

Summarizing the above analysis, we find

wN < t

(
m + t

m

)
− n − 1

n

(
m + t

m + 1

)
+ (n − 1)

(
m + t

m

)
− (m − n + 1)

(
m + t

m + 1

)

=
−mn − 2n + n2 + 1

n

(
m + t

m + 1

)
+ (t + n − 1)

(
m + t

m

)
.

References

1. Bauer, A., Joux, A.: Toward a rigorous variation of Coppersmith’s algorithm on
three variables. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 361–
378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 21

2. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: breaking fully-homomorphic-encryption challenges over the integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
502–519. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 30

https://doi.org/10.1007/978-3-540-72540-4_21
https://doi.org/10.1007/978-3-642-29011-4_30
https://doi.org/10.1007/978-3-642-29011-4_30

52 J. Gao et al.

3. Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Algorithms for CRT-variant of
approximate greatest common divisor problem. J. Math. Cryptol. 14(1), 397–413
(2020)

4. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 20

5. Cheon, J.H., Lee, H.T., Seo, J.H.: A new additive homomorphic encryption based
on the co-ACD problem. In: Ahn, G., Yung, M., Li, N. (eds.) ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 287–298. ACM (2014)

6. Cohn, H., Heninger, N.: Approximate common divisors via lattices. CoRR
abs/1108.2714 (2011)

7. Cominetti, E.L., Jr., Simplicio, M.A.: Fast additive partially homomorphic encryp-
tion from the approximate common divisor problem. IEEE Trans. Inf. Forensics
Secur. 15, 2988–2998 (2020)

8. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9 16

9. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68339-9 14

10. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

11. Coron, J.-S., Faugère, J.-C., Renault, G., Zeitoun, R.: Factoring N = prqs for large
r and s. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 448–464. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 26

12. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 28

13. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 27

14. Coron, J., Notarnicola, L., Wiese, G.: Simultaneous diagonalization of incomplete
matrices and applications. CoRR abs/2005.13629 (2020)

15. Coron, J.-S., Zeitoun, R.: Improved factorization of N = prqs. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 65–79. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76953-0 4

16. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

17. Fouque, P.-A., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of the co-
ACD assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 561–580. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 27

https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/978-3-319-29485-8_26
https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-29011-4_27
https://doi.org/10.1007/978-3-319-76953-0_4
https://doi.org/10.1007/978-3-319-76953-0_4
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-47989-6_27
https://doi.org/10.1007/978-3-662-47989-6_27

New Results of Breaking the CLS Scheme from ACM-CCS 2014 53

18. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the approximate
common divisor problem. IACR Cryptology ePrint Archive, p. 215 (2016)

19. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13013-7 4

20. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

21. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44670-2 6

22. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 18

23. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 395–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74143-5 22

24. Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 25

25. Lenstra, A.: Factoring polynomial with rational coefficients. Mathematiche
Annalen 261, 515–534 (1982)

26. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 189–213. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 9

27. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003). http://ubdata.uni-paderborn.de/ediss/17/2003/
may/disserta.pdf

28. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications.
ISC, pp. 315–348. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
02295-1 10

29. May, A., Nowakowski, J., Sarkar, S.: Partial key exposure attack on short secret
exponent CRT-RSA. IACR Cryptology ePrint Archive, p. 972 (2021)

30. Nguyen, P., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone
cryptosystem based on group factorizations. In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052236

31. Nguyen, P., Stern, J.: Cryptanalysis of a fast public key cryptosystem presented
at SAC ’97. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp.
213–218. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 17

https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-662-48797-6_9
https://doi.org/10.1007/978-3-662-48797-6_9
http://ubdata.uni-paderborn.de/ediss/17/2003/may/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/17/2003/may/disserta.pdf
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/BFb0052236
https://doi.org/10.1007/BFb0052236
https://doi.org/10.1007/3-540-48892-8_17

54 J. Gao et al.

32. Nguyen, P., Stern, J.: The hardness of the hidden subset sum problem and its
cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 31–46. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 3

33. Suzuki, K., Takayasu, A., Kunihiro, N.: Extended partial key exposure attacks on
RSA: improvement up to full size decryption exponents. Theor. Comput. Sci. 841,
62–83 (2020)

34. Xu, J., Sarkar, S., Hu, L., Wang, H., Pan, Y.: New results on modular inversion
hidden number problem and inversive congruential generator. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 297–321. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 11

https://doi.org/10.1007/3-540-48405-1_3
https://doi.org/10.1007/978-3-030-26948-7_11

A Note on the Security Framework
of Two-key DbHtS MACs

Tingting Guo1,2 and Peng Wang1,2(B)

1 SKLOIS, Institute of Information Engineering, CAS, Beijing, China
guotingting@iie.ac.cn, w.rocking@gmail.com

2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Double-block Hash-then-Sum (DbHtS) MACs are a class of
MACs that achieve beyond-birthday-bound (BBB) security, including
SUM-ECBC, PMAC Plus, 3kf9, LightMAC Plus, etc. Recently, Shen et
al. (CRYPTO 2021) proposed a security framework for two-key DbHtS
MACs in the multi-user setting, stating that when the underlying block
cipher is ideal and the universal hash functions are regular and almost
universal, the two-key DbHtS MACs achieve 2n/3-bit security. Unfortu-
nately, the regular and universal properties can not guarantee the BBB
security of two-key DbHtS MACs. We propose three counter-examples
which are proved to be 2n/3-bit secure in the multi-user setting by the
framework, but can be broken with probability 1 using only O(2n/2)
queries even in the single-user setting. We also point out the miscalcu-
lation in their proof leading to such a flaw. However, we haven’t found
attacks against 2k-SUM-ECBC, 2k-PMAC Plus, and 2k-LightMAC Plus
proved 2n/3-bit security in their paper.

Keywords: MAC · DbHtS · Beyond-birthday-bound security ·
Multi-user security

1 Introduction

Message Authentication Code (MAC). MAC is a symmetric-key crypto
primitive to ensure integrity of messages. Most of their security proofs, including
XCBC [4], PMAC [5,13], HMAC [2], and NMAC [2], follow the Hash-then-
(Fixed-Input-Length) Function (HtF) framework:

HtF[H,E](Kh,K,M) = EK(HKh
(M)).

When H is an almost universal (AU) hash function and E is a fixed-input-
length PRF (often instantiated as a block cipher), HtF is a variable-input-length
PRF [16] with birthday bound security, i.e. they are secure up to O(2n/2) queries
where n is the input size of E. However, birthday-bound security is always not
enough for modes of lightweight block ciphers, such as PRESENT [6], GIFT [1],
etc. whose block size is 64-bit. In these cases, the securities are only 32-bit
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 55–68, 2022.
https://doi.org/10.1007/978-3-031-15777-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_4

56 T. Guo and P. Wang

(i.e., security up to 232 queries), which are practically vulnerable. Therefore,
researchers make great efforts to construct MACs with better security bounds.

Birthday-Birthday-Bound (BBB) MACs. Plenty of MACs with BBB secu-
rity have been put forward, such as SUM-ECBC [17], PMAC Plus [18], 3kf9 [19],
LightMAC Plus [11], and so on. Their primary proofs [11,17–19] gave 2n/3-bit
security (ignoring the maximum message length). At FSE 2019, Datta et al.
showed that these MACs all follow the three-key Double-block Hash-then-Sum
(DbHtS) framework [8]:

DbHtS[H,E] (Kh,K1,K2,M) = EK1(H
1
Kh,1

(M)) ⊕ EK2(H
2
Kh,2

(M)),

where M is the massage, Kh = (Kh,1,Kh,2) is the key for two universal hash
functions H1 and H2. K1,K2 are keys for block cipher E. In the following, we
treat the block cipher as a Pseudorandom Permutation (PRP). EK1 and EK2

mean two independent PRPs. Let HKh
= (H1

Kh,1
,H2

Kh,2
). Datta et al. proved

that when H is weak-cover-free and weak-block-wise universal, the three-key
DbHtS is 2n/3-bit secure. Later, Leurent et al. [10] showed the best attacks to
them cost O(23n/4) queries. Recently at EUROCRYPT 2020, Kim et al. [9] have
proved the tight 3n/4-bit security (ignoring the maximum message length) if H1

and H2 are only almost universal.
Datta et al. [8] also found that the two-key DbHtS, that is to say, K1 = K2 in

the above framework, is still 2n/3-bit security when H is cover-free, block-wise
universal, and colliding.

Two-key DbHtS in the Multi-user Setting. All the above MAC frame-
works only considered single-user settings. In practice, the adversary can attack
multiple users. For instance, MACs are core elements of real-world security pro-
tocols such as TLS, SSH, and IPsec, which are used by lots of websites with
plenty of daily active users. However, by a generic reduction, all above BBB
results degrade to (or even worse than) the birthday bound in the multi-user
setting [14].

At CRYPTO 2021, Shen et al. [14] revisited the security of the two-key DbHtS
framework in the multi-user setting elaborately. Their framework (Theorem 1
in [14]) states that when the underlying block cipher is an ideal cipher and the
two independent universal hash functions H1

Kh,1
and H2

Kh,2
are both regular and

almost universal, the two-key DbHtS MACs, including 2k-SUM-ECBC, achieve
2n/3-bit security. They adjusted the proof of the framework for adapting to
2k-PMAC Plus and 2k-LightMAC Plus based on two dependent universal hash
functions, stating they achieve 2n/3-bit security, too.

We summarise the above security frameworks for MACs in Table 1.

Our Contributions. We show that Theorem 1 in Shen et al.’s paper [14], giving
the security of the two-key DbHtS framework, has a critical flaw by three counter-
examples. According to their framework, these counter-examples are proved
2n/3-bit security (ignoring the maximum message length) in the multi-user set-
ting. However, they are all attacked successfully with only O(2n/2) queries even
in the single-user setting. We also show clearly the miscalculation in their proof
leading to such a flaw.

A Note on the Security Framework of Two-key DbHtS MACs 57

Table 1. Summary of security frameworks for MACs. n is the input size of E. ‘SU’
means single-user setting. ‘MU’ means multi-user setting. The security of MACs ignores
the maximum message length.

Framework Property of H Property of E Setting Security

HtF AU PRF SU n/2 [16]

Three-key DbHtS Weak-cover-free
Weak-block-wise universal

PRP SU 2n/3 [8]

Three-key DbHtS AU PRP SU 3n/4 [9]

Two-key DbHtS Cover-free
Block-wise universal
Colliding

PRP SU 2n/3 [8]

Two-key DbHtS Regular
AU

Ideal cipher MU 2n/3 [14]

2 Preliminaries

Notation. For a finite set X , let X
$← X denote sampling X from X uniformly

and randomly. Let |X | be the size of the set X . For a domain X and a range Y,
let Func(X ,Y) denote the set of all functions from X to Y.

Multi-user Pseudorandom Function (PRF). Let F : K × X → Y be a
function. For u users, the game Gprf

F (A) about adversary A is defined as follows.

1. Initialize K1,K2, . . . ,Ku
$← K, f1, f2, . . . , fu

$← Func(X ,Y), and b
$← {0, 1};

2. A queries Eval function with (i,X) and get Eval(i,X), where i ∈ {1, 2, . . . , u},
X ∈ X , and

Eval(i,X) =
{

F (Ki,X), if b = 1,
fi(X), if b = 0;

3. A output b′.

Then the advantage of the adversary A against the multi-user PRF security of
F is

Advprf
F (A) = |2Pr[b′ = b] − 1|

= |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]| .
We call a function F is a multi-user secure PRF if the advantage Advprf

F (A) is
negligible for any adversary A . When u = 1, we call F is a single-user secure
PRF.

The H-Coefficient Technique. When considering interactions between an
adversary A and an abstract system S which answers A ’s queries, let Xi

denote the query from A to S and Yi denote the response of Xi from S
to A . Then the resulting interaction can be recorded with a transcript τ =
((X1, Y1) , . . . , (Xq, Yq)). Let pS(τ) denote the probability that S produces τ . In
fact, pS(τ) is the description of S and independent of the adversary A . Then we
describe the H-coefficient technique [7,12]. Generically, it considers an adversary

58 T. Guo and P. Wang

that aims at distinguishing a “real” system S1 from an“ideal” system S0. The
interactions of the adversary with those two systems induce two transcript dis-
tributions D1 and D0 respectively. It is well known that the statistical distance
SD (D0,D1) is an upper bound on the distinguishing advantage of A . That is
to say,

Advprf
F (A) ≤ SD (D0,D1) .

Lemma 1. [7,12] Suppose that the set of attainable transcripts for the ideal
system can be partitioned into good and bad ones. If there exists ε ≥ 0 such that
pS1 (τ)

pS0 (τ)
≥ 1 − ε for any good transcript τ , then

SD (D0,D1) ≤ ε + Pr[D0 is bad].

This lemma shows that ε + Pr[D0 is bad] is the upper bound of Advprf
F (A).

Regular and AU. Let H : Kh × X → Y be a hash function where Kh is the
key space, X is the domain and Y is the range. Hash function H is said to be
ε1-regular if for any X ∈ X , Y ∈ Y,

Pr[Kh
$← Kh : HKh

(X) = Y] ≤ ε1.

And hash function H is said to be ε2-AU if for any two distinct strings X,X
′ ∈ X ,

Pr[Kh
$← Kh : HKh

(X) = HKh
(X

′
)] ≤ ε2.

3 BBB-Security Framework in [14]

Let M be the message space and Kh × K be the key space. Let block cipher
E : K × {0, 1}n → {0, 1}n and K = {0, 1}k. Let hash function H : Kh × M →
{0, 1}n × {0, 1}n. The function H is consist of two n-bit hash functions H1

and H2, i,e., HKh
(M) = (H1

Kh,1
(M),H2

Kh,2
(M)) where Kh = (Kh,1,Kh,2) ∈

Kh,1 × Kh,2 and Kh,1,Kh,2 are two independent keys. Then the two-key DbHtS
framework in paper [14] (see Fig. 1) is

DbHtS[H,E] (Kh,K,M) = EK

(
H1

Kh,1
(M)

)
⊕ EK

(
H2

Kh,2
(M)

)
.

ℎ ⊕
Fig. 1. The two-key DbHtS construction. Here H is a 2n-bit hash function from Kh×M
to {0, 1}n × {0, 1}n, and E is a n-bit block cipher from K × {0, 1}n to {0, 1}n.

A Note on the Security Framework of Two-key DbHtS MACs 59

Shen et al. [14] considered the multi-user security of this framework in the
ideal-cipher model, where they regarded the keyed block cipher as ideal cipher.
So they gave the additional ideal-cipher oracles expect for the evaluation oracles
when considering the multi-user security of the two-key DbHtS framework. Let
S1 be “real” system and S0 be “ideal” system. That is to say, the system Sb

with b
$← {0, 1} about adversary A against the two-key DbHtS frameworks or

random functions in the u-user setting performs the following procedure.

1. Initialize (K1
h,K1), . . . , (Ku

h ,Ku) $← Kh × K if b = 1; otherwise, initialize

f1, . . . , fu
$← Func(M, {0, 1}n);

2. If an adversary A queries Eval function with (i,M), where i ∈ {1, 2, . . .},
M ∈ M, return

Eval(i,M) =
{

DbHtS[H,E](Ki
h,Ki,M), if b = 1,

fi(M), if b = 0;

3. If an adversary A queries Prim function with (J,X), where J ∈ K,X ∈
{+,−} × {0, 1}n, return

Prim(J,X) =
{

EJ(x), if X = {+, x},
E−1

J (y), if X = {−, y}.

After the procedure in system Sb, adversary A outputs a bit b′ ∈ {0, 1}. The
advantage of the adversary A against the multi-user PRF security of two-key
DbHtS framework is still Advprf

DbHtS(A) = |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]| .
When u = 1, the adversary A is against the single-user PRF security. They
called the query to Eval evaluation query and the query to Prim ideal-cipher
query.

Theorem 1 in [14]. Let E be modeled as an ideal cipher. Let H1 and H2 both
satisfy ε1-regular and ε2-AU. Then Shen et al. [14] proved the security of two-key
DbHtS in the multi-user setting as following, which is the core of their paper and
they named it Theorem 1. For any adversary A that makes at most q evaluation
queries and p ideal-cipher queries,

Advprf
DbHtS(A) ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
2qp�

2n+k
+

2qpε1
2k

+
4qp

2n+k

+
4q2ε1
2k

+
2q2�ε1

2k
+ 2q3 (ε1 + ε2)

2 +
8q3 (ε1 + ε2)

2n
+

6q3

22n

(1)

where � is the maximal block length among these evaluation queries and assum-
ing p + q� ≤ 2n−1.

An Overview of the Proof of Theorem 1 in [14]. They used H-coefficient
technique to get the upper bound of Advprf

DbHtS(A). For each query T ←
Eval(i,M), they associated it with an entry (eval, i,M, T). The query to Prim is
similar to it. These two entries are included in transcript τ . Then they defined

60 T. Guo and P. Wang

bad transcripts, including fourteen cases. If a transcript is not bad then they said
it’s good. Let D1 and D0 be the random variables for the transcript distributions
in the system S1 and S0 respectively. They firstly bounded the probability that
D0 is bad as follows. Let Badi be the event that the i-th case of bad transcripts
happens. They calculated the probability Pr[Bad1], . . . ,Pr[Bad14] in sequence.
After summing up, they got

Pr [D0 is bad] ≤
14∑

i=1

Pr [Badi]

≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
2qp�

2k+n
+

2qpε1
2k

+
4qp

2n+k

+
4q2ε1
2k

+
2q2�ε1

2k
+ 2q3 (ε1 + ε2)

2 +
8q3 (ε1 + ε2)

2n
.

Besides, they proved the transcript ratio pS1 (τ)

pS0 (τ)
≥ 1− 6q3

22n for any good transcript
τ . Thus they concluded Theorem 1 in [14] by Lemma 1.

4 Counter-Examples

We show that the regular and universal properties of the hash functions can
not guarantee the BBB security of two-key DbHtS MACs. We construct three
universal hash functions which satisfy the properties, leading to 2n/3-bit security
of two-key DbHtS MACs by Theorem 1 in [14]. But all the instantiations can
be broken with probability 1 using only O(2n/2) queries even in the single-user
setting.

4.1 Counter-Example 1

Our first counter-example uses universal hash functions with fixed input length.
Let function

HKh
(M) = (H1

K1
(M),H2

K2
(M)) = (M ⊕ K1,M ⊕ K2),

where M is the message from massage space {0, 1}n, Kh = (K1,K2) and

K1,K2
$← {0, 1}n. Let block cipher EK : {0, 1}n × {0, 1}n → {0, 1}n. Then

the derived two-key DbHtS MAC is F : {0, 1}2n ×{0, 1}n ×{0, 1}n → {0, 1}n as

F [H,E](Kh,K,M) = EK(H1
K1

(M)) ⊕ EK(H2
K2

(M)).

H1 and H2 are 1
2n -Regular and 0-AU. It is easy to know that for any

M ∈ {0, 1}n, Y ∈ {0, 1}n and i ∈ {1, 2},

Pr[Ki
$← {0, 1}n : M ⊕ Ki = Y] ≤ 1

2n
.

A Note on the Security Framework of Two-key DbHtS MACs 61

And for any two distinct strings M,M
′ ∈ {0, 1}n and i ∈ {1, 2},

Pr[Ki
$← {0, 1}n : M ⊕ Ki = M

′ ⊕ Ki] = 0.

So hash functions H1 and H2 are both 1
2n -regular and 0-AU.

2n/3-Bit Security. According to Theorem 1 [14], function F is secure up to
O(22n/3) evaluation queries assuming ideal-cipher queries is O(1) in the multi-
user setting.

Attack with O(2n/2) Query Complexity. Assume adversary A is an adver-
sary against the single-user PRF security of F . Then A will output b′ ∈ {0, 1}
for system Sb where u = 1 (see Sect. 3). In the following, we will construct an
adversary A such that Advprf

F (A) = |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]| ≈ 1
with only O(2n/2) evaluation queries. It means there is an adversary that can
distinguish F from random function f with only O(2n/2) evaluation queries,
which is contradictory to Theorem 1 [14].

It is easy to know that for all keys in keyspace and messages in message
space,

F [H,E](Kh,K,M ⊕ K1 ⊕ K2) = EK(M ⊕ K2) ⊕ EK(M ⊕ K1)
= F [H,E](Kh,K,M).

It means F has a period s := K1 ⊕ K2. Based on this, we construct adversary
A as follows.

1. A firstly makes O(2n/2) evaluation queries of distinct massages M1,M2, . . .
chosen uniformly and randomly, and get T1, T2, . . .;

2. A outputs 1 if it searches a message pair (Mi,Mj) for Mi 	= Mj ,Mi,Mj ∈
{M1,M2, . . .} which makes (i) and (ii) hold.
(i) Ti = Tj ;
(ii) After make another two evaluation queries with massages M ′ and M ′ ⊕

Mi ⊕ Mj for M ′ /∈ {Mi,Mj}, A gets two identical answers.
Else, A outputs 0.

If it is in system S1, the evaluation query is to F . One can expect on average
that there exists one message pair (Mi,Mj) among O(2n/2) massages such that
Mi = Mj ⊕ s. Conditions (i) and (ii) in the second step of A filter out such a
pair.

If it is in system S0, the evaluation query is to random function f . On average
there exists one message pair (Mi,Mj) among O(2n/2) massages such that Ti =
Tj . However, random function f has no period. So the probability of f(M ′) =
f(M ′ ⊕ Mi ⊕ Mj) for any M ′ /∈ {Mi,Mj} is only 1/2n. Thus A finds a pair
(Mi,Mj) satisfying conditions (i) and (ii) with 1/2n.

From above, we get that such A distinguishes F from random function with
probability 1 − 1/2n ≈ 1.

62 T. Guo and P. Wang

4.2 Counter-Example 2

Compared with the first counter-example with fixed input length, our second
counter-example can handle variable-length input. We construct two hash func-
tions H1 and H2 dealing with messages from ({0, 1}n)∗:

Hi
Ki

(M) = M [1] ⊕ M [2]Ki ⊕ M [3]K2
i ⊕ . . . ⊕ M [m]Km−1

i ⊕ |M |Km
i , i = 1, 2.

where M = M [1] ‖ M [2] ‖ . . . ‖ M [m] and every message block is n-bit. This
example is a variant of PolyMAC [9].

H1 and H2 are �
2n -Regular and �

2n -AU. Assume the maximal block length
of all evaluation queries is �. Any equation of at most � degree has at most � roots.
So it is easy to know that for any M ∈ ({0, 1}n)∗, Y ∈ {0, 1}n and i ∈ {1, 2},

Pr[Ki
$← {0, 1}n : Hi

Ki
(M) = Y] ≤ �

2n
.

And for any two distinct strings M,M
′ ∈ ({0, 1}n)∗ and i ∈ {1, 2},

Pr[Ki
$← {0, 1}n : Hi

Ki
(M) = Hi

Ki
(M

′
)] ≤ �

2n
.

It means H1 and H2 are both �
2n -regular and �

2n -AU.

2n/3-Bit Security. According to Theorem 1 [14], function F is secure up to
O(22n/3) evaluation queries assuming ideal-cipher queries is O(1) and � = O(1)
in the multi-user setting.

Attack with O(2n/2) Query Complexity. Similar to counter-example 1,
there is an adversary A who can distinguish F from random function f with
only O(2n/2) evaluation queries in single-user setting, which is contradictory to
Theorem 1 [14].

Fix any arbitrary string

Mfix := M [2]‖M [3]‖ . . . ‖M [m] ∈ ({0, 1}n)m−1,

where 2 ≤ m ≤ � = O(1). Let

K
′
i := M [2]Ki ⊕ M [3]K2

i ⊕ . . . M [m]Km−1
i ⊕ nmKm

i , i = 1, 2.

Then it is easy to obtain for any keys in key space and M [1] ∈ {0, 1}n,

F [H,E](Kh,K, (M [1] ⊕ K
′
1 ⊕ K

′
2) ‖ Mfix)

= EK(M [1] ⊕ K
′
2) ⊕ EK(M [1] ⊕ K

′
1)

= F [H,E](Kh,K,M [1] ‖ Mfix).

It means F has a period s := (K
′
1⊕K

′
2) ‖ 0n(m−1) for any M ∈ {0, 1}n×{Mfix}.

Based on this, we construct adversary A as follows.

A Note on the Security Framework of Two-key DbHtS MACs 63

1. A firstly makes O(2n/2) evaluation queries with distinct massages M1 ‖ Mfix,

M2 ‖ Mfix, . . . where M1,M2, . . .
$← {0, 1}n, and get T1, T2, . . .;

2. A outputs 1 if it searches a pair (Mi,Mj) for Mi 	= Mj ,Mi,Mj ∈
{M1,M2, . . .} which makes (i) and (ii) hold.
(i) Ti = Tj ;
(ii) After make another two evaluation queries with massages M ′ ‖ Mfix and

(M ′⊕Mi⊕Mj) ‖ Mfix for M ′ /∈ {Mi,Mj}, A gets two identical answers.
Else, A outputs 0.

The same as counter-example 1, A distinguishes F from f with the probability
of almost 1.

4.3 Counter-Example 3

Fig. 2. The variant of 2k-SUM-ECBC. K1,K2,K3 are three independent keys in
{0, 1}n. E is a n-bit block cipher from {0, 1}n × {0, 1}n to {0, 1}n.

Unlike counter-examples 1 and 2, the third counter-example is based on block
ciphers. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher with key K ∈
{0, 1}n. The two n-bit hash functions used in this function are two CBC MACs
without the last block cipher call, which we name CBC

′
. They are keyed with

two independent keys K1 and K2 respectively. And they deal with at least two
message blocks respectively. For a message M = M [1] ‖ M [2] ‖ . . . ‖ M [m] where
every message block is n-bit and m ≥ 2, the CBC

′
algorithm CBC

′
[E](K,M) is

defined as Ym, where

Y1 = M [1],
Yj = EK(Yj−1) ⊕ M [j], j = 2, . . . ,m.

Let Kh = (K1,K2). Then we define the function as

F [CBC
′
[E], E](Kh,K,M) = EK(CBC

′
[E](K1,M)) ⊕ EK(CBC

′
[E](K2,M)).

F (see Fig. 2) can be seen as a variant of 2k-SUM-ECBC [14].

64 T. Guo and P. Wang

CBC
′
[E] is

(
2�
2n + 16�4

22n

)
-Regular and

(
2�
2n + 16�4

22n

)
-AU. For any two differ-

ent message M,M
′ ∈ ({0, 1}n)∗ with at most � blocks and the block cipher EK

being a random permutation, Ballare et al. [3] showed that for i ∈ {1, 2},

Pr[EK(CBC
′
[E](Ki,M)) = EK(CBC

′
[E](Ki,M

′
))] ≤ 2�

2n
+

16�4

22n
.

block cipher EK is a permutation. So

Pr[CBC
′
[E](Ki,M) = CBC

′
[E](Ki,M

′
)] ≤ 2�

2n
+

16�4

22n
.

Thus for ideal block cipher E we get

Pr[Ki
$← {0, 1}n : CBC

′
[E](Ki,M) = CBC

′
[E](Ki,M

′
)] ≤ 2�

2n
+

16�4

22n
.

It means CBC
′
is

(
2�
2n + 16�4

22n

)
-AU. Let M = X[1] ‖ (X[2]⊕Y) ‖ Z ∈ ({0, 1}n)∗×

{0, 1}n × {0, 1}n and M
′
= 0n ‖ Z ∈ {0, 1}n × {0, 1}n. Then

Pr[Ki
$← {0, 1}n : CBC

′
[E](Ki,X[1] ‖ X[2]) = Y]

= Pr[Ki
$← {0, 1}n : CBC

′
[E](Ki,M) = CBC

′
[E](Ki,M

′
)]

≤ 2�

2n
+

16�4

22n
.

So CBC
′
is

(
2�
2n + 16�4

22n

)
-regular.

2n/3-Bit Security. According to Theorem 1 [14], function F is secure up to
O(22n/3) evaluation queries assuming no ideal-cipher queries and � = O(1) in
the multi-user setting.

Attack with O(2n/2) Query Complexity. Fix any arbitrary string Mfix ∈
({0, 1}n)m−1 where 2 ≤ m ≤ � = O(1). Let

s′ = CBC
′
[E](K1,Mfix ‖ 0n) ⊕ CBC

′
[E](K2,Mfix ‖ 0n)).

Then it is easy to obtain for any keys in key space and M [m] ∈ {0, 1}n,

F [CBC
′
[E], E](Kh,K,Mfix ‖ (M [m] ⊕ s′))

=EK(CBC
′
[E](K2,Mfix ‖ 0n) ⊕ M [m])⊕

EK(CBC
′
[E](K1,Mfix ‖ 0n) ⊕ M [m])

=EK(CBC
′
[E](K2,Mfix ‖ M [m])) ⊕ EK(CBC

′
[E](K1,Mfix ‖ M [m]))

=F [CBC
′
[E], E](Kh,K,Mfix ‖ M [m]).

It means F has a period s := 0n(m−1) ‖ s′ for any M ∈ {Mfix} × {0, 1}n. So
there is an adversary A distinguishes F from random function with only O(2n/2)
evaluation queries when considering a single user similar to counter-example 2.

A Note on the Security Framework of Two-key DbHtS MACs 65

5 The Flaw of the Proof of Theorem 1 in [14]

In Sect. 3, we have given an overview of how Shen et al. [14] proved Theorem
1 based on the H-coefficient technique. However, we find they made a critical
flaw when they were calculating Pr[Bad9] in their proof, which leads to our
counter-examples.

We firstly introduce some preliminaries in their proof for understanding the
flaw. Assume there are u users and the adversary make qi evaluation queries to
the i-th user in all. Let (eval, i,M i

a, T i
a) be the entry obtained when the adversary

makes the a-th query to user i. In the “real” system S1, during the computation
of entry (eval, i,M i

a, T i
a), let Σi

a and Λi
a be the internal outputs of hash function

H, namely Σi
a = H1

Kh,1

(
M i

a

)
and Λi

a = H2
Kh,2

(
M i

a

)
respectively, and denote by

U i
a and V i

a the outputs of block cipher E with inputs Σi
a and Λi

a respectively,
namely U i

a = E
(
Ki, Σ

i
a

)
and V i

a = E
(
Ki, Λ

i
a

)
respectively. The adversary also

obtain the entries of ideal-cipher queries. After all queries, they further gave it:
(i) the keys

(
Ki

h,Ki

)
where Ki

h =
(
Ki

h,1,K
i
h,2

)
and (ii) the internal values U i

a

and V i
a . In the “ideal” system S0, they instead gave the adversary truly random

strings
(
Ki

h,Ki

) $← Kh×K, independent of its queries. In addition, they gave the
adversary dummy values U i

a and V i
a computed by an simulation oracle. These

additional information can only help the adversary. Thus a transcript consists
of the revealed keys

(
Ki

h,Ki

)
, the internal values U i

a and V i
a , the ideal-cipher

queries and evaluation queries.
The ninth bad event is
“There is an entry (eval, i,M i

a, T i
a) such that either Σi

a = Σi
b or Σi

a = Λi
b,

and either Λi
a = Λi

b or Λi
a = Σi

b for some entry (eval, i,M i
a, T i

a).”
They defined this event as bad for the reason that the appearance of such

bad event is easily used to distinguish systems S1 and S0. We call the event
of either Σi

a = Σi
b or Σi

a = Λi
b as event 1, and the event of either Λi

a = Λi
b or

Λi
a = Σi

b as event 2. Then we can regard the simultaneous events 1 and 2 as one
of the following 4 events:

– Event 3: Σi
a = Σi

b ∧ Λi
a = Λi

b;
– Event 4: Σi

a = Σi
b ∧ Λi

a = Σi
b;

– Event 5: Σi
a = Λi

b ∧ Λi
a = Λi

b;
– Event 6: Σi

a = Λi
b ∧ Λi

a = Σi
b.

In the “real” system S1, event 4 or 5 leads to T i
a = 0n; event 3 or 6 leads

to T i
a = T i

b . However in the “ideal” system S0 these happen with negligible
probability by the randomness of random function fi. And in the“real” system
S1, U i

a = E
(
Ki, Σ

i
a

)
and V i

a = E
(
Ki, Λ

i
a

)
. However in the “ideal” system S0,

(U i
a, V i

a) = ⊥ by the simulation oracle defined by them. Thus it is easy distinguish
these two systems.

When calculating Pr[Bad9] in the “ideal” system S0, Shen et al. [14] regarded
that the event 1 is independent from event 2 when Ki

h,1,K
i
h,2 are independent

from each other. So by H1,H2 are both ε1-regular and ε2-AU, they thought the

66 T. Guo and P. Wang

probability of event 1 (resp. event 2) is at most ε1 + ε2. Note that for each user,
there are at most q2i pairs of (a, b). So they summed among u users and got

Pr[Bad9] ≤ Σu
i=1q

2
i (ε1 + ε2)2 ≤ q2(ε1 + ε2)2.

In fact, even if Ki
h,1,K

i
h,2 are independent of each other, the event 1 and

event 2 may not be independent, which has been shown in counter-examples
1–3. We regard the ninth event as the union set of events 3, 4, 5 and 6. Event
3 holds with probability at most ε22 by the assumption that H1 and H2 are ε2-
AU. Event 4 holds with probability at most ε1ε2 by the assumption that H1 is
ε2-AU and H2 is ε1-regular. Event 5 holds with probability at most ε1ε2 by the
assumption that H1 is ε1-regular and H2 is ε2-AU. For event 6,

Pr[Ki
h,1

$← Kh,1,K
i
h,2

$← Kh,2 : Σi
a = Λi

b ∧ Λi
a = Σi

b]

= Pr[Ki
h,1

$← Kh,1,K
i
h,2

$← Kh,2 : Σi
a = Λi

b|Λi
a = Σi

b]

· Pr[Ki
h,1

$← Kh,2,K
i
h,2

$← Kh,1 : Λi
a = Σi

b]

≤ ε3ε1

by the assumption that H2 is ε1-regular and let

ε3 = Pr[Ki
h,1

$← Kh,1,K
i
h,2

$← Kh,2 : Σi
a = Λi

b|Λi
a = Σi

b].

So we sum among u users and get

Pr[Bad9] ≤ Σu
i=1q

2
i (ε22 + 2ε1ε2 + ε3ε1) ≤ q2(ε22 + 2ε1ε2 + ε3ε1).

For counter-examples 1–3, it is easy to get ε3 = 1. So for these cases, Pr[Bad9] ≤
q2(ε22+2ε1ε2+ε1). If we substitute our Pr[Bad9] for that in paper [14], we get the
security of proofs of counter-examples 1–3 should be up to O(2n/2) evaluation
queries assuming ideal-cipher queries are O(1) and the maximal block length of
all evaluation queries is O(1), which is consistent with attacks.

6 Conclusion

In this paper, we point out a flaw of the security framework for two-key DbHtS in
the multi-user setting proposed by Shen et al. [14] by constructing three counter-
examples. We also analyze how the flaw happens in their proof. This is due to
the fact that the authors overlooked the dependence of Σi

a = Λi
b and Λi

a = Σi
b

in the proof of Theorem 1 [14]. In their paper, they also stated that 2k-SUM-
ECBC, 2k-PMAC Plus, and 2k-LightMAC Plus all achieve 2n/3-bit security.
For 2k-SUM-ECBC based on two independent CBC MACs, the probability ε3 is
about 1

2n . So if we substitute our Pr[Bad9] for that in paper [14], 2k-SUM-ECBC
still achieves 2n/3 security. The two universal hash functions of 2k-PMAC Plus
or 2k-LightMAC Plus are dependent, they adjusted the concrete proof of these
two MACs from the framework. We haven’t found attacks against these three
MACs.

A Note on the Security Framework of Two-key DbHtS MACs 67

Recently, Shen et al. refined their paper [15] because of what we have found in
this paper. Their new framework for two-key DbHtS is not universal. Because the
2n/3-bit security of two-key DbHtS MACs doesn’t only come from the regular
and AU properties of the hash functions anymore. To be specific, they added
two variables to capture the probabilities of two subcases ‘Σi

a = Λi
b ∧ Λi

a = Σi
b’

and ‘Σi
a = Λi

b ∧ Λi
a = Σi

c’, the values of which will be clear until in the analysis
of concrete MAC. In fact, these two added subcases have been included in the
cover-free property of H by Datta et al. [8] when they considered the framework
of two-key DbHtS in the single-user setting.

Acknowledgments. The authors thank the anonymous reviewers for many help-
ful comments. This paper was supported by the NSFC of China (61732021) and the
National Key R&D Program of China (2018YFB0803801 and 2018YFA0704704).

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16

2. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11818175 36

3. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 32

4. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 12

5. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 25

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

7. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

8. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018). https://doi.org/10.13154/tosc.v2018.i3.36-92

9. Kim, S., Lee, B., Lee, J.: Tight security bounds for double-block hash-then-sum
MACs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105,
pp. 435–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-
1 16

10. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound MACs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 306–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 11

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/11535218_32
https://doi.org/10.1007/3-540-44598-6_12
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.13154/tosc.v2018.i3.36-92
https://doi.org/10.1007/978-3-030-45721-1_16
https://doi.org/10.1007/978-3-030-45721-1_16
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-96884-1_11

68 T. Guo and P. Wang

11. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message
length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
446–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 16

12. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

13. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

14. Shen, Y., Wang, L., Gu, D., Weng, J.: Revisiting the security of DbHtS MACs:
beyond-birthday-bound in the multi-user setting. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12827, pp. 309–336. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84252-9 11

15. Shen, Y., Wang, L., Weng, J.: Revisiting the security of DbHtS MACs: beyond-
birthday-bound in the multi-user setting. IACR Cryptology ePrint Archive, p. 1523
(2020). https://eprint.iacr.org/2020/1523

16. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, p. 332 (2004). http://eprint.iacr.org/2004/332

17. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 25

18. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 34

19. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the
birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 19

https://doi.org/10.1007/978-3-319-70700-6_16
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-030-84252-9_11
https://doi.org/10.1007/978-3-030-84252-9_11
https://eprint.iacr.org/2020/1523
http://eprint.iacr.org/2004/332
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-34961-4_19
https://doi.org/10.1007/978-3-642-34961-4_19

Maliciously Secure Multi-party PSI
with Lower Bandwidth and Faster

Computation

Zhi Qiu1 , Kang Yang2 , Yu Yu1(B) , and Lijing Zhou3

1 Shanghai Jiao Tong University, Shanghai, China
{chonps,yyuu}@sjtu.edu.cn

2 State Key Laboratory of Cryptology, Beijing, China
yangk@sklc.org

3 Huawei Technology, Shanghai, China
zhoulijing@huawei.com

Abstract. Private Set Intersection (PSI) allows a set of mutually dis-
trustful parties, each holds a private data set, to compute the intersection
of all sets, such that no information is revealed except for the intersec-
tion. The state-of-the-art PSI protocol (Garimella et al., CRYPTO’21)
in the multi-party setting tolerating any number of malicious corrup-
tions requires the communication bandwidth of O(n�|F|) bits for the
central party P0 due to the star architecture, where n is the number of
parties, � is the size of each set and |F| is the size of an exponentially
large field F. When n and � are large, this forms an efficiency bottleneck
(especially for networks with restricted bandwidthes). In this paper, we
present a new multi-party PSI protocol in dishonest-majority malicious
setting, which reduces the communication bandwidth of the central party
P0 from O(n�|F|) bits to O(�|F|) bits using a tree architecture. Further-
more, our PSI protocol reduces the expensive LPN encoding operations
performed by P0 by a factor of n as well as the computational cost by
2n� hash operations in total. Additionally, while the multi-party PSI pro-
tocol (Garimella et al., CRYPTO’21) with a single output is secure, we
present a simple attack against its multi-output extension, which allows
an adversary to learn more information on the sets of honest parties
beyond the intersection of all sets.

1 Introduction

Private Set Intersection (PSI) allows a set of mutually distrustful parties, where
each holds a private set, to compute the intersection of all sets, without revealing
anything beyond the intersection. PSI and its variants have found a wide variety
of applications, including measuring the effectiveness of online advertising [18,
19], private contact discovery [10,20] and more. In the two-party setting, PSI
protocols has been extensively studied and become truly practical with extremely
fast implementations (see the recent work [7,14,15,26,27,29,31] and references
therein). While two-party PSI is interesting for many applications, there are a lot
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 69–88, 2022.
https://doi.org/10.1007/978-3-031-15777-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_5&domain=pdf
http://orcid.org/0000-0001-7588-091X
http://orcid.org/0000-0002-7453-4043
http://orcid.org/0000-0002-9278-4521
http://orcid.org/0000-0001-7792-2669
https://doi.org/10.1007/978-3-031-15777-6_5

70 Z. Qiu et al.

of applications which are better suitable for the multi-party setting. For example,
a) several companies intend to combine their data sets to find a target audience
for an ad campaign [18]; b) a variant of multi-party PSI was recently used for
cache sharing in edge computing, which allows multiple network operators to
obtain a set of common data items with the highest access frequencies in the
privacy-preserving way [25]. We refer the reader to [24] for more interesting
examples that are suited to the multi-party case.

The problem of multi-party PSI was first introduced in [13]. The previous
work [8,13,15,16,22,32,33] constructed theoretical multi-party PSI protocols,
where all of these protocols are not concretely efficient (especially for large
sets). The first practical PSI protocol in the multi-party setting was proposed
by Kolesnikov et al. [23]. This protocol is secure against semi-honest adver-
saries in the dishonest-majority setting (i.e., the adversary can corrupt up to
n − 1 parties of the n parties but must follow the protocol specification). For
semi-honest security, efficient multi-party PSI protocols were further developed,
including [17,21] in the dishonest-majority setting based on Garbled Bloom Fil-
ter (GBF), and [6] in the honest-majority setting (i.e., the adversary can corrupt
up to less than a half of parties). In this work, we focus on multi-party PSI pro-
tocols in the dishonest-majority setting in the presence of malicious adversaries
(i.e., the adversary allows to run an arbitrary attack strategy in its attempt to
break the protocol). This is the strongest adversary model that was considered
in the previous PSI protocols.

In the dishonest-majority malicious setting, several concretely efficient PSI
protocols [12,14,24,37] have been proposed. Among these protocols, the multi-
party PSI protocol by Garimella et al. [14] achieves the best efficiency in this set-
ting. This protocol builds on the multi-party PSI protocol with augmented semi-
honest security [23], and instantiates the underlying Oblivious Programmable
Pseudo-Random Function (OPPRF) primitive with the Oblivious Key-Value
Store (OKVS) scheme [14] and Oblivious Pseudo-Random Function (OPRF).
Garimella et al. [14] use a 3-hash garbled cuckoo table to design the OKVS
scheme, which is an optimized version of the PaXoS construction [27] and can
achieve much better communication efficiency than GBF. The state-of-the-art
protocol [31] to realize OPRF adopts the recent LPN-based Vector Oblivious
Linear-function Evaluation (VOLE) protocol with sublinear communication [1–
4,9,34,35]. Garimella et al. [14] modified the augmented semi-honest PSI pro-
tocol [23] into a maliciously secure protocol by adding a random oracle to wrap
the OPRF output,1 and proved that the modified multi-party PSI protocol is
secure against malicious adversaries. Although the state-of-the-art multi-party
PSI protocol [14] is concretely efficient, we observed the following two aspects
that need to be further improved and are addressed by this work.

– The multi-party PSI protocol [14] adopts the star architecture for communica-
tion. Specifically, the central party P0 will interact with parties P1, . . . , Pn to
compute n OPRF outputs that will include n VOLE protocol executions, and
then receives n OKVS from the n parties. When n and the size � of each set

1 A similar observation was also made by Nevo et al. [24].

Maliciously Secure Multi-party PSI 71

are large, the communication bandwidth of P0 is O(n�|F|) bits, which forms
an efficiency bottleneck (especially for networks with restricted bandwidthes),
where |F| is the size of an exponentially large field F.

– The n VOLE executions for computing n OPRF outputs will require n encod-
ing operations of Learning Parity with Noise (LPN) for the central party P0,
where the LPN encoding is computationally expensive [36] and forms a com-
putational efficiency bottleneck of the state-of-the-art VOLE protocol with
malicious security [35].

1.1 Our Contributions

In this paper, we propose a new multi-party PSI protocol in the dishonest-
majority malicious setting, which improves the state-of-the-art multi-party PSI
protocol [14] in the following two aspects.

– We reduce the computation cost of LPN encoding for the central party P0

implied in the PSI protocol [14] by a factor of n. Meanwhile, we further reduce
the total computation cost of their PSI protocol by 2n� hash operations. To
achieve the efficiency gain, we construct the PSI protocol by directly using
VOLE in the multi-party setting (instead of calling OPRF) and integrating
the repetitive operations (see Sect. 3.2 for a technical overview).

– Building on the above technique to improve computation, we use a tree archi-
tecture to reduce the communication bandwidth of the central party P0. In
particular, we reduce the bandwidth complexity of P0 from O(n�) field ele-
ments to O(�) field elements by amortizing the communication among all
parties in a tree network architecture. We present two types of tree architec-
tures: one is used to make P0 send the same message to parties P1, . . . , Pn;
and the other is used to let P1, . . . , Pn send the sum of n different messages
to P0 in an aggregation way (see Sect. 3.3 for a technical overview).

Our PSI protocol requires the underlying OKVS scheme to be linear, which is
satisfied by the recent efficient constructions [14,27,29]. We prove security of our
protocol in the Universal Composability (UC) model and random oracle model.

In addition, Garimella et al. [14] proposed a multi-output extension of their
multi-party PSI protocol such that all parties can obtain the output instead of
only the central party P0. While their multi-party PSI protocol with a single
output is provably secure, we present a simple attack against the multi-output
extension. This attack allows an adversary to leak the information of the sets held
by honest parties more than that allowing to be obtained from the intersection of
the sets of all parties, even if the adversary behaves semi-honestly. In particular,
if only P0 is honest, then the adversary can leak some secret items in the private
set of P0.

Comparison of Communication, Bandwidth and Rounds. In Table 1, we
compare our protocol with two recent multi-party PSI protocols in the dishonest-
majority malicious setting (where the adversary can corrupt up to n parties
of the n + 1 parties). For the sake of simplicity, this table does not compare

72 Z. Qiu et al.

Table 1. Comparison between our protocol and recent multi-party PSI protocols tol-
erating all-but-one malicious corruptions. n+1 is the number of parties, � is the size of
each set, and κ and ρ are the computational and statistical security parameters respec-
tively. The bandwidth column denotes the maximum communication sent or received
by each party.

MP-PSI Topology Communication Bandwidth Rounds

[12] Star O(n�κ2 + n�κ log(�κ)) O(n�κ2 + n�κ log(�κ)) 4

[14] Star O(n2κ + n�(κ + ρ + log �)) O(n�(κ + ρ + log �)) 2

This work Tree O(n2κ + n�(κ + ρ + log �)) O(�(κ + ρ + log �)) 2�log(n + 1)�

the recent PSI protocol [24], as it has the same complexities as [14] in this
setting. All costs are counted in the ROT/VOLE-hybrid model, where ROT
represents random oblivious transfer. For the state-of-the-art ROT or VOLE
protocols, the communication of these protocols is small compared to the whole
communication. From this table, we can see that our protocol has the lowest
bandwidth complexity while keeping the same communication complexity. In
particular, our tree architecture does not increase the total communication cost,
compared to the state-of-the-art multi-party PSI protocol [14]. As a trade-off
of lower communication bandwidth, the round complexity of our PSI protocol
is increased to O(log n), compared to the multi-party PSI protocol [14,24] with
the round complexity of O(1).

2 Preliminaries

2.1 Notation

We use κ and λ to denote the computational and statistical security parameters,
respectively. For a, b ∈ N and a ≤ b, we use [a, b] to denote the set {a, . . . , b}. For
a finite set S, we use x ← S to denote sampling x uniformly at random from S.
For a vector x, we denote by xi the i-th component of x with x1 the first entry.
For a set S, we use |S| to denote the size of set S.

2.2 Security Model and Functionalities

Security Model. We use the Universal Composability (UC) framework [5] to
prove security in the presence of a static, malicious adversary. We say that a pro-
tocol Π UC-realizes an ideal functionality F if for any Probabilistic Polynomial
Time (PPT) adversary A, there exists a PPT simulator S, such that for any
PPT environment Z, the output distribution of Z in the real-world execution
where the parties interact with A and execute Π is computationally indistin-
guishable from the output distribution of Z in the ideal-world execution where
the parties interact with S and F.

Maliciously Secure Multi-party PSI 73

Fig. 1. Functionality for multi-party private set intersection.

Functionality for Multi-party PSI. In a PSI protocol, parties P0, P1, . . . , Pn

with each having an input set Xi of size � compute the intersection of their
input sets, i.e.,

⋂
i∈[0,n] Xi. As a result of the protocol execution, P0 obtains the

intersection output, and all other parties learn nothing. The multi-party PSI
functionality is shown in Fig. 1. Following prior work such as [12,27,30,31], we
allow the adversary who corrupts a party Pi to input a set Xi with � ≤ |Xi| ≤ �′.

Functionality for VOLE. Following the previous definition [2,35], the func-
tionality for Vector Oblivious Linear-function Evaluation (VOLE) is given in
Fig. 2. Two parties run the initialization procedure only once, and then can
repeatedly call the extend procedure to obtain multiple batches of VOLE correla-
tions. The VOLE functionality can be securely realized by the recent LPN-based
protocols with sublinear communication [1–4,9,34,35].

2.3 Oblivious Key-Value Stores

We recall the definitions of an Oblivious Key-Value Store (OKVS) proposed by
Garimella et al. [14]. OKVS is a general notion, and captures the functional-
ity and security property of existing constructions, including polynomials, dense
matrix, garbled Bloom filter [11] and PaXoS [27]. Then, we roughly discuss the
state-of-the-art OKVS construction as well as its communication and computa-
tion complexities.

Definition 1 ([14]). A key-value store is parameterized by a set K of keys, a
set V of values, and a set H of functions, and consists of the following two
algorithms:

– EncodeH({(ki, vi)}i∈[1,�]) takes as input a set of key-value pairs {(ki, vi)}i∈[1,�],
and outputs an object S (or an error indicator ⊥ with statistically small proba-
bility).

74 Z. Qiu et al.

Fig. 2. Functionality for vector oblivious linear-function evaluation.

– DecodeH(S, k) takes as input an object S, a key k, and outputs a value v.

A KVS is correct, if for all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥ �= S ← EncodeH(A) ⇒ DecodeH(S, k) = v.

For the sake of simplicity, we choose to omit the underlying parameter H in the
rest of exposition, as long as the context is clear. In the known OKVS construc-
tions, we always have that the decision whether Encode outputs ⊥ depends on
the functions H and the keys {ki}i∈[�], and is independent of the values {vi}i∈[�].
In the following, we define the security property guaranteeing that one cannot
decide whether a key k was used to generate S or not.

Definition 2 ([14]). A KVS is an Oblivious KVS (OKVS), if for all distinct
keys {k0

1, ..., k
0
� } and all distinct keys {k1

1, ..., k
1
� }, when Encode does not output ⊥

for both (k0
1, ..., k

0
�) and (k1

1, ..., k
1
�), the output of R(k0

1, ..., k
0
�) is computationally

indistinguishable from that of R(k1
1, ..., k

1
�), where R(k1, ..., k�) is defined as:

– For i ∈ [1, �], sample vi ← V.
– Output Encode({(ki, vi)}i∈[1,�]).

From the above definition, we have that if the OKVS encodes random values, for
any two sets of keys K0,K1, it is infeasible to distinguish the OKVS encoding
of the keys of K0 from that of the keys of K1.

Our multi-party PSI protocol requires that an OKVS has some kind of addi-
tively homomorphic property. In particular, Decode(·, k) is a linear function for
all k ∈ K. The formal definition is recalled as follows.

Definition 3 ([14]). An OKVS is linear over a field F if V = F (i.e., “values”
are elements of F), then the output of Encode is a vector S in F

m, and the Decode
function is defined as:

Maliciously Secure Multi-party PSI 75

Decode(S, k) = 〈d(k),S〉 def=
m∑

i=1

d(k)i · Si

for some function d : K → F
m, where d is typically defined by hash functions.

Thus, Decode(·, k) is a linear map from F
m to F.

The idea of constructing a linear OKVS is that generating a solution to the
linear system of equations:

⎡

⎢
⎢
⎢
⎣

− d(k1)−
− d(k2)−

...
− d(k�)−

⎤

⎥
⎥
⎥
⎦

· S� =

⎡

⎢
⎢
⎢
⎣

v1
v2
...
v�

⎤

⎥
⎥
⎥
⎦

.

If Encode chooses uniformly from the set of solutions to the linear system and the
values are uniform, then the output S is uniformly distributed (and thus inde-
pendent of the keys). That is, a linear OKVS satisfies the obliviousness property.
The recent linear OKVS scheme [14] (building on the PaXoS technique [27]) has
the computation complexity linear to the number of key-value pairs, and achieves
the rate of 0.81− o(1), where the rate of an OKVS that encodes � items from F

is the ratio between � · |F| and the size of the OKVS. Very recently, Rindal and
Raghuraman [29] significantly improved the computation efficiency of the linear
OKVS scheme [14], and achieve the best concrete performance for now.

An OKVS whose parameters are chosen to encode N items may hold even
more than N items, when it is generated by the adversary. In the context of PSI,
this allows the adversary to encode more items than advertised. In Appendix A,
we review the the definition of OKVS overfitting to bound the number of items
that the adversary can “overfit” into an OKVS, which will be used in the security
proof of our PSI protocol.

3 Technical Overview

In this section, we give an overview of our techniques to improve the communi-
cation bandwidth and computation cost of the state-of-the-art multi-party PSI
protocol [14] tolerating any number of malicious corruptions. The PSI protocol
by Garimella et al. [14] is constructed by transforming the augmented semi-
honest PSI protocol [23] into a maliciously secure version by adding a random
oracle to wrap the OPRF output, which is also observed by Nevo et al. [24].
Firstly, we review the multi-party PSI protocol [14] at a high level.

3.1 Overview of the Best-Known Multi-party PSI Protocol

The state-of-the-art multi-party PSI protocol [14] tolerating any number of mali-
cious corruptions, which builds on the augmented semi-honest protocol [23], exe-
cutes as follows:

76 Z. Qiu et al.

Fig. 3. Functionality for multi-party VOLE.

1. P0, P1, . . . Pn are the n+1 parties who will compute the intersection of input
sets X0,X1, . . . , Xn with |Xi| = � for i ∈ [0, n], where P0 will obtain the
output. For any h, every party Pi can compute a zero share si

h such that∑
i∈[0,n] s

i
h = 0 by exchanging Pseudo-Random Function (PRF) keys.

2. For each i ∈ [1, n], P0 and Pi call an oblivious PRF functionality Foprf with
malicious security, and then Pi obtains the key denoted by PRFi and P0 gets
the set {PRFi(h) |h ∈ X0}.

3. Let (Encode,Decode) be an OKVS scheme which maps � items to m slots,
and H : {0, 1}∗ → F be a random oracle. For each i ∈ [1, n], Pi computes an
OKVS Qi as

Qi = Encode
({

(h,H(PRFi(h), h) + si
h) |h ∈ Xi

})
,

and then sends Qi to P0.
4. P0 computes an OKVS Q0 as

Q0 = Encode
({

(h, −
n∑

i=1

H(PRFi(h), h) + s0h)
∣∣∣ h ∈ X0

})
.

5. After receiving the OKVS from other n parties, P0 computes the output as

{
h ∈ X0

∣
∣
∣

n∑

i=0

Decode(Qi, h) = 0
}

.

3.2 Our Approach to Improve Computation Efficiency

The state-of-the-art OPRF protocol [31] is constructed by combining VOLE with
an OKVS scheme called PaXoS [27], where the efficiency of OKVS can be further

Maliciously Secure Multi-party PSI 77

improved using the recent constructions [14,29]. At a high level, this protocol
running between Pi and P0 works as follows:

1. Pi and P0 call functionality Fvole (shown in Fig. 2), which returns vi to Pi

and (u,wi) to P0, where wi = vi + u · Δi.
2. For an input set X0, P0 computes an OKVS as:

S = Encode ({(h,H(h)) |h ∈ X0}) .

3. P0 computes d := S − u ∈ F
m and sends it to Pi who computes Vi :=

vi − d · Δi. Let Wi = wi, and thus Wi = Vi + S · Δi.
4. P0 computes PRFi(h) = H(Decode(Wi, h), h) for h ∈ X0, and Pi can compute

PRFi(x) = H(Decode(Vi, x) + H(x) · Δi, x) for any x in the domain.

If integrating the above OPRF protocol into the state-of-the-art multi-party
PSI protocol with malicious security shown in the previous section, P0 needs
to call Fvole with n different parties. Note that the LPN encoding is the com-
putational efficiency bottleneck for the state-of-the-art VOLE protocol [35] in
the malicious setting. When instantiating functionality Fvole, the multi-party
PSI protocol requires P0 to perform n operations of LPN encoding, which is
computationally expensive.

Our Solution. Our approach reduces the cost of LPN encoding associated with
vector u by a factor of n. We make an important observation that a single random
vector u is sufficient to mask the OKVS S, and thus it is unnecessary to compute
n random vectors u1, . . . ,un. Thus, P0 needs to generate n VOLE correlations
with the same vector u by running a protocol with n different parties. We model
this as a multi-party VOLE functionality Fmvole shown in Fig. 3. Note that when
P0 is corrupted, the adversary allows to choose different vectors u. That is, we
do not require the consistency check of vector u. Furthermore, we do not require
P0 to broadcast the vector d = S−u. These are sufficient to design multi-party
PSI protocols in the malicious setting (see the security proof of our protocol
given in Sect. 4.3). Such a functionality Fmvole can be UC-realized by calling the
standard VOLE functionality (shown in Fig. 2) n times and programming the
input/output of P0 to keep the consistency of u in the honest case (see [3] for
more details).

Furthermore, we further reduce the computation cost of the multi-party PSI
protocol described as above by 2n� H operations. In particular, we construct
the PSI protocol by directly using Fmvole as the underlying primitive instead
of the OPRF primitive. We adopt Fmvole and an OKVS to obtain an OPRF,
but simplify the computation of H(PRFi(h), h) = H

(
H(Decode(Vi, h) + H(h) ·

Δi, h), h
)

performed by Pi for i ∈ [1, n], h ∈ Xi in the previous construction as

H(Decode(Vi, h) + H(h) · Δi, h).

As such, the computation of
n∑

i=1

H(PRFi(h), h) =
n∑

i=1

H
(
H(Decode(Wi, h), h), h

)

78 Z. Qiu et al.

Fig. 4. Transmission of a message M using a binary tree when n = 14.

performed by P0 for h ∈ X0 can be simplified as

n∑

i=1

H(Decode(Wi, h), h).

In other words, we combine two hash operations into one, which removes the
redundant hash operations and significantly improves the computation efficiency.

3.3 Our Approach to Reduce Communication Bandwidth

The state-of-the-art multi-party PSI protocol [14] adopts the star network archi-
tecture. In particular, the central party P0 will have to send the messages
{di = S − ui ∈ F

m}i∈[1,n] to n parties for computing OPRF values and receive
the OKVSs Q1, . . . ,Qn ∈ F

m from n parties. These make the communication
bandwidth of P0 be nm|F| bits per protocol execution, where m = �/(0.81−o(1))
for the recent OKVS scheme [14] and � is the size of a set. For a large number n of
parties and a large size � of input sets, this forms an efficiency bottleneck of the
PSI protocol (especially for networks with restricted bandwidthes). For example,
when � = 224, n = 20 and |F| = 128, P0 needs about 53 gigabits of communi-
cation bandwidth. To reduce the communication bandwidth, one may consider
using the Cuckoo hashing approach [23] to divide a large set into multiple bins.
However, this approach is not secure against malicious adversaries [24].

Our Solution. In the following, we present an efficient approach to reduce the
communication bandwidth of P0 to 2m|F| bits by amortizing the communication
among all parties in a binary-tree architecture. Specifically, we first apply the
optimized approach described in the previous section to the multi-party PSI
protocol. In this case, P0 needs to send the same message d = S−u to all other

Maliciously Secure Multi-party PSI 79

Fig. 5. Message addition aggregation using a binary tree when n = 14.

parties. Therefore, we can use a binary-tree structure to send d. The parties
P0, P1, . . . , Pn constitute a binary tree with the root P0. Party P0 can only send
d to its two child nodes P1 and P2. Then, for each level of the tree, every parent
node Pj−1 sends d to its children P2j−1 and P2j . See Fig. 4 for an example of
n = 14 where the message M = d. Note that here we do not require to broadcast
vector d.

To reduce the bandwidth that communicates the OKVSs Q1, . . . ,Qn, we
require that the OKVS scheme is linear, which is satisfied by the recent highly-
efficient constructions [14,29,31]. In this case, we can aggregate these OKVSs
into one OKVS through a binary tree. For each level of the tree (from bottom
to top), two child nodes P2j−1 and P2j respectively send Q2j−1 and Q2j to their
parent node Pj−1 who updates its OKVS as Qj−1 := Qj−1 + Q2j−1 + Q2j .
Finally, the root node P0 obtains the OKVS Q0 :=

∑n
i=0 Qi. See Fig. 5 for an

example of n = 14, where Pi holds an OKVS Mi = Qi ∈ F
m for i ∈ [0, n].

According to the linearity of the OKVS scheme, we have
∑n

i=0 Decode(Qi, h) =
Decode(

∑n
i=0 Qi, h). Therefore, the OKVS

∑n
i=0 Qi that has been aggregated

allows P0 to obtain the correct output. The message-aggregation approach can
also be used for the recent multi-party PSI protocols based on garbled Bloom
filters [12,21], where the approach can reduce the communication bandwidth of
the central party P0 in the protocol [12] by a factor of O(n) and the rounds in the
protocol [21] from O(n) to O(log n). In addition, our tree-architecture approach

80 Z. Qiu et al.

Fig. 6. Protocol for sending messages with constant bandwidth.

Fig. 7. Protocol for aggregating messages with constant bandwidth.

is able to be applied in the multi-party PSI protocol [24] for any corruption
threshold t ≤ n.

4 Maliciously Secure Multi-party PSI Protocol

We first describe two sub-protocols which are used to send and aggregate mes-
sages respectively in a binary-tree architecture. Then, we present the detailed
construction of our multi-party PSI protocol with malicious security. Finally, we
give a formal proof of security for our PSI protocol.

4.1 Sub-protocols for Sending and Aggregating Messages

We first describe the sub-protocol Π tree
send shown in Fig. 6, which allows the central

party P0 to send a message M to all other parties P1, . . . , Pn. The message

Maliciously Secure Multi-party PSI 81

is transmitted in a binary-tree architecture, which enables us to obtain O(1)
communication bandwidth instead of O(n). As a trade-off, the round complexity
is increased from O(1) to O(log n). A malicious party Pi for i ∈ [1, n] may send
M ′ �= M to its left child and M ′′ �= M to its right child. In the next subsection,
we will show such malicious behavior is harmless for the security of our protocol.

In Fig. 7, we describe the sub-protocol Π tree
aggregate, which allows n parties to

send the sum of their messages to the central party P0. These messages are
aggregated by addition operations in the binary-tree network architecture, which
reduces the communication bandwidth from O(n) to O(1). Similarly, the round
complexity is increased from O(1) to O(log n).

In both of two sub-protocols, the message is always transmitted between a
parent node and two child nodes. While the parent node sends the same message
to two child nodes in the protocol Π tree

send, two child nodes send two different
messages to the parent node who sums the two messages and its message as an
aggregation message in the protocol Π tree

aggregate.

Extending to k-Ary Trees. Although we describe our protocols in the binary-
tree architecture, they are easy to be extended to work in the k-ary tree architec-
ture with any 2 ≤ k ≤ n. For a k-ary tree, while the communication bandwidth
will be increased by a factor of k/2, the round complexity will be reduced from
O(log n) to O(logk n). In particular, the star architecture used in prior work can
be considered as the special case of n-ary trees.

4.2 Our PSI Protocol with Efficient Bandwidth and Computation

In Fig. 8, we describe the details of our multi-party PSI protocol in the dishonest-
majority malicious setting. The communication bandwidth of the central party
P0 is O(�|F|) bits, where the state-of-the-art protocol [14] that builds on the
technique [23] requires the bandwidth of O(n�|F|) bits for P0. This protocol
works in the Fmvole-hybrid model, and is executed by n+1 parties P0, P1, . . . , Pn.
We separate the protocol into two phases: preprocessing phase where the input
sets are unknown, and online phase in which the sets are known. In this protocol,
only the central party P0 obtains the output.

Correctness. To see that the PSI protocol as described in Fig. 8 is correct in
the honest case, we first note that for any h,

n∑

i=0

si
h =

n∑

i=0

⎛

⎝
∑

j<i

PRF(ki,j , h) −
∑

j>i

PRF(kj,i, h)

⎞

⎠ = 0.

Then, we observe that for each h ∈ ⋂
i∈[0,n] Xi, i ∈ [1, n], we have zi,h − z′

i,h =

= H(Decode(Vi, h) + H(h) · Δi, h) − H(Decode(Wi, h), h)
= H(Decode(Vi, h) + H(h) · Δi, h) − H(Decode(Vi + S · Δi, h), h)
= H(Decode(Vi, h) + H(h) · Δi, h) − H(Decode(Vi, h) + Decode(S, h) · Δi, h)
= H(Decode(Vi, h) + H(h) · Δi, h) − H(Decode(Vi, h) + H(h) · Δi, h) = 0.

82 Z. Qiu et al.

Fig. 8. Maliciously secure multi-party PSI in the Fmvole-hybrid model.

Maliciously Secure Multi-party PSI 83

Therefore, for each h ∈ ⋂
i∈[0,n] Xi, we have

Decode(Q, h) + s0h −
n∑

i=1

z′
i,h = Decode(

n∑

i=1

Qi, h) + s0h −
n∑

i=1

z′
i,h

= s0h +
n∑

i=1

Decode(Qi, h) −
n∑

i=1

z′
i,h

= s0h +
n∑

i=1

(zi,h + si
h) −

n∑

i=1

z′
i,h

=
n∑

i=0

si
h +

n∑

i=1

(
zi,h − z′

i,h

)
= 0.

4.3 Proof of Security

In the following, we prove the security of our PSI protocol in the multi-party
malicious setting. Our proof of security will use the following lemma, which has
been proven in [14].

Lemma 1 ([14]). Given a set of parties that run the zero-sharing setup (i.e., the
step 1 in Fig. 8) such that a pair of parties Pi, Pj are honest and the adversary’s
view is independent of the Pi’s share si

h, then the Pj’s share sj
h is computationally

indistinguishable from a uniform value.

Based on the above lemma, we prove the following theorem.

Theorem 1. Let H be a random oracle and (Encode,Decode) be a linear OKVS
scheme. Let PRF be a pseudo-random function. Then protocol Πmpsi shown in
Fig. 8 UC-realizes functionality Fmpsi in the presence of a malicious adversary
corrupting up to n of the n + 1 parties in the Fmvole-hybrid model.

Due to space limit, the formal proof of the above theorem can be found in the
full version of this paper [28].

5 An Attack Against Multi-output Extension of PSI

In the malicious setting, it is a non-trivial task to extend a multi-party PSI pro-
tocol to support multiple outputs where every party (instead of only party P0)
will obtain the output. This is because the parties cannot be trusted to deliver
the intersection output faithfully. In the multi-party malicious setting, Garimella
et al. [14] extended their PSI protocol with a single output to a protocol sup-
porting multiple outputs that achieves the best efficiency. In this section, we
present a simple and practical attack for the multi-output extension [14], which
allows the attacker to reveal more information of the sets of honest parties than

84 Z. Qiu et al.

that obtained from the intersection of the sets of all parties. Specifically, we first
review the multi-output extension by Garimella et al. [14]. This extension mod-
ifies the multi-party PSI protocol shown in Sect. 3.1 to realize that all parties
obtain the output in the following procedure:

– All parties P0, P1, . . . , Pn publicly commit to their OKVSs {Qi}i∈[0,n]. That
is, every party Pi broadcasts a commitment comi = Commit(Qi; ri) to all
other parties where ri is a randomness.

– After all the commitments that have been made, the parties open these com-
mitments. That is, for i ∈ [0, n], every party Pi sends (Qi, ri) to all other
parties, and then verifies the correctness of all the openings (i.e., checking
that comj = Commit(Qj ; rj) for all j �= i).

– Every party Pi with i ∈ [0, n] computes the output as

{
h ∈ Xi

∣
∣
∣

n∑

j=0

Decode(Qj , h) = 0
}

.

An Attack to Leak the Information of the Sets Held by Honest Parties.
Below, we show a simple but practical attack against the above multi-output
extension to reveal more information of the sets held by honest parties beyond
the intersection of all sets. Suppose that P0 is honest. Let C ⊆ [1, n] denote
the set of corrupted parties. In particular, an adversary A (who even behaves
semi-honestly) is able to perform the following attack:

1. A receives the OKVS Qi for all i /∈ C that contain Q0. Recall that the OKVS
Qi for i /∈ C, i �= 0 is defined as follows:

Qi = Encode
({(

h,H(PRFi(h), h) + si
h

) ∣
∣
∣ h ∈ Xi

})
.

The OKVS Q0 is computed as

Q0 = Encode
({(

h, s0h −
n∑

i=1

H(PRFi(h), h)
∣
∣
∣ h ∈ X0

)})
.

2. A computes Q :=
∑

i/∈C Qi. According to the definition of zero sharings, we
know that

∑
i∈[0,n] s

i
h = 0 for any h. Therefore, for each h ∈ ⋂

i/∈C Xi, we
obtain the following:

∑

i/∈C
Decode(Qi, h) = −

∑

i∈C
si

h −
∑

i∈C
H(PRFi(h), h). (1)

3. A who corrupts Pi for i ∈ C can compute the shares si
h and values PRFi(h)

for all i ∈ C when any h is known. Then, for any h /∈ ⋂
i∈[0,n] Xi, A is able to

decide whether h ∈ ⋂
i/∈C Xi by checking if the Eq. (1) holds. For the items in

the set
⋂

i/∈C Xi that have a low entropy, A can directly reveal these items by
enumerating the items and then checking their correctness, and thus obtain
the secret data included in

⋂
i/∈C Xi.

Maliciously Secure Multi-party PSI 85

In the special case that only P0 is honest and all other parties are corrupted (i.e.,
|C| = n), the adversary can leak some secret items in the set X0 by performing
the above attack. The reason behind the successful attack is that the OKVS Q0

is revealed by the honest central party P0. This does not occur in the original
multi-party PSI protocol [14] that only P0 obtains the output, where P0 only
uses the OKVS Q0 locally in the original protocol. To prevent the attack as
describe above, one may need to change the way computing the OKVS Q0 and
introduce some high-entropy secrets into Q0. We leave it as an interesting future
work to design a concretely efficient multi-party PSI protocol supporting multiple
outputs in the malicious setting.

Acknowledgements. Work of Kang Yang is supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 62102037, 61932019). Work of Yu Yu is sup-
ported by the National Key Research and Development Program of China (Grant Nos.
2020YFA0309705 and 2018YFA0704701) and the National Natural Science Foundation
of China (Grant Nos. 62125204 and 61872236). Yu Yu also acknowledges the support
from the XPLORER PRIZE. We thank anonymous reviewers for their helpful com-
ments.

A OKVS Overfitting

For the security proof of a maliciously secure PSI protocol, the simulator obtains
an OKVS from a corrupted party, and needs to extract the keys that are encoded
in the OKVS. In general, this is done by defining vi = H(ki) for i ∈ [1, �] where
H is a random oracle. Then, the simulator can observe the queries to H made by
the adversary, and then check which of the keys k satisfy Decode(S, k) = H(k).
An OKVS whose parameters are chosen to encode � keys may often hold even
more than � keys, when it is generated by the adversary. In the context of
PSI, this allows the adversary to encode more keys than advertised. Therefore,
we need to bound the number of keys that the adversary can “overfit” into an
OKVS. Following the previous work [14], we model the property in the following
definition.

Definition 4 ([14]). The (�, �′)-OKVS overfitting game is defined as follows.
– Let (Encode,Decode) be an OKVS with parameters chosen to support � items,

and A be any PPT adversary. Let H : K → V be a random oracle.
– Run S ← AH(·)(1κ).
– Define the following set:

X = {k | A made a query (k) to H and Decode(S, k) = H(k)}.

– If |X| > �′, then the adversary A wins.

We say that the (�, �′)-OKVS overfitting problem is hard for an OKVS, if no
PPT adversary wins this game except with negligible probability.

For κ = 128 and λ = 40, according to the analysis [27], when H : K → F is used
to define the values, a linear OKVS with a field size |F| = 128 can guarantee
that the successful probability of the adversary in the above overfitting game is
less than 1/240, even though the adversary is allowed to make 280 queries to H.

86 Z. Qiu et al.

References

1. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
Conference on Computer and Communications Security (CCS) 2018, pp. 896–912.
ACM Press (2018). https://doi.org/10.1145/3243734.3243868

2. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: ACM Conference on Computer and Communications Security
(CCS) 2019, pp. 291–308. ACM Press (2019). https://doi.org/10.1145/3319535.
3354255

3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated
pseudorandom functions from variable-density LPN, pp. 1069–1080. IEEE (2020).
https://doi.org/10.1109/FOCS46700.2020.00103

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 136–145. IEEE (2001). https://doi.org/10.1109/SFCS.2001.959888

6. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.: Effi-
cient linear multiparty PSI and extensions to circuit/quorum PSI. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2021, pp. 1182–1204. Association for Computing Machinery (2021)

7. Chase, M., Miao, P.: Private set intersection in the Internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III.
LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56877-1_2

8. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010).
https://eprint.iacr.org/2010/512

9. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84252-9_17

10. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018)

11. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM Conference on Computer and Communi-
cations Security (CCS) 2013, pp. 789–800. ACM Press (2013). https://doi.org/10.
1145/2508859.2516701

12. Efraim, A.B., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: PSimple: prac-
tical multiparty maliciously-secure private set intersection. Cryptology ePrint
Archive, Report 2021/122 (2021). https://ia.cr/2021/122

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3_1

14. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1_14

https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://eprint.iacr.org/2010/512
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://ia.cr/2021/122
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-84245-1_14

Maliciously Secure Multi-party PSI 87

15. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS,
vol. 11478, pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17659-4_6

16. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 175–203. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_8

17. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 235–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98113-0_13

18. Ion, M., et al.: On deploying secure computing: private intersection-sum-with-
cardinality. In: 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 370–389 (2020)

19. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738 (2017).
https://eprint.iacr.org/2017/738

20. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. In: 28th USENIX Security Symposium (USENIX Secu-
rity 2019), pp. 1447–1464 (2019)

21. Kavousi, A., Mohajeri, J., Salmasizadeh, M.: Efficient scalable multi-party private
set intersection using oblivious PRF. Cryptology ePrint Archive, Report 2021/484
(2021). https://ia.cr/2021/484

22. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_15

23. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: ACM Conference
on Computer and Communications Security (CCS) 2017, pp. 1257–1272. ACM
Press (2017). https://doi.org/10.1145/3133956.3134065

24. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2021, pp. 1151–1165. Association for Computing
Machinery (2021)

25. Nguyen, D.T., Trieu, N.: MPCCache: privacy-preserving multi-party cooperative
cache sharing at the edge. Cryptology ePrint Archive, Report 2021/317 (2021).
https://ia.cr/2021/317

26. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8_13

27. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part II. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45724-2_25

28. Qiu, Z., Yang, K., Yu, Y., Zhou, L.: Maliciously secure multi-party PSI with lower
bandwidth and faster computation. Cryptology ePrint Archive, Paper 2022/772
(2022). https://eprint.iacr.org/2022/772

29. Rindal, P., Raghuraman, S.: Blazing fast PSI from improved OKVS and subfield
vole. Cryptology ePrint Archive, Report 2022/320 (2022). https://ia.cr/2022/320

https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://eprint.iacr.org/2017/738
https://ia.cr/2021/484
https://doi.org/10.1007/11535218_15
https://doi.org/10.1145/3133956.3134065
https://ia.cr/2021/317
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://eprint.iacr.org/2022/772
https://ia.cr/2022/320

88 Z. Qiu et al.

30. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS,
vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7_9

31. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12697, pp. 901–930. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77886-6_31

32. Sang, Y., Shen, H.: Privacy preserving set intersection protocol secure against
malicious behaviors. In: Proceedings of the Eighth International Conference on
Parallel and Distributed Computing, Applications and Technologies, PDCAT 2007,
pp. 461–468. IEEE Computer Society (2007)

33. Sang, Y., Shen, H.: Privacy preserving set intersection based on bilinear groups.
In: The 31th Australasian Computer Science Conference, ACSC 2008, vol. 74, pp.
47–54. Australian Computer Society (2008)

34. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
improved constructions and implementation. In: ACM Conference on Computer
and Communications Security (CCS) 2019, pp. 1055–1072. ACM Press (2019).
https://doi.org/10.1145/3319535.3363228

35. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for Boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1074–1091 (2021)

36. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for corre-
lated OT with small communication. In: ACM Conference on Computer and Com-
munications Security (CCS) 2020, pp. 1607–1626. ACM Press (2020). https://doi.
org/10.1145/3372297.3417276

37. Zhang, E., Liu, F.H., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set inter-
section against malicious adversaries. In: Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop, CCSW 2019, pp. 93–104.
Association for Computing Machinery (2019)

https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276

Conditional Cube Attacks on Full
Members of KNOT-AEAD Family

Siwei Chen, Zejun Xiang(B), Xiangyong Zeng, and Shasha Zhang

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied
Mathematics, Hubei University, Wuhan, China

{xiangzejun,xzeng}@hubu.edu.cn

Abstract. KNOT is a family of permutation-based lightweight AEAD
and hashing algorithms, which is submitted to the NIST Lightweight
Cryptography Standardization process and becomes one of the 32 candi-
dates in the second round. In this paper, we focus on the security of the
initialization phase of full members of KNOT-AEAD family against con-
ditional cube attacks in the nonce-respecting setting. To be specific, we
introduce a conditional cube attack framework by exploiting lineariza-
tion technique and division property based degree evaluation. With this
framework, we can use a conditional cube set including only one pub-
lic variable to construct a conditional cube distinguisher, and then to
recovery one key bit with a negligible time and data. As a result, we
present the 8-, 8-, 8-, and 9-round practical full key-recovery attacks on
KNOT-AEAD (128, 256, 64), KNOT-AEAD (128, 384, 192), KNOT-
AEAD (192, 384, 96) and KNOT-AEAD (256, 512, 128), and a 9-round
theoretical full key-recovery attack on KNOT-AEAD (128, 384, 192) with
a complexity of 251.72 and a negligible data complexity. To the best of our
knowledge, this is the first time to achieve the practical full key-recovery
attacks on all members of round-reduced KNOT-AEAD.

Keywords: KNOT-AEAD · Conditional cube attack · Division
property · Full key-recovery · Practical attack

1 Introduction

In secure information systems, it is necessary to achieve the confidentiality
of source data and the integrity of encrypted/decrypted data. In general,
the source data is handled by encryption schemes like block ciphers and the
encrypted/decrypted data is verified by message authentication code (MAC).
In recent years, a new type of symmetric-key primitive called authenticated
encryption with associated data (AEAD) [11] has come into sight. The AEAD
primitives can provide confidentiality and integrity simultaneously such that per-
formance loss caused by encryption and authentication in separate algorithms
can be avoided. Thus the design and cryptanalysis of AEAD have attracted

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 89–108, 2022.
https://doi.org/10.1007/978-3-031-15777-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_6

90 S. Chen et al.

attentions of cryptographers, especially with the beginning of CAESAR com-
petition1, which aimed to solicit high-performance and strong-security AEAD
schemes. With the development of lightweight cryptography, the National Insti-
tute of Standards and Technology (NIST) started the LWC project2 in 2013 to
solicit lightweight AEAD and hashing schemes suitable for highly constrained
computing environments.

Our target in this paper is the AEAD algorithm of KNOT [18] suite, called
KNOT-AEAD, which is designed by Zhang et al. and becomes one of the 32 can-
didates in the second round of NIST LWC. There are four members of KNOT-
AEAD with the difference on the size of the key, rate and internal state. Besides
the security announced in the official design document [18] and the supplemen-
tary materials3 by designers, there are several researches [1,3,5,16] on the secu-
rity of KNOT. All of them [1,3,5] aimed to search for better differential and
integral distinguishers for the underlying permutation of KNOT. In addition,
Wang et al. [16] presented key-recovery attacks for KNOT-AEAD (128, 256, 64)
and KNOT-AEAD (128, 384, 192) by differential-linear attacks, which supple-
mented the security of this two members against differential-linear attacks. As
far as we know, there is no third-party cryptanalysis on KNOT-AEAD from the
perspective of algebraic attacks such as cube-like attacks [4,6], and the designers
in [18] only give a simple statement as follows:
“The KNOT S-box does not exhibit any special algebraic structure. Fur-
thermore, it seems that successful applications of algebraic attacks on block
ciphers/permuta-tions can only reach a very limited number of rounds. Therefore,
we do not expect that algebraic attacks form a danger for any KNOT member”.
Therefore, it is necessary and significant to fill this gap for a better understanding
of the security of KNOT-AEAD.

Our Contributions. In this paper, we evaluate the security of the initialization
phase of KNOT-AEAD family against cube-like attacks in the nonce-respecting
setting. Specifically, we firstly propose a framework of conditional cube attacks
for KNOT-AEAD using the linearization technique and division property based
degree evaluation. On the one hand, the ANF of internal states have a spe-
cial form after linearization phase, based on which we can choose conditional
key bits to form the corresponding conditional equations. On the other hand,
we exploit the division property to estimate the maximal algebraic degree of
monomials only including the given public variables in two cases where the con-
ditional equations hold or not. Thus a gap on the estimated degrees in two
cases can be easily detected and we then form a cube set that contains the
fewest public variables to construct a cube distinguisher. In addition, we give the

1 The Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness. https://competitions.cr.yp.to/caesar-submissions.html.

2 Lightweight Cryptography Standardization process. https://csrc.nist.gov/projects/
lightweight-cryptography.

3 Update on Security Analysis and Implementations of KNOT. https://csrc.nist.
gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-
update-sep2020/KNOT Update.pdf.

https://competitions.cr.yp.to/caesar-submissions.html
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/KNOT_Update.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/KNOT_Update.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/KNOT_Update.pdf

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 91

concept of conditional S-box in which some input bits are fixed to constants, and
re-describe the division property propagation of conditional S-boxes to avoid
the influence of constants on the development of algebraic degrees of Sboxes.
Because the conventional description on the division property propagation of
original S-box will indeed introduce some invalid division trails for conditional
S-boxes, which leads to a non-precise MILP model and an inaccurate estimation
of the degree. Benefiting from these optimized methods, the cube distinguisher
constructed due to the gap on estimated degrees is reliable enough and can be
exploited to achieve a key-recovery attack with a high probability. As a result, we
presented 8-, 8-, 8- and 9-round practical key-recovery attacks on KNOT-AEAD
(128, 256, 64), KNOT-AEAD (128, 384, 192), KNOT-AEAD (192, 384, 96) and
KNOT-AEAD (256, 512, 128). Moreover, we presented a 9-round key-recovery
attack on KNOT-AEAD (128, 384, 192) with a time complexity of 251.72 and a
negligible data complexity. To the best of our knowledge, this is the first time
to evaluate the security from cube-like attack perspectives and achieve practical
full key-recovery attacks on full versions of KNOT-AEAD. Our attacks cannot
threaten the security of KNOT-AEAD family but give a better understanding on
the resistance against cube-like attacks. The key-recovery attacks of this paper
and [16] are summarized in Table 1.

Table 1. Summary of key-recovery attacks on KNOT-AEAD

Member† #Round #Key bit Method Time Data Ref

(128, 256, 64) 15 128/128 Differential-linear 248.8 247.5 [16]

8 128/128 Conditional cube 218.55 218.55 Sect. 4.2

(128, 384, 192) 17 1/128 Differential-linear 259.2 258.2 [16]

8 128/128 Conditional cube 233 218.12 Sect. 4.3

9 128/128 Conditional cube 251.72 218.12 Sect. 4.3

(192, 384, 96) 8 192/192 Conditional cube 218.13 218.13 Sect. 4.2

(256, 512, 128) 9 256/256 Conditional cube 218.55 218.55 Sect. 4.2

† The KNOT-AEAD (k, b, r) is written as (k, b, r) for short. For example, the member
(128, 256, 64) denotes the KNOT-AEAD (128, 256, 64).

Organization of This Paper. In Sect. 2, we give a brief introduction on the
algebraic degree evaluation by division property, conditional cube attack and
KNOT-AEAD family. In Sect. 3, we propose a framework of conditional cube
attacks for KNOT-AEAD, and based on the proposed framework, we will present
full key-recovery attacks on all members of round-reduced KNOT-AEAD family
in Sect. 4. Finally we conclude this paper in Sect. 5.

92 S. Chen et al.

2 Preliminaries

We firstly introduce some notations used throughout this paper. Let F2 denote
the finite field with two elements (0 and 1) and a ∈ F

n
2 be an n-bit vector where

ai denotes the ith bit of a. A unit vector where the ith element is 1 and the
others are 0 is denoted by ei. Especially, an n-bit vector whose all elements are
0 (or 1) is denoted by 0n (or 1n). The concatenation of two vectors a ∈ F

n
2 and

b ∈ F
m
2 is an (n + m)-bit vector, which is denoted by a‖b.

2.1 Algebraic Degree Evaluation by Division Property

In this paper, we use the two-subset division property [15] to estimate the alge-
braic degree, which has been proved to be the most optimal non-tight method
in terms of the accuracy in [2].

Division Property. At EUROCRYPT 2015, Todo [14] proposed a generalized
integral property called division property to search for longer integral distin-
guishers for block ciphers. Soon after this, Todo and Morii [15] extended this
method to more accurate variants: two-subset and three-subset bit-based divi-
sion property. At ASIACRYPT 2016, Xiang et al. [17] first adopted Mixed Integer
Linear Programming (MILP), which has been widely applied to cryptanalysis in
recent years [10,13], to further extend the application of division property.

Degree Evaluation Based on Division Property Using MILP. For an
iterative cipher, let sr = (srm−1, ..., s

r
0) denote the r-round internal state and

(a0m−1, ..., a
0
0) → · · · → (arm−1, ..., a

r
0) denote an r-round division trail. In order

to evaluate the algebraic degree of sri w.r.t. (s0i)’s, we introduce an MILP model
M to describe the division property propagation through the r-round encryp-
tion. Moreover, we fix (arm−1, ..., a

r
0) to ei and maximize the objective function

∑m−1
j=0 a0j . The solution of M returned by MILP solvers like Gurobi4 is regarded

as the estimated degree of sri . The procedure is illustrated in Algorithm 1.

2.2 Conditional Cube Attack

Assuming that f(x,v) is a Boolean function defined over the variables x =
(xm−1, ..., x0) and v = (vn−1, ..., v0). Given a set of variables I = {vi1 , vi2 , ...,
vi|I|} ⊂ {v0, ..., vn−1} (we call cube set), and denote the monomial vi1vi2 · · · vi|I|
by tI . Then f(x,v) can be rewritten as

f(x,v) = tI · ppS(I) + q(x,v),

where pS(I) called superpoly does not contain any variable in I, and q(x,v)
misses at least one variable from I. Moreover, the cube set I defines an |I|-
dimensional space CI (we call cube) of 2|I| vectors, in which we assign all the
possible combinations of 0/1 values to variables in I and fix remaining variables
in {v0, ..., vn−1} \ I to constant values.
4 Gurobi optimization, https://www.gurobi.com/.

https://www.gurobi.com/

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 93

Algorithm 1. Algebraic degree evaluation by division property
Require: The model M describing the division property propagations of r-round

cipher, and output bit index i.
Ensure: The algebraic degree d of the fixed output position.
1: M.obj ← maximize {a0

0 + · · ·+a0
m−1}; \∗ Setting the objective function of M. ∗\

2: M.con ← ar
i = 1;

3: M.con ← ∑
j a

r
j = 0 for all j ∈ {0, 1, ...,m − 1} \ {i}; \∗ Focusing on the i-th bit

of output, thus let others’ division property be 0. ∗\
4: M.optimize(); \∗ Solving model M by GUROBI optimization. ∗\
5: obj = M.getObjective();
6: d = obj.getV alue(); \∗ Getting the solution of model M. ∗\
7: return d

Theorem 1 ([4]). For any polynomial f(x,v) and cube set I, the Xor-sum of
f(x,v) over CI (we call cube sum) is just the superpoly pS(I), i.e.,

⊕

v∈CI

f(x,v) =
⊕

v∈CI

tI · pS(I) +
⊕

v∈CI

q(x,v) ≡ pS(I).

At EUROCRYPT 2017, Huang et al. [6] proposed a variant of cube attack [4]
called conditional cube attack. It aims to impose conditions on a series of key bits
or equations w.r.t. key bits (collectively called conditional equations) and then
detects the non-randomness of the cube sum to recover some key bits. There are
two phases in the conditional cube attack summarized as follows:

• Preprocessing phase. In this phase, the adversary needs to prepare a set of
conditional equations and a cube set such that the corresponding cube sum
is always 0 if the conditional equations hold and is unknown otherwise, i.e.
constructing the following distinguisher:

⊕

v∈CI

f(x,v) =

{
0, if the conditional equations hold,
unknown, otherwise.

• Online phase. In this phase, the key of the cipher is unknown but fixed,
the adversary can choose the value of public variables and has access to the
corresponding outputs. Therefore, the adversary can compute the cube sum
using the prepared conditional cube set and then judges whether the condi-
tional equations hold or not according to the property of the cube sum. As a
result, some key bits included in the conditional equations can be recovered.

2.3 KNOT-AEAD Family

KNOT [18] is a lightweight cipher suite designed by Zhang et al., which became
one of the 32 candidates in the second round of NIST LWC. It contains the
authenticated encryption scheme KNOT-AEAD and the hash function KNOT-
Hash. This paper focuses on the security of KNOT-AEAD, thus we just introduce
the KONT-AEAD here and omit the KNOT-Hash.

94 S. Chen et al.

KNOT Permutations. All the four members of KNOT-AEAD family are
designed on the underlying permutation KNOT-b, which is an SPN primitive
with size of b (b = 256, 384, 512). The b-bit internal state S can be divided into
four b

4 -bit words as S = S3‖S2‖S1‖S0 and described as the following 4× b
4 array:

⎡

⎢
⎢
⎣

S0[b4 − 1], · · · S0[1], S0[0]
S1[b4 − 1], · · · S1[1], S1[0]
S2[b4 − 1], · · · S2[1], S2[0]
S3[b4 − 1], · · · S3[1], S3[0]

⎤

⎥
⎥
⎦ . (1)

The round function of KNOT-b, denoted by pb, is composed of three steps:

1. The AddRoundConstantb transformation. A simple bitwise Xor of a d-bit
constant to the lowest d bits of the intermediate state, where d = 6 if b = 128
otherwise d = 7. We omit the detail to generate the constant set CONSTd,
which can be referred to [18].

2. The SubColumnb transformation. This is a nonlinear layer by parallel appli-
cations of b

4 same S-boxes of size 4 to the columns. The truth table of the
S-box is illustrated in Table 2.

3. The ShiftRowb transformation. The word S0 is not rotated and Si (i ∈
{1, 2, 3}) is left rotated over ci bits, where the rotation parameters (c1, c2, c3)
are (1, 8, 25), (1, 8, 55) and (1, 16, 25) for b = 256, 384 and 512 respectively.

Table 2. The truth table of KNOT-b S-box

Input 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Output 0x4 0x0 0xa 0x7 0xb 0xe 0x1 0xd 0x9 0xf 0x6 0x8 0x5 0x2 0xc 0x3

KNOT-AEAD Family. The KNOT-AEAD family is based on the MonkeyDu-
plex mode of permutation KNOT-b. Let KNOT-AEAD (k, b, r) be the member
that has the k-bit key and nonce, b-bit state and r-bit rate. Let K and N denote
the key and nonce of KNOT-AEAD (k, b, r), where K[i] and N [i] are the ith bits
of K and N respectively. The initial state of KNOT-AEAD (k, b, r) is loaded by
key, nonce and constant as

S3‖S2‖S1‖S0 =

{
(0128‖K‖N) ⊕ (1‖0383), if (k, n, b) = (128, 384, 192),
K‖N, otherwise.

(2)

in the initialization phase. Let Pi and Ci denote the ith block of plaintext and
ciphertext, then the r-bit ciphertext Ci is generated as

Ci =

{
Pi ⊕ (S1‖S0), if (k, b, r) = (128, 384, 192),
Pi ⊕ S0, otherwise.

(3)

in the encryption phase. Here we omit the processing of associated data and
finalization phases, because our attacks are launched under the scenario where
there is no associated data and only the first block of ciphertext C0 is utilized.

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 95

3 A Framework of Conditional Cube Attacks
for KNOT-AEAD

In conditional cube attacks, cube sums can be experimentally computed and
distinguished when the cube set is small. But when the cube set is too large
to practically compute the corresponding cube sums, the common approach to
distinguish cube sums is to estimate the algebraic degrees by trivial bound, i.e.
deg(G◦F) ≤ deg(G)·deg(F) where G and F are vectorial Boolean functions. The
difference of estimated degrees can be utilized to check whether the conditional
equations hold or not. Apparently, estimating degrees by trivial bound is quite
efficient but not accurate enough. In the worst situation, the estimated degrees
are nearly equal and both greatly far from the exact degrees. This will lead to an
invalid key-recovery attack since cube sums are always 0 and actually cannot be
distinguished at all. For example, the authors of [9] points out that Liu et al.’s
key-recovery attack in [8] indeed degraded to a distinguishing attack because
the exact algebraic degrees are always lower than 64 whether the conditional
equations hold or not.

In this section, we will introduce an improved framework for conditional
cube attacks, which exploits the linearization technique and division property.
Benefiting from the accuracy of division property for degree estimation, the esti-
mated degree is very close to the exact degree and the gap on degrees estimated
in two cases (conditional equations holds or not) is quite distinct. Therefore, we
can select a more optimal cube set to achieve key-recover attacks. Before intro-
ducing this framework, we first give some concepts frequently used in the later
content.

Definition 1 (CPV and FPV). Let g be an (m+n)-variable function over x
and v. Considering a set consisting of I public variables Vc := {vi1 , vi2 , ..., viI}
and a set Vf := {v0, v1, ..., vn−1} \ Vc, if g degenerates to a linear function
w.r.t. the variables in Vf after imposing condition on every variable in Vc to a
constant (0 or 1), then we call vc ∈ Vc a conditional public variable (CPV) and
call vf ∈ Vf a free public variable (FPV).

Example 1. Assuming that f is a function from F
4
2 × F

4
2 to F2 as

f(v,x) = v0v1v2x0x1 + v0v2x3 + v1v3x2 + v1v2 + v0v2v3 + x0x1 + v0x3,

where v and x are public and secret variables, respectively. Let v1 = 1 and
v2 = 0, then we have

f(v0, 1, 0, v3,x) = v3x2 + x0x1 + v0x3,

the algebraic degree of f on the public variable is decreased from three to one
when {v1, v2} are CPV and {v0, v3} are FPV. Similarly, choosing {v0, v1} as
CPV and setting (v0, v1) = (0, 1) can also linearize f .

Definition 2 (CRPV, CSV). In a conditional cube attack, assuming that
there is a state bit of a cipher can be represented as

f(v,x) = vi · L(x) + P (v) · Q(x), (4)

96 S. Chen et al.

where x and v are the secret variable and public variable respectively. Moreover,
P (v) is a linear function w.r.t. v but excluding vi, L(x) and Q(x) are linear
and nonlinear functions only w.r.t. x respectively. If we impose conditions on
some bits of x involved in L(x) such that L(x) = c where c is a constant in F2,
then we call vi a conditional equation related public variable (CRPV) and call
the involved bits of x in L(x) conditional secret variables (CSV).

We now introduce our framework of conditional cube attacks. Let E be an
iterative cipher and Ei (i ≥ 1) denote the i-round encryption of E. Denote s0

the initial state of E loaded with the public variable v and the secret variable x.
We use si (i > 0) to denote the i-round state, i.e. si = Ei(s0). Our framework to
construct a conditional cube attack on E is composed of four steps. In particular,
they are linearization of state bits, construction of conditional equations, degree
evaluation of output bits and construction of conditional cube sets.

Linearization of State Bits. In this step, we aim to linearize the state bits by
choosing appropriate public variables as CPV. On the one hand, it can extend
the number of attacked rounds. On the other hand, it will be more convenient for
us to construct conditional equations from these linearized state bits. In general,
the monomials and the algebraic degree of state bits will grow exponentially
with round increasing. Thus the round number of linearization cannot be too
large, otherwise it will be quite difficult to achieve linearization and construct
conditional cube sets using FPV. We can determine the number of linearized
rounds by analyzing the distribution of the algebraic degree and the ANF’s
structural property of the short-round state bits. Assuming that for the rf -round
state srf , the most bits are linear or there are quite fewer nonlinear monomials
in the nonlinear bits, then we are supposed to linearize srf .

In [7], Li et al. utilized linearization technique in conditional cube attacks
to eliminate all quadratic terms except a particular one in the first round. It is
different from our framework since our goal is to eliminate all nonlinear terms.

Construction of Conditional Equations. After linearization on the rf -round
state, all the bits of srf are linear functions over the FPV with the form as
Eq. (4). Assuming that the ith bit s

rf
i can be represented as

s
rf
i = vi0 · L(x) + P (v) · Q(x).

Now we impose conditions on the CSV to construct a conditional equation
L(x) = ci, where ci is a constant. Thus vi0 becomes the CRPV. Note that
the specific value of ci (0 or 1) can possibly change the diffusion of vi0 . This
might lead to a conditional distinguisher on the cube sum by choosing vi0 as one
of the cube variables. In the next step we will explain how to detect the effect
of ci on the diffusion of vi0 .

Degree Evaluation of Output Bits. Evaluating algebraic degrees of output
bits is an effective approach to detect the effect on diffusion of vi0 when fixing
ci to different values. In the previous works [6–8], the cube set including vi0 is
prepared in advance and the algebraic degrees of output bits on cube variables

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 97

are estimated by the trivial bound. Nevertheless, we here only focus on the max-
imal degree of monomials that contain vi0 and utilize the MILP-aided division
property to achieve the degree evaluation. Note that in the corresponding MILP
model, the division property of vi0 and CPV are 1 and 0, respectively. Moreover,
the objective is to maximize the sum of division property of FPV including vi0 .
Compared with the previous works, our method only focuses on the degree of
monomials that contain vi0 and can obtain a more accurate degree. This is of
great significance to construct cube sets with fewer variables and recover CSV.

Construction of Conditional Cube Sets. Let us focus on the kth bit of sr,
denoted by srk. Assuming that the estimated degree as described in the last step
is d0 for ci = 0 and d1 for ci = 1, then there are two following cases:

• There is a huge gap between d0 and d1. Without loss of generality, we suppose
that d0 is less than d1 and one of the d1-degree monomials is vi0vi1 · · · vid1 .
Now we can arbitrarily select d variables from the set {vi0 , vi1 , ..., vid1 } to
form a cube set I that must include vi0 . In theory, the following distinguisher
can be constructed as long as d ∈ (d0, d1],

⊕

v∈CI

srk(x,v) =

{
0, ifL(x) = c0 = 0,
unknown, otherwise,

where CI is the cube of I. Note that the estimated degree by division property
is an upper bound on the exact degree, thus the above cube sum is possibly
always 0 if d is equal or very close to d1. To ensure that the cube sum can be
distinguished as well as to decrease the complexity of computation, d = d0+1
will be the best choice.

• d0 is equal or very close to d1. In this case, the real degree is probably lower
than both d0 and d1, thus the cube sum will be always 0 even if we choose a
cube set of size d0 + 1.

As a result, if d0 is far from d1 then we can construct a cube set as illustrated in
the above first case and recover one bit of CSV with 2d computations. Otherwise
we need to go back to the construction of conditional equations step and
consider other bits of srf or go back to the degree evaluation of output bits
step and consider other bits of sr.

It should be emphasized that the above steps are general for conditional cube
attacks. When applied to a concrete cipher, we can explore some good properties
of the cipher to achieve a better conditional cube attack.

4 Conditional Cube Attacks on Full Members
of KNOT-AEAD Family

In this section, we will apply the proposed framework to all members of KNOT-
AEAD family. Note that KNOT-AEAD (k, 2k, k

2) (k ∈ {128, 192, 256}) follow
the same style to load the initial state and generate ciphertexts as illustrated

98 S. Chen et al.

in Eqs. (2) and (3), but KNOT-AEAD (128, 384, 192) does not. Therefore we
focus on KNOT-AEAD (128, 256, 64) and KNOT-AEAD (128, 384, 192) to
demonstrate our conditional cube attacks in detail and we only list the results
of KNOT-AEAD (192, 384, 96) and KNOT-AEAD (256, 512, 128).

Our attacks are launched at the initialization phase in nonce-respecting set-
ting under the scenario where there is no associated data. In particular, after rR-
round initialization, the r-bit intermediate state is Xored with the first block of
plaintext P0 to get the corresponding ciphertext block C0, which will be utilized
to compute cube sums. Our attack model is depicted in Fig. 1. All experiments
in this section are implemented on the following platform: Intel(R) Core(TM)
i7-8700 CPU @ 3.20 GHz, 8.00 GB RAM, 64-bit Windows 10 system.

Fig. 1. Attack model on KNOT-AEAD

4.1 Modeling the Division Property Propagation of Conditional
S-boxes

In our framework for conditional cube attacks, we exploit MILP-aided division
property to estimate degrees of output bits, thus we need to describe the prop-
agation of division property by MILP language.

We use Xiang et al.’s algorithm [17] to enumerate all valid division trails of
the KNOT S-box as shown in Table 6 of Appendix A. Then we adopt Sasaki
and Todo’s strategy [12] to select 12 inequalities from the H-representation of
the convex hull of division trails to describe the division property propagation
as illustrated in Eq. (12) of Appendix A, where (a3, a2, a1, a0) and (b3, b2, b1, b0)
denote the input and output division property, respectively.

In our attack model, there are many incomplete S-boxes in the first round,
some input bits of which are assigned to constants. We call these incomplete
S-boxes conditional S-boxes as the following definition.

Definition 3 (Conditional S-box). Given an S-box from F
n
2 to F

n
2 . A new S-

box from F
n−nc
2 to F

n
2 can be derived by imposing conditions on nc (0 < nc < n)

input bits of the original S-box, we call this derived S-box an nc-bit conditional
S-box.

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 99

Example 2. Consider the KNOT S-box, if we assign the middle two input bits
to 0 i.e. x1 = x2 = 0, then we can obtain a 2-bit conditional S-box: 0x0 S−→ 0x4,
0x1

S−→ 0x0, 0x8 S−→ 0x9 and 0x9
S−→ 0xf. Its ANF is

y0 = x3, y1 = x0x3, y2 = 1 + x0 + x3, y3 = x3. (5)

The 12 inequalities listed in Eq. (12) are still suitable but not accurate enough
to model conditional S-boxes. In order to obtain a more accurate MILP model to
estimate a more tight bound on the degree, we need to consider the influence of
constants on division trails of conditional S-boxes. Here we utilize the KNOT 2-
bit conditional S-box, as described in Example 2, to illustrate the re-description
on the division property propagation of conditional S-boxes.

Similarly, the division trails are enumerated by Xiang et al.’s algorithm as
listed in Table 6 of Appendix A from the derived ANF (see Eq. (5)). Then the
corresponding inequalities can be described as in Eq. (11) of Appendix A, where
(a3, a2, a1, a0) and (b3, b2, b1, b0) denote the input and output division property
respectively and a1 = a2 = 0 in this case.

From Table 6, we can see that the original S-box has two extra division trails
0x1 → 0x1 and 0x1 → 0x9 in the case of a2 = a1 = 0. However, both are invalid
division trails for this 2-bit conditional S-box. Moreover, the trail 0x9 → 0x1 is
also invalid. It indicates that the inequality system Lc is more accurate than
L to describe the 2-bit conditional S-box. Thus we should consider the actual
values of inputs and generate division trails using the new ANF when modeling
conditional S-boxes.

4.2 Key-Recovery Attack on KNOT-AEAD (128, 256, 64)

We reuse the notations used in Sect. 2.3. In addition, Sr denotes the r-round
intermediate state, especially S0 denotes the initial state. From Eq. (2), we know
S0
1‖S0

0 = N and S0
2‖S0

3 = K, which indicates that S1
0 and S1

3 are quadratic w.r.t.
nonce variables according to the ANF of KNOT S-box. Here we choose the higher
64 bits of nonce as CPV and set all of them to 0, then the first bit of S1

0 can be
linearized and expressed as

S1
0 [0] = K[0] + (N [0] + 1) · K[0] + K[64] + K[0] · K[64]

= N [0] · K[0] + K[0] · K[64] + K[64].

We next impose a condition on K[0] and construct the conditional equation
K[0] = c0, then N [0] becomes a CPV naturally. Note that c0 = 0 can eliminate
the existence of N [0] in S1

0 [0], thus we expect to construct a distinguisher on the
ciphertext C0 by detecting the maximal degree of monomials that contain N [0].
Because all the bits of S0

1 are fixed to 0 and K[0] = c0 is the conditional equation,
there are sixty-three 1-bit conditional S-boxes and only one 2-bit conditional S-
box. Thus when we utilize the MILP-aided division property to estimate degrees,
it is necessary to rebuild the description of division property propagation through
the SubColumn256 transformation in the first round. The whole procedure to

100 S. Chen et al.

model conditional S-boxes has been illustrated in Sect. 4.1 so we omit the details
both here and later. We use Algorithm 1 to estimate the algebraic degree of
C0[0] that denotes the first bit of C0, and list the estimated degrees from the
second round to the ninth round in Table 3. From this table we know that the

Table 3. The estimated degrees of monomials including N [0] in C0[0]

#Round 2 3 4 5 6 7 8 9

K[0] = 0 0 0 0 0 0 0 0 64

K[0] = 1 2 6 12 23 36 49 60 64

gap on the degree in different cases (K[0] = 0 holds or not) is pretty significant.
To be more specific, the output bit Cr

0 [0] (2 ≤ r ≤ 8) actually does not contain
the variable N [0] if K[0] = 0 holds. Therefore, we can construct a cube set
I0 = {N [0]} and obtain the following distinguisher:

⊕

N∈CI0

C8
0 [0](K,N) =

{
0, ifK[0] = 0,
unknown, otherwise,

(6)

where CI0 is the cube of I0 and C8
0 [0] is the first bit of C0 in the case where

the round number of initialization is reduced to 8. Note that there are only two
elements in CI0 , thus it is practical and very efficient to verify the correctness
of the distinguisher by experiments. We randomly choose 210 cubes by setting
the non-cube free variables to constants and then compute cube sums through
2nd to 9th rounds under 210 random keys. In other words, there are 220 cube
sums. Our experiment shows that the cube sums are always equal to 0 on Ci

0[0]
(2 ≤ i ≤ 8) and uncertain on C9

0 [0] when modifying K[0] to 0, and the cube sums
on Ci

0[0] (2 ≤ i ≤ 9) are always uncertain when modifying K[0] to 1. We repeat
this experiment ten times to calculate the average probability that K[0] = 0
does not hold but the cube sum is 0. The probability is summarized in Table 4.

Table 4. Probability that cube sum on C0[0] equals to 0

#Round 2 3 4 5 6 7 8 9

K[0] = 0 100% 100% 100% 100% 100% 100% 100% 84.02%

K[0] = 1 49.98% 75.01% 87.49% 93.79% 96.86% 98.43% 99.22% 83.23%

The experimental results on the correctness of the above disitinguisher (see
Eq. (6)) are actually consistent with our expectations. Thus we can recover the
key bit K[0] by an 8-round conditional cube attack. Note that the cube sum on
C8

0 [0] is 0 with a probability of 99.22% when K[0] equals to 1, which means that

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 101

the recovered K[0] being 0 (in fact it is 1) is false with a probability of 99.22%
by computing the cube sum only one time in the online phase. Assuming that we
repeat the computation T times, then the probability that there exists at least
one cube sum of being 1 is Pr0 = 1 − (99.22%)T when the value of K[0] is 1.
It is easy to calculate that Pr0 ≥ 99.99% if T ≥ 1177 and Pr0 is almost equal
to 100% if T ≥ 1500. Consequently, we can recover K[0] with success rate of
100% with time and data complexity of 1500 × 21 ≈ 211.55.

The ShiftRowsb transformation is translation-invariant in each row, which
leads to the fact that every bit in the same row has a similar algebraic structure.
Therefore, we can construct the conditional equation K[i] = 0 and cube set
Ii = {N [i]} to generate the following distinguisher:

⊕

N∈CIi

C8
0 [i](K,N) =

{
0, ifK[i] = 0,
unknown, otherwise,

where CIi is the corresponding cube and i ∈ {0, 1, ..., 63}. Hence, we can recovery
the 64 key bits (K[63], ...,K[0]) with time and data complexity of 64× 1500×
21 ≈ 217.55.

Additionally, we choose the lower 64 bits of the nonce as CPV and fix them
to constants as follows:

N [i] =

{
1, if i = 0,
0, if i ∈ {1, 2, ..., 63}.

After one round encryption, the first bit of S0 can be represented as

S1
0 [0] = N [64] · K[64] + K[0] + K[64] + K[0] · K[64].

Let K[64] = 0 be a conditional equation, then N [64] becomes the corresponding
CRPV. Thus by estimating the maximal algebraic degree of monomials including
N [64] in C0, we find that the first bit of C0 has a distinct gap on the estimated
degree, which is shown in Table 7 of Appendix B. We can construct a cube set
I64 = {N [64]} and get the following distinguisher:

⊕

N∈CI64

C8
0 [0](K,N) =

{
0, ifK[64] = 0,
unknown, otherwise,

where CI64 is the cube of I64. Moreover, on the basis of translation-invariant
property of ShiftRowb, we can construct the cube set Ii = {N [i]} and get the
distinguisher

⊕

N∈CIi

C8
0 [i − 64](K,N) =

{
0, ifK[i] = 0,
unknown, otherwise,

for any i ∈ {64, 65, ..., 127}. As a result, we can recover the 64 key bits
(K[127], ..., K[64]) with time and complexity of 64× T × 21 = T × 27, where T

102 S. Chen et al.

is the repetitive time of computation on cube sums. Similarly, our experiments
indicate that the success rate to recover correct key bit is nearly equal to 100%
when setting T = 1500. In conclusion, we can launch the 8-round conditional
cube attack on KNOT-AEAD (128, 256, 64) to recover the full 128 key bits,
and the total time complexity TC and data complexity DC are calculated as

TC = DC = 128 × 1500 × 21 ≈ 218.55.

The full key-recovery attack proposed in [16] using differential-linear method is 7
rounds longer than ours, but what we want to state is that the complexity of our
attack is negligible and it indeed takes no more than one second to implement
our full key-recovery attack on a PC.

In the same way, we can launch conditional cube attacks to achieve full key-
recovery on 8-round KNOT-AEAD (192, 384, 96) and 9-round KNOT-AEAD
(256, 512, 128). The details are omitted here and only the positions of the
ciphertext, conditional equations, cube sets and complexities are summarized
in Table 5, where C.E. is the abbreviation of conditional equation.

Table 5. Attacks on KNOT-AEAD (k, 2k, k
2
) (k ∈ {128, 192, 384})

Member #Round Ciphertext C.E. Cube set Index Time Data

(192,384,96) 8 C8
0 [(i + 55)mod 96] K[i] = 0 {N [i]} i ∈ [0, 95] 218.13 218.13

C8
0 [(i + 43)mod 96] K[i + 96] = 0

(256,512,128) 9 C9
0 [(i + 25)mod 128] K[i] = 0 {N [i]} i ∈ [0, 127] 218.55 218.55

C9
0 [(i + 24)mod 128] K[i + 128] = 0

4.3 Key-recovery Attacks on KNOT-AEAD (128, 384, 192)

For this version, we split the 128-bit nonce and key to four 32-bit parts as:
N = N3‖N2‖N1‖N0, K = K3‖K2‖K1‖K0. Thus according to Eq. (2), the initial
state can be represented as

⎡

⎢
⎢
⎣

N2 N1 N0

K1 K0 N3

032 K3 K2

1‖031 032 032

⎤

⎥
⎥
⎦ . (7)

Obviously, there are three types of S-boxes in the SubColumn384 transformation
of the first round corresponding to the three columns of Eq. (7). Next, we will
discuss the three columns separately.

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 103

The Right Column. We choose N3 as CPV and fix N3 to 032, thus after the
SubColumn384 transformation, the intermediate state is

S0[i] = N0[i] · K2[i] + K2[i],
S1[i] = K2[i],
S2[i] = N0[i] + K2[i] + 1,
S3[i] = 0,

for i ∈ {0, ..., 31}. Naturally, let K2[i] = 0 be a conditional equation, then N0[i]
becomes the corresponding CRPV. We estimate the maximal algebraic degree
of monomials including N0[i] in C0, and find that C0[i + 2] has a distinct gap
on the algebraic degree as shown in Table 8 of Appendix B. It indicates that the
estimated degree of C9

0 [i+2] is 0 if K3[i] = 0 holds, otherwise it is 96. Therefore,
we can use the cube set Ii = {N0[i]} to construct the 9-round distinguisher as
follows:

⊕

N∈CIi

C9
0 [i + 2](K,N) =

{
0, ifK3[i] = 0,
unknown, otherwise,

where CIi is the cube of Ii for i ∈ {0, ..., 31}. Our experiments indicate that when
repeating 1500 times, the key bit K3[i] can be recovered with a success rate of
100% by the conditional cube distinguisher. As a result, we can recover the 32-
bit key K3 for 9-round KNOT-AEAD (128, 384, 192), and the corresponding
time complexity TR

C9
and data complexity DR

C9
are

TR
C9

= DR
C9

= 32 × 1500 × 21 ≈ 216.55. (8)

Note that the 8-round key-recovery attack has the same time and data complex-
ity as that of the 9-round version, here we denote them by TR

C8
and DR

C8
.

The Left Column. The intermediate state after the SubColumn384 transfor-
mation is linear as follows

S0[i + 64] = N2[i] · K1[i],

S1[i + 64] = K1[i],
S2[i + 64] = N2[i] + K1[i] + 1,
S3[i + 64] = N2[i] · K1[i] + K1[i],

for i ∈ {0, 1, ..., 30}, and the case of i = 31 will be discussed later. Let K1[i] = 0
be the conditional equation and we estimate the maximal algebraic degree of
monomials including N2[i]. We find the output bit C0[i + 27] (i ∈ {0, ..., 30})
has a distinct gap on the estimated degree as shown in Table 9 of Appendix B.
The following 9-round distinguishers can be constructed using the cube set Ii =
{N2[i]}:

⊕

N∈CIi

C9
0 [i + 27](K,N) =

{
0, ifK1[i] = 0,
unknown, otherwise,

104 S. Chen et al.

where CIi is the cube of Ii for i ∈ {0, ..., 30}. Thus we can recover the 31-bit
key (K1[30], ...,K1[0]) for 9-round KNOT-AEAD (128, 384, 192), and the time
complexity TL

C9
and data complexity DL

C9
are calculated as

TL
C9

= DL
C9

= 31 × 1500 × 21 ≈ 216.50. (9)

In addition, the remaining key bit K1[31] needs to be guessed with a time com-
plexity of 2. The above distinguisher can be also used to launch an 8-round
key-recovery attack, which has the same time and data complexity as that of
9-round key-recovery attack. We denote them by TL

C8
and DL

C8
.

The Middle Column. The intermediate state after the SubColumn384 trans-
formation is also linear as follows

S0[i + 32] = N1[i] · (K0[i] +K3[i]) + K3[i],
S1[i + 32] = K0[i] + K3[i],
S2[i + 32] = N1[i] + K0[i] · K3[i] + K0[i] + K3[i] + 1,
S3[i + 32] = N1[i] · K0[i] + K0[i] + K3[i],

for i ∈ {0, ..., 31}. We choose K0[i] + K3[i] = 0 as the conditional equation and
do not consider the concrete values of K0[i] and K3[i], then we find the output
bit C0[i+34] has a distinct gap on the estimated degree as illustrated in Table 10
of Appendix B. Thus we can construct the 8-round distinguisher using cube set
Ii = {N1[i]} as

⊕

N∈CIi

C8
0 [i + 34](K,N) =

{
0, ifK0[i] + K3[i] = 0,
unknown, otherwise,

for i ∈ {0, ..., 31}. However, we can only recover one bit information of K0[i] and
K3[i]. As a result, we can recover 32 bits information by 8-round conditional
cube attack, the corresponding time complexity TM

C8
and data complexity DM

C8

are calculated as

TM
C8

= DM
C8

= 32 × 1500 × 21 ≈ 216.55. (10)

The remaining 32 bits information needs to be guessed with a time complexity
of 232.

Besides, if we consider the concrete values of K0[i] and K3[i], it is potential to
launch a 9-round key-recovery attack. To be specific, we find that the estimated
degree of monomials including N1[i] in C9

0 [i + 34] is 0 if K0[i] = K3[i] = 0
otherwise it is 128, which is listed in Table 10 of Appendix B. Thus we can
construct the following 9-round distinguisher using cube set Ii = {N1[i]}:

⊕

N∈CIi

C9
0 [i + 34](K,N) =

{
0, ifK0[i] = K3[i] = 0,
unknown, otherwise,

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 105

for i ∈ {0, ..., 31}. This is a weak distinguisher since there are three possible
cases for (K0[i],K3[i]): (1, 0), (0, 1) and (1, 1) when the condition does not hold.
If we obtain a cube sum of 1, then we need to guess (K0[i],K3[i]) with a time
complexity of 3. Thus in the worst situation, we need a time complexity of
332 ≈ 250.72 < 264 to recover the 64-bit key K0‖K3.

Combination of Three Columns. In summary, by combining the complexities
of three parts (see Eqs. (8), (9) and (10)), we can achieve the full key-recovery
attack on 8-round KNOT-AEAD (128, 384, 192), the time complexity TC8 is

TC8 = TR
C8

+ TL
C8

+ TM
C8

+ 2 × 232 ≈ 233,

and the data complexity DC8 is

DC8 = DR
C8

+ DL
C8

+ DM
C8

≈ 218.12.

For the full key-recovery attack on 9-round KNOT-AEAD (128, 384, 192), the
worst time complexity TC9 is

TC9 = TR
C9

+ TL
C9

+ 32 × 1500 × 21 + 21 × 332 ≈ 251.72,

where 21 × 332 is the time to guess the 65 key bits: (K1[31], K0[0], ...,K0[31],
K3[0], ...,K3[31]), and the data complexity DC9 is

DC9 = DR
C9

+ DL
C9

+ 32 × 1500 × 21 ≈ 218.12.

Note that a 17-round key-recovery attack is proposed by Wang et al. [16], but
we can recover the full key bits whereas Wang et al. recovered only one bit.
Moreover, our 8-round attacks are practical that can be efficiently launched.

5 Conclusion

In this paper, we evaluate the security of KNOT-AEAD family against cube-
like attacks. We combine the linearization technique and division property to
propose a framework for conditional cube attacks. In particular, we linearize
the state bit to a special form, from which it is convenient for us to construct
conditional equations. Moreover, we utilize division property to detect the gap on
the algebraic degree caused by conditional equations and further choose cube sets
to construct conditional cube distinguishers. We apply it to KNOT-AEAD family
and obtain the first practical full key-recovery on all round-reduced members.

In addition, our experiments show that the probability of cube sum being
0 in the situation where the conditional equation does not hold is larger than
99%. It is very odd but interesting, we guess the reason is that the high-degree
monomials in output bits are very sparse or output bits have a very special
algebraic structure, which is worthy of further discussion.

Acknowledgement. We would like to thank all the anonymous reviewers for their
helpful comments. This work was supported by the Research Foundation of Department
of Education of Hubei Province, China (No. D2020104) and the National Natural
Science Foundation of China (No. 61802119).

106 S. Chen et al.

A Division Trails and Linear Descriptions of the KNOT
S-box

Table 6. The division trails of KNOT S-box

The original S-box

Input Output Input Output

0x0 0x0 0x8 0x1, 0x2, 0x4, 0x8

0x1 0x1, 0x2, 0x4, 0x8 0x9 0x1, 0x2, 0xc

0x2 0x1, 0x2, 0x4, 0x8 0xa 0x1, 0x2, 0xc

0x3 0x1, 0x6, 0x8 0xb 0x1, 0x6, 0xc

0x4 0x1, 0x2, 0x4, 0x8 0xc 0x1, 0x2, 0xc

0x5 0x1, 0x6, 0xa, 0xc 0xd 0x7, 0x9, 0xa

0x6 0x2, 0x4, 0x9 0xe 0x2, 0x5, 0xc

0x7 0x7, 0xa, 0xd 0xf 0xf

The 2-bit conditional S-box

Input Output Input Output

0x0 0x0 0x8 0x1, 0x2, 0x4, 0x8

0x1 0x2, 0x4 0x9 0x2, 0x5, 0xc

Lc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 + a0 − b3 − b2 − b1 − b0 ≥ 0,
−a0 + b2 + b1 ≥ 0,
−a3 − a0 + b3 + b2 + 2b1 + b0 ≥ 0,
−b3 − b1 − b0 + 1 ≥ 0,
−b2 − b1 + 1 ≥ 0,
a3, a0, b3, b2, b1, b0 ∈ {0, 1}.

(11)

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a3 − 4a2 − 3a1 − 2a0 + b3 + 2b2 + b1 − b0 + 7 ≥ 0,
a3 + a2 + 2a1 + a0 − 2b3 − b2 − b1 − 2b0 + 1 ≥ 0,
a3 + a2 + a1 + 3a0 − b3 − 2b2 − 2b1 − 2b0 + 1 ≥ 0,
3a2 + a1 + a0 − b3 − 2b2 − 2b1 − 2b0 + 2 ≥ 0,
−2a3 − a2 − a1 + 2b3 + 2b2 + 4b1 + 3b0 ≥ 0,
−a3 − a2 − a0 + b3 + b2 + 2b1 + 2b0 ≥ 0,
−a2 − a0 + b3 + b2 − b1 + 2 ≥ 0,
a3 − a2 − a1 − b3 + b1 + b0 + 2 ≥ 0,
−a3 − 2a2 − a1 − 3a0 + 2b3 − b2 + 2b1 + b0 + 4 ≥ 0,
2a2 − a1 − a0 − b3 + b2 − 2b1 − b0 + 3 ≥ 0,
a3 + 3a2 − 2b3 − b2 − b1 − 2b0 + 2 ≥ 0,
a0 − b3 − b2 − 2b1 + b0 + 2 ≥ 0,
a3, a2, a1, a0, b3, b2, b1, b0 ∈ {0, 1}.

(12)

Conditional Cube Attacks on Full Members of KNOT-AEAD Family 107

B Some Tables about Estimated Algebraic Degrees

Table 7. The estimated degrees of monomials including N [64] in C0[0]

#Round 2 3 4 5 6 7 8 9

K[64] = 0 0 0 0 0 0 0 0 64

K[64] = 1 2 6 12 23 36 49 60 64

Table 8. The estimated degrees of monomials including N0[i] in C0[i + 2]

#Round 2 3 4 5 6 7 8 9 10

K2[i] = 0 0 0 0 0 0 0 0 0 96

K2[i] = 1 0 0 12 22 38 58 80 96 96

Table 9. The estimated degrees of monomials including N2[i] in C0[i + 27]

#Round 2 3 4 5 6 7 8 9 10

K1[i] = 0 0 0 0 0 0 0 0 0 128

K1[i] = 1 0 0 0 0 57 83 112 128 128

Table 10. The estimated degrees of monomials including N1[i] in C0[i + 34]

#Round 2 3 4 5 6 7 8 9 10

(K0[i],K3[i]) = (0,0) 0 0 0 0 0 0 0 0 128

(K0[i],K3[i]) = (1,0) 0 0 15 32 58 86 113 128 128

(K0[i],K3[i]) = (0,1) 0 0 15 32 58 86 113 128 128

(K0[i],K3[i]) = (1,1) 0 0 0 0 0 0 0 128 128

References

1. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential
distinguishers for lightweight ciphers. In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2021, Grenoble, France, 1–5 February 2021, pp.
176–181. IEEE (2021). https://doi.org/10.23919/DATE51398.2021.9474092

2. Chen, S., Xiang, Z., Zeng, X., Zhang, S.: On the relationships between different
methods for degree evaluation. IACR Trans. Symmetric Cryptol. 2021(1), 411–442
(2021). https://doi.org/10.46586/tosc.v2021.i1.411-442

3. Ding, T., Zhang, W., Zhou, C., Ji, F.: An automatic search tool for iterative trails
and its application to estimation of differentials and linear hulls. Cryptology ePrint
Archive, Report 2020/1152 (2020). https://ia.cr/2020/1152

4. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.46586/tosc.v2021.i1.411-442
https://ia.cr/2020/1152
https://doi.org/10.1007/978-3-642-01001-9_16

108 S. Chen et al.

5. Ghosh, S., Dunkelman, O.: Automatic search for bit-based division property. In:
Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 254–274.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88238-9 13

6. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 9

7. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ASCON.
IACR Trans. Symmetric Cryptol. 2017(1), 175–202 (2017). https://doi.org/10.
13154/tosc.v2017.i1.175-202

8. Liu, F., Isobe, T., Meier, W.: Cube-based cryptanalysis of subterranean-SAE.
IACR Trans. Symmetric Cryptol. 2019(4), 192–222 (2019). https://doi.org/10.
13154/tosc.v2019.i4.192-222

9. Liu, Y., Chen, S., Zhang, S., Xiang, Z., Zeng, X.: Conditional cube attacks on
Subterranean-SAE (In Chinese). J. Cryptol. Res. 9(1), 45 (2022). https://doi.org/
10.13868/j.cnki.jcr.000502

10. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

11. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
CCS 2002, pp. 98–107. ACM (2002). https://doi.org/10.1145/586110.586125

12. Sasaki, Yu., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5 11

13. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES (L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

14. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

15. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

16. Wang, S., Hou, S., Liu, M., Lin, D.: Differential-linear cryptanalysis of the
lightweight crytographic algorithm KNOT. In: Yu, Yu., Yung, M. (eds.) Inscrypt
2021. LNCS, vol. 13007, pp. 171–190. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88323-2 9

17. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

18. Zhang, W., et al.: KNOT: algorithm specifications and supporting document. sub-
mission to NIST (Round 2) (2019). https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.
pdf

https://doi.org/10.1007/978-3-030-88238-9_13
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://doi.org/10.13154/tosc.v2019.i4.192-222
https://doi.org/10.13154/tosc.v2019.i4.192-222
https://doi.org/10.13868/j.cnki.jcr.000502
https://doi.org/10.13868/j.cnki.jcr.000502
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-030-88323-2_9
https://doi.org/10.1007/978-3-030-88323-2_9
https://doi.org/10.1007/978-3-662-53887-6_24
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

Fast Fourier Orthogonalization
over NTRU Lattices

Shuo Sun1,2, Yongbin Zhou1,2,3(B), Rui Zhang1,2, Yang Tao1, Zehua Qiao1,2,
and Jingdian Ming1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{sunshuo,zhouyongbin,r-zhang,taoyang,qiaozehua,mingjingdian}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 School of Cyber Security and Engineering, Nanjing University of Science
and Technology, Nanjing, China

Abstract. FALCON is an efficient and compact lattice-based signature
scheme. It is also one of the round 3 finalists in the NIST PQC standard-
ization process. The core of FALCON is a trapdoor sampling algorithm,
which has found numerous applications in lattice-based cryptography. It
needs the fast Fourier orthogonalization algorithm to build an LDL tree.
But the LDL tree needs much RAM to store, which may limit the appli-
cation of FALCON on memory-constrained devices. On the other hand,
if building the LDL tree dynamically, the signature cost will almost dou-
ble.

In this work, we discover the LDL tree of FALCON has some symmet-
ric structure, and prove why this phenomenon occurs. With this prop-
erty, we can reduce the generation time and storage of the LDL tree by
almost half without affecting the efficiency of FALCON. We verify the
correctness and validity of our way in the implementations of FALCON.
In addition, the result applies to the cyclotomic field Q[x]/(xn−xn/2+1)
with n = 3 ·2κ. But we can not apply it to NTRU module lattices so far.

Keywords: fast Fourier orthogonalization · lattice-based
cryptography · NTRU · FALCON · trapdoor sampling

1 Introduction

Lattice-based cryptography has attracted much attention because it can con-
struct many advanced cryptographic objects, such as fully homomorphic encryp-
tion [12], and practical post-quantum secure public-key encryptions and signa-
tures. In the NIST post-quantum cryptography (PQC) standardization process,
a substantial proportion of candidates is based on lattices. In the round 3 final-
ists, there are two lattice-based digital signature schemes. FALCON [23] is one
of them. Among the finalists and alternate candidates of round 3, FALCON
has the least sum of public key and signature length, which means it’s the
most bandwidth-efficient signature. Its signature verification is very fast and
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 109–127, 2022.
https://doi.org/10.1007/978-3-031-15777-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_7

110 S. Sun et al.

RAM efficient. The trapdoor sampling algorithm of FALCON can be used as
a building block to construct (hierarchical) identity-based encryption schemes
[1,4,7,13,25], attribute-based encryption [3], ring signature [16], group signature
[20], public-key encryption with keyword search [2], and many other schemes.

FALCON is an instantiation of the generic framework proposed by Gentry,
Peikert, and Vaikuntanathan [13]. The framework can build provably secure
hash-and-sign lattice-based signature schemes. FALCON chooses NTRU lattices
to obtain the compact public key and signature [7,14,24]. To speed up the sig-
nature generation, it uses the fast Fourier orthogonalization algorithm and the
fast Fourier sampling algorithm [9] to reduce the signing time from O(n2) to
O(n log n).

The signature generation of FALCON involves two main steps: build an LDL
tree of the secret key (i.e. the short NTRU lattice basis) by the fast Fourier
orthogonalization algorithm, and then sample a short vector through the LDL
tree and the fast Fourier sampling algorithm. Because the LDL tree depends
only on the secret key, not the message to be signed, it can be built in advance
and be a part of the secret key. However, the signature generation algorithm
will require a lot of RAM to store the bulky LDL tree. For the ring degree of
NTRU lattices being 1024, the LDL tree needs 88 KB of memory. It may limit
the application of FALCON on memory-constrained devices. To reduce RAM
usage, FALCON offers the reference implementation regenerating the LDL tree
dynamically, and then only a path from tree root to the current leaf needs to
be present in RAM. But this will almost double the computational overhead
of the signature, thus reducing the competitiveness of FALCON. Consider the
implementations without AVX2 vector instructions at NIST security level 5. The
signature cost of Dilithium, another lattice-based signature of round 3 finalists,
is about 2.38 × 106 cycles [17]. For FALCON, the signature cost with the LDL
tree is 1.51×106 cycles. If building the LDL tree dynamically, the signature cost
is 2.69 × 106 cycles [21]. Therefore, it’s meaningful to reduce the storage of the
LDL tree without affecting the signature efficiency of FALCON.

1.1 Our Contributions

Let Q = Q[x]/(xn + 1), where n is a power-of-2. For any self-adjoint d(x) ∈ Q,
the fast Fourier orthogonalization algorithm makes full use of the field tower of Q
to construct the LDL tree of d(x) in a recursive way. The secret key of FALCON

is a short lattice basis Bf,g =
[
f g
F G

]
∈ Q2×2, which verifies the NTRU equation

fG − gF = q for a given positive integer q. To compute the LDL tree of the
secret key, FALCON first computes the LDL� decomposition of the Gram matrix
Gf,g = Bf,g × B�

f,g over Q:

Gf,g =
[

1 0
Ff�+Gg�

ff�+gg� 1

]
×

[
ff� + gg� 0

0 q2

ff�+gg�

]
×

[
1 fF �+gG�

ff�+gg�

0 1

]
,

Fast Fourier Orthogonalization over NTRU Lattices 111

then builds the LDL trees of ff� +gg� and q2

ff�+gg� by the fast Fourier orthogo-
nalization algorithm. Finally, it recursively obtains the LDL tree of the secret key,
where the polynomial Ff�+Gg�

ff�+gg� is the root node and the LDL trees of ff� + gg�

and q2

ff�+gg� are the left and right subtrees respectively.

Our observation is that the LDL trees of ff� + gg� and q2

ff�+gg� are very
similar such that the LDL tree of the secret key is symmetrical to some extent.
We give a toy example of the LDL tree in Fig. 1. Therefore, it’s possible to reduce
the LDL tree storage of the secret key without affecting the signature efficiency
of FALCON. We outline our contributions as follows:

– We discover that the LDL tree of the secret key in FALCON is symmetric to
some extent and prove why this phenomenon occurs. The core of our proof
is to show that for any self-adjoint a(x), 1

a(x) ∈ Q, the reciprocal relationship
between the diagonal elements always exists during their LDL tree construc-
tions.

– Not storing the LDL tree of q2

ff�+gg� hardly affects the computation com-
plexity of the fast Fourier sampling over NTRU lattices, so FALCON can
almost halve the storage and generation time of the LDL tree of the secret
key without affecting its signature efficiency.

– The result can be extended to the cyclotomic field Q[x]/(xn − xn/2 + 1) with
n = 3 · 2κ. Because, for any self-adjoint a(x), 1

a(x) ∈ Q[x]/(xn − xn/2 + 1),
there is also the reciprocal relationship between the diagonal elements during
their LDL tree constructions. However, we can not reduce the computation
and storage of the LDL tree of NTRU module lattices [5] so far. For any
self-adjoint a(x), b(x), 1

a(x)b(x) ∈ Q, we can not establish some invariable rela-
tionship between the diagonal elements during their LDL tree constructions.
Therefore, there does not seem to be an efficient method to construct the
LDL tree of 1

a(x)b(x) by the LDL trees of a(x) and b(x).
– We further verify the correctness and validity of our technique in the round

3 implementations of FALCON, and perform the benchmark on two different
architectures, Intel i7-4790 CPU and ARM Cortex M4.

1.2 Related Works

There are two ways to sample from Gaussian distributions over lattices. They
are derived from Babai’s nearest plane and Babai’s round-off algorithms. The
sampler [13] based on the nearest plane algorithm usually has compact param-
eters and needs the Gram-Schmidt orthogonalization (or the equivalent LDL�

decomposition). The sampler [19] based on the round-off algorithm can thor-
oughly avoid floating-point operations with an integral matrix Gram root [6],
and it is easy to parallelize. FALCON belongs to the former.

In the seminal work [13], for generic unstructured lattices, it takes O(n3)
time and O(n2) storage to compute the Gram-Schmidt orthogonalization of the
basis. For ideal lattices, Lyubashevsky and Prest reduced the time to O(n2)
through the isometry property of the basis [8]. In 2016, Ducas and Prest further

112 S. Sun et al.

reduced the time and storage to O(n log n) using the field tower structure of the
cyclotomic field [9].

There are some follow-up works of FALCON. ModFalcon extends NTRU
lattices of FALCON to NTRU module lattices to provide more modularity in
parameter selection [5]. MITAKA [10] and Zalcon [11] are also hash-and-sign
signature schemes. It’s easier to provide provably secure masking implementa-
tions of them. The idea of MITAKA comes from the hybrid Gaussian sampler
[22] that combines the Gaussian samplers in [13] and [19]. Zalcon is based on
the technique in [6] to avoid floating-point operations. However, both of their
parameters are worse than FALCON.

2 Preliminaries

2.1 Notations

Let Z,Q,R,C be the ring of integers and the fields of rationals, real and complex
numbers respectively. We denote by N

� the set of positive integers. For an integer
r > 0, we denote by Zr the ring of integers modulo r. We denote matrices in
bold uppercase (e.g. B) and vectors in bold lowercase (e.g. v). We use the row
convention for vectors.

2.2 Polynomial Rings and Fields

Let φ(x) be a monic irreducible polynomial of degree n ≥ 1 in Z[x]. We can
define the ring Z[x]/(φ(x)) and the field Q[x]/(φ(x)). For a positive integer q,
φ(x) may be factorable over Zq. We can define the ring Zq[x]/(φ(x)). For any
polynomial f(x), c(f) represents its coefficient vector. If f(x) ∈ Q[x]/(φ(x)), we
denote by C(f) the n×n matrix whose j-th row is the coefficient vector c(xj−1f
mod φ). For any f(x), g(x) ∈ Q[x]/(φ(x)), we have:

c(fg) = c(f)C(g), C(fg) = C(f)C(g).

We extend the definition to matrices: for B = (bij)ij in (Q[x]/(φ(x)))m×n,
C(B) = (C(bij))ij .

Most lattice-based cryptographic algorithms using polynomial rings to rep-
resent structured lattices rely on cyclotomic polynomials. The m-th cyclotomic
polynomial Φm(x) is defined as:

Φm(x) =
∏

k∈Z
×
m

(
x − e2iπk/m

)
.

Cyclotomic polynomials are in Z[x] and irreducible over Q. So Q[x]/(Φm(x))
are the fields for all m ≥ 1 and we call them cyclotomic fields. The degree n of
Φm(x) is ϕ(m), where ϕ denotes Euler’s function: ϕ(m) = |Z×

m|. In this paper,
we are mainly interested in two common types of cyclotomic polynomials: (1)

Fast Fourier Orthogonalization over NTRU Lattices 113

Φm(x) = xn + 1 with n = 2κ and m = 2n; (2) Φm(x) = xn − xn/2 + 1 with
n = 3 · 2κ and m = 3n.

Let f(x) =
∑n−1

i=0 fix
i and g(x) =

∑n−1
i=0 gix

i be arbitrary elements in
Q = Q[x]/(Φm(x)). We denote by f∗(x) the (Hermitian) adjoint of f(x), which
means that f∗(ζ) = f(ζ) for any root ζ of Φm(x), where · is the usual complex
conjugation over C. For a matrix B ∈ Qm×n, its adjoint B� is the component-
wise adjoint of the transpose of B.

The inner product over Q and its associated norm ‖ · ‖ are

〈f, g〉 =
1

ϕ(m)

∑
Φm(ζ)=0

f(ζ) · g(ζ), ‖f‖ =
√

〈f, f〉.

If Φm(x) = xn + 1 with n = 2κ, then

〈f, g〉 =
∑

0≤i<n

figi.

If Φm(x) = xn − xn/2 + 1 with n = 3 · 2κ, then

〈f, g〉 =
∑

0≤i<n/2

(figi + fi+n/2gi+n/2 +
1
2
figi+n/2 +

1
2
fi+n/2gi).

We extend the definition to vectors: for u = (ui)i and v = (vi)i in Qm, 〈u,v〉 =∑
i〈ui, vi〉.

2.3 The Field Norm

Definition 1. Let K be a number field and L be a Galois extension of K. We
denote by Gal(L/K) the Galois group of the field extension L/K. The field norm
NL/K : L → K is a map defined for any f ∈ L by the product of the Galois
conjugates of f :

NL/K(f) =
∏

τ∈Gal(L/K)

τ(f).

Equivalently, NL/K(f) can be defined as the determinant of the K-linear map
ψf : a ∈ L �−→ fa.

One can check that the field norm is a multiplicative morphism. When f ∈ L

and K is the unique largest proper subfield of L, we denote N(f) = NL/K(f).
For the cyclotomic field Q[x]/(xn + 1) with n = 2κ, we have the following

field tower:

Q ⊆ Q[x]/(x2 + 1) ⊆ ... ⊆ Q[x]/(xn/2 + 1) ⊆ Q[x]/(xn + 1).

Let L = Q[x]/(Φ2m) and K = Q[y]/(Φm) with m = 2κ, the field norm is partic-
ularly simple to express. Any f(x) ∈ L can be split into its coefficients of even
and odd degress:

f(x) = f0(x2) + xf1(x2)

114 S. Sun et al.

with f0(y), f1(y) ∈ K. Noting ψf : a ∈ L �−→ fa, we have

NL/K(f) = detK (ψf) = det
[

f0 f1
yf1 f0

]
= f2

0 − yf2
1 .

Similarly, for the cyclotomic field Q[x]/(xn − xn/2 + 1) with n = 3 · 2κ, we
have the following field tower:

Q ⊆ Q[x]/(x2 − x + 1) ⊆ Q[x]/(x6 − x3 + 1) ⊆ Q[x]/(x12 − x6 + 1) ⊆ ...

⊆ Q[x]/(xn/2 − xn/4 + 1) ⊆ Q[x]/(xn − xn/2 + 1).

For L = Q[x]/(Φ2m) and K = Q[y]/(Φm) with m = 32 · 2κ, the field norm NL/K

is also expressed by splitting the polynomial with respect to its even or odd
coefficients. Let L = Q[x]/(x6 −x3 +1) and K = Q[y]/(y2 −y +1), any f(x) ∈ L

can be split into three parts:

f(x) = f0(x3) + xf1(x3) + x2f2(x3)

with f0(y), f1(y), f2(y) ∈ K. Then wen have

NL/K(f) = det

⎡
⎣ f0 f1 f2

yf2 f0 f1
yf1 yf2 f0

⎤
⎦ = f3

0 + yf3
1 + y2f3

2 − 3yf0f1f2.

If L = Q[x]/(x2 − x + 1), for any f(x) = f0 + xf1 ∈ L, we have

NL/Q(f) = det
[

f0 f1
−f1 f0 + f1

]
= f2

0 + f0f1 + f2
1 .

2.4 The GSO and LDL� Decomposition

For a number field Q, a full-rank matrix B ∈ Qm×n can be uniquely decomposed
as follows:

B = L × B̃,

where L is lower triangular with 1’s on the diagonal, the rows b̃i’s of B̃ verify
〈bi,bj〉 = 0 for i
= j. It is called the Gram-Schmidt orthogonalization (or GSO).

The LDL� decomposition writes any full-rank Gram matrix as a product
LDL�, where L ∈ Qm×m is lower triangular with 1’s on the diagonal, and
D ∈ Qm×m is diagonal. If the Gram matrix G = BB�, then G = L · (B̃B̃�) ·L�

is the unique LDL� decomposition of G, which means the GSO of B is equivalent
to the LDL� decomposition of G.

The GSO is a more familiar concept in lattice-based cryptography, whereas
the use of LDL� decomposition is faster and therefore makes more sense from
an algorithmic point of view.

Fast Fourier Orthogonalization over NTRU Lattices 115

2.5 The Fast Fourier Orthogonalization and LDL Tree

For any non-zero b(x) ∈ Q[x]/(xn + 1) with n = 2κ, b(x), xb(x), ..., xn−1b(x)
generate the ideal lattice L(B) and the lattice basis B is C(b). Let d(x) =
b(x)b∗(x). If we want the GSO of C(b), we can compute the LDL� decompo-
sition of C(d) by the fast Fourier orthogonalization algorithm. According to
the field tower for Q[x]/(xn + 1), we consider the associated endomorphism
ψd : a ∈ Q[x]/(xn + 1) �−→ da and compute the LDL� decomposition of the
transformation matrix D over the smaller field Q[y]/(yn/2 + 1):

D =
[

d0 d1
yd1 d0

]
=

[
1 0
l10 1

]
×

[
d0 0
0 d′

0

]
×

[
1 l∗10
0 1

]
,

where d(x) = d0(x2) + xd1(x2). The matrix D is self-adjoint, which means
d�
0(y) = d0(y) and d�

1(y) = yd1(y). The matrix C(D) permutes the rows and
columns compared with C(d), which doesn’t change the generated lattice up to
an isometry [9]. Then we break the diagonal elements d0 and d′

0 into the matrices
over Q[z]/(zn/4+1) and recursively compute the LDL� decompositions. We con-
tinue the recursion until the diagonal elements are in Q. It’s worth noting that
the diagonal elements in Q[x]/(x2 + 1) are also in Q as they are self-adjoint. So
the recursion terminates with the diagonal elements in Q[x]/(x2 +1) in practice.
We need to store all polynomials l10’s computed in the LDL� decompositions
and the final diagonal elements in Q. They constitute an LDL tree, where the
values of internal nodes are the polynomials l10’s, and the values of leaf nodes
are the diagonal elements.

If the non-zero b(x) belongs to Q[x]/(xn − xn/2 + 1) with n = 3 · 2κ, we can
construct a similar LDL tree based on the field tower of Q[x]/(xn − xn/2 + 1).
The only difference is that we have to break the diagonal element into three
terms when it belongs to Q[x]/(x6 − x3 + 1), then compute the following LDL�

decomposition over the smaller field Q[y]/(y2 − y + 1):

D =

⎡
⎣ d0 d1 d2

yd2 d0 d1
yd1 yd2 d0

⎤
⎦ =

⎡
⎣ 1 0 0

l10 1 0
l20 l21 1

⎤
⎦ ×

⎡
⎣d0 0 0

0 d′
0 0

0 0 d′′
0

⎤
⎦ ×

⎡
⎣1 l∗10 l∗20

0 1 l∗21
0 0 1

⎤
⎦ ,

where d(x) = d0(x3) + xd1(x3) + x2d2(x3). The matrix D is also self-adjoint,
which means d�

0(y) = d0(y), d�
1(y) = yd2(y) and d�

2(y) = yd1(y). We need to
store three polynomials l10, l20 and l21. In practice, the recursion terminates
with the diagonal elements in Q[x]/(x2 − x + 1).

2.6 NTRU Lattices

Let Q = Q[x]/(Φm(x)), q ∈ N
�, and f, g ∈ Q. Let h = f−1g mod q. The NTRU

lattice associated to h and q is LNTRU = {(u, v) ∈ Q2 | uh − v = 0 mod q}.
There are two bases of the NTRU lattice:

Bh =
[
1 h
0 q

]
and Bf,g =

[
f g
F G

]
,

116 S. Sun et al.

where F,G ∈ Q are such that fG − gF = q. Typically, h will be a public key,
whereas f, g, F,G will be secret keys in the cryptographic schemes based on
NTRU lattices.

As described in Sect. 1.1, when building the LDL tree of Bf,g, we can first
compute the LDL� decomposition of the Gram matrix Gf,g = Bf,g ×B�

f,g, then
build the LDL trees of the diagonal elements by the fast Fourier orthogonaliza-
tion algorithm.

2.7 Discrete Gaussians

The n-dimensional Gaussian function ρσ,c(x) on R
n centered at c with the stan-

dard deviation σ is defined by ρσ,c(x) = exp
(
−‖x−c‖2

2σ2

)
. For any lattice Λ ⊂ R

n,
let ρσ,c(Λ) =

∑
x∈L ρσ,c(x). Then we can define the discrete Gaussian distribu-

tion DΛ,σ,c over Λ by DΛ,σ,c(x) = ρσ,c(x)
ρσ,c(Λ) .

3 Fast Fourier Orthogonalization over NTRU Lattices

In this section, we prove why we can reduce about half the computation and
storage of the LDL tree of the NTRU lattice basis when the field is Q[x]/(xn +1)
or Q[x]/(xn − xn/2 + 1). We also briefly explain why the idea does not apply to
NTRU module lattices [5] in Sect. 3.1.

3.1 The Cyclotomic Field Q[x]/(xn + 1)

Although the storage complexity of the LDL tree is O(n log n), in practice, it’s
still a little bulky. In addition, if we generate the LDL tree on the fly, the compu-
tational cost of the cryptographic schemes will increase significantly. For exam-
ple, in the FALCON signature [23], the LDL tree needs about 88 KB memory
for n = 1024 and building the tree on the fly almost doubles the signature gen-
eration time. Therefore reducing the storage of LDL trees is practical for the
Gaussian sampling over lattices.

When building the LDL tree of the NTRU lattice with the lattice basis Bf,g,
we have to compute the LDL trees of ff� + gg� and q2

ff�+gg� . In Theorem 1, we
prove that in the LDL trees of the self-adjoint polynomial a(x) ∈ Q[x]/(xn + 1)
and its multiplicative inverse b(x), the value of each leaf node of a(x) is the
reciprocal of that of some leaf node of b(x), and the polynomials of their internal
nodes differ by a negative sign. Because the difference between the LDL trees of

q2

ff�+gg� and 1
ff�+gg� is that the values of former leaf nodes increase by a factor

q2, there is no need to compute the LDL tree of q2

ff�+gg� if we have the LDL tree
of ff� + gg�. As a result, we can almost halve the generation time and storage
of the LDL tree of the NTRU lattice.

Theorem 1. Let a(x), b(x) ∈ Q[x]/(xn + 1) with n = 2κ, and a(x) = a�(x),
b(x) = b�(x). If a(x)b(x) = 1, then we can build the LDL tree of b(x) according
to the LDL tree of a(x).

Fast Fourier Orthogonalization over NTRU Lattices 117

Proof. Let L = Q[x]/(xn + 1) and K = Q[y]/(yn/2 + 1). We can split a(x)
and b(x) into their coefficients of even and odd degrees respectively: a(x) =
a0(x2) + xa1(x2), b(x) = b0(x2) + xb1(x2), where a0(y), a1(y), b0(y), b1(y) ∈ K.
As a�(x) = a(x) and b�(x) = b(x), we have a�

0(y) = a0(y), a�
1(y) = ya1(y),

b�
0(y) = b0(y) and b�

1(y) = yb1(y).
When we build the LDL tree of a(x) by the fast Fourier orthogonalization

algorithm, the first step is to write the transformation matrix Da over K with
the K-linear map ψa : c ∈ L �−→ ac, and compute its LDL� decomposition:

Da =
[
a0 a1

a�
1 a0

]
=

[
1 0
a�
1

a0
1

]
×

[
a0 0
0 NL/K(a)

a0

]
×

[
1 a1

a0

0 1

]
.

Then the algorithm recursively computes the LDL trees of the diagonal elements.
As NL/K(a) = a2

0 − a1a
�
1, the LDL� decomposition of Da only involves a0(y),

a1(y), and a�
1(y).

Let Db be the transformation matrix of b(x) over K. Our goal is to figure out
the relation between the LDL� decompositions of Da and Db, so it’s necessary
to express b0(y) and b1(y) with a0(y), a1(y), and a�

1. As a(x)b(x) = 1, we have

{
a0(y)b0(y) + ya1(y)b1(y) = 1
a0(y)b1(y) + a1(y)b0(y) = 0

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0(y) =
a0(y)

NL/K(a)(y)

b1(y) = − a1(y)
NL/K(a)(y)

.

Now we can replace b0(y), b1(y) and b�
1(y) in the LDL� decomposition of Db

with a0(y), a1(y) and a�
1(y):

Db =
[
b0 b1
b�
1 b0

]
=

[
1 0
b�
1

b0
1

]
×

[
b0 0
0 NL/K(b)

b0

]
×

[
1 b1

b0
0 1

]

=

[
1 0

−a�
1

a0
1

]
×

[
a0

NL/K(a)
0

0 1
a0

]
×

[
1 −a1

a0

0 1

]
.

In the LDL� decompositions of Da and Db, the polynomials to be stored differ
only by a negative sign, and the diagonal elements are pairwise reciprocals of each
other in reverse order. Because there always exists the reciprocal relationship
during the whole recursion, we can build the complete LDL tree of b(x) by
the LDL tree of a(x). The computational costs are negating the polynomials of
internal nodes and computing the reciprocals of the values of leaf nodes. �

We give an example of the LDL tree of the NTRU lattice in Fig. 1, where the
field is Q[x]/(x8 + 1) and the modulus is q. It’s clear from the figure that the
right subtree of the root node l0 can be obtained from its left subtree.

Next, we evaluate the impact of our technique on the fast Fourier sampling
over NTRU lattices while the field is Q[x]/(xn + 1). We can divide the time-
consuming operations in the fast Fourier sampling algorithm into two types. The

118 S. Sun et al.

Fig. 1. The LDL tree of the NTRU lattice with the modulus q over Q[x]/(x8 + 1)

first is visiting the leaf nodes of the LDL tree from right to left to sample from
the Gaussian distributions over the integers based on the values of leaf nodes.
The second is combining the sampled integers and the polynomials of internal
nodes to compute the polynomials as sampling centers.1 When we replace the
LDL tree of 1

ff�+gg� with that of ff�+gg�, there are three differences in the fast
Fourier sampling algorithm. The first two differences are that the algorithm has
to visit the leaf nodes of ff� + gg� from left to right and recompute the values
of leaf nodes before sampling from the Gaussian distributions over the integers.
The third is negating the polynomials of internal nodes before computing the
polynomials as sampling centers. These differences don’t need any precomputa-
tion and only take a little computational cost. Therefore, not storing the LDL
tree of 1

ff�+gg� hardly affects the computation complexity of the fast Fourier
sampling over NTRU lattices.

At the end of this section, we briefly discuss if this idea works on NTRU
module lattices [5]. The ModFalcon extends NTRU lattices to NTRU module
lattices. It has extra flexibility in the choice of parameters and allows an inter-
mediate security level. The field in [5] is also Q[x]/(xn + 1) with n = 2κ. Let
q be the modulus. For the parameter set chosen in [5], a natural extension of
our idea is constructing the LDL tree of q2

a(x)b(x) by the LDL trees of a(x) and
b(x), where a(x) and b(x) are independent random and self-adjoint polynomials.
According to the proof of Theorem 1, we have to analyze the first LDL� decompo-
sitions of a(x), b(x) and 1

a(x)b(x) in building their LDL trees over Q[x]/(xn + 1)
by the fast Fourier orthogonalization algorithm. Let a(x) = a0(x2) + xa1(x2)
and b(x) = b0(x2) + xb1(x2), there are the following LDL� decompositions over
Q[y]/(yn/2 + 1):

1 The two types of operations are performed in turn. The interested readers may refer
to Algorithm 11 in [23] for more details.

Fast Fourier Orthogonalization over NTRU Lattices 119

Da =
[
a0 a1

a�
1 a0

]
=

[
1 0
a�
1

a0
1

]
×

[
a0 0
0 NL/K(a)

a0

]
×

[
1 a1

a0

0 1

]
,

Db =
[
b0 b1
b�
1 b0

]
=

[
1 0
b�
1

b0
1

]
×

[
b0 0
0 NL/K(b)

b0

]
×

[
1 b1

b0
0 1

]
,

D 1
ab

=

[
1 0

− a0b�
1+a�

1b0
a0b0+ya1b1

1

]
×

[
a0b0+ya1b1

NL/K(ab) 0
0 1

a0b0+ya1b1

]
×

[
1 − a0b1+a1b0

a0b0+ya1b1

0 1

]
.

We hope the product of the diagonal elements a0, b0,
1

a0b0+ya1b1
equals 1, then

there may be an invariable relationship between the diagonal elements during
the LDL tree constructions. But the product equals 1 only if ya1b1 = 0. We
can not find an efficient method to construct the LDL tree of 1

a(x)b(x) by the
LDL trees of a(x) and b(x), although the LDL tree of 1

a(x)b(x) is determined by
a(x), b(x). Therefore, we can not reduce the computation and storage of the LDL
tree of NTRU module lattices so far.

3.2 The Cyclotomic Field Q[x]/(xn − xn/2 + 1)

The cyclotomic polynomial most commonly used in the cryptographic schemes
is xn + 1 with n = 2κ. For well-chosen q, the rings Zq[x]/(xn + 1) can support
the Number Theory Transform (NTT) to perform efficient multiplication and
division. In addition, the expansion factor of these rings controlling the growth
of polynomial products is the minimal of all rings [18]. One disadvantage of these
rings is that they are sparse, so one may not be able to select an appropriate
ring for the desired security level. In practice, obtaining 192-bit hardness requires
taking the dimension n somewhere between 512 and 1024. Since n is a power of
2, one has to take n = 1024 which usually reaches about 256-bit hardness and
incurs the significant expansion of parameters. One way to overcome this issue
is using the cyclotomic polynomial xn − xn/2 + 1 with n = 3 · 2κ. The rings
Zq[x]/(xn − xn/2 + 1) also support the efficient NTT for well-chosen q, and the
hardness with n = 768 is close to 192-bit.

When building the LDL tree of the NTRU lattice with the lattice basis Bf,g

over Q[x]/(xn−xn/2+1), we also need to compute the LDL trees of ff�+gg� and
q2

ff�+gg� . As described in Sect. 2.5, we will split the polynomial into two or three
terms according to the chosen subfield to construct the transformation matrix.
In Theorem 2, we prove that for a self-adjoint polynomial a(x) ∈ Q[x]/(xn −
xn/2 + 1) and its multiplicative inverse b(x), we can construct the LDL tree of
b(x) by that of a(x). The detailed proof is given in Appendix A.

Theorem 2. Let a(x), b(x) ∈ Q[x]/(xn − xn/2 + 1) with n = 3 · 2κ, and a(x) =
a�(x), b(x) = b�(x). If a(x)b(x) = 1, then we can build the LDL tree of b(x)
according to the LDL tree of a(x).

We give an example of the LDL tree of the NTRU lattice in Fig. 2, where the
field is Q[x]/(x12 − x6 + 1) and the modulus is q.

120 S. Sun et al.

Fig. 2. The LDL tree of the NTRU lattice with the modulus q over Q[x]/(x12−x6 +1)

Let’s evaluate the impact of our technique on the fast Fourier sampling over
NTRU lattices while the field is Q[x]/(xn − xn/2 + 1). Similar to the case of
Q[x]/(xn + 1), there are also three differences in the fast Fourier sampling algo-
rithm when we replace the LDL tree of 1

ff�+gg� with that of ff� +gg�. The first
two differences are that the algorithm has to visit the leaf nodes of ff� + gg�

from left to right and recompute the values of leaf nodes before sampling from
the Gaussian distributions over the integers. The third is recomputing the poly-
nomials of internal nodes before computing the polynomials as sampling cen-
ters. If the diagonal element is broken into two terms, the algorithm only needs
to negate the polynomial of the internal node. If it’s broken into three, the
algorithm needs to compute the adjoint of the polynomial and the polynomial
multiplication in addition. In practice the polynomials are all in fast Fourier
transformation (FFT) representation, it’s easy to compute their adjoints and
products. Due to the complex conjugate, the polynomial in FFT representation
over Q[x]/(xn − xn/2 + 1) has n/2 complex numbers, and one polynomial multi-
plication requires 2n floating-point multiplications. For n = 3 ·2κ, all polynomial
multiplications require 2n/3 floating-point multiplications while computing the
polynomials of internal nodes of 1

ff�+gg� by that of ff� + gg�. Therefore, build-
ing the LDL tree of 1

ff�+gg� by the LDL tree of ff� + gg� is more efficient than
building the LDL tree of 1

ff�+gg� by the fast Fourier sampling algorithm.
It’s worth noting that the proof of Theorem 2 works on n = 2κ13κ2 since the

degree of the extension in the field tower of Q[x]/(xn − xn/2 + 1) is either two
or three, which means the diagonal element is broken into two or three terms.
However, for the larger κ2, building the LDL tree of 1

ff�+gg� by the LDL tree of
ff� + gg� will require more polynomial multiplications. One may consider the
impact of our technique on the efficiency carefully for n = 2κ13κ2 .

Fast Fourier Orthogonalization over NTRU Lattices 121

4 Application to FALCON

In this section, we confirm the practicability of our technique through exper-
iments. We applied it to FALCON, a lattice-based digital signature of NIST
round 3 finalists. In the NIST round 1 version of FALCON, the package con-
tains an implementation over the cyclotomic field Q[x]/(xn − xn/2 + 1) with
n = 768. But it was considered way too technique and was therefore removed
from round 2. Our experiments were based on the implementations in round 3
and only considered the cyclotomic field Q[x]/(xn + 1) with n = 512 or 1024.
In the round 3 NIST package of FALCON, we chose the codes in the folder
/falcon-round3/Extra/c to experiment, as it’s convenient to test the correctness
and performance of the modified implementations. The new implementations
have been successfully tested on two different architectures, Intel i7-4790 CPU
and ARM Cortex M4. Therefore, the benchmark results consist of two parts.

4.1 Intel i7-4790

We performed the experiments on Ubuntu 18.04 with a single Intel Core i7-4790
CPU core at 3.60 GHz and 4 GB RAM. The benchmark doesn’t consider AVX2
acceleration and uses the C double type for all floating-point operations. We
compiled the codes with clang 6.0.0 and the default optimization flag -O3.

We first tested the impact of the technique on the LDL tree generation of
FALCON. The experimental results are shown in Table 1. In the implemen-
tations of FALCON, the LDL tree generation mainly consists of three steps:
transforming the NTRU basis Bf,g into its FFT representation FFT(Bf,g), com-
puting FFT(Gf,g) = FFT(Bf,g) × FFT(B�

f,g), and building the LDL tree with
FFT(Gf,g). Therefore, we presented the running times of the LDL tree gen-
eration with Bf,g. The generation times are reduced by about 28% while not
computing the LDL tree of 1

ff�+gg� . We also presented the running times of the
LDL tree generation with FFT(Gf,g), which excluded the first two steps. The
generation times are reduced by about 48% while not computing the LDL tree of

1
ff�+gg� . The implementations use the C double type for all floating-point oper-
ations, and the LDL tree over Q[x]/(xn + 1) in FALCON needs 64n(log n + 1)
bits of memory to store. While not keeping the LDL tree of 1

ff�+gg� , the LDL
tree of the NTRU lattice only needs 32n(log n + 2) bits of memory, which saves
about 45% memory for n = 512 or 1024.

We also confirmed that not storing the LDL tree of 1
ff�+gg� hardly affects

the performance of the fast Fourier sampling over NTRU lattices. The bench-
mark is shown in Table 2. As described in Sect. 3.1, while replacing the LDL
tree of 1

ff�+gg� with the LDL tree of ff� + gg�, the fast Fourier sampling algo-
rithm needs to recompute the values of leaf nodes and negate the polynomials
of internal nodes. The timing-consuming operation is recomputing the values
of leaf nodes. In FALCON’s implementations, the values of the LDL tree leaf
nodes are the reciprocals of the standard deviations σd of the Gaussian dis-
tributions over the integers, rather than the diagonal elements d obtained by

122 S. Sun et al.

Table 1. Generation time and storage of the LDL tree on Intel i7-4790

n = 512 n = 1024

FALCON Our work FALCON Our work

Generation time with
Bf,g (µs)

35.28 25.38 76.02 54.81

Generation time with
FFT(Gf,g) (µs)

20.12 10.28 43.40 22.53

Memory (KB) 40 22 88 48

the fast Fourier orthogonalization algorithm. Let σ be the standard deviation
of the Gaussian distribution over NTRU lattices, and we have σd = σ/

√
d. Let

q be the modulus of FALCON. The value stored in the LDL tree leaf node of
ff� + gg� is 1/σd =

√
d/σ, and the required value for the LDL tree of 1

ff�+gg�

is q/(σ
√

d). While precomputing 1/σ2, for the number field Q[x]/(xn + 1), our
technique introduces additional n floating-point multiplications and n floating-
point divisions to the signing process. As shown in Table 2, these floating-point
multiplications and divisions have little impact on the efficiency of signature
generation. However, building the LDL tree on the fly will increase the signature
generation time by 70%–80%.

Table 2. Signature generation time on Intel i7-4790

Degree Signature generation
without LDL tree (µs)

Signature generation
with LDL tree (µs)

Our work
(µs)

512 318.43 183.30 184.38

1024 649.21 363.68 365.17

4.2 ARM Cortex M4

It’s more important for memory-constrained devices to reduce RAM usage with-
out sacrificing the signature efficiency, so we used an STM32F4 development
board to benchmark the implementations. The board is the same as the one
used by the pqm4 project [15] and Pornin [21]. It provides an ARM Cortex M4
core that can run at up to 168 MHz, along with 192 kB of RAM (in two separate
chunks of 128 and 64 kB, respectively). The code for our benchmark utilizes
uint64 t to emulate the floating-point number and does not contain dedicated
inline assembly routines for the core floating-point operations. The implemen-
tation with the inline assembly routines is more than twice faster as the generic
implementation, but the inline assembly routines are compatible with our tech-
nique and have no effect on our comparisons.

Fast Fourier Orthogonalization over NTRU Lattices 123

Because both uint64 t and double need 64 bits memory, not keeping the LDL
tree of 1

ff�+gg� can also save about 45% memory for the code using uint64 t.
As shown in Table 3, if not keeping the LDL tree of 1

ff�+gg� , we can reduce the
LDL tree generation times with Bf,g by about 28% and reduce the LDL tree
generation times with FFT(Gf,g) by about 47%. From Table 4, we can conclude
that not keeping the LDL tree of 1

ff�+gg� hardly affects the signing time on the
ARM Cortex M4, and building the LDL tree on the fly will increase the signing
time by 117%–120%.

Table 3. Generation time and storage of the LDL tree on ARM Cortex M4

n = 512 n = 1024

FALCON Our work FALCON Our work

Generation time with
Bf,g (ms)

185.72 134.05 410.61 295.31

Generation time with
FFT(Gf,g) (ms)

111.29 59.62 246.47 131.17

Memory (KB) 40 22 88 48

Table 4. Signature generation time on ARM Cortex M4

Degree Signature generation
without LDL tree (ms)

Signature generation
with LDL tree (ms)

Our work
(ms)

512 470.24 216.97 219.04

1024 1028.07 466.86 471.00

5 Conclusion

In this paper, we utilized the symmetric structure of the LDL tree of FALCON
to reduce the generation time and storage of the LDL tree by almost half with-
out affecting the signature efficiency. We further confirmed the technique in the
implementations of FALCON. Therefore, we could mitigate the RAM require-
ment of the FALCON signature algorithm. The result is true not only for the
cyclotomic field Q[x]/(xn + 1) with n = 2κ, but also for the cyclotomic field
Q[x]/(xn − xn/2 + 1) with n = 3 · 2κ. Although we can not extend the result to
NTRU module lattices, the positive results of this paper show that we should
pay more attention to the influence of NTRU lattice structure when applying
the algorithm for ideal lattices to NTRU lattices.

124 S. Sun et al.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments. This work is supported in part by National Natural Science
Foundation of China (No. U1936209 and No. 62002353), China Postdoctoral Science
Foundation (No. 2021M701726) and Yunnan Provincial Major Science and Technology
Special Plan Projects (No. 202103AA080015).

A Proof of Theorem 2

Proof. If we build the LDL trees of a(x) and b(x) according to the field tower
described in Sect. 2.3, we split the diagonal element into three terms only when
it’s in Q[x]/(x6−x3+1), otherwise, we split it into its coefficients of even and odd
degrees. In fact, we can split the diagonal element into three terms at any time by
selecting an appropriate subfield, as long as n is a multiple of 3. When we break
the polynomial into two, the transformation matrix and its LDL� decomposition
have the same form as that in Theorem 1, so we only need to prove the case
that the polynomial is broken into three terms.

Let L = Q[x]/(xn − xn/2 + 1) and K = Q[y]/(yn/3 − yn/6 + 1). We write
a(x) and b(x) as a(x) = a0(x3) + xa1(x3) + x2a2(x3) and b(x) = b0(x3) +
xb1(x3) + x2b2(x3), where ai(y), bi(y) ∈ K for 0 ≤ i ≤ 2. As a�(x) = a(x)
and b�(x) = b(x), we have a�

0(y) = a0(y), a�
1(y) = ya2(y), a�

2(y) = ya1(y),
b�
0(y) = b0(y), b�

1(y) = yb2(y), and b�
2(y) = yb1(y).

Let Da be the transformantion matrix of the K-linear map ψa : c ∈ L �−→ ac.
We can compute its LDL� decomposition over K:

Da =

⎡
⎣a0 a1 a2

a�
1 a0 a1

a�
2 a�

1 a0

⎤
⎦ =

⎡
⎣ 1 0 0

l10a 1 0
l20a l21a 1

⎤
⎦ ×

⎡
⎢⎣

a0 0 0
0 a2

0−a1a�
1

a0
0

0 0 NL/K(a)

a2
0−a1a�

1

⎤
⎥⎦ ×

⎡
⎣1 l�10a l�20a

0 1 l�21a

0 0 1

⎤
⎦ ,

where l10a = a�
1

a0
, l20a = a�

2
a0

, and l21a = a0a�
1−a1a�

2
a2
0−a1a�

1
. As NL/K(a) = a3

0 + a1a1a
�
2 +

a�
1a

�
1a2 − 2a0a1a

�
1, the LDL� decomposition of Da only involves a0(y), a1(y),

a2(y), a�
1(y) and a�

2(y).
Let Db be the transformation matrix of b(x) over K. Before giving the LDL�

decomposition of Db, we need to express b0(y), b1(y) and b2(y) with a0(y), a1(y),
a2(y), a�

1(y) and a�
2(y). As a(x)b(x) = 1, we have

⎧⎪⎨
⎪⎩

a0(y)b0(y) + ya1(y)b2(y) + ya2(y)b1(y) = 1
a0(y)b1(y) + a1(y)b0(y) + ya2(y)b2(y) = 0
a0(y)b2(y) + a1(y)b1(y) + a2(y)b0(y) = 0

.

A tedious but easy Gaussian elimination then gives us the desired result:

b0(y) =
a0(y)a0(y) − a1(y)a�

1(y)
NL/K(a)(y)

, b1(y) =
a�
1(y)a2(y) − a0(y)a1(y)

NL/K(a)(y)
,

b2(y) =
a1(y)a1(y) − a0(y)a2(y)

NL/K(a)(y)
.

Fast Fourier Orthogonalization over NTRU Lattices 125

Now we can express the LDL� decomposition of Db with a0(y), a1(y), a2(y),
a�
1(y) and a�

2(y) to figure out the relation between the LDL� decompositions of
Da and Db:

Db =

⎡
⎣b0 b1 b2

b�
1 b0 b1

b�
2 b�

1 b0

⎤
⎦ =

⎡
⎣ 1 0 0

l10b 1 0
l20b l21b 1

⎤
⎦ ×

⎡
⎢⎣

b0 0 0
0 b20−b1b�

1
b0

0

0 0 NL/K(b)

b20−b1b�
1

⎤
⎥⎦ ×

⎡
⎣1 l�10b l�20b

0 1 l�21b

0 0 1

⎤
⎦

=

⎡
⎣ 1 0 0

l10b 1 0
l20b l21b 1

⎤
⎦ ×

⎡
⎢⎣

a2
0−a1a�

1
NL/K(a)

0 0
0 a0

a2
0−a1a�

1
0

0 0 1
a0

⎤
⎥⎦ ×

⎡
⎣1 l�10b l�20b

0 1 l�21b

0 0 1

⎤
⎦ ,

where l10b, l20b and l21b satisfy the following equalities:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

l10b(y) =
b�
1(y)

b0(y)
= −a0(y)a�

1(y) − a1(y)a�
2(y)

a0(y)a0(y) − a1(y)a�
1(y)

= −l21a(y)

l20b(y) =
b�
2(y)

b0(y)
=

y (a�
1(y)a2(y) − a0(y)a1(y))

a0(y)a0(y) − a1(y)a�
1(y)

= −yl�21a(y)

l21b(y) =
b0(y)b�

1(y) − b1(y)b�
2(y)

b0(y)b0(y) − b1(y)b�
1(y)

= −a�
1(y)

a0(y)
= −l10a(y)

.

In the LDL� decompositions of Da and Db, the diagonal elements are pairwise
reciprocals of each other in reverse order. For the polynomials to be stored, we
can calculate the polynomials l10b(y), l20b(y) and l21b(y) in the LDL� decompo-
sition of Db with the polynomials l10a(y) and l21a(y) in the LDL� decomposition
of Da. Because there always exists the reciprocal relationship during the whole
recursion, we can build the complete LDL tree of b(x) by the LDL tree of a(x).
The computational costs include computing the adjoints of the polynomials and
the polynomial multiplications, negating the polynomials of some internal nodes
and computing the reciprocals of the values of leaf nodes. �

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Behnia, R., Ozmen, M.O., Yavuz, A.A.: Lattice-based public key searchable encryp-
tion from experimental perspectives. IEEE Trans. Dependable Secur. Comput.
17(6), 1269–1282 (2020)

3. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

4. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-13190-5_27

126 S. Sun et al.

5. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module-NTRU lattices. In: Sun, H., Shieh, S., Gu,
G., Ateniese, G. (eds.) ASIA CCS, pp. 853–866. ACM (2020)

6. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice
gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12106, pp. 608–637. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45724-2 21

7. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

8. Lyubashevsky, V., Prest, T.: Quadratic time, linear space algorithms for Gram-
Schmidt orthogonalization and Gaussian sampling in structured lattices. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 789–
815. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 30

9. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Abramov, S.A., Zima,
E.V., Gao, X. (eds.) ISSAC, pp. 191–198. ACM (2016)

10. Espitau, T.: Mitaka: faster, simpler, parallelizable and maskable hash-and-sign
signatures on NTRU lattices. In: Emura, K., Wang, Y. (eds.) APKC@AsiaCCS, p.
1. ACM (2021)

11. Fouque, P.A., Gérard, F., Rossi, M., Yu, Y.: Zalcon: an alternative FPA-free
NTRU sampler for Falcon. Technical report, National Institute of Standards and
Technology (2021). https://csrc.nist.gov/events/2021/third-pqc-standardization-
conference

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

15. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
benchmarking NIST PQC on ARM cortex-m4. IACR Cryptol. ePrint Arch. 844
(2019)

16. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

17. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2020). https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-3-submissions

18. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

19. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

20. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) CCS, pp. 574–591. ACM (2018)

https://doi.org/10.1007/978-3-030-45724-2_21
https://doi.org/10.1007/978-3-030-45724-2_21
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-46800-5_30
https://csrc.nist.gov/events/2021/third-pqc-standardization-conference
https://csrc.nist.gov/events/2021/third-pqc-standardization-conference
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-14623-7_5

Fast Fourier Orthogonalization over NTRU Lattices 127

21. Pornin, T.: New efficient, constant-time implementations of falcon. IACR Cryptol.
ePrint Arch. 893 (2019)

22. Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, École
Normale Supérieure, Paris, France (2015)

23. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions

24. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

25. Zhao, R.K., McCarthy, S., Steinfeld, R., Sakzad, A., O’Neill, M.: Quantum-safe
HIBE: does it cost a latte? IACR Cryptol. ePrint Arch. 222 (2021)

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-20465-4_4

Secure Sketch and Fuzzy Extractor
with Imperfect Randomness:

An Information-Theoretic Study

Kaini Chen1,2, Peisong Shen1(B), Kewei Lv1,2, and Chi Chen1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{chenkaini,shenpeisong,lvkewei,chenchi}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Fuzzy extractor retrieves the same cryptographic key from
samples of one noisy source. Information-theoretically secure fuzzy
extractors are usually constructed by secure sketches and seeded extrac-
tors. However, current constructions rely heavily on perfect randomness,
which is difficult to obtain in the real world. In this paper, we ana-
lyze the security deficiency of current secure sketches and fuzzy extrac-
tors in the imperfect randomness setting where no perfect randomness
is available. Furthermore, we discuss the information-theoretic security
of several explicit fuzzy extractors based on two-source extractors in the
imperfect randomness setting.

Keywords: Fuzzy extractor · Secure sketch · Imperfect randomness ·
Information-theoretic security

1 Introduction

Uniformly distributed randomness is essential to the modern cryptography. It is
widely used by cryptographic primitives like encryption, signature and authen-
tication, etc. Randomness extractors are proposed to generate uniformly dis-
tributed strings from entropy sources in the real world. However, in reality many
high-entropy sources are noisy in nature, such as biometrics [10,19], physically
unclonable functions [16,22] and quantum information generated from quantum
devices [3]. Thus, two homologous samples of a noisy source are similar (or close
in certain distance metric) but not identical.

In order to extract stable cryptographic system usable randomness from these
noisy sources, Dodis et al. [12] proposed fuzzy extractor. A fuzzy extractor con-
sists of two phases: Generate (“Gen”) and Reproduce (“Rep”). Gen converts an
input sample w into a publicly accessible help data P and a nearly uniformly
distributed string R. Rep takes the help data P and a new data sample w′ as
inputs, if w′ is close to w (their distance is within an error threshold t), then the

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 128–147, 2022.
https://doi.org/10.1007/978-3-031-15777-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_8

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 129

string R is reproduced. The definition of fuzzy extractor in [12] is an information-
theoretic one, which requires the statistical distance between output key R and
a uniform distribution is negligible. Figure 1 illustrates the functionality of fuzzy
extractor.

Besides, Dodis et al. [12] proposed secure sketch. It is an information recon-
ciliation component. That is, secure sketch allows one to produce public infor-
mation from an enrolled sample of noisy sources and to recover the sample given
another sample that is close enough. A secure sketch consists of two phases:
Sketch (“SS”) and Recover (“Rec”). SS takes an enrolled sample w as input to
output a public sketch data ss. Rec reconstructs the original sample w from
sketch data ss and a new data sample w′ if w′ is close to w. Figure 2 illustrates
the functionality of secure sketch. The security of secure sketch poses a require-
ment on lower bound of the average min-entropy of noisy source conditioned on
public sketch data. Dodis et al. [12] also showed that secure sketch can be used
to construct fuzzy extractor, i.e. combining a secure sketch with a strong seeded
randomness extractor. This architecture is abbreviated as “sketch-then-extract”.

Fig. 1. Fuzzy Extractor, private ran-
domness x is explicitly marked with a
dotted arrow.

Fig. 2. Secure Sketch, private random-
ness x is explicitly marked with a dotted
arrow.

It’s worth noting that current fuzzy extractor constructions rely heavily on
perfect private randomness. Some kinds of secure sketches (e.g. code offset-based,
permutation-based, fuzzy vault-based) are randomized and need private random-
ness for sketch generation. For example, in the code-offset construction, SS pro-
cess randomly picks a codeword of an error-correcting code using randomness
from a private random source. Permutation-based secure sketch also relies on
private random source to select a random codeword and a permutation function
satisfying a certain requirement. Besides, for sketch-then-extract kind of fuzzy
extractors, a truly random seed is used by a seeded extractor to extract the key
from an enrolled sample. In short, perfect private randomness is vital to the
security of secure sketches and fuzzy extractors.

However, it’s difficult to find a perfect random source in reality. A less restric-
tive and more realistic assumption on the random source is that the source only
contains some entropy. We call it imperfect randomness setting. In the imperfect
randomness setting, secure sketches do not have access to a truly random source
any more, but are provided with a random source with high entropy, and fuzzy
extractors can no longer use a truly random seed to extract key from noisy sam-
ples. Unfortunately, most works of secure sketches and fuzzy extractors do not
consider this imperfect randomness setting. Therefore, two research questions
arise naturally:

130 K. Chen et al.

Q1: How the security of secure sketch and fuzzy extractor is affected by the
imperfect randomness?
Q2: How to build fuzzy extractor which remains secure in the imperfect ran-
domness setting?

Up to now, no research works are concerned with question 1. As for question
2, Cui et al. [9] proposed a reusable and robust computational fuzzy extractor
based on DDH/LPN assumptions in the CRS model. In their construction, a
deterministic syndrome-based secure sketch [12] is used and the imperfect ran-
domness is used as one input of a two-source extractor. However, whether or not
secure sketch and fuzzy extractor with imperfect randomness exists under the
information-theoretic setting, remains unclear.

1.1 Our Contributions

In this paper, we focus on solving above questions. Our contributions are sum-
marized as follows.
1. Security Analysis of Secure Sketches in the Imperfect Randomness
Setting
To solve question 1 mentioned above, we give a quantitative analysis of secu-
rity deficiencies for three types of randomized secure sketches, in the imperfect
randomness setting. In this work, the imperfectness of private entropy source is
measured by entropy deficiency, which equals to the difference between string
length and min-entropy of imperfect source.

For code offset-based secure sketch, the private randomness is only used to
select a random codeword. We prove that the extra entropy loss incurred by
imperfect randomness is just equal to the entropy deficiency of the imperfect
source.

For permutation-based secure sketch, the imperfect randomness is used to
select a random codeword and a permutation. We prove that the entropy loss
is related to the number of all permutations, the min-entropy of the random
source, and the minimum min-entropy of permutations satisfying the condition
that converts a noisy sample to a random codeword.

For fuzzy vault-based secure sketch, the imperfect randomness is used in
three steps: (1) selecting polynomial coefficients; (2) selecting x-coordinates of
chaff points; (3) selecting y-coordinates of chaff points, we give an upper bound
on the entropy loss of fuzzy vault-based secure sketches based on combinatorial
analysis.
2. Security Analysis of Fuzzy Extractors in the Imperfect Randomness
Setting
For fuzzy extractor of “sketch-then-extract” paradigm, the imperfect private ran-
domness is used both in its secure sketch and seeded extractor. Intuitively, the
security deficiency of fuzzy extractor is related to the extra entropy loss of secure
sketch and the entropy deficiency of random seed used in seeded extractor. We
give an upper bound on the statistical distance between output key and a uniform
distribution in the imperfect randomness setting. The analysis result verifies our
intuition.

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 131

3. Information-Theoretic Security Discussion of Fuzzy Extractors
based on Two-source Extractors in the Imperfect Randomness Set-
ting
For question 2, we simplify the fuzzy extractor construction in [9] then propose
an information-theoretically secure fuzzy extractor in the imperfect randomness
setting. We analyze the security of this simplified construction. The simplified
construction is similar to traditional “sketch-then-extract” construction, the only
difference is replacing the strong seeded extractor with a two-source extractor.
The imperfect private random source is used both in randomized secure sketch
and two-source extractor. Thus, we model this imperfect source as a (ρ, n, k)-
correlated source [9], which assumes a sample has some amount of residual
entropy conditioned on previous samples from the same source. We instantiate
our construction with explicit two-source extractors for different secure sketches,
and analyze the security in information-theoretic view. Table 1 demonstrates the
differences between our simplified construction and “sketch-then-extractor” con-
structions in [9,12].

Table 1. Comparison with traditional “sketch-then-extractor” fuzzy extractor con-
structions ([12] and [9]). “Security model” measures the security of construction in
information-theoretic(IT) view or computational view. For “Sketch construction”, “all”
represents all current secure sketches are suitable for construction. For “Metric space”,
“all” represents Hamming metric, setting difference metric and edit metric.

FE constructions Dodis et al. [12] Cui et al. [9] Our approach
Construction 5

Sketch construction All Only syndrome-based All

Extractor construction Seeded extractor Two-source extractor Two-source extractor

Metric space All Hamming All

Security model IT Computational IT

Imperfect randomness × � �

1.2 Related Work

Fuzzy Extractors and Secure Sketches
For fuzzy extractor of “sketch-then-extract” paradigm, the output key length of
extractor is determined by the residual entropy of noisy source conditioned on the
public sketch. As an information reconciliation component, secure sketch causes
certain amount of entropy loss. In order to overcome this limitation, Fuller et
al. [14] proposed computational fuzzy extractor of which the output key is com-
putationally indistinguishable from a uniform distribution. They found compu-
tational secure sketch has a lower bound of entropy loss similar to information-
theoretic ones. Thus they proposed a LWE-based computational fuzzy extractor
construction which does not use secure sketch any more, and their construction
derives much longer key than the information-theoretic ones.

132 K. Chen et al.

In recent years, researchers proposed several variants of fuzzy extractors with
enhanced security properties, e.g. reusability [4,5] and robustness [6]. A reusable
fuzzy extractor remains secure even if adversary knows multiple instances of help
data and key for the same noisy source. A robust fuzzy extractor can detect the
change of help data. Most of state-of-art reusable and robust fuzzy extractors
base their security on computational assumptions [1,24,25].

Cryptographic Primitives with Imperfect Randomness
There are substantial results for cryptographic primitives with imperfect ran-
domness.

Dodis and Yu [13] considered the security of several cryptographic primitives
on imperfect random secret keys, i.e. keys are not uniformly distributed. They
classify cryptographic primitives into “unpredictability applications” and “indis-
tinguishability applications” according to the perspective of security definitions.
They measure security losses of cryptographic primitives on imperfect random
secret keys by entropy deficiency (the difference between length of random source
and the amount of entropy it has) in terms of min-entropy and collision entropy.
However their result still requires perfect private randomness, that is, although
the key is imperfect, the private randomness is still perfect. Later, Yao and Li [26]
extended Dodis and Yu’s work to the general Rényi entropy and computational
entropy setting. Backes et al. [2] considered the setting where key and private
random source are both imperfect. They relax cryptographic indistinguishability
to (ε, γ)-differential indistinguishability which means one distinguisher’s proba-
bility of a certain output (Pr[D = b]) is within ε times of the probability of
another output plus γ (e.g. Pr[D = 1 − b] ≤ 2ε · Pr[D = b] + γ).

In general, no previous work consider secure sketch and fuzzy extractor with
imperfect private randomness, except for [9]. Worse still, the analysis technique
in [13] is not applicable to secure sketch and fuzzy extractor. The reason is
two-fold: (1) Although secure sketch can be modeled as a unpredictability appli-
cation as in [13], Dodis and Yu’s methods are mainly designed for imperfect
keys, not for imperfect private randomness used in cryptographic primitives. (2)
fuzzy extractor can be regarded as an indistinguishability application in view
of [13]. But, the security definition of fuzzy extractor does not have phase of
query to apply “double-run trick” method proposed by [13]. Besides, differential
indistinguishability [2] is not suitable for the security of fuzzy extractor.

1.3 Paper Organization

The rest of this paper is organized as follows. We introduce some basic notations,
definitions and primitives in Sect. 2. We present security analysis results of secure
sketches in the imperfect randomness setting in Sect. 3. We present security
analysis results of fuzzy extractors in the imperfect randomness setting in Sect. 4.
We present our upgraded “sketch-then-extract” fuzzy extractor with two-source
extractor in the imperfect randomness setting in Sect. 5. We conclude our work
in Sect. 6.

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 133

2 Preliminaries

In this paper, we use uppercase letters to denote random variables as well as
their distributions, use lowercase letters to denote samples. For example, X is the
random variable, x ←r X denotes sampling x from X randomly, indicating that
X is a perfect random source that is uniformly distributed; otherwise, x ← X
denotes sampling x according to distribution X. We use U� to denote uniformly
distributed string on {0, 1}�. For any integer t > 0, [t] denotes the set {1, · · · , t}.
Unless explicitly states, all logarithms below are base 2.

Entropy and Source
The “min-entropy” of a random variable X is H∞(X) := − log(maxx Pr[X =
x]). The “average min-entropy” of a random variable X conditioned on Y is
H̃∞(X|Y) := − log(Ey←Y [2−H∞(X|Y =y)]). The “max-entropy” of a random vari-
able X is Hmax(X) := − log(minx Pr[X = x]). The “entropy deficiency” of a
random variable X is d := log |X| − H∞(X). A “(ρ, n, k)-correlated source” is a
random source X over a set of size 2n, that satisfies H̃∞(Xi|{Xj}j∈[i−1]) ≥ k
when Xi ← X and i ∈ [ρ]. If ρ = 1, (ρ, n, k)-correlated source can abbreviation
to “(n, k)-source” with min-entropy k.

Metric Space
A metric space is a set M with a distance function dis: M×M → R+ = [0,∞).
We mainly consider three different metric spaces:

1. Hamming metric. M = Fn for some alphabet F , and dis(w,w′) is the number
of positions in which the strings w and w′ differ.

2. Set difference metric. Here M consists of all subsets of a universe U . For two
sets w and w′, their symmetric difference wΔw′ = {x ∈ w ∪ w′|x /∈ w ∩ w′}.
The set difference distance between two sets w and w′ is |wΔw′|.

3. Edit metric. Here M = F∗, the distance between w and w′ is the smallest
number of character insertions and deletions needed to transform w into w′.

Statistic Distance
The statistic distance between two probability distributions X and Y is defined
as SD(X,Y) := 1

2

∑
v |Pr[X = v] − Pr[Y = v]|.

Error-Correcting Codes
An (M,K, t)-code C is an error-correcting code which contains K elements over
M, with minimum distance d ≥ 2t + 1, and can correct up to t errors. If M is
Hamming metric over Fn, error-correcting code C is a k = log|F| K dimension
subspace of M denoted as [n, k, d]F -code.

2.1 Secure Sketch

Definition 1 (Secure Sketch [12]). Let M be a metric space with distance
function dis(x, y). An (M,m, m̃, t)-secure sketch is a pair of randomized proce-
dures, “sketch” (SS) and “recover” (Rec):

134 K. Chen et al.

1. The sketching procedure SS: on input w ∈ M returns a sketch ss in output
space SS that ss ∈ SS.

2. The recovery procedure Rec: takes element w′ ∈ M and a sketch ss ∈ SS,
outputs the recovered w′′ ∈ M.

It has the following properties:

1. Correctness: if dis(w,w′) ≤ t, then Rec(w′,SS(w)) = w. If dis(w,w′) > t,
there is no guarantee provided about the output of Rec.

2. Security: for any distribution W over M with min-entropy m, the value of W
can be recovered by an adversary who observes ss with probability no greater
than 2−m̃. That is, H̃∞(W |SS(W)) ≥ m̃.

3. Efficiency: SS and Rec run in expected polynomial time.

Usually, secure sketch employs an error-correcting code to overcome noises
of different samples from one source, and recover the original sample with the
help of public sketch data SS. Its security is defined in an information-theoretic
fashion. In secure sketch scenario, we call H̃∞(W |SS(W)) the residual entropy
of W over a sketch. The quantity L = H∞(W) − H̃∞(W |SS(W)) = m − m̃ is
called the entropy loss and indicates the amount of information that a sketch
leaks about the input.

2.2 Fuzzy Extractor

Definition 2 (Fuzzy Extractor [12]). An (M,m, �, t, ε)-fuzzy extractor is a
pair of randomized procedures, “generate” (Gen) and “reproduce” (Rep).

1. The generation procedure Gen: on input w ∈ M outputs an extracted string
R ∈ {0, 1}� and a helper data P within its space that P ∈ P.

2. The reproduction procedure Rep: takes an element w′ ∈ M and a help data
P ∈ P as inputs, outputs a reproduced string R′.

It has the following properties:

1. Correctness: if dis(w,w′) ≤ t and R,P were generated by (R,P) ← Gen(w),
then Rep(w′, P) = R. If dis(w,w′) > t, there is no guarantee provided about
the output of Rep.

2. Security: for any distribution W on M of min-entropy m (H∞(W) ≥ m), the
string R is nearly uniform even for those who observe P : (R,P) ← Gen(w),
then SD((R,P), (U�, P)) ≤ ε.

3. Efficiency: Gen and Rep run in expected polynomial time.

Fuzzy extractor extracts a random string R from a noisy source W . An
information-theoretic fuzzy extractor guarantees the statistic distance between
the output string R and U� is negligible.

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 135

2.3 Randomness Extractor

Randomness extractors are widely used in cryptography. Seeded extractor dis-
tills nearly uniform string R from a random source with the help of a short
uniform seed. Two-source extractor replaces truly random seed by another inde-
pendent random source. Here we recall some definitions and lemmas of random-
ness extractors.

Definition 3 (Strong Seeded EXT [20]). A function Ext: {0, 1}n×{0, 1}d →
{0, 1}� is an (n, k, �, ε)-strong seed extractor if for any source X of min-entropy
k and uniformly distributed seed Ud, SD(Ext(X,Ud), Ud), (U�, Ud)) ≤ ε.

Definition 4 (Average-case Strong Seeded EXT [18]). A function Ext:
{0, 1}n × {0, 1}d → {0, 1}� is an average-case (n, k, �, ε)-strong seed extractor
if for any source X with H̃∞(X|I) ≥ k and uniformly distributed seed Ud,
SD(Ext(X,Ud), Ud, I), (U�, Ud, I)) ≤ ε, where I is an auxiliary variable.

Lemma 1 ([12]). For any δ > 0, if Ext is an (n, k− log(1/δ), �, ε)-strong seeded
extractor, then Ext is also an average-case (n, k, �, ε+δ)-strong seeded extractor.

Definition 5 (Strong Two-source EXT [18]). A function TExt: {0, 1}n1 ×
{0, 1}n2 → {0, 1}� is an ((n1, k1), (n2, k2), ε)-strong two-source extrac-
tor for min-entropy k1, k2 and error ε if for every independent (n1, k1)-
source X and (n2, k2)-source Y , SD((TExt(X,Y),X), (U�,X)) ≤ ε and
SD((TExt(X,Y), Y), (U�, Y)) ≤ ε.

Definition 6 (Average-case Strong Two-source EXT [18]). A function
TExt: {0, 1}n1 × {0, 1}n2 → {0, 1}� is an average-case ((n1, k1), (n2, k2), ε)-
strong two-source extractor for min-entropy k1, k2 and error ε if for
every independent source X with H̃∞(X|I) ≥ k1 and (n2, k2)-source Y ,
SD((TExt(X,Y), Y, I), (U�, Y, I)) ≤ ε, where I is an auxiliary variable.

Lemma 2 ([9]). For any δ > 0, if TExt is an ((n1, k1 − log(1/δ)), (n2, k2), ε)-
strong two-source extractor, then TExt is also an average-case ((n1, k1), (n2, k2),
ε + δ)-strong two-source extractor.

The following lemma indicates that randomness extractor with a non-uniform
seed leads to expansion of statistic distance.

Lemma 3 (Strong Seeded Extractor with Imperfect Seed [7]). Let Ext:
{0, 1}n × {0, 1}d → {0, 1}� be an (n, k, �, ε)-strong seeded extractor. Let X be an
(n, k)-source and Y be a (d, d − λ)-source, then SD((Ext(X,Y), Y), (U�, Y)) ≤
2λε.

A series of works are related to explicit (efficient) constructions of randomness
extractors and two-source extractors [8,18,23]. Leftover hash lemma [15] shows
that universal hash function is a good strong seeded extractor, and it is used in
“sketch-then-extract” fuzzy extractor [12].

136 K. Chen et al.

3 Security Analysis of Existing Sketch Sketches
with Imperfect Randomness

In this section, we will analyze the security deficiency (residual entropy loss
for secure sketch) of existing secure sketches where only imperfect private ran-
domness is available. Quantitative security deficiency results are given on three
randomized secure sketches in the imperfect randomness setting: code offset-
based, permutation-based, fuzzy vault-based. Although these secure sketch con-
structions [12,17] are mainly concerned with Hamming metric and set difference
metric, one can use the technique called “metric space embedding” [12] to convert
secure sketches in Hamming metric or set difference metric to secure sketches in
edit distance metric.

3.1 Code Offset-Based Construction

Construction 1 (Code Offset-Based Sketch [12]). A code offset-based
sketch is a secure sketch <SS,Rec> where
Sketch Phase: SS(w) = w − c = ss. SS outputs the shift ss between input
w ∈ M and a randomly chosen codeword c ∈ C, with C is an (M,K, t)-code.
Recover Phase: Rec(w) = Dec(w′ − ss) + ss. Rec recover w on inputs w′ and
sketch ss, with Dec the decoding procedure of C that output c′ = Dec(w′ − ss)
and recover by compute w = c′ + ss.

Code offset-based secure sketch is suitable for Hamming metric. The error
correcting code C is an [n, k, 2t+1]F -code with n = log|F| |M| and k = log|F| K.
SS uses private randomness to select a random codeword c from C (this is equiva-
lent to choosing a random x ← Fk and compute encoding function C(x)). Dodis
et al. [12] showed that entropy loss of code offset-based sketch with [n, k, 2t+1]F -
code is at most (n − k) log |F|. In the imperfect randomness setting, we assume
random codeword is sampled from an imperfect random source X over Fk with
H̃∞(X) = k log(|F|) − d, where d is entropy deficiency. Thus, we find that the
extra entropy loss of code offset-based secure sketch in the imperfect random-
ness setting is equal to the entropy deficiency of the imperfect source. Theorem
1 demonstrates our result.

Theorem 1. An (M,m, m̃, t) code offset-based secure sketch loses at most d
bits of residual entropy if it takes randomness from an imperfect source with
entropy deficiency d.

Proof. Briefly, the only private randomness in code offset-based secure sketch
is the chosen of codeword c. We lose at most d bits randomness when choosing
codeword from an imperfect random source. Then this entropy loss will trans-
mit to the final residual entropy of secure sketch. The full proof is given in
Appendix A.1.

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 137

3.2 Permutation-Based Secure Sketch

Construction 2 (Permutation-based Sketch [12]). A permutation-based
sketch is a secure sketch <SS,Rec> where

Sketch Phase: SS outputs the specification of a transitive isometric permutation
πP in M such that πP [w] = c ∈ C, with C is an (M,K, t)-code.

Recover Phase: Rec outputs (π−1
P ◦ Dec ◦ πP)[w′] on inputs w′ and sketch πP ,

with Dec the decoding procedure of C that maps πP [w′] to c if dis(w,w′) ≤ t.
Recover w by compute w = π−1

P [c].

A family of permutations Π = {π : M → M} is a transitive group if for any
two elements a, b ∈ M there exists a permutation π ∈ Π such that π[a] = b.
A permutation is isometric if for any two elements a, b ∈ M that dis(a, b) =
dis(π[a], π[b]).

Permutation-based secure sketch is suitable for both Hamming metric and
set difference metric. We use a similar technique raised by Dodis et al. [12] to
give the security analysis of permutation-based secure sketch in the imperfect
randomness setting by modifying some definitions. Their analysis is conducted by
adding entropy brought by the random selected codeword and the random chosen
permutation, and reducing entropy by publishing the sketch. Simply, they defined
Γ to be the number of elements π ∈ Π such that minw,c |{π|π(w) = c}| ≥ Γ.
That is, for each w and c, there are at least Γ choices for isometric permutation
π that satisfies π(w) = c.

We modify the definition of Γ to makes it accommodated to the imperfect
randomness setting where distribution of codeword c ← C is not uniform. We use
Γw,c to denote the distribution of transitive isometric permutation π ←X Π with
condition π(w) = c. We use minw,c(H∞(Γw,c)) to denote the minimum value of
Γw,c’s min-entropy depending on w and c. Then in Theorem 2, we present our
result of the entropy loss for permutation-based secure sketch in the imperfect
randomness setting.

Theorem 2. Assume a permutation-based secure sketch on input W is con-
structed with an error-correcting code C. Then, entropy loss of this secure sketch
is at most log |Π| − H∞(X) − minw,c(H∞(Γw,c)) if it takes randomness from an
imperfect random source X.

Proof. We compute the entropy loss of permutation-based secure sketch by ana-
lyzing how many bits of entropy it adds through random operation in sketch
phase and it loses when public the sketch. Permutation-based secure sketch pub-
lic π ∈ Π after SS phase and loses at most log |Π| bits of entropy. For every chosen
codeword c, the chosen operation add at least H∞(X) bits of entropy. For every
w and c, Γw,c indicates the distribution of transitive isometric permutation π
that satisfies π(w) = c, adding at least H∞(Γw,c) bits of entropy. Considering
all w and c, the chosen operation on π add at least minw,c(H∞(Γw,c)) bits of
entropy. Then we get our result. ��

138 K. Chen et al.

Remark. Code offset construction can be seen as a special case of permutation-
based sketch since addition function in Fn is bijective and transitive isometric.
When we use the above result of permutation-based sketch to analyze code offset-
based secure sketch, only one transitive isometric permutation can convert w to
c. So that minw,c(H∞(Γw,c)) = 0. For random source X which holds H∞(X) =
k − d, we have following formula that is in agreement with Theorem 1.

entropy loss = log |Π| − H∞(X) − min
w,c

(H∞(Γw,c) ≤ n − (k − d)

Residual entropy = H∞(W) − entropy loss ≥ m + k − n − d.

3.3 Fuzzy Vault-Based Secure Sketch

Fuzzy vault-based secure sketch is suitable for set difference metric where w and
w′ are both in set form. The distance of w and w′ is the weight of symmetric
difference between w and w′. Let (U , n, r, s) denotes parameters of the fuzzy
vault-based secure sketch where U is the universe of the set, n denotes the number
of elements in U . Assume that n = |U| is a prime power, fuzzy vault-based
secure sketch works over the field F = GF (n). S denotes the set of elements in
w, s = |S| denotes the number of elements in w, and r denotes the number of
all elements in the final vault. On input set w, the output vault of Juels-Sudan
sketch [17] is r pairs of points (xi, yi), for some parameter r, and s < r ≤ n.
Lemma 4 was proposed by Dodis et al. [12] showing the entropy loss of fuzzy
vault-based secure sketch in the perfect randomness setting.

Construction 3 (Juels-Sudan Fuzzy Vault-Based Secure Sketch [17]).
A (U , n, r, s)-Juels-Sudan fuzzy vault is a secure sketch <SS,Rec> where
Sketch Phase: Input a set w = {x1, · · · , xs} of size s.

1. Choose p(·) at random from the set of polynomials of degree at most k =
s − t − 1 over F .

2. For i = 1, 2, · · · , s, calculate yi = p(xi).
3. Choose r − s distinct points xs+1, · · · , xr at random from U\S.
4. For i = s + 1, · · · r, choose yi ∈ F at random such that yi = p(xi).
5. Output SS(w) = {(x1, y1), · · · , (xr, yr)} (in lexicographic order of xi).
Recover Phase: Input a set w′ of size s.
1. Pick out (xi, yi) where x-coordinates overlap between w and w′.
2. Rebuild function p(·) if |wΔw′| ≤ 2t.
3. Recover w refer to p(·).
Lemma 4 ([12]). The entropy loss of (U , n, r, s)-fuzzy vault scheme is at most
log(

(
n
r

)
nr) − (s − t) log n − log

(
n−s
r−s

) − (r − s) log(n − 1).

Now we analyze what will happen if private randomness used in Juels-Sudan
fuzzy vault is no longer perfect. Totally, private randomness is used in three
steps: (1) selecting secret coefficient of p; (2) selecting x-coordinates xi of chaff
points; (3) selecting y-coordinates yi of chaff points. We model this imperfect

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 139

random source as a probability distribution on the universe, where each element
in U is assigned with a probability value wi > 0. Obviously,

∑n
i=1 wi = 1. For

convenience, we explicitly define U = {x1, x2, · · · , xn} and sort the elements in
U according to their probabilities in descending order, i.e. w1 ≥ w2 ≥ · · · ≥ wn.
Thus, picking r−s chaff point from U\S can be viewed as drawing r−s samples
from U\S without replacement using unequal probabilities.

In Lemma 5, we analysis the influence of imperfect randomness on selecting
x-coordinates of the chaff points. The full proof is given in Appendix A.2. In
Theorem 3, we analyze the whole entropy losses for fuzzy vault construction in
the imperfect randomness setting. Our result shows that a (U , n, r, s)-fuzzy vault-
based secure sketch will additionally lose (r − t)(log n−a)+ (r − s) log n−r

2a−r bits
of entropy if it uses a private randomness from an imperfect (log(n), a)-source.

Lemma 5 (Entropy Loss in Selecting x-coordinates Xi). A (U , n, r, s)-
fuzzy vault will additionally lose at most (r − s) log n−r

2a−r bits residual entropy if
2a > r when the x-coordinates of the chaff points are no longer selected from a
uniform distribution but from an imperfect (log(n), a)-source.

Theorem 3 (Entropy Loss of Fuzzy Vault in imperfect randomness).
The entropy loss of a (U , n, r, s)-fuzzy vault with imperfect randomness from

(log(n), a)-source is at most log(
(
n
r

)
nr)− (s− t)a− log

(
n−s
r−s

)
+(r − s) log n−r

2a−r −
(r − s) · a bits if 2a > r.

Proof. As mentioned before, the private randomness is independently used in
three steps of selection for the fuzzy vault-based secure sketch. All the selections
take randomness from universe U .

Thus, the theorem follows easily from Lemma 4 and Lemma 5. ��

4 Security Analysis of Existing Fuzzy Extractors
with Imperfect Randomness

In this section, we will analyze the security deficiency (expansion of statistic
distance between the output string R and U�) of fuzzy extractor in “sketch-then-
extract” framework where only imperfect randomness is available. This imperfect
random source is used in randomized secure sketch and seeded extractor.

The “sketch-then-extract” framework proposed by Dodis et al. [12] is the most
common way to construct fuzzy extractors. It consists of an information-theoretic
(M,m, m̃, t)-secure sketch and an information-theoretic average-case (n, m̃, �, ε)-
strong seeded extractor, as shown in Fig. 3 with explicit private randomness x1

and x2. In the Gen phase, fuzzy extractor apply an extractor to w with seed x1

to obtain R; apply a secure sketch to w with the explicit private randomness x2

to obtain a sketch ss; store (x1, ss) as help data P of the fuzzy extractor. In the
Rep phase, fuzzy extractor apply Rec to ss with a close w′ to recover original
input w; apple extractor to the recovered w and x1 in help data to reproduce R.

We can see from Fig. 3 that randomness is used in secure sketch and seeded
extractor. There are two options about the relationship between two random

140 K. Chen et al.

Fig. 3. Construction 4 [12]: sketch-then-extract fuzzy extractor with seeded extractor

sources used in sketch-then-extract construction: (1) X1 and X2 are sampled
from a (2, n, k)-correlated source; (2) X1 and X2 are two independent sources.
We focus on the prior one since two independent random sources is a special
case of (2, n, k)-correlated source such that H∞(X2|X1) = H∞(X2) = k. Thus,
discussing sketch-then-extract construction when all randomness of the system
come from (2, n, k)-correlated source is sufficient.

In this section we model imperfect source as a (2, n, k)-correlated source
which remains certain amount of min-entropy after some samples. In Theorem
4, we illustrate how uniformity of output key changes in the imperfect random-
ness setting. Generally, the security deficiency is related to entropy deficiency of
imperfect random source and extra entropy loss of secure sketch with imperfect
randomness.

Theorem 4. For any δ > 0, assume <SS,Rec> is an (M,m, m̃, t)-secure
sketch, Ext is an (n, m̃−δ, �, ε)-strong seeded extractor, and Construction 4 is an
(M,m, �, t, ε + 2−δ)-fuzzy extractor in perfect randomness setting. Then, Con-
struction 4 is also an (M,m, �, t, 2dε + 2−(δ−λ))-fuzzy extractor in the imperfect
randomness setting where imperfect random source is a (2, n, n − d)-correlated
source and λ is the extra entropy loss of secure sketch.

Proof. In order to prove our result in the imperfect randomness setting, we firstly
review the technique used in corollary 4.2 of [12], showing that secure sketch and
strong seeded extractor make a fuzzy extractor in the perfect randomness setting.
This proof relies on the fact of Lemma 1 that strong seeded extractor is also an
average-case strong extractor.

Suppose we have (W, I) that H̃∞(W |I) ≥ m̃. Let Wi = (W |I = i). We define
the value i is “bad” if H∞(Wi) ≤ m̃ − δ, otherwise that i is “good”. So we have:

Pr[i is bad] = Pr[H∞(Wi) ≤ m̃ − δ] = Pr[2−H∞(Wi) ≥ 2−m̃+δ]

= Pr[max
w

Pr[W = w|I = i] ≥ 2−m̃+δ]

≤Ei(maxw Pr[W = w|I = i])
2−m̃+δ

≤ 2−m̃

2−m̃+δ
= 2−δ

The inequality in the above derivation holds by Markov inequality. For any
“good” i, (n, m̃ − δ, �, ε)-strong seeded extractor extracts � bits that are ε-close
to U�. Thus, we have:

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 141

SD((Ext(W,X),X, I), (U�,X, I))

=
∑

i

Pr[I = i] · SD((Ext(W,X),X), (U�,X))

≤ Pr[i is bad] · 1 +
∑

i is good

Pr[I = i] · SD((Ext(W,X),X), (U�,X))

≤2−δ + ε

Taking I as sketch output SS(W), we get that (M,m, m̃, t)-secure sketch
and (n, m̃ − δ, �, ε)-strong seeded extractor in the perfect randomness setting
construct a (M,m, �, t, 2−δ + ε)-fuzzy extractor.

Now, we consider the imperfect randomness setting that H̃imperfect
∞ (W |I) ≥

m̃ − λ.
We define the value i “bad in imperfect randomness” if H∞(Wi) ≤ m̃ − δ.

Pr[i is bad in imperfect randomness]

≤ E
imperfect
i (maxw Pr[W = w|I = i])

2−m̃+δ

=
2−m̃−λ

2−m̃+δ
= 2−(δ−λ)

Considering that the seed of the strong seeded extractor Xim is an (n, n−d)-
source conditioned on the sample used in the sketch phrase, the statistic distance
of R and U� in the imperfect randomness setting is 2−(δ−λ) + 2dε.

SD((Ext(W,Xim),Xim, I), (U�,Xim, I))
≤ Pr[i is bad in imperfect randomness] · 1+

∑

i is good

Pr[I = i] · SD((Ext(W,Xim),Xim), (U�,Xim))

≤2−(δ−λ) + 2dε

The last inequality follows from Lemma 3. So we get that Construction 4 is
also an (M,m, �, t, 2dε + 2−(δ−λ))-fuzzy extractor in the imperfect randomness
setting. ��

5 Further Discussions on Fuzzy Extractors with Imperfect
Randomness Based on Two-source Extractor

In order to accommodate the imperfect random source, Cui et al. [9] introduce
two-source extractor to build a reusable and robust fuzzy extractor based on
DDH/LPN assumptions in the CRS model. Note that in order to use two-source
extractors to extract uniformly distributed key from imperfect private random
source and the noisy source, one should make the assumption that imperfect
private random source and the noisy source are independent. In this section,
we simplify the fuzzy extractor construction in [9] by omitting its reusability

142 K. Chen et al.

and robustness functionalities, and discuss the information-theoretic security of
this simplified construction. The simplified construction is similar to traditional
“sketch-then-extract” construction we introduced in Sect. 4, the only difference
is replacing the strong seeded extractor with a two-source extractor, as shown
in Fig. 4. In Theorem 5, we present existence and security of this simplified con-
struction in the imperfect randomness setting.

Theorem 5. Assume <SS,Rec> is an (M,m, m̃, t)-secure sketch in perfect ran-
domness, it has an extra entropy loss λ in imperfect randomness. Let TExt:
{0, 1}n1 × {0, 1}n2 → {0, 1}� be an average-case ((n1, m̃ − λ), (n2, n2 − d), ε)-
strong two-source extractor. Construction 5 is an (M,m, �, t, ε)-fuzzy extractor
with imperfect randomness from (2, n2, n2 − d)-correlated source.

Fig. 4. Construction 5: sketch-then-extract fuzzy extractor with two-source extractor.
We replace the strong seeded extractor with a two-source extractor shown as gray
boxes.

Proof. Based on the security of secure sketch, we know that H̃∞(W |SS(W)) ≥
m̃−λ in imperfect randomness. The imperfect source X has residual min-entropy
n2 − d after first sample used in sketch phase. By the definition of average-case
two-source extractor, we have:

SD((R,P), (U�, P)) = SD((TExt(W,X),X,SS(W)), (U�,X,SS(W))) ≤ ε

��
As regard to the efficiency of Construction 5, randomized secure sketches

mentioned above work in polynomial-time, so the main goal is to find efficient
constructions for two-source extractor.

In the following subsection, we instantiate our fuzzy extractor with two effi-
cient two-source extractors: inner-product function based two-source extrac-
tor [8] for the length-consistent setting and Ramsey-Graph based [21] two-
source extractor for length-inconsistent setting. Here, length-consistent means
the length of noisy source is the same as length of imperfect random source.
This is the case for code offset based secure sketch, we call it “length-consistent
secure sketch”. On the other hand, permutation-based secure sketch and fuzzy
vault based secure sketch are called “length-inconsistent secure sketches”.

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 143

5.1 Fuzzy Extractor Based on Length-Consistent Secure Sketch
and Two-Source Extractor

For length-consistent secure sketch, such as code offset-based sketch, inner-
product based two-source extractor [8] is suitable. The following theorem demon-
strates the information-theoretic security of fuzzy extractor relying on inner-
product function based two-source extractor and code offset-based secure sketch
in the imperfect randomness setting. It reveals the security requirement on
parameters ε, m̃, δ, �, n, and d.

Theorem 6. For any δ > 0, suppose that Construction 5 takes input from
a ({0, 1}n,m)-noisy source W and uses a private (2, {0, 1}n, n − d)-correlated
source X. In detail, Construction 5 uses a ({0, 1}n,m, m̃, t)-code offset-based
secure sketch in the imperfect randomness setting, and a (({0, 1}n, m̃ −
δ), ({0, 1}n, n − d), ε)-explicit two-source extractor in [11]. Then Construction
5 is a ({0, 1}n,m, �, t, ε + 2−δ)-fuzzy extractor with log(1ε) = m̃−δ−d+2−�

2 .

Proof. The Theorem easily follows from definition of sketch-then-extract fuzzy
extractor, correlated source, Lemma 2 and Theorem 1 in [11]. ��

5.2 Fuzzy Extractor Based on Length-Inconsistent Secure Sketch
and Two-Source Extractor

For length-inconsistent secure sketch, such as permutation-based and fuzzy
vault-based secure sketch, Ramsey-Graph based [21] two-source extractor is suit-
able. The following theorem demonstrates the information-theoretic security of
fuzzy extractor relying on Ramsey-Graph based two-source extractor and length-
inconsistent secure sketch with imperfect private randomness. (Note that in fol-
lowing theorem, W and X can exchange their roles in two-source extractor).

Theorem 7. For any δ > 0, suppose that Construction 5 takes input
from a ({0, 1}n1 ,m)-noisy source W and uses a private (2, {0, 1}n2 , n2 −
d)-correlated source X. In detail, Construction 5 uses a ({0, 1}n1 ,m, m̃, t)-
secure sketch in the imperfect randomness setting, and a (({0, 1}n1 , m̃ −
δ), ({0, 1}n2 , n2 − d), ε)-explicit two source extractor in [21]. Then, Construction
5 is a ({0, 1}n1 ,m, �, t, ε + 2−δ)-fuzzy extractor if for any 0 < α < 1

2 with n1 ≥
6 log n1+2 log n2, m̃−δ ≥ (12 +α)n1+3 log n1+log n2, n2−d ≥ 5 log(n1−m̃+δ),
� ≤ α min{n1/8, (n2 − d)/40} − 1, ε = 2−1.5�.

Proof. The theorem easily follows from definition of fuzzy extractor, correlated
source, Lemma 2 and Theorem 2 in [21]. ��

6 Conclusion

In this paper, we give an information-theoretic security analysis of current secure
sketch and fuzzy extractor constructions where only imperfect randomness is

144 K. Chen et al.

available. Concretely, we analyze the extra entropy loss for three types of ran-
domized secure sketch (code offset-based, permutation-based, fuzzy vault-based),
then we analyze the security deficiency of “sketch-then-extract” fuzzy extractor
in imperfect randomness.

Besides, we propose a simplified fuzzy extractor construction in the imperfect
randomness setting and instantiate it with two explicit two-source extractors.
Finally, we discuss the information-theoretic security of the construction.

A Appendix

A.1 Proof of Theorem 1

Proof. We directly calculate residual entropy of the secure sketch and define:

Ass := {a = (w, x)|w + x = ss} |Ass| ≤ |X|
Φ(w, x) := Pr[X = x] · Pr[W = w]
wss := argmax

w∈W
Pr[W = w|SS = ss]

(ŵss, x̂ss) := argmax
a∈Ass

(Φ(a))

Ass denotes the set of tuple (w, x) that can output sketch ss. Φ(w, x) denotes
the joint probability of X and W . Since X and W are independent, Φ(w, x) is
the multiplication of Pr[X = x] and Pr[W = w]. wss denotes the w ∈ W that
make the heaviest conditional probability of Pr[W = w|SS = ss]. (ŵss, x̂ss)
denotes a tuple of (w, x) ∈ Ass that output sketch ss and get the heaviest joint
probability.

Here we can first fix F = {0, 1} for the most common case, using error
correcting code of [n, k, 2t + 1]2 and then extend to Fq.

By definition of residual entropy, we have:

2−H̃∞(W |SS(W)) = E
ss

max
w

Pr[W = w|SS = ss]

=
∑

ss

Pr[SS = ss]max
w

Pr[W = w|SS = ss]

=
∑

ss

Pr[SS = ss] Pr[W = wss|SS = ss]

=
∑

ss

Pr[W = wss, SS = ss]

=
∑

ss

Pr[W = wss,X = xss]

≤
∑

ss

Pr[W = ŵss] · Pr[X = x̂ss]

≤2−(k−d) ·
∑

ss

Pr[W = ŵss]

≤2−(k−d) · 2−m · 2n

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 145

The first inequality in the above derivation holds since the definition of
(ŵss, x̂ss). The second inequality in the above derivation holds since taking the
maximum probability of randomness X. The third holds since taking the maxi-
mum probability of input variable W and |SS| = 2n.

When randomness X in code offset construction is imperfectly random, we
have H̃∞(W |SS(W)) ≥ m + k − n − d, losing d bits of entropy compared to
perfect randomness. When alphabet become Fq, from the definition of entropy
deficiency, we have maxx Pr[X = x] ≥ 2−(k log |F|−d) = |F|−k · 2d, which also
leads to d bits additional loss in residual entropy. ��

A.2 Proof of Lemma 5

Proof. Let X = (X1,X2, · · · ,Xr−s) be the set of x-coordinates that are selected
out with size r − s, and in order X1 to Xr−s. P1 denotes the probabilities of a
certain selection from imperfect random source, P ∗ denotes the probabilities of
a certain selection from perfect random source. We use ŵ to denote probability
of set U\S such that ŵ =

∑
xi∈U\S wi. We denote q = ŵ

w1
.

It is obvious that P1 gets its maximum when the selection contain r−s most
heavy x-coordinates points. So we get:

max P1 = Pr[X = (x1, x2, · · · , xr−s)] ≤ Pr[X = (x1, x1, · · · , x1)]

= (r − s)! · w1

ŵ − w1
· w1

ŵ − 2w1
· · · w1

ŵ − (r − s)w1

= (r − s)! · 1
(q − 1)(q − 2) · · · (q − r + s)

Note that (r − s)! means elements in set X is unordered.
Since all points are selected from (log(n), a)-source, and suppose max-entropy

of the imperfect random source is b, we have:

2−b ≤ wi ≤ 2−a w1 = 2−a ≥ 1
n

Equal when a=b, which means a perfect randomness.
Substituting into q, we get:

1 − s · 2−b

1
n

≥ q ≥ 1 − s · 2−a

2−a
= 2a − s > r − s

Now we discuss P ∗ in the perfect randomness case and have:

P ∗ = (r − s)! · 1
(n − s − 1)(n − s − 2) · · · (n − s − r + s)

The extra entropy loss Δ is:

Δ = − log(P ∗) − (− log(P1)) ≤ log
max P1

P ∗

= log
(n − s − 1)(n − s − 2) · · · (n − s − r + s)

(q − 1)(q − 2) · · · (q − r + s)

146 K. Chen et al.

We focus on the case when Δ ≥ 0, so n − s ≥ q:

Δ ≤ log(
n − r

q − r + s
)r−s ≤ (r − s) log

n − r

2a − s − r + s

= (r − s) log
n − r

2a − r

��

References

1. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors
from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp.
1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2_1

2. Backes, M., Kate, A., Meiser, S., Ruffing, T.: Secrecy without perfect randomness:
cryptography with (bounded) weak sources. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 675–695. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_33

3. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory
44(6), 2724–2742 (1998). https://doi.org/10.1109/18.720553

4. Blanton, M., Aliasgari, M.: Analysis of reusability of secure sketches and fuzzy
extractors. IEEE Trans. Inf. Forensics Secur. 8(9), 1433–1445 (2013). https://doi.
org/10.1109/TIFS.2013.2272786

5. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P.D. (eds.) Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA, 25–29 October 2004,
pp. 82–91. ACM (2004). https://doi.org/10.1145/1030083.1030096

6. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639_9

7. Chattopadhyay, E., et al.: Explicit two-source extractors and more. Ph.D. thesis
(2016)

8. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988).
https://doi.org/10.1137/0217015

9. Cui, N., Liu, S., Gu, D., Weng, J.: Robustly reusable fuzzy extractor with imperfect
randomness. Des. Codes Crypt. 89(5), 1017–1059 (2021). https://doi.org/10.1007/
s10623-021-00843-1

10. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Tech-
nol. 14(1), 21–30 (2004). https://doi.org/10.1109/TCSVT.2003.818350

11. Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved randomness extraction from
two independent sources. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.)
APPROX/RANDOM 2004. LNCS, vol. 3122, pp. 334–344. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27821-4_30

12. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008). https://doi.org/10.1137/060651380

https://doi.org/10.1007/978-3-319-60080-2_1
https://doi.org/10.1007/978-3-319-28166-7_33
https://doi.org/10.1109/18.720553
https://doi.org/10.1109/TIFS.2013.2272786
https://doi.org/10.1109/TIFS.2013.2272786
https://doi.org/10.1145/1030083.1030096
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1137/0217015
https://doi.org/10.1007/s10623-021-00843-1
https://doi.org/10.1007/s10623-021-00843-1
https://doi.org/10.1109/TCSVT.2003.818350
https://doi.org/10.1007/978-3-540-27821-4_30
https://doi.org/10.1137/060651380

Secure Sketch and Fuzzy Extractor with Imperfect Randomness 147

13. Dodis, Y., Yu, Yu.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36594-2_1

14. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 174–193.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_10

15. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

16. Herder, C., Yu, M.M., Koushanfar, F., Devadas, S.: Physical unclonable functions
and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014). https://doi.
org/10.1109/JPROC.2014.2320516

17. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptogr. 38(2), 237–257
(2006). https://doi.org/10.1007/s10623-005-6343-z

18. Li, X.: Non-malleable extractors, two-source extractors and privacy amplification.
In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, 20–23 October 2012, pp. 688–697. IEEE Computer
Society (2012). https://doi.org/10.1109/FOCS.2012.26

19. Marasco, E., Ross, A.: A survey on antispoofing schemes for fingerprint recognition
systems. ACM Comput. Surv. 47(2), 28:1–28:36 (2014). https://doi.org/10.1145/
2617756

20. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996). https://doi.org/10.1006/jcss.1996.0004

21. Raz, R.: Extractors with weak random seeds. In: Gabow, H.N., Fagin, R. (eds.)
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Bal-
timore, MD, USA, 22–24 May 2005, pp. 11–20. ACM (2005). https://doi.org/10.
1145/1060590.1060593

22. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: Proceedings of the 44th Design Automation Conference,
DAC 2007, San Diego, CA, USA, 4–8 June 2007, pp. 9–14. IEEE (2007). https://
doi.org/10.1145/1278480.1278484

23. Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1–3), 1–
336 (2012). https://doi.org/10.1561/0400000010

24. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp.
459–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_17

25. Wen, Y., Liu, S., Han, S.: Reusable fuzzy extractor from the decisional Diffie–
Hellman assumption. Des. Codes Crypt. 86(11), 2495–2512 (2018). https://doi.
org/10.1007/s10623-018-0459-4

26. Yao, Y., Li, Z.: Overcoming weak expectations via the Réenyi entropy and the
expanded computational entropy. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317,
pp. 162–178. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04268-
8_10

https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-642-42033-7_10
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/JPROC.2014.2320516
https://doi.org/10.1109/JPROC.2014.2320516
https://doi.org/10.1007/s10623-005-6343-z
https://doi.org/10.1109/FOCS.2012.26
https://doi.org/10.1145/2617756
https://doi.org/10.1145/2617756
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1145/1278480.1278484
https://doi.org/10.1145/1278480.1278484
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/978-3-030-03332-3_17
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/978-3-319-04268-8_10
https://doi.org/10.1007/978-3-319-04268-8_10

Tight Analysis of Decryption Failure
Probability of Kyber in Reality

Boyue Fang1, Weize Wang2, and Yunlei Zhao1(B)

1 Department of Computer Science, Fudan University, Shanghai 200082, China
ylzhao@fudan.edu.cn

2 Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

Abstract. Kyber is a candidate in the third round of the National Insti-
tute of Standards and Technology (NIST) Post-Quantum Cryptography
(PQC) Standardization. However, because of the protocol’s indepen-
dence assumption, the bound on the decapsulation failure probability
resulting from the original analysis is not tight. In this work, we give a
rigorous mathematical analysis of the actual failure probability calcula-
tion, and provides the Kyber security estimation in reality rather than
only in a statistical sense. Our analysis does not make independency
assumptions on errors, and is with respect to concrete public keys in
reality. Through sample test and experiments, we also illustrate the dif-
ference between the actual failure probability and the result given in the
proposal of Kyber. The experiments show that, for Kyber-512 and 768,
the failure probability resulting from the original paper is relatively con-
servative, but for Kyber-1024, the failure probability of some public keys
is worse than claimed. This failure probability calculation for concrete
public keys can also guide the selection of public keys in the actual appli-
cation scenarios. What’s more, we measure the gap between the upper
bound of the failure probability and the actual failure probability, then
give a tight estimate. Our work can also re-evaluate the traditional 1− δ
correctness in the literature, which will help re-evaluate some candidates’
security in NIST post-quantum cryptographic standardization.

Keywords: Post-quantum cryptography · Learning with errors · Key
encapsulation mechanism · Decryption failure

1 Introduction

Cryptographic systems based on learning with errors (LWE) and related prob-
lems are the central topics of recent cryptographic research. Factorization
and discrete logarithm problems have always been the basis of modern cryp-
tography, but due to the development of quantum computing, cryptographic
schemes based on these problems are no longer secure in the post-quantum era.
Lattice-based cryptography makes it possible to implement a rich set of crypto-
graphic primitives, including key exchange, key encapsulation, encryption, and
digital signatures, and more advanced structures such as fully homomorphic
encryption.
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 148–160, 2022.
https://doi.org/10.1007/978-3-031-15777-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_9

Tight Analysis of Decryption Failure Probability of Kyber in Reality 149

Therefore, post-quantum cryptography (PQC) should be developed to avoid
security problems in future systems to replace the existing public-key algorithms.
The National Institute of Standards and Technology (NIST) is running a PQC
standardization project. One type of candidate is designed based on learning
with errors (LWE) and related problems such as Module-LWE. Unlike tradi-
tional public-key schemes, LWE-based schemes have the possibility of decryption
failures.

In 2020, the third round of the NIST PQC project began, and only 15 candi-
dates remained. Seven of them are finalists, and eight alternative algorithms
also moved to the third round of the process. Kyber is a promising candi-
date for the key encapsulation mechanism (KEM), which is based on module-
LWE (MLWE). For the recommended parameter sets, the failures of the Kyber
decryption procedure are pretty small. For Kyber-512/768/1024 according to
the NIST security categories I, III and V, the decryption failures claimed are
about 2−139, 2−164, 2−174 respectively [2]. These upper bounds are low enough
to discourage reaction attacks. However, in the current estimation technology of
decryption failure probability for KEM schemes based on LWE and its variants,
it assumes the failure independence in individual bits of the transmitted message.
It then calculates the overall failure probability of the scheme. However, it is dif-
ficult to estimate the gap between this assumption and the actual situation, and
it may cause unpredictable consequences when applying this type of encryption
scheme. Therefore, this paper considers the upper bound of the actual decryp-
tion failure probability of this type of encryption scheme. This paper takes the
Kyber scheme as an example to provide an analysis more in line with the actual
situation. The failure probability estimation method proposed in this paper will
also impact the effect of failure-boosting technology based on the independence
of failure probability assumption.

Contribution. Our main contribution is to give a rigorous mathematical anal-
ysis of the actual failure probability for Kyber in reality, and then discuss the
traditional 1 − δ correctness analysis. Our analysis of the Kyber decryption fail-
ure probability mainly focuses on the impact of the non-independence of the
random vectors, and shows that the independence assumption in the traditional
1 − δ correctness analysis may affect the security of the encryption schemes in
reality. This impact is not only related to Kyber. In the failure probability anal-
ysis, we need to consider the probability of ||e1s1 + e2s2 + e3 ||∞ < t, where
e1, s1, e2, s2, e3 obey certain distributions, and t is some threshold. This formula
is the cornerstone of error rate analysis. The rigorous mathematical analysis of
this basic problem is worthy of in-depth study, which also greatly eliminates the
gap between theoretical error rate and the error rate in actual applications for
KEM schemes based on LWE and its variants. For the samples we selected, the
difference between the upper and lower bounds in the power of 2 is usually less
than 40, which means that the upper bound of the error given in this work can
approximately represent its actual error rate.

Through the analysis method proposed in this paper, the failure probability
of Kyber512 and Kyber768 can be considered as an overestimation of the actual

150 B. Fang et al.

situation, while Kyber1024 has a certain underestimation. The number of public
keys that make the corresponding failure probability higher than the probability
claimed in [2] is not negligible, which means that the security level of Kyber-
1024 under certain public keys will be reduced after using technologies such as
directional failure boosting.

Our analysis method can estimate the gap between the theoretical error rate
and the actual error rate, quantitatively analyzes the error rate of a given public
key, and provides the Kyber security estimation in actual applications rather
than only in a statistical sense. Our work can also re-evaluate the traditional 1−δ
correctness in the literature, which will help re-evaluate some candidates’ security
in the third round of NIST post-quantum cryptographic standardization.

Related Work. D’Anvers et al. rejected the assumption that the failure inde-
pendence in individual bits of the transmitted message theoretically and prac-
tically [7]. They provided a method to estimate the probability of decryption
failure, taking the correlation of bit failures into account. Therefore, Kyber, as
a KEM scheme based on the MLWE problem, the deviation between its actual
decryption failure rate and the theoretical decryption failure rate given in the
NIST proposal is also worthy of attention. This paper proposes an estimation
method to calculate the tight failure probability upper bound of Kyber, which
does not make the assumption of independence of errors. It effectively avoids
the problem that the gap (between the theoretical failure probability and the
actual failure probability) caused by the independence assumption is difficult to
measure.

The impact of the failure probability on the encryption scheme is also
reflected in the security of it. Guo et al. proposed a key recovery attack against
LWE-based KEM schemes that use error correction codes to lower error proba-
bilities. When their method is applied to LAC256-v2, the pre-computation com-
plexity is 2−171, and the success probability is 2−64 [8]. Bindel et al. showed that
the adversary could use the first successful decryption information to increase
the probability of getting the subsequent successful decryption. They also re-
evaluated some candidates’ security for the NIST PQC standardization [1]. When
the side information about decryption failure is available, Dachman-Soled et al.
proposed a cryptanalysis framework for lattice-based schemes [4]. This frame-
work summarizes the primitive reduction attack, and allows for the gradual
integration of prompts before running the final reduction step. This technique
includes the sparsity of the grid, projection onto the hyperplane, and the distri-
bution of the vector corresponding to the secret key that intersects the hyper-
plane. Their main contribution is to propose a toolbox and a method that can
integrate this information into grid reduction attacks and can use side informa-
tion to predict these grid reduction attacks’ performance. They provided several
end-to-end applications, such as the improvement of Frodo’s single-track attack
proposed by Bos et al. [3]. In particular, even with little side information, this
study can also perform security loss estimation, bringing a smooth calculation
trade-off for side-channel attacks. D’Anvers et al. studied the effect of decryption
failure on the security of lattice-based encryption schemes, and attacked some

Tight Analysis of Decryption Failure Probability of Kyber in Reality 151

NIST candidate encryption schemes [6]. The results show that the attack will
significantly reduce the security of the lattice-based encryption schemes with a
relatively high failure rate. After applying their model to some NIST candidate
cryptographic schemes, they believe that the actual security level is lower than
their declared security level. Therefore, it is essential to give a failure rate anal-
ysis method that the deviation can be estimated and the theoretical bound is
tight. Especially in the actual application scenarios, the public key is fixed once
and for all rather than randomly selected each time, which means the failure
rate in the sense of mathematical expectation cannot precisely indicate the error
rate of a given public key. The failure probability estimation method proposed
in this paper will provide the upper bound of the actual error rate, and conducts
simulation experiments for concrete public keys. The analysis of the number of
public keys corresponding to different error rates will be able to provide guidance
for the public key selection.

Besides, the failure-boosting attack showed that the first decryption failure
requires special attention. For example, D’Anvers et al. expanded their technol-
ogy proposed in 2019 [6] and called it the “directional failure boosting” technol-
ogy [5], which can speed up the search for the next decryption error. They also
made an in-depth discussion on the quotient ring of the polynomial ring mod-
ulus

〈
xN + 1

〉
over the finite field, and used the Kyber/Saber schemes based

on module lattices to test the technology. They showed that after the decryp-
tion fails once, it can speed up the finding of the subsequent failed decryption.
They proved that for such a single-target key model, the cryptographic algo-
rithm design needs to make the first decryption failure difficult, while for the
multi-target key model, the attack method is more effective. We noticed that
the error analysis of D’Anvers et al. [5] is based on the analysis results given in
the Kyber proposal where the independence of errors is assumed.

2 Preliminaries

2.1 Kyber

The complete description of CRYSTALS-Kyber can be found in [1]. Here we
mainly focus on the failure probability analysis part of it. The system parameters
are a ring R, positive integer k, dt, du, dv, and n = 256. The ciphertexts are of
the form (u, v) ∈ {0, 1}256·kdu × {0, 1}256·dv . The public-key encryption scheme
Kyber.CPA = KeyGen, Enc, Dec as described in Algorithms 1, 2 and 3.

Algorithm 1. Kyber.CPA.KeyGen(): key generation
1: ρ, σ ← {0, 1}256

2: A ∼ Rk×k
q := Sam(ρ)

3: (s, e) ∼ βk
η × βk

η := Sam(ρ)
4: t := Compressq(As + e, dt)
5: return (pk := (t, ρ), sk := s)

152 B. Fang et al.

Algorithm 2. Kyber.CPA.Enc(pk = (t, ρ),m ∈ M): encryption
1: r ← {0, 1}256

2: t := Decompressq(t, dt)
3: A ∼ Rk×k

q := Sam(ρ)
4: (r, e1, e2) ∼ βk

η × βk
η × βη := Sam(τ)

5: u := Compressq(A
Tr + e1, du)

6: v := Compressq(t
Tr + e2 + � q

2
� · m, dv)

7: return c := (u, v)

Algorithm 3. Kyber.CPA.Dec(sk = s, c = (u, v)): decryption
1: u := Decompressq(u, du)
2: v := Decompressq(v, dv)
3: return Compressq(v − sTu, 1)

The compression and decompression function are defined as:

Compressq(x, d) = �2d

q
· x� mod +2d,

Decompressq(x, d) = � q

2d
· x�.

2.2 Distributions on R

Notation. For a finite set S, |S| denotes its cardinality, and we write s ← S to say
that s is sampled uniformly from S. Denote with Zq the ring of integers modulo
q, represented in (− q

2 , q
2]. Let Rq be the ring Zq(X)/(XN + 1), with N a power

of two. For a vector V (or matrix A), we denote by vT (or AT) its transpose.
Denote with 〈., .〉 the Eulidean inner product, and with �x� the nearest inte-

ger function. Let | · | denote taking the absolute value. These notations can be
naturally extended to vectors, matrices and polynomials element wise. For an
element x ∈ Zq, we write ||x||∞ to mean |x mod ± q| and ||x||2 to mean |x| .
Elements of R = Z[x]/(xn + 1) can be viewed as vectors in R

n by identifying
the power basis {1, x, x2, . . . , xn−1} of R as an orthonormal basis of Rn, so for
x = (x0, . . . , xn−1), we define l∞ norm and l2 norm as following:

||x||∞ = max
i

||xi||∞

||x||2 =

√√√
√

n−1∑

i=0

||xi||2.

Tight Analysis of Decryption Failure Probability of Kyber in Reality 153

Denote with P[E] the probability of an event E, with E[ε] the expectation of
the random variable ε.

The centered binomial distribution Bη are defined as follows:
Sample {(ai, bi)}η

i=1 ← ({0, 1}2)η and output
∑η

i=1(ai − bi).
If v is an element of R, we write v ← βη to mean that v ∈ R is generated from

a distribution where each of its coefficients is generated according to Bη. Simi-
larly, a k-dimensional vector of polynomials v ∈ Rk can be generated according
to the distribution βk

η .

3 Analysis of Decryption Failure Probability

Decryption failure refers to an event in which the correct ciphertext cannot
be successfully restored during decryption after the decryption steps described
in the algorithm are performed. The probability of decryption failure usually
depends on the functions of the secret terms, denoted as s1, s2, e1, e2, e3. Take
Kyber as an example, when

||〈e + ct, r〉 − 〈s, e1 + cu〉 + e2 + cv||∞ ≤ B = �q

4
�,

the ciphertext can be decrypted successfully. And in the theorem of 1 − δ cor-
rectness,

||〈e + ct, r〉 − 〈s, e1 + cu〉 + e2 + cv||∞ ≥ B = �q

4
�

is usually defined as the error rate of decryption failure. In general, the error
rate analysis mainly discusses the probability that

||〈e′
, s

′′〉 + 〈e′′
, s

′〉 + e
′′′ || ≤ B,

where e
′
, e

′′
, e

′′′
, s

′
, s

′′
obey a certain distribution, B is the threshold.

In the work of Kyber et al. [2], after expressing the failure probability prob-
lem in the above form, they adopted the independence assumption, that is,
e

′
, e

′′
, e

′′′
, s

′
, s

′′
are regarded as independent distributions for error rate calcula-

tion. However, it will bring deviations that are difficult to evaluate in the error
rate calculation. Here we give a simple example to explain. It does not mean
that the central binomial distribution and parameters used by Kyber are con-
sistent with the parameters’ distribution in the example. This example is to
show that the independence assumption will bring massive deviations. Assume
ε1, ε2, ε3 are independent, ε1, ε2 obeys the Gaussian distribution ε1, ε2 ∼ N (0, 4)
, then define c1 = ε1+ε2

2 , c2 = ε2−ε1
2 , so c1, c2 also obey the Gaussian distribution

c1, c2 ∼ N (0, 4). Consider the probability of

||ε1c1 + ε2c2 + ε3|| ≤ B,

Since we are mainly concerned with the influence of the independence assumption
here, we might as well set ε3 to 0. At this time, we consider the difference in

154 B. Fang et al.

probability calculated before and after adopting the assumption of independence.
When the independence assumption is not taken, the probability is

P(||ε21 + ε22|| ≤ 2B),

and ε21 + ε22 ∼ χ2(2), where χ2(2) is the chi-square distribution with 2 degrees
of freedom. The probability density function is

f1(x) =
1
2
e− x

2 , x ≥ 0.

Then consider to adopt the independence assumption, the distribution can
be regarded as the sum of two independent and identically distributed random
variables, each of which is the product of two normally distributed variables.

The probability density function of the product is f(u) = B(0,

√
u2
4)

4π , where B

is the second kind of modified Bessel function, B(0, x) =
∫ ∞
0

cos(x sinh t)dt. In
this case, the probability density function is

f2(x) =

∫
R

f(x − u)f(u)du =
1

16π2

∫
R

(

∫ ∞

0
cos((x − u) sinh t)dt

∫ ∞

0
cos(u sinh t)dt)du.

By comparing f1(x) and f2(x), it can be seen that the distribution of the
corresponding random variables before and after the independence assumption
is very different. Therefore, it is very important to consider the distribution of
the real situation.

3.1 Decryption Failures

The Kyber key generation procedure involves ring elements s, e and matrix A.
Key encapsulation involves ring elements r, e1, e2. The condition that decryption
failure probability is less than δ is the following formula holds:

P(||〈e + ct, r〉 − 〈s, e1 + cu〉 + e2 + cv||∞ ≥ B) ≤ δ,

where

cu = � q

2du
(�2du

q
(AT r + e1)�) mod +2du� − (AT r + e1)

ct = � q

2dt
(�2dt

q
(As + e)�) mod +2dt� − (As + e)

cv = � q

2dv
(�2dv

q
(tT r + e2 + �q

2
�m)�) mod +2dv� − (tT r + e2 + �q

2
�m)

and t = As+ e+ ct. The distribution of s, e, r, e1, e2, A is introduced in Sect. 3.1.

Tight Analysis of Decryption Failure Probability of Kyber in Reality 155

3.2 Formula Derivation

Define ai = 2di

q , f(i, x) = x − � 1
ai

�aix��.
Then

||〈e + ct, r〉 − 〈s, e1 + cu〉 + e2 + cv||∞ ≤ B = �q

4
�

can be written as

||〈e, r〉 − 〈� 1
at

�at(As + e)��, r〉 − 〈s, e1〉 + 〈s, � 1
au

�au(AT r + e1)��〉

+ e2 − � 1
av

(�av((As + e + ct)T r + e2)�||∞ ≤ B

Which is equal to

||〈e, r〉 − 〈As + e, r〉 + 〈f(t, As + e), r〉 − 〈s, e1〉 + 〈s, AT r + e1〉
− 〈s, f(u, AT r + e1)〉 + e2 − 〈f(t, As + e), r〉 − e2 + f(v, 〈f(t, As + e), r〉 + e2)||∞ ≤ B

It’s equal to

||f(v, 〈f(t, As + e), r〉 + e2) − 〈f(u,AT r + e1), s〉||∞ ≤ B.

We found that
||f(i, x)||∞ ≤ 1

2ai
+

1
2
,

Consider the triangular inequality of the norm, a sufficient condition is

||〈f(u,AT r + e1), s〉||∞ ≤ B
′
= �q

4
� − 1

2av
− 1

2
.

Now we discuss about ||〈f(u,AT r + e1), s〉||∞.
Firstly,

A ← Rk×k
q , r ← βk

η , e1 ← βk
η , s ← βk

η

If we write A, r, e1, s as A = (a(ij))1≤i,j≤k, e1 = (e(i))k
i=1, r1 = (r(i))k

i=1, s1 =
(s(i))k

i=1, Then the formula can be written as

||
k∑

j=1

(sj(
k∑

i=1

a(ji)r(i) + e(j) − � 1
au

�au(
k∑

i=1

a(ji)r(i) + e(j))��))||∞ ≤ B
′
,

where a(ji) =
∑n−1

m=0 a
(ji)
m xm, r(i) =

∑n−1
m=0 r

(i)
m xm, e(j) =

∑n−1
m=0 e

(j)
m xm.

Consider to define

a(ji)r(i) =
n−1∑

m=0

bmxm

156 B. Fang et al.

Then
bn−1 =

n−1∑

k=0

a
(ji)
k r

(i)
n−1−k

and for m < n − 1,
bm =

m∑

k=0

a
(ji)
k r

(i)
m−k −

n−1∑

k=m+1

a
(ji)
k r

(i)
m+n−k

3.3 The Deviation Between the Theoretical Failure Probability
and the Actual Failure Probability

Consider the following theorem in Kyber [2].

Theorem 1. Let k be a positive integer parameter. Let s, e, r, e1, e2 be random
variables that have the same distribution. Also, let ct ← ϕk

dt
, cu ← ϕk

du
, cv ← ϕdv

be distributed according to the distribution ϕ defined as follows:

Let ϕk
d be the following distribution over R:

– Choose uniformly-random y ← Rk

– return (y − Decompressq(Compressq(y, d), d)) mod ±q.

Denote

δ = Pr[||〈e, r〉 + e2 + cv − 〈s, e1〉 + 〈ct, r〉 − 〈s, cu〉||∞ ≥ �q

4
�].

Then Kyber. CPA is (1 − δ)-correct.
Review our previous analysis, i.e.

||f(v, 〈f(t, As + e), r〉 + e2) − 〈f(u,AT r + e1), s〉||∞ ≤ B.

Because
|f(i, x)| ≤ 1

2ai
+

1
2
,

The bound of the actual failure probability can be restricted between the
sufficient condition and the necessary condition.

The sufficient condition can be written as:

||〈f(u,AT r + e1), s〉||∞ ≥ B
′
= �q

4
� − 1

2av
− 1

2
,

which is the upper bound of the failure probability. And the necessary condition
is:

||〈f(u,AT r + e1), s〉||∞ ≥ B
′′

= �q

4
� +

1
2av

+
1
2
,

which can be seen as the lower bound of the failure probability.
For a given public key A, the actual failure probability is between these two,

and the bound is tight. We draw the graph with the upper and lower bounds
corresponding to the selected range of random variables to illustrate (Fig. 1):

For the 900 samples we selected, the difference between the upper and lower
bounds in the power of 2 is usually less than 40, which means that the upper
bound of the error given can approximately represent its actual error rate. The
deviation is 12 orders of magnitude.

Tight Analysis of Decryption Failure Probability of Kyber in Reality 157

Fig. 1. The orange part corresponds to the sufficient condition we gave. The light
blue part is the gap between the actual failure probability and the sufficient condition.
The dark blue part is the gap between the necessary condition and the actual failure
probability. (Color figure online)

4 Experiment and Sample Test

The parameter set for KYBER can be seen in the following Table 1.

Table 1. Parameter set for KYBER

n k q η1 η2 du, dv δ

KYBER512 256 2 3329 3 2 (10, 4) 2−139

KYBER768 256 3 3329 2 2 (10, 4) 2−164

KYBER1024 256 4 3329 2 2 (11, 5) 2−174

In practical applications, the public key is usually fixed rather than ran-
domly selected every time. The error rate of the mathematical expectation given
in the traditional analysis cannot give the actual decryption failure probability
of the fixed public key. Therefore, we give the error rate analysis for a given
public key, consider the number of public keys corresponding to different error
rates, and guide public key selection. The failure probability corresponding to
the public key can be further discussed. This paper studies more about the prob-
ability distribution of the decryption failure. This paper uses the non-parametric
estimation method proposed by Rosenblatt [10] and Parzen [9] to estimate the

158 B. Fang et al.

probability density function. This method calculates the probability density of
the corresponding parameter by calculating the number of samples in a given
area. For the Parzen window method, the estimated area volume used in different
areas is fixed. The window function is

φ(x) =

⎧
⎨

⎩
1, |xi| ≤ 1

2
; i = 1, . . . , d

0, otherwise

By calculating pn(x) = 1
n

∑n
i=1

1
hd φ(x−xi

hn
). Where hd = Vn, the density func-

tion is obtained. Through kernel density estimation, it is able to give the proba-
bility that a given public key’s failure probability is greater than the threshold.
Therefore, this method will help the higher-order moment analysis of the failure
probability, and thus have a deeper understanding of the moment characteristics
of the public keys. The corresponding kernel density estimation curve is shown
in Fig. 2, 3, 4.

The calculation process is quite time-consuming. It takes several hours to
calculate the decryption failure probability for a given public key. As a conse-
quence, we only testes 300 samples for each parameter set. The differences in
the decryption failure probability before and after the independence assumption
are given in Fig. 2, 3, 4, respectively.

Fig. 2. Frequency histograms of Kyber512. The red line is the mean of all samples, the
orange line is the median of all samples, and the black line is the failure probability
provided in the original paper. The blue line is the kernel density estimation curve.
(Color figure online)

Tight Analysis of Decryption Failure Probability of Kyber in Reality 159

Fig. 3. Frequency histograms of Kyber768. The red line is the mean of all samples, the
orange line is the median of all samples, and the black line is the failure probability
provided in the original paper. The blue line is the kernel density estimation curve.
(Color figure online)

Fig. 4. Frequency histograms of Kyber1024. The red line is the mean of all samples,
the orange line is the median of all samples, and the black line is the failure probability
provided in the original paper. The blue line is the kernel density estimation curve.
(Color figure online)

We select 300 random matrices A for each Kyber parameter set for testing
and then draw their corresponding frequency histograms. It can be seen that
the failure probability of most samples is lower than the probability given in the
original paper, and the mean of the sample is less than the median of the sample
(Table 2).

160 B. Fang et al.

Table 2. Comparison of failure probabilities before and after adopting the assumption
of independence.

Original [2] Mean Median Max Min

KYBER512 2−139 2−188 2−186 2−148 2−221

KYBER768 2−164 2−233 2−222 2−166 2−366

KYBER1024 2−174 2−255 2−232 2−142 2−592

References

1. Bindel, N., Schanck, J.M.: Decryption failure is more likely after success. In: Ding,
J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 206–225. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 12

2. Bos, J., Ducas, L., Kiltz, E., et al.: CRYSTALS-Kyber: a CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

3. Bos, J.W., Friedberger, S., Martinoli, M., et al.: Assessing the feasibility of single
trace power analysis of Frodo. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 216–234. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-10970-7 10

4. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 12

5. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) failure is not an option: bootstrapping
the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 1

6. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 19

7. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on Ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 6

8. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 4

9. Parzen, E.: On estimation of a probability density function and mode. Ann. Math.
Stat. 33(3), 1065 (1962). https://doi.org/10.1214/aoms/1177704472

10. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function.
In: Davis, R., Lii, KS., Politis, D. (eds.) Selected Works of Murray Rosenblatt.
Selected Works in Probability and Statistics. pp. 832–837. Springer, New York
(1956). https://doi.org/10.1007/978-1-4419-8339-8 13

11. Wishart, J., Bartlett, M.S.: The distribution of second order moment statistics in
a normal system. In: Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 28, no. 4, pp. 455–459. Cambridge University Press, Cambridge (1932).
https://doi.org/10.1017/S0305004100010690

https://doi.org/10.1007/978-3-030-44223-1_12
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-030-10970-7_10
https://doi.org/10.1007/978-3-030-10970-7_10
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1017/S0305004100010690

Authentication

Improving Deep Learning Based
Password Guessing Models Using

Pre-processing

Yuxuan Wu1, Ding Wang2(B), Yunkai Zou2, and Ziyi Huang3

1 College of Computer Science, Nankai University, Tianjin 300350, China
2 College of Cyber Science, Nankai University, Tianjin 300381, China

wangding@nankai.edu.cn
3 College of Software, Nankai University, Tianjin 300457, China

Abstract. Passwords are the most widely used authentication method
and play an important role in users’ digital lives. Password guessing mod-
els are generally used to understand password security, yet statistic-based
password models (like the Markov model and probabilistic context-free
grammars (PCFG)) are subject to the inherent limitations of overfitting
and sparsity. With the improvement of computing power, deep-learning
based models with higher crack rates are emerging. Since neural networks
are generally used as black boxes for learning password features, a key
challenge for deep-learning based password guessing models is to choose
the appropriate preprocessing methods to learn more effective features.

To fill the gap, this paper explores three new preprocessing methods
and makes an attempt to apply them to two promising deep-learning
networks, i.e., Long Short-Term Memory (LSTM) neural networks and
Generative Adversarial Networks (GAN). First, we propose a character-
feature based method for encoding to replace the canonical one-hot
encoding. Second, we add so far the most comprehensive recognition
rules of words, keyboard patterns, years, and website names into the basic
PCFG, and find that the frequency distribution of extracted segments
follows the Zipf’s law. Third, we adopt Xu et al.’s PCFG improvement
with chunk segmentation at CCS’21, and study the performance of the
Chunk+PCFG preprocessing method when applied to LSTM and GAN.

Extensive experiments on six large real-world password datasets show
the effectiveness of our preprocessing methods. Results show that within
50 million guesses: 1) When we apply the PCFG preprocessing method
to PassGAN (a GAN-based password model proposed by Hitja et al. at
ACNS’19), 13.83%–38.81% (26.79% on average) more passwords can be
cracked; 2) Our LSTM based model using PCFG for preprocessing (short
for PL) outperforms Wang et al.’s original PL model by 0.35%–3.94%
(1.36% on average). Overall, our preprocessing methods can improve the
attacking rates in four over seven tested cases. We believe this work pro-
vides new feasible directions for guessing optimization, and contributes
to a better understanding of deep-learning based models.

Keywords: Password · Deep learning · Preprocessing · Generative
Adversarial Networks · Long Short-Term Memory neural networks

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 163–183, 2022.
https://doi.org/10.1007/978-3-031-15777-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_10

164 Y. Wu et al.

1 Introduction

Although passwords have some security problems and a variety of new authenti-
cation methods are constantly proposed, passwords promise to be the dominant
authentication method in the foreseeable future due to their simplicity to deploy,
easiness to change [2,3]. Thus, it is of great importance to understand password
security, and a number of guessing algorithms have successively been proposed,
such as statistical-based ones (e.g., probabilistic context free grammars (short for
PCFG) [18] and Markov [10,12]) and deep-learning based ones (i.e., PassGAN [5]
and FLA [11]). Password guessing algorithms study password security from the
perspective of attackers who focus on the vulnerability of passwords, and they
in turn can be used to build protection countermeasures, such as constructing
the password strength meter (PSM) to evaluate password strength.

Password guessing attacks can be divided into targeted guessing attacks and
trawling guessing attacks [16]. The former is to crack the password of a given
user as quickly as possible [10], and the latter is to crack as many passwords as
possible in a given password set under the limited guess number [16,19]. This
paper focuses on trawling guessing attacks. A key challenge for trawling guessing
attacks is to extract the password features effectively, and data preprocessing is
a feasible method to improve the effect of the deep learning based models.

1.1 Related Work

Major Password guessing models based on statistical probability include PCFG
[18] and the Markov model [10,12]. The main idea of PCFG is to divide a pass-
word into several segments according to the character types, and these segments
can be regarded as the password features. For instance, the password abc123 is
parsed into the letter segment “abc” and digit segment “123”. PCFG can also be
integrated with other guessing models as a data preprocessing method [9,17,20].
The Markov model records the frequency of different characters after the pass-
word substring in the training phase, and then generates the guessing password
character by character according to the statistical frequency distribution. With
various improvements made on the base of PCFG, Xie et al. [19] focused on the
targeted guessing attack and added the recognition of special dates and names.
Wang et al. [15] added the recognition of Chinese pinyin and the six-digit dates
(e.g., 201862) to further exploit the features of Chinese passwords. Houshmand
et al. [6] added the recognition of keyboard patterns. Yang et al. [21] also stud-
ied keyboard patterns and analyzed the frequency distribution of the keyboard
patterns. However, these PCFG-based methods are not optimal because most
of these added recognition rules only consider the targeted guessing, and are
not comprehensively considered in trawling guessing. In this paper, we focus
on the password features, and add the most comprehensive recognition rules of
keyboard patterns, words, website names, years for trawling guessing.

Recently, deep learning technology provides a new way for password attack-
ing, and the model based on supervised learning was first used. In 2016, Melicher
et al. [11] used Recurrent Neural Network (RNN) to build a password guessing
model (i.e., FLA) which can be considered as a character-level model because the

Improving Password Guessing Models 165

smallest unit it handles is each character in the password. In 2018, Liu et al. [9]
proposed a multi-source PCFG+LSTM model (The LSTM based model using
PCFG for preprocessing, short for PL) with the adversarial generation which
can maintain high accuracy for different datasets. The password guessing model
using PCFG for preprocessing can be regarded as a segment-level model, which
divides passwords into different segments. In 2021, Wang et al. [17] found that
the PL model could crack more passwords than PCFG and Markov within 50
million guesses. However, they only use the original PCFG which can not compre-
hensively extract password features. Xu et al. [20] proposed a new preprocessing
method based on the Byte-Pair-Encoding (BPE) algorithm to divide passwords
into chunks that consist of frequently occurring characters, and then built three
models: the Markov based model using the chunk based preprocessing method,
the model using the Chunk+PCFG preprocessing method, and the LSTM based
model using chunk based preprocessing method. Password guessing models using
the chunk-based preprocessing method are considered chunk-level. In this paper,
we integrate the Chunk+PCFG preprocessing method with neural networks.

Unsupervised learning methods are also used in password cracking. In 2019,
Hitaj et al. [5] first proposed a password guessing model based on Generative
Adversarial Networks (GAN) and named it PassGAN. However, the cracking
result of PassGAN is not ideal, and even lower than the traditional methods.
We apply three preprocessing methods to PassGAN model, and find that using
the basic PCFG for preprocessing can dramatically improve the cracking rate.

1.2 Our Contributions

In this work, we make the following key contributions:

(1) Character feature based encoding method. Character-level models
usually adopt the canonical one-hot encoding method which can not fully
utilize the character features. Therefore, we propose a new approach based
on the type of characters and the corresponding keyboard positions, where
each character is represented as a 4-dimensional vector: (character type,
character serial number, keyboard row number, keyboard column number).
Although this encoding method does not improve the effect, it still provides
a new feasible direction for password guessing.

(2) Refined PCFG. Existing PCFG [6] divides passwords into four segments
(letters, digits, special characters, and keyboard). We propose a refined
PCFG based preprocessing method which adds the recognition rules of
words, website names, and years to enable a more comprehensive password
feature extraction. Inspired by Wang et al.’s work that the distribution of
passwords follows the Zipf’s law [14], we find that the frequency distribution
of extracted segments also follows PDF-Zipf.

(3) An extensive evaluation. We perform a series of experiments on nine
models, including two baseline ones (i.e., the LSTM based model using
one-hot encoding method in Wang’s work [17] and the original PassGAN
model in Hitaj’s work [5]), and seven models using preprocessing(i.e., the

166 Y. Wu et al.

LSTM based model using our new encoding method, the LSTM based
model using basic PCFG for preprocessing [17], the LSTM based model
using our refined PCFG for preprocessing, the LSTM based model using
Chunk+PCFG for preprocessing, the PassGAN model using basic PCFG
for preprocessing, the PassGAN model using our refined PCFG for prepro-
cessing, and the PassGAN model using Chunk+PCFG for preprocessing).
Our empirical results show that character-level models can improve their
effect by using PCFG based preprocessing methods. In particular, the Pass-
GAN model using PCFG for preprocessing can improve the success rates
drastically (avg. 26.79 %) compared to the original PassGAN model.

2 Background

In this section, we briefly introduce the background on deep learning based
password guessing models (i.e., LSTM based models and GAN based models).

2.1 LSTM Based Models

 Bos
[0,0,0,1,0]

 a
[1,0,0,0,0]

 b
[0,1,0,0,0]

 c
[0,0,1,0,0]

 a
[1,0,0,0,0]

 b
[0,1,0,0,0]

 c
[0,0,1,0,0]

 Eos
[0,0,0,0,1]

Fig. 1. The training process
of LSTM based models using
one-hot encoding method. The
character set is {a, b, c, Bos,
Eos}, where Bos represents the
beginning of a password and
Eos repreasents the end of a
password.

Recurrent Neural Network (RNN) and its Vari-
ants, such as Long Short-Term Memory neural
networks (LSTM), can all be used in password
guessing models [11,17]. To avoid gradient vanish-
ing problems [8], we use LSTM instead of RNN.
The one-hot encoding is usually performed on
each character to convert a password string to
a matrix. Moreover, it is necessary to construct
the corresponding label y for the input password
x due to the supervised learning method. We use
an example to illustrate this training process (see
in Fig. 1). Suppose the character set that contains
all the characters appearing in the dataset is {a,
b, c, Bos, Eos}, where Bos represents the begin-
ning of a password and Eos represents the end of
a password. Then the password abc is converted
to a matrix: [[0, 0, 0, 1, 0], [1, 0, 0, 0, 0], [0, 1, 0,
0, 0], [0, 0, 1, 0, 0]]. The corresponding label y is:
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]].

The LSTM based model is a probability model which assigns probabilities
to the guessing passwords. The probability of the next character is obtained by
entering the prefix of the password string into LSTM. For example, a password
generation process could be: B→Ba→Bab→ Babc→BabcE, where each time we
select the character with the highest probability as the next character. The
LSTM based model with this training and generating method is character-level.

Improving Password Guessing Models 167

Generator

Discriminator

Fake Data Fake Score

Real ScoreReal Data

Pssswdd
qweeey
iLaaayyy

...

Pssswdd : 0.3
qweeey : 0.2
iLaaayyy : 0.3
 ...

Password : 0.8
qwerty : 0.9
iLoveyou : 0.7
 ...

Password
qwerty

iLoveyou
...

Fig. 2. The training process of PassGAN model. Passwords are first converted into
matrices and then input to the discriminator. The score is the output of the discrimi-
nator which will be used to calculate the gradient.

2.2 PassGAN

PassGAN, proposed by hitaj [5], is based on WGAN-GP [4] due to the difficulty
of training original GAN. PassGAN consists of a generator and a discriminator.
The generator captures the real data distribution by building a mapping func-
tion from prior noise distribution to real data space and generate fake samples.
The discriminator learns to determine whether a sample comes from the fake
samples or the real data. PassGAN are trained adversarially in this way until
the discriminator cannot identify the source of the data. The main structure of
the PassGAN model is shown in Fig. 2.

Original PassGAN is character-level, but not as effective as LSTM based
character-level models [17]. Another problem of original PassGAN is that it
can not assign probabilities to the generated guessing passwords, so we can not
obtain the priority of different guessing passwords. These problems will all be
solved by using preprocessing methods in this paper.

3 Preliminaries

In this section, we first explicate the datasets used in this paper, including the
basic information, the length distribution, the character composition, and the
top-10 passwords. In addition, since passwords are confidential data related to
personal privacy, ethical considerations are also explained.

3.1 Datasets

We compare the password guessing models with different preprocessing methods
based on six large password datasets (see in Table 1) with a total of 57 million
passwords. These datasets are different in terms of service, size, user localization,
and language, which suggests that our models can be used to well characterize
different user-chosen passwords. We name each dataset according to its website’s
domain name. The first three datasets, namely CSDN, YueJunYou, Renren, are
all from Chinese websites. CSDN is a well-known community website of Chinese
programmers, founded in 1999. Renren is a real-name social networking plat-
form, founded in 2005. YueJunYou is a website for making friends and traveling,

168 Y. Wu et al.

Table 1. Basic information about six web services.

Dataset Web service Language When leaked Original PWs After cleaning

CSDN Programmer forum Chinese Dec., 2011 6,428,277 6,427,538

YueJunYou Social forum Chinese May., 2006 5,365,338 5,286,494

Renren Social forum Chinese Oct., 2011 4,733,366 4,662,654

Rockyou Gaming English Dec., 2009 32,581,870 32,573,986

Yahoo Email English Jul., 2012 5,737,797 5,605,985

Youporn Video English Oct., 2017 2,677,951 2,105,452

founded in 2014. The last three datasets, namely Rockyou, Yahoo, Youporn, are
all from English websites. Rockyou is a game website that contains 320 million
passwords, which is the largest dataset among six datasets. Yahoo is a famous
internet portal site in the United States, founded in 1995. Youporn is a video
website only for adults, founded in 2006.

Datasets Cleaning. We note that these original datasets contain some abnor-
mal passwords that are either too long (>40) or too short (<4), which are
unlikely to be user-chosen passwords or simply junk information. Thus, we launch
the work of dataset cleaning before any experiment. We first remove the pass-
words that contain symbols beyond the 95 printable ASCII characters, and then
we also remove the passwords with length <4 or length >30, because these pass-
words do not comply with the password policy of most websites or may not be
considered by the attackers who care about cracking efficiency [1]. Generally, the
removed passwords are less than 1% for each dataset.

Here we also provide a concrete grasp of user-chosen passwords: 1) The length
of most passwords is between 6 and 9, accounting for 62.08%–83.84% of each
web service (see details in Table 7 of Appendix A); 2) Chinese users love to use
digits (avg. 54.64%) and this figure for English users is 18.62%, while English
users love to use characters (avg. 42.79%) and this figure for Chinese users is
15.43% (see details in Table 8); 3) Top-10 passwords account for 7.18% 10.43%
of Chinese users, and this figure for English users is 2.05% 5.29%, indicating
Chinese passwords are more concentrated, as found in [15] (see in Table 9).

3.2 Ethical Considerations

Although these datasets are widely used in the literature [5,10,11,20,21], they
are still private data. Therefore, we only report the aggregated statistical infor-
mation and treat each individual account as confidential, so that using them in
our research will not increase the risk to the corresponding victim. Furthermore,
these datasets may be utilized by attackers as cracking dictionaries, while our
use is both beneficial for the academic community to understand the strength
of users’ password choices, and for security administrators to secure their pass-
words. In addition, we have consulted privacy experts a number of times. Since
our datasets are all available from the Internet, the results in this work are
reproducible.

Improving Password Guessing Models 169

4 Preprocessing Methods

In this section, we describe different preprocessing methods to improve the effect
of the deep-learning based password guessing models.

4.1 Important Abbreviations

To facilitate the reading process, we introduce the important abbreviations used
in this article. GAN means Generative Adversarial Networks; PassGAN is short
for the password guessing model based on GAN; LSTM is short for Long Short-
Term Memory neural networks; PCFG is short for probabilistic context-free
grammars; LSTM/PassGAN+X means the LSTM/PassGAN based password
gurssing model using X for preprocessing.

4.2 Character Feature Based Encoding Method

Canonical one-hot encoding method as used in [11,17,20] only classifies differ-
ent characters, but can not fully reflect other character features. Moreover, the
matrices converted by the one-hot encoding method are sparse [13]. The main
challenge for character encoding is how to distinguish characters and reflect their
features with as little space as possible. Therefore, we comprehensively consider
different kinds of character features and then propose a new character encoding
method that greatly reduces the occupied space.

The password character has two important features, one is the type, and the
other one is the keyboard location since keyboard pattern is also a popular way
in password creation [16]. Thus, we represent each character in four dimensions.
The first dimension represents the type of characters, where we use 1, 2, 3, and
4 to represent digits, uppercase letters, lowercase letters, and special characters.
The second dimension is the serial number of the characters in each type. For
example, a–z can be represented by 1–26 according to the dictionary order, and
the digits can be represented by themselves. The third dimension represents the
keyboard row number, and the fourth dimension represents the keyboard column
number. The row number of the keyboard increases from top to bottom, and the
column number increases from left to right. For example, the string “1234567890-
=” is in the first row, and the string “1qaz” is in the first column according to
keyboard coordinates. Using our new encoding method, the password 1234 can
be converted to a matrix [[1, 1, 1, 1], [1, 2, 1, 2], [1, 3, 1, 3], [1, 4, 1, 4]].

4.3 Refined PCFG

The basic PCFG [18] only divides passwords into letters, digits, and special char-
acters, which may destroy the integrity of some segments and ignore user’s habit
of creating passwords. For example, the string “1!2@3#” should be considered
as a complete segment due to the adjacency of characters on the keyboard, while
it would be converted to D1S1D1S1D1S1 in the basic PCFG. Therefore, we add
the recognition rules of 4 important password features.

170 Y. Wu et al.

Table 2. The proportion of top-10 mostly used years (1900–2100) for each web service∗.

Dataset CSDN Renren YunJunYou Rockyou Yahoo Youporn

Proportion 58.68% 54.74% 64.16% 33.94% 26.19% 32.68%

Unique† 201 201 201 201 201 201

∗ We record the proportion of top-10 year segments in all year segments.
† Unique represents the number of unique years in the web service.

Year Recognition: Years have been found popular in passwords [7,15]. We
count the number of the years (from 1900 to 2100, a total of 201), and record the
proportion of top-10 most widely used years in Table 2. Results show that some
years occupy a large proportion, which indicates users may focus on some years.
However, the basic PCFG would extract years into digits. Thus, we extract digit
segments with length of four and value between 1900–2100 from the passwords.

Table 3. The proportion of top-10 mostly used websites for each web service.

Dataset CSDN Renren YunJunYou Rockyou Yahoo Youporn

Proportion 15.15% 20.93% 25.25% 15.35% 17.23% 25.44%

Unique† 3,348 3,080 202 6,415 1,109 255

† Unique represents the number of unique websites in the web service.

Website Name Recognition: We for the first time count the number of the
website names in each dataset, and record the proportion of top-10 most widely
used website names in Table 3. Although the website names are less concentrated
than the years, some website names still account for a large proportion, and the
passwords with website name segments may be considered strong passwords
in the basic PCFG. For instance, the password “csdn.net” is converted to the
base structure L4S1L3, and may be assigned a low probability of being cracked
by basic PCFG. To address this problem, we add the recognition of website
names. First, common website name suffixes, such as “.com”, “.net”, are used
to construct a suffix list, and then the complete website segments are extracted
from the passwords according to the suffix list. For example, the website name
segment “csdn.net” is extracted from the password “123csdn.net123”.

Keyboard Pattern Recognition. Since keyboard pattern is also a popular
way in password creation [6,16], we add the corresponding recognition rule.
Furthermore, keyboard patterns with only one character type can be extracted
completely by basic PCFG, so our refined PCFG (i.e., basic PCFG with the
additional recognition rules) focus on the keyboard patterns with multiple char-
acter types. For example, the password q1w2e3 is converted to the base structure
L1D1L1D1L1D1 by basic PCFG, which destroys the integrity of the keyboard
pattern, while it is converted to K6 by our refined PCFG (k represents the
keyboard pattern and 6 represents the length of the segment).

Improving Password Guessing Models 171

Algorithm 1: Dictionary contruction algorithm.
Input: Password set S
Output: Word dictionary D.

1 for pwd in S do
2 letters list = extract letters(pwd);/* extract letter segments in pwd and store

them in a list. */
3 for seg in letters list do
4 if len(seg) > len min then
5 /* len min is the minimum word length. */
6 D[seg]+ = 1;/* D is the initial dictionary to record the frequency of

different words. */

7 for seg in D do
8 if D[seg] < threshold then
9 /* threshold is the minimum word frequency */

10 delete D[seg];

11 return D;

Word Recognition: The keyboard pattern has inherent limitations that may
extract wrong segments [21]. For instance, the segment “password” should be
regarded as a complete segment, but “assw” would be recognized as a keyboard
pattern. Although our keyboard pattern recognition method avoids most of the
error cases, wrong results may still occur. Our solution is to use a dictionary
that contains common words, and extract segments that appear in the dictionary
from the passwords before the keyboard pattern extraction. However, the effect
of this method depends on the quality of the dictionary. Once the dictionary
does not contain the corresponding word, keyboard pattern extraction will still
cause errors. Therefore, we choose to construct the word dictionary through the
training set. This process is described in Algorithm 1.

Frequency Distribution: Wang et al. [14] found that the distribution of pop-
ular passwords follows PDF-Zipf:

fr =
C

rs
(1)

where fr is the frequency of the password, r is the rank of the password, C and
s are constants depending on the datasets. To verify that the data conforms to
this distribution, we use the following equation:

log(fr) = logC − s · log(r) (2)

where log(fr) and log(r) are linearly related. We verify that the extracted seg-
ment meets the Zipf distribution based on Eq. 2. The extracted results are sorted
in descending order of frequency on six datasets and the log(fr)-log(r) graphs
are shown in Fig. 3. Moreover, all the coefficients of determination (R2) which
can measure the fitting degree of the regression line to the sample data are shown
in Table 4. The closer the determination coefficient is to 1, the better the fitting
effect is. The results indicate that the frequency distribution of the keyboard
patterns, words, website names, and years with a frequency of more than five
can meet the PDF-Zipf model well.

172 Y. Wu et al.

Table 4. The coefficient of determination (R2) for fitting different extracted segments.

R2 Keyboard pattern Word Website name Year

CSDN 0.9667 0.9974 0.9791 0.9698

YueJunYou 0.9763 0.9895 0.9697 0.9650

Renren 0.9757 0.9935 0.9764 0.9772

Rockyou 0.9843 0.9973 0.9894 0.9358

Yahoo 0.9687 0.9932 0.9767 0.8710

Youporn 0.9795 0.9949 0.9661 0.9033

Fig. 3. Frequency distribution of different types of extracted segments.

Recognition Order: Some recognition rules may conflict with each other. For
example, “989” in “1989” is recognized as a keyboard pattern, and “csdn” in
“csdn.net” may be recognized as a word. Therefore, it is essential to set a rea-
sonable extraction order and begin with the least conflict one. Since the year
recognition may conflict with the keyboard pattern recognition, and the web-
site name recognition may conflict with the word recognition. Our recognition
order is: year→website name→word→keyboard pattern→basic PCFG recogni-

Improving Password Guessing Models 173

Algorithm 2: Extraction algorithm for our refined PCFG.
Input: Password pw, word dictionary D, website name suffix list web list
Output: handled segment list seg list.

1 seg list=[pw]; /* initial list taking the whole password as a unhandled segment. */
2 kp min=3;/* the minimum length of the keyboard pattern. */
3 for seg in seg List do
4 if type(seg) == string and a year occurs in seg then
5 begin, end = index year(seg);
6 divide seg(seg, begin, end);/* divide seg into

seg[0 : begin], (′Y ′ + str(end− begin), seg[begin : end]), seg[end :]. */

7 for seg in seg List do
8 if type(seg) == string and a website suffix from web list occurs in seg then
9 begin, end = index website(seg);

10 divide seg(seg, begin, end);/* divide seg into
seg[0 : begin], (′E′ + str(end− begin), seg[begin : end]), seg[end :]. */

11 for seg in seg list do
12 if type(seg) == string and a word from D occurs in seg then
13 begin, end = index word(seg);
14 divide seg(seg, begin, end);/* divide seg into

seg[0 : begin], (′W ′ + str(end− begin), seg[begin : end]), seg[end :]. */

15 for seg in seg list do
16 if type(seg) == string then
17 begin, end = index keyboard(seg);
18 if end− begin >= kp min and seg[begin : end] contains more than one

character type then
19 divide seg(seg, begin, end);/* divide seg into

seg[0 : begin], (′K′ + str(end− begin), seg[begin : end]), seg[end :]. */

20 merge unhandled(seg list);/* merge successive unhandled segments in seg list. */
21 PCFG extraction(seg list);/* use original PCFG for extraction. */
22 return seg list;

tion. Overall, our refined PCFG is different from the basic PCFG on the tags
of base structures, where some tags are added, such as K (keyboard patterns),
W (words), E (website names), and Y (years). The complete extraction process
of our refined PCFG is described in Algorithm 2. The structure of the neural
networks using the PCFG based preprocessing method is shown in Fig. 4.

4.4 PassGAN Using PCFG for Preprocessing

The result of PassGAN [5] is worse than the LSTM based models within 107

guessing passwords, so we infer that the ability of GAN to learn text features is
weaker than LSTM. Character-level passwords are relatively complex for GAN
due to the length and the multiple character types. Therefore, we use PCFG
based preprocessing method to simplify the data, and train the model with the
base structures obtained from PCFG. In the generation process, PassGAN would
generate duplicate base structures without probability, so we count the number
of different base structures until the number of unique base structures reaches the
target value. Then we assign each base structure with the probability fi/total,
where fi represents the frequency of the corresponding base structures, and total
represents the total number of all base structures.

174 Y. Wu et al.

Original passwords

abc123!!
1!2@3#
1q2w3e
password
dearbook
 ...

PCFG_Extraction

 ...

Base structures Neural networks

{abc : 1}; {123 :1}; :{!! : 1};
{1!2@3# : 1, 1q2w3e : 1};
{password : 1, dearbook : 1};

 ...

Training

 ...
Guesses

abc123
1!2@3#
1q2w3e
password
dearbook
 ...

Filling

Segment results

Generation

Fig. 4. An illustration of deep learning based model using PCFG based preprocessing
method. K represents the keyboard pattern and W represents the word.

Algorithm 3: The process of Chunk+PCFG preprocessing method
Input: Password dictionary with the corresponding frequency pwd dict
Output: Processed Dictionary pwd dict.

1 while true do
2 (Pairs, avg len)=get pairs(pwd dict);/*Take two consecutive chunks as a pair and

record the frequency of pairs in Pairs, avg len is the avg len of chunks.*/
3 if avg len > threshold then
4 /*threshold stands for the minimum average-length of chunks. */
5 break;

6 best pair = max(Pairs, key = Pairs.get); /*find the most frequnt pair. */
7 pwd dict = merge chunk(bestpair, pwddict);

8 PCFG extraction(pwddict);/* perform PCFG on each chunk of passwords.*/
9 return pwd dict;

4.5 Chunk+PCFG Preprocessing Method

We adopt Xu et al.’s PCFG improvement with chunk segmentation at CCS’21
[20], and integrate the Chunk+PCFG preprocessing method with LSTM and
PassGAN separately. Byte-Pair-Encoding (BPE) algorithm is used to divide
passwords into chunks, and then the chunk-level passwords are converted to the
base structures by performing PCFG on each chunk of the passwords. Since
chunk-level passwords are fine-grained enough, we only use the basic PCFG and
a chunk can be represented as L (with only letters), D (with only digits), S
(with only special characters), Two (with two character types), Three (with
three character types). For example, the password iloveu4ever can be firstly
converted to the chunk-level password [“iloveu”, “4ever”], and then converted
to the base structure L6Two5. The process of the Chunk+PCFG preprocessing
method is shown in Algorithm 3. The remaining training and generation process
is the same as that of the LSTM based models using PCFG for preprocessing.

Improving Password Guessing Models 175

5 Experiments

In this section, we first describe the attacking strategies, and then evaluate the
result of five different preprocessing methods combined with neural networks on
multiple datasets. The details of datasets are described in Sect. 3.1.

5.1 Attacking Strategies Design

The combination of five different preprocessing methods with two leading deep-
learning models gives rise to a total of ten guessing strategies, and we focus on
seven promising ones: the LSTM based model using one-hot encoding method
[17], the LSTM based model using our new encoding method, the LSTM based
model using the basic PCFG for preprocessing (short for PL) [17], the LSTM
based model using our refined PCFG for preprocessing, the LSTM based model
using Chunk+PCFG for preprocessing, PassGAN using the basic PCFG for pre-
processing, PassGAN using our refined PCFG for preprocessing, and PassGAN
using Chunk+PCFG for preprocessing. Here LSTM includes a hidden layer that
contains 128 neurons and a softmax layer, and the structure of GAN is the same
as the original PassGAN model which is described in Sect. 2.2. For chunk-level
models, the minimum average length of chunks is 3.0. All models are trained and
tested on six datasets, which are divided into the training set, test set, validation
set according to 8:1:1 as recommended in [17].

5.2 Evaluation Results

To extensively evaluate the effect of five different preprocessing methods, 50 mil-
lion guessing passwords are generated from each model and sorted by probability
in order to obtain a smooth curve of the result. We use the guess-number-graph
and record cracking results to intuitively reflect the effects of different models.

Overall Analysis. Table 5 and 6 and Fig. 5 and 6 show that, with 50 million
guessing passwords: (1) The LSTM based model using one-hot encoding out-
performs using our new encoding by 4.22% on average; (2) The LSTM based
model using the basic PCFG for preprocessing (short for PL) outperforms the
LSTM based model using one-hot encoding by 7.85% on average; (3) Refined
PL model outperforms the basic PL model by 1.36% on average; (4) The basic
PL model outperforms the LSTM based model using Chunk+PCFG for prepro-
cessing (short for CKPL) by 6.49% on average; (5) The PassGAN model using
the basic PCFG for preprocessing (short for PCFG+PassGAN) outperforms the
original PassGAN model by 26.79% on average; (6) The PCFG+PassGAN model
outperforms refined PCFG+PassGAN model by 1.41% on average; (7) The orig-
inal PassGAN model outperforms the PassGAN model using Chunk+PCFG for
preprocessing (short for CKP+PassGAN) by 13.85% on average.

176 Y. Wu et al.

Table 5. Cracking results of LSTM based models with five different preprocessing
methods (Guess number = 5 ∗ 107)†

Dataset Language LSTM
one-hot [17]

LSTM
4-dim

LSTM
b PCFG
[17]

LSTM
r PCFG

LSTM
CK PCFG

CSDN Chinese 39.81% 37.73% 43.54% 43.89% 37.30%

YueJunYou Chinese 60.72% 59.53% 78.29% 78.93% 61.78%

Renren Chinese 50.72% 48.01% 46.11% 47.27% 53.41%

Rockyou English 52.40% 46.71% 63.17% 67.11% 46.22%

Yahoo English 40.66% 35.31% 44.37% 45.04% 48.62%

Youporn English 50.42% 42.11% 66.36% 67.76% 55.53%

† LSTM 4-dim means using our new encoding method; b PCFG means with basic
PCFG for preprocessing [17]; r PCFG means with our refined PCFG; CK PCFG means
with the Chunk+PCFG method. The results show that our refined PCFG method
increases the effect by 9.21% on average for original model [17].

Encoding Method. The experimental results on six datasets show that our new
encoding method does not perform well, which can be attributed to two reasons.
First, the sparsity problem caused by the one-hot encoding may not have serious
side effects because passwords are generally short in length. Second, since our
new encoding method is only used to represent each character, its advantage
which reflects multiple character features has not been fully utilized.

Table 6. Cracking results of GAN based models with four different preprocessing
methods (Guess number = 5 ∗ 107)†

Dataset Language PassGAN [5] PassGAN
b PCFG

PassGAN
r PCFG

PassGAN
CK PCFG

CSDN Chinese 27.47% 42.14% 27.58% 11.87%

YueJunYou Chinese 49.35% 78.88% 62.01% 19.72%

Renren Chinese 36.17% 49.99% 33.20% 19.65%

Rockyou English 31.25% 64.41% 18.35% 15.58%

Yahoo English 24.74% 53.38% 21.04% 23.96%

Youporn English 38.07% 76.88% 34.31% 31.11%

† PassGAN b PCFG means with basic PCFG for preprocessing; Pass-
GAN r PCFG means with our refined PCFG; CK PCFG means with the
Chunk+PCFG method. The results show that the basic PCFG method
increases the effect by 26.79% on average for PassGAN model [5].

PCFG Based Preprocessing Method. Using PCFG for preprocessing can
improve the effect, and the LSTM based model with our refined PCFG is even
better than with the basic PCFG, which indicates that the fine-grained rules

Improving Password Guessing Models 177

Fig. 5. Cracking results of LSTM based models with five different preprocessing meth-
ods (Guess number = 5∗107). The training set and test set are from the same dataset,
with a division ratio of 8:1. LSTM one-hot represents the original model using one-
hot for encoding [17]; LSTM 4-dim means using our new encoding method; b PCFG
means with basic PCFG for preprocessing [17]; r PCFG means with our refined PCFG;
CK PCFG means with the Chunk+PCFG method. The results show that our refined
PCFG method increases the effect by 9.21% on average for original LSTM model [17].

can extract more effective features. However, PassGAN with our refined PCFG
decreases the effect due to the complexity of our method. Furthermore, since the
Chunk+PCFG method first performs PCFG on each chunk of the passwords, it

178 Y. Wu et al.

Fig. 6. Cracking results of GAN based models with four preprocessing methods (Guess
number = 5 ∗ 107). The training set and test set are from the same dataset, with a
division ratio of 8:1. PassGAN represents the original model in [5]; b PCFG means
with basic PCFG for preprocessing; r PCFG means with our refined PCFG; CK PCFG
means with the Chunk+PCFG method. The results show that using basic PCFG for
preprocessing increases the effect by 26.79% on average for PassGAN model [5].

would generate even more complicated base structures than our refined PCFG,
which can be the reason why all models using the Chunk+PCFG preprocessing
method do not perform well compared to the original models. To explore the
impact of different extraction rules added to the basic PCFG, we set up a series

Improving Password Guessing Models 179

of experiments where only one extraction rule is added each time. The results
(see deatails in Table 10 of Appendix B) indicate that word recognition has the
best performance among all four rules and using separate recognition rules is
not as good as our refiend PCFG (i.e., with all four rules).

Limitations. Firstly, our new encoding method can not improve the perfor-
mance of the LSTM based models compared with the one-hot encoding, which
may indicate that password guessing models can not be improved only by the
character encoding. Secondly, we only improve the effect of PassGAN from the
aspect of preprocessing, but not change the structure of PassGAN.

Future Directions. Firstly, new training methods to match up with our new
encoding method can be a viable direction due to the underutilization of charac-
ter features. Secondly, the research on PCFG based preprocessing method should
be more fine-grained. One viable direction is to add more fine-grained recognition
rules based on our refined PCFG, and another direction is to apply natural lan-
guage processing(NLP) technology to extract the characteristics of passwords.
Thirdly, this paper contributes to a better understanding of deep-learning based
guessing models in that: preprocessing indeed can effectively enhance the use of
the neural networks’ learning ability, which is in turn intrinsically determined
by the deep-learning model’s network structure. For instance, the text learning
ability of GAN is weaker than that of LSTM, which leads to the poor effect
of fine-grained preprocessing methods integrated with GAN. Thus, the ability
of GAN to learn text features may be improved by changing its structure, for
example, using LSTM to compose the generator of GAN.

6 Conclusion

This paper studies the deep-learning based password guessing models from the
aspect of preprocessing. Firstly, considering the limitations of the one-hot encod-
ing method, we propose a new encoding method that comprehensively reflects
the character features. Secondly, considering that basic PCFG does not fully
extract the password features, we propose a refined PCFG with comprehensive
recognition rules. Thirdly, we adopt the idea of chunk segmentation at CCS’21,
and apply the chunk+PCFG preprocessing method to LSTM and GAN.

Extensive experimental results show that: 1) Our refined PCFG outperforms
the basic PCFG by 1.36% on average when integrated with LSTM; 2) Using basic
PCFG for preprocessing improves the effect of the PassGAN model drastically
by 26.79% on average; 3) Although our new encoding method does not improve
the effect compared with the one-hot encoding, it still provides a feasible new
research direction; 4) The performance of Chunk+PCFG preprocessing method
is not ideal due to the complexity of its base structures.

Our results suggest that using PCFG for preprocessing is an effective way
to improve the deep-learning based guessing models. Still, it should be used
with care: although more fine-grained PCFG (e.g., our refined PCFG and
Chunk+PCFG) extracts the passwords more comprehensively, it also generates

180 Y. Wu et al.

more complicated base structures, which increases the training complexity for
neural networks, and may even reduce the cracking rates for these neural net-
works with weak text feature learning ability.

Acknowledgment. The authors are grateful to the anonymous reviewers for their
invaluable comments. Ding Wang is the corresponding author. This research was in
part supported by the National Natural Science Foundation of China under Grant
No.62172240, and by the Natural Science Foundation of Tianjin, China under Grant
No. 21JCZDJC00190. There is no competing interests.

Appendix 1 Some Statistics About User-Chosen Passwords

The length distributions of each dataset are shown in Table 7. Most passwords’
length are between six and nine (avg. 73.81%). The length distribution is affected
by the password policy. For example, CSDN dataset has much fewer passwords
of length under eight as compared to other datasets, which may be caused by the
fact that CSDN website changed the password policy to a more strict one. The
character composition information is summarized in Table 8. Chinese users prefer
to use digits in passwords, while English users prefer to use letters. This may
be caused by cultural differences because most Chinese users use more digits in
their daily lives than English words. In addition, English users prefer lowercase
letters rather than uppercase letters. The top-10 passwords information is shown
in Table 9. The password “123456” is the most commonly used password except
for CSDN (due to its password policy). It is also interesting to see that the top-10
passwords in Chinese datasets are almost all pure digits.

Table 7. Length distribution information of each web service.

Dataset 1–5 6 7 8 9 10–16 17–30 30+

CSDN 0.63% 1.29% 0.26% 36.38% 24.15% 36.98% 0.32% 0.00%

YueJunYou 3.09% 24.00% 22.59% 24.13% 13.12% 13.05% 0.01% 0.00%

Renren 6.63% 25.36% 18.18% 20.24% 12.05% 17.20% 0.32% 0.00%

Rockyou 4.31% 26.04% 19.29% 19.98% 12.11% 17.86% 0.40% 0.01%

Yahoo 10.33% 17.86% 14.36% 25.03% 12.39% 20.04% 0.00% 0.00%

Youporn 11.44% 26.66% 16.17% 20.40% 10.82% 14.26% 0.22% 0.02%

Avg-CN† 3.45% 16.89% 13.68% 26.92% 16.44% 22.41% 0.22% 0.00%

Avg-EN 8.69% 23.52% 16.60% 21.80% 11.77% 17.39% 0.21% 0.01%

Avg-total 6.07% 20.20% 15.14% 24.36% 14.11% 19.90% 0.21% 0.01%

† Avg-X stands for the average proportion of X datasets. For example, where CN stands
for three Chinese datasets and EN stands for three English datasets.

Improving Password Guessing Models 181

Table 8. Character composition information of each web service∗.

Dataset [a-z]+ [A-Z]+ [A-Za-z]+ [0-9]+ [a-zA-Z0-9]+ [a-z0-9]+ [a-z]+1 [0-9a-z]+

CSDN 11.64% 0.47% 12.35% 45.01% 96.31% 26.14% 0.24% 5.88%

YueJunYou 12.94% 0.23% 13.39% 65.86% 99.38% 13.10% 0.25% 2.88%

Renren 19.06% 0.64% 20.55% 53.05% 97.79% 17.83% 1.24% 2.80%

Rockyou 41.68% 1.50% 44.04% 15.93% 96.19% 27.69% 4.55% 2.53%

Yahoo 32.51% 1.70% 35.90% 19.80% 97.99% 27.14% 3.47% 3.32%

Youporn 45.94% 1.04% 48.42% 20.12% 96.50% 20.59% 2.75% 1.91%

Avg-CN† 14.55% 0.45% 15.43% 54.64% 97.83% 19.02% 0.58% 3.85%

Avg-En 40.04% 1.41% 42.79% 18.62% 96.89% 25.14% 3.59% 2.59%

Avg-total 27.30% 0.93% 29.11% 36.63% 97.36% 22.08% 2.08% 3.22%

∗ Note that the first row is written in regular expressions. For instance, [a-z]+ means passwords

composed of lower-case letters; [A-Za-z]+ means passwords composed of letters; [a-z]+1 means

passwords composed of lowercase letters, followed by the digit 1.

† Avg-X stands for the average proportion of X datasets, where CN stands for three Chinese datasets

and EN stands for three English datasets.

Table 9. Top-10 password information of each web service.

Rank CSDN YueJunYou Renren Rockyou Yahoo Youporn

1 123456789 123456 123456 123456 123456 123456

2 12345678 111111 123456789 12345 123456789 123456789

3 11111111 0 111111 123456789 password 12345

4 dearbook 123456789 0 password null 1234

5 00000000 123123 123123 iloveyou 12345 password

6 123123123 5201314 5201314 princess 12345678 qwerty

7 1234567890 wangyut2 12345 1234567 1234567 12345678

8 88888888 12345678 12345678 rockyou iloveyou 123

9 111111111 123 123 12345678 qwerty 1234567

10 147258369 123321 123321 abc123 comeon11 111111

Top-1 % 3.66% 4.78% 3.74% 0.89% 0.86% 2.57%

Top-3 % 8.15% 7.11% 4.99% 1.37% 1.35% 3.71%

Top-10 % 10.43% 9.99% 7.18% 2.05% 2.13% 5.29%

Top-10 % 670,881 535,884 339,639 669,126 119,864 113,702

Total num 6,428,277 5,365,338 4,733,366 32,603,388 5,626,485 2,148,224

† Top-x per means the percentage of Top-x passwords, top-10 num means the total
number of top-10 passwords.

Appendix 2 Exploratory Experiments

In Sect. 4.3, Probabilistic context-free grammars (i.e., PCFG) [10,18] can be
used for data preprocessing when integrated with neural networks. Our refined
PCFG are based on the basic PCFG with four additional recognition rules,
including keyboard pattern, word, website and year. The experiment result in
Sect. 5.2 has already shown that our refiend PCFG can improve the performance

182 Y. Wu et al.

by 1.36% on average compared to the basic PCFG when integrated with Long
Short-Term Memory neural networks (i.e., LSTM) [17]. To explore the impact
of different recognition rules on the experiment results, we evaluate the perfor-
mance of LSTM based models using PCFG for preprocessing, where only one
recognition rule is added to basic PCFG each time.

The result in Table 10 shows that compared to the LSTM based model with
basic PCFG for preprocessing: (1) Using PCFG with additional word recognition
for preprocessing has a 0.26% improvement on average; (2) Using PCFG with
additional keyboard recognition for preprocessing has a 0.06% improvement on
average; (3) The remaining recognition rules (i.e., website and year) have little
improvement on the results (less than 0.01% on average). In general, adding one
recognition rule to the basic PCFG [10] alone is not as effective as adding all
the rules (i.e., our refined PCFG) when integrated with LSTM. The reason why
the year recognition rule has the worst performance can be can be attributed
to two reasons. Firstly, years are part of birthdays and birthdays vary widely
among users, which has little effect on trawling password guessing attack. Sec-
ondly, individual year segments can be replaced by digit segments. Moreover, the
promotion effect of different recognition rules to some extent reflects the pattern
that users tend to use when creating passwords.

Table 10. Cracking results of LSTM based models using PCFG based preprocessing
methods (Guess number = 5 ∗ 107)†

Dataset Language Basic [17] Keyboard Word Website Year

CSDN Chinese 43.54% 43.68% 43.63% 43.55% 43.36%

YueJunYou Chinese 78.29% 78.85% 78.84% 78.84% 78.34%

Renren Chinese 46.11% 45.99% 46.58% 46.05% 46.46%

Rockyou English 63.17% 63.10% 63.15% 63.11% 63.09%

Yahoo English 44.37% 44.38% 44.57% 44.19% 44.53%

Youporn English 66.36% 66.20% 66.65% 66.18% 66.13%

† Basic means the LSTM based model with basic PCFG for preprocessing
[17]; Keyboard means adding keyboard recognition rule to the basic PCFG;
Word means adding word recognition rule to the basic PCFG; Website
means adding website recognition rule to the basic PCFG; Year means
adding year recognition rule to the basic PCFG. The experiment setup is
the same as Sect. 5.

References

1. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking. In:
Proceedings of IEEE S&P 2018, pp. 853–871 (2018)

2. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: The request to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: Proceedings of IEEE S&P 2012, pp. 553–567 (2012)

Improving Password Guessing Models 183

3. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7), 78–87 (2015)

4. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Proceedings of the NIPS 2017, pp. 5769–5779
(2017)

5. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning app-
roach for password guessing. In: Proceedings of the ACNS 2019 (2019)

6. Houshmand, S., Aggarwal, S., Flood, R.: Next gen PCFG password cracking. IEEE
Trans. Inf. Forensics Secur. 10(8), 1776–1791 (2015)

7. Li, Z., Han, W., Xu, W.: A large-scale empirical analysis of Chinese web passwords.
In: Proceedings of the USENIX Security 2014, pp. 559–574 (2014)

8. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

9. Liu, Y., et al.: GENPass: a general deep learning model for password guessing
with PCFG rules and adversarial generation. In: Proceedings of ICC 2018, pp. 1–6
(2018)

10. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
Proceedings of IEEE S&P 2014, pp. 689–704 (2014)

11. Melicher, W., Ur, B., Komanduri, S., Bauer, L., Christin, N., Cranor, L.F.: Fast,
lean and accurate: modeling password guessability using neural networks. In: Pro-
ceedings of the USENIX SEC 2017, pp. 1–17 (2017)

12. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the ACM CCS 2005, pp. 364–372 (2005)

13. Rodŕıguez, P., Bautista, M.A., Gonzàlez, J., Escalera, S.: Beyond one-hot encoding:
lower dimensional target embedding. Image Vis. Comput. 75, 21–31 (2018)

14. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Forensics Secur. 12(11), 2776–2791 (2017)

15. Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: under-
standing passwords of Chinese web users. In: Proceedings of the USENIX SEC 2019
(2019)

16. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the ACM CCS 2016, pp.
1242–1254 (2016)

17. Wang, D., Zou, Y., Tao, Y., Wang, B.: Password guessing based on recurrent neural
networks and generative adversarial networks. Chin. J. Comput. 1519–1534 (2021)

18. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Proceedings of the IEEE S&P 2009, pp.
391–405 (2009)

19. Xie, Z., Zhang, M., Yin, A., Li, Z.: A new targeted password guessing model. In:
Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 350–368. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 18

20. Xu, M., Wang, C., Yu, J., Zhang, J., Zhang, K., Han, W.: Chunk-level password
guessing: towards modeling refined password composition representations. In: Pro-
ceedings of the ACM CCS 2021, pp. 5–20 (2021)

21. Yang, K., Hu, X., Zhang, Q., Wei, J., Liu, W.: Studies of keyboard patterns in pass-
words: recognition, characteristics and strength evolution. In: Gao, D., Li, Q.,
Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12918, pp. 153–168. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86890-1 9

http://arxiv.org/abs/1506.00019
https://doi.org/10.1007/978-3-030-55304-3_18
https://doi.org/10.1007/978-3-030-86890-1_9

Exploring Phone-Based Authentication
Vulnerabilities in Single Sign-On Systems

Matthew M. Tolbert, Elie M. Hess, Mattheus C. Nascimento, Yunsen Lei,
and Craig A. Shue(B)

Worcester Polytechnic Institute, Worcester, MA 01609, USA
{mmtolbert,emhess,mcnascimento,ylei3,cshue}@wpi.edu

Abstract. Phone-based authenticators (PBAs) are commonly incorpo-
rated into multi-factor authentication and passwordless login schemes for
corporate networks and systems. These systems require users to prove
that they possess a phone or phone number associated with an account.
The out-of-band nature of PBAs and their security may not be well
understood by users. Further, the frequency of PBA prompts may desen-
sitize users and lead to increased susceptibility to phishing or social engi-
neering. We explore such risks to PBAs by exploring PBA implementa-
tion options and two types of attacks. When employed with a real-world
PBA system, we found the symptoms of such attacks were subtle. A
subsequent user study revealed that none of our participants noticed the
attack symptoms, highlighting the limitations and risks associated with
PBAs.

1 Introduction

To authenticate users, some organizations combine traditional passwords with
other verification mechanisms in a multi-factor authentication (MFA) scheme.
Others eliminate passwords entirely and use passwordless authentication mech-
anisms. Both MFA and passwordless schemes can use a proof-of-possession
authentication factor in which the end user must prove physical access to a
device. Phone-based authenticator (PBA) systems are commonly used for proof-
of-possession schemes since users often already have and protect smartphones.
These PBA systems require a user to promptly interact with the phone asso-
ciated with an account. If the user completes that interaction successfully, the
system approves the authentication attempt.

PBAs are widespread in MFA schemes associated with financial institu-
tions [31] and online account providers [5]. Experts and vendors have encouraged
broader use of PBAs with the promise of reducing account compromise risks [25].
Based on industry surveys [28] and legal directives [16], PBA use is expected to
grow in the future.

PBAs are commonly paired with single sign-on (SSO) systems [4] in which an
identity provider authenticates users for a set of relying parties. However, if SSO
implementations do not cache credentials across applications or are improperly
tuned, they may frequently prompt users to authenticate using PBAs [26]. Prior

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 184–200, 2022.
https://doi.org/10.1007/978-3-031-15777-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_11

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 185

work in usable security has found that repetitive warnings and confirmations can
desensitize users to the importance of the security decisions they are making [6].
This may enable adversaries to deceive users into risky behavior.

In this work, we ask: To what extent can adversaries deceive end users into
authorizing malicious behavior via phone-based mechanisms (e.g., SMS OTP,
email OTP, push notifications)? What phone-based authentication mechanisms
have greater risk and what symptoms result? Do end users notice these symp-
toms? Would additional context help end users distinguish malicious phone-based
authentication interactions?

We explore some common PBA configuration options and their implications
using an empirical study with a popular production SSO system. We implement
techniques to undermine the PBA system and measure their effectiveness. This
leads to the following contributions:

– Exploration of PBA Settings in Two Attack Scenarios: We explore a
range of PBA implementation options and their potential vulnerabilities. We
implement two attacks on PBAs: one using a malicious SSO relying party and
one using network packet profiling and strategic delay. We find the malicious
SSO relying party can compromise each tested PBA option. The profiling
and timing attack is effective against application-based approval prompts.
The observable characteristics of both attacks appear to be subtle.

– Report of User Study on Attack Effectiveness: We conduct an IRB-
approved user study with 13 participants to determine if people notice the
authenticator attacks when they occur. We found that 12 participants did not
notice the attacks, while the last participant was excluded by our testing pro-
tocol before reaching the PBA attack test. Our observations and participant
reports indicate only cursory review of PBA prompts and notices, providing
ample opportunity for adversary deception.

2 Background and Related Work

Our work combines phone-based authentication, social engineering, and decep-
tion with computer users’ perception and management of risk. To implement
our tools, we use established networking techniques. Accordingly, we review
background and prior work in each of these areas. To the best of our knowl-
edge, we are the first research work to explore attacks that under-
mine phone-based authenticators without compromising the user’s
endpoint device, their phone, or the phone’s connection (e.g., SIM-
swapping).

Multi-factor authentication (MFA) schemes often consider what the user
knows, what the user possesses, and what the user is as different authentica-
tion factors [12]. Some organizations, such as Microsoft, indicate that MFA can
prevent more than 97% of identity-based breaches [25]. A study on a data set
of Google account authentication records found that device-based second-factor
authentication blocks more than 90% of account compromise attempts [14]. How-
ever, prior work indicates that MFA has several usability challenges that affect

186 M. M. Tolbert et al.

its adoption rate [11]. Ease-of-use, required cognitive effort, and trustworthiness
are three major factors that affect MFA’s usability [9]. To improve the adoption
of MFA, Das et al. [10] conducted a usability study on the Yubico Security Key
and observed user difficulties in configuring and using the technology.

Prior research has examined mechanisms to compromise PBAs by compro-
mising the user’s endpoint device, their phone, or the communication channel
with the phone. The simplest mechanism intercepts unencrypted text messages
to phones by falsely registering a device (e.g., “SIM swapping attacks”) or by
network operators [20,24]. Alternatively, Konoth et al. [23] explore a scenario
where an attacker has compromised the endpoint, including the user’s browser,
and synchronizes with a SMS-stealing application on the user’s phone. More
recent report [18] showed that scammers create a fake surveys on behalf of rep-
utable companies to mislead users into scan QR code and falsely authenticate
online services. Our work explores a simpler attack scenario that does not require
a compromise of the user’s phone, phone connection, or endpoint.

Phishing is a type of social engineering attack that deceives users into provid-
ing their personal information. An attacker can create a fake website to facilitate
phishing. Attackers may rely on victims’ lack of understanding of URL compo-
nents to deceive victims with little effort to disguise the destination site [19].
In a user study, Dhamija et al. [13] asked participants to evaluate a website for
symptoms of fraud. They found victims of impersonation attacks often only con-
sider the content of a webpage to determine its legitimacy and few considered
SSL indicators.

Security warnings are widely used to convey risk. However, prior research
found users often ignore these warnings due to a lack understanding of the jar-
gon [34] or habituation effects [2]. Akhawe et al. conducted a field study [1] to
examine different types of browser warnings and their click-through rates. They
found that malware and phishing warnings have a low click-through rate, while
SSL warnings can have high click-through rates, depending on the warning’s
interface design. Later work [17] examined a new design for SSL warnings to
improve adherence via simple, non-technical text and promoting a clear cause of
action. To examine how habituation affects disregard for security warnings [33],
a user study found that participants who learned to ignore warnings in one
task were likely to ignore security warnings in a subsequent task. To combat
such habituation, researchers proposed using polymorphic dialogues that con-
tinuously change the form of user required input [8] or interface appearance [3]
to require user attention for security decisions. We explore the impact of PBA
prompt messages and the user perception of these PBA prompts.

3 Understanding PBA Goals, Options, and Impacts

Phone-based authenticator (PBA) systems attempt to validate a user’s identity
by verifying that the user physically possesses a smartphone associated with
their account. A typical SSO authentication session using PBA is illustrated in
Fig. 1. In it, a user visits the relying party’s website, and when the user wants

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 187

to authenticate, the relying party redirects the user’s browser to the identity
provider site. Most identity providers have authentication APIs for relying par-
ties to integrate the login processes into their applications. The identity provider
then prompts the user for the credential. Upon validating the user’s credentials,
the identity provider then issues the PBA challenge to the user. The challenge
is typically a task with specific instructions that can be completed only through
or with the user’s phone. For instance, the challenge might ask the user to input
a nonce (i.e., a single-use value) that is only transmitted to the user’s phone or
ask the user to approve the login using an authenticator application installed on
the user’s phone. In some options, the response to the challenge is sent via the
browser; in other options, it is sent via the user’s phone. After successful com-
pletion of the PBA challenge, the identity provider redirects the user’s browser
back to the content provider, along with a token. The token both specifies the
user and proves that user’s identity.

2. Redirects to identity provider

1. Activates login link

3. Login page request

4. Login prompt
5. Send credentials

End-User
Web

Browser

Identity Provider
Website

Content Provider
Website

6a. PBA challenge prompt

End-User
Phone/Browser

7.Respond to the PBA challenge

End-User
Web

Browser
8. Redirects to content provider
with authorized token and ID

End-User
Phone

6b. Send nonce or
authentication notification

Fig. 1. A general PBA workflow without an attacker

We explored a set of phone-based authenticators as shown in Table 1. The first
four entries require the end user to obtain a nonce value and to supply that nonce
via the device being authenticated1. The underlying mechanism to share the
value varies: it can be transmitted via an SMS text message, through a phone call
in which an automated system verbally provides a string of numbers, through an
email with a code, or through output in a phone application (often implemented
via a time-based, one-time password). The next two PBA mechanisms do not
require the end user to supply the nonce. In the code matching scenario, the end
user selects a value in their phone application that matches what is displayed via
the login prompt on the browser. This action links the approval with the active
browser session. The “approve” request scenario omits the number matching
requirement and simply asks the end user to press an “approve” (or similarly
labeled) button on the phone to approve a request; however, this option lack an

1 We refer to the device being authenticated as “the browser,” for simplicity. However,
this approach can also be embedded within other application types.

188 M. M. Tolbert et al.

association between the browser session and the phone’s prompt. This leads to
a timing vulnerability that we explore on its own.

These PBA systems make two key assumptions: 1) the nonce will not be
revealed to an adversary and 2) the legitimate user will only respond to the
challenge of their own authentication attempts. However, if either assumption
is violated, the PBA system will fail to achieve its authentication goals. In the
remainder of this section, we discuss the threat model and how an adversary
may violate the PBA assumptions to gain unauthorized access.

Table 1. Attack effectiveness by PBA implementation method

PBA implementation Responding device Implementation defeated by

Malicious site? Timing attack?

Code via SMS Browser Yes Not tested

Code via Phone Call Browser Yes Not tested

Code via E-mail Browser Yes Not tested

App-based One-time-Code Browser Yes Not tested

App-based Code Matching Phone Yes Not tested

App-based “Approve” Request Phone Yes Yes

3.1 Threat Model and Experiment Setup

We scope our focus to attacks on PBA systems in SSO environments. We assume
that the user’s phone, device, and the identity provider are not compromised.
Further, we constrain the adversary such that it does not have access to the
user’s phone connection. We assume the adversary’s goal is to defeat the PBA
factor itself and either has already defeated other authentication factors (e.g.,
passwords) or does not need to (e.g., a single-factor PBA system).

In one scenario, which we label the “Malicious Site” scenario, the adver-
sary interacts with the user as a malicious SSO relying party. This scenario
is consistent with a phishing attack in which an adversary successfully lures a
user to a phishing website that impersonates a legitimate web site that uses a
specific identity provider. In our second scenario, which we label the “Timing
Attack” scenario, the adversary is on path between the user’s browser and the
SSO identity provider and is able to see and delay/drop packets between those
endpoints and to interact with the SSO provider on its own; however, it is unable
to decrypt or forge packets belonging to the browser or identity provider. The
Timing Attack scenario is consistent with an adversary running a malicious pub-
lic WiFi network [7], that has compromised the user’s residential router [27], or
is naturally on-path (e.g., an ISP or nation-state adversary).

For clarity, we describe scenarios in which a user is attempting to authenticate
on a client device (e.g., a desktop/laptop computer or tablet), which we refer
to as “the browser,” and performs the PBA step on a separate device (e.g., a
phone). These actions could be done on the same device; if so, one must relax
the adversary constraint against having access to the phone’s connection.

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 189

Client Machine
Ubuntu 16.04
10.0.0.4/24

Adversary Machine
Ubuntu 20.04
10.0.0.2/24

Router Machine
Ubuntu 20.04

10.0.0.10/24 192.168.122.105/24

VM Host NAT
Ubuntu 16.04

192.168.122.1/24

Virtual
Switch

in
Hypervisor

Smartphone
Internet

SSO Identity
Provider SSO Relying

Party

Fig. 2. Our experimental network.

In the remainder of this section, we explore these attack scenarios with differ-
ent PBA implementation options. We do so using an industry-leading SSO iden-
tity provider which has 40% of the identity provider market share and is used by
around 80,000 companies globally. We refer to this vendor as AnonSSO ; we use
a pseudonym for the vendor because the vendor employs current industry best
practices and the vulnerabilities are inherently due to PBA options themselves,
not due to the vendor’s implementation. The AnonSSO vendor’s approach is rep-
resentative of other implementations, and there were no implementation-specific
details that would prevent the results from generalizing to other implementa-
tions. Our study was approved by our Institutional Review Board (IRB) and
was conducted with careful attention to ethical conduct. As we further explain
in subsequent sections, our scenarios do not harm or attempt to compromise the
AnonSSO system.

We perform our experiments using a set of virtual machines that are con-
nected with the AnonSSO system via a bridged network interface. Figure 2 shows
our experimental network setup for conducting PBA attacks. We host three vir-
tual machines on a VM server. One virtual machine (top left) acts as the legiti-
mate client, another acts as an adversary for the malicious website (top right),
and a third acts as a router that is benign in the Malicious Site scenario but is
adversary-controlled in the Timing Attack scenario. These three virtual machines
are connected through a virtual bridge created by the physical machine’s hyper-
visor. The router is configured with two interfaces: one to the virtual bridge and
one to the hypervisor’s network card via a NAT interface. The router provides
connectivity to the AnonSSO authentication portals. A smartphone associated
with the legitimate user connects directly to the Internet.

3.2 Impact of Malicious Relying Party Sites

Adversaries have had success in luring users into visiting malicious sites [15]
and impersonating legitimate entities [32]. Previous work shown that advanced
phishing toolkits [22] can mimic the site with high fidelity, which simplifies this
process for adversaries.

190 M. M. Tolbert et al.

Accordingly, we explore a scenario in which an adversary creates a malicious
relying party website that purports to redirect the user to an identity provider,
but actually does not do so. Instead, the malicious site impersonates the identity
provider and prompts users to enter their credentials. If the user does not notice
the deception, they may submit this information, providing it to the adversary.
Upon receiving the user’s credentials, the malicious site covertly initiates a con-
nection to the identity provider as if it were a client. It impersonates the end-user
and supplies the credentials it obtained to the actual identity provider. This pro-
cess triggers the identity provider to send the PBA challenge (and transmit the
nonce if necessary) that asks the adversary to follow specific instructions. The
adversary uses the malicious site to relay those instructions to the real user. The
user, who may incorrectly believe they are in the middle of a valid authentication
attempt, may follow the instructions (e.g., by echoing the nonce to the adver-
sary’s malicious site or through a phone-based application) to respond to the
PBA challenge. By doing so, the end-user effectively authorizes the adversary’s
authentication attempt rather than its own (either by revealing the nonce to the
adversary or approving the adversary’s login in the authenticator application,
which violates both the first and second assumption discussed in Sect. 3). The
adversary succeeds whenever the user authorizes the adversary’s login.

As shown in Table 1, the PBA implementation method may require the adver-
sary to relay PBA instructions or request user inputs via the malicious site. In
other scenarios, the user may directly interact with their phone’s application
without requiring the adversary to issue a prompt. Our user study in Sect. 4.3
suggests that adversaries could deceive users into performing these actions.

We test the attack scenario using a legitimate client machine (top left in
Fig. 2) to connect to a malicious website (the adversary machine, top right in
Fig. 2). Both the client and adversary have unimpeded access to the Internet
(i.e., the router machine, center of Fig. 2, forward traffic without manipulation
or delay). The malicious relying party uses HTTP communication between itself
and the client. It uses a custom set of login pages to mimic the login process of
the identity provider while displaying user-supplied credentials and nonce values
to the adversary. As mentioned above, the adversary must perform its own login
attempt quickly upon receiving credentials, but this can be accomplished with
an automated process (e.g., using web browser automation tools such as Sele-
nium [30]). We omit this automation step since it has previously been explored.
The nonce received by adversaries is valid for multiple minutes and remains valid
during the entire attack process. Our tests confirm that an adversary can imple-
ment the scenario in a straightforward manner with few observable symptoms.

3.3 Timing Attacks on Unassociated PBA Approvals

The process of using an SSO protocol results in a specific traffic pattern involving
redirection of a client from a relying party to an identity provider and back. An
on-path adversary may examine traffic to determine such patterns, leveraging
DNS requests to identify the servers involved with relying parties and identity
providers. By recording such network traffic and browser actions, adversaries

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 191

can build a database of actions for each authentication step. The adversary can
later use that database when monitoring a target’s traffic to time an attack.

On-Path
Adversary

End-
User
Web

Browser

Content Provider
Website

1. Activates Login Link

2. Redirects to Identity Provider

15. Redirects to
 Content Provider
 with ID, token

3. Page Request

4. Login Prompt
5. Send Credentials

Identity
Provider
Website

9a. Sends Request

End-User
Phone

11. Login succeeds
 (adversary wins)

8. Send Credentials

9b. Sends Instructions

6. Page Request

7. Login Prompt

10. User Selects
 "Approve" in
 Phone App

12. Send Credentials

13b. Sends Instructions

13a. Sends Request

14. User Selects
 "Approve" in
 Phone App

Fig. 3. An on-path adversary launching a timing attack on a PBA workflow

In the timing attack, the adversary monitors all connections from a target to
a relying party. The adversary matches the target’s packets to each known step
in the authentication process. Once the target reaches the step that transmits
login credentials, the on-path adversary then can queue the victim’s packets and
submit its own login request using previously-obtained credentials, as shown
in Fig. 3. If the login system uses push-based authentication via a phone-based
application, the adversary’s attempt to log in will create a notification to the end
user’s phone asking for approval. Since the prompt appears at the expected time
during the user own authentication attempt, the user may approve it. However, in
doing so, the end user authorizes the adversary’s authentication attempt instead,
violating the second PBA security assumption discussed in Sect. 3.

For the timing attack to work, the PBA approval process on the phone must
not be explicitly linked with the browser login session. Only the last implemen-
tation method in Table 1, the app-based “approve” request, meets this require-
ment. In that workflow, the “approve” button does not provide context for what
session is being approved nor does it require the user to supply a unique identi-
fier (such as a nonce or matching code). This ambiguity allows an adversary to
delay and reorder interactions to gain access.

In our experiments, the adversary controls the router machine depicted in
the center of Fig. 2. The adversary machine (bottom left) is not involved in this
attack. The adversary pre-profiles the relying party interaction with AnonSSO
and creates an annotated database with packet sizes for each event. AnonSSO
prompts for a username associated with the account and ask for password in a
second page. The adversary builds a transition map for the initial authentication

192 M. M. Tolbert et al.

page request, the submission of a username, and the submission of a password.
For each TCP flow to AnonSSO, it tracks the number of packets and total
bytes transmitted to distinguish the password submission step for pausing the
legitimate transaction. Since identity providers like AnonSSO provide a uniform
API for relying parties, the process can generalize across relying parties.

The client accesses a legitimate relying party website and the AnonSSO
infrastructure via the router. The client and servers use TLS, so the router does
not have access to the plain-text communication or the ability to forge messages.
Using the router machine’s built-in iptables firewall, we direct all communica-
tion between the client and AnonSSO endpoints to a specified queue in the Linux
netfilter architecture. With a Python script, we use the NetfilterQueue
Python library [21] to dequeue all the packets in the kernel queue. We then
use the Scapy [29] tool to dissect the packet headers of the obtained packets to
extract host names from the DNS response packets and associate each HTTPS
packet’s destination IP with a host name. For each intercepted packet, we track
the cumulative packets and bytes transmitted to identify which stage of the
authentication process the user is in. Once the requisite transmission occurs to
send the username, we know the next transmission will be the password sub-
mission. Before reaching the password submission stage, we simply forward each
packet. However, once we receive the first packet associated with password sub-
mission, we queue it and all subsequent traffic in that flow. The adversary then
performs an out-of-band login, which sends a PBA approval request to the phone.

3.4 Observable Characteristics of the Attack Scenarios

The Malicious Relying Party Site and the Timing Attack scenarios have subtle
symptoms. We describe these symptoms in this section. Our user study in Sect. 4
found that our participants did not have concerns about these symptoms.

For the malicious relying party scenario, the primary non-adversary con-
trolled symptom of the attack is the lack of redirection from the relying party
to an identity provider in the browser’s address bar. Otherwise, an adversary
can convincingly replicate the page visuals to mimic a legitimate relying party
and the identity provider. An adversary may choose to continue its deception
after succeeding (i.e., after the user completes the PBA process to authorize
the adversary) by redirecting the user to the legitimate relying party’s site. The
user may notice they are not logged in and may retry the process. The user
may incorrectly believe the site had an issue performing the login rather than
recognizing that they had been attacked.

For the timing attack scenario, the primary non-adversary controlled symp-
tom of the attack is that the browser will not provide confirmation of password
submission and a prompt to complete the PBA process before the PBA appli-
cation prompts the user for approval. Until the user proceeds with the PBA
approval, the browser will appear as if it is awaiting a response from the iden-
tity provider. After the user approves the attack, the adversary can choose to
drop or deliver the queued packets. If dropped, the web request will time out. If

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 193

delivered, the user will receive a second PBA prompt, which if completed, will
authorize the user’s access.

In our own personal usage of PBAs, we occasionally receive duplicate PBA
prompts for a login attempt or must retry a PBA attempt to successfully sign-in.
While the causes of these scenarios are unclear, we suspect network transmission
issues or server-related errors. In our user study (Sect. 4.4), we explore whether
our human subjects have had similar experiences. We find that they did, and that
these experiences seem to desensitize participants to such PBA attack symptoms.

4 User Study and Findings

Given the subtle symptoms of the PBA attacks, we next explore whether users
notice them and whether the symptoms raise concerns. To do so, we conducted a
user study to gather participants’ impressions. We recruited 13 participants, con-
ducted the study, and debriefed each participant to understand their actions. We
found that the symptoms of the PBA attacks did not concern the participants.

4.1 IRB Process and Participant Recruiting

We used our organization’s Institutional Review Board (IRB) to ensure appro-
priate protections for our human subjects. The main concern in our study was
the use of distractions and ambiguity. Our goal was to measure participants’
responses to phone-based security prompts on an account, without biasing the
results by revealing that we were specifically monitoring their security decisions.

In our informed consent process, we indicated that our study would explore
“how website design affects [the] user experience” and that the study would
“measure how various design choices affect how easily and quickly a user notices
that information being presented to them is important.” The protocol proce-
dures indicated that participants would use video conferencing and screen shar-
ing software to log in to a puzzle website, complete several puzzles, and review
the results. The participants received a $5 USD gift card incentive.

We recruited participants via email. Our participants were undergraduate
Computer Science students, which may result in biases making them more sen-
sitive to computing details that could reveal a security risk.

4.2 Experimental Setup

Our participants met with the researchers via video conferencing, which was
necessary safety consideration during a high propagation phase of the COVID-
19 pandemic. The subjects were experienced with video conferencing and, except
where noted, we do not believe that the format affected the study.

The researchers used the same experimental VM infrastructure used in
Sect. 3.1 using shared screen control software that enables remote control for
participants. The researchers then allowed the human subjects to control that
VM system via the video conferencing software. The participants were told that

194 M. M. Tolbert et al.

as part of our user interface study, the participant would need to remotely con-
trol the entire process. It was pointed out that the system may need to use
smartphones, and if so, the researchers would hold the phone up to their video
conferencing camera and ask the participant how to proceed.

The participants were asked to provide careful feedback about the website
associated with a puzzle game. They were asked to log in to the site and were
supplied with a researcher-provided account and were told that doing so would
enable tracking their progress in the game. For the identity provider, we used
the same vendor as in Sect. 3. The researchers ensured that participants used
the researcher-provided system and credentials to avoid risk to participants.

If at any point the user expressed security concerns, we immediately ended
the study to allow us to debrief the individual and address those concerns. If the
participant completed the authentication process without expressing concern, we
asked them to play an online game for a few minutes while commenting on any
design aspects that they noticed. The requested commentary was to focus users
on the website rather than the authentication process during our interview.

During the experiment, one researcher acted as the host and guided the
participant through the study. The host allowed the participant to control their
screen and VM through the conferencing software. Another researcher focused
on performing the attack on the VM system while it was controlled by the
participant. If the host needed assistance, the second researcher would provide
it. Otherwise, the second researcher remained silent as if they were an observer
taking notes, while actually performing the adversary actions in the experiment.

Except as noted, each interactive segment with participants ended with a
short interview. We asked some questions before informing the participant of
the focus on PBAs and asked others afterward. The researchers answered any
questions for the participants, offered online account security advice, and then
ended the session. We split the participants into groups to study both the mali-
cious website and the packet delay attacks.

4.3 Participant Responses to the Malicious Relying Party Scenario

In the malicious website attack, we explored both SMS-based delivery of nonce
values and application-based approval verification mechanisms. We omitted
exploration of code delivery via email, audio phone calls, or application-based
code display since they have similar user-facing characteristics as the SMS-based
delivery of nonce values.

In our experiments, we created a site that was delivered over HTTP with
a similar-looking URL host name (in which the period character was missing
from a host name, resulting in the concatenation of a domain and host-name in
the domain portion of the URL). When the host directed the participant to log
in to the game site, the malicious website showed a fake variant of the Anon-
SSO authentication portal. As the user entered their credentials, the adversary
observed the console of the website. Once the user submitted authentication
credentials, the website displayed the credentials to the adversary’s console and
took no subsequent action. The adversary viewed those credentials and quickly

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 195

submitted a separate login attempt to the real AnonSSO authentication por-
tal with the participant-supplied credentials. The adversary’s action caused the
actual AnonSSO system to send a PBA request to the host’s phone.

When the PBA challenge appeared on the host’s phone, the host displayed
the prompt to the participant. The participant either had to choose to pro-
ceed or abort, in the case of the application-based approval process, or to enter
the displayed code into the website for the SMS-based code delivery option. If
the participant chose to proceed in application-based approach, the adversary’s
attempt was authorized. Likewise, if the participant typed in the correct code
into the malicious website, it was displayed to the adversary via the website’s
console and the adversary could then enter the code to log in. Both of these
outcomes were considered successful attacks. If the participant chose to abort
the log in, the attempt was considered an unsuccessful attack.

Table 2. User study results indicating whether individuals identified attacks. One
participant was disqualified due to detecting an experimental setup issue unrelated to
the phone-based authenticators.

Malicious site Timing attack

SMS App, OS context App, No context App, Distance App, Screenshot

Number participants 3 3 3 2 2

Disqualified 1 0 0 0 0

Attack failed 0 0 0 0 0

Attack succeeded 2 3 3 2 2

Symptoms noted 1 1 0 0 0

No symptoms noted 1 2 3 2 2

In the second column of Table 2, we show the results of SMS-based code
delivery experiments. One participant was disqualified before proceeding to the
PBA test. Another did not detect the attack, but described symptoms of the
attack during the post-experiment interview. The third participant did not notice
the attack or any symptoms of a problem.

Our testing protocol required us to abort the user study for one of our partic-
ipants before conducting the PBA attack. The disqualified participant noticed
discrepancies in the site content of the fake sign-in page before reaching the stage
where a password was entered and before the PBA could be tested. The partic-
ipant indicated they had previously been the victim of an attack and observed
an inconsistency in the animation associated with our mimicry of the vendor’s
site. This participant did not notice the host name’s mismatch or the HTTP
indicator. We thus were unable to obtain PBA data for that participant.

When we explored the application-based approval approach, none of the three
participants detected the attack live, as shown in the third column of Table 2.
Only one participant indicated any symptoms; the one identified was related to
a mismatch in operating system on the PBA prompt. This response hinted at

196 M. M. Tolbert et al.

the value of context; however, a more sophisticated adversary would be able to
observe OS details of the legitimate client and forge browser or OS headers when
interacting with the identity provider, causing the results to match.

4.4 Participant Responses to Timing Attack Scenario

In this attack, the host directed the participant to log in to the game website,
which started an authentication session via the vendor’s authentication page. At
the same time, the adversary researcher initiated a second authentication session
on a separate system, supplying the same credentials. However, the adversary
researcher did not submit the password credentials immediately. Instead, the
adversary researcher monitored the attack script running on the router VM. The
adversary researcher activated the attack script while the participant was logging
in2. When the attack script from Sect. 3.3 observed the trigger condition, it
automatically paused all packets associated with the participant’s login session.
Then, the adversary researcher started the login attempt for the second session.
The submission of the second session’s information resulted in a PBA request
via the host’s phone.

The host researcher then showed their phone to the participant with the PBA
prompt and asked the participant what buttons should be pressed. If the victim
told the host to press a button that allowed the request, the adversary’s attempt
was approved and the adversary could observe the success. The adversary then
instructed the attack script to unpause the participant’s connection and deliver
all the queued packets associated with the participant’s log in attempt. This
resulted in a second PBA request at the host’s phone, which the host then
displayed to the participant and asked for instruction.

In exploring the packet pausing attack, we considered two variants: the
standard authentication prompt and one enhanced with additional context.
As with the lab-based study, both variants considered only the application-
based “approve” request workflow in which the participant was asked to confirm
whether they initiated the request or not.

In the standard authentication scenario, the user was provided with a prompt
that indicated the account being signed in, the device operating system and
architecture performing the log in, a rough location (country-level granularity),
an indication that the log in was being performed “now,” a button indicating
this was correct, and one indicating it was incorrect.

As noted earlier, the only symptoms of the timing attack are that the web
page where the user submits a credential is briefly delayed and the end user
receives multiple requests to authenticate. As we see in the fourth column of
Table 2, none of the three participants detected the attack or reported suspicious
symptoms during the interview process. In fact, one of the participants indicated
that receiving a second phone-based notification request “seemed pretty standard

2 Future engineering efforts may allow the script to run continuously and to automat-
ically identify the login session. Since our goal was to measure participant reactions,
for simplicity, we manually activated it in the user study.

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 197

for [AnonSSO].” That participant proceeded through both verification prompts
quickly. Another participant took longer to consider both PBA prompts, but
proceeded in each case.

We next explored user behaviors when they have additional context that
might alert them to something awry. In this case, the host showed the partici-
pant a false notification screen during the first authentication request with two
discrepancies from a real notification: it showed that the request originated from
a location that was thousands of miles away and was from an operating system
that mismatched what the participant was using. As shown in the fifth column
of Table 2, neither of the two participants in this scenario detected the attack or
reported suspicious behavior in the interview.

In our final scenario, participants were shown a screenshot of a computer
desktop in the phone-based authenticator prompt and asked if the image
matched what they were trying to do. The researchers intentionally ensured that
the screenshot did not match the participant’s screen: the screenshot showed a
different browser, a different OS, and different screen size. Further, the contents
of the window did not match: one displayed a username entry page for a login
to a different website whereas the study participant was viewing the password
entry page for a login to the game website. Both participants chose to proceeded
(as shown Table 2, column 6), despite examining the prompt for over a minute.
During the post-experiment interview, both participants indicated the picture
was difficult to view through the video conferencing software, so they could not
clearly see the details or differences. One of the participants indicated the screen-
shot looked like their PC’s desktop, which may have been a false assurance.

This exploration confirmed our hypothesis that the timing attack was too
subtle to seem suspicious to end users and that the duplicate authentication
prompt would not raise concerns for them. The user study partially refuted
our hypothesis that additional context would help. The details about location
and machine type provided little value for user verification. While screenshots
may have been useful, the experimental setup appeared to affect the results and
further study may be needed. However, the post-experiment interview indicated
that even when screenshots do not match, users may still proceed anyway, as
long as the image looks familiar. One participant expressed privacy concerns if
accurate screenshots of the system were to appear within the PBA prompt.

4.5 Participant Feedback and Study Limitations

In our post-experiment interviews, most participants indicated that having PBAs
as part of a MFA scheme increased their confidence in the security of their
accounts. To them, the approach was worth the inconvenience. However, two
participants indicated that it was not worthwhile.

The presence of PBAs increased some participants’ confidence that they were
interacting with an authentic website. One user believed that an email with a
nonce serves as “proof” of security. This reaction indicates that users may be
particularly vulnerable to social engineering attacks that incorporate PBAs.

198 M. M. Tolbert et al.

User studies have inherent limitations in terms of realism, representative pop-
ulations, and scale. Our use of researcher-provided credentials and a researcher
observing the login may have affected realism, possibly by providing inherent
assurance and by heightening user attention to the process. The video confer-
encing tool affected the screenshot study, but based on participant feedback and
actions, it did not affect the other results. Finally, our participant pool was small,
with 13 Computer Science majors, which is subject to bias. However, that bias
should have increased the attack detection rate and none of our participants
reported PBA attacks. This highlights real risks with PBAs in practice.

4.6 Potential Mitigations for Deployment

We recommend that deployers of PBA systems eliminate the usage of the simple
application-based prompt to approve or deny a request. Instead, organizations
would be more resilient against timing attacks by using the “code matching”
requirement for applications since that requires the user to link the action being
authorized on the phone with the device being authorized. This can entirely
defeat the Packet Delay Attack.

Providing additional context about the relying party or service being autho-
rized may allow end-users to identify mismatches. Such context was examined
by our participants, but despite the presence of mismatches, they did not abort
the authentication process. We recommend end-user training about how PBAs
work and the symptoms of an attack.

Additional training about typo-squatting and website mimicry would also be
useful to help users avoid malicious site impersonation. Because the content of a
website is under the adversary’s control, attackers can create convincing replicas
of legitimate sites. Training users to understand URLs may help manage this
risk.

Finally, we recommend that organizations consider human interaction with
PBAs and minimize the number of times users must employ them. A miscon-
figured environment may unnecessarily prompt individuals to use phone-based
authenticators, which may desensitize users and cause them not to carefully vet
authentication prompts. With the sparing usage of such authentication prompts,
users may review them more carefully.

5 Concluding Remarks

We explored the use of phone-based authentication systems, which are in
widespread use on the Internet. Despite assurances to the contrary, we showed
that these systems offer little resistance to phishing attacks. One common phone-
based authenticator mechanism can also be defeated by strategic timing attacks.
We explored the attack scenarios and showed that they were unnoticed by
technically-inclined participants in a user study.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. 1651540.

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 199

References

1. Akhawe, D., Felt, A.P.: Alice in warningland: a large-scale field study of browser
security warning effectiveness. In: USENIX Security Symposium, pp. 257–272
(2013)

2. Amran, A., Zaaba, Z.F., Mahinderjit Singh, M.K.: Habituation effects in computer
security warning. Inf. Secur. J.: Global Perspect. 27(4), 192–204 (2018)

3. Anderson, B.B., Kirwan, C.B., Jenkins, J.L., Eargle, D., Howard, S., Vance, A.:
How polymorphic warnings reduce habituation in the brain: insights from an FMRI
study. In: ACM Conference on Human Factors in Computing Systems, pp. 2883–
2892 (2015). https://doi.org/10.1145/2702123.2702322

4. Avatier: Azure active directory seamless single sign-on (2020). https://
docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso.
Accessed 29 Apr 2021

5. Avatier: Which companies use multi-factor authentication with their customers?
(2021). https://www.avatier.com/blog/companies-use-multi-factor-authentication-
customers/. Accessed 29 Apr 2021

6. Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S., Sleeper, M.: Improv-
ing computer security dialogs. In: Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6949, pp. 18–35.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23768-3 2

7. Breński, K.P.: Evil Hotspot-are public hotspots safe? Ph.D. thesis, Zak�lad Struk-
turalnych Metod Przetwarzania Wiedzy (2017)

8. Brustoloni, J.C., Villamaŕın-Salomón, R.: Improving security decisions with poly-
morphic and audited dialogs. In: Proceedings of the ACM Symposium on Usable
Privacy and Security, pp. 76–85 (2007). https://doi.org/10.1145/1280680.1280691

9. Cristofaro, E.D., Du, H., Freudiger, J., Norcie, G.: Two-factor or not two-factor?
A comparative usability study of two-factor authentication. CoRR abs/1309.5344
(2013). http://arxiv.org/abs/1309.5344

10. Das, S., Dingman, A., Camp, L.J.: Why Johnny doesn’t use two factor a two-phase
usability study of the FIDO U2F security key. In: Meiklejohn, S., Sako, K. (eds.)
FC 2018. LNCS, vol. 10957, pp. 160–179. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-662-58387-6 9

11. Das, S., Wang, B., Tingle, Z., Camp, L.J.: Evaluating user perception of multi-
factor authentication: a systematic review. CoRR abs/1908.05901 (2019). http://
arxiv.org/abs/1908.05901

12. Dasgupta, D., Roy, A., Nag, A.: Multi-factor authentication. In: Advances in User
Authentication. ISFS, pp. 185–233. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58808-7 5

13. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 581–590
(2006). https://doi.org/10.1145/1124772.1124861

14. Doerfler, P., et al.: Evaluating login challenges as a defense against account
takeover. In: The ACM World Wide Web Conference, pp. 372–382 (2019). https://
doi.org/10.1145/3308558.3313481

15. Downs, J.S., Holbrook, M.B., Cranor, L.F.: Decision strategies and susceptibility to
phishing. In: Proceedings of the ACM Symposium on Usable Privacy and Security,
pp. 79–90 (2006). https://doi.org/10.1145/1143120.1143131

16. European Commission: Payment services (PSD 2) - directive (EU) 2015/2366
(2015). https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-
2366 en. Accessed 6 June 2022

https://doi.org/10.1145/2702123.2702322
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso
https://www.avatier.com/blog/companies-use-multi-factor-authentication-customers/
https://www.avatier.com/blog/companies-use-multi-factor-authentication-customers/
https://doi.org/10.1007/978-3-642-23768-3_2
https://doi.org/10.1145/1280680.1280691
http://arxiv.org/abs/1309.5344
https://doi.org/10.1007/978-3-662-58387-6_9
https://doi.org/10.1007/978-3-662-58387-6_9
http://arxiv.org/abs/1908.05901
http://arxiv.org/abs/1908.05901
https://doi.org/10.1007/978-3-319-58808-7_5
https://doi.org/10.1007/978-3-319-58808-7_5
https://doi.org/10.1145/1124772.1124861
https://doi.org/10.1145/3308558.3313481
https://doi.org/10.1145/3308558.3313481
https://doi.org/10.1145/1143120.1143131
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

200 M. M. Tolbert et al.

17. Felt, A.P., et al.: Improving SSL warnings: comprehension and adherence. In: Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems, pp.
2893–2902 (2015). https://doi.org/10.1145/2702123.2702442

18. Government of Singapore: Police advisory on scam survey leading to the misuse of
singpass access to digital services (2022). https://ec.europa.eu/info/law/payment-
services-psd-2-directive-eu-2015-2366 en. Accessed 6 June 2022

19. Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012).
https://doi.org/10.1145/2063176.2063197

20. Jover, R.P.: Security analysis of SMS as a second factor of authentication: the
challenges of multifactor authentication based on SMS, including cellular security
deficiencies, SS7 exploits, and sim swapping. Queue 18(4), 37–60 (2020)

21. Kerkhoff Technologies Inc: Netfilterqueue (2021). https://github.com/kti/python-
netfilterqueue. Accessed 29 Apr 2021

22. Kondracki, B., Azad, B.A., Starov, O., Nikiforakis, N.: Catching transparent phish:
analyzing and detecting MITM phishing toolkits. In: Proceedings of the ACM
Conference on Computer and Communications Security, pp. 36–50 (2021). https://
doi.org/10.1145/3460120.3484765

23. Konoth, R.K., van der Veen, V., Bos, H.: How anywhere computing just killed
your phone-based two-factor authentication. In: Grossklags, J., Preneel, B. (eds.)
FC 2016. LNCS, vol. 9603, pp. 405–421. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54970-4 24

24. Lee, K., Kaiser, B., Mayer, J., Narayanan, A.: An empirical study of wireless carrier
authentication for SIM swaps. In: Symposium on Usable Privacy and Security, pp.
61–79 (2020)

25. Microsoft: Microsoft digital defense report (2020). https://www.microsoft.com/en-
us/security/business/security-intelligence-report. Accessed 29 Apr 2021

26. Microsoft: Optimize reauthentication prompts and understand session life-
time for Azure AD multi-factor authentication (2020). https://docs.microsoft.
com/en-us/azure/active-directory/authentication/concepts-azure-multi-factor-
authentication-prompts-session-lifetime. Accessed 29 Apr 2021

27. Niemietz, M., Schwenk, J.: Owning your home network: router security revisited.
CoRR abs/1506.04112 (2015). http://arxiv.org/abs/1506.04112

28. ReportLinker: Global multi-factor authentication (MFA) industry (2021). https://
www.reportlinker.com/p03329771/Global-Multi-Factor-Authentication-MFA-
Industry.html. Accessed 29 Apr 2021

29. SecDev: Scapy (2021). https://github.com/secdev. Accessed 29 Apr 2021
30. Selenium: Seleniumhq browser automation (2021). https://www.selenium.dev/.

Accessed 29 Apr 2021
31. Sinigaglia, F., Carbone, R., Costa, G., Zannone, N.: A survey on multi-factor

authentication for online banking in the wild. Comput. Secur. 95, 101745 (2020)
32. Spaulding, J., Nyang, D., Mohaisen, A.: Understanding the effectiveness of

typosquatting techniques. In: Proceedings of the ACM/IEEE Workshop on Hot
Topics in Web Systems and Technologies (2017). https://doi.org/10.1145/3132465.
3132467

33. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: an
empirical study of SSL warning effectiveness. In: USENIX Security Symposium,
pp. 399–416 (2009)

34. Zaaba, Z.F., Boon, T.K.: Examination on usability issues of security warning
dialogs. Age 18(25), 26–35 (2015)

https://doi.org/10.1145/2702123.2702442
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://doi.org/10.1145/2063176.2063197
https://github.com/kti/python-netfilterqueue
https://github.com/kti/python-netfilterqueue
https://doi.org/10.1145/3460120.3484765
https://doi.org/10.1145/3460120.3484765
https://doi.org/10.1007/978-3-662-54970-4_24
https://doi.org/10.1007/978-3-662-54970-4_24
https://www.microsoft.com/en-us/security/business/security-intelligence-report
https://www.microsoft.com/en-us/security/business/security-intelligence-report
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concepts-azure-multi-factor-authentication-prompts-session-lifetime
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concepts-azure-multi-factor-authentication-prompts-session-lifetime
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concepts-azure-multi-factor-authentication-prompts-session-lifetime
http://arxiv.org/abs/1506.04112
https://www.reportlinker.com/p03329771/Global-Multi-Factor-Authentication-MFA-Industry.html
https://www.reportlinker.com/p03329771/Global-Multi-Factor-Authentication-MFA-Industry.html
https://www.reportlinker.com/p03329771/Global-Multi-Factor-Authentication-MFA-Industry.html
https://github.com/secdev
https://www.selenium.dev/
https://doi.org/10.1145/3132465.3132467
https://doi.org/10.1145/3132465.3132467

FRACTAL: Single-Channel Multi-factor
Transaction Authentication Through

a Compromised Terminal

Savio Sciancalepore1(B), Simone Raponi2, Daniele Caldarola2,
and Roberto Di Pietro2

1 Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
s.sciancalepore@tue.nl

2 Division of Information and Computing Technology (ICT),
College of Science and Engineering (CSE),

Hamad Bin Khalifa University (HBKU), Doha, Qatar
{sraponi,rdipietro}@hbku.edu.qa

Abstract. Multi-Factor Authentication (MFA) schemes currently used
for verifying the authenticity of Internet banking transactions rely either
on dedicated devices (namely, tokens) or on out-of-band channels—
typically, the mobile cellular network. However, when both the dedicated
devices and the additional channel are not available and the Primary
Authentication Terminal (PAT) is compromised, MFA schemes cannot
reliably guarantee transaction authenticity. The afore-mentioned situ-
ation is typical, e.g., offshore or on-board of aircraft, when only few
untrusted terminals have Internet connection.

In this paper, we present FRACTAL, a new scheme providing single-
channel transaction MFA through general-purpose additional authenti-
cation terminals. Moreover, the proposed solution is also resilient against
a potentially-compromised PAT. FRACTAL easily scales up as per the
number of multiple authentication factors, and it is extensible beyond
the banking scenario, e.g., to unattended and constrained scenarios, by
integrating also Internet of Things (IoT) devices as additional authenti-
cation terminals. Other than enjoying a formal verification of its security
properties via ProVerif, FRACTAL is also supported by an extensive
experimental performance assessment. Our real-world Proof-of-Concept
scenarios, implemented using Spring micro-services, show that FRAC-
TAL can complete a transaction in about 2 s, independently from the
remote server location. The flexibility of use, the guaranteed security,
and the striking performance, characterize FRACTAL as a solution with
an expected high potential impact in the authentication field, for both
Industry and Academia.

Keywords: Internet transactions · Network security · Cryptographic
protocols

1 Introduction

The capillary diffusion of Internet services in the last decade has certified the
shift of banking services from in-person to online [1], and this trend has been
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 201–217, 2022.
https://doi.org/10.1007/978-3-031-15777-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_12

202 S. Sciancalepore et al.

even magnified by the COVID19 pandemic. Nowadays, all banks offer web plat-
forms and mobile smartphone applications allowing users with an active bank
subscription to manage their funds online [2].

Despite the evident advantages, the afore-mentioned shift carries a plethora
of security issues. For instance, powerful remote attackers could steal legiti-
mate users’ credentials to fully impersonate them on the web, e.g., by initiating
unauthorized monetary transactions, leading to huge economic losses for both
individuals and companies [3]. To offer enhanced security to their customers,
many bank service providers currently implement user Multi-Factor Authenti-
cation (MFA) solutions [4]. Specifically, user MFA schemes require the client to
provide multiple pieces of evidence to demonstrate to be the same physical per-
son associated with the end-user account. Typically, user MFA occurs via either
the delivery of a one-time Personal Identification Number (PIN) to a device
registered by the end-user with the bank, such as a mobile cellular number, or
proving to be in possession of dedicated smart card readers, released by the bank
to the user [5]. Moreover, recent standards such as FIDO and FIDO2/WebAuthN
provided multiple standardized mechanisms and out-of-the-box APIs to perform
user authentication on several platforms [6].

In this context, mutual transaction MFA protocols focus on ensuring the
authenticity of the Internet transactions. Such schemes have been widely inves-
tigated, both in the literature and in the industry/banking domain (see Sect. 6
and the survey in [4]). Nonetheless, currently-deployed solutions strongly rely
on the availability of either dedicated devices (such as reader/token generators),
used specifically for authentication purposes, or additional channels to the Inter-
net connection, e.g., the cellular network, used to deliver the one-time password.
When they are not available, their security relies on the security of the pri-
mary terminal adopted by the user to interact with the remote service. If such
a terminal is controlled by the adversary, currently-available user MFA schemes
cannot guarantee transactions mutual authentication, as they cannot reliably
verify remote server’s authenticity. The unavailability of the additional channel
is a typical situation, e.g., on a cruise ship offshore, or during an aircraft trip, to
name a few. In these scenarios, users and remote servers should establish Strong
Mutual Authentication without a dedicated channel to the secondary devices,
allowing an untrusted terminal to route messages to/from general-purpose addi-
tional authentication terminals. To the best of our knowledge, such a challenging
scenario has not been addressed, yet.

Contribution. In this paper, we present FRACTAL, an efficient solution to
enforce single-channel transaction MFA even when the main terminal is compro-
mised. FRACTAL is a flexible scheme, where several user devices (e.g., general-
purpose or Internet of Things (IoT) ones) can be used to demonstrate the authen-
ticity of an online transaction, although the primary authentication terminal
used to trigger the transaction could be compromised. Moreover, FRACTAL
requires very limited effort by the user, which is required only to identify its
own transaction. We discuss the security features of FRACTAL, and we prove
its security via the verification tool ProVerif. Moreover, we implemented a func-

FRACTAL: Single-Channel Multi-factor Transaction 203

tioning prototype of FRACTAL proving that, using FRACTAL, it is possible
to successfully perform an online transaction in 2 s on average, while adding
multiple devices only slightly affects its performance.

We believe that FRACTAL may be useful in several application scenarios—as
witnessed by the FRACTAL supporting patent [7], that inspired this paper.

Roadmap. This paper is organized as follows. Sect. 2 introduces the scenario
and the adversary model, Sect. 3 illustrates FRACTAL, Sect. 4 discusses the
security of FRACTAL, Sect. 5 includes the performance evaluation of FRAC-
TAL, Sect. 6 reviews the related work, and, finally, Sect. 7 tightens the conclu-
sions.

2 Scenario and Adversary Model

2.1 Scenario

We assume an end-user, namely A, want to access via a regular Internet con-
nection her savings account at the bank B. A and B are equipped with a
private/public key pair, and their connection is secured via the well-known
Transport Layer Security (TLS) protocol, e.g., leveraging public-key certificates.
We assume that A uses a Primary Authentication Terminal (PAT) to interact
with the bank B. The Primary Authentication Terminal (PAT) can be either a
fixed workstation or a laptop. We do not assume the presence of any particular
additional interface on the PAT (e.g., biometrics).

We assume that the server of B, i.e., the remote server, requires MFA
to authorize any operation. To this aim, A has to register with B multiple
Additional Authentication Terminals. The Additional Authentication Termi-
nals (AATs) can be any general-purpose device in possession of A, that she can
leverage to demonstrate her identity at the authentication time. Note that A
registers the AATs at the join with B, and they can be added/modified through
secure channels. During the registration phase, the bank B stores securely its
public key and public key certificate on each AAT, to avoid any possible tam-
pering.

Finally, we assume that the AATs could not be connected to the Internet,
thus being not able to communicate directly with B. This is a frequent situation,
occurring when the end-user is in a remote location. For instance, when A is on
a cruise ship, usually only the PAT is connected to the Internet, while any other
AAT would require additional subscriptions. Another use-case would be the use
of a shared on-demand terminal, that is owned by the user but rented on request.

2.2 Adversarial Model

The adversary assumed in this work, namely ADV , is in full control of the PAT.
We neglect the specific tool used by the attacker to compromise the PAT, as
the PAT could be either colluding with the adversary or deployed by ADV on
purpose. Overall, this assumption empowers ADV , enabling him to carry out

204 S. Sciancalepore et al.

both passive and active attacks from the PAT. As a passive attacker, ADV is
a global eavesdropper, able to detect any packet transmitted and received by
the PAT. As an active attacker, ADV features active attacking capabilities, in
line with the well-known Dolev-Yao attacker model [8]. Thus, ADV can inject
its own messages on the channel, either by replaying eavesdropped messages or
by forging new messages, impersonate either the PAT or the server, as well as
perform Man In The Middle (MITM) attacks against every involved party. In
addition, by having complete control of the PAT, ADV can tamper with the copy
of the key and the public key certificate of the server stored on the PAT, e.g.,
by replacing them with one of his choices. Moreover, in our paper, we assume
that at least one AAT is not compromised by the adversary.

One of the possible goals of the attacker is to steal money from A, held in her
account on B. To this aim, relying on the compromised PAT, ADV can launch
either synchronous or asynchronous MITM attacks.

In the former scenario, ADV waits for the end-user to perform a transaction.
At that time, ADV launches a MITM attack and redirects any request performed
by the client to a malicious server, interacting with the remote server on behalf
of A. In the latter case, ADV launches the attack without waiting for actions
performed by the end-user.

3 Protocol Description

3.1 Basic Protocol Flow

Figure 1 describes the initial steps required by FRACTAL. Note that the opera-
tions described in this section are always executed, and they do not depend on
the particular scenario where the protocol is operated.

Fig. 1. Initial protocol flow of FRACTAL.

FRACTAL: Single-Channel Multi-factor Transaction 205

1. The end-user first instructs the PAT to initiate a connection with the remote
server. Typically, this operation occurs through the typing of a Uniform
Resource Locator (URL) in the browser.

2. The PAT sends a connection request to the public IP address of the remote
server, on behalf of the end-user. Note that, if the PAT is compromised, the
request can be redirected first to the IP address of the attacker, to be then
re-routed to the server—e.g., the attacker carries out a MITM.

3. The PAT and the remote server carry out mutual authentication, to verify
each other identities. Any mutual authentication protocol can be used here
(the prototype described in Sect. 5.1 uses TLS with X.509 certificates).

4. Through the PAT, the end-user specifies the details of the desired banking
transaction. This interaction typically happens through the keyboard, and
involves the specification of the transaction recipient dst, and the amount to
be transferred, amount.

5. Assume A registered a single AAT with the bank (N=1). Let skA,2 and pkA,2

be the private/public key pair of the AAT. On the reception of the transaction
details from the PAT, the remote server generates a one-time code c. The code
c is encrypted using the public key of the registered AAT pkA,2, generating
an encrypted code c̃, as in Eq. 1.

c̃ = E (c, pkA,2) , (1)

where the operator E (m,K) refers to the public-key encryption of the plain-
text m using the public key K. When N AATs are registered, N encrypted
codes are generated according to Eq. 1. Then, the remote server creates a
public-key signature of the transaction, namely δ, as in Eq. 2.

δ = sign ([dst, amount, ts, c̃] , skB) , (2)

where ts refers to the expiration time of the transactions, and sign is a generic
public-key signature algorithm.

6. The information about the recipient of the transaction, the amount, the times-
tamp, and the signature δ are delivered back to the PAT.

7. At reception time, the PAT first verifies the authenticity of the signature δ,
as per Eq. 3, by using the public key of the remote server pkB.

verify ([dst, amount, ts, c̃] , pkB) ?= γ, (3)

where verify (·) is a signature verification algorithm. Note that the PAT can
verify only the authenticity of δ. Instead, it cannot verify autonomously the
content of c̃, but it has to rely on the assistance of the AAT(s).

8. As a first verification step, the recipient and the amount involved in the
transaction are showed to the end-user. Thus, the end-user can immediately
realize if the intended recipient and amount match the ones showed by the
PAT. However, when the PAT is compromised, this verification step is not
enough to ensure transaction authenticity. Therefore, additional validation
steps are performed with the assistance of the AAT(s).

206 S. Sciancalepore et al.

The above-discussed steps are common to all the scenarios assumed in our
work. The following operations, instead, depend on the scenario and capabilities
of the involved terminals. We hereby consider two reference scenarios, where
the AATs are equipped either with a Bluetooth channel (3.2), or with a camera
(3.3), being these the most diffused interfaces in general-purposes devices.

3.2 Scenario #1

In this scenario, we assume the PAT is connected to the AATs via Bluetooth. In
line with Sect. 2, we assume that the AAT(s) do not have Internet connection.
Figure 2 shows the additional interactions required by FRACTAL, described
below.

Fig. 2. Additional interactions required by FRACTAL in the Scenario #2.

1. Assuming the pairing between the PAT and the AAT has been already per-
formed. The PAT delivers to the AAT all the information received from the
remote server, including the transaction recipient, the amount, the validity
time, the encrypted code, and the signature δ.

2. First, the AAT verifies the signature δ (2b), via the check in Eq. 3.
3. Then, using its private key skA,2, the AAT extracts c, as per Eq. 4.

c = D (c̃, skA,2) , (4)

4. The available information, i.e., the transaction recipient, amount, and validity
time are visually shown to the user, e.g., via a screen, so that she can verify
their consistency. If the end-user verifies the correctness of the information
and the AAT supports an input method, the end-user can specify her final
approval, by pressing a dedicated button. Otherwise, the end-user rejects the
transaction.

5. If A validates the transaction, the AAT signs all the information using the
public key of the remote server, generating a signature λ. The value λ is then
delivered to the PAT.

FRACTAL: Single-Channel Multi-factor Transaction 207

6. The PAT forwards to the remote server λ and δ.
7. At reception time, the remote server checks the correctness of λ, using its

private key. If the code just received matches the locally-stored one for the
particular transaction, identified by its signature δ. If the correspondence is
verified, the transaction is executed. Otherwise, the transaction is aborted.

3.3 Scenario #2

In this scenario, we assume the AAT(s) does not feature any means to connect
with a remote PAT. Despite this is a quite restrictive assumption (usually, at
least one connection mode is available), it helps modelling a scenario where the
PAT and the AAT are theoretically incompatible. The only assumption on the
AAT is that it includes a camera and an application that can process QR codes.
Figure 3 shows the additional interactions required by FRACTAL, described
below.

Fig. 3. Additional interactions required by FRACTAL in the Scenario #2.

1. The PAT creates a QR code, encoding the information received from the
remote server, i.e., the transaction recipient, the amount, the time validity, c̃,
and δ, and it shows the QR code on the screen.

2. A uses the camera on the AAT to acquire the QR code.
3. The processing of the QR code includes two main steps. First, the AAT

validates δ (3b), through Eq. 3. Then, the AAT extracts c, as per Eq. 4 (2b).
4. The available information, i.e., the transaction recipient, amount, and validity

time are visually shown to the user, e.g., via a screen, so that she can verify
their consistency.

5. If the end-user verifies the correctness of the information, the end-user can
proceed with the transaction by entering the one-time code c to the PAT.
Otherwise, the end-user rejects the transaction.

6. In case A typed the code c, the PAT forwards to the remote server c and δ.
7. At reception time, the remote server checks if c matches the locally-stored

one for the particular transaction, identified by its signature δ. If it matches,
the transaction is executed. Otherwise, the transaction is aborted.

208 S. Sciancalepore et al.

4 Security Considerations

4.1 Security Features

Overall, FRACTAL provides the following security features.

Protection Against Replay Attacks. FRACTAL is robust against replay attacks
thanks to the support of nonces and expiration timestamps. Indeed, the signature
of the transaction (δ) delivered to the PAT and the AATs includes a one-time
code, c, and a timestamp, indicating the transaction expiration time. Thus, any
replay after the expiration time is immediately identified and rejected. At the
same time, if the adversary replays the transaction before the expiration time,
being the code c one-time, the transaction is rejected, as well.

Protection Against MITM Attacks. Thanks to standard mutual authentication,
FRACTAL protects against external MITM attacks, launched by adversaries not
in control of the legitimate entities. An additional feature of FRACTAL is the
capability to reject MITM attacks even when the PAT is compromised. Indeed,
through FRACTAL, the end-user can always detect the mismatch between the
provided information and the (supposedly authenticated) one received by the
remote server. We prove such property in the following Theorem 1.

Theorem 1. Assume that the attacker ADV compromises the PAT. Then,
under the security assumptions in Sect. 2.2, ADV is prevented from misleading
the user and the remote server about the authenticity of a forged transaction.

Proof. Assume that ADV selects dst′ and amount′ as the forged transaction
recipient and amount. Controlling the PAT, ADV can obtain from the remote
server an authentic signature δ′ = sign

[
dst′||amount′||ts||c̃′, skB

]
, where c̃′ =

E [c′, pkA,2]. Now, the attacker has three options. The first one is to send to the
AAT the legitimate values dst and amount, together with the forged signature
δ′. In this case, the signature verification on the AAT, reported in Eq. 3, fails.
Thus, the attack would be rejected.
The second option consists in delivering to the AAT dst′, amount′, and δ′. In
this case, being δ′ generated from dst′ and amount′, the check in Eq. 3 would
be successful. However, the end-user can notice that dst �= dst′ and amount �=
amount′, thus detecting the attack and rejecting the transaction.
The third option is to report to the AAT the legitimate transaction values, i.e.,
amount, dst, and δ, but to report to the remote server the code for the legitimate
transaction and the signature of the forged transaction (i.e., c, δ′). Being δ
generated from both dst and amount′, the check in Eq. 3 would be successful.
Thus, the AAT would generate the code c and it would report c to the PAT.
Then, the PAT could report to the remote server δ′, mimicking an approval of
the end-user on the forged transaction. However, being the relationship between
the one-time-code and the transaction unique, the remote server could easily
verify that both δ �= δ′ and c �= c′, denying the execution of the transaction.

Note that the considerations above apply also with asynchronous attacks, as
the AAT would pop up an unsolicited notification to the end-user. Thus, the

FRACTAL: Single-Channel Multi-factor Transaction 209

end-user could easily realize the ongoing attack. That is, having the human in
the loop is instrumental to the security of FRACTAL, reverting the saying that
the human is the weakest link in the security chain.

In summary, the PAT has no control over the messages it routes from the
remote server to the AATs. Therefore, ADV cannot modify such messages in a
way to achieve its objectives. We formally verify this property in 4.2 via ProVerif.

4.2 Formal Security Analysis via ProVerif

We formally verified the security properties of FRACTAL using the automatic
tool ProVerif [9], in line with many recent scientific contributions [10,11], and we
also released the source code at [12], to allow interested readers to reproduce our
results and verify our claims. The logic of ProVerif is rooted on two main assump-
tions. First, the cryptographic primitives used within the security protocol are
inherently robust. Second, the attacker is consistent with the widely-accepted
Dolev-Yao model, having the capability to read, inject, delete, and modify all
the messages exchanged on the communication channel. Based on the above
assumptions and user-specified security objectives, ProVerif enables the formal
analysis of secrecy and authentication properties [9].

We implemented FRACTAL in ProVerif to verify that, even when the PAT
is controlled by ADV , the remote server could always discriminate forged and
legitimate transactions. We implemented the flow of FRACTAL in Scenario #1,
and we modeled the end-user through a simple process, verifying that the values
possessed by the AAT are the same typed to the PAT. We also assumed that
the mutual authentication step represented in Fig. 1 has been already executed,
and that the result of such a process is a session key TLSKey, shared between
the PAT and the remote server. Finally, to model the tampering of the PAT, we
leaked the session key TLSKey to the adversary, enabling PAT impersonation.

With reference to our security properties, ProVerif provides the output
not attacker(elem[]) is true when the attacker does not know the value of
elem, while the output not attacker(elem[]) is false is provided if the attacker
knows the value of elem. Moreover, the output inj-event(last event ()) ==> inj-
event(previous event ()) is true means that the function last event is executed
only when another function, namely previous event is executed. Thus, as per the
logic of the ProVerif tool, we defined two main events:

– begin EndUser(x 1,x 2), indicating that the End-User initiates a transaction
specifying the values x1 and x2;

– end RS(x 1,x 2), indicating that the remote server completes a transaction
with the values x1 and x2.

Figure 4 shows the excerpt of the output of ProVerif, when executed locally
(recall that the source code is available at [12]).

The first query verifies that the session key TLSKey is known to ADV . As
mentioned above, this condition models the tampering of the PAT. The second
query verifies that the event end RS(x 1,x 2), occurring when the remote server
completes a transaction with the values x1 and x2, happens if and only if the

210 S. Sciancalepore et al.

Fig. 4. Excerpt of the output provided by the ProVerif tool.

event begin EndUser(x 1,x 2) has previously occurred. In turn, this means that
the server completes a transaction with the end-user only when the end-user
really initiated that transaction. Overall, the positive outcome of this query
verifies that, thanks to FRACTAL, the remote server can always verify the end-
user, even when the PAT is compromised.

5 Implementation and Performance Assessment

5.1 Implementation Details

We implemented FRACTAL in Java, using Spring [13]. Spring is an open-source
application framework, containing a set of core features that can be used by
any Java application. It also includes several extensions, that allow to build web
applications on top of the Java Enterprise Edition (EE) platform. To allow type
inference, conciseness, and inter-operation with mobile applications, we used
the Kotlin programming language [14]. We rely on the non-relational database
MongoDB to store transactions and the related details [15]. To efficiently manage
cryptographic keys and X.509 certificates, we use keytool [16], while we used the
ZXing library for barcode image processing [17]. Finally, we implemented the
app running on the AATs using the AndroidStudio IDE [18].

We implemented the PAT and the remote server as standalone JAVA web
applications on a dedicated machine, i.e., an Intel Core i7-3632QM, equipped
with a CPU running at 2.20 GHz, 8.00 GB of RAM, and the Windows 10
Operating System (OS). Using a dedicated web application for the PAT, the
user can login and insert the transaction details on a web page, and then the
web app manages the interactions with the remote server. This approach allows
separating the entities involved in the system, while introducing a negligible
interaction delay. For the AAT, we used a Xiaomi Mi A3 smartphone, running
the Android 10 OS. Finally, our protype uses the SHA-256 hashing algorithm
and the RSA-2048 public key signature scheme. As a reference example, in
Figs. 8 and 9 (included in Annex 7), we report the screen shown to the end-user
on the AAT and the PAT to validate the transaction, respectively. The web
application of the PAT requires 1, 342 MB of RAM, while the apk of the app is
3, 259 KB for the Scenario #1 and 4, 142 KB for the Scenario #2.

5.2 Experimental Performance Assessment

For our experimental evaluation, we adopted a methodology inspired by the
recent contribution in [19]. Specifically, the PAT, the AATs, and the remote

FRACTAL: Single-Channel Multi-factor Transaction 211

server of our first scenario have been physically implemented in the same
machine, thus being directly-connected to each other. However, we modeled a
realistic deployment of the remote server in a random point of the World at the
communication level, by introducing additional delays in the interaction between
the PAT and the remote server. These additional latencies have been modeled by
considering real end-to-end communication delays incurred between two real end-
points connected to the Internet. In detail, we identified ten (10) geographically
distributed hosts publicly accessible through the Internet via their IP addresses,
listed in Table 1. Then, we launched a set of 10,000 ICMP Echo Requests to
IP addresses in Table 1 from an endpoint located in Doha, Qatar. Finally, we
measured the Round Trip Time (RTT) values of the ICMP Echo Requests, as
the difference between the time when the request is sent and the time when the
corresponding ICMP Echo Reply is received. Then, the RTTs have been statis-
tically modeled through an empirical Cumulative Distribution Function (CDF),
shown in Fig. 5, and these curves have been used to model the time required to
contact a specific remote server. Specifically, for each experiment, we located the
remote server in one of the identified hosts, and we modeled the corresponding
communication delay by extracting a random sample from the empirical CDF of
this host in Fig. 5. Assuming a single AAT, the results of our investigation are
reported in Fig. 6, along with the 95% confidence interval.

Table 1. Details of the hosts used for the modeling of a remote server.

ID IP address Nation Location

S1 39.32.0.1 Pakistan Islamabad

S2 8.8.8.8 USA Mountain view

S3 76.74.224.13 Canada Vancouver

S4 61.69.229.154 Australia Sydney

S5 193.70.52.72 France Paris

S6 167.71.129.73 England London

S7 80.116.252.221 Italy Rome

S8 202.46.34.59 China Shenzhen

S9 125.30.18.121 Japan Tokyo

S10 139.59.140.10 Germany Frankfurt

Note that the location of the remote server has a slight impact on the laten-
cies. The highest (average) delay is observed for S10, located in Germany, with
a mean value of the delay of 2.262 s. Overall, we can notice that the transac-
tion can be completed in a limited time, not impacting on the usability of the
solution, while guaranteeing high level of security.

To provide further insights, we also evaluated the time to complete a trans-
action, increasing the AATs. As a reference, we assumed a scenario consistent

212 S. Sciancalepore et al.

with the Scenario #1, where the AATs are connected to the PAT via Bluetooth,
with the PAT being the hub of a logical star network topology. The results are
provided in Fig. 7, along with the 95% confidence interval over 100 tests.

Fig. 5. CDF of the RTTs measured for 10 geographically-distributed hosts.

Fig. 6. Time to complete FRACTAL, with single AAT and single remote server located
in mountain view (S2), neglecting the time to input the code.

Fig. 7. Time required to complete FRACTAL, with multiple AATs directly connected
to the PAT via Bluetooth.

FRACTAL: Single-Channel Multi-factor Transaction 213

As the number of AATs increases, the delay does not increase. Indeed, due
to the non deterministic nature of devices interactions, when 3 and 4 AATs are
connected, the average delay is less than what experienced for 1 and 2 AATs.
Even in the worst case (5 AATs), the transaction can be completed in only
4.035 s, keeping the delay manageable. We remark that this computation delay
does not consider the time for the user to input on the PAT.

6 Related Work and Qualitative Comparison

The majority of MFA systems in the literature focus on user/client MFA, using
biometric factors to enforce client authentication. For instance, the authors
in [20], proposed a two-phase authentication mechanism for federated identity
management systems. Unfortunately, the reliance on biometrics prevents the
use of legacy devices, not equipped with modules able to gather user biometric
features. In [21], the authors addressed the problem of outsourcing the biomet-
ric features of users to untrusted servers, by designing a MFA scheme where
the biometric features of users remain on their devices. Relying on biometric
information, older devices are out of the equation as well. In [22], the authors
introduced a zero-effort MFA system, requiring a smartphone and a smartwatch
(replaceable by a smart bracelet) able to capture the gait patterns of an individ-
ual, her mid/lower body movements, and her wrist/arm movements. Given the
alleged uniqueness of the combination of these patterns, only the account holder
should be able to authenticate. Relying on specific sensors able to capture users’
gait, the scheme is unusable in many contexts.

The authors in [23] introduced graphical passwords as new means for MFA.
They proposed different architectures where such MFA could be employed, and
they demonstrated the enhanced usability of their tool. However, their scheme
relies on the delivery of SMS via out-of-band channels, not being usable when
this is not available. A similar limitation can be found also in in [24]. The authors
in [25] introduced a MFA technique specifically tailored to fragile communica-
tions. They contextualized the protocol in a smart grid scenario, where the user
interacts with an Intelligent Electronic Device (IED) to perform the authentica-
tion. The interaction of users with online banking systems has been studied also
by [26], where the authors proposed a MFA scheme without using additional
devices to prove the identity of the user. However, the adversary models consid-
ered here do not assume tampering of the PAT. In a document released by the
Federal Financial Institutions Examination Council [27], the authors embrace
the new legal and technological changes with respect to the protection of cus-
tomer information. However, this document only took into account the customer
authentication, thus giving the banks’ one for granted. Thus, under the assump-
tion of a possible compromise of the PAT by an attacker, the mutual authen-
tication feature could be easily disrupted. Note that many commercial solu-
tions addresses two-factor and multi-factor authentication, based on the FIDO
Alliance Specifications. An example is YubiKey, using Security Keys, i.e., hard-
ware devices that authenticate the user after the user presses a button on the
security key [28]. Requiring dedicated devices, such solutions are not applicable

214 S. Sciancalepore et al.

here. Finally, note that standard security protocols such as Extensible Authenti-
cation Protocol (EAP) cannot be used directly to solve our problem, since they
all assume that the PAT is not compromised. We summarized the above discus-
sion in Table 2. Note that all the schemes based on single-channel authentication
are not effective when the the PAT is compromised. Moreover, they often require
biometric interfaces on the supporting devices. Conversely, FRACTAL leverages
a single communication channel, and it is robust also when the PAT is compro-
mised. Besides, FRACTAL does not require additional dedicated interfaces on
the supporting devices.

Table 2. Qualitative comparison of FRACTAL against competing solutions.

Ref. Single
channel

No dedicated
devices as AATs

No biometric
interfaces required

Robust against
PAT tampering

[20] ✓ ✗ ✗ ✓

[23] ✗ ✓ ✓ ✓

[25] ✓ ✗ ✗ ✓

[21] ✗ ✗ ✗ ✓

[26] ✓ Not Applicable Not Applicable ✗

[29] ✗ ✓ ✗ ✓

[22] ✓ ✗ ✗ ✓

[24] ✗ ✓ ✗ ✓

FRACTAL ✓ ✓ ✓ ✓

7 Conclusion

In this paper, we have presented FRACTAL, a flexible Multi-Factor Authenti-
cation scheme for securing banking transactions. FRACTAL uses a single com-
munication channel shared between the bank servers and the Primary Authen-
tication Terminal to provide security to the transaction, even if the Primary
Authentication Terminal is compromised. The solution does not require any spe-
cialized hardware: it involves only (CoTS) Additional Authentication Terminals
(AAT)—e.g. mobile phone, smart watch.

We discussed the security features of FRACTAL, and we proved its security
using ProVerif. We also implemented it in a real client-server scenario, using
Spring micro-services. Our experimental campaign demonstrated that, using a
single AAT, independently from the remote server location, the transaction can
be completed in about 2 s, while additional AATs can be added with just a slight
impact on the end-to-end delay.

In addition to its striking security properties, we believe that our solution
could also play a key role in overcoming the need for dedicated devices currently
used by banks for MFA, and to reduce the need for separate out-of-band chan-
nels. Finally, the applicability of FRACTAL goes beyond the presented use-case,
extending to other domains where additional communication channels are not
available and dedicated devices are not suitable.

FRACTAL: Single-Channel Multi-factor Transaction 215

Acknowledgements. This work was supported by both the HBKU Technology
Development Fund under contract TDF 02-0618-190005 and the NPRP-S-11-0109-
180242 from the QNRF-Qatar National Research Fund. Both HBKU and QNRF are
members of The Qatar Foundation. This work has been partially supported also by the
INTERSCT project, Grant No. NWA.1162.18.301, funded by Netherlands Organisation
for Scientific Research (NWO). The findings reported herein are solely responsibility
of the authors.

Annex A

Fig. 8. Screen shown on the AAT to validate the transaction. A can verify that the
details of the intended transaction match the ones on the screen. Then, in case of
Scenario #1, A can validate the transaction by pressing confirm. In case of Scenario
#2, A can insert the code on the PAT to verify the transaction (see Fig. 9.)

Fig. 9. Screen shown on the PAT to validate the transaction in case of Scenario #2. If
the details of the transaction shown on the AAT match the intended ones, A can insert
the code in the passcode field and press the confirm button to validate the transaction.

216 S. Sciancalepore et al.

References

1. Chandio, F., Irani, Z., Zeki, A., et al.: Online banking information systems accep-
tance: an empirical examination of system characteristics and web security. Inf.
Syst. Manag. 34(1), 50–64 (2017)

2. Luo, G., et al.: Overview of intelligent online banking system based on HERCULES
architecture. IEEE Access 8, 107685–107699 (2020)

3. Carminati, M., Caron, R., Maggi, F., Epifani, I., Zanero, S.: BankSealer: a decision
support system for online banking fraud analysis and investigation. Comput. Secur.
53, 175–186 (2015)

4. Sinigaglia, F., et al.: A survey on multi-factor authentication for online banking in
the wild. Comput. Secur. 95, 101745 (2020)

5. Kiljan, S., et al.: Evaluation of transaction authentication methods for online bank-
ing. Futur. Gener. Comput. Syst. 80, 430–447 (2018)

6. FIDO Alliance Specifications. https://fidoalliance.org/specifications. Accessed 05
Apr 2022

7. Di Pietro, R., Sciancalepore, S., Raponi, S.: Methods and systems for verifying the
authenticity of a remote service. US Patent App. 16/657,088, July 2020

8. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

9. Blanchet, B., et al.: ProVerif 2.02pl1: automatic cryptographic protocol verifier,
user manual and tutorial. Technical report, September (2020)

10. Tedeschi, P., Sciancalepore, S., Eliyan, A., Di Pietro, R.: LiKe: lightweight certifi-
cateless key agreement for secure IoT communications. IEEE Internet Things J.
7(1), 621–638 (2020)

11. Hirschi, L., Cremers, C.: Improving automated symbolic analysis of ballot secrecy
for E-voting protocols: a method based on sufficient conditions. In: IEEE Euro
S&P 2019, pp. 635–650 (2019)

12. CRI-LAB, Code of FRACTAL in ProVerif (2021). https://github.com/cri-lab-
hbku/tdf-proverif. Accessed 05 Apr 2022

13. Spring Community. https://spring.io/why-spring. Accessed 05 Apr 2022
14. Kotlin Foundation. https://kotlinlang.org/. Accessed 05 Apr 2022
15. MongoDB Inc. https://mongodb.com. Accessed 05 Apr 2022
16. Oracle. https://tinyurl.com/y62ds856. Accessed 05 Apr 2022
17. ZXing Project. https://github.com/zxing/zxing. Accessed 05 Apr 2022
18. Jetbrains. https://developer.android.com/studio. Accessed 05 Apr 2022
19. Sciancalepore, S., et al.: On the design of a decentralized and multiauthority access

control scheme in federated and cloud-assisted cyber-physical systems. IEEE Inter-
net Things J. 5(6), 5190–5204 (2018)

20. Bhargav-Spantzel, A., et al.: Privacy preserving multi-factor authentication with
biometrics. J. Comput. Secur. 15(5), 529–560 (2007)

21. Han, Z., Yang, L., Liu, Q.: A novel multifactor two-server authentication scheme
under the mobile cloud computing. In: International Conference on Networking
and Network Applications (NaNA) 2017, pp. 341–346 (2017)

22. Shrestha, B., Mohamed, M., Saxena, N.: ZEMFA: zero-effort multi-factor authen-
tication based on multi-modal gait biometrics. In: International Conference on
Privacy, Security and Trust (PST) 2019, pp. 1–10. IEEE (2019)

23. Sabzevar, A.P., Stavrou, A.: Universal multi-factor authentication using graphical
passwords. In: IEEE International Conference on Signal Image Technology and
Internet Based Systems 2008, pp. 625–632 (2008)

https://fidoalliance.org/specifications
https://github.com/cri-lab-hbku/tdf-proverif
https://github.com/cri-lab-hbku/tdf-proverif
https://spring.io/why-spring
https://kotlinlang.org/
https://mongodb.com
https://tinyurl.com/y62ds856
https://github.com/zxing/zxing
https://developer.android.com/studio

FRACTAL: Single-Channel Multi-factor Transaction 217

24. Mohammed, M.M., Elsadig, M.: A multi-layer of multi factors authentication model
for online banking services. In: International Conference on Computing, Electrical
And Electronic Engineering 2013, pp. 220–224 (2013)

25. Huang, X., et al.: Robust multi-factor authentication for fragile communications.
IEEE Trans. Dependable Secure Comput. 11(6), 568–581 (2014)

26. Boonkrong, S.: Internet banking login with multi-factor authentication. KSII
Trans. Internet Inf. Syst. 11(1), 511–535 (2017)

27. Council, Federal Financial Institutions Examination, Authentication in an internet
banking environment, FFIEC (2005)

28. Reynolds, J., et al.: A tale of two studies: the best and worst of yubikey usability.
In: IEEE Symposium on Security and Privacy (SP) 2018, pp. 872–888 (2018)

29. Nagaraju, S., Parthiban, L.: Trusted framework for online banking in public cloud
using multi-factor authentication and privacy protection gateway. J. Cloud Com-
put. 4(1), 22 (2015)

Privacy and Anonymity

Lightweight and Practical
Privacy-Preserving Image Masking

in Smart Community

Zhen Liu1, Yining Liu1(B), and Weizhi Meng2

1 Guangxi Key Laboratory of Trusted Software, School of Computer Science
and Information Security, Guilin University of Electronic Technology,

Guilin 541004, China
ynliu@guet.edu.cn

2 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

Abstract. Advances in the Internet of Things (IoT) and telecommu-
nications technologies (e.g., 5G) have contributed to the development
of smart cities and nations (collectively referred to as smart communi-
ties). In a smart community, IoT devices can collect significant informa-
tion about urban residents (e.g., a large number of images collected by
cameras containing sensitive information), and such information may be
shared with intermediate nodes. In real-world deployment, intermediate
nodes are not completely trusted, where the information collected may
be used for commercial purposes (e.g., user profiling and advertising) or
malicious activities (e.g., covert surveillance). In this paper, we introduce
an approach to ensure privacy-preserving image masking. Specifically,
before the image is transmitted to the camera owner or the monitoring
cloud platform, only sensitive areas instead of the entire image will be
processed according to the camera owner’s settings, which allows to sig-
nificantly reduce the computational cost. Then, in order to reduce the
interactions between the community data center and the IoT camera, the
monitoring cloud platform performs proxy re-encryption. This allows the
community data center to recover the original image without relying on
the IoT device’s private key. Our evaluation indicates the utility and
efficiency of our approach, as compared with similar schemes.

Keywords: Smart community · Proxy re-encryption · Privacy
preservation · Image masking

1 Introduction

In recent years, the smart community supported by technologies such as the
Internet of Things (IoT) and 5G has become a common concept [1,13]. For

Supported in part by the Natural Science Foundation of China under Grant 62072133,
in part by the Key Projects of Guangxi Natural Science Foundation under Grant
2018GXNSFDA281040, in part by the Innovation Project of Guangxi Graduate Edu-
cation under Grant YCSW2022279.
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 221–239, 2022.
https://doi.org/10.1007/978-3-031-15777-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_13

222 Z. Liu et al.

example, IoT cameras can collect a large number of images for real-time envi-
ronmental and crowd monitoring in various applications (e.g., public safety).
However, these images are very likely to contain sensitive information, such as
license plates, faces, and user behaviors, which can be used for nefarious pur-
poses (e.g., unauthorized surveillance by non-state actors). This reinforces the
importance of ensuring privacy in the collected images, during transiting and
storing.

Compounding the challenge is the resource-constrained nature of IoT devices
(including cameras) since these devices are generally incapable of supporting
heavily computational operations. Generally, images collected by IoT devices
(e.g., home security cameras) are often outsourced to some monitoring cloud
server for storage and subsequent processing in the data center. As the monitor-
ing cloud center is usually considered untrustworthy or semi-trustworthy [22],
there is a risk of privacy leakage if original images are transmitted without any
security measures. However, conventional encryption methods [14,15] may not
be practical since they have to encrypt the entire image. This prevents the uti-
lization of these images by intermediate nodes. However, it is not essential for
the intermediate nodes to have access to the raw (unencrypted) image, and only
selected features are required for the application. Since IoT cameras can gen-
erally capture between 30 and 40 images per second, the computational cost
associated with real-time encryption is high. Hence, this motivates our work in
this paper to propose a lightweight solution.

Our solution is user-centric, in the sense that the proposed scheme identifies
different types of sensitive areas that can be customized by the camera owner.
For example, some camera owners may consider license plates to be sensitive
while others regard a user’s face as sensitive. IoT cameras can then identify
specific privacy targets based on the privacy attributes set by the camera owner.
Regarding the number of recognized sensitive areas, it depends on the number
of sensitive factors in an image. For example, if there are three faces in an image
and the sensitive area is set as a human face, then the number of recognized
sensitive areas in this image is three. In addition, in a real-world IoT scenario,
the attackers are often curious citizens without specialized skills, rather than
professionals or intelligence agencies. Therefore, our scheme adopts a lightweight
image encryption algorithm that allows cameras to process sensitive areas. Also,
during the image transmission process, the intermediate nodes cannot obtain
any information about the sensitive area. To reduce the interaction between
the community data center and the camera owner, our proposed scheme adopts
proxy re-encryption, so that the community data center can use its own private
key for image recovery.

Our contributions can be summarized as follows:

– We propose a new threat model – the curious human-eye-attack hypothesis
model, because in real-world IoT scenarios, potential attackers do not have
professional hacking skills and are often curious citizens.

Lightweight and Practical Privacy-Preserving Image Masking 223

– Unlike conventional image encryption approaches, our proposed scheme
allows users to customize the sensitive areas to be identified, which results in
the improved flexibility.

– The encryption time of our proposed algorithm is much shorter than similar
schemes, and we can simultaneously perform image recognition and encryp-
tion on IoT devices.

– Through proxy re-encryption, the community data center can recover the
encrypted image without the need to interact with the encryptor, which
reduces the communication overhead.

The paper structure is shown as follows. Section 2 and Sect. 3 introduce the
related work and the used tools, respectively. Our proposed approach is presented
in Sect. 4, followed by the evaluation setup and finding discussion in Sect. 5.
Finally, the conclusion and future work are presented in Sect. 6.

2 Related Work

There is a broad range of image encryption methods in the literature, and this
remains a topic of ongoing interest. For example, chaotic mapping has been uti-
lized in several image encryption methods partly because the former is sensitive
to initial circumstances, determinacy, and ergodicity [6,9]. Meng et al. [16] pro-
posed an improved image encryption algorithm based on chaotic mapping and
discrete wavelet transform domain. In this paper, the image scrambling only
changes the position of each pixel, but cannot change the pixel value. Besides,
chaotic mapping is often combined with other encryption methods such as DNA
encryption to improve the security. Nezhad et al. [27] proposed a hybrid algo-
rithm using the tent chaotic mapping and DNA sequencing techniques. First,
the original image and the chaotic mapping are encrypted separately using DNA
sequence. Then, the logical XOR operator is applied to them and the encrypted
image is produced using chaotic systems. Guan et al. [7] developed a new encryp-
tion algorithm based on the IJRBP and chaotic system, which has the advantages
of high encryption efficiency and the ability to resist various common attacks.

Mondal et al. [17] proposed a lightweight encryption technique for images
using chaotic maps and diffusion circuits. They adopt simple bit-wise operations
to reduce the computational overhead. However, Preishuber et al. [20] pointed
out that the existing evaluation indicators are inadequate metrics for security
analysis of chaotic mapping. In addition, chaotic mapping is computationally
expensive to process a single image and is not suitable for the scene that processes
real-time images. Other image encryption approaches include those based on
permutation [12,19]. While permutation-based approaches are generally more
secure than those based on chaotic mapping, as these approaches usually modify
the entire image and lack flexibility.

In recent years, there is a trend toward designing image encryption algo-
rithms for IoT environments. Dhall et al. [4] proposed a chaos-based, multiple-
round, adaptive, and dynamic framework for image encryption with new levels
of dynamism across differently functional dimensions of the entire encryption

224 Z. Liu et al.

process. In another work, Rajendran et al. [21] proposed a chaotic security
architecture for ensuring security of the images during transmission and stor-
age. Although both schemes are secure and suitable for IoT environments, these
algorithms also process the entire image and do not consider the user’s demands.

Muhammad et al. [18] proposed a secure surveillance framework for IoT
systems by integrating both video summarization and image encryption. By
extracting keyframes, the approach detects key events and carries out disaster
warnings. However, in the IoT environment, many situations do not meet the
keyframe, such as a speeding car. Jan et al. [11] proposed an end-to-end encryp-
tion framework to reduce the response time, security overhead, and computa-
tional / communication costs. However, this method requires the participation
of edge nodes, which increases the difficulty of deployment. Image encryption
in the IoT environment is different from traditional image encryption. In the
IoT environment, image privacy area changes with factors such as distance and
users’ varying demands. Also, attackers in the IoT environment tend to be curi-
ous residents. Zhang [28] proposed a new image encryption structure based on a
lifting scheme. Firstly, the image is decomposed into low frequency components
and high frequency components, and then chaotic mapping is used to disturb the
two groups of components. Finally, a lifting scheme is used for image encryption.
This scheme has a faster encryption speed and higher security.

Now, machine learning, especially deep learning, has developed rapidly. Yang
et al. [25] proposed the Graph-based neural networks for Image Privacy (GIP) to
infer the privacy risk of images. Yang et al. [26] proposed transferable face image
privacy protection based on federated learning and ensemble models. Besides,
there are many studies [2,23] aiming to protect image privacy through GAN
networks. Although these methods can find a balance between image privacy and
image availability, they are not suitable for real smart community environments
due to their high computational complexity.

3 Preliminaries

This section aims to briefly introduce the used tools in this work, such as the
ChaCha20-Poly1305 stream encryption algorithm, the bilinear map, and proxy
re-encryption technology.

3.1 Yolo v5 Object Detection Algorithm

Yolo v5 is an object detection algorithm based on deep learning neural networks,
and its code can be accessed via https://github.com/ultralytics/Yolov5. The
number of objects in which Yolo v5 can detect is sufficient in the context of this
work, and Yolo v5 is also very fast and hence can be deployed on IoT cameras.

The basic structure of Yolo v5 is mainly divided into three parts as shown in
Fig. 1: BackBone, PANet, and OutPut. BackBone is mainly divided into Focus
structure and CSP structure. The structure of the Focus is first adopted in Yolo
v5. It mainly adds the slicing operation. The current Neck of Yolo v5 is the

https://github.com/ultralytics/Yolov5

Lightweight and Practical Privacy-Preserving Image Masking 225

same as that of Yolo v4, and both adopt the structure of FPN and PAN to
strengthen the capability of network feature integration. The processed image is
finally output through the OutPut.

Fig. 1. The architecture of Yolo v5.

3.2 ChaCha20-Poly1305 Stream Encryption Algorithm

ChaCha20-Poly1305 stream encryption algorithm [3] was proposed by Google
in 2013, which adopted the AEAD mode. Unlike block encryption algorithms
(such as AES), stream encryption algorithm software can achieve higher perfor-
mance and run faster on mobile devices. Thus, it is very suitable for the IoT
environment.

ChaCha20-poly1305 stream encryption algorithm takes as input a 32-byte
secret key SK, a 12-byte nonce N , a variable-length plaintext P , and a variable-
length associate data AD, and returns a ciphertext C and a 16-byte authenti-
cation tag T . This also shows that the algorithm is very suitable for IoT envi-
ronment, as shown in Algorithm 1, where the function L : {0, 1}∗ → {0, 1}64
returns the length of the input as 64-bit little-endian integers, and the func-
tion Pad : {0, 1}8κ → {0, 1}8(κ+δ) returns the κ-byte input padded with
δ = 16 − κ mod 16 zero bytes.

3.3 Bilinear Map

We say a map e : G1 × G1 → GT is a bilinear map if:

– G1, GT are groups of the same prime order of q.

226 Z. Liu et al.

– For all a, b ∈ Z∗
q ,g ∈ G1, e(ga, gb) = e(g, g)ab.

– The map is non-degenerate (i.e., if G1 =< g >, then GT =< e(g, g) >).
– e is efficiently computable.

3.4 Proxy Re-encryption

Proxy re-encryption [5] allows a semi-trusted proxy such as a cloud server, to
transform a ciphertext under the public key pkA to a new ciphertext under
another public key pkB with a re-encryption key rkA→B . A one-way proxy re-
encryption scheme is shown in Fig. 2, which consists of the following steps:

Algorithm 1. ChaCha20-Poly1305 Stream Encryption algorithm
1: C ← ChaCha20 − SC {SK,N, P}
2: M ← Pad(AD)||Pad(C)||L(AD)||L(C)
3: T ← Poly1305 − ChaCha20(SK,N,M)
4: return (C,T)

Fig. 2. Proxy re-encryption.

– Setup. Accepting a security parameter n and outputting both the master
public parameters and the master secret key.

– Key Generation. Inputting an identity id ∈ {0, 1}∗ and the master secret
key, outputting secret keys skA, pkA, skB , pkB for users A and B, and a
re-encryption key rkA→B for the cloud server.

– Encryption. Inputting image m, system parameters and the public key pkA,
outputting the encrypted image m′.

– Re-encryption. Inputting image m′, system parameters, and the re-encryption
key rkA→B , outputting the re-encrypted image m′′.

Lightweight and Practical Privacy-Preserving Image Masking 227

– Decryption. Inputting the re-encryption image m′′ , system parameters, and
a secret key skB , outputting the original image m.

However, the traditional proxy re-encryption only supports processing text, we
have improved it in this work and make it suitable for image processing.

4 Our Proposed Scheme

The system model is shown in Fig. 3. There are four main parties,such as cam-
era owner, IoT devices, monitoring cloud server and community data center. In
particular, camera owner can deploy IoT devices and set sensitive factors. IoT
devices are mainly responsible for real-time monitoring, dynamically identify-
ing sensitive areas and encrypting them according to users’ requirements. IoT
devices and camera owner can be unified on the data owner side. The images
without sensitive information will be uploaded to the monitoring cloud server
for storage. To reduce the communication burden between the data owner and
the community data center (the data consumer), the cloud server will perform
proxy re-encryption, enabling the community data center to recover the original
image using its own private key. During the process, the data owner and the com-
munity data center can complete the data communication, but the monitoring
cloud server will not get any information about the sensitive area.

Threat Model. In this work, we consider a curious human-eye-attack hypoth-
esis, because in real-world IoT scenarios, potential attackers are often curious
persons who do not have professional hacking skills.

In the following parts, we mainly present our proposed scheme in detail. The
notions and abbreviations are shown in Table 1.

Fig. 3. System model.

228 Z. Liu et al.

Table 1. Notions and abbreviations

Notation Description

TA Trusted authority
ids Identity of IoT devices
pkD, skD Data owner’s private key and public key
pkU , skU Data user’s private key and public key
rkD→U Re-encryption key
SA Sensetive area
SAx, SAy the upper left corner’s coordinates of SA
x, y Width and length of the sensetive area
oriimg Original image
enimg Encrypted image
reimg Re-encrypted image

4.1 Preparation and Image Pre-processing Phase

System Initialization. First, the trusted authority (TA) generates a security
parameter n, a master public parameters, and a master secret key. Then accord-
ing to the master secret key and the identity (ids) of IoT devices, monitoring
cloud server, and community data center, TA creates two pairs of public and
private keys: {pkD, skD} and {pkU , skU}. Besides, it also needs to generate a
re-encryption secret key rkD→U according to IoT devices and the community
data center’s keys, and sends it to the monitoring cloud server.

The Settings of Sensitive Attributes. Camera owners can set the sensi-
tive attributes that need to be covered according to their demands (e.g., license
plates, human faces, etc.) and the location of IoT camera deployment. For exam-
ple, the cameras deployed in the home are likely to use the face as the private
area while the cameras deployed at the door are likely to set license plate as the
sensitive area. Then camera owners can send their settings to IoT cameras.

Image Collection and Sensitive Area Identification. In practice, IoT
devices have to run continuously to collect images. Moreover, they have to rec-
ognize the location of the sensitive area by executing Yolo v5 and save the
coordinates of the sensitive area.

4.2 Membrane Generation and Image Masking Phase

After obtaining the size and coordinate points of sensitive areas during the image
pre-processing phase, IoT devices generate a masking membrane of the same
size as the sensitive area by ChaCha20-Poly1305 stream encryption algorithm
according to parameters (SAx, SAy, x, y). ChaCha20-Poly1305 stream encryp-
tion algorithm is designed for mobile devices, which can be computed very fast
by IoT devices. Besides, according to the experimental result, the time consump-
tion for the ChaCha20-Poly1305 stream encryption algorithm is less than Yolo

Lightweight and Practical Privacy-Preserving Image Masking 229

v5. Therefore, it is feasible to run this encryption algorithm on IoT devices. In
the following subsections, the algorithm of adding membrane will be introduced
in detail. The IoT device then attaches the membrane to the sensitive area of the
original image to complete the encryption. Afterwards, the IoT device transmits
the encrypted image, along with the size and coordinates of the sensitive area, to
the camera owner and the monitoring cloud server for monitoring and storage,
respectively.

Algorithm 2. Image encryption algorithm.
Input: the original image oriimg, four coordinate points (SAx, SAy, x, y) of the sen-

sitive area.
Output: the encrypted image enimg.
1: for i = 0 → x do
2: for j = 0 → y do
3: mem[i][j] = ChaCha20 − Poly1305(SA[i][j])

4: for i = 0 → SAx do
5: for j = 0 → SAy do
6: if i == SAx and j == SAy then
7: Find SA
8: enimg = img
9: for i = 0 → x − 1 do

10: for j = 0 → y − 1 do
11: enimg[SAx + i][SAy + j] = mem[i][j]

12: return enimg

– Step 1. IoT devices run Yolo v5 object detection algorithm to identify the
sensitive area SA of the image oriimg and obtain four coordinate points SAx,
SAy, x, y. (SAx, SAy) represents the horizontal and vertical coordinates of
the upper left corner of the sensitive area. x represents the width of the
sensitive area. y represents the length of the sensitive area. The sensitive area
SA of the image is shown as Eq. 1.

SA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ISAx,SAy
· · · ISAx,SAy+y

ISAx+1,SAy
· · · ISAx+1,SAy+y

... · · · ...
ISAx+t,SAy

· · · ISAx+t,SAy+y

... · · · ...
ISAx+x,SAy

· · · ISAx+x,SAy+y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

– Step 2. IoT devices generate a membrane of the same size as a sensitive area
and encrypt it using the ChaCha20-Poly1305 stream encryption algorithm
and its public key pkD.

– Step 3. IoT devices put the membrane into the sensitive area of the image
to generate an encrypted image enimg according to Algorithm 2. Then IoT
devices upload the encrypted image and four coordinate points to the moni-
toring cloud server.

230 Z. Liu et al.

Algorithm 3. Proxy re-encryption algorithm.
Input: the encrypted image enimg, the re-encryption secret key rkD→U .
Output: the second encrypted image reimg.
1: for i = 0 → SAx do
2: for j = 0 → SAy do
3: if i == SAx then
4: if j == SAy then
5: find SA
6: for i = 0 → x do
7: for j = 0 → y do
8: enimg[SAx + i][SAy + j] = re − encryption(enimg[SAx + i][SAy + j])

9: reimg = enimg

10: return reimg

Algorithm 4. Image recovery
Input: the second encrypted image reimg, the data center’s private key skU .
Output: the original image img.
1: for i = 0 → SAx do
2: for j = 0 → SAy do
3: if i == SAxandj == SAy then
4: find SA
5: for i = 0 → x do
6: for j = 0 → y do
7: reimg[SAx + i][SAy + j] = ChaCha20−Poly1305(reimg[SAx + i][SAy + j])

8: img = reimg

9: return img

4.3 Proxy Re-encryption Phase

After the monitoring cloud server receives the encrypted image with the size and
coordinates of the sensitive area, it can locate the sensitive area of the encrypted
image, and then perform the proxy re-encryption (see Algorithm 3) on sensitive
area to encrypt enimg into reimg. After finishing re-encryption, the monitoring
cloud server saves the second encrypted image reimg for subsequent processing
and usage.

4.4 Image Recovery Phase

Camera owner can decrypt images directly. As for the community data center,
it first sends the image request to the monitoring cloud server. The monitoring
cloud server then searches for the requested image according to the request and
sends it back to the community data center. When the data center receives the
second encrypted image re_img, it executes the decryption algorithm of the
ChaCha20-Poly1305 stream encryption algorithm to recover the image by using
the secret key skU . Then it can get the original image. The algorithm is shown
in Algorithm 4.

Lightweight and Practical Privacy-Preserving Image Masking 231

5 Evaluation and Results

In this section, we introduce the experimental setup and evaluate the perfor-
mance of our proposed scheme.

5.1 Evaluation Setup

Sensitive-Area Identification Dataset. To the best of our knowledge,
datasets for identifying sensitive areas are not currently available. We then inte-
grated the commonly used datasets such as wider face dataset and Chinese city
parking dataset to form a new dataset, named as the sensitive-area identification
dataset. It includes three main types of sensitive areas: faces, license plates, and
fingerprints.

Due to our evaluation conditions, all experiments were conducted by using
Python language with Intel UHD Graphics 630 1536 MB processor, 16 GB RAM,
and MacOS Catalina 10.15.7. It is worth noting that the Macbook’s performance
is closer to an IoT camera.

First, we trained Yolo v5 on sensitive-area identification dataset to recognize
license plates, fingerprints, and faces with over 95% accuracy. The Yolo v5 with
28-layer adotps Adam optimizer and has the following settings: learning rate =
0.0001, test size = 0.2, and batch size = 64. The input image was first cropped
into 3 ∗ 640 ∗ 640. Then, Yolo v5 object detection algorithm was run on this
computer in order to determine the location and the number of sensitive areas.
After obtaining the sensitive region of the image, we performed the sensitive
region encryption algorithm to obtain the encrypted image. Then the proxy re-
encryption and decryption algorithm will be executed to obtain the re-encrypted
image and decrypted image respectively.

As an example, we selected three typical images from the commonly used
images during image processing, as given in Fig. 4. In particular, Fig. 4(a) shows
the original images. Figure 4(b) describes the generated invisible membrane to
cover the private location of the original image. Figure 4(c) presents the fully
encrypted images, and Fig. 4(d) shows the community data center that decrypts
the original image with its secret key.

5.2 Findings and Results

PSNR. The Peak Signal to Noise Ratio (PSNR) is an objective criterion for
evaluating images and is used for an engineering project between the maximum
signal and background noise. We use PSNR to evaluate the quality of decoded
images as follows:

PSNR = 10 × log10
(2n − 1)2

MSE
(2)

MSE =
1

H × W

H∑
i=1

W∑
j=1

(X(i, j) − Y (i, j))2 (3)

232 Z. Liu et al.

Fig. 4. Example: (a) images with 256 * 256, (b) sensitive area masking images, (c)
fully encrypted images, (d) recovered images.

where (H,W) are the length and width of image I, and Y is a noise image.
Generally, the larger the value of PSNR, the higher capability to recover the
image. As the face recognition example, the evaluated PSNR of “Lena”, “Finger”
and “Car” images is ∞. We believe that the quality of the decrypted image is
extremely high according to the previous work [10], which is the same as the
original image quality.

Image Entropy. Image entropy is a statistical form of features, which reflects
the average amount of information in the image. The one-dimensional entropy
of an image represents the amount of information contained in the aggregation
feature of the grayscale distribution in the image. Let Pi represent the proportion
of pixels with a grayscale value of i in the image, and then define the unary
grayscale entropy of a grayscale image as:

H = −
255∑
i=0

PilogPi (4)

where Pi is the probability of a certain gray level in the image, which can be
obtained from the gray level histogram. In our experiment, we calculated the
image entropy of Lena, finger, and car. The image entropy of “Lena” is 7.634,
“Car” image is 7.626, and “Finger” image is 7.623, which indicates that the risk
of accidental information leakage is very low.

NPCR. The number of changing pixel rates (NPCR) and the unified averaged
changed intensity (UACI) [24] are the two most commonly used quantities to

Lightweight and Practical Privacy-Preserving Image Masking 233

Fig. 5. Encryption time comparison with image size of 1024 * 1024.

evaluate the strength of image encryption algorithms/ciphers concerning differ-
ential attacks. NPCR represents the ratio of different grayscale values for dif-
ferent encrypted images at the same location, which can effectively measure the
randomness between two similar images. UACI represents the average variation
density between different encrypted images. UACI can estimate the intensity
change between the corresponding pixels of two different shadow images. Given
the two images I and J , both of which are H ∗ W in size, NPCR and UACI can
be defined as follows:

NCPR(I, J) =
1

W ∗ H

W∑
i=1

H∑
j=1

D(i, j) (5)

D(i, j) =
{
0, if I(i, j) = J(i, j)
1, if I(i, j) �= j(i, j) (6)

In our experiment, we calculated the NPCR and UACI of the “Lena” image
as 1 and 0.501, the NPCR and UACI of the “Car” image as 1 and 0.499, and the
NPCR and UACI of the “Finger” image as 1 and 0.499. The larger the UACI
value, the stronger the strength of the image encryption algorithm. Therefore,
our solution can be highly robust against differential attacks.

SSIM. Structural similarity (SSMI) [8] is a measure of predicting the perceived
quality between two images. Given the two images x, y and the structural sim-
ilarity of the two images, the structural similarity of the two images can be
calculated as follows:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(7)

234 Z. Liu et al.

where μx, σx are the average and variance of image x, respectively. μy, σy are
the average and variance of image y, respectively. σxy is the covariance of x, y.
c1 = (k1L)2 and c2 = (k2L)2 are two constants used to maintain stability. L is
the dynamic range of pixel values. Here k1 = 0.001 and k2 = 0.003. We can use
the value of SSIM to determine the size of the structural similarity between the
decryption diagram and the original diagram. The higher the SSIM value, the
greater the structural similarity between the two images.

In our scheme, all the SSIMs of “Lena”, “Finger” and “Car” are 1. This shows
there is no difference between the decryption image and the original image struc-
turally. All performance test indicators between original images and encrypted
images are shown in Table 2, where the indicators between original images and
recovered images are shown in Table 3.

Comparison. In addition to the above metrics, we also provide a comparison
with similar research studies which is either the scenario is similar with ours
or the computation time is very little, by considering other features such as
dynamic, user-centric, and the interaction between the community data center
and the image owner, as shown in Table 4. These studies can only identify one
or more specific targets, and they cannot be changed dynamically according to
the users’ needs. In particular, the fastest encryption scheme from Zhang et al.
[28] in these studies could reach 0.011 s, but it is still slower than our proposed
scheme with only 0.008 s. In addition, the decryption process of these schemes
requires the participation of the data owner, resulting in a high communication
burden.

Table 2. Performance indicators between original images and encrypted images.

PSNR SSIM

Lena ∞ 1
Car ∞ 1
Finger ∞ 1
Baboon ∞ 1

Table 3. Performance indicators between original images and recovered images.

Image entropy NPCR UACI

Lena 7.634 1 50.1
Car 7.626 1 49.9
Finger 7.623 1 49.9
Baboon 7.629 1 50.0

Lightweight and Practical Privacy-Preserving Image Masking 235

Table 4. Other functions compared with similar studies.

Our Guan et al. [7] Mondal et al. [17] Muhammad et al. [18] Jan et al. [11] Zhang et al. [28]

Dynamic Yes No No No No No
User-centric Yes No No No No No
Light interaction Yes No No No No No

5.3 Efficiency Analysis

Instead of encrypting the whole image, in our scheme, we only need to encrypt
the sensitive areas selected by users. We also selected the three images as shown
in Fig. 4(a) whose sizes are 1024 * 1024 pixels as an example to calculate the
algorithm time for an average of one hundred masking operations.

From the experimental results, our image encryption speed is very fast, which
only takes 0.033 s for IoT devices to encrypt. This is a great improvement as
compared with Yolo v5 that is 0.154 s in our experimental environment. Also, the
time consumption for the cloud to run re-encryption is only 0.0479 s. In addition,
the encryption time changes only slightly with varied sizes of the sensitive area.
The comparison in the aspect of encryption time between our scheme and other
algorithms is shown in Fig. 5. Since our scheme can dynamically process images
according to the size of sensitive area, Fig. 6 shows the time consumption of
image encryption and proxy re-encryption with varied sizes of the sensitive area.

Fig. 6. Time changes with the size of the sensitive area.

5.4 Security Analysis

As illustrated in Fig. 3, our system consists of three entities: the data owner
including camera owner and IoT devices, the monitoring cloud server, and the

236 Z. Liu et al.

community data center. The data owner is responsible for image collection and
image encryption. The encrypted images are then uploaded to the monitoring
cloud server. The monitor cloud server stores encrypted images and performs
proxy re-encryption. The community data center initiates a data request to the
monitoring cloud server, retrieves the secondary encrypted images, and decrypts
them using its own private key (i.e., obtaining the original images). In our system,
both the data owner and the community data center are considered to be trusted.
Therefore, we only consider the following three adversarial situations.

1) The first encrypted image is intercepted by the attacker. Images
may be intercepted by attackers when they are uploaded to the monitoring
cloud server by the data owner. The ChaCha20-Poly1305 stream encryption
algorithm uses pseudo-random encrypted data streams as secret key. The
encryption process is a byte-by-byte dissimilation of the key stream with
the plaintext to obtain the ciphertext. Thus, it is not possible to obtain the
original image data in polynomial time.
2) The monitoring cloud server tries to get the original image con-
tent. Monitoring cloud servers as third-party entities are considered semi-
trustworthy or untrustworthy. They must not have any information about
the original images. Since the images received by the monitoring cloud server
are encrypted by the ChaCha20-Poly1305 stream encryption algorithm, they
also cannot get any information about the original image.
3) The secondary encrypted image is intercepted by the attacker.
When images are sent from the monitoring cloud server to the commu-
nity data center, they may be intercepted by an attacker. Due to proxy re-
encryption, the image intercepted by the attacker is still an encrypted image
with sensitive areas obscured. In the absence of the community data center’s
private key, they still cannot get the original image.

6 Conclusions

Considering various encryption schemes for sensitive areas in the IoT envi-
ronment, the user-centric scheme has the advantages of being lightweight and
decrypted without the need for an encryption key. Besides, because of curious
human eyes attack model, our solution only encrypts sensitive areas, instead of
the entire picture. In our scheme, in order to prevent sensitive areas from being
acquired by intermediate nodes and monitoring cloud servers, the IoT device
performs Yolo v5 to identify sensitive areas and encrypts them. To enable the
community data center to decrypt the encrypted image with its own private
key, the monitoring cloud performs the proxy re-encryption algorithm and pro-
vides secondary encryption when it receives the encrypted image sent by an
IoT device. The community data center receives the second encrypted image
and decrypts it with its private key to obtain the original image. As the sensi-
tive area encryption algorithm takes very little time compared to Yolo v5, it is
possible to identify and encrypt sensitive areas simultaneously on IoT devices.

Lightweight and Practical Privacy-Preserving Image Masking 237

Also, the use of proxy re-encryption reduces interaction between the IoT device
and the community data center in the system. According to the experimental
results, it is proved that our proposed scheme is feasible and effective in the IoT
environment compared with similar studies.

In future work, we plan to re-run our experiments on some low-performance
devices, such as Raspberry Pi. We also try to deploy the program into a real IoT
device. In addition, we plan to maintain and update the sensitive-area identifi-
cation dataset on a regular basis.

References

1. Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P.: Five dis-
ruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014).
https://doi.org/10.1109/MCOM.2014.6736746

2. Chen, Z., Zhu, T., Wang, C., Ren, W., Xiong, P.: GAN-based image privacy preser-
vation: balancing privacy and utility. In: Chen, X., Yan, H., Yan, Q., Zhang,
X. (eds.) ML4CS 2020. LNCS, vol. 12486, pp. 287–296. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62223-7_24

3. De Santis, F., Schauer, A., Sigl, G.: Chacha20-poly1305 authenticated encryp-
tion for high-speed embedded IoT applications. In: Design, Automation Test in
Europe Conference Exhibition (DATE 2017), pp. 692–697 (2017). https://doi.org/
10.23919/DATE.2017.7927078

4. Dhall, S., Pal, S.K., Sharma, K.: A chaos-based multi-level dynamic framework for
image encryption. In: Alam, M., Shakil, K.A., Khan, S. (eds.) Internet of Things
(IoT), pp. 189–217. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
37468-6_10

5. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5_19

6. Gu, G., Ling, J.: A fast image encryption method by using chaotic 3D cat
maps. Optik 125(17), 4700–4705 (2014). https://doi.org/10.1016/j.ijleo.2014.05.
023, https://www.sciencedirect.com/science/article/pii/S0030402614005993

7. Guan, Z., Li, J., Huang, L., Xiong, X., Liu, Y., Cai, S.: A novel and fast encryp-
tion system based on improved Josephus scrambling and chaotic mapping. Entropy
24(3) (2022). https://doi.org/10.3390/e24030384, https://www.mdpi.com/1099-
4300/24/3/384

8. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th Interna-
tional Conference on Pattern Recognition, pp. 2366–2369 (2010). https://doi.org/
10.1109/ICPR.2010.579

9. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image
encryption. Inf. Sci. 480, 403–419 (2019). https://doi.org/10.1016/j.ins.2018.12.
048, https://www.sciencedirect.com/science/article/pii/S0020025518309927

10. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality
assessment. Electron. Lett. 44(13), 800–801 (2008)

11. Jan, M.A., Zhang, W., Usman, M., Tan, Z., Khan, F., Luo, E.: SmartEdge: an
end-to-end encryption framework for an edge-enabled smart city application. J.
Netw. Comput. Appl. 137, 1–10 (2019). https://doi.org/10.1016/j.jnca.2019.02.
023, https://www.sciencedirect.com/science/article/pii/S1084804519300827

https://doi.org/10.1109/MCOM.2014.6736746
https://doi.org/10.1007/978-3-030-62223-7_24
https://doi.org/10.23919/DATE.2017.7927078
https://doi.org/10.23919/DATE.2017.7927078
https://doi.org/10.1007/978-3-030-37468-6_10
https://doi.org/10.1007/978-3-030-37468-6_10
https://doi.org/10.1007/978-3-540-72738-5_19
https://doi.org/10.1016/j.ijleo.2014.05.023
https://doi.org/10.1016/j.ijleo.2014.05.023
https://www.sciencedirect.com/science/article/pii/S0030402614005993
https://doi.org/10.3390/e24030384
https://www.mdpi.com/1099-4300/24/3/384
https://www.mdpi.com/1099-4300/24/3/384
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1016/j.ins.2018.12.048
https://doi.org/10.1016/j.ins.2018.12.048
https://www.sciencedirect.com/science/article/pii/S0020025518309927
https://doi.org/10.1016/j.jnca.2019.02.023
https://doi.org/10.1016/j.jnca.2019.02.023
https://www.sciencedirect.com/science/article/pii/S1084804519300827

238 Z. Liu et al.

12. Li, T., Zhang, D.: Hyperchaotic image encryption based on multiple bit permuta-
tion and diffusion. Entropy 23(5), 510 (2021). https://doi.org/10.3390/e23050510,
https://www.mdpi.com/1099-4300/23/5/510

13. Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an internet
of things application. IEEE Commun. Mag. 49(11), 68–75 (2011). https://doi.org/
10.1109/MCOM.2011.6069711

14. Liu, W., Sun, K., Zhu, C.: A fast image encryption algorithm based on chaotic
map. Opt. Lasers Eng. 84, 26–36 (2016). https://doi.org/10.1016/j.optlaseng.2016.
03.019

15. Maisheri, C., Sharma, D.: Enabling indirect mutual trust for cloud storage systems.
Int. J. Comput. Appl. 82(2), 1–11 (2013). https://doi.org/10.5120/14085-0768

16. Meng, L., Yin, S., Zhao, C., Li, H., Sun, Y.: An improved image encryption algo-
rithm based on chaotic mapping and discrete wavelet transform domain. Int. J.
Netw. Secur. 22(1), 155–160 (2020)

17. Mondal, B., Singh, J.P.: A lightweight image encryption scheme based on chaos
and diffusion circuit. Multimedia Tools Appl. 1–25 (2021)

18. Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., Baik, S.W.: Secure
surveillance framework for IoT systems using probabilistic image encryption. IEEE
Trans. Industr. Inf. 14(8), 3679–3689 (2018). https://doi.org/10.1109/TII.2018.
2791944

19. Naseer, Y., Shah, T., Shah, D.: A novel hybrid permutation substitution
base colored image encryption scheme for multimedia data. J. Inf. Secur.
Appl. 59, 102829 (2021). https://doi.org/10.1016/j.jisa.2021.102829, https://www.
sciencedirect.com/science/article/pii/S221421262100065X

20. Preishuber, M., Hütter, T., Katzenbeisser, S., Uhl, A.: Depreciating motivation and
empirical security analysis of chaos-based image and video encryption. IEEE Trans.
Inf. Forensics Secur. 13(9), 2137–2150 (2018). https://doi.org/10.1109/TIFS.2018.
2812080

21. Rajendran, S., Doraipandian, M.: Chaos based secure medical image transmission
model for IoT- powered healthcare systems. In: IOP Conference Series: Materials
Science and Engineering, vol. 1022, no. 1, p. 012106 (2021). https://doi.org/10.
1088/1757-899x/1022/1/012106

22. Harichandana, B.S.S., Agarwal, V., Ghosh, S., Ramena, G., Kumar, S., Raja,
B.R.K.: PrivPAS: a real time privacy-preserving ai system and applied ethics.
In: 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pp.
9–16 (2022). https://doi.org/10.1109/ICSC52841.2022.00010

23. Sirichotedumrong, W., Kiya, H.: A GAN-based image transformation scheme for
privacy-preserving deep neural networks. In: 2020 28th European Signal Pro-
cessing Conference (EUSIPCO), pp. 745–749 (2021). https://doi.org/10.23919/
Eusipco47968.2020.9287532

24. Wu, Y., Noonan, J.P., Agaian, S., et al.: NPCR and UACI randomness tests for
image encryption. Cyber J. Multi. J. Sci. Tech. J. Sel. Areas Telecommun. (JSAT)
1(2), 31–38 (2011)

25. Yang, G., Cao, J., Chen, Z., Guo, J., Li, J.: Graph-based neural net-
works for explainable image privacy inference. Pattern Recogn. 105, 107360
(2020). https://doi.org/10.1016/j.patcog.2020.107360, https://www.sciencedirect.
com/science/article/pii/S0031320320301631

26. Yang, J., Liu, J., Han, R., Wu, J.: Transferable face image privacy protection based
on federated learning and ensemble models. Complex Intell. Syst. 7(5), 2299–2315
(2021). https://doi.org/10.1007/s40747-021-00399-6

https://doi.org/10.3390/e23050510
https://www.mdpi.com/1099-4300/23/5/510
https://doi.org/10.1109/MCOM.2011.6069711
https://doi.org/10.1109/MCOM.2011.6069711
https://doi.org/10.1016/j.optlaseng.2016.03.019
https://doi.org/10.1016/j.optlaseng.2016.03.019
https://doi.org/10.5120/14085-0768
https://doi.org/10.1109/TII.2018.2791944
https://doi.org/10.1109/TII.2018.2791944
https://doi.org/10.1016/j.jisa.2021.102829
https://www.sciencedirect.com/science/article/pii/S221421262100065X
https://www.sciencedirect.com/science/article/pii/S221421262100065X
https://doi.org/10.1109/TIFS.2018.2812080
https://doi.org/10.1109/TIFS.2018.2812080
https://doi.org/10.1088/1757-899x/1022/1/012106
https://doi.org/10.1088/1757-899x/1022/1/012106
https://doi.org/10.1109/ICSC52841.2022.00010
https://doi.org/10.23919/Eusipco47968.2020.9287532
https://doi.org/10.23919/Eusipco47968.2020.9287532
https://doi.org/10.1016/j.patcog.2020.107360
https://www.sciencedirect.com/science/article/pii/S0031320320301631
https://www.sciencedirect.com/science/article/pii/S0031320320301631
https://doi.org/10.1007/s40747-021-00399-6

Lightweight and Practical Privacy-Preserving Image Masking 239

27. Yoosefian Dezfuli Nezhad, S., Safdarian, N., Hoseini Zadeh, S.A.: New method
for fingerprint images encryption using DNA sequence and chaotic tent map.
Optik 224, 165661 (2020). https://doi.org/10.1016/j.ijleo.2020.165661, https://
www.sciencedirect.com/science/article/pii/S0030402620314923

28. Zhang, Y.: The fast image encryption algorithm based on lifting scheme and chaos.
Inf. Sci. 520, 177–194 (2020). https://doi.org/10.1016/j.ins.2020.02.012, https://
www.sciencedirect.com/science/article/pii/S0020025520300748

https://doi.org/10.1016/j.ijleo.2020.165661
https://www.sciencedirect.com/science/article/pii/S0030402620314923
https://www.sciencedirect.com/science/article/pii/S0030402620314923
https://doi.org/10.1016/j.ins.2020.02.012
https://www.sciencedirect.com/science/article/pii/S0020025520300748
https://www.sciencedirect.com/science/article/pii/S0020025520300748

Using Blockchains
for Censorship-Resistant Bootstrapping

in Anonymity Networks

Yang Han1, Dawei Xu1,2(B), Jiaqi Gao2, and Liehuang Zhu1

1 Beijing Institute of Technology, Beijing, China
{hanyang,liehuangz}@bit.edu.cn

2 Changchun University, Changchun, China
xudw@ccu.edu.cn

Abstract. With Tor being a popular anonymity network, many censors
and ISPs have blocked access to it. Tor relies on privately and selectively
distributing IPs of circumvention proxies (i.e., bridges) to censored clients
for censorship evasion.However, existing distributors are still vulnerable to
blocking or compromising anonymity. This paper introduces Antiblok, a
new and practical channel for bridge distribution leveraging blockchain,
a globally decentralized environment. A key insight of Antiblok is that
all blockchain transactions are under pseudonymous identities, allowing
requestingclients to fetchbridge informationwhilemaintaininganonymity,
regardless of the trustworthiness of blockchain nodes. To prevent the use of
off-chain communication channels, we present an account sharing protocol
based on DH key exchange. The unblockability of Antiblok depends on the
economic consequences of blocking the Ethereum system. We show that
Antiblok effectively thwarts client-side blocking of the distribution channel
for Tor bridges, and we describe the security of our design.

Keywords: Tor · Anti-censorship · Blockchain · Covert
communication

1 Introduction

In recent years, Internet surveillance has become prevalent as more of our regular
activities shift online [1–3]. Public concerns over privacy have been likely at one of
their peaks. Anonymous communication is a useful privacy-enhancing technology
that protects the user’s identity and prevents Internet activity tracking. State-of-
the-art anonymity networks such as Tor [4] typically use proxies (i.e., relays) to
forward their clients’ traffic. Unfortunately, detecting and preventing the use of
such networks is trivially achieved by enumerating ingress points. In particular,
Tor’s entry points (i.e., guard relays) are publicly advertised. To circumvent such
blocking, Tor introduces a fraction of secret entry relays called bridges and has
long focused on how to thwart Internet censorship [5–7]. However, a resourceful
censor may constantly evolve new ways to block circumvention tools.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 240–260, 2022.
https://doi.org/10.1007/978-3-031-15777-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_14

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 241

Since the traffic of connections to Tor entry relays can be easily fingerprinted
and blocked, Tor has employed pluggable transports (PTs). Most of the PTs (e.g.,
obfs4 [8]) rely on the use of bridges, but not all. For instance, meek [7] adopts a
technique called domain fronting to hide Tor traffic inside the encrypted payload
of an allowed HTTPS connection. Unfortunately, domain fronting has been shut
down by many CDNs such as Amazon and Google [9], which makes meek much
less effective. Snowflake [10] is a new way, but clients still require domain fronting
to access the broker and often experience slower speeds [11]. In reality, there are
about ten times more clients connecting by obfs4 than by meek or Snowflake [12].
Consequently, the major challenge facing Tor’s censorship circumvention system
is to bootstrap censored clients into the anonymity network. Once censors block
all channels for fetching bridges (e.g., by blocking all connections to distributors),
they can trivially prevent clients from using Tor to access the Internet.

Tor currently supports three channels for clients to fetch bridge IP addresses,
including HTTPS, Email, and Moat [13]. The first two channels are easily blocked
by censors, and moat is an effective tool built into Tor browser that uses domain
fronting to stealthily transmit sensitive data via apparently innocuous HTTPS
connections. However, domain fronting not only relies on the ongoing support of
CDNs but does not make clients anonymous or completely hide their destination.
Worse yet, some of the requesting clients are likely to be impersonated by censors
who seek to block bridges by learning their IP addresses. Therefore, the purpose
of Tor’s bridge distribution strategy is to transmit bridge information to censored
clients while mitigating the risks of bridge enumeration. To reduce the disclosure
of bridges to censors, Tor limits the number of bridges returned to every censored
client to three for specific time intervals and distinguishes clients by their IPs
and email accounts. In addition, numerous efforts have focused on how to assign
bridges to prevent malicious clients from enumerating [14–17].

In this paper, we present a new, practical, and more decentralized distribution
channel for Tor bridges to mitigate the threat of blocking without degrading Tor
users’ anonymity. Instead of trusting centralized CDN providers, our architecture
employs a blockchain system that does not require any additional trust. We call
our blockchain-based bridge distribution solutions Antiblok. A major advantage
of Antiblok is that it supports anonymous requests, since requesting clients are
identified by blockchain addresses rather than their real identities. It is essential
for privacy-conscious users who wish to hide the fact that they are attempting to
access the anonymity network. In contrast to traditional anonymous techniques
(e.g., ring signature [18]), blockchain technology not only incorporates anonymity
but can also serve as a circumvention tool. A client within a censored area can
obtain bridges by leveraging the help of a hard-to-block blockchain that acts as
a bidirectional covert communication channel.

Antiblok advances the state-of-the-art by incorporating two new ideas in its
design. First, to enable the stealthy transmission of bridge information, Antiblok
uses a popular and widely accepted public blockchain – Ethereum. As Ethereum
is a relatively mature blockchain ecosystem with a lot of free infrastructures, the
barriers to extending Antiblok in Tor Browser are low. To create a covert channel,
all that two parties – client and distributor – need to do are to send a transaction

242 Y. Han et al.

using an Ethereum account. More importantly, Antiblok adopts random accounts
to covert transaction records between both endpoints. Second, to maintain the
secrecy and confidentiality of sensitive data, we encrypt bridge information using
a standard algorithm and then embed encrypted data into a particular field of
transactions. Due to a large number of normal transactions in Ethereum, special
transactions carrying secret messages are sufficiently concealed.

Contributions. In this effort, we explore how the unblockable Ethereum seam-
lessly works with Tor’s censorship circumvention system. The exploration spans
both theoretical and practical perspectives, and is driven by the vulnerable issue
of bridge distribution blocking. We make three main contributions:
– We propose a novel bridge distributor for the Tor network. By using a public

blockchain as a covert channel, clients can bypass blocking without degrading
their anonymity and unlinkability.

– We design a negotiation-based account sharing mechanism that allows clients
to not interact with addresses publicly related to Tor, making distinguishing
special transactions from normal transactions far more difficult.

– We implemented and evaluated Antiblok on the Ethereum Rinkeby, and show
that it can help censored clients to fetch information about Tor bridges.

2 Background

2.1 Tor Network

Tor is a low-latency anonymity network that consists of roughly 6,800 volunteer-
run relays (i.e., onion routers) and two to eight million daily users [19,20]. These
users rely on Tor to anonymize their Internet connections, and also to circumvent
censorship and surveillance. To provide sender anonymity, Tor forwards Internet
traffic through source-routed paths constructed by (typically) three relays called
circuits, i.e., relays forming the anonymous route set are selected by the client.

Tor circuits use multiple layers (three layers by default) of encryption to hide
the source and destination of communications. Encrypted traffic typically enters
the network at a guard relay. Guards are relays that are fast and stable compared
to other relays. This entry guard mechanism reduces the likelihood of the client
connecting to an attacker. The second hop in a circuit is the middle relay, which
carries traffic to the exit relay that acts as the egress point of Tor. Each hop in
the circuit peels away one layer of encryption to reveal the next hop.

To distribute the relays used to construct the circuits, Tor introduces a set of
dedicated servers called directory authorities (DirAuths) to maintain the network
status. The IP addresses of these DirAuths are provided with the Tor software
such as the Tor Browser. Every relay periodically uploads up-to-date information
to all DirAuths, including its IP, keys, capabilities, etc. The DirAuths hourly vote
and generate a consensus document listing all currently active relays in the Tor
network. Then, both clients and relays download this consensus.

Censorship Circumvention of Tor. Censorship of the Tor network is possible
and many governments have completely blocked the anonymity service. Tor can

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 243

be censored at IP level. Censors can easily detect all Tor relays based on the IPs
obtained from the publicly available consensus. Further, Tor can be censored by
DPI techniques [21,22], since the characteristics of Tor traffic are fingerprintable
and censors can prevent any traffic that looks like Tor communication.

Tor gets around the censors by introducing bridges and pluggable transports
(PTs) [23]. Tor bridges are alternative entry relays whose IPs are not published
in the consensus stored in DirAuths. With the Tor Project sending out a call for
running a bridge in Nov. 2021, the number of bridges has significantly increased
to about 2,600 [19]. PTs transform all Tor traffic between a client and the bridges
to look similar to other innocuous traffic so that it is not identifiable. Multiple
PTs have been proposed (e.g., obfs4 [8], meek [7], and Snowflake [10]), but these
tools are also subject to blocking and surveillance.

Bridge Distribution. Clients that cannot directly connect to guards need to
get information about the bridge to enter the anonymity network. The Tor soft-
ware has a list of built-in default bridges, but they are often far more brittle
compared to the advertised Tor relays. For instance, obfs4 is a recommended
bridge type, but over half of the default obfs4 bridges are inoperative [24]. Unfor-
tunately, the IPs of default bridges are hard-coded in the Tor Browser, leaving
them vulnerable to censorship as well. Meek and Snowflake are two special cases,
which reside on the popular cloud provider (i.e., Azure) and volunteer proxies,
respectively.

Tor clients can also request a custom bridge. Similar to the DirAuth maintain-
ing a list of available public relays, Tor introduces a bridge authority (BAuth) to
collect running bridges in the network. BAuth sends information about bridges
to BridgeDB [25] after testing their reachability. Subsequently, BridgeDB assigns
and distributes Tor bridges based on client requests. It currently supports three
manual distribution channels, visiting its website, sending it an email, and using
moat to fetch from within the Tor Browser. All these approaches, however, might
compromise the anonymity of clients due to identity exposure, while remaining
challenging for clients located in certain heavily censored areas.

To prevent an adversary from simply enumerating bridges, BridgeDB assigns
only three bridges per requested IP or email at specific time intervals, and limits
email requests to addresses from Riseup or Gmail. However, such protections are
ineffective against a resourceful censor, e.g., it can create large numbers of email
accounts and connect from a diverse set of IP addresses. Previous works [23,26,
27] present numerous techniques for discovering Tor Bridges.

2.2 Blockchain Network

A blockchain is essentially an implementation of a distributed ledger, consisting
of a continuously growing list of transactions that are shared among participants.
All blockchain nodes employ a distributed consensus algorithm to guarantee data
consistency. There are three types of current blockchains: public, consortium, and
private [28]. A public blockchain allows anyone in the world to participate in the
consensus process without the need for a trusted third party, which is secured

244 Y. Han et al.

by economic incentives and cryptographic verification. However, consortium and
private blockchains tend to limit the read and write permissions of participants
by including trusted entities and are therefore not fully decentralized.

Ethereum and Smart Contract. Ethereum [29] is the second largest
blockchain platform next to Bitcoin, with a current market capitalization of
over $340 billion (Feb. 14, 2022). Ethereum’s cryptocurrency is known as Ether
(ETH). Ethereum is described as a second-generation blockchain since it sup-
ports smart contracts – programs that run automatically when predetermined
conditions are met. The Ethereum smart contract is typically written in Solid-
ity, and its code is executed in a special environment called Ethereum Virtual
Machine (EVM).

Ethereum can be viewed as a transaction-based state machine and Ethereum
transactions are typically sent from and received by accounts. There are two basic
types of accounts: externally-owned accounts (EOAs) and contract accounts, and
both of them hold an Ether balance. The main difference between them is that
contract accounts have the associated code, while EOAs do not have any code.
An EOA is uniquely correlated with an address and a public/private key pair. In
the creation of an EOA, a private key is randomly generated, and then a public
key can be derived using the ECDSA with secp256k1 curve [30]. Finally, the last
20 bytes of the Keccak256 hash of the public key are taken as the address. Every
transaction is signed by the private key of the account that initiated it.

Blockchain for Resisting Censorship. One of the most important issues with
traditional centralized architecture is Internet censorship. Third parties such as
central authorities can access and censor user data arbitrarily. Public blockchains
(e.g., Bitcoin, Ethereum, Cardano) present a more effective means of overcoming
censorship policies, as there is a financial incentive to protect stored data, as well
as thousands of copies for verification and redundancy. The distribution of nodes
in public blockchains is geographically diverse. For instance, Ethereum covers 70
countries [31] and Bitcoin covers 99 countries [32] (Jun. 16, 2022). We note that
the underlying P2P protocol of blockchain is easy to identify, but there are many
P2P applications in use now and blocking them is challenging. In addition, there
are a number of websites like Etherscan that publish blockchain data, and APIs
like Infura for writing data in the blockchain. Consequently, censorship resistance
is seen as one of the value propositions of cryptocurrencies. The use of blockchain
for censorship resistance has drawn the attention of researchers [33–35].

Covert Communication over Blockchain. Public blockchains can serve as a
channel for covert communication, as special messages can be embedded in ordi-
nary, non-secret blockchain transactions to conceal the fact that a secret message
is being sent. Traditional covert channels usually lead to privacy leakage because
the IP addresses or MAC addresses of transmitters and receivers are static [36].
In contrast, such identity disclosure can be prevented when employing blockchain
as a steganographic channel due to its support for the pseudonymous identity.
Communicating parties are identified by their blockchain addresses rather than
network identities such as email or IP. Therefore, transactions remain anonymous

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 245

as long as there is no link between pseudo-identity and real identity. Although
Biryukov et al. [37] present a method to deanonymize Bitcoin users, a resourceful
adversary can disclose the sender’s IP address in only a small fraction (11%) of
all transactions in the Bitcoin network.

Recently, several schemes for building covert channels over public blockchains
have been proposed [38–41]. In the Ethereum system, the block interval is merely
15 s on average, which is about 40 times faster than Bitcoin and therefore more
efficient. Senders use the data fields of Ethereum transactions as containers for
carrying secret messages (e.g., the address field, the gas field). We note that not
all fields of a transaction can be used for steganography due to the limitations
of the sender’s ability to control the transaction.

2.3 Public Key Encryption

We review the formal definition of Public Key Encryption (PKE). A PKE scheme
PKE consists of a tuple of PPT algorithms (KeyGen,Enc,Dec).

– KeyGen(1λ): Takes as input 1λ, and outputs a public/secret key pair
(pk, sk).

– Enc(pk,M): Takes as input a public key pk and a message M , and outputs
a ciphertext C.

– Dec(sk, C): Takes as input a secret key sk and a ciphertext C, and outputs
either a message M , or a special rejection symbol ⊥.

We always require PKE to be perfectly correct, meaning that for all key pairs
(pk, sk) in the range of KeyGen(1λ), for all messages M and for all C in the range
of Enc(pk,M) we require

Dec(sk, C) = M

2.4 Elliptic Curve Diffie-Hellman

The Diffie-Hellman (DH) key exchange protocol allows two parties communicat-
ing over an insecure channel to agree on a secret key. We now formally define the
notion of Elliptic Curve Diffie-Hellman (ECDH) key exchange, which is a variant
of the DH protocol using Elliptic Curve Cryptography (ECC). An ECDH scheme
ECDH consists of three algorithms (Setup,KeyGen,SharedKey), an elliptic curve
E over Fp, and a point P ∈ E.

– Setup(P): Input the system parameter P .
– KeyGen(P, a): On input parameter P and a natural number a. It computes

A = aP and outputs a tuple (A, a).
– SharedKey(A, b): On input a public key A and a private key b. It outputs

either a shared key Kab (Kab = bA), or a failure symbol ⊥.

We require ECDH to be perfectly correct, meaning that for all corresponding
elliptic curve key pairs (A, a) and (B, b) generated by KeyGen it holds

SharedKey(A, b) = SharedKey(B, a) �=⊥

246 Y. Han et al.

Fig. 1. Bridge distribution workflow: the architecture of Antiblok

3 Overview

3.1 System Model

Antiblok retains Tor’s BAuth and BridgeDB while leveraging a public blockchain
to act as an anonymous and censorship-resistant distribution channel for bridges.
Figure 1 depicts the Antiblok model and the bridge distribution workflow.

– A Tor client is a user who cannot connect to the Tor network due to blocking
and thus seeks a bridge to circumvent censorship. These clients typically need
an unblockable channel since they have no means to access dedicated servers
offered by the Tor Project (e.g., BridgeDB).

– A bridge refers to an unpublished Tor relay that facilitates entry to anonymity
networks for blocked clients. Volunteers can register at the BAuth as a bridge
operator and then upload their bridge information.

– The censored service is the destination of the client circuit and is likely to be
monitored or blocked without the use of anonymity networks such as Tor.

– The bridge authority (BAuth) aggregates information from bridges and checks
their cryptographic validity and port reachability. Next, it sends information
about available bridges to BridgeDB.

– The BridgeDB is a collection of servers for assigning and distributing bridges
to Tor clients. In addition to the 3 existing transmission channels for bridges
(i.e., https, email, moat), it should provide an anonymous and hard-to-block
channel to clients located in censored areas.

– The public blockchain offers a covert channel in the form of blockchain trans-
actions. The bridge information used to bootstrap clients into the anonymity
network is embedded in transactions recorded in the public ledger.

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 247

3.2 Threat Model

As described in Sect. 2.1, Tor currently lacks the technical means to provide an
anonymous bridge distribution channel while resisting censorship. As a solution
to this lack of channels, we adopt Tor’s threat model [4]: a non-global adversary
that can control a fraction of all relays (including bridges), and probably see the
traffic at one end of a circuit but cannot observe the entire network.

More importantly, we consider a censoring adversary that attempts to block
or monitor the communications between clients and blockchain nodes, and knows
the public key of BridgeDB. We assume, however, that the adversary is not able
to decrypt encrypted content without knowledge of the decryption key. Further,
we assume that the censor is reluctant to block or significantly hinder the use of
public blockchains. Even in a heavily censored area, censoring a public blockchain
with a market capitalization would come at an unaffordable economic cost. Also,
we assume that the censor does not have the resources to control more than 51%
of the mining power in a public blockchain.

3.3 Design Goals

Antiblok seeks to provide a censorship-resistant solution using a public blockchain
for bootstrapping anonymity networks, which satisfies the following properties.

– Anonymity. Antiblok ensures anonymity while distributing bridges to
clients, i.e., neither the censor nor BridgeDB knows the real identity of users.

– Unobservability. Antiblok removes the direct connection to BridgeDB, ren-
dering the censor unable to detect the client’s communication with BridgeDB,
even if it monitors incoming and outgoing traffic for the client.

– Unblockability. The censor is unable or unwilling to block communications
between the client and BridgeDB, even if it can identify them.

– Availability. Antiblok provides a channel that is resilient to DoS attacks.
– Minimal changes. Antiblok can be weaved into Tor as an alternative bridge

distribution channel without redesigning BAuth and BridgeDB of Tor, which
allows Antiblok to be incrementally deployed on the real Tor network.

4 Antiblok Details

At a high-level, the primary aim of Antiblok is to allow Tor clients inside censored
areas to successfully learn available bridges and reliably route their traffic to the
destination website via three voluntarily participating relays containing a bridge,
while keeping the anonymity of requesting clients. To achieve this goal, we design
a request-response mechanism in the blockchain framework. As the requester, the
client sends a request transaction to the blockchain. BridgeDB is the responder,
which continuously retrieves the request transaction from the distributed ledger.
Once BridgeDB discovers a new request, it will send a response transaction with
embedded bridge information. Finally, the client gets the data from the response
transaction. More concretely, Antiblok adopts a set of protocols to (1) ask clients

248 Y. Han et al.

Algorithm 1: Client Request Procedure
1 Function EthereumAccountCreation(p, B):
2 ECDH.Setup(p);
3 s ← Generate_Random_Seed();
4 (ecdhpk, ecdhsk) ← ECDH.KeyGen(p, s);
5 skacct ← ECDH.SharedKey(B, ecdhsk);
6 addracct ← Get_Address(skacct);
7 return ecdhpk, addracct;

8 Function RequestTransaction(bpk, ecdhpk, addracct):
9 (pk, sk) ← PKE.KeyGen(1λ);

10 pkenc ← PKE.Enc(bpk, pk);
11 msg ← ecdhpk, pkenc;
12 txn1 ← Build_Request_Transaction(x, addracct,msg);
13 txn1signed ← Sign_Transaction(txn1);
14 txn1hash ← Send_Transaction(txn1signed);
15 txn1receipt ← Wait_Transaction_Receipt(txn1hash);
16 return txn1receipt ;

to pay for requests (to make enumeration more difficult), (2) ensure that requests
are anonymous, and (3) use a hard-to-block channel to transmit Tor bridges from
BridgeDB to clients, and (4) provide the encrypted transmission of data.

4.1 Client Request

Antiblok offers a Tor Browser extension that is installed on the user’s computer.
The user may run the extension optionally, e.g. by using the Ethereum blockchain
as a transmission channel when she experiences difficulty contacting BridgeDB or
wishes to keep anonymity. There are two ways to connect to Ethereum, running a
node and calling an RPC service. Although the former can provide more privacy
guarantees, it is complex and challenging for many users. So the extension adopts
the latter mechanism for clients based on a trade-off between performance and
security. Many RPC services such as Infura and QuikNode have been the primary
selection for most DApp clients, since they run optimized nodes to communicate
with the Ethereum blockchain. Algorithm 1 presents the pseudocode of the client
request process, which considers the following two aspects:

Account Creation. Antiblok requires Tor clients to create a one-time Ethereum
account for every request. The private key of this account is determined between
the client and BridgeDB via ECDH. As the first step in account creation, a client
defines the efficient cryptography parameter p for the ECDH algorithm (Line 2).
Then, the client utilizes p and a cryptographically-random seed s to generate an
elliptic curve key pair (ecdhpk, ecdhsk) (Lines 3–4). After obtaining BridgeDB’s
ECDH public key B, the shared private key skacct is computed (Line 5). Notably,
the parameter p and the public key B are hard-coded in the Antiblok extension.
For a successful creation, the client extracts the Ethereum address addracct from
skacct (Line 6), which is the unique identifier of the account.

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 249

As mentioned above, Antiblok proposes an account sharing mechanism based
on a key-agreement protocol. The key strength of this design is that no payment
interaction is required, and the identity of the payer (i.e., the client) is anonymous
due to the pseudo-identity. All communications between clients and BridgeDB
occur over the blockchain transaction. A request transaction is sent from a user
address ADDR to addracct, while a response transaction is sent from addracct to a
random smart contract address, as we will see in Sect. 4.2. The unobservability
of steganography transactions is enhanced by the randomness of addresses. Note
that ADDR should not be linked to other activities in order to avoid user privacy
from being inferred, e.g., the source of its balance needs to be untraceable. There
are many ways to quickly and easily buy ETH anonymously such as Ether ATMs
and cryptocurrency exchanges [42]. On the other hand, an ECDH-based account
reduces the difficulty for Tor clients to receive data. Synchronizing the Ethereum
ledger to retrieve the response transaction would result in significant performance
penalties for clients. Instead, Antiblok enables the client to receive bridges simply
from the input field of the transaction sent from the known account.

Request Transaction. Antiblok uses Elliptic Curve Cryptography (ECC) as its
PKE algorithm. ECC can offer the same level of security using a small size key as
other PKE algorithms with large size keys, which makes ECC very appealing for
scenarios with limited storage (such as blockchain and IoT). The most extended
encryption scheme in ECC is the ECIES [43].

To defend against adversaries (e.g., censors, curious clients, etc.) that want to
simply enumerate bridges (for example, for the purpose of deanonymizing users
by inspecting packets sent and received by a bridge), the client needs to transfer
x ETH to addracct before requesting bridges, which increases the economic cost of
enumeration attacks [26] to some extent. Note that the minimum value of x must
be able to cover fees for subsequent transactions; otherwise, the transaction will
fail. However, such costs have limited impact against a determined, well-funded
censor. To implement the idea of balancing the trade-off between ordinary clients
and adversaries, we add a payment procedure to the request transaction.

BridgeDB’s ECC public key bpk is hard-coded in the Antiblok extension, and
thus easily accessible. It will be used to encrypt a 33-byte compressed public key
pk and this public/private key pair (pk, sk) is generated with the secp256k1 curve
implementation of ECIES (Lines 9–10). Then, a 64-byte ecdhpk is combined with
the encrypted ECC public key pkenc to form the request message msg (Line 11).
The msg is embedded in a request transaction txn1, and txn1 is signed by ADDR’s
blockchain private key and sent to addracct (Lines 12–14). Afterwards, the client
is able to query whether txn1 was successfully included in one block by checking
its transaction receipt txn1receipt (Line 15).

4.2 BridgeDB Response

BridgeDB learns about new bridges from the BAuth and assigns them to request
clients based on the bridge assignment algorithm. Previous works [14–17] provide
numerous strategies, but how to assign Tor bridges is not the focus of this effort

250 Y. Han et al.

and thus will not be discussed in depth here. Unlike clients that use RPC services,
BridgeDB runs an Ethereum node to hold a copy of the up-to-date public ledger
to constantly retrieve whether a new steganography transaction txn1 carrying a
request has been sent. Once the request is discovered and parsed, BridgeDB will
transmit three bridges to the client through a transaction. Algorithm 2 presents
the pseudocode of BridgeDB response process.

BridgeDB Retrieval. As mentioned in Sect. 4.1, BridgeDB’s public keys (i.e.,
B and bpk) are broadly disseminated, but corresponding private keys (i.e., b and
bsk) are kept secret and only BridgeDB knows them. Once a new block is added
to Ethereum, BridgeDB gets all the transactions it contains and checks if any of
them carry requests. For a successful retrieval, BridgeDB can take out the secret
message msg from the input field of txn1, then parse msg into two parts – ecdhpk
and pkenc, and finally compute the private key skacct as well as the corresponding
address addracct (Lines 2–4). Notably, addracct must be equal to addrR that is the
output address of the transaction txn1; otherwise, it fails on address verification
(Lines 5–7). Finally, BridgeDB decodes pkenc with its private key bsk into pk
that will use to encrypt the bridge information (Line 8).

Bridge Assignment. Currently, BridgeDB supports three types of distributors:
https, email, and moat. After a new bridge is reported by the BAuth, BridgeDB
assigns it to distributors based on an HMAC function and makes the assignment
persistent. Instead of making improvements to the bridge assignment algorithm,
this paper extends a distributor (i.e., Antiblok) that seeks to successfully provide
clients with bridge information, while making them anonymous like Tor Browser
does. Similar to the current assignment strategy based on IPs and email accounts,
Antiblok assigns bridges based on Ethereum addresses (e.g., ADDR), while using
the request transaction’s timestamp time to limit the number of bridges returned
to a client for specific time intervals (Lines 11–12). (While not yet implemented
in our prototype, the blockchain-based distributor could be simulated manually.
We leave such integration to the future work of Antiblok.)

Response Transaction. After assigning a subset of bridges (usually three)
upon request, BridgeDB will provide the client with them. Because all trans-
actions in a public blockchain are open and traceable, information about
Tor bridges must be cryptographically protected before it is embedded in a
blockchain transaction. Antiblok leverages a standard PKE algorithm to encrypt
bridge information into bridgesenc, which will be embedded in a response trans-
action txn2 (Lines 13–14). Unlike the construction of txn1, txn2 – a contract
transaction – is signed by skacct and sent from addracct to a public smart contract
address ADDRsc (Lines 15–16). ADDRsc is not pre-defined but is dynamically
selected by BridgeDB based on the up-to-date Ethereum ledger. More concretely,
BridgeDB periodically (e.g., on a weekly basis) detects the contracts that have
been called most frequently during this period and then selects a function F from
their list of functions. We require that the input field of a normal transaction
generated by the call to F cannot be blank, so a steganography transaction can
be constructed with F. Consequently, bridgesenc is concealed in the data of a
random smart contract, further improving the indistinguishability of txn2, and

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 251

Algorithm 2: BridgeDB Response Procedure
1 Function ParseRequestData(b, bsk, msg, addrR):
2 ecdhpk, pkenc ← Parse(msg);
3 skacct ← ECDH.SharedKey(ecdhpk, b);
4 addracct ← Get_Address(skacct);
5 if addracct �= addrR then
6 return ⊥;
7 end
8 pk ← PKE.Dec(bsk, pkenc);
9 return pk;

10 Function ResponseTransaction(pk, ADDR):
11 time ← Get_Transaction_Timestamp(txn1);
12 bridges ← Assign_Bridges(ADDR, time);
13 bridgesenc ← PKE.Enc(pk, bridges);
14 txn2 ← Build_Response_Transaction(bridgesenc);
15 txn2signed ← Sign_Transaction(txn2);
16 txn2hash ← Send_Transaction(txn2signed);
17 if the account acct does not have enough ETH then
18 return ⊥;
19 end
20 txn2receipt ← Wait_Transaction_Receipt(txn2hash);
21 return txn2receipt ;

such randomness does not incur additional work for clients. If acct’s balance is
not sufficient to cover the transaction fee for txn2, this request will fail because
txn2 cannot be sent (Lines 17–19); otherwise, the client can receive the encrypted
bridge data from the input field of txn2 once txn2 has been sent, even if it is not
yet included in a block.

4.3 Circuit Creation

Client Reception. Algorithm 3 presents the pseudocode of client reception
process. Once a client finds a new txn2 with addracct, the client extracts the
ciphertext bridgesenc from txn2 and decrypts it with sk to obtain bridges (Line
2). Even if an adversary discovers that txn2 is carrying a secret message, the
adversary cannot learn the plaintext by decrypting it, since sk is known only to
the client. Finally, the client parses bridges into {b1, b2, b3} (Line 3).

Algorithm 3: Client Reception Procedure
1 Function ReceiveBridges(sk, bridgesenc):
2 bridges ← PKE.Dec(sk, bridgesenc);
3 {b1, b2, b3} ← bridges;
4 return {b1, b2, b3};

252 Y. Han et al.

Circuit Creation. When a censored client fetches bridges (i.e., b1, b2, and b3),
the client will connect to a bridge using a PT. However, for some heavily censored
regions, the characteristics of Tor traffic cause it to be identified by censors even
after obfuscation. There are many studies on enhancing PTs to evade censorship,
but it is not the focus of this work. An illustration of a 3-hop Tor circuit is shown
in Fig. 1. After successfully establishing a circuit, the client will route its traffic
to censored services using the constructed circuit.

5 Security

In this section, we evaluate and analyze several important security properties of
Antiblok, and provide informal proofs of their effectiveness.

Denial-of-Service (DoS) Attacks. The purpose of a DoS attack is to pre-
vent a system or resource from serving users by flooding the target with massive
traffic. Antiblok is not subject to such traditional DoS attacks [44] due to their
difficulty in scaling to decentralized systems with thousands of peer nodes. By
leveraging the decentralized nature of Ethereum, Antiblok can allocate band-
width to absorb DoS attacks as they happen. But blockchain systems are not
completely immune to DoS attacks. There is a body of research on blockchain
DoS security, such as eclipse attacks [45], routing attacks [46], and mining-based
DoS attacks [47], but most efforts to stop cryptocurrency blockchains are pro-
hibitively costly, even for powerful censors. Additionally, a censoring adversary
could disrupt Ethereum by flooding it with transactions to exhaust its resources,
but the resulting economic consequences would negatively impact people within
the censored area.

Security of Account Sharing. To enable a Tor client and BridgeDB to
securely share a private key (i.e., skacct) without prior off-chain communication,
Antiblok presents a negotiation-based protocol for account sharing that relies
on Elliptic-Curve Diffie-Hellman (ECDH) key exchange. We now examine its
security in the presence of both passive and active adversaries. In the discrete
logarithm attack, a passive adversary Alice is able to eavesdrop on the commu-
nication channel and learn information (such as the parameter p, BridgeDB’s
ECDH public key B, and the client’s ECDH public key ecdhpk) without inter-
fering with the protocol. But the security of ECDH relies on the intractability
of the (computational) Elliptic Curve Diffie-Hellman Problem (ECDHP); there-
fore, Alice will not able to derive the private keys b and ecdhsk from B, ecdhpk, p
unless she solves the ECDLP. In the man-in-the-middle attack, an active adver-
sary Bob runs the ECDH protocol separately with the client and BridgeDB. If
they cannot distinguish each other’s bits from Bob’s bits, the protocol can be
compromised. Antiblok will be included in the Tor software, so the client can
easily verify the integrity of B. On the other hand, with the use of Ethereum
as a communication channel, BridgeDB can learn ecdhpk directly from the pub-
lic ledger and authenticate the computed private key with the txn1’s (default)
output address, clearly preventing such attacks.

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 253

Difficulty of Enumerating Bridges. While Antiblok does not attempt to pre-
vent long-running malicious middle relays from enumerating bridges, it increases
the difficulty of leveraging excessive client requests to enumerate the IP addresses
of bridges. Such enumeration allows bridges to be quickly found by an adversary,
degrading the availability and security of Tor bridges. All transactions generated
during the bridge distribution process need to be paid by the client. Any increase
in the number of requests is therefore met with more resources provided by the
corresponding request fees. That is, an adversary cannot send more requests by
simply changing accounts; instead, there will be a high financial cost (i.e., paying
ETH for the Ethereum transactions). For instance, on June 18, 2022, Ethereum’s
average transaction fee is $4.74 [48]. Under the extreme assumption that all Tor
bridges are assigned to the Antiblok distributor by BridgeDB, the minimum cost
for an adversary to enumerate all 2,600 bridges is roughly $8,216. Unfortunately,
an adversary with sufficient funds is still able to obtain more bridges by sending
a large number of transactions.

Anonymity of Requests. By monitoring communications between two enti-
ties, an adversary can collect sensitive information (e.g., identity, personal
interests, location, etc.). Tor currently requires clients to directly connect to
BridgeDB to request bridges, which enables distributors and potential adver-
saries to observe the IP addresses of clients through traffic eavesdropping. We
also note that none of the existing distribution channels (i.e., https, email, moat)
can preserve users’ privacy. They assume that the distributor is completely
trusted and authorized to know which bridges are given to a particular client,
which may compromise user anonymity [14,49]. In contrast, Antiblok proposes
a non-interactive distribution protocol that enables blockchain nodes to serve as
a medium between clients and BridgeDB in order to provide strong anonymity
guarantees to users. As long as the Ethereum address is not linked to the client’s
identity, our distributor cannot associate bridges with a requester’s IP. Ethereum
Mainnet has 2,864 nodes (Mar. 12, 2022) [50]. Although we use RPC services to
limit the number of connectable nodes to around 10% of all nodes, every addi-
tional RPC node monitored by the adversary will only increase the probability
of client connections being monitored by roughly 0.35%. More importantly, at
least 63% of Ethereum applications use Infura API, which handles billions of
requests per day. By comparison, the client sends only about 24 API requests
when sending a txn1. As a result, even though an extremely powerful censor
could detect all connections between clients within the censored area and RPC
Ethereum nodes, it is difficult to distinguish special requests from a large number
of normal requests.

6 Evaluation

Our evaluation aims to show (1) whether Antiblok helps censored Tor clients get
bridges, and (2) how much time cost will be incurred by introducing Ethereum.

254 Y. Han et al.

6.1 Experimental Setup

BridgeDB Configuration. We manually simulate the assignment and distri-
bution workflow. We start by applying for obfs4-type bridges on BridgeDB’s
website based on the IP address [25], and the response result is shown in Fig. 2.

Fig. 2. A result example of BridgeDB’s website assigning and distributing three obfs4-
type bridges for a request.

Then, we perform experiments for Antiblok. Once a request transaction txn1
is detected, we take this example (i.e., three bridges obtained from the website) as
the assignment results and transmit them to the client covertly via an Ethereum
transaction txn2. For simplicity, our experiments adopt Infura as an API to access
Ethereum without really running a node as described above.

Client Configuration. The simulated client within the censored area runs on
an Alibaba Cloud ECS instance created in Beijing, with CentOS and Tor Browser
installed. Experiments are conducted over the live Tor network and Ethereum.

6.2 Functionality Evaluation

We note that congestion often occurs in the Ethereum ecosystem due to a large
number of transactions. In the worst case, the congestion will last for many days,
which certainly affects the availability of Antiblok. However, an Ethereum-based
channel is still more reliable than fundamentally blocked traditional distribution
channels, as blockchain systems always have the ability to self-mitigate. In order
to evaluate the ability of Antiblok to bypass client-side blocking, we use Rinkeby
Testnet as a communication medium between the censored client and BridgeDB.
In practice, most Testnets select only a small number of nodes to validate trans-
actions and create blocks, so their transaction frequency tends to be lower than
that of the Mainnet and they are more prone to congestion.

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 255

Table 1. The average time for every process of bridge distribution workflow

Workflow Process Average time (s)

Request Create key pairs 0.012 2.217
Send txn1 2.205

Retrieve Add txn1 to a block 15.001 16.423
Examine the block 1.422

Respond Encrypt response message 0.004 1.791
Send txn2 1.787

Receive Get bridge information 1.496 1.496

The implementation details of Antiblok in Ethereum are offered in Sect. 4.
In summary, BridgeDB embeds request and response messages into two Rinkeby
transactions using the web3.py library, respectively. The average time for every
process of bridge distribution workflow is shown in Table 1. While the procedure
for adding the transaction txn1 to a single block is limited by the Ethereum
itself, the total time of Antiblok (i.e., roughly 22 s) is acceptable as it does
not have to be real-time. For example, a censored client waits about 20 s while
requesting bridge information by traditional email channels, which is comparable
to Antiblok, but such channels are not able to offer anonymity. If a censor blocks
all traffic to/from the Ethereum platform, we should expect that clients are not
able to connect to Rinkeby nodes.

As a preparation for our experiments, BridgeDB should create two key pairs
and make the public keys widely available. The first one is an ECDH key pair on
the NIST256p curve. In our implementation, we use the ecdsa library to perform
ECDH key agreement between BridgeDB and clients. Next is an ECIES key pair,
which is implemented over the eciespy library and is used by clients to perform
PKE, i.e., encrypt/decrypt the request message.

Request Transaction. The requesting client is required to perform two similar
cryptographic processes, creating an ECDH key pair to compute a shared private
key skacct, and an ECIES key pair used to encrypt/decrypt the response message.
The process of creating two fresh key pairs takes the client about 12ms, and
deriving the private key takes about 10ms on average. Finally, the client takes
about 2.2 s to build and send a transaction carrying a request. [51] is an example
of the request transaction txn1. Afterwards, the client has to continuously query
whether txn1 has been included in one block (i.e., the finality of txn1) to ensure
that BridgeDB can retrieve a request.

Retrieval Process. To retrieve every special request transaction, BridgeDB
has to constantly query the latest block included in Ethereum. We conducted
group experiments according to the type of Ethereum, with a total of two groups
(i.e., Testnet and Mainnet). Ten experiments were performed in each group.
Overall, the average time to examine one block in Testnet is approximately
1.4 s, while the average time for Mainnet is about 2.7 s. The experimental results

256 Y. Han et al.

demonstrate that the retrieval time is much lower than the block time. Note that
the time required to detect special transactions from one block is affected by the
response delay of remote calls to the Ethereum API. We, therefore, recommend
BridgeDB (i.e., the bridge provider) maintain an Ethereum node to reduce the
time overhead of transaction retrieval.

Response Transaction. BridgeDB extracts the client’s public key, which is
encrypted, from the retrieved transaction, and decrypts it with BridgeDB’s pri-
vate key. This public key will be used to encrypt the bridge information. The
time of the encryption and decryption process depends on the length of the mes-
sage. In our experiments, both encryption and decryption take less than 6ms.
As an easy-to-implement design, BridgeDB can randomly create an EOA as the
receiver of txn2. However, we send txn2 to a frequently invoked contract in order
to further improve the difficulty for adversaries to detect the hidden information,
and [52] is an example of txn2. Notably, once txn2 is sent, the client can discover
it immediately without waiting for it to be added to one block.

7 Discussion

Antiblok bypasses client-side blocking of bridge distribution in Tor by employing
blockchain transactions as rendezvous. Our technique is targeted at anonymously
providing censored clients with bootstrapping information (i.e., bridge IPs).

Related Work. As discussed above, not only are Tor’s advertised relays
blocked, but secret bridges are also at risk of being blocked due to an enumeration
attack. Worse yet, a resourceful censor blocks channels for distributing bridges
whenever possible, fundamentally preventing users from accessing anonymity
services. The early two distributors – https and email – required direct contact
with BridgeDB, which had become ineffective for most censored users. Tor then
presents moat [13] that relies on domain fronting supported by popular CDNs
(like meek [7] does). Moat argued that censorship circumvention is achieved due
to the high collateral damage of blocking the distribution channel: blocking Tor
clients’ requests would also result in the blocking of CDN servers. Unfortunately,
moat depends on the cooperation of CDN providers, while requiring that users
have to trust them (for anonymity cannot be guaranteed).

We present Antiblok, a distinctive bridge distribution channel that eliminates
all reliance on CDNs. Antiblok achieves greater blocking resistance by employing
Ethereum as a covert transmission channel, thus making the bridge distribution
process more difficult to censor. Conceptually, Antiblok is a method of providing
a distributed transmit architecture for Tor bridges.

Recabarren et al. [33] present a Bitcoin-based communication system to resist
censorship, called Tithonus. The Tithonus server uses the Bitcoin blockchain and
its network to provide censored clients with bootstrapping information (e.g., Tor
bridge’s IP). But a single transmission in Tithonus (such as a client registration
message) needs to be encoded into two transactions, a preparing transaction and
a redeeming transaction. Bitcoin, in comparison to Ethereum, has a slower block

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 257

time and a lower embedding capacity. MoneyMorph [35] covers four blockchains
(including Ethereum) as the covert transmission channel. As a case, Zcash offers
the lowest cost. But blockchains with a higher market cap and more nodes would
contribute to more censorship resistance. Ethereum is therefore more reliable for
evading censors. MoneyMorph uses a fixed smart contract as rendezvous, which
compromises the unobservability of the communication. In contrast, we introduce
randomness to enhance the concealment of special transactions. In addition, even
if the client runs an SPV node (aka a light node) that downloads only the header
of each block, as MoneyMorph suggests, it incurs additional bandwidth overhead
for a Tor client. There is also work focused on introducing blockchain technology
into components of anonymity networks. For instance, SmarTor [53] replaces the
DirAuths with a smart contract in order to decentralize the anonymity network
and reduce trust assumptions.

Limitations. Similar to traditional (CAPTCHA- and identity-based) strategies,
blockchain address-based strategy is also susceptible to enumeration. Bridge enu-
meration is an open problem for Tor, however, one point worth stressing is that
enumeration attacks are usually enabled by an adversary with enough resources.
Such adversaries would unlikely disrupt the running of blockchains. In addition,
Antiblok provides some protection against automated enumeration, as learning
the bridges requires paying transaction fees (i.e., ETH) in advance.

8 Conclusion

In the case of Tor, Antiblok bypasses bridge distribution blocking by reassigning
the job of transmitting bridges from https, email, or moat to a public blockchain
with a decentralized architecture. The key insight is that blockchain can provide
users with anonymous identities, allowing censored clients to maintain anonymity
while resisting censorship. We propose a covert communication scheme that
employs Ethereum as a non-interactive transmission channel, and an account
sharing protocol to protect the unobservability of communications.

Acknowledgements. This work was supported by the NSFC General Technology
Basic Research Joint Fund (Grant No. U1836212).

References

1. Aryan, S., Aryan, H., Halderman, J.A.: Internet censorship in Iran: a first look. In:
3rd USENIX Workshop on Free and Open Communications on the Internet (FOCI
13) (2013)

2. Yadav, T.K., Sinha, A., Gosain, D., Sharma, P.K., Chakravarty, S.: Where the
light gets in: analyzing web censorship mechanisms in India. In: Proceedings of the
Internet Measurement Conference 2018, pp. 252–264 (2018)

3. Ramesh, R., et al.: Decentralized control: a case study of Russia. In: Network and
Distributed Systems Security Symposium (2020)

258 Y. Han et al.

4. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, Naval Research Lab Washington DC (2004)

5. Karlin, J., et al.: Decoy routing: toward unblockable internet communication. In:
USENIX Workshop on Free and Open Communications on the Internet (FOCI 11)
(2011)

6. Mohajeri Moghaddam, H., Li, B., Derakhshani, M., Goldberg, I.: Skypemorph:
protocol obfuscation for Tor bridges. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 97–108 (2012)

7. Fifield, D., Lan, C., Hynes, R., Wegmann, P., Paxson, V.: Blocking-resistant com-
munication through domain fronting. Proc. Priv. Enhanc. Technol. 2015(2), 46–64
(2015). https://doi.org/10.1515/popets-2015-0009

8. Angel, Y.: obfs4 - the obfourscator. https://github.com/Yawning/obfs4/
9. Brandom, R.: Amazon web services starts blocking domain-fronting, following

Google’s lead (2018). https://www.theverge.com/2018/4/30/17304782/amazon-
domain-fronting-google-discontinued

10. Snowflake: pluggable transport using WebRTC. https://gitlab.torproject.org/tpo/
anti-censorship/pluggable-transports/snowflake/

11. Snowflake moving to stable in Tor browser 10.5 (2021). https://blog.torproject.
org/snowflake-in-tor-browser-stable/

12. Users - Bridge user by transport. https://metrics.torproject.org/userstats-bridge-
transport.html?transport=obfs4&transport=meek&transport=snowflake

13. BRIDGES. https://tb-manual.torproject.org/bridges/
14. Wang, Q., Lin, Z., Borisov, N., Hopper, N.: rBridge: user reputation based Tor

bridge distribution with privacy preservation. In: Network and Distributed Systems
Security Symposium (2013)

15. Douglas, F., Rorshach, W.P., Pan, W., Caesar, M.: Salmon: robust proxy distri-
bution for censorship circumvention. Proc. Priv. Enhanc. Technol. 2016(4), 4–20
(2016). https://doi.org/10.1515/popets-2016-0026

16. Zamani, M., Saia, J., Crandall, J.: TorBricks: blocking-resistant Tor bridge distri-
bution. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 426–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_32

17. Nasr, M., Farhang, S., Houmansadr, A., Grossklags, J.: Enemy at the gateways:
censorship-resilient proxy distribution using game theory. In: Network and Dis-
tributed Systems Security Symposium (2019)

18. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_32

19. Tor Metrics. https://metrics.torproject.org
20. Mani, A., Wilson-Brown, T., Jansen, R., Johnson, A., Sherr, M.: Understanding

Tor usage with privacy-preserving measurement. In: 2018 Proceedings of the Inter-
net Measurement Conference, pp. 175–187 (2018)

21. Choffnes, D., Gill, P., Mislove, A.: An empirical evaluation of deployed DPI mid-
dleboxes and their implications for policymakers. In: Proceedings of TPRC (2017)

22. Li, F., et al.: lib• erate,(n) a library for exposing (traffic-classification) rules and
avoiding them efficiently. In: Proceedings of the 2017 Internet Measurement Con-
ference, pp. 128–141 (2017). https://doi.org/10.1145/3131365.3131376

23. Matic, S., Troncoso, C., Caballero, J.: Dissecting Tor bridges: a security evaluation
of their private and public infrastructures. In: Network and Distributed Systems
Security Symposium, pp. 1–15. The Internet Society (2017)

https://doi.org/10.1515/popets-2015-0009
https://github.com/Yawning/obfs4/
https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
https://blog.torproject.org/ snowflake-in-tor-browser-stable/
https://blog.torproject.org/ snowflake-in-tor-browser-stable/
https://metrics.torproject.org/userstats-bridge-transport.html?transport=obfs4&transport=meek&transport=snowflake
https://metrics.torproject.org/userstats-bridge-transport.html?transport=obfs4&transport=meek&transport=snowflake
https://tb-manual.torproject.org/bridges/
https://doi.org/10.1515/popets-2016-0026
https://doi.org/10.1007/978-3-319-69084-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://metrics.torproject.org
https://doi.org/10.1145/3131365.3131376

Using Blockchains for Censorship-Resistant Bootstrapping in Tor 259

24. Jansen, R., Vaidya, T., Sherr, M.: Point break: a study of bandwidth {Denial-
of-Service} attacks against Tor. In: 28th USENIX Security Symposium (USENIX
Security 19), pp. 1823–1840 (2019)

25. BridgeDB. https://bridges.torproject.org/
26. Ling, Z., Luo, J., Yu, W., Yang, M., Fu, X.: Extensive analysis and large-scale

empirical evaluation of Tor bridge discovery. In: 2012 Proceedings IEEE INFO-
COM, pp. 2381–2389. IEEE (2012). https://doi.org/10.1109/infcom.2012.6195627

27. Durumeric, Z., Wustrow, E., Halderman, J.A.: {ZMap}: fast internet-wide scanning
and its security applications. In: 22nd USENIX Security Symposium (USENIX
Security 13), pp. 605–620 (2013)

28. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain tech-
nology: architecture, consensus, and future trends. In: 2017 IEEE International
Congress on Big Data (BigData congress), pp. 557–564. IEEE (2017)

29. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

30. Qu, M.: Sec 2: Recommended elliptic curve domain parameters. Certicom Res.,
Mississauga, ON, Canada, Technical report SEC2-Ver-0.6 (1999)

31. Ethereum Mainnet Statistics (2022). https://www.ethernodes.org/countries
32. REACHABLE BITCOIN NODES (2022). https://bitnodes.io/
33. Recabarren, R., Carbunar, B.: Tithonus: a bitcoin based censorship resilient sys-

tem. arXiv preprint arXiv:1810.00279 (2018)
34. He, S., Tang, Q., Wu, C.Q., Shen, X.: Decentralizing IoT management systems

using blockchain for censorship resistance. IEEE Trans. Industr. Inf. 16(1), 715–
727 (2019). https://doi.org/10.1109/tii.2019.2939797

35. Minaei, M., Moreno-Sanchez, P., Kate, A.: MoneyMorph: censorship resistant
rendezvous using permissionless cryptocurrencies. Proc. Priv. Enhanc. Technol.
2020(3), 404–424 (2020). https://doi.org/10.2478/popets-2020-0058

36. Ahsan, K.: Covert channel analysis and data hiding in TCP/IP. MA Sc. thesis,
Department of Electrical and Computer Engineering, University of Toronto (2002)

37. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 15–29 (2014)

38. Partala, J.: Provably secure covert communication on blockchain. Cryptography
2(3), 18 (2018). https://doi.org/10.3390/cryptography2030018

39. Gao, F., Zhu, L., Gai, K., Zhang, C., Liu, S.: Achieving a covert channel over an
open blockchain network. IEEE Netw. 34(2), 6–13 (2020)

40. Alsalami, N., Zhang, B.: Uncontrolled randomness in blockchains: covert bulletin
board for illicit activity. In: 2020 IEEE/ACM 28th International Symposium on
Quality of Service (IWQoS), pp. 1–10. IEEE (2020)

41. Zhang, L., Zhang, Z., Wang, W., Jin, Z., Su, Y., Chen, H.: Research on a covert
communication model realized by using smart contracts in blockchain environment.
IEEE Syst. J. (2021). https://doi.org/10.1109/jsyst.2021.3057333

42. Buy ethereum anonymously. https://www.cryptimi.com/buy-cryptocurrency/
buy-ethereum-eth#buy-ethereum-anonymously

43. Gayoso Martínez, V., Hernández Encinas, L., Sánchez Ávila, C.: A survey of the
elliptic curve integrated encryption scheme (2010)

44. Understanding denial-of-service attacks (2019). https://www.cisa.gov/uscert/
ncas/tips/ST04-015

45. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on
{Bitcoin’s}{peer-to-peer} network. In: 24th USENIX Security Symposium
(USENIX Security 15), pp. 129–144 (2015)

https://bridges.torproject.org/
https://doi.org/10.1109/infcom.2012.6195627
https://www.ethernodes.org/countries
https://bitnodes.io/
http://arxiv.org/abs/1810.00279
https://doi.org/10.1109/tii.2019.2939797
https://doi.org/10.2478/popets-2020-0058
https://doi.org/10.3390/cryptography2030018
https://doi.org/10.1109/jsyst.2021.3057333
https://www.cryptimi.com/buy-cryptocurrency/buy-ethereum-eth#buy-ethereum-anonymously
https://www.cryptimi.com/buy-cryptocurrency/buy-ethereum-eth#buy-ethereum-anonymously
https://www.cisa.gov/uscert/ncas /tips/ST04-015
https://www.cisa.gov/uscert/ncas /tips/ST04-015

260 Y. Han et al.

46. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (S&P), pp.
375–392. IEEE (2017). https://doi.org/10.1109/sp.2017.29

47. Mirkin, M., Ji, Y., Pang, J., Klages-Mundt, A., Eyal, I., Juels, A.: BDoS: blockchain
denial-of-service. In: Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 601–619 (2020)

48. Average Transaction Fee Chart. https://etherscan.io/chart/avg-txfee-usd
49. Loesing, K., Murdoch, S.J., Dingledine, R.: A case study on measuring statistical

data in the Tor anonymity network. In: Sion, R., et al. (eds.) FC 2010. LNCS,
vol. 6054, pp. 203–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14992-4_19

50. Ethereum Node Tracker. https://etherscan.io/nodetracker
51. An example of request transaction. https://4el5.short.gy/VMT3U0
52. An example of response transaction. https://4el5.short.gy/s9Mi4R
53. Andre, G., Alexandra, D., Samuel, K.: SmarTor: smarter tor with smart contracts:

improving resilience of topology distribution in the Tor network. In: Proceedings of
the 34th Annual Computer Security Applications Conference, pp. 677–691 (2018)

https://doi.org/10.1109/sp.2017.29
https://etherscan.io/chart/avg-txfee-usd
https://doi.org/10.1007/978-3-642-14992-4_19
https://doi.org/10.1007/978-3-642-14992-4_19
https://etherscan.io/nodetracker
https://4el5.short.gy/VMT3U0
https://4el5.short.gy/s9Mi4R

Repetitive, Oblivious, and Unlinkable
SkNN Over Encrypted-and-Updated

Data on Cloud

Meng Li1(B), Mingwei Zhang1, Jianbo Gao1, Chhagan Lal2, Mauro Conti2,3,
and Mamoun Alazab4

1 Key Laboratory of Knowledge Engineering with Big Data
(Hefei University of Technology), Ministry of Education; School of Computer Science
and Information Engineering, Hefei University of Technology; Anhui Province Key

Laboratory of Industry Safety and Emergency Technology; and Intelligent
Interconnected Systems Laboratory of Anhui Province

(Hefei University of Technology), Hefei, China
mengli@hfut.edu.cn, {mwzhang,jianbogao}@mail.hfut.edu.cn

2 Department of Intelligent Systems, CyberSecurity Group, Delft University of
Technology, Delft, The Netherlands

c.lal@tudelft.nl
3 Department of Mathematics and HIT Center, University of Padua, Padua, Italy

conti@math.unipd.it
4 College of Engineering, IT and Environment, Charles Darwin University,

Darwin City, Australia
alazab.m@ieee.org

Abstract. Location-Based Services (LBSs) depend on a Service
Provider (SP) to store data owners’ geospatial data and to process data
users’ queries. For example, a Yelp user queries the SP to retrieve the
k nearest Starbucks by submitting her/his current location. It is well-
acknowledged that location privacy is vital to users and several promi-
nent Secure k Nearest Neighbor (SkNN) query processing schemes are
proposed. We observe that no prior work addresses the requirement of
repetitive query after index update and its privacy issue, i.e., how to
match a data item from the cloud repetitively in an oblivious and unlink-
able manner. Meanwhile, a malicious SP may skip some data items and
recommend others due to unfair competition.

In this work, we formally define the repetitive query and its privacy
objectives and present an Repetitive, Oblivious, and Unlinkable SkNN
scheme ROU. Specifically, we design a multi-level structure to organize
locations to further improve search efficiency. Second, we integrate data
item identity into the framework of existing SkNN query processing.
Data owners encrypt their data item identity and location information
into a secure index, and data users encrypt a customized identity range
of a previously retrieved data item and location information into a token.
Next, the SP uses the token to query the secure index to find the spe-
cific data item via privacy-preserving range querying. We formally prove
the privacy of ROU in the random oracle model. We build a prototype
based on a server to evaluate the performance with a real-world dataset.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 261–280, 2022.
https://doi.org/10.1007/978-3-031-15777-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_15

262 M. Li et al.

Experimental results show that ROU is efficient and practical in terms
of computational cost, communication overhead, and result verification.

Keywords: Cloud computing · SkNN · Repetitive query · Privacy

1 Introduction

1.1 Background

Smartphones are now equipped with a Global Positioning System (GPS) mod-
ule and various applications that support location-based service (LBS) [1–4].
It works by sending a data user’s current location query to a Service Provider
(SP). The SP matches the query with data items from data owners and retrieves
corresponding results to the data user. For instance, Google Maps enable data
users to find Starbucks, bars, and restaurants near their current location.

While LBSs provide practical benefits, the privacy concerns rooted in location
revelation and untrusted SP [5,6] are a major hindrance towards the broad
adoption of LBSs. First, the submitted locations may include data users’ sensitive
locations. Second, locations are tightly correlated to human activities, such as
visiting a cancer hospital and meeting a friend in a hotel. Besides, there are
many reports on the data leakage incidents caused by cyber attacks, hardware
malfunction, or misoperation for the past decade [7,8]. Therefore, it is highly
important to protect data stored on SPs. To protect data stored on SPs, Secure
k Nearest Neighbor (SkNN) query processing has been proposed [9–12].

1.2 Motivations

Motivation I (Blurry Memory): Our motivation arises from real-world appli-
cations. For example, say a data user Bob submitted a S4NN query (location X,
“pizza shop”, 4) to the SP and obtained 4 results, namely Papa Johns, Mr.
Pizza, Domino’s Pizza, and Big Pizza. Among the results he went to, he was
quite satisfied with the Domino’s Pizza. Days later, when Bob is near the same
query location and wants to dine at the previous Domino’s Pizza. Unfortunately,
Bob’s memory of this shop somehow blurs and he submits a repetitive query to
the SP to find the preferred pizza shop. Motivation II (Index Update): Fol-
lowing the example above, even if Bob remembers the name of the shop, the SP
may happen to update the index tree as depicted in Fig. 1 such that the pre-
ferred location will not be included in the query results. In the previous query,
the SP found the Domino’s Pizza at di5, i.e., data item 5, among the first 4
matched data items {di2, di4, di5, di6}. After the index update, di5 will not be
returned to Bob who submits the same S4NN query because the data items are
reordered and di5 is not among the top 4 matched data items. Motivation III
(Malicious SP): The SP could be malicious in the sense that it has a secret
agreement with some data owners to deliberately order data items, which is
similar to unfair ranking where some search engines treat websites unfairly [17].
In this case, the user-preferred data item, which is not “favored” by the SP,

Repetitive, Oblivious, and Unlinkable SkNN 263

di2di1 di3 di4 di6di5 di7 di8

Index
update

Previous query
paths when k=4

di2di7 di6 di4 di3di5 di8 di1

New query
paths when k=4

Preferred
item

found
Item
lost

Fig. 1. Query paths before/after index update. (Data items marked in yellow are
matched data items. The data item marked in red is matched and user-preferred data
item. After index update, the preferred data item di5 is moved back on the leaf level
such that the search paths change. The user will not receive such an item by using the
same S4NN query because the SP finds 4 matched data items before di5.) (Color figure
online)

may be put way back in the data item queue. Motivation IV (Improving
Efficiency): There are many methods of processing locations in SkNN, such as
Voronoi diagram [9], Paillier cryptosystem [10,18], and projection functions [11].
Improving search efficiency is always an ongoing goal.

Based on the first three motivations, no previous studies [9–16] have con-
sidered the requirement of repetitive query and its potential privacy problems,
which lead to the following new requirements for SkNN.

– Repetitive query after index update: A data user queries the same data
item that is returned in the previous query especially after the SP has updated
the index.

– Obliviousness: We need to prevent the SP from knowing the data user’s
requirement to retrieve a previously matched data item.

– Unlinkability: Prevent the service provider from knowing that the specific
data item has been previously matched to the data user.

– Exclusiveness: Prevent the SP from abandoning the preferred data item in
case the SP gives priority to other data items.

1.3 Possible Solutions and Technical Challenges

A simple way of finding a preferred data item in an oblivious and unlinkable
manner is to query all the locations with the same type as the preferred data
item. However, this brings too many computational costs in result searching and
communication overhead. Assume that the data user needs the data item di with
a sequence number ∗. Intuitively, there are three approaches to finding ∗ in SP’s
index tree: (1) Start from ∗ and continue to find the other k − 1 data items.
(2) End at ∗ and return the obtained data items. (3) Randomly choose r data
items before ∗ and find k − r − 1 data items after ∗. These three approaches
require special treatment on locating ∗ which makes it difficult for the SP not
to notice this difference. This first one may traverse the whole index and the

264 M. Li et al.

second one may return all the matched data items if di∗ is in the last leaf node.
The last one is faced with an uncertain choice of r. Therefore, the technical
challenge I is solving the contradiction between locating the preferred data
item and treating all data items equally. To enable repetitive query, we can
introduce an identity to each data item. Before uploading the index to the SP,
the data owner has to append the identity to the location for each data item.
When the data user queries the SP about a previous data item, the SP uses the
identity as the extra query condition. While matching the previous data item
precisely, this approach, however, excludes other location-matched data items
which may expose the data user’s requirement of repetitive matching. To match
other data items, we cannot use the identity directly. Therefore, the technical
challenge II lies in the contradiction between using a preferred identity and
matching other data items.

To address the above challenges, we propose ROU: a Repetitive, Oblivious,
and Unlinkable query processing scheme. Specifically, we first divide the location
map into a l-leveled pyramid and each level consists of a number of grids. For each
level, we use the similar space encoding technique to save computational cost for
both data users and the SP. The data owner (data user) encodes the data items’
locations (current location) and obtains a set of leveled location codes. At the lth
level, we assign an identity to each data item. The data owner computes a prefix
family of the data item identity and integrates it with location codes at the l-th
level. Next, the data owner inserts the integrated codes into an Indistinguishable
Bloom Filter (IBF) as a secure index. The data user who is about to submit a
repetitive query generates a customized identity range to compute a minimum
set of prefixes. Next, the data user also integrates the prefixes with the location
codes similarly and computes a query token. Finally, the SP searches the secure
index by querying the token on it and returns matched data items to the data
user. Our contributions are summarized as follows.

– To the best of our knowledge, we are the first to focus on the repetitive
query in SkNN and we propose a repetitive, oblivious, and unlinkable query
processing scheme.

– We achieve the three above-mentioned new requirements via customized iden-
tity transformation and privacy-preserving range querying. We design a multi-
level structure to encode locations to accelerate the search efficiency.

– We formally define privacy and then prove it in the random oracle model.
We build a prototype of ROU based on a server and a real-world dataset.
Experimental results demonstrate its efficiency and practicability.

1.4 Paper Organization

The remaining of this paper is organized as follows. We discuss related work in
Sect. 2. We elaborate on the system model, threat model, and design objectives
in Sect. 3. In Sect. 4, we introduce the proposed space encoding. In Sect. 5, we
present the ROU scheme. We formally analyze the privacy of the ROU in Sect. 6.
We implement the ROU scheme and analyze its performance in Sect. 7. Lastly,
we draw conclusions in Sect. 8.

Repetitive, Oblivious, and Unlinkable SkNN 265

2 Related Work

2.1 SkNN

Yao et al. [9] proposed SNN methods by asking the SP, given only an encrypted
query point E(p) and an encrypted database E(D), to return a corresponding
(encrypted) partition E(G) satisfying that E(G) contains SNN query answer.
They name their method the secure Voronoi diagram (SVD) method that is
based on special partitions over D and the Voronoi diagram of D. They partition
the database D into small groups and then store the encrypted groups on the
SP. Instead of returning the whole encrypted database, the SP retrieves one
encrypted group for any SNN query. The SVD method does not require any new
encryption schemes, but only depends on any standard encryption scheme E
(e.g., RSA and AES) which means its security is the same as E.

Elmehdwi et al. [10] proposed an k-nearest neighbor search protocol based
on two non-colluding semi-honest SPs that preserves both the data privacy and
query privacy. They first design a basic protocol and show why it is not secure
and present a fully secure kNN protocol. The basic protocol allows the data
user to retrieve k records that are closest to his query by using Paillier cryp-
tosystem [18] and secure squared Euclidean distance. The advanced protocol,
however, utilizes secure bit-decomposition, secure minimum out of n numbers,
secure bit-OR to avoid exposing the data access patterns in the basic protocol.

Lei et al. [11] proposed a secure and efficient query processing protocol
SecEQP. They leveraged some primitive projection functions to convert the
neighbor regions of a given location. Given the codes of two converted loca-
tions, the service provider computes the proximity of the two locations by
judging whether the two codes are the same. This is an improvement over
their previous work [14] since the two-dimensional location data is projected
to high-dimensional data which expands the location space to make the con-
verted location more secure. The data owner further embeds the codes into a
similar IBFTree in order to build a secure index. The data user computes similar
trapdoors by a keyed hash message authentication code. The final secure query
processing is the same as [14].

2.2 Privacy-Preserving Range Querying

Li et al. [13] presented the first range query processing protocol which achieved
index indistinguishability under the indistinguishability against chosen keyword
attack (IND-CKA). A data owner converts each data item dti by prefix encod-
ing [19] and organizes each prefix family of encoded item F (dii) into a PBTree.
Then the data owner makes the PBtree privacy-preserving by a keyed hash
message authentication code HMAC and Bloom filters. For each prefix pri, the
data owner computes several hashes HMAC(Kj , pri) and inserts a randomized
version HMAC(r,HMAC(Kj , pri)) into a Bloom filter. Each r corresponds to a
node and each node relates to a prefix family, i.e., data item. Next, a data user
converts a range into a minimum set of prefixes and computes several hashes

266 M. Li et al.

HMAC(Kj , pri) for each pri as a trapdoor. The service provider searches in the
PBtree to find a match by using the trapdoor.

Li et al. [14] concerned processing conjunctive queries including keyword
conditions and range conditions in a privacy-preserving way and presented a
privacy-preserving conjunctive query processing protocol supporting adaptive
security, efficient query processing, and scalable index size at the same time.
Specifically, they adopt prefix encoding as in their earlier work [13] and design
an indistinguishable Bloom filter (IBF), i.e., twin Bloom filter to replace the
previous structure. A pseudo-random hash function H to determine a cell loca-
tion H(hk+1(hj(pri)) ⊕ r), i.e., which twin cell stores ‘1’. Instead of building a
PBTree, they construct an IBTree as the secure index.

Different from the previous works, ROU scheme can support the three new
features in SkNN, namely repetitive, oblivious, and unlinkable. The novelty of
ROU is in realizing the function of repetitive query by mixing customized identity
range query with existing SkNN query without sacrificing privacy.

3 Problem Formulation

Before we dive into the details of ROU, we elaborate on its system model, threat
model, and design objectives. Specifically, we formally define the repetitive query
and its privacy objectives.

3.1 System Model

The system model, as drawn in Fig. 2, consists of a data owner O, a data user U ,
and SP. We define DI = {di1, di2, · · ·, din} as the set of n data items. A location
loc as a pair of coordinates.

Data
owner

Data user

Service provider

Shared secret keys

SkNN
query

Results
and

proofs

Secure index

Pointers
Outsource

Mul�-level
structured loca�on

Iden�ty

Data item Encrypted data

Mul�-level
structured loca�on

Customized
iden�ty range

Fig. 2. ROU system model.

Data Owner: A data owner has some data items to be shared with data users.
Each data item has type, location, and identity. The data owner extracts the

Repetitive, Oblivious, and Unlinkable SkNN 267

information of each data item and calculates a secure index by using secret keys.
Next, he encrypts his data item by using another secret key and a standard
encryption algorithm. Each secure index has a pointer to link to the ciphertext.
Finally, the data owner uploads the index and the ciphertext to the SP. The
secret keys are shared with data users. We assume that ROU has only one data
owner for simplicity, but also supports the multi-owner setting.

Data User: A data user generates a query token by using the type, current
location, and shared secret keys, and an identity range. If the data user does not
have a specific preference on a data item, the identity range is set by default.
Otherwise, the identity range is computed based on the identity of the preferred
data item. Next, the data user submits the query token to the SP, which retrieves
corresponding results and proofs to the data user. The data user decrypts and
verifies the received results. We formally define the repetitive query as follows.

Definition 1 (Repetitive Query). A repetitive query is a single location-time
predicate or a combination of location-time predicates linked by the Boolean oper-
ators [20]. Let Q = (pid, T (t, loc, id,R)) be a SkNN query submitted by a data
user and it is a pair of pseudo-identity pid and a query token T . T is composed of
type t, location loc, identity of a previously matched data item id, and an identity
range R. Let Qi = (pidi, Ti(ti, loci, idi, Ri)) be the ith query of data owner O. A
repetitive query event, denoted by ReQuery, is expressed as (pidi �= pidj)∧ (Ti �=
Tj) ∧ (ti = tj) ∧ (loci = locj) ∧ (idi = idj) ∧ (Ri �= Rj) ∧ (time.j > time.i) for
two queries Qi and Qj.

SP: The SP helps the data owner to authorize the query service to a set of data
users. The SP stores the secure indexes and ciphertexts uploaded from the data
owners. It responds to data users’ query tokens by searching over the secure
indexes and returning corresponding results and proofs to data users.

3.2 Threat Model

The threats mainly arise from the behaviors of the internal entities, including the
semi-honest (honest-but-curious) data owner and data users. This assumption is
proposed by [21] and has been well acknowledged by existing work [11,13,14,22–
24]. The SP is malicious [12,15]. Although it acts as a bridge between the data
owner and data users to offer query services, it may also behave maliciously, i.e.,
it ignores some data items when searching the index in its database.

3.3 Design Objectives

There are four design objectives in this work: functionality, privacy, security, and
efficiency.

Functionality, i.e., repetitive query after index update. ROU allows data users
to query a previously matched data item even if the SP has updated the index.

268 M. Li et al.

Privacy. (1) Data/Index/Token Privacy. From the encrypted data item, index,
and token, the adversary cannot learn any useful information about the data,
data item’s location, query location, and type [25–29]. (2) Obliviousness. ROU
prevents the SP from knowing that the data user submitted a repetitive query.
(3) Unlinkability. ROU prevents the SP from knowing that the data item referred
to in the repetitive query was a retrieved data item of the data user. We define
two experiments PrivKobl

A,Π and PrivKunl
A,Π, based on a Probabilistic Polynomial-

Time (PPT) adversary A and the ROU scheme Π = (Setup, Index,Token,Query),
and a function S computing the minimum set of prefixes. The formal definitions
are as follows.

The Adversarial Obliviousness Experiment PrivKobl
A,Π:

1. A is given the size m of IBF and number of pseudo-random hash functions p,
and outputs a pair of quintuples q0 = (t0, loc0, id′

0, R0), q1 = (t1, loc1, id′
1, R1)

satisfying t0 = t1, loc0 = loc1, id′
0 = 0, id′

1 ∈ {1, n}, and | S(R0)| = |S(R1) |.
2. Secret keys are generated by using Setup, and a uniform bit b ∈ {0, 1} is

chosen. A query token Tb ← Token(qb) is computed and given to A. We refer
to Tb as the challenge token.

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1, i.e., PrivKobl

A,Π = 1 and A
succeeds, if b′ = b, and 0 otherwise.

The Adversarial Unlinkability Experiment PrivKunl
A,Π:

1. A is given the size m of IBF and number of pseudo-random hash functions p,
and outputs a pair of quintuples q0 = (t0, loc0, id′

0, R0), q1 = (t1, loc1, id′
1, R1)

satisfying t0 = t1, loc0 = loc1, diid′
1

∈ Query(q0, I), and | S(R0) |=| S(R1) |,
where I is the index tree.

2. Secret keys are generated by using Setup, and a uniform bit b ∈ {0, 1} is
chosen. A query token Tb ← Token(qb) is computed and given to A. We refer
to Tb as the challenge token.

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1, i.e., PrivKobl

A,Π = 1 and A
succeeds, if b′ = b, and 0 otherwise.

Definition 2 (Obliviousness). Given a repetitive query event ReQuery, the
SkNN scheme Π is oblivious if for every A, it holds that Pr[PrivKobl

A,Π = 1] = 1
2 .

In other words, it is trivial for A to succeed with probability 1/2 by outputting a
random guess. Obliviousness requires that it is impossible for any A to do better.

Definition 3 (Unlinkability). Given a repetitive query event ReQuery, the
SkNN scheme Π is unlikable if for every A, it holds that Pr[PrivKunl

A,Π = 1] = 1
2 .

Security, i.e., exclusiveness. ROU prevents the SP from abandoning the pre-
ferred data item in case the SP gives priority to some locations. In other words,
the data users can verify the query results that should include the preferred data
item.

Repetitive, Oblivious, and Unlinkable SkNN 269

Efficiency. ROU should satisfy two types of efficiency requirements. (1) Low
computational cost: the data owner/data user/SP spends a reasonable amount
of time on computing index, token, and searching. (2) Low query latency. The
data user can get the result within a reasonable amount of time. (3) Low com-
munication overhead. It requires an acceptable amount of transmitted messages
between the data owner, data users, and the SP.

4 The Proposed Space Encoding

The proposed space encoding technique is constructed on a multi-level structure
to process data items. As shown in Fig. 3, there are four levels in the pyramid-
like structure, i.e., l1, l2, l3, and l4. All the levels refer to the whole service area,
but they are divided based on different granularity. From the second level L2,
the area is divided into more than one grid. There are 4, 16, and 64 grids in
L2, L3, L4, respectively. Each level encodes its grids from the number 1 prefixed
with the level number such that each grid has a unique number on each level.

l1

Dataset DI
ID LocType
id1 xxxCafe

id3 yyyBank

…...

idn zzzStore

id2 xxxCafe

l0

l2

l3

<id2,Cafe,xxx>

2 || HMAC(4)

3 || HMAC(11)

4 || 45
id2, Cafe

1 2
3 4

11

45

Data
owner

Data
user

q2=<Cafe,xxx,id2,R>

q1=<Cafe,xxx>

q3=<Bank,yyy>

q3=<Bank,yyy,id3,R>

To be integrated

1 2
3 4

11 12
13 14

53
45

37 38 39
46 47

54 55

2||HMAC(4)

3||HMAC(11)

4||[37,39],
4||[45,47],
4||[53,55]
R, Cafe
To be integrated

Level
indicator

Grid
indicator

Fig. 3. Space encoding.

For the data item < id2, Cafe, xxx>, the data owner encodes xxx from L2 to
L4 to obtain three strings: “2||HMAC(4)”, “3||HMAC(11)”, and “4||HMAC(45)”.
Here, the real numbers before || stand for different levels and HMAC is a keyed

270 M. Li et al.

hash message authentication code. At the last level L4, the data owner integrates
its identity id2 with “4||HMAC(45)” as a foundation for repetitive query, which
we will provide details in Sect. 5.2.

For the query q2=<Cafe, xxxid2, R >, the data user encodes her current
location from L1 to L3 similarly. When reaching L3, the data user computes a
bigger grid that covers the current grid and obtain three grid number ranges,
i.e., “[37,39]”, “[45,47]”, and “[53,55]”. The size of the bigger grid is flexible
and it is determined according to the data users. Next, the data user will also
integrate the identity id2 of the previously matched data item < id2, Cafe, xxx>
with “4|| [37, 39]”, “4|| [45, 47]”, and “4|| [53, 55]” similarly. The R is an identity
range that covers id2 that we will provide details in Sect. 5.3.

5 The Proposed Scheme ROU

5.1 Overview

As depicted in Fig. 4, we use the level-based space encoding to obtain location
codes. We adopt the privacy-preserving range querying to generate identity pre-
fixes for data items. Further, we integrate the repetitive query problem with the
location querying problem by mixing the location codes and identity prefixes.
Lastly, we leverage IBFs to build secure indexes and achieve SkNN querying via
membership checking. The data users decrypt and verify the received results.

For each data item, O converts its location into a set of leveled location codes
LC from level 2 to level l and computes a concatenated prefix family PF based
on l, grid number, identity, and type on level l. Next, O inserts LC and PF into
an IBF as a leaf node and encrypts the data item using symmetric encryption.
When processing all data items, O build an index tree from the bottom to up,
and submits the index tree and corresponding ciphertexts to SP. A data user U
computes LC similarly and computes a concatenated minimum set of prefixes
MP based on l, grid range, identity range, and type on level l. Next, U computes
a query token qt based on LC and MF and submits it to SP. The SP searches
the index tree by using the token and returns matched results and proofs to the
U . Finally, U decrypts and verifies the results.

5.2 Index Building

A data owner O is holding a set of data items DI. dii =< idi, ti, loci >. We
use dii as an example to show how to build an IBF in a leaf node. For each
dii, O chooses a secret key K0, converts dii’s location into a set of grid numbers
{gi2, · · ·, gil} and encodes them into a set of leveled location codes:

LCi = {lci2, lci3, · · ·, lcil} = {2 || HMACK0(gi2), · · ·,
l − 1 || HMACK0(gil−1), l || gil}.

(1)

For the first l−2 levels, O processes dii’s location codes {lci2, lci3, · · ·, lcil−1}
as follows. Given p+ 1 secret keys K1,K2, · · ·,Kp,Kp+1, p pseudo-random hash

Repetitive, Oblivious, and Unlinkable SkNN 271

Spa�al a�ributes

Privacy-preserving range query

Mixed codes and prefixes

Repe��ve queryingLoca�on querying

IBF-based index tree

Level-based space encoding

Check membership in IBFs to
find results and generate proofs

QuerySkNN problem

Token

Decrypt
and

verify
results

Fig. 4. ROU scheme overview.

functions h1, h2, ···, hp where hi = HMACKi
(·), and another hash function H(.) =

SHA256(.)%2, O creates an indistinguishable Bloom filter IBFO and embeds
each location code lciu and a randomly chosen number ri into IBFi by setting
for all u ∈ [2, l − 1] and v ∈ [1, p]:

IBFi[H(hKp+1(hv(lciu)) ⊕ ri)][hv(lciu)] = 1, (2)

IBFi[1 − H(hKp+1(hv(lciu)) ⊕ ri)][hv(lciu)] = 0. (3)

For the lth level, O computes a prefix family PF i1 of gil by using prefix encod-
ing [13] and a prefix family PF i2 of idi’s identity idi. Then, O mixes PF i1 with
PF i2 by concatenating their prefixes to obtain a mixed code set MCi. Further,
O prefixes each mixed code with the level number and the type (converted into
a real number). In this way, we lay a foundation for the data user to meet the
requirement of repetitive query. Next, O inserts each code mcu in MCi into
IBFi by setting for all u ∈ [1, | MCi |] and v ∈ [1, p]:

IBFi[H(hKp+1(hv(mcu)) ⊕ ri)][hv(mcu)] = 1, (4)

IBFi[1 − H(hKp+1(hv(mcu)) ⊕ ri)][hv(mcu)] = 0. (5)

When processing all data items, O obtains n IBFs and builds an index tree
from the bottom to up. O sorts the n IBFs in a random order and organize them
into a binary tree structure to achieve sublinear search time [11]. An index tree
I is built as follows. Assume that IBF1 is the father IBF of two children IBFs:
IBF2 (left child) and IBF3 (right child), then for each i ∈ [1,m], the value of
IBF1’s ith twin is the logical OR of IBF2’s ith twin and IBF3’s ith twin.

IBF1[H(hKp+1(i) ⊕ r1)][i] =
IBF2[H(hKp+1(i) ⊕ r2)][i] ∨ IBF3[H(hKp+1(i) ⊕ r3)][i].

(6)

272 M. Li et al.

O encrypts the n data items by using AES encryption and a symmetric key
sk to obtain ciphertexts CT = {ct1, ct2, · · ·, ctn} and computes a root hash value
RT of IBFs from the hash value HV of all the tree nodes based on the Merkle
tree method [30]. Finally, O submits to the SP index tree I, a set of random
numbers, CT , and RT .

1. Index Tree

di2
1.2 Insert mixed
code for l-th level:

0 0 1 1 …... 0
1 1 0 0 …... 1

di1

di1,di2

di4

di1,di2,di3,di4

di5 di6 di7

di5,di6

di5,di6,di7,di8

di1,di2,di3,di4,
di5,di6,di7,di8

1.1 Insert loca on code
for first l-2 levels:

B[hj(lc)][H(hp+1(hj(lc))⊕r)]=1
B[hj(lc)][1−H(hp+1(hj(lc))⊕r)]=0

0
0

1.3 Compute hash values for tree nodes:

HV1=hash(IBF1)

hash(HV1+HV2)

lc

di3

di3,di4

di8

di7,di8

0 0 1 1 …... 0
1 1 0 0 …... 1

B[hj(lc)][H(hp+1(hj(lc))⊕r)]=1
B[hj(lc)][1−H(hp+1(hj(lc))⊕r)]=0

0
0

lc

di2di1

di1,di2

HV2=hash(IBF2)

2. Query Token

2.2 Compute pairs of twin loca ons and
hashes for l-th level:

2.1 Compute pairs of twin loca on and
hashes for first l-2 levels:
{(hKp+1(h1(lc)), h1(lc)), (hKp+1(h2(lc)), h2(lc)),
......,(hKp+1(hp(lc)), hp(lc))}

{(hKp+1(h1(mc)), h1(mc)), (hKp+1(h2(mc)), h2(mc))
…...,(hKp+1(hp(mc)), hp(mc))}

Fig. 5. Index tree and query token.

5.3 Token Generation

A data user U is standing at location loc and expecting to find the data item
idi. U converts loc into a set of leveled location codes:

LC = {lc2, · · ·, lcl} = {2 || HMACK0(g2), · · ·,
l − 1 || HMACK0(gl−1), l || Exp(gl)},

(7)

where Exp(gl) expands current grid to a bigger area which consists of the nearest
nine grids as shown in Fig. 3.

For each location code lcu, 2 ≤ u ≤ l − 1, U computes p hashes hj(lcu), 1 ≤
j ≤ p. For each hj(lcu), 1 ≤ j ≤ p, U computes hKp+1(hj(lcu)). The subtoken
for lcu is a p-pair of twin locations and hashes: {(hKp+1(h1(lcu)), h1(lcu)), · ·
·, (hKp+1(hp(lcu)), hp(lcu))}. Then, O obtains a ((l−2)×p)-pair of twin locations
and hashes. We denote the set by T1, i.e., the first part of the T .

For the lth level, U computes a minimum set of prefixes M1 for Exp(gil) and
a minimum set of prefixes M2 for Ri(idi). Here, we require that Ri(idi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[idi, idi + 1] ∨ [idi + 2, idi + 3] ∨ · · ·∨
[idi + 2 | S(1, n) | −2, idi + 2 | S(1, n) | −1], if idi%2 = 0

[idi − 1, idi] ∨ [idi + 1, idi + 2] ∨ · · ·∨
[idi + 2 | S(1, n) | −3, idi + 2 | S(1, n) | −2], otherwise

Repetitive, Oblivious, and Unlinkable SkNN 273

By doing so, we have that | M2 |=| S(id1, idn) |. U mixes M1 with M2 by
concatenating their prefixes to obtain a mixed code set MC. Further, U prefixes
each mixed code with the level number and the type. We denote the set by T2,
i.e., the second part of the T . Finally, U submits the query token T = (T1, T2) to
the SP. We draw the process of tree construction and token generation in Fig. 5.

5.4 Query Processing

After receiving T , the SP searches I from up to the bottom to find leaf nodes
that match T . Specifically, the SP proceeds in two stpes. (1) SP performs query
processing by checking whether IBF [H(hKp+1(lc)) ⊕ r)][hj(lc)] = 1 for at least
one j ∈ [1, p] and (H(hKp+1(lc)), hj(lc)) is one pair in T1. If this match continues
until the leaf level, it means there is at least one data item matches the query
on the first l − 2 levels. (2) At a leaf node, the SP performs the similar query
processing by using T2. If there is a match, the SP continues to search other
matched leaf nodes. Finally, the SP returns the ciphertexts of match lead nodes
and the proofs (IBFs of the branch-but-unmatched nodes) to the U .

5.5 Result Verification

O decrypts the ciphertexts and checks whether the returned data items include
the preferred data item. Next, O verifies that her query does not match the
IBFs in the proofs. O also recomputes the value of the root from bottom to up
by using the leaf IBFs and proofs. If the computed value equals to RT , O is
convinced that that results are not tampered with.

6 Privacy Analysis

6.1 Data/Index/Token Privacy

Theorem 1. ROU is adaptive IND-CKA (L1,L2)-secure in the random oracle
model, achieving data/index/token privacy.

Due to the space limitation, please refer to our technical report for the detailed
proofs.

6.2 Obliviousness

In the adversarial obliviousness experiment PrivKobl
A,Π, a challenge query token

Tb is returned to the adversary A. Specifically, Tb consists of two parts Tb1, Tb2.
Given that loc0 = loc1, we have T01 = T11. For the second part, we require that
R(id′

1) is a customized range satisfying | S(R(id1)) |= S([id1, idn]). By doing
so, we have | T02 |=| T12 | and they are indistinguishable for using secret keys
and the one-way hash functions. Therefore, T0 and T1 are indistinguishable, i.e.,
Pr[PrivKobl

A,Π = 1] = 1
2 .�

274 M. Li et al.

6.3 Unlinkability

In the adversarial unlinkability experiment PrivKunl
A,Π, a challenge query token Tb

is returned to the A. Similarly, we have T01 = T11. Although diid′
1

∈ Query(q0, I),
i.e., the data item diid′

1
belongs to the previously received data items, we have

also randomized T12 to make it indistinguishable from T02. Therefore, we have
Pr[PrivKunl

A,Π = 1] = 1
2 .�

6.4 Exclusiveness

To prevent the SP from abandoning the preferred data item, we ask the data
users to explicitly integrate a customized identity range in the query token. In
this way, the SP can only return matched data items. Further, the SP has to
generate proofs to prove that the claimed unmatched nodes do not match the
query. In this way, the data users are convinced that the preferred data item is
not abandoned.

7 Performance Analysis

7.1 Experiment Settings

Dataset. We use the locations of three cities, i.e., Orlando, Portland, and
Atlanta, from the Yelp dataset [31]. Each location has a type and two loca-
tion coordinates. After preprocessing the dataset, we obtain 10, 000 data items
from each of the three cities and each item is in the form of (id, t, loc).

Parameters. We vary n from 2, 000 to 10, 000, and k from 1 to 5. The false
positive rate is set to 1%. The number of pseudo-random hash functions p is 5.
According to the false positive rate equation [13], the IBF size m ranges from
1.2 to 12 KB. The lengths of secret keys, random numbers, and the symmetric
key are 1024 bits, 1024 bits, and 256 bits, respectively.

Metrics. We evaluate the time of tree construction, token generation, query
processing, and result verification. We evaluate the communication overhead of
index tree, query token, results and proofs. We conduct each set of experiment
over twenty times and compute the average time. Communication overhead is
calculated by measuring the size of the transmitted messages. Since AES is
applicable to the symmetric encryption of all schemes, we remove this part in
comparison, but focus on the index, token, query, and verification.

Setup. We instantiate ROU on a PC server running Windows Server 2021 R2
Datacenter with a 3.7-GHz Intel(R) Core(TM) i7-8770K processor, and 32 GB
RAM. We use HMAC-SHA256 as the pseudo-random function to implement the
hash functions of IBF. We use AES as the symmetric encryption. We have
uploaded all source codes of ROU on Github: https://github.com/UbiPLab/
ROU.

https://github.com/UbiPLab/ROU.
https://github.com/UbiPLab/ROU.

Repetitive, Oblivious, and Unlinkable SkNN 275

2000 4000 6000 8000 10000
0

5

10

15

20

25
Orlando
Portland
Atlanta

C
on

st
ru

ct
io

n
tim

e
(m

in
)

Number of data items n

(a) Construction time by varying n

2000 4000 6000 8000 10000
0

1

2

3

4

5
Orlando
Portland
Atlanta

In
de

x
si

ze
 (G

B
)

Number of data items n

(b) Index size by varying n

Fig. 6. Performance of tree construction.

7.2 Index Building

The computational cost of building an index tree as a function of n is shown in
Fig. 6(a). The communication overhead of uploading the index tree to the SP
as shown in Fig. 6(b). It can be observed that construction time and index size
grow linearly with n. When n = 10, 000, it costs the data owner less than 23 ms
in computing an index tree of 4.6 GB.

7.3 Token Generation

We assume that the data user only want to find one specific data item that was
returned in her previous query. The token size is independent of k, but not n
because the size of M2 increases with n. There are two types of queries: ordinary
query and repetitive query. Since the total number of prefixes in the two cases
are the same, there will be no difference for their computational cost (35.1 ms)
and communication overhead (77.1 KB) when n = 2000.

7.4 Query Processing

The query processing time of ROU is a function of n and k. Figure 7(a) shows
that the query processing time is in the millisecond scale. When k = 1 and
n = 10000, the average query processing time for Orlando is 28 ms. The difference
among the three cities are caused by the different distribution of matched data
items. However, Fig. 7(b) shows that when n = 2000, with the k increasing from
1 to 5, the query processing time does not grow much with k on each of the
three lines, because we have designed a customized identity range for the data
owner, which may lead to less matched results. In other words, the repetitive
SkNN query does not have to return k results. In Fig. 7(c) and Fig. 7(d), the
communication overhead of the SP increases with n and k because the IBF size
increases with n and the number of returned nodes increases, respectively.

276 M. Li et al.

2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80 Orlando
Portland
Atlanta

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
s)

Number of data items n

(a) Query time by varying n (k = 5)

1 2 3 4 5
0

10

20

30

40

50

60

70

80
Orlando
Portland
Atlanta

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
s)

Query parameter k

(b) Query time by varying k (n = 2000)

2000 4000 6000 8000 10000
5.0

5.2

5.4

5.6

5.8

6.0
Orlando
Portland
Atlanta

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

)

Number of data items n

(c) Communication overhead by varying n
(k = 5)

1 2 3 4 5
1

2

3

4

5
Orlando
Portland
Atlanta

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

)

Query parameter k

(d) Communication overhead by varying k
(n = 2000)

Fig. 7. Performance of query processing.

7.5 Result Verification

After the SP returns the results and proofs to the data user, the data user verifies
the results by recomputing the root’s hash value from the received hash values.
The result verification time, as shown in Fig. 8, corresponds to the results and
proofs returned by the CS. It costs the data user (in Orlando) 0.08 ms and 0.1
ms when k = 1, n = 2000 and k = 1, n = 10000, respectively. We attribute this
advantage to the exclusiveness of the repetitive query.

Repetitive, Oblivious, and Unlinkable SkNN 277

2000 4000 6000 8000 10000
0.08

0.09

0.10

0.11

0.12

0.13
Orlando
Portland
Atlanta

A
ve

ra
ge

 v
er

ifi
ca

tio
n

tim
e

(m
s)

Number of data items n

(a) n

1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10
Orlando
Portland
Atlanta

A
ve

ra
ge

 v
er

ifi
ca

tio
n

tim
e

(m
s)

Query parameter k

(b) k

Fig. 8. Performance of result verification.

Table 1. Comparison of computational costs and communication overhead.

Computational costs

Scheme Index building (min) Token generation Query processing (ms)

(ms) n = 2000 n = 10000

n = 2000 n = 10000 n = 2000 n = 10000 k = 1 k = 5 k = 1 k = 5

SecEQP [11] 1.82 22.5 33.08 512.37 16.06 28.07 17.06 30.08

ServeDB [15] 0.34 2.02 32.02 511.38 21.06 73.19 26.07 88.23

ROU 1.87 22.8 35.1 516.37 14.04 25.04 16.04 28.08

Communication overhead

Scheme Index building (GB) Token generation Query processing (KB)1

(KB) n = 2000 n = 10000

n = 2000 n = 10000 n = 2000 n = 10000 k = 1 k = 5 k = 1 k = 5

SecEQP [11] 0.37 4.60 41.25 43.12 n/a

ServeDB [15] 0.31 1.86 20.14 21.18 17.99 84.56 18.35 88.49

ROU 0.37 4.60 77.10 116.19 1.75 5.31 2.03 5.86

1: messages for result verification

7.6 Comparison

We compare ROU with existing work, i.e., SecEQP [11] and ServeDB [15], which
are constructed upon the same techniques. We add the type and data item
identity into their schems by using privacy-preserving range query. We record
the comparison results in Table 1. In index building, SecEQP and ServeDB
also build an index tree. The cost of SecEQP is similar to ours for using multiple
coordinate systems. The cost of ServeDB is lower only uses a Bloom filter as an
index, thereby involving less computation time and communication overhead. In

278 M. Li et al.

token generation, the two comparison schemes have a slightly smaller cost for
not mixing the location codes and identity prefixes. ROU’s token size is large for
using mix indexes. In query processing, ROU’s average query time is smaller
because the data user has a specific requirement on data item, thus cutting off
many search paths when the CS is searching on the index tree. Comparison
results show that ROU exhibits practical efficiency.

8 Conclusions

In this work, we have located the repetitive query in SkNN and have proposed
a repetitive, oblivious, and unlinkable query processing scheme over encrypted
data on cloud. The novelty of ROU is in realizing repetitive query by mixing
customized privacy-preserving range querying with SkNN query. We formally
define and prove the privacy of ROU. By carefully designing the index building
and token generation, we achieve repetitive query in an oblivious and unlinkable
manner. We implement ROU and evaluate its performance on a desktop server
and a real-world dataset. The experimental results show that ROU achieves
practical efficiency.

Acknowledgment. The work described in this paper is supported by National Nat-
ural Science Foundation of China (NSFC) under the grant No. 62002094 and Anhui
Provincial Natural Science Foundation under the grant No. 2008085MF196. It is par-
tially supported by EU LOCARD Project under Grant H2020-SU-SEC-2018-832735.

References

1. Liu, X., He, K., Yang, G., Susilo, W., Tonien, J., Huang, Q.: Broadcast authen-
ticated encryption with keyword search. In: Baek, J., Ruj, S. (eds.) ACISP 2021.
LNCS, vol. 13083, pp. 193–213. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90567-5 10

2. Luo, Y., Jia, X., Fu, S., Xu, M.: pRide: privacy-preserving ride matching over road
networks for online ride-hailing service. IEEE Trans. Inf. Forensics Secur. (TIFS)
14(7), 1791–1802 (2019)

3. Zhu, L., Li, M., Zhang, Z., Qin, Z.: ASAP: an anonymous smart-parking and
payment scheme in vehicular networks. IEEE Trans. Dependable Secure Comput.
(TDSC) 17(4), 703–715 (2020). https://doi.org/10.1109/TDSC.2018.2850780

4. Zhu, X., Ayday, E., Vitenberg, R.: A privacy-preserving framework for outsourcing
location-based services to the cloud. IEEE Trans. Dependable Secure Comput.
(TDSC) 18(1), 384–399 (2021)

5. Damodaran, A., Rial, A.: Unlinkable updatable databases and oblivious transfer
with access control. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp.
584–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 30

6. Li, M., Chen, Y., Zheng, S., Hu, D., Lal, C., Conti, M.: Privacy-preserving nav-
igation supporting similar queries in vehicular networks. IEEE Trans. Depend-
able Secure Comput. (TDSC), 99(2), 1–11. https://doi.org/10.1109/TDSC.2020.
3017534

https://doi.org/10.1007/978-3-030-90567-5_10
https://doi.org/10.1007/978-3-030-90567-5_10
https://doi.org/10.1109/TDSC.2018.2850780
https://doi.org/10.1007/978-3-030-55304-3_30
https://doi.org/10.1109/TDSC.2020.3017534
https://doi.org/10.1109/TDSC.2020.3017534

Repetitive, Oblivious, and Unlinkable SkNN 279

7. Danger within: defending cloud environments against insider threats (2018).
https://www.cloudcomputing-news.net/news/2018/may/01/danger-within-
defending-cloud-environments-against-insider-threats

8. 7 Most Infamous Cloud Security Breaches (2017). https://blog.storagecraft.com/
7-infamous-cloud-security-breaches

9. Yao, B., Li, F., Xiao, X.: Secure nearest neighbor revisited. In: Proceeding 29th
IEEE International Conference on Data Engineering (ICDE), April, pp. 733–744,
Brisbane, Australia (2013)

10. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceeding IEEE 30th Interna-
tional Conference on Data Engineering (ICDE), pp. 664–675, Chicago, USA (2014)

11. Lei, X., Liu, A. X., Li, R., Tu, G.-H.: SecEQP: a secure and efficient scheme for
SkNN query problem over encrypted geodata on cloud. In: Proceeding 35th IEEE
International Conference on Data Engineering (ICDE), April, pp. 662–673, Macao,
China (2019)

12. Cui, N., Yang, X., Wang, B., Li, J., Wang, G.: SVkNN: efficient secure and veri-
fiable k-nearest neighbor query on the cloud platform. In: Proceeding 36th IEEE
International Conference on Data Engineering (ICDE), April, pp. 253–264, Dallas,
USA (2020)

13. Li, R., Liu, A., Wang, A. L., Bruhadeshwar, B.: Fast range query processing
with strong privacy protection for cloud computing. In: Proceeding 40th Interna-
tional Conference on Very Large Data Bases (VLDB), September, pp. 1953–1964,
Hangzhou, China (2014)

14. Li, R., Liu, A.X.: Adaptively secure conjunctive query processing over encrypted
data for cloud computing. In: Proceeding IEEE 33rd International Conference on
Data Engineering (ICDE), April, pp. 697–708, San Diego, USA (2017)

15. Wu, S., Li, Q., Li, G., Yuan, D., Yuan, X., Wang, C.: ServeDB: secure, verifi-
able, and efficient range queries on outsourced database. In: Proceeding IEEE
35th International Conference on Data Engineering (ICDE), April, pp. 626–637,
Macao, China (2019)

16. Chen, Y., Li, M., Zheng, S., Hu, D., Lal, C., Conti, M.: One-time, oblivious, and
unlinkable query processing over encrypted data on cloud. In: Meng, W., Gollmann,
D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 350–365.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4 20

17. Poutinsev, F.: Unfair search engine ranking results (2021). https://honestproscons.
com/unfair-search-engine-ranking-results. Honest Pros and Cons (HPC)

18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

19. Liu, A.X., Chen, F.: Collaborative enforcement of firewall policies in virtual pri-
vate networks. In: Proceeding 27th ACM Symposium on Principles of Distributed
Computing (PODC), August, pp. 95-104, Toronto, Canada (2008)

20. Cao, Y., Xiao, Y., Xiong, L., Bai, L., Yoshikawa, M.: Protecting spatiotemporal
event privacy in continuous location-based services. IEEE Trans. Knowl. Data Eng.
(TKDE) 33(8), 3141–3154 (2021)

21. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: Proceeding 28th ACM Symposium on Theory of Computing (STOC),
May, pp. 639–648, Philadelphia, USA (1996)

https://www.cloudcomputing-news.net/news/2018/may/01/danger-within-defending-cloud-environments-against-insider-threats
https://www.cloudcomputing-news.net/news/2018/may/01/danger-within-defending-cloud-environments-against-insider-threats
https://blog.storagecraft.com/7-infamous-cloud-security-breaches
https://blog.storagecraft.com/7-infamous-cloud-security-breaches
https://doi.org/10.1007/978-3-030-61078-4_20
https://honestproscons.com/unfair-search-engine-ranking-results
https://honestproscons.com/unfair-search-engine-ranking-results
https://doi.org/10.1007/3-540-48910-X_16

280 M. Li et al.

22. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

23. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceeding 19th ACM Conference on Computer and Communications
Security (CCS), October, pp. 965–976, Raleigh, USA (2012)

24. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. In: Proceeding 21st Annual Network and Distributed
System Security Symposium (NDSS), February, pp. 1-16, San Diego, USA (2014)

25. Li, M., Chen, Y., Lal, C., Conti, M., Alazab, M., Hu, D.: Eunomia: anonymous
and secure vehicular digital forensics based on blockchain. IEEE Trans. Dependable
Secure Comput. (TDSC), 1 (2021). https://doi.org/10.1109/TDSC.2021.3130583

26. Li, M., Zhu, L., Zhang, Z., Lal, C., Conti, M., Alazab, M. : User-defined privacy-
preserving traffic monitoring against n-by-1 jamming attack. IEEE/ACM Trans.
Networking (TON), p. 1 (2022). https://doi.org/10.1109/TNET.2022.3157654

27. Li, M., Zhu, L., Zhang, Z., Lal, C., Conti, M., Alazab, M.: Anonymous and verifiable
reputation system for E-commerce platforms based on blockchain. IEEE Trans.
Network Serv. Manag. (TNSM) 18(4), 4434–4449 (2021). https://doi.org/10.1109/
TNSM.2021.3098439

28. Li, M., Hu, D., Lal, C., Conti, M., Zhang, Z.: Blockchain-enabled secure energy
trading with verifiable fairness in industrial internet of things. IEEE Trans. Ind.
Inf. (TII) 16(10), 6564–6574 (2020). https://doi.org/10.1109/TII.2020.2974537

29. Li, M., Zhu, L., Zhang, Z., Lal, C., Conti, M., Martinelli, F.: Privacy for 5G-
supported vehicular networks. IEEE Open J. Commun. Soc. (OJ-COMS), 2, 1935–
1956 (2021). https://doi.org/10.1109/OJCOMS.2021.3103445

30. Szydlo, M.: Merkle tree traversal in log space and time. In: Proceeding 10th Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(Eurocrypt), May, pp. 541–554, Interlaken, Switzerland (2004)

31. Yelp Open Dataset. https://www.yelp.com/dataset

https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1109/TDSC.2021.3130583
https://doi.org/10.1109/TNET.2022.3157654
https://doi.org/10.1109/TNSM.2021.3098439
https://doi.org/10.1109/TNSM.2021.3098439
https://doi.org/10.1109/TII.2020.2974537
https://doi.org/10.1109/OJCOMS.2021.3103445
https://www.yelp.com/dataset

Privacy-Aware Split Learning Based
Energy Theft Detection for Smart Grids

Arwa Alromih1,2(B) , John A. Clark1 , and Prosanta Gope1

1 Department of Computer Science, University of Sheffield, Sheffield, UK
{asmalromih1,john.clark,p.gope}@sheffield.ac.uk

2 Information Systems Department, King Saud University, Riyadh, Saudi Arabia

Abstract. Energy thefts are one of the critical attacks that often cause
high revenue losses for utility companies around the world. Effective
detection of such attacks is very important and must be implemented to
comply laws and regulations that govern users’ privacy. Current detec-
tion approaches rely on significant amounts of raw fine-grained smart
meter data and generally do not consider privacy. On the other hand,
most privacy-preserving machine learning (PPML) approaches, such as
homomorphic ML and federated learning, are not well suited to the smart
grid environment due to their processing complexity and communication
overheads. Therefore, our contributions in this work are twofold: first,
we propose an enhanced privacy-preserving detection model for energy
thefts using the concept of Split Learning. Subsequently, since the clas-
sical Split Learning cannot be directly applied in the smart grid (SG)
environment due to its communication overhead, we introduce a new
variant of Split Learning that is more communication-efficient and suits
the smart grid environment. The proposed model can ensure two advan-
tages over the existing techniques. First, the use of Split Learning enables
the training of a detection model without any need for raw data. This
helps in achieving data privacy. Second, the splitting of the detection
model allows the system to be more robust against honest-but-curious
adversaries. Our evaluations show that the proposed detection model can
ensure better privacy protection and communication efficiency, which are
essential for smart grid, without compromising detection accuracy.

Keywords: Energy theft · Privacy · Split Learning · Smart grid ·
Communication efficiency

1 Introduction

Smart grid (SG) networks are one of the evolutionary steps toward intelligent
power grids. SG added a bidirectional communication channel between different
components of the electrical grid which helped in better overall facilitating of
automated grid management [5]. This is done by the use of smart meters (SM)
that allow the automatic collection of fine-grained data. These metering data
are sent regularly to the grid and measure the energy usage and production if
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 281–300, 2022.
https://doi.org/10.1007/978-3-031-15777-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_16&domain=pdf
http://orcid.org/0000-0002-5382-421X
http://orcid.org/0000-0002-9230-9739
http://orcid.org/0000-0003-2786-0273
https://doi.org/10.1007/978-3-031-15777-6_16

282 A. Alromih et al.

the household has a distributed energy resource installed in place, such as solar
panels. Access to fine-grained metering data has enabled several new applications
such as load management, load forecasting, demand response and billing [2].

The dependence on information and communication technologies has opened
up new avenues of attack. One of the main attacks against data integrity in
energy systems is energy theft. This attack involves manipulation of the fine-
grained data that the smart meters send through the network. Recently, a num-
ber of approaches have been proposed for the detection of energy thefts in the
smart grid. These detection approaches are mainly classified into three cate-
gories: state estimation, game theory, and machine learning (ML) techniques [5].
However, most existing detection methods access users’ raw energy data without
any concerns for their privacy and ignore the fact that users’ private data are
governed by privacy policies such as GDPR. The use of raw energy data cre-
ates new privacy vulnerabilities associated with what these data could reveal.
For example, the disclosure of the real-time, fine-grained power consumption
can reveal the identity of an individual or information about his/her financial,
social, physical or health characteristics [16]. In particular, high power consump-
tion may reveal that people are in the house, while low readings may indicate
that the house is empty. Hence, this creates the need to develop new mechanisms
to be able to build energy theft detectors without violating users’ privacy.

1.1 Related Work and Motivation

In the literature, different strategies have been developed to defend against
energy thefts in smart grids. However, very few have considered users’ privacy
in this regard, especially ML approaches [2,5]. The existing privacy-preserving
energy theft detection approaches usually fall under two categories, encryption
techniques [11,26], and privacy-preserving machine learning (PPML) techniques
[10,16,25,27]. We first consider the encryption based approaches followed by the
existing PPML techniques, and highlight their strengths and weaknesses.

The energy theft detection proposed in [26] uses a recursive filter based on
state estimation to estimate the energy consumption for all users, and compare it
with the true reading. If the difference is larger than a predefined threshold, then
the reading is flagged as abnormal. In their work, the authors use the Number
Theory Research Unit (NTRU) algorithm to encrypt users’ data and preserve
users’ privacy. The simulation results show a detection accuracy of more than
92%, however the scheme introduces communication and computation overhead.
The work presented in [11] uses the concept of harmonic to arithmetic mean
(HMAM) as a detector for energy theft with fully homomorphic encrypted (FHE)
data. In general, the classical FHE cannot be used with HMAM, so the authors
has modified it in a way that allows HMAM to be computed. The new modified
version of FHE is claimed to achieve faster computation than the original version.

The PPML approaches fall largely into two sub-categories: encryption-based
ML approaches and distributed-based ML [12]. In encryption-based ML, the
ML model is trained using encrypted measurements. This can be done using
special-purpose encryption algorithms such as homomorphic encryption [27],

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 283

functional encryption [10] or multiparty computation (MPC) [16] protocols. The
authors in [10] use functional encryption (FE) to encrypt users’ data and then
those encrypted data are fed into a fully connected feed-forward network (FFN)
model to evaluate if they are malicious or not. Functional encryption is a rela-
tively efficient cryptosystem that allows performing computations on encrypted
data without the need to decrypt it. Although FE is assumed to be efficient in
terms of communication and computation, it requires an extra step where a key
distribution center needs to generate and distribute keys for all participants in
the system. In [16], the authors proposed a privacy-preserving theft detector by
employing secret sharing to mask the fine-grained meter measurements. The use
of secret sharing allows for the aggregation of data before sending them to the
system operator. In addition, a convolutional-neural network (CNN) machine
learning model that is based on MPC protocols is used as the detection model.
The secure MPC is executed by both the SMs and the system operator in order
to evaluate the CNN model. Although the results suggested an accuracy of over
90% in different CNN models, the use of the cryptographic techniques to preserve
privacy introduces a high communication and computation overhead. The other
category of PPML techniques are those that are based on distributed processing
such as federated learning (FL) and split learning (SL). FL has been applied to
detect energy thefts in [25].

Despite the aforementioned approaches, privacy-preserving energy theft
detection research is still very limited and primarily relies on complicated cryp-
tographic functions such as homomorphic encryption and MPC [5]. These meth-
ods are computationally and communicationally expensive and are not suited for
smart meters which are often computationally restricted [8]. Furthermore, the
use of such cryptographic techniques alongside ML introduces additional pro-
cessing and communication costs and would rely entirely on the strength of the
key management mechanisms [3]. The other type of PPML which is distributed-
based such as FL and SL has also some weaknesses. Recent research has shown
that FL is prone to privacy attacks such as membership-inference attacks and
feature leakage attacks [21]. Other work in [17], showed that SL is vulnerable to
reconstruction attacks and feature leakage attacks. This is especially true in an
environment where aggregators and servers are considered honest-but-curious
entities. An honest-but-curious entity is a type of adversary that is commonly
used in the analysis of privacy properties. It is a legitimate participant of the
system who will exactly follow the protocol defined but will attempt to learn all
possible information from legitimately received communication [19].

1.2 Our Contribution

In this paper, we first propose an enhanced privacy-aware energy theft detection
scheme which ensures users’ privacy using the concept of Split Learning (SL).
Although the classical SL approach has the advantage over FL in protecting
users’ data from reconstruction and feature leakage attacks [9], it can not be
directly applied to the environment of smart grids. This is because it introduce
large communication overhead. Hence, we propose a new variant of SL, called

284 A. Alromih et al.

“Three-Tier Split Learning”. In this variant, aggregators are intermediate enti-
ties in the system between clients and the central server. This architecture helps
reduce the communication overhead of the system. It also makes the detection
approach more suitable to smart grids where aggregators and energy suppliers
are considered to be honest-but-curious entities. We also consider the issue of fea-
ture leakage attacks in SL that has been studied in [17] and propose a defensive
mechanism. The contributions of this work are as follows:

1. We propose an energy theft detection system which preserves the privacy of
the users’ data using Split Learning. The detection model combines stacked
auto-encoders along with Split Learning to detect anomalies. In Split Learn-
ing, only the model updates of the split layer are sent rather than the raw
data (in case of non-private detection) or the whole model updated (in case
of federated learning). This is the first work that applies Split Learning in
energy theft detection.

2. We propose a new variant of Split Learning, called Three Tier Split Learning,
that suits the nature of the smart grid infrastructure. This enhanced version
adds aggregators to the system which makes the whole ML model splits into
three parts (clients, aggregators, server) rather than two (clients, server).
Moreover, we introduce a means of minimising the communication overhead
through aggregating the updates from the split layers.

3. We evaluate our detection model with a range of different energy theft sce-
narios. This is also investigated in cases where malicious clients are involved
in the training phase and a possible solution is discussed.

4. We analyse the privacy of the proposed model in terms of data leakage.

In a nutshell, the major aim of our proposed scheme is to demonstrate how to
achieve high accuracy detection results while preserving privacy. The remainder
of this paper is organized as follows: Some preliminary knowledge is defined in
Sect. 2. We introduce the system and threat models in Sect. 3. In Sect. 4, we
present our proposed energy theft detection scheme. We detail our experimental
setup in Sect. 5, while Sect. 6 gives the results. Section 7 concludes the paper. All
important notations used throughout the paper are defined in Table 1.

2 Preliminaries

2.1 Anomaly Detection Using Auto-encoders

An auto-encoder (AE) is a special type of neural network that has mainly two
parts, an encoder part and a decoder part. (See the Appendix A for more details
about how a neural network works). The encoder compresses the input fea-
tures to produce a latent representation that is then decoded by the decoder
to reconstruct the input features [6]. Auto-encoders are trained to minimise the
error between the reconstructed data and the original input where the model
learns the relationships among features of the input set. After the model has
converged, this reconstruction error can be used to detect anomalies. Recon-
struction errors for normal packets are minimised by the auto-encoder whereas

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 285

Table 1. Notations

Symbol Definition

CSMi The consumption smart meter reading of client i

PSMi The production smart meter reading of client i

ϕ ML model function

x Sample data point

y Label of the sample data point x

x̂ A modified sample data point

Ac Activations of the client

Aa Activations of the aggregator

� An attacker’s inference model

anomaly-input data result in higher reconstruction errors. A suitable threshold
is required to assess if the errors are high enough for that data to be termed
anomalous [7]. Stacked autoencoders (SAEs) are constructed by stacking several
AEs together. The first AE maps the input to a first latent representation. After
training the first autoencoder, its decoder layer is discarded and then replaced
by a second autoencoder, which has a smaller latent vector dimension. This
process is repeated depending on the depth of the SAE. The depth of stacked
autoencoders helps in learning more abstract features from the extracted ones
[6]. Auto-encoders are best suited for anomaly detection in environments with
high volume data streams such as smart grids. They can be trained to learn
the representation of a single ‘normal’ class. Attacks (or at least anomalies) can
be detected without labelling by observing the magnitude of the reconstruction
error [7].

2.2 Privacy Preserving Machine Learning and Split Learning

The main idea of Privacy-Preserving Machine Learning (PPML) is to allow ML
models to be trained without the need to disclose private data in its clear form
[3]. Traditional privacy-preserving techniques, such as differential privacy meth-
ods and cryptographic-based techniques, were added to typical machine learning
algorithms in order to make them privacy-friendly [3]. However, they either pro-
vide privacy to a certain level or increase the computation and communication
costs dramatically. An alternative to these techniques is the use of decentralised
ML algorithms where training is done collaboratively between the system’s enti-
ties [12]. Two major methods were introduced: federated learning [14] and split
learning [9]. Here, our main focus is on split learning.

Split learning (also known as split neural network) is a framework for dis-
tributed learning techniques that was developed by MIT to offer a decentralised
training for a model without sharing raw data by the clients [24]. In the basic
form of split learning, a neural network model W is split into two parts Wc

286 A. Alromih et al.

Fig. 1. Split learning setup showing distribution of layers across clients and server

and WS as shown in figure Fig. 1. This aims to provide privacy protection for
the client whilst minimising the computational load. The first part of the net-
work, Wc, resides on the client system and the remaining part WS resides on
the server side. These parts are called client-side network and server-side net-
work respectively. Both the clients and the server train their part of the model
separately where the process starts at t = 0 with the client data as the input
layer, and then proceeds until the split layer is reached. The output of the split
layer, called activations Ak,t, is forwarded to the server to continue the training
process. The server completes a full round of forward propagation to obtain the
set of activations of the last layer AS,t. The server now starts a back propaga-
tion round from the last layer up to the cut layer where the gradients at the cut
layer ∇�(AS,t;WS,t) are sent back to clients. At the client side, the remainder
of back propagation is completed where Wc weights are updated for t + 1. This
process is continued without the need for the parties to exchange raw data until
the distributed split learning network converges. The complete algorithm of split
learning can be found in Appendix B. Split learning is fairly new, and has not
been applied in the context of smart grids security. Our work will modify it in a
way that is suitable for theft detection in this context.

3 System Model and Threat Model

3.1 System Model

As shown in Fig. 2, the system model in this paper considers a typical smart
grid system with three-tier entities: clients, substations (aggregators) and the
utility (server). Each user (client) is equipped with one or two smart meters. We
consider two types of energy users: regular consumers and prosumers. Prosumers
are those users who can produce and consume energy simultaneously. Consumers

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 287

Fig. 2. System model

are equipped with one SM that is responsible for collecting energy consumption
data (CSM), whereas a prosumer is additionally equipped with a smart meter
for energy production data (PSM). The user’s SM is responsible for collecting
the energy consumption/production data, processing it and then transmitting it
through the network. The smart meters send their processed data to the server
via intermediate aggregators that further process the data before sending them
to the server. The data sent between the three entities (smart meters, aggregators
and server) are in the form of model updates, i.e. activations and gradients.

3.2 Threat Model

This work considers a practical threat model with multiple security and pri-
vacy attacks where all external and internal entities can act maliciously. The
system assumes that aggregators and the server are honest but curious entities
(semi-honest), i.e. they do not tamper with the system’s instructions but they
may try to infer information about users’ behaviours. External adversaries may
eavesdrop on the activations sent between the system’s entities in an attempt to
learn individuals’ private data. We also assume that participating clients have
the ability to modify and manipulate their smart meter readings and their neigh-
bours’ readings in an attempt to gain financial advantage. These attacks can be
viewed as follows:

– Energy Theft Attacks: these attacks occur when users (both consumers and
prosumers) try to modify the smart meters’ readings by either decreasing a
consumption smart meter CSM readings or increasing a production smart
meter PSM readings. This increase/decrease can be a constant value l or a
constant percentage k. We also consider balance attacks that were introduced

288 A. Alromih et al.

Table 2. Attack scenarios

Attack type Attack scenario

Consumers thefts CSMi = CSMi − l

CSMi = CSMi − (CSMi × k/100)

Prosumers thefts PSMi = PSMi + l

PSMi = PSMi + (PSMi × k/100)

Consumers balanced thefts CSMi = CSMi − l and CSMj = CSMj + l

CSMi = CSMi − (CSMi × k/100) and

CSMj = CSMj + (CSMi × k/100)

Prosumers balanced thefts PSMi = PSMi + l and PSMj = PSMj − l

PSMi = PSMi + (PSMi × k/100) and

PSMj = PSMj − (PSMi × k/100)

in [4], where an attacker manipulates two smart meters in order to make the
total net sum of the modified readings equal to the original un-manipulated
data. By this, the attacker is either stealing from another client (if they have
the same tariff) or collaborating with another client to steal from the grid (if
they have a different tariff). In total, we consider eight different attack types of
energy theft as shown in Table 2. These attacks can be viewed in four separate
categories: consumer thefts, prosumer thefts, consumer balanced thefts and
prosumer balanced thefts.

– Poisoning Attacks: these can be carried out only by internal clients that can
modify the smart meter data. The goal of this attack is to try to divert the
output of the complete ML model ϕ by using crafted data point x̂. Let ϕ be
ML function which maps X to Y , ϕ(x) = y where y is the correct label and
X̂ be the set of poisoned data points. When the model ϕ is trained using
X̂, ϕ diverts from its normal behaviour and produces wrong outputs Ŷ . In
practice, energy theft attacks discussed above (including balance attacks) are
types of poisoning attacks.

– Feature Leakage/Reconstruction Attack : this attack compromises the privacy
of the users’ readings and can be launched by external or internal adversaries.
The goal of the attack is to guess the values of the sensitive features of a data
point given only the activations sent by the client (i.e. its model component’s
split layer activations). A formal definition of the attack is as follows:

Definition (Feature Leakage): Let x be an input data point with a set of features
x1, x2, ..xn where x = (x1, x2, ..xn) ∈ X, and let ϕ be a client model that maps
X to A, ϕ(x) = A where A is the set of activations from the split layer. To
launch a feature leakage attack, the attacker tries to find a function � that can
infer x from A, �(A) = x. The goal is to have an exact inference. However, in
practice, useful inference can be approximate.

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 289

4 Proposed Theft Detection Model

Figure 2 shows how the proposed detection model works. Section 4.1 explains the
“Three-Tier Split Learning” approach, which is the newly proposed variant of
Split Learning and Sect. 4.2 describes the theft detection model.

4.1 Three-Tier Split Learning

Our Three-Tier Split Learning architecture follows the system design of the state-
of-the-art split learning system but adds one new component which is an aggre-
gator between the clients and the server. The newly added aggregator makes the
split learning framework more applicable to the context of smart grids. We also
introduce a way to calculate the intermediate updates by averaging the acti-
vations received from the clients for each client-aggregator pair before sending
the results to the server. This makes the process more parallel than sequential.
In our extension of split learning, the learning model W is split into 3 different
parts, Wc at the client side, Wa at the aggregator and WS at the server side. The
procedure of the “Three-tier split learning” method starts as follows: each client
c trains the Wc part of the network and sends the activations of the split layer
to the aggregator a. Each aggregator a waits until it receives all activations from
its clients and computes the average of these activations and uses it to complete
a forward pass on its part of the model Wa. After completing a forward pass,
the aggregator sends the activations of the last layer of its model to the server.
As in the aggregator, the server waits for the activations from all aggregators
and computes their average to be used as input for its part of the model WS .
After the completion of the forward pass, the server generates the gradients for
the final layer and back-propagates the error to its cut layer of WS . The gradi-
ents are then passed to the aggregators where they perform a back-propagation
and send their gradients to the clients. The rest of the back-propagation is com-
pleted by clients. This process is continued until the model converges. Algorithm
1 provides the detailed instructions of the “Three-Tier Split Learning”.

4.2 Energy Theft Detection Approach

The aim of this research is to explore how Split Learning can be used to train an
anomaly detector to detect energy thefts without violating clients’ privacy. We do
so by combining the previously explained three-tier split learning method with a
stacked auto-encoder. The stacked auto-encoder (SAE), as an unsupervised ML
algorithm, enables us to train the detection model without the need for labeling,
and the three-tier split learning provides privacy assurance as clients will not
need to send their private raw data.

The architecture of our energy theft detection model is shown in Fig. 2. A
stacked auto-encoder (SAE) model is split between the system’s entities, one
part is at the client’s side, the second part is at the aggregator’s side and the
third part is at the server’s side. The server part consists of 4 layers, while
the client’s and aggregator’s parts can vary in depth (details can be found in

290 A. Alromih et al.

Algorithm 1. Three-Tier Split Learning Algorithm with Averaging

function Server � executes at round t ≥ 0
for epoch e do

At ← []
for agg a ∈ aggregatort do

Aa,t ← Aggregator(a, t)
At[c] ← Ac,t

end for
At.avg ← sum(At)/len(St)
Complete forward propagation with At.avg to get AS,t

Calculate Loss
WS,t+1 ← WS,t − η∇�(WS,t; At.avg) � Back propagation part of the server
ClientBackprop(c, t, ∇�(At.avg; WS,t)) � k here is the last client

end for
end function

function Aggregator(a,t) � executes at round t ≥ 0
for epoch e do

At ← []
for client c ∈ St do

Ac,t ← ClientUpdate(c, t)
At[c] ← Ac,t

end for
At.avg ← sum(At)/len(St)
Complete forward propagation with At.avg to get Aa,t

send Aa,t to Server
end for

end function

Table 4). Next, each client collects a set of features that includes consumption,
generation and weather data. This is done at regular intervals (usually every
15–20) min. However, given the nature of timeseries data, a sliding window of
multiple data points is considered as an input to the client’s part of the model.
This helps capture the correlation between consecutive data points. After that,
the vector of features is fed to the client’s part of the stacked SAE and the latent
representation (client’s output) is sent to the aggregator. Each aggregator uses
the average of all the outputs of its clients as an input to its part of the SAE.
The output of the aggregator, which is the latent representation, is sent to the
server, which also uses the average of all the aggregators’ outputs as the input to
its part of the stacked SAE. This process is repeated until the model converges.

To detect energy thefts, the server computes a threshold which is used as a
bound to detect those energy thefts. Any data point that causes a reconstruction
error exceeding this predefined threshold would then be considered as anomaly.
As in [6], to estimate this threshold, the server calculates the reconstruction
errors of its part of the SAE for all the training dataset. Then, the threshold
value is estimated by the mean and standard deviation of those reconstruction

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 291

errors; it can be described as:

threshold =
1
d

d∑

i=1

REi +

√√√√1
d

d∑

i=1

(REi − 1
d

d∑

i=1

REi)2

where RE is the reconstruction error, and d is the number of training dataset
elements.

5 Experimental Setup

In this section, we give details about how we conducted our experiments, such as
the dataset used, formation of the energy theft attacks, simulation environment,
neural network parameters, and the evaluation metrics.

Dataset. In this work, we have used the dataset from [4]. The dataset was
generated using GridLab-D, which is a power simulation tool that simulates the
power flow between the power grid’s entities. GridLab-D is very flexible as it
allows reporting both production and consumption data that are dynamically
influenced by weather data. In this dataset, there were a total of 1596 clients,
49 of which were prosumers with solar panels. Every client reported 17 differ-
ent dynamic parameters every 15 min. These dynamic parameters include some
electricity parameters (power consumption, power generation, voltage, current,
real energy, reactive energy, reactive power and apparent power), and a set of
weather-related parameters (temperature, wind speed, wind direction, pressure,
humidity, solar radiation, extraterrestrial radiation, solar illumination and sky
cover). The dataset also included 13 different physical features of each client’s
property such as: floor area, ceiling height, thermal integrity levels, number of
glazing layers, glazing treatment, glass type, windows frame type, types of heat-
ing and cooling systems, and solar panel size. In all experiments, a sliding window
of 16 data points (4 h) is considered as an input to the client’s part of the model.
This means that each sample is a vector of 285 features ([17 dynamic features *
16 data points] + 13 static features). These data samples are split into 70% for
training and 30% for testing.

Energy Theft Attacks. Since all readings in our dataset are real (normal)
readings, we had to modify them using mathematical functions to create mali-
cious data points. This is widely done in energy theft detection and was first
presented in [13]. These malicious points are created according to the attack
scenarios presented in Sect. 3.2. In this work the value of l is chosen to be 400
which is 1

3 the mean of all readings. While the value of k is set to 40 which is
less than half of the reading.

292 A. Alromih et al.

Simulation Environment. The proposed Three-Tier Split Learning detection
model is implemented using PyTorch [18]. PyTorch is a Python-based machine
learning library that enables access to every computational node in a ML model.
This allowed us to split the whole detection model into three splits.

Neural Network Parameters. In our experiments, the SAE model consists
of a total of ten neural network layers. In our approach, clients had three layers,
aggregators had three layers, and the server had four layers. In every experiment,
the network iterated over the samples for a total of 20 epochs with a batch size
of 96. The Adam optimiser is used with its default hyper-parameters as the
optimization algorithm in all entities.

Performance Metrics. To evaluate the performance of the proposed model
in terms of energy theft detection, we consider accuracy, recall (also known as
detection rate (DR)), and precision. These basic metrics allow the calculation of
other metrics using them, such as F1 or F2 scores [22].

6 Results and Discussion

In this section, we analyse the security, privacy and communication overhead of
our proposed model. In order to analyse the security and privacy aspect of our
system, we analyse how well our system behaves against the attacks discussed
in the threat model. The following subsections gives details about the results
against these threats, and provides details about our communication analysis.

6.1 Detection of Energy Thefts Attacks

Here, we evaluate how good the SAE works in our “Three-Tier Split Learning”
setting in terms of energy thefts detection. For this purpose, we have also trained
the same SAE in two other settings: a centralised setting and in a federated
learning setting. In the centralised setting, the global model of the SAE along
with all client’s data are available at the server side. This setting is the basic
setting where privacy is not considered. In the federated learning setting, the
SAE model is trained locally at each client and a shared model is averaged at
the server side. Figure 3 compares the performance of our proposed model with
the centralised version and the federated learning approach in terms of accuracy,
recall and precision. It is clear from the figure that the results of our proposed
approach are highly comparable to the other two settings. This shows clearly
that our approach achieves excellent results in detecting energy thefts while it
preserves privacy compared to the centralised approach. The results are also
very similar to the federated learning approach with an advantage of having
lower communication overhead (discussed in Sect. 6.4). In all three settings, the
training is taking place repeatedly over different batches of data and therefore
the results are not linearly improving.

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 293

Fig. 3. Results of the detection model using three-tier split learning (proposed work),
centralised detection, and federated learning

6.2 Resilience Against Poisoning Attacks

In this experiment, we have tested how well our detection approach works in
the event of having poisoned training data. As explained in Sect. 3.2, poisoning
attacks are attacks that can be launched whenever a collaborative ML algorithm
is involved. In our approach, this is because clients are involved in training the
detection model. Our results in Table 3 shows that the more poisoned data is used
to train the system, the worse our detection results are. When only 20% of the
data is poisoned, then the detection rate decreases up to almost 15%. Therefore,
we had to find a way to overcome this. We adopt a simple solution where we
randomly drop 10% of the training updates received from the clients. As can
be seen in the last record of Table 3, this simple random dropping improves the
detection results and make it comparably close to the normal case where no
poisoned data are injected.

Table 3. Detection results with poisoned data

Percentage of poisoned
training data

Accuracy Recall (DR) Precision

0% (no attack) 0.946 0.905 0.970

5% 0.945 0.901 0.969

10% 0.933 0.891 0.973

15% 0.870 0.760 0.974

20% 0.870 0.762 0.973

20% with random 10%
dropping

0.933 0.903 0.979

294 A. Alromih et al.

Table 4. Feature leakage analysis

Model used dCorr (raw data, Ac) dCorr (raw data, Aa) Theft detection

Client: 3, Agg: 3, No Dropout 0.740 0.369 0.937

Client: 3, Agg: 3, 1 Dropout 0.620 0.359 0.945

Client: 3, Agg: 3, 2 Dropout 0.557 0.366 0.935

Client: 4, Agg: 4, No Dropout 0.665 0.342 0.937

Client: 4, Agg: 4, 2 Dropout 0.490 0.340 0.934

6.3 Privacy Analysis via Feature Leakage Attack

In order to analyse the privacy aspect of our model, we explored the feature
leakage/reconstruction attack where we analyse how much the activations sent
between parties can leak the original raw data. In this context, we use the concept
of distance correlation that shows how two sets of arbitrary dimension vectors
(e.g. raw data and split layer’s activations) are dependent on each other. It takes
a value between 0 and 1, where lower values indicates greater independence of
the two vectors. Note that, distance correlation is one of the best statistical
measures that can show both linear and nonlinear associations which makes our
evaluation more comprehensive. It is also one of the few metrics that can test
dependence of two arbitrary length vectors. Distance correlation was used in
[1] and [23] as part of the privacy assessment framework. Detailed information
about distance correlation can be found in Appendix C.

Table 4 shows the distance correlation dCor between the activations sent by
the client Ac and the real raw input data. It also shows the dCor between the
activations sent by the aggregator Aa and the raw input data. In the first setting,
both the client and the aggregator have 3 hidden layers with no dropout layers
in between and as the results show, the distance correlation between the raw
data and the activations sent by the clients is high (0.74). This actually suggests
that it would be easy for the attacker to infer the raw data back from those
activations. One possible defence was to employ dropout [15], and another one
was to increase the number of hidden layers. In neural networks, Dropout is a
well-known regularisation technique that is used to overcome overfitting [20].
The basic idea of dropout is to randomly deactivate neurons’ activations with
a probability between 0 to 1. This random dropout of activations will make it
harder for the attacker to build a robust system that can infer the raw data from
the activations as the attacker will be observing different activations list each
time [15]. As you can see in Table 4, after adding some dropout layers and as we
increase the number of hidden layers the distance correlation is decreasing and
at the same time this does not affect the theft detection rate in any way. Briefly,
we can say that our “Three-Tier Split Learning” approach can protect against
feature leakage attacks, defined in Sect. 3.2.

Protection Against Feature Leakage Attacks: Suppose an adversary obtains the
set of activations sent from the client to the aggregator Ac. He/She needs a
function � that can infer the original raw data x from Ac, �(Ac) = x. However,

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 295

Table 5. Communication analysis

Method Communication
per client

Total communication

Three-tier split learning 2Sc K × (2Sc) + L × (2Sa)

Classical split learning 2Sc K × (2Sc) + K × (2Sc)

Federated learning 2N 2KN

our results show that the average dCor(Ac, x) is less than 0.5 with only 4 layers
and dropout at the client model. This implies that the probability of finding �
with good accuracy for any probabilistic polynomial time adversary A, AdvLeak

A
is negligible, i.e., Advleak

A (Ac, x) ≤ ε.

6.4 Communication Analysis

The objective of the proposed three-tier split learning theft detection is not
only to ensure privacy and non-thefts by the smart meters, but also to ensure
that the communication overhead during the whole process is minimised. In
this section, we compare the communication overhead of the proposed scheme
with the classical split learning approach (where aggregators are assumed to
only forward clients’ communications to the server without any avergaing) and
with the federated learning approach (as it is the closest scheme for providing
security and privacy properties to the system). To do so, we analyse the amount
of data transferred by every client and the total data transferred between parties
in the system. We use the following notation to mathematically measure the
communication efficiencies. Notation: K= # clients, L= # aggregators, N=
size of the complete model parameters (neurons), Sc= size of the split layer at
the client, and Sa= size of the split layer at the aggregator. Here K > L and N
� Sc + Sa + Ss.

In Table 5, we can see that the communication cost, for the same neural
network model, in the Three-Tier Split Learning approach is less than that
of both the classical split leaning and the federated learning approach. In the
three-tier split learning, every client sends the updated activations from their
split layer Sc and receives the updated gradients from the aggregator with size
Sc, which total 2Sc. The same is for every aggregator which makes the total
communication of one round K ×(2Sc)+L×(2Sa). In the classical split learning
approach, when averaging is not implemented, the aggregator would act as a
repeater, forwarding every communication between the server and the client.
This will make the clients’ updates and the gradients’ updates be sent twice in
the network. This makes the total communication in the classical split learning
greater than our proposed three-tier split learning. On the other hand, clients in
the federated learning approach send the full network updates to the server and
the full gradients are then forwarded from the server to all clients. This makes
the total communication of one round equal to 2KN which is significantly more
than K × (2Sc) + L × (2Sa).

296 A. Alromih et al.

Table 6. Comparison

Property Centralised
approach

Federated
learning
approach

Three-tier
split learning
(ours)

Energy theft detection ✓ ✓ ✓

Privacy preservation ✗ ✓ ✓

Resilience against poisoning
attacks

✓ ✓ ✓

Stronger resilience against
feature leakage attacks

✗ ✗ ✓

Higher communication
efficiency

✗ ✓

✓: True. ✗: False. : May not be true in some cases.

6.5 Summary of Comparison

In summary, our results show that the proposed approach outperforms existing
ones in terms of the above properties. Our Three-Tier Split Learning approach
can detect energy thefts with high recall, precision, and accuracy. It also pre-
serves the privacy of users’ data as compared to the centralised approach. In
terms of resilience against poisoning attacks, all three models can detect poison-
ing attacks with the help of an additional procedure (for instance, in our case
by adding dropout layers and randomly dropping 10% of the training data).
Moreover, it is more challenging to infer features from only the split layer’s
activations in contrast to inferring them from the whole model updates [21];
hence our proposed model provides stronger resilience against feature leakage
attacks than the federated learning approach. Furthermore, our analysis (pro-
vided in Sect. 6.4) shows that the proposed approach has higher communication
efficiency than the federated approach. It should be noted that the communica-
tion efficiency of our model would also be better than the centralised approach
when the feature set is larger than the split layer size, which is true in most
cases. Table 6 outlines this comparison.

7 Conclusion

We have proposed a new variant of split learning, Three-Tier Split Learning,
as a private collaborative machine learning algorithm to tackle the challenge of
preserving users’ privacy. It trains a detection model for energy thefts without the
need to use raw data. It is tested on a dataset that contains malicious readings
generated from various cyber-attacks including consumer thefts, prosumer theft
and balance attacks. Our experiments showed that it gives a 94.6% accuracy,
90.5% recall (detection rate) and 97.0% precision. Moreover, even in the case
of poisoning attacks, simply dropping 10% of the model updates can provide
comparable results to those with no poisoned data. The model demonstrates

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 297

good privacy preservation; the distance correlation between the updates sent
from the clients and the aggregator with the raw data is low, making it difficult
for attackers to infer the raw data from those updates. There is also a significant
reduction in terms of communication. Thus, our proposed model ensures not
only privacy-preservation, but also communication efficiency.

Appendix A: Neural Networks

Neural networks (NN), like any other network or graph, are networks that are
composed of nodes (neurons) and edges (weights). The nodes or neurons are
arranged into layers starting from the input layer, followed by one or more hidden
layers and finally the output layer. Each neuron is a computational unit that
takes the inputs from the preceding layer and outputs the weighted sum of
these inputs (plus a bias). The output of each neuron can be restricted using
activation functions. The most used activation functions are Rectified Linear
Unit (ReLu), hyperbolic Tangent function (Tanh) and Sigmoid. These activation
functions limit the output value within a specified range, i.e., Relu output is
from 0 to +infinity, Tanh output is from −1 to 1 and Sigmoid output ranges
between 0 and 1. Therefore, each neuron n in layer l calculates its output zl

n as:

zl
n = Al

z(
s∑

j=1

(il−1
j × wl

j) + bn)

where A is the activation function, il−1
j is the jth output from the preceding

layer, wl
j is the jth weight of that output and bn is the bias of this neuron.

There are two passes in each round (epoch) of training a neural network: a
forward propagation pass and a backward propagation pass (backpropagation).
In the forward pass, the input data are propagated to the input layer, then
proceed to the hidden layer(s), measuring the network’s predictions up to the
output layer where the network outputs the prediction ŷ. This makes ŷ equals
to:

ŷ = AL(WLAL−1(WL−1....A2(W 2 A1(W 1X))...))

where L is the total number of layers, W i is the weights vector of layer i and X
is the input vector. This is first done using initial weights and bias (weights and
bias are initialised randomly). The outputs of all neurons of the same layer are
called activations. The network’s error (loss) is calculated based on the output
of the forward pass prediction ŷ and the desired output y. The loss function is
computed for every output of the neural network as follows: loss = L(ŷ, y). In
the backpropagation pass, the weights and biases of the network are adjusted in
proportion to how much they contribute to the overall error (loss). These adjust-
ment values are called gradients and they are sent back to along the network to
update the neurons weights and bias where the updated value for each weight
w will be: wnew = wold − α(∂loss

∂w), where α is a learning rate that controls how
much we are adjusting the weights with respect the loss gradient and ∂ is the
derivative of the loss in respect to the that weight w.

298 A. Alromih et al.

Appendix B: Split Learning Algorithm

This appendix provides a brief description of the three main functions in the
Split Learning algorithm.

Algorithm 2. Split learning algorithm

function Server � executes at round t ≥ 0
for client c ∈ St do

Ac,t ← ClientUpdate(c, t)
Complete forward propagation with Ac,t to get AS,t

Calculate Loss
WS,t+1 ← WS,t − η∇ l(WS,t; AS,t) � Back propagation part for the server
ClientBackprop(c, t, ∇�(AS,t; WS,t)))

end for
end function

function ClientUpdate(c, t)
Ac,t ← φ
if Client c is first client in t = 0 then

Wc,t ← randominitialize
else

Wc,t ← ClientBackprop(Wc−1,t−1)
end if
for local epoch e do

for batch b ∈ B do
Forward propagation on client part
Concatenate the activations of cut layer to Ac,t

end for
end for
send Ac,t to Server

end function

function ClientBackprop(c, t, ∇�(AS,t; WS,t))
for batch b ∈ B do

Back propagation on client part with η∇(AS,t; WS,t)
end for
Update model weights Wc,t+1 and send to next client

end function

Appendix C: Distance Correlation

The distance correlation of two random variables X and Y is obtained by dividing
their distance covariance by the product of their distance standard deviations.
This makes the distance correlation equals to

dCor(X,Y) = dCov2(X,Y)/
√

dV ar(X) dV ar(Y)

where dCov(X,Y) is the square root of the average of the product of the
double-centered pairwise Euclidean distance matrices and can be calculated

Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids 299

as dCov2(X,Y) := 1
n2

∑n
i=1

∑n
j=1 D(xi, xj)D(yi, yj), where D(xi, xj) is the

Euclidean distances between the ith and jth observations. Distance correlation,
in contrast to Pearson’s correlation, cannot be negative, i.e. 0 ≤ dCor ≤ 1.

References

1. Abuadbba, S., et al.: Can we use split learning on 1D CNN models for privacy pre-
serving training? In: Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, pp. 305–318 (2020)

2. Ahmed, M., Abid Khan, M.A., Tahir, M., Jeon, G., Fortino, G., Piccialli, F.: Energy
theft detection in smart grids: taxonomy, comparative analysis, challenges, and
future research directions. IEEE/CAA J. Autom. Sinica 8(12), 1–23 (2021)

3. Al-Rubaie, M., Chang, J.M.: Privacy-preserving machine learning: threats and
solutions. IEEE Secur. Priv. 17(2), 49–58 (2019)

4. Alromih, A., Clark, J.A., Gope, P.: Electricity theft detection in the presence of pro-
sumers using a cluster-based multi-feature detection model. In: 2021 IEEE Inter-
national Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), pp. 339–345. IEEE (2021)

5. Althobaiti, A., Jindal, A., Marnerides, A.K., Roedig, U.: Energy theft in smart
grids: a survey on data-driven attack strategies and detection methods. IEEE
Access 9, 159291–159312 (2021)

6. Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically
improved autoencoder based models. In: 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud), pp. 193–198. IEEE (2017)

7. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detec-
tion using autoencoders in high performance computing systems. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428–9433 (2019)

8. Gope, P., Sikdar, B.: Lightweight and privacy-friendly spatial data aggregation for
secure power supply and demand management in smart grids. IEEE Trans. Inf.
Forensics Secur. 14(6), 1554–1566 (2018)

9. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple
agents. J. Netw. Comput. Appl. 116, 1–8 (2018)

10. Ibrahem, M.I., Nabil, M., Fouda, M.M., Mahmoud, M.M., Alasmary, W., Alsolami,
F.: Efficient privacy-preserving electricity theft detection with dynamic billing and
load monitoring for AMI networks. IEEE Internet Things J. 8(2), 1243–1258 (2020)

11. Ishimaki, Y., Bhattacharjee, S., Yamana, H., Das, S.K.: Towards privacy-preserving
anomaly-based attack detection against data falsification in smart grid. In: 2020
IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pp. 1–6. IEEE (2020)

12. Jia, Q., Guo, L., Fang, Y., Wang, G.: Efficient privacy-preserving machine learning
in hierarchical distributed system. IEEE Trans. Netw. Sci. Eng. 6(4), 599–612
(2018)

13. Jokar, P., Arianpoo, N., Leung, V.C.: Electricity theft detection in AMI using
customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2015)

14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, vol. 54, pp. 1273–1282. PMLR (2017)

300 A. Alromih et al.

15. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy (SP), pp. 691–706. IEEE (2019)

16. Nabil, M., Ismail, M., Mahmoud, M.M., Alasmary, W., Serpedin, E.: PPETD:
privacy-preserving electricity theft detection scheme with load monitoring and
billing for AMI networks. IEEE Access 7, 96334–96348 (2019)

17. Pasquini, D., Ateniese, G., Bernaschi, M.: Unleashing the tiger: inference attacks
on split learning. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 2113–2129, CCS 2021. Association for
Computing Machinery, New York (2021)

18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019)

19. Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. Technical report (2014)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

21. Thapa, C., Chamikara, M.A.P., Camtepe, S.A.: Advancements of federated learn-
ing towards privacy preservation: from federated learning to split learning. In:
Rehman, M.H., Gaber, M.M. (eds.) Federated Learning Systems. SCI, vol. 965,
pp. 79–109. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70604-3 4

22. Tharwat, A.: Classification assessment methods. Appl. Comput. Inform. 17(1),
168–192 (2020)

23. Turina, V., Zhang, Z., Esposito, F., Matta, I.: Combining split and federated archi-
tectures for efficiency and privacy in deep learning. In: Proceedings of the 16th
International Conference on emerging Networking EXperiments and Technologies,
pp. 562–563 (2020)

24. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health:
distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564 (2018)

25. Wen, M., Xie, R., Lu, K., Wang, L., Zhang, K.: FedDetect: a novel privacy-
preserving federated learning framework for energy theft detection in smart grid.
IEEE Internet Things J. 9(8), 6069–6080 (2022)

26. Wen, M., Yao, D., Li, B., Lu, R.: State estimation based energy theft detection
scheme with privacy preservation in smart grid. In: 2018 IEEE International Con-
ference on Communications (ICC), pp. 1–6. IEEE (2018)

27. Yao, D., Wen, M., Liang, X., Fu, Z., Zhang, K., Yang, B.: Energy theft detection
with energy privacy preservation in the smart grid. IEEE Internet Things J. 6(5),
7659–7669 (2019)

https://doi.org/10.1007/978-3-030-70604-3_4
http://arxiv.org/abs/1812.00564

Attacks and Vulnerability Analysis

Query-Efficient Black-Box Adversarial
Attack with Random Pattern Noises

Makoto Yuito, Kenta Suzuki, and Kazuki Yoneyama(B)

Ibaraki University, Hitachi, Japan

kazuki.yoneyama.sec@vc.ibaraki.ac.jp

Abstract. Adversarial examples are one of the largest vulnerability of
deep neural networks. An attacker can deceive the classifiers easily with
the malicious inputs (called adversarial examples), which perturbations
are slightly added to benign inputs. Various attack methods have been
studied in both white-box and black-box settings, and some methods
achieve high attack success rates even in the black-box settings; that
is, the attacker is restricted to only query accesses to the target net-
work. In this paper, we propose a simple hyperparameter-free score-based
black-box �∞-adversarial attack using local uniform noises and a random
search. Specifically, we construct adversarial perturbations by combining
local uniform noises such as vertical-wise and horizontal-wise, and incor-
porate this idea into the random search method to update the pertur-
bation sequentially. We evaluate our method in terms of attack success
rates and query efficiency using models that classify common datasets
CIFAR-10 and ImageNet. We show that our method achieves higher
attack success rates and query efficiency than previous attack methods,
especially in low-query budgets on both untargeted and targeted attack
settings. We also examine attacks to adversarially trained models and
discuss the effect of local uniform noises on these models. Furthermore,
we show that our method achieves relatively high attack success rates and
query efficiency on average against input-transformation-based defense
methods, and is virtually unaffected by these defense methods.

Keywords: Black-box adversarial attacks · AI security

1 Introduction

1.1 Backgrounds

Due to recent breakthroughs in deep learning techniques, Deep Neural Net-
works (DNNs) have achieved state-of-the-art classification performance in vari-
ous tasks. However, it has also been shown that the classification models can still
be easily affected by adversarial examples [4,5,7,8,15,28,30,32] which are mali-
cious inputs such that small perturbations are added to benign inputs in order
to fool the classifiers. Adversarial attacks can cause serious security problems

Makoto Yuito—Presently, he is with IVIS, Inc.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 303–323, 2022.
https://doi.org/10.1007/978-3-031-15777-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_17

304 M. Yuito et al.

because DNNs are deployed in the real world in various applications. For exam-
ple, Deng et al. [12] analyze adversarial attacks on driving models, and show that
these regression models are also very vulnerable to adversarial attacks. Sharif
et al. [35] show that it is possible to impersonate another individual by having
the face image wear glasses, as in Adversarial Patch [6]. Therefore, in order to
design robust models, it is necessary to investigate the potential risks and iden-
tify the vulnerabilities of deep learning models. Hence adversarial attacks are an
important research topic.

If an adversarial example of an image x exists, attacking a classifier turns
into a search problem within a small volume around a benign image x. Recently,
several algorithms have been proposed to generate adversarial examples, and
these methods can be classified based on several categories.

Threat Model: One of the key differences in adversarial attacks is the setting
of the attacker, and there are two primary types: white-box and black-box.
In the white-box setting [7,15,28,32], the attacker is assumed to have all the
knowledge about the target model. The main idea of generating adversarial
examples in this setting is to apply a perturbation in the direction of the
gradient of the loss w.r.t. the input x. However, in reality, an attacker is
likely to have access to only a limited amount of information. In the black-
box setting [4,5,8,23,30], the attacker is only allowed query access to the
target model. That corresponds to an attack on a web service using a pre-
trained classifier (e.g., Google Cloud Vision API [2], IBM Watson Visual
Recognition [3], Amazon Rekognition [1]). In this setting, the attacker needs
to compute a perturbation only from the output information obtained by
querying a model, which is thus more difficult setting. The main strategies
for generating adversarial examples in the black-box setting are shown in
Sect. 2.

Adversarial Goal: Another important difference in adversarial attacks is
whether the attacker aims to misclassify the input x to a class other than
the true class y (untargeted), or to misclassify the classification result to a
specific target class t(�= y) (targeted). Targeted attacks, especially on classi-
fiers with a large number of classes, are quite a difficult task.

Distance Metric: Adversarial examples are inputs with slight perturbations
that are carefully crafted to cause the classifier to misclassify them. It is
commonly used �p-distances between adversarial and benign examples with
p ∈ {0, 2,∞}.

We focus on score-based black-box adversarial attacks. Existing query-based
black-box attack methods have already achieved a high attack success rate, and
the main effort is now focusing on reducing the number of queries. Attacks with
low queries, i.e., methods with better query efficiency, can save attackers a great
deal of cost in both time and money. For example, the Google Cloud Vision
API [2] limits the number of requests per minute to 1, 800. High query efficiency
attack methods are also effective in deceiving systems [10] that recognize the
behavior of submitting many similar queries in short time as fraudulent, which
is one of our motivations.

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 305

Fig. 1. Sample images of each random pattern noise (RPN) in our sampling space
(from the left is vertical-wise, horizontal-wise, uniform, diagonal-wise local uniform
noise).

1.2 Our Contribution

In this paper, we propose a simple but effective hyperparameter-free score-based
black-box �∞-adversarial attack in computer vision. The core technique of our
approach is to use susceptibility of Convolutional Neural Networks (CNNs) to
noise with regional homogeneity [24,46], and specifically to construct adver-
sarial perturbations by combining patterned noises such as vertical-wise and
horizontal-wise (see Fig. 1). This idea is incorporated into an iterative random
search method to sequentially update the perturbations. In a pre-specified non-
orthogonal search direction, we modify the perturbation with randomly selected
local uniform noises, check whether it is moving towards or away from the deci-
sion boundary using a confidence score, and repeat the perturbation update.
With each update, the image moves further away from the original image and
towards the decision boundary.

In Sect. 4, we conduct comparative experiments with several existing
�∞-attacks using naturally and adversarially trained models and input-
transformation-based defense methods.

In the experiments on the naturally trained models in Sect. 4.1, we use
CIFAR-10 and ImageNet datasets to perform comparative experiments with Par-
simonious, SignHunter and Square Attack. As a result, we show that our method
achieves high attack success rates in both untargeted and targeted attack set-
tings, especially in low query budgets. Specifically, in the untargeted attack on
CIFAR-10, our method achieves the average query efficiency of 1.8 times while
achieving a higher attack success rate than that of Square Attack. In the untar-
geted attack on ImageNet, our method also achieves 1.4 times higher average
query efficiency than that of Square Attack.

In Sect. 4.2, we evaluate our method against several defensive models based on
adversarial training that classify MNIST and CIFAR-10 datasets. In the bench-
mark Madry et al.’s and TRADES models on MNIST, our method achieves
higher attack success rates than the other black-box methods. However, in other
Clean Logit Pairing (CLP) and Logit Squeezing (LSQ) models, the results of our
method are inferior to those of other black-box attacks, especially in terms of
attack success rate. From this result we clarify the effect of local uniform noise
in each defensive model.

306 M. Yuito et al.

In Sect. 4.3, we show attacks to several input-transformation-based defense
methods that adopt the naturally trained models classifying CIFAR-10 and Ima-
geNet as a backbone. Our method achieves an attack performance of over 90%
on CIFAR-10 and over 70% on ImageNet, despite relatively small query budgets.
Therefore, our method maintains a high attack success rate with or without the
protection of defense methods.

Overall, our method achieves high attack performance on a wide range of
target models in a hyperparameter-free manner, making it a realistic method for
attackers. We also observe that our method suffers from gradient masking, and
our definition of local uniform noise is highly convergent for defensive models
other than gradient masking. Finally, in Sect. 4.4, we experimentally verify the
effectiveness of our definition of local uniform noises and show that all of them
contribute to the attack performance.

2 Related Work

There are a few different settings for adversarial attacks in the black-box set-
ting. This section describes the differences between these settings and the main
strategies. Then, we show our contribution by comparing with them.

2.1 Transfer-Based Black-Box Attacks

Most of the existing adversarial attacks assume the white-box setting, where
the attacker has full access to the model architecture and the ability to perform
backpropagation to obtain gradient information. On the other hand, white-box
attacks can be pseudo-black-boxed by using transferability [38], called transfer-
based black-box attacks. Transferability is a property that adversarial examples
generated for a classifier can be used as for another same type classifiers. Paper-
not et al. [31] proposed a method to learn a surrogate model by querying the
target model. By using the surrogate model with decision boundaries similar
to the target model, they can simulate a white-box adversarial attack [15,32].
However, transfer-based attacks have some problems. First, although transfer-
based attacks are theoretically possible in a decision-based setting, they often
require carefully designed surrogate models, or even require many queries to
extract the target model. Next, the generated adversarial examples do not always
transfer well [36]. Recent studies have also proposed input transformation meth-
ods [13,25,42] to improve the transferability of adversarial examples, and showed
black-box attack performances. Although such a method [25] achieves particu-
larly high transferability, they ignore the task of extracting models and only
show the attack success rates between each network architecture.

2.2 Score-Based Black-Box Attacks

In score-based black-box attacks, the attacker can obtain the predicted proba-
bilities for each class by querying the inputs to the target model. The attacker

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 307

solves an optimization problem to compute the adversarial perturbations while
directly observing the output from the target model.

Gradient Estimation Based Methods. The ZOO method, proposed by Chen
et al. [9], generates adversarial examples by estimating the gradient of the classi-
fier using a coordinate-wise finite difference method. The AutoZOOM, a modified
version of ZOO, was proposed by Tu et al. [39], which uses random gradient esti-
mation and dimensionality reduction techniques to significantly improve query
efficiency while maintaining attack performance. However, it still requires an
enormous number of queries to the target model (13, 525 queries on average for
the targeted attack on ImageNet). Hence, gradient estimation-based methods are
considerably less efficient, especially for models with high-dimensional inputs.

Gradient-Free Methods. The Parsimonious Attack proposed by Moon et al.
[30] solves a discrete optimization problem with local search and the greedy
algorithm. On a perturbation divided into a set of n2 square tiles, Parsimonious
finds the sign of each tile by local search, and then uses the greedy algorithm to
find a better solution. The SignHunter Attack proposed by Al-Dujaili et al. [4]
sequentially estimates the sign of gradient in 1/2n regions of the perturbation in
deterministic order. Several attack methods including these [4,29,30] reduce the
dimensionality of the search space of the perturbation by modifying neighbor-
ing pixels in the perturbation at once, making the computation more efficient.
Andriushchenko et al. proposed the Square Attack [5], which achieved state-of-
the-art attack success rates and query efficiency. Square Attack solves optimiza-
tion problems by random search, which directly updates the perturbation with
randomly generated square-shaped noise, as opposed to methods that invert the
sign of the perturbation, such as Parsimonious and SignHunter. The DeepSearch
proposed by Zhang et al. [47] generates adversarial examples close to the original
images by reducing the �∞ distance of the perturbation, while using hierarchical
grouping strategy like Parsimonious. However, we do not compare our method
with DeepSearch because the attack success rate and query efficiency are not
high (similar to those of Parsimonious) although the �∞ distance of the pertur-
bation generated by DeepSearch is small.

On the other hand, several studies have improved query-based attacks, in
which the attacker generates adversarial examples in transfer-based and query-
based manner using a surrogate white-box model that is either pre-trained or
trained by the attacker himself. The Subspace Attack by Guo et al. [18] uses
the gradient of the surrogate model as a heuristic search direction for finite dif-
ference gradient estimation. Huang et al. proposed TREMBA [19], which learns
an embedding space that can generate adversarial perturbations for a surrogate
model, and significantly reduces queries compared to NES and AutoZOOM.
Feng et al. [14] improved the transfer performance from the surrogate model
to the target model. Their proposed CG-Attack is robust to biases between the
surrogate model and the target model by transferring partial parameters of the
adversarial distribution of the surrogate model while learning the untransferred

308 M. Yuito et al.

parameters based on queries to the target model. The SWITCH proposed by
Ma et al. [27] continues to select loss-maximizing perturbations whenever pos-
sible when images perturbed by gradients generated from a surrogate model do
not satisfy the optimization objective. Yatsura et al. proposed a meta-learning
method [45] to be used in combination with random search based attacks. Their
learned controller improves the attack performance by online adjustment of the
parameters of the proposal distribution at each iterate during the attack. How-
ever as explained in Sect. 2.1, we do not compare our method to these methods
since the attacker needs to construct a surrogate model in advance and the
computational cost is high.

2.3 Defense Methods

As adversarial attacks become more prevalent, many recent studies have also
focused on building defense models against them. There are several lines of
research in the literature, and the defense methods are roughly consisted of two
groups: input-transformation-based defense methods and adversarial training.

The input-transformation-based defense methods include denoising, input
randomization, and input transformation. These methods attempt to mitigate
the effects of perturbations in adversarial examples by adding image processing-
like changes to an input image. Specifically, the denoising methods include low-
pass filtering [34] and autoencoders [16], which attempt to remove adversar-
ial perturbations from adversarial examples. The input randomization meth-
ods including resizing and padding [41] and the input transformation methods
including JPEG Compression [17,26] attempt to mitigate the effect of adversarial
perturbations.

On the other hand, adversarial training [21,28,48] aims to obtain robustness
by training the model with adversarial examples, which is a more costly but
more effective method than image processing defenses. In general, it is known
that adversarial training defenses are more robust than other defenses in the case
of MNIST and CIFAR-10. Furthermore, Madry et al. [28] show that PGD [28] is
a universal first-order adversarial attack, which means that adversarial training
with PGD-generated adversarial examples is resistant to many other first-order
attacks. The PGD-generated adversarial examples are the basis for many adver-
sarially trained models, including [21,28,48]. The model of Madry et al. [28]
provides robust adversarial training by min-max optimization. TRADES [48]
focuses on the trade-off between robust error and natural error and trains to
improve both. Adversarial Logit Pairing [21] learns by matching the logit of a
benign image with the corresponding logit of adversarial examples, while acquir-
ing ancillary information such as their similarity to each other.

2.4 Differences Among Other Black-Box Methods and Our Method

We discuss more about the existing methods presented in Sect. 2.2 and clarify
the differences between them and our method. First, regarding the optimiza-
tion method of the perturbation, it can be observed that Parsimonious [30] has

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 309

Fig. 2. An example of a sequence of adversarial perturbations on ImageNet generated
by our method at each iterate. The left column shows the adversarial perturbation
and the adversarial example for the first query (the attack has not yet succeeded at
this point), and the right column shows those for the 165th query where the attack
was successful (the class changed from altar to vault). In addition, the transition of
adversarial perturbations after the first query is shown between them. The red boxes
indicate the block range b determined by the SplitBlock function, i.e., the region where
the noise is modified at each iterate. In the second query, we change the perturbation
with a randomly picked RPN for a 1 × 1 region, i.e., the entire image region, and if
the loss is lowered, we update the perturbation to this. In the third to sixth queries,
the search is performed in 2 × 2 regions. After that, the perturbation update process
is repeated while gradually increasing the number of segmented regions. (Color figure
online)

many useless queries, partly because it uses the local search. SignHunter [4] is a
deterministic search and can guarantee the attack success rate for the number of
queries, but it is not very efficient. Since the convergence of the iterative random
search used in Square Attack [5] is much higher than that of Parsimonious and
SignHunter, an iterative random search is also used in our method.

As for the components of the perturbation, the perturbation of Parsimo-
nious and SignHunter consist of a uniform noise in a specific segmentation range
(square or rectangle shape), while the perturbation of Square Attack consists of
a vertical-wise initialization and a uniform noise of a square of a certain size.
On the other hand, our method places not only square-shaped but also vertical-
wise, horizontal-wise and diagonal-wise uniform noise on the segmented area
of squares in the image. Furthermore, while Parsimonious and Square Attack
have hyperparameters that need to be tuned depending on the setting of the
attack and the target model, our method does not need any hyperparameters.
This feature is a great advantage in black-box attacks because it can be easily
implemented in any setting.

3 Our Methods

In this section, we first recall the definitions of the threat model in the adver-
sarial attacks and describe an optimization framework for finding adversarial
perturbations against classification models. Then, we describe our black-box
�∞-adversarial attack using random pattern noises and random search.

310 M. Yuito et al.

3.1 Optimization Framework

Formally, we define a classifier f : X −→ R
K where x ∈ X is the input image,

y ∈ Y = {1, 2, . . . ,K} is the output space and f(x) denotes the predicted score
of each class in Y. In the untargeted setting, the goal of the attacker is to find a
perturbation δ such that an adversarial example (x+δ) is misclassified to classes
other than the true class y, i.e., arg max

k∈Y
fk(x+δ) �= y. Additionally, the attacker

also seeks to minimize �p distance, i.e.,

arg max
k∈Y

fk(x + δ) �= y s.t. ‖δ‖p ≤ ε and (x + δ) ∈ X, (1)

where ‖ · ‖p is the �p-distance norm function and ε is the radius of �p-ball. The
task of finding a perturbation δ can be handled as a constrained optimization
problem. Therefore, �p-bounded untargeted attacks aims at optimizing the fol-
lowing objective:

min
δ:‖δ‖p≤ε

L(f(x + δ), y) (2)

where L is a loss function (typically the cross-entropy loss) and y is the true
label of x. Equation 2 mostly works to minimize the score for label y. We also
study the adversary in targeted setting. In the targeted setting, the attacker aims
arg max

k∈Y
fk(x + δ) = t for a target label t(�= y) chosen from Y and optimizes the

perturbation by minimizing the loss L(f(x + δ), t). A black-box targeted attack
on a network with many output classes (large K) will be a rather difficult task.

3.2 Algorithm

In this section, we present our black-box �∞-attack. We assume that the attacker
has an image x ∈ X and a black-box classifier f . An output f(x) is the predicted
probabilities over K-classes w.r.t. input image x. In the untargeted setting, our
goal is to find a perturbation δ ∈ {−ε, ε}d such that arg max f(x + δ) �= y
under the �∞-perturbation constraint, where ε ∈ R

+ is the radius of �∞-ball. Our
method is based on a random search [33] which is a well known iterative technique
in optimization problems. If we apply this technique to the adversarial attacks,
it acts as sequential updates of the perturbation. If the loss value L(f(x+δ∗), y)
w.r.t. the perturbed image (x + δ∗) with the updated perturbation δ∗ is lower
than the prior loss value L(f(x + δ), y), this update is adopted to the current
perturbation, otherwise it is discarded.

The core technique of our approach is that the perturbation is composed of
noises with regional homogeneity. There are studies [24,46] showing the vulner-
ability of CNNs to local uniform noises. In particular, Li et al. [24] investigate
how effective local homogeneous noise is for defensive models against adversar-
ial attacks. They find that adversarial perturbations made for defensive models
exhibit more homogeneous patterns than those made for naturally trained mod-
els. We therefore investigate whether local homogeneous noises can be applied

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 311

Algorithm 1 . Our Method with
Random Search
Input: classifier f , original image x ∈

X, true class y, image size w, image
channels c, �∞-radius ε, max num-
ber of iterations N

Output: adversarial perturbation δ ∈
{−ε, ε}d

1: δ ← initial perturbation (vertical-
wise),

2: xadv ← (x + δ).Clip(0, 1)
3: l ← L(f(xadv), y), i ← 1
4: if attack is already successful

then
5: break
6: end if
7: B ← SplitBlock(w)
8: while i <

N and attack is not successful
do

9: b ← B(i%len(B))

10: δ∗ ← RPNSampling(δ, b, w, c, ε)
11: xadv ← (x + δ∗).Clip(0, 1)
12: l∗ ← L(f(xadv), y)
13: if l∗ < l then
14: δ ← δ∗, l ← l∗

15: end if
16: i ← i + 1
17: end while

Algorithm 2. RPNSampling
Input: perturbation δ, block area to

be modified b, image size w, image
channels c, �∞-radius ε

Output: new updated δ∗ ∈ {−ε, ε}d

1: δ∗ ← δ
2: sample RPN uniformly γ ∈

{δvert, δhoriz, δuni, δdiag}
3: for i = 1, . . . , c do
4: δ∗

b,i ← γb,i

5: end for

Algorithm 3. SplitBlock
Input: image size w
Output: a sequence of block areas B
1: B = ∅
2: for i = 1, . . . , w do
3: Split the whole area of image

into i2 square shaped blocks
{b1, b2, . . . , bi2} with size w/i

4: B ← B ∪ shuffled
{b1, b2, . . . , bi2}

5: end for

to generate adversarial examples (Note that, they [24] aim to generate universal
adversarial perturbations, which is a deceptive perturbation for arbitrary images,
and is a different objective from ours, so it is not comparable). Specifically,
our method constructs perturbations with four patterned noises: vertical-wise,
horizontal-wise, uniform, and diagonal-wise (henceforth, collectively referred to
as random pattern noise, RPN). This represents a major difference from Square
Attack [5], which updates perturbations only with uniform noise in the form of
squares.

Algorithmic Scheme with Random Search. Our proposed schemes are pre-
sented in Algorithms 1, 2 and 3. First, we set a initial perturbation to the vertical-
wise one. A vertical-wise initialization is a technique used in [5]. Then, we obtain
the current loss by querying the perturbed image (x+δ). Since we are interested
in query efficiency, the algorithm stops as soon as an adversarial perturbation
is found. Therefore, the process is terminated if the attack is already successful

312 M. Yuito et al.

Table 1. Results of both untargeted and targeted attacks on Madry et al.’s naturally
trained model [28] classifying CIFAR-10. We set the norm bound ε∞ = 0.031 and a
limit of queries to 10 k.

Attack Success rate Avg. queries Med. queries
Untargeted Targeted Untargeted Targeted Untargeted Targeted

Parsimonious [30] 93.3% 97.3% 329 631 244 476
SignHunter [4] 88.9% 95.6% 157 370 73 311
Square Attack [5] 93.0% 96.7% 131 354 67 253
Ours 96.4% 98.3% 72 242 28 132

at the first query point (step 3 in Algorithm 1). After that, we decide the set
of block areas to be modified using the SplitBlock algorithm in Algorithm 3. In
a random search loop, first the algorithm picks a block area b and obtains the
new perturbation δ∗ updated for the area through RPNSampling in Algorithm 2.
Then, an adversarial example xadv is generated by adding the perturbation to
the benign image. Note that, all perturbed images are clipped in the domain
[0, 1]d. If the resulting loss corresponding to the perturbed image (x + δ∗) with
the updated perturbation is lower than the current loss, the change is applied.
The process is performed at most N (the maximum number of iterations) times
and the attack is failure if we cannot find the adversarial perturbation until N
times. Figure 2 shows a sequence of candidates of adversarial examples at each
iterate generated by our method. A candidate is generated at each iterate, and
the perturbation is updated if the loss at that time is lower than the previous
one.

RPN Sampling. Our RPNSampling algorithm presented in Algorithm 2 returns
a new perturbation δ∗ updated for a given block area b to be modified. As
the variation of RPNs, we focus on vertical-wise, horizontal-wise, uniform and
diagonal-wise perturbations. We show the samples of each RPN in Fig. 1. In this
algorithm, one of the four RPNs δvert, δhoriz, δuni, δdiag ∈ {−ε, ε}d, which are
randomly generated each time, is sampled as γ. The algorithm then changes the
new perturbation δ∗ to γ only in the region of block area b. From Fig. 2, it can
be observed that one of the randomly generated RPNs is picked at each iterate
and changed to that RPN only in certain regions. The effectiveness of each RPN
is experimentally verified in Sect. 4.4.

Split Block. The SplitBlock algorithm shown in Algorithm3 returns a set of
elements which are block areas to be modified in the perturbation. The purpose of
this function is to decide a low-dimensional space for a perturbation. In general,
the input space of a deep learning classifier is very high-dimensional. Therefore,
the optimization in the high-dimensional domain requires a very large number of
queries and is inefficient. The optimization can be done efficiently by narrowing

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 313

down the search space for solutions by making changes in some regions at a time
as a group. The dimensionality reduction techniques are used in many existing
methods [4,29,30], and we observe that the main difference lies in the number
of region partitions.

Given image size w, the SplitBlock equally divides the perturbation into
n2 (n ∈ {1, . . . , w}) square regions. Then, each divided area including its coor-
dinates is stored in the order of the region size in the set.

While Square Attack [5] updates the perturbation by randomly selecting a
square shaped region s× s of size s(< w) from the image size h×w, our method
updates it regularly for each of the n2 equally divided square regions. After
updating all the n2 regions, we move on to search in (n + 1)2 regions. This can
be observed in Fig. 2. In the testing phase, we show that the non-orthogonal
search direction and n2 partitions provide a wider change area in the low query
budget, which is a factor to achieve high query efficiency.

4 Experiments

In this section, we evaluate our method by comparing it with other �∞-attack
methods: Parsimonious [30], SignHunter [4] and Square Attack [5]. We consider
the �∞-threat model and execute attacks on both untargeted and targeted attack
settings, then quantify the performance in terms of attack success rates, aver-
age queries and median queries. The attack success rate is calculated by the
proportion of adversarial images which successfully fool the model. The mean
and median queries are the mean and median number of queries for successful
adversarial images.

In Sect. 4.1, we show results based on naturally trained models, i.e., models
that are not hardened against adversarial attacks. In Sect. 4.2 and 4.3, we show
results based on robust models of adversarially training and models with input-
transformation-based defenses. In Sect. 4.4, we evaluate our method a little more
by ablation study. Specifically, we experimentally investigate how much each of
our defined RPNs contributes to the attack performance.

4.1 Experiments on Naturally Trained Models

Datasets and Target Models. We evaluate our method on CIFAR-10 [22]
and ImageNet [11] datasets. CIFAR-10 is 32× 32× 3 dimensional images having
10 classes. For CIFAR-10, we randomly choose 1, 000 images from the test set
for evaluation, all of which are initially correctly recognized by the target model.
ImageNet has 1, 000 classes. Since the size of images of ImageNet dataset is not
fixed, we re-scale these images to 299 × 299 × 3 (default input size of Inception-
v3 model explained below). For ImageNet, we randomly choose 1, 000 images
belonging to 1, 000 categories from ILSVRC 2012 validation set, all of which are
initially correctly recognized by the target model. All images are normalized in
[0, 1] scale, and for all experiments, we clip the perturbed image into the input
domain [0, 1]d for all algorithms by default.

314 M. Yuito et al.

Fig. 3. Cumulative distribution of the
number of queries required for untargeted
attacks on CIFAR-10.

Fig. 4. Cumulative distribution of the
number of queries required for targeted
attacks on CIFAR-10.

Table 2. Results of both untargeted and targeted attacks on Inception-v3 classifying
ImageNet. We set the norm bound ε∞ = 0.031 and a limit of queries to 10 k.

Attack Success rate Avg. queries Med. queries
Untargeted Targeted Untargeted Targeted Untargeted Targeted

Parsimonious [30] 96.1% 78.4% 1082 3495 389 2807
SignHunter [4] 94.9% 72.4% 966 3656 204 3222
Square Attack [5] 98.5% 90.9% 568 2592 96 1716
Ours 98.6% 90.2% 416 2116 49 1312

For the experiments on CIFAR-10, we use Madry et al.’s naturally trained
model [28]. The model architecture and weights are available at here1. For the
experiments on ImageNet, we use the pre-trained model provided as an applica-
tion in Keras2. We select the Inception-v3 [37] pre-trained model in our exper-
iments because we can see in [5] that it is robuster than some other models for
ImageNet against adversarial attacks.

Method Setting. Since it is standard in the literature, we give a budget of 10 k
queries per image to find an adversarial perturbation. We set the maximum �∞-
perturbation of the adversarial image to ε = 0.031 (≈ 8/255) on both CIFAR-10
and ImageNet. Query budgets and the maximum distortion ε are parameters
specific to the threat model of adversarial attacks, so they are generally not
considered as hyperparameters. In targeted attacks, we set the target class to
ytarget = (ytrue + 1) mod K, where ytrue is the true class, and K is the number
of classes.

1 https://github.com/MadryLab/cifar10 challenge.
2 https://keras.io/api/applications/.

https://github.com/MadryLab/cifar10_challenge
https://keras.io/api/applications/

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 315

Fig. 5. Cumulative distribution of the
number of queries required for untargeted
attacks on ImageNet.

Fig. 6. Cumulative distribution of the
number of queries required for targeted
attacks on ImageNet.

Results on CIFAR-10. We show the results in Table 1. Our method achieves
the highest attack success rates on both untargeted and targeted settings. Also at
the same time, we improve the number of queries required to fool the classifiers
compared to other three methods. Compared to the state-of-the-art method,
Square Attack, our method achieves a higher attack success rate, 1.5 to 1.8
times higher average query efficiency, and 1.9 to 2.4 times higher median query
efficiency. We also plotted the cumulative success rates in terms of the required
budget in Figs. 3 and 4. Especially in low-query budgets, our method remarkably
outperforms the other methods. Additionally, the success rates of Square Attack
and our method at 1 query indicate the strength of the vertical-wise initialization.
As hyperparameters for the comparison methods, we set block size = 4 and
batch size = 64 for Parsimonious and p = 0.05 for Square Attack by default.

Results on ImageNet. The results are presented in Table 2, and Figs. 5 and
6. Although our method does not achieve the highest attack success rate in the
targeted attack setting, it achieves higher attack success rate and query efficiency
in the untargeted attack setting. As Figs. 5 and 6 show, our method achieves the
highest attack success rate up to 55 queries in both untargeted and targeted
attack settings. Additionally, we can see from Table 2 that more than half of the
images are successfully attacked for the untargeted attack with 49 queries, which
is about half of the median query of Square Attack. These results indicate the
high query efficiency in low query budgets of our method. As hyperparameters
for the comparison methods, we set block size = 32 and batch size = 64 for
Parsimonious and p = 0.05 for Square Attack.

316 M. Yuito et al.

Table 3. Results on adversarially trained models of Madry et al. [28], TRADES [48],
CLP and LSQ [21] on MNIST, and CLP and LSQ [21] on CIFAR-10. We set the
norm bound ε∞ and a limit of queries to 0.3 and 10 k respectively for MNIST and
0.062 (≈ 16/255) and 10 k respectively for CIFAR-10. The percentages in the model
column indicate the natural accuracy in the test data for each model.

Dataset Model Attack Success rate Avg. queries Med. queries

MNIST Madry et al. [28]
(99.0%)

Parsimonious 11.0% 310 58
SignHunter 7.5% 217 28
Square Attack 11.1% 496 204
Ours 11.3% 504 73

TRADES [48]
(100.0%)

Parsimonious 7.4% 338 60
SignHunter 5.5% 198 53
Square Attack 7.5% 450 228
Ours 7.5% 296 81

CLP [21]
(99.3%)

Parsimonious 87.3% 581 65
SignHunter 24.2% 741 6
Square Attack 92.8% 353 63
Ours 80.1% 638 122

LSQ [21]
(99.1%)

Parsimonious 83.8% 418 79
SignHunter 23.0% 852 7
Square Attack 90.1% 248 68
Ours 74.3% 666 117

CIFAR-10 CLP [21]
(74.2%)

Parsimonious 99.5% 285 117
SignHunter 99.9% 109 39
Square 99.5% 186 41
Ours 99.7% 178 33

LSQ [21]
(85.5%)

Parsimonious 77.5% 960 199
SignHunter 83.4% 354 34
Square 85.0% 533 29
Ours 80.5% 627 26

4.2 Experiments on Adversarially Trained Models

Here we evaluate our method to robust models based on adversarial training.

Datasets and Target Models. We use some robust models classifying
MNIST [44] and CIFAR-10 datasets as the same as the experiment of Square
Attack [5]. MNIST is 28 × 28 × 1 dimensional grayscale handwritten numeric
dataset. In the experiments on MNIST, we randomly sample 1, 000 images from
the test set, all of which are initially correctly recognized by Madry et al.’s natu-
rally trained model [28]. In the experiments on CIFAR-10, we use the same test
data in Sect. 4.1.

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 317

In line with the experiments in [5], we use the �∞-adversarially trained models
of Madry et al. [28], TRADES [48], Clean Logit Pairing (CLP) [21] and Logit
Squeezing (LSQ) [21] for MNIST, and the �∞-adversarially trained models of
CLP and LSQ for CIFAR-10.

Method Setting. We give a budget of 10 k queries per image to find an adver-
sarial perturbation. We set the maximum �∞-perturbation of the adversarial
image to ε = 0.3 on MNIST, and ε = 0.062 (≈ 16/255) on CIFAR-10. All
experiments in this section are done in the untargeted setting.

Results on MNIST. Table 3 shows the results. In Madry et al.’s and TRADES
models, SignHunter achieves better query efficiency, but has a lower attack suc-
cess rate on average than the other methods. Comparing the methods with sim-
ilar attack success rates, our method achieves higher attack success rates and
better query efficiencies. Although our method does not achieve better perfor-
mance than other methods in CLP and LSQ models, our method achieves better
performance in Madry et al.’s and TRADES models, where the original robust
accuracy is higher. This indicates the potential attack power of our method. As
the hyperparameter for Parsimonious, we set block size = 4 and batch size = 64.
As the hyperparameter for Square Attack, we set p = 0.8 for Madry et al.’s and
TRADES models and p = 0.3 for CLP and LSQ models.

Results on CIFAR-10. The results are shown at the bottom of Table 3. All
methods have high attack success rates overall, and there is not as large a dif-
ference in attack performance due to the shape of the uniform noise as for
MNIST. In both models, our method achieves the highest median query effi-
ciency, although not the highest average query. This suggests that the query
efficiency in low query budgets of our method is high. As hyperparameters for
the comparison methods, we set block size = 4 and batch size = 64 for Parsi-
monious and p = 0.3 for Square Attack.

On the Difference in Attack Success Rates in CLP and LSQ Models.
It may be concluded that the difference in the attack performance of the meth-
ods in CLP and LSQ models classifying MNIST comes from the form of local
uniform noise generated by each method. SignHunter considers the image as a
one-dimensional vector and flips the sign in a particular segmentation range, so
that a rectangular noise can be seen in the image. On the other hand, Parsi-
monious and Square Attack make most of the noise consist of square shaped
uniform noise. The results in Table 3 show a large margin in terms of attack suc-
cess rate of the attacks between these two patterns. This suggests that CLP and
LSQ models are particularly vulnerable to square shaped uniform noise, which
causes the large differences.

318 M. Yuito et al.

Table 4. Results on input-transformation-based defenses: Bit-Red [43], JPEG [17],
FD [26], and ComDefend [20]. Each defense method adopts the backbones of Madry et
al.’s naturally trained model classifying CIFAR-10 and Inception-v3 pre-trained model
classifying ImageNet, respectively. We use 50 randomly selected images and set a limit
of queries to 200, the norm bound ε∞ to 0.031 for CIFAR-10 and 0.062 for ImageNet.

Dataset Defense Attack Success rate Avg. queries Med. queries

CIFAR-10 Bit-Red [43]
(78.0%)

Parsimonious 71.8% 61 71
SignHunter 84.6% 32 16
Square Attack 92.3% 27 14
Ours 92.3% 23 12

JPEG [17]
(82.0%)

Parsimonious 48.8% 95 75
SignHunter 73.2% 63 52
Square Attack 85.4% 31 19
Ours 92.7% 29 12

FD [26]
(86.0%)

Parsimonious 81.4% 73 70
SignHunter 83.7% 38 28
Square Attack 97.7% 28 8
Ours 100.0% 24 6

ImageNet Bit-Red [43]
(78.0%)

Parsimonious 51.3% 86 74
SignHunter 74.4% 60 35
Square Attack 84.6% 35 22
Ours 82.1% 33 12

JPEG [17]
(82.0%)

Parsimonious 41.7% 82 69
SignHunter 66.7% 89 73
Square Attack 77.1% 37 13
Ours 83.3% 36 8

FD [26]
(86.0%)

Parsimonious 66.0% 55 67
SignHunter 74.5% 35 18
Square Attack 93.6% 27 7
Ours 97.9% 21 4

ComDefend [20]
(94.0%)

Parsimonious 27.7% 80 78
SignHunter 61.7% 72 61
Square Attack 74.5% 45 25
Ours 74.5% 37 13

4.3 Experiments on Input-Transformation-Based Defenses

In this section, we attack against input-transformation-based defense methods
other than adversarial training.

Datasets and Target Models. Since the basic input-transformation-based
defense methods are input-independent, they can be applied to various models to
easily improve the defense performance against adversarial attacks. We consider

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 319

four defense methods: Bit-Depth Reduction (Bit-Red) [43], JPEG Compression
(JPEG) [17], Feature Distillation (FD) [26], and ComDefend [20]. All of these
defense methods are input-transformation-based methods that apply a transfor-
mation to the input image to mitigate the effects of adversarial perturbation. We
conduct attack experiments on models applying each defense method to Madry
et al.’s naturally trained model for classifying CIFAR-10 and Inception-v3 pre-
trained model for classifying ImageNet, respectively. Since ComDefend requires
a separate pre-trained model for defense and is not available in CIFAR-10, we
only consider ImageNet for this method. For the test data on both CIFAR-10
and ImageNet, we randomly sample 50 images from those used in Sect. 4.1, and
we generate adversarial examples of these images.

Method Setting. Considering a more realistic setting, we give a budget of
200 queries, which is much less than the number of queries in the experiment
in Sect. 4.1. We set the maximum �∞-perturbation of the adversarial image to
ε = 0.031 (≈ 8/255) on CIFAR-10, and ε = 0.062 (≈ 16/255) on ImageNet. The
amount of perturbation distortion on ImageNet is based on VMI-CT-FGSM [40].
All experiments in this section are done in the untargeted setting.

Results on CIFAR-10. The results are shown in upper part of Table 4.
Our method outperforms the other black-box attacks against all three input-
transformation-based defenses. Our method achieves an attack success rate of
more than 90% for all defense methods, and when compared to the results for
the case without defense methods in Sect. 4.1, it can be seen that our method is
almost unaffected by these defenses. Overall, our method achieves better perfor-
mance in situations where the attacker is given only a small query budget. As
hyperparameters for Parsimonious, we set block size = 4 and batch size = 64.

Results on ImageNet. The results are shown in the lower part of Table 4.
Our method achieves better attack performance except the attack success rate
on Bit-Red. In particular, the median query of our method is about half that of
Square Attack in most settings, which indicates a relatively high query efficiency
of our method. The defense methods such as input transformation are very easy
to apply to ImageNet with high dimensionality and are considered more realistic
than adversarial training. However, such a simple defense method is not sufficient
to prevent adversarial attacks. In terms of the amount of perturbation distortion
in the adversarial image, these defense methods may be more robust for smaller
amounts of that. As hyperparameters for Parsimonious, we set block size = 32
and batch size = 64.

4.4 Ablation Study

In this subsection, we evaluate our methodology a little more. We perform a
simple ablation study to show how the individual RPNs (in Sect. 3.2) improve

320 M. Yuito et al.

Table 5. Ablation study of our method which shows how the individual RPNs (in
Sect. 3.2) improve the performance. Our final method is highlighted in blue, and the
results are shown below when each RPN was removed from the “All” sampling space.

Sampling space Success rate Avg. queries Med. queries

All 90.2% 2116 1312
All − vertical-wise 88.7% 2208 1366
All − horizontal-wise 89.8% 2263 1390
All − uniform 88.8% 2237 1314
All − diagonal-wise 88.2% 2271 1468

the performance of our attack. The comparison is done for an �∞-threat model
of radius ε = 0.031. We use 1, 000 test images and carry out targeted attacks
against the Inception-v3 model pre-trained on ImageNet with a 10 k query bud-
get. Results are shown in Table 5. The “All” in sampling space column means
that the RPN is sampled from the all sampling space (vertical-wise, horizontal-
wise, uniform and diagonal-wise), which is our final method we used in our exper-
iments. The results when each RPN is removed from the all sampling space are
shown below that. In terms of attack success rate and query efficiency, we can
see that all RPNs contribute to the attack performance. In particular, when the
diagonal-wise pattern is removed, the attack success rate and query efficiency are
greatly degraded. In addition, based on the results, further analysis of the noise
patterns will be a future challenge, assuming that the addition of new RPNs will
improve the attack performance.

5 Conclusion

We proposed a query-efficient black-box attack using an iterative random search
and random pattern noises. In our experiments, we show that our method
achieves higher success rates than existing methods in both untargeted and tar-
geted attacks, especially in low-query budgets. In the experiments on defensive
models, we show that our method achieves high attack performance in most set-
tings. Since our method is hyperparameter-free, it is practical and easy to apply
for attackers.

References

1. Amazon Rekognition. https://aws.amazon.com/rekognition/
2. Google Cloud Vision API. https://cloud.google.com/vision/
3. IBM Watson Visual Recognition. https://www.ibm.com/cloud/watson-visual-

recognition
4. Al-Dujaili, A., O’Reilly, U.M.: Sign bits are all you need for black-box attacks. In:

International Conference on Learning Representations (2020). https://openreview.
net/forum?id=SygW0TEFwH

https://aws.amazon.com/rekognition/
https://cloud.google.com/vision/
https://www.ibm.com/cloud/watson-visual-recognition
https://www.ibm.com/cloud/watson-visual-recognition
https://openreview.net/forum?id=SygW0TEFwH
https://openreview.net/forum?id=SygW0TEFwH

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 321

5. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-
efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 484–501.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1 29

6. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. CoRR
abs/1712.09665 (2017)

7. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy 2017, pp. 39–57 (2017)

8. Chen, J., Jordan, M.I., Wainwright, M.J.: HopSkipJumpAttack: a query-efficient
decision-based attack. In: IEEE Symposium on Security and Privacy 2020, pp.
1277–1294 (2020)

9. Chen, P., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.: Zoo: zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: Proceedings of the AISec@CCS 2017, pp. 15–26 (2017)

10. Chen, S., Carlini, N., Wagner, D.A.: Stateful detection of black-box adversarial
attacks. In: Proceedings of the SPAI 2020, pp. 30–39 (2020)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR 2009 (2009)

12. Deng, Y., Zheng, J.X., Zhang, T., Chen, C., Lou, G., Kim, M.: An analysis of
adversarial attacks and defenses on autonomous driving models. In: PerCom 2020,
pp. 1–10 (2020)

13. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial
examples by translation-invariant attacks. In: Proceedings of the CVPR 2019, pp.
4312–4321 (2019)

14. Feng, Y., Wu, B., Fan, Y., Li, Z., Xia, S.: Efficient black-box adversarial attack
guided by the distribution of adversarial perturbations. CoRR abs/2006.08538
(2020)

15. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: ICLR 2015 (2015)

16. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversar-
ial examples. In: ICLR 2015 (2015)

17. Guo, C., Rana, M., Cissé, M., van der Maaten, L.: Countering adversarial images
using input transformations. In: ICLR 2018 (2018)

18. Guo, Y., Yan, Z., Zhang, C.: Subspace attack: Exploiting promising subspaces for
query-efficient black-box attacks. In: Wallach, H.M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) NeurIPS 2019, pp. 3820–3829
(2019)

19. Huang, Z., Zhang, T.: Black-box adversarial attack with transferable model-based
embedding. In: ICLR 2020 (2020)

20. Jia, X., Wei, X., Cao, X., Foroosh, H.: ComDefend: an efficient image compression
model to defend adversarial examples. In: Proceedings of the CVPR 2019, pp.
6084–6092 (2019)

21. Kannan, H., Kurakin, A., Goodfellow, I.J.: Adversarial logit pairing (2018)
22. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.

Technical report, University of Toronto (2009)
23. Li, H., Xu, X., Zhang, X., Yang, S., Li, B.: QEBA: query-efficient boundary-based

blackbox attack. In: Proceedings of the CVPR 2020, pp. 1218–1227 (2020)

https://doi.org/10.1007/978-3-030-58592-1_29

322 M. Yuito et al.

24. Li, Y., Bai, S., Xie, C., Liao, Z., Shen, X., Yuille, A.: Regional homogeneity:
towards learning transferable universal adversarial perturbations against defenses.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12356, pp. 795–813. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58621-8 46

25. Lin, J., Song, C., He, K., Wang, L., Hopcroft, J.E.: Nesterov accelerated gradient
and scale invariance for adversarial attacks. In: ICLR 2020 (2020)

26. Liu, Z., et al.: Feature distillation: DNN-oriented JPEG compression against adver-
sarial examples. In: CVPR 2019, pp. 860–868 (2019)

27. Ma, C., Cheng, S., Chen, L., Yong, J.: Switching gradient directions for query-
efficient black-box adversarial attacks. CoRR abs/2009.07191 (2020)

28. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR 2018 (2018)

29. Meunier, L., Atif, J., Teytaud, O.: Yet another but more efficient black-box adver-
sarial attack: tiling and evolution strategies (2019)

30. Moon, S., An, G., Song, H.O.: Parsimonious black-box adversarial attacks via
efficient combinatorial optimization. In: ICML 2019, pp. 4636–4645 (2019)

31. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against machine learning. In: Proceedings of the Asi-
aCCS 2017, pp. 506–519 (2017)

32. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE EuroS&P 2016, pp.
372–387 (2016)

33. Rastrigin, L.A.: The convergence of the random search method in the extremal
control of many-parameter system. Autom. Remote Control 24(10), 1337–1342
(1963). https://scholar.google.com/scholar?cluster=1484480983410715230

34. Shaham, U., et al.: Defending against adversarial images using basis functions
transformations. CoRR abs/1803.10840 (2018)

35. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the
ACM CCS 2016, pp. 1528–1540 (2016)

36. Su, D., Zhang, H., Chen, H., Yi, J., Chen, P., Gao, Y.: Is robustness the cost of
accuracy? – A comprehensive study on the robustness of 18 deep image classifica-
tion models. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018, pp. 644–661 (2018)

37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the CVPR 2016, pp. 2818–
2826 (2016)

38. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR 2014 (2014)
39. Tu, C., et al.: Autozoom: autoencoder-based zeroth order optimization method

for attacking black-box neural networks. In: Proceedings of the AAAI 2019, pp.
742–749 (2019)

40. Wang, X., He, K.: Enhancing the transferability of adversarial attacks through
variance tuning. In: Proceedings of the CVPR 2021, pp. 1924–1933 (2021)

41. Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.L.: Mitigating adversarial effects
through randomization. In: ICLR 2018 (2018)

42. Xie, C., et al.: Improving transferability of adversarial examples with input diver-
sity. In: Proceedings of the CVPR 2019, pp. 2730–2739 (2019)

43. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in
deep neural networks. In: NDSS 2018 (2018)

https://doi.org/10.1007/978-3-030-58621-8_46
https://doi.org/10.1007/978-3-030-58621-8_46
https://scholar.google.com/scholar?cluster=1484480983410715230

Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 323

44. Yann, L., Corinna, C.: The MNIST database of handwritten digit (1998)
45. Yatsura, M., Metzen, J.H., Hein, M.: Meta-learning the search distribution of black-

box random search based adversarial attacks. CoRR abs/2111.01714 (2021)
46. Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A Fourier perspective on

model robustness in computer vision. In: NeurIPS 2019, pp. 13255–13265 (2019)
47. Zhang, F., Chowdhury, S.P., Christakis, M.: DeepSearch: a simple and effective

blackbox attack for deep neural networks. In: Devanbu, P., Cohen, M.B., Zimmer-
mann, T. (eds.) ESEC/FSE 2020, pp. 800–812 (2020)

48. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically
principled trade-off between robustness and accuracy. In: ICML 2019 (2019)

Autoencoder Assist: An Efficient Profiling
Attack on High-Dimensional Datasets

Qi Lei1(B), Zijia Yang1, Qin Wang2, Yaoling Ding3, Zhe Ma1, and An Wang3

1 Bank Card Test Center, Beijing, China
leiqiuq@outlook.com, zjyangzijia@outlook.com, ma.z@bctest.com

2 CSIRO Data61, Sydney, Australia
3 School of Cyberspace Science and Technology, Beijing Institute of Technology,

Beijing, China
{dyl19,wanganl}@bit.edu.cn

Abstract. Deep learning (DL)-based profiled attack has been proved to
be a powerful tool in side-channel analysis. However, most attacks merely
focus on small datasets, in which their points of interest are well-trimmed
for attacks. Countermeasures applied in embedded systems always result
in high-dimensional side-channel traces, i.e., the high-dimension of each
input trace. These traces inevitably require complicated designs of neu-
ral networks and large sizes of trainable parameters for exploiting the
correct keys. Therefore, performing profiled attacks (directly) on high-
dimensional datasets is difficult. To bridge this gap, we propose a dimen-
sion reduction tool for high-dimensional traces by combining signal-to-
noise ratio (SNR) analysis and autoencoder. With the designed asymmet-
ric undercomplete autoencoder (UAE) architecture, we extract a small
group of critical features from numerous time samples. The compression
rate by using our UAE method reaches 40x on synchronized datasets and
30x on desynchronized datasets. This preprocessing step facilitates the
profiled attacks by extracting potential leakage features. To demonstrate
its effectiveness, we evaluate our proposed method on the raw ASCAD
dataset with 100,000 samples in each trace. We also derive desynchro-
nized datasets from the raw ASCAD dataset and validate our method
under random delay effect. We further propose a 2n-structure MLP net-
work as the attack model. By applying UAE and attack model on these
traces, experimental results show all correct subkeys on synchronized
datasets and desynchronized datasets are successfully revealed within
hundreds of seconds. This indicates that our autoencoder can signifi-
cantly facilitate DL-based profiled attacks on high-dimensional datasets.

Keywords: Side-channel analysis · Deep learning · Autoencoder

1 Introduction

Side-channel analysis (SCA) exploits the weakness of cryptographic algorithm
implementations from the view of physical information such as timing [1], power

Q. Lei—Full version refers to https://eprint.iacr.org/2021/1418.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 324–341, 2022.
https://doi.org/10.1007/978-3-031-15777-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_18&domain=pdf
https://eprint.iacr.org/2021/1418
https://doi.org/10.1007/978-3-031-15777-6_18

Autoencoder Assist: An Efficient Profiling Attack 325

consumption [2], and electromagnetic emanations [3]. When running a crypto-
graphic algorithm, intermediate states and operations that are closely depen-
dent on secret keys may cause leakage and be detected through SCA observa-
tion, severely threatening the security of cryptographic systems. In SCA, attack
methods can be categorized into profiled attacks and non-profiled attacks. Pro-
filed attacks indicate that a powerful adversary has access to an open clone
cryptographic device for secret keys, side-channel traces, and unlimited compu-
tational power. The adversary first characterizes all types of secret information
from a clone device (a.k.a., profiling phase), and then recovers secret data from
the target device by utilizing their learned models (a.k.a., attack phase). Typical
profiled attacks covers template attack [4] and machine learning-based attacks
[5–8]. Non-profiled attacks refer to attacks where an adversary can only collect
physical information from a target device. The abilities of adversaries in this type
are weaker than those in profiled attacks. The attacker uses statistical analysis
to derive secret information from side-channel traces. This line of attacks include
simple power analysis (SPA), differential power analysis (DPA) [2], correlation
power analysis (CPA) [9] and mutual information analysis (MIA) [10,11].

One of the most powerful side-channel attacks has been proven to be the
deep learning (DL)-based profiled attacks. This type of attacks outperforms
other types in the context of attack traces that are needed to recover keys [8]
[12]. Moreover, DL-based profiled attacks have been explored on both unpro-
tected datasets and protected datasets [8,13–18]. These datasets have accurately
located points of interest (POIs). However, in a practical secure implementation,
each trace includes tens of thousands of samples due to applied countermeasures.
Directly applying neural networks on high-dimensional datasets is impractical
because the design inevitably requires a very complicated network architecture
and a large size of trainable parameters to learn key information. To the best of
our knowledge, deep learning-based profiled attacks lack applications on high-
dimensional datasets. To bridge this gap, a preprocessing of locating leakage
samples and extracting features becomes a necessity.

In advance to accelerate the attacks, many solutions of preprocessing tech-
niques for POI selection have been explored in the profiled attacks field.
For instance, principal component analysis (PCA), linear discriminant analy-
sis (LDA), and kernel discriminant analysis (KDA) have been investigated in
template attacks [13,19–22]. Similarly, long short-term memory (LSTM) autoen-
coder in machine learning-based profiled attacks [23] has been applied on unpro-
tected AES implementation to extract features. Additionally, convolutional lay-
ers are also considered to be a feature extraction tool [16]. However, all these
solutions are applied on small datasets in that each trace contains only hundreds
of samples. It is insufficient in practical scenarios where each trace consists of
large sizes of samples. An efficient tool to locate and extract critical features
when performing attacks is desperately necessary. We thereby propose a new
approach to preprocess high-dimensional datasets.

Our approach utilizes the undercomplete autoencoder (UAE). UAE can learn
a lower-dimensional representation of the data by an encoder and correspond-

326 Q. Lei et al.

ingly decodes it into the original input space by a decoder. The structure of the
encoder and decoder can be designed as fully connected layers, convolutional lay-
ers, LSTM layers, etc. Our proposed solution can outperform previous methods
due to a specialized design. Specifically, our method introduces an asymmetric
structure into autoencoder design to reduce the training complexity. This design
differs from traditional autoencoder solutions which have symmetric autoencoder
structures as in [17,23]. In our asymmetric model, the encoder and decoder have
different structures. This provides benefits with flexible parameter settings and
independent combinations of training models. Therefore, to accelerate DL-based
attacks on high-dimensional traces, we design a preprocessing and attack model
suite, which consists of signal-to-noise ratio (SNR) analysis, autoencoder, and
multilayer perceptron (MLP). Our proposed model can extract key features from
high-dimensional traces. To demonstrate its effectiveness, we give experiments
under our model and several parallel models on the raw ASCAD datasets to com-
pare attack results before and after the feature extraction. Experimental results
indicate that our method has significantly improved the attack performance. In
a nutshell, the contributions of this work are listed as follows.

– We propose an innovative trace preprocessing architecture to compress high-
dimensional datasets. The preprocessing tool is composed of SNR analysis
and asymmetric UAE that can extract critical trace features.

– We design a 2n-structure MLP structure to perform profiled attack. Experi-
mental results show that the MLP can perform successful attacks while exist-
ing attack models cannot reveal all correct keys before and after the feature
extraction. Meanwhile, training a 2n-structure MLP takes only 1

42 ∼ 1
3 the

time compared with the state-of-the-art models.
– The preprocessing and the attack architecture are confirmed on both synchro-

nized traces and desynchronized traces. We introduce convolutional layers in
UAE to confront the desynchronization effect and further exploit the secret
key. The compression rate by using UAE separately reaches 40x on synchro-
nized datasets and 30x on desynchronized datasets.

Paper Structure. Section 2 introduces the raw ASCAD dataset for evaluation
and provide dimension reduction techniques applied in SCA. The architectures
of the asymmetric UAE and 2n-structure MLP are presented in Sect. 3. Section 4
details the hyperparameter selection and shows experimental results on synchro-
nized and desynchronized datasets. Section 5 concludes this work.

2 Primitives and Components

This section introduces the high dimensional traces of raw ASCAD dataset that
contains a large number of samples served for profiling attacks. Then, we pro-
vide details of dimension reduction techniques (SNR and autoencoders) in SCA.
Finally, we present neural networks used as attack models in profiled attacks.

Autoencoder Assist: An Efficient Profiling Attack 327

2.1 Raw ASCAD Dataset

The ASCAD dataset [14] provides power traces produced by a masked AES-128
implementation on ATMega8515 microcontroller. It is used as a benchmark to
evaluate machine learning techniques applied in the side-channel context. The
raw ASCAD dataset consists of 60, 000 traces and each trace is composed of
100, 000 samples. It is split into a training set with 50, 000 traces and a test set
with 10, 000 traces. The common used ASCAD dataset contains 700 samples
with random delay ND = {0, 50, 100}. Desynchronized subsets in ASCAD are
generated via random delay technique [14]. We use the same desynchronization
technique in this work to generate high-dimensional desynchronized datasets.

The leakage model in the ASCAD dataset is chosen to be S-box output,
which is defined as

S-box(p[i] ⊕ k[i]),

where i ∈ {1, ..., 16}, p represents plaintexts while k is secret keys (both are
measured in byte).

2.2 Dimension Reduction Techniques in SCA

To find a possible leakage interval, SCA makes use of statistical tests (SNR,
T-test) to detect leakage points and dimensional reduction skills (PCA, LDA,
KDA, autoencoders) to reduce attack complexity. Our method combines SNR
and autoencoder to address the high-dimensionality issue in SCA trace prepro-
cessing. We introduce them as follows.

Signal-to-Noise Ratio Analysis. Signal-to-noise ratio (SNR) analysis has
been applied to find POIs in the raw ASCAD dataset. We introduce five main-
stream types of SNR defined in [14] (see Table 1). Specifically, to illustrate how
we locate POIs from original traces according to SNR analysis results, we use
SNRs in the third S-box (cf. Fig. 1) as an example.

Fig. 1. SNR peaks of the third S-box

The value of snr1 (unmasked
S-box output) is low in the
third S-box, which implies the
first-order leakage is weak in
tested traces. In contrast, snr2
(masked S-box output) and
snr4 (masked S-box output in
linear parts) have high correla-
tion value that shows the real
intermediates in AES traces.
snr3 is a mask constant that
leads to high SNR peaks. We
can find that snr3 is a misleading signal when selecting the proper S-box oper-
ation period. snr5 shows high peaks of each S-box mask r[i].

We zoom in SNR analysis result to observe the positions of SNR peaks exclud-
ing the misleading signal snr3. When n where n > 1, SNR reaches peaks at

328 Q. Lei et al.

the same position (marked with a red square), we collect the highest values
of each SNR type at the point Pi(i = 1, ..., n). Next, we use Pmiddle, where
Pmiddle =

∑
Pi

n , as the middle point to trim an interval for further analysis.
In the third S-box, Pmiddle = 45900 and the trimmed interval (the number of
samples denoted as L) is (45900 − L

2 , 45900 + L
2).

Table 1. SNR definitions

Name Type Target sensitive variables

snr1 Unmasked S-box output S-box(p[3] ⊕ k[3])

snr2 Masked S-box output S-box(p[3] ⊕ k[3]) ⊕ rout

snr3 Common S-box output mask rout

snr4 Masked S-box output in linear parts S-box(p[3] ⊕ k[3]) ⊕ r[3]

snr5 S-box output mask in linear parts r[3]

Here, we consider the POI selection from two folds. Firstly, the selected
POI interval should be large enough to cover all operation information of one
S-box. Secondly, a small number of POIs will help to reduce the subsequent
analysis complexity. Therefore, we start attacks from a coarse sample number
set L = {1000, 2000, 3000, 4000, 5000} on the raw ASCAD dataset.

Autoencoders. The autoencoder is a type of neural network trained to repre-
sent the original information from a code. An autoencoder consists of two parts,
namely encoder and decoder. An encoder z = f(x) maps an input to the code
while a decoder x′ = g(z) generates the reconstruction of original inputs. The
autoencoder types that are widely adopted include undercomplete autoencoder
(UAE), denoising autoencoder (DAE), and contractive autoencoder (CAE).

In this work, we focus on dimension reduction for profiling attacks. Under-
complete means the dimension of the code is lower than the input. By using
smaller-length vector representation, a UAE can force the network to learn the
most significant features from original data. The training goal is to minimize the
loss of L(x, g(f(x))). We adopt the UAE as our first choice to simplify attacks.
This is because we have no extra noise on original traces (as DAE required)
and no limitations on the output (as in CAE). As we noticed that implement-
ing DAE [17] needs to generate extra corrupted data for robust training, we
decide to design UAE in an asymmetric manner as a penalty to reconstruct a
robust code. We would maximumly reduce hidden layers in the decoder part and
use original data directly to perform an attack. In this way, we can reduce the
training model complexity and shorten preprocessing time.

2.3 Neural Networks

A deep learning-based profiled attack is a task of classification that trains the
neural network model for precisely predicting the correct keys. A neural network
contains an input layer, multiple hidden layer(s) and an output layer. The input

Autoencoder Assist: An Efficient Profiling Attack 329

layer in SCA receives the one-dimensional side-channel traces, while the output
layer provides key classification results. Model hyperparameter and optimizer
hyperparameters will affect the network attack performance. Grid search opti-
mization (GSO) [24] is widely used to select a better group of hyperparameters.

In an MLP, all layers are fully connected and each connection has a weight
value (parameter) that gets updated during backpropagation. We adopt the
categorical cross-entropy loss in prediction layer for MLP classification in SCA.

A convolutional neural network (CNN) is composed of three building blocks:
convolutional layers, pooling layers and fully connected layers. Convolution layers
play a key role in CNN to extract features. In the study of Zaid et al. [16], they
propose to build an efficient CNN for side-channel attack. Here, we present the
convolutional layer and pooling layer that are useful to detect desynchronization.
They assume that the maximum random delay in the original trace is ND. In the
convolutional block for feature extraction, filter size is set to ND

2 . Pooling stride is
the same as filter size (ND

2) to preserve information related to desynchronization
while also maximize the dimension reduction. It is demonstrated that smaller
filter sizes help to identify local features and larger filter sizes can extract global
features but inevitably cause spreading of relevant information. Besides, they
recommend a small number of filters {2, 4, 8} for fast training.

It is worth noticing that convolutional neural networks can be deconstructed
into the convolutional part for feature extraction and a fully connected part
for classification. In CNNs, fully connected layers are similar to MLP. As con-
volutional structures can be applied to undercomplete autoencoder for feature
extraction, in this work, only MLP is used for classification.

3 Model Design

In this section, we propose our autoencoder-assisted model that combines SNR,
UAE, and MLP. The model provides efficient reduction of large-size datasets.

3.1 Model Overview

The entire model (including feature selection and classification modules) con-
sists of three parts: SNR, UAE and MLP. Figure 2 shows the trace processing
path. Firstly, SNR analysis is performed on original traces. We use SNR middle
position Pmiddle (see Sect. 2.2) to trim traces of length L. The goal of this SNR
exploration is to find a proper interval that can cover all possible leakage points
and give good performance results. Then, the trimmed traces are fed into an
undercomplete autoencoder. The autoencoder will compress L-sample traces by
R times. SNR and UAE are the preprocessing part for feature extraction (POI
selection). Each code with L

R samples becomes the input of the MLP attack
model. MLP acts as the classifier and the attacking result is presented by the
key rank (guessing entropy) of correct subkeys.

330 Q. Lei et al.

Fig. 2. Preprocessing and attack model structure

3.2 UAE Structure

Autoencoders are normally designed to be symmetric where the encoder and
decoder have the same structure. SCA attack solutions utilizing autoencoders
[17,23] also follow the standard symmetric structure. A heuristic thinking is
that the symmetric structure can help to retrieve the original data. However,
the symmetric structure increases the complexity of a UAE network. In this
work, we introduce asymmetric UAE for feature extraction. Asymmetric means
the structure of an encoder and a decoder are different and the encoder is more
complicated than the decoder. Specifically, an encoder has one or more hidden
layers. Whereas a decoder has fewer hidden layers or no hidden layer. The asym-
metric structure can be viewed as a regularization that forces the network to
learn more robust features without relying on a corrupted input or a regularizer.
Formally, we define this asymmetric UAE model as

f̂ = I ′ ◦ [α]HD ◦ C ◦ [α]HE ◦ I,HE > HD,

where the input layer is represented as an identity function I, and the output
layer I ′ means a reconstruction of input. The code (bottleneck layer) is denoted
as C. A hidden layer is denoted as α. The number of hidden layers in encoder
is HE and decoder HD. Here, the restriction HE > HD shows the asymmetric
feature. A hidden layer α can apply structures such as a fully connected layer,
a convolutional block, or an LSTM layer. Specifically, when α represents a fully
connected layer, it is formalized as

A ◦ λ,

where A is an activation function and λ represents a linear function. When α
represents a convolutional block, it is

δ ◦ [A ◦ γ]Hconv ,

where a convolutional block contains Hconv convolutional layers (denoted γ), an
activation function (denoted A) and one pooling layer (denoted δ).

Autoencoder Assist: An Efficient Profiling Attack 331

In this work, we instantiate the asymmetric UAE model for synchronized
traces and desynchronized traces. We test our proposed architecture on both
synchronized and desynchronized high-dimensional datasets. As for synchronized
traces, the hidden layers in UAE are configured to be fully connected layers for
fast training. As for desynchronized traces, convolutional layers are introduced
in UAE. Similar techniques applying CNN to deal with desynchronized cases are
also demonstrated in [8,16].

UAE for Synchronized Traces. An asymmetric UAE for synchronized traces
is presented as

f̂sync = I ′ ◦ C ◦ [A ◦ λ]HE ◦ I,

where HD = 0 means no hidden layer exists. Notably, we remove the hidden layer
in the decoder to maximally simplify the structure and reduce the complexity.
We illustrate this UAE structure in Fig. 3. We suppose that the input layer and
the output layer have NI nodes. Each hidden layer has NF nodes. The bottleneck
layer has NC nodes. In this way, an NI -dimensional trace is compressed to a NC-
dimensional code. We accordingly denote the compress ratio R from the input
dimension to a code dimension as R = NI

NC
.

Fig. 3. Synchronized UAE

Here, we specify the trick
that is used to determine the
number of nodes in each fully
connected layer. Assuming that
N

[j]
F is the number of neurons in

the j-th fully connected layer,
we define the number of nodes
in j-th hidden layer is 2n. The
number of nodes in (j − 1)-th
hidden layer is twice the num-
ber of j-th layer, i.e., N

[j−1]
F =

2 × N
[j]
F . We limit N

[1]
F < NI to

ensure the number of nodes in each hidden layer to be fewer than the input
layer. We denote this structure as 2n-structure. To set an asymmetric UAE
structure, we only need to define the number of hidden layers HE and the num-
ber of nodes N [HE] in the last hidden layer. Using 2n-structure, we perform the
grid search optimization for UAE hyperparameters (see Table 4L) on the raw
ASCAD dataset (synchronized traces).

UAE for Desynchronized Traces. Similarly, for desynchronized traces, a
UAE is formalized as

f̂desync = I ′ ◦ [A ◦ λ] ◦ C ◦ [A ◦ λ] ◦ [δ ◦ [A ◦ γ]] ◦ I,

where HD = 1,HE = 2 and Hconv = 1. During the UAE model design, we still
attempt to design the most simplified UAE. As a flatten layer at the output
layer of a convolutional block is required, we add a fully connected layer in

332 Q. Lei et al.

Fig. 4. Grid search optimization for UAE hyperparameters on synchronized (L) and
desynchronized (R) traces

both encoder and decoder. Therefore, in our UAE, the encoder consists of a
convolutional block and a flatten layer. The decoder only has a fully connected
layer whose nodes number is same as which in the encoder. The structure of the
asymmetric UAE for desynchronized traces is depicted in Fig. 5.

Fig. 5. UAE structure for desynchronized traces

The input layer and output layer have NI nodes. Regarding the method
of building efficient CNN architectures [16], we apply filter size K =
{ND

2 , ND, 2ND}. Note that we extend the kernel size ND

2 recommended in [16] to
{ND, 2ND}. As smaller kernels extract local features and larger kernels extract
global features, we would like to find out the kernel size influence in UAE feature
extraction. The pooling stride is the same as kernel size. We perform grid search
on a small number of filters from {2, 4, 8}. After average pooling, the flatten
layer has NF nodes and the decoder hidden layer has the same number of nodes.
The compress ratio from input dimension to a code dimension is R = NI

NC
. Based

on CNN structure, we perform the grid search optimization for UAE hyperpa-
rameters (see Table 4R) on the desynchronized raw ASCAD dataset. One-cycle
policy [25] is applied to update the learning rate.

Autoencoder Assist: An Efficient Profiling Attack 333

3.3 MLP Structure

Fig. 6. 2n-structure MLP structure

As for the attacking model, 2n-
structure is applied to build an
MLP network. We denote the j-
th hidden layer of MLP as Lj

and the number of nodes in j-
th hidden layer as N [j]. Here,
N [j] = 2n and N [j+1] = 2 ×
N [j], i.e., the next hidden layer
has twice the number of nodes
than the previous layer. The 2n-
structure in MLP is reverse to
that in UAE because a UAE
tries to compress a dataset. We assume that there are H hidden layers. Then
an MLP under 2n-structure is configured by H and N [1]. The number of nodes
in the input layer is denoted as NC (code length) while the output layer as NO.
The architecture of a 2n-structure MLP is shown in Fig. 6. With this model, we
apply hyperparameters as illustrated in Table 2 to find a simple architecture to
reveal S-box subkeys with fewer traces and shorter training time.

Table 2. Grid search optimization for the MLP hyperparameters

Parameter Values

Activation function {sigmoid, tanh, ReLU, SeLU}
Learning rate One-cycle policy

Batch size {50, 100, 200, 300}
Epochs {10, 20, 25, 50, 75, 100}
n◦ of neurons N [1] (first hidden layer) {64, 128, 256}
n◦ of hidden layers H {2, 3, 4, 5, 6}

4 Experimental Results

We apply our preprocessing and attack model suite1 on high-dimensional side-
channel traces. The model suite is tested on synchronized and desynchronized
raw ASCAD datasets. Firstly, we show experiment settings and datasets prepa-
ration for profiled attacks. Then, we grid search proper UAE and MLP hyper-
parameters for each dataset. For a good model evaluation, the first priority is to
compare the least number of traces for guessing entropy (GE) converge to 1. We
also compared our model with existing SCA attack models from the perspective
of training time and trainable parameters as in most SCA studies [14,16,17].
1 https://github.com/niki-lei/Autoencoder-Assist-An-Efficient-Profiling-Attack-on-

High-dimensional-Datasets.

https://github.com/niki-lei/Autoencoder-Assist-An-Efficient-Profiling-Attack-on-High-dimensional-Datasets
https://github.com/niki-lei/Autoencoder-Assist-An-Efficient-Profiling-Attack-on-High-dimensional-Datasets

334 Q. Lei et al.

4.1 Experimental Configurations

For environment settings, our implementation of machine learning techniques is
based on the Keras library and Tensorflow backend. We run training models on
a laptop equipped with 8GB of RAM and Intel(R) Core(TM) i7-8750H CPU.
The target leakage model is the S-box output S-box(p[i] ⊕ k[i]). To validate our
proposed processing and attack model, we have three datasets: a synchronized
dataset (raw ASCAD traces of 100, 000 samples) and desynchronized datasets
(50 and 100 samples separately window maximum jitter on raw ASCAD traces).

On synchronized raw ASCAD traces, we select the third S-box as the prelim-
inary experimental target. We perform a coarse searching of applicable param-
eters for an efficient attack. Since there is no desynchronized dataset of raw
ASCAD traces, we generate random delay traces (samples window maximum of
50 and 100) in the same way as mentioned in Sect. 2.1. Based on SNR observa-
tion, a leakage interval [N,N + L] is selected for an S-box. Desynchronization
parameter ND is set to 50 and 100, respectively. Then a random integer r < ND

is generated to trim each interval [N + r,N + r + L] out as one item in the
desynchronized dataset. In this way, we obtain the ND = 50 and ND = 100
desynchronized datasets.

Hyperparameters used in UAE and MLP are selected via a grid search opti-
mization with finite sets of values. The final chosen value is obtained based on
the best attack performances, namely, the least traces for the GE reaches 1. To
perform a successful attack, three steps are conducted. Firstly, we propose a
näıve UAE and MLP to explore a proper POI length based on SNR analysis.
Then, we fix a non-optimized MLP to grid search UAE hyperparameters on the
POI dataset. Finally, optimize MLP on UAE extracted features.

4.2 SNR Parameter

Since current attack models use the third S-box in ASCAD dataset as the target
of evaluation, we also aim at the same S-box for model training and comparison.
POI intervals are trimmed from the length set L = {1000, 2000, 3000, 4000, 5000}

Fig. 7. Comparison of SNR intervals

according to the SNR peak cen-
tral point. The trimmed dataset
DL

S-box3 is labeled by sbox(p[3]⊕
k[3]). Each DL

S-box3 is split into
three subsets: 45, 000 traces as
training set, 5, 000 traces as val-
idation set and 10, 000 traces
as test set for attacks. We use
2n-structure for both asymmet-
ric UAE and MLP. For initial
setting of UAE and MLP, we
use non-optimized hyperparam-
eters. We set the initial UAE
structure (as in Fig. 3) to have

Autoencoder Assist: An Efficient Profiling Attack 335

2 hidden layers while the last hidden layer has N
[2]
F = 256 nodes (i.e., N

[1]
F =

512 < NI). Compress ratio is set to 10. MLP is set to H = 3 and N [1] = 256
(3 hidden layers and the first hidden layer has 256 nodes). For both UAE and
MLP, activation function is ReLU. UAE is trained under 30 epochs with a batch
size of 512 and learning rate of 0.001. MLP is trained under 50 epochs with a
batch size of 200 and learning rate is updated under One-Cycle policy.

We use the same autoencoder and MLP attack model to compare the number
of traces needed in exploiting the third byte. The attack results on the third S-
box (Fig. 7) show that POI intervals L = {2000, 3000, 4000} can help to perform
a successful attack (GE = 1). The reason for the bad performance of L = 5000
dataset is that an autoencoder will extract a general feature and thus the useful
leakage information is compressed. The interval with 3000 time samples requires
the least traces. Thus, we fix the POI interval to 3000 time samples to investigate
UAE and MLP architectures.

For the third S-box, we obtain the synchronized dataset D3000
S-box3 by trimming

raw ASCAD dataset at position (44400, 47400). We also derive desynchroniza-
tion datasets (ND = 50 and ND = 100) based on this interval. We split each
desynchronized dataset into 3 subsets: 45,000 traces are used as the training set,
5,000 as validation set while 10,000 as the attack.

To test the performance of a classical attack model MLPbest [14] and the
state-of-the-art models [16] on ASCAD dataset, we perform a profiled attack
using these models on D3000

S-box3 directly. We also evaluate the model we proposed
on D3000

S−box3. Experimental results show that none of these models can reveal the
correct keys before UAE feature extraction.

4.3 Grid Search on UAE Hyperparameters

For synchronized and desynchronized datasets, we use corresponding UAE struc-
tures (Sect. 3.2) to optimize asymmetric UAE hyperparameters. Mean squared
error is used to measure loss and Adam [26] to be optimizer.

Synchronized Traces. We apply hyperparameters in Fig. 4(L) to explore the
best hyperparameters on synchronized dataset. The naive (non-optimized) MLP
(in Sect. 4.2) is still used to evaluate UAE performance.

Among four activation functions, ReLU performs the best and takes less
training time compared with SeLU function. Optimization is completed on a
batch size of 512 and 30 training epochs with a learning rate of 0.001. The
compress ratio is 40. The best UAE structure HE = 1 and N [HE] = 256 (a UAE
has one hidden layer and the last hidden layer has 256 nodes) make guessing
entropy converge to 1 within 200 traces. The number of trainable parameters in
this UAE is 787, 531 and it takes 104 s to reduce loss to 0.64 (Fig. 8a). Besides,
we demonstrate that the number of hidden layers in the encoder has little impact
on reducing loss and guessing entropy. On the contrary, the number of nodes in
each layer can have a significant influence on attack results.

According to the best experiment result, we set the compress ratio to 40 in
the third S-box. Equivalently, the code generated by UAE has 75 time samples.
We apply this code in the next step, i.e., MLP optimization.

336 Q. Lei et al.

Desynchronized Traces. Following our UAE architecture for desynchronized
traces (Fig. 5), we grid search an efficient UAE (Fig. 4(R)) to extract critical
features for key revealing in the existence of random delay effect. We evaluate our
proposed architecture when ND = 50 and ND = 100. The best hyperparameters
for UAE are grid searched on ND = 50 and ND = 100 datasets separately. By
applying the UAE architecture in Sect. 3.2, the filter size and pooling stride
in convolutional layer applies not only ND

2 in [16], we extend the larger size of
{ND, 2ND} for each dataset. For both datasets, optimization is completed with
SeLU activation function and He uniform weight initialization. The one-cycle
policy is applied to update the learning rate for the convolutional autoencoder.
For desynchronized traces, the näıve MLP adds one hidden layer (i.e., H = 4),
which is more powerful for classification but can also cause overfitting.

(i) Random delay with ND = 50. In ND = 50 desynchronized dataset, the
best compress ratio is 20. The UAE with 8 filters and filter size of 2N = 100
requires the least traces to recover the correct key on the third S-box. It takes
2,741 s to run the training on a batch size of 512 within 50 epochs. Finally,
the loss of UAE reaches 0.49 (Fig. 8b). The number of trainable parameters
in this UAE is 1, 588, 438 and 440 traces are needed for GE converging to 1.
The best UAE hyperparameters for ND = 50 dataset are listed in Table 3.
It should be noted that in this experiment, the best filter size is 2N = 100
instead of ND

2 which uses the least number of traces. This indicates that
global features extracted by a larger kernel also help distinguish the correct
key candidate.

Fig. 8. UAE evaluations

(ii) Random delay with ND = 100. For a higher random delay dataset, it
needs a filter size of 50 and 4 filters to find the correct key. The ND = 100
dataset is compressed by 30 times on a batch size of 512 within 50 epochs.

Autoencoder Assist: An Efficient Profiling Attack 337

The training takes 2428 s to reach a loss of 0.75 (Fig. 8c). The number of
trainable parameters in this UAE is 771, 544. The best hyperparameters are
summarized in Table 3.
Here, we discuss the selection of different UAE filter sizes and filter numbers
in profiled attacks. On ND = 50 dataset, filter length of {ND

2 , ND, 2ND}
all can make GE converge to 1. While on ND = 100 dataset, only ND

2 -
kernel size can help exploit the correct key. Based on our experiment on
2 desynchronized datasets, we demonstrate that although ND

2 is not always
the best parameter for filter size; it is more general in datasets with different
random delays. Besides, increasing the number of kernels can provide more
information about trace features.

Table 3. Hyperparameters for the best UAE on desynchronized datasets (ND = 50
and ND = 100 traces)

Hyperparameter Values (ND = 50) Values (ND = 100)

Activation function SeLU SeLU

Learning rate Once-cycle policy Once-cycle policy

Batch size 512 512

Epochs 40 30

Filter size K 100 50

n◦ of filters 8 4

Compress ratio 20 30

4.4 Grid Search on MLP Hyperparameters

Results on Synchronized Traces. On synchronized datasets, we present
experimental results on the third byte.

Grid search optimization is conducted for MLP on parameter set in Tab. 2.
We use categorical cross-entropy to evaluate guessing entropy. For fast conver-
gence, the optimization is conducted by using Adam within 50 epochs and a
batch size of 200. We also apply the one-cycle policy to update the learning rate
in each epoch. ReLU is used as the activation function since it consumes less
training time. Under 2n-structure MLP, H = 2 and N [1] = 64 deliver the best
performance.

We compare our network performance with MLPbest [14] and the state-of-
the-art model [16] for ASCAD dataset (ND = 0) in Table 4. Experiment results
are obtained from the same environment settings. We use original model param-
eters and hyper-parameters [14,16] for ASCAD to run experiments on our com-
puter. The complexity of our network (in terms of trainable parameters) performs

338 Q. Lei et al.

5 times less than the MLPbest model. Training time is 3 times shorter than the
convolutional network in [16]. Guessing entropy reaches 1 within 120 traces in
our MLP network while another two models cannot reveal the correct subkey
within 2000 traces. In conclusion, our 2n-structure MLP network has a good
performance while all other models fail on 3000 time sample traces (as shown
in Fig. 9a). The least training time (autoencoder together with MLP) only takes
around 200 s without any professional GPUs, which is proved to be satisfactorily
efficient in a profiled attack.

Table 4. Comparison of performance on ASCAD 75 time samples (R = 40) (synchro-
nized dataset)

MLP best
[14]

State-of-the-art
[16]

Our method

Complexity (trainable parameters) 227,456 4,432 46,208

Number of traces – – 140

Learning time (seconds) 98 160 46

Results on Desynchronized Traces. In this part, we conduct experiments
based on random delay ND = 50 and ND = 100 traces, respectively. Same as
synchronized dataset, hyperparameters in Table 2 are used for optimization.

(i) Random delay with ND = 50. Under 2n-structure MLP, optimization
is done on H = 3 and N [1] = 128 within 20 epochs and a batch size of 200.
ReLU is the best activation function.
We compare our network performance with the state-of-the-art model [16]
for ASCAD dataset (ND = 50) in Table 5. Since the input layer only has 150-
time samples, the dimension size becomes negative at the third convolutional
block of existing CNNs [16]. We update the third block pooling size and
pooling stride from 4 to 3 to make the attack applicable. The complexity
of our network (in terms of trainable parameters) is nearly 4 times more
than the state-of-the-art model. However, our model training time is over
42 times less than the network in [16]. GE reaches 1 within 170 traces in our
MLP network while the state-of-the-art model requires 640 traces (Fig. 9b).
Thus, our 2n-structure MLP model is highly effective in profiled attacks.

Fig. 9. Guessing entropy evaluations

Autoencoder Assist: An Efficient Profiling Attack 339

(ii) Random delay with ND = 100. Under 2n-structure MLP, optimization
is done on H = 3 and N [1] = 256 MLP within 30 epochs and a batch
size of 200. ReLU is the best activation function. We also compare our net-
work performance with the state-of-the-art model [16] for ASCAD dataset
(ND = 100) in Table 5. Guessing entropy reaches 1 within 1150 traces in
our MLP network while the other model cannot reveal the correct subkey
within 2000 traces (as shown in Fig. 9c). Although the trainable parame-
ters of our network are 7 times more than the state-of-the-art model, the
training time is 4.5 times shorter than the convolutional network in [16].
On random delay ND = 50 and ND = 100 datasets, the short learning time
(31 s and 245 s, respectively) shows an adversary can efficiently perform an
attack using UAE preprocessing. This tool saves exploiting effort in terms
of time-division by extracting key features from original traces.

Table 5. Comparison of performance on random delay ND = 50 and ND = 100
datasets

State-of-
the-art [16]
(ND = 50)

Our method
(ND = 50)

State-of-
the-art [16]
(ND = 100)

Our method
(ND = 100)

Complexity (trainable
parameters)

82,991 315,264 136,476 945,152

Number of
traces

640 170 – 1150

Learning time
(seconds)

1309 31 1120 245

5 Concluding Remarks

In this paper, we propose an efficient method to perform profiled attacks on high-
dimensional datasets. We introduce the asymmetric undercomplete autoencoder
to extract key features from high-dimensional leakage traces. To reduce the huge
dimensionality, we combine SNR and UAE to reduce 100, 000 samples down to
3, 000 samples (by SNR) and further to 75 samples (by UAE) on the raw ASCAD
dataset. We propose 2n-structure UAE and MLP to perform the profiled attack
and further investigate that our approach can work with desynchronization cases.
We also equip UAE with convolutional layers to resolve the desynchronization
problem as discussed in previous works [13,16]. We demonstrate that UAE is a
necessary component in our approach to exploit leakage information. UAE can be
a powerful preprocessing tool for an attacker, especially in a practical scenario
with thousands of time samples. Although our experiments are conducted on
laptops without any professional GPUs, a successful attack only takes around
200 s in total for UAE and MLP training. Experimental results indicate that our
method is efficient in terms of both setup cost and training time.

340 Q. Lei et al.

References

1. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

2. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

3. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011)

6. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4 18

7. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: HOST, pp. 106–111. IEEE (2015)

8. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

10. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order DPA
attacks: multivariate mutual information analysis. IACR Cryptol. ePrint Arch.
2009, 228 (2009)

11. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol.
24(2), 269–291 (2011)

12. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014.
LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21476-4 2

13. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

14. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptol. ePrint Arch. 2018, 53 (2018)

15. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. CHES
2019(2), 132–161 (2019)

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3

Autoencoder Assist: An Efficient Profiling Attack 341

16. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 1–36 (2020)

17. Lichao, W., Picek, S.: Remove some noise: on pre-processing of side-channel
measurements with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(4), 389–415 (2020)

18. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. TCHES 2020, 348–375 (2020)

19. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

20. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

21. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for
side-channel attacks. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS,
vol. 9514, pp. 15–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31271-2 2

22. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. Trans. Comput. Sci. 10, 78–99 (2010)

23. Ramezanpour, K., Ampadu, P., Diehl, W.: SCAUL: power side-channel analysis
with unsupervised learning. IEEE Trans. Comput. 69(11), 1626–1638 (2020)

24. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems, vol. 24
(2011)

25. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1
- learning rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820
(2018)

26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-31271-2_2
https://doi.org/10.1007/978-3-319-31271-2_2
http://arxiv.org/abs/1412.6980

TZ-IMA: Supporting Integrity
Measurement for Applications

with ARM TrustZone

Liantao Song, Yan Ding(B), Pan Dong, Yong Guo, and Chuang Wang

School of Computer, National University of Defence Technology, Changsha, China
{songliantao,yanding,pandong,yguo,wangchuang}@nudt.edu.cn

Abstract. With the development of cloud computing and distributed
systems, the computer system becomes increasingly complicated and
open. To protect the integrity of applications, Integrity Measurement
Architecture (IMA) is applied in the Linux kernel. However, traditional
operating systems are complex and may contain many potential vulner-
abilities. If the sensitive data used in IMA is leaked or modified, the
protection mechanism will lose effectiveness. This paper proposes TZ-
IMA, a security-enhanced solution to verify the integrity of applications
based on ARM TrustZone technology. The system saves the encrypted
reference hash value of applications and the encryption key in the normal
world and in TrustZone, respectively. Before an application is executed,
the integrity of application is checked by the secure world. Moreover, a
vPCR module is constructed in TrustZone to protect the security of the
measurement list. Based on the trusted anchor provided by TrustZone,
TZ-IMA enables a challenger to prove that the attesting platform has
sufficient integrity to be used. TZ-IMA is implemented on ARMv8 devel-
opment board, and the evaluation results demonstrate that the overhead
is only approximately 5% compared with the original system.

Keywords: Trusted computing · Remote attestation · Local
appraisal · ARM TrustZone · Integrity measurement architecture

1 Introduction

The rapid growth of computer science and technology brings many challenges
and security issues to open servers [11]. The complex execution environment
may directly influence the integrity of applications. In recent years, with the
extensive application of ARM architecture in servers fields, the administrator
needs to provide a mechanism to ensure that the programs running on the server
cannot be modified illegally and protect the integrity of applications on ARM
platforms.

Integrity Measurement Architecture (IMA) was introduced in Linux 2.6.30 as
part of the Linux integrity subsystem [30]. IMA mainly provides two mechanisms,

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 342–358, 2022.
https://doi.org/10.1007/978-3-031-15777-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_19&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_19

TZ-IMA: Supporting Integrity Measurement 343

appraisal and attestation. IMA appraisal stores the reference value of the appli-
cation hash in the local system. The measurement value is compared with the
reference value every time the application is loaded. IMA attestation measures
and records all executable contents loaded onto the Linux system. The measure-
ment list (MList) is protected by the trusted platform module (TPM), which is
part of the Trusted Computing Group (TCG) standards. The remote challenger
can validate that the programs running on the server are credible. However, tra-
ditional operating system (OS) kernel is growing larger and may contain many
potential vulnerabilities. Once the sensitive data in the kernel space is leaked or
modified by attackers, the protection mechanism may be bypassed. Moreover,
as a coprocessor, TPM is very slow, resource limited, and must be deployed
specifically on server systems, which limits the usage of IMA [1].

Fortunately, ARM TrustZone has been widely deployed on servers, mobile
phones, and Internet devices [3,7,19]. Compared with TPM, TrustZone is a
more flexible approach, which utilizes the CPU to construct a trusted execu-
tion environment (TEE). TrustZone-based integrity protection for system soft-
ware has been widely used. SamSung proposed TIMA [20], which measures the
load-time integrity of the bootloader and the kernel image, and saves them in
TrustZone secure memory for further attestation. However, TIMA focused on
kernel integrity rather than application integrity. Wang et al. [29] proposed a
remote attestation scheme named TZ-MRAS for mobile terminal devices, but
the method is not suitable for scenarios where applications frequently changed.
To solve the problems mentioned above, this paper proposes an integrity mea-
surement architecture for applications based on TrustZone technology called
TZ-IMA.

Three technical challenges are observed in TZ-IMA. First, the integrity ver-
ification method should be suitable for applications frequently changed. The
encryption key is the basis of system and must be carefully protected. Second,
the trade-off between the integrity protection and the retrieval efficiency of the
reference values should be considered. Third, conventional IMA saves the MList
in the form of plaintext in the kernel space, and the attackers may obtain mea-
suring results illegally. The confidentiality of MList which is used for remote
attestation should be protected to prevent information leakage.

To address these challenges, TZ-IMA uses symmetric encryption algorithm
to encrypt the reference value of applications and saves the key and the pro-
cess of hash value comparison to TrustZone. The encrypted reference value of
application is stored in the extended attributes of the normal world file system,
which protects the reference value and realizes the rapid retrieval with the sup-
port of the file system simultaneously. Furthermore, TZ-IMA constructs a vPCR
module in TrustZone and encrypts the measurement value of measuring events
(ME), which guarantees both the confidentiality and integrity of MList.

In summary, our main contributions in this paper are as follows:

– An integrity verification method for applications based on TrustZone tech-
nology is proposed. The security-sensitive data and the code are isolated and
will not be exposed to the OS or the user process in the normal world.

344 L. Song et al.

– A remote attestation scheme that enables challengers to validate the integrity
of applications running on servers is proposed. TZ-IMA leverages TrustZone
to serve as the trusted anchor and enhance the confidentiality of MList.

– A prototype is implemented on an ARMv8 platform. The evaluation results
demonstrate that the performance overhead is only approximately 5.3%.

The remainder of this paper is organized as follows. Section 2 introduces
the IMA in the Linux kernel and TrustZone structure. Section 3 introduces the
threat model and design of TZ-IMA. Sections 4 and 5 describe the system in two
mechanisms, local appraisal and remote attestation, respectively. Section 6 eval-
uates the performance overhead. Section 7 presents the related work. Section 8
concludes the paper.

2 Background

2.1 IMA

The integrity subsystem aims to protect the system’s data from being modified
maliciously. It follows the TCG Open Integrity Standard, which provides an
integrity solution for systems by using a combination of integrity techniques such
as hashing and invariance. Many functionalities are supported by IMA, such as
measurement, remote attestation, local appraisal, audit, and authenticity.

Local Appraisal. IMA appraisal is the extension of Secure Boot. The goal of
IMA appraisal is to detect any malicious modification of files, including remote
attacks, local attacks, and even hardware attacks. It stores the reference hash
value of the evaluated file in the security extended attribute “security.ima”.
Before the application is executed, it compares the measurement value of the
file with the reference value stored in the “security.ima”. If the values do not
match, access to the file is denied. Furthermore, to support the application that
dynamically changed, EVM is applied to protect the reference value, and the
HMAC key used for the signature is stored on Trust Platform Module (TPM)
for protection.

Measurement and Attestation. IMA measurement is the extension of
trusted boot (or measured boot). IMA attestation records all the MEs, which
triggers a measure and changes the execution status of the remote system. The
MEs can be defined by IMA policy. By default, when applications are executed
by the root, the kernel triggers hooks to measure the code, and creates and
maintains a real-time MList which includes the path and the hash value of MEs.
Platform configuration register (PCR) in TPM is used to protect the integrity of
MList. A malicious code cannot delete or modify the value in the PCRs from the
TPM chip. Accordingly, IMA can be used to prove the integrity of the system
in a trusted boot system.

TZ-IMA: Supporting Integrity Measurement 345

2.2 Overview of TrustZone

ARM TrustZone is a hardware isolation mechanism that is a secure extension to
provide a trusted execution environment and protect sensitive data such as fin-
gerprints, keys, and digital signatures. Figure 1 shows the architecture of Trust-
Zone. ARMv8 processor is divided into two execution environments, Rich Exe-
cution Environment (REE) and TEE. REE is also called normal world, and TEE
is called secure world or TrustZone. The processor has four privilege levels. User
applications run on EL0, and the OS runs on EL1. Virtual Machine Monitor
(also called Hypervisor) runs on EL2, and EL3 is reserved for low-level firmware
and security monitor.

Monitor Mode

EL0

EL1

Hyp Mode:
Hypervisor

Kernel Mode: OS

User Mode: App

VM

Kernel Mode:
TEE kernel

User Mode:
Trusted App

EL2

EL3

s-EL0

s-EL1

Normal World Secure World

smc smc

Fig. 1. Architecture of TrustZone

Compared with the normal world, the secure world has a higher privilege.
The normal world cannot access the resources of the secure world, whereas the
secure world can access all resources. Switching between the two worlds is carried
out through the secure monitor call (smc). When the smc instruction is invoked,
world switching is completed with the secure monitor. TrustZone provides an effi-
cient method of security for the entire system by implementing hardware-based
isolation in the CPU. Most TPMs can only perform preprogrammed operational
and encryption algorithms currently.

3 System Design

3.1 Threat Model and Assumptions

TZ-IMA focuses on the integrity protection of applications. An attacker could
launch an offline attack or remote attack, such as inducing users to run malicious
programs to destroy the integrity of applications. Memory corruption vulnera-
bilities can be exploited to manipulate security-sensitive data in the kernel.

We assume all hardware are implemented correctly and trustworthy, and do
not consider vulnerabilities in the secure world. Side channel attacks on memory
and SoC or physical attacks, such as bus listening are not considered. We also
assume secure boot was enabled.

346 L. Song et al.

3.2 TZ-IMA Framework

To protect the integrity of sensitive applications on the local system and enable
the challenger to perform remote attestation, TZ-IMA is proposed. The archi-
tecture of TZ-IMA is shown in Fig. 2. Compared with the original IMA, the
components of TZ-IMA are across worlds: integrity measurement hooks to inter-
cept the user’s execution in sensitive applications in the normal world and four
security modules to provide integrity measurement and protection services in
the secure world.

Fig. 2. Architecture of TZ-IMA

TZ-IMA reuses the hooks in the original IMA. These hooks are mainly called
by system calls, such as open, execve, mmap, and finit module. When the process
is caught by hooks, the system calls the security modules in the secure world
according to the policy. Four security modules are constructed in the secure
world. The details are as follows.

Measurement Agent: To ensure that the applications cannot be modified
maliciously, TZ-IMA constructs a measurement agent in the secure world. It is
used to calculate the hash value of the application when the application is loaded
into memory. When the applications newly add or change, the measurement
agent is also used to generate the new hash value and the new reference value.

Comparison Module: The comparison module is used for local appraisal.
When the comparison module obtains the measurement value from the mea-
surement agent and the reference value from the normal world, it encrypts the
measurement value and compares it with the reference value. If these two values
do not match, access to the application is blocked.

TZ-IMA: Supporting Integrity Measurement 347

vPCR Module: To support remote attestation, an MList is constructed in
the normal world. The PCR register is virtualized to protect the integrity of
the MList. Meanwhile, vPCR encrypts measurement value with MList Key to
ensure the confidentiality of MList. A challenger can judge whether the remote
system is trusted by validating the vPCR signature and the MList.

Key Manager: The key manager module is responsible for managing three
keys used in TZ-IMA. The appraisal key and the MList key are two symmetric
encryption keys and used to encrypt the reference value of the application hash
and the confidentiality of MList, respectively. The platform identity key (PIK)
is a private RSA key used to identify the attesting system’s TrustZone. The
symmetric keys are generated from the hardware unique key and chip ID, and
the RSA key pair is created by a trusted central authority. These three keys are
saved in the RPMB partition of eMMC.

Based on the four security modules, TZ-IMA provides two mechanisms
(appraisal and attestation) to protect the integrity of applications running on
the server. The details will be discussed in Sect. 4 and Sect. 5.

4 Local Appraisal Mechanism

The appraisal mechanism can detect whether the application has been altered
accidentally or maliciously by appraising an application’s measurement value
against the reference value.

4.1 Reference Value Protection

To prevent the application from being tampered with, the reference hash value
with public key signatures is always used to verify the integrity of an application.
The problem of using public key signatures is that they only apply to unchanged
applications [2]. However, many security-critical applications may change in the
real system, which greatly limits the usage of IMA. To solve this problem, TZ-
IMA uses symmetric encryption algorithm to protect the reference value, and
the symmetric encryption key is called appraisal key.

The appraisal key needs to be carefully protected because it is a very sensitive
information in the system. At the same time, the comparing logic also needs to
be isolated from the complicated execution environment to enhance its security.
Therefore, the appraisal key is saved to TrustZone and a comparison module is
constructed to compare the measurement value with the reference value in the
secure world. Thus, during the whole lifetime of TZ-IMA, the appraisal key used
by the comparison module only stays in the secure world, and the appraisal key
will never be exposed to the normal world.

Meanwhile, the reference value of a specific application must be quickly
retrieved for comparison due to the complexity of the file system. Instead of
maintaining a complicated data structure in the secure world, TZ-IMA stores
the encrypted reference values in the files’ extended attributes of the normal
world file system The method not only protects the integrity of the reference
value, but also realizes the rapid retrieval with the support of the file system.

348 L. Song et al.

4.2 Application Integrity Verification

Before an application is executed, the integrity of application needs to be ver-
ified. When the process opens and executes sensitive applications, the query is
captured by the hooks, and the measurement agent in TrustZone are called to
calculate the current hash value of the application. Then, the normal world OS
retrieves the extended attribute value of the application and passes the encrypted
reference value to the secure world. After receiving the reference value, the com-
parison module loads the key saved in the key manager module to decrypt the
reference value. If it matches the measurement value, the integrity verification
is successful, and the application can be executed. Otherwise, the authentica-
tion fails, and access is denied. The workflow of integrity verification is shown
in Fig. 3.

Fig. 3. Workflow of application integrity verification

4.3 Reference Value Generation and Update

When the system is deployed for the first time, a security administrator account
is created and the password is protected by the UUID of the device. The security
administrator calls the key manager generates an appraisal key in the secure
world and calls measurement agent to calculate sensitive application hash. Then,
the reference hash value is encrypted by appraisal key and the result is returned
to the normal world. The normal world OS saves the encrypted reference value
in the extended attribute “security.ima”.

TZ-IMA: Supporting Integrity Measurement 349

TZ-IMA is suitable for applications that often change because the appraisal
key is stored in the local system. When the application or configuration file
changes, the secure world verifies the identity of security administrator first
based on password. Only if the authentication is passed, the measurement agent
recalculates the hash value and loads the appraisal key to re-encrypt the new
hash value. Finally, the encryption module returns the encrypted hash value,
and the OS in the normal world stores the value to the extended attribute in the
normal world. The workflow of reference value generation or update is shown in
Fig. 4.

Fig. 4. Workflow of new reference value generation

5 Remote Attestation Mechanism

TZ-IMA attestation aims to provide an MList including the application exe-
cution status of the remote system and enable the tenants to detect whether
sensitive applications have been modified or executed by malware. The simple
MList cannot avoid being tampered by an attacker. In this section, we virtualize
PCR Module and encrypt the MList to protect both the integrity and confiden-
tiality of measuring results.

5.1 vPCR Module

Based on TrustZone provided by ARM CPU, TZ-IMA leverages pseudo trusted
application to virtualize a vPCR module. vPCR is a 160-bit virtual register,
which is set to all 0s when the computer is initialized. After booting, the vPCR
value is updated in an “extended” manner, that is, starting from the first com-
ponent, concatenating the integrity measurement value of the component mi

350 L. Song et al.

with the existing vPCR value, performing a hash operation, and then storing
the result back to vPCR (Eq. 1).

vPCRi := Hash (· · ·Hash (Hash (0 ||m1) ||m2) · · · ||mi) (1)

At the same time, vPCR only supports reset and expansion commands, and
cannot roll back to the original value at a certain time. The interfaces provided
by vPCR module is shown in Table 1. The normal world has no way to modify
the value of vPCR because vPCR is saved in TrustZone and can be only called
by measurement agent. Thus, vPCR Module can protect the integrity of MList.

Table 1. Interfaces provided by vPCR module.

Interfaces Function

TEE vPCR Extend Extend the hash value to vPCR

TEE vPCR Read Get current vPCR value

TEE vPCR Quote Use PIKpriv to sign the vPCR value
and return the result

5.2 Encrypted Measurement List

MList records the workflow of computer system, but its confidentiality cannot be
guaranteed because MList is saved in the form of plaintext in the normal world.
To solve this problem, TZ-IMA generates an MList Key in the Key Manager
and leverages the key to encrypt the measurement value as shown in Eq. 2. The
normal world can only see the encrypted result to ensure the confidentiality of
MList.

MListi .value := ME .vaule xor MListKey (2)

The workflow of attestation mechanism can be seen from Fig. 5. Before the
application is executed, the measurement agent calculates the file hash and
extends the measurement value to vPCR module. Then, it encrypts the mea-
surement value with MList Key and returns the result to the normal world OS
to store the encrypted file hash. The vPCR value and the MList can be used
to prove the integrity status of a remote system. This manner ensures both the
integrity and confidentiality of MList and saves the storage space.

5.3 Application Scenario

When a challenger initiates an integrity verification challenge, the system needs
to provide an integrity report generated by a trusted entity. Figure 6 depicts the
procedure of remote attestation.

TZ-IMA: Supporting Integrity Measurement 351

Fig. 5. Workflow of attestation mechanism

In Step 1, the challenger creates a nonpredictable 160-bit nonce and sends
a challenge request message to the attesting system. The 160-bit nonce is gen-
erated to protect against a replay attack. In Step 2, the attesting system loads
a protected RSA private key, PIKpriv , into TrustZone. Then, the secure world
signs the vPCR value and the nonce provided by the challenger with PIKpriv .
In Steps 3 and 4, the normal world OS retrieves sig{vPCR,nonce}PIKpriv

and
MList Key from the trusted OS and the MList from the file system, respectively.
Then, the attesting system responds with a challenge response message to the
challenger, including sig{vPCR,nonce}PIKpriv

and MList in Step 5.

Fig. 6. Procedure of remote attestation

After the challenger receives the response, it first retrieves a trusted certificate
of certPIKpub in Steps 6 and 7. The PIK certificate binds the verification key,
PIKpub , to a specific system and states that the related secret key is known only
to a specific TrustZone. The validity of the certificate must be verified first by

352 L. Song et al.

checking the certificate revocation list with the trusted issuing party. Finally,
the challenger verifies the signature of sig{vPCR,nonce}PIKpriv

and leverages
MList Key to decrypt the MList entry in Step 8. If the signature is valid, then
the vPCR value is trustworthy and can be used to verify the integrity of the
MList. The integrity of the attesting system can be verified by comparing the
measurement value of each MList entry with a list of trusted measurement values.

6 Evaluation

A prototype of TZ-IMA is implemented on a Phytium ARMv8 development
board with four 2.6 GHz cores and a 16 GB memory. Linux 5.4.19 is modi-
fied as the normal world kernel, and OP-TEE 3.2 [21] is used as the trusted
OS. HMAC-SHA1 algorithm is used to encrypt the hash value. We evaluation
the performance of TZ-IMA in three parts: system boot time, system over-
head on UnixBench based on macro-benchmark and LMbench based on micro-
benchmark.

6.1 Boot Time

The boot time includes the time spent in initializing the kernel and userspace.
Table 2 shows the experimental data of boot time on the original system without
protection, the system with IMA, and the system with TZ-IMA. The effect of
the IMA and TZ-IMA boot time is evaluated in the appraisal scenario and the
attestation scenario.

Table 2. System boot time.

Appraisal Attestation

Measure Extend

Origin 27.98 s

IMA 29.27 s 29.41 s ≈90.73 s

TZ-IMA 29.46 s 29.49 s

Overhead +0.6% ≈−75.3%

Original system refers to the system without application integrity protection,
whose boot time is approximately 27.98 s. For the appraisal scenario, the default
policy is to verify all applications owned by the root. The system verifies approx-
imately 6000 files during boot time. Table 2 shows that IMA takes approximately
29.27 s to boot, and TZ-IMA takes approximately 29.46 s to boot. The overhead
of TZ-IMA appraisal is approximately 0.6% higher than IMA appraisal, which
is mainly brought by world switching.

For the attestation scenario, TZ-IMA calculates the hash value, generates
the MList, and extends the measurement value to vPCR. The default policy is

TZ-IMA: Supporting Integrity Measurement 353

to measure all files read as root and all applications executed. The table above
shows that booting takes approximately 29.49 s.

In comparison, the time for TPM PCR extension is much longer. A previous
study showed that TPM 1.2 takes approximately 27.4957 ms to perform PCR
extension per file [26]. The time spent on PCR extending during boot time can
be emulated by Eq. 3:

Tpcr extend = t× npcr extend , (3)

where Tpcr extend is the performance overhead of IMA with PCR extend, t is
the duration for a single PCR extension, and npcr extend is the times of PCR
extension. While booting, IMA attestation measures approximately 3300 files,
resulting in approximately 90.73 s of boot time, which is three times greater
than booting without IMA. However, based on TrustZone, the overhead of TZ-
IMA-attestation brought by the world switching and vPCR extension is only
approximately 0.1 s, decreasing by approximately 75.3% compared with IMA
appraisal.

Table 3. System performance test result of UnixBench.

No. Test items Origin Appraisal Δ(%) Attestation Δ(%)

1 Dhrystone 2 using register variables 2117.66 2083.78 −1.60 2115.82 −0.09

2 Double+Precision whetstone 819.73 819.32 −0.05 819.70 0.00

3 Excel throughput 747.04 727.26 −2.65 731.88 −2.03

4 File Copy 1024 bufsize 2000 maxblocks 813.83 798.08 −1.94 812.91 −0.11

5 File Copy 256 bufsize 500 maxblocks 590.01 579.46 −1.79 579.95 −1.71

6 File Copy 4096 bufsize 8000 maxblocks 1409.95 1394.68 −1.08 1401.04 −0.63

7 Pipe throughput 725.95 723.72 −0.31 725.21 −0.10

8 Pipe+based context switching 365.11 363.52 −0.44 366.18 +0.29

9 Process creation 629.37 627.38 −0.32 629.99 +0.10

10 Shell scripts (1 concurrent) 825.57 812.98 −1.53 816.28 −1.13

11 Shell scripts (8 concurrent) 1402.46 1364.08 −2.74 1385.14 −1.23

12 System call overhead 442.16 440.60 −0.35 442.39 +0.05

6.2 UnixBench

UnixBench is a tool for testing the performance of Unix systems [27]. The result
of performance tests is an index value, which is obtained by comparing the test
result of the test system with the test result of a baseline system. Table 3 shows
the test results. The influence of TZ-IMA for most test items is less than 1% than
the original system, and the performance of two items, “excel throughput” and
“shell scripts”, decrease by approximately 2%. The result is reasonable because
the overhead is mainly caused by frequent program execution. More time is spent
on hash calculation and world switching.

354 L. Song et al.

6.3 LMbench

LMbench [18] is a set of micro benchmarks for measuring latency and bandwidth
of the most basic UNIX or Linux APIs. LMbench is used to test the system call
overhead of TZ-IMA. The normalized overhead of runtime performance of the
appraisal scenario and the attestation scenario compared with that of the original
system is illustrated in Fig. 7.

TZ-IMA mainly influences open/close, mmap, and process fork+execve sys-
tem calls because TZ-IMA performs security check on these system calls. TZ-
IMA does not remarkably affect the performance of syscall read, syscall write,
and stat. For most test items, the overhead of a single operation is less than
0.1µs compared with the original system and can be neglected.

80%

90%

100%

110%

1 2 3 4 5 6 7 8 9 10 11 12

Origin Appraisal Attestation

1: null call; 2: syscall read; 3:syscall write; 4: syscall stat; 5: syscall open/close;
6: mmap on 2MB file; 7: mmap on 4MB file; 8: mmap on 8MB file; 9: mmap on 16MB file;

10: pipe latency; 11: process fork+exit; 12: process fork+execve.

Fig. 7. Performance evaluation of LMbench (normalized syscall latency, lower is better)

7 Security Analysis

7.1 Local Appraisal

Compared with traditional IMA, TZ-IMA saves the reference hash value and
the appraisal key in the normal world and the secure world, respectively. The
appraisal key is saved to RPMB during offline time, and cannot be stolen or
modified by attackers. To ensure the security of encryption key during runtime,
TZ-IMA saves the key and transfers the reference value generation, integrity
measuring, and the measurement value comparison procedure to the secure
world. All appraisal key related logic is implemented in the secure world and
prevents the key from being stolen or tampered by attackers during the whole
lifetime of the computer. In this way, the secure extended attribute cannot be
forged offline because attackers cannot get the appraisal key.

TZ-IMA: Supporting Integrity Measurement 355

7.2 Remote Attestation

Remote attestation aims to enable challengers to observe the execution flow on
the machine, which requires the platform to record the running status of the
applications faithfully. The key point to the remote authentication mechanism
is to prevent the MList from being forged. While the measurement value is
recorded in the MList, the value is also extended to the vPCR in TrustZone
to ensure the integrity of the MList. To enhance the confidentiality of MList,
we also construct a MList key in the secure world to encrypt the MList entry.
In TZ-IMA attestation, the vPCR extension value is stored in the secure world
and cannot be modified by attackers. Although the MList in the normal world
kernel space my be leaked, attackers cannot get sensitive information because
the measurement results are encrypted.

7.3 Security Limitations

For both appraisal and attestation mechanism, the integrity of kernel code may
be broken and the hook point check may be bypassed during the run time. This
limitation can be fixed by setting the kernel code segment to read-only and
depriving the kernel’s ability to control certain privileged system functions [4,8].
In this manner, the check of TZ-IMA cannot be bypassed.

As assumed in the threat model, hardware-based attack or side-channel
attacks are not considered in TZ-IMA. There may be bugs in trusted kernel
[14,17,28]. Attackers may leverage such vulnerabilities to obtain data from TEE
and even destroy the REE kernel. Defending against these attacks is not the goal
of TZ-IMA. Researchers are focusing on various methods, including stronger iso-
lation and formal verification, to solve these problems.

8 Related Work

Trusted Computing: Trusted Computing aims to make computing more
secure through hardware enhancements and associated software modifications.
IMA [24] was proposed in 2004, which extends TCG’s trustworthiness measure-
ment to the application layer for the first time. However, IMA can only protect
the load-time integrity of applications. Davi et al. proposed DynIMA [6] to pro-
tect against run-time attack. Son et al. [26] presented batch extend and core
measurement, two mechanisms to decrease the overhead of IMA. Luo et al. [16]
presented Container-IMA, which enables challengers to authenticate specific con-
tainers by dividing measurement logs and introducing a container-based PCR
mechanism. Bohling et al. [5] proposed a method to subvert IMA by a malicious
block device.

Virtual TPM (vTPM) is a virtualization TPM solution introduced by IBM
in 2006 [22], primarily for virtualized server platforms. vTPM mainly solves the
problem of how to build a trust root for virtual environments and how to guar-
antee the security and the portability of the trust root, and provides trustwor-
thy functions such as identity verification, integrity storage, key management,

356 L. Song et al.

encryption, and decryption for virtual machines. However, the implementation of
vTPM has the risk of leaking confidential data, and the performance overhead is
relatively high. Wang et al. [32] presented SvTPM based on Intel SGX, another
TEE, which prevents cloud tenants and even cloud administrators from obtain-
ing the vTPM private key or any other sensitive data, providing strong isolation
protection for vTPM on the cloud. Similarly, Raj et al. [23] leveraged ARM
TrustZone in implementing fTPM, which provides security guarantees similar to
TPM chips.

ARM TrustZone: TrustZone is usually applied to provide a secure execu-
tion environment in GlobalPlatform. SPROBES [8] and TZ-RKP [4] are two
TrustZone-based solutions for enforcing the runtime integrity of kernel code.
Santos et al. [25] proposed a TrustZone-based system called TLR, which ensures
the confidentiality and the integrity of .NET mobile applications. It divides an
application into secure and normal parts, and separates it from the OS and
other applications. Hua et al. [12] virtualized TrustZone and leveraged Trust-
Zone to build an isolated execution environment for each guest OS. Guan et al.
proposed TrustShadow [9], a TrustZone-based system used in IoT that protects
existing applications from untrusted OSs. TrustShadow makes full use of Trust-
Zone and separates resources into different worlds. Han et al. [10] used TrustZone
to monitor the integrity of IMA code in Linux kernel, while TZ-IMA focused on
protecting the integrity of applications. Hua et al. [13] leveraged TrustZone in
constructing an isolated execution environment for containers, which can defend
against MUMA attack. Based on mandatory access control, Zhang et al. pro-
posed iFlask [31], which protects the integrity of applications but cannot protect
against offline attacks. Wang et al. [29] proposed remote attestation schemes for
mobile terminals, but this method needs to modify binary programs and it is not
suitable for flexible applications update in the cloud computing scenario. Ling
et al. [15] also proposed a runtime process integrity verification architecture for
ARM IoT nodes.

9 Conclusion

In this paper, the design and implementation of TZ-IMA, an instrumenta-
tion mechanism that supports integrity measurement for applications based on
ARM TrustZone, is presented. An application integrity verification scheme and
a remote attestation mechanism are proposed, which can protect the applica-
tion integrity for the entire lifetime of the computing platform. The prototype
and the evaluation results demonstrate that our architecture can provide better
verification of application integrity, and the overhead is only approximately 5%.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China [grant numbers U19A2060, 62172431].

TZ-IMA: Supporting Integrity Measurement 357

References

1. Arm trustzone. https://developer.arm.com/ip-products/security-ip/trustzone
2. An overview of the linux integrity subsystem. https://sourceforge.net/projects/

linux-ima/files/linux-ima/Integrity overview.pdf
3. Amd opteron a1100 (2016). http://www.amd.com/en-gb/products/server/

opteron-a-series
4. Azab, A.M., et al.: Hypervision across worlds: real-time kernel protection from the

arm trustzone secure world. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 90–102 (2014)

5. Bohling, F., Mueller, T., Eckel, M., Lindemann, J.: Subverting linux’ integrity
measurement architecture. In: Proceedings of the 15th International Conference
on Availability, Reliability and Security, pp. 1–10 (2020)

6. Davi, L., Sadeghi, A.R., Winandy, M.: Dynamic integrity measurement and attes-
tation: towards defense against return-oriented programming attacks. In: Proceed-
ings of the 2009 ACM Workshop on Scalable Trusted Computing, pp. 49–54 (2009)

7. Foley, M.J.: Windows server on arm: it’s happening. Website (2017). http://www.
zdnet.com/article/windows-server-on-arm-its-happening/

8. Ge, X., Vijayakumar, H., Jaeger, T.: Sprobes: enforcing kernel code integrity on
the trustzone architecture. arXiv preprint arXiv:1410.7747 (2014)

9. Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M., Jaeger, T.: Trustshadow:
Secure execution of unmodified applications with arm trustzone. In: Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services, pp. 488–501 (2017)

10. Han, S., Park, J.: Shadow-box v2: the practical and omnipotent sandbox for arm.
Slideshow at Blackhat Asia (2018)

11. Hashizume, K., Rosado, D.G., Fernández-Medina, E., Fernandez, E.B.: An analysis
of security issues for cloud computing. J. Internet Serv. Appl. 4(1), 1–13 (2013)

12. Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., Guan, H.: vTZ: virtualizing ARM
trustzone. In: 26th USENIX Security Symposium (USENIX Security 2017), pp.
541–556 (2017)

13. Hua, Z., Yu, Y., Gu, J., Xia, Y., Chen, H., Zang, B.: TZ-container: protecting
container from untrusted OS with ARM trustzone. SCIENCE CHINA Inf. Sci.
64(9), 1–16 (2021)

14. Li, W., Xia, Y., Chen, H.: Research on ARM trustzone. GetMobile Mob. Comput.
Commun. 22(3), 17–22 (2019)

15. Ling, Z., et al.: Secure boot, trusted boot and remote attestation for ARM
trustzone-based IoT nodes. J. Syst. Architect. 119, 102240 (2021)

16. Luo, W., Shen, Q., Xia, Y., Wu, Z.: Container-IMA: a privacy-preserving integrity
measurement architecture for containers. In: 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019), pp. 487–500 (2019)

17. Machiry, A., et al.: Boomerang: exploiting the semantic gap in trusted execution
environments. In: NDSS (2017)

18. McVoy, L.W., Staelin, C., et al.: LMbench: portable tools for performance analysis.
In: USENIX Annual Technical Conference, San Diego, CA, USA, pp. 279–294
(1996)

19. Morgan, T.P.: ARM servers: Cavium is a contender with ThunderX (2015).
https://www.nextplatform.com/2015/12/09/arm-servers-cavium-is-a-contender-
with-thunderx/

https://developer.arm.com/ip-products/security-ip/trustzone
https://sourceforge.net/projects/linux-ima/files/linux-ima/Integrity_overview.pdf
https://sourceforge.net/projects/linux-ima/files/linux-ima/Integrity_overview.pdf
http://www.amd.com/en-gb/products/server/opteron-a-series
http://www.amd.com/en-gb/products/server/opteron-a-series
http://www.zdnet.com/article/windows-server-on-arm-its-happening/
http://www.zdnet.com/article/windows-server-on-arm-its-happening/
http://arxiv.org/abs/1410.7747
https://www.nextplatform.com/2015/12/09/arm-servers-cavium-is-a-contender-with-thunderx/
https://www.nextplatform.com/2015/12/09/arm-servers-cavium-is-a-contender-with-thunderx/

358 L. Song et al.

20. Ning, P.: Samsung Knox and enterprise mobile security. In: Proceedings of the 4th
ACM Workshop on Security and Privacy in Smartphones & Mobile Devices, p. 1
(2014)

21. OP-TEE. https://github.com/OP-TEE/
22. Perez, R., Sailer, R., van Doorn, L., et al.: vTPM: virtualizing the trusted platform

module. In: Proceedings of the 15th Conference on USENIX Security Symposium,
pp. 305–320 (2006)

23. Raj, H., et al.: fTPM: a software-only implementation of a TPM chip. In: 25th
USENIX Security Symposium (USENIX Security 2016), pp. 841–856 (2016)

24. Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: USENIX Security Symposium,
vol. 13, pp. 223–238 (2004)

25. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Using arm trustzone to build a trusted
language runtime for mobile applications. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 67–80 (2014)

26. Son, J., et al.: Quantitative analysis of measurement overhead for integrity verifi-
cation. In: Proceedings of the Symposium on Applied Computing, pp. 1528–1533
(2017)

27. UnixBench (2016). https://sourceforge.net/projects/unixbench5/
28. US-CERT/NIST: CVE-2015-4421 in Huawei Mate7 (2015). https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2015-4421
29. Wang, Z., Zhuang, Y., Yan, Z.: TZ-MRAS: a remote attestation scheme for the

mobile terminal based on arm trustzone. Secur. Commun. Netw. 2020, 1–16 (2020)
30. IMAI Wiki: https://sourceforge.net/p/linux-ima/wiki/Home/
31. Zhang, D., You, S.: iFlask: isolate flask security system from dangerous execution

environment by using ARM trustzone. Futur. Gener. Comput. Syst. 109, 531–537
(2020)

32. Zhi, W.Y.Y.: Kernel integrity measurement architecture based on TPM 2.0. Com-
put. Eng. 44(3), 166–170 (2018)

https://github.com/OP-TEE/
https://sourceforge.net/projects/unixbench5/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015- 4421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015- 4421
https://sourceforge.net/p/linux-ima/wiki/Home/

FuzzBoost: Reinforcement Compiler
Fuzzing

Xiaoting Li1, Xiao Liu2, Lingwei Chen3, Rupesh Prajapati4,
and Dinghao Wu4(B)

1 Visa Research, Palo Alto, CA, USA
xiaotili@visa.com

2 Meta, Inc., Menlo Park, CA, USA
bamboo@fb.com

3 Wright State University, Dayton, OH, USA
lingwei.chen@wright.edu

4 Pennsylvania State University, University Park, PA, USA
{rxp338,duw12}@psu.edu

Abstract. Enforcing the correctness of compilers is important for the
current computing systems. Fuzzing is an efficient way to find security
vulnerabilities in software by repeatedly testing programs with enormous
modified, or fuzzed input data. However, in the context of compilers,
fuzzing is challenging because the inputs are pieces of code that are
required to be both syntactically and semantically valid to pass front-
end checks. Also, the fuzzed inputs are expected to be distinct enough to
trigger abnormal crashes, memory leaks, or failing assertions that have
not been detected before. In this paper, we formalize compiler fuzzing as
a reinforcement learning problem and propose an automatic code syn-
thesis framework called FuzzBoost to empower the input code muta-
tions in the fuzzing process. In our learning system, we incorporate the
deep Q-learning algorithm to perform multi-step code mutations in each
training episode, and design a reward policy to assess the testing cover-
age information collected at runtime. By interacting with the system, the
fuzzing agent learns to predict code mutation actions that maximizing
the fuzzing rewards. We validate the effectiveness of our proposed app-
roach and the preliminary evidence shows that our reinforcement fuzzing
method can outperform the fuzzing baseline on production compilers.
Our results also show that a pre-trained model can boost the fuzzing
process for seed programs with similar patterns.

Keywords: Compilers · Fuzzing · Reinforcement learning

1 Introduction

Compilers are fundamental in the current computing system as they are part of
the trust base of the machine. However, they contain bugs and it is non-trivial

X. Li, X. Liu and L. Chen—Work done while at PSU.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 359–375, 2022.
https://doi.org/10.1007/978-3-031-15777-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_20

360 X. Li et al.

to verify all the vulnerabilities due to their large codebase. For example, GCC
has about 15 million lines of code [27]. Fuzzing is an effective way to find secu-
rity vulnerabilities in compilers by repeatedly testing the codes with randomly
modified, or fuzzed inputs [28]. It plays an important role in quality assurance,
software development, and vulnerability assessment over decades [8,9,19,30].
Many existing vulnerabilities are reported by fuzzing techniques [23]. Due to the
unlimited search space and limited computing resources, existing fuzzing tools
explore efficient strategies in fuzzing program inputs. Especially in the scenario
of compiler testing, no one can exhaustively examine the entire input space, or
traverse all the possible execution paths of target compilers in practice. There-
fore, a variety of strategies are designed based on fuzzing heuristics to prioritize
finding interesting inputs to be fuzzed. Such fuzzing heuristics may be a ran-
dom selection, or trying to maximize a specific goal, such as code coverage [15],
execution timeouts, and crashes [35].

Coverage-guided testing is widely adopted by fuzzers [10,33,36], which uti-
lizes code coverage information as the search heuristic to generate new inputs
from the fuzz action of a predefined list. These exhaustive bounded searches
use domain-specific heuristics and are thereby limited in applicability and scala-
bility. Additionally, they overlook the benefit from past experiences in historical
mutations and cannot automatically learn the common knowledge that is shared
in different input seeds generated during the fuzzing boosting process. Moreover,
most coverage-guided frameworks only calculate the rewards/fitness after a sin-
gle mutation is taken, which yet underestimates the power of a series of mutation
combinations. For instance, state-of-the-art mutation-based methods like Amer-
ican Fuzzing Lop (AFL) [36] add newly generated fuzzing programs after one
mutation according to defined search heuristics into the seed set for the next
round of fuzzing. However, for coverage-guided fuzzing, testing coverage does
not increase linearly. In other words, each of these mutations may not improve
the testing efficacy incrementally. They can be rejected by lexical or semantic
checks in the early stage of compilation. But a trace of mutations may trigger a
giant improvement as it may increase the possibility of generating more diverse
input programs to enhance the code coverage of compilers.

Faced with these challenges, we formalize compiler fuzzing as a reinforcement
learning problem and propose FuzzBoost to integrate the superiority of rein-
forcement learning to the coverage-guided fuzzing. The design of FuzzBoost is
inspired by the fact that fuzzing can be modeled as a learning process with a feed-
back loop where the model aims to learn the mutation heuristics based on the
feedback (reward) from the runtime information for evaluating the quality of cur-
rent input [5]. Reinforcement learning describes the learning process by an agent
interacting with the environment to learn an optimal policy by trial and error. It
is usually effective for sequential decision-making problems in natural and social
sciences, and engineering [3,29]. Theoretically speaking, the problem of compiler
fuzzing can be seen as a problem of program synthesis, the goal of which is to cover
more paths, trigger more crashes or memory leaks in compilers’ execution traces
while compiling new generated codes. Specifically, we model compiler fuzzing
as a multi-step decision-making process where a learning task progresses with a

FuzzBoost: Reinforcement Compiler Fuzzing 361

feedback loop. The fuzzing agent initially generates new inputs with little knowl-
edge but random heuristics. The compiler iteratively runs with the newly fuzzed
input. Based on the feedback of the environment, we capture runtime information
gathered from binary instrumentation techniques to evaluate the quality of input
seeds according to heuristics we define in our learning cycle.

In this paper, we utilize seed programs from test suites of production com-
pilers (GCC [11] in our research) to evaluate FuzzBoost. To demonstrate the
effectiveness of our framework, we also compare it with a baseline fuzzing mech-
anism used in the system AFL [36], which is a widely-used fuzzing method.
AFL applies mutation actions with a uniformly distributed strategy. From the
results, FuzzBoost outperforms baseline random fuzzing with a higher coverage
improvement on seed programs. Additionally, to better improve the efficiency of
FuzzBoost on the fuzzing process, we conduct the experiments on a pre-trained
model. As a result, our tool achieves a better fuzzing performance, which means
that the fuzzing process can be boosted when we reuse the existing model for
new seed programs in compiler fuzzing.

In summary, we make the following contributions:

– We integrate reinforcement learning to the compiler fuzzing problem and
design a principled reinforcement fuzzing method to automatically generate
new test seeds.

– We define reward functions to optimize the fuzzing goal and use a deep Q-
learning algorithm to automatically learn a trace of high-reward mutations for
given seeds which extensively leverage the knowledge in prior experiences. Our
method is task-agnostic that does not rely on any other fuzzing techniques.

– We implement a prototyping tool called FuzzBoost and analyze real-world
compiler fuzzing jobs. We conduct various analytical experiments and results
demonstrate its testing efficacy.

2 Overview

Mutation-based fuzzing relies on generating new program inputs by mutating
seed programs with heuristics. In the previous method [36], the designed fuzzer
performs one-step manipulation on the provided input corpus. Then the fuzzer
may select its collection of interesting fuzzed inputs after based on their perfor-
mance, which is measured by capturing new crashes in the context of black-box
fuzzing or capturing new path information in grey- or white-box fuzzing. How-
ever, it overlooks the potential of a trace of mutations in generating interesting
fuzzed inputs, some intermediate states of which may not be good enough to
attract interest or even break the compilation process due to lexical checks in
early stages. Therefore, we re-model the problem as a multi-step decision-making
problem that gives enough attention to these intermediate states being ignored
in previous design models. Specifically, we formally model compiler fuzzing as a
Markov decision-making process as described in Fig. 1.

As shown in the figure, in this multi-step decision-making process, there is
an input mutation engine M , that performs a fuzzing action a, and subsequently

362 X. Li et al.

Fig. 1. Compiler fuzzing process

observes a new state s directly derived from the mutated program Pt by exer-
cising the predicted action a on an original seed program Pt−1. It means that
the input mutation engine predicts the program rewriting actions based on the
extracted state from the seed program. After that, the engine can receive a
reward r based on performed actions and system state transitions. With the
given formalization, it is natural to use the Markov decision process (MDP) to
model this problem. Therefore, we define the corresponding T -step finite horizon
MDP as M = (s1, a1, r1, s2, a2, ..., sT). Here st, at, rt represent the state, action,
and reward at time step t = 1, ..., T − 1, respectively. To achieve the trace of
the most effective rewrites for a seed program, we apply reinforcement learning
methods [34] to deploy our formalization. Followed by prior footsteps [5,16], we
use deep Q-learning algorithm [20,21] to learn the fuzzing engine.

In reinforcement learning, one episode is one complete sequence of actions
that starts with an initial state configuration and ends with a terminal state.
In the problem of compiler fuzzing, one episode can be formalized as generating
a fuzzed program by performing one pre-designed mutation on an existing seed
program (initial state), while the learning agent guides the mutation actions that
aims to maximize the total reward it receives during the episode. Compared with
those conventional mutation-based fuzz testing methods, we adopt the same
methodology that using the coverage-guided heuristics to continuously select
and generate the desired program generated from the seed set along the episode.
The main difference is that, in our design, we lazy-evaluate the quality of the
fuzzed inputs until it reaches the terminal state. To this end, our fuzzing process
contains those intermediate states that might not be syntactically valid but can
eventually contribute to high-quality fuzzed inputs.

Before we start the learning process, we randomly initialize a standard deep
neural network. In the first episode, State 0 is represented as a program string
P preprocessed from a seed program. To reduce the randomness and exhaus-
tive space of mutation, we choose a substring of the whole input program to be
our mutation target. Specifically, we extract a substring within a seed program
with the window size (length of the substring) w and offset o. By observing
this substring, the trained deep neural network automatically predict a muta-
tion action to be taken in the next step. Feasible mutation actions on token-level
include insert a token, switch two or more tokens, replace a token, or change the

FuzzBoost: Reinforcement Compiler Fuzzing 363

window position or size to enable another substring to observe and mutate. Once
an action is decided, we run the compiler with the program after performing such
a mutation and calculate the reward r of this new program with a record of the
execution trace. Subsequently, it moves to the State 1 for further mutations.
With the increased number of actions being taken, we deduct the reward by a
discounted rate γ which is a value between 0 and 1 to enforce an expected fuzzing
trace with fewer mutation actions. We iterate the mutation prediction and eval-
uation until a terminal state is achieved. During the learning process, there are
four key elements in this process: state, action, environment, and reward.

2.1 State

A state S is a concrete configuration in the environment. As defined in MDP, each
process has one state and when the process proceeds, the state updates. In the
case of compiler fuzzing, the agent learns to interact with a given seed program.
We define the state as a function regarding a given input seed program P . The
interaction is performed upon the observation of selected substring within such
an input, which is viewed as a series of consecutive token symbols. Formally, let
Σ denote a finite set of symbols. The set of possible program inputs I in this
language is defined by the Kleen closure I := Σ∗. For an input program string
P = (p1, p2, ..., pn) ∈ I, let

S(P) := {(p1+i, p2+i, ..., pm+i) | i ≥ 0, m + i ≤ n} (1)

denote the set of all substrings of P . We define the states of the Markov decision
process to be I and I is a union set of S(P). Thus, we have P ∈ I denotes an
input program and P0 ∈ S(P) ⊂ I is a substring of this input seed program. The
entire state space of a seed program is S(P), which is theoretically infinite since
permutations in this language I can increase after mutation. In other words, the
seed program can be converted to any other valid programs.

2.2 Action

Action A is the set of all possible mutation actions that the agent can perform. In
most cases, actions are deterministic and should be chosen among a pre-defined
list. In compiler fuzzing, we define the set of possible action A of the MDP to be
pre-designed rewrite rules on the extracted substrings S(Po). The rewrite rules
are designed in accord with the extracted substring and predicted type. To be
specific, we categorize rewrites from two perspectives, i.e., the extracted content
and the extraction window, so the agent can predict which type and on which
position an action should be performed on the current input.

The rewrites of extracted content are performed on the token-level which
include insertion, replacement, re-ordering, deletion and replication. These
rewriting rules conform with the C language lexical requirements. For inser-
tion, we append new tokens after the predicted index according to production
rules; that is, if the last token is an operator, we randomly sample a token from

364 X. Li et al.

the existing identifiers as its next. For deletion, we delete the token located at
the predicted index. For replacement, we replace the token at the predicted index
with another token randomly sampled from sets of tokens with same character-
istic; e.g., if this token is a keyword of C, we select another keyword for replace-
ment. Note, the keyword and operator token set are predefined, while identifier
token set is generated by parsing the seed program. For the second type, they
are designed to make a change on the extraction windows. Atomic mutations
include window left shift and right shift, and window size up and down with
one token length either from left or right side for each. Each of these actions
do not change the input program but motivate the diversity of the extracted
substring S(Po) and covers more states in the mutation space. For both types of
mutations, the time step increases until the termination state is triggered on the
current episode. We define a terminate action to early stop the mutation episode.
That is, the mutation agent can proactively terminate a mutation episode while
observing an extracted substring.

2.3 Environment

The environment is the world that the agent evaluates each action. The environ-
ment takes the current state and action as the input, and then outputs the reward
of performing such action and calculates the next state after executing the action.
In compiler fuzzing, the environment is the compiler or verifier. To observe more
detailed information about the fuzzing efficacy, we develop a tool called Fuzz-
Boost based on program execution traces. In this respect, we record dynamic
traces while running the testing production compilers, i.e., GCC, on generated
programs. In compiler construction, a basic block of an execution trace is defined
as a straight-line code sequence with no branches except for the entry and exit
points, which is considered as one of the important atomic units to measure code
coverage. In our method, we capture all the unique basic blocks B(TP) concerning
each execution trace TP and calculate a store of all the unique basic blocks cov-
ered by the existing test suite I ′ to represent our measure of interest. In our imple-
mentation of FuzzBoost, the program execution trace is collected by Pin [18], a
widely-used dynamic binary instrumentation tool. Pin provides infrastructures to
intercept and instrument the execution trace of a binary. During execution, Pin
inserts the instrumentation code into the input program and recompile the output
with a Just-In-Time (JIT) compiler. We develop a plug-in of Pin to log the exe-
cuted instructions. Additionally, we develop another coverage analysis tool based
on the execution trace to report all the basic blocks touched so far. It also reports
whether new basic blocks are triggered by the fuzzed program and the number of
new covered blocks as well. Furthermore, our environment also logs and reports
abnormal crashes, memory leaks, or failing assertions of compilers with the assis-
tance of internal errors alarms from the compiling messages.

2.4 Reward

Designing a good reward function to facilitate learning and maintaining the
optimal policy is the key goal in our framework. Rewards provide evaluative

FuzzBoost: Reinforcement Compiler Fuzzing 365

Fig. 2. Fuzz action prediction in the reinforcement learning process of compiler fuzzing

feedback to guide an RL agent to make decisions. However, rewards can be very
sparse so that it is challenging for the learning problems. In the game of Go,
a reward only occurs at the end of a game. In such cases, the learning process
can converge slowly because of the sparse motivations. We solve this challenge
by giving every mutation step a reward, so the goal of agent is to maximize the
accumulated rewards until one episode terminates at step T ,

R =
T∑

t=0

γtrt+1(P), (2)

where γt ∈ (0, 1) indicates a discount factor to gradually deduct the reward
in the future. rt+1(P) represents the reward of generated program P at step
t + 1. In fuzz testing, the possible rewarding heuristics are program coverage,
new crashes, timeout, etc. They aim at enlarging the analyzed surface in the
target programs being fuzzed and digging into the program traces accordingly
that are more suspicious. In compiler fuzzing, we adopt testing coverage as the
reward to motivate the learning towards a vulnerability search on more areas
of the compiler’s code. However, unlike conventional definitions for coverage,
which are usually line/function/branch coverage that require expensive comput-
ing resources to calculate, we define the reward based on the ratio of unique
basic blocks covered by a certain fuzzed seed program P at step t to the entire
unique basic blocks of its mutated test suites I ′ along the episode;

r(P, I ′) := B(TP)/
∑

ρ∈I′
B(Tρ), (3)

where B(TP) is the number of unique basic blocks in the execution trace of
a program P and I ′ ⊂ I is the programs generated from this test suite. This
stepwise reward r is a continuous scalar value that has a range of (0, 1], where 1
is achieved when a specific execution trace covers all the basic blocks that have
been tested so far by its existing fuzzed cases. The designed reward motivates
the mutation steps towards the training goal: improving the compiler testing
coverage by selecting a critical subsequence inside a seed program and enforcing
simple mutations in a trace.

3 Designed Framework

To start a deep Q-learning process for compiler fuzzing, we propose FuzzBoost
which adopts a deep neural network with two layers connected with non-linear

366 X. Li et al.

activation functions. We build this end-to-end learning framework with the envi-
ronment reward calculated based on dynamic trace analysis. In this section, we
present the overall learning process for FuzzBoost by illustrating an iteration of
fuzz action prediction in the reinforcement learning process for compiler fuzzing
as shown in Fig. 2.

3.1 Initialization

We start with an initial input seed P ∈ I, where the choice of P is not constrained
but can be any C program even not well-formed ones. We employ the GCC test
suite as our sampling pool and randomly selected programs to be our seed inputs.
We propose to use a neural network as the Q function to mimic the reasoning
for input mutation of compiler fuzzing. This deep neural network maps states
(embedding of an extracted substring from seed programs) to Q outputs for all
actions A. Due to the lack of heuristics at the very beginning, the neural network
is randomly initialized and reinforcely optimize the model parameters θ from the
environment feedbacks, i.e., rewards, by maximizing the code mutation rewards
in the episode training.

3.2 State Extraction

FuzzBoost observes a substring within a seed program to predict actions to
perform. The substring is extracted from the seed program by the customized
window and encoded as S(P). In Sect. 2.1, we define the states of our Markov
decision process to be I = Σ∗. To be more specific, it is a substring P ′ at off-
set o ∈ 0, ..., |P | − |P ′| and of window size |P ′|. To make the extracted state
tractable, we define actions in Sect. 2.2 to shift and resize the window. By per-
forming window-related actions, the fuzzing agent can see the whole program by
partially observing fragments consecutively. In other words, FuzzBoost learns
to select the most critical piece of code to mutate incrementally during the train-
ing process. After the sequence is extracted, we use a word embedding model to
abstract the sequence into a fixed-dimensional vector for training.

3.3 Deep Q-Network

We implement the Q-learning module based on Tensorflow [1] 1.14. The deep
neural network used for prediction is a forward neural network with two hidden
layers connected with non-linear activation functions. The two hidden layers
contain 100 and 512 hidden units respectively, and are fully connected with an
input layer with 100 units (which is the max window size for input substring)
and an output layer with 10 units (which is the size of action space). The goal
of the training is to maximize the expected reward. Since the MDP is a finite
horizon in our practical design, we adopt a discount rate γ = 0.9 to address
the long-term reward. We set the learning rate α = 0.001 to achieve our best-
tuned results. We use the decayed epsilon-greedy strategy for exploration in the

FuzzBoost: Reinforcement Compiler Fuzzing 367

reinforcement learning iteration, that is, the ε value is set up to 1 at the very
beginning and decays over time until a min value, 0.01 in our configuration, is
reached. In this scenario, with the probability 1 − ε, the agent selects an action
a = argmaxa′Q(st, at), which is the estimated optimum by the on-training neural
network. In the meanwhile, with probability ε, the agent explores any other
actions with a uniformly distributed choice within the action space |A|.

3.4 Termination

A mutation episode terminates when the agent detects a terminal state. In our
design, we define three conditions that may trigger the terminal state of mutat-
ing the seed program: (1) the agent executes the “terminate” action from the
neural network prediction; (2) the generated program reaches a maximum num-
ber of mutation steps; or (3) the agent generates an invalid action that triggers
miscellaneous effects during the reward calculation. The first type of termination
will cut the program mutation actively by FuzzBoost while the latter two are
passively ended with pre-defined policies. Theoretically, the mutation trace can
be generated as long as possible to achieve enough diversity. But in practice,
to excessively improve the testing efficacy, we empirically set up the mutation
trace length to be 20 actions to enforce our agent to learn within the short-
est path. To catch the found bugs/vulnerabilities, we log and report abnormal
crashes, memory leaks, or failing assertions of compilers with the assistance of
internal errors alarms from the compiling messages. Moreover, in our design,
all the programs that have achieved higher code coverage are kept to be the
seeds and waiting for another round of fuzzing, otherwise removed from the seed
pool. Therefore, the agent can still explore the entire language set even with the
restricted length of learning traces during an episode. The methodology applied
in our mechanism is the same as conventional coverage-guided fuzzing methods
but has made mutation traces longer in one round (compared with 1 step in con-
ventional fuzzing) and predictable by a neural network (compared with purely
random in conventional fuzzing).

4 Experiments

In our research, we propose a reinforcement learning framework FuzzBoost
that incrementally trains a deep neural network to predict mutation actions on
a given seed program to improve the compiler testing coverage effectively. We
evaluate the performance of FuzzBoost on a seed input set gathered from
the GCC test suites. We randomly sample 20 C programs in the test suite as
our benchmark dataset, more specifically, from the gcc.c-torture repository. The
window size is set to be 50 to extract the substring inputs. We run FuzzBoost
for four weeks to test its fuzzing efficacy and compare with the baseline random
fuzzing method used in a popular tool (AFL) [36]. We also conduct an empirical
analysis on starting the compiler fuzzing with a pre-trained model to investigate
if it can boost our process. All measurements are performed on i7-7700T 2.90 Ghz
with 12 GB of RAM.

368 X. Li et al.

Fig. 3. Number of unique basic blocks covered by generated test suites

4.1 Fuzzing Efficacy

In our design, to improve the efficiency in this end-to-end learning process, we
use an approximation of the code coverage improvement to describe the cover-
age information, which is the accumulated number of unique basic blocks being
executed with the generated new test cases. In order to show that FuzzBoost
learning algorithm learns to perform high-reward actions given a seed input
observation, we compare the improved testing efficacy against a baseline with
random action selection policy. The choice of the baseline method is uniformly
distributed among the action space A and we terminate the actions with the
same methodologies as our method described in Sect. 3.4. Random mutation is
widely used in software fuzzing tools [36] which is proven to be effective while a
good heuristic, such as coverage-guided, is designed.

Comparison: We perform the experiments with our method FuzzBoost and
baseline method Random-based mutation strategy to fuzz each of the programs
from the sampling pool. We respectively generate 1,000 new tests from seed pro-
grams for both strategies and record the accumulated number of unique basic

FuzzBoost: Reinforcement Compiler Fuzzing 369

Table 1. Coverage improvements with different window size

Window size 50 60 70 80 90 100

Coverage improvement (%) 37.14 36.11 30.29 28.95 28.07 27.94

blocks along the execution trace. On average, our proposed method FuzzBoost
achieves higher testing coverage by 37.14% than the Random-based mutation
method in terms of the number of the accumulated unique basic blocks on the
seed programs. We randomly select four seed programs and illustrate the cover-
age improvement of comparisons between baseline method and FuzzBoost in
Fig. 3. The results in each sub-figure represent the number of unique basic blocks
that different amount of test programs trigger in the compiler. We can see that
FuzzBoost gradually increases the code coverage as the model being trained to
mutate programs more effectively. Our method obviously outperforms the base-
line for all cases, among which the most and least improvements, 79.17% (case 1,
seed1.c) and 12.24% (case 2, seed2.c) respectively, are achieved. We also observe
that FuzzBoost improves the code coverage with a faster speed than the base-
line. We believe this is because our method can learn to fuzz more efficiently and
generate interesting test suites with fewer mutation actions.

Window Size: Since the size of each seed program varies, and, arguably, the
limited window size may restrict the diversity of mutation trace and thus put
a constraint on exploring the entire seed program. As a result, the seed pro-
gram cannot be thoroughly observed or mutated accordingly after one episode
of fuzzing. In this part, we analyze the impact of the current framework with
different window sizes on model effectiveness. We increase the initial window
size w = |P ′| from 50 to 100 and measure the average coverage improvement to
compare against the baseline strategy on seed1.c as the seeds in sample pool are
generally short. Table 1 shows the experimental results. We can see the coverage
improvement decreases while increasing the window size of the initially extracted
substring. That is, smaller substrings are better to start with and to mutate the
program than larger ones in our method. Our interpretation is that small win-
dows narrow down the mutation space and thus reduce the action randomness,
which may increase the possibility of learning a high-quality mutation trace for
the model, especially when the model is highly under-trained in the beginning
stage. It also indicates that our model is trained to learn better moves of small
windows and accordingly select better action to improve coverage. Also, it is
worth noting that the ultimate goal for fuzz testing is not the exploration of
entire programs, but making control-flow changes within limited observations to
boost the fuzzing process.

End State: We set up the compiler fuzzing as an end-to-end reinforcement
learning framework. Unlike the problem of Go, the end state of FuzzBoost is
not deterministic in all cases. In our design, we hard-code a limit on the length
of mutation traces from the computation cost point of view, but theoretically,
the traces can be endless to gain enough randomness and achieve the higher

370 X. Li et al.

Fig. 4. Mutation length during training

reward. In the process of optimization, we provide the learning agent an action
to actively terminate the episode which varies across the learning stage. Thus, to
analyze how the end state evolves, we record the distribution of mutation trace
lengths under different training stages. Figure 4 presents the average trace length
distributions along the learning process over all training seeds. From the result,
we can see that, as the training goes on, mutation trace lengths are increasing
gradually. In this respect, the reward expectation of learned mutation actions are
positive in a form that reinforces the model to dig more mutation opportunities
in one episode to maximize the fuzzing reward.

4.2 Boosting with Pre-training

Our trained fuzzing tool learns to constantly accumulate the prior experience
by training on the seed programs. This naturally lead us to the question for
the sake of resource cost: given an agent which is pre-trained on seed programs
Ptrain = pi ∼ P , can it improve testing efficiency than learning from scratch? To
answer that, we use the same experimental setting as the experiments in Sect. 4.1
and reuse the seed programs from the initial 20 seed programs and craft another
9 α-equivalent programs for each seed respectively. We call a program P ′ is α-
equivalent to program P when we only perform bound variable renaming on P .
We randomly pick 80% of them to serve as Ptrain to learn an agent and the rest
20% are used for Ptest . After pre-training on Ptrain , we save the model and use
it on Ptest to continue the trial-and-error reinforcement compiler fuzzing.

The fuzzing results under such a pre-trained model are shown in Fig. 3
and compared with the performance of FuzzBoost learned with an initially
arbitrary model. The coverage improvement for the case of pre-trained model
increases drastically towards the highest coverage against the one trained from
scratch despite the small improvements in one of the seed programs (case 4). In
addition, as the training goes on, the pre-trained model can find useful action
in mutation space more quickly and generate fuzzed programs with high testing
coverage.

FuzzBoost: Reinforcement Compiler Fuzzing 371

1 foo (a, p)
2 int ∗p;
3 { p[0] = a;
4 a = (short) a;
5 return a;
6 }
7 main () {
8 int i ;
9

10 foobar (i , &i);
11

12

13 }
14 foobar (a, b) {
15 int c;
16 c = a % b;
17 a = a / b;
18 return a + b;
19 }

Listing 1.1. Original

1 foo (a, p)
2 int ∗p;
3 { p[0] = foobar(a,p);
4 p = (short) a;
5 return a;
6 }
7 main () {
8 int i ;
9 for (int a=8; a>0; a−−) {

10 foobar (i , &i);
11 }
12 foobar(i , &i);
13 }
14 foobar (a, b) {
15 int c;
16 c = a % b;
17 a = c / b;
18 return a + b;
19 }

Listing 1.2. Mutated

4.3 Mutation Example

In this part, to demonstrate how effective FuzzBoost can achieve in program
mutations for compiler fuzzing, we showcase the topmost utilized mutations in
the following example. We present an original seed (on the left) and its cor-
responding new generations after mutations (on the right). We discuss each of
these abstracted edits involved in the trace of atomic mutations. These edits
help explain what is learned by the model during the reinforcement learning
process. It should be noted that these mutations are not accomplished within
one episode, while we just use this one example to illustrate what the most used
mutations are and how they look like.

Example: By observing the results, we find: (1) the top most chosen mutation
is insertion. Usually, the fuzzing engine tries to insert statements with keywords
that do not exist in the original seed file. As shown in line 9 to line 11 in the
mutated file, the fuzzing engine tries to insert a for statement into the seed file.
By inserting these non-existing tokens, the compiler should execute the lexical
analysis in a way that has not been used before; (2) the second chosen mutation
is replication that the fuzzing engine tries to replicate statements locally as
shown in line 12 in the mutated file. The replication will trigger the compiler
to optimize code which will improve the testing coverage; (3) the third chosen
mutation is replacement that can replace a variable (a) with a function call
(foobar(a,p)) as in line 3 or replace a variable (a) with another existing variable
(p). The replacement either makes the statement more complex to parse, causes
exception handlings such as typecast, or changes the control-flow of the seed file,

372 X. Li et al.

all of which will make the compilation different from the original paths, thereby
increasing the testing coverage.

5 Discussion

It is critical to compare with related works, but we find it difficult to perform
apple-to-apple comparisons. For instance, generation-based fuzzing tools, such as
DeepSmith [7] and Learn&Fuzz [12], craft new programs from scratch other than
mutating seed programs while our tool is built on mutation-based fuzzing that
rely on seed programs to achieve the whole-program validity. Moreover, some
previous methods [7,12] generate a bunch of new programs which usually get
rejected at an early stage in compilation and therefore leads to a inefficient and
shallow testing procedure. AFL [36] can generate new fuzzed inputs in a very fast
way as it only conducts one-step random mutation on seed programs each time.
However, it does not suit for compiler fuzzing because its mutation mechanism
deals with random changes on inputs without considering their structure con-
text. Compiler requires highly-structured and syntax-aware inputs, so we only
compare our tool with its mutation heuristic in the paper. For NEUZZ [26], it is
grey-box fuzzing that relies on the coverage analysis on target applications. But
for compiler testing, the computation cost for code edge coverage is very high,
and that is why we use #BasicBlocks tested as an approximation.

In this work, we do not claim our tool is better than others. Instead, we reveal
our insight of leveraging the superiority of reinforcement learning for compiler
fuzzing to efficiently solve a multi-step mutation-based fuzzing problem. In our
mechanism, we lazy-evaluate the mutation results and consider those interme-
diate states in the mutation traces to explore code coverage in a deeper way.
Our designed rewriting rules in mutation actions incorporate the structure con-
text of programs, thus our fuzzed inputs can better conform with the syntax
requirements of programming languages. What’s more, the mutations can real-
ize the comprehensive search in the large space to iteratively guiding the tool for
the final fuzzing goals. Our experimental results and analysis comprehensively
demonstrate the effectiveness of our compiler fuzzing tool.

6 Related Work

Our study is related to deep reinforcement learning and mutation-based fuzzing.

Deep Reinforcement Learning: Despite the popularity in solving the game
of Go, reinforcement learning is also widely adopted as a powerful technique for
program synthesis [2,5,13,16,17,22,26]. Bunel et al. [6] perform reinforcement
learning on top of a supervised model with an objective that explicitly maxi-
mizes the likelihood of generating semantically correct programs. Böttinger et
al. [5] use a deep Q-learning network to learn a grammar description for inputs
to perform generation-based fuzzing. Researchers also propose Neurally Directed
Program Search (NDPS) [31], for solving the challenging non-smooth optimiza-
tion problem of finding a programmatic policy with maximal reward. Existing

FuzzBoost: Reinforcement Compiler Fuzzing 373

projects that adopt deep reinforcement learning for program synthesis focus on
semantic goals toward synthesis tasks. Our target is to generate source programs
that are well-formed but contain different syntactic features, which are similar
to the work from Böttinger et al. [5] that aims at PDF parser fuzzing. But
differently, in our design, we consider the improvement of testing coverage of
compilers as the reward for reinforcement learning.

Mutation-Based Fuzzing: Mutation-based fuzzing contains two important
decisions: 1) where to mutate, and 2) what new value to use for the mutation [24].
Generally mutation-based fuzzers are not aware of the expected input format or
specifications, and they cannot select mutations very wisely [25]. It generates
new inputs by blindly modifying the provided seeds. A well-known fuzzer that is
mutation-based is called AFL [36] which randomly mutates seed inputs and
incrementally add new seeds into the set with respect to defined heuristics.
Several boosting techniques are proposed to improve the efficiency of mutation-
based fuzzing. AFLFast [4] boosts up original AFL fuzzer by focusing on low-
frequency paths that allow the fuzzer to explore more paths with limited time.
Skyfire [32] applies grammar in existing seed inputs for fuzzing programs that
take highly-structured inputs. Kargen and Shahmehri [14] perform mutations
on the machine code instead of on a well-formed input to produce high-coverage
inputs. DeepFuzz [17] utilizes an RNN-based model to generate new well-formed
C programs for compiler fuzzing based on existing testsuites. In this paper, our
method boosts the mutation process by using a deep neural network to predict
the mutation without any training data.

7 Conclusion

In this paper, we propose FuzzBoost, a deep reinforcement learning framework
to fuzz off-the-shelf compilers by generating new programs with coverage-guided
dynamics. Our proposed end-to-end learning framework learns to select a trace
of best mutation actions in each round towards high code coverage and performs
automatically without any human supervision. It improves the testing coverage
on a seed set from the GCC test suites and outperforms the baseline fuzzing
agent with a random selection strategy. Moreover, we demonstrate that a pre-
trained agent in our framework can generalize the strategy to new seed instances
to expedite the fuzzing process, which is much faster than starting from scratch.

Acknowledgement. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for this research. This research was
supported in part by the National Science Foundation (NSF) grant CNS-1652790 and
the Office of Naval Research (ONR) grant N00014-17-1-2894.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

374 X. Li et al.

2. Becker, S., Abdelnur, H., State, R., Engel, T.: An autonomic testing framework
for IPv6 configuration protocols. In: Stiller, B., De Turck, F. (eds.) AIMS 2010.
LNCS, vol. 6155, pp. 65–76. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13986-4 7

3. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming: an overview. In:
Proceedings of the 34th IEEE Conference on Decision and Control, Piscataway,
NJ, pp. 560–564. IEEE Publications (1995)

4. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45(5), 489–506 (2017)

5. Böttinger, K., Godefroid, P., Singh, R.: Deep reinforcement fuzzing. In: 2018 IEEE
Security and Privacy Workshops (SPW), pp. 116–122. IEEE (2018)

6. Bunel, R., Hausknecht, M., Devlin, J., Singh, R., Kohli, P.: Leveraging gram-
mar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276 (2018)

7. Cummins, C., Petoumenos, P., Murray, A., Leather, H.: Compiler fuzzing through
deep learning. In: Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pp. 95–105. ISSTA (2018)

8. Duran, J.W., Ntafos, S.: A report on random testing. In: ICSE, pp. 179–183 (1981)
9. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Trans. Softw.

Eng. SE-10(4), 438–444 (1984)
10. Gan, S., et al.: CollAFL: path sensitive fuzzing. In: 2018 IEEE Symposium on

Security and Privacy, pp. 679–696. IEEE (2018)
11. GCC, The GNU Compiler Collection. gcc.gnu.org (2019). http://gcc.gnu.org/
12. Godefroid, P., Peleg, H., Singh, R.: Learn&Fuzz: machine learning for input fuzzing.

In: Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pp. 50–59. IEEE Press (2017)

13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

14. Kargén, U., Shahmehri, N.: Turning programs against each other: high coverage
fuzz-testing using binary-code mutation and dynamic slicing. In: Proceedings of the
10th Joint Meeting on Foundations of Software Engineering, pp. 782–792. ACM
(2015)

15. Kifetew, F.M., Tiella, R., Tonella, P.: Combining stochastic grammars and genetic
programming for coverage testing at the system level. In: Le Goues, C., Yoo, S.
(eds.) SSBSE 2014. LNCS, vol. 8636, pp. 138–152. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09940-8 10

16. Li, X., Liu, X., Chen, L., Prajapati, R., Wu, D.: ALPHAPROG: reinforcement
generation of valid programs for compiler fuzzing. In: Proceedings of the Thirty-
Fourth Annual Conference on Innovative Applications of Artificial Intelligence
(IAAI-2022) (2022)

17. Liu, X., Li, X., Prajapati, R., Wu, D.: DeepFuzz: automatic generation of syntax
valid C programs for fuzz testing. In: Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (2019)

18. Luk, C.K.: Pin: building customized program analysis tools with dynamic instru-
mentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 190–200 (2005)

19. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Commun. ACM 33(12), 32–44 (1990)

20. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

https://doi.org/10.1007/978-3-642-13986-4_7
https://doi.org/10.1007/978-3-642-13986-4_7
http://arxiv.org/abs/1805.04276
http://gcc.gnu.org/
https://doi.org/10.1007/978-3-319-09940-8_10
https://doi.org/10.1007/978-3-319-09940-8_10
http://arxiv.org/abs/1312.5602

FuzzBoost: Reinforcement Compiler Fuzzing 375

21. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

22. Rajpal, M., Blum, W., Singh, R.: Not all bytes are equal: neural byte sieve for
fuzzing. arXiv preprint arXiv:1711.04596 (2017)

23. Rash, M.: A collection of vulnerabilities discovered by the AFL fuzzer (AFL-fuzz)
(2019). https://github.com/mrash/afl-cve

24. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:
application-aware evolutionary fuzzing. In: NDSS, vol. 17, pp. 1–14 (2017)

25. Saavedra, G.J., Rodhouse, K.N., Dunlavy, D.M., Kegelmeyer, P.W.: A review of
machine learning applications in fuzzing. arXiv preprint arXiv:1906.11133 (2019)

26. She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: NEUZZ: efficient fuzzing
with neural program smoothing. In: 2019 IEEE Symposium on Security and Pri-
vacy, pp. 803–817. IEEE (2019)

27. Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in GCC
and LLVM. In: ISSTA, pp. 294–305 (2016)

28. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education, London (2007)

29. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

30. Takanen, A., Demott, J.D., Miller, C., Kettunen, A.: Fuzzing for Software Security
Testing and Quality Assurance. Artech House, Norwood (2018)

31. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. arXiv preprint arXiv:1804.02477 (2018)

32. Wang, J., Chen, B., Wei, L., Liu, Y.: Skyfire: data-driven seed generation for
fuzzing. In: 2017 IEEE Symposium on Security and Privacy, pp. 579–594 (2017)

33. Wang, M., et al.: SAFL: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing. In: Proceedings of the 40th International Conference
on Software Engineering: Companion Proceedings, pp. 61–64. ACM (2018)

34. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
35. You, W., Liu, X., Ma, S., Perry, D., Zhang, X., Liang, B.: SLF: fuzzing without

valid seed inputs. In: Proceedings of the 41st International Conference on Software
Engineering, ICSE (2019)

36. Zalewski, M.: American fuzzy lop (2014)

http://arxiv.org/abs/1711.04596
https://github.com/mrash/afl-cve
http://arxiv.org/abs/1906.11133
http://arxiv.org/abs/1804.02477

Secure Boolean Masking of Gimli

Optimization and Evaluation on the Cortex-M4

Tzu-Hsien Chang1,4, Yen-Ting Kuo5, Jiun-Peng Chen3,4(B),
and Bo-Yin Yang2,4

1 Cybersecurity Center of Excellence Program, National Applied Research
Laboratories, Taipei, Taiwan

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan
by@crypto.tw

3 Research Center for Information Technology Innovation, Academia Sinica,
Taipei, Taiwan

jpchen@ieee.org
4 Department of Electrical Engineering, National Taiwan University,

Taipei, Taiwan
r10921a19@ntu.edu.tw

5 University of Tokyo, Tokyo, Japan

Abstract. Gimli is a highly secure permutation with high performance
across a broad range of platforms. However, side-channel analysis poses
a threat to the Gimli without any masking protection. To resist side-
channel analysis, the current state of the art of Boolean masking in
software proposes an efficient scheme of bitwise logic operations. In prac-
tice, a software implementation of masked Gimli may leak information
due to pipeline registers and also due to other effects. To avoid unin-
tentional leakage, costly overheads are required, such as more random-
ness and higher-order share implementation. For our implementation,
we present two efficient optimal masked Gimli implementations for the
ARM Cortex-M4 on the STM32F407 Discovery(a common Cortex-M4
board) and evaluate their security using TVLA. In 3-shared scenarios,
our approach performs with high security with a t-statistic value bounded
by a threshold of 4.5 standard deviations, which implies that leakage
information cannot be detected. Furthermore, our results promise sig-
nificant performance improvement for the implementation on Cortex-M
processors, with a reduction of the amount of overhead for masking by
61% and 76% for 2 and 3 shared scenarios, respectively.

Keywords: Gimli · ARM Cortex-M4 · Threshold implementation ·
DPA

1 Introduction

In several emerging areas (e.g. sensor networks, healthcare, distributed control
systems, or the Internet of Things), highly resource-constrained devices are inter-
connected, typically communicating wirelessly with one another, and working in
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 376–393, 2022.
https://doi.org/10.1007/978-3-031-15777-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_21

Secure Boolean Masking of Gimli 377

concert to accomplish some task. Because the majority of current cryptographic
algorithms were designed for desktop/server environments, many of these algo-
rithms do not fit into these devices.

Gimli [6], a high secure permutation with high performance across a broad
range of platforms, is suitable for use in constrained environments [20]. Ciphers
using the three operations + (add), ≪ (rotation) and XOR are usually called
ARX ciphers, and these include SPECK [5] and ChaCha20 [7]. All of Gimli,
SPECK, and ChaCha20, can be attacked by side-channel. Side-channel analy-
ses are physical attacks based on the exploitation of the information (typically
time, power consumption, or electromagnetic radiation), which can be measured
while the cryptographic algorithm is operating on the device. Differential power
analysis (DPA) [21] and Correlation Power Analysis (CPA) [11] based on power
consumption or electromagnetic radiation, have received significant attention
since it is very powerful and does not usually require detailed knowledge of the
target device to be successfully implemented.

In ARX ciphers, Addition without protection is vulnerable to DPA [21,31].
Furthermore, early work on masking for addition in software has a high-
performance overhead [18]. Gimli, replacing addition a+b with a similar bitwise
operation a⊕b⊕((c∧b) � 1) is suitable for implementing a DPA resistant cryp-
tographic algorithm. There are different papers discussing attack and resistance
of Gimli, such as [15,16]. However, there have not been many papers in the past
discussing Gimli’s resistance to SCA in optimized software implementations.

Threshold Implementation (TI) is a masking scheme based on secret sharing
and multi-party computation [23–25]. TI is fairly simple to apply to a wide range
of ciphers [17,18], and its implementation is not very error-prone if a known set
of requirements and best practices is followed. Though early works on masking
suggested using two-share TI to reduce the size of the sequential logic in hardware
implementations [12,28], however, it is vulnerable to implement two-share TI
for most microprocessors in practice. For example, Cortex-M3 and Cortex-M4
pipeline register leak information about Hamming distance between the current
operand value and the previous one [13]. Since these problems also appear in
most of the software implementation of Boolean masking, implementing a secure
masking algorithm is very challenging.

Therefore, how to make Gimli have good execution efficiency in Cortex-M3
and Cortex-M4, resist Side-Channel Attacks, and evaluate the protective effect,
all need to be considered.

1.1 Our Contributions

In this paper, we present an efficient and high-security level method for masked
Gimli without leakage due to pipeline registers in embedded software applica-
tions. We investigate how to implement the TI for the non-linear layer of Gimli,
finding possibilities to optimize the instruction count for ARM implementations.

First of all, we implement the Gimli for ARM Cortex-M3 and Cortex-M4
processors and optimize it on the assembly level by using ARM features such as
the flexible second operand and by minimizing the number of memory operations.

378 T.-H. Chang et al.

Second, the Threshold Implementation of Gimli to resist Side-Channel
Attacks, two-share and three-share masking are presented, respectively. For two-
share masking, we construct masked non-linear layers of Gimli based on SecAND
and SecOR [10], which do not consume entropy and could utilize the flexible sec-
ond operand to reduce the cycle count. For three-share masking, we are inspired
by changing of the guard [14], which is a generic method to generate the thresh-
old implementation scheme.

Finally, we use the Test Vector Leakage Assessment (TVLA) method to evalu-
ate the t-test score of the threshold implementation on Cortex-M4. These inspec-
tion methods follow the ISO/IEC 17825 [1]. To reduce leakage due to pipeline
registers, we rearrange the parallel instruction of two-share TI. However, it is
hard to limit the t-value to a threshold of 4.5 standard deviations. This problem
could be more severe on other platforms. On the other hand, the statistical value
of our three-share TI is inside the ±4.5 [30] interval for every point in time.

As mentioned above, we qualify DPA-resistant software implementations and
prove that our three-share TI is uniform without additional randomness by the
reversible property of Gimli. The method of proof about uniformity can also
generate a high secure three-share TI of NORX family ciphers [3] because of
their similar structure. Furthermore, the three-share TI is a better choice in
the strictly secured scenarios, since it can prevent information leakage due to
the architecture of microprocessors. These different architectures are a trade-off
between performance and security to perform the full permutation.

2 Preliminaries

2.1 GIMLI

Gimli is a 384-bit permutation designed to achieve high security with high
performance across a broad range of platforms. In this paper, we focus on the
Gimli-Cipher, which performs Authenticated Encryption with Associated Data
(AEAD).

The GIMLI Permutation. The Gimli permutation applies a sequence of
rounds to a 384-bit state. We denote by W = {0, 1}32 the set of bit-strings
of length 32. We will refer to the elements of this set as words; The state is
represented as a 3 × 4 matrix of words W 3×4; the rows are named x, y, z; the
columns are enumerated by 0, 1, 2, 3; the round number is denoted by r. For
example, x8

1 denotes the second 32-bit word before the execution of round 8.
Finally, we use

– a ⊕ b to denote a bitwise exclusive or (XOR) of the values a and b,
– a ∧ b for a bitwise logical and of the values a and b,
– a ∨ b for a bitwise logical or of the values a and b,
– a ≪ k for a cyclic left shift of the value a by a shift distance of k, and
– a � k for a non-cyclic shift (i.e., a shift that is filling up with zero bits) of

the value a by a shift distance of k.

Secure Boolean Masking of Gimli 379

Algorithm 1 describes how this state is permuted in 24 rounds: a non-linear
layer starts with round 24 and ends with round 1. During each round, the state
is first substituted and permuted (SP-Box). Every second round, the state is
mixed linearly (alternating between a “small” or “big” swap). Finally, in every
fourth round, a constant is added.

Algorithm 1: The Gimli permutation
input : s = (si,j) ∈ W 3×4

output: Gimli(s) = (si,j) ∈ W 3×4

for r = 24 down to 1 do
for j = 0 to 3 do

x ← s0,j ≪ 24 � SP-box
y ← s1,j ≪ 9
z ← s2,j
s2,j ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
s1,j ← y ⊕ x ⊕ ((x ∨ z) � 1)
s0,j ← z ⊕ y ⊕ ((x ∧ y) � 3)

end
if r mod 4 = 0 then

s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 � Small-Swap
else if r mod 4 = 2 then

s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 � Big-Swap
end
if r mod 4 = 0 then

s0,0 ← s0,0 ⊕ 0x9e377900 ⊕ r � Add constant
end

end
return (si,j)

2.2 Threshold Implementation

Threshold Implementation [25] (TI) is a special case of Boolean masking. Even in
the presence of glitches, it has been proven secure against first-order differential
power analysis for digital circuits. The advantages are that it does not need fresh
random values after every non-linear transformation, unlike traditional masking
methods.

Definition. TIs use shares with the following properties: correctness, incom-
pleteness, and uniformity:

Correctness states that applying the sub-functions to a valid shared input must
always yield a valid sharing of the correct output.
z =

⊕d
i=1 zi =

⊕d
i=1 fi(x, y, ...) = f(x,y, ...)

380 T.-H. Chang et al.

Non-Completeness requires sub-functions fi of a shared function F to be
independent of at least one input share for first-order SCA resistance. That
is, a function F (x, y, ...) shall be split into sub-functions fi(xj �=i, yj �=i, ...).
This requirement was updated in [9] to require any d sub-functions to be
independent of at least one input share to achieve d-th order SCA resistance.
Non-completeness ensures that the final circuit is not affected by glitches.
Since glitches can only occur in sub-functions fi, and each sub-function has
insufficient knowledge to reconstruct a secret state (since it has no knowledge
of at least one share xi), no leakage can be caused by glitches.

Uniformity requires all intermediate states (shares) to be uniformly distributed.
Uniformity ensures that the mean leakages are state-independent, a key
requirement to thwart first-order DPA. To ensure uniformity in a circuit,
it suffices to ensure uniformity for the output share of each function, as well
as for the inputs of the circuit. This property is often the most difficult to
achieve and most costly in terms of hardware area.

2.3 The ARM Cortex-M Processors

The ARM Cortex-M4 is a 32-bit RISC processor based on the ARMv7E-M archi-
tecture, targeting low-cost and energy-efficient microcontrollers. It is equipped
with 13 general-purpose registers (GPRs, r0-r12), plus the link register (lr,
which holds the return address from a subroutine), the stack pointer (sp), and
the program counter (pc). The lr register can also be used as a GPR after its
content has been saved to the stack. Besides GPRs, most existing M4s also have
32 floating-point registers (“M4f”), as is the case for the cheap, widely available,
and popular STM32F407 Discovery board. Aside from performing floating-point
instructions, floating point registers can be used as a cache to store frequently
used constants or loop counters by using the vmov instruction that moves 32 bits
between general-purpose and floating-point registers in exactly 1 cycle.

A very helpful feature, called “flexible second operand”, can also save lots of
time. In most data-processing instructions, the second operand can be a register
shifted or rotated in the same instruction without causing extra latency. A shift
or rotation that operates on a flexible second operand can be the arithmetic
right shift (ASR), logical right or left shift (LSL and LSR), or rotation (ROR),
plus rotate right extended by one bit (RRX). For example, the instruction ADD
r0,r1,r2,LSL #3 can calculate r0 = r1 + (r2 � 3) in one clock cycle. As all
common instructions like EOR and AND support the flexible second operand, shifts
and rotates on registers can be had “for free” in many cases.

Since the functionalities we use for the implementation are also present in
the ARM Cortex-M3 processor (which is missing only what’s usually called DSP
instructions compared to the M4), our work can be extended there without too
much trouble, needing only to replace all caching in the floating point registers
with stack access operations (and possibly re-optimizing).

Secure Boolean Masking of Gimli 381

3 Side-Channel Countermeasures

In this section, we provide three ways to avoid information leakage in Gimli
implementation. In Sect. 3.1 and Sect. 3.2, we discuss 2-share TI targeted for
software implementations since they require a register stage after some opera-
tions to achieve non-completeness. This is easier to accomplish on software than
highly parallel hardware implementations because each operation is stored to a
register anyway. Therefore, if none of the individual terms recombines 2 shares of
the same variable prior to the register write, and if each input share is indepen-
dently uniform, non-completeness is always fulfilled. On the other hand, 3-share
TI can be implemented on both platforms since it does not require overhead on
the register areas and additional time cycles in hardware implementations.

For all the methods below, the first step is to apply random masking to all
of the twelve 32-bit states. In an s-share scheme, we generate 12(s − 1) random
numbers and exclusive-or each state with s − 1 random numbers. For example,
in a 3-share scheme, state s0,0 will xor 2 random numbers R0 and R1. The
shared state will then be s0,0 = (s0,0 ⊕ R0 ⊕ R1, R0, R1). Though we perform
these three ways on Gimli implementation, these methods are not unique to
Gimli but are also implementable on other NORX family ciphers because of
their similar structure.

3.1 2-Share with ChaCha-8 Randomness

In this method, we recall that the classical Boolean masking schemes in AND/OR
gates simply put one random value in one share, and the other share is the value
we want to protect xor’ed with that random value, so that xor’ing the two shares
yields the sensitive intermediate and both shares are uniformly random. We use
the same idea on the SP-box in Gimli with 3 random numbers R0, R1, R2, and
the result is given in Eq. 1, where {x0, x1}, {x′

0, x
′
1} is the input, output shares

for x respectively. y and z are the same.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = R0 ⊕ x0 ⊕ (z0 � 1) ⊕ ((y0 ∧ z0) � 2) ⊕ ((y0 ∧ z1) � 2) ⊕ ((y1 ∧ z0) � 2)

x′
1 = R0 ⊕ x1 ⊕ (z1 � 1) ⊕ ((y1 ∧ z1) � 2)

y′
0 = R1 ⊕ y0 ⊕ x0 ⊕ ((x0 ∨ z0) � 1) ⊕ ((¬x0 ∧ z1) � 1) ⊕ ((x1 ∧ ¬z0) � 1)

y′
1 = R1 ⊕ y1 ⊕ x1 ⊕ ((x1 ∧ z1) � 1)

z′
0 = R2 ⊕ z0 ⊕ y0 ⊕ ((x0 ∧ y0) � 3) ⊕ ((x0 ∧ y1) � 3) ⊕ ((x1 ∧ y0) � 3)

z′
1 = R2 ⊕ z1 ⊕ y1 ⊕ ((x1 ∧ y1) � 3)

(1)
The correctness of this equation can simply be checked by xor’ing the two

shares of each variable. For example:

x′ = x′
0 ⊕ x′

1

= (x0 ⊕ x1) ⊕ ((z0 ⊕ z1) � 1) ⊕ (((y0 ∧ z0) ⊕ (y0 ∧ z1) ⊕ (y1 ∧ z0) ⊕ (y1 ∧ z1)) � 2)

= x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)

382 T.-H. Chang et al.

If the subscript(s) of a term have 0, then we split that term into the first
share, the others are combined into the second share. Because in this way, we can
optimize the memory operations in assembly code more easily. 12 × 24 = 288
random numbers are required for the 24 rounds of Gimli. While STM32F4
devices feature a true random number generator, it takes approximately 60 to
70 clock cycles to generate one 32-bit random integer. Hence we implement
a ChaCha-8 pseudo-random number generator which reduces the clock cycle
count to around 25 to 30 per random number. We choose the ChaCha-8 pseudo-
random number generator because it is fast and currently considered to be 2256

bit security and highly unlikely to be less secure than Gimli’s design security
level [22], but of course, we can substitute any secure and fast stream cipher.

3.2 2-Share with Optimal Masking

In [10], a state-of-the-art masking mechanism was proposed. We can replace the
non-linear operations in Eq. 1 by the operations of 2-share Threshold implemen-
tation, according to Table 1.

Table 1. Expressions for different operations.

Operation Expression

SecAnd z1 = (x1 ∧ y1) ⊕ (x1 ⊕ ¬y2) z2 = (x2 ∧ y1) ⊕ (x2 ⊕ ¬y2)

SecOr z1 = (x1 ∧ y1) ⊕ (x1 ⊕ ¬y2) z2 = (x2 ∧ y1) ⊕ (x2 ⊕ ¬y2)

By eliminating the requirement of fresh randomness, it outperformed the
classical Boolean masking schemes on software platforms. Here we utilize their
result and construct a 2-share optimal masking of Gimli.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = x0 ⊕ (z0 � 1) ⊕ (((y0 ∧ z0) ⊕ (¬y1 ∨ z0)) � 2)

x′
1 = x1 ⊕ (z1 � 1) ⊕ (((y0 ∧ z1) ⊕ (¬y1 ∨ z1)) � 2)

y′
0 = y0 ⊕ x0 ⊕ (((x0 ∧ z0) ⊕ (x0 ∨ z1)) � 1)
y′
1 = y1 ⊕ x1 ⊕ (((x1 ∨ z0) ⊕ (x1 ∧ z1)) � 1)
z′
0 = z0 ⊕ y0 ⊕ (((x0 ∧ y0) ⊕ (x0 ∨ ¬y1)) � 3)
z′
1 = z1 ⊕ y1 ⊕ (((x1 ∧ y0) ⊕ (x1 ∨ ¬y1)) � 3)

(2)

Notice that we only put the negation gate before y shares because ARM’s
flexible second operand only works on the second operand (the negated one)
in ORN instructions. Since the y shares must be shifted, they need to be used
as the second operands. Also, the method does require a register stage for the
operations of the AND and OR gates. For the application on hardware platforms,
this would be a big trade-off in terms of speed and area.

To prove that the modified function does not leak any information about
any sensitive variable, we notice that in the formula of x and y shares, the only

Secure Boolean Masking of Gimli 383

shares that contain both subscripts are only in the AND and OR gates. Since
they don’t leak the information about y and z, respectively, the whole calculation
will not leak either since different shares are independent.

For the z shares, however, there is a chance that it might leak the informa-
tion about y because both shares are present in both parts. We can check this
very efficiently by performing a few bitwise operations on the truth tables and
computing the Hamming weight. For example, a non-constant function f leaks
information about function k if and only if

HW (k ∧ f)
HW (f)

�= HW (k ∧ ¬f)
HW (¬f)

,

where HW(g) denotes the Hamming weight of the truth table of function g [10].
To confirm the z shares, we may then set z′

0 as f and y as k and calculate
the Hamming weight for all variables indexed from 0 to 15 since the formula
shifts variables to the left at most 3. Therefore, we can prove that the function
of 2-share optimal masking does not leak information about the sensitive state.

3.3 3-Share Threshold Implementation

To resist-first order DPA in hardware security, at least t + 1 shares of masking
is required [9] for the TI method, where t is the degree of a function and is 2
for Gimli. We begin by constructing a threshold implementation of a 3-share
Gimli permutation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = x1 ⊕ (z1 � 1) ⊕ (((y1 ∧ z1) ⊕ (y1 ∧ z2) ⊕ (y2 ∧ z1)) � 2)

x′
1 = x2 ⊕ (z2 � 1) ⊕ (((y2 ∧ z2) ⊕ (y2 ∧ z0) ⊕ (y0 ∧ z2)) � 2)

x′
2 = x0 ⊕ (z0 � 1) ⊕ (((y0 ∧ z0) ⊕ (y0 ∧ z1) ⊕ (y1 ∧ z0)) � 2)

y′
0 = y1 ⊕ x1 ⊕ (((x1 ∧ z1) ⊕ (x1 ∧ ¬z2) ⊕ (¬x2 ∧ z1)) � 1)
y′
1 = y2 ⊕ x2 ⊕ (((x2 ∨ z2) ⊕ (¬x2 ∧ z0) ⊕ (x0 ∧ ¬z2)) � 1)
y′
2 = y0 ⊕ x0 ⊕ (((x0 ∧ z0) ⊕ (x0 ∧ z1) ⊕ (x1 ∧ z0)) � 1)
z′
0 = z1 ⊕ y1 ⊕ (((x1 ∧ y1) ⊕ (x1 ∧ y2) ⊕ (x2 ∧ y1)) � 3)
z′
1 = z2 ⊕ y2 ⊕ (((x2 ∧ y2) ⊕ (x2 ∧ y0) ⊕ (x0 ∧ y2)) � 3)
z′
2 = z0 ⊕ y0 ⊕ (((x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0)) � 3)

(3)

Theorem 1. Equation 3 constructs a threshold implementation of Gimli per-
mutation. That is, it meets the definition of Correctness, Non-Completeness
and Uniformity.

Proof. For Correctness, we need to make sure that (x′,y′, z′) =
(
⊕

x′
i,

⊕
y′
i,

⊕
z′
i). For instance, the y part can be proved:

⊕2
i=0 y

′
i = (x0⊕x1⊕

x2)⊕(y0⊕y1⊕y2)⊕((x0⊕x1⊕x2)∨(z0⊕z1⊕z2)) � 1) = x⊕y⊕((x∨z) � 1).
The x and z part is simple since it only contains an and gate.

For Non-Completeness, it can be seen that the computations of x′
0, y

′
0, z

′
0

do not involve components of x0, y0, z0, the ones of x′
1, y

′
1, z

′
1 do not involve

384 T.-H. Chang et al.

components of x1, y1, z1 and the ones of x′
2, y

′
2, z

′
2 do not involve components of

x2, y2, z2.
For Uniformity, if the mapping of Eq. 3 is an invertible mapping from (x,

y, z) to (x’, y’, z’), it implies that if (x, y, z) is a uniform sharing, then (x’, y’,
z’) is an uniform sharing as well [8]. It is, therefore, sufficient to show that the
mapping of Eq. 3 is invertible. We will do that by giving a method to compute
(x, y, z) from (x’, y’, z’).

We do this by recovering (x,y, z) from 0-bit (rightmost) to 31-bit (leftmost)
with the output (x′,y′, z′). We denote the k-bit of x0, say, by x0,k. We rewrite
the first equation by switching the output term to the right hand side:

x1 = x′
0 ⊕ (z1 � 1) ⊕ (((y1 ∧ z1) ⊕ (y1 ∧ z2) ⊕ (y2 ∧ z1)) � 2)

Because the terms after x′
0 have been shifted, x1,0 can be derived from x′

0,0.
Then we rewrite the equations as:

y1 = y′
0 ⊕ x1 ⊕ (((x1 ∧ z1) ⊕ (x1 ∧ ¬z2) ⊕ (¬x2 ∧ z1)) � 1)

z1 = z′
0 ⊕ y1 ⊕ (((x1 ∧ y1) ⊕ (x1 ∧ y2) ⊕ (x2 ∧ y1)) � 3)

To compute y1,0 and z1,0, the last term is also irrelevant. Since we already
knew x1,0, we simply calculate y1,0 = y′

0,0 ⊕x1,0. And then z1,0 = z′
0,0 ⊕y1,0. We

can use the same method to get the 0-bit of the other 6 shares.
Assume that ∀a ∈ {x, y, z}, i ∈ {0, 1, 2}, n < 0, ai,n = 0, with the bit 0 to

k − 1 of all shares known, bits k of (x,y, z) can be derived easily via:

x1,k = x′
0,k ⊕ z1,k−1 ⊕ ((y1,k−2 ∧ z1,k−2) ⊕ (y1,k−2 ∧ z2,k−2) ⊕ (y2,k−2 ∧ z1,k−2))

y1,k = y′
0,k ⊕ x1,k ⊕ ((x1,k−1 ∧ z1,k−1) ⊕ (x1,k−1 ∧ ¬z2,k−1) ⊕ (¬x2,k−1 ∧ z1,k−1))

z1,k = z′
0,k ⊕ y1,k ⊕ ((x1,k−3 ∧ y1,k−3) ⊕ (x1,k−3 ∧ y2,k−3) ⊕ (x2,k−3 ∧ y1,k−3))

This way, we can restore (x,y, z) from the output (x′,y′, z′). Thus all possible
inputs and outputs are mapped one-to-one to each other, which implies the
uniformity property.

4 Implementation Details

In this section, assembly level optimizations of original and masked Gimli for
ARM Cortex-M4 processors, aimed at both high-speed and compact code-size,
are presented.

4.1 Optimization on Original Gimli

We optimized the original Gimli in two ways: (1) we first deal with the non-
linear layer, namely the SP-box, of Gimli by exploiting the “flexible second
operand” feature; (2) we optimized the big/small swap steps by minimizing the
amount of memory operations.

Secure Boolean Masking of Gimli 385

SP-box: In order to exploit the flexible second operand feature, we slightly mod-
ify the SP-box function. Instead of calculating the rotations of y-states with a
ROR instruction, we skip this and fix the missing rotations by rotating registers
when they are AND-ed or XOR-ed, using the flexible second operand. Without
using the flexible second operand, each round needs 15 operations. By not rotat-
ing the y-states beforehand and some rearrangement of the instructions, we can
reduce that to 10 instructions, which is 33% smaller.

Notice that with 12 state words loaded into registers, we have only 2 other
registers (here denoted a0, a1) available as scratch space.

Algorithm 2: Optimization on Original Gimli

input : States before the SP-box (x0, y0, z0)
output: States after the SP-box (x0, y0, z0)

1 ROR x0, #8
2 AND a0, z0, y0, ROR, #23
3 EOR a0, x0, a0, LSL, #2
4 ORR a1, x0, z0
5 EOR a1, x0, a1, LSL, #1
6 AND x0, x0, y0, ROR, #23
7 EOR x0, z0, x0, LSL, #3
8 EOR x0, x0, y0, ROR, #23
9 EOR z0, a1, z0, LSL, #1

10 EOR y0, a2, y0, ROR, #23

Swap: To avoid the penalty of using slow memory operations, we want to mini-
mize save and load instructions. Since the small and big swaps operate alterna-
tively, the states will return to their former places after 2 small and 2 big swaps.
With a total of 6 small and big swaps, this means that all states will return to
their original places after 24 rounds of Gimli permutation.

If we can keep track of where the states are before and after the swap, we can
simply continue to the next round with this order of registers without actually
swapping anything. For example, let r1-r12 be the content of the 12 state words.
The first non-linear layer is performed on (r1, r4, r7), (r2, r5, r8), (r3,
r6, r9), and (r4, r8, r12). After the first small swap, the next non-linear
layer should be performed on (r2, r4, r7), (r1, r5, r8), (r4, r6, r9), and
(r3, r8, r12). In this way, the linear layer can be simply omitted.

For software implementation, we modify the source code given in [19] by
changing the C implementation of Gimli permutation to assembly code because
that is the bottleneck of the performance. It is also where our three methods
differ. And the C implementation acts as a baseline to our optimization that we
compare to in the next section.

386 T.-H. Chang et al.

4.2 Implementation Details of Masked Gimli

Based on the idea shown in Sects. 3.1 and 3.2, we develop Algorithm 3 (SecSP1),
a one round 2-share Gimli SP-box refreshed with given random numbers, and
Algorithm 4 (SecOptSP1), one round optimal masking of 2-share Gimli. s0 and
s1 are the 2 shares of one column in the state and Ri are random numbers
generated by ChaCha-8.

Notice that the optimization on the original Gimli can also be applied here
as well: every shift of the ys can be delayed and effectively performed using the
flexible second operand. We can actually count the number of operations used
in these expressions of a 2-share SP-box: 2(ROR) + 24(EOR) + 12(AND/ORR) = 38,
which is about 4 times that of the original version. But because of the overhead
of random number generation, the actual cost of Algorithm 3 is much higher.

Algorithm 3: 2-share SP-box (SecSP1)
input : s0 = (x0, y0, z0), s

1 = (x1, y1, z1), R0, R1, R2 ∈ {0, 1}32

output: (x′
0 ⊕ x′

1, y
′
0 ⊕ y′

1, z
′
0 ⊕ z′

1) = SP (x0 ⊕ x1, y0 ⊕ y1, z0 ⊕ z1)
1 (x0, x1) ← (x0 ≪ 24, x1 ≪ 24)
2 (s0, s1, s2, s3) ← (x0 ∧ z0, x0 ∧ ¬z1, x1 ∧ ¬z0, x1 ∨ z1)
3 (t0, t1) ← (R0 ⊕ s0 ⊕ s1 ⊕ s2, R0 ⊕ s3)
4 (u0, u1) ← (x0 ⊕ (t0 � 1), x1 ⊕ (t1 � 1))
5 (y′

0, y
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (u1 ≪ 9))

6 (s0, s1, s2, s3) ← (z0 ∧ (y0 ≪ 9), z0 ∧ (y1 ≪ 9), z1 ∧ (y0 ≪ 9), z1 ∧ (y0 ≪ 9))
7 (t0, t1) ← (R1 ⊕ s0 ⊕ s1 ⊕ s2, R1 ⊕ s3)
8 (u0, u1) ← (x0 ⊕ (t0 � 2), x1 ⊕ (t1 � 2))
9 (z′

0, z
′
1) ← (u0 ⊕ (z0 � 1), u1 ⊕ (z1 � 1))

10 (s0, s1, s2, s3) ← (x0 ∧ (y0 ≪ 9), x0 ∧ (y1 ≪ 9), x1 ∧ (y0 ≪ 9), x1 ∧ (y0 ≪ 9))
11 (t0, t1) ← (R2 ⊕ s0 ⊕ s1 ⊕ s2, R2 ⊕ s3)
12 (u0, u1) ← (z0 ⊕ (t0 � 3), z1 ⊕ (t1 � 3))
13 (x′

0, x
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (y1 ≪ 9))

We can count the operations on these expressions of the optimal 2-share
SP-box as well: 2(ROR) + 18(EOR) + 12(AND/ORR) = 32, which is about 3 times
the non-shared version without additional memory manipulation because of the
increased variables.

For further optimization, we notice that the linear layers (swap) happen
every two rounds, it means that during the consecutive rounds where no swap
happens in-between, the inputs to non-linear layers are the same three 32-bit
states. Therefore, we can apply SP-box twice to the states without loading and
saving to further reduce the number of memory instructions. Algorithm 5 shows
the process of this idea applied to 2-share optimal masking, where si,j represents
the 2 shares of 3 states (si, s4+j , s8+j) and SP2 is one round SP-box applied twice
in a row.

Secure Boolean Masking of Gimli 387

Algorithm 4: Optimal 2-share SP-box (SecOptSP1)
input : s0 = (x0, y0, z0), s

1 = (x1, y1, z1)
output: (x′

0 ⊕ x′
1, y

′
0 ⊕ y′

1, z
′
0 ⊕ z′

1) = SP (x0 ⊕ x1, y0 ⊕ y1, z0 ⊕ z1)
1 (x0, x1) ← (x0 ≪ 24, x1 ≪ 24)
2 (s0, s1, s2, s3) ← (x0 ∧ z0, x0 ∨ z1, x1 ∨ z0, x1 ∧ z1)
3 (t0, t1) ← (s0 ⊕ s1, s2 ⊕ s3)
4 (u0, u1) ← (x0 ⊕ (t0 � 1), x1 ⊕ (t1 � 1))
5 (y′

0, y
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (u1 ≪ 9))

6 (s0, s1, s2, s3) ← (z0 ∧ (y0 ≪ 9), z0 ∨ ¬(y1 ≪ 9), z1 ∧ (y0 ≪ 9), z1 ∨ ¬(y0 ≪ 9))
7 (t0, t1) ← (s0 ⊕ s1, s2 ⊕ s3)
8 (u0, u1) ← (x0 ⊕ (t0 � 2), x1 ⊕ (t1 � 2))
9 (z′

0, z
′
1) ← (u0 ⊕ (z0 � 1), u1 ⊕ (z1 � 1))

10 (s0, s1, s2, s3) ← (x0 ∧ (y0 ≪ 9), x0 ∨¬(y1 ≪ 9), x1 ∧ (y0 ≪ 9), x1 ∨¬(y0 ≪ 9))
11 (t0, t1) ← (s0 ⊕ s1, s2 ⊕ s3)
12 (u0, u1) ← (z0 ⊕ (t0 � 3), z1 ⊕ (t1 � 3))
13 (x′

0, x
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (y1 ≪ 9))

Algorithm 5: 24 rounds of Gimli permutation
input : s0 = (s0i,j), s

1 = (s1i,j) ∈ W 3×4

output: Gimli(s0 ⊕ s1) = (s0i,j , s
1
i,j) ∈ W 3×4,2

s0,0, s1,1, s2,2, s3,3 ← SP1(s0,0), SP1(s1,1), SP1(s2,2), SP1(s3,3)
s01,0 ← s01,0 ⊕ 0x9e377900 ⊕ 24
s1,0, s0,1, s3,2, s2,3 ← SP2(s1,0), SP2(s0,1), SP2(s3,2), SP2(s2,3)
s3,0, s2,1, s1,2, s0,3 ← SP2(s3,0), SP2(s2,1), SP2(s1,2), SP2(s0,3)
s02,0 ← s02,0 ⊕ 0x9e377900 ⊕ 20
s2,0, s3,1, s0,2, s1,3 ← SP2(s2,0), SP2(s3,1), SP2(s0,2), SP2(s1,3)
s0,0, s1,1, s2,2, s3,3 ← SP2(s0,0), SP2(s1,1), SP2(s2,2), SP2(s3,3)
s01,0 ← s01,0 ⊕ 0x9e377900 ⊕ 16
s1,0, s0,1, s3,2, s2,3 ← SP2(s1,0), SP2(s0,1), SP2(s3,2), SP2(s2,3)
s3,0, s2,1, s1,2, s0,3 ← SP2(s3,0), SP2(s2,1), SP2(s1,2), SP2(s0,3)
s02,0 ← s02,0 ⊕ 0x9e377900 ⊕ 12
s2,0, s3,1, s0,2, s1,3 ← SP2(s2,0), SP2(s3,1), SP2(s0,2), SP2(s1,3)
s0,0, s1,1, s2,2, s3,3 ← SP2(s0,0), SP2(s1,1), SP2(s2,2), SP2(s3,3)
s01,0 ← s01,0 ⊕ 0x9e377900 ⊕ 8
s1,0, s0,1, s3,2, s2,3 ← SP2(s1,0), SP2(s0,1), SP2(s3,2), SP2(s2,3)
s3,0, s2,1, s1,2, s0,3 ← SP2(s3,0), SP2(s2,1), SP2(s1,2), SP2(s0,3)
s02,0 ← s02,0 ⊕ 0x9e377900 ⊕ 4
s2,0, s3,1, s0,2, s1,3 ← SP2(s2,0), SP2(s3,1), SP2(s0,2), SP2(s1,3)
s0,0, s1,1, s2,2, s3,3 ← SP1(s0,0), SP1(s1,1), SP1(s2,2), SP1(s3,3)
return (s0, s1)

The details for a 3-share threshold implementation are much the same
in Algorithm 6. The input is now 3 shared states (s0 = (x0, y0, z0), s1 =
(x1, y1, z1), s2 = (x2, y2, z2)) and the output is SP (x0 ⊕x1 ⊕x2, y0 ⊕y1 ⊕y2, z0 ⊕

388 T.-H. Chang et al.

Algorithm 6: 3-share SP-box
input : s0 = (x0, y0, z0), s

1 = (x1, y1, z1), s
2 = (x2, y2, z2)

output: (x′
0 ⊕ x′

1 ⊕ x′
2, y

′
0 ⊕ y′

1 ⊕ y′
2, z

′
0 ⊕ z′

1 ⊕ z′
2) =

SP (x0 ⊕ x1 ⊕ x2, y0 ⊕ y1 ⊕ y2, z0 ⊕ z1 ⊕ z2)
1 (x0, x1, x2) ← (x0 ≪ 24, x1 ≪ 24, x2 ≪ 24)
2 y′

1 ← ((y2 ≪ 9) ⊕ x2 ⊕ (((x2 ∨ z2) ⊕ (¬x2 ∧ z0) ⊕ (x0 ∧ ¬z2)) � 1))
3 z′

1 ← (z2⊕(y2 ≪ 9)⊕(((x2∧(y2 ≪ 9))⊕(x2∧(y0 ≪ 9))⊕(x0∧(y2 ≪ 9))) � 3))
4 y′

2 ← ((y0 ≪ 9) ⊕ x0 ⊕ (((x0 ∧ z0) ⊕ (x0 ∧ z1) ⊕ (x1 ∧ z0)) � 1))
5 z′

2 ← (z0⊕(y0 ≪ 9)⊕(((x0∧(y0 ≪ 9))⊕(x0∧(y1 ≪ 9))⊕(x1∧(y0 ≪ 9))) � 3))
6 x′

2 ← (x0⊕(z0 � 1)⊕((((y0 ≪ 9)∧z0)⊕((y0 ≪ 9)∧z1)⊕((y1 ≪ 9)∧z0)) � 2))
7 x′

1 ← (x2⊕(z2 � 1)⊕((((y2 ≪ 9)∧z2)⊕((y2 ≪ 9)∧z0)⊕((y0 ≪ 9)∧z2)) � 2))
8 y′

0 ← ((y1 ≪ 9) ⊕ x1 ⊕ (((x1 ∧ z1) ⊕ (x1 ∧ ¬z2) ⊕ (¬x2 ∧ z1)) � 1))
9 z′

0 ← (z1⊕(y1 ≪ 9)⊕(((x1∧(y1 ≪ 9))⊕(x1∧(y2 ≪ 9))⊕(x2∧(y1 ≪ 9))) � 3))
10 x′

0 ← (x1⊕(z1 � 1)⊕((((y1 ≪ 9)∧z1)⊕((y1 ≪ 9)∧z2)⊕((y2 ≪ 9)∧z1)) � 2))

z1 ⊕ z2), where the SP box computes the result of Eq. 3. Then, we follow the
same procedure as in Algorithm 5 to construct the 24 rounds of 3-share Gimli.

The total number of operations for the 3-share threshold implementation is
3(ROR) + 36(EOR) + 27(AND/ORR) = 66, which is about 7 times the non-shared
version.

5 Experiments and Results

The software was cross-compiled using the GNU Compiler Collection for ARM
Embedded Processors version 9.2.1 with the options -mthumb -mcpu=cortex-m4
and tested on a STM32F407 discovery board. The length was measured by the
number of assembly code instructions, while the cycle count was measured using
the internal clock cycle counter. Note that the reported cycles include the over-
heads for calling/returning from the considered functions, while all input data
was assumed to be already word aligned.

5.1 Comparison of the Implementations

Table 2 provides a comparative overview of the implementation results. The
cycles are counted from the beginning of AEAD encryption of 1024 bytes asso-
ciated data and 1024 bytes plaintext, while the lengths are only counted by the
assembly code for 24 rounds of Gimli permutation. In Table 2, the original
method is pure C implementation [19] and the non-shared method represents
the assembly implementation in Sect. 4.1.

Our Gimli implementation is much quicker than the C implementation. Even
with 3-share protection, our result is comparable with the original unprotected
C implementation. The growth in cycles as the number of shares increases is
meeting our prediction as well. The cycle count of the 2-share with optimal
masking implementation is about 4 times that of non-masked, and that of the 3-
share TI implementation is about 7 times the ones of non-shared. These reference

Secure Boolean Masking of Gimli 389

assembly codes can be found online1. On the other hand, according to Table 2,
a 2-share implementation with ChaCha-8 is slower than a 3-share Threshold
implementation. If a 2-share Threshold implementation cannot meet the required
security level, a 3-share Threshold implementation is a better choice compared
with the 2-share implementation with ChaCha-8.

We also tried implementing only by M3 instructions, and the results are
shown in Table 3. The main difference between M3 and M4 is the memory
manipulation instructions. Without the floating-point registers as the tempo-
rary memory, the cost of store and load instructions increases as the number of
shares increases.

Table 4 shows the performance of masked algorithms compared with the base-
line unmasked ones. The numbers are how much slower the masked version was
than the unmasked version. Our methods have a significant improvement on both
scenarios compared with [29], even accounting for the Cortex-M4 to Cortex-M3
difference.

Table 2. The results for Gimli-AEAD (1024 message bytes and 1024 ad bytes) under
benchmark clock (24MHz).

Methods Cycles Speed (cycles/byte) Length

Original 1037161 506.4 –

Non-shared 151551 74.0 987

2-share (chaha-8 randomness) 2213676 1080.9 336 (not unrolled)

2-share (optimal masking) 615383 300.5 4247

3-share (TI) 1159939 566.4 8378

5.2 Leakage Detection of Side-Channel Analysis

We adopt the test vector leakage assessment (TVLA) methodology to perform
leakage detection. All the experiments here are based on ChipWhisperer-Lite
Two-Part Version [26]. The program ChipWhisperer Capture [27] retrieves power
samples from the control board, storing power traces and input data.

To complete the DPA test at Security Level 4 of ISO/IEC 17825 [1], we
focus on the first permutation and capture two sets of l = 100000 power traces
corresponding to the selected plaintexts and randomly plaintexts and compute
the Welch’s t-test to identify the differentiating features between the trace sets.

Figure 1 shows the T-test of three different versions of our implementation.
Each picture can be separated into three parts by the black lines: 1. loading
key and plaintext and applying the random mask to the state; 2. the 24-round
Gimli permutation; and 3. recovering the state and return. To reduce leakage
introduced by pipeline registers, we rearranged the parallel instructions in 2-
share TI [13]. Figure 1c shows the t-test results where the parallel instructions
1 https://github.com/kuruwa2/pqm4/tree/master/gimli24v1-aead.

https://github.com/kuruwa2/pqm4/tree/master/gimli24v1-aead

390 T.-H. Chang et al.

Table 3. The results for Gimli-AEAD (1024 message bytes and 1024 ad bytes) on M3
under benchmark clock (24MHz).

Methods Cycles Speed (cycles/byte) Length

Non-shared 151551 74.0 987

2-share (chaha-8 randomness) 2286875 1116.6 335 (not unrolled)

2-share (optimal masking) 615826 300.7 4250

3-share (TI) 1247448 609.1 8276

Table 4. The amount of overhead for masking.

Methods 2 shares 3 shares

Reference [29] 10.50 31.41

Ours 4.06 7.65

(a) Unprotected Gimli (b) 2-share without rearrangement

(c) 2-share (d) 3-share threshold implementation

Fig. 1. (a) T-test of unprotected Gimli (b) T-test of 2-share with optimal masking
Gimli without rearrangement (c) T-test of 2-share with optimal masking Gimli (d)
T-test of 3-share threshold implementation Gimli

are rearranged. However, 2-share TI still has some unintentional information
leakage. We suspect that there are some unexpected buffers producing uninten-
tional leakage in Cortex-M3 and -M4 [4]. On the other hand, We can see that the
t-statistic value of the 3-share masked Gimli permutation is inside the ±4.5 [30]
interval, corresponding to 99.999% confidence that a difference shown is not due

Secure Boolean Masking of Gimli 391

Fig. 2. T-test of 3-share threshold implementation Gimli with l = 1000000 power
traces

to random chance. To detect the leakage of 3-share masked Gimli permutation,
we capture with l = 1,000,000 power traces and use TVLA to perform a leakage
assessment. Figure 2 shows the T-test of the first 12 round of 3-share Threshold
implementation with l = 1,000,000 power traces. We can see that the t-statistic
value is inside the ±4.5 interval. In addition, since the first and third parts con-
tain the public value, such as the ciphertext, it is normal that the t-statistic
value exceeds ±4.5 [2].

6 Conclusion

Our results significantly improve the performance of Gimli implementations on
Cortex-M3 and -M4 processors, especially NORX ciphers such as Gimli are pop-
ular for their simplicity in preventing timing attacks. Compared to the original
C implementation, the instruction count is reduced by 85%. In addition to this,
the overhead of masking is reduced by 61% and 76% for 2-shared and 3-shared,
respectively. Even if we rearranged the parallel instructions, the currently widely
used 2-shared, Gimli still exists for unintentional information leakage. Finally,
we have completed a 3-share Threshold Implementation and passed the safety
inspection of ISO/IEC 17825 Level 4.

References

1. ISO/IEC 17825:2016 information technology - security techniques - testing meth-
ods for the mitigation of non-invasive attack classes against cryptographic modules.
Standard, International Organization for Standardization, Geneva, CH (2016)

2. Abdulrahman, A., Chen, J.P., Chen, Y.J., Hwang, V., Kannwischer, M.J., Yang,
B.Y.: Multi-moduli NTTS for saber on cortex-m3 and cortex-m4. Cryptology
ePrint Archive, Report 2021/995 (2021). https://ia.cr/2021/995

https://ia.cr/2021/995

392 T.-H. Chang et al.

3. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 2

4. Barenghi, A., Pelosi, G.: Side-channel security of superscalar CPUs: evaluating the
impact of micro-architectural features. In: 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), pp. 1–6 (2018)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, pp. 1–6 (2015)

6. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

7. Bernstein, D.J., et al.: Chacha, a variant of salsa20. In: Workshop Record of SASC,
vol. 8, pp. 3–5 (2008)

8. Bilgin, B.: Threshold implementations as countermeasure against higher-order dif-
ferential power analysis (2015)

9. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

10. Biryukov, A., Dinu, D., Le Corre, Y., Udovenko, A.: Optimal first-order boolean
masking for embedded IoT devices. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 22–41. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 2

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

12. Chen, C., Farmani, M., Eisenbarth, T.: A tale of two shares: why two-share thresh-
old implementation seems worthwhile—and why it is not. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 819–843. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 30

13. Corre, Y.L., Großschädl, J., Dinu, D.: Micro-architectural power simulator for leak-
age assessment of cryptographic software on arm cortex-m3 processors. Cryptology
ePrint Archive, Report 2017/1253 (2017). https://ia.cr/2017/1253

14. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 7

15. Gruber, M., et al.: DOMREP - an orthogonal countermeasure for arbitrary order
side-channel and fault attack protection. IEEE Trans. Inf. Forensics Secur. 16,
4321–4335 (2021)

16. Gruber, M., Probst, M., Tempelmeier, M.: Statistical ineffective fault analysis of
GIMLI. In: 2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 252–261 (2020)

17. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
implementations of GIFT: a trade-off analysis. Cryptology ePrint Archive, Report
2017/1040 (2017). http://eprint.iacr.org/2017/1040

18. Jungk, B., Petri, R., Stöttinger, M.: Efficient side-channel protections of ARX
ciphers. Cryptology ePrint Archive, Report 2018/693 (2018). https://eprint.iacr.
org/2018/693

https://doi.org/10.1007/978-3-319-11212-1_2
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-53887-6_30
https://ia.cr/2017/1253
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
http://eprint.iacr.org/2017/1040
https://eprint.iacr.org/2018/693
https://eprint.iacr.org/2018/693

Secure Boolean Masking of Gimli 393

19. Kannwischer, M.J.: m4-crypto-eng-assignments (2020). https://github.com/
mkannwischer/m4-crypto-eng-assignments/tree/master/gimli24v1-aead

20. Khan, S., Lee, W.K., Hwang, S.O.: A flexible Gimli hardware implementation
in FPGA and its application to RFID authentication protocols. IEEE Access 9,
105327–105340 (2021)

21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

22. Miyashita, S., Ito, R., Miyaji, A.: PNB-focused differential cryptanalysis of ChaCha
stream cipher. Cryptology ePrint Archive, Report 2021/1537 (2021). https://ia.cr/
2021/1537

23. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

24. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00730-9 14

25. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

26. O’Flynn, C.: Chipwhisperer-lite (cw1173) two-part version (2016)
27. O’Flynn, C.: ChipWhisperer - the complete open-source toolchain for side-channel

power analysis and glitching attacks (2018)
28. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating

masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

29. Weatherley, R.: Performance of masked algorithms. In: Lightweight Cryptography
Primitives Documentation (2020). https://rweather.github.io/lightweight-crypto/
performance masking.html

30. Whitnall, C., Oswald, E.: A critical analysis of ISO 17825 (‘Testing methods for
the mitigation of non-invasive attack classes against cryptographic modules’). In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 256–
284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 9

31. Yan, Y., Oswald, E., Vivek, S.: An analytic attack against ARX addition exploiting
standard side-channel leakage. Cryptology ePrint Archive, Paper 2020/1455 (2020).
https://eprint.iacr.org/2020/1455. https://eprint.iacr.org/2020/1455

https://github.com/mkannwischer/m4-crypto-eng-assignments/tree/master/gimli24v1-aead
https://github.com/mkannwischer/m4-crypto-eng-assignments/tree/master/gimli24v1-aead
https://doi.org/10.1007/3-540-48405-1_25
https://ia.cr/2021/1537
https://ia.cr/2021/1537
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-00730-9_14
https://doi.org/10.1007/978-3-642-00730-9_14
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://rweather.github.io/lightweight-crypto/performance_masking.html
https://rweather.github.io/lightweight-crypto/performance_masking.html
https://doi.org/10.1007/978-3-030-34618-8_9
https://eprint.iacr.org/2020/1455
https://eprint.iacr.org/2020/1455

DeepC2: AI-Powered Covert Command
and Control on OSNs

Zhi Wang1,2 , Chaoge Liu1,2(B), Xiang Cui3(B), Jie Yin1, Jiaxi Liu1,2,
Di Wu4, and Qixu Liu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wangzhi,liuchaoge,yinjie,liujiaxi,liuqixu}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Cyberspace Institute of Advanced Technology, Guangzhou University,
Guangzhou, China

cuixiang@gzhu.edu.cn
4 Huawei Technologies Co., Ltd., Shenzhen, China

wudi94@huawei.com

Abstract. Command and control (C&C) is important in an attack. It
transfers commands from the attacker to the malware in the compro-
mised hosts. Currently, some attackers use online social networks (OSNs)
in C&C tasks. There are two main problems in the C&C on OSNs.
First, the process for the malware to find the attacker is reversible. If
the malware sample is analyzed by the defender, the attacker would
be exposed before publishing the commands. Second, the commands in
plain or encrypted form are regarded as abnormal contents by OSNs,
which would raise anomalies and trigger restrictions on the attacker.
The defender can limit the attacker once it is exposed. In this work, we
propose DeepC2, an AI-powered C&C on OSNs, to solve these problems.
For the reversible hard-coding, the malware finds the attacker using a
neural network model. The attacker’s avatars are converted into a batch
of feature vectors, and the defender cannot recover the avatars in advance
using the model and the feature vectors. To solve the abnormal contents
on OSNs, hash collision and text data augmentation are used to embed
commands into normal contents. The experiment on Twitter shows that
command-embedded tweets can be generated efficiently. The malware
can find the attacker covertly on OSNs. Security analysis shows it is
hard to recover the attacker’s identifiers in advance.

Keywords: Online social networks · Command and control · Covert
communication · Neural networks

1 Introduction

Command and control (C&C) plays an essential role in an attack. It is widely
used in Advanced Persistent Threat (APT), ransomware, or botnet scenarios.
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 394–414, 2022.
https://doi.org/10.1007/978-3-031-15777-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_22&domain=pdf
http://orcid.org/0000-0003-4711-4251
https://doi.org/10.1007/978-3-031-15777-6_22

DeepC2: AI-Powered Covert Command and Control on OSNs 395

In a C&C system, an attacker needs to send commands to the compromised
hosts via a C&C channel [2]. The hosts can be common computing devices such
as PCs, servers, routers, and cameras, which have some vulnerabilities and can
be infected by malware. They try to get and execute the commands from the
attacker and carry out attack tasks such as DDoS, spam, crypto-mining, and data
exfiltration. The major feature of a C&C system is that it has a one-to-many
C&C channel, which receives commands from the attacker and forwards them
to the compromised hosts. The process for the malware getting the commands
is called addressing. C&C channel is a vital component in a C&C system. The
attacker needs to keep the C&C channel robust and block-resistant to maintain
the communication with the malware.

In recent years, the attackers have begun to utilize online web services [35],
such as online social networks (OSNs), cloud drives, and online clipboards, to
build the C&C channel. For example, Hammertoss (APT-29) [8] used Twitter
and GitHub to publish commands and hide communication traces. HeroRat [27]
used Telegram for C&C communication on Android devices. Turla [6] utilized
Gmail to receive commands and exfiltrate information to the operators.

OSNs have some features to build a good C&C channel. It is nearly impossible
for OSNs to go offline, and users can access OSNs anytime with a networked
device. Then, visiting OSNs is allowed by most anti-virus software, and it ensures
the availability of the commands. As many people use the OSNs, the attacker’s
accounts can hide among ordinary users. Also, it is easy to limit the accounts
but not easy to shut down the OSNs. With the help of dynamic addressing, the
malware can obtain commands from multiple accounts.

However, there are two main problems with building C&C channels on OSNs.
First, the attacker’s identifiers are reversible and predictable, which will cause
the C&C channel to shut down before use. To help the malware addressing,
the attacker’s identifiers, i.e., ids, links, tokens, and DGAs (Domain Generation
Algorithms), have to be hard-coded into the malware. Once the malware is ana-
lyzed by defenders, the reversible hard-coding will expose the C&C channel, and
the attacker’s accounts can be calculated in advance. Second, the commands
published on OSNs are abnormal and will also expose the attacker’s accounts.
In most cases, commands are published in plain, encoded, or encrypted forms.
They are regarded as abnormal contents on OSNs. They will expose C&C activ-
ities and raise anomalies, triggering restrictions on the attacker’s accounts and
interrupting the C&C activities. If the OSNs block the accounts, it is difficult
for the malware to retrieve new commands.

In this paper, from the attacker’s perspective, we use AI technology to over-
come the above two problems and propose an AI-powered OSN C&C channel
called DeepC2. The main idea of DeepC2 is as follows. To overcome the first
problem, a neural network model is used for addressing. The malware finds the
attacker’s accounts through the feature vectors, which are extracted from the
attacker’s avatars by a neural network model. As the neural network models
are poorly explainable [16], defenders cannot calculate and predict the avatars
and accounts through the model and vectors. To solve the second problem and

396 Z. Wang et al.

eliminate the abnormal content, we propose embedding the commands into con-
textual and readable content (we take Twitter and tweets as examples). To
achieve this, the attacker uses data augmentation to generate numerous tweets
and uses hash collision to get the command-embedded tweets. In the addressing
process, Twitter Trends are used as the rendezvous point. The attacker posts
tweets to a trending topic, and the malware finds the attacker under the topic.
After addressing, the commands can be parsed from the attacker’s tweets.

The contributions of this paper are summarized as follows:

– We propose a novel covert command and control scenario on OSNs.
– We introduce neural networks to solve the problem of reversible hard-coding

in C&C addressing. By using feature vectors and a model, it is easy for the
malware to find the attacker while hard for defenders to locate the attacker
in advance.

– We propose a method for embedding commands into natural semantic tweets
to avoid anomalies caused by abnormal contents on OSNs.

– We present experiments on Twitter to demonstrate the feasibility of the pro-
posed methods and analyze their performance and security.

Ethical Considerations. The combination of AI and network attacks is an
upward trend. We cannot stop the evolution of cyberattacks, but we should
draw attention to the defenses in advance. This work aims not to inspire malware
authors to write more efficient malware but to motivate security researchers and
vendors to find solutions for an emerging threat. To this end, we intend to
provide this work to build a possible scenario to help prevent this kind of attack
in advance.

The remainder of this paper is structured as follows. Section 2 describes rel-
evant backgrounds and related work. Section 3 presents the methodology for
building the covert C&C channel. Detailed implementations are demonstrated
in Sect. 4. Section 5 is the evaluations on the experiments. Section 6 discusses
possible countermeasures. Conclusions are summarized in Sect. 7.

2 Background and Related Work

In this section, we present the background and related work of DeepC2.

2.1 Command and Control on OSNs

In the cases of addressing using OSN platforms, the defenders should find and
limit the attacker’s accounts in advance. By reverse-engineering a malware sam-
ple, the defenders will know the addressing process in detail [22]. If reversible
methods like DGAs or IDs are used, the attacker’s accounts can be calculated in
advance. The defenders can limit the accounts, making the C&C channel unus-
able. The defenders will also know the attacker’s accounts and commands by
running a sample. However, when they get the commands this way, the mal-
ware in the wild also gets the commands, which is a failure from the defense

DeepC2: AI-Powered Covert Command and Control on OSNs 397

perspective [28]. Therefore, the key issue in such an attack is to design a block-
resistant C&C channel that even the defenders know the detailed information
about the channel, it is hard to get the attacker’s identifiers and limit the C&C
in advance.

Some works build C&C channels on OSNs. Stegobot [20] uses the images
shared by OSN users to build the C&C channel. The social network is regarded
as a peer-to-peer network to connect the malware and the attacker. Information
is hiding in images using steganography. However, the attacker’s account can be
obtained through reverse-engineering. Sebastian et al. [26] proposed to build a
covert C&C channel on Twitter. The commands are encrypted tweets with a
keyword, for example, #walmart AZEF, where #walmart is the keyword, and
AZEF is the command cipher. However, this method also has the problem of
abnormal contents on OSNs. Kwak et al. [15] proposed a video steganography-
based C&C channel on Telegram, which can transfer large-sized secret files.
Pantic et al. [21] proposed an anomaly-resistant C&C on Twitter. They used
tweet-length as a command character and encoded each symbol in commands
into numbers from 1 to 140. They collected tweets at different lengths from
Twitter. When publishing a command, they chose tweets at specified lengths
and posted them. The malware can get the commands by calculating the lengths
of the tweets. However, this method has a low capacity and does not solve the
reversible attacker accounts.

2.2 Easy Data Augmentation

Data augmentation is a technique to solve the insufficiency of training data.
By applying data augmentation, researchers can enlarge the existing dataset to
meet the needs of training works and promote the normalized performances of
neural network models. In this work, the attacker needs to generate numerous
tweets for hash collisions. Wei et al. [33] proposed Easy Data Augmentation
(EDA) techniques. They used Synonym Replacement (SR), Random Insertion
(RI), Random Swap (RS), and Random Deletion (RD) to generate sentences
with similar meanings to the given sentences. Examples are shown in Table 1 in
Appendix A.

The augmented sentences may not be grammatically and syntactically correct
and may vary in meaning. However, due to differences in language, culture,
and education, there are many grammatically incorrect tweets on Twitter. The
Internet is diverse and inclusive. The attacker should ensure that the tweets have
semantics but do not need them to be “correct”.

2.3 AI-Powered Attacks

This work provides a new scenario on the malicious use of AI. The combination
of AI and network attacks is an upward trend. For covert communication, Rigaki
et al. [25] proposed using GAN to mimic Facebook chat traffic to make C&C
communication undetectable. StegoNet [18] and EvilModel [31] hide malware in
the neural network models to deliver malicious payloads covertly. The model

398 Z. Wang et al.

parameters are replaced by the malicious payloads. DeepLocker [14] can carry
out targeted attacks stealthily. DeepLocker trains the target attributes into an
AI model and uses the model’s outputs as a symmetric key to encrypt the mali-
cious payload. Target detection is conducted by the AI model. When the input
attributes match the target attributes, the secret key will be derived from the
model to decrypt the payload and launch attacks on the target. MalGAN [13]
generates adversarial malware that can bypass machine learning-based detection
models. A generative network is trained to minimize the malicious probabilities
of the generated adversarial examples predicted by the detector. More evasion
methods [1] [30] were proposed after MalGAN.

3 Methodology

This section introduces methodologies for building a covert C&C channel on
OSNs.

3.1 Threat Model

In this work, the C&C channel is built from the attackers’ perspective. This
work has three prominent roles: attackers, OSNs, and defenders. Attackers.
We consider adversaries to be attackers capable of neural network and artificial
intelligence technics and have the ability to use various system vulnerabilities
to get into a system. OSNs. OSNs have the ability to limit the abnormal con-
tent and accounts based on their term of services. They can also actively detect
autonomous and abnormal behaviors and limit the specious accounts according
to their regulations. Defenders. We consider defenders to be third-party unre-
lated to attackers and OSNs. Defenders have access to the vectors from the pre-
pared pictures and the structure, weights, implementation, and other detailed
information of the neural network model. Defenders also have the ability to
reverse engineer the malware sample to obtain its detailed implementation.

3.2 Approach Overview

Overall Workflow. We take Twitter as the OSN platform to demonstrate the
method. The main workflow of DeepC2 contains four steps and is shown in Fig. 1.

(1) The attacker trains a neural network model with some pictures that may be
selected as Twitter account avatars in subsequent steps. Then, the attacker
extracts the feature vectors of these pictures using the trained model (see
Fig. 2), embeds the model and the feature vectors into the malware, and
publishes the malware to the wild.

(2) The attacker visits Twitter Trends, selects a topic according to the pre-
defined rules, and then generates command-embedded tweets based on the
selected trending topic.

(3) The attacker selects a picture as its Twitter account avatar and publishes
the commands-embedded tweets using the account in the selected topic.

DeepC2: AI-Powered Covert Command and Control on OSNs 399

Generate command-embedded tweets

Post tweets Crawl tweets to the trend
Calculate distances between avatars and vectors

Decode tweets to get commands

Visit Twitter Trends and select a trending topic Visit Twitter Trends and select a trending topic

Crawl tweets to the trend

Select a picture and set it as avatar

Pictures

Neural network model

Vectors

Train the neural network model
Extract feature vectors
from pictures Publish the malware with

the model and vectors
Prepare some pictures

Attacker
Malware

1

2

3

4

Twitter accounts
RULES

1.1

1.3
1.4

1.2

2.1

2.2

2.3

3.1

3.2

4.1

4.2

4.3

4.4

Fig. 1. Overall workflow of DeepC2

(4) The compromised hosts infected with the attacker’s malware visit Twitter
Trends periodically, select a topic synchronously according to the pre-defined
rules, and then crawl the tweets and tweeters’ avatars in the selected topic to
find the attacker’s account. The compromised hosts calculate the distances
between the crawled avatars and the built-in feature vectors. If a distance is
below a threshold, it is considered that the attacker’s account is found. The
commands can be obtained from the tweet.

The workflow mainly contains two key parts: dynamic addressing and command
embedding. The dynamic addressing guides the compromised host to find the
attacker and get the command successfully. Rather than reversible methods, it
uses a neural network model, picture feature vectors, and Twitter topics to avoid
the attacker’s identifiers being exposed and predicted. The command embedding
uses hash collision and EDA to embed commands into natural semantic tweets,
thus avoiding anomalies caused by abnormal contents on OSNs. Next, we will
describe these two parts in detail.

3.3 Dynamic Addressing

The dynamic addressing includes three main elements: the neural network model,
avatars & feature vectors, and Twitter trending topics. In the following section,
we will describe the elements from three aspects: What (is the element), How
(to use), and Why (is the element).

Neural Network Model. What. The attacker needs a neural network model
to extract feature vectors, and the malware needs the model to identify the
attacker’s accounts. Due to the limited resources in the host devices, the attacker
cannot use the big-sized pre-trained models like VGGs, AlexNets, and Inception.
Therefore, the attacker needs to build and train a model itself.

How. The model is used differently for attackers and malware (see Fig. 3). For the
attacker, the model is used to extract feature vectors from avatars. The attacker

400 Z. Wang et al.

Pictures

Vectors
[0.06141704320907593, 0.11299607157707214, ...
0.04336101561784744, 0.07453791797161102]
[0.030405446887016296, 0.05502897500991821, ...
0.017460424453020096, 0.05878069996833801]
[0.06956829130649567, 0.09473420679569244, ...
0.03145717829465866, 0.052630871534347534]

Input

Output

Fig. 2. Extract feature vectors

0.0035 < Threshold

0.5802 > Threshold

(a) The attacker use the model to extract feature vectors
from pictures

(b) The malware use the model to identify the attacker (if
distance of inputs is below a threshold, the attacker is found)

Fig. 3. Neural network model use

feeds the model with a batch of pictures, and the model outputs a batch of vectors
that represent the pictures. The feature vectors and the model are published
with the malware. For the malware, the model calculates the distances between
avatars from Twitter users and the vectors to identify attackers. A selected vector
and a crawled avatar are fed into the model, and then the model outputs the
distance of the inputs.

Why. Using neural network models has the following advantages: 1) It is not easy
to reverse the neural network model. Convolution is a lossy process. Combined
with some intentionally introduced losses, it is hard to calculate the attacker’s
identifiers in advance. 2) The neural network models are fault-tolerance that
similar inputs will generate similar outputs. 3) The neural network trained with
gradient descent has good generalization ability [5]. It can help the malware
identify attackers accurately and does not mistakenly identify someone else as
the attacker.

Converting an image to a vector is similar to image-hashing [4]. In image-
hashing, similar inputs have similar output hashes. However, image-hashing is
not suitable for this work. There are two types of image-hashing methods. The
non-neural network-based image-hashing methods are reversible, and defenders
can build images that produce similar vectors according to the given hashes. For
neural network-based methods [34], the learning tasks are more complex than
DeepC2. The cryptographic hash algorithms are also unsuitable because they are
sensitive to changes. As pictures uploaded to OSNs are compressed or resized,
avatars are different from the original images, which will cause hashes to change
due to the avalanche effect [32]. Therefore, the neural network model is suitable
for this task.

Avatars and Vectors. What. The feature vectors are the abstract expression
of the attacker’s Twitter avatars. They are generated by the model and represent
the attacker’s avatars. A feature vector sample is shown in Fig. 2. Each vector
contains a group of floating-point numbers, and the amount is determined by
the model.

DeepC2: AI-Powered Covert Command and Control on OSNs 401

How. As stated above, the attacker gets the feature vectors from the model.
The malware puts a feature vector and an avatar in the model and gets the
distance between the inputs. The model will convert the avatar into another
vector and calculate the distance. To prevent replay and enhance security, it is
recommended that each avatar and vector be used only once. The attacker will
change the current account and avatar when a command is published, and the
malware will also delete the used vectors. The malware can get updates to the
vectors and model and exploits from the C&C server. The malware can carry
at least one vector in design when published. Due to various situations, the
malware may not be able to run on time. To ensure that the compromised hosts
can go online as expected, it is suggested that the malware is published with
more vectors.

Why. The reason for using the feature vectors are as follows: 1) They are the
natural output of the model and are easy to get for both the attacker and the
malware. 2) It’s difficult to reverse the vector generation process to get another
picture that can produce a similar vector. 3) The vectors are distributed in a
continuous interval (see Sect. 5.5), and each position has a large value space,
which ensures the security of the C&C channel.

Twitter Trends. What. Twitter Trends contains hot topics that have had
many discussions in the past 24 h. Usually, each topic contains 1 to 3 keyword(s).
Twitter Trends is updated every 5 min.

How. The attacker defines a set of rules to select the trending topics, and the
malware selects the topics synchronously with the attacker. In this work, we use
Twitter API to get the trending topics. Twitter Trends API returns the top 50
topics in a chosen area specified by a location ID (WOEID, where on Earth ID).
There are detailed tweet volumes if the volume exceeds 10 K over the past 24 h.
In the experiments, we obtained trends from Johannesburg, South Africa and
selected the last topic above 10 K discussions from the returned trends. The test
servers in different regions fetched the same topics with the WOEID. Twitter
API can be abused by attackers. However, attackers have more choices in real
scenarios. They can utilize third parties that provide Twitter content queries,
including tweets, trends, and user profiles. Alternatively, they can also write
their implementations that use raw HTTP requests to obtain the content.

Why. Using Twitter Trends have the following advantages: 1) Twitter Trends
provides a rendezvous point for the malware to find attackers among Twitter
users; 2) Twitter Trends changes with the tweet volume under different topics
and is updated every 5 min, which is difficult to predict; 3) Since normal users
also discuss different topics, attackers can hide among them. Therefore, we use
Twitter Trends for DeepC2.

3.4 Command Embedding

The attacker uses hash collision and easy data augmentation (EDA) to generate
commands-embedded tweets. In this work, we take publishing an IP address as

402 Z. Wang et al.

an example to illustrate the process of publishing commands. If IP addresses
can be published, other messages like domains, shortening-URL IDs, or online-
clipboard IDs can also be published in the same way.

(1) Hash Collision. To convey an IP address to the malware through tweets,
the attacker splits the IP address into two parts first, as shown in Fig. 4. Each
part is expressed in hexadecimal. For each tweet, the attacker calculates its
hash and compares whether the first 16 bits of the hash are identical to
one IP part. If two parts of an IP address collide, a successful hash collision
occurs. The attacker posts the collided tweets in order. When addressing, the
malware can get the IP address by calculating the hashes of tweets posted
by the attacker and concatenating the first 2 bytes of hashes. In this way,
16 bits can be conveyed in one tweet.

172.16.80.236

ac.10 . 50.ec

ac10 50ec

Hash(tweet_1)
= ac103�6...

Hash(tweet_2)
=50ec9ba0...

tweet_1 tweet_2

Fig. 4. Hash collision

(2) Tweets Generation. To perform a successful collision, the attacker needs
numerous tweets. The new tweets are generated using EDA. After selecting
a topic, the attacker crawls the trending tweets to generate more sentences.
We crawled 1 K tweets for each selected trend in the experiments. Before
generating new sentences using EDA, we cleaned the tweets first. As there
are word deletions and swaps during augmentation, if a tweet is too short,
the generated sentences may not contain the trending words. Thus, we fil-
tered out tweets with less than ten words. Additionally, there were retweeted
tweets that did not contain the trending words, so we filtered them out and
retained only the original tweets. Then, we removed unnecessary chars like
emojis, links, tabs, and line breaks in each tweet. Duplicate tweets were
removed at last. Normally there were 400 to 900 tweets left. We used EDA
to generate 50 sentences for each remaining tweet. It will get us 20 K to 45 K
new sentences. It is still insufficient for a hash collision. We converted all
sentences to the upper case and added punctuation (“.”, “..”, “...”, “!”, “!!”
and “!!!”) at the end of each sentence. It resulted in 140 K to more than
300 K sentences in total, which greatly increased the success rate for a hash
collision (see Sect. 5.2).

DeepC2: AI-Powered Covert Command and Control on OSNs 403

It’s not recommended to convey a whole IP address in a tweet because it
needs too many tweets to perform a successful collision. Two 16 bits will reduce
the calculation greatly. Also, it is not deterministic for a successful hash collision.
If a collision fails, the attacker can crawl more tweets or add more noise to the
sentences. The attacker needs to post the two final tweets in order so that the
malware can correctly recover the IP address.

There may be different situations where the compromised hosts cannot go
online as expected, and the defenders can put on a saved avatar and post tweets
with fake commands. In case of this happening, authentication like a digital
signature with asymmetric key pairs is recommended to ensure a secure commu-
nication.

4 Implementation

In this section, we demonstrate the proposed convert C&C channel is feasible
by presenting a proof-of-concept experiment on Twitter.

4.1 Siamese Neural Network

(1) Architecture. The Siamese Neural Network (SNN) [3] is effective in mea-
suring the similarity between two inputs. The two inputs accepted by SNN
will feed into two identical neural networks to generate two outputs. Like
“Siamese” twins sharing the same organs, the identical neural networks share
the same architecture and weights. The similarity between two inputs can be
measured by calculating the distance between two outputs. We use Euclidean
distance in this work. Figure 5 shows the architecture of the SNN. In this
work, the two identical neural networks are CNNs [17]. It contains four con-
volutional layers and three fully connected layers. It accepts a 3-channel
128-pixel image as the input and generates 128 outputs to make up a fea-
ture vector.
The contrastive loss function [12] is used during the training. For two image
inputs of the CNNs, Y is a binary label assigned to the pair, where Y = 0
represents the images being similar, and Y = 1 means that the images
are different. G1 and G2 are two vectors generated by identical CNNs. Let
Dw = ‖G1 − G2‖ be the Euclidean distance between the vectors, w be the
weights of the network, and m > 0 be a margin (radius around G). The loss
function is:

L = (1 − Y)
1
2
(Dw)2 + Y

1
2
(max(0,m − Dw))2

(2) Training. The model was implemented with Python 3.6 and PyTorch 1.5.
To train the model, we crawled avatars of different sizes from 115,887 Twitter
users and randomly selected 19,137 sets of avatars to build the dataset.
Twitter provides 4 different sizes of avatars: 48× 48, 73× 73, 200× 200 and
400× 400. We randomly chose avatars of size 400× 400 to make up input

404 Z. Wang et al.

Contrastive loss

Image1

Image2

CNN

CNN

Shared weights

Fig. 5. Architecture of Siamese neural
network

●

●

●

●

●

●

0

50

100

150

200

250

300

Cities

S
ec

on
ds

Bangalore Toronto Amsterdam Sydney Tokyo Dubai Virginia

81

16 15
35

14

47

12

Fig. 6. Time cost for finding attacker

pairs with label 1. Due to the lack of original pictures of the avatars, we
used avatars with sizes of 200 × 200 and 400× 400 from the same user to
make up input pairs with label 0. The ratio of input pairs marked as 0 and
1 is 1:2. Based on a preliminary experiment (Appendix B), the threshold for
Euclidean distance was set to 0.02.

(3) Performance. To test the performance, we conducted the training process
several times. The model converged rapidly during training. After 10–20
epochs, 100% accuracy on the test set was obtained. The size of a trained
model is 2.42 MB. We used avatars from all 115,887 users to make up the
validation set, for a total of 463,544 pairs (115,887 pairs with label 0 and
347,657 pairs with label 1, 1:3 in ratio). Evaluations show that the model
reached an accuracy of more than 99.999%, with only 2–4 mislabeled pairs.
Different from traditional machine learning works, we need to avoid hijacking
the attacker’s accounts, which means mislabeling from not the same to the
same (false positive) is forbidden, while some mislabeling from the same to
not the same (false negative) is allowed. The original labels of the mislabeled
pairs were all 0, which means no avatar collision occurred with the trained
models. It ensured the security of the attacker’s accounts.

4.2 Experiments on Twitter

(1) Environments. To simulate the compromised hosts worldwide, we used
7 Ubuntu 18.04 x64 virtual servers with 1 GB ROM and 1 vCPU located
in Bangalore, Toronto, Amsterdam, Sydney, Tokyo, Dubai, and Virginia.
The code for the attacker was run on another virtual server with the same
configuration in San Francisco. Both codes for the malware and attacker
were implemented with Python 3.6.

(2) Commands and Avatars. We prepared 40 photos taken with mobile
phones as avatars for the attacker’s accounts. The photos were cut to
400× 400 and converted into vectors by a trained model. The malware was
published with the model and the vectors. The malware and attacker selected
a trending topic once an hour in this experiment. Then, the attacker gener-
ated and posted the tweets, and the malware crawled related tweets 5 min
later. In this experiment, the time was logged in a file when the attacker

DeepC2: AI-Powered Covert Command and Control on OSNs 405

completed a hash collision, the malware crawled a batch of tweets, and the
malware started and finished the comparisons. The original commands and
the recovered commands were also logged in a file. Afterward, we used the
logs to compare the post time and the retrieval time and determine the
correctness of the recovered commands.

(3) Results. We sent 47 commands using the 40 avatars. Due to frequent visits
to Twitter trends, the selected topics are sometimes the same as the previ-
ous ones. Although it does not matter in real scenarios, we chose to wait for
the next trending topic to evaluate the success rate of hash collisions more
objectively. All commands in the experiments were received and parsed cor-
rectly by the seven hosts. During the tests, the attacker completed the tweet
collection, tweets generation, and hash calculation in 13.8 s on average and
reached a success rate of 90.28% for hash collisions. After selecting a trend-
ing topic, the malware attempted to crawl 1 K tweets and usually obtained
800–900 non-repeated tweets (only original tweets were saved for retweeted
tweets). The malware needed to crawl the avatars of the tweeters and calcu-
late the distances to identify the attacker. Due to the different network and
device conditions, the time this process required varied. The time costs for
the malware to find the attacker are shown in Fig. 6. It takes 5 s to 4.45 min
to find the attacker after crawling the tweets. During the experiments, some
of our tweets received several “likes” from Twitter users. It shows the sen-
tences generated by EDA did not cause anomalies and were acceptable. After
the malware got the IPs, the attacker deleted the tweets.

5 Evaluation

In this section, we evaluate the performance of different parts in DeepC2. Envi-
ronment: The evaluation was performed on an Ubuntu 18.04 x64 virtual server
with 1 GB ROM and 1 vCPU, and the code was implemented with Python 3.6.

5.1 Tweets Generation

To test the efficiency of tweet generation for the attacker, we selected 79 trend-
ing topics from 4 randomly selected English-speaking areas around the world
(San Francisco, London, Sydney, and Johannesburg). One-thousand tweets were
crawled for each topic. Additionally, we cleaned the crawled tweets using the
method in Sect. 3.4 and generated 50 new sentences using EDA for each remain-
ing tweet. The trending topics may contain one or more words. With random
deletion and random swap adopted in EDA, keywords in the topics may be
deleted, or position changed in the newly generated sentences. The malware
cannot find the attacker’s accounts if the attacker posts sentences without exact
keywords. Therefore, the number of sentences with accurate keywords and the
quantity of all generated sentences were also recorded.

In the 79 selected topics, 55 contained only one word, and 24 contained more
than one word. With the percentage of words in each sentence to be changed

406 Z. Wang et al.

set to 0.1, 89.54% of the newly generated sentences contained accurate keywords
for the 55 single-word topics, and 77.55% contained accurate keywords for the
24 multi-word topics. The time cost is linearly related to the number of the new
sentences, as shown in Fig. 7. As mentioned in Sect. 3.4, EDA obtains 20 K to
45 K sentences in this experiment. According to the test, generating the sentences
costs 3 to 10 s. It is acceptable for the attacker to prepare sentences for a hash
collision.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1 2 3 4 5 6 7 8 9 10

Q
ty

. o
f s

en
te

nc
es

Time/s

all with keywords

Fig. 7. Efficiency of tweets generation

0%

20%

40%

60%

80%

100%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50000 100000 150000 200000 250000 300000 350000

H
it

ra
te

Ti
m

e/
s

Qty. of sentences

time rate

Fig. 8. Time costs and hit rate of hash
collisions

5.2 Hash Collision

We used the sentences generated above to test the efficiency of hash collisions.
To prepare different numbers of sentences, we followed the method in Sect. 3.4,
converted cases, and added punctuation at the end of the sentences. We got four
batches of new sentences incrementally for each topic by adding two conversions
once. We also collected 100 IP addresses as commands from a threat report [10].
We call a batch of sentences “hit” an IP if the batch succeeds in the hash collision.
We used these new sentences and hashlib in Python 3.6.9 to calculate SHA-256
hashes on the virtual server with a single thread and recorded the time costs
and hit rate of hash collisions with different quantities of sentences.

As shown in Fig. 8, it took less than 1 s to calculate the hashes. In theory,
65,536 (216) sentences will hit an IP, which is ideal, as a hash collision is prob-
abilistic. The experiment showed there should be at least 200 K sentences to
obtain a 90% hit rate and more than 330 K for a nearly 100% hit rate. As men-
tioned in Sect. 3.4, there are usually 140 K to more than 300 K sentences for the
hash collision, and it will result in a hit rate above 75%. During the experiments
on Twitter, the attacker obtained an average of 219,335 sentences for hash col-
lision and reached a hit rate of 90.28%, which was also acceptable for practical
purposes. Moreover, the attacker can crawl more trending tweets and generate
more sentences in real scenarios.

5.3 Avatar Recognition

To test the efficiency of avatar recognition by the malware, we used the 40 vectors
above and 1,000 crawled avatars of size 400× 400 to calculate the distances on

DeepC2: AI-Powered Covert Command and Control on OSNs 407

the virtual server. The average time cost of extracting features from 1 K avatars
and calculating 1 K distances was 11.92 s. It is also acceptable for the malware
in such hardware conditions. In real scenarios, this process may take longer as
the malware should crawl the avatars first, which varies due to different network
conditions. Compared with the experiments on Twitter (Fig. 6), crawling the
avatars is the most time-consuming process during the addressing.

5.4 Crawling Tweets

In this experiment, the malware crawl 1 K tweets 5 min after the selection of the
trending topic. In real scenarios, attackers can customize the waiting time, crawl-
ing volume, and frequency. In this part, we’ll show how the attacker determines
the appropriate parameters.

We used the method in Sect. 3.3 to collect the trending topics. Then, we used
the attacker’s account to post tweets that contained the keywords. The malware
started to find the attacker’s account using the keywords after waiting for 5,
10, 20, 30, 45, 60, 90, 120, 150, and 180 min. The malware recorded how many
tweets were crawled to find the attacker. We collected 56 groups of data. Figure 9
shows the relation between the crawled tweet volume and waiting time. After
waiting 5 min, the malware found the attacker within 1 K tweets in all cases.
After waiting for 1 h, in 88% of cases, the malware found the attacker within
1 K tweets and 98% within 3 K tweets. After waiting for 3 h, the malware could
still find the attacker within 1 K tweets in 68% of cases and within 3K tweets in
89% of cases. As the waiting time is 5 min in the experiments on Twitter, it is
appropriate to crawl 1,000 tweets.

The tweets may be more frequently updated if the attackers choose topics
from larger cities such as New York and Los Angeles, and it may require the mal-
ware to crawl more tweets with the same waiting time. Additionally, if attackers
choose top-ranked topics from the trending list, the malware also needs to crawl
more tweets with the same waiting time. Moreover, it is also different if attackers
choose to publish commands at midnight in the selected city. The parameters
should be customized with different needs when applied in real scenarios.

Tw
ee

ts
 V

ol
um

e

Fig. 9. Crawling volume and frequency Fig. 10. A group of avatars that have
distances below 0.02

408 Z. Wang et al.

5.5 Security Analysis

In this part, we discuss the security risks from the perspective of defenders.

Save and Reuse Avatars. Although it is difficult to guess the avatars used
by the attacker, the defender can monitor the behaviors of the compromised
hosts to identify the attacker’s accounts. The defender can reuse the attacker’s
avatars when the next appointed time arrives. They can also select a topic and
post tweets that contain fake commands. This scenario will not work for the
hosts always online because each avatar is used only once. However, hosts that
go online after being offline and missing a command will recognize the defender’s
accounts as attackers and get an incorrect command. Therefore, authentication
is recommended to ensure secure C&C communication, as stated in Sect. 3.4.

Collide an Avatar. Defenders can try to collide an avatar. It sounds feasible but
is hard practically. We analyzed the composition of the vectors. The 40 vectors
in Sect. 4.2 contain 5,120 numbers. The numbers follow a normal distribution
and constitute a continuous interval from −0.350 to 0.264. Each vector value is
taken from the interval, which is ample space and hard to enumerate or collide.
It ensures the security of the attacker’s avatars and vectors.

However, we still attempted a collision for avatars. Using a trained model, we
made more than 0.6 billion calculations on the distances between 115,887 pairs
of crawled avatars. 2,050 avatar pairs have a distance below 0.02 (0.00031%),
of which 81 pairs are below 0.01 (0.000012%). By analyzing these pictures, we
found they share similar styles in that they all have a large solid color back-
ground, especially a white background (mainly logos) (see Fig. 10). As avatars
are prepared by attackers, they can avoid this type of picture. They can use
colorful pictures taken by their cameras instead of pictures from the Internet.

Train a GAN. Defenders may train a GAN with saved avatars to generate
similar images. Considering the computational costs, it is not feasible. As the
avatars can be animals, plants, arts, etc., the training target is too divergent to
be capable with GAN. Additionally, training a GAN needs numerous data, and
the attacker’s avatars are insufficient for building a training set.

Train a Decoder. Defenders have access to vectors and neural network models,
so they can attempt to recover and derive a similar image from cheating the
malware. CNN makes protection possible. CNN learns abstract features from raw
images. Each convolution layer generates a higher degree of abstraction from the
previous layer. As layers deepen, much of the information in the original image
is lost. This makes it difficult to recover the original image or derive a similar
image based on the vectors.

We also simulated such an attack. We assume defenders treat the neural
network as an encoder and build a corresponding decoder to generate related
images. Defenders can also crawl avatars from Twitter and extract feature vec-
tors using the model. The avatars and vectors make up the training data for
the decoder. We trained such a decoder to generate numerous images from vec-
tors and calculated the distance between the original image and the generated

DeepC2: AI-Powered Covert Command and Control on OSNs 409

image. Due to the losses introduced by CNN and image conversion, the lowest
distance we got is 0.0504, larger than the threshold. As avatars retrieved by the
malware are not in the size of 128× 128, more conversion and compression will
be introduced to the images. It’s also challenging to attack the C&C in this way.

Attack the Model. Defenders can attack the neural network model to let the
malware make incorrect decisions on attacker’s accounts. There are some works
on neural network Trojan attacks [19], which make this attack possible. As the
target of this attack is a neural network model, it may affect some compromised
hosts but does not influence the other hosts. Other unaffected hosts can still
make correct decisions on the attacker’s accounts.

Generate Adversarial Samples. As the model and feature vectors are known
to defenders, it is a white-box non-targeted adversarial attack in this sce-
nario [23]. Defenders can generate an adversarial sample to fool the model.
Adversarial attacks aim at misclassifying the original target. Although CNN
has 128 outputs, they don’t represent 128 classes. Each output is a value in the
feature vector. A slight perturbation of the value will result in a distance higher
than the threshold. Therefore, it’s not applicable to attack the C&C in this way.

6 Possible Countermeasures

There are some ways to enhance the security of DeepC2, and we discuss them
in Appendix C. In this section, we discuss the possible countermeasures.

Behavior Analysis. Traditional malware detection methods such as behavior
analysis and traffic analysis can be applied to detect the malware [11]. There
are periodic behaviors of the malware. They need to visit Twitter Trends peri-
odically. After selecting a trending topic, they need to crawl tweets and avatars
to find attackers. This series of operations can make up a behavioral pattern. In
addition, the periodic net flow is also a noticeable feature.

Collaboration. In this scenario, it is recommended that security analysts share
the malware samples to the communities and the related OSNs once they appear
so that every party can contribute to the mitigating works. OSNs can detect
attackers in real-time by running the samples and actively monitoring activities
related to the malware and attackers. They can calculate the distances between
the uploaded avatars and vectors and block the attackers as soon as the cor-
responding avatars are detected. This may need a large-scale calculation but
is an effective way to mitigate this attack. Meanwhile, OSNs can also help to
trace the attackers behind the accounts. Therefore, we believe the cooperation
between OSNs and security communities is essential to mitigate this attack.

Improvement on OSNs. There are many ways to utilize OSNs, so OSNs
should take measures to avoid abuse. The attackers should maintain some Twit-
ter accounts. The accounts can be stolen from ordinary users, registered in
bulk using automated programs [24], or brought from underground markets [9].
Therefore, we suggest OSNs apply more complex human-machine verification

410 Z. Wang et al.

during the registration and manage the misbehaved social bots under the terms
of services (ToS). Cracking down on underground account transactions is also
necessary. While working on this work, we found some websites selling Twitter
accounts in bulk. We cannot predict how they got the accounts and how the buy-
ers use the accounts. Since it violates Twitter ToS [29], related parties should
limit illegal account transactions. We have reported it to Twitter.

As AI can be used to launch cyberattacks, security vendors should also con-
sider the malicious use of AI so that the attacks can be detected when they are
applied in real scenarios in the future.

7 Conclusion

This paper discussed a novel covert command and control scenario, DeepC2, on
OSNs by introducing AI technologies. By utilizing the poor explainability of neu-
ral network models, the addressing process can be concealed in AI models rather
than exposed as reversible hard-coding. For issuing commands covertly, we use
easy data augmentation and hash collision to generate contextual and readable
command-embedded tweets to avoid abnormal content on OSNs. We conduct
experiments on Twitter to show the feasibility and efficiency. Furthermore, we
analyze the security of the avatars. We also discussed possible countermeasures
to mitigate this kind of attack.

AI is also capable of attacks. With the popularity of AI, AI-powered attacks
will emerge and bring new challenges to cybersecurity. Cyberattacks and defense
are interdependent. We believe countermeasures against AI attacks will be
applied in future computer systems, and protection for computer systems will
be more intelligent. We hope the proposed scenario will contribute to future
protection efforts.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (No. 61902396), the Youth Innovation Promotion Association CAS
(No. 2019163), the Strategic Priority Research Program of Chinese Academy of Sci-
ences (No. XDC02040100), the Key Laboratory of Network Assessment Technology at
Chinese Academy of Sciences, and Beijing Key Laboratory of Network Security and
Protection Technology.

A Easy Data Augmentation

Table 1 is the example of EDA with an original sentence from Twitter. Bold
words represent parts that have changed from the original sentence. The newly
generated sentences are not grammatically correct. Because there are many
grammatically incorrect sentences on the Internet, sentences generated using
EDA can also be accepted by Internet users and confused with normal content.

DeepC2: AI-Powered Covert Command and Control on OSNs 411

Table 1. Sentences generated by EDA

Operation Sentence

None Our TAXII server is going to be taking

a short nap at 11am ET today for an

update.

SR Our TAXII server is endure to be

taking a short nap at 11am ET today

for an update.

RI Our TAXII server is going to be taking

a short nap at 11am cat sleep ET today

for an update.

RS Our short server is going to be taking a

TAXII nap at 11am ET today for an

update.

RD Our server is to be taking a short nap

at 11am ET today for an update

SR: synonym replacement. RI: random insertion.

RS: random swap. RD: random deletion.

Fig. 11. Threshold for distance

B Threshold for Distance

A threshold is needed to determine whether two avatars share the same source.
We use a trained model to calculate the distances on the validation set, which
contains 115,887 pairs with label 0 and 347,657 pairs with label 1. We record the
distances of every comparison, sort them by value and label, and count their fre-
quencies to learn the boundary between the “same” avatars and different avatars.
As shown in Fig. 11, the distances of all pairs with label 1 and only four pairs
with label 0 are larger than 0.02, and the remaining pairs with label 0 are less
than 0.02. It shows that 0.02 is a proper threshold for the determination. In real
scenarios, attackers can choose a threshold less than 0.02, as the undistributed
avatars and distances are within the authority of attackers.

C Enhancement

As proof of concept, the parameters in this work are conservative. There are
ways to enhance the security of DeepC2.

In the model’s design, the vectors can be longer than 128, making analysis
and collisions for avatars even more difficult. The threshold of distances can also
be lower than 0.02, as the undistributed avatars and the distances are within the
authority of attackers. They can balance efficiency and accuracy according to
the needs. Additionally, more losses can be introduced during the processing of
avatars, like compression, deformation, format conversion, etc., making it harder
to recover the avatars.

For addressing, the attacker can select more topics. Attackers can publish
commands on the topics, and the malware can choose one randomly to find
attackers. Attackers can also use other fields in OSNs to convey customized
content. For instance, attackers could comment on a tweet, and the malware

412 Z. Wang et al.

would identify and obtain commands from attackers’ profiles. Other platforms,
like Weibo and Tumblr, can also be utilized.

As stated before, attackers should maintain some accounts to publish dif-
ferent commands. To reduce the specious behaviors of accounts, attackers can
maintain them by imitating normal users or social bots [7]. This work can be
done manually or automatically [24]. When attackers need to publish a com-
mand, attackers can select one account and maintain other accounts as usual.

References

1. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade
static PE machine learning malware models via reinforcement learning. CoRR
abs/1801.08917 (2018). http://arxiv.org/abs/1801.08917

2. Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet tech-
nology and defenses. In: 2009 Cybersecurity Applications Technology Conference
for Homeland Security, pp. 299–304 (2009)

3. Bromley, J., et al.: Signature verification using a “Siamese” time delay neural
network. Int. J. Pattern Recogn. Artif. Intell. 7(4), 669–688 (1993). https://doi.
org/10.1142/S0218001493000339

4. Buchner, J.: ImageHash-PyPi (2020). https://pypi.org/project/ImageHash/
5. Chatterjee, S., Zielinski, P.: On the generalization mystery in deep learning. CoRR

abs/2203.10036 (2022). https://doi.org/10.48550/arXiv.2203.10036
6. Faou, M.: From Agent.BTZ to ComRAT v4: a ten-year journey. Technical report,

ESET, May 2020
7. Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social

bots. Commun. ACM 59(7), 96–104 (2016)
8. FireEye: Uncovering a malware backdoor that uses twitter. Technical report, Fire-

Eye (2015)
9. Google: Google search (2021). https://www.google.com/search?

q=buy+twitter+accounts
10. Group-IB: Lazarus arisen: architecture, techniques and attribution. Technical

report, Group-IB (2017)
11. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of network

traffic for protocol- and structure-independent botnet detection. In: Proceedings of
the 17th USENIX Security Symposium, pp. 139–154. USENIX Association (2008)

12. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006)

13. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. CoRR abs/1702.05983 (2017). http://arxiv.org/abs/1702.05983

14. Kirat, D., Jang, J., Stoecklin, M.P.: Deeplocker - concealing targeted attacks with
AI locksmithing. Technical report, IBM Research (2018)

15. Kwak, M., Cho, Y.: A novel video steganography-based botnet communication
model in telegram SNS messenger. Symmetry 13(1), 84 (2021). https://doi.org/
10.3390/sym13010084

16. Lecue, F., et al.: Explainable AI: foundations, industrial applications, practical
challenges, and lessons learned, February 2020. https://xaitutorial2020.github.io/

17. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

http://arxiv.org/abs/1801.08917
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339
https://pypi.org/project/ImageHash/
https://doi.org/10.48550/arXiv.2203.10036
https://www.google.com/search?q=buy+twitter+accounts
https://www.google.com/search?q=buy+twitter+accounts
http://arxiv.org/abs/1702.05983
https://doi.org/10.3390/sym13010084
https://doi.org/10.3390/sym13010084
https://xaitutorial2020.github.io/
https://doi.org/10.1162/neco.1989.1.4.541

DeepC2: AI-Powered Covert Command and Control on OSNs 413

18. Liu, T., Liu, Z., Liu, Q., Wen, W., Xu, W., Li, M.: StegoNet: turn deep neural
network into a stegomalware. In: Annual Computer Security Applications Confer-
ence, ACSAC 2020, New York, NY, USA, pp. 928–938. Association for Computing
Machinery (2020). https://doi.org/10.1145/3427228.3427268

19. Liu, Y., et al.: Trojaning attack on neural networks. In: 25th Annual Network and
Distributed System Security Symposium, NDSS 2018 (2018)

20. Nagaraja, S., Houmansadr, A., Piyawongwisal, P., Singh, V., Agarwal, P., Borisov,
N.: Stegobot: a covert social network botnet. In: Filler, T., Pevný, T., Craver, S.,
Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 299–313. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24178-9 21

21. Pantic, N., Husain, M.I.: Covert botnet command and control using twitter.
In: Proceedings of the 31st Annual Computer Security Applications Confer-
ence, ACSAC 2015, pp. 171–180. ACM (2015). https://doi.org/10.1145/2818000.
2818047

22. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A com-
prehensive measurement study of domain generating malware. In: 25th USENIX
Security Symposium, Austin, TX, pp. 263–278. USENIX Association, August 2016

23. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial attack
and defense technologies. Appl. Sci. 9(5), 909 (2019)

24. Quora: How can I create bulk twitter accounts automatically? (2020). https://
www.quora.com/How-can-I-create-bulk-Twitter-accounts-automatically

25. Rigaki, M., Garcia, S.: Bringing a GAN to a knife-fight: adapting malware com-
munication to avoid detection. In: 2018 IEEE Security and Privacy Workshops,
SP Workshops 2018, San Francisco, CA, USA, pp. 70–75. IEEE Computer Society
(2018). https://doi.org/10.1109/SPW.2018.00019

26. Sebastian, S., Ayyappan, S., Vinod, P.: Framework for design of graybot in social
network. In: 2014 International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI), pp. 2331–2336. IEEE (2014)

27. Stefanko, L.: New telegram-abusing android rat discovered in the wild, June 2018.
https://www.welivesecurity.com/2018/06/18/new-telegram-abusing-android-rat/

28. Taniguchi, T., Griffioen, H., Doerr, C.: Analysis and takeover of the bitcoin-
coordinated pony malware. In: Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, pp. 916–930. ACM (2021)

29. Twitter: Twitter terms of service (2020). https://twitter.com/en/tos
30. Wang, J., Liu, Q., Wu, D., Dong, Y., Cui, X.: Crafting adversarial example to

bypass flow-&ML-based botnet detector via RL. In: RAID 2021: 24th International
Symposium on Research in Attacks, Intrusions and Defenses, San Sebastian, Spain,
6–8 October 2021, pp. 193–204. ACM (2021). https://doi.org/10.1145/3471621.
3471841

31. Wang, Z., Liu, C., Cui, X.: EvilModel: hiding malware inside of neural network
models. In: IEEE Symposium on Computers and Communications, ISCC 2021,
Athens, Greece, 5–8 September 2021, pp. 1–7. IEEE (2021). https://doi.org/10.
1109/ISCC53001.2021.9631425

32. Webster, A.F., Tavares, S.E.: On the design of S-Boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 41

33. Wei, J.W., Zou, K.: EDA: easy data augmentation techniques for boosting per-
formance on text classification tasks. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, pp. 6381–6387 (2019). https://doi.org/10.18653/v1/D19-1670

https://doi.org/10.1145/3427228.3427268
https://doi.org/10.1007/978-3-642-24178-9_21
https://doi.org/10.1145/2818000.2818047
https://doi.org/10.1145/2818000.2818047
https://www.quora.com/How-can-I-create-bulk-Twitter-accounts-automatically
https://www.quora.com/How-can-I-create-bulk-Twitter-accounts-automatically
https://doi.org/10.1109/SPW.2018.00019
https://www.welivesecurity.com/2018/06/18/new-telegram-abusing-android-rat/
https://twitter.com/en/tos
https://doi.org/10.1145/3471621.3471841
https://doi.org/10.1145/3471621.3471841
https://doi.org/10.1109/ISCC53001.2021.9631425
https://doi.org/10.1109/ISCC53001.2021.9631425
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.18653/v1/D19-1670

414 Z. Wang et al.

34. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval
via image representation learning. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, pp. 2156–2162. AAAI Press (2014)

35. Yin, J., Lv, H., Zhang, F., Tian, Z., Cui, X.: Study on advanced botnet based
on publicly available resources. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS,
vol. 11149, pp. 57–74. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01950-1 4

https://doi.org/10.1007/978-3-030-01950-1_4
https://doi.org/10.1007/978-3-030-01950-1_4

Artificial Intelligence for Detection

ODDITY: An Ensemble Framework
Leverages Contrastive Representation

Learning for Superior Anomaly Detection

Hongyi Peng1(B), Vinay Sachidananda1, Teng Joon Lim2, Rajendra Patil1,
Mingchang Liu1, Sivaanandh Muneeswaran1, and Mohan Gurusamy1

1 National University of Singapore, Singapore, Singapore
hongyi peng@u.nus.edu, {comvs,dcsrsp,dcslium,

e0503509,gmohan}@nus.edu.sg
2 University of Sydney, Sydney, Australia

tj.lim@sydney.edu.au

Abstract. Ensemble approaches are promising for anomaly detection
due to the heterogeneity of network traffic. However, existing ensem-
ble approaches lack applicability and efficiency. We propose ODDITY, a
new end-to-end data-driven ensemble framework. ODDITY use Diverse
Autoencoders trained on a pre-clustered subset with contrastive rep-
resentation learning to encourage base-leaners to give distinct predic-
tions. Then, ODDITY combines the extracted features with a supervised
gradient boosting meta-learner. Experiments using benchmarking and
real-world network traffic datasets demonstrate that ODDITY is superior
in terms of efficiency and precision. ODDITY averages 0.8350 AUPRC
on benchmarking datasets (10% better than traditional machine learn-
ing algorithms and 6% better than the state-of-the-art semi-supervised
ensemble method). ODDITY also outperforms the state-of-the-art on real-
world datasets regarding better detection accuracy and speed. Moreover,
ODDITY is more resilient to evasion attacks and has a promising potential
for unsupervised anomaly detection.

Keywords: Anomaly detection · Ensemble methods · Semi-supervised
settings · Intrusion detection · Auto encoder

1 Introduction

Digital equipment’s prevalence threatens network security. Network adminis-
trators must contend with continually changing threat landscapes, increasing
attack intensity, and complexity. As the first line of defense, the timely detec-
tion of anomalies in network traffic such as DDoS attacks, brute force attacks,
botnet communications, and network/port scans, has become a significant focus
in both academia and industry.

Increased uses of machine learning in anomaly detection reveals that detec-
tion of abnormal network traffic can be more challenging than binary classifica-
tion. Lack of annotated data, especially anomalies, limits supervised methods’
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 417–437, 2022.
https://doi.org/10.1007/978-3-031-15777-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_23&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_23

418 H. Peng et al.

predictive capabilities. Unsupervised methods detect anomalies by measuring
if a data point deviates significantly from others in terms of distance or den-
sity. Single model unsupervised method may not be sufficient due to the variety
of anomaly sources. For example, a classifier that can detect a rapid surge in
network traffic may not detect malware, intrusion, or misuse-related network
anomalies. Ensemble learning has been proposed to combine multiple models by
balancing diversity and accuracy of each individual model.

The state-of-the-art ensemble methods take a semi-supervised stacking app-
roach. To promote diversity, semi-supervised methods employ a set of hetero-
geneous unsupervised representation learners as base-learners and then train a
meta-learner in a supervised manner to integrate all the base-learners [3,25,35].

1.1 Research Questions

While semi-supervised ensemble approaches produce compelling results, they
have several limitations. First of all, the quality of representations learned
is not guaranteed. In previous publications [24,25,35], representation qual-
ity relied entirely on base-learner selection. Each base-learner in the framework
work as an off-the-shelf black box. Thus, the mapping from raw data to represen-
tations is not learnable and depends on base-learner’s hidden internal process.
This problem limits generalization because deployment requires reselecting base-
learners using cross validation.

Secondly, the diversity among base-learners is not guaranteed. There
is no comprehensive strategy for selecting heterogeneous base-learners, nor are
there any methodical procedures to ensure the diversity among them. As seen
in Fig. 1, more recent work introduces a feature selection procedure to promote
diversity [35]. However, this method relies on expensive investigations on repre-
sentation generated by each base-learner and impairs the efficiency of the whole
framework. There are ensemble frameworks that are based on homogeneous base-
learners, such as autoencoders [10,26,30]. However, promoting diversity among
homogeneous base-learners is difficult, as all individual learners use the same
learning mechanism and are trained with the same dataset. As a result, they are
highly correlated and produce sub-optimal performances.

The objective of addressing the gaps between extracting diverse represen-
tations and constructing an efficient semi-supervised ensemble framework leads
us to the following research questions: (1)RQ-1: How to train base-learners to
extract diverse and meaningful representations from raw data? (2)RQ-2: How
to achieve good trade-off between diversity and accuracy of among those base-
learners? (3)RQ-3: How to fully utilize the representations learned by base-
learners and combine them?

1.2 Overview

To address the aforementioned questions, we propose a novel and end-to-end
framework ODDITY for anomaly detection. ODDITY’s advantage is due to a combi-

ODDITY: An Ensemble Framework 419

Fig. 1. ODDITY: a more generalized data-driven and end-to-end framework.

nation of design choices, not just one. We summarized its benefit and how each
component helps as follows:

(1) Base-learners: Learn to be different ODDITY introduces an novel base-
learner called Diverse Autoencoders (DA). As a set of homogeneous base-
learners, DAs learn from the dataset to extract diverse and complementary
features. Each DA encoder is trained using contrastive representation learn-
ing on one of the pre-clustered subsets of the dataset. In addition to the
diversity imposed by the partitioning of datasets, diverse autoencoders are
further finetuned to produce distinct predictions. To the best of our knowl-
edge, this is the first time that contrastive representation learning and diver-
sity loss have been combined with the usage of an autoencoder for feature
extraction.

(2) Meta-learner: Efficient Gradient Ensemble Regarding the ensemble
methods, ODDITY extends the stacking approach. It augments the original
feature space with features extracted by the encoder of diverse autoencoders
to enrich the data representation. Then, It adopts a gradient boosting meta-
learner to fully utilize the augmented features. ODDITY does not require
empirical selection of base-learners or expensive feature-selection to pro-
mote diversity, making it a generalized and end-to-end anomaly detection
framework.

(3) Superior performance and efficiency We evaluate ODDITY on multiple
datasets and show that ODDITY outperforms reference methods in terms
of both accuracy and efficiency. We also observe that the stacking-based
ensemble framework of ODDITY can be easily adapted to an unsupervised
setting.

(4) Superior resilience against attack We investigate how black-box evasion
attacks impair the performance of supervised and semi-supervised anomaly
detection techniques by deceiving the classifier. We observe that, due to the
semi-supervised nature and the disagreement among base-leaners, ODDITY is
more resilient than other techniques against evasion attacks.

420 H. Peng et al.

Structure of the Paper. The rest of the paper is organized as follows. Section 2
introduces some background knowledge. Then we present related work in Sect. 3.
Section 4 describes our proposed ODDITY framework in detail. In Sect. 5, we
present and analyze the experimental results and study the potential of applying
ODDITY in an unsupervised setting in Sect. C. We show the robustness of ODDITY
against evasion attacks in Sect. 6. Finally, we present our discussions in Sect. 7,
and Sect. 8 makes concluding remarks.

2 Background

Autoencoder for Anomaly Detection. An autoencoder is a type of neu-
ral network that learns data representations, and contains three layers: input,
output, and hidden layers connecting them. Suppose we have an autoencoder
with input dimension D and hidden dimension H, the encoder aims to learn the
mapping E : RD �→ R

H . The decoder tries to learn the mapping D : RH �→ R
D.

Considering an unlabeled dataset U with N samples, and each sample is a
vector xi with dimension D. Then the reconstruction error is defined as:
L =

∑N
i=1 ‖xi − D(E(xi))‖2. The hidden layers learn to extract abstract repre-

sentations by minimizing the reconstruction error during training. In the predic-
tion phase, the autoencoders tend to perform poor reconstruction for abnormal
points. The decision rule is straightforward-if the reconstruction error of the data
point is larger than the threshold, it will be classified as anomalies.

Ensemble Methods. Ensemble learning tries to combine multiple learners to
improve performance [37]. These learners are known as base-learners, suggesting
a base-learning algorithm. Homogeneous approaches use a single base-learning
algorithm. Building base-learners with different algorithms is called a heteroge-
neous approach. There are three main categories of methods in ensemble learn-
ing: boosting [15], bagging [7] and stacking [34]. An effective ensemble requires
base-learners that are accurate and diversified [20]. It is intuitive to believe that
each base-learner should be different; otherwise, combining identical individ-
ual learners would result in no performance improvement. Simultaneously, the
individual learner’s performance can not be very poor; otherwise, their combi-
nation will exacerbate the added error. Creating an ensemble of heterogeneous
base-learners looks promising in encouraging diversity because heterogeneous
base-learners are based on distinct learning algorithms and hypotheses. How-
ever, there is no systematic approach of either choosing diverse base-learners or
ensuring a beneficial trade-off between accuracy and diversity.

3 Related Work

This section reviews the related works on semi-supervised frameworks and gen-
erating an ensemble from autoencoders.

Semi-supervised Outlier Ensemble. Micenková et al. have proposed a semi-
supervised stacking-based framework BORE to leverage the strength of both

ODDITY: An Ensemble Framework 421

supervised and unsupervised methods [24,25]. Aggarwal and Sathe [2,3] extend
previous works by using heterogeneous base-learners finetuning the meta-learner
with few labels. XGBOD [35] relates with our method the most. XGBOD improve
the stacking-based anomaly detection framework by proposing three new feature
selection methods and chooses XGBoost [11] as the final supervised meta-learner.
However semi-supervised ensemble methods suffer from the following limitations:
(1) They employs recurring experiments or heuristics to find more applicable het-
erogeneous base-learners, limiting their generalizability and scalability. (2) They
adopts expensive feature selections to promote diversity among base-learner.

Ensemble of Autoencoders. Introducing diversity to homogeneous autoen-
coders is challenging. Many studies have been done to migrate these two issues.
RandNet, developed by Chen et al. [10] targets unsupervised outlier detection.
The diversity of autoencoders in RandNet is brought by bagging and randomly
blocking some connections between the input layer and the hidden layer. Sar-
vari et al. [30] propose the Boost-based Autoencoders Ensemble (BAE). BAE is
built sequentially as the training data sampled of the next autoencoder depend-
ing on the reconstruction errors obtained from the previous one (i.e. the larger
the error, the less probably a data point is sampled in the next iteration). Both
BAE and RandNet are unsupervised methods and they combine all autoen-
coders by averaging. However, sequentially training each autoencoder in BAE
on an iterative basis is time-consuming, and naive averaging is less effective.
Those methods differ from ours in (1) They are targeting unsupervised anomaly
detection, which may not fully leverage the advantage of unsupervised learning
in representation learning and the advantage of supervised learning in terms of
performance. (2) Compared to introducing diversity by randomization, our app-
roach adopts learn-to-be-diverse approach. (3) Our methodology train multiple
diverse autoencoders in parallel, avoiding time-consuming sequential ensemble
methods like [30].

4 Proposed Approach: ODDITY

This section elaborates on our approach. First, we introduce diverse autoen-
coders with experiments to demonstrate their capability of extracting diverse
representations. Then we outline the whole framework of ODDITY.

4.1 Diverse Autoencoders

This section presents Diverse Autoencoders (DAs) that leverage contrastive rep-
resentation learning to extract collections of diverse features. We denote an
ensemble of M DAs as E = {(Ej ,Dj)}M

As shown in Fig. 2, training DAs is a two-step process. The initial step is to
train the encoder to learn the mapping from raw data to feature representation
by contrasting positive pairs against negative pairs. For an unlabeled dataset
U = {xi}N , we first cluster the dataset into M clusters Cj = {C1, C2...CM}.
Each encoder Ej is dedicated to learn the underlying representation of data

422 H. Peng et al.

Fig. 2. Training of diverse autoencoders: contrastive representation learning and fine-
tuning.

points within a single clxxuster Cj . This pre-clustering strategy avoids providing
the same training data to each DA. A good representation of Cj should map data
points map data points within the cluster closely together, whereas data points
from other cluster should be projected farther apart. data points in the cluster
Cj . Thus the positive pair can constructed using (xa, xb) where xa,b ∈ Cj . On
the opposite side, the negative pair is defiend as (xg, xh) where xg,h ∈ U \ Cj .
The loss function of contrastive representation learning of encoder Ej is :

Lcontrastive(U ,Ej) = dis(p(Ej(xa)), p(Ej(xb))) − dis(p(Ej(xg)), p(Ej(xh))) (1)

where dis(a, b) calculates the Lp distance. As suggested SimCLR, we add one
addition non-linear transformation p(x) between the representation and the con-
trastive loss to improve the quality of learned representation [23]. Minimizing the
contrastive loss function for all M encoders on teaches each encoder to extract
the compact representation from the corresponding cluster.

In addition to the diversity imposed by the partitioning of datasets, we also
introduce prediction-level diversity in the second stage. Complete M DAs in E
is trained using a new loss function:

L(U , E , c) =
N∑

i=1

M∑

j=1

‖xi − Dj(Ej(xi))‖2 − cLdiv(U , E) (2)

For each DA, the first term in Eq. 2 is the regular reconstruction loss [5]. As
introduced in Sect. 2, minimizing the reconstruction error improves the accuracy
of the detection accuracy of autoencoders. The second term is the diversity
loss where c is called the diversity factor. Maximizing this term should promote
diversity by encouraging DAs to give different predictions. One way to design the

ODDITY: An Ensemble Framework 423

diversity loss function is by averaging the pair-wise similarity of all pairs of DAs.
However, computing the pair-wise similarity of M DAs takes C2

m comparisons
(C2

m is the combination number), which significantly slows down the process.
Thus, instead of computing pair-wise similarity, we measure the dissimilarity
between DAs’ reconstructions and the average reconstruction. Although there
is no widely acknowledged official definition of diversity at the moment [37], we
choose four typical and common measurements of dissimilarity: variance, KL-
divergence, cosine similarity, and entropy:

Ldiv(U , E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
MN

∑N
i=1

∑M
j=1 ||Dj(Ej(xi)) − C||2 Var

1
MN

∑N
i=1

∑M
j=1 KL(pj(xi), 1

M

∑M
j=1 pj(xi)) KL-Div

1
MN

∑N
i=1

∑M
j=1

<Dj(Ej(xi)),C>
||Dj(Ej(xi))|| ||C|| Cos

1
MN

∑N
i=1

∑M
j=1 −pj(xi) 1

M

∑M
j=1 log(pj(xi)) Entropy

(3)

where C is the average reconstruction of M DAs C = 1
M

∑M
j=1 Dj(Ej(xi)) and

pj(xi) = φ(Dj(Ej(xi))), and φ is the softmax function that normalizes the out-
put of diverse autoencoders. The diversity loss term is another mechanism that
trains DAs to produce diverse and complementary features. Minimizing the loss
function with non-zero c rewards a trade-off between reconstruction accuracy
and the diversity among DA, which benefits the subsequent ensemble.

Better Trade-off Leads to Better Ensemble. To investigate whether the
two-stage training of DAs helps in achieving a better trade-off between diversity
and accuracy. We compare diverse DA with RandNet [10] and BAE [30], we
train DAs (Diverse AE), normal autoencoders (AE), RandNet and BAE that
contains two base-learners (i.e., M=2) on the digits dataset [13] with the same
architecture. Figure 3 demonstrates how the reconstruction and diversity losses
vary with the number of epochs.

Fig. 3. Losses of different autoencoders ensemble. Comparing with other ensemble
methods of autoencoders, Diverse autoencoders converge at the largest diversity while
preserving small loss.

424 H. Peng et al.

For normal autoencoders, with the decrease of the reconstruction loss, the
diversity loss drops to near zero, implying that features extracted by two ordinary
autoencoders are almost the same. In comparison, DAs provide significantly more
diversity while achieving almost identical reconstruction loss. In other words,
DAs can fulfill the fundamental requirements for base-learners, that is base-
learners should be accurate and diverse. When compared to randomization-based
systems such as RandNET and BAE, DAs deliver a higher level of accuracy while
preserving a considerably higher level of diversity.

To demonstrate the effect of improved trade-off on ensemble results, we train
two DAs with variance based diversity loss on a subset of a real network intrusion
datasets UNSWNB-15 [27]. We evaluate each DA’s detection accuracy against
various types of malicious attacks. Then, by averaging their prediction scores (i.e.
reconstruction loss), we generate the simplest ensemble of these DAs. We evalu-
ate the ensemble’s detection accuracy. The findings are summarized in Table 1.

Due to the training scheme of DA that promotes diversity, each DA is only
capable of detecting a subset of attacks. The types of attacks that DA1 can
detect and the attacks that DA2 can detect are complimentary. Consequently,
combining DA1 and DA2 with the simplest averaging results in perfect accuracy.

Table 1. Ensemble results of simple ensemble of DAs

DA 1 DA 2 AVG(DA1, DA2)

Reconnaissance 0.5380 0.4665 1

Backdoor 0.0960 0.9125 1

DoS 0.2812 0.7461 1

Exploits 0.7087 0.3074 1

Analysis 0.0886 0.9143 1

Fuzzers 0.6195 0.3883 1

Worms 0.8636 0.1818 1

Shellcode 0.5105 0.4894 1

Generic 0.1226 0.9728 1

(a) Regular autoencoders (b) Diverse autoencoders

Fig. 4. Decision regions of regular autoencoders and diverse autoencoders

ODDITY: An Ensemble Framework 425

We create a synthesized dataset to demonstrate why diverse autoencoders
enhances anomaly detection. As illustrated in Fig. 4, green moon-like points
denote normal data, whereas red dots denote anomalies obtained by sampling
from a uniform distribution. On the synthesized dataset, we train two regular
autoencoders and two diverse autoencoders using the same 2 → 1 → 2 architec-
ture. We color the decision zone of each autoencoder into orange and blue so that
all points in the decision region are predicted to be anomalies. As can be seen, the
decision areas of the two regular autoencoders are largely overlapping, implying
that without the diversity term, the two regular autoencoders provide identi-
cal predictions, and combining them results in minimal improvements. However,
the two diverse autoencoders provide complementary predictions, and combining
them can boost the performance.

4.2 Gradient Boosting Ensembles of Diverse Autoencoder

Fig. 5. Framework of ODDITY

While combining varied autoencoders improves performance, an efficient ensem-
ble method and an efficient supervised meta-learner are required to fully utilize
the power of semi-supervised learning. As depicted in Fig. 5, we demonstrate the
overall framework of ODDITY. ODDITY is a stacking-based three-stage framework
that uses gradient boosting ensembles (GBE) to leverage both the raw data and
the representations learnt by DAs. Let L be a labeled dataset with N entries
L = {(xi, yi)}N where xi is a D dimensional column vector and yi ∈ {0, 1}
are the corresponding label. Then the original feature space can be denoted as
X ∈ R

N×D. We also define the unlabeled dataset U to be U = {xi}N0 This
unlabeled dataset can be generated by ignoring the labels or just taking out
those points belonging to normal activities. ODDITY contain three stages:

1. After training multiple DAs on U , the encoding of DAs can be viewed as
a process that extracts highly informative features from X and stores these
features in their hidden units.

426 H. Peng et al.

2. ODDITY utilizes a set of compact and diverse features F ∈ R
N×MH extracted

by DAs. M is the number of DAs and H is the hidden dimension of DA. Then
ODDITY stacks newly extracted feature F with original features X to form an
augmented feature space:

X∗ =
[
X,F

] ∈ R
N×(D+MH) (4)

3. This augmented dataset L∗ = {(x∗
i , yi)} is deemed to contain richer repre-

sentation and can improve the performance of supervised classifiers. Trained
on L∗, a gradient boosting ensembles classifier that gives prediction ŷi can be
represented as:

ŷi =
K∑

1

wkfk(x∗
i), fk ∈ F (5)

Where fk is a weak classifier and wk is the importance factor. Gradient ensem-
bles classifiers add a new weak classifier ft in t’th iteration and minimize the
loss function:

L(t) =
N∑

1

BCE(yi, ŷi(t−1) + wtft(x∗
i)) + Ω(ft) (6)

BCE is the binary cross-entropy loss, and Ω(ft) is the regularization terms
to prevent overfitting. The loss is then propagated back to update the impor-
tance factor.

w
(t)
t = w

(t−1)
t − η

∂L
∂wt

(7)

There are many implementations of GBE. Instead of choosing XGBoost in
XGBOD [35], we implement GBE using LGBM [19]. To demonstrate empirically
that GBE is the best meta-learner for ODDITY, we first train various supervised
classifiers on the raw data. Then, we replace GBE in ODDITY with such super-
vised classifiers to assess their efficiency in utilizing the diverse representation
derived by DAs via AUPRC improvement. We train five diverse autoencoders
on the benchmarking dataset (introduced in Sect. 5.1) and all of them have the
same architectures: D → D/4 → 4 → 4/D → D, where D is the input dimen-
sion of the dataset. The results is provided in Table 2. Although all supervised
meta-learners benefit from the diverse representations extracted by DAs, GBE
in ODDITY improves the most and achieves the best performance.

ODDITY: An Ensemble Framework 427

Table 2. Comparison between GBE and other supervised meta-learner

LR SVM MLP GBE

without DA with DA without DA with DA without DA with DA without DA with DA
(ODDITY)

Letter 0.2639 0.3036 0.3606 0.4211 0.4297 0.469 0.5357 0.7848

Optdigits 1 1 1 1 0.9947 0.9917 0.9985 1

Pendigits 0.9658 0.9293 0.9547 0.9598 0.9642 0.948 0.9808 0.9971

Satellite 0.8538 0.8675 0.8560 0.8606 0.8807 0.9367 0.9549 0.9668

Mnist 0.9241 0.9269 0.9259 0.9348 0.9775 0.9836 0.9764 0.9814

Speech 0.1965 0.24 0.1784 0.1996 0.1695 0.2215 0.14 0.28

Average 0.7006 0.7123 0.7126 0.7293 0.7360 0.7584 0.7644 0.8350 (+ 9%)

5 Performance Evaluation

On numerous datasets, we compare our approach with conventional methods,
gradient boosting ensemble techniques, and the state-of-the-art semi-supervised
framework. The comparison results are provided in 5.3.

5.1 Benchmarking Datasets

To evaluate the performance and applicability of ODDITY, we use several multi-
dimensional anomaly detection datasets that are commonly used for benchmark-
ing [2,4,22,24,29,31]. We also add three real network traffic datasets, namely,
KDD99, UNSW-NB15 [27] and IDS-2018 [1]. All of these three datasets aim to
measure the efficiency of network intrusion detection systems (NIDS). Two sig-
nificant distinctions exist between these network incursion datasets and bench-
marking datasets. To begin, while benchmarking datasets are typically more
challenging, network intrusion datasets can accurately reflect the real challenges
associated with installing anomaly detection algorithms in a security system.
As a result, it urges us to evaluate a variety of criteria when evaluating the
effectiveness of anomaly detection algorithms, including precision, false-positive
rate, and run-time efficiency. Second, network intrusion datasets are significantly
larger, which complicates the training and testing of anomaly detection systems.
Table 5 in AppendixA gives more details about each dataset.

5.2 Experiments

We randomly split every dataset so that 60% of the dataset is used for train-
ing and the remaining 40% is for testing. We select several baselines from five
different categories for a comprehensive comparison:

– Conventional supervised classifiers including logistic regression,
SVM [14], multi-layer perceptron (MLP) [6], kNN [21]. All of these meth-
ods are implemented using Sklearn [28].

– Gradient Boosting Ensemble Methods, GBE. We apply GBE directly to
the dataset without feature augmentation but keeping the same architecture
and the same hyperparameters as the meta-learner one in ODDITY.

428 H. Peng et al.

– Randomization-based autoencoders with ODDITY framework, Rand-
Net [10] and BAE [30]. Since both of them are targeting unsupervised meth-
ods, to make the performance comparable, we replace the diverse autoen-
coder in ODDITY with them and use the same architecture of autoencoders.
this comparison aims to demonstrates whether adding diverse autoencoders
can outperfors existing randomization-based algorithms by achieving higher
accuracy. Also, we implement GBAE, where normal autoencoders replace the
diverse autoencoders in ODDITY for ablation studies.

– Semi-supervised Framework, here, we choose XGBOD for the com-
parison. Comparing the performance of ODDITY with XGBOD can illus-
trate whether ODDITY can provide better predictive capability while solving
the drawbacks of XGBOD. The unsupervised heterogenous base-learners of
XGBOD in our experiments are kNN, Isolation Foreset, SVM, and Principal
Component Analysis.

– ODDITY Family, all four variants of ODDITY that adopts variance-based
loss function, KL-divergence-based loss function, cos-based loss function and
entropy-based loss function respectively.

We implement ODDITY using Pytorch and LGBM. Since there is no pub-
lic source code for RandNet and BAE, we also implement them using Pytorch
based on the original paper. For every dataset, we set the number of diverse
autoencoders M to be five, and all of them have the same architectures:
D → D/4 → 4 → 4/D → D, where D is the input dimension of the dataset.
Since the bottleneck hidden dimension H is four, the dimension of augmented
features space will be X∗ = D +MH = D +20. That is to say, ODDITY will gen-
erate 20 new features for each data record. We adopts SGD optimizer with 0.01
learning rate to train DA. As suggested in [12], due to the imbalanced nature
of anomaly detection datasets, we deem AUPRC the proper metric to measure
accuracy. AURPC is defined as: AUPRC =

∑N
i=1(RCi −RCi−1)PRi where PRi

is the precision at the i th threshold and RCi is the recall at the i th threshold.
We first evaluate the AUPRC score of our approach and baselines on bench-

marking datasets. Then, we make a more comprehensive comparison between
ODDITY and the state-of-the-art semi-supervised ensemble methods XGBOD on
real network intrusion datasets. All experiments run on a computer with an Intel
Xeon CPU, an Nvidia P100 GPU, and a 12 GB RAM.

5.3 Results

Benchmarking Datasets. Experimental results provided in Table 3 is an aver-
age of 10 independent trials. ODDITY achieves compelling results. Among all
the variants of ODDITY, ODDITY-var achieves the best performance. In summary,
ODDITY has significant advantages over traditional supervised classifiers. Notably,
on the Letter dataset, where traditional methods perform poorly, ODDITY -var
improves the AUPRC by more than 100% in comparison with SVM.
Although GBE, XGBOD, and GBAE can achieve satisfying results on most of
the datasets, ODDITY demonstrates uniformly superior predictive capabilities.

ODDITY: An Ensemble Framework 429

ODDITY-var has the best AUPRC scores in 5 out of 6 datasets, and the average
AUPRC of ODDITY-var among all the datasets is 0.8350, which is 4% higher
than the second-best, 6% better than the state of the art XGBOD and 10%
better than conventional supervised classifier. The advantages of ODDITY
over LGBM suggest the importance of unsupervised representation learning, and
the advantages of ODDITY over GBAE illustrate that the accuracy and diver-
sity trade-off achieved by diverse autoencoders can further improve the perfor-
mance. We also observe that ODDITY is overall superior and more generalized
than XGBOD. A better trade-off between accuracy achieved by ODDITY also
leads to better ensemble results compared with randomization-based techniques
RandNet+GBE and BAE+GBE.

Table 3. Benchmark of ODDITY and other supervised & semi-supervised anomaly detec-
tion methods

Algorithm Letter Optdigits Pendigits Satellite Mnist Speech Unweighted

AUPRC AUPRC AUPRC AUPRC AUPRC AUPRC Average

Conventional Supervised Classifiers

Logistic regression 0.2639 1 0.9658 0.8538 0.9241 0.1965 0.7006

SVM 0.3606 1 0.9547 0.8560 0.9259 0.1784 0.7126

MLP 0.4297 0.9947 0.9642 0.8807 0.9775 0.1695 0.7360

kNN 0.3462 1 0.9812 0.9239 0.9243 0.1209 0.7161

Gradient Boosting Ensemble Methods

GBE 0.5357 0.9985 0.9808 0.9549 0.9764 0.1400 0.7644

Randomization-based Autoencoders with ODDITY framework

GBAE 0.5815 0.9740 0.9860 0.9599 0.9829 0.1644 0.7748

RandNet+ GBE 0.5773 0.9784 0.9810 0.9587 0.9767 0.1488 0.7705

BAE+GBE 0.6481 0.9784 0.9806 0.9583 0.9832 0.1593 0.7847

Semi-supervised Framework

XGBOD 0.6264 0.9967 0.9887 0.9385 0.9734 0.1747 0.7831

ODDITY Family

ODDITY-KL 0.5125 0.9679 0.9886 0.9595 0.9814 0.1324 0.7570

ODDITY-cos 0.5804 0.9712 0.9768 0.9582 0.9779 0.1481 0.7697

ODDITY-Entropy 0.6889 0.9723 0.9836 0.9605 0.9789 0.1996 0.7957

ODDITY-var 0.7848 1 0.9971 0.9668 0.9814 0.2815 0.8350

We compare the feature importance map between ODDITY and GBE. We
observe that the added features extracted by DAs play a vital role in the clas-
sification and result in improved performance. The result is provided in Fig. 7
and discussed in AppendixB.

However, we also notice that all techniques can not achieve decent results
on the speech dataset. The 400 dimensions of the speech dataset might cause
these failures. This is because traditional methods, especially kNN and SVM,
are not suitable for handling such high-dimensional vectors. Moreover, the 20

430 H. Peng et al.

new features generated by ODDITY are only a small portion compared with the
input and can not contribute a lot to the final results.

It is natural to extend ODDITY to unsupervised learning by substituting an
unsupervised classifier for the final supervised meta-learner. We compare multi-
ple unsupervised meta-learners to determine which one is the greatest fit. The
best results are then compared to those obtained using other unsupervised tech-
niques. AppendixC contains the results and discusses them. In summary, ODDITY
with an appropriate unsupervised meta-learner outperforms all other approaches
even in the unsupervised setting.

Network Intrusion Datasets. Given that the ODDITY-var outperforms the
baseline methods in benchmarking, we train it using the same architecture on
real-world network intrusion detection datasets to provide a more extensive and
comprehensive comparison with the XGBOD.

As indicated in Sect. 5.1, in addition to AUPRC, we examine precision, recall,
f1-score, accuracy, false-positive rate, and runtime speed when evaluating the
effectiveness and scalability of anomaly detection systems. Table 2 summarizes
the outcome. While both techniques perform satisfactorily on network intrusion
datasets, ODDITY still has significant advantages. ODDITY has a higher AUPRC for
the KDD and UNSW-NB15 datasets, which results in increased precision, recall,
and f1-score. Moreover, ODDITY has lower false-positive rates (FPR), which is a
critical criterion for an anomaly detection system (3% lower for UNSW-NB15
and 0.3% lower for KDD). ODDITY’s also has significant advantage interms of
speed and runtime efficiency. On average, ODDITY accelerates training by 6
times and prediction by more than 50 times. On the UNSW-NB15 and
KDD datasets, training ODDITY is 5.7 times and 6.69 times faster than XGBOD,
respectively. Additionally, ODDITY occurs 52 times and 36.25 times during the
prediction process. Even though both approaches produce excellent results on
the IDS-2018 datasets, ODDITY still has a much better runtime efficiency.

Table 4. Comparison of ODDITY and XGBOD in real network intrusion datasets

AUPRC Precision Recall F1 Accuracy FPR Train time Test time

UNSW-NB15

XGBOD 99.73 95.37 96.00 96.83 99.20 5.87 3min 16 s 24 s

ODDITY 99.85 97.81 98.33 96.9 99.24 2.64 34 s 460ms

KDD

XGBOD 99.95 99.74 99.56 99.59 99.97 0.85 6min 43.5s

ODDITY 99.99 99.82 1 99.91 99.99 0.56 53.8 s 1.2 s

IDS-2018

XGBOD 1 1 1 1 1 0 5min 28 s 34 s

ODDITY 1 1 1 1 1 0 27.6 s 234ms

ODDITY: An Ensemble Framework 431

6 Robustness Against Evasion Attacks

As machine learning-based anomaly detection systems became increasingly com-
mon, studies on their security and robustness in the presence of hostile adver-
saries increased. Numerous recent research has demonstrated that machine learn-
ing models’ output can be arbitrarily adjusted with unnoticeable changes to the
input [9,33]. Anomaly detection systems face unprecedented threats-malicious
behavior and records attempt to evade detection by introducing a minor pertur-
bation. Thus, it is critical for an ideal anomaly detection system to be resistant
to evasion attacks.

6.1 Threat Model

For an anomaly detection engine h and some anomalous data points (x, y = 1),
the aim of evasion attacks is to fool the detection engine to misclassify the data
points as normal points by introducing small or imperceptible changes to the
input feature. h(x′) = 0 wherex′ = x+δ and δ < ρ where ρ is a very small value.

These evasion attacks on anomaly detection systems might be classified
according to the adversary’s capabilities. While black-box attacks merely require
queries to the target model, white-box attacks require the adversary to have full
knowledge of the target model. For anomaly detection, the black-box threat
model is more applicable. An attacker may query the decision engine to obtain
matched anomaly scores from the detection engine. Every query to the model
costs time and money and increases the risk of detection. From the perspective
of defenders, anomaly detection systems are robust against evasion attacks when
the rate of successfully fooling the decision engine is low even when the budget
of queries B is large.

Algorithm 1: SimBA in pseudocode
Data: h, x, y, ε
Result: δ
δ = 0;
p = ph(y|x);
B = 0;
Q is an arbitrary set of orthonormal basis of input space ;
while B < Bmax do

Randomly pick a vector q ∈ Q without replacement;
Randomly pick a direction a ∈ {ε, −ε};
p′ = ph(y|x + δ + aq);
if p’ ¡ p then

δ = δ + aq;
p = p′;

end
B + +

end

432 H. Peng et al.

6.2 Attack Algorithms

We launch simulated evasion attacking using the strategy introduced in SimBA
(Simple black-box attacks) [17]. SimBA is a simple yet powerful strategy that
exploits the confidence scores to construct adversarial data points. It’s proven to
achieve state-of-the-art success rate with an unprecedented low number of black-
box queries. SimBA strategy can be described using the pseudocode 1 below: for
any direction q and some step size ε, one of x + εq or x − εq is likely to decrease
the anomaly scores ph(y|x). We therefore repeatedly pick random directions q
and either add or subtract them.

6.3 Experimental Results

We launch attacks to the supervised methods and semi-supervised methods
used in Sect. 5.3. We purposefully chose datasets for this experiment that most
anomaly detection approaches archive decent results on, particularly the optdig-
its, the pendigits, the satellite, and the mnist dataset so that it will be more
challenging for evasion attacks to bypass the decision engine. The orthonormal
basis Q is generated from the O(N) Haar distribution in the input feature space.
We set the step size ε = 0.001 and we increase the budget from 5 to 30, which
means ||δ||2 ≤ √

B ∗ ε =
√

0.003 = 0.05. Since every input feature is scaled
between 0 to 1, the SimBA attacks will only introduce a very small perturbation
to the input.

Figure 6 illustrates how the success rate increases as the number of inquiries
increases. Both supervised anomaly detection techniques (i.e., logistic regression,
SVM, KNN, MLP) and ensemble-based methods (LGBM, XGBOD) are vulner-
able to SimBA attacks. Within 30 inquiries, attackers can successfully deceive
those decision engines. The sole exception is KNN on the Optdigits dataset,
which maintains a near-zero success rate throughout the procedure. However,
ODDITY is significantly more resilient than the others. Even when the budget for
queries increases, ODDITY maintains a low success rate.

Fig. 6. Generally, success rate increase with query budget. Among all other methods,
ODDITY is more robust against SimBA attacks by restricting the success rate to be low
when we increase the query budget.

ODDITY: An Ensemble Framework 433

The reasons behind ODDITY’s resiliency are (1) Diverse autoencoders in
ODDITY that augment the input features, which act as redundancy and error
checking. The additional features are retrieved from the original input and con-
tain information about it. When you augment the input with certain perturba-
tions, the decision engine can correct the input depending on the augmented fea-
ture. (2) The attacker is also unaware of the mechanism of various autoencoders,
which implies the attacker is dealing with two Black Boxes. Thus, attacker can-
not forecast the output of DAs when x is perturbed which increases the difficulty.
(3) It’s more difficult to deceive all DAs simultaneously. Because we encourage
variety and disagreement among DAs, developing an attack mechanism that
tricks all DAs will become increasingly difficult.

7 Discussion

ODDITY outperforms other supervised and semi-supervised techniques
in terms of accuracy, efficiency and resistance to evasion attacks.

We elucidate why ODDITY achieves superior performance from three distinct
perspectives: First of all, the variance-bias trade-off is a commonly used theoreti-
cal framework to understand anomaly detection techniques. Small variances and
bias result in superior performance and robustness. ODDITY reduces model-centric
bias by effectively combining representation learned by multiple diverse autoen-
coders. Besides, ODDITY, as a staking-based ensemble learning framework, intro-
duces DAs to ensure each base-learner is independent and less correlated. Com-
bining these base-learners yields better results since complementarity is more
critical than pure accuracy. The mechanism in DAs that promotes diversity also
relates to the fact that anomalies occur for a variety of reasons in real network
traffic. They frequently exhibit very distinct patterns. Every DA is trained to
be an expert at identifying specific types of attacks that make full use of each
DA’s predictive capability.

However, in unsupervised settings, the advantage of ODDITY framework is
more limited since there are no labels to guide the internal feature pruning. The
unsupervised meta-learners aggregate new features in a somewhat blind way.
However, We still observe that the superiority of MCD + ODDITY compared with
other unsupervised methods demonstrates the compelling potential for exploring
ensemble methods in an unsupervised setting.

8 Conclusion and Future Works

We proposed a novel semi-supervised ensemble framework for anomaly detec-
tion, namely, ODDITY, extending the idea of combining unsupervised representa-
tion learning and supervised ensemble learning. In ODDITY, we propose DAs that
leverage contrastive representation learning to extract diverse features and enrich
the input representation. DAs makes ODDITY an end-to-end and data-driven
framework, meaning deploying ODDITY does not need to select a set of heteroge-
nous base-learners based on experience and expensive experiments. Experiments

434 H. Peng et al.

show that ODDITY is accurate, robust, and efficient. The future directions can be
on investigating to empirically determine the performance with different hyper-
parameters and visualize what DAs learned to provide interoperability.

A Experimental Datasets

Details of each dataset used in the experiment are provided in Table 5. Due to the
size of the KDD99, UNSW-NB15, and IDS-2018 datasets, we randomly choose
a portion of them.

Table 5. Summary of datasets

Datasets Features Normal Anomaly

Letter [29] 32 1600 100

Optdigits [2] 64 5216 150

Pendigits [31] 16 6870 156

Satellite [22] 36 6435 2036

Mnist [4] 100 7603 700

Speech [24] 400 3686 61

KDD99 41 70458 2371

UNSW-NB15 [27] 49 50801 6313

IDS-2018 [1] 78 52238 19491

B Feature Importance map

The feature importance map in Fig. 7 reveals the importance of features for the
Letter dataset and initially has 32 features (column 1–32), and DAs in ODDITY
extract 20 more features (column 33–52). As shown in Fig. 7, the final classifier
LGBM in ODDITY assign high importance factors on features (column 51, column
54, column 48, etc.) results in improved performance.

C ODDITY in Unsupervised setting

Replace the final supervised meta-learner with an unsupervised classifier to
extend ODDITY to unsupervised learning. We incorporate ODDITY with three
unsupervised classifiers, namely HBOS [16], Isolation Forest [22] and MCD [18].
Above mentioned methods are implemented using PyOD [36]. By choosing
AUROC as the metrics, the hyperparameters and architecture of ODDITY remain
the same as in Sect. 5.2. Table 6 summarizes the experimental results of averag-
ing of ten trials. After utilizing the diverse features extracted by DA, the ROC
of kNN improves by 0.3 %, the ROC of IF improves by 1.3 %, and the ROC

ODDITY: An Ensemble Framework 435

of MCD improves by 8%. Since MCD + MCD outperforms others, we further
compare the performance of MCD +ODDITY with other commonly used unsuper-
vised anomaly detection techniques, including kNN, IF, PCA [32], and LOF [8].
ODDITY shows compelling potential in unsupervised anomaly detection by out-
performing all other methods (Table 7).

(a) LGBM (b) ODDITY

Fig. 7. Feature Importance of LGBM and ODDITY on Letter dataset

Table 6. ODDITY in unsupervised learning

Dataset HBOS AUROC Isolation Forest AUROC MCD AUROC

without ODDITY with ODDITY without ODDITY with ODDITY without ODDITY with ODDITY

Letter 0.6223 0.6080 0.6614 0.6913 0.6287 0.7802

Optdigits 0.8184 0.7820 0.6028 0.6463 0.3803 0.4323

Pendigits 0.9223 0.9332 0.9548 0.9202 0.8423 0.9548

Satellite 0.7519 0.7074 0.6750 0.6835 0.7977 0.7726

Mnist 0.6082 0.6324 0.8001 0.8197 0.8262 0.8694

Speech 0.4327 0.4572 0.4895 0.5003 0.4830 0.4840

KDD99 0.4943 0.4914 0.4903 0.4911 0.4914 0.4965

UNSWNB15 0.8451 0.9465 0.8125 0.8377 0.8219 0.8407

Average 0.6869 0.6947 0.6858 0.6988 0.6589 0.7038

Table 7. Comparison of unsupervised anomaly detection methods

Algorithm Letter
AUROC

Optdigits
AUROC

Pendigits
AUROC

Satellite
AUROC

Mnist
AUROC

Speech
AUROC

KDD99
AUROC

UNSWNB15
AUROC

Unweighted
Average

HBOS 0.6223 0.8184 0.9223 0.7519 0.6082 0.4327 0.4943 0.8451 0.6869

Isolation Forest (IF) 0.6614 0.6028 0.9548 0.6750 0.8001 0.4895 0.4903 0.8125 0.6858

PCA 0.5860 0.5329 0.9451 0.5918 0.8513 0.4601 0.5009 0.8724 0.6675

LOF 0.8504 0.5681 0.3863 0.5842 0.6913 0.4549 0.5076 0.5435 0.5733

MCD 0.6287 0.3803 0.8423 0.7977 0.8262 0.4830 0.4914 0.8219 0.6589

MCD + ODDITY 0.7802 0.4323 0.9548 0.7726 0.8694 0.4840 0.4965 0.8407 0.7038

436 H. Peng et al.

References

1. Cse-cic-ids2018 datasets. https://www.unb.ca/cic/datasets/ids-2018.html.
Accessed 23 June 2021

2. Aggarwal, C.C., Sathe, S.: Theoretical foundations and algorithms for outlier
ensembles? ACM SIGKDD Explor. Newsl. 17(1), 24–47 (2015)

3. Aggarwal, C.C., Sathe, S.: Outlier Ensembles, pp. 1–34. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54765-7

4. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Wells, J.R.: Efficient
anomaly detection by isolation using nearest neighbour ensemble. In: Proceedings
of IEEE International Conference on Data Mining Workshop (2014)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013).
https://doi.org/10.1109/tpami.2013.50

6. Bow, S.T.: Multilayer perceptron. In: Pattern Recognition and Image Preprocess-
ing, pp. 201–224, November 2002

7. Breiman, L.: Machine learning. Bagging predictors 24(2), 123–140 (1996). https://
doi.org/10.1007/BF00058655

8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF. ACM SIGMOD Rec.
29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388

9. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp. 3–14 (2017)

10. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder
ensembles. In: Proceedings of the 2017 SIAM International Conference on Data
Mining, pp. 90–98, September 2017. https://doi.org/10.1137/1.9781611974973.11

11. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

12. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
233–240 (2006)

13. Dua, D., Graff, C.: UCI Machine Learning Repository (2017)
14. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and

large-scale anomaly detection using a linear one-class SVM with deep learning.
Pattern Recogn. 58, 121–134 (2016). https://doi.org/10.1016/j.patcog.2016.03.028

15. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997).
https://doi.org/10.1006/jcss.1997.1504

16. Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): a fast unsuper-
vised anomaly detection algorithm. KI-2012 Poster 59–63 (2012)

17. Guo, C., Gardner, J., You, Y., Wilson, A.G., Weinberger, K.: Simple black-box
adversarial attacks. In: International Conference on Machine Learning, pp. 2484–
2493 (2019)

18. Hardin, J., Rocke, D.M.: Outlier detection in the multiple cluster setting using
the minimum covariance determinant estimator. Comput. Stat. Data Anal. 44(4),
625–638 (2004)

19. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv.
Neural Inf. Process. Syst. 30 (2017)

https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.1007/978-3-319-54765-7
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1145/335191.335388
https://doi.org/10.1137/1.9781611974973.11
https://doi.org/10.1016/j.patcog.2016.03.028
https://doi.org/10.1006/jcss.1997.1504

ODDITY: An Ensemble Framework 437

20. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. Adv. Neural. Inf. Process. Syst. 7, 231–238 (1994)

21. Liao, Y., Vemuri, V.: Use of k-nearest neighbor classifier for intrusion detection.
Comput. Secur. 21(5), 439–448 (2002)

22. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Inter-
national Conference on Data Mining (2008). https://doi.org/10.1109/icdm.2008.
17

23. Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans.
Knowl. Data Eng. (2021)

24. Micenková, B., McWilliams, B., Assent, I.: Learning outlier ensembles: the best of
both worlds-supervised and unsupervised. In: Proceedings of the ACM SIGKDD
2014 Workshop on Outlier Detection and Description under Data Diversity
(ODD2). New York, pp. 51–54. Citeseer (2014)

25. Micenková, B., McWilliams, B., Assent, I.: Learning representations for outlier
detection on a budget. arXiv preprint arXiv:1507.08104 (2015)

26. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of
autoencoders for online network intrusion detection. arXiv:1802.09089 (2018)

27. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Com-
munications and Information Systems Conference (MilCIS) (2015)

28. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

29. Rayana, S., Akoglu, L.: Less is more: Building selective anomaly ensembles with
application to event detection in temporal graphs. In: Proceedings of the 2015
SIAM International Conference on Data Mining (2015)

30. Sarvari, H., Domeniconi, C., Prenkaj, B., Stilo, G.: Unsupervised boosting-based
autoencoder ensembles for outlier detection. In: PAKDD 2021. LNCS (LNAI),
vol. 12712, pp. 91–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75762-5 8, https://arxiv.org/pdf/1910.09754v1.pdf

31. Sathe, S., Aggarwal, C.: Lodes: Local density meets spectral outlier detection. In:
Proceedings of the 2016 SIAM International Conference on Data Mining (2016)

32. Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection
scheme based on principal component classifier. Miami Univ. Dept. of Electrical
and Computer Engineering, Technical report (2003)

33. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)
34. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)
35. Zhao, Y., Hryniewicki, M.K.: XGBOD: improving supervised outlier detection with

unsupervised representation learning. In: 2018 International Joint Conference on
Neural Networks (2018)

36. Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detec-
tion. J. Mach. Learn. Res. 20(96), 1–7 (2019)

37. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca
Raton (2012)

https://doi.org/10.1109/icdm.2008.17
https://doi.org/10.1109/icdm.2008.17
http://arxiv.org/abs/1507.08104
http://arxiv.org/abs/1802.09089
https://doi.org/10.1007/978-3-030-75762-5_8
https://doi.org/10.1007/978-3-030-75762-5_8
https://arxiv.org/pdf/1910.09754v1.pdf
http://arxiv.org/abs/1312.6199

Deep Learning Based Webshell Detection
Coping with Long Text and Lexical Ambiguity

Tongjian An(B) , Xuefei Shui, and Hongkui Gao

DAS-Security Co., Ltd., 310051 HangZhou, China
pacino.an@dbappsecurity.com.cn

Abstract. Webshell is a web page used by hackers for communicating with the
web server and network intrusion. To detect webshell, deep learning methods are
proposed to automatically extract features and mine semantics from PHP script.
Although deep learning methods show a promising perspective, challenges still
exist including the challenge of text selection when coping with long PHP script,
the challenge of coping with lexical ambiguity in programming language and the
challengeof decline of generalization ability to unseenPHPs if training samples are
not treated reasonably. To resolve these challenges, we propose a two-stage deep
learningwebshell detectionmethod. In stage one, a TextRank based sentence-level
text selection model is proposed to preserve code semantic via extracting high-
value code lines. While in stage two, after the tokenization of selected code lines,
a CodeBert based token embedding model is utilized to resolve lexical ambiguity
and generate token representation vectors. Down-stream task specified classifier is
further utilized to detect webshell and to fine-tune the token embedding model. In
training procedure, we split training/validation data set more reasonably to prevent
data leakage. Besides, for the additional man labour of disposing false alarm in
practical application, an extra large benign PHP data set is utilized for more solid
validation. Experiments demonstrate the effectiveness of our method.

Keywords: Webshell detection · Deep learning · Text selection · Lexical
ambiguity · CodeBert · TextRank

1 Introduction

Webshell is a piece of web scripting language program written for providing remote
access and code execution to server functions [1]. Hackers may use webshells to do one
or more of the following harmful tasks: 1) stealing information, 2) tampering databases,
3) modifying the home page of a website, 4) uploading malware, 5) intruding other
machines in internal network, 6) escalating hacker’s privileges to cause more serious
damages [2]. In addition to the sever consequences caused by webshell, a research of
Microsoft Detection andResponse Team (DART) announced a steady increasing number
of these attacks. From August 2020 to January 2021, DART registered an monthly
average of 140,000 encounters of webshell threats on servers, almost double the 77,000
monthly average in 2019 [3]. Thus the detection of webshell is crucial in cyber-security
more than ever.

© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 438–457, 2022.
https://doi.org/10.1007/978-3-031-15777-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_24&domain=pdf
http://orcid.org/0000-0002-1020-5726
https://doi.org/10.1007/978-3-031-15777-6_24

Deep Learning Based Webshell Detection 439

The webshell detection methods can be classified to 3 main categories by the fea-
tures they are using and by how the features are generated: traditional/heuristic method,
machine learning method and deep learning method.

Traditional/heuristic detection methods are usually based on string/signature match-
ing algorithm and some statistically information of webshell like number of function
calls, information entropy, etc. Tu et al. [5] proposed a detectionmethodbasedon the opti-
mal threshold values to identify suspicious webshell files that contain malicious codes
from web applications by matching functions and signatures with webshell database.
The list of selected suspicious webshell files are further checked by web administrators.
Wang et al. [6] proposed an detection algorithm based on information entropy of PHP
special strings, using a threshold of normal file information entropy to detect whether or
not a PHP file contains webshell. Croix et al. [7] combined five heuristic features: fuzzy
hashes, signature, dangerous routines, information entropy and obfuscation degree to
detect PHP webshells. And the weight of each feature is determined by a genetic algo-
rithm. Although traditional/heuristic methods can efficiently detect existing webshell,
they are also subject to lack of generalization ability, i.e. fail to detect unseen webshell
of which the signatures or patterns are not in the database.

Machine learning detection methods can automatically discover the relationships
between features and webshell/benign PHPs by learning from large and varied data.
Guo et al. [8] proposed a naive-bayes classifier based PHP webshell detection model
combined with opcode sequence which generated by the Vulcan logic dumper (VLD)
compilation. Method based on occurrence value of sensitive function call is studied in
[9] and experiments are conducted using different machine learning classifiers including
support vector machine (SVM), neural network (NN), decision tree (DT), naive-bayes
(NB). Huang et al. [10] proposed ensemble learning method of multiple detectors using
statistical features of high risk functions and variables. Experiments results showed that
ensemble learning method yields a lower false positive rate. Although machine learning
methods preform better than traditional methods, they have the disadvantages of using
handcrafted features which need to be delicately designed by specialists [11, 13] and of
lack PHP code semantic awareness because they commonly use statistically engineered
features to train a model.

Deep learning detection methods have been proposed to mitigate defections of
machine learning methods. Deep learning algorithms such as Convolution Neural Net-
work (CNN) and Long Short-Term Memory (LSTM) have the abilities of extracting
features automatically from numerous data. Lv et al. [11] proposed a CNN based web-
shell detection algorithm and achieved a higher detection accuracy thanmachine learning
method. CNN is also combined with reinforcement learning approach for automatic fea-
ture selection in [12]. LSTMwas exploited inwork [13] combinedwith a down-sampling
token filter method. The LSTM model is fed with a sequence of word vectors that gen-
erated from PHP script. Li et al. [4] proposed a word2vec method to vectorize words
from each line in PHP script, then GRU and attention mechanism are utilized to further
mine code semantic.

Although these proposed deep learning methods show a promising prospect in web-
shell detection task, they are subject to challenges of coping with long text and lexical
ambiguity. Besides, in model training procedure, there is also a challenge of decline

440 T. An et al.

of model generalization ability if samples are not treated reasonably. We will illustrate
these challenges and corresponding solutions in following sections. In this paper, the
meaning of term ‘PHP’ is same with term ‘PHP script’ unless stated otherwise.

2 Challenges in Deep Learning Based Webshell Detection

In this section, three existed challenges in webshell detection, i.e. long text challenge,
lexical ambiguity challenge and model generalization challenge will be illustrated in
subsection sequence. In each subsection, we will also introduce the intuition of method
utilized to solve the corresponding challenge. Finally the contributions of our paper will
be extracted.

2.1 Long Text Challenge

In the scope of natural language processing (NLP), it is challenging when deep learning
models process long text input. Long input leads to an expensive model computation and
memory space cost. This is because the higher complexity in nowadays models such as
LSTM [33], Transformer [34] and Bert [14]. Take self-attention module in Transformer
for example, the computational and space complexity are both O(nL2), where L is the
length of input and n is the size of hidden vector. It is obviously a drastically resource
increasing for longer input length in training and inference procedure, thus make deep
learning model even impossible to use in practical if long text is not well handled. To
mitigate this challenge in NLP scope, some researchers utilized an “upper-stream” text
selection method such as text truncation from head [21] and sentence selection [22, 32]
before they fed text into deep learning model.

Long text challenge also exists in webshell detection task. We collected over 100
k PHP samples from GitHub high-ranking projects and our production systems, find-
ing that the medians of token count of benign and webshell samples are 1 k and 3 k,
respectively (token heremeans PHP code identifier, operator or keywords, etc.). Detailed
statistics are listed in Appendix 1. In former research, some text selection methods have
been utilized such as token filter [11, 13] and length fixed text truncation [4]. However,
token filter methods cut the whole text into inconsecutive fragments. So down-stream
deep learning model can hardly be exploited for further mining code semantic because
neighboring context is not sufficiently preserved. Text truncation methods preserve a
part of consecutive text and throw away the remainder, so they face the problems of
overlooking important information and holding reluctant information when coming to
long PHP text. To deal with long text, a more semantic friendly text selection method is
necessary in webshell detection task.

In text analysis perspective, token filter methods belong to amicro lexical-level gran-
ularity which might ignore the semantic in neighboring context, whereas text truncation
method belongs to macro document-level granularity which might lose the focus of
high-value information of the text. Thus a medium sentence-level granularity text selec-
tion method should be researched for both preserving consecutive context and removing
reluctant information from long PHP text.

Deep Learning Based Webshell Detection 441

2.2 Lexical Ambiguity Challenge

In the scope of NLP, lexical ambiguity is the potential for multiple interpretations of
a word or phrase. Lexical ambiguity implies it difficult or impossible to understand
the word meaning without some additional contextual information. This challenge also
exists in unnatural language such as programming language [24]. For instance, two
‘status’ tokens exist in the following PHP code fragment:

if (! $curl[‘status’]){$status = false;}

The first ‘status’ token in ‘$curl[‘status’]’ represents a key or a field member, while
the second ‘status’ token in ‘$status= false’ represents a local variablewhich has a totally
different code semantic meaning with the first ‘status’ token. Besides, there might exist
multiple ‘[‘status’]’ references and multiple ‘$status’ assignments in this PHP script.
For a more concise semantic comprehension, different representation vectors of these
‘status’ tokens should be generated by token embedding method. However, commonly
used embedding method such as word2vec [4, 11, 13, 23] or one-hot encoding method
generate identical vector for identical token, thus fail to deal with lexical ambiguity.

Lexical ambiguity in NLP scope can be addressed by Bert-like model architectures
[14, 18, 25]. These architectures are mainly based on Transformer encoder which con-
tains a series of self-attention modules. Since attention scores are mutually calculated
between tokens in each location, the output embedding vector is not forced to invariant
for identical token which is not the case in Word2vec model architecture. By combining
a pretrained model with fine-tuning on down-stream tasks, these Bert-like models dom-
inant in many NLP application. Besides, Bert-like models have also been successfully
exploited in cyber-security scope includingmalware detection [18], cyber-security name
entity recognition [19], reverse engineering [20], etc. In webshell detection area, there
are also some bert-like projects pushed to GitHub [40, 41]. However, these methods
have not been systematically researched and not been evaluated on a large evaluation
data set appropriately. So in webshell detection task, the possibility of resolving lexical
ambiguity by bert-like model should be studied.

Besides these two challenges in terms of data processing and model architecture,
challenge also exist in model generalization aspect. Sample data in webshell detection
model training should be carefully treated tomitigatemodel generalization challenge. As
illustrated in next subsection, this challenge may be aggravated by data leakage problem
which originate from a complete randomly training/validation sample split procedure.

2.3 Model Generalization Challenge

Training data sets used in many webshell detection literature are often consist of benign
samples downloaded from GitHub public projects. After a de-duplication process, all
benign samples are mix together with webshell samples into a whole data set, from
which training and validation data set are randomly chosen [4, 8, 26, 27]. However, this
seemingly reasonable sample split process will cause data leakage to an extent in the
validation data set of benign sample. As a consequence, model with relatively lower
generalization ability will be selected in training procedure.

442 T. An et al.

The main reason lies in that benign PHP scripts in the same GitHub project may have
bunch of project-specific code expressions such as same class names, same function
names and same programming styles. And a randomly chosen data split method will
split a part of one benign project in training data set and the other part of the exact same
project in validation data set. This randomly split method may cause a high similarity
between training and validation data set.

Fig. 1. 4 pieces of PHP scripts from two high ranking GitHub PHP project.

Take these 4 PHP scripts in Fig. 1 for instance, script (A) and (B) both belong to a
high ranking (26 k + stars) GitHub PHP project [16], and script (C) and (D) to another
high ranking (16 k + stars) GitHub PHP project [17]. It is shown that project-specific
classnames and code styles do exist between (A) and (B), which is the same situation
between (C) and (D). In a randomly data split method, if (A) and (C) are chosen to
training data set while (B) and (D) to validation data set, then via the performance
on this validation data set what will be selected is a webshell detection model that
identify some project-specific text content as important features such as class name
“BaseCommand” in both (A) and (B) and “use Dispatchable” expression in both (C)
and (D). In other words, instead of mining complex semantic features from code logic, a
model that easily remember these semantic irrelevant and project-specific features will
perform well in validation set and thus be selected as a suitable model to detect those
unseen PHPs. This obviously will cause a somewhat decline of generalization ability. So
it is necessary to amend the data set split method to a moderate level of randomness. The
selected model should mine code semantic in depth and learn from non-project-specific
information.

Deep Learning Based Webshell Detection 443

2.4 Our Contributions

To mitigate these challenges in webshell detection task, we present a new method with
following contributions:

Contribution 1: propose a TextRank based sentence-level text selection model that pre-
serve relatively consecutive code semantic and filter out reluctant information. This
contribution aims to address long text challenge in webshell detection. While text selec-
tion is always accomplished by statistically based token filter or by simple text truncation
in the past, our method use a delicate model to handle it.
Contribution 2: propose a more concise code token vector representation model using
CodeBert framework by taking lexical ambiguity into consideration. As far aswe known,
Bert-like framework has never been systematically studied in webshell detection in
former works.
Contribution 3: use a training/validation data set split methodwith randomness in project
granularity to address data leakage problem and promote model generalization ability.
This data leakage problem has always been overlooked in former literature, while our
paper raise it and address it.

Besides these 3 contributions, we use an extra larger benign PHP data set (86266
PHPs) to adequately validate False Positive Rate (FPR). FPR is a more crucial perfor-
mance indicator even comparing with False Negative Rate (FNR) in practical appli-
cations, since webshell alarms need further checked and handled by human labor in
Intrusion Detection Systems (IDS). Higher FPR is, higher labor cost the system needs.
And this data set is the largest among webshell detection literature to the best of our
knowledge.

The remainder of our work is organized as follows: method framework and details
are illustrated in Sect. 3. Section 4 includes experiments setup data set description and
result comparisons. Finally, the conclusion is draw in Sect. 5.

3 Our Method

In this section, we will firstly present an overview of our method architecture including
sub-model connections, model inputs/outputs and data flows. Then we will illustrate
specific implement details of each model and how these models are used to cope with
long text and lexical ambiguity. In the end of this section, all implements are combine
together for a further clarification of our method in a more intuitive way.

3.1 Method Overview

Overview of our method architecture is shown in Fig. 2. It is a two-stage deep learning
method consists of three sub-models: a text selection model, a token embedding model
and a down-stream classifier.Model functions and inputs/outputs are briefly listed below.

Text selection model aims at extracting high-value information from source code
and cutting off reluctant information on sentence-level granularity. The input of text

444 T. An et al.

Fig. 2. Overview of our method architecture.

selection model is PHP script, the output is crucial semantic information which in our
case is a number of complete code lines.

Token embedding model receives code tokens of the selected code lines as input
and outputs vector representation of every single token and also an overall vector repre-
sentation of the whole selected lines. For identical code token in various code contexts,
different vector representations are generated by taking lexical ambiguity into consid-
eration. To capture semantic information in a more extensive way, as usual way of NLP
training, we adopt an embedding model which is already pretrained in advance with
task irrelevant code. Then we fine-tuned this model with task relevant webshell/benign
PHPs.

Then the token vectors are fed to a down-stream classifier to further mine code
semantic. A many of models can be used as classifier including deep learning and
machine learningmodels. These classifiers output the probability of a PHP script belongs
to webshell. Model loss is calculated and utilized to train the classifier and to fine-tune
the embedding model.

3.2 Text Selection Model

In our method, TextRank model is adopted to extract high-value text from PHP script.
TextRank [28], a variation of PageRank [29], is a weighted graph-based model proposed
for automatic extraction-based summarization. TextRank produces a graph nodes rank-
ing without the need of labeled data. Ranking score calculation is mainly according to
the similarity between nodes as formula (1) below. Nodes with higher ranking score
represent better summarization of text.

WS (V1) = (1 − d) + d ∗
∑

Vj∈in(Vi)
Wji∑

Vk∈out(Vj)Wjk
WS(Vj) (1)

In formula (1), d is the damping coefficient; Vi and Vj represent graph node; Wji

represents the weight of the edge (similarity) between Vi and Vj; in(Vi) is set of node
that point to the node Vi while out(Vj) is set of node pointed by node Vj; WS(Vi) is the
ranking score of node Vi and is calculated in an iterative way. This calculation method
allows the use of TextRank algorithm with different languages ranging from natural
language to programming language given a suitable definition of nodes and similarity
between them.

In our implement, graph nodes of TextRank are PHP code lines which separated by
End-of-Line (EOF) character. The similarity between a node pair is calculated by token

Deep Learning Based Webshell Detection 445

Fig. 3. TextRank based text selection model schema

co-occurrence similarity mentioned in [28]. Then the ranking score of each code line is
calculated by iterations of formula (1). Important code lines are selected in a descending
order of ranking score, starting with the highest score and ending when the count of
selected tokens has achieved a threshold which in our work is 512 or when reaching the
end of PHP script. Since TextRank is an unsupervised algorithm, the classifying loss of
stage two will not be back propagated to text selection model in stage one. It means that
the parameters of TextRank remain identical in training and inference phase.

Note that similarity calculation is a plug-in of TextRank model. This means co-
occurrence similarity is an instance and can be replaced by similarity based on AST
[42] or sentence embedding. We choose co-occurrence similarity in our implementation
as an instance because this method needs no other package or software dependency
and the calculation overhead is relatively low. This means co-occurrence similarity can
be deployed in wide-ranging environments. If the deploy environment can fulfill the
computational resource and dependency, other similarity calculation method can also be
utilized.

The model schema with an intuitive example is shown in Fig. 3. Code line 8, 30 and
32 are selected from PHP script. Note that code lines contain only brace character (‘{’
or ‘}’) or only string ‘< ?php’ are filtered out from nodes in TextRank because these
lines retain little semantic information.

3.3 Token Embedding Model

To cope with lexical ambiguity challenge in token embedding procedure, we adopt
CodeBert which is essentially a Bert framework pretrained language model proposed in
programming language scope [15]. Pretrained language model is trained in advance by
a large amount of data via a self-supervised way and is later fine-tuned by a moderate
amount of data in downstream tasks. As a Bert counterpart in programming language
scope, CodeBert is also based on stacked Transformer encoder and is pretrained with
codes of six programming languages including PHP, java, python, etc. CodeBert differs

446 T. An et al.

from Bert in that the model is training with unimodal data and bimodal data including
pairs of programming language (PL) and natural language (NL).

Fig. 4. CodeBert architecture.

The schema of CodeBert with 12 Transformer encoder layers and 768-dimension
embedding vector is shown as Fig. 4. Attention mechanism in Transformer calculates an
attention score between every token pair, no matter how long distance these pairs have.
Thus identical tokens, for instance 2 ‘value’ tokens in Fig. 4, pay attention to a different
part of context and has a distinctive vector representation after training. Comparing to
word2vec model in which identical token always have identical representation, Code-
Bert take lexical ambiguity into consideration by dynamically calculating token vector
representation with context.

In ourwork,we use the official open source pretrainedmodel parameters of CodeBert
as the initial parameters of our token embedding model [30]. Then the parameters are
fine-tuned by collected webshell/benign PHP scripts in training phase. We tokenize
output code lines of text selection model into code tokens which are further fed into
CodeBert to generate token vector representations. Among multiple layers of CodeBert,
we use the output vector of last Transformers layer as representations of code tokens.
Representation vector of whole selected code lines is noted by output vector in [CLS]
location. Since [CLS] vector contains synthetic semantic information of PHP script, it
can be directly used to detect webshell by combining with a light machine learning
classifier such as softmax. However, down-stream deep learning classifier can also be
exploited on token vectors to mine more semantic information.

3.4 Down-Stream Classifier

For further mining code semantics, we use TextCNN model as a down-stream web-
shell/benign classifier. TextCNN has been utilized in cyber-security scope such as code

Deep Learning Based Webshell Detection 447

analysis and vulnerability detection [35, 36]. CNN is a neural network that includes
convolutional computations originally applied to the image domain. It was transformed
by researchers in [31] to TextCNN for text field application. TextCNN performs cor-
responding convolution and pooling operations on the input text vector using various
size of sliding windows to capture both local features and global features. The model
structure of TextCNN (with an intuitive example of 5 code token vectors and the vector
length is 4) is shown in Fig. 5.

Fig. 5. TextCNN architecture.

Note that convolution kernel has length in two dimensions, one of which always
aligns with the dimension of code token representation vector while the other is the
kernel size. So a slide of convolution kernel on input is more like a n-gram feature
extraction method where n is equal with the kernel size. Max-pooling operation are
taken on the feature maps which are outputted by the convolution layer. Then a concat
layer gathers all features in one hidden vector. Finally a fully connected layer transforms
this hidden vector to output vector. The length of the output vector is equal to 2 which
means 2 classes (webshell and benign).

Other down-stream classifier such as GRU, LSTM and Softmax can also be utilized
and easily replace TextCNN in method architecture. A comparison study is performed
in Sect. 4 between TextCNN, GRU, LSTM and Softmax which uses [CLS] of CodeBert
as an input.

After place all model implements on Fig. 2, a more detailed architecture of our
webshell detection method is shown in Fig. 6.

448 T. An et al.

Fig. 6. Overview of our method with more details.

4 Experiment

4.1 Data Set and Data Split Type

In our experiment, after a de-duplication process, 21285 benign samples are collected
from 38 GitHub PHP projects, while 5444 webshell samples are collected from both
GitHub (2769webshell) and our own production systems (2675webshell). These benign
andwebshell samples are noted as data set D.We first randomly chose 12 benign projects
(including 2037 benign PHPs) and 544 webshells from D to form an evaluation data set.
Then for the split of training/validation data set from the rest of D (noted as D*), we use
two types of data split for showing the existence of data leakage.

Split Type 1: randomly shuffle samples in D*. Then cut 80% of D* for training and 20%
remainder for validation.
Split Type 2: for benign project, randomly shuffle in project granularity. Then cut 80%
of benign projects for training and the 20% remainder projects for validation. While for
webshell sample, the split data set remains the same with Split Type 1.

Split Type 1 and 2 are shown in Fig. 7 for more clearance. Green color part is
for training data, gray color part is for validation data, while orange color part is for
evaluation data. Note that evaluation data is identical for both Split Type 1 and 2.

Besides of benign samples mentioned above, we further collected 86266 benign
samples from 862GitHub projects to adequately evaluate the false positive rate indicator
which is a major concern in practical webshell detection application. Webshell and
benign sample sources are listed in Table 6 and Table 7 in Appendix 2.

4.2 Evaluation Criteria

Weuse 4 indicators to evaluate ourmethod as formula (2). TP (true positive) and TN(true
negative) are the number ofwebshell and benign samples that themodel outputs correctly

Deep Learning Based Webshell Detection 449

Fig. 7. Split Type 1 and 2 for training and validation data set.

while FP(false positive) and FN(false negative) are the number of webshell and benign
samples that the model outputs incorrectly:

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1 = (2 × Precision × Recall)/(Precision + Recall)
FPR = FP/(FP + TN)

(2)

4.3 Model Parameters and Experiment Setup

In text selection model, the TextRank damping coefficient is set to 0.85, and the number
of iterations is 200. In CodeBert model, the number of Transformer encoder layers is 12,
the dimension of the hidden layer is 768 and the number of attention heads is 12. The
number of convolution kernels of the TextCNN model is set to 256, and the size of the
convolution kernel is set to 3, 4, 5, and 6 respectively. The learning rate is set to 0.00001
and the dropout is 0.1.

Weadopt 3 series of experiments to validate the effectiveness of our proposedmethod.

Experiment 1: we train 3 models using both Split Type 1 and Split Type 2 for the
demonstration of data leakage in validation data set and model generalization ability
affected by this leakage.
Experiment 2: we compare our method with 3 available webshell detection software and
3 deep learning based webshell detection method in [4, 11, 13] to show the effectiveness
of our method in an end to end way.
Experiment 3: we deploy an ablation study to further verify the effectiveness of our
sub-models by changing one sub-model while keeping other sub-models fixed.

450 T. An et al.

4.4 Evaluation Result Analysis

In Experiment 1, XGBoost basedmodel with n-gram feature engineering, softmax based
model with word2vec feature engineering and our method are trained using both data
Split Type 1 and Split Type 2. The model with best performance on validation data set
are selected for result comparisons on evaluation data set for all 3 detection methods.

Table 1. Models generalization ability results of 3 models.

Detection method Data Split Type Precision Recall F1

2-g + TF-IDF + XGBoost Type 1 0.616 0.899 0.731

Type 2 0.839 0.923 0.879

Word2vec + Softmax Type 1 0.622 0.917 0.741

Type 2 0.919 0.915 0.917

Our method Type 1 0.824 0.954 0.884

Type 2 0.991 0.994 0.993

In can be seen from Table 1 that methods trained by data Split Type 2 both perform
better than Split Type 1 on evaluation data set which is unseen in training phase. Though
the recall of Word2vec with softmax in Split Type 1 slightly surpasses Split Type 2,
the precision decrease largely. This means the decline of generalization ability actually
exists when model is trained by GitHub benign projects via data Split Type 1 which
based on randomly shuffle in script granularity. Split Type 2 with project granularity
shuffle should be used for avoiding the data leakage in validation set and for enhancing
the ability of generalization to unseen PHPs. So in other experiments, we will adopt only
data Split Type 2 and drop Split Type 1.

Note that because the webshell projects on GitHub is just collections of webshells
written by different attackers from everywhere. Unlike benign projects, the webshells in
these projects dose not suffer from data leakage because they were not written in same
code style or using same identifier name. So random shuffle inwebshell script granularity
should not decrease the model generalization ability. To prove this hypothesis, we adopt
an addition ablation experiment. This experiment shuffle benign samples in project
granularity as Split Type 2 and compare the performance between two webshell shuffle
granularities, i.e., script granularity and project granularity. And the detection methods
remain same with Experiment 1. The result of this experiment support out hypothesis,
that is randomshuffle inwebshell script granularitywill not cause a data leakage problem.
Detailed result is shown in Appendix 3 for not interrupting the smooth of our paper.

In Experiment 2, we introduce 3 similar deep learning based webshell detection
methods which also contain a text selection model, a token embedding model and a
down-stream classifier. Besides, 3 frequently used webshell detect software are also
tested. FPR indicator of these 6 approaches and our method are further evaluate on
86266 benign PHPs. The results are shown in Table 2. Note that the Webshell Killer
software has 2 detection mode to choose, one mode is for higher recall and the other
mode is for higher precision.

Deep Learning Based Webshell Detection 451

Table 2. Results of 7 webshell detection approaches.

Detection
method

Text
selection
model

Token
embedding
model

Down-stream
classifier

Precision Recall F1 FPR of 86266
Benign PHPs

Recall of
ob-webshells

D-shield
[37]

/ / / 0.984 0.915 0.949 0.004 0.915

Webshell
Killer1 [38]

/ / / 0.985 0.864 0.921 0.004 0.855

Webshell
Killer2

/ / / 1 0.763 0.865 0.001 0.778

Cloud
Walker [39]

/ / / 0.986 0.776 0.868 0.003 0.752

Method 1
[4]

Truncation Word2vec
+ Attention

GRU 0.978 0.923 0.950 0.006 0.915

Method 2
[11]

High
frequency
token

BoW CNN 0.924 0.897 0.910 0.020 0.889

Method 3
[13]

Down
sampling

Word2vec LSTM 0.980 0.987 0.984 0.005 0.957

Our method TextRank CodeBert TextCNN 0.991 0.994 0.993 0.002 0.974

Ourmethod surpasses all detection approaches in recall and F1 score whileWebshell
Killer software in mode 2 achieves the highest precision, however, at the expense of a
lowest recall. Since these detection software are commonly based on signatures and
rule-based models, they achieve on average higher precision and a lower recall than
the set of deep learning based models. Comparing with other deep learning models, our
method performs better on all 4 indicators. The lower FPR (0.002)means that ourmethod
need a lower manual labour in disposing of the false alarm in practical application, with
a percentage of 33% (0.002/0.006), 10% (0.002/0.02) and 40% (0.002/0.005) of deep
learning method 1, 2 and 3, respectively. Our evaluation data set also contains 117 ob-
webshells (short for obfuscated webshells), our method also performs better than other
approaches in the recall indicator of these webshells.

In Experiment 3, we firstly fix the token embedding model and down-stream classi-
fier while choosing the text selection sub-model from truncation, high frequency token
reservation and TextRank. Secondly, we fix the text selection sub-model and down-
stream classifier while choosing the token embedding model from CodeBert, Word2vec
and One-hot. The aim of these two ablation studies is to verify the effectiveness of our
proposed TextRank and CodeBert sub-models in webshell detection. The results are
shown in Table 3 and Table 4.

It is shown in Table 3 that when token embedding model is fixed to CodeBert
and down-stream classifier is fixed to GRU, TextCNN, LSTM or Softmax, TextRank
text selection model performs better than truncation method and high frequency token
method. Besides, there is only a slightly performance promotion of TextCNN comparing
to GRU or LSTMwhen TextRank and CodeBert are utilized, implying text selection and
token embedding model play a more important role in webshell detection task. Similar
results can be seen in Table 4 that CodeBert achieves a higher F1 score and a lower FPR

452 T. An et al.

Table 3. Ablation study results of text selection model.

Text selection
model

Token
embedding
model

Down-stream
classifier

Precision Recall F1 FPR of 86266
Benign PHPs

Truncation CodeBert Softmax 0.950 0.941 0.946 0.013

High frequency
token

CodeBert Softmax 0.922 0.895 0.909 0.020

TextRank CodeBert Softmax 0.981 0.974 0.978 0.005

Truncation CodeBert LSTM 0.965 0.950 0.957 0.009

High frequency
token

CodeBert LSTM 0.934 0.915 0.925 0.017

TextRank CodeBert LSTM 0.991 0.993 0.992 0.002

Truncation CodeBert GRU 0.981 0.958 0.969 0.005

High frequency
token

CodeBert GRU 0.927 0.910 0.918 0.019

TextRank CodeBert GRU 0.991 0.993 0.992 0.002

Truncation CodeBert TextCNN 0.956 0.969 0.963 0.012

High frequency
token

CodeBert TextCNN 0.938 0.914 0.926 0.016

TextRank CodeBert TextCNN 0.991 0.994 0.993 0.002

Table 4. Ablation study results of token embedding model.

Text selection
model

Token
embedding
model

Down-stream
classifier

Precision Recall F1 FPR of 86266
Benign PHPs

TextRank One-hot TextCNN 0.937 0.895 0.915 0.016

TextRank Word2vec TextCNN 0.960 0.969 0.964 0.011

TextRank CodeBert TextCNN 0.991 0.994 0.993 0.002

Truncation One-hot TextCNN 0.901 0.820 0.859 0.024

Truncation Word2vec TextCNN 0.934 0.941 0.938 0.018

Truncation CodeBert TextCNN 0.956 0.969 0.963 0.012

High frequency
token

One-hot TextCNN 0.870 0.776 0.820 0.031

High frequency
token

Word2vec TextCNN 0.887 0.884 0.886 0.030

(continued)

Deep Learning Based Webshell Detection 453

Table 4. (continued)

Text selection
model

Token
embedding
model

Down-stream
classifier

Precision Recall F1 FPR of 86266
Benign PHPs

High frequency
token

CodeBert TextCNN 0.938 0.914 0.926 0.016

than Word2vec and One-hot when text selection model and down-stream classifier are
fixed. Thus the effectiveness of our method is verified via an end to end experiment 2
and an ablation experiment 3.

5 Conclusion

In this work, a two-stage model for webshell detection is proposed to mitigate the chal-
lenge of coping with long text in deep learning detection method and the challenge of
programming language lexical ambiguity. A TextRank based sentence-level text selec-
tion method is utilized to extract high-value information from PHPs and a CodeBert
based token embedding method is utilized to generate token vectors. TextCNN is used
as a down-stream classifier to detect webshell and to fine-tune the embedding model. We
prove the existence of data leakage of training if benign data is collected from GitHub
project but not reasonably split. To avoid the decline of generalization ability caused by
this data leakage, we propose a more reasonable data split method which shuffle samples
in project granularity. We collect 26729 PHP samples to train and evaluate our method.
Besides, an extra large benign data set (86266 samples) is also used to test false positive
indicator which is a crucial concern in practical application. Evaluation results show our
method improve the performance of webshell detection.

454 T. An et al.

Appendix

Appendix 1. Statistical of PHP Samples (Table 5)

Table 5. Statistics of our collected PHP samples.

Label Sample
count

Count of Mean Std Min 25% 50% 75% Max

Benign 107551 Line 167 553 1 34 71 150 8.6e04

Token 3574 2.0e04 10 406 1006 2718 3.0e06

Webshell 5444 Line 692 1328 1 7 49 1014 1.8e04

Token 2.9e04 6.7e04 11 344 3414 3.6e04 1.1e06

Appendix 2. Examples of sample source

Table 6. Webshell sample sources from GitHub.

URLs of webshell sample

https://github.com/ysrc/webshell-sample

https://github.com/xl7dev/WebShell

https://github.com/tanjiti/webshellSample

https://github.com/webshellpub/awsome-webshell

https://github.com/DeEpinGh0st/PHP-bypass-collection/

https://github.com/tdifg/WebShell

https://github.com/malwares/WebShell

https://github.com/lhlsec/webshell

https://github.com/oneoneplus/webshell

https://github.com/vnhacker1337/Webshell

https://github.com/backlion/webshell

https://github.com/ysrc/webshell-sample
https://github.com/xl7dev/WebShell
https://github.com/tanjiti/webshellSample
https://github.com/webshellpub/awsome-webshell
https://github.com/DeEpinGh0st/PHP-bypass-collection/
https://github.com/tdifg/WebShell
https://github.com/malwares/WebShell
https://github.com/lhlsec/webshell
https://github.com/oneoneplus/webshell
https://github.com/vnhacker1337/Webshell
https://github.com/backlion/webshell

Deep Learning Based Webshell Detection 455

Table 7. Part of benign sample sources from GitHub.

URLs of benign sample

https://github.com/laravel/laravel

https://github.com/symfony/symfony

https://github.com/composer/composer

https://github.com/DesignPatternsPHP/DesignPatternsPHP

https://github.com/Seldaek/monolog

https://github.com/nextcloud/server

https://github.com/bcit-ci/CodeIgniter

https://github.com/PHPMailer/PHPMailer

https://github.com/monicahq/monica

https://github.com/nikic/PHP-Parser

Appendix 3. Experiment result of two webshell shuffle granularities (Table 8)

Table 8. Models generalization ability results of two webshell shuffle granularities.

Detection method Webshell shuffle granularity Precision Recall F1

2-g + TF−IDF + XGBoost Script granularity 0.836 0.921 0.877

Project granularity 0.839 0.923 0.879

Word2vec + Softmax Script granularity 0.921 0.915 0.918

Project granularity 0.919 0.915 0.917

Our method Script granularity 0.989 0.994 0.992

Project granularity 0.991 0.994 0.993

References

1. Kim, J., Yoo, D.H., Jang, H., Jeong, K.:WebSHArk 1.0: a benchmark collection for malicious
web shell detection. J. Inf. Process. Syst. 11(2), 229–238 (2015)

2. Hannousse, A., Yahiouche, S.: Handling webshell attacks: a systematic mapping and survey.
Comput. Secur. 108, 102366 (2021)

3. Web shell attacks continue to rise. https://www.microsoft.com/security/blog/2021/02/11/
web-shell-attacks-continue-to-rise/. Accessed 10 Feb 2022

4. Li, T., Ren, C., Fu, Y., et al.: Webshell detection based on the word attention mechanism.
IEEE Access 7, 185140–185147 (2019)

5. Tu, T.D., Guang, C., Xiaojun, et al.: Webshell detection techniques in web applica-
tions. In: Fifth International Conference on Computing, Communications and Networking
Technologies (ICCCNT), pp. 1–7. IEEE (2014)

https://github.com/laravel/laravel
https://github.com/symfony/symfony
https://github.com/composer/composer
https://github.com/DesignPatternsPHP/DesignPatternsPHP
https://github.com/Seldaek/monolog
https://github.com/nextcloud/server
https://github.com/bcit-ci/CodeIgniter
https://github.com/PHPMailer/PHPMailer
https://github.com/monicahq/monica
https://github.com/nikic/PHP-Parser
https://www.microsoft.com/security/blog/2021/02/11/web-shell-attacks-continue-to-rise/

456 T. An et al.

6. Wang, C., Yang, H., Zhao, Z., et al.: The research and improvement in the detection of PHP
variable webshell based on information entropy. J. Comput. 28, 62–68 (2016)

7. Croix, A., Debatty, T., Mees, W.: Training a multi-criteria decision system and applica-
tion to the detection of PHP webshells. In: 2019 International Conference on Military
Communications and Information Systems (ICMCIS), pp. 1–8. IEEE (2019)

8. Guo, Y., Marco-Gisbert, H., Keir, P.: Mitigating webshell attacks through machine learning
techniques. Future Internet 12(1), 12 (2020)

9. Kurniawan, A., Abbas, B.S., Trisetyarso, A., et al.: Classification of web backdoor malware
based on function call execution of static analysis. ICIC Express Lett. 13(6), 445–452 (2019)

10. Huang, W., et al.: Enhancing the feature profiles of web shells by analyzing the performance
ofmultiple detectors. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2020. IFIPAdvances
in Information and Communication Technology, vol. 589, pp. 57–72. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56223-6_4

11. Lv, Z.-H., Yan, H.-B., Mei, R.: Automatic and accurate detection of webshell based on convo-
lutional neural network. In: Yun, X., et al. (eds.) CNCERT 2018. CCIS, vol. 970, pp. 73–85.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6621-5_6

12. Wu, Y., et al.: Improving convolutional neural network-based webshell detection through
reinforcement learning. In: Gao, D., Li, Qi., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS,
vol. 12918, pp. 368–383. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86890-
1_21

13. Qi, L., Kong, R., Lu, Y., et al.: An end-to-end detection method for webshell with deep learn-
ing. In: 2018 Eighth International Conference on Instrumentation&Measurement, Computer,
Communication and Control (IMCCC), pp. 660–665. IEEE (2018)

14. Devlin, J., Chang, M.W., Lee, K., et al.: Bert: pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805 (2018)

15. Feng, Z., Guo, D., Tang, D., et al.: Codebert: a pre-trainedmodel for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

16. https://github.com/composer/composer. Accessed 10 Feb 2022
17. https://github.com/monicahq/monica. Accessed 10 Feb 2022
18. Oak, R., Du, M., Yan, D., et al.: Malware detection on highly imbalanced data through

sequence modeling. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence
and Security, pp. 37–48, November

19. Hou, J., Li, X., Yao, H., et al.: Bert-based Chinese relation extraction for public security. IEEE
Access 8, 132367–132375 (2020)

20. Li, X., Qu, Y., Yin, H.: Palmtree: learning an assembly language model for instruction
embedding. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 3236–3251 (2021)

21. Akbik, A., Bergmann, T., Blythe, D., et al.: FLAIR: an easy-to-use framework for state-of-
the-art NLP. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics (Demonstrations), pp. 54–59 (2019)

22. Ding, M., Zhou, C., Yang, H., et al.: Cogltx: applying bert to long texts. Adv. Neural. Inf.
Process. Syst. 33, 12792–12804 (2020)

23. Yong, B., et al.: Ensemble machine learning approaches for webshell detection in Internet of
things environments. Trans. Emerg. Telecommun. Technol. 33(6), e4085 (2020)

24. Delorey, D. P., Knutson, C. D., Davies, M.: Mining programming language vocabularies from
source code. In: PPIG, p. 12 (2009)

25. Liu, Y., Ott, M., Goyal, N., Du, J., et al.: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 (2019)

26. Zhu, T., Weng, Z., Fu, L., et al.: A web shell detection method based on multiview feature
fusion. Appl. Sci. 10(18), 6274 (2020)

https://doi.org/10.1007/978-3-030-56223-6_4
https://doi.org/10.1007/978-981-13-6621-5_6
https://doi.org/10.1007/978-3-030-86890-1_21
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08155
https://github.com/composer/composer
https://github.com/monicahq/monica
http://arxiv.org/abs/1907.11692

Deep Learning Based Webshell Detection 457

27. Ai, Z., Luktarhan, N., Zhao, Y., et al.: WS-LSMR: malicious webshell detection algorithm
based on ensemble learning. IEEE Access 8, 75785–75797 (2020)

28. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)

29. Page, L., Brin, S., Motwani, R., et al.: The PageRank citation ranking: bringing order to the
web. Stanford InfoLab (1999)

30. https://github.com/microsoft/CodeBERT. Accessed 17 Feb 2022
31. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the

2014Conference onEmpiricalMethods inNatural LanguageProcessing (EMNLP), pp. 1746–
1751 (2014)

32. Min, S., Zhong, V., Socher, R., et al.: Efficient and robust question answering from minimal
context over documents. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, pp. 1725–1735 (2018)

33. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

34. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need.Adv.Neural Inf. Process.
Syst. 30 (2017)

35. Lee, Y.J., Choi, S. H., Kim, C., et al.: Learning binary code with deep learning to detect
software weakness. In: KSII the 9th International Conference on Internet (ICONI) 2017
Symposium (2017)

36. Lu, S., Guo, D., Ren, S., et al.: Codexglue: A machine learning benchmark dataset for code
understanding and generation. arXiv preprint arXiv:2102.04664 (2021)

37. http://www.d99net.net/. Accessed 24 Mar 2022
38. https://edr.sangfor.com.cn/api/download/WebShellKillerTool.zip. Accessed 24 Mar 2022
39. https://github.com/chaitin/cloudwalker. Accessed 24 Mar 2022
40. https://github.com/lyccol/CodeBERT-based-webshell-detection. Accessed 09 Jun 2022
41. https://github.com/5wimming/bert-webshell. Accessed 09 Jun 2022
42. Backes,M., Rieck,K., Skoruppa,M., et al.: Efficient and flexible discovery of PHP application

vulnerabilities. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 334–349 (2017)

https://github.com/microsoft/CodeBERT
http://arxiv.org/abs/2102.04664
http://www.d99net.net/
https://edr.sangfor.com.cn/api/download/WebShellKillerTool.zip
https://github.com/chaitin/cloudwalker
https://github.com/lyccol/CodeBERT-based-webshell-detection
https://github.com/5wimming/bert-webshell

SimCGE: Simple Contrastive Learning
of Graph Embeddings for Cross-Version

Binary Code Similarity Detection

Fengliang Xia1, Guixing Wu2(B), Guochao Zhao1, and Xiangyu Li1

1 University of Science and Technology of China, Hefei, China
{xflmail,iyao,xyli1}@mail.ustc.edu.cn

2 Suzhou Institute For Advanced Research, University of Science and Technology of
China, Suzhou, China
gxwu@ustc.edu.cn

Abstract. Binary code similarity detection (BCSD) has many appli-
cations in computer security, whose task is to detect the similarity of
two binary functions without having access to the source code. Recently
deep learning methods have shown better efficiency, accuracy, and poten-
tial in BCSD. Most of them reduce losses by the Siamese network, and
they ignore some shortcomings of the Siamese network. In this paper, we
introduce the idea of contrastive learning into graph neural networks and
experimentally demonstrate that the way of training graph models by
contrastive learning is significantly better than Siamese. In addition, we
found that Principal Neighbourhood Aggregation for Graph Nets (PNA)
has the best ability to extract structural information of control flow graph
(CFG) among various graph neural networks.

Keywords: Binary code similarity detection · contrastive learning ·
graph neural network

1 Introduction

The same source code with different compilers, architectures, and optimization
levels will generate different binary codes. BCSD determines the similarity of
two binary functions without having access to the source code. It has many
applications in computer security, such as software plagiarism detection, mal-
ware analysis, virus detection. A single bug at the source code may propagate
to hundreds or more devices with different hardware architectures and software
platforms. Cross-version binary code similarity detection is one of the fundamen-
tal tasks in computer security. In face of increasingly complex computer security
threats, security practitioners are increasingly demanding the ability to detect
cross-version binary code similarity.

Compared to traditional graph search algorithms, recently deep learning
approaches have shown better efficiency, accuracy, and potential. Gemini [1]

This work was supported by the Natural Science Foundation of Jiangsu Province, China
(BK20141209).

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 458–471, 2022.
https://doi.org/10.1007/978-3-031-15777-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_25&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_25

SimCGE for Cross-Version Binary Code Similarity Detection 459

introduces deep learning methods to the problem of binary code similarity detec-
tion. It manually extracts basic features in the form of attribute control flow
graphs (ACFG), generates graph embeddings by Structure2Vec [2], and finally
reduce losses using its first proposed Siamese network. Siamese network is cur-
rently a widely used training architecture in binary code similarity detection [3–
5,11]. Figure 1 is a schematic representation of the Siamese network, which com-
putes cosine similarity for each pair of graph embeddings. In contrast to Gemini
manual feature extraction, Semantic-Aware [3] extracts the features of each basic
block in the CFG by BERT [7]. Similarly, it uses Siamese networks on the graph
embedding model to reduces losses and uses cosine distances to calculate graph
similarity.

Fig. 1. Siamese structure diagram: it calculates a cosine similarity for each pair of
graph embeddings

Although deep learning-based binary code similarity detection has achieved
good results, there are still some areas for improvement.

Firstly, Siamese neural networks are prone to overfitting, and it is problematic
to mark the similarity of function pairs with the same source as 1 and those with
different sources as −1. For example, there are two functions in the OpenSSL
dataset libcrypto file, as is shown in Fig. 2, from different source codes but they
are very similar. At this point, it would be inappropriate to set the similarity of
this function pair to either −1 or 1.

Secondly, Corso et al. (2020) has mathematically demonstrated that graph
neural networks with a single aggregator (e.g., Structure2vec [2], MPNN [6])
cannot capture different types of messages during message passing, which would
result in insufficient extraction of information about the whole graph represen-
tation.

460 F. Xia et al.

Fig. 2. CFGs of functions ASN1 INTEGER to BN (left) and ASN1 ENUMERATED to BN (right):
the parts circled in red are where they differ (Color figure online)

To solve the first, we introduce contrastive learning into graph neural net-
works. For ease of expression, we assume that having xi, x+

i , x−
i . (xi, x

+
i)

denotes a pair of binary functions with different versions of the same source.
(xi, x

−
i) denotes a pair of binary functions with different source codes. In a

high-dimensional space, the essence of training graph neural networks is to push
embeddings of xi and x+

i closer together and to break up embeddings of xi and
x−

i . In Siamese, it pushes x+
i to xi according to cosine similarity of which the

value is equal to 1, breaks up xi and x−
i according to cosine similarity of which

the value is equal to −1. In contrastive learning, pushing x+
i to xi and breaking

up xi and x−
i are done simultaneously, pushing x+

i to xi considering x−
i , break-

ing up xi and x−
i considering x+

i . In theory, contrastive learning is superior to
Siamese.

To solve the second, we extract structural information of the CFG by the
PNA, which uses multiple aggregators and scalers to pass different types of
messages between nodes.

Our contributions are as follows:

1. We propose a novel framework for extracting CFG embeddings.
2. In the CFG representation, we extract CFG embeddings by PNA.
3. We introduce contrastive learning into the graph representation.
4. We conducted experiments on three datasets, and the results show that our

proposed approach achieves better performance than previously.

SimCGE for Cross-Version Binary Code Similarity Detection 461

2 Related Work

2.1 BCSD

Cross-version binary code similarity detection plays a critical role in com-
puter security by analyzing two binary files B1 = {x11, x12, ..., x1n}, B2 =
{x21, x22, ..., x2n} that derive from the same project but are compiled in dif-
ferent versions. There are two tasks related to this:

1. Function matching: for each binary function x1i in B1, if exist, find its match
x2j in the other binary B2.

2. Similarity score: for each pair of binary functions x1i and x2j , compute a
similarity score ranging from −1 to 1, indicating how likely they are similar
to each other. (1 being identical, −1 being completely different)

Traditional methods compute graph similarity using graph matching algo-
rithms, which are slow and inefficient. Recent deep learning methods are widely
used in BCSD. (Xu et al. 2017) proposes a GNN-based model called Gemini
but requires manual extraction of features from the basic blocks of CFG. (Zuo
et al. 2018) use an NLP model on this task [12]. They treat a token as a word
and a block as a sentence and use LSTM to encode the semantic vector of the
sentence. To obtain ground truth block pairs, they modified the compiler to add
a primary block-specific annotator for annotating each generated assembly block
with a unique ID. The approach has an obvious disadvantage; it requires expert
experience and domain knowledge for the supervised process. Semantic-Aware
[3] proposed a method for extracting basic block features using the Bert model of
the NLP domain, treating instructions in basic blocks as words and basic blocks
as sentences, which achieved a considerable improvement. However, it still did
not break the limits of the Siamese framework.

2.2 BERT

Bert [7] is the most influential pre-training model in the NLP field, which uses the
structure of a transformer to learn the meaning of each word and the contextual
relationships using an attention mechanism. It has two pre-training tasks. The
masked language model (MLM) task masks out words in a sentence and allows
the model to predict these masked words, allowing the model to learn language-
related knowledge. The second task is the next sentence prediction (NSP) task,
which is a classification task that allows the model to distinguish between two
sentences to learn about the relationship between them. The pre-trained Bert
model was fine-tuned for most downstream tasks with excellent results.

2.3 Graph Neural Network

Following Scarselli et al. (2008) [13], who proposed learning node representations
and graph representations, graph neural networks have developed a wide variety
of graph models. For example, the graph convolutional network GCN [14] update

462 F. Xia et al.

node embeddings by convolutional layers; GraphSAGE [15] uses an aggregation
function to merge nodes and their neighbors, and the graph attention network
GAT [8] receive information from neighboring nodes by attention mechanism.
MPNN [6] designs a holistic framework for graph representation learning with
a message passing phase and a readout phase. The message passing phase runs
several steps to receive information from neighboring nodes. The readout phase
computes the embedding of the entire graph. In addition to MPNN, the graph
network GN [16] and the non-local neural network NLNN [17] are also holis-
tic frameworks for graph learning. PNA [9] is a recent study of graph mod-
els, mathematically demonstrating the need for multiple aggregators, which is a
combination of multiple aggregators with a novel architecture combining degree
scalers.

2.4 Contrastive Learning

Contrastive learning assumes a set of pairwise examples D = {(xi, x
+
i)}m

i=1,
where xi and x+

i are semantically related. It aims to learn valid representations
together with pushing away non-neighbors by drawing semantically close to them
(Hadsell et al., 2006). The key to contrast learning is constructing positive exam-
ple pairs (xi, x

+
i). In visual embeddings [20], an efficient solution is to perform

two random transformations (e.g., cropping, flipping, warping and rotating) of
the same image as (xi, x

+
i). In sentence embedding [19], a straightforward solu-

tion is to use the randomness of dropout to have the same sentence pass through
the neural network twice, producing different vectors to form (xi, x

+
i). In con-

trastive learning, there are two metrics, Alignment and Uniformity (Wang
and Isola (2020)) [18] used to measure the quality of representations. Align is
used to calculate the distance between pairs of positive examples, given distri-
bution of pairs of positive examples ppos, and between embeddings of paired
examples (assuming all representations have been regularized) to calculate the
aligned average distance, �align as shown in Eq. (1):

�align � E
(x,x+)∼ppos

‖ f(x) − f(x+) ‖2 (1)

On the other hand, Uniformity measures whether the distribution of all rep-
resentations is uniform as shown in Eq. (2), where pdata denotes the data dis-
tribution. Optimization of these two metrics is the aim of contrast learning:
embeddings of positive example pairs should be kept close, and embeddings of
random examples should be scattered over the hypersphere.

�uniform � log E

x,y
i.i.d.∼ pdata

e−2‖f(x)−f(y)‖2
(2)

SimCGE for Cross-Version Binary Code Similarity Detection 463

3 Methods

3.1 Overall Structure

The input data for our model is CFG of the binary code decompiled by IDA
Pro [21]. The overall architecture is shown in Fig. 3. In the semantic extraction
part, we use a BERT model with two pre-training tasks to extract the features
of the basic blocks. In the structure extraction part, we use a PNA with multiple
aggregators to extract the features and structural embeddings of the graph. For
the training architecture, we follow the contrastive framework [20], and use an
in-batch negative cross-entropy objective [22].

Fig. 3. The overview of our model structure consists of three parts: the semantic-aware
part, the structure-aware part, and the contrastive framework.

3.2 Semantic-Aware Modeling

In this paper, we pre-train Bert using two classical tasks for BERT pre-training
(MLM and NSP). The corpus is a collection of basic blocks of each version of the
CFG and treats each basic block as a sentence and two basic blocks with edges
as consecutive sentences, as is shown in Fig. 4. Our vocabulary consists of about
ninety microcode instructions. Because our vocabulary is small, we embed each
token as a 128-dimensional vector instead of 768, and accordingly, we shrink our
hidden layer to a 128*8-dimensional, 12-layer transformer structure. In the MLM
task, we masked 15% of the tokens for training. In the NSP task, we took two
blocks of each edge as consecutive sentences and an arbitrary edge in the block

464 F. Xia et al.

set for the starting block of each edge to training as a negative example. Finally,
we take the average of all tokens in the last layer of Bert as the embedding of
the blocks.

Fig. 4. NSP and MLM in BERT

3.3 Structural-Aware Modeling

After obtaining block embeddings from BERT pre-training, we extract graph
semantics and structural embeddings of each CFG by PNA. The GNN layer for
the PNA messaging phase is as follows:

Xt+1
i = U(Xt

i , ⊕
(j,i)εE

M(Xt
i , Ej→i,X

t
j)) (3)

where Ej→i is a feature of the edge (j, i) (if exists), M and U are neural networks.
U decreases the size of the connection message (in the space R

13F) back to R
F ,

where F is the dimension of the hidden features in the network. The process of
M is shown in Fig. 5, where each node captures different types of messages from
neighboring nodes with four aggregators and then goes through three scalers to
obtain 12 different representations of the original node. We use the output of the
PNA as a feature of the CFG node and then use sum to obtain an embedding
of the whole graph.

SimCGE for Cross-Version Binary Code Similarity Detection 465

Fig. 5. Structural-aware diagram for the principal neighbourhood aggregation or PNA.

3.4 Contrastive Framework: Simple Contrastive Learning of Graph
Embeddings (SimCGE)

After obtaining the graph embeddings, instead of using Siamese, we use the
contrastive learning framework and take a cross-entropy objective with in-batch
negatives: let gi and g+i be the representations of xi and x+

i with N pairs of
(xi, x

+
i) mini-batch training with a loss function of :

� = −log
esim(gi,g

+
i)/T

∑N−1
j=1 esim(gi,g

+
j)/T

(4)

where T is a hyperparameter called the temperature coefficient and sim(g1, g2)
is the cosine similarity g�

1 g2
‖g1‖·‖g2‖ . Figure 6 is a diagram of the in-batch negative

example, which treats all non-positive examples within the same batch as neg-
ative examples. After computing the similarity, it is similar to a classification
problem, with the first column in one class and the others in another. The key
to contrastive learning is to obtain the corresponding xi and x+

i . In BCSD, each
version of the binary function xi is naturally the x+

i of the corresponding function
in the other version, which fits perfectly with the idea of contrastive learning.
Compared to the Siamese approach of pulling x+

i , pushing x−
i separately, it is

more reasonable to contrastive learning pulling x+
i considering x−

i and pushing
x−

i considering x+
i simultaneously.

4 Experiment

4.1 Dataset

We train the model on gnu debug [10] and evaluate it on three publicly available
datasets: OpenSSL.1.0.1f, OpenSSL.1.0.1u, and busybox.1.21.stable, with the
same source code compiled into different versions of the binary code and then
decompiled into CFG using IDA Pro. In a high-dimensional space,our goal is
to push embeddings of xi and x+

i closer together and to break up embeddings
of xi and x−

i . Our versions of the binary code include cross-platform (x86 &

466 F. Xia et al.

Fig. 6. In-batch diagram, which treats all non-positive examples within the same batch
as negative examples

arm), cross-compiler (gcc-8.2.0 & clang-7.0), cross-optimisation level (O3 & O2),
and cross-bit (64 & 32). We have done extensive experiments on these different
comparison versions.

4.2 Evaluation Metrics

This task of BCSD is similar to the recommendation system, thus we evaluate the
model by MRR and Recall@K. MRR is used for evaluating ranking tasks, which
uses the multiplicative inverse of the rank of the first correct answer. Recall@K
means whether the ranking of the true pair is in the top K scores of the highest.
Given two binary files B1 = x11, x12, ..., x1n and B2 = x21, x22, ..., x2m, we
assume that there are T pairs of matching binary functions (x11, x21), (x12, x22)...
(x1T , x2T), the rest are unmatched. For any function x1i in B1, the BCSD can
rank the functions in B2 based on similarity to x1i, and we denote rankx1i

as the position of the correct matching function x2i for x1i among all ranked
functions. The formulas for MRR and Recall@K are represented as Eqs. (5)
and (7) respectively, hit@K (x1i) indicates whether x2i is in the top K functions
that are most similar to x1i as defined in Eq. (6).

MRR =
1
T

T∑

i=1

1
rankx1i

(5)

hit@K (x1i) =
{

1, rankx1i ≤ K
0, otherwise (6)

Recall @K(B1, B2) =
∑T

i=1 hit@K (x1i)
T

(7)

4.3 Compared Methods

As our model is cross-version specific, and Gemini as well as Semantic aware
is cross-architecture specific (it is included in cross-version), we did a two-part

SimCGE for Cross-Version Binary Code Similarity Detection 467

comparison, taking the cross-architecture part out to compare with Gemini and
Semantic aware, and then we focused on comparing Siamese with SimCGE in
the cross-version part.

Our Model. It consists of BERT (2 tasks) + PNA + SimCGE containing
semantic extraction, structural information extraction, contrastive learning com-
ponents.

Cross-Architecture Comparison
Table 1 shows the results of the cross-architecture comparison.

Gemini uses Structure2vec to compute graph embeddings of CFGs, where each
block is an 8-dimensional manually selected feature, trained by using the Siamese
architecture.

Semantic-Aware is BERT (4 tasks) + MPNN + 11-Resnet layers + Siamese,
which contains semantic-aware modeling, structure-aware modeling, and
sequential-aware modeling.

Table 1. Cross-architecture comparison table

Model gcc-64-O2 x86 vs arm gcc-64-O3× 86 vs arm

MRR Recall@1 MRR Recall@1

Gemini 0.6069 0.5491 0.543 0.476

Semantic-Aware 0.7922 0.7421 0.6855 0.6114

Our model 0.8317 0.7555 0.8296 0.7536

Cross-Version Comparison
Table 2 shows the performance of our model on each dataset. To facilitate com-
parison with other models, we take the average value as the overall performance
of the model performance, as is shown in Table 3.

BERT(2 tasks) uses the BERT of both the MLM and NSP pre-training tasks
and then sums the sum of all nodes as structural information.

GAT + Siamese BERT (2 tasks) + GAT + Siamese, GAT [8] is using the
attention mechanism as a messaging mechanism.

GAT + SimCGE BERT (2 tasks) + GAT + SimCGE

MPNN + Siamese BERT (2 task) + MPNN + Siamese, MPNN uses GRUs
to pass messages between nodes.

MPNN + SimCGE BERT (2 task) + MPNN + SimCGE

PNA + Siamese BERT (2 task) + PNA + Siamese

468 F. Xia et al.

Table 2. Experimental results for each version data of our model

Dataset Version Recall@1 Recall@5 MRR

OpenSSL.1.0.1u gcc arm 64 O3 vs gcc x86 64 O3 0.75703 0.93131 0.83144

OpenSSL.1.0.1u gcc arm 64 O3 vs clang arm 64 O3 0.55877 0.78497 0.65607

OpenSSL.1.0.1u gcc arm 64 O3 vs gcc arm 64 O2 0.80728 0.94616 0.86772

OpenSSL.1.0.1u gcc arm 64 O3 vs gcc arm 32 O3 0.69462 0.89381 0.77973

OpenSSL.1.0.1u gcc arm 64 O3 vs clang x86 32 O1 0.53361 0.77896 0.64047

OpenSSL.1.0.1f gcc arm 64 O3 vs gcc x86 64 O3 0.75883 0.9286 0.8328

OpenSSL.1.0.1f gcc arm 64 O3 vs clang arm 64 O3 0.56281 0.78025 0.65678

OpenSSL.1.0.1f gcc arm 64 O3 vs gcc arm 64 O2 0.81377 0.94409 0.87149

OpenSSL.1.0.1f gcc arm 64 O3 vs gcc arm 32 O3 0.6954 0.89189 0.78052

OpenSSL.1.0.1f gcc arm 64 O3 vs clang x86 32 O1 0.52085 0.7699 0.63134

busybox.1.21.stable gcc arm 64 O3 vs gcc x86 64 O3 0.90159 0.97956 0.93494

busybox.1.21.stable gcc arm 64 O3 vs clang arm 64 O3 0.70905 0.86583 0.77902

busybox.1.21.stable gcc arm 64 O3 vs gcc arm 64 O2 0.85548 0.93318 0.89027

busybox.1.21.stable gcc arm 64 O3 vs gcc arm 32 O3 0.85334 0.94377 0.89383

busybox.1.21.stable gcc arm 64 O3 vs clang x86 32 O1 0.57447 0.76841 0.65927

MEAN 0.70646 0.87605 0.78038

Table 3. Experimental results of various models cross versions

Model Recall@1 Recall@5 MRR

BERT2 0.60736 0.78133 0.68288

gat + siamese 0.62234 0.8035 0.70111

gat + SimCGE 0.64254 0.82011 0.71954

mpnn + siamese 0.66772 0.84142 0.74274

mpnn + SimCGE 0.6883 0.85724 0.76148

pna + siamese 0.68132 0.85434 0.75631

our model 0.70646 0.87605 0.78038

4.4 Training

We trained our BERT using hugging-face, BERT with max length = 128, lr =
0.00001, bsz = 896, and spent 40 h training our BERT on 4 A100 s. We used
pytorch lightning and pytorch geometric to train the graph neural network with
bsz = 256, roughly 5,000 steps per graph neural network, lr = 0.0001, and the
Adam for optimizer.

4.5 Results

In cross-architecture comparison, our model improves significantly more at the
O3 optimization level. We can see from all three models that the task at the

SimCGE for Cross-Version Binary Code Similarity Detection 469

O3 level is relatively more difficult. But in our model, the difference between O3
and O2 is small, we speculate that this is because the Siamese-trained model
embedding is not uniformly distributed, resulting in insufficient robustness of
the model.

In the cross-version comparison, we compared various graph neural networks
in Siamese and SimCGE, and from Table 3, we can see that PNA has the best
performance, followed by MPNN, and the worst by GAT. Among the various
GNNs, SimCGE outperforms Siamese. We have specifically analyzed the reasons
why SimCGE outperforms Siamese, as is shown in Fig. 7, where the uniform of
SimCGE is much better than Siamese. SimCGE’s trained model allows for a
more uniform distribution of CFG embeddings, although at the expense of a bit
of alignment, overall, it is easier to find x+

i for each xi.

Fig. 7. Comparison of align and uniform of each model: colors of points and numbers
in brackets are the performance of each model on Recall@1, both align and uniform
are the smaller the better. These two indicators are explained in Eqs. (1) and (2)
respectively.

5 Conclusion

In this paper, we propose a novel training framework for binary code similarity
detection, which consists of three parts: semantic extraction, structural infor-
mation extraction, and contrastive learning. For the semantic extraction part,
we use BERT with two pre-training tasks; for the structural information extrac-
tion part, we use PNA and contrastive learning instead of traditional Siamese
architecture. The experiments were carried out with three datasets and showed
that contrastive learning significantly outperformed Siamese, with PNA best
extracting structural information from control flow graphs.

470 F. Xia et al.

References

1. Xu, X., Liu, C., Feng, Q., et al.: Neural network-based graph embedding for cross-
platform binary code similarity detection. In: Proceedings of The ACM SIGSAC
Conference on Computer and Communications Security, vol. 2017, pp. 363–376
(2017)

2. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for
structured data. In: International Conference on Machine Learning. PMLR, pp.
2702–2711 (2016)

3. Yu, Z., Cao, R., Tang, Q., et al.: Order matters: semantic-aware neural networks
for binary code similarity detection. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 01, pp. 1145–1152 (2020)

4. Guo, H., Huang, S., Huang, C., et al.: A lightweight cross-version binary code
similarity detection based on similarity and correlation coefficient features. IEEE
Access 8, 120501–120512 (2020)

5. Yang, S., Cheng, L., Zeng, Y., et al.: Asteria: deep learning-based AST-encoding for
cross-platform binary code similarity detection. In: 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, pp.
224–236 (2021)

6. Gilmer, J., Schoenholz, S.S., Riley, P.F., et al.: Neural message passing for quantum
chemistry. In: International Conference on Machine Learning. PMLR, pp. 1263–
1272 (2017)

7. Devlin, J., Chang, M.W., Lee, K., et al.: Bert: pre-training of deep bidirectional
transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

8. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks (2017).
arXiv preprint arXiv:1710.10903

9. Corso, G., Cavalleri, L., Beaini, D., et al.: Principal neighbourhood aggregation for
graph nets. Adv. Neural. Inf. Process. Syst. 33, 13260–13271 (2020)

10. Kim, D., Kim, E., Cha, S.K., et al.: Revisiting binary code similarity analysis
using interpretable feature engineering and lessons learned (2020). arXiv preprint
arXiv:2011.10749

11. Liu, B., Huo, W., Zhang, C., et al.: Diff: cross-version binary code similarity detec-
tion with dnn. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 667–678 (2018)

12. Zuo, F., Li, X., Young, P., et al.: Neural machine translation inspired
binary code similarity comparison beyond function pairs (2018). arXiv preprint
arXiv:1808.04706

13. Scarselli, F., Gori, M., Tsoi, A.C., et al.: The graph neural network model. IEEE
Trans. Neural Netw. 20(1), 61–80 (2008)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks (2016). arXiv preprint arXiv:1609.02907

15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

16. Battaglia, P.W., Hamrick, J.B., Bapst, V., et al.: Relational inductive biases, deep
learning, and graph networks (2018). arXiv preprint arXiv:1806.01261

17. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7794–7803 (2018)

18. Wang, T., Isola, P.: Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In: International Conference on
Machine Learning. PMLR, pp. 9929–9939 (2020)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2011.10749
http://arxiv.org/abs/1808.04706
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1806.01261

SimCGE for Cross-Version Binary Code Similarity Detection 471

19. Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embed-
dings (2021). arXiv preprint arXiv:2104.08821

20. Chen, T., Kornblith, S., Norouzi, M., et al.: A simple framework for contrastive
learning of visual representations. In: International Conference on Machine Learn-
ing. PMLR, pp. 1597–1607 (2020)

21. IDA Pro Homepage. https://www.hex-rays.com/ida-pro/
22. Henderson, M., Al-Rfou, R., Strope, B., et al.: Efficient natural language response

suggestion for smart reply (2017). arXiv preprint arXiv:1705.00652

http://arxiv.org/abs/2104.08821
https://www.hex-rays.com/ida-pro/
http://arxiv.org/abs/1705.00652

FN2: Fake News DetectioN Based
on Textual and Contextual Features

Mouna Rabhi1(B) , Spiridon Bakiras2 , and Roberto Di Pietro1

1 Division of Information and Computing Technology, College of Science
and Engineering, Hamad Bin Khalifa University, Doha, Qatar

{mora33056,rdipietro}@hbku.edu.qa
2 Singapore Institute of Technology, Singapore, Singapore

spiridon.bakiras@singaporetech.edu.sg

Abstract. Fake news is a serious concern that has received a lot of
attention lately due to its harmful impact on society. In order to limit
the spread of fake news, researchers have proposed automated ways to
identify fake news articles using artificial intelligence and neural net-
work models. However, existing methods do not achieve a high level of
accuracy, which hinders their efficacy in real life. To this end, we intro-
duce FN2 (Fake News detectioN): a novel neural-network based frame-
work that combines both textual and contextual features of the news
articles. Among the many unique features of FN2, it utilizes a set of
explicit contextual features that are easy to collect and already available
in the raw user metadata. To evaluate the accuracy of our classifica-
tion model, we collected a real dataset from a fact-checking website,
comprising over 16 thousand politics-related news articles. Our experi-
mental results show that FN2 improves the accuracy by at least 13%,
compared to current state-of-the-art approaches. Moreover, it achieves
better classification results than the existing models. Finally, prelimi-
nary results also show that FN2 provides a quite good generalization—
outperforming competitors—also when applied to a qualitatively differ-
ent data-set (entertainment news). The novelty of the approach, the stag-
gering quantitative results, its versatility, as well as the discussed open
research issues, have a high potential to open up novel research directions
in the field.

Keywords: Fake news · Fake news detection · Online social media ·
Neural networks · Textual features · Contextual features

1 Introduction

Online social networks (OSNs), like Facebook and Twitter, enjoy an enormous
popularity among end-users. Indeed, the number of OSN subscribers has been
increasing exponentially and reached 3.6 billion in 2020 [24]. OSNs offer a con-
venient way for users to create, access, and share information, making news con-
sumption easy and available to everyone. Consequently, the majority of users
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 472–491, 2022.
https://doi.org/10.1007/978-3-031-15777-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_26&domain=pdf
http://orcid.org/0000-0002-1577-1161
http://orcid.org/0000-0002-8964-0746
http://orcid.org/0000-0003-1909-0336
https://doi.org/10.1007/978-3-031-15777-6_26

FN2: Fake News DetectioN Based on Textual and Contextual Features 473

today do not get their news from traditional sources, such as newspapers or
TV news programs. Instead, they use OSNs as their first source of information.
According to a study done by the PEW research center, more than two-thirds
(68%) of adults are getting their news from social networks [5]. However, infor-
mation can be shared on OSNs without any check on its trustworthiness or
accuracy, which has led to a significant increase in fake news circulation.

Fake news intentionally present misleading information to the end-users [29]
and it is a basic tool to fuel propaganda [13]. The topic has gained a lot of
attention recently, due to its harmful impact on several aspects of our society.
Fake news is considered a threat to numerous fields, including journalism, public
health, democracy, and the economy. For a recent survey on how fake news
propagate, the reader is pointed to [18]. Fake news harmful effects on society and
individuals have been recorded extensively [12]. For example, during the 2016
U.S. elections, various false rumors about the candidates were widely spread on
OSN platforms [32]— with a significant impact on the election results. Another
case that demonstrates the dramatic effect of fake news is the loss of $130 billion
in the U.S. stock market after the spread of false rumors stating that president
Obama got injured in an explosion [19].

The aforementioned examples emphasize the importance of identifying fake
news, with the objective to stop their propagation [18] or, at the very least,
to label them with a low trustworthiness score. Fake news detection is usually
regarded as a classification problem, i.e., it aims to distinguish between “True”
and “Fake” news [15]. However, even though the problem formulation is quite
simple, the problem in itself is very challenging for several reasons. First, fake
news is intentionally made to misinform the reader; therefore, it is not easy for
the average OSN user to detect it as such. Second, social media data is massive,
noisy, and consists of a multitude of sources.

To overcome these challenges, the research community has built solutions,
based on artificial intelligence (AI) techniques, that aim to automate the iden-
tification of fake news articles. Most existing approaches focus on the writing
style [17], that is, they capture the semantics and linguistic features of the news
articles. For instance, the authors in [1,14,27] apply natural language process-
ing techniques and neural networks to identify fake news, using just the news
text itself. Nevertheless, in addition to the news text, contextual information
about the news article can be useful as well [22]. In fact, previous studies have
shown the effectiveness of user profile features and social context in detecting
fake news [23]. However, very few studies to date address fake news classifica-
tion by combining textual and contextual data. For example, Zhang, Dong, and
Yu [30] propose a framework that uses news text, news creators, and subjects to
identify fake news. Similarly, Wang [28] introduces a model that uses the news
text and additional metadata about the news article to classify news. However,
the identification accuracy of existing models is rather low, which limits their
effectiveness.

474 M. Rabhi et al.

To overcome the cited limitations, our work introduces a novel fake news
identification framework called FN2. In order to solve the underlying bi-label
inference problem, FN2 trains a model that is able to predict the correct label of
a news article, using both the news text and its metadata. Despite receiving huge
attention from the leading research communities, the necessity of an efficient
detection model that achieves good accuracy and works in real-case scenarios
still exists. Existing contributions make use of explicit and implicit contextual
data that are not always easy to collect in real-case scenarios. To overcome these
issues, we propose FN2, a framework that only utilizes explicit metadata which
are already available. That is, we do not consider implicit profile features that are
not directly available in the users’ raw data (such as personality, location, profile
image, political bias, etc.). Such information requires much more effort to collect
and can be easily manipulated. FN2 exploits a convolutional neural network
(CNN) to extract textual features from the news text, and a feed-forward neural
network (FNN) to extract contextual features. Our experimental results on a
large news dataset demonstrate that FN2 improves the classification accuracy
significantly compared to the state-of-the-art models. The main contributions of
this work are summarized as follows:

– We provide a framework for fake news classification that exploits both news
text and news metadata.

– We demonstrate the correlation between the news text and the metadata
related to the news article.

– We demonstrate the effectiveness of contextual features in classifying fake
news, and we show that by combining textual and contextual features, we can
outperform existing state-of-the-art models based on textual features only.

– We demonstrate the generality of the proposed model.

The rest of this paper is organized as follows. Section 2 provides an overview
of previous work on fake news detection. Section 3 describes in detail the FN2
framework and Sect. 4 presents the details of the experimental setting used in
FN2. Section 5 details the results of our experimental evaluation. Finally, Sect. 7
concludes our work and discusses a few directions for future work.

2 Related Work

Fake news detection is typically achieved by training neural network models
on a variety of features from the news articles. In particular, the vast majority
of existing approaches rely on either textual or contextual features to do the
training [3]. In the following subsections, we review the most relevant models
from each category.

2.1 Fake News Detection Based on Textual Features

Fake news detection based on textual features targets the lexical and seman-
tic properties of the news article to classify its credibility [31]. For instance,

FN2: Fake News DetectioN Based on Textual and Contextual Features 475

Rashkin et al. [20] applied linguistic analysis to detect fake news. They first
compared the languages of real and fake news to extract the linguistic charac-
teristics of fake news articles. The authors looked into the news articles from
many different perspectives, such as the existence of solid and weak subjectivity,
the degree of dramatization (using a lexicon from Wiktionary), and hedges. They
discovered that false news statements tend to use more first and second person
pronouns compared to trustworthy news. Moreover, they showed that fake news
tend to use more exaggerating words compared to trustworthy news. Next, the
authors used the linguistic features to train a long short-term memory (LSTM)
model to detect the reliability of the news statement. The LSTM model takes
as input a sequence of words from the news text and outputs its reliability. The
authors reported an accuracy of 56% on a test dataset of 1076 news statements
collected from politifact.com.

Ahmed, Traore, and Saad [1] proposed a fake news detection approach that
leverages n-grams and machine learning algorithms. Specifically, the authors
utilized the term frequency and inverse document frequency (TF-IDF) for feature
extraction, and employed six different machine learning models for classification
on an equally distributed (true vs. fake news) dataset of 2000 news articles. The
highest accuracy score was obtained with the combination of unigrams and linear
SVM, on a test dataset of 400 news articles. Furthermore, the authors observed
that the accuracy of the proposed algorithm decreases when using larger n-grams.
However, the dataset used in the cited study is rather small.

Nasir, Khan, and Varlamis [14] employed a hybrid CNN-RNN model to detect
fake news. First, the CNN model is used to extract the local features from
the text input. The output of the CNN is then passed to the recurrent neural
network (RNN), which learns the long-term dependencies of the local features.
The authors utilized two datasets to test the efficiency of their proposed method:
(i) the FA-KES dataset that contains 804 news articles about the Syrian war,
where 426 articles are labeled true and 378 are labeled fake; and, (ii) the ISOT
dataset that consists of 45,000 articles equally distributed between fake and
true. The ISOT dataset is used for training, while the FA-KES dataset is used
for testing. This approach ensures the generalization of the proposed method.
The authors reported an accuracy of 60 ± 0.7% on the test dataset.

2.2 Fake News Detection Based on Contextual Features

Granik and Mesyura [8] proposed a simple approach for fake news detection,
using a Naive Bayes classifier. First, they showed that there exist common prop-
erties between fake news statements and spam email, e.g., they often use a limited
set of words and have a lot of grammatical mistakes. Then, they used the writing
style of the news article, along with some metadata, to detect its reliability. The
authors tested their methods on a dataset of 2282 Facebook posts that shared
news articles. In addition to the posts, they also collected some information
about the post, such as the number of likes, shares, and comments. The authors
reported an accuracy of 74% using this simple classifier. Nevertheless, the dataset
used in the cited work is quite small and unbalanced (it contains more true news

476 M. Rabhi et al.

than fake news). Furthermore, they did not pre-process the textual data, e.g.,
they did not remove stop words or use stemming.

Wang [28] incorporated metadata information about the news article in his
fact checking model. He employed a convolutional neural network on a 12.8 k
statement dataset collected from politifact.com. The model takes two inputs:
the news text and the metadata related to the news, such as author, affilia-
tion, source, etc. The text input is transformed into vector representation using
word embedding. The output of the embedding layer is then passed to the CNN
to extract the features. The metadata is processed similarly, using a different
embedding layer, and leverages a CNN and a bidirectional LSTM (Bi-LSTM)
network to extract its feature representation. The author has shown that the
additional information related to the news article improves the fake news iden-
tification accuracy.

Zhang, Dong, and Yu [30] proposed a framework to score the credibility of a
news article, its author, and its subject. They introduced a new hybrid feature
learning unit to learn the explicit and implicit features from news text, creators,
and subjects. Then, they used a deep diffusive neural network to fuse the features
together and to predict the credibility. The proposed model is validated using a
collected dataset from politifact.com. In particular, they collected 14,055 articles
that were later organized as a network, where news articles, authors, and subjects
represent the nodes, and the links represent the relation between them. The
authors reported an accuracy of 62% in detecting fake news articles. In their
work, they only used the subject and the authors as contextual information.
However, other information about the news article could also be useful to improve
performance.

Yang et al. [29] introduced TI-CNN, a model that combines both images and
text to identify fake news. First, the model learns the latent features from both
textual and image information, using CNN. Then, the explicit and latent features
are fused to form a new set of features that is used to detect fake news. The
model is trained with a scrapped dataset—containing 20,015 news articles—that
focuses on the U.S. presidential election only.

Kaliyar et al. [10] introduced EchoFakeD, a model that uses news content and
the social context of the news article to detect its trustworthiness. The authors
focus more on user-based engagements and the context-related group of people
(echo-chamber) sharing the same opinions.

Do et al. [4] propose a Fake news detection model that considers the news
content and the social context. The model comprises three main components:
feature learning, classifier, and mean-field. The feature learning component takes
multiple inputs. Each input is transformed into high-level features that are con-
catenated to obtain a shared representation of the inputs. The shared representa-
tion is then passed to a classifier. This classifier consists of several fully connected
layers followed by a softmax classifier to produce the class-specific probabilities.
Finally, these probabilities are passed through the mean-field components. These
components aim to smooth the class probability values by leveraging the corre-
lation between the news articles.

FN2: Fake News DetectioN Based on Textual and Contextual Features 477

Freire et al. [6] introduce Crowd Signals. This approach combines opinions
from a high number of users in order to indicate whether a piece of news is fake or
not. This approach has a limitation: it depends on explicit user opinion—which
is not always guaranteed to be available—to classify the analyzed news. The
authors have proposed a solution to overcome this limitation by using implicit
user opinions to detect fake news. The implicit opinions are inferred from the
behavior of users concerning the dissemination of the news analyzed.

Shu et al. [22] have introduced TriFN, a framework that models a tri-relation-
ship between publishers, news articles, and users to detect fake news. TriFN
extracts features using both user-news interactions and publisher-news relations.
Different classifiers were tested with the resulted features. The model perfor-
mances were evaluated using the FakeNewsNet dataset. The results show that
the social context could effectively be exploited to improve false news detection.

3 Methodology

This work is rooted on the intuition that user profile information and metadata
can be very valuable in improving the accuracy of fake news identification. To this
end, our main contribution is a multi-modal embedding framework that incor-
porates news text and contextual information to detect fake news. A schematic
representation of the proposed model is shown in Fig. 1. The model consists of
two objects: text news and contextual data. We assume that we have M labeled
news documents D = {Ni, li}Mi=1, where Ni denotes news article i and li ∈ {0, 1}
represent the label related to that article. Here, ‘0’ represents true news and ‘1’
represents fake news. Ni can be further decomposed as Ni = {Ti, Ci}, where
Ti denotes the textual representation extracted from the news text, while Ci

denotes the contextual data, such as news source, speaker, speaker’s reliability,
etc. In the following sections, we first describe how to extract the representation
for a news document Ni, by learning the features T̃i, and C̃i. We then show how
to concatenate the learned features together to classify the news.

3.1 Textual Features Representation

Before detecting the linguistic patterns from the news text, we perform a pre-
liminary data-cleaning process, removing redundancy, filtering out useless words,
and converting them into feature vectors Ti that are used during feature learning.

Textual Data Preprocessing. Prior to learning the news article’s text vector
representation, we remove the stop words from the text. Stop words are the most
commonly used words in a language, such as “a”, “the”, “is”, “so”, etc. Stop
words do not add any valuable information and are, therefore, considered as
noise when learning features. For the same reasons, punctuation is also regarded
as noise and it is removed from the news text.

478 M. Rabhi et al.

Fig. 1. Illustration of FN2’s schematic diagram

Word Embedding. After eliminating noise, the news texts need to be con-
verted into vectors of numerical values before being fed into the neural net-
work algorithm. To this goal, word embedding is widely used in literature. Word
embedding embeds the original words into vectors with low dimensions. Exist-
ing models are either static or contextual. Static embedding models such as
Word2Vec and Glove do not capture the semantic meaning of the words, i.e.,
they assume that a word has the same meaning under different contexts. Con-
sequently, they generate the same word vector under different contexts. For
example, the word “orange” will have the exact vector representation in “orange
juice” as in “Orange S.A.”. That is why polysemous words make static word
embedding a hard classification problem [2].

To better represent the words, contextual word embedding models are usu-
ally adopted. Such models generate the representation of each word based on
the other words appearing in the sentence. In this work, we utilize BERT (Bidi-
rectional Encoder Representation from Transformers) [26], a bidirectional, pre-
trained word embedding model based on multi-layer transformers, an attention
mechanism that is capable of learning the contextual meaning of the words in
a sentence. The two key factors that make BERT outperform other embedding
methods are: (i) Mask Language Model (MLM); and, (ii) Next Sentence Predic-
tion (NSP). MLM randomly masks a percentage of words from the input. The
masked input sentence is then fed into the model to predict the masked words,
based on the context of the surrounding non-masked words. With this process,
BERT is capable of understanding the context more accurately. As per NSP,
it is needed to identify the relationship between sentences. It learns to predict

FN2: Fake News DetectioN Based on Textual and Contextual Features 479

whether two input sentences are subsequent or they have just a random relation-
ship. In our work, we leveraged the BERTbase model. BERT takes as an input
a sequence of, at most, 512 tokens. Therefore, we only consider statements with
length less than 512 words.

Textual Features Learning. We use a convolutional neural network to extract
textual features from the news text [11]. Our CNN model is composed of a
one-dimensional convolutional layer followed by a max-pooling layer. The con-
volutional layer takes the vector representation of a news text Ti and learns its
latent features. To learn the latent features, a convolution operation is performed
between a filter with a window size k and a sequence of k consecutive words.
This process produces one feature. More specifically, let wi,j be the jth word in
the news article i. The vector representation of the news text Ti can be written
as Ti = {wi,1, wi,2, . . . , wi,n}, where n is the maximum length of the news article.
News articles with length less than n are padded with zeros. Let W represent
the convolutional filter used to extract the features. The convolution operation
is performed between a filter of length k and every sequence of k consecutive
words Ti,j:j+k = {wi,j+1, wi,j+2, . . . , wi,j+k}. This produces a feature vector T̃i,j

as presented in the following equation:

T̃i,j = f(W ∗ Ti,j:j+k + b) (1)

where b ∈ R is the bias and f(◦) represents a non-linear activation function—in
our case, the rectified linear unit (ReLU). Once the filter iterates over all possible
windows of words, we obtain a feature map T̃i as shown in Eq. (2).

T̃i = {T̃i,1, T̃i,2, . . . , T̃i,n−k+1} (2)

The convolution layer output is then passed through a max-pooling layer.
The max-pooling layer reduces over-fitting and decreases the dimensionality of
the features without affecting the network’s performance [25]. The max-pooling
layer retains the maximum value over a spatial window, i.e., it only keeps the
important features.

3.2 Contextual Features Representation.

The news article contextual features Ci describe the metadata information
related to the news document and the user-based representation. A represen-
tative list of the contextual features used in this work is listed below:

– Source: This indicates where the news document was published, e.g., Tweet,
Facebook Post, Interview, etc.

– Tags: This identifies the main topic stated in the news document.
– Author’s name: This indicates the name of the article’s author.

480 M. Rabhi et al.

– Author’s credibility: This metric reflects the reliability of the underlying
author. Authors with low credibility are more likely to spread fake news
compared to credible authors. We define user credibility as follows:

credibility = 1 − #of fake news

#of total news published

Contextual Features Preprocessing. As most contextual features are tex-
tual, we first split the features into words. Then, we create the vocabulary for
each contextual feature. Finally, we represent each word of the vocabulary with
an integer, in order to create a vector representation that is fed into a neural
network for learning.

Contextual Features Learning. We use a two-layer deep feed-forward neural
network to perform feature learning. The input layer takes as input the contex-
tual feature vector Ci = {Si, Gi, Ai, Ca}, where Si is the source of the news
document i, Gi is the tag associated to the news document i, Ai represents the
author of the news document i, while Ca indicates the author’s (Ai) credibil-
ity. The contextual features pass through the hidden layers in order to learn the
dependencies among them. The output is the contextual learned features C̃i that
can be represented as follows:

C̃i = σ′(h1 ∗ F + e)
h1 = σ(Ci ∗ D + d)

(3)

where C and F represent, respectively, the weights of the hidden layer and the
output layer. Vectors d and e are the respective bias vectors, and functions σ
and σ′ denote the activation functions associated to the different layers.

3.3 Multi-modal Concatenation

As shown in Fig. 2, the two learned feature vectors T̃i and C̃i, obtained from the
two proposed modalities, are combined together using a simple concatenation
technique in order to obtain the final multimodal representation of the news
document Ñi = {T̃i, C̃i}. The fuse of the two feature representations is done
with a simple concatenation technique, i.e., the two feature vectors are stacked
one after another to form Ñi. The resulting representation, Ñi, goes through a
fully connected neural network and then to a sigmoid dense layer to classify the
news document.

4 Experiments

In this section, we describe the dataset that we collected for our experiments,
and also list the experimental settings we used to evaluate FN2. Then, we briefly
discuss the baselines to which FN2 is compared against.

FN2: Fake News DetectioN Based on Textual and Contextual Features 481

4.1 Dataset

While there are some public datasets on fake news detection that contain meta-
data, e.g., LIAR, we chose to create a new dataset from Politifact to contain more
up-to-date statements that cover more contemporary writing styles. Politifact is
a fact-checking website, where reporters and editors analyze the credibility of
statements made by U.S. politicians. Politifact collects news statements from
different sources, e.g., online social media, news articles, conferences, etc., rate
their accuracy, and then publish the statement and the evaluation report. The
evaluation score is organized over six qualitative levels, indicating the truthful-
ness of the statements and it ranges from “True” for accurate statements to
“Pants on fire” for ludicrous statements. In addition to the news text, Politi-
fact provides additional contextual data about the news documents, such as the
main topics covered in the article, the date of publication, and other informa-
tion related to the author, including the author’s name, a short bio, the author’s
political party, and the history of the author’s fact-checked publications. We
scraped the Politifact website to collect news statements and related metadata
published between 2009 and 2021. We collected 16,172 news documents, out
of which 51.3% were labeled as “True” and 48.7% as “False”. The statistical
properties of the entire dataset are summarized in Table 1.

Table 1. Statistical properties of the collected dataset

Property Value

of true statements 8299

of fake statements 7873

of authors 4238

of sources 63

To evaluate the performance of our framework, we adopted standard perfor-
mance metrics, namely: accuracy, precision, recall, and F1 score [9].

4.2 Experimental Settings

As mentioned previously, the Politifact website uses six credibility labels: “True”,
“Mostly True”, “Half True”, “Barely True”, “False”, and “Pants on fire”. Nev-
ertheless, our objective in this work is to perform binary classification, so we
grouped labels {“True”, “Mostly True”, “Half True”} to represent true news,
and labels {“Barely True”, “False”, “Pants on fire”} to represent fake news. The
proposed framework is depicted in Fig. 2.

The textual embedding is performed using the pre-trained BERTlarge model,
available in [7]. For the rest of the implementation, we used Keras. We imple-
mented a CNN consisting of a one-dimensional (1D) convolutional layer followed
by a max-pooling layer for textual feature extraction. The convolutional layer

482 M. Rabhi et al.

Fig. 2. Illustration of FN2’s architecture

FN2: Fake News DetectioN Based on Textual and Contextual Features 483

has 128 filters of size 10 and uses ReLU as the activation function. The resulting
feature vectors are then fed into a max-pooling 1D layer with a window size of 2
to downsample the dimensionality of the features and to reduce the number of
parameters. This approach aims at decreasing the computational cost without
affecting the network’s efficiency. Furthermore, to avoid over-fitting, we added
a dropout layer with a rate of 0.3. Finally, we used a flatten layer to transform
the pooled feature map into a one-dimensional vector.

To learn the metadata features, we implemented two dense layers with 32
hidden nodes each. We then added a dropout layer with a rate of 0.3 to avoid
over-fitting. Finally, the features learned from both CNN and FNN are concate-
nated and passed through a dense layer with 512 hidden nodes, and then to a
sigmoid dense layer to obtain news classification. The model is trained for 20
epochs, using a binary cross-entropy, Adam optimizer with a batch size of 64.

4.3 Competing Approaches

For comparison, we selected the state-of-the-art fake news detection models from
two different categories: (i) textual models that employ neural networks; and (ii)
contextual models that use similar contextual features. Specifically, we compare
the performance of our model against the following four competitors:

– LIWC [16] : The Linguistic Inquiry and Word Count (LIWC) model is
based on large lexicons of word categories that represent psycholinguistic
processes (e.g., positive emotions, perceptual processes), summary categories
(e.g., words per sentence), as well as part of speech categories (e.g., articles,
verbs). More specifically, LIWC reads an input text and counts the percent-
age of words that reflect different emotions, thinking styles, social concerns,
and even parts of speech. The LIWC analysis can be considered as somewhat
similar to word embedding, yet, each dimension in an LIWC vector has a
clear label. For fake news classification, LIWC has been employed to extract
meaningful features from the news articles, which are then fed into an ML
algorithm to learn the classification. In this work, we use LIWC features with
Random Forest for fake news classification [22].

– LSTM [20]: This LSTM model classifies the reliability of news articles from
their text only. The text news is first converted into 100-dimensional vectors
using a 100-dim embedding GLOVE. The embedded vectors are then passed
to the LSTM layer. The LSTM layer is composed of 300 hidden units and is
followed by a fully connected dense layer that performs the classification.

– Hybrid CNN-RNN [14]: This model consists of two main components that
extract features from the text news: a convolutional neural network and a
recurrent neural network. The CNN extracts local features from the text
news, while the RNN learns the long-term dependencies of the local features.
First, the news text is transformed into vectors using word embedding. The
embedding matrix is then fed into a one-dimensional convolutional layer, fol-
lowed by a max-pooling layer. The local features extracted by the CNN layer
are then provided to an LSTM layer that outputs the long-term dependencies

484 M. Rabhi et al.

of the local features. Finally, the feature vectors are classified using a fully
connected dense layer.

– Hybrid CNN [28]: This model captures the representation of the news text
using CNN, and the representation of the metadata using CNN and Bi-LSTM.
It then leverages the learned representations from the two different sources to
identify fake news. To feed one source, the news text is first transformed into
a vector representation and fed into a CNN to extract textual features. To
feed the other source, the metadata is encoded and then passed into a CNN
layer to capture the dependencies between the different features. Max-pooling
is performed on the output of the CNN layer, followed by a Bi-LSTM layer.
The feature representations from the news text and the metadata are then
concatenated and fed into a dense layer to classify the news article.

Note that all the aforementioned solutions were evaluated on different
datasets. Therefore, to ensure a fair comparison with FN2, we implemented
all four models and trained them on our own dataset described in Sect. 4.1.

5 Results and Analysis

In this section, we present the results of our experimental evaluation that aims
to investigate the accuracy of the proposed model. Our main goal is to answer
the following questions:

– Q1: Did FN2 improve fake news detection by combining news article with
metadata?

– Q2: How effective are metadata in detecting fake news?

5.1 Fake News Detection Performance

To answer Q1, we compare our model against the four competing approaches
previously listed. We split the dataset into training (80%) and testing (20%),
and repeated the process three times. The average results of the comparison are
presented in Table 2.

Table 2. Performance comparison for all models using the collected dataset

Accuracy Precision Recall F1 score

LIWC [16] 0.601 0.613 0.5624 0.589

LSTM [20] 0.572 0.589 0.427 0.493

CNN-RNN [14] 0.646 0.653 0.574 0.611

Hybrid CNN [28] 0.568 0.564 0.523 0.542

FN2 0.765 0.801 0.710 0.753

From these results, we can make the following observations:

FN2: Fake News DetectioN Based on Textual and Contextual Features 485

– For textual-based models, we observe that the performance of the CNN-RNN
model is better than the LSTM model. This indicates that the CNN-RNN
model can better capture the lexical and semantic properties of the news
articles.

– FN2 achieved the best performance among all the other models. The accuracy
of FN2 surpasses both the textual-based models and hybrid models by a
margin of at least 13%.

– FN2 performs better than the models using textual features. This indicates
that the extracted metadata features contain complementary information
that helps boost fake news identification. However, this is not valid in the
Hybrid CNN model, i.e., the accuracy of the textual-based models is higher
than hybrid CNN. This could be explained by the fact that hybrid CNN was
mainly designed for 6-class classification and that the parameters were tuned
to increase the accuracy of multi-class classification.

– FN2 outperforms competitors’ models in terms of all the evaluation metrics.
For example, FN2 achieves an improvement of 13%, 15%, 14% compared to
the CNN-RNN model in terms of accuracy, precision, and recall, respectively.
The performance gap is even larger for the other models.

To illustrate the importance of metadata in detecting fake news and to answer
Q2, we investigate the performance of two variants of the FN2 model:

– FN2/Co: This is a variant of the FN2 framework that does not use the meta-
data. The model encodes the text news and then feeds it into a convolutional
neural network for feature extraction. Finally, the features are passed to a
sigmoid dense layer to classify the news article.

– FN2/T: This is another variant of the FN2 framework that uses only the
metadata to perform the classification. The processed metadata is fed into a
feedforward neural network to learn the contextual features, and the resulting
features are then passed to a sigmoid dense layer to classify the news article.

Results, reported in Fig. 3, allow us to provide the following observations:

– When we remove the contextual information, the performance of FN2/Co
decreases dramatically. In particular, both accuracy and F1 score drop by
17% and 16%, respectively. This suggests that the contextual information
brings important information to the fake news identification model.

– A similar observation can be made for FN2/T, i.e., when we eliminate the
textual information from the classification model. One interesting remark is
that FN2/T performs slightly better than FN2/Co, suggesting that news
metadata are at least as valuable as textual data.

Therefore, our conclusion is that the textual and the contextual data of news
articles are very valuable, and they contribute roughly equally to the fake news
classification problem. We can, thus, confirm that they contain complementary
information. However, one of the main challenges a model can face when using
contextual features to detect fake news is cold-start issues. In this work, one of
the contextual features, i.e., author’s credibility, can suffer from the cold-start

486 M. Rabhi et al.

Fig. 3. Impact of removing textual or contextual information on FN2

issue. When a new author joins the network, we have little information about
their credibility, which may affect the prediction results. Therefore, we study the
impact of a cold start on FN2. For an author that has joined recently, we do
not have any history of their reliability. Hence, we set it to zero. To evaluate the
impact of cold-start on FN2, we randomly set the author’s credibility to zero for
both training and testing data, i.e., we randomly set 10% to 100% of the author’s
credibility to zero. The results are illustrated in Fig. 4. We observe that the cold
start issue has slightly reduced the accuracy of FN2 to reach 71.85% when 30%
of the author’s credibility in the dataset is set to zero. Even when we do not
have any information about any author, FN2 still outperforms its competitors
and achieves an accuracy of 69.1%. This small impact of the cold-start problem
can be explained by the fact that the model uses textual and contextual features
for detection. In other words, combining the contextual features with the news
content features has significantly reduced the effect of the cold start problem.

6 Model Evaluation on FakeNewsNet

Although many models are proposed for fake news classification, the issue of
model generalization remains still an unresolved challenge. In this context, we
aim to demonstrate the generality of the FN2 framework. More specifically, Fig. 5
depicts the training and validation values experienced by our model for accu-
racy and loss, as a function of the number of epochs. We notice that, with
increasing number of epochs, the model’s validation accuracy increases while the
loss decreases significantly. We also observe that, as the training loss decreases
steadily, the validation loss decreases as well in a similar pattern. These results
show that the features learned by FN2 capture the semantics provided by data,
and that the model does not experience either under- or over-fitting.

FN2: Fake News DetectioN Based on Textual and Contextual Features 487

Fig. 4. Impact of the cold start problem in terms of the authors’ credibility feature.

(a) accuracy (b) loss

Fig. 5. Training and validation accuracy and loss graphs of FN2 on the Poltifact dataset

To provide further support to the above formulated hypothesis about the
excellent qualities enjoyed by our model, we test FN2 on a fake news multi-
dimensional benchmark dataset, called FakeNewsNet [21]. The dataset contains
political and entertainment news collected from two different fact-checking plat-
forms: Politifact and GossipCop. Table 3 depicts the results of our evaluation. It
shows that our model is able to generalize on unseen data, and outperforms the
other models on all the evaluation metrics. Moreover, the results indicate that
FN2 performs very well in non-political fields as well. Indeed, FN2 was trained
with political statements from Politifact; however, when asked to classify enter-
tainment news from GossipCop, FN2 was able to identify fake news with an
accuracy of 87.4%, outperforming its competitors by at least 9.7%. These results
demonstrate that the features learned by FN2 capture the semantics of the data,
and that the model is not experiencing any under- or over-fitting. To summarize,
our findings show that the FN2 model can be applied to various domains and
across different datasets.

488 M. Rabhi et al.

Table 3. Performance comparison for all models on the FakeNewsNet dataset

Accuracy Precision Recall F1

Politifact LIWC [20] 0.807 0.751 0.880 0.811

LSTM [20] 0.737 0.667 0.695 0.680

CNN-RNN [14] 0.632 0.59 0.861 0.704

Hybrid CNN [28] 0.579 0.608 0.823 0.7

FN2 0.875 0.866 0.95 0.904

GossipCop LIWC [20] 0.776 0.857 0.547 0.668

LSTM [20] 0.582 0.666 0.593 0.627

CNN-RNN [14] 0.624 0.666 0.581 0.623

Hybrid CNN [28] 0.646 0.652 0.473 0.548

FN2 0.874 0.866 0.855 0.862

7 Conclusions and Future Work

In this paper, we have addressed a challenging and relevant topic: fake news iden-
tification. Specifically, we have introduced FN2, a novel ML-based framework
that combines both textual and contextual information to classify the credibil-
ity of news articles. We have detailed the rational supporting our framework,
described it in detail, and performed an extensive experimental campaign to
test our hypothesis. The results are staggering: our experiments, run on recog-
nized data sets, show that FN2 outperforms four other state-of-the-art models
from the literature in terms of accuracy, precision, recall, and F1 score. More-
over, we also demonstrated the correlation between fake news and contextual
information, and showed that using contextual features improves the fake news
classification accuracy by at least 13%. Further, our model has also been shown
to enjoy a quite good generalization. Indeed, while being trained on politics-
oriented news, it also outperforms competing models on a qualitative different
data set (entertainment news).

Several interesting future directions can be further investigated. First, an
extension of the FN2 model from binary classification to multi-classification
will be considered. Second, it would be interesting to perform an analytical
study on the quality of the results when converting multi-class labels to binary
class labels—hence helping finding out the best binary split for the dataset that
produces the best discrimination among the Politifact sub-labels. Third, we plan
to examine whether certain social features that relate to the news article, such
as the number of likes, number of shares, etc., can further enhance the accuracy
of our model. Another interesting direction would aim at overcoming BERT’s
intrinsic limitation on the number of word tokens (512), limiting our FN2 model
to only news statements with less than 512 words. Therefore, we plan to extend
FN2 to consider longer news articles. Finally, due to the lack of publicly available
state-of-the-art fake news detection models, FN2 was only compared to four

FN2: Fake News DetectioN Based on Textual and Contextual Features 489

models. However, in the future, we plan to consider and re-implement more
baseline models for comparison, such as TriFN.

Acknowledgments. The authors would like to thank the reviewers that, with their
comments, helped to improve the quality of the paper, and Dr. Chuan Yue for shep-
herding this contribution.

This work was partially supported by NPRP-S-11-0109-180242, from the QNRF-
Qatar National Research Fund, a member of The Qatar Foundation. The information
and views set out in this publication are those of the authors and do not necessarily
reflect the official opinion of the QNRF.

References

1. Ahmed, H., Traore, I., Saad, S.: Detection of Online Fake News Using N-Gram
Analysis and Machine Learning Techniques. In: Traore, I., Woungang, I., Awad,
A. (eds.) ISDDC 2017. LNCS, vol. 10618, pp. 127–138. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69155-8 9

2. Cai, L., Song, Y., Liu, T., Zhang, K.: A hybrid BERT model that incorporates label
semantics via adjustive attention for multi-label text classification. IEEE Access
8, 152183–152192 (2020)

3. Collins, B., Hoang, D.T., Nguyen, N.T., Hwang, D.: Fake News Types and Detec-
tion Models on Social Media A State-of-the-Art Survey. In: Sitek, P., Pietranik, M.,
Krótkiewicz, M., Srinilta, C. (eds.) ACIIDS 2020. CCIS, vol. 1178, pp. 562–573.
Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3380-8 49

4. Do, T.H., Berneman, M., Patro, J., Bekoulis, G., Deligiannis, N.: Context-aware
deep Markov random fields for fake news detection. IEEE Access 9, 130042–130054
(2021)

5. Elisa Shearer, K.E.M.: News use across social media platforms 2018, August 2020
6. Freire, P.M.S., da Silva, F.R.M., Goldschmidt, R.R.: Fake news detection based

on explicit and implicit signals of a hybrid crowd: an approach inspired in meta-
learning. Expert Syst. Appl. 183, 115414 (2021)

7. Google-Research: Google-research/bert: Tensorflow code and pre-trained models
for bert (2019). https://github.com/google-research/bert

8. Granik, M., Mesyura, V.: Fake news detection using Naive Bayes classifier. In: 2017
IEEE First Ukraine Conference on Electrical and Computer Engineering (UKR-
CON), pp. 900–903. IEEE (2017)

9. Junker, M., Hoch, R., Dengel, A.: On the evaluation of document analysis com-
ponents by recall, precision, and accuracy. In: Proceedings of the Fifth Interna-
tional Conference on Document Analysis and Recognition. ICDAR 1999 (Cat.
No.PR00318), pp. 713–716 (1999). https://doi.org/10.1109/ICDAR.1999.791887

10. Kaliyar, R.K., Goswami, A., Narang, P.: EchoFakeD: improving fake news detec-
tion in social media with an efficient deep neural network. Neural Comput. Appl.
33(14), 8597–8613 (2021). https://doi.org/10.1007/s00521-020-05611-1

11. Kaliyar, R.K., Goswami, A., Narang, P., Sinha, S.: FNDNet-a deep convolutional
neural network for fake news detection. Cogn. Syst. Res. 61, 32–44 (2020)

12. Kaliyar, R.K., Kumar, P., Kumar, M., Narkhede, M., Namboodiri, S., Mishra,
S.: DeepNet: an efficient neural network for fake news detection using news-user
engagements. In: 2020 5th International Conference on Computing, Communica-
tion and Security (ICCCS), pp. 1–6. IEEE (2020)

https://doi.org/10.1007/978-3-319-69155-8_9
https://doi.org/10.1007/978-981-15-3380-8_49
https://github.com/google-research/bert
https://doi.org/10.1109/ICDAR.1999.791887
https://doi.org/10.1007/s00521-020-05611-1

490 M. Rabhi et al.

13. Martino, G.D.S., Cresci, S., Barrón-Cedeño, A., Yu, S., Di Pietro, R., Nakov, P.:
A survey on computational propaganda detection. In: Bessiere, C. (ed.) Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, pp. 4826–4832 (2020). ijcai.org

14. Nasir, J.A., Khan, O.S., Varlamis, I.: Fake news detection: a hybrid CNN-RNN
based deep learning approach. Int. J. Inf. Manag. Data Insights 1(1), 100007 (2021)

15. Pan, J.Z., Pavlova, S., Li, C., Li, N., Li, Y., Liu, J.: Content Based Fake News
Detection Using Knowledge Graphs. In: Vrandečić, D., Bontcheva, K., Suárez-
Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.-A., Simperl, E. (eds.)
ISWC 2018. LNCS, vol. 11136, pp. 669–683. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00671-6 39

16. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates 71(2001), 2001 (2001)

17. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric
inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638 (2017)

18. Raponi, S., Khalifa, Z., Oligeri, G., Di Pietro, R.: Fake news propagation: a review
of epidemic models, datasets, and insights. ACM Trans. Web (2022). https://doi.
org/10.1145/3522756

19. Rapoza, K.: Can ‘fake news’ impact the stock market? December 2020. https://
www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-
market/?sh=f625ee52fac0

20. Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y.: Truth of varying shades:
analyzing language in fake news and political fact-checking. In: Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
2931–2937 (2017)

21. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data reposi-
tory with news content, social context, and spatiotemporal information for studying
fake news on social media. Big Data 8(3), 171–188 (2020)

22. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for
fake news detection. In: Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pp. 312–320 (2019)

23. Shu, K., Zhou, X., Wang, S., Zafarani, R., Liu, H.: The role of user profiles for fake
news detection. In: Proceedings of the 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pp. 436–439 (2019)

24. Tankovska, H.: Number of social network users worldwide from 2017 to 2025,
January 2021. https://www.statista.com/statistics/278414/number-of-worldwide-
social-network-users/

25. Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G.S., On, B.W.: Fake news
stance detection using deep learning architecture (CNN-LSTM). IEEE Access 8,
156695–156706 (2020)

26. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 5998–
6008 (2017)

27. Verma, A., Mittal, V., Dawn, S.: FIND: fake information and news detections
using deep learning. In: 2019 Twelfth International Conference on Contemporary
Computing (IC3), pp. 1–7. IEEE (2019)

28. Wang, W.Y.: Liar, liar pants on fire: a new benchmark dataset for fake news
detection. In: Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pp. 422–426 (2017)

29. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., Yu, P.S.: TI-CNN: convolutional
neural networks for fake news detection. arXiv preprint arXiv:1806.00749 (2018)

https://doi.org/10.1007/978-3-030-00671-6_39
https://doi.org/10.1007/978-3-030-00671-6_39
http://arxiv.org/abs/1702.05638
https://doi.org/10.1145/3522756
https://doi.org/10.1145/3522756
https://www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/?sh=f625ee52fac0
https://www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/?sh=f625ee52fac0
https://www.forbes.com/sites/kenrapoza/2017/02/26/can-fake-news-impact-the-stock-market/?sh=f625ee52fac0
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
http://arxiv.org/abs/1806.00749

FN2: Fake News DetectioN Based on Textual and Contextual Features 491

30. Zhang, J., Dong, B., Yu, P.S.: Deep diffusive neural network based fake news detec-
tion from heterogeneous social networks. In: 2019 IEEE International Conference
on Big Data (Big Data), pp. 1259–1266. IEEE (2019)

31. Zhou, X., Wu, J., Zafarani, R.: SAFE: similarity-aware multi-modal fake news
detection. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K.,
Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 354–367. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-47436-2 27

32. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection
methods, and opportunities. ACM Comput. Surv. (CSUR) 53(5), 1–40 (2020)

https://doi.org/10.1007/978-3-030-47436-2_27

Malware Detection with Limited
Supervised Information via Contrastive

Learning on API Call Sequences

Mohan Gao1, Peng Wu1,2(B) , and Li Pan1,2

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

2 Shanghai Key Laboratory of Integrated Administration Technologies
for Information Security, Shanghai Jiao Tong University, Shanghai, China

catking@sjtu.edu.cn

Abstract. Malware is a software capable of causing damage to com-
puter systems. Conventional malware detection methods either require
feature engineering to extract specific features or require a large amount
of labeled data to train an end-to-end deep learning model. Both fea-
ture engineering and labelling are laborious. In this paper, we propose
a semi-supervised contrastive learning malware detection method based
on API call sequences with limited label information, called SCLMD.
Specifically, a heterogeneous graph is constructed from API behavior
to express the rich relationships among labeled and unlabeled software.
After extracting the structural and sequential features of software by
two encoders, we adopt the cross-view contrastive learning to obtain the
shared and consistent feature of software. A hybrid positive selection
strategy is designed to select positive pairs for contrastive learning by
the guidance of the limited label information. Experimental results on
two real world datasets show that the SCLMD outperforms the baseline
methods, especially when the supervised information is limited.

Keywords: Malware detection · Contrastive learning · Heterogeneous
graph neural network

1 Introduction

Malware is any software designed to cause damage or occupy the resources of
the target computer by means of executable codes, scripts, etc. Huge economic
losses in the world caused by massive malware pose a considerable challenge for
malware mitigation. Malware detection is the process of discovering and classi-
fying malware based on its characteristics. According to whether the malicious
code is executed in the analysis, malware detection techniques can be divided
into static detection techniques and dynamic detection techniques [2]. Static
techniques extract binary code, string, byte sequence, file name, etc. from the
content of the software code as the signatures of the software. The detection can
be completed by matching the signatures of the sample with the feature library
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 492–507, 2022.
https://doi.org/10.1007/978-3-031-15777-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_27&domain=pdf
http://orcid.org/0000-0002-6294-0431
https://doi.org/10.1007/978-3-031-15777-6_27

Malware Detection via Contrastive Learning on API Call Sequences 493

of malware [13]. Static detection technology is simple and fast, but malware can
camouflage itself by means of encryption, encapsulation, and packing to avoid
detection [21,22,26]. Dynamic detection techniques extract dynamic features for
detection by monitoring and recording the running state and behavior of soft-
ware [8], which can effectively combat the camouflage of malware. Application
Programming Interface (API) call is a typical dynamic feature. If malware wants
to achieve its damage goals, it must call some APIs according to a certain pat-
tern, which is difficult to disguise. Therefore, the malware detection based on
API call is more robust and effective.

The traditional API call-based malware detection methods mainly focus on
machine learning model based on feature engineering. Experts exploit feature
engineering to extract the API call features that are important for malware
detection first, and then adopt machine learning model on the extracted features.
Extracting effective features manually are laborious and time consuming for a
large number of new types of malware. With the development of deep learning
technology, many recent works have proposed end-to-end methods that use deep
learning models to automatically extract features from raw software behavior
data to detect and classify malware. Deep learning-based methods require a
large amount of labeled data to train models. However, in practice, the number of
labeled malware is limited. Labeling malware requires a lot of domain knowledge
and it is expensive to manually construct large-scale labeled dataset. Therefore,
how to make full use of a large amount of unlabeled data for malware detection
is an urgent problem to be solved.

We propose a Semi-supervised Contrastive Learning Malware Detection
method (SCLMD) based on API call sequences with limited supervised infor-
mation. Although a large number of software may not have labels, they have
rich relationships via their API call sequences. Their relationships not only help
to perform unsupervised learning, but also make the unlabeled software obtain
supervised information from the limited number of labeled software. Therefore,
in order to make full use of the large amount of unlabeled software, we first
construct a heterogeneous network from API call sequences to express the com-
plex relationships between software and APIs. Then, a heterogeneous network
representation learning method is adopted to extract the software relationship
features from the heterogeneous network. However, when constructing the het-
erogeneous network, the sequential information of the API call sequence is lost.
Therefore, the features extracted from the heterogeneous network ignore the
important API sequential features. On the other hand, the API call sequence
itself has rich sequence information, so we adopt models to extract the sequential
features from the API call sequence directly. Heterogeneous network-based fea-
tures and sequence-based features come from different views of software, respec-
tively. In order to fully utilize the unlabeled software data to extract shared
and consistent features of software, we propose a contrastive learning frame-
work for software feature extraction. Contrastive learning is a self-supervised
learning method that does not require any label information. To better guide
malware detection with limited label information, we propose a hybrid positive

494 M. Gao et al.

selection strategy for contrastive learning to introduce the limited label infor-
mation into the contrastive learning framework. Experiments on Alibaba Cloud
Malware Detection (ACMD) Dataset show that the performance of the proposed
SCLMD is better than that of other malware detection methods based on API
call sequences, especially when the ratio of labeled samples is relatively little.

Our main contributions are as follows:

1. For the first time, we use a contrastive learning framework in malware detec-
tion to extract shared and consistent features from structural view and
sequential view of software;

2. We propose a hybrid positive selection strategy to guide the contrastive learn-
ing by selecting positive pairs based on the limited label information;

3. Experiments show that our proposed method can effectively detect and clas-
sify malware. Especially when there are limited labels, our method has a large
performance improvement compared to other methods.

2 Related Work

2.1 Malware Detection

Malware detection methods can be divided into static detection methods and
dynamic detection methods according to whether the features used for detection
are generated during software runtime.

Static detection methods detect and/or classify malware by extracting binary
sequences from the software as its signature codes and matching the codes in mal-
ware signature database [13]. However, static detection methods can only detect
malware with known malicious signatures, and is difficult to detect emerging
malware with unknown signatures. In addition, malware will also disguise its
signature by means of encryption, encapsulation, and packing to avoid detec-
tion, which brings great challenges to methods based on signature matching
[21,22,26].

The dynamic detection methods use the features generated during the soft-
ware running process, especially the API call sequence [1,8,17]. In order to
achieve the illegal goals, malware must call APIs in a specific pattern, and
researchers can find the behavioral intent of any software by analyzing its API
call sequence patterns. Therefore, the dynamic detection method can effectively
resist the obfuscation and camouflage technology of malware. According to the
sequence nature of API calls, many methods use sequence learning methods,
such as Recurrent Neural Networks (RNN), to extract features from API call
sequences [16,29,34]. But training sequence learning methods usually require
large amounts of labels, as the sequence learning method itself cannot make
good use of the relationship between unlabeled data. Thus they may perform
poorly when labels are limited.

Malware Detection via Contrastive Learning on API Call Sequences 495

2.2 Graph Neural Network

Graph-structured data can reflect the complex relationships between entities,
which can not only contribute to unsupervised learning, but also help unla-
beled samples obtain supervised information from limited labels. Graph Neural
Networks (GNN), such as GCN [15], GAT [30], can extract features from the
graph-structured data effectively even when the labels are sparse. The hetero-
geneity of nodes and edges in heterogeneous graphs brings additional challenges
for feature extraction, and many heterogeneous GNNs are also proposed to learn
their embedding, such as HAN [6] and HGT [14]. The GNNs have been success-
fully applied in many areas, such as medicine research [12] and recommenda-
tion systems [28]. There are also many GNN based malware detection methods.
MatchGNet [32] propose a Graph Matching Network model to learn the graph
representation based on the invariant graph modeling of the program’s execution
behaviors, which can detect malware with less false positives. GDroid [7] maps
apps and APIs into a large heterogeneous graph by building the “App-API”
and “API-API” edges based on the invocation relationship and the API usage
patterns, converting the malware detection problem into a node classification
task. These methods all extract the relationships between entities by construct-
ing heterogeneous networks, but they may ignore the sequential information of
API call sequences.

2.3 Contrastive Learning

Contrastive learning is a self-supervised learning method that learns the shared
consistent features of samples by contrasting their different views [4,9,10,19]. It
also has been applied to graph neural networks to improve their representation
learning ability. DGI [31] builds local patches and global summary as positive
pairs, and utilizes Infomax [18] theory to contrast. Along this line, GMI [24] is
proposed to contrast between center node and its local patch from node features
and topological structure. GCC [25] focuses on pretraining with contrasting uni-
versally local structures from any two graphs. In heterogeneous domain, DMGI
[23] conducts contrastive learning between original network and corrupted net-
work on each single view, and designs a consensus regularization to guide the
fusion of different meta-paths. HeCo [33] propose a novel heterogeneous graph
neural network with co-contrastive learning, choose network schema and metap-
ath structure as two views to collaboratively supervise each other. However, how
to adopt contrastive learning to enhance the performance of specific application
tasks, such as malware detection, still requires a lot of exploration.

3 Problem Formulation

Application programming interfaces (APIs) are interfaces of the operating sys-
tem called by any software with a specific order to achieve its functionalities.
API call sequence directly reflects software’s inherent behavior features which is

496 M. Gao et al.

difficult to disguise and deceive, so malware can be effectively detected based on
the API call sequence.

Given a set < S,A,Y >, where A = {a1, . . . , aq} denotes the set of q APIs,
S = {s1, . . . , sp} denotes the set of p software where a software si ∈ S is repre-
sented by an API call sequence, i.e., si = {si1, . . . , siT |sit ∈ A} , Y = {y0, . . . , yc}
denotes the set of labels with one type of good software and c types of malware,
the purpose of Malware detection with limited supervised information is to clas-
sify the software in S when the number of labeled samples r is much smaller
than the number of total samples p, i.e., r � p.

4 The Proposed Model: SCLMD

In this section, we propose SCLMD, a new semi-supervised contrastive Learning
malware detection method based on API call sequences. The overall architecture
is shown as Fig. 1.

Fig. 1. The overall architecture of SCLMD.

When supervised information is limited, in order to make full use of a large
amount of unlabeled software for training, we first construct a heterogeneous
network based on software API call sequences to express the complex relation-
ships between software and APIs. The relationships not only enable all software
learn features from each other, but also make unlabeled software obtain super-
vised information from the limited number of labeled software. A heterogeneous
network based on API call sequence is defined as G = {A,S, C} where C is the set
of edges. An edge c ∈ C from an API a ∈ A to a software s ∈ S represents that
the software s calls the API a during its runtime. Since different API may show
different importance and GAT can learns the importance of different neighbors
through the attention mechanism to obtain node representation, a GAT-based
structural view encoder is proposed to learn the structural feature of software
on the heterogeneous network G.

Malware Detection via Contrastive Learning on API Call Sequences 497

Although the structural features embed rich relationship between software
and APIs, they ignore important sequential properties of API sequence. In order
to utilize the rich sequential properties, a sequential view encoder is designed
based on Bi-GRU with attention mechanism to extract the sequential feature of
the software. Bi-GRU combines forward and reverse hidden states of GRU to
effectively capture the semantic associations between API sequences, the reset
gate and update gate in Bi-GRU can alleviate the problems of gradient disap-
pearance and explosion with a reasonable computational cost.

The structural feature and sequential feature of a software are complementary
with each other. A semi-supervised contrastive learning framework is proposed
to extract the consistent features shared by two types of features. In order to
make the extracted consistent feature better for malware detection, a hybrid
positive selection strategy for contrastive learning is proposed to construct the
set of positive pairs for contrastive learning based on the TF-IDF similarity and
the provided limited supervised information.

4.1 Structural View Encoder

The structural view encoder is designed based on GAT [30] to learn features
from the heterogeneous network. Let XA ∈ R

q×dA

and XS ∈ R
p×dS

be the
initial feature matrix of API and software respectively, where dA and dS are
their feature dimensions respectively, and each row of them, i.e., xA

i and xS
j , is

the initial feature. If no initial feature matrix is provided, one-hot feature matrix
will be adopted. Due to the heterogeneity of nodes, the features of different types
of nodes are first projected into the same feature space by two type-specific
transformation matrices WA ∈ R

d×dA

and WS ∈ R
d×dS

.

xA
i

′
= WA · xA

i

xS
j

′
= WS · xS

j

(1)

where xA
i

′ ∈ R
d and xS

j
′ ∈ R

d are the projected features and d is the dimension
of the projected features.

Since APIs of each software may play different roles and show different impor-
tance, here we adopt a multi-head node-level attention mechanism to perform
structural feature extraction of software.

hh
j = ||Hh=1σ(

∑

i∈Nj

aij · xA
i

′
) (2)

aij =
eeij

∑
k∈Nj

eekj
(3)

eij = LeakyReLu
(
aT

[
xS

j

′∣∣∣
∣∣∣xA

i

′])
(4)

where a ∈ R
2d is an attention vector, aij is the attention weights of API i for

software j, Nj is the neighbor set of j, || denotes the concatenate operation, H

498 M. Gao et al.

is the number of heads, and hh
j ∈ R

Hd is the concatenated multi-head embed-
ding for software j. Finally, hh

j is passed through a linear layer to obtain the
representation of software j from the structural view:

zstr
j = W · hh

j + b (5)

where W ∈ R
d×Hd is the weight matrix, and b ∈ R

d is the bias vector. zstr
j ∈ R

d

is the representation of software j from the structural view.

4.2 Sequential View Encoder

Given the API call sequence {s it|t ∈ [1, T]} of a software si, we first project each
API sit into the latent space through a transformation matrix We ∈ R

d×dA

.

xA
it

′
= Wex

A
it (6)

A Bidirectional GRU (Bi-GRU) [5] is adopted to get the hidden states of all
APIs in a API sequence by summarizing information from both directions of the
sequence.

→
hit =

→
GRU

(
xA

it

′)
, t ∈ [1, T]

←
hit =

←
GRU

(
xA

it

′)
, t ∈ [T, 1]

(7)

where
→
hit ∈ R

d/2 is the forward hidden state and
←
hit ∈ R

d/2 is the backward
hidden state. The hidden state of any API is obtained by concatenating

→
hit ∈

R
d/2 and

←
hit ∈ R

d/2 i.e., hit =
[→
hit,

←
hit

]
, hit ∈ R

d.

Not all APIs in a sequence contribute equally to the representation of the
software’s behavior intention. An attention mechanism is adopted to learn the
importance of each API and aggregate the weighted hidden states of APIs to
form the representation of the software from the sequential view.

zseq
i =

∑

t

ait · hit (8)

ait =
euit

T ·uw

∑
t euitT ·uw

(9)

uit = tanh (Wωhit + bω) (10)

where Wω and bω are the weight matrix and bias vector of a one-layer MLP,
uit ∈ R

d is a projected hidden representation of hit, uw ∈ R
d is an attention

vector, ait is the attention weights of hit, and zseq
i ∈ R

d is the representation of
software i from the sequential view.

4.3 Hybrid Positive Selection Strategy for Contrastive Learning

In order to fully utilize the unlabeled data to extract shared and consistent
features of software from structural and sequential views, a contrastive learning

Malware Detection via Contrastive Learning on API Call Sequences 499

framework is adopted for software feature learning. Contrastive learning is a self-
supervised learning method that learn representation by contrasting positive
pairs against negative pairs. The samples of positive pair should come from
different views, and usually are the two augmented views of the same sample.
However, when the size of training set is not large enough, the number of positive
pairs may be too small to train model well. Meanwhile, the traditional positive
pair construction method cannot take advantage of the supervised information
to guide the feature learning for malware detection. Thus we propose a hybrid
positive selection strategy for contrastive learning, which first construct positive
pairs based on TF-IDF similarity, and then fine-tune the positive pairs based on
limited label information.

TF-IDF (term frequency-inverse document frequency) is a numerical statistic
that is intended to reflect how important a word is to a document in a collection
or corpus. By regarding the software as document and the API as word, then the
TF-IDF value of each API can measure how important the API is to a software.
As a result, the higher the similarity of the TF-IDF vectors of two software is,
the more similar the two software are in behavior. To this end, for each software,
we calculate the cosine similarity of the TF-IDF vectors between it and any other
software, and select top k ones with the largest cosine similarity to form the k
positive pairs with it. In this way, the positive pairs set is initially constructed.

When some supervised information is provided, the positive pairs set can be
further fine-tuned to better guide the feature learning. The fine-tuning is carried
out based on the intuition that if two software have the same label, they are
positive pairs of each other and should be added into positive set if they are not
in it, while if they have different labels, they are not positive samples of each
other and should be removed from positive set if they are in it. After the fine-
tuning, the set of positive pairs of software i is denoted as Pi. And we naturally
treat remaining nodes that are not positive samples in the same training batch
with i as negative samples, denoted as Ni.

4.4 Loss

After getting the zstr
i and zseq

i for software i from two views, we feed them into
two Multi-Layer Perceptrons(MLP) with one hidden layer separately to map
them into the same space where contrastive loss is calculated:

qstr
i = MLP str(zstr

i)
qseq
j = MLP seq(z

seq
i)

(11)

with the positive pairs set Pi and negative sample set Ni, the contrastive loss
under structural view is defined as:

Lstr =
−1
|V |

∑

i∈V

log

∑
j∈Pi

esim(qstr
i ,qseq

j)/τ

∑
kε(Pi∪Ni)

esim(qstr
i ,qseq

k)/τ
(12)

where sim(u, v) denotes the cosine similarity between two vectors u and v, and
τ denotes a temperature parameter. The loss considers multiple positive pairs,

500 M. Gao et al.

which is different from traditional infoNCE loss [19,35], that usually only focuses
on one positive pair in the numerator of Eq. (12). For two software in a pair,
the target embedding is from the structural view (qstr

i) and the embedding of
positive and negative samples are from the sequential view (qseq

i). In this way,
we realize the cross-view self-supervision.

The contrastive loss Lseq under sequential view is similar as Lstr, but differ-
ently, the target embedding is from the sequential view while the embedding of
positive and negative pairs is from the structural view:

Lseq =
−1
|V |

∑

i∈V

log

∑
j∈Pi

esim(qseq
i ,qstr

j)/τ

∑
kε(Pi∪Ni)

esim(qseq
i ,qstr

k)/τ
(13)

To take full advantage of supervised information, a semi-supervised framework
is adopted by combing the above contrastive loss with a cross-entropy based
supervised loss.

Lsup = −
∑

i∈Sl

yi log ŷi (14)

ŷ = softmax(Wsup · zstr + bsup) (15)

where Sl ⊂ S is the subset of software with labels, ŷ is the predicted label, Wsup

and bsup are the weight matrix and bias of linear classifier. The supervised loss
is applied to structural embedding rather than sequential embedding, because
the unlabeled samples can acquire the supervised information from the limited
number of labeled samples indirectly through the edges of the constructed het-
erogeneous graph.

The overall loss function is given as follows:

L = λ · Lstr + (1 − λ) · Lseq + Lsup (16)

where λ is a coefficient to balance the effect of two views. We can optimize the
proposed model via back propagation and learn the embedding of software. In
the end, the structural representation of software zstr is adopted to perform
downstream tasks, because the graph structure helps unsupervised learning and
enables the unlabeled samples obtain supervised information from the labeled
ones.

5 Experiments

5.1 Datasets

We employ the following two real world malware datasets. The dataset statistics
is in Table 1.

ACMD1: The Alibaba Cloud Malware Detection dataset contains API
instruction information from 4978 benign Windows software and 8909 Windows
1 https://tianchi.aliyun.com/competition/entrance/231694/information?lang=en-us.

https://tianchi.aliyun.com/competition/entrance/231694/information?lang=en-us

Malware Detection via Contrastive Learning on API Call Sequences 501

Table 1. Summary statistics of the datasets.

Dataset #software #API #classes

ACMD 13887 295 8

ACSAC 10079 304 6

malware. There are 7 types of malware, including infected virus, Trojan Horse
program, mining program, DDoS Trojan, extortion virus, etc.

ACSAC2: A subset of the Alibaba Cloud’s 3rd Annual Security Algorithm
Challenge dataset, which contains API instruction information from 5,000 benign
software and 5,079 malware, including infectious viruses, Trojans, DDOS Trojan,
ransomware, etc.

We spliced the APIs called during the software execution process into an API
sequence according to time order.

5.2 Baselines

The malware detection based on API call sequence is a typical sequence clas-
sification problem. Thus two sequence learning methods, i.e., BiLSTM [11] and
BiGRU [5], are adopted as the comparison baselines. In both methods, the rep-
resentations of software are obtained by aggregating the hidden states of all
APIs in the sequence with an attention mechanism. On the other hand, the mal-
ware detection may be beneficial from the rich relationships between software
expressed by the heterogeneous graph constructed above. Thus two heteroge-
neous graph learning methods, i.e., R-GCN [27] and HGT [14], are adopted as
comparison baselines by learning the representations of software on the con-
structed heterogeneous graph. Besides above general baselines, some specifi-
cally designed API call sequences based methods are adopted. MaMaDroid [20]
extracts features for malware detection by building a Markov Chain based behav-
ioral model from the API call sequences. GDroid [7] maps software and APIs into
a large heterogeneous graph, converting the original problem into a node classi-
fication task. LGMal [3] extracts local and global features for malware detection
by combining the stacked convolutional neural network and graph convolutional
networks.

It is worth noting that in both Windows and Android, API call sequences
have similar functions and characteristics, the malware detection methods based
on API call sequence all identify malware by mining the special pattern of the
sequence. These similarities make the methods to work in both systems, so we
choose two typical state of arts Android malware detection methods, MaMadroid
and GDroid, as comparison algorithms in our experiments. All methods are
trained in a supervised manner by inputting the representation of software into
a linear classifier.

2 https://tianchi.aliyun.com/competition/entrance/231668/information?lang=en-us.

https://tianchi.aliyun.com/competition/entrance/231668/information?lang=en-us

502 M. Gao et al.

Table 2. The model comparison on two datasets ACMD and ACSAC with different
training ratio. The best performance is highlighted in boldface.

Datasets Metrics Training
ratio

R-GCN HGT BiLSTM BiGRU MaMa
Droid

GDroid LGMal SCLMD

ACMD Macro-F1 70% 0.5607 0.5750 0.5466 0.5718 0.5699 0.5773 0.5921 0.6009

20% 0.5403 0.5634 0.5310 0.5551 0.5517 0.5621 0.5704 0.5741

10% 0.5310 0.5032 0.5116 0.4997 0.5480 0.4728 0.4652 0.5543

5% 0.5203 0.3823 0.4520 0.4122 0.5248 0.3729 0.4032 0.5292

2% 0.4527 0.3454 0.4089 0.4007 0.4804 0.3320 0.3564 0.5220

Micro-F1 70% 0.7679 0.8092 0.8112 0.8184 0.8262 0.7749 0.8319 0.8450

20% 0.7452 0.7686 0.7558 0.7764 0.8113 0.7654 0.7922 0.8201

10% 0.7305 0.7060 0.7258 0.7301 0.8041 0.7425 0.7301 0.8008

5% 0.6642 0.6402 0.6813 0.6433 0.7873 0.6954 0.7033 0.7722

2% 0.6485 0.6145 0.6285 0.6187 0.7648 0.6087 0.5951 0.7685

ACSAC Macro-F1 70% 0.6973 0.6931 0.7701 0.7792 0.7560 0.7849 0.7734 0.7883

20% 0.6884 0.6368 0.7109 0.7401 0.7221 0.6921 0.6848 0.7412

10% 0.6778 0.6119 0.7016 0.7126 0.7180 0.6636 0.6432 0.7354

5% 0.6523 0.5431 0.6556 0.6664 0.7002 0.6028 0.5907 0.7135

2% 0.6526 0.4197 0.5914 0.6014 0.6303 0.3955 0.4215 0.6729

Micro-F1 70% 0.8473 0.8710 0.8943 0.8921 0.9071 0.9084 0.8928 0.9061

20% 0.8402 0.8158 0.8303 0.8498 0.8976 0.8824 0.8629 0.8997

10% 0.8291 0.8028 0.8005 0.8190 0.8879 0.8510 0.8356 0.8602

5% 0.8056 0.7549 0.7720 0.7855 0.8753 0.7455 0.7012 0.8450

2% 0.7810 0.6810 0.7109 0.7340 0.8236 0.6232 0.6000 0.8322

5.3 Comparative Results

For all methods, the learned embeddings of software are used to train a linear
classifier. To compare the different methods when different amount of labels
are provided, we randomly select 70%, 20%, 10%, 5% and 2% of each dataset
as training set, and choose 10% as validation set. The rest of dataset is set as
test set. We report the test performance of each method which has the best
performance on the validation set. The Macro-F1 and Micro-F1 of each method
is shown in Table 2. It can be seen that Macro-F1 is much smaller than Micro-F1
on both datasets. This is because both datasets are unbalanced. More than one
third of ACMD and half of ACSAC is benign samples and the rest contains the
other several classes. Micro-F1 can easily get high value on unbalanced dataset
when the largest class is classified accurately, even though some small classes
are classified poorly. Macro-F1 is a more strict metric for unbalanced dataset,
as Macro-F1 takes the average value of F1 score of all classes as the result. Thus
Macro-F1 is more strict and important in our experiments. On both datasets,
the Macro-F1 of SCLMD outperforms those of other methods on all training
ratios. The Micro-F1 of SCLMD is also better than most of methods, except
slightly worse than MaMaDroid and GDroid on some cases. This may be because
MaMaDroid and GDroid prefer to classify the software as benign ones, which
makes them better in Micro-F1 sometimes, but worse than SCLMD in Macro-
F1 all the time. On both datasets, the performance of all methods declines as

Malware Detection via Contrastive Learning on API Call Sequences 503

long as the training ratio gets small. However the decline degree of SCLMD
is smaller than other methods. For example, for SCLMD, the Macro-F1 of 2%
training ratio is 86.87% of that of 70% training ratio, while for R-GCN, HGT,
BiLSTM, BiGRU, MaMaDroid GDroid and LGMal, the ratio is 80.73%, 60.07%,
74.81% , 70.08%, 84.74%, 57.5% and 60% respectively. This demonstrate that
the contrastive learning framework can take full use of unlabeled data to extract
consistent feature of structural and sequential view, which help the method work
well when the supervised information is limited.

5.4 Ablation Study

To investigate the effect of contrastive learning framework and hybrid posi-
tive selection strategy in the model, we designed Three variants of SCLMD.
SCLMDstr: The representation of the software from structural view is adopted
alone to feed into a linear classifier. SCLMDseq: The representation of the
software from sequential view is adopted alone to feed into a linear classifier.
SCLMD1: The fine-tuning based on labels in hybrid positive selection strategy
is removed. The positive pairs are selected only based on the TF-IDF similarities.

Table 3. The comparison results of SCLMD and its variants on two datasets ACMD
and ACSAC with different training ratio. The best performance is highlighted in bold-
face.

Datasets Metrics Training ratio SCLMDstr SCLMDseq SCLMD1 SCLMD

ACMD Macro-F1 70% 0.5757 0.5931 0.5932 0.6009

20% 0.5445 0.5467 0.5507 0.5741

10% 0.5377 0.5266 0.5467 0.5543

5% 0.5122 0.4771 0.5206 0.5292

2% 0.4025 0.3772 0.5014 0.5220

Micro-F1 70% 0.7898 0.8221 0.8133 0.8450

20% 0.7710 0.7809 0.7928 0.8201

10% 0.7363 0.7412 0.7476 0.8008

5% 0.7131 0.7051 0.7345 0.7722

2% 0.6606 0.6407 0.7022 0.7685

ACSAC Macro-F1 70% 0.7185 0.7407 0.7775 0.7883

20% 0.6686 0.7069 0.7333 0.7412

10% 0.6066 0.6671 0.7249 0.7354

5% 0.5872 0.5282 0.6346 0.7135

2% 0.4638 0.3814 0.6089 0.6729

Micro-F1 70% 0.8727 0.8803 0.8837 0.9061

20% 0.8288 0.8456 0.8706 0.8997

10% 0.7490 0.8063 0.8286 0.8602

5% 0.7638 0.7539 0.7936 0.8450

2% 0.7071 0.6580 0.7526 0.8322

504 M. Gao et al.

The comparative results of each variant is shown in Table 3. It can be seen
that SCLMDseq performs better than SCLMDstr when the ratio of labeled sam-
ples is larger than 20%, while SCLMDstr outperforms SCLMDseq when the ratio
is less than 10%. This shows that when the supervised information is large, the
sequential view encoder can effectively extract sequential information to achieve
better performance. On the other hand, when the supervised information is
limited, the structural view encoder achieve better performance as it can use
software’s rich relationship to help perform unsupervised learning, and enable
unlabeled samples obtain supervised information from the limited supervised
information. That both SCLMDseq and SCLMDstr are worse than SCLMD
demonstrates the importance of contrastive learning framework in extracting
consistent features from sequential and structural views. SCLMD1 is also worse
than SCLMD, which illustrates the proposed hybrid positive selection strategy
can effectively use supervised information in contrastive learning framework.

5.5 Parameter Sensitivity

In this section, we investigate the sensitivity of two parameters, i.e., the number
threshold of positive pairs k and the balance coefficient of views λ.

The results with different k is shown in Fig. 2. On both datasets, with the
increase of k, the performance goes up first and then declines for nearly all
training ratios. The optimum points of both datasets are located around 16 to
32. The Balance coefficient of views λ can control the importance of two views.
The results with different λ is shown in Fig. 3. It is shown that when the training
ratio is large, the model with a small value of λ has better performance. Because
at this time, the sequential view loss is more important, and the sequential view
encoder can benefit from more label information. When the training ratio is
small, a larger value of λ is more favorable. Because at this time, the structural
view loss is more important, and the structural view encoder can take advantage
of the relationship between samples to achieve better performance with sparse
labels.

Fig. 2. The comparisons of SCLMD with different threshold of positive pairs k. (ACMD
on left and ACSAC on right)

Malware Detection via Contrastive Learning on API Call Sequences 505

Fig. 3. The comparisons of SCLMD with different Balance coefficient of views λ.
(ACMD on left and ACSAC on right)

6 Conclusion

We propose SCLMD which is a semi-supervised contrastive learning malware
detection method based on API call sequences. SCLMD uses two view encoders
to capture the structural and sequential features of software’s API calling behav-
ior. The two views are mutually supervised to learn the consistent representa-
tions of software by means of cross-view contrastive learning. Hybrid positive
selection strategy is designed to introduce supervised information in contrastive
learning. Extensive experiments on two real-world datasets verify the effective-
ness of SCLMD, especially when the supervised information is limited.

Acknowledgments. This work is supported by National Natural Science Foundation
of China (No. 62002219, 62172278), Shanghai Sailing Program (No. 19YF1424700),
Startup Fund for Youngman Research at SJTU (SFYR at SJTU).

Appendix

A Implementation Details

For the proposed SCLMD, we use Glorot initialization and Adam optimizer.
Under the condition of training ratio 70%, We manually adjust and set the
learning rate to 0.01, the temperature parameter τ is set to 0.5. The number of
attention heads H is set to 3. The number k of positive pairs for each sample
is set to 32. The balance coefficient λ is set as 0.5. The maximum length of the
API call sequence is set to 6000.

For all methods, we set the input dimension as 128, hidden dimension as 60
and representation dimension as 64. The source code of SCLMD are publicly
available on Github3.

3 https://github.com/Noctilux-M/SCLMD.

https://github.com/Noctilux-M/SCLMD

506 M. Gao et al.

References

1. Ahmadi, M., Sami, A., Rahimi, H., Yadegari, B.: Malware detection by behavioural
sequential patterns. Comput. Fraud Secur. 2013(8), 11–19 (2013)

2. Aslan, Ö.A., Samet, R.: A comprehensive review on malware detection approaches.
IEEE Access 8, 6249–6271 (2020)

3. Chai, Y., Qiu, J., Su, S., et al.: LGMal: A joint framework based on local and global
features for malware detection. In: 2020 International Wireless Communications
and Mobile Computing (IWCMC), pp. 463–468. IEEE (2020)

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

5. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

6. Dong, Y., Ziniu, H., Wang, K., Sun, Y., Tang, J.: Heterogeneous network repre-
sentation learning. In: IJCAI, vol. 20, pp. 4861–4867 (2020)

7. Gao, H., Cheng, S., Zhang, W.: GDroid: android malware detection and classifica-
tion with graph convolutional network. Comput. Secur. 106, 102264 (2021)

8. Gavriluţ, D., Cimpoeşu, M., Anton, D., Ciortuz, D.: Malware detection using
machine learning. In: 2009 International Multiconference on Computer Science
and Information Technology, pp. 735–741. IEEE (2009)

9. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR
(2020)

10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Hosseini, A., Chen, T., Wu, W., Sun, Y., Sarrafzadeh, M.: Heteromed: hetero-
geneous information network for medical diagnosis. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pp.
763–772 (2018)

13. Hu, G., Venugopal, D.: A malware signature extraction and detection method
applied to mobile networks. In: 2007 IEEE International Performance, Computing,
and Communications Conference, pp. 19–26. IEEE (2007)

14. Ziniu, H., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In:
Proceedings of The Web Conference, vol. 2020, pp. 2704–2710 (2020)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

16. Kwon, I., Im, E.G.: Extracting the representative API call patterns of malware
families using recurrent neural network. In: Proceedings of the International Con-
ference on Research in Adaptive and Convergent Systems, pp. 202–207 (2017)

17. Lansheng, H., Kunlun, G.: Behavior detection of malware based on combination of
API function and its parameters. Appl. Res. Comput. 30(11), 3407–3410 (2011)

18. Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117
(1988)

19. Liu, X., et al.: Generative or contrastive. IEEE Trans. Knowl. Data Eng. Self-
supervised learn. (2021)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1609.02907

Malware Detection via Contrastive Learning on API Call Sequences 507

20. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringh-
ini, G.: Mamadroid: detecting android malware by building Markov chains of
behavioral models. arXiv preprint arXiv:1612.04433 (2016)

21. Murad, K., Shirazi, S.N.–H., Zikria, Y.B., Ikram, N.: Evading virus detection using
code obfuscation. In: Kim, T., Lee, Y., Kang, B.-H., Śl ↪ezak, D. (eds.) FGIT 2010.
LNCS, vol. 6485, pp. 394–401. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17569-5 39

22. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE
Secur. Priv. 9(5), 41–47 (2011)

23. Park, C., Kim, D., Han, J., Hwanjo, Yu.: Unsupervised attributed multiplex net-
work embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 5371–5378 (2020)

24. Peng, Z., Huang, W., Luo, M., Qinghua Zheng, Yu., Rong, T.X., Huang, J.: Graph
representation learning via graphical mutual information maximization. In: Pro-
ceedings of The Web Conference, vol. 2020, pp. 259–270 (2020)

25. Qiu, J., et al.: Gcc: graph contrastive coding for graph neural network pre-training.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1150–1160 (2020)

26. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools.
ACM Comput. Surv. (CSUR) 46(1), 1–32 (2013)

27. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

28. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous infor-
mation network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2016)

29. Torres, J.F., Hadjout, D., Sebaa, A., Mart́ınez-Álvarez, F., Troncoso, A.: Deep
learning for time series forecasting: a survey. Big Data 9(1), 3–21 (2021)

30. Veličković, P., GCucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

31. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. ICLR (Poster) 2(3), 4 (2019)

32. Wang, S., Philip, S.Y.: Heterogeneous graph matching networks: application to
unknown malware detection. In: 2019 IEEE International Conference on Big Data
(Big Data), pp. 5401–5408. IEEE (2019)

33. Wang, X., Liu, N., Han, H., Shi, C.: Self-supervised heterogeneous graph neural
network with co-contrastive learning. In: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 1726–1736 (2021)

34. Yazi, A.F., Çatak, F.Ö., Gül, E.: Classification of methamorphic malware with deep
learning (LSTM). In: 2019 27th Signal Processing and Communications Applica-
tions Conference (SIU), pp. 1–4. IEEE (2019)

35. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

http://arxiv.org/abs/1612.04433
https://doi.org/10.1007/978-3-642-17569-5_39
https://doi.org/10.1007/978-3-642-17569-5_39
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1710.10903

Semi-supervised Context Discovery
for Peer-Based Anomaly Detection

in Multi-layer Networks

Bo Dong, Yuhang Wu(B), Micheal Yeh, Yusan Lin, Yuzhong Chen, Hao Yang,
Fei Wang, Wanxin Bai, Krupa Brahmkstri, Zhang Yimin, Chinna Kummitha,

and Verma Abhisar

Visa, 900 Metro Center Blvd, Foster City, CA 94404, USA
{bdong,yuhawu,miyeh,yusalin,yuzchen,haoyang,feiwang,wabai,

krbrahmk,yimzhang,chinnaiiitb,abverma}@visa.com

Abstract. User-related cyber security attacks could cause tremendous
losses to any organization. Detecting such threat can be formulated as
anomaly detection problem in multilayer networks where each layer of
the multilayer networks contain different contextual information regard-
ing the users. While there have been many works proposed for peer-based
anomaly detection, there has been little endeavor in discover the appro-
priate context (peers) for anomaly detection in multilayer networks. In
this paper, we propose a context discovery method, which integrates
the relations provided by each individual network layer and detects the
anomalous nodes in networks based on the optimized peers of nodes with
(or without) limited feedback from cybersecurity experts. The proposed
system addresses the frequently encountered challenges when conduct-
ing anomaly detection, i.e., feedback sparsity, and the newly emerged
challenge associated with multilayer networks, i.e., finding peers of each
node based on conflicting information provided by individual layers. The
proposed system is capable of capturing the anomalies in multilayer net-
works and outperforms the widely used peer-based anomaly detection
algorithms on both synthetic and real-world sensor network and cyber-
security datasets.

Keywords: Anomaly detection · Multi-layer network · Cybersecurity

1 Introduction

The COVID-19 pandemic has changed the businesses’ operating model unprece-
dentedly. Many organizations allow employees to work from home, remote access
to on-premises servers. Unfortunately, cyber-crime has thrived amid the chaos
[6]. Such changes create massive cyber security challenges, yet organizations

Bo Dong—This work was conducted when Bo was an internship student in Visa
Research.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 508–524, 2022.
https://doi.org/10.1007/978-3-031-15777-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_28&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_28

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 509

strive for finding solutions to prevent network incidents. When a malicious attack
taken place, a hacker may first take over an account of a benign user, login the
account and start searching for any off-guarded devices. The hacker will take
the devices offline, injecting malicious software, and demand payment to restore
their functionality. Detecting cyber attacks in the network from both user and
device perspective can prevent organization from tremendous losses.

To combat diverse attack patterns in account takeover, it is critical to deploy
a model to detect anomalies in user’s and device’s behavior. A good and flexible
profile describes the “normal” pattern of such entities is crucial for this type of
approach. However, due to the unpredictable nature of humans and the diverse
type of devices, an one size fits all model to describe the normal behavior of
user/device may not work. The anomaly detection system should understand the
context of an user based on its interaction with different resources in their daily
jobs, and model the device’s normality based on its location and communication
patterns.

One simple but efficient method to identify the right context of a given
entity is to determine its peers, or peer-groups [22]. By comparing an entity’s
behavior with its peers (e.g., nearest neighbors), the detection system can easily
identify anomaly entity behavior since it is “stands out of the crowd”. Com-
pared to the methods only considering entity’s own history, because peer-based
anomaly detection factorized out the common behavior of entities inside a peer-
group, it can significantly reduce false alarms that caused by systematic change
(e.g., change caused by outside environment) and expose more idiosyncratic
risk caused by each entity. The success of the peer-group based method highly
depends on the accuracy of the context detection, in another word, how to select
the right peers for a specific anomaly detection problem. We propose a method
that is able to discover a suitable context to describe user’s/device’s normal
behavior in a multi-layer network so that the peer-group algorithm yields better
accuracy in the complex network scenario. To take into account the interaction
between users/devices, we model the account take over detection problem as
node anomaly detection in the multi-layer network. On the user side, a layer
in the network represents a bipartite graph - one type of a nodes can be users,
another type of nodes correspond to a specific network resource, for instance,
websites, cloud applications, server, etc. On the device side, a layer correspond
to a property of interaction between devices, it can be physical distance between
devices, but can also be the connectivity strength between two devices.

While anomaly detection has been extensively studied in many domains
by leveraging the connectivity information between entities or nodes in a net-
work [4], these approaches have mainly focused on the topological perspective of
networks, and most of the approaches have been assuming the input networks
to consist of only a single layer [1,5,10,21]. On top of that there has been lit-
tle effort done in graph-based contextual anomaly detection even if networks
are suitable for discovering contextual anomalies [13]. However, given a node,
determining meaningful peers from multiple layers is not trivial. Compared with
deriving peers from a single-layer graph, where one can directly apply kNN or
community detection algorithms, obtaining a consensus of the peer informa-

510 B. Dong et al.

tion generated from the multiple layers is not straightforward. Secondly, in most
real-world anomaly detection applications, the availability of high quality human
labels are often sparse. Formulating the learning problem as a fully-supervised
problem is unrealistic. To address the above issues, we design a multi-layer-
graph-based contextual anomaly detection system that leverages the peer-group
analysis to detect anomalies in both unsupervised and semi-supervised fashion.

Fig. 1. Toy example to show the peer-groups in a multi-layer network setting. Upper
left and middle panels illustrate nodes behavior in cyber and physical space, which
respectively lead to the creation of network layers 1 (G1) and 2 (G2). The upper right
panel shows the predefined activity scores as the node attributes. Lower panels show
the topology of G1 and G2 and how anomalies are detected via peer-groups within each
layer. Nodes are color-coded: grey denotes unlabeled nodes; green denotes predicted
negatives (normal); and purple denotes predicted positives (abnormal). (Color Figure
Online)

Let us start by walking through the toy example as show in Fig. 1 first.
The network consists of 6 nodes, each denotes an user able to access an online
server and communicate with another user physically onsite via a mobile radio
within limited range. There are two distance measures: nodes visit similar sets
of servers are regarded as close in terms “cyber distance”, while nodes able to
talk to each other within the radio communication radius are close in physical
distance. Then for the same set of nodes, different distance measures render
different dimensions of proximity. In this work, we formulate these dimensions
by different network layers. In network layer 1 (G1), a pair of nodes visited the
same set of servers are connected due to their proximity in cyber distance, while
in layer 2 (G2), a pair of nodes able to establish a radio connection are linked
due to the proximity in physical space. Obviously, each layer owns different
connection topology, although they share the same set of nodes. This leads to a
different 1st-hop peers at a different layer for the same node, e.g., node 1’s peers
are nodes 2 and 3 in layer 1 but are nodes 2, 3, 4, and 6 in layer 2.

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 511

Given the two layers and their graph topology with predefined node attributes
(such as the activity scores estimated via domain knowledge), one can compute
each node’s anomaly score based on how much its attribute deviates from its
peers. For node 1, even though it has a high attribute value of 1.0, since it has
high attribute peers (nodes 2 and 3), it is regarded as normal within G1. But in
G2, it is far away from the peer-group attribute average (nodes 2, 3, 4 and 6)
and thus regarded as abnormal.

To resolve the conflict and exploit the information from both layers, the pro-
posed approach merges G1 and G2 by (i) encouraging the clustering of nodes,
(ii) boosting the alignment between node attributes and topology, and formu-
late a new merged graph Gmerge with a weighted adjacency matrix, as shown
in Fig. 2. In this way, each node in Gmerge obtains a new set of peers carry-
ing aggregated contextual information across the layers, and correspondingly,
increase the contrast between anomaly nodes and its peers.

Besides the unsupervised approach, consider the scenario where feedback
from investigators are accessible. We then leverage the feedback labels to conduct
semi-supervised learning. As shown in the bottom-left panel in Fig. 2, domain
knowledge based expert feedback to a single node (node 4) is presented, so that
the system can take a human label into account when optimizing its parameters
(the system is learned to gave more weights to the Layer 1 since the system
tends treat node 5 as node 4’s peer instead of node 1’s or node 3’s), which leads
to the final results aligning better with the ground truths than any single layer
based predictions.

To the best of the authors’ knowledge, this is the first anomaly detection
framework that explores the optimal peer-group discovery problem in a multi-
layer network setting. The design of our system can be applicable to different
security-related applications, including intrusion detection in service networks,
malfunction detection sensor networks, etc. We demonstrate the effectiveness of
our system with both synthetic and real-world datasets. Through evaluations, we
show that our system outperforms comparing methods when detecting anomalies
in both unsupervised and semi-supervised settings.

2 Related Work

In this section, we present a summary of the literature related to this work,
including contextual anomaly detection, peer analysis, graph-based anomaly
detection and multilayer network analysis.

Contextual Anomaly and Peer Analysis. Contextual anomalies are deter-
mined when data points are compared against meta-information associated with
these data points [14]. When detecting anomalies based on the specific context
(e.g., time, location, gender, etc.), because the relation between similar data
points is considered together, higher detection accuracy can be achieved with
a relatively low false alarm rate [8]. Among the approaches of the contextual
anomaly, peer-group analysis is one of the important approaches. It was origi-
nally proposed by Bolton et al. [2] for monitoring the behavior of accounts in

512 B. Dong et al.

Fig. 2. Toy example of weighted multi-layer network merge and anomaly detection.
The left panels show the original network layers G1 and G2, the node attributes, and
the human labels, where the topology of G1 and G2 are predefined or constructed via
certain distance measures. The panels on the right show the network merge process
with trainable weights w̄1 and w̄2 (w1 and w2 are the normalized correspondences)
and the scenarios of both the unsupervised and semi-supervised settings in detecting
anomalies in our system. Nodes are color-coded: grey denotes unlabeled nodes; green
denotes predicted negatives, and purple denotes predicted positives. A human labeled
node is marked by dashed circles. Black edges show the unweighted connections within
each layer, while colored edges indicate their different weights in the merged network.
(Color Figure Online)

temporal sequences for credit card fraud detection. The method was first used
to choose accounts whose profile are the most similar to a target account to
construct the context for the target point, namely, the “peer-groups”, then, the
behavior of the peer-group is summarized at each subsequent time point. The
anomaly of a target account is determined by comparing its behavior with the
summary of the peer accounts (context). Until now, the peer-group analysis
has been used in multiple contextual anomaly detection applications, such as
finance [16], insider threat detection [11], sensor networks [14], etc. However,
there is limited works on how to select the peer-group accordingly.

Graph-Based Anomaly Detection. Graphs naturally represent the inter-
dependencies by edges between related objects, which provide rich contextual
information of each data point [1]. Multiple static and dynamic graph-based
anomaly detection approaches have been proposed on attributed/plain graphs.
In the most recent advancement of this topic, Liu et al. [19] separated graph

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 513

features of the attributed networks into context and content features. The con-
text feature is used to define the community of a node, and the content fea-
ture is used to compare with the node’s community Ding et al. [9] provided
an autoencoder-based solution, which used graph convolutional network (GCN)
to encode the interactions between different information modalities, using the
reconstruction errors of nodes from both structural and attribute perspectives
to identify anomalies.

Multilayer Graph in Network Analysis. Network data encapsulates mul-
tiple aspects of identity interactions, e.g., social networks contain interactions
among both friends and coworkers [7], proteins in human body interact differ-
ently in different human organs and tissues [25]. The different types of relations
can be represented by multiple layers in graphs. How to integrate the informa-
tion across layers, thus became an emerging research topic. Recent literature
mainly focuses on learning the embedding of the multilayer networks [15], while
anomaly detection in the multilayer network has yet been thoroughly studied. It
is still not clear how one can integrate the multilayered information to identify
the anomaly across different layers. Further discussion regarding the contextual
anomaly detection in multilayer anomaly detection remains an open problem.

To the best of our knowledge, our work is the first to address the contextual
anomaly detection problem in multilayer graphs, and the first attempt to address
the context discovery problem in this direction.

3 Method

3.1 Peer-Based Anomaly Detection

Given a set of nodes V = {v1, ...vN} in a graph G, their scalar attributes A =
{a1, ...aN}, as well as the distance between each pair of nodes E [i, j]. The peers
of a node vi ∈ V are the set of np nodes V ′

i ⊂ V close to vi in a given single
layer graph G = (V, E). Usually, peers in the group V ′

i are selected based on the
K-nearest neighbors of V [2,11,14,16] determined by the distances. Compared
to the anomaly detection methods only considering v’s own feature a, because
peer-based anomaly detection factorized out the common behavior of entities
inside a peer-group V ′

i, it can significantly reduce false alarms that caused by
systematic change (e.g., change caused by outside environment) and expose more
idiosyncratic risk caused by each entity.

A peer-group anomaly score of node i can be defined as a weighted Z-score:

si =
|ai − μi|

σi
(1)

where the weighted mean of peer-group V ′
i, denoted as μi, is used to represent the

common behaviors of entities inside of the peer-group. The standard deviation
of peer-groups σi, denoted as σi are computed by:

514 B. Dong et al.

μi =

∑
vj∈V′

i
E [i, j]aj

∑
vj∈V′

i
E [i, j]

(2)

σi =

√
√
√
√

∑
vj∈V′

i
E [i, j](aj − μi)2

∑
vj∈V′

i
E [i, j]

(3)

Node vi will have a high anomaly score when its attribute differs greatly when
comparing to its peers.

3.2 Anomaly Detection with Multi-layer Graph

The peer-based anomaly provides a straightforward way to model the context
of entity without knowing any prior knowledge about the historical pattern of
the data, and it has been widely deployed in finance and security industry.
However, when the graph contains multiple layers, each layer may have a separate
definition of E [i, j]. For example, anyone can interact with friends, colleagues,
family members in the same week, which compose three separate layers in a social
network, now let’s consider the problem of identifying the peers of this person
based on the three layers. We suspect no one can give out a good definition
without looking into the specific anomaly detection problem the user trying to
solve. A good definition of a peer-group is really depends on the context of the
problem.

The objective of the proposed method is to learn the context by generate
a merged graph from different graph layers so that the new graph will provide
optimal nearest neighbors (peers) for a specific peer-based anomaly detection
problem. We begin by defining the specific type of graph in interest, a multilayer
graph.

Definition 1. A multilayer graph G = (V,E,A) consists of a set of attributed
nodes V = {v1, ...vN} with attribute A = {a1, ...aN}, and multiple set of edges
E = {E1, ..., EM} where each Ei ∈ E stores the edge information for its corre-
sponding layer. We use Gm = (V, Em) to denote the m-th layer graph and ai to
denote the attribute (scalar) associated with vi.

Each layer of a multilayer graph typically models one type of relationship
among the nodes. We assume that there exists a merged graph that reveals each
nodes’ peers.

Definition 2. A merged graph Gmerge = (V, Emerge) of a multilayer graph G
with m layers is a single layer graph that 1) is generated by merging the lay-
ers in G, i.e., Gmerge = merge(G1, ..., GM) and 2) contains peer relationship
information.

We describe the proposed multilayer-graph-based anomaly detection system
in a feedforward fashion. As depicted in Fig. 3, the proposed system has three

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 515

major components: layer merger, anomaly detection, and optimization. The layer
merger module combines the multilayer graph into a single layer graph based
on the learned weights w̄m’s using weighted-sum merge function as described in
Definition 2. The anomaly detection module computes the anomaly score of each
node using its attribute and peer information given by the merged graph (see
Eq. 1). The optimization module is responsible for refining the weights used in
the merge function. We provide a training method that could be run either fully
unsupervised or semi-supervised. When the training method is run in unsuper-
vised mode, the weights are learned by optimizing both the Embedding Cluster-
ing EC loss (see Eq. 4) and alignment loss (see Eq. 7). When the training method
is allowed to ask for human feedback, the weights are refined with the ranking
loss (see Eq. 8) using the limited labels provided by the user.

Fig. 3. Multilayer-network-based anomaly detection system, w1, w2, ...wM are the
learnable parameters.

The specific merge function we studied in this work is the weighted-sum
merge function. The weighted-sum merge function merges layers by computing
the weighted sum of the adjacency matrix of each layer (i.e., Emerge = w1E1 +
... + wMEM) where wm = ew̄m

∑
n ew̄n and w̄m of each Em are learnable parameters.

3.3 Weight Optimization

To learn the weights of layers with limited node labels, it is important to view the
problem from a top-down perspective instead of look into individual node sepa-
rately. Here we cast the problem as a consensus clustering problem. The objective
of the consensus clustering problem is to cluster nodes of a given graph Gmerge

into K peer-groups. Since Emerge contains the integrated relation between nodes,
we extract row i of Emerge, denoted as xi, as the relational embedding of node i.
The cluster operation can be conducted on the relational embedding of all nodes

516 B. Dong et al.

in Gmerge. Specifically, we optimize the EC loss function [23,24]. The intuition
of the loss function is to reduce the intra-cluster distances and keep the nodes
inside of the original peer-groups.

LEC =
∑

i

∑

k

piklog
pik
qik

(4)

where the qik and pik are the soft and hard cluster assignments. The soft clus-
ter assignment is defined by the similarity between a given node i’s relational
embedding (i.e., xi) and cluster centroid k (i.e., ck) measured with Student’s
t-distribution [23] as shown in Eq. 5. The soft cluster assignment indicates the
“degree” of a node belong to each cluster:

qik =
∑

k′ 1 + ‖xi − ck′‖2

1 + ‖xi − ck‖2
(5)

Note that we set the degree of freedom to 1 when computing the similarity with
Student’s t-distribution. Next, the hard cluster assignment is computed by Eq. 6
as shown below. The hard cluster assignment allocates each node to one cluster:

pik =
q2
ik/

∑
i′ qi′k∑

k′ q2
ik′/

∑
i′ qi′k′

(6)

The initial cluster centroid is computed using k-means clustering algorithm.
When computing both the qik and the initial centroid, each node vi ∈ V is
represented as a vector indicating vi’s connectivity with other nodes in V . In
other words, vi is represented by the i-th row of Emerge, and the distance between
vi and vj is computed by ‖Emerge[i, :] − Emerge[j, :]‖2.

Another important loss function we optimized in order to learn a suitable
merge function is the alignment loss which attempts to align the node attribute
with the clustering of nodes. It is important to put nodes that have similar
attribute values into the same cluster to reduce potential false alarms. The align-
ment loss of a pair of nodes (e.g., vi and vj) is computed by Eq. 7.

Lalign =
∑

i

∑

j

similarity(ai, aj)log
∑

k

qikqjk (7)

where similarity() is a function that outputs the similarity between vi’s
attribute ai and vj ’s attribute aj . Any function that returns non-negative simi-
larity can be used. In our implementation, we simply compute the similarity by
converting the difference to similarity, i.e., aΔmax − abs(ai − aj) where aΔmax is
the maximum possible difference between any pairs of nodes’ attribute. Both qil
and qjl are computed with Eq. 5.

In the case where a small set of labeled anomalous nodes is given, which is
the scenario where the bottom row of Fig. 2 is considered, we use the ranking
loss as shown in Eq. 8 to use such information:

Lrank = max(V0 − V1, 0) (8)

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 517

where vector V0 = {si|i ∈ l−} is the mini-batch samples from the labeled normal
nodes while vector V1 = {si|i ∈ l+} is the mini-batch samples from the labeled
anomalous nodes, both containing anomaly scores defined in Eq. 5. This loss
function would enforce the few anomaly nodes rank higher than all the normal
nodes so that the information in the few labeled data can be largely utilized.

In summary, the overall loss for our system is shown in Eq. 9.

L = αLEC + βLalign + γLrank (9)

where α, β, and γ are hyper-parameters to trade-off the contribution of different
terms.

4 Experiment

In this section, we first discuss the datasets and setup of the experiments, then
analyze the results accordingly. We leverage a synthetic dataset, a real-world
sensor network dataset, and a real-world cybersecurity dataset to conduct the
evaluation. The statistics of each dataset is summarized in Table 1. The dataset
we used have the following properties:

– R1. Ability to be formatted as a graph: The pair-wise distances between
different nodes are measurable, and the edges are undirected and weighted.

– R2. Multiple layers in a graph: There are multiple ways to split a single
graph into multiple layers, such as by the types of the edges, by the times-
tamps of the edges, as introduced in [17].

Table 1. Dataset summary

Name #layers #nodes

Synthetic 6 500

Sensor network 2 54

Cybersecurity 3 1,926

– R3. Anomalies can be derived from the node attribute: The data con-
tains meaningful node attributes, e.g., access frequency of malicious accounts
inside of organizations, records of malfunctioning sensors inside of sensor net-
works, etc.

– R4. (Optional) Availability of anomaly feedback: For the semi-
supervised setting, the dataset should also contain feedback of the anomalies,
i.e., ground truths of the anomalies.

518 B. Dong et al.

4.1 Experimental Settings

The settings of our system are as follows: The weight for the merging module is
initialized with random number. We use the initial merging weight to obtain the
merged graph Gmerge. With the initial merged graph Gmerge, the initial clustering
centroids are computed with k-means clustering algorithm. The weight W̄ is
trained for niter iterations. In the case where the algorithm is allowed to ask
for user’s feedback, the algorithm would display the top h and bottom h nodes
(based on each node’s current anomaly score estimated using current Gmerge) to
the user and ask the user to annotate the 2h provided nodes. Note, the value
h is a hyper-parameter which should be set based on how much label the user
is willing to label. The algorithm does not have to ask for the user’s feedback
every iteration; instead, the algorithm could ask for the user’s feedback every few
iteration. Once again, the number of iteration between user’s feedback should be
set based on how much effort is expected from the user, in our experiment we
set h to be 10% of total nodes. After obtained the feedbacks from users, W̄ is
updated based on the overall loss mentioned in Eq. 9, and Gmerge is regenerated
with the updated W̄ . After multiple iterations, the learned W̄ is returned to the
user as the selected context for this anomaly detection problem. We implemented
the system in PyTorch. We trained the model with a batch size of 128, and a
total of 100 epochs. The algorithm takes less than an hour to estimate the
weights in each of the datasets. Learning rate of the system is 0.1. We ran all
the experiments on NVIDIA Tesla P100 GPUs. All of the performance metrics
are in area under curve (AUC).

4.2 Performance on Synthetic Data and Ablation Study

For the synthetic dataset, we simulate a six-layer graph that is constructed based
on the scenario of 500 users accessing resources within an organization. The users
are nodes, and if two users access the same resource, there exists an undirected
weighted edge between them (R1 and R2). The weight of the edge is sampled
from the range [0, 1].

We generate 6 layers for our multilayer graph with 3 good layers being rele-
vant to the anomaly detection task, where the anomaly can be identified by com-
paring its attribute with its peers attribute, while the other 3 bad layers contain
random attributes. The 500 users form 5 clusters when consider only the 3 rele-
vant layers. This provides us with the expectation that the final learned weights
for the good layers should be higher than the bad layers. For each user node, we
determine his/her peers by finding the 50 closest user nodes to him/her. For each
cluster of the 5 clusters, we randomly assign a mean and standard deviation to
form a Gaussian distribution, which further assigns the attribute for the users
in that cluster (R3). In order to inject anomaly users, we vary a subset (5%) of
users to have his/her attribute to be 3 standard deviation away based on the
Gaussian distribution of his/her cluster. We also generate feedback labels for the
nodes (R4), where based on injected anomalies.

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 519

Table 2. AUC-ROC
of single-layer base-
line performance on
synthetic data.

Graph AUC

Ground truth 1.0000

Average 0.4370

Layer 0 0.4500

Layer 1 0.5438

Layer 2 0.5063

Layer 3 0.4527

Layer 4 0.4969

Layer 5 0.4917

Table 3. AUC-ROC of the proposed system on synthetic
data with hyperparameter analysis.

β
0.0 0.1 1.0 10.0

α

0.0 - 0.9992 0.9972 0.9983
0.1 0.7817 0.9984 0.9985 0.9978
1.0 0.9990 0.8908 0.9981 0.9997
10.0 0.7964 0.7972 0.8538 0.9979
(a) Unsupervised, γ = 0

β
0.0 0.1 1.0 10.0

α

0.0 - 0.9991 0.9981 0.9988
0.1 0.9992 0.9993 0.9989 0.9983
1.0 0.8485 0.9043 0.9993 0.9988
10.0 0.7953 0.9976 0.9992 0.9655
(b) Supervised: γ = 0.1

β
0.0 0.1 1.0 10.0

α

0.0 - 0.9990 0.9981 0.9987
0.1 0.7917 0.9989 0.9991 0.9985
1.0 0.9976 0.9362 0.9979 0.9991
10.0 0.9984 0.8066 0.8648 0.9992
(c) Supervised: γ = 1

β
0.0 0.1 1.0 10.0

α

0.0 - 0.9205 0.9982 0.9992
0.1 0.5216 0.5589 0.9982 0.9995
1.0 0.5012 0.8497 0.9995 0.9987
10.0 0.9012 0.9987 0.8339 0.9992
(d) Supervised: γ = 10

For the experiments on the synthetic dataset, we conducted sensitivity anal-
ysis in both unsupervised and supervised settings. We compared our system’s
performances with the traditional peer-grouping baseline which used a single
graph layer for peer selection [2,11,14,16] in Table 2. The on-duty layer can
be any of the individual graph layer or the averaged layer of all the individual
layers. For comparison, we ran three sets of experiments: 1) baseline methods,
2) unsupervised while changing α and β, and 3) supervised while changing α,
β, and γ. The performance of the baseline and our system are shown as AUC
in Table 2 and Table 3, respectively. As can be seen in Table 3, our system, in
general, outperforms the baseline in both unsupervised and supervised settings.

4.3 Performance on Sensor Network Data

We choose the widely-used Intel Lab data as one of the real-world datasets [20].
The Intel Lab data stems from the 54 sensors’ activity logs in the Intel Berkeley
Research lab, from February 28th to April 5th, 2004. During this time many
of the sensors where malfunctioned and finally went offline. Our objective is to
identify individual sensor’s failure due to its own malfunctioning instead of the
environment reasons.

The dataset includes the coordinates of each sensor inside of the lab, their
sensor readings of temperature, humidity, light and voltage recorded every 31 s
and the probability of communication success between every two sensors. We
observe large amount of sensors failed after March 25th, which makes the result
less meaningful. So we exploited the data before March 18th for training and the
data between March 18th and March 25th for testing.

Let each of the sensors be a node in the graph, where this graph contains
two layers that describe the relations between the nodes. One weighted by the
euclidean distance between them (based on the coordinate information), the
other weighted by the probability of communication success between them. The
proposed system will learn to weight these two layers to generate the optimal
context Gmerge for anomaly detection. For the initial anomaly scores, we use
the voltage readings from each sensor. We take the readings of temperature and

520 B. Dong et al.

humidity as the ground-truth for anomaly: for an individual sensor, if any time
stamps without any recorded data (voltage assigned to 0), has a temperature
reading above 80 Celsius or humidity reading below 10% is considered mal-
function of the sensor (ground-truth anomaly). Since we observe a significant
difference between each feature’s distribution between day and night, we fur-
ther split the dataset into a day scenario and a night scenario, where the cut-off
time is 7:00 pm/am in each day. Because our objective is to predict individual
malfunction sensor, we only marked out anomaly sensors as the ground-truth if
majority of sensors operate normally in any timestamp.

For the experiments on the Intel lab dataset, we predicted the voltage
anomaly analyses overtime for each individual sensors. We compared the perfor-
mance of our system with the following baselines in Table 4:

– peer-grouping on coordinate layer (PG-coord): As described in [2,11,
14,16], the anomalies are only determined by considering the peer-groups
generated in a single relation (the coordinate layer) in the graph.

– peer-grouping on communication layer (PG-comm): The anomalies
are only determined by considering the peer-groups generated in the commu-
nication layer in the graph.

– peer-grouping on both layers (PG-both): The anomalies are determined
by considering the peer-groups generated by the averaged adjacency matrix
of coordinate and communication layer in the graph.

The experimental results show that our method outperforms the traditional
peer-grouping method in both day and night settings, which indicates it has the
capability to find the right peer-groups for anomaly detection.

Fig. 4. Sensor voltage anomalies: global (suspicious environment problem), contextual
(individual problem), and our predictions overtime. In each plot, Y axis indicates the ID
of sensor, X axis represents the timestamps. Our objective is to identify the contextual
anomaly with the proposed method, the detected anomaly regions are highlighted.

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 521

Table 4. AUC-ROC of anomaly detection on sensor network.

PG-coord PG-comm PG-both Ours

Night 87.9 83.0 87.0 89.1

Day 89.7 82.7 86.6 90.0

Our proposed system aims to detect contextual anomalies (individual sensor
malfunction compared to its peer-group) instead of global anomalies (major-
ity sensor failures due to environment change). Hence we leverage peer-group
analysis to generate anomaly scores. To ensure our method truly detects the
contextual anomalies, we visualize the sensors’ voltage global and local anomaly
ground truth over time, along with our prediction results in Fig. 4. In the figures,
the x-axis are time, and the y-axis are sensor IDs. The lighter colors represent
higher anomaly scores. As can be seen in the subplots of global ground truths, the
lighter-colored vertical lines represent malfunction throughout all the sensors in
that particular time, meaning they are global malfunctions due to environmental
change. However, our model is designed to detect individual sensor’s anomaly.
As shown in the prediction plots, our predictions resemble the local anomalies
shown in local ground truths well.

4.4 Performance on Intrusion Detection Data

The cybersecurity dataset is collected from real-world system logs with the goal
of detecting potential intrusion threats in a large corporation. All personal iden-
tifiable data is encrypted to avoid any leaking of personal information1. The
dataset contains three graph layers: (i) wiki access layer, (ii) cloud applica-
tion access layer, (iii) user server access layer. The wiki system is a centralized
database containing domain knowledge about various company products. A bad
actor may visit a very large number of wiki pages, gather confidential informa-
tion, and ex-filtrate these packed information at a later time. The cloud appli-
cations record user activities when they log in remotely. The employee accounts
may get hacked resulting in excessively long time of a specific application usage,
or much more diverse application usage compared to his/her peer’s normal
behavior. The user server access data provides extra information to determine
the peer-groups of the user appearing in the wiki and cloud application dataset.
The dataset contains five threats that be classified as “need more investigation”
by the security analytics team. In the experiment, we first transform the three
bipartite graphs (user and the corresponding resource usage) into homogeneous
graph, and the weight of the graph indicates the number of common resources
(e.g., shared wiki pages visited) they used between two user nodes in a two
month aggregated basis. We used the total number of wiki pages visited in a
two month window as the attribute of each user node, and train the system to
1 Due to the proprietary nature, we are not revealing the actual statistics of the

dataset.

522 B. Dong et al.

learn the optimal weight of the three layers to create the context for anomaly
detection. Besides AUC-ROC, we also pay attention to the relative rank of the
anomaly in all the data-points (measured by NDCG and mAP) since it strongly
correlated with the workload of investigators. An ideal anomaly detection sys-
tem should pop the true alarms as high as possible so that reviewers no need
spend hours, even days, to go through hundreds of false alarms before a correct
hit. We compared the performance of our system with the following baselines in
Table 5:

– Local outlier factor (LOF): LOF [3] finds anomalous data points by mea-
suring the local deviation of a given data point with respect to its neighbours
based on A.

– Histogram-based outlier score (HBOS): HBOS [12] is an efficient and
unsupervised method to detect outliers by assuming feature independence
[12], the input of the HBOS is A too.

– Isolation forest (iForest): iForest [18] introduces a different method that
explicitly isolates anomalies using binary trees, it directly targets anomalies
without the process of normal instance profiling, the iForest can only take A
as the input.

– Single layer peer-grouping on wiki, Application, Server layer (PG-
Wiki, PG-App, PG-Server): We run the traditional peer-grouping algo-
rithm, the peers are retrieved based on E on the corresponding layers, and
the anomaly score is computed based on the peer-group method introduced
in [2,11,14,16].

From the results, we could see LOF performs the worst, which means the
local deviation on A is not strong enough to differentiate the anomaly users and
normal users. It is mainly because anomaly users may form its own clusters and
the anomaly score generated by LOF may not be able to identify these clusters as
anomaly clusters. HBOS and iForest perform competitively well, however, PG-
based algorithm can achieve even better results by considering context-related
information. For example, the wiki and application access data records users
daily routine behavior, users who share similar wiki or application access patterns
are more likely in the same team, so they may have similar frequency in terms
of visiting wiki pages. We observe if each layer is assigned with the same weight
(PG-Avg.) provide worst result than using any of the single layer pattern alone,
which is expected since the merged layer may not able to provide the good
context for anomaly detection. Because the proposed method merge the three
context in an adaptive manner based on Eq. 9, the proposed method performs
the best.

Semi-supervised Context Discovery for Peer-Based Anomaly Detection 523

Table 5. Intrusion detection performance the system is evaluated with AUC-ROC,
NGCG (Normalized Discounted Cumulative Gain), and mAP (mean Average Preci-
sion).

Method AUC-ROC NDCG mAP

LOF 97.1 29.3 4.7

HBOS 98.3 47.3 9.9

iForest 98.5 41.9 12.7

PG-Wiki 98.4 48.9 20.4

PG-App 98.5 47.5 18.5

PG-Server 98.6 39.2 12.0

PG-Avg. 97.7 45.2 15.0

Ours 98.9 61.3 28.9

5 Conclusion

In this work, we propose a multilayer-graph-based anomaly detection system
where the anomalies is defined by considering the context (peer-groups) gen-
erated by combining individual layers. The proposed system can be trained in
both unsupervised and semi-supervised fashion. We evaluate our system on both
synthetic and real-world datasets. Our system is shown to capture the contextual
anomalies in graphs, and outperform the compared methods.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data Min. Knowl. Disc. 29(3), 626–688 (2014). https://doi.org/10.1007/
s10618-014-0365-y

2. Bolton, R.J., Hand, D.J., et al.: Unsupervised profiling methods for fraud detection.
Credit Scoring Credit Control VII, 235–255 (2001)

3. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, 16–18 May 2000, Dallas, Texas, USA, pp. 93–104 (2000)

4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

5. Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in
evolutionary networks. J. Intell. Inf. Syst. 39(1), 59–85 (2012). https://doi.org/10.
1007/s10844-011-0183-2

6. Deloitte: Impact of COVID-19 in cybersecurity (2021)
7. Dickison, M.E., Magnani, M., Rossi, L.: Multilayer Social Networks. Cambridge

University Press, Cambridge (2016)
8. Dimopoulos, G., Barlet-Ros, P., Dovrolis, C., Leontiadis, I.: Detecting network

performance anomalies with contextual anomaly detection. In: 2017 IEEE Inter-
national Workshop on Measurement and Networking (M&N), pp. 1–6. IEEE (2017)

https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1007/s10844-011-0183-2
https://doi.org/10.1007/s10844-011-0183-2

524 B. Dong et al.

9. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed
networks. In: SDM, pp. 594–602 (2019)

10. Eberle, W., Holder, L.B.: Anomaly detection in data represented as graphs. Intell.
Data Anal. 11(6), 663–689 (2007)

11. Eldardiry, H., et al.: Multi-source fusion for anomaly detection: using across-
domain and across-time peer-group consistency checks. J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl. 5(2), 39–58 (2014)

12. Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): a fast unsuper-
vised anomaly detection algorithm. KI-2012: Poster Demo Track 9, 59–63 (2012)

13. Hayes, M.A., Capretz, M.A.M.: Contextual anomaly detection in big sensor data.
In: 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, 27 June–
2 July 2014, pp. 64–71. IEEE Computer Society (2014)

14. Hayes, M.A., Capretz, M.A.M.: Contextual anomaly detection framework for big
sensor data. J. Big Data 2(1), 1–22 (2015). https://doi.org/10.1186/s40537-014-
0011-y

15. Interdonato, R., Magnani, M., Perna, D., Tagarelli, A., Vega, D.: Multilayer net-
work simplification: approaches, models and methods. Comput. Sci. Rev. 36,
100246 (2020)

16. Kim, Y., Sohn, S.Y.: Stock fraud detection using peer group analysis. Expert Syst.
Appl. 39(10), 8986–8992 (2012)

17. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multilayer networks. J. Complex Networks 2(3), 203–271 (2014)

18. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM 2008), 15–19 December 2008,
Pisa, Italy, pp. 413–422. IEEE Computer Society (2008)

19. Liu, N., Huang, X., Hu, X.: Accelerated local anomaly detection via resolving
attributed networks. In: IJCAI, pp. 2337–2343 (2017)

20. Madden, S., et al.: Intel lab data. Web page, Intel (2004)
21. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Getoor, L., Sena-

tor, T.E., Domingos, P.M., Faloutsos, C. (eds.) Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, 24–27 August 2003, pp. 631–636. ACM (2003)

22. Thiprungsri, S., Vasarhelyi, M.A.: Cluster analysis for anomaly detection in
accounting data: an audit approach. Int. J. Digital Account. Res. 11 (2011)

23. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: International Conference on Machine Learning, pp. 478–487 (2016)

24. Zhang, H., Basu, S., Davidson, I.: Deep constrained clustering - algorithms and
advances. Arxiv Preprint 1901.10061 (2019)

25. Zitnik, M., Leskovec, J.: Predicting multicellular function through multi-layer tis-
sue networks. Bioinformatics 33(14), i190–i198 (2017)

https://doi.org/10.1186/s40537-014-0011-y
https://doi.org/10.1186/s40537-014-0011-y
https://arxiv.org/pdf/1901.10061

Peekaboo: Hide and Seek with Malware
Through Lightweight Multi-feature Based

Lenient Hybrid Approach

Mingchang Liu(B), Vinay Sachidananda, Hongyi Peng, Rajendra Patil,
Sivaanandh Muneeswaran, and Mohan Gurusamy

National University of Singapore, Singapore, Singapore
{dcslium,comvs,rspatil,gmohan}@nus.edu.sg, dcshongp@nus.edu,

e0503509@u.nus.edu

Abstract. In this paper, we propose – Peekaboo – a multiple feature-
based lenient hybrid analysis for malware detection and classification.
Our solution uses application programming interface (API) calls and
operational codes (opcodes) extracted dynamically and statically as
the behavioral features, and uses Recurrent Neural Network (RNN) to
model both static and dynamic malicious behaviors. Peekaboo carries
out dynamic analysis for a subset of samples, and static analysis for all
samples in a large corpus, leading to lenient hybrid analysis. Peekaboo
novelty lies in reducing the computational overhead of dynamic analy-
sis but also utilizes multiple features to improve the model performance,
making it lightweight and suitable for real-world deployment for malware
detection and classification at a large scale.

We have conducted multiple sets of experiments by training and evalu-
ating Peekaboo on a large dataset, our results show a 99.67% binary clas-
sification (benign vs. malicious) accuracy and 96.30% multi-class classi-
fication (classifies samples into malware classes) accuracy with a FPR as
low as 0.45%. In comparison with our baseline model, Peekaboo enables
us to increase the accuracy for binary classification by more than 1% and
5% in the multi-class setting. In addition, we tested Peekaboo on unseen
malware classes, and it improved the accuracy by almost 4% compared
to our baseline.

Keywords: Hybrid malware analysis · Malware detection · Malware
classification · Neural networks · Machine learning

1 Introduction

The number of new malware and its variants has accelerated in recent years. In
the first quarter of 2019, McAfee recorded more than 60 million new malware.
Malware writers use code obfuscation, encryption, and polymorphism to create
new malware versions from old ones [17]. These sorts of malware are a key source
of dangerous zero-day exploits, and they constitute a big cybersecurity problem.
Malware now causes the most economic impact of any cyber threat [19].
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 525–545, 2022.
https://doi.org/10.1007/978-3-031-15777-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_29&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_29

526 M. Liu et al.

The signature-based detection accuracy of the known malware is high with
very few false positives. The signature-based detection methods cannot detect
the new variants of the existing malware so the state-of-the-art has been focusing
on behavior-based detection through static and dynamic features to capture
unknown variants of existing malware [3]. However, they have limitations. For
instance, most of them use a single type of feature from malware samples and
ignore the rest of the useful information. Some of them execute dynamic analysis
for a large number of samples, which significantly increases the computational
overhead. In this work, we show our efforts to overcome these limitations.

1.1 Problem Statement and Research Challenges

Most of the modern behavior-based approaches rely on a single behavioral fea-
ture of the malware extracted from either static or dynamic analysis. As a single
feature cannot cover all aspects of the malware, it potentially leads to lower
accuracy and a higher false positive rate (FPR). Given the strengths and limi-
tations of both static and dynamic analysis, they are better used in conjunction
to achieve a good malware detection performance [33–36]. Therefore, hybrid
analysis is becoming increasingly popular.

In hybrid analysis, analyzing a large number of samples efficiently can be
challenging since, it requires each sample to undergo both static and dynamic
analysis [12,13,35,36]. Static analysis can be executed efficiently since it does
not require huge computational capacity. However, the total runtime of dynamic
analysis for a large number of samples may increase significantly. In this case,
the possible solutions are to 1) use powerful host machines and 2) intentionally
shorten the runtime [28]. However, the first solution may not be always possible
due to practical constraints whereas the second solution may cause premature
termination of the analysis before the malicious behaviors are captured.

Thus, we need a method that can not only utilize both static and dynamic
features to further improve the performance of malware detection and classifica-
tion but also reduce the computational overhead when running dynamic analysis
in real-world deployment. The deployment of hybrid analysis in real-world situ-
ations for large-scale malware detection leads to the following research questions
which we address in this paper:

– RQ-1: how to integrate the information obtained from different sources for
malware detection and classification.

– RQ-2: how to address the imbalanced feature extraction costs in hybrid anal-
ysis due to the inefficiency of dynamic analysis in practical scenarios without
risking earlier termination of the dynamic analysis.

– RQ-3: how to make hybrid analysis more efficient for a large corpus of samples
without needing to significantly increase the computational capacity.

Appendix A gives some background about the different types of malware
analysis, some terminologies we will be using throughout the paper, and the
machine learning (ML) methods we use in the work.

Peekaboo: Hide and Seek with Malware 527

1.2 Approach Overview

In this paper, we present Peekaboo, a novel behavior-based model that uses
hybrid analysis. It consists of two major components: data extraction and partial
feature integration. In data extraction, a subset of the samples is first selected at
random and executed in a virtual environment to collect API calls. Second, the
entire corpus of samples undergoes static analysis to collect the opcodes. Unlike
the traditional hybrid analysis [12,13,35,36], only a small subset of samples is
selected by Peekaboo to overcome the inefficiency of dynamic analysis when the
sample size is large. We propose a few-shot learning (FSL) method to mitigate
the issue of API call dataset being small. In partial feature integration, we train
two RNNs to transform the API calls and opcodes into numeric features and
apply a partial multi-view learning method to integrate them into a single feature
set, which is then used to train a final ML model. By harnessing a huge amount
of data from static analysis and a relatively small amount of data from dynamic
analysis, Peekaboo not only improves the performance of the model but also
makes it more efficient, practical, and lightweight.

Intuitively, Peekaboo can be thought of as having two models, one as the
primary model (e.g., the opcode model) and another as a secondary model (e.g.,
API call model). To the best of our knowledge, this is the first research attempt
that proposes to utilize such an idea to address the real-world challenge that
dynamic analysis is not suitable for analyzing a large corpus of samples in mal-
ware detection systems under a multi-feature and lenient hybrid analysis setting.

1.3 Results Overview

We have conducted multiple sets of performance evaluation and benchmarking
experiments. We evaluated Peekaboo on a large dataset consisting of 34,000 sam-
ples including a public dataset, and 12,000 recent malicious samples collected
from VirusTotal1. Peekaboo can achieve an accuracy of 99.67% with a FPR of
0.45% for detecting if a given software is malicious. In a multi-class classifica-
tion setting where Peekaboo attempts to identify the correct malware class for
a given software, it can achieve an accuracy of 96.30% with a FPR as low as
0.45%. Peekaboo helps improve the performance of the model trained on a single
feature by at least 1% and 5% in accuracy in both binary and multi-class classifi-
cation respectively compared to our baseline. The FPR can also be significantly
reduced. In addition, we evaluated Peekaboo on a set of samples from previously
unseen malware classes, and it can successfully detect all of them.

1.4 Research Contributions

The goal of this research is to develop an approach to make use of multiple
features from lenient hybrid analysis for malware detection and classification
more efficient and practical. We make the following contributions in this work:

1 VirutTotal: https://www.virustotal.com/.

https://www.virustotal.com/

528 M. Liu et al.

– We propose a multi-feature extraction mechanism based on lenient hybrid
analysis for a large corpus of benign and malicious samples. It improves the
performance of malware detection and classification.

– We propose a FSL method for model training on API calls in malware detec-
tion and classification tasks based on a recently proposed FSL approach in
NLP. We show the FSL method for API call is effective in making the model
training converge faster and improving the performance.

– We propose, by using a partial multi-view learning method, a feature inte-
gration process that integrates the features collected using both static and
dynamic analysis from a large corpus of benign and malicious samples into a
single model for malware detection and classification.

Structure of the Paper. Section 2 reviews related works that have been pro-
posed for malware detection and classification. Section 3 discusses Peekaboo in
details. Section 4 presents performance evaluation. Results, analysis and discus-
sion are presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

We briefly discuss the related works that have been conducted by using advanced
statistical and ML models for malware detection and classification.

2.1 Single Feature-Based Approaches

Some of the existing works have only used a single feature extracted from the
malware samples. Common features that are used in current state-of-the-art
detection and classification systems include API calls, opcodes, binary code, etc.

Observed sequences recorded from system calls are used as input data to train
a hidden Markov model (HMM) for each malware family [3]. Pranamulia et al.
[4] proposed a similar approach to use profile hidden Markov model (PHMM)
to analyze the sequences of system calls.Duarte-Garcia, et al. [14] proposed to
classify malware by using the API call sequences generated from sandbox in a
semi-supervised manner.

Makandar et al. [7] proposed to use a support vector machine (SVM) to iden-
tify the malware after extracting the features from the malware image. Kim et
al. [6] proposed to use generative adversarial networks (GAN) and autoencoders
to capture the variants of existing malware with the aim to detect zero-day
attacks. Ye et al. [2] proposed DeepAM, a malware detection framework that
takes the Windows API calls extracted statically from the malware executable
as inputs. DeepSign [1] and DeepOrigin [5] capture the variants of existing mal-
ware by generating and classifying signatures of malware that is invariant to
code changes.

API calls collected in dynamic analysis have widely experimented for malware
detection. Pascanu et al. [15] proposed to use the language model RNN to analyze
the sequences of API calls made by the malware during runtime. Athiwaratkun

Peekaboo: Hide and Seek with Malware 529

et al. [16] also proposed a similar idea to use an RNN with LSTM and GRU
architecture to analyze the system calls made by the malware at a character
level. A recent work proposed by Rabadi and Teo [24] uses the function name
as well as the arguments of the API calls collected during dynamic analysis.
Neurlux [25] feeds the entire analysis report generated by Cuckoo Sandbox into
a language model for malware detection and classification.

Zolotukhin et al. [8] proposed a method based on opcode sequences for mal-
ware classification. Yewale and Singh [10] proposed a malware detection method
that uses the opcode frequency. A similar idea was proposed by Manavi and
Hamzeh [9] to convert opcode frequencies into an image for training machine
learning algorithms.

2.2 Multiple Feature-Based Approaches

To achieve better performance, many researchers have also constructed multiple
feature-based data from both static and dynamic analyses. Shijo and Salim [35]
proposed a hybrid analysis approach by integrating printable string informa-
tion (PSI) and API call sequences extracted from static and dynamic analyses
respectively. Islam et al. [36] proposed to use function length frequency and PSI
as static features and API calls as dynamic features for malware classification.

More recently, Zhang et al. [12] proposed multiple feature-based approach
for the malware clustering algorithm. Multiple features are extracted by using
static and dynamic analysis tools for base clustering. Next, they rely on forward
step-wise selection to select the clustering ensemble and combine the clustering
results via a mixture model. Zhang et al. [13] developed a feature extraction
method such that the opcode-based and API calls-based features are extracted
and fed into a CNN and back-propagation neural network respectively to obtain
a high-level representation of the original features. The two sets of high-level
features are then combined and used to train a multi-class classifier.

3 Peekaboo: Our Proposed Approach

Peekaboo uses API call and opcode sequences as input data to our malware
detection and classification model. More specifically, API call sequences are
dynamically extracted by executing malware samples in a virtual environment,
while opcode sequences are statically extracted by disassembling the binaries.
Next, two individual models are trained to transform the API calls and opcodes
into numeric features. Then the two feature sets are integrated into one for the
final model training. Figure 1 shows the workflow of Peekaboo.

3.1 Lenient Hybrid Analysis

To make the hybrid analysis more efficient for a large number of samples, we pro-
pose the idea of lenient hybrid analysis. Lenient hybrid analysis can be seen as a
speedy version of the traditional hybrid analysis (i.e., both static and dynamic

530 M. Liu et al.

Fig. 1. The workflow of Peekaboo.

analyses are executed for every sample) when the number of samples to analyze
is large. The idea behind lenient hybrid analysis is to select a subset of sam-
ples from this large corpus based on the computational resources available and
execute dynamic analysis only for samples in the subset. Meanwhile, the entire
corpus undergoes static analysis. Then we can treat static analysis as the primary
resource of information and dynamic analysis as the secondary one. By integrat-
ing the extra information the dynamic analysis provides into the information
we obtain from static analysis, the whole system can perform better malware
detection and classification. Peekaboo is the first approach that enables us to do
so, it makes hybrid analysis more efficient, practical, and lightweight at a large
scale in real-world deployment.

3.2 Extraction of API Calls and Opcodes

To trace API calls dynamically, malware samples are executed in a virtual envi-
ronment; to extract opcodes, the malware binaries are analyzed and disassembled
using a disassembly tool. The data extraction is performed for both malware and
benign samples. We first select a random and small subset of size n from the
entire corpus of samples of size N . Here we set n � N . For each sample in the
subset, we perform dynamic analysis to extract API calls. Then for all the sam-
ples in the entire corpus, we perform static analysis to extract opcodes. Let ai be
the API call sequence and oi the opcode sequence for example i. For n examples
in the selected subset, we have API call data {a1, a2, a3, ..., an}. For a total num-
ber of N examples in the entire corpus, we have opcode data {o1, o2, o3, ..., oN}.

A graphical representation of the API calls and opcodes datasets is shown in
Fig. 2. The length of the sequences is drawn to the same in the figure for easy
visualization, the actual length of the API call and opcode sequences can be
quite different.

3.3 Partial Feature Integration

We purposely set n � N so there would be a large number of samples that are
missing the API call data. In fact, there is a whole block of API call data missing

Peekaboo: Hide and Seek with Malware 531

Fig. 2. A graphical representation of the API call and opcode datasets.

(shown in Fig. 2). Partial multi-view learning problems are commonly encoun-
tered in many domains such as medical diagnosis where the ML model needs
to handle incomplete multi-modality data. In Peekaboo, we use the ScoreComp
proposed by Yuan et al. [22] to tackle the problem of block-wise missing data.
Each data source is treated independently, where a base classifier is learned such
that the data source is converted into prediction scores. Then the block-wise
missing data problem is transformed to a missing value imputation problem.

Feature Transformation. We formally describe the problem in the follow-
ing by instantiating ScoreComp in the context of using API calls and opcodes
for malware detection and classification. Consider two labeled datasets DA =
{ai, yi}ni=1 and DO = {oi, yi}Ni=1 where DA denotes the API call dataset and
DO the opcode dataset. Since n � N , we must first perform FSL for the API
call model. Here, we apply a data-centric FSL algorithm A to DA to obtain
DFSL

A = A(DA). The details about algorithm A are given in the following
Sect. 3.4.

First, we perform classifications by choosing a learning algorithm L, and
corresponding loss functions on DA and DO individually:

FA = L(DFSL
A), FO = L(DO),

where F is a function that maps an API call or opcode sequence to a vector of
prediction scores, and DFSL

A = A(DA).
Note that after the models are trained, we obtain two functions FA and FO.

For dataset DA and DO, we can then construct two matrices PA and PO. We
then use these two matrices to form an integrated matrix:

Pi,: =
{

[FA(ai)T | FO(oi)T], if sample i is in both DA and DO

[NaNT | FO(oi)], otherwise
,

where we set NaN to be a column vector of NaN’s, and the resulting matrix P
is a matrix with block-wise NaN’s.

532 M. Liu et al.

Feature Integration. Next, we use a missing value estimation algorithm I to
complete the matrix P . Let P̃ = I(P), where P̃ is a complete feature matrix
with NaN’s replaced by numeric values. Now we can integrate the information
of API calls and opcodes that is previously learned by FA and FO into a single
feature set. We can then perform training on the dataset D = {pi, yi}Ni=1. The
process of partial feature integration is depicted in Fig. 3.

Peekaboo can be intuitively thought of as having the opcode model as the
primary model and the API call model as the secondary one. The feature inte-
gration process makes the secondary model the assistant of the primary model
in decision making: it integrates the additional information of dynamic analy-
sis into the complete information we have from the static analysis so the whole
system can make better decisions than any one of the sub-models.

Fig. 3. The process of partial feature integration.

3.4 Few-shot Learning (FSL) for API Call Model

To transform the features to numeric features for partial feature integration,
we must first perform individual model training. Since the size of the API call
dataset DA is intentionally made small for more efficient dynamic analysis, we
need to perform FSL ensure the model trained over this dataset can generalize.

The API call sequences can be thought of as sequential data since they moni-
tor the sequence of function calls the software makes to interact with the system
resource and the flow of the program. Naturally, it resembles text classification
in NLP. Therefore, some FSL methods in text classification may be applied in
API call sequence classification. We modify a recently proposed data-centric FSL
technique named EDA by Wei et al. [21] for the API call sequences.

EDA is a data-centric FSL approach that augments existing text data by
adding randomness. Wei et al. [21] proposed a few methods in their paper to
generate new text data, namely, Synonym Replacement, Random Insertion, Ran-
dom Swap, and Random Deletion. Synonym Replacement and Random Insertion
involve operations of synonyms of the words in the corpus. Since we do not have
or define such synonyms of API calls, we only used the remaining two methods,

Peekaboo: Hide and Seek with Malware 533

Algorithm 1: Few-shot learning for API call sequences
Input: DA = {ai, yi}n

i=1

Result: Dataset for few-shot learning DFSL
A

Initialization: number of iterations r, probability p, empty hash tables Dtmp1 ,
Dtmp2 ;

split DA into DTrain
A , DV al

A and DTest
A ;

for iter = 1, 2, ..., r do
for i = 1, 2, ..., nTrain do

lb ← yi;
convert ai to an array of API function names while preserving the
order: lst ← ai;

make two copies lst1 and lst2 of lst;
randomly draw two indices j, k of lst;
c1 ← lst1[j], c2 ← lst1[k];
lst1[j] ← c2, lst1[k] ← c1;
Dtmp1 [lst1] = lb;
randomly draw an index m of lst;
c ← lst2[m];
sample u ∼ Unif[0, 1];
if u ≤ p then

lst2.remove(c);
end
Dtmp2 [lst2] = lb

end

end

DFSL
A ← DTrain

A ∪ DV al
A ∪ DTest

A ∪ Dtmp1 ∪ Dtmp2

i.e., Random Swap and Random Deletion for DA. The FSL algorithm for API
calls is outlined in Algorithm 1.

The sequences in DFSL
A may no longer represent the exact behaviors we

observed during execution. However, the purpose of doing so is not to create
new API call sequences that fully represent the sample’s exact behaviors or
can be successfully carried out in practice. The FSL algorithm introduces more
randomness so by performing FA = L(DFSL

A), we make FA more robust to over-
fitting. The randomness is carefully controlled by the hyper-parameters r and p
so that a reasonable amount of randomness is injected but does not overwhelm
the original behaviors of the sample.

3.5 Achieving Real-Time Detection

In the above, we have described Peekaboo in a fixed-dataset fashion where a set
of opcode and API call sequences are collected prior to any malware detection.
However, in real-world scenarios, we often have to stream in the incoming sam-
ples and determine if they are malicious efficiently. Peekaboo can be naturally
extended for real-world deployment in such scenarios. In real-world scenarios,
each incoming sample will only have the opcode extracted statically together

534 M. Liu et al.

with the additional information provided by API calls for real-time detection by
Peekaboo as described above. Peekaboo can then maintain a database of API
calls by extracting the API calls dynamically from randomly selected samples
from the malware database to update the API call database. This update can
be set periodically and independent of the real-time detection process so that we
can still use the updated API call information for malware detection in Peekaboo
without affecting the efficiency of the real-time malware detection.

4 Performance Evaluation

We first consider the binary classification case, where we train a binary clas-
sifier to identify a given instance as malicious or benign. Next, we extend our
experiment to the multi-class classification setting where we separate the benign
software and malware and classify the malware into the correct classes in the
meanwhile.

4.1 Datasets

In this work, we used public datasets. The API call sequence (APIMDS) dataset
was collected and published with open access by Ki et al. [18]. They obtained the
malware samples from the malware dataset provided by VirusTotal. Nowadays,
most of the machines are running more recent versions of Windows operating
systems, so we set up a Windows 10 environment and selected a small set of
samples to collect the API calls. The opcode sequence dataset is obtained by
disassembling the software binaries using radare22. The opcodes extraction was
done using radare2’s Python plug-in r2pipe3.

The malware samples open-sourced by VirusTotal were first seen in their
database in late 2019. In total, we gathered 34,000 benign and malicious samples.
Among all the samples collected, over 80% were collected after late 2019. The
benign software was downloaded from Softpedia4; they were the most popular
downloads by the time they were collected.

Similarly, we obtained a very recent 12,000 malicious samples collected from
VirusTotal and performed the dynamic and static analysis.

4.2 Data Preparation

The benign software receives a single label “benign”. The malware receives a
label “malicious” and an additional label of the malware class. We do not use
any detection labels provided by anti-virus vendors since different vendors have
their own way of labeling malware class. To consistently assign labels for the
malware, we use a state-of-the-art malware labeling tool called AVClass25 by
2 Radare2 version 3.9.0: https://www.radare.org/n/radare2.html.
3 R2pipe version 4.0.0: https://github.com/radareorg/radare2-r2pipe.
4 Softpedia: https://www.softpedia.com/.
5 AVClass2 source code: https://github.com/malicialab/avclass.

https://www.radare.org/n/radare2.html
https://github.com/radareorg/radare2-r2pipe
https://www.softpedia.com/
https://github.com/malicialab/avclass

Peekaboo: Hide and Seek with Malware 535

Sebastián et al. [20]. Table 1 summarizes the distribution of benign as well as
different malware classes of the entire corpus of samples.

Among 34,000 samples, we randomly selected 4,500 samples for more efficient
dynamic analysis in practice. This number is chosen based on our computational
capacity. In practice, this number can be adjusted based on the computational
resources available and the sample size.

In all the experiments, we split the entire dataset into three mutually exclu-
sive sets, namely, training (80%), validation (10%), and test (10%) sets. The
training and validation sets are used to train and fine-tune the models. The test
set is held out and not revealed to the model during the entire training and vali-
dation phase. This setting simulates the situations where the model is trained on
known and detected malware samples and then used to detect unknown or unde-
tected malware. After the training and validation are complete, we then evaluate
the model on the hold-out test set. The results presented in the following are
obtained by evaluating the model on the hold-out test set.

4.3 Experiments

Baseline. In Peekaboo, the individual API call model can be seen as an assistant
of the opcode model. Hence, we would expect the final model to perform at least
as well as the opcode model. Given this intuition, in the following experiments
and evaluations, we use the performance of the opcode model as a baseline to
assess how much Peekaboo helps us improve the performance.

Our experiments begin with individual model training for feature transfor-
mation. Then we perform the feature integration. Finally, we train a model based
on an integrated complete feature set.

Tokenization of the API Calls and Opcodes. The sequences of API calls
and opcodes are treated as sequences of text. Each API call or opcode is con-
sidered to be a word, and each sequence is considered to be a sentence. Text
sequences are used as input data for training in the NLP task. However, it is
very difficult for any model to process text sequences. A common approach for
training a model using text sequences in NLP is that the text sequences are
first tokenized and then converted to numeric sequences. We perform similar
tokenization and conversion procedures for API call and opcode sequences. Con-
ceptually, the tokenization splits on white space, and the characters between two
white spaces are then regarded as a single token. In our setting, each API call
or opcode will be naturally regarded as a token.

Model Architecture. We choose RNN to model the API call and opcode
sequences. Among different types of RNN architectures, long short-term memory
(LSTM) and gated recurrent unit (GRU) has been proved to be very effective in
various NLP tasks and well-known for modeling long-range dependencies within
sequential data. Hence, we use both LSTM and GRU in our RNN architecture.

536 M. Liu et al.

Table 1. Distribution of benign and
malware classes.

Malware class Percentage

Benign 29.43%

Worm 16.31%

Downloader 14.37%

Grayware 13.79%

Virus 11.55%

Backdoor 7.54%

Ransomware 2.83%

Rogueware 2.53%

Spyware 1.65%

Table 2. Distribution of unseen malware
classes.

Malware class Percentage

Bot 35.75%

Rootkit 23.46%

Clicker 19.55%

Keylogger 11.73%

Hoax:smshoax 4.47%

Hoax 3.35%

Dialer 1.68%

The first layer of the RNN is the embedding layer, followed by a one dimen-
sional convolutional layer with ReLU activation. Next, a one dimensional max-
pooling layer is used to reduce the size of the network. The LSTM and GRU
layer are then employed and followed by a fully-connected layer which flattens
the output. The final output layer is a fully-connected layer with softmax acti-
vation. Dropout and regularization are applied to reduce over-fitting.

Model Training for Feature Transformation. The opcode dataset is large
so we proceed as per the normal training procedure. We perform Algorithm 1 for
the API call dataset and follow the hyper-parameters suggested in the original
paper of EDA [21].

After the models FA and FO are trained, we transform the API call and
opcode sequences into prediction score matrices. Then, the features are inte-
grated as discussed in Sect. 3.3. Finally, we train another model based on the
integrated feature set.

We extend our experiments to the multi-class case by repeating the above
process and changing the target output of the model to the multi-class labels.

Feature Integration. The feature integration step can be accomplished by
using a missing value estimation algorithm. Similar to [22], we also used several
popular algorithms for comparison and benchmarking purposes.

KNNimpute Algorithm. K-nearest neighbor (KNN) is a non-parametric
model that can make a prediction for an unseen example by finding similar
training examples. The KNNimpute algorithm [23] works in a similar way: the
missing values of an example are approximated by other values of the k training
examples that are the closest to it based on other available features.

Singular Value Decomposition. Singular value decomposition (SVD) is a
popular approach for matrix completion. SVD for matrix completion can be

Peekaboo: Hide and Seek with Malware 537

solved by an algorithm in the form of an expectation and maximization (EM)
algorithm. The original matrix with missing values is decomposed by SVD, and
the data matrix is reconstructed from the SVD to approximate the missing
values. These two steps are repeated until convergence.

Expectation and Maximization Algorithm. Expectation and maximization
(EM) algorithm consists of two steps, i.e., E step and M step. The EM algorithm
is an optimization algorithm that maximizes the log-likelihood of the expected
complete data in an iterative manner under the (conditional) distribution of
unobserved data points.

4.4 Evaluation on Unseen Malware Classes

The final model was also evaluated on a small set of malware samples that are of
previously unseen malware classes. This simulates a more generic situation where
the model is trained on samples of known malware classes and tries to capture the
malware from unknown classes. These samples come from malware classes the
multi-class classifier has not seen, so it will not classify them correctly. We only
evaluated this set of samples from unseen malware classes in binary classification
settings (benign vs. malicious).

This dataset consists of only malware samples; in total there are 179 malicious
samples. Again, the malware class labels are assigned by AVClass2. Table 2 shows
the class distribution. This additional dataset follows the same data extraction
and partial feature integration of Peekaboo as depicted in Fig. 1.

5 Results and Discussion

Table 3 shows the performance of the API call model, opcode model, and the final
model with the best performance for both binary and multi-class classifications.
We extend the definition of FPR to a multi-class setting, where a false positive
is a benign sample classified into any other class by the model.

Table 4 shows the performance of the final model we constructed using the
integrated feature set. We experimented with various ML algorithms for bench-
marking purposes. The ML models we used include logistic regression, k-nearest
neighbors, linear support vector machine (SVM), SVM with radial basis function
(RBF) kernel, Decision Tree, Random Forest, AdaBoost, Gaussian Náıve Bayes,
and quadratic discriminant analysis (QDA). We report accuracy and FPR in the
table.

538 M. Liu et al.

Fig. 4. Test accuracy for both binary and multi-class API call model as number of
epochs increases.

Table 3. Performance of binary and multi-class classification models.

Accuracy False
positive

True
positive

False
negative

True
negative

API call model FA Binary 100.00% 0.00% 100.00% 0.00% 100.00%

Multi-class 80.00% 0.00% – – –

Opcode model FO Binary 98.50% 1.56% 98.52% 1.48% 98.44%

Multi-class 90.80% 2.34% – – –

Final model Binary 99.67% 0.45% 99.71% 0.29% 99.55%

Multi-class 96.30% 0.45% – – –

Table 4. Performance of the final model using different ML model for feature inte-
gration. (Logistic Regression (LR), k-Nearest Neighbors (KNN), Linear SVM (LSVM),
Decision Tree (DT), quadratic discriminant analysis (QDA))

Binary Multi- class

KNN SVD EM KNN SVD EM

LR Accuracy 99.53% 99.40% 99.53% 96.03% 96.17% 96.23%

FPR 0.56% 0.45% 0.45% 0.56% 0.45% 0.45%

KNN Accuracy 99.63% 99.67% 99.67% 95.57% 95.57% 95.57%

FPR 0.45% 0.45% 0.45% 0.45% 0.45% 0.34%

LSVM Accuracy 99.37% 99.37% 99.53% 96.13% 95.63% 96.03%

FPR 0.45% 0.45% 0.45% 0.68% 0.68% 0.68%

RBF Accuracy 99.53% 99.50% 99.57% 96.30% 96.17% 96.17%

FPR 0.56% 0.56% 0.56% 0.45% 0.45% 0.45%

DT Accuracy 99.60% 99.67% 99.67% 89.17% 88.47% 89.37%

FPR 0.56% 0.56% 0.56% 0.45% 0.68% 0.68%

Random Accuracy 99.60% 99.57% 99.63% 93.03% 91.60% 94.17%

FPR 0.45% 0.45% 0.45% 2.14% 0.45% 0.68%

AdaBoost Accuracy 99.53% 99.63% 99.63% 67.77% 51.20% 78.03%

FPR 0.56% 0.56% 0.56% 67.76% 90.08% 41.94%

Náıve Accuracy 99.40% 99.37% 99.37% 95.33% 95.37% 95.47%

FPR 0.45% 0.45% 0.45% 2.14% 1.13% 1.58%

QDA Accuracy 99.33% 99.37% 99.47% 95.37% 94.07% 95.33%

FPR 0.67% 0.45% 0.45% 1.01% 0.79% 1.35%

Peekaboo: Hide and Seek with Malware 539

Fig. 5. The visualization of the integrated feature sets. The dimension was reduced by
PCA to two in the multi-class case.

5.1 Analysis and Discussion

Model Training for Feature Transformation. The performances of individ-
ual models trained on the API call and opcode datasets are essential for feature
integration since they directly influence the quality of the integrated features.
The API call model can do very well for binary classification. Although this
means the model can do well on a small subset of samples, it can make the
feature integration assign more precise values to the missing ones. The API call
model only has an 80% accuracy for multi-class classification. This is expected
because the subset is relatively small, and it is difficult for a model trained on
such small dataset to do well in this case.

The opcode model achieves a 98.5% accuracy for binary classification but
with a high FPR of 1.56%. In the multi-class classification task, the opcode model
performs much better than the API call model with a 90.8% accuracy, but it
still a high FPR of 2.34%. The opcode model can perform correct classifications
at a satisfactory level, but it has a high FPR. The FPR can be lowered after the
feature integration.

Algorithm 1 for API calls is effective to improve the model convergence and
performance. The test accuracy of both binary and multi-class API call models
is shown in Fig. 4. We evaluated the model on the same test set with and without
FSL. In the binary classification setting, the model trained with FSL converged
within the first few epochs whereas the model converged slowly without it using
the same learning rate. In particular, the API call model without FSL under
multi-class settings can only achieve an accuracy slightly above 50%; this can
lead to poor feature integration. FSL can improve the accuracy by almost 30%
for the API call model in this case.

Feature Integration. We selected 4,500 samples for dynamic analysis so they
have a complete set of features; the remaining samples are missing the output
from the API call model. These missing outputs are to be filled in by the data
imputation algorithms.

540 M. Liu et al.

Figure 5 shows scatter plots of the integrated features. The integrated feature
set for binary classification is of 2-dimension because two individual models are
used for feature transformation. The feature set for multi-class classification is
of higher-dimension because the dataset has multiple malware classes. We used
principle component analysis (PCA) to project the data to a 2-dimensional space
defined by the first two principle components for visualization.

In the binary classification setting, x2 is the feature that has missing values.
Ideally, both x1 and x2 need to be small for the benign class. In the feature
set integrated by KNNimpute, x1 of all the data points from the benign class is
below 0.6 whereas x2 of some data points are very close to 1. The second feature
of all of the data points in the malware class is close to 1 but some of them
have relatively small values for x1. A similar pattern is observed in the feature
set integrated by the SVD. Further analysis shows the KNNimpute algorithm
performs much better than the SVD. Since x2 is to be filled in, we say we have a
bad assignment to x2 when the algorithm assigns a large value to it for a benign
sample or a small value for a malware sample. Out of all assignments, the bad
ones are only 1.37% for KNNimpute whereas the bad assignments account for
33.52% of the total for the SVD.

In the feature set integrated by the EM algorithm for binary classification,
most of the data points in the benign class have relatively small values for both
x1 and x2. The EM algorithm performs the best for feature integration and only
has 0.46% bad assignments. The correct assignment of the values can help lower
the high FPR of the individual models.

In the multi-class classification setting, all of the algorithms perform simi-
larly by plotting the first two principle components of the feature set. The EM
algorithm performs much better at separating the benign class from the rest
of the malware classes, which helps us lower the FPR. The results of the final
models confirmed this observation since the lowest false positive is achieved by
using the feature set integrated by the EM algorithm.

Final Model Performance. As shown in Table 4, all models can perform
well at binary classification regardless of the feature set. For the multi-class
classification, AdaBoost performs very poorly with extremely lower accuracy
and a high FPR. The rest of the ML models perform quite well, achieving an
overall accuracy of around 95% with a low FPR.

Out of all the configurations presented in Table 4, we select two of them as
our final models. For binary classification, the following configuration performs
the best: EM algorithm for feature integration and KNN for classification. We
do not choose the configuration of the SVD for feature integration and KNN for
classification because the analysis in Sect. 5.1 shows the feature set integrated
by the SVD is less reliable than the one by EM algorithm.

For multi-class classification, we select this configuration as our final model:
KNNimpute for feature integration and SVM with RBF kernel for classification.

By using the final models, we increased the accuracy for binary classification
and lower the FPR as well as false negative rate by more than 1% compared

Peekaboo: Hide and Seek with Malware 541

to the baseline binary opcode model. The improvements are even larger for the
multi-class classification: we improved the accuracy by more than 5% and lower
the FPR by almost 2%.

False Positives. There are 4 false positives in the test set for both binary
and multi-class classifications by the final model. None of these samples exists
in API call dataset, which means they all had missing features before feature
integration.

In the binary classification setting, all 4 benign samples were first incorrectly
classified by the individual opcode model (i.e., a large value for x1), which leads
to the EM algorithm incorrectly assigning large values for x2. Hence, both x1

and x2 being large leads to the final incorrect classification.
A similar pattern is observed in the multi-class classification: these 4 benign

samples were incorrectly classified by the individual opcode model into other
malware classes, and the missing features were filled in based on the incorrect
prediction scores. The output from the opcode model could significantly impact
the feature integration. Therefore, having a well-performing opcode model FO

is essential in Peekaboo.

5.2 Comparison with Related Works

We have listed other recent related works that use API calls, opcode sequences or
both as features for malware detection for performance comparison. The results
are summarized in Table 5, which shows the binary classification results. The
evaluation metrics are accuracy, precision, recall, and F1-score. Peekaboo out-
performs other state-of-the-art in all the evaluation metrics by a relatively huge
margin.

Table 5. Comparative analysis

Accuracy Precision Recall F1-Score

Peekaboo 99.67% 99.81% 99.71% 99.76%

Ye et al. [2] 98.20% 98.60% 97.80% 98.20%

Manavi et al. [9] 93.20% 95.60% 91.00% 93.20%

Zhang et al. [13] 95.10% 92.40% 79.80% 85.60%

Masbo et al. [11] 94.00% 94.00% 94.00% 94.00%

Vinayakumar et al. [37] 96.30% 96.30% 96.20% 96.20%

Venkatraman et al. [38] 96.30% 91.80% 91.50% 91.60%

5.3 Evaluation on Unseen Malware Classes

We use the trained opcode model as the baseline: for these small sets of malware
samples, the trained opcode model can only detect 96.09% of them, giving a

542 M. Liu et al.

false negative rate of 3.91%. We can see from Fig. 6 that some data points have
relatively small values for feature x1 since the individual opcode model classified
them incorrectly. By contrast, the feature x2 is large for all data points, meaning
1) the individual trained API call model performs well to correctly transform the
features into prediction scores, and 2) more importantly the EM algorithm can
correctly assign the values for those samples that are missing API call sequences.

The trained KNN classifier can correctly detect all the malware samples using
the feature set integrated by the EM algorithm. The performance of the final
model is significantly better than that of the individual opcode model which we
use as a baseline. Even though Peekaboo is trained on the samples of known
malware classes, it can still detect the samples of unseen malware classes.

Fig. 6. The visualization of the integrated feature sets of the malware samples from
previously unseen classes.

6 Conclusion and Future Work

In this paper, we present a novel approach that uses both static and dynamic
analysis for constructing a better-performing model in a multi-feature setting.
This approach reduces the burden of dynamic analysis, a resource-consuming
task, by only utilizing a small portion of the samples. By using a data imputa-
tion algorithm to integrate the features, we can use the information we obtain
from dynamic analysis to improve the model performance. The accuracy and
FPR can be significantly improved after the feature integration. We demon-
strated outstanding performance through various experiments, benchmarking,
and analysis on a large-scale dataset. We only considered two features, namely,
API calls and opcodes, for malware detection and classification in this work, but
Peekaboo can be generalized to work with more than two features.

In this work, we only consider the malware samples that are not packed or
obfuscated. Code obfuscation and packing have non-negligible effects on opcode
extraction. In future works, we will consider de-obfuscation/unpacking of the
code and it’s effects on Peekaboo.

Peekaboo: Hide and Seek with Malware 543

Acknowledgment. This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Corporate Laboratory@University Scheme,
National University of Singapore, and Singapore Telecommunications Ltd.

A Background

Static Analysis refers to the analysis of a binary file without executing it.

Dynamic Analysis refers to the analysis of a binary file by executing it in a
controlled and well-monitored environment e.g., a virtual machine or sandbox.

Terminologies. In the malware analysis context, a feature often means a type
of data extracted from the samples that can characterize the maliciousness. The
use of this term in malware analysis is different from that in the usual machine
learning setting where features represent the attribute of the observations. The
term ”multiple features” here refers to multiple kinds of features in the malware
analysis setting. For example, Peekaboo uses API calls and opcodes as features.

Few-Shot Learning is a learning strategy that can improve the model general-
ization ability when the sample size is small. FSL is essential to Peekaboo when
training the model on the API call dataset since we only select a small portion
of the entire corpus of samples for dynamic analysis.

Multi-view Learning is a learning strategy that deals with data consisting of
different views. A view can be a set of features obtained from one domain. In
our setting, one view is the API calls collected during dynamic analysis and the
other is the opcodes from static analysis. Multi-view learning aims to integrate
the data for model training or use custom learning strategies to teach learners
to consume data from different views to perform well on a common task. Partial
multi-view learning is a task that specializes in handling missing views.

References

1. David, O., Netanyahu, N.S.: DeepSign: deep learning for automatic malware sig-
nature generation and classification. In: International Joint Conference on Neural
Networks (IJCNN), vol. 2015, pp. 1–8 (2015)

2. Ye, Y., Chen, L., Hou, S., Hardy, W., Li, X.: DeepAM: a heterogeneous deep
learning framework for intelligent malware detection. Knowl. Inf. Syst. 54(2), 265–
285 (2017). https://doi.org/10.1007/s10115-017-1058-9

3. Imran, M., Afzal, M.T., Qadir, M.A.: Using hidden Markov model for dynamic mal-
ware analysis: first impressions. In: 2015 12th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), pp. 816–821 (2015)

4. Pranamulia, R., Asnar, Y.D., Perdana, R.S.: Profile hidden Markov model for
malware classification: usage of system call sequence for malware classification. In:
International Conference on Data and Software Engineering (ICoDSE), vol. 2017,
pp. 1–5 (2017)

https://doi.org/10.1007/s10115-017-1058-9

544 M. Liu et al.

5. Cordonsky, I., Rosenberg, I., Sicard, G., David, E.: DeepOrigin: end-to-end deep
learning for detection of new malware families. In: International Joint Conference
on Neural Networks (IJCNN), vol. 2018, pp. 1–7 (2018)

6. Kim, J., Bu, S., Cho, S.: Zero-day malware detection using transferred generative
adversarial networks based on deep autoencoders. Inf. Sci. 460, 460–461 (2018)

7. Kancherla, K., Mukkamala, S.: Image visualization based malware detection. In:
2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS),
pp. 40–44 (2013)

8. Zolotukhin, M., Hämäläinen, T.: Detection of zero-day malware based on the anal-
ysis of opcode sequences. In: 2014 IEEE 11th Consumer Communications and
Networking Conference (CCNC), pp. 386–391 (2014)

9. Manavi, F., Hamzeh, A.: A new method for malware detection using opcode visu-
alization. In: Artificial Intelligence and Signal Processing Conference (AISP), vol.
2017, pp. 96–102 (2017)

10. Yewale, A., Singh, M.: Malware detection based on opcode frequency. In: Inter-
national Conference on Advanced Communication Control and Computing Tech-
nologies (ICACCCT), vol. 2016, pp. 646–649 (2016)

11. Masabo, E., Kaawaase, K.S., Sansa-Otim, J., Ngubiri, J., Hanyurwimfura, D.:
Improvement of malware classification using hybrid feature engineering. SN Com-
put. Sci. 1, 17:1–17:14 (2020)

12. Zhang, Y., Rong, C., Huang, Q., Wu, Y., Yang, Z., Jiang, J.: Based on multi-
features and clustering ensemble method for automatic malware categorization.
In: IEEE Trustcom/BigDataSE/ICESS, vol. 2017, pp. 73–82 (2017)

13. Zhang, J., Qin, Z., Yin, H.B., Ou, L., Zhang, K.: A feature-hybrid malware variants
detection using CNN based opcode embedding and BPNN based API embedding.
Comput. Secur. 84, 376–392 (2019)

14. Duarte-Garcia, H.L., et al.: A semi-supervised learning methodology for malware
categorization using weighted word embeddings. In: 2019 IEEE European Sympo-
sium on Security and Privacy Workshops, pp. 238–246 (2019)

15. Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A.: Malware
classification with recurrent networks. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1916–1920 (2015)

16. Athiwaratkun, B., Stokes, J.W.: Malware classification with LSTM and GRU lan-
guage models and a character-level CNN. In: 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2017)

17. Elhadi, A.A., Maarof, M.A., Barry, B.I., Hentabli, H.: Enhancing the detection of
metamorphic malware using call graphs. Comput. Secur. 46, 62–78 (2014)

18. Ki, Y., Kim, E., Kim, H.K.: A novel approach to detect malware based on API
call sequence analysis. Int. J. Distrib. Sens. Networks 11, 659101 (2015)

19. The cost of cybercrime. (2019). https://www.accenture.com/ acnmedia/PDF-96/
Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf#zoom=50

20. Sebastián, S., Caballero, J.: AVclass2: massive malware tag extraction from AV
labels. In: Annual Computer Security Applications Conference (2020)

21. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting perfor-
mance on text classification tasks. ArXiv, abs/1901.11196 (2019)

22. Yuan, L., Wang, Y., Thompson, P., Narayan, V., Ye, J.: Multi-source learning for
joint analysis of incomplete multi-modality neuroimaging data. In: International
Conference on Knowledge Discovery & Data Mining, pp. 1149–1157 (2012)

23. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays.
Bioinformatics 17(6), 520–525 (2001)

https://www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf#zoom=50
https://www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf#zoom=50

Peekaboo: Hide and Seek with Malware 545

24. Rabadi, D., Teo, S.: Advanced windows methods on malware detection and classi-
fication. In: Annual Computer Security Applications Conference (2020)

25. Jindal, C., Salls, C., Aghakhani, H., Long, K., Kruegel, C., Vigna, G.: Neurlux:
dynamic malware analysis without feature engineering. In: Proceedings of the 35th
Annual Computer Security Applications Conference (2019)

26. Subedi, K.P., Budhathoki, D.R., Dasgupta, D.: Forensic analysis of ransomware
families using static and dynamic analysis. In: IEEE Security and Privacy Work-
shops (SPW), vol. 2018, pp. 180–185 (2018)

27. Aghakhani, H., et al.: When malware is packin’ heat. limits of machine learning
classifiers based on static analysis features. In: NDSS (2020)

28. Kumar, N., Mukhopadhyay, S., Gupta, M., Handa, A., Shukla, S.: Malware classi-
fication using early stage behavioral analysis. In: 2019 14th Asia Joint Conference
on Information Security (AsiaJCIS), pp. 16–23

29. Kang, B., Kim, T., Kwon, H., Choi, Y., Im, E.: Malware classification method via
binary content comparison. In: RACS (2012)

30. Shalaginov, A., Banin, S., Dehghantanha, A., Franke, K.: Machine learning aided
static malware analysis: a survey and tutorial. ArXiv, abs/1808.01201 (2018)

31. Egele, M., Scholte, T., Kirda, E., Krügel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44, 6:1–6:42 (2008)

32. Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L.: Dynamic malware analysis in the
modern era—A state of the art survey. ACM Comput. Surv. (CSUR) 52, 1–48
(2019)

33. Sihwail, R., Omar, K., Ariffin, K.A.: A survey on malware analysis techniques:
static, dynamic, p. 8. hybrid and memory analysis, Int. J. Adv. Sci. Eng. Inf.
Technol. 8(4-2), 1662–1671 (2018)

34. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey.
J. Inf. Secur. 5, 56–64 (2014)

35. Shijo, P.V., Salim, A.: Integrated static and dynamic analysis for malware detec-
tion. Procedia Comput. Sci. 46, 804–811 (2015)

36. Islam, M., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. J. Network Comput. Appl. 36(2), 646–656
(2013)

37. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Venkatraman, S.:
Robust intelligent malware detection using deep learning. IEEE Access 7, 46717–
46738 (2019)

38. Venkatraman, S., Alazab, M., Vinayakumar, R.: A hybrid deep learning image-
based analysis for effective malware detection. J. Inf. Secur. Appl. 47, 377–389
(2019)

TapTree: Process-Tree Based Host
Behavior Modeling and Threat Detection
Framework via Sequential Pattern Mining

Mohammad Mamun(B) and Scott Buffett

National Research Council Canada, Fredericton, NB, Canada
{Mohammad.Mamun,Scott.Buffett}@nrc-cnrc.gc.ca

Abstract. Host behaviour modelling is widely deployed in today’s cor-
porate environments to aid in the detection and analysis of cyber attacks.
Audit logs containing system-level events are frequently used for behavior
modeling as they can provide detailed insight into cyber-threat occur-
rences. However, mapping low-level system events in audit logs to high-
level behaviors has been a major challenge in identifying host contextual
behavior for the purpose of detecting potential cyber threats. Relying on
domain expert knowledge may limit its practical implementation. This
paper presents TapTree, an automated process-tree based technique to
extract host behavior by compiling system events’ semantic information.
After extracting behaviors as system generated process trees, TapTree
integrates event semantics as a representation of behaviors. To further
reduce pattern matching workloads for the analyst, TapTree aggregates
semantically equivalent patterns and optimizes representative behaviors.
In our evaluation against a recent benchmark audit log dataset (DARPA
OpTC), TapTree employs tree pattern queries and sequential pattern
mining techniques to deduce the semantics of connected system events,
achieving high accuracy for behavior abstraction and then Advanced Per-
sistent Threat (APT) attack detection. Moreover, we illustrate how to
update the baseline model gradually online, allowing it to adapt to new
log patterns over time.

Keywords: Process tree · Behavioral anomaly detection · Sequential
pattern mining · APT detection

1 Introduction

Since modern information systems have become critical and essential compo-
nents of contemporary businesses and organisations, insider threat detection is
becoming a rapidly growing topic of study in the cybersecurity domain. An
emerging cyberattack, known as APT, poses a huge threat to these information
systems, first by breaching hosts inside a target system and then stealthily infil-
trating additional hosts through the internal network to steal sensitive informa-
tion. Since attackers often sabotage legitimate services executing on endpoints,
c© Crown 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 546–565, 2022.
https://doi.org/10.1007/978-3-031-15777-6 30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_30&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_30

TapTree: Process-Tree Based Host Behavior Modeling 547

it is critical to detect malicious behaviour on endpoint computers promptly and
efficiently following a breach, prior to major harm being caused. Several recent
studies demonstrate that malicious behaviour can be detected by leveraging
patterns of benign behavior against other, seemingly benign actions that, when
combined, signal something potentially more destructive [1–4].

Unfortunately, the volume of log events produced by a typical host is huge.
For instance, a single desktop computer, let alone servers in large enterprise
network, can generate over a million events each day [5]. Processing massive
amounts of audit log events and filtering out irrelevant system events in order
to recognize representative host behavior requires a tedious manual effort [6].
Existing solutions to this problem include techniques such as tag propagation [7]
and graph matching [1,8,9], that mostly rely on domain expert knowledge or on a
knowledge store of expert-defined rules [10]. To address this issue, our objective is
to develop an efficient method for extracting representative behavior (i.e. [10,11])
for cyber analyst investigation. More precisely, we automate the extraction of
host behavior using procedural task analysis on system log events and then
aggregate semantically related tasks to construct baseline host behavior. Due to
the fact that recurring or similar tasks have been aggregated together, TapTree
can significantly reduce the number of events to analyze.

Existing anomaly detection approaches convert user operations into
sequences to analyze sequential relationship between log entries, and then employ
sequence processing techniques, such as deep learning [2,3,12–14], natural lan-
guage processing [15], to learn from previous events and predict the next event.
These methods at the log-entry level model user behaviour and indicate discrep-
ancies as anomalies. However, this approach is oblivious to other relationships.
For example, a user’s daily activity is relatively regular over time in terms of the
logical relationship among periods [1]. Moreover, event logs may also be gener-
ated concurrently by many threads, aliases, or tasks [2]. If this relationship in
the log is disregarded, prediction methods based on continuous logs may suffer
a loss of reliability.

We construct a baseline behavior model and assess its ability to correctly
detect malicious behaviour on a recently released APT attack dataset (DARPA
OpTC public dataset [16]). Evaluation results on 14 randomly selected hosts
from the OpTC dataset show that TapTree recognizes targeted host behavior
with accuracy over 99% with false positive rate (FPR) of less than 0.8% when
using tree pattern queries, for a given candidate partial match threshold. We
show that this threshold can then be adjusted to cast a wider net and achieve a
perfect 100% recall on malicious behaviour detection, while still keeping the FPR
relatively low at 2.9%. For the sequential pattern-based analysis, we show that
FPR can be further reduced to below 0.1%, while maintaining high accuracy
(>99.9%) and recall (67%), whereas recall can be improved to 86% while still
maintaining FPR <1%. Moreover, we quantify the proportion of process trees
that are reduced in number as a result of similar pattern aggregation. Our results
demonstrate that TapTree can reduce the number of process-trees from raw
audit logs by 98% percent after aggregation and thus substantially reduce the

548 M. Mamun and S. Buffett

analysis overhead associated with abnormal behavior investigation. Our major
contributions are summarized:

– We present TapTree, a process tree-based host behavior modeling. TapTree
automatically encapsulates host contextual behaviors from raw audit log
events using system generated process-tree. To our knowledge, this is the first
approach to host behavioral abstraction that utilizes system process trees to
aggregate semantically equivalent patterns.

– To reduce analysis overhead for the analyst and enable efficient detection,
TapTree considers noise reduction, optimized tree growth such as forward
pruning and aggregation of similar behaviors.

– As part of validation of proposed behavioral abstraction model, we conduct a
systematic evaluation by abstracting benign behavior in a given context e.g.
APT attack against Darpa-OpTC dataset. We propose the use of sub-tree
pattern and sequential pattern queries to detect discriminatory behaviour
and identify insider threats automatically. Experimental results using Darpa-
OpTC data demonstrate that TapTree’s baseline behavior is effective against
both benign and malicious behaviors. In terms of mining speed, TapTree
outperforms baseline generation model without aggregation by two orders of
magnitude.

1.1 Analyzing the Problem

Two characteristics must be satisfied for behavioral model to be deemed effec-
tive: (i) behavioral distinctiveness to accurately represent the host behavior and
(ii) behavioral consistency to identify deviant behaviors [17]. We study ways
to satisfy these requirements while decreasing or eliminating the bulk of false
positive occurrences.

To address this issue, our approach is to construct heterogeneous temporal
process trees from homogeneous system events representing the target behavior
and then use the forest (group of trees) to build the host model. Note that the
number of system events might be enormous, highly interconnected, and noisy.
For instance, the installation of a single package during an APT campaign may
create over 50 thousand system log events [10]. In addition, the number of log
entries containing information about suspicious/malicious activity is quite small.
Rather than using all trees, we select the most discriminating patterns in the
forest by grouping similar/redundant actions to aid analysts’ analysis (e.g. if a
behavior is a subset of another, it gets merged). Such representative behavior-
specific forest (with modest number of trees) is simpler to interpret, faster to
match, and easier to maintain.

A representative pattern should be frequent in the intended representative
behavior and rare in deviant behavior. For example, a system administrator
often logs into servers and does certain tasks that a human resources professional
performs seldom. A sample benign/malicious tree pattern from Darpa-OpTC is
presented in Fig. 2 containing the number of edges occurrences in the pattern.

TapTree: Process-Tree Based Host Behavior Modeling 549

Detection algorithms are primarily based on two pattern matching tech-
niques: 1) a tree search method for pattern matching (Sect. 3.3) and 2) a sequen-
tial pattern mining classification algorithm (Sect. 3.3) on the sequence generated
from the Temporal tree set as discussed in Sect. 3.2.

Fig. 1. TapTree pipeline for behavioral anomaly detection

Fig. 2. Sample task trees (process name, depth, occurrence-edge)

2 Overview

2.1 Assumption

TapTree is designed to work with complex event data structures that are both
hierarchical and sequential in nature (filiation-relationship of events). We pre-
sume that behaviors are audited at the kernel level and their activities are logged
in system-call audit logs. The integrity and security of the underlying audit log
monitoring platform (SIEM security) are beyond the scope of this study and are
thus considered to be a component of the trusted computing base.

Rather than focusing on a single user’s sessions [10] or a single user’s one
day data [18], we target multiple users’ whole dataset (7 days data) for behavior
modeling and validation. Results show that our approach is broadly applicable
across hosts, days/sessions behavior.

550 M. Mamun and S. Buffett

A naive way to obtain the semantic representation of a host behavior is to
gather up individual tasks (collection of process-trees) derived from its com-
ponent events. This approach, however, may overlook the relative weights of
relationships between events (edges in the tree) and noisy relations in the rep-
resentative behavior.

A process-tree is a collection of relationships (edges) between low-level oper-
ations such as process-creation, file-opening, etc., triggered by user activity. We
assume that benign tasks (typical user behavior) have a strong correlation. How-
ever, there may be fewer connections between benign and abnormal operations.
While these operations also mirror user behavior, not all of them contribute to
the semantics of host behavior. In light of these observations, TapTree identi-
fies the relationships that are frequent within a task (process-tree) and across
tasks/behaviors. This approach provides a higher discriminative weight to the
relationships in the process-tree that are less prevalent.

3 System Design

TapTree is a host behavior modeling and threat detection system. It is comprised
of three main components: process-tree construction, representative behav-
ior generation, and behavioral stability evaluation (e.g. anomaly detection).
Figure 1 depicts TapTree’s detailed approach that takes system audit logs as
input data, generate temporal process-trees as individual tasks/behaviors, aggre-
gates/abstracts behavior semantics to output representative behaviors.

3.1 Process-Tree Construction

Hierarchical structure of process tree derived from an audit log reflects causal
relationships between running processes of a computer system. Besides provid-
ing a holistic view of the system process life cycle, this property of the system
process tree offers valuable contextual information about an event’s proxim-
ity continually evolving over time [19]. The first component of TapTree is a
process-chain based heuristic technique for mapping relationships between log
entries that reflect hosts’ behavior across several streams, such as file operation,
authentication, flow, etc., into a task-process-tree.

TapTree primarily considers three types of relationships for generating
process-trees: 1) the filiation relationship that forms a hierarchy across all run-
ning operating system processes, 2) sequential relationship between traces and
3) the logical relationship among tasks.

A task-process-tree (see Fig. 2) is a temporal semantic behavior tree repre-
sented by a tuple T := (V,E,R):

– V is a set of nodes where v ∈ V represents a path to the program (e.g.
\\System32\\conhost.exe) that initiates an event (e.g. Process-creation)

– E ⊂ V × V × R is a set of directed edges where e = (u, v, r) ∈ E denotes a
chronologically ordered relationship between executing programs.

TapTree: Process-Tree Based Host Behavior Modeling 551

– R is a set of possible occurrences between nodes V , where r ∈ R is a positive
integer. Therefore, each e ∈ E is assigned a weight w(u, v) : R+ that implies
the frequency/occurrence of the two program (u → v) invoking each other.

The process-tree data associated with a target behavior/task is used to con-
struct a program-path tree, as these behaviors are typically executed by a sin-
gle thread. This work focuses on the program-paths since our empirical findings
show that using program-path instead of raw events is quite effective at abstract-
ing host behaviors. Additionally, it offers significant computational benefits over
more complex provenance/knowledge graph models.

3.2 Fusion of Host Behaviors

A behavior instance, such as a process-tree in our case, consists of a series
of events connected semantically. Program-path identifies the path to the pro-
gram initiated by an event. A fine-grained associations between these behavior
instances can provide high-level abstraction for generating effective behavioral
model.

TapTree consolidates behavior instances using two widely used approaches for
behavioral abstraction— path-based approach [2,3,20] by splitting up process-
trees into paths and contextual-representation based approach [10] by extracting
sub-tree as an instance of a behavior. The following sections cover TapTree’s
approach to behavior consolidation.

Temporal Tree Set Generation. A temporal tree set is a collection of unique
task process-trees where the trees with the same number of elements and rela-
tions/edges are merged. Because the trees are weighted, the weight of an edge
between two or more similar trees is equal to the sum of the weights of its edges.
As the trees are weighted, the edge’s weight is equal to the maximum of its
edges’ weights.

Formally, a temporal tree set F ⊆ T of task trees is a set of (n ≥ 0) disjoint
weighted directed trees such that,

– For all P = (VP , EP , RP), Q = (VQ, EQ, RQ) ∈ F , VP �= VQ, EP �= EQ,
RP �= RQ,

– For all r ∈ R where VP = VQ and EP = EQ, p ∈ P and q ∈ Q
r = Max(wp(ep), wq(eq)).

Clustering Trees. This method consolidates the relationships within a tree in
order to avoid repeating patterns. Duplicate relations/edges at the leaf level of
the tree are merged in this stage.

A clustering of the leaves of the tree T can be defined by cutting a subset
of edges C ⊆ E. One method for achieving this is to solve the max-diameter
min-cut partitioning problem [21]. We define a partition level {L1, L2, . . . , LN}
of L to be an admissible clustering if it can be obtained by removing some edge

552 M. Mamun and S. Buffett

set C from E and assigning leaves of each of the resulting connected components
to a set Li(where N ≤ |C| + 1).

Let T = (V,E,R) be a directed tree containing two edges e1 = (u1, v1, r1)
and e2 = (u2, v2, r2) with u1 �= v1, u2 �= v2, u1 = u2, v1 = v2 where {v1, v2}
are leaf nodes. Merging e1 and e2 results a new tree T ′ = (V ′, E′, R′), where
V ′ = (V \{u2, v2}), E′ = (E\{e2}), r′ ∈ R′ = r, or Max(w(e1), w(e2)) if r1 �= r2.

Table 1. TapTree baseline model generation and matching efficiency

Method #Trees Baseline generation
(in s)

Pattern matching
(in ms)

Temporal tree set 3501 135.51 –

Clustered trees 2372 163.25 65.3992

Semantic aggregation 36 4301.83 47.0608

Semantic Aggregation. After redundant instance aggregation, we deduce the
semantics of a behavior instances naturally by combining trees derived from
clustered trees. Identifying a pattern, whether it is a new one to aggregate or a
previously discovered one, can help in averting instances of repetitive behavior.

Recall, a naive way to obtaining the semantic representation of a behaviour
instance is to consider all the trees derived from the events. However, this app-
roach may work only if the baseline semantics of behavior (temporal tree set) is
decently small or it does not need updating over time. In practice, this technique
is not efficient from the view point of detection (matching) for a large enterprise
system where thousands of flow of events need to be examined in a certain
period. Additionally, this assumption is frequently incorrect due to the way tree
relations are weighted differently to represent the semantics of behaviour and
the effect of noisy events.

Induced Subtree: Given a tree pair (T1, T2) where T1 := (V1, E1, R1), T2 :=
(V2, E2, R2), we say T2 is an induced subtree of T1 denoted by T2 	 T1, if
and only if,

1. V2 ⊆ V1 and E2 ⊆ E1,
2. Filiation relationships in T2 must be preserved in T1. That is, parent-child

relations for all e = (u, v) ∈ T2 is identical to that of T1,
3. The left-to-right ordering of siblings in T2 must be a subordering of the asso-

ciated nodes in T1.

Growing Baseline Trees: Using consecutive growth options (forward, backward,
and inward) as described in [8] for searching a given behavior pattern against
baseline patterns ensures a complete and non-repetitive search in the pattern
space. In this manner, behavior pattern trees are iteratively merged if they are

TapTree: Process-Tree Based Host Behavior Modeling 553

not induced subtrees of the baseline trees in order to construct a baseline
behavior model.

Let Ta = (Va, Ea, Ra) and Tb = (Vb, Eb, Rb) be two directed trees. A merging
of two trees (Ta∪Tb) results a new tree Tab = (Vab, Eab) such that Eab = Ea

⋃
Eb

and Vab = Va

⋃
Vb that satisfies Va1 ∈ Vb or Vb1 ∈ Va where Va1 and Vb1 are the

roots of Ta and Tb respectively.
Table 1 outlines a comparative analysis of the aforementioned methods for

behavior consolidation in relation to baseline construction. We present the vol-
ume of behavior patterns and the execution time (in seconds) required to gen-
erate the pattern in each phase of the baseline generation model in the number
of trees and baseline generation column of the table.

3.3 Behavioral Anomaly Detection

Behavioral anomaly detection (BAD) is expected to effectively resolve a vari-
ety of security issues by detecting deviations from a host’s normal behavioral
patterns. BAD enables the monitoring of applications for malicious behavior
(e.g. intrusion, compromise detection), thereby improving protection against
Zero Day attacks. Host behavior abstraction model discussed in the previous
section can be used for behavioral anomaly detection such as APT attacks.
Given the behavior representation for any host or server we can utilize (1) unsu-
pervised model/ one-class classifier (tree pattern matching) or (2) supervised
model/ binary classifier (sequential pattern matching) to identify evidence of
anomalous behavioral events.

The tree pattern matching algorithm compares a sequence of operations to
a baseline model in order to determine whether a task is abnormal. The tree
search method allows for a trade-off between recall and the false positive rate
in detection. Note that an exhaustive search of the tree will always return the
prototype that is closest to the input vector. However, alternative search methods
can be used to determine a task that is a close match to the baseline but not
necessarily an exact match.

Sequential pattern-based analysis works specifically on a set of event traces
(i.e. sequences) extracted from the task trees, and identifies common temporal
patterns that reside in those sequences. This can be used to establish a model
of baseline activity, against which new activity can be measured to determine
the likelihood that the new activity appears as expected and is not malicious,
or to construct a classification model on labeled data in the case that sufficient
samples of malicious activity can be obtained.

In the following, we discuss tree pattern queries and sequential pattern
queries in detail that were used to evaluate TapTree’s efficacy in identifying
behavioral abnormalities.

Tree Pattern Queries. We conduct a systematic study of tree matching algo-
rithms that determine the likelihood of a pattern occurring by performing a
recursive comparison on each node of the tree. When a mismatch is detected,
the comparison procedure is terminated.

554 M. Mamun and S. Buffett

Typically, queries on trees are executed using one of two classic graph traver-
sal strategies: breadth-first search (BFS) or depth-first search (DFS). We use
a modified DFS graph-querying algorithm for tree pattern queries. DFS can
expand one intermediate result at a time, starting from the first variable in the
pattern and continuing to the next ones until the whole pattern is matched.
DFS can expand a single intermediate result at a time, beginning with the first
variable in the pattern and progressing through the remaining variables until
the entire pattern is matched.

Let (Ti, P) be the baseline trees (target host behavior model) T and a pat-
tern tree P pair where children of all nodes are labelled and ordered. P matches
at node t if there is a 1 − 1 mapping from nodes of P to T such that: 1) root of
P , RP ↔ t and 2) if ∃(i ∈ P ↔ j ∈ T), all the children follows. Let λv be the
path from RP to v. v matches T at node u ∈ T if λv matches T at u.

Exact Match: In this method, the pattern tree P must be matched exactly with
any of the trees in the baseline patterns with respect to node label, inheritance,
and order relationship. An exact match of a pattern P into a baseline tree T is
a mapping Fexact : P −→ T for each nodes of P that satisfies:

– For each u ∈ P, label(u) = label(F(u))
– If ∃ui → uj ∈ P then F(ui) is a parent of F(uj) ∈ T . If ui ⇒ uj ∈ P , F(uj)

is a descendant of F(ui) ∈ T
– For any edge e : ui ⇒ uj ∈ P where label(ui) = label(F(ui)) and label(uj) =

label(F(uj)), e(c) ≤ F(e(c)) where c is the frequency count of the relation
such as ui ⇒ uj

– For any (ui, uj) ∈ P if ui is to the right of uj , F(ui) is to the right of F(uj).

Partial Match: In this method, the pattern tree P must be matched partially
with any of the trees in the baseline model such that the root element and all
elements connected directly and indirectly to the root are matched with respect
to node label, inheritance and order relationship to the baseline tree. A partial
match pattern P into a baseline tree T is a mapping Fpartial : P −→ T that
returns R that satisfies:

– Let ∃R
– If ∃ui → uj ∈ P then F(ui) is a parent of F(uj) ∈ T . If ui ⇒ uj ∈ P , F(uj)

is a descendant of F(ui) ∈ T
– ∃ edge e : ui ⇒ uj ∈ P where label(ui) = label(F(ui)) and label(uj) =

label(F(uj)), e(c) ≤ F(e(c)) where c is the frequency count of the relation
such as ui ⇒ uj implies e ∈ R

– R ⊆ P

Scoring Matched Patterns: While exact matches do not require a threshold for
detection, partial matches require the computation of a score in order to deter-
mine if they are anomalous. Following pattern matching, we establish a threshold
for detecting malicious task trees. That is, pattern task-process-trees with a score
greater than the threshold are deemed abnormal.

TapTree: Process-Tree Based Host Behavior Modeling 555

The percentage of items that match is used to calculate the score for a partial
match. We consider the same weight or variable weight based on the depth of the
element in the tree for the scoring calculation. Our intuition here is to prioritize
the matches that are deeper in the tree. For a given pattern T , let R be the
partial match tree for the pattern, T be the baseline tree, ω be the weight and
δ represent the threshold. Partial match for the same weight is determined by:

– k =
|R|∑

i=1

ωi(= 1) and l =
|T |∑

i=1

ωi(= 1)

– x = k/l
– If x ≥ δ then Match Else Not Match

A partial match with variable weight calculates the pattern matching score
based on the item’s depth in a tree. Partial match for the variable weight is
determined by:

– k =
|R|∑

i=1

ωi(= depth(Ri)) and l =
|T |∑

i=1

ωi(= depth(Ri)

– x = k/l
– If x ≥ δ then Match Else Not Match.

Sequential Pattern Analysis. We propose the use of sequential pattern anal-
ysis on the set of task trees as a means for exploiting the temporal nature of
the data. Specifically, a set of traces of activity is extracted from each task tree,
where each trace is a sequence of actions performed as part of that task. Given a
set of such traces, sequential pattern analysis, using such techniques as sequential
pattern mining and classification, can be conducted to identify common patterns
of interest, which can then be used to help determine the likelihood of a task
containing malicious activity.

Sequential pattern mining (SPM) [22,23] is a collection of techniques that
focus on the identification of frequently occurring patterns of items (i.e., objects,
events, etc.), where ordering of these items is preserved. Let I be a set of
items, and S be a set of input sequences, where each s ∈ S consists of
an ordered list of itemsets, or sets of items from I, also known as transac-
tions. A sequence 〈a1a2 . . . an〉 is said to be contained in another sequence
〈b1b2 . . . bm〉 if there exist integers i1, i2, . . . , in with i1 < i2 < . . . < in such
that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . A sequence s ∈ S supports a sequence s′

if s′ is contained in s. The support sup(s′) for a sequence s′ given a set S of
input sequences is the percentage of sequences in S that support s′, and is equal
to sup(s′) = |{s ∈ S|s supports s′}| /|S|. A sequence s′ is deemed a sequential
pattern if sup(s′) is greater than some pre-specified minimum support. Such a
pattern with a total cardinality of its itemsets summing to n is referred to as an
n-sequence or n-pattern. A sequential pattern s′ is a maximal sequential pattern
in a set S′ of sequential patterns if ∀s′′ ∈ S′ where s′′ �= s′, s′′ does not contain
s′. The general goal of sequential pattern mining is then to identify the set S′

556 M. Mamun and S. Buffett

that contains all (and only those) sequences that are deemed sequential pat-
terns according to the above. In some cases, the set consisting of only maximal
sequential patterns is preferred.

Given a supervised learning model in which input sequences are assigned
and labeled according to two or more classes, sequence classification [24–26]
techniques can be used to attempt to classify new sequences, by using frequent
sequential patterns as features in the classification. In addition to the above
SPM model, consider the addition of a set of class labels and a labeling function
� : S → L that labels the input set. S is thus a set of examples, where each
example s ∈ S can be represented by a set of features from the set SP ′ of fre-
quent sequential patterns. Selected features should exhibit each of the following
properties:

– High frequency
– Significantly higher representation in one class than the other(s)
– No redundancy.

Given these identified features, standard machine learning based classification
methods such as SVM or Näıve Bayes can be used to build a classification model
and label new instances accordingly by considering the feature patterns that they
do and do not contain.

Sequential pattern analysis can be used either 1) to obtain a baseline model
for normal activity, against which new activity can be measured in order to
identify potential anomalies, or 2) to train a supervised classifier on labeled data
containing both baseline and malicious activity in order to classify new instances
as benign or malicious. In the former case, sequential pattern mining can be used
to identify frequent patterns that occur typically in the baseline activity, which
can then be used to measure common volumes of noise, i.e. activity that does
not conform to identified regular patterns, within the baseline data in order to
ascertain a tolerable level. Noise from new activity can then be measured against
these tolerance levels, and any excessively noisy activity can then be identified
as potentially anomalous. For the latter, a classifier can be trained to detect
malicious traces, as outlined above, if the required labeled data exists.

4 Experiment and Evaluation

Our experiment is conducted on a workstation equipped with an Intel Core i7-
10750H processor running at 2.6 GHz, 128 GB of RAM, and six cores. For data
extraction, process tree construction, training, and tuning model we use Spark
3.0.2 and Python libraries.

4.1 Experiment Dataset

We choose OpTC dataset as it enables significant study in the area of process
trees. Process trees encapsulate sequential data in log events that are semanti-
cally related but chronologically distorted. Enterprise operating systems are, by

TapTree: Process-Tree Based Host Behavior Modeling 557

definition, process-oriented. Each process can be traced back to the process that
launched it; each state change can be traced back to the process that caused it
to occur.

We evaluate TapTree mainly on OpTC dataset: a benign dataset from 5
hosts, a malicious dataset from 16 hosts. To perform in-depth analysis and min-
ing of log entries within a day/host, we separate each log entry into seven key
characteristics (object, action, processID, ParentProcessID, image path, time,
and host) and constructed process-trees from the raw events for the benign and
malicious hosts. This way, we were able to generate 91,242 process trees from
the benign dataset, but only 39 from the malicious dataset.

We consider user-specific artifacts because the same user may approach a
task differently each time it is completed, or because various users may offer
similar actions for a given task. Therefore, for benign activity dataset, we target
all activities conducted by five targeted hosts over a seven-day period.

Malicious activities in Darpa-OPTC dataset has been generated mainly from
three APT activities on windows systems: Remote Code Execution and Shell
Code Injection aka Beacon (Cobalt Strike), Remote Code Execution and Lat-
eral Movement aka Powershell Empire, Credential Harvesting aka Customized
Mimikatz. APT activities come with an extremely small percentage of any
dataset (less than 0.001% in Darpa-OpTC dataset). For example, Darpa-OpTC’s
red team targets just 27 hosts out of 1000 networked hosts for launching a series
of APT attacks while engaging in benign activities. We capture malicious events
from all the hosts over

Prior to matching, the evaluation dataset is filtered to remove trees that do
not meet specified thresholds. For example, the smallest threshold tested used a
minimum of 3 nodes and a minimum depth of 2, resulting in 44608 benign trees
and 27 malicious trees, whereas the strictest threshold tested used a minimum
of 5 nodes and a minimum depth of 3, resulting in 13,146 benign trees and 16
malicious trees.

4.2 Evaluation

We evaluate the effectiveness of TapTree for behavior abstraction from three
aspects. (1) Comparative study on the effectiveness of tree and sequence based
data mining for user behavior footprint (2) How does query accuracy vary when
pattern size in queries changes? (3) How does the amount of training data affect
query accuracy? (4) The performance penalty associated with various thresh-
old and pattern queries. Evaluations are conducted on each of the tree pattern
queries and sequential pattern analysis approaches using the experiment dataset
from DARPA OpTC dataset.

Tests are carried out at several thresholds such as the percentage of partial
match, the minimum number of nodes and depth (tree pattern queries app-
roach), and minimum likelihood of trace maliciousness needed for classification
(sequential pattern analysis approach). Performance is measured using k-fold
(k = 10) cross-validation for the larger set of benign instances, and leave-one-
out cross-validation for the smaller set containing malicious instances.

558 M. Mamun and S. Buffett

To analyze TapTree’s accuracy in abstracting host behavior and compare
the efficacy of behavior models (see Sect. 3.2), we use five users’ data (chosen at
random from 1000 windows hosts) to construct a baseline host model, and any
user except those five for pattern matching. Table 1 shows the average run-time
required to match a tree. While the time required to generate baseline trees
from semantic aggregation is longer than that required to generate clustered
trees or a Temporal Tree set (4301.83 s versus 163.25 and 135.51 s, respectively),
the result is a significantly smaller number of behavioral trees for matching (36
trees compared to 3501 trees). This reduction in the tree size helps improve tree
matching time. That is, compared to Clustered Tree, the average time required
to match a new behaviour tree with semantic aggregation can be lowered by 39%.
Although there is a cost associated with the baseline generation time associated
with semantic aggregation of trees, the baseline tree generation process only
needs to be performed once, whereas matching trees is a recurrent activity.

Fig. 3. Performance of TapTree on different baseline method: Semantic aggregation vs
clustered Trees.

Fig. 4. Performance of TapTree on different threshold (baseline method: Semantic
aggregation)

Tree Pattern Matching Methods: TapTree methods were found to perform
extremely well when compared with existing methods, particularly when lever-
aging various threshold scores for partial matches as well as conducting proper
tree filtering based on minimum node and depth values. Table 2a and 2b depict
results of TapTree methods (Semantic aggregation, Clustered Tress and Sequence

TapTree: Process-Tree Based Host Behavior Modeling 559

Table 2. TapTree performance compared to other methods on OpTC dataset [16].
TapTree data is in the tree format (#Minimum depth = 2, #Minimum nodes = 3)

Method Accuracy FP Rate

TapTree (Semantic aggregation) 0.9913 0.008

TapTree (clustered trees) 0.9739 0.026

TapTree (sequence mining) 0.9901 0.001

DeepTaskAPT(Trace) [2] 0.9854 0.011

DeepTaskAPT(Task) [2] 0..9641 0.006

DeepLog [3] 0.8354 0.161

Random Forest 0.9052 0.083

(a) partial match threshold = 0.5

Method Recall

TapTree (Semantic aggregation) 1.0 (FPR ≈ 0.029)

TapTree (clustered trees) 1.0 (FPR ≈ 0.067)

TapTree (sequence mining) 0.8571

DeepTaskAPT (Trace) [2] 0.7587

DeepTaskAPT (Task) [2] 0.8299

DeepLog [3] 0.7202

Random Forest 0.6784

(b) partial match threshold = 0.9

Mining) against existing approaches (DeepTaskAPT (Trace) [2], DeepTaskAPT
(Task) [2], DeepLog [3] and Random Forest). When using weighted partial
matching filtering based on five minimum nodes and three minimum depth for
trees, Semantic aggregation achieved high accuracy (0.9913) over all existing
approaches, while posting a false positive rate just slightly higher than Deep-
TaskAPT (Task). Increasing the partial match percentage threshold score from
0.5 to 0.9 allows both TapTree methods to achieve a recall score of 1.0, which
means that they were able to capture all malicious tasks, while only increasing
false positive rates to 0.029 and 0.067, respectively. While the Sequence Mining
TapTree method posted accuracy and recall scores slightly lower than seman-
tic aggregation, it produced the lowest false positive rate of all methods, and
outperformed all existing methods for each of the accuracy, fp-rate and recall
metrics. Performance of sequential pattern-based analysis is examined in detail
in the next section.

Table 3 illustrates the performance of tree pattern queries algorithms dis-
cussed in Sect. 3.3 based on semantic aggregation baseline model (see Sect. 3).
Except in cases when perfect matches are required, matching threshold scores
(discussed in section Tree pattern queries) has a significant impact on Tap-
Tree’s anomaly detection performance. The use of partial matches enables finer

560 M. Mamun and S. Buffett

Table 3. TapTree performance with different threshold scores and tree pattern queries
algorithms (baseline model: semantic aggregation, Min Node = 5, Min Depth = 3)

Method Threshold Accuracy Recall FP rate

Exact match – 0.900547 1.0 0.099574

Partial match (same weight) 0.9 0.926911 1.0 0.073178

0.7 0.973028 0.6875 0.026624

0.5 0.989439 0.4375 0.009889

Partial match (variable weight) 0.9 0.923948 1.0 0.076145

0.7 0.957301 0.875 0.042599

0.5 0.975232 0.5 0.02419

Fig. 5. TapTree performance when jointly tuning minimum number of nodes and tree
depth (N-D)

tuning of TapTree’s performance to optimize results for recall, accuracy, and
false positive rate (FPR). A higher threshold score value ensures improved recall
performance, whereas a lower score improves accuracy and FPR.

Figure 3 depicts the comparative performance on semantic aggregation vs
clustered tree with respect to accuracy and recall. As the semantic aggregation
baseline method achieves the best performance, Fig. 4 describes the impact of
partial match thresholds with a given minimum number of nodes and tree depth.
In Fig. 5, we jointly tune minimum number of nodes (N) and tree depth (D).
TapTree clearly achieves the best performance when N-D is 3-2 (accuracy/FPR)
and 5-3 (recall) for a given threshold of 0.7.

Sequential Pattern-Based Methods: Performance was also measured for
a sequential pattern-based classifier tasked with discerning malicious activity

TapTree: Process-Tree Based Host Behavior Modeling 561

Table 4. Results of sequential pattern-based malicious behaviour detection, at various
classification thresholds

Threshold TPR TNR Precision Accuracy FPR

0.1 1 0 0.00037 0.00037 1

0.2 1 0 0.00037 0.00037 1

0.3 0.92063 0.54612 0.00074 0.54633 0.45388

0.4 0.86243 0.99012 0.03080 0.99021 0.00988

0.5 0.83069 0.99717 0.09653 0.99724 0.00283

0.6 0.67196 0.99936 0.27632 0.99938 0.00064

0.7 0.42857 0.99997 0.81375 0.99990 0.00003

0.8 0.30159 1 1 0.99988 0

0.9 0 1 – 0.99978 0

Fig. 6. Receiver operating characteristics (ROC) curve to demonstrate performance of
sequential pattern-based classifier at various threshold values

from benign, trained on labeled benign and malicious data extracted from the
task trees, using techniques introduced in Sect. 3.3. In all, the training set con-
sisted of 5,15,888 benign traces and 189 malicious cases, with k-fold (k = 10)
cross-validation employed for the benign cases, and leave-one-out cross-validation
employed for the malicious cases. Testing was conducted at various thresholds,
where for a threshold of x, a test case was classified as malicious if and only if
the classifier’s deemed likelihood of maliciousness was greater than or equal to x.

Table 4 shows performance at each threshold, in terms of true positive rate
TPR (i.e. recall, the percentage of malicious cases correctly classified as such),
true negative rate TNR (i.e. the percentage of benign cases correctly classified
as such), precision, accuracy and false positive rate FPR. Figure 6 depicts the

562 M. Mamun and S. Buffett

receiver operating characteristics (ROC) curve, plotting the true positive rate
against the false negative rate.

Results show that the method is highly effective at correctly classifying both
benign and malicious traces, as evidenced by the high true positive and negative
rates, particularly at the 0.4 and 0.5 thresholds, as well as an ROC curve that
lies well to the top and left of the dashed line in the graph representing random
guess.

Precision is low at most levels due to the highly unbalanced nature of the
data, meaning that even high accuracy levels can result in a large number of false
positives. For example, at the 0.5 threshold, benign cases are correctly classified
almost 98% of the time, however this amounts to 1460 false positives compared
to 156 true positives at that threshold level. However, at higher threshold levels
the precision performs remarkably well, reaching 81% at 0.7 with only 16 false
positives (FPR = 0.0003) while still identifying 43% of malicious cases, and 100%
precision at 0.8 while still identifying 30% of malicious cases.

5 Related Work

Sequence approaches such as [2–4,14,27] take log entries and concatenate them
chronologically into sequences. These techniques are primarily concerned with
capturing temporal and sequential connections between log entries, and often
make use of deep learning techniques such as Long Short-Term Memory (LSTM)
or machine learning tool such as signature kernel, to learn from previous events
and forecast future events. Although deep learning, like LSTM, may recall long-
term dependencies in sequences, it does not compare every behavior of the user
explicitly [1], and ignores interactive relationships between events or hosts [1,2].
This can hinder performance possibly prevent effective identification of APTs.
Additionally, some of them demand a considerable amount of labeled (malicious)
data during the training process or a high number of features for model cre-
ation that might not be available in real-world deployment. In [1,2], the authors
address some of these issues through alternative methods such as finding logical
relationships between user tasks prior to applying deep learning [2], and utilizing
a graph that depicts a user’s interaction with hosts [1,28].

Meanwhile, a recent approach known as SK-Tree [18] uses streaming trees
to represent computer processes, and presents a malware detection algorithm
leveraging a machine learning tool (signature kernel [29]) for time series data,
with promising results. While the SK-Tree study focused on one day of data
from a single user (0201), we attempt to expand our reach and leverage more of
the dataset to include data captured from multiple users over multiple days.

6 Limitations

This section discusses some of the inherent limitations of the design choice, as
well as the ramifications and potential extensions of this work.

TapTree: Process-Tree Based Host Behavior Modeling 563

TapTree’s design relies on process-tree to abstract host activities. Therefore,
it may not be effective at detecting attacks that do not result in spawning new
processes in the operating system. For example, attacks such as buffer overflows,
which do not involve the creation of a new process, are not protected by Tap-
Tree. Baseline model may require periodic retraining due to semantic shifts in
user/host behaviour and addition of previously unseen behaviour patterns. An
analyst can identify new host behaviours over the course of time, sanitise them,
and decide carefully whether to include the new behaviours in the baseline model
for re-training. Our empirical experiment shows that TapTree can recognise an
unknown tree pattern in milliseconds, while retraining with fewer new patterns
takes seconds.

The lack of attack dataset on which to train malicious behavior classifiers
prompts further investigation into sequential pattern-based methods for devel-
oping baseline models. Also worthwhile of further study is a comparison of our
methods to relative graph-based schemes where scalability is an issue, as well as
investigation into more efficient partial matching, a robust baseline model, and
the exploration of new tree matching algorithms.

Despite the algorithms’ poor worst-case time complexity for constructing the
initial baseline tree, which is quadratic in the number of inputs, experimental
evaluations show that they perform exceptionally well in terms of average run
time, especially for pattern matching.

7 Conclusion

We present a detailed study on the effectiveness of performing sequential pattern
matching for anomaly detection. To facilitate this, we present TapTree, a task-
process-tree based model for APT detection on system log data that represents
host log data in such a way that facilitates detection of malicious behaviour.
Two distinct approaches for this detection are explored. The first attempts to
match new data to existing baseline behaviour, represented as temporal trees, in
an attempt to identify anomalies that could signify attack behaviour. The second
extracts sequential behaviour called traces from the trees for existing baseline
and malicious behaviour samples, and uses sequential pattern mining to identify
critical patterns for use in a malicious behaviour classification model.

As for detection performance evaluated using the DARPA OpTC dataset,
we demonstrate that one particular TapTree tree matching algorithm, seman-
tic aggregation, achieved high accuracy over all existing approaches, while both
semantic aggregation and Clustered Trees were found to achieve a perfect recall
by adjusting tree matching thresholds, while still maintaining low false positive
rates. The sequential pattern-based TapTree method, on the other hand, posted
the lowest false positive rate of all methods, and outperformed all existing meth-
ods for each of the accuracy, fp-rate and recall metrics.

564 M. Mamun and S. Buffett

Acknowledgement. We would like to thank the Communications Security Estab-
lishment Canada team, especially Dr. Benoit Hamelin for supporting the project and
providing the materials needed for this work. A special thanks to Kevin Shi from the
University of Windsor for all the support during his co-op term with NRC.

References

1. Liu, F., Wen, Y., Zhang D., Jiang, X., Xing, X., Meng, D.: Log2vec: a heteroge-
neous graph embedding based approach for detecting cyber threats within enter-
prise. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1777–1794 (2019)

2. Mamun, M., Shi, K.: DeepTaskAPT: insider apt detection using task-tree based
deep learning. arXiv preprint arXiv:2108.13989 (2021)

3. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285–1298 (2017)

4. Tatam, M., Shanmugam, B., Azam, S., Kannoorpatti, K.: A review of threat mod-
elling approaches for apt-style attacks. Heliyon 7(1), e05969 (2021)

5. Lee, K.H., Zhang, X., Xu, D.: LogGC: garbage collecting audit log. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 1005–1016 (2013)

6. Liu, Y., et al.: Towards a timely causality analysis for enterprise security. In: NDSS
(2018)

7. Hossain, M.N., et al.: SLEUTH: real-time attack scenario reconstruction from cots
audit data. In: The 26th USENIX Security Symposium, pp. 487–504 (2017)

8. Zong, B., et al.: Behavior query discovery in system-generated temporal graphs.
arXiv preprint arXiv:1511.05911 (2015)

9. Han, X., Pasquier, T., Bates, A., Mickens, J., Seltzer, M.: UNICORN: run-
time provenance-based detector for advanced persistent threats. arXiv preprint
arXiv:2001.01525 (2020)

10. Zeng, J., Chua, Z.L., Chen, Y., Ji, K., Liang, Z., Mao, J.: WATSON: abstracting
behaviors from audit logs via aggregation of contextual semantics. In: Proceedings
of the 28th Annual Network and Distributed System Security Symposium, NDSS
(2021)

11. Mamun, M., Lu, R., Gaudet, M.: Tell them from me: an encrypted application
profiler. In: Liu, J.K., Huang, X. (eds.) NSS 2019. LNCS, vol. 11928, pp. 456–471.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36938-5 28

12. Zhang, K., Xu, J., Min, M.R., Jiang, G., Pelechrinis, K., Zhang, H.: Automated it
system failure prediction: a deep learning approach. In: 2016 IEEE International
Conference on Big Data (Big Data), pp. 1291–1300. IEEE (2016)

13. Zheng, P., Yuan, S., Wu, X., Li, J., Lu, A.: One-class adversarial nets for fraud
detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, no. 01, pp. 1286–1293 (2019)

14. Liu, X., et al.: LogNADS: network anomaly detection scheme based on semantic
representation. Future Generation Computer Systems 124, 390–405 (2021)

15. Nammous, M.K., Saeed, K.: Natural language processing: speaker, language, and
gender identification with LSTM. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N.
(eds.) Advanced Computing and Systems for Security. AISC, vol. 883, pp. 143–156.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3702-4 9

http://arxiv.org/abs/2108.13989
http://arxiv.org/abs/1511.05911
http://arxiv.org/abs/2001.01525
https://doi.org/10.1007/978-3-030-36938-5_28
https://doi.org/10.1007/978-981-13-3702-4_9

TapTree: Process-Tree Based Host Behavior Modeling 565

16. Weir, C., Arantes, R., Hannon, H., Kulseng, M.: Operationally transparent cyber
(OpTC) (2021)

17. Mazzawi, H., et al.: Anomaly detection in large databases using behavioral pattern-
ing. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pp. 1140–1149. IEEE (2017)

18. Cochrane, T., Foster, P., Chhabra, V., Lemercier, M., Salvi, C., Lyons, T.: SK-tree:
a systematic malware detection algorithm on streaming trees via the signature
kernel. arXiv preprint arXiv:2102.07904 (2021)

19. Kent, A.D.: Comprehensive, multi-source cyber-security events data set. Technical
report, Los Alamos National Lab. (LANL), Los Alamos, NM, USA (2015)

20. Wang, Q., et al.: You are what you do: hunting stealthy malware via data prove-
nance analysis. In: NDSS (2020)

21. Balaban, M., Moshiri, N., Mai, U., Jia, X., Mirarab, S.: TreeCluster: clustering
biological sequences using phylogenetic trees. PLoS One 14(8), e0221068 (2019)

22. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
eleventh international conference on data engineering, pp. 3–14. IEEE (1995)

23. Mooney, C.H., Roddick, J.F.: Sequential pattern mining-approaches and algo-
rithms. ACM Comput. Surv. (CSUR) 45(2), 1–39 (2013)

24. Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 342–346 (1999)

25. Lesh, N., Zaki, M.J., Oglhara, M.: Scalable feature mining for sequential data.
IEEE Intell. Syst. Appl. 15(2), 48–56 (2000)

26. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM
SIGKDD Explor. Newsl. 12(1), 40–48 (2010)

27. Shen, Y., Mariconti, E., Vervier, P.A., Stringhini, G.: Tiresias: Predicting security
events through deep learning. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 592–605 (2018)

28. Li, Z., Cheng, X., Sun, L., Zhang, J., Chen, B.: A hierarchical approach for
advanced persistent threat detection with attention-based graph neural networks.
Secur. Commun. Netw. 2021, Article ID 9961342 (2021). https://doi.org/10.1155/
2021/9961342.

29. Király, F.J., Oberhauser, H.: Kernels for sequentially ordered data. J. Mach. Learn.
Res. 20(31), 1–45 (2019)

http://arxiv.org/abs/2102.07904
https://doi.org/10.1155/2021/9961342
https://doi.org/10.1155/2021/9961342

Network Security and Forensics

Dependency-Based Link Prediction for Learning
Microsegmentation Policy

Steven Noel(B) and Vipin Swarup(B)

The MITRE Corporation, McLean, VA 22102, USA
{snoel,swarup}@mitre.org

Abstract. This paper describes a novel approach for predicting future links in
cyber networks and applying the predictions to learn optimal microsegmentation
policy rules. While link prediction has been applied for anomaly detection in
computer networks, ours is the first application of link prediction for formulating
network access policy. Link prediction adds an element of adaptivity for building
baseline policy models, by predicting near-term requirements for network access.
For predicting new links, those observed by at least one member of a node group
are predicted to occur for all other members. This is a novel departure from the
usual approach to link prediction, which is based on node affinity rather than
shared dependencies. In our experiments with real enterprise network data, our
approach significantly outperforms traditional link prediction, in which we apply
established formulas for node similarity when comparing affinity-based versus
dependency-based edge induction. For robustness to variation in future network
behavior, we tune link prediction models by applying a low-pass signal filter to
the prediction-quality curve and adaptively blend argmax and center of mass to
optimize the prediction sensitivity parameter.

Keywords: Microsegmentation · Network access policy · Link prediction

1 Introduction

The increased complexity of enterprise networks and inadequacies of legacy security
controls has led to the development of “zero trust” principles [1, 2]. Zero trust assumes
that attackers could already be operating inside of a network. An enterprise must con-
tinually assess risks to its network assets and deploy protections to mitigate those risks,
including requiring authorization for each request for access to network resources.

A key technology for implementing zero trust is network microsegmentation [3].
Traditionally, network segmentation has been oriented on “north-south” traffic, i.e.,
client-server interactions across a security perimeter. But in today’s complex enterprise
networks, security perimeters are ineffective since most traffic flows “east-west” (server
to server), requiring more granularity in network access controls.

One data-driven approach to the formulation of microsegmentation policy is to clus-
ter nodes based on similarities in their observed traffic links, and to define access rules
at the cluster level. However, clustering has the potential to induce false positive links,

© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 569–588, 2022.
https://doi.org/10.1007/978-3-031-15777-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_31&domain=pdf
http://orcid.org/0000-0002-8540-0702
http://orcid.org/0000-0002-7892-4743
https://doi.org/10.1007/978-3-031-15777-6_31

570 S. Noel and V. Swarup

increasing exposure while providing no benefit to the organization. There is an estab-
lished area of research known as graph link prediction. To date, link prediction has not
been applied for the formulation of network access policy. Also, the semantics of links
for other application domains (such as social networks) significantly differ from those
for cyber networks.

To address the challenges of data-driven formulation of microsegmentation rules,
we adapt formulas from the field of link prediction for measuring the similarity of nodes
in terms of their neighborhood graph topology. Recognizing the inherent differences in
the semantics (meaning) of links for cyber networks, we introduce dependency-based
rather than affinity-based semantics. That is, once we have formed a group of sufficiently
similar nodes, the links to other nodes observed for at least one member of the group
are predicted to occur for all other members (shared dependencies). This differs from
traditional link prediction, which predicts that similar nodes will link with each another
(shared affinity). In our experiments with real enterprise network data, our dependency-
based link prediction significantly outperforms traditional affinity-based prediction, by
orders of magnitude in many cases.

Link prediction and clustering algorithms have a tunable similarity threshold for
associating nodes. Tuning this threshold is largely unexplored in the literature. In our
experiments, link prediction quality curves tend to vary erratically, so we apply low-
pass signal filtering to extract the main signal. We then estimate the optimal tuning value
through an adaptive blend of argmax and center of gravity.

The observed and predicted new links can be mapped to corresponding policy rules
and enforced within the microsegmentation architecture of a network. They can also
be applied as a baseline policy for resiliency optimization algorithms. Given threat and
defense scenarios (assumed or actual), such algorithms can find an optimal balance
between access to mission-critical resources and the effort required by an adversary to
reach attack goals. Our approach is deployed as a component of MITRE’s Adaptive
Resiliency Experimentation System (ARES), a full-stack solution that combines off-
the-shelf components for data collection and security enforcement with AI-powered
technology for optimizing the resiliency of a network.

Here is summary of the key contributions of this work:

1. This is the first known application of link prediction for formulating network access
policy.

2. We adapt link prediction to adhere to the semantics of cyber networks (dependencies
rather than affinities between nodes).

3. We automatically tune link prediction sensitivity, applying signal filtering and other
techniques to address erratic fluctuations in observed performance curves.

4. Our predicted links provide input to algorithms for optimizing network resiliency to
given cyberattack scenarios.

The next section describes previous work that is most relevant to our approach.
Section 3 describes our approach and its role within a larger capability stack. Section 4
describes results applying our approach to enterprise network data. Section 5 summarizes
this work, conveys our conclusions, and suggests directions for future work.

Dependency-Based Link Prediction for Learning Microsegmentation Policy 571

2 Previous Work

There is an emerging trend of data-driven models for automation and intelligence in
cybersecurity [4, 5]. Still, applications of data science for security have predominantly
focused on detection and response rather than prevention. Thus, automated generation of
policy rules remains a largely unexplored problem.A notable exception is the application
of data mining for the analysis and management of firewall policy rules [6], although
that predates the development of microsegmentation architecture. For the generation of
microsegmentation rules, preliminary work has proposed the application of clustering
algorithms [7, 8]. Our experimental results indicate that clustering yields low precision
in predicting links, which increases the attack surface within a network with no benefit
of providing needed availability to network resources.

Our work is the first known application of link prediction to the problem of learning
network access policy rules. In the absence of threat sources, these rules can be deployed
in full on a network to be defended. These rules can also form a baseline for optimizing
network access policy for maximum resilience in the face of threats (assumed or actual)
[9]. In such cases, a subset of baseline rules can be deployed, with certain allow rules
removed based on optimization tradeoffs. An evaluation framework has been proposed
to assess microsegmentation for network security [10].

Link prediction itself is an active area of research [11–14],which includes approaches
based on similarity indices, probabilistic methods, andmachine learning.While research
addressing the broader problem of evolving graphs (e.g., through graph representation
learning) is still sparse [15], an approachhas beendescribed for distributed linkprediction
in dynamic graph streams [16]. Current state-of-the-art models for link prediction use
heuristic learning of graph structure features; a multi-scale extension of such models
shows improved performance [17].

Link prediction has been extended to handle multiplex (layered) networks [18],
which has potential application to learning security policy across multiple network lay-
ers. Link prediction has been extended to higher-order structures involving more than
single links, i.e., cliques on three nodes [19]. Our dependency-based semantics can pre-
dict higher-order link structures of arbitrary cardinality, based on the amount of shared
incoming or outgoing links for grouped sets of nodes. Within link prediction, the prob-
lem of automatically selecting a value for a node similarity threshold (defining a set of
sufficiently similar nodes for link induction) has remained unexplored [20]. We solve
this by analyzing the prediction-quality as a function of similarity threshold, applying a
low-pass signal filter for robustness to variation in future network behavior.

Link prediction for cybersecurity has largely focused on anomaly detection, e.g.,
simulated evolution to combine heuristics for differentiating normal network activity
from anomalous events [21], anomaly detection via statistical techniques based a random
dot product graphmodel [22], tensor factorization for learning patterns of normal activity
from user authentication logs [23], and detecting malicious authentication events via
unsupervised graph learning with a logistic regression link predictor [24].

In the commercial sector, microsegmentation policies have been automatically
adapted through workload labeling [25]. Microsegmentation policy has been gener-
ated through clustering based on application implementation information [26]. There

572 S. Noel and V. Swarup

are applications of link prediction for dynamic routing [27], anomaly detection [28, 29],
insider threat protection [30], and forecasting for cyber situational understanding [31].

3 Approach

3.1 Overview

The implementation of microsegmentation is a complex process. It requires ubiqui-
tous log collection, comprehensive threat intelligence, network behavioral analytics,
deployment orchestration, and advanced situational understanding. MITRE’s Adap-
tive Resiliency Experimentation System (ARES) provides a full-stack software solu-
tion that optimizes resiliency for operational networks through zero-trust architec-
ture via microsegmentation as well as authentication system configuration, service
redundancy, and cyber deception. Figure 1 shows our approach to link prediction for
microsegmentation policy as a component of ARES.

Fig. 1. Link prediction functionality as a component of MITRE’s ARES software stack for
optimizing the resiliency of an operational network.

In ARES, flow log data is collected from sensors that span the network and then
curated, i.e., analyzed, merged, and persisted as a coherent and searchable whole. From
the collected flow data, ARES builds a graph model of observed network traffic, and
then extracts features for each network host (graph node) based on topological properties
of the traffic graph. ARES performs link prediction through a process of (1) measuring
host similarities based on traffic-graph features, (2) forming groups of nodes deemed

Dependency-Based Link Prediction for Learning Microsegmentation Policy 573

sufficiently similar, and (3) inducing predicted links based on selected semantics (affin-
ity or dependency-based). It then measures the performance of each link prediction
algorithmic combination, and then choose and tune the best performing one.

In the absence of hypothesized or actual threats, the predicted links can be merged
with the observed ones as a graph model, mapped to policy rules, and deployed in the
network to enforce policy. Or if there is some security situation of concern, the links
graph model can be used as input to a baseline policy for resiliency optimization, e.g.,
genetic algorithms to find a policy with the best balance between access to mission-
critical resources and effort required by an adversary to reach attack goals [9], which
can be deployed on the network. For deployed microsegmentation policy, adversarial
attacks can be carried out, leveraging tools such as Cobalt Strike [32] and CALDERA
[33]. Cyber situational understanding is maintained by exporting key results from the
ARES stack into the CyGraph tool [34–36].

3.2 Node Similarities and Grouping

Different graph models, features, and similarity/distance measures are possible for clus-
tering and link prediction tasks. A variety of graph models (and corresponding imple-
mentations) are employed in ARES for link prediction and other tasks. The most general
form is a labeled, attributed, directed graph. Labels are needed as unique identifiers for
nodes and edges, e.g., for mapping to policy rules. Relevant attributes for nodes or edges
includemission criticality, attack vulnerability condition, statistics for traffic volume and
temporal aspects, etc. In this paper, for simplicity and consistency with previous work
in link prediction, we employ a simple undirected graph model, with the node similarity
measures described below.

Early work in link prediction [37] includes the Jaccard coefficient as a measure of
similarity for a pair of nodes u and v:

|�(u) ∩ �(v)|/|�(u) ∪ �(v)| (1)

Here, �(u) denotes the set of neighbors of u and |·| denotes set cardinality. The Jaccard
coefficient measures the number of common links (to other nodes) for a node pair, i.e.,
the likelihood of them having common features. That early work also considers the
Adamic-Adar index:

∑

w

1/log|�(w)|, forw ∈ �(u) ∩ �(v) (2)

This refines the simple counting formula of the Jaccard coefficient by weighting
rarer features more heavily. That early work also considers the preferential attachment
score:

|�(u)||�(v)| (3)

Preferential attachment is the idea that nodes adjacent to many other nodes are likely to
themselves become attached, according to a model of network growth.

574 S. Noel and V. Swarup

More recently [38], a resource allocation index has been proposed:
∑

w

1/|�(w)|, forw ∈ �(u) ∩ �(v) (4)

Under an assumption that for unlinked nodes, their common neighbors play the role of
resource transmitters, the resource allocation index is a measure of the total resources
transmitted between nodes u and v. Resource allocation index has a similar form to
Adamic-Adar index. Their differences are insignificant if the degree of commonneighbor
w is small and are great if the degree ofw is large.Thus, resource allocation indexprovides
better performance for networks of higher average degree.

Evenmore recently [39], the CommonNeighbor and Centrality based Parameterized
Algorithm (CCPA) has been proposed for link prediction:

α · |�(u) ∩ �(v)| + (1 − α) · N

duv
(5)

Here, N is the total number of nodes in the graph, duv is the graph distance between
u and v. Given that closeness centrality (average shortest graph distance between two
nodes) is N/duv, then CCPA is seen as a tradeoff between closeness centrality and the
number of shared neighbors (the denominator of Jaccard coefficient), with α ∈ [0, 1] as
the tradeoff parameter. In our experiments, we use the default value of α = 0.8.

As shown inFig. 1, after similaritymeasures have been computed for pairs of nodes in
the observed link graph (theNode Similarity phase of ARES processing), thosemeasures
are applied to form groups of nodes deemed to be sufficiently related. In the Node
Grouping phase, for the node similarities computed via Eqs. (1) through (5), a threshold
t ∈ [0, 1] is applied. If the similarity measure suv for a pair of nodes meets or exceeds
the threshold (suv ≥ t), then the node pair constitutes a group. Predicted links are then
induced for these groups (pairs) of sufficiently similar nodes via Link Induction (as
described in the next section).

In the Node Grouping phase, ARES also applies clustering algorithms as an alter-
native way of forming groups of sufficiently similar nodes. As for the pairwise groups
selected through link prediction similarity formulas, the groups formed through clus-
tering algorithms are passed as input to the Link Induction phase of ARES processing.
The clustering algorithms learn a partitioning of the node set in which each node lies
within a single cluster only. On the other hand, the groupings learned by link prediction
similarities are pairwise (2 nodes) only, with each node appearing in many groups (not a
partitioning of the node set as for clustering). Also, clustering yields higher-cardinality
sets of nodes (beyond just 2 nodes), based on the relative distances between points and
the nature and configuration of the clustering algorithm.

One form of clustering that ARES applies in NodeGrouping is Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDBSCAN) [40]. This is a non-
parametric algorithm that clusters points in high-density regions, marking those in low-
density regions as outliers. HDBSCAN has the advantage of being relatively insensitive
to configuration parameters, i.e., being largely parameter free. Our experiments use
(inverse) Jaccard coefficient as the distance measure for HDBSCAN.

During the Node Grouping phase, ARES also applies agglomerative hierarchical
clustering [41]. Our experiments use average linkage, as intermediate between single

Dependency-Based Link Prediction for Learning Microsegmentation Policy 575

linkage and complete linkage. For hierarchical clustering, we experimented with a vari-
ety of binary-based distance measurements. We report results using Rogers-Tanimoto
distance [42], which performs slightly better than the others in our experiments.

3.3 Link Induction

In the Link Induction phase (part of Fig. 1), ARES processes the groups of nodes learned
from each combination of node similarity function and grouping algorithm. For each
groupof nodes for a given algorithmic combination, it induces a set of new (not previously
observed) links that are predicted to occur in the future. The resulting set of predicted
links are then assessed by comparing them with links that are observed in a subsequent
period.

Traditionally, link prediction has been applied to application domains in which the
graph nodes represent entities of the same type, e.g., users in a social network. In such
domains, graph edges (links) represent affinity relationships. For computer networks,
links represent connectivity between hosts (nodes) of different types (e.g., from a client
to a server). For such networks, we postulate that dependency (rather than affinity) is
the more correct criterion for link prediction.

Our method is novel in that it also considers patterns of network connections that
are consistent with dependency relationships. That is, rather than predicting that two
similarly behaving nodes will themselves link together (show affinity with one another),
it predicts that two such nodes will link with other nodes in the same way (have common
dependencies). In terms of overall prediction quality, our experiments with real cyber
network data show that dependency-based link prediction significantly outperforms
traditional (affinity-based) link prediction.

This is shown in Fig. 2, for a small illustrative example. In this example, Node B
connects with 4 other nodes (C-F), while Node A connects with only 3 of those other
nodes (C-E). Applying the Jaccard coefficient as a similarity measure, the similarity of
Node A and Node B is ¾, which meets our similarity threshold in this example. We thus
consider Node A and Node B to be a sufficiently similar pair (the Node Grouping phase).

Fig. 2. Traditional (affinity based) versus ARES (dependency based) predicted links.

Now, for the Link Induction phase, we consider two kinds of semantics – traditional
link prediction and link prediction using the semantics we apply for network policy
formulation. In our illustrative example, Fig. 2(a) shows how traditional (affinity based)

576 S. Noel and V. Swarup

link prediction predicts that Node A and Node Bwill themselves become linked. Then in
Fig. 2(a), our alternate link prediction semantics (dependency based) predicts that Node
Awill become linked withNode F. This is becauseNode F is the set of nodes with which
Node B is linked (but with which Node A has not yet linked).

In this example, as for all the link prediction algorithms in the Node Grouping
phase, the sufficiently similar group is a pair of nodes. Each node is potentially paired
with all other nodes, i.e., node groupmembership is overlapping. However, the clustering
algorithms are designed to learn an optimal partition of the nodes, so that node group
membership is non overlapping.

Regardless, the Link Induction phase treats all learned node groups in the same way.
That is, each learned group resulting from a given algorithmic combination in the pre-
vious phases is considered separately. For each such group, Link Induction induces a
corresponding set of predicted links (using either affinity-based or dependency-based
semantics). This introduces an additional layer of algorithmic combinations, each pro-
ducing its own set of predicted links. Each resulting sets of predicted links is then assessed
during the Model Selection phase, as described in the next section.

3.4 Model Selection and Tuning

In theModel Selection phase (in Fig. 1), ARES assesses the quality of the links predicted
by each combination of algorithms employed in the previous phases. For this, it compares
the links predicted by a given combination against links that are indeed observed during
the model selection period (after the training period).

More formally, let us denote the potential future links that are predicted to be observed
as Predicted . Links that are observed during the Model Selection period are denoted
Actual. The set of true positive links TP are then those that were predicted and indeed
observed:

TP = Predicted ∩ Actual (6)

False positive links are those that were predicted but were not observed:

FP = Predicted − TP (7)

For cyber networks, as for most application domains, only a small fraction of node
pairs form links. Link prediction exhibits extreme class imbalance since there are many
more negative instances than positive ones. For such unbalanced problems, accuracy is
not a good measure of quality, since it is dominated by the negative instances. Instead,
recall and precision (with associated areas under their curves) are better measures for
evaluating link prediction quality [43].

Recall measures the ability to predict the positive class:

Recall = |TP|/|Actual| = |TP|/|TP + FN | (8)

Recall is particularly relevant when false negatives are more of a concern (relative to
false positives). For network policy optimization, false negatives translate to denying

Dependency-Based Link Prediction for Learning Microsegmentation Policy 577

edges that are indeed needed for operations. This does not introduce additional security
risk, but it impacts the organizational mission.

Precision is the accuracy of the positive class:

Precision = |TP|/|Predicted | = |TP|/|TP + FP| (9)

Precision is particularly relevant when false positives are more of a concern (relative to
false negatives). For network policy optimization, false positives translate to allowing
edges that are not needed operationally. This introduces additional security risk, with no
mission availability reward.

F1 score F1 is the harmonic mean of recall and precision:

F1 = (2 · Recall · Precision)/(Recall + Precision) (10)

The harmonicmean is suited to such fractional measures as recall and precision. Because
of the product term in the numerator (as opposed to a sum for arithmetic mean), the har-
monic mean punishes extreme values of recall or precision. For example, the arithmetic
average for Recall = 1 and Precision = 0 is 0.5, but the F1 score is zero.

For operational cyber security, a weighted F1 score could be applied, with recall
weighed more heavily in low-risk situations, and precision weighed more heavily in
high-risk ones. In fact, a mission-versus-risk weight is a primary operational user input
to the ARES solution, also used for user preference in trading off mission availability
versus thwarting the adversary for optimizing resiliency in the face of a given cyberattack
scenario.

In the Model Selection phase, ARES measures the link prediction performance of
each algorithmic combination carried out in the previous phases. In all cases (except one),
each algorithmic combination has a threshold parameter that determines the how similar
hosts must be to group them together. The performance measures (recall, precision,
and F1) all vary as a function of that grouping sensitivity threshold. ARES uses the
area under each of these curves as an accumulated performance measure. By default
(and for the results reported here), the default performance measure is area under the F1
score curve. Model Selection then chooses the best performing algorithm for operational
deployment. The union of the observed and predicted links becomes the learned policy
graph, representing the links (network connection) that are to be allowed (with deny by
default).

Once ARES has selected a link prediction model (combination of algorithms in
the Node Similarity, Node Grouping, and Link Induction phases), it needs to tune the
sensitivity threshold for the selected Node Grouping algorithm. The performance curves
for operational networks often fluctuate abruptly as a function of sensitivity threshold.
To address this, ARES applies a low-pass filter to the performance curves, treating them
as a noisy signal. We report results using a 4th-order low-pass Butterworth filter B4 [44]
applied to the F1 score curve F1(t):

F1

∧

(t) = B4[F1(t)] (11)

Here, F1

∧

(t) is the resulting lowpass-filtered F1 score signal (as a function of similarity
threshold t). The Butterworth filter is maximally flat in its passband and has quick roll-
off around the cutoff frequency, so that the desired frequencies are best selected. This

578 S. Noel and V. Swarup

class of filter does exhibit ringing in its response to a step in the input signal, but that
improves with a lower cutoff frequency.

For a low-pass filter, the cutoff frequency is the frequency at which the filter begins to
attenuate higher-frequency signal components. For the digital Butterworth filter imple-
mentation we employ, the cutoff is expressed in terms of the critical frequency at which
the gain drops to 1/

√
2 (−3 decibels below) that of the passband, with frequency nor-

malized to unity at the Nyquist frequency (one-half of the sampling rate). In our exper-
iments, the filtered performance curve exhibits noticeable ringing for the higher cutoff
frequencies, and the filtered signal follows more closely the erratic shape of the original
unfiltered signal. ARES applies a cutoff frequency of 27 units, so that the filtered signal
is more of a general trend, with less ringing.

For assigning the operationally deployed value of similarity threshold, the most
obvious solution is to apply the argmax function, yielding targmaxopt :

targmaxopt = argmaxF1

∧

(t) (12)

Since it considers only a single point along the performance curve, argmax can be
interpreted as the greediest (least risk averse) estimate. Amore conservative (risk averse)
estimate is to calculate the threshold tcogopt as the performance curve’s center of mass:

tcogopt = 1

M

n∑

i=1

i · F1

∧

(ti) (13)

Here, M = ∑n
i=1 F1

∧

(ti) is the total mass (area) of the F1 score. This treats the perfor-
mance curve as a mass distribution whose performance value at each point is considered
a value of mass. The center of mass is then the value of threshold in which the relative
position of the distributed mass sums to zero.

The argmax and center of mass provide bounds (least and most risk averse, respec-
tively) for estimating the optimal similarity threshold. We can adaptively assign an
intermediate value between these bounds. When the performance curve is relatively
high at tcogopt , then there is incentive for the threshold to be more conservative (closer to
tcogopt). When the performance curve is relatively low at tcogopt , then there is more to gain
by choosing a threshold value closer to targmaxopt . We can achieve this by first defining a
blending weight α as follows:

α = F1
(
tcogopt

)
/F1

(
targmaxopt

)
(14)

Thus, α is the value of the performance curve at the center of mass, normalized by
the curve’s maximum value. This represents how well the center-of-mass estimate per-
forms (relative to the maximum).We now compute the intermediate value for estimating
optimal similarity threshold tblendopt as

tblendopt = αβ · tcogopt + (
1 − αβ

) · targmaxopt (15)

Here, the factor β provides a nonlinear bias towards targmaxopt (for β > 1) or towards tcogopt
(for β < 1). We use β = 3, which provides good results for all of our experiments.

Dependency-Based Link Prediction for Learning Microsegmentation Policy 579

4 Experimentation

4.1 Evaluating Models

As illustrated in Fig. 1, link prediction in ARES performs the Node Similarity, Node
Grouping, and Link Induction functions to induce a set of predicted future links for each
of its link prediction models (combination of algorithmic components). In Model Selec-
tion, ARES evaluates the quality of the predicted links for each algorithmic combination,
to select the combination that has best predictive performance.

We evaluate ourmethod using publicly available network event data (flows) collected
from routers within the Los Alamos National Laboratory (LANL) enterprise network
[45]. Figure 3 shows the resulting F1 scores for link prediction using the first 50k network
events for Day 2 of the LANL dataset (about 27 min of observed traffic) as training data.
This plot has an F1 score curve for each combination of link prediction algorithms
produced by ARES, as a function of node similarity threshold.

Figure 3 has 12 curves for F1 score. Comparing this to Fig. 1, pairwise grouping (in
NodeGrouping) is applied for the 5 formulas in Node Similarity (Jaccard, Adamic-Adar,
Resource Allocation, Common Neighbor, Preferential Attachment).

Fig. 3. Performance (F1 scores) for link prediction models as a function of similarity threshold.

In Fig. 3, one of the clustering algorithms in Node Grouping (Hierarchical) also
varies as a function of similarity threshold, while the other (HDBSCAN) does not (i.e.,
it is largely parameter free). For each of those 6 combinations, Fig. 3 has an F1 score
curve for ARES (dependency-based) and Standard (affinity-based) semantics for Link
Induction. This accounts for the (5 + 1) · 2 = 12 performance curves in Fig. 3.

580 S. Noel and V. Swarup

In Fig. 3, a particularly notable F1 score curve is for the Preferential Attachment +
Standardmodel. This model has a high F1 score for a single value of similarity threshold,
a score of zero everywhere else. This narrow operationally feasible range suggests that
this model would not be robust to changes in the underlying behavior of the network
over time, i.e., not suitable for deployment. This highlights the utility performance curve
area for selecting models, which requires higher performance over a wider range.

Figure 4(a) shows the areas under each of the F1 score curves in Fig. 3. It also includes
the F1 score (for both ARES and Standard link induction) resulting from HDBSCAN
clustering (which is independent of similarity threshold and therefore not in Fig. 3), for
a total of 14 performance measures.

Fig. 4. Evaluating overall performance for link prediction models.

In Fig. 4(a), the application of Adamic-Adar similarity measure with ARES
(dependency-based) link induction provides highest area under the F1 curve. As a sim-
ilarity measure for a node pair, the Adamic-Adar index extends the rewarding of higher
numbers of common links (as for Jaccard coefficient) by weighting rarer connections
more heavily. The results in Fig. 4(a) demonstrate the value of that approach.

In Fig. 4(a), the second-best model is HDBSCAN (with Jaccard) + ARES. It is
interesting that models with both pairwise-based (Adamic-Adar) and partitioning-based

Dependency-Based Link Prediction for Learning Microsegmentation Policy 581

(HDBSCAN with Jaccard) grouping perform well on F1 score, suggesting that HDB-
SCAN’s density-based clustering is a goodfit for the semantics of this problem.However,
Hierarchical clustering (a greedy algorithm that lacks the adaptive nature of HDBSCAN)
has poor F1 score performance.

As shown in Fig. 4(b), performance of the variousmodels is significantly different for
recall alone (rather than blended into F1 score). Hierarchical clustering has the highest
recall, HDBSCAN has the lowest, and the various models with pairwise grouping lie
in between them. This shows that Hierarchical clustering is the most inclusive way of
grouping nodes, resulting in a larger portion of true positive link predictions (relative to
all the new links that indeed occur). HDBSCAN is the least inclusive in that regard.

As shown in Fig. 4(c), performance of the models for precision (alone) mirrors those
for F1 score. Because of the nature of the harmonic mean (having a product rather than
sum in its denominator) defining an F1 score, smaller values (for recall versus precision)
dominate the score. In this case, since the precision values are significantly lower than
the recall values, precision dominates the F1 score.

A particularly interesting result is that across all the link prediction models and
performance measures, ARES (dependency-based) link induction significantly outper-
forms Standard (affinity-based) link induction. The exception is recall for Hierarchical
clustering, in which ARES method of link induction only slightly outperforms the Stan-
dard one. This validates our intuition that dependency semantics are considerably more
applicable to link prediction for cyber networks.

Since the default performance measure for Model Selection in ARES is the area
under the F1 curve, for the example in Fig. 4(a), the Adamic-Adar + ARES model is
selected for operational deployment. ARES then tunes this selected model, as described
in the next section.

4.2 Tuning Selected Model

In most approaches to link prediction, there is a parameter that determines the sensitivity
of the predictive algorithm, representing a tradeoff between precision (fraction of pre-
dicted links that indeed occurred) and recall (fraction of observed new links that were
indeed predicted). Such approaches generally leave that as an adjustable parameter, with
little guidance on how to adjust it in an applied setting (in our case, in an operational
cyber network). In our experiments, performance curves often exhibit abrupt transitions
as the tuning parameter (similarity threshold for node grouping) is adjusted, further
complicating the tuning process.

To address this, we apply a low-pass signal filter to the prediction-quality curve for
a given link prediction model. This helps handle the abrupt transitions in performance
curves, capturing the general trend of the curve as a function of the tuning parameter. We
also compute the argmax and center of mass for the filtered curves as bounds for least
(argmax) versus most (center of mass) risk averse solutions for optimal threshold, i.e.,
balancing higher performance against a wider range of feasibility. Overall, these tech-
niques provide robust estimates for optimal tuning values that are expected to perform
well given potential variation in future network behavior.

These techniques are illustrated in Fig. 5. Figure 5(a) is the F1 curve for the best per-
forming model (Adamic-Adar + ARES) from the previous section. Figure 5(b) applies

582 S. Noel and V. Swarup

a low-pass signal filter to that F1 curve. Figure 5(c) is the unfiltered F1 curve for the Jac-
card ARES model, which is particularly challenging for parameter tuning because of its
abrupt drop in performance beyond a certain performance threshold value. Figure 5(d)
is the filtered version of that more challenging F1 curve.

The curves inFig. 5 are overlainwith vertical lines that show3keyvalues of the tuning
parameter: (1) argmax, (2) center of mass, and (3) adaptive blend of argmax and center
of mass. For the curve in Fig. 5(a), those values are relatively close to the naïve estimate
(unfiltered argmax), so that this curve does not present a particularly difficult challenge
for estimating the optimal value of the tuning parameter. However, in our experience, that
is not the case in general. For example, the curve inFig. 5(c) is particularly challenging for
parameter tuning.Here, the naïve solution (unfiltered argmax) lies close to an abrupt drop
in the performance curve. As underlying characteristics change over time for operational
networks, shifts in such performance curves could result in poorly tuned predictive
models.

Fig. 5. Optimal tuning of the best performing link prediction model.

On the other hand, our tuning method provides optimal parameter values having
high predictive performance over a stable region of the performance curve. In all cases
that we have examined, our adaptive blend over the smoothed performance curve avoids
regions near abrupt drops in performance. In less challenging cases, our adaptive blend
is nearly the same as the naïve (greedy) solution.

Once ARES tunes a selected model, it deploys the model to predict links beyond
those that have been observed in a network being protected. The tuned model is then
applied for adaptively updating of microsegmentation policy rules, as described in the
next section.

4.3 Applying to Cybersecurity Operations

In formulating optimal microsegmentation (network access) policy, the ARES solution
first captures a baseline policy to be optimized with respect to cyber resiliency. It then
seeks to optimally balance (1) resource availability for organizational mission needs
and (2) adversarial threat opportunities. The optimization is carried out by a genetic
algorithm, which searches the space of threat mitigation actions (deltas from the policy
baseline). The genetic algorithm fitness function includes a variety of factors relevant to

Dependency-Based Link Prediction for Learning Microsegmentation Policy 583

cyber resiliency and has a hierarchical structure that allows a desired degree of tradeoff
between mission needs and attack risks.

Without link prediction, ARES builds a baseline policy from a historical record of
observed traffic for a network. However, that approach is limited since it only consid-
ers previous network activity, i.e., the resulting policies overlook potential new mission
needs. Link prediction adds an element of adaptivity, by predicting near-term require-
ments for network access. That is, in formulating the baseline access policy, ARES now
includes predicted links along with links derived from observed traffic. Once a link pre-
diction model has been selected (Sect. 4.1) and tuned (Sect. 4.2), it is applied during
each instance of ARES policy optimization (e.g., on a recurring schedule).

As denoted in Table 1, any positive prediction of a link (either a true positive or a false
positive) represents an allowed access that would not have been allowed without link
prediction. Any negative prediction (either a true negative or a false negative) represents
no further allowed access beyond policy based on historical records.

Table 1. Link prediction outcomes in the context of cybersecurity operations.

Link Predicted

Yes No

Adds
access

Measured
via precision

No access added

Link
Needed

Yes

Potential mission
contribution True Positive False Negative

Measured
via recall

Supports
mission

Can add
attack vector

Hampers
mission

No attack
vector added

No
Not relevant
to mission

False Positive True Negative

Mission
N/A

Can add
attack vector

Mission
N/A

No attack
vector added

A true positive is a link that is predicted to be needed and is in fact needed. Such a
link adds mission value by now being available (i.e., it would not have been available
if the baseline policy were based on historical traffic only). On the other hand, if the
destination for the allowed access is vulnerable to attack, that provides an additional
attack vector (single attack step). A false positive is a link that is predicted to be needed
but is not in fact needed. Such a link adds no mission value by being available since it is
not used for mission operations. As for a true positive, if the destination is vulnerable,
allowing a false-positive link provides an additional attack vector.

A true negative is a link that is not predicted to be needed and is not in fact needed.
Thus, no contribution to mission value is possible, since there is inherently no mission
need for the link. No additional attack vector is added in this case. A false negative is a
link that is not predicted to be needed but is in fact needed. In this case, mission value
is reduced (a needed access is blocked), and no additional attack vector is added.

584 S. Noel and V. Swarup

Recall is computed from the elements of the Link Needed = Yes row of Table 1. It
measures the ability to maximize support for the mission, regardless of any associated
risks. Precision is computed from the elements of the Link Predicted = Yes column of
Table 1. It measures the ability to minimize unnecessary risks in supporting the mission.
F1 score then measures the ability to both maximize mission support and minimize
unnecessary risks. True negatives are irrelevant to the organizational mission and do not
introduce attack vectors.

ARES includes predicted links along with previously observed links as allowed
access rules (deny by default) as a baseline microsegmentation policy. As an illustrative
example, reconsider the results described in Sects. 4.1 and 4.2, which are for the first
50k network events for Day 2 of the LANL dataset as training data. There, the model
with Adamic-Adar similarity measure and ARES (dependency-based) link induction is
the strongest performer in terms of prediction quality alone.

We can assess this model in a security context by computing a baseline resiliency
measure resulting from the application of this model’s predicted links. This assessment
is in terms of (1) threat containment, which is the additive inverse (to be maximized)
of an attack score for the predicted links and (2) mission access, which is the relative
number of newpolicy accesses (needed by themission) introduced by the predicted links.
The attack score considers the incremental value (in terms of the number of exploitable
paths, up to a maximum path length of 5) that predicted edges give an attacker, from
a particular start node to a particular goal node, then finds the mean incremental value
over all pairs of nodes.

As shown in Table 2, the Adamic-Adar + ARES model yields a threat containment
measure of 0.76 and a mission access measure of 0.006, for a resiliency baseline (mean
of threat containment and mission access) measure of 0.39. As a comparison, the Hier-
archical Clustering + ARES model yields a threat containment measure of 0.06 and a
mission access measure of 0.022, for a resiliency baseline measure of 0.04. This shows
that while Hierarchical Clustering + ARES provides significantly more links needed by
the mission, it introduces significantly higher risks. A strong bias for preferring mission
access over threat containment would need to be applied before the resiliency baseline
for Hierarchical Clustering + ARES exceeds that of Adamic-Adar + ARES.

Table 2. Assessing predicted links in a security context.

Link prediction model Threat containment Mission access Resiliency baseline

Adamic-Adar + ARES 0.76 0.006 0.39

Hierarchical clustering + ARES 0.06 0.022 0.04

ARES then considers a variety of actions (alone and in combination) for mitigating
risks associated with a baseline policy. Such actions include applying patches to address
software weaknesses, clearing password caches, blocking network access, deploying
deceptive honeypot computers, or providing redundant resources. Each combination of
actions under consideration is scored according to impacts on organizational mission
and threats, via simulations under assumed operational scenarios such as likely attack

Dependency-Based Link Prediction for Learning Microsegmentation Policy 585

starting points and critical assets to defend. The combination of actions that provides
the optimal simulated outcome is then deployed on the defended network.

4.4 Considering Dataset Scale

For the results in Sects. 4.1 and 4.2, with 50k observed network events (~27 min) as
input, ARES is configured to apply 75% (37.5k events) for training and 25% (12.5k
events) for testing. Further experimentation shows that smaller dataset sizes for testing
(or combinations of training and testing) yield better prediction quality, e.g., the results
in Fig. 6. This aligns with the assumption that graph link prediction is better suited for
near-term predictions, i.e., fewer new links spanning a briefer future time.

Fig. 6. Link prediction performance as a function of overall dataset size (fixed 75/25% ratio for
training versus testing (a) and as a function of the size of dataset for testing (b).

Figure 6(a) is the best F1 curve area for observed datasets of 3 different sizes (0.5k,
5k, and 50k events). Here, the same ratio (75/25%) is used for training versus testing.
This shows that smaller datasets (in terms of overall size for both training and testing)
yield higher prediction quality. Notably, the performance (area under F1 curve) for link
predictions made from the smallest dataset (0.5k events) is over 60 times higher than for
the largest dataset (50k events).

The plot in Fig. 6(b) shows the best F1 curve area for varied dataset sizes (100, 300,
and 900 events) for testing with a fixed dataset size (300 events) for training. Here, the
performance using the smallest dataset (100 events) for testing is over 4 times higher
than for using the largest dataset (900 events) for testing.

5 Summary, Conclusions, and Future Work

This paper describes the novel application of link prediction for learning microsegmen-
tation policy in cyber networks. Our approach combines established link prediction for-
mulas for node similarity with dependency-based (rather than traditional affinity-based)
link induction, to align with the semantics of cyber networks. Experimental results with
real enterprise network data demonstrate that our dependency-based link prediction
significantly outperforms traditional link prediction, often by orders of magnitude.

For the practical application of link prediction to operational cyber networks, we
address a problem that has been largely ignored in the literature – automatically tuning

586 S. Noel and V. Swarup

the sensitivity of link prediction models by finding an optimal value of node similarity
threshold. For this, we apply low-pass signal filtering to smooth abrupt changes in the
prediction performance curve, extracting the general trend of the performance as a func-
tion of tuning parameter. We also adaptively blend the argmax and center of mass of a
given model’s performance curve to balance risk versus reward in estimating the optimal
threshold value. Our tuning method yields parameter values having high predictive per-
formance over a stable region of the performance curve. This provides robust estimates
for optimal tuning values that are expected to perform well given potential variation in
future network behavior.

Our approach to network microsegmentation enhanced by link prediction is a com-
ponent of the MITRE ARES capability stack for optimizing cyber network resiliency.
ARES applies observed and predicted links as a baseline policy model for optimizing
resiliency for threat/defense scenarios, finding the optimal balance between network
access for the organizational mission and cyberattack risk.

Overall, our approach provides a general framework that unifies link prediction and
clustering as components of a data-driven approach for learning network microseg-
mentation policy rules. The models we describe are straightforward, interpretable, and
scalable. The framework is modular and can be extended in a straightforward way to
encompass more sophisticated constituent methods.

Link prediction provides an ability to anticipate future network access patterns for
baseline ARES policy models. These links can provide access for the organizational
mission as well as introduce new attack paths for adversaries. Future work can examine
how ARES defensive responses can best apply these enhanced predictive baselines in
balancing attack risks and mission access.

References

1. Rose, S., Borchert, O., Mitchell, S., Connelly, S.: NIST special publication 800-207: zero
trust architecture. National Institute of Standards and Technology, Gaithersburg, MD (2020)

2. Executive Order on Improving the Nation’s Cybersecurity. https://www.whitehouse.gov/
briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/. Accessed 2 Mar 2022

3. Miller, L., Soto, J.: Micro-segmentation for Dummies, VMware special edition. Wiley,
Hoboken (2015)

4. Sarker, I.H., Kayes, A.S.M., Badsha, S., Alqahtani, H., Watters, P., Ng, A.: Cybersecurity
data science: an overview from machine learning perspective. J. Big Data 7(1), 1–29 (2020).
https://doi.org/10.1186/s40537-020-00318-5

5. Xin, Y., et al.: Machine learning and deep learning methods for cybersecurity. IEEE Access
6, 35365–35381 (2018)

6. Golnabi, K., Min, R., Khan, L., Al-Shaer, E.: Analysis of firewall policy rules using data min-
ing techniques. In: IEEE/IFIPNetworkOperations andManagement Symposium, Piscataway,
NJ, pp. 305–315. Institute of Electrical and Electronics Engineers (2006)

7. Yousefi-Azar, M., Kaafar, M.A., Walker, A.: Unsupervised learning for security of enterprise
networks by micro-segmentation. Preprint arXiv:2003.11231v1 (2020)

8. Arifeen,M., Petrovski, A., Petrovski, S.: Automatedmicrosegmentation for lateral movement
prevention in industrial internet of things (IIoT). In: International Conference on Security of
Information and Networks, Piscataway, NJ, pp. 1–6. Institute of Electrical and Electronics
Engineers (2021)

https://www.whitehouse.gov/
https://doi.org/10.1186/s40537-020-00318-5
http://arxiv.org/abs/2003.11231v1

Dependency-Based Link Prediction for Learning Microsegmentation Policy 587

9. Noel, S., Swarup, V., Johnsgard, K.: Optimizing network microsegmentation policy for cyber
resilience. J. Defense Model. Simul. Spec. Issue Impact Anal. Cyber Defense Optim. 1–23
(2021)

10. Basta, N., Ikram, M., Kaafar, M.A., Walker, A.: Towards a zero-trust micro-segmentation
network security strategy: an evaluation framework. Preprint arXiv:2111.10967v1 (2021)

11. Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applications, and
performance: a survey. Phys. A 553, 1–46 (2020)

12. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art.
Sci. China Inf. Sci. 58(1), 1–38 (2014). https://doi.org/10.1007/s11432-014-5237-y

13. Mutlu, E.C., Oghaz, T., Rajabi, A., Garibay, I.: Review on learning and extracting graph
features for link prediction. Mach. Learn. Knowl. Extr. 2(4), 672–704 (2020)

14. Marjan,M., Zaki, N.,Mohamed, E.A.: Link prediction in dynamic social networks: a literature
review. In: IEEE International Congress on Information Science and Technology, Piscataway,
NJ, pp. 200–207. Institute of Electrical and Electronics Engineers (2018)

15. Georgousis, S., Kenning, M.P., Xie, X.: Graph deep learning: state of the art and challenges.
IEEE Access 9, 22106–22140 (2021)

16. Katragadda, S., Gottumukkala, R., Pusala, M., Raghavan, V., Wojtkiewicz, J.: Distributed
real time link prediction on graph streams. In: IEEE International Conference on Big Data,
Piscataway, NJ, pp. 2912–2917. Institute of Electrical and Electronics Engineers (2018)

17. Cai, L., Ji, S.: A multi-scale approach for graph link prediction. In: AAAI Conference on
Artificial Intelligence, Palo Alto, CA, pp. 3308–3315. AAAI Press (2020)

18. Aleta, A., Tuninetti, M., Paolotti, D., Moreno, Y., Starnini, M.: Link prediction in multiplex
networks via triadic closure. Phys. Rev. Res. 2, 1–6 (2020)

19. Nassar, H., Benson, A.R., Gleich, D.F.: Pairwise link prediction. In: IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, New York, pp. 386–393.
Association for Computing Machinery (2019)

20. Martínez, V., Berzal, F., Cubero, J.-C.: A survey of link prediction in complex networks. ACM
Comput. Surv. 49(4), 1–33 (2017)

21. Pope,A.S., Tauritz, D.R., Turcotte,M.:Automated design of tailored link prediction heuristics
for applications in enterprise network security. In: López-Ibáñez, M. (ed.) Genetic and Evo-
lutionary Computation Conference Companion, pp. 1634–1642. Association for Computing
Machinery, New York (2019)

22. Passino, F.S., Bertiger, A.S., Neil, J.C., Heard, N.A.: Link prediction in dynamic networks
using random dot product graphs. arXiv:1912.10419 (2021)

23. Eren, M.E., Moore, J.S., Alexandro, B.S.: Multi-dimensional anomalous entity detection via
poisson tensor factorization. In: IEEE International Conference on Intelligence and Security
Informatics, Piscataway, NJ, pp. 1–6. Institute of Electrical and Electronics Engineers (2020)

24. Bowman, B., Laprade, C., Ji, Y., Huang, H.H.: Detecting lateral movement in enterprise
computer networks with unsupervised graph AI. In: International Symposium on Research
in Attacks, Intrusions and Defenses, pp. 257–268. USENIX Association, Berkeley (2020)

25. Gupta, M., Fandli, J.G.: Automatically assigning labels to workloads while maintaining
security boundaries. United States Patent 11,171,991, 9 November 2021

26. Hamou, C., Brouk, R., McAllister, S.: Micro-segmentation in virtualized computing environ-
ments. United States Patent 2017/0374106, 28 December 2017

27. Hui, P., Huang, D., Peylo, C.: Method and system for link prediction in mobile computing.
European Patent Office Patent EP 2 911 349, 24 February 2016

28. Choudhury, S., Agarwal, K., Chen, P.-Y., Ray, I.: System and methods for automated
detection, reasoning and recommendations for resilient cyber systems. United States Patent
2018/0103052, 1 December 2020

29. Verma,M., et al.: Systems andmethods for identifying andmitigating outlier network activity.
European Patent Office Patent EP 3 477 906 A1, 31 March 2021

http://arxiv.org/abs/2111.10967v1
https://doi.org/10.1007/s11432-014-5237-y
http://arxiv.org/abs/1912.10419

588 S. Noel and V. Swarup

30. Brdiczka, O.,Mahadevan, P., Shi, R.:Method and system for thwarting insider attacks through
informational network analysis. United States Patent 9,336,388, 10 May 2016

31. Shaashua, T.M., Shaashua,O.: Situation forecastmechanisms for internet of things integration
platform. United States Patent 10,990,894, 27 April 2021

32. ATT&CK | cobalt strike. https://attack.mitre.org/software/S0154/. Accessed 3 Mar 2022
33. CALDERA. https://caldera.mitre.org. Accessed 3 Mar 2022
34. Noel, S., Harley, E., Tam, K.H., Limiero, M., Share, M.: CyGraph: graph-based analytics and

visualization for cybersecurity. In: Cognitive Computing: Theory and Application, Handbook
of Statistics, vol. 35, pp. 117–167. Elsevier, Amsterdam (2016)

35. Noel, S., et al.: Graph analytics and visualization for cyber situational understanding. J.
Defense Model. Simul. Impact Anal. Cyber Defense Optim. 1–15 (2021)

36. Noel, S., Harley, E., Tam, K.H., Limiero, M., Share, M.: System and method for visualizing
and analyzing cyber-attacks using a graph model. United States Patent 10,313,382, 4 June
2019

37. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. J. Am. Soc.
Inform. Sci. Technol. 58(7), 1019–1031 (2007)

38. Zhou, T., Lü, L., Zhang, Y.: Predicting missing links via local information. Eur. Phys. J. B
71, 623–630 (2009)

39. Ahmad, I., Akhtar, M.U., Noor, S., Shahnaz, A.: Missing link prediction using common
neighbor and centrality based parameterized algorithm. Sci. Rep. 10(334), 1–9 (2020)

40. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open
Source Softw. 2(11), 205–206 (2017)

41. Murtagh, F., Contreras, P.: Methods of hierarchical clustering. arXiv:1105.0121v1 (2011)
42. Rogers, D.J., Tanimoto, T.T.: A computer program for classifying plants. Science 1115–1118,

21 (1960)
43. Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf.

Syst. 45(3), 751–782 (2014). https://doi.org/10.1007/s10115-014-0789-0
44. Butterworth, S.: On the theory of filter amplifiers. Exper.Wirel.Wirel. Eng. 7, 536–541 (1930)
45. Turcotte, M.J.M., Kent, A.D., Hash, C.: Unified host and network data set. In: Data Science

for Cyber-Security, pp. 1–22. World Scientific, Singapore (2018)

https://attack.mitre.org/software/S0154/
https://caldera.mitre.org
http://arxiv.org/abs/1105.0121v1
https://doi.org/10.1007/s10115-014-0789-0

Chuchotage: In-line Software Network
Protocol Translation for (D)TLS

Pegah Nikbakht Bideh1(B) and Nicolae Paladi1,2

1 Lund University, Lund, Sweden
{pegah.nikbakht bideh,nicolae.paladi}@eit.lth.se

2 CanaryBit, Stockholm, Sweden

Abstract. The growing diversity of connected devices leads to com-
plex network deployments, often made up of endpoints that implement
incompatible network application protocols. Communication between
heterogeneous network protocols was traditionally enabled by hardware
translators or gateways. However, such solutions are increasingly unfit
to address the security, scalability, and latency requirements of modern
software-driven deployments. To address these shortcomings we propose
Chuchotage, a protocol translation architecture for secure and scalable
machine-to-machine communication. Chuchotage enables in-line TLS
interception and confidential protocol translation for software-defined
networks. Translation is done in ephemeral, flow-specific Trusted Exe-
cution Environments and scales with the number of network flows. Our
evaluation of Chuchotage implementing an HTTP to CoAP translation
indicates a minimal transmission and translation overhead, allowing its
integration with legacy or outdated deployments.

Keywords: Protocol conversion · IoT · Application layer protocols ·
Software defined networking · TLS · Cross-layer optimization

1 Introduction

Despite efforts towards standardization and interoperability, many applica-
tions use proprietary protocols and incompatible data models for information
exchange [25]. This is particularly acute to address in growing density of con-
nected embedded devices or “things”. Such devices are increasingly expected to
communicate in a machine-to-machine (M2M) pattern. Communication among
devices, or between devices and back-end systems that use incompatible proto-
cols can be enabled through protocol translation. This is commonly realized either
with hardware translators, virtual gateways1, or distributed software applica-
tions [34]. Existing approaches for protocol translation are unfit to address the
scalability, latency, and security requirements of current and emerging deploy-
ment topologies [7]. Such solutions display at least one of the following limita-
tions.
1 Communication servers including a virtual gateway to perform protocol translation.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 589–607, 2022.
https://doi.org/10.1007/978-3-031-15777-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_32&domain=pdf
http://orcid.org/0000-0001-7756-3723
http://orcid.org/0000-0003-0132-857X
https://doi.org/10.1007/978-3-031-15777-6_32

590 P. Nikbakht Bideh and N. Paladi

1. in-line translation solutions do not support encrypted network traffic;
2. solutions to circumvent limitation (1) rely on deploying trusted certificates

to unprotected devices on the network path and increase the attack surface;
3. cloud-based protocol translation solutions support translation over secure

network communication by terminating TLS connections in a single cen-
tralized component. This increases communication latency between network
endpoints and introduces a single point of failure.

Addressing the above challenges is a prerequisite to enable wide-scale device
connectivity. This requires support for secure and fast in-line software network
protocol translation of encrypted traffic; support for communication over several
application layer protocols while maintaining latency requirements; and finally
support for distributed protocol translation. Our goal is to enable secure massive
M2M communication using protocol translation capable of dynamically adapting
to new devices and network topologies. Our contributions are as follows:

– we introduce Chuchotage2, an efficient and secure protocol translator archi-
tecture addressing scalability, latency, and security requirements of large-scale
networks; Chuchotage builds on earlier work in Software Defined Networking,
Trusted Execution Environments, and TLS interception;

– Chuchotage performs in-line protocol translation while supporting secure dis-
tributed network communication throughout the network fabric, avoiding
translation in a logically or physically centralized back-end;

– we introduce flow-specific, on-demand translator boxes created by software
switches on the network path for TLS interception and protocol translation.

– we integrate secure protocol translation in OpenFlow [22] by reusing and
extending its signaling. This allows to maintain backward compatibility.

Our solution relies on three principles: (i) secure TLS interception with the
use of TEEs; (ii) high-performance confidential protocol translation, and (iii)
fault-tolerant distributed architecture with the help of SDN networking. A TEE
provides confidentiality and integrity with the use of an isolated execution envi-
ronment. The loaded code and data to the TEE can be protected from various
attacks. In our architecture, we use TEEs to securely decrypt, translate, and
re-encrypt data it with a high level of confidentiality and integrity.

In SDN networking, network intelligence is logically centralized, thus
abstracting the network infrastructure from network applications [16]. In SDN,
the controller has a global view and can decide what suits best for the net-
work. The OpenFlow protocol is usually used in SDN to link the controller
and other components, e.g. switches, and routers. OpenFlow is compatible with
both hardware and software switches. In Chuchotage, the software switch (Open
vSwitch [31] in our implementation) makes informed decisions on application
layer protocol translation to provide a high-performance and fault tolerant archi-
tecture. To the best of our knowledge, this is the first work that integrates datap-
ath flow matching with secure protocol translation. To improve the performance,
we introduce a cross-layer optimization for switch actions described in Sect. 4.
2 The term chuchotage is a form of interpreting where the linguist is near a small

target audience and whispers a simultaneous interpretation of what is being said.

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 591

The rest of this paper is structured as follows: in Sect. 2 we introduce the
relevant background and problem, followed by a review of the related work in
Sect. 3. We describe the design of Chuchotage in Sect. 4. We discuss in Sect. 5
the design choices of the Chuchotage implementation, followed by performance
and security evaluation in Sect. 6. We conclude in Sect. 7.

2 Background

We define interoperability in IoT networks as the capability of heterogeneous
devices and applications to communicate and exchange data or services. Tolk et
al. presented interoperability as a layered model with two main layers: technical
and semantic interoperability [30]. Technical interoperability enables compati-
bility of heterogeneous devices through common communication protocols and
standards. Semantic interoperability enables heterogeneous services and appli-
cations to exchange information in a meaningful way [1].

Data or information models used by heterogeneous IoT devices are often
incompatible, thus limiting semantic interoperability. Semantic protocol trans-
lators are a possible solution; they are able to convert information formats, allow-
ing communication between heterogeneous endpoints. Such translators ingest a
standardized way of representing vocabularies of processes or messages. How-
ever, despite ongoing efforts for IoT semantic translation, we are yet to see a
unified secure platform compatible with most common IoT protocols. We next
briefly introduce several interoperability solutions.

Physical Gateways: A traditional way of interoperability is the use of hardware
gateways that act as an intermediate component between endpoint devices [25].
Hardware gateways can translate protocols with different standards and speci-
fications, they are commonly one-to-one protocol translators that do not scale
(new protocols require adding new hardware); moreover, they require special
hardware connectors, thus increasing both the overhead and complexity.

Protocol Translators: Protocol translators replace traditional interoperability
solutions, such as gateways; they are intermediate components that perform
direct protocol to protocol translation. Depending on where the translation is
done, protocol translators are either: a) cloud back-end translators or b) middle-
boxes. In the first case, the traffic is re-routed to the cloud back-end for trans-
lation. In the second case, a middlebox is a hardware component or software
network function placed on the communication path between the endpoints.

We review existing protocol translators in Sect. 3.1. These translators either
do not consider security or do not scale. Some perform the translation below the
application layer, thus adding further network complexity.

For further information about common IoT protocols and different interoper-
ability solutions at different protocol layers refer to Appendix A.1. We propose
the Chuchotage architecture to enable protocol interoperability on the appli-
cation layer. We target the application layer as it has the highest impact on
application performance [12].

592 P. Nikbakht Bideh and N. Paladi

2.1 Threat Model

Our threat model considers two aspects - security of the network communication,
and security of protocol translation. We assume the Dolev-Yao model [9], with
an adversary capable of intercepting, and synthesizing any message, being only
limited by the constraints of the cryptographic methods used. Considering pro-
tocol translation, we assume limited physical access to the platform, akin to the
tasks of a legitimate third party user, and excluding physically modifying, prob-
ing, or monitoring the system. The adversary is capable of exploiting software
vulnerabilities in the host operating system and software network components
(network switch and network functions), reloading the switch binary, accessing
the host memory, and starting arbitrary processes on the host. The attacker may
modify any firmware of software component on the network platforms, includ-
ing the hypervisor for virtualized set-ups. This threat model is aligned with the
threat models of both process-based trusted execution environments (such as
Intel SGX [3] or Keystone [27]) as well as virtualization-based trusted execu-
tion environments (AMD SEV-SNP [2], Intel TDX [33] and IBM PEF [14]). The
Chuchotage architecture may be tuned to use other TEE implementations. Con-
sidering the growing diversity of TEE implementations [33] and their various
approaches to defending or preventing side-channel attacks, we exclude side-
channel attacks. Likewise, we exclude attacks on control-plane components of
SDN deployments (such as the SDN controller) or ancillary components (such
as the Certificate Authority); these components are trusted and attacks on them
can be prevented using best-practice operational security. Translator boxes are
not trusted and translation cannot be done securely without a TEE.

3 Related Work

3.1 Protocol Translation

An early work on protocol conversion was presented in 1988 by Lam [17], propos-
ing a formal model to achieve interoperability between processes with different
protocols. Its’ limitation was that it needs to be implemented as a process or as
a low layer protocol in the physical layer, thus adding complexity and overhead
to the network.

In [7], the authors proposed a protocol translator for industrial IoT protocols.
They proposed the use of an intermediate format in order to translate more than
three protocols rather than direct protocol-to-protocol translation. The solution
satisfies interoperability features including transparency, scalability, reporting,
verifiability, and QoS, however without addressing any security aspects, which
Chuchotage explicitly addresses.

Muppet [32] is an edge-based multi-protocol switching architecture that can
be used for IoT service automation. Muppet is a P4-based switch which can
communicate with IoT devices using different protocols, where switches are man-
aged by an SDN controller. Muppet was designed for translation between Zig-
bee [26] and Bluetooth low energy (BLE) [11] protocols or translation between

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 593

BLE/Zigbee and IP protocols and is therefore complementary to Chuchotage,
which works at the application layer. However, similar to [7], Muppet does not
support protocol translation over TLS communication.

3.2 TLS Interception

HTTPS interception is implemented for purposes such as content filtering, mal-
ware detection, DDoS mitigation, load balancing, etc. [5], and despite the relative
maturity of the topic, research on TLS interception proxies gained further atten-
tion in recent years. The ME-TLS protocol [20] supports TLS 1.3 and enables
endpoints to introduce middleboxes into a session given the consent of both par-
ties. Endpoints can control middlebox access permissions on traffic data, and ver-
ify the middlebox service chain. The protocol is based on monitoring handshake
messages passively without modifying the handshake of TLS 1.3. An implicit
version negotiation mechanism in the ME-TLS handshake protocol enables it to
interoperate with TLS endpoints seamlessly. However, ME-TLS requires deploy-
ing the Boneh-Franklin identity-based encryption (BF-IBE) [15] instead of the
widely adopted Public Key Infrastructure (PKI) approach.

maTLS is an extension to TLS that allows middlebox visibility and auditabil-
ity by enabling a client to authenticate all middleboxes through a dedicated
middlebox certificate. The use of middlebox certificates eliminates the insecure
practice of installing custom root certificates or servers sharing their private keys
with third parties. Furthermore, the middlebox-aware TLS (maTLS) protocol
enables auditing the security behaviors of middleboxes [19].

IA2-TLS [4] is an encryption-based approach to enable in-line packet inspec-
tion. IA2-TLS is based on binding an inspection key to the random nonces that
are generated by the endpoints during a TLS handshake. The advantage of this
approach is the capacity to introspect traffic both inline and offline, at any loca-
tion along the network path. This approach requires modifying the client and
server TLS implementation. Similar to many other TLS interception approaches,
it is not practical considering the lack of backward compatibility.

Considering the properties and backward compatibility of the ME-TLS pro-
tocol, we use it for the remainder of this paper as the reference TLS interception
protocol. Other approaches to TLS interception are complementary.

4 Chuchotage Protocol Translator

4.1 Architecture

Figure 1 illustrates the Chuchotage architecture, relying on principles introduced
in Sect. 1: (i) secure and protocol-compliant TLS interception; (ii) efficient con-
fidential protocol translation; and (iii) fault-tolerant distributed architecture.
The proposed architecture assumes that network switches are configured A with

594 P. Nikbakht Bideh and N. Paladi

an action to translate network flows between endpoints that use incompatible
application layer network protocols B (we use OpenvSwitch for implementation).
When invoked, the action triggers the creation of a translator box C in a trusted
execution environment (Intel SGX in our implementation). The translator box
is subsequently attested by a verifier network function and provisioned with cre-
dentials for TLS interception D . The translator box is network-flow specific,
translates subsequent communication between the endpoints E and terminates
once the network flow is cleared from the switch flow table, as described next.

Dynamic Translator Box Creation. We use TEEs to run translator boxes
that decrypt the TLS traffic on the respective flow, use application protocol
translators to convert it to the target protocol, and re-encrypt it before for-
warding. A translator box is instantiated whenever the translation action is
triggered by a new network flow matching the flow table rule. Depending on the
implementation, translator boxes are instantiated either as a child process of the
switch daemon (in-switch) or external to the switch. In-switch translator boxes
are instantiated by the ovs-vswitch daemon, while external translator boxes are
instantiated by the network controller. Translator boxes are deployed in TEEs
to ensure execution isolation, confidentiality, and integrity of packet data.

To instantiate a translator box, the parent process first invokes the creation
of a TEE and deploys the translation logic configured for the pair of application
layer protocols in the respective network flow. Next, a verifier network function
attests the integrity and authenticity of the translator box [6]. Following a suc-
cessful attestation, a trusted certificate authority network function provisions
the cryptographic artifacts necessary for intercepting the TLS communication
between endpoints. The exact artifacts depend on the approach for TLS inter-
ception, as described next in Sect. 4.1. The parent process of the translator box
terminates it once the respective flow is evicted from the datapath cache.

In our current implementation, we used Intel SGX enclaves to create TEEs.
SGX enclaves rely on a trusted computing base of code and data loaded at
enclave creation time. Program execution within an enclave is transparent to
the underlying operating system and other mutually distrusting enclaves run-
ning on the platform. The CPU is an enclave’s root of trust; it prevents access
to the enclave’s memory by the operating system and other enclaves. Library
operating systems were used in this context to facilitate both the portability and
performance of legacy applications in SGX enclaves [27].

TLS Interception. We focus on the TLS v1.2 [8] and v1.3 [10] for transport
security due to their wide adoption. We further use the ME-TLS [20] protocol
extension for TLS interception in protocol translator boxes. The use of ME-TLS
allows delivering session key materials to translator boxes in-band and does
not require additional TLS connections or round-trips. Moreover, this allows
retaining backward compatibility with TLS 1.3 [10] through implicit protocol

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 595

Fig. 1. Conceptual illustration of the Chuchotage architecture

version negotiation. In case one of the endpoints does not support ME-TLS,
communication remains encrypted but without protocol translation.

Following the TLS1.3 specification [10], ME-TLS reuses the TLS 1.3
Finished message to achieve two additional goals, endpoint authentication and
translator box negotiation (agreement between client and server about the trans-
lator boxes to be used). For middlebox negotiation, the ClientFinished and
ServerFinished messages each contain two middlebox lists specifying the trans-
lator involved in each direction of the network path. Once both client and server
endpoints complete the translator box negotiation by including the list of cho-
sen translator boxes to the ClientFinished and ServerFinished messages,
they distribute the necessary session key materials to selected translator boxes.
ME-TLS achieves this through an additional SessionKeyDistribution mes-
sage sent by the endpoints to the translator boxes on the communication path.
The SessionKeyDistribution message is an application data message (not a
handshake message); the record field of the message contains a byte sequence,
which is an HMAC generated from the shared secret between the client and
server (ssibecs) and a string constant to differentiate from other application data
records, followed by encrypted session key materials for the translator boxes.
The ME-TLS protocol uses a property of the BF-IBE scheme [15] that allows
endpoints and translator boxes to establish a shared secret between each other
through zero-round secret negotiation. In BF-IBE, a trusted authority called a
private key generator (PKG) generates private keys for endpoints and translator
boxes using their identities and a master key. The endpoints (client and server)
can then use the shared secret to encrypt the session key materials communicated
to the translator box instances.

Translator Box Integration with OvS. Translator boxes are created follow-
ing the translate action in the flow rules and are instantiated during the transport

596 P. Nikbakht Bideh and N. Paladi

layer protocol handshake between two communicating endpoints, regardless of
the application layer protocol they use. An incoming packet to the switch is
first matched against the available rules (see Appendix A.2). A match against a
rule that contains the translate action on the datapath triggers the creation of
a flow-specific translator box. The translator box can be created either on the
datapath in kernel space or user space, depending on the TEE implementation.
When using Intel SGX, translator boxes are created in user space enclaves, since
SGX enclaves can only run as user processes. While this may affect their per-
formance (due to IO penalties inherent to the Intel SGX model), recent work
indicates that modifying software network components deployed in TEEs can
help to improve their IO performance [29]. Next, a verifier network function of
the network controller attests the enclave to make sure it is trustworthy, then
the enclave receives the key shares through key provisioning that allows it to
compute session key materials and decrypt the TLS communication between the
endpoints in the respective flow Fig. 1. Attestation and key provisioning are done
in parallel with the ongoing transport layer protocol handshake. All subsequent
packets in the respective flow will be processed by the translator box.

Protocol to Protocol Translation. Once a translator box inside the enclave
receives a packet from the respective flow, it first decrypts the packet using the
session key materials computed from the key shared received from the network
controller. Next, the translator box parses the decrypted packet, extracts the
application data, and formats it into the destination protocol format. Finally,
the formatted packet is re-encrypted and returned to the switch data path to be
forwarded to its destination.

4.2 Challenges

The design of Chuchotage addresses several important challenges, namely
enabling distributed protocol translation and combining TLS interception with
attestation primitives of the trusted execution environments. We address dis-
tribution and scalability by introducing the concept of ephemeral, flow-specific,
on-demand translator boxes created by software switches on the network path.
To achieve scalability in high density networks, multiple switches, and SDN con-
trollers can be used in the network depending on the network topology and
available resources. Chuchotage combines the ME-TLS protocol for TLS inter-
ception [20] with the SGX attestation protocol to provide an uninterrupted chain
of trust that includes the communicating endpoints, the translator box, and the
certificate authority by the communicating parties.

4.3 Operating Flow

In the following operating flow description, we assume that a network adminis-
trator uses a deployment blueprint to define flow rules for the endpoints included

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 597

in the topology. For the types of devices and communication protocols known
beforehand, the network administrator specifies a translate action for the flows
that require translation. Note that two distinct translation policies will be spec-
ified for each source-destination pair in a flow where endpoints implement dis-
tinct application layer protocols. In the following operating flow description, we
assume the latest version of TLS, version 1.3; while other TLS versions can be
made compatible with this operating flow, this requires additional adjustments.

In-line Operating Flow. The sequence diagram in Fig. 2 illustrates how translator
boxes instantiated by the switch obtain the session keys negotiated between two
endpoints, client and server:

Client Switch Controller Translator boxC Translator boxS Server

1 SYN
2

3 Provision translator box
4 SYN

7 SYN ACK
5 Provision PKG

6 Provision PKG

Transport session establishmentTransport session establishment

8 ClientTLS request + implicit version negotiation
9 ServerTLS response, translator boxs

10 ClientDataMessage, translator boxc

11 Compute Session Key

12 Compute Session Key

13 ServerDataMessage

TLS session establishmentTLS session establishment

Fig. 2. Chuchotage operating flow

– The Client initiates a communication session by sending a TCP SYN packet
to Server (step 1).

– A Switch on the network path matches the SYN packet against entries in
its Microflow cache. Since the Client did not communicate with the Server
earlier, the search continues in the Megaflow cache and ultimately in the
OpenFlow flow tables, where it matches the translation policy defined by the
network administrator (step 2). The results of Megaflow cache lookup will be
cached in Microflow cache. The switch triggers the controller to instantiate
the translator boxes (step 3).

– The SYN packet is immediately forwarded to the destination; this avoids intro-
ducing additional latency (step 4).

598 P. Nikbakht Bideh and N. Paladi

– The controller instantiates translator boxes for the flows tc (client-server, step
5) and ts (server-client, step 6). The controller instantiates the translator box
in a TEE, attests it [3,6] and provisions key shares generated by the PKG [15].

– The server returns a SYN ACK reply, the transport session is established at
this point (step 7).

– The TLS negotiation starts; the negotiation follows the TLS 1.3 with the
ME-TLS extensions [20] (step 8). The Client TLS request includes an implicit
version negotiation to check that the Server supports the ME-TLS extensions.
The Server TLS response follows the TLS 1.3 specification and additionally
specifies the identifier of the server translator box (step 9).

– Next the Client starts sending encrypted application data (step 10).
– The ClientDataMessage packet containing application data is matched in

the Microflow cache of the switch and processed by translator box tc. At this
point, tc obtains its session key material from the SessionKeyDistribution
message and generates the key distribution bytes using the shared secret
between itself and the endpoints (step 11). It derives the application traffic
secrets, allowing it to derive symmetric keys to encrypt and decrypt applica-
tion data on the client-server path. The session key is used for the remainder
of the TLS session.

– Having decrypted the data, tc converts the application data to Server appli-
cation protocol format, re-encrypts it, and forwards the packet to the Server;

– The Server returns the application data encrypted with a TLS session key.
The ServerDataMessage application data packet is matched in the Microflow
cache of the Switch and processed by translator box ts; ts obtains its session
key material from the SessionKeyDistribution message, generates the key
distribution bytes using the shared secret between itself and the endpoints,
and derives the application traffic secrets allowing it to derive symmetric keys
to encrypt and decrypt application data on the server-client path. The session
key is used for the remainder of the TLS session (step 12);

– ts converts the decrypted application data to the client’s application protocol
format, re-encrypts it and forwards it to the client (step 13);

– Translation of application data continues for the remainder of the TLS session;
the translator boxes are terminated once the network flow is evicted from the
Switch flow cache.

In case of DTLS, the operating flow is modified such that the translator boxes
are created after the ClientHello message.

5 Implementation

For evaluation purposes, we implemented Chuchotage with two popular IoT
protocols, CoAP and HTTP. Our implementation includes the following compo-
nents. A client, an HTTP client representing an IoT device contacts a server with
a different protocol, a Server, A CoAP server is listening for client connections.
Open vSwitch (OvS): endpoints are connected to OvS through the same bridge

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 599

and OvS is responsible for forwarding incoming client or server packets to the
translator box, as well as forwarding outgoing packets from the translator box
to their destinations; SDN controller : an SDN controller manages the network
flows to improve network performance. For that we used Ryu3, an open source
controller. Whenever OvS does not find any matching entry in its flow caches
to handle packets in need of translation it contacts the controller, which will
trigger a translation. Translator box : via the translation process, the controller
creates a translator box responsible for translating the traffic between client
and server. In the translator box, we used an HTTP to CoAP parser/formatter
library4, capable of parsing and converting HTTP to CoAP messages and vice
versa. TEE : to ensure execution isolation as well as confidentiality and integrity
during packet translation, we ported the protocol translator to an SGX enclave
using the Occlum library OS [27]. Occlum5 is a memory-safe library OS for SGX.
Note that for implementing other protocol translation (other than CoAP and
HTTP), a new parser/formatter is required but the rest of the components will
remain unchanged.

5.1 Implementation Choices

In Chuchotage, the translator box can be instantiated either by the network
controller (external) or OvS (in-switch [28]). In our prototype implementation,
the SDN controller deploys an SGX enclave with the translator code and attests
it, as deploying, managing, and debugging external translators is easier for net-
work administrators. Attestation can be done locally or remotely based on the
location of the appraiser and of the target enclave [6]. In our prototype imple-
mentation, the SDN controller (appraiser) and translator box (target) both exist
on the same platform and hence we used local attestation with a trusted enclave
that exists on the SDN controller and keypair provisioning. As mentioned above,
the TEE hosting the translator box can be instantiated using several alternative
approaches, both virtualization-based [33] or process-based [18,21]. Enterprise
deployments should consider remote attestation of translator boxes, or a combi-
nation of both as supported by some virtualization-based TEEs [14]. The choice
of TEEs depends on constraints on application portability, security, and perfor-
mance.

For TLS interception, we assume that session key materials are distributed
to the involving parties including the client, server, and SDN controller prior
to the handshake procedure and ME-TLS overhead is explicitly excluded in our
evaluation since it only affects the handshake, not the actual communication.

Our translation policy is defined by using features extracted from the traf-
fic flow, namely a combination of specific source and destination IP addresses
and port numbers. When an incoming flow matching these features triggers the
translation action and the packets in the matching flow are forwarded to the

3 https://ryu-sdn.org/.
4 https://github.com/keith-cullen/FreeCoAP.
5 https://github.com/occlum/occlum.

https://ryu-sdn.org/
https://github.com/keith-cullen/FreeCoAP
https://github.com/occlum/occlum

600 P. Nikbakht Bideh and N. Paladi

translator. After translation, the packets are sent back to the switch to be for-
warded to their own destination. While distinct translator boxes can be created
for inbound and outbound flows (client to server or server to client, see Sect. 4.3),
we use one translator box for both in- and outbound flows.

5.2 Testbed

Our testbed consists of four docker containers representing client, server, a Ryu
controller, and a translator box deployed in an SGX enclave (see Fig. 3), as it
can be seen in Fig. 3 the testbed is compatible with different pairs of clients and
servers. OvS was installed on the host OS and the four docker containers are
connected to the OvS via one bridge (br0 in Fig. 3). Each container is connected
to the bridge through its own virtual interface, indicated as vethp in Fig. 3.
Whenever a flow needs to be translated, Ryu creates and attests an SGX enclave
inside container 3. The translation is done inside the enclave and the flow to be
translated is afterwards forwarded through container 3.

Fig. 3. Testbed overview

6 Evaluation

6.1 Performance Evaluation

We conducted several tests to evaluate the performance of Chuchotage. In the
first test, we send packet batches of different sizes (100, 1000, and 10000 packets)
from the client to the server and measured the translation time for the entire
batch. We also measure the transmission time, i.e. the time between sending
the first and last packets excluding the handshake. In this test, the client sends
empty HTTP GET messages translated to CoAP confirmable Reset messages.

We measured translation and transmission time both with and without SGX,
to measure the effect of the TEE on the performance (see Fig. 4). Without a
TEE, the translator box is created inside container 3 in Fig. 3. As illustrated
in Fig. 4, both translation and transmission times slightly increase with the use

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 601

of a TEE (Intel SGX in this prototype); however, this increase is acceptable in
most IoT networks considering the added benefit of protecting network traffic
confidentiality. Error bars are based on standard deviation.

We also compared our results with the transmission time of a vanilla CoAP
to CoAP communication. Confirmable CoAP Reset messages were sent from a
CoAP client to the CoAP server. The transmission time for transferring 100,
1000, and 10000 packets respectively are: 0.00719, 0.07428, and 0.70909 s. We
consider these values as a reference point for the added overhead by the trans-
lation procedure compared to a vanilla CoAP to CoAP transfer.

In a second test, we send batches of 100 packets of different sizes (128, 256,
and 512 Bytes) from client to server and record their translation and transmission
time with and without using a TEE. In this test, we send HTTP POST requests
from the client to the server and they are translated to CoAP confirmable POST
requests. The results of this test show that using a TEE (Intel SGX in this
prototype) results in increasing both the translation and transmission time (see
Fig. 5). Packet data length does not affect the translation time.

In a third test, we measured the time to complete a successful handshake. The
handshake takes place between the client, server, and translator box; however,
the translator box is transparent for the client and server. The overall hand-
shake time (an average of 10 handshakes) including local attestation (0.0164 s),
enclave creation (0.80410 s), and additional communication between the Chu-
chotage components averages 2.83574 s. This is roughly equal to transferring
and translating 10000 packets; a vanilla CoAP to CoAP handshake averages to
0.000907 s. However, the handshake is only performed once before translating all
subsequent packets in the flow.

The performance of our proposed protocol translator is not comparable to
centralized approaches, such as gateway or proxy-based approaches, since they
are not suitable for large heterogeneous distribution deployments and often do
not consider security of network traffic. Chuchotage is not also comparable to
other existing protocol translation solutions, as earlier highlighted in Sect. 3.1.

6.2 Security Evaluation

Reflecting the structure of the threat model (Sect. 2.1) we discuss the security
of network communication and of protocol translation.

Network Security. Chuchotage uses TLS 1.3 [10] to implement transport layer
security - including key establishment - and inherits its confidentiality and
integrity properties. On the other hand, Chuchotage also inherits any potential
vulnerabilities yet to be discovered in TLS 1.3; this underscores the importance
of following vulnerability management best practices. The security of ME-TLS
extensions to TLS 1.3 is reviewed in detail in [20]. There are several types of net-
work based attacks that can target Chuchotage, such as Denial of Service (DoS)
or traffic flooding. Similar to other contexts, DoS attacks can be mitigated by
DoS prevention techniques including intrusion detection and prevention systems,
using load balancers, filtering, etc.

602 P. Nikbakht Bideh and N. Paladi

Fig. 4. Translation and transmission time of translating different number of packets

Fig. 5. Translation and transmission time of translating different packet sizes

Protocol Translation. Availability of a Chuchotage deployment can be ensured
through network deployment best practices. High availability is an inherent capa-
bility of Chuchotage as translator boxes are instantiated and deployed in TEEs
by switches throughout the network topology.

Translator boxes are central to the security of protocol translation and net-
work communication in Chuchotage. Integrity of the protocol translation soft-
ware deployed in translator boxes is verified through attestation [6]. The chain
of trust evaluated through attestation is specific to the platform implementation
of the TEE. During protocol translation confidentiality of provisioned crypto-
graphic material and intercepted network traffic is ensured through TEE isola-
tion mechanisms that include memory isolation on hardware or firmware level,
run-time memory encryption, and cache flushing upon execution transition [33].

In our current prototype implementation, we use Intel SGX enclaves as a
TEE implementation target. SGX is vulnerable to a wide category of attacks
reviewed in [24]. Chuchotage can be vulnerable to any attacks applicable to

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 603

SGX. However, there are a number of mitigation techniques that can be used to
mitigate attacks on realistic applications deployed in SGX enclaves [13].

7 Conclusion

In this paper, we proposed Chuchotage, an in-line application layer protocol
translator with transport layer security. Chuchotage relies on secure TLS inter-
ception, efficient protocol translation, and fault-tolerant distributed architec-
ture. In Chuchotage we translate, and re-encrypt network flows with minimal
latency, on the network path. Scalability is guaranteed by growing the number
of translator boxes with the number of flows; translator boxes are instantiated
by individual software network switches in the deployment. Depending on the
capabilities of the underlying platform and their support for TEEs, Chuchotage
allows creating translator boxes either in-switch or external to the switch, in
kernel space or user space. We implemented a Chuchotage prototype for HTTP
to CoAP translation with Intel SGX enclaves and Open vSwitch. Our evalua-
tion indicates a slight increase in the translation and transmission time. This
overhead depends primarily on the choice of TEE in the implementation.

Acknowledgment. This work was financially supported in part by the Swedish Foun-
dation for Strategic Research, with the grant RIT17-0035, and by the Wallenberg AI,
Autonomous Systems and Software Program (WASP).

A Appendix

A.1 Common IoT Communication Protocols

In the TCP/IP network model, the physical or data link layer is responsible
for physical transmissions; characteristics of applications - such as latency and
availability - directly impact traffic characteristics on the link layer. The network
layer is responsible for routing and forwarding packets; considering that IoT
devices are often resource-constrained, the information necessary for routing
should be kept at a minimum. Finally, transport layer protocols (such as TCP
and UDP) manage end-to-end communication between network endpoints.

Physical network gateways are commonly used for interoperability in the
physical and network layers or transport layer [25]. Gateways have limited scala-
bility [25]: as the number of IoT devices increases, special connectors are required
for their interaction, thus adding both cost and complexity to the network.

Application communication between network endpoints is implemented on
the application layer. Middleware can perform translation in the application
layer; however, connecting middleware components risks further reducing inter-
operability by locking applications to a specific technology. Interception proxies
are an alternative for application layer translation; however, proxies cause delays
since all traffic transits through proxies even when translation is unnecessary [7].

604 P. Nikbakht Bideh and N. Paladi

Proxies and middleware currently available for application layer protocol
translation are increasingly unsuitable for secure, distributed, and transparent
application layer protocol translation.

Several application layer protocols - namely HTTP, CoAP, MQTT, and
AMQP - have been widely reviewed in academic publications and adopted in
large scale deployments. We compare these protocols in Table 1.

Table 1. IoT protocols comparisons

IoT protocols HTTP CoAP MQTT AMQP

Transport layer TCP UDP TCP TCP

Security TLS/SSL DTLS TLS/SSL TLS/SSL

Architecture Req/Res Req/Res Pub/Sub Pub/Sub

QoS No Yes Yes Yes

Low power/lossy networks Fair Excellent Fair Fair

Dynamic discovery No Yes No No

A.2 Open vSwitch Overview

OpenvSwitch (OvS) is an open source programmable switch [31] that implements
packet forwarding on the datapath; it is a flow-based switch, where clients install
flows determining forwarding decisions. Flows are installed in a cache level struc-
ture that assists the datapath to execute actions on received packets, e.g. allow,
drop, etc. For each ingress packet, the datapath consults its cache and forwards
the packet to its destination if matching entries exist. For each cache miss, the
datapath issues an upcall and forwards the packet to ovs-vswitchd. A datapath
can be deployed as a kernel module or in user space with additional firmware
support. Packet classification in OvS is computationally expensive, mostly due
to the many types of matching fields. Matching is implemented in a hash table of
flow rules, with matching fields hashed as keys. OvS uses a modified Tuple Space
Search (TSS) algorithm for packet classification. The algorithm searches through
the hash map tables based on the maximum entry’s priority and terminates after
finding the highest priority matching flow rule. Early OvS releases implemented
OpenFlow processing exclusively as a kernel module. However, the difficulty of
developing and updating kernel modules motivated moving packet classification
to user space. A multi-level cache structure kernel implementation compensates
the resulting performance impact. The cache structure consists of two levels with
increasing lookup costs: a microflow cache (or Exact Match Cache) and a larger
megaflow cache. The megaflow cache matches multiple flows with wildcards [23].

Open vSwitch Forwarding. Figure 6 illustrates the OvS internals. An incoming
packet reaches the datapath from either a physical or virtual NIC (1). In the
datapath, the switch runs a first search based on an exact match (2). If there is a

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 605

matching entry in the microflow cache, the packet is sent to the specific table in
the megaflow cache to retrieve the required actions. Otherwise, the forwarding
process performs a second search in the next cache line (3). Failing to find a
match, the datapath uses upcalls (4) to inform the ovs-vswitchd that it cannot
handle the packet. The ovs-vswitchd uses the classification process (5) to obtain
a matching rule via its flow tables. Next, ovs-vswitchd returns to the datapath,
inserts the entry in the cache (6), and returns the packet to the kernel (7). Finally,
the datapath forwards the packet to the intended destination (8). Failing to find
matching information in the flow tables, ovs-vswitchd sends a packet-in request
to the network controller to get a matching rule for the unknown packet.

Fig. 6. An overview of Open vSwitch internals

References

1. Semantic Integration & Interoperability Using RDF and OWL (2005). https://
www.w3.org/2001/sw/BestPractices/OEP/SemInt/. Accessed 15 Oct 2020

2. AMD SEV-SNP: Strengthening VM isolation with integrity protection and more.
White paper, Advanced Micro Devices, January 2020

3. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, New York, NY,
USA, vol. 13, p. 7. ACM (2013)

4. Baek, J., Kim, J., Susilo, W.: Inspecting TLS anytime anywhere: a new approach to
TLS interception. In: Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, pp. 116–126 (2020)

5. de Carné de Carnavalet, X., van Oorschot, P.C.: A survey and analysis of TLS
interception mechanisms and motivations. arXiv e-prints. arXiv-2010 (2020)

6. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011). https://doi.org/10.1007/s10207-011-0124-7

7. Derhamy, H., Eliasson, J., Delsing, J.: IoT interoperability-on-demand and low
latency transparent multiprotocol translator. IEEE Internet Things J. 4(5), 1754–
1763 (2017)

8. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008. https://doi.org/10.17487/RFC5246.
https://www.rfc-editor.org/rfc/rfc5246.txt. Updated by RFCs 5746, 5878, 6176,
7465, 7507, 7568, 7627, 7685, 7905, 7919

https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246.txt

606 P. Nikbakht Bideh and N. Paladi

9. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

10. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018. https://doi.org/10.17487/RFC8446

11. Garbelini, M.E., Wang, C., Chattopadhyay, S., Sumei, S., Kurniawan, E.: Sweyn-
Tooth: unleashing mayhem over bluetooth low energy. In: 2020 USENIX Annual
Technical Conference (USENIX ATC 2020), pp. 911–925. USENIX Association,
July 2020. https://www.usenix.org/conference/atc20/presentation/garbelini

12. Gregg, B.: Systems Performance, 2nd edn. Pearson, London (2020)
13. Hosseinzadeh, S., Liljestrand, H., Leppänen, V., Paverd, A.: Mitigating branch-

shadowing attacks on intel SGX using control flow randomization. In: Proceedings
of the 3rd Workshop on System Software for Trusted Execution, pp. 42–47 (2018)

14. Hunt, G.D.H., et al.: Confidential computing for openpower. In: EuroSys 2021,
New York, NY, USA, pp. 294–310. ACM (2021). https://doi.org/10.1145/3447786.
3456243

15. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-
tography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
436–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 27

16. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2014)

17. Lam, S.S.: Protocol conversion. IEEE Trans. Softw. Eng. 14(3), 353–362 (1988)
18. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: an open

framework for architecting trusted execution environments. In: Proceedings of the
Fifteenth European Conference on Computer Systems. EuroSys 2020, New York,
NY, USA. ACM (2020). https://doi.org/10.1145/3342195.3387532

19. Lee, H., et al.: maTLS: How to make TLS middlebox-aware? In: NDSS (2019)
20. Li, J., Chen, R., Su, J., Huang, X., Wang, X.: ME-TLS: middlebox-enhanced TLS

for internet-of-things devices. IEEE Internet Things J. 7(2), 1216–1229 (2020).
https://doi.org/10.1109/JIOT.2019.2953715

21. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. Hasp@ isca 10(1) (2013)

22. McKeown, N., et al.: Openflow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008)

23. Medina, J., Paladi, N., Arlos, P.: Protecting OpenFlow using Intel SGX. In: 2019
IEEE Conference on Network Function Virtualization and Software Defined Net-
works (NFV-SDN), pp. 1–6. IEEE (2019)

24. Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on Intel SGX.
arXiv preprint arXiv:2006.13598 (2020)

25. Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in internet of things:
taxonomies and open challenges. Mob. Netw. Appl. 24(3), 796–809 (2019)

26. Safaric, S., Malaric, K.: Zigbee wireless standard. In: Proceedings of ELMAR 2006,
pp. 259–262 (2006). https://doi.org/10.1109/ELMAR.2006.329562

27. Shen, Y., et al.: Occlum: secure and efficient multitasking inside a single enclave of
Intel SGX. In: Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2020, New York, NY, USA, pp. 955–970. ACM (2020). https://doi.org/10.1145/
3373376.3378469

https://doi.org/10.17487/RFC8446
https://www.usenix.org/conference/atc20/presentation/garbelini
https://doi.org/10.1145/3447786.3456243
https://doi.org/10.1145/3447786.3456243
https://doi.org/10.1007/978-3-642-15317-4_27
https://doi.org/10.1007/978-3-642-15317-4_27
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1109/JIOT.2019.2953715
http://arxiv.org/abs/2006.13598
https://doi.org/10.1109/ELMAR.2006.329562
https://doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/3373376.3378469

Chuchotage: In-line Software Network Protocol Translation for (D)TLS 607

28. Svenningsson, J., Paladi, N., Vahidi, A.: Faster enclave transitions for IO-intensive
network applications. In: Proceedings of the ACM SIGCOMM 2021 Workshop on
Secure Programmable Network INfrastructure, SPIN 2021, New York, NY, USA,
pp. 1–8. ACM (2021). https://doi.org/10.1145/3472873.3472879

29. Svenningsson, J., Paladi, N., Vahidi, A.: SGX-bundler: speeding up enclave tran-
sitions for IO-intensive applications. In: The 22nd IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing. IEEE-Institute of Electrical
and Electronics Engineers Inc. (2022)

30. Tolk, A.: Composable mission spaces and M&S repositories-applicability of open
standards. In: Spring Simulation Interoperability Workshop, Arlington, VA (2004)

31. Tu, W., Wei, Y.H., Antichi, G., Pfaff, B.: Revisiting the open vswitch dataplane
ten years later. In: Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM 2021, New York, NY, USA, pp. 245–257. ACM (2021). https://doi.
org/10.1145/3452296.3472914

32. Uddin, M., Mukherjee, S., Chang, H., Lakshman, T.: SDN-based multi-protocol
edge switching for IoT service automation. IEEE J. Sel. Areas Commun. 36(12),
2775–2786 (2018)

33. Yao, J., Zimmer, V.: Virtual Firmware, pp. 459–491. Apress, Berkeley (2020).
https://doi.org/10.1007/978-1-4842-6106-4 13

34. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

https://doi.org/10.1145/3472873.3472879
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1007/978-1-4842-6106-4_13

Study on the Effect of Face Masks
on Forensic Speaker Recognition

Georgiana Bogdanel1, Nadia Belghazi-Mohamed1,
Hilario Gómez-Moreno1,2(B) , and Sergio Lafuente-Arroyo1,2

1 Escuela Politécnica Superior, Departamento de Teoŕıa de la Señal y
Comunicaciones, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain

{georgiana.bogdanel,nadia.belghazi}@edu.uah.es,
{hilario.gomez,sergio.lafuente}@uah.es

2 Instituto Universitario de Investigación en Ciencias Policiales, Facultad de Derecho,
Universidad de Alcalá, 28801 Alcalá de Henares, Madrid, Spain

Abstract. The COVID-19 pandemic has led to a dramatic increase in
the use of face masks. Face masks can affect both the acoustic proper-
ties of the signal and the speech patterns and have undesirable effects
on automatic speech recognition systems as well as on forensic speaker
recognition and identification systems. This is because the masks intro-
duce both intrinsic and extrinsic variability into the audio signals. More-
over, their filtering effect varies depending on the type of mask used.
In this paper we explore the impact of the use of different masks on
the performance of an automatic speaker recognition system based on
Mel Frequency Cepstral Coefficients to characterise the voices and on
Support Vector Machines to perform the classification task. The results
show that masks slightly affect the classification results. The effects vary
depending on the type of mask used, but not as expected, as the results
with FPP2 masks are better than those with surgical masks. An increase
in speech intensity has been found with the FPP2 mask, which is related
to the increased vocal effort made to counteract the effects of hearing
loss.

Keywords: Automatic speaker recognition · Acoustic features · Face
mask · Forensic acoustics

1 Introduction

The human voice is the most natural form of communication between people.
In addition to words, the speech signal conveys information about the speaker’s
identity, emotional state, acoustic environment, language and accent. Speaker
recognition is the task of identifying the speaker behind an acoustic record-
ing. Forensic speaker recognition involves the identification of a person in any
possible speech recording scenario at a crime scene. From this point of view,
recognition systems encounter difficulties when dealing with evidence that has
some modification or is altered, for example, by the introduction of elements that
c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 608–621, 2022.
https://doi.org/10.1007/978-3-031-15777-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_33&domain=pdf
http://orcid.org/0000-0002-8284-6733
http://orcid.org/0000-0002-4841-2501
https://doi.org/10.1007/978-3-031-15777-6_33

Study on the Effect of Face Masks on Forensic Speaker Recognition 609

affect its production as in the case of face masks [22,25,29]. Therefore, speaker
recognition techniques cannot produce reliable speaker comparison results under
difficult forensic conditions that introduce some alteration in voice production,
which limits the admissibility of recorded voice evidence in court.

1.1 Related Work

In recent years, the use of face masks has increased enormously worldwide due to
the COVID-19 pandemic. They offer protection against external pathogens, thus
preventing human-to-human transmission, but there is no denying the barrier
masks pose to the act of communication. For this reason, since the appearance
of COVID-19, different studies have appeared in the literature dealing with the
possible effects of masks on the acoustic evaluation of the voice.

Several studies point the impact of the use of face masks from a clinical point
of view [1,15,19] as well as in the context of the assessment of language ability
[5]. It is also worth mentioning the work done by [20] on the comparison of speech
intelligibility using different types of masks. This work confirmed the alteration
that the mask causes in the intelligibility of speakers by producing variations in
relation to the distribution of acoustic power in the frequency bands, especially
in the first and second formants1. Previous work has also shown that the use of
masks produces a significant loss of speech transmission, which varies according
to the type of mask used, mainly attenuating sounds above 1 kHz, i.e., there
is both attenuation of high frequency sounds and effects on the directivity of
the signal [6,18]. However, it is worth noting the scarcity of literature on the
effect of masks on speaker recognition. It is worth mentioning some of the works
that have served as a basis for the present one [24,25]. It is true that neither of
them are contemporary to the period of the COVID-19 pandemic and neither
addresses the problems encountered in relation to voice matching. Nevertheless,
both present results with English utterances, whereas the present study aims to
analyse the effects of masks on Spanish speakers.

1.2 Threat Model

All the mentioned studies in the previous section show that face masks influence
voice production and can function as an undeniable acoustic filter for speech.
This effect can introduce modifications in the characteristics of the human voice,
producing important changes, both consequential and adaptive. For this reason,
in the forensic field, there is an undeniable need to know the effect of the use of
face masks, due to the possible alteration of the properties of the acoustic signal
that they can induce.

In general, we understand forensic field to be the one who has the purpose
of collection and analysis of evidence for the clarification of a criminal action.
1 In Spanish, only the first two formants, F1 and F2, have the characteristics that make

the difference between one vowel sound and another. This is due to the relationship
between the location of the formants in the spectrogram and the position of the
organs involved in articulation [27].

610 G. Bogdanel et al.

Therefore, in the case of Forensic Speaker Recognition, we will work with spoken
broadcasts that are in some way related to the investigation of a criminal act.
Furthermore, in most of the cases, a recovered versus a control2 acoustic emis-
sion is confronted, where an expert must carry out an analysis of both voices
with the aim of concluding whether the signals correspond to the same person.
The possibility of making this comparison lies in the importance of the control
sample obtained being generated under the same conditions, or with the highest
possible degree of reproducibility, as the recording conditions of the recovered
sample. This is the premise under which the different professionals of the State
Security Forces and Corps work. However, as a result of the health crisis caused
by COVID-19, the conditions for obtaining control samples were slightly altered.
This is due to the obligatory use of face masks by those involved, even though
the circumstances in which the samples were obtained were not the same.

As stated in several works [8,12], it cannot be denied that voice analysis in
forensic conditions involves several drawbacks, since its interpretation and reli-
ability is subject to various factors that generate different types of variability.
There are several intrinsic and extrinsic factors that cause variability in acous-
tic signals. Intrinsic variability refers to the human factors involved in speech
production (emotion, speech rate, effort, etc.) causing variation in speech at
the time of its generation. On the other hand, extrinsic variability refers to the
way in which the acoustic signal reaches the listener, or the analysis system
used (background noise, distortions introduced by the transmission or recording
channel) producing variations in the signal after it is generated [25]. Covering
the face, with face masks in this case, implies both intrinsic variability, i.e., the
mask will affect speech production; and extrinsic variability, i.e., it will affect
speech production and intelligibility and absorb the signal triggering a loss on
speech transmission.

Also, the impact of face masks on speech production does not occur to the
same degree with all types of face masks currently on the market but is dependent
on the specifications of the individual masks. The higher the level of barrier
provided by a face shield, the greater its impact on the acoustic characteristics
of speech. During the COVID-19 pandemic, the most marketed face masks in
Spain were surgical masks and self-filtering masks. Surgical masks achieve a
breathability level of less than 40 Pa/cm2, which favours the ability to breathe
during use; however, in self-filtering masks, the resistance to exhalation is higher.
A lower pressure value will indicate that air passes through the mask with less
resistance, i.e., it is easier to breathe and talk with the mask on. Therefore, it is
presumed that self-filtering masks will have a greater filtering effect than surgical
masks, due to the differences in the specifications and materials that make up
each mask.

According to the guidelines of the European Network of Forensic Science
Institutes (ENFSI), the presence of circumstances that hinder, modify, or alter

2 According to Delgado-Romero [8], “a control sample is one that belongs to a known
subject, while a recovered sample is anonymous, i.e. the identity of the person who
carried it out is not known”.

Study on the Effect of Face Masks on Forensic Speaker Recognition 611

evidence during the evaluation stage may limit the admissibility of voice evidence
in court and, moreover, state-of-the-art Speech Recognition techniques are not
able to produce reliable results under difficult forensic conditions [10]. Therefore,
it is undeniable that the use of masks could produce an added challenge for the
work of experts by increasing the variability already present in the human voice
and by changing the conditions for obtaining control and recovered evidence,
making already unsuitable conditions more difficult.

In this paper, we test an Automatic Speaker Recognition (ASR) model based
on Support Vector Machine (SVM), with samples recorded under different con-
ditions than those used in the training of the model. Specifically, we tested the
strength of the classifier against acoustic signals obtained in the presence of two
forensically relevant face masks (surgical IIR and self-filtering FFP2). To sup-
port the investigation of the present study, a new corpus of recordings has been
generated. Using a recognition system based on acoustic feature extraction, we
trained the model using utterances from different speakers under normal condi-
tions, i.e., without the use of a mask, creating a robust identification model. In
the test phase, we should find differences in recognition ratios with respect to
the use of the mask. All the above has led to the following hypotheses:

1. The use of masks has an impact on the Automatic Speaker Recognition model,
decreasing the efficiency of forensic speaker identification. Thus, the voice
features of a speaker using a mask are different from those without it.

2. The use of the FFP2 self-filtering respirator will result in a lower hit ratio in
speaker identification, due to the higher degree of exhalation resistance in its
specifications compared to the IIR surgical mask.

The remainder of this document is organised as follows. Section 2 presents
in detail the methodology used for corpus generation, the features extracted
and the SVM model used. In Sect. 3, the results generated by the model are
presented. Finally, Sect. 4 provides a few concluding remarks and future lines of
research.

2 Method

Having set out the objectives, this section will develop the process followed to
reach the results and their subsequent conclusions. The methodology followed
can be classified as inductive. From the analysis of the collected recordings, a
set of interesting vocal characteristics has been extracted from the point of view
of forensic speaker identification, in order to feed the voice classifier.

2.1 Voice Recordings

The study involved 30 speakers (15 female and 15 male) with an average age of
26.5 years. All were Spanish speakers and did not report any voice or hearing
problems at the time of the study. Informed consent to participate in this study
was obtained from all participants.

612 G. Bogdanel et al.

The recording environment was the same for all participants. The room noise
level was measured to take it into account and to avoid possible interferences
in the subsequent analysis of the recordings. Voice recordings took place in a
laboratory of the Department of Signal Theory and Communications at the
University of Alcalá with an average ambient noise of 44.7 dBA.

Participants had to read, in a fluent and normal way, balanced sentences with
previously structured linguistic features that facilitate the forensic identification
of the speakers. Specifically, three sentences were chosen from the LOCUPOL
voice bank, owned by the Spanish National Police Force [27]. This reading task
was performed in three different conditions for the speaker: (1) wearing a surgical
mask, (2) wearing a FFP2 mask, and (3) not wearing a mask (control samples).
During the recording session, participants were required to maintain their habit-
ual voice in terms of pitch, volume and phonation type for each condition, to
minimize mask-independent intra-speaker variability in voice production [8].

The entire speech set was captured with an Olympus LS 100 recording device
at a constant distance of 30 cm from the speakers, in front of the mouth axis.
Recordings were obtained with a sampling frequency of 44.1 kHz and a reso-
lution of 32 bits. The signals were then pre-processed and saved on a laptop
in Waveform Audio Format for edition with Audacity [2]. This pre-processing
phase consisted of trimming the audios to homogenize their duration, as well as
to dispense with those silences before and after the reading of the sentences to
avoid possible errors during the extraction of audio features. In this way, a total
of 270 voice samples were obtained, with no notable interferences and under con-
trolled conditions. The database generated and the algorithm used is publicly
available3. Table 1 shows all the speakers involved in the study.

Table 1. Speakers compilation. With each type of mask, 3 sentences were recorded,
generating a total of 9 recordings per speaker.

Speaker 1 2 3 4 5 6 7 8 9 10

Gender Female Female Female Male Female Female Male Female Male Male

Age 22 22 21 52 18 22 21 18 18 26

Speaker 11 12 13 14 15 16 17 18 19 20

Gender Female Male Male Male Male Male Female Female Female Male

Age 22 56 19 18 24 54 40 18 18 59

Speaker 21 22 23 24 25 26 27 28 29 30

Gender Male Female Male Female Female Male Female Male Male Female

Age 18 24 42 18 18 19 19 23 25 21

3 The corpus repository and the ASR system are available at: https://tinyurl.com/
8h8dteuu.

https://tinyurl.com/8h8dteuu
https://tinyurl.com/8h8dteuu

Study on the Effect of Face Masks on Forensic Speaker Recognition 613

2.2 Acoustic Features

As a previous step to any ASR system, the acoustic characteristics of the voice
have to be extracted. For this stage, a Python library for audio processing,
Librosa [13,14], was used. The features that were extracted from the speech
signal with this library correspond to spectral ones. These features are widely
used for efficient ASR systems because the spectrum reflects the anatomical
structure of the vocal tract. Different speakers will have different spectra. In
addition, an advantage of spectral methods is that logarithmic scales, which
mimic the functional characteristics of the human ear, could be used to improve
the recognition ratio.

There are different features that can be extracted: Mel spectrogram, Mel Fre-
quency Cepstral Coefficients (MFCC), Chroma, Tonnetz and Spectral Contrast
[14]. However, many of these features are related and can lead to misclassifica-
tion errors since the feature vector composition is redundant and confusing for
the classification system, as well as inefficient. Therefore, in order to select the
most efficient acoustic features for the model, a series of tests were performed to
evaluate the performance during training. The best results were obtained using
only the MFCCs, specifically 50 per audio. Although in the literature [11,21]
it is mentioned that a smaller number of MFCCs is sufficient to represent the
characteristics of the voice in a time interval, in our case it has been empirically
proven that a larger number of coefficients undoubtedly improves the classifica-
tion results.

MFCCs are declared by the European Telecommunications Standards Insti-
tute (ETSI) as one of the most widely used and well-known features in speech
recognition. They are a set of features extracted from the spectral domain rep-
resentation of the speech signal [9] that concisely describe the general shape of a
spectral envelope, represent the vocal timbre and one of their main advantages
is the isolation of noise or the removal of irrelevant information from the sound
background.

2.3 Automatic Speaker Recognition Model

An ASR system acts as a pattern classifier, each pattern consisting of a set of
previously extracted features from the speech signal that allow speaker identifica-
tion. In this case, the classification is carried out using Support Vector Machines
(SVM), with the Radial Basis Function (RBF) kernel which can be described by
the following formula:

K(x, x′) = e−γ‖x−x′‖2

(1)

This supervised learning modelling technique, consolidated in the field of pattern
recognition, allows the resolution of nonlinear classification problems with several
classes in an optimal way [7]. It is especially effective when you have a small
training set, as in our case. The LibSVM implementation [4] included in the
Scikit Learning Python library [17] has been used in all experiments.

614 G. Bogdanel et al.

In order to build a robust model that correctly assigns speaker identities,
it is essential to have a properly trained SVM classifier. For training we have
the set of unmasked (NM) audios and a total of 30 classes corresponding to the
total number of speakers. The set of audios was divided according to the three
sentences uttered by each informant (S1, S2 and S3). Thus, the unmasked audios
belonging to two of the sentences were used for training and the audios of the
remaining sentence were used to test.

To train the model two hyperparameters must be tuned. C, or regularisa-
tion coefficient, is a weighting factor between empirical risk and structural risk,
i.e. error tolerance. The adjustment of this parameter may involve a trade-off
between margin maximisation and classification violation. A high value of C
will imply narrow margins and few observations will be misclassified, which is
equivalent to a model well fitted to the data. Conversely, as C decreases the
tolerance to errors on the margin will be higher because the margin is wider,
this is equivalent to a flexible model [28].

The hyperparameter γ (from the RBF kernel) defines the distance of influence
of a single training point. A small value of γ implies a larger distance between the
observations separating the classes of the SVM, which makes the estimation more
conservative. However, a larger parameter is detrimental because the radius of
influence of the support vectors only includes the support vector and the points
must be very close to be considered of the same class. Consequently, the model
will tend to over-fit despite regularising with C [28]. The estimation of both
parameters has been performed on the training data set using a grid search.
After evaluating different values for the C and γ parameters, the best results
were obtained with C = 100 and γ = 0.045.

The training vectors have been normalised by removing the mean and scaling
to a unit variance. The process has been performed for each component of the
vector independently. This same scaling has subsequently been applied to the
test vectors, but using the mean and variance information obtained by scaling the
training vectors. This is done to ensure that the predictors of greater magnitude
do not have more influence than the rest.

In the training phase, three different models were used, corresponding to the
combinations made with two of the unmasked audio sets for each sentence (S1,
S2 or S3). The remaining sentence were used for testing. Therefore, recombining
the audios of these three sentences allows training the ASR system with the
whole set of unmasked audios, obtaining a robust model for the three sentences
in the set. After the training phase, accuracy of 100% have been obtained for all
the models tested (see Table 2).

By obtaining the maximum possible accuracy in the three training models,
the results can be extrapolated to a single model that uses the whole set of
unmasked audios (S1 NM, S2 NM and S3 NM), assuming that its training would
also reach an accuracy of 100% when testing. On this model, the set of audios
with both surgical masks (MS) and self-filtering masks (MFFP2) will be used to
test the classifier. In this way, the predictions obtained for each type of mask can
be compared with the values obtained without the mask, in order to appreciate
the possible influence of the latter on Forensic Speaker Recognition.

Study on the Effect of Face Masks on Forensic Speaker Recognition 615

Table 2. Training Results.

Model Accuracy (%) #Errors

Train Test

S1 NM, S2 NM S3 NM 100 0

S2 NM, S3 NM S1 NM 100 0

S1 NM, S3 NM S2 NM 100 0

3 Results

In this section we present the classification results for the different proposed mod-
els. As previously stated, the training was performed with a SVM and adjusting
the C and γ parameters, until the highest ratio was achieved. Subsequently,
the performance of the models was evaluated considering common evaluation
metrics for classification problems.

3.1 ASR Results

The results of the speaker identification on the set of utterances collected using
the proposed ASR system are presented in Table 3. In general, a decrease in the
accuracy of the automatic classification model employed can be seen when one of
the masks is used. When the training and test sentences are pronounced without
the use of the mask, the ratio reaches 100% in all test cases. However, when the
recorded utterances with the presence of masks are introduced in the testing
process, there is a degradation of the performance of the model, introducing
errors in the speaker classifications.

Table 3. Results of the performance measures of the no mask models in training.

Model Accuracy (%) #Errors

Train Test

S1 NM, S2 NM S3 NM 100 0

S2 NM, S3 NM S1 NM 100 0

S1 NM, S3 NM S2 NM 100 0

S1 NM, S2 NM S1 MS, S2 MS, S3 MS 95.5 4

S2 NM, S3 NM S1 MS, S2 MS, S3 MS 94.4 5

S1 NM, S3 NM S1 MS, S2 MS, S3 MS 94.4 4

S1 NM, S2 NM, S3 NM S1 MS, S2 MS, S3 MS 96.7 3

S1 NM, S2 NM S1 MFFP2, S2 MFFP2, S3 MFFP2 96.7 3

S2 NM, S3 NM S1 MFFP2, S2 MFFP2, S3 MFFP2 97.8 2

S1 NM, S3 NM S1 MFFP2, S2 MFFP2, S3 MFFP2 97.8 1

S1 NM, S2 NM, S3 NM S1 MFFP2, S2 MFFP2, S3 MFFP2 98.9 1

616 G. Bogdanel et al.

The results presented in Table 4 are promising. When the training of the models
is performed with the speech in the presence of a mask of either of the two types
used in this study, the recognition system shows undoubtedly improved identifi-
cation ratios, reaching 100% accuracy in all cases. As mentioned, the recordings
were obtained under the same acoustic conditions, the features extracted in this
case were also the 50 MFCCs, and the models have been trained in this case with
the same parameters. Therefore, these results seem to confirm the first hypothe-
sis, that the use of masks has some effect on the Automatic Speaker Recognition
model, decreasing the efficiency in the identification of speakers.

Table 4. Results of the performance measures of the mask models in training.

Model Accuracy (%) #Errors

Train Test

S1 MS, S2 MS S3 MS 100 0

S2 MS, S3 MS S1 MS 100 0

S1 MS, S3 MS S2 MS 100 0

S1 MFFP2, S2 MFFP2 S3 MFFP2 100 0

S2 MFFP2, S3 MFFP2 S1 MFFP2 100 0

S1 MFFP2, S3 MFFP2 S2 MFFP2 100 0

Additionally, the confusion matrix was calculated for the model that includes the
three sentences without masks. Only one confusion matrix is shown for each of
the conditions (with surgical mask and with FFP2 mask). Figure 1 show these
graphical representations where it is clear a decrease in the efficiency of the
system due to the use of masks. The classification errors identified are consistent
with the gender of each speaker, that is, without changing it.

It is worth noting the presence of a repeated error in all the tests carried
out. One of the participants (speaker 17), when wearing any face mask, is not
correctly identified in many cases. The conditions for obtaining the participant’s
recordings do not differ from those of the rest of the participants. Therefore, the
explanation for this result may lie in a voice characteristic that usually generates
problems for speaker recognition systems: the accent. In the speech set used in
this study, the participant mentioned is the only one with a highly identifiable
accent. Works such as [26] claim that accent is a matter of great interest in the
forensic field. In our experiments, there is no problem without a mask but the
use of any mask leads to errors in this case.

However, contrary to expectations, the second hypothesis does not hold true.
The automatic system when using speech with FFP2 masks gives clearly better
results than when using speech with surgical masks. Due to the higher degree
of exhalation resistance of FFP2 masks, speech production, intelligibility and
signal transmission suffer a considerable loss, which should be translated into
lower accuracy in speaker identification. As can be seen in Table 3, the results
obtained are not consistent with the initial hypothesis. At this point, further
research was carried out in order to find a possible explanation for these data.

Study on the Effect of Face Masks on Forensic Speaker Recognition 617

(a) Classifier trained without face mask and tested with surgical mask.

(b) Classifier trained without face mask and tested with FFP2 mask.

Fig. 1. Confusion matrices

618 G. Bogdanel et al.

3.2 Intensity Analysis

After analysing the results obtained, it was decided to carry out an analysis
of the acoustic intensity to verify the existence of any appreciable difference
between the recorded locutions in the different conditions. It was decided to
extend the study by applying loudness analysis because during the recording
of the utterances, it was systematically perceived that the speakers tended to
increase the loudness of their voices with the use of the FFP2 mask.

All acoustic data were measured with Praat [3]. Intensity (measured in dB)
is a parameter that correlates to the amplitude of the sound wave (the distance
between the extremes of its oscillations) and is not the same as the volume of a
signal. Intensity analysis at Praat can be performed from a point or over a time
interval. To obtain more meaningful results it is preferable to select a region
of the recording where the intensity is relatively stable, Praat will generate the
average value of the intensity over the selected interval of the signal. Figure 2
compiles the average intensities obtained for each sentence and condition used
in this study.

Fig. 2. Average intensity level measured in dB, in the three situations analysed.

As might be expected, the audibility of the voice has changed while wearing a
mask. This is manifested, as can be seen in Fig. 2, by decreasing intensity in
the case of surgical masks due to the filtering effect they have on exhaled air
to prevent the spread of disease. However, what is noteworthy are the results
obtained with the FFP2 mask. In this case, the intensity is somewhat higher
than in cases where the mouth is less covered or not covered at all.

These results are recurrent for the utterances of all speakers, with an average
increase in loudness of approximately 1.6 dB when wearing the FFP2 mask over

Study on the Effect of Face Masks on Forensic Speaker Recognition 619

wearing a surgical mask and an average increase of 1.06 dB over wearing no mask.
It is interesting to note the repeated increase in loudness values for all speakers,
which leads us to think that this may be the explanation for the non-verification
of the second hypothesis.

The masks act as a low-pass acoustic filter, i.e. they reduce the information
in high frequencies, which leads to an alteration in the perception of the voice.
Therefore, in these unfavourable speech conditions, speakers can adapt their
phonation styles to compensate the action of this filter and to improve voice
clarity [16]. With the use of the mask we have the sensation that less audibility
is produced. With the use of the FFP2 mask, this sensation increases due to its
greater resistance to exhalation. Different studies, such as [23], confirm that this
may result in an increase in the intensity of the voice, as we believe may have
occurred in obtaining the locutions used in this research.

4 Conclusion

The results of this study describe the alterations produced in an ASR system
by the use of face masks, due to the changes introduced by them in the acous-
tic voice characteristics. To support this research, a corpus of recordings of 30
speakers has been collected and a SVM-based classifier has been used after the
extraction of MFCCs from the utterances. It has been observed that the system
experiences a deterioration of its performance when the set of utterances is used
with both types of masks (surgical and FPP2). However, against all odds, a lower
percentage of accuracy was obtained for the surgical mask audios than for the
FFP2 mask audios. This may be because of the fact that the acoustic filter of
these masks produces an alteration of voice perception. Due to the specifications
of the FFP2 masks, this alteration is even higher, resulting in an increase in the
intensity of the voice to counteract this effect.

The slight degradation of the results indicates the capability of the state-of-
art recognition systems to mitigate the face mask mismatch. Within the forensic
field, these results underline the importance of obtaining samples under the
same conditions to achieve a better identification and that, in some specific
cases, wearing a mask could lead to errors. It is necessary to study the acoustic
changes in specific parts of speech to obtain more knowledge about the effect of
wearing masks in the detected problematic cases. Therefore, although the use
of specific software to compare voices can be useful, it should not be the only
source of information and forensic expert analysis is desirable.

To conclude, the future work will focus on:

– Increase the number of speakers and the utterances for each one to test the
effect of wearing masks.

– Include more linguistically diverse speakers in the training data.
– Add both noise to speech samples and words that hinder intelligibility to test

the scalability and robustness of the model.
– Use deep learning algorithms to perform an automatic acoustic features

extraction.

620 G. Bogdanel et al.

Acknowledgement. This research was supported by the Research Grants Program
of the Universidad de Alcalá. We acknowledge the valuable counsel and resources pro-
vided by G. A. Acha Ruiz, as well as to the Department of Forensic Acoustics of the
“Comisaŕıa General de Polićıa Cient́ıfica” for the access to the LOCUPOL database
sentences.

References

1. Atcherson, S.R., et al.: The effect of conventional and transparent surgical masks
on speech understanding in individuals with and without hearing loss. J. Am. Acad.
Audiol. 28, 58–67 (2017)

2. Audacity Team: Audacity (R): Free audio editor and recorder [computer applica-
tion] (2022). www.audacityteam.org/

3. Boersma, P., Weenink, D.: Praat: doing phonetics by computer [computer program]
(version 6.2.10) (2009). www.praat.org. Accessed 17 Mar 2022

4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 1–27 (2011). https://doi.org/10.1145/1961189.
1961199

5. Coniam, D.: The impact of wearing a face mask in a high-stakes oral examination:
an exploratory post-SARS study in Hong Kong. Lang. Assess. Q.: Int. J. 2, 235–261
(2005)

6. Corey, R.M., Jones, U., Singer, A.C.: Acoustic effects of medical, cloth, and trans-
parent face masks on speech signals. J. Acoust. Soc. Am. 148, 2371–2375 (2020).
https://doi.org/10.1121/10.0002279

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995). https://doi.org/10.1023/A:1022627411411

8. Delgado-Romero, C.: La Identificación de Locutores en el Ámbito Forense (in Span-
ish). Ph.D. thesis, Departamento de Comunicación y Publicidad II. Facultad de
Ciencias de la Información. Universidad Complutense de Madrid. España (2001)

9. Deller, J.R., Proakis, J.G., Hansen, J.H.L.: Discrete-Time Processing of Speech
Signals. Institute of Electrical and Electronics Engineers, New York (2015)

10. ENFSI: Forensic speech and audio analysis working group terms of reference for
forensic speaker analysis. European Network of Forensic Science Institutes, pp. 1–4
(2008)

11. Leu, F.Y., Lin, G.L.: An MFCC-based speaker identification system. In: IEEE 31st
International Conference on Advanced Information Networking and Applications,
AINA, pp. 1055–1062. Institute of Electrical and Electronics Engineers Inc. (2017).
https://doi.org/10.1109/AINA.2017.130

12. Maher, R.C.: Principles of Forensic Audio Analysis. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-99453-6

13. McFee, B., et al.: Thassilo: librosa/librosa: 0.9.1 (2022). https://doi.org/10.5281/
zenodo.6097378

14. McFee, B., et al.: Librosa: audio and music signal analysis in python. In: Proceed-
ings of the 14th Python in Science Conference, pp. 18–24 (2015). https://doi.org/
10.25080/majora-7b98e3ed-003

15. Mendel, L.L., Gardino, J.A., Atcherson, S.R.: Speech understanding using surgical
masks: a problem in health care? J. Am. Acad. Audiol. 19, 686–695 (2008)

16. Nguyen, D.D., et al.: Acoustic voice characteristics with and without wearing a
facemask. Sci. Rep. 11, 1–11 (2021). https://doi.org/10.1038/s41598-021-85130-8

www.audacityteam.org/
www.praat.org
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1121/10.0002279
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/AINA.2017.130
https://doi.org/10.1007/978-3-319-99453-6
https://doi.org/10.5281/zenodo.6097378
https://doi.org/10.5281/zenodo.6097378
https://doi.org/10.25080/majora-7b98e3ed-003
https://doi.org/10.25080/majora-7b98e3ed-003
https://doi.org/10.1038/s41598-021-85130-8

Study on the Effect of Face Masks on Forensic Speaker Recognition 621

17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Pörschmann, C., Lübeck, T., Arend, J.M.: Impact of face masks on voice radiation.
J. Acoust. Soc. Am. 148, 3663–3670 (2020). https://doi.org/10.1121/10.0002853

19. Radonovich, L.J., Jr., Yanke, R., Cheng, J., Bender, B.: Diminished speech intel-
ligibility associated with certain types of respirators worn by healthcare workers.
J. Occup. Environ. Hyg. 7, 63–70 (2009)

20. Randazzo, M., Koenig, L.L., Priefer, R.: The effect of face masks on the intelligi-
bility of unpredictable sentences. In: Proceedings of Meetings on Acoustics, vol. 42
(2020). https://doi.org/10.1121/2.0001374

21. Rao, K.S., Vuppala, A.K.: Speech Processing in Mobile Environments. SECE,
Springer, heidelberg (2014). https://doi.org/10.1007/978-3-319-03116-3

22. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

23. Ribeiro, V., Dassie-Leite, A.P., Pereira, E.C., Santos, A.D.N., Martins, P., de
Irineu, R.: Effect of wearing a face mask on vocal self-perception during a pan-
demic. J. Voice (2020)

24. Saeidi, R., Huhtakallio, I., Alku, P.: Analysis of face mask effect on speaker recog-
nition. In: Proceedings of the Annual Conference of the International Speech Com-
munication Association, INTERSPEECH, vol. 08, pp. 1800–1804 (2016). https://
doi.org/10.21437/Interspeech.2016-518

25. Saeidi, R., Niemi, T., Karppelin, H., Pohjalainen, J., Kinnunen, T., Alku, P.:
Speaker recognition for speech under face cover. In: Proceedings of the Annual Con-
ference of the International Speech Communication Association, INTERSPEECH,
vol. 2015-January, pp. 1012–1016 (2015). https://doi.org/10.21437/interspeech.
2015-275

26. Saleem, S., Subhan, F., Naseer, N., Bais, A., Imtiaz, A.: Forensic speaker recog-
nition: a new method based on extracting accent and language information from
short utterances. Forensic Sci. Int.: Digital Invest. 34, 300982 (2020)

27. Sánchez-López, D.: Análisis acústico y sonográfico de la vocal /a/ para su apli-
cación en el ámbito de las ciencias forenses (2016). https://tinyurl.com/h5ncwpv.
(in Spanish)

28. Wainer, J., Fonseca, P.: How to tune the RBF SVM hyperparameters? An empirical
evaluation of 18 search algorithms. Artif. Intell. Rev. 54, 4771–4797 (2021)

29. Wu, Z., Evans, N., Kinnunen, T., Yamagishi, J., Alegre, F., Li, H.: Spoofing and
countermeasures for speaker verification: a survey. Speech Commun. 66, 130–153
(2015)

https://doi.org/10.1121/10.0002853
https://doi.org/10.1121/2.0001374
https://doi.org/10.1007/978-3-319-03116-3
https://doi.org/10.21437/Interspeech.2016-518
https://doi.org/10.21437/Interspeech.2016-518
https://doi.org/10.21437/interspeech.2015-275
https://doi.org/10.21437/interspeech.2015-275
https://tinyurl.com/h5ncwpv

Video Forensics for Object Removal
Based on Darknet3D

Kejun Zhang1 , Yuhao Wang1(B) , and Xinying Yu2

1 Beijing Electronic Science and Technology Institute, Beijing, China
bestiwyh@126.com

2 School of Cyberspace Security Beijing University of Posts and Telecommunications,

Beijing, China

Abstract. To address the problems of insufficient analysis of time-
domain information of tampered video by 2D convolutional neural net-
works and the loss of details in the pooling layer when processing frame
images, a 3D video object removal tamper detection and localization
model based on Darknet53 optimization network is proposed. While the
Darknet53 network can fully retain the detail information in the frame,
we try to give the two-dimensional Darknet53 network, which can only
process spatial information, the ability to process time-domain informa-
tion, and extend the two-dimensional convolutional layer into a three-
dimensional convolutional layer, and also improve the detection efficiency
by adjusting the network structure to reduce feature redundancy, mak-
ing it more suitable for efficient processing of video tampering detection
binary classification tasks. A D3D (Darknet3D) network is constructed
to improve feature adequacy representation. Experimental results reveal
that the temporal domain classification accuracy of the tamper detection
model based on the Darknet3D is 98.9%, and the average Intersection
over Union of spatial localization and tamper area labeling is 49.7%,
which can effectively detect and locate the object removal tampering.

Keywords: Video object removal tampering · Spatio-temporal
localization · Darknet53

1 Introduction

Surveillance video is a crucial basis in legal and criminal investigations. But with
the widespread use of cheap and powerful video editing tools, non-professionals
can easily tamper with surveillance video without leaving any traces [3]. This has
gradually aroused concern about the credibility of digital video content in related
fields. Therefore, there is an urgent need for a tampering detection technology
that can effectively verify the authenticity and security of video content [1,4,5].

Supported by the National Key Research and Development Program on Cyberspace
Security (2018YFB0803601) and the Advanced Discipline Construction Project of Bei-
jing Universities (20210086Z0401).

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 622–637, 2022.
https://doi.org/10.1007/978-3-031-15777-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_34&domain=pdf
http://orcid.org/0000-0001-7444-4286
http://orcid.org/0000-0002-9331-1347
http://orcid.org/0000-0001-8891-6723
https://doi.org/10.1007/978-3-031-15777-6_34

Video Forensics for Object Removal Based on Darknet3D 623

In recent years, video tampering methods based on deep learning technology
have developed rapidly. The tamper can use this technology to delete some key
content in the original video, making it invisible in subsequent video sequences.
This kind of tampered video may cause wrong decisions by law enforcement
agencies, such as missed catches. Therefore, the spatio-temporal detection tech-
nology for video object removal tamper has significant research value [8]. At
present, domestic and foreign scholars have used Convolutional Neural Networks
(CNN) with different structures for target detection and positioning, traffic sign
recognition, and video action recognition. However, for a target that has a rigid
object boundary, the video tamper can remove the boundary of the area where
the tampered object is located without showing a trace. Usually, the tamperer
initially removes the video object, then fills it with the background scene, and
performs transition processing on the adjacent area, so that the tampering is
not easy to detect. Therefore, we should not only detect forged videos effectively
but also locate the tampered area accurately.

1.1 Related Work

The detection algorithm based on artificially designed features and the detection
algorithm based on deep learning are currently the two most widely used object
removal detection algorithms. Based on the difference in the correlation between
the noise residuals in the tampered area and the original area, Hsu et al. [6]
detect and locate the forged area in the video by using Gaussian Mixture Model
(GMM) to model the noise residual correlation distribution between the original
area and the tampered area. Based on the significant difference between the
motion vector distribution of the foreground area in the tampered video and
the original video, Li et al. [10] used the correlation of the motion vector before
and after the video to detect and locate the tampered area of the video taken
by the static camera. In order to solve the problem of low efficiency of tamper
detection algorithm, Su et al. [17] propose a method for detecting tampered
frames through Energy Factors (EF) and using an Adaptive Parameter-Based
Visual Background Extractor (AVIBE) to locate the tamper detection method of
tampering area. Saxena et al. [15] proposed a method based on the consistency of
optical flow features to detect and locate the tampered area of video inpainting.

Most recently, the rapid development of deep learning technology has injected
new vitality into the research of digital video tampering detection [16]. Deep
learning technology relies on powerful learning and computing capabilities to
extract the features from a large-scale dataset, avoiding the disadvantages of
incomplete input information expressed by traditional methods, and greatly
improving the accuracy of detection. Many scientific researchers have proposed a
variety of tamper detection methods based on deep learning technology, and have
made outstanding contributions to the field of video forensics. Yao et al. [23] use
the frame difference method to construct the frame difference sequence, extract
the frequency signal of the frame difference sequence, and pass the frequency
signal through a high-pass filter, and finally use a convolutional neural network
to distinguish the tampered frames. Kono et al. [9] consider the temporal and

624 K. Zhang et al.

spatial consistency of video by combining CNN and Recurrent Neural Network
(RNN). The introduction of the codec structure enables this method to locate
the tampered area in the video. Long et al. [11] use propose a method with 3D
convolutional neural network for frame deletion detection. This method extracts
16 consecutive frames from the video as the input of the 3D convolutional neu-
ral network. The trained network will be used to detect whether there is frame
deletion tampering on the 8th and 9th frames of a 16-frame video clip. Aiming
at the high false alarm rate generated when the camera is moving, zooming in
or zooming out, Long et al. added confidence processing to the output of the
proposed CNN to reduce the impact of the false alarm rate.

1.2 Contributions

Convolutional neural networks have many advantages that traditional methods
do not have. However, most of the current tamper detection methods can only
process the spatial information in the frame, while ignoring the unique temporal
information of the video. In addition, the pooling layer will cause the image to be
blurred when pooling the image, resulting in the loss of image details, and it will
also ignore the association between the whole and the part. Based on the above
problems, this paper proposes a Spatio-temporal localization model for video
object removal tamper based on the optimized Darknet53 network. This model
can accurately determine whether the input video has been tampered with and
locate the tampered area. The main contributions of our work are as follows.

– The Darknet53 feature extraction network with the characteristic of reducing
the pooling layer is introduced into video tampering detection to extract the
feature of frame images. And the dimension of the data is reduced by contin-
uous convolutional layers and residuals. Thereby reducing the negative effect
of gradient caused by pooling, so as to fully retain the detailed information
within the frame.

– The temporal domain information is introduced into the Darknet53 network,
and construct the three-dimensional Darknet53 feature extraction network
using a three-dimensional convolutional layer rather than a two-dimensional
one. The features of frame images are jointly extracted from the temporal
and spatial perspectives to promote the adequacy of feature expression.

– By compressing the number of residual blocks of the three-dimensional Dark-
net53 network, a three-dimensional Darknet53 optimized network is designed
to reduce network dimensions and feature redundancy.

2 Darknet53

The target detection network YOLOv3 uses Darknet53 fully convolutional net-
work [14] as a feature extraction network to extract image features. The Dark-
net53 network is integrated with the deep residual network on the basis of
YOLOv2’s feature extraction network Darknet19 [13], and consists of a series of

Video Forensics for Object Removal Based on Darknet3D 625

1 × 1 and 3 × 3 convolutional layers and residual blocks. The batch normaliza-
tion layer and the LeakyReLu layer together constitute its smallest module. The
Darknet53 network structure is shown in Fig. 1.

Fig. 1. The network structure of Darknet53.

3 Video Tampering Detection Model Based on Optimized
Darknet53

The network model in this paper is shown in Fig. 2, which consists of a time
domain classifier and a spatial domain locator. The feature extractor in the
model is used to extract the temporal and spatial features of the video; the
two-classifier is used to distinguish between the original frame and the tampered
frame; the RPN box regressor is used to locate the tampered area in the tampered
frame.

3.1 Optimized Darknet53 Feature Extraction Network

In the convolutional neural network, the pooling layer often causes the image
to be blurred when pooling the image data, resulting in the loss of detailed
information in the image. Therefore, we introduce the full convolutional network
Darknet53 as the backbone network, and use its feature of no pooling layer to
perform feature extraction on frame images.

The convolutional layer can not only extract the spatial information in the
image data, but also extract the temporal information in the data along the

626 K. Zhang et al.

Fig. 2. Video tampering detection model based on Darknet53 optimized network

time dimension. However, video data has both a temporal pattern along the time
dimension and a spatial pattern along the space dimension. These two patterns
will form a more complex spatio-temporal domain pattern. 3D convolution can
realize the analysis of spatio-temporal patterns, in which one convolution axis
is along the time dimension, and the other two convolution axes are along the
spatial dimension of the video frame. After a video has been tampered with,
it will definitely leave obvious tampering traces [19,21] in the high-frequency
area [20,22,24]. Using the correlation of high-frequency signals in consecutive
frames, you can use a three-dimensional convolutional neural network to The
tampered frame is processed, and the features left by the tampering operation
in the tampered frame are extracted.

Therefore, this article designed the Darknet53 optimized network. On the
basis of the original two-dimensional Darknet53 network, the two-dimensional
convolutional layer is expanded to the three-dimensional convolutional layer, and
the three-dimensional Darknet53 network is constructed, so that the network can
process the information of continuous frame images in the temporal domain and
the spatial domain at the same time.

In the field of target detection, it is usually necessary to classify and recog-
nize hundreds of objects, and it is necessary to learn the characteristics of each
object [12]. However, the detection of tampered video is essentially a two-class
problem, so directly using the high-dimensional Darknet53 network for tamper-
ing video detection will cause a certain degree of feature redundancy. Therefore,
this article adjusts the scale of the three-dimensional Darknet53 network, reduces
the number of residual blocks in the network, reduce network dimensions, and
designs the Darknet53 optimized network, while maintaining the ability of the
three-dimensional Darknet53 network to extract video spatio-temporal features
at multiple scales, it also reduces network redundancy and improves training
speed. After that, this article applies the Darknet53 optimized network to fea-
ture extraction. The five consecutive frames of images first pass through a three-
dimensional maximum pooling layer with a sliding window size of 1×c×c [18] for
dimensionality reduction. Subsequently, a high-pass filter SRM layer using three
different convolution kernels is used to reduce the influence of the movement of
objects in the frame on the frame content, improve the ability of the network

Video Forensics for Object Removal Based on Darknet3D 627

model to learn features, and make the traces of tampering more obvious. The
three convolution kernels of the high-pass filter are shown in Fig. 3.

Fig. 3. Three filter kernels used to extract noise features.

The three convolution kernels of the SRM layer [25] can extract three kinds
of high-frequency residual data of the video frame, and then use the extracted
high-frequency data as the input of the Darknet53 optimization network to con-
tinue to extract the high-frequency features of the frame image in the spatio-
temporal domain. The structure of the Darknet53 optimized network is shown
in Fig. 4. Ri(i = 1, 2, 3, ..., 11) represents the i-th residual block. In the residual
block, each convolutional layer is batch normalized, and the activation function
is LeakyReLu.

Fig. 4. The structure of the optimized Darknet53 feature extraction network.

3.2 Temporal-Domain Classifier and Spatial-Domain Locator

The temporal-domain classifier is composed of a feature extractor and a two-
classifier, which can determine whether the input of five consecutive video frames

628 K. Zhang et al.

has been tampered with, and its composition structure is shown in Fig. 5. In the
temporal feature extractor, the size of the sliding window of the 3D maximum
pooling layer is 1×3×3. The input frame image will be extracted by the feature
extractor to generate a feature map. After the feature map passes through the
three-dimensional average pooling layer P3, it is reduced to 1 dimension in the
temporal domain. After passing through two convolutional layers C4 and C5
with a size of 1 × 1 convolution kernel, the Global Average Pooling (GAP)
layer converts the high-dimensional feature map into a same-dimensional vector.
Finally, the high-dimensional features can get the classification result of the input
frame through Fully Connected (FC) dimensionality reduction and SoftMax layer
regression.

Fig. 5. The structure of the temporal forgery detection network.

The spatial locator is composed of a feature extractor and an RPN frame
regressor, and its composition structure is shown in Fig. 6. In the spatial feature
extractor, the size of the sliding window of the 3D maximum pooling layer is
1 × 2 × 2. The spatial locator can predict the tampered area of the tampered
frame and predict its confidence, that is, judge the possibility of the area being
tampered. The input tampered frame is extracted by the feature extractor to
generate a one-dimensional feature map in the temporal domain. Combine the
feature maps of feature extractor and C4 into the Concatenate layer [12], then
enter the RPN box regressor. C4 and C5 are convolutional layers with 54 con-
volution kernels. The upper branch of C5 has 36 convolution kernels, and the
lower branch has 18 convolution kernels, which correspond to the frame coordi-
nates and their confidence of the 9 size regression boxes at each position of the
feature map. While testing the model, Non-Maximum Suppression (NMS) [25] is
used to sort the candidate boxes according to the degree of confidence, and the
candidate box with the highest degree of confidence is retained as the prediction
box.

Video Forensics for Object Removal Based on Darknet3D 629

Fig. 6. The structure of the spatial forgery localization network.

4 Experiments

4.1 Dataset

The SYSU-OBJFORG dataset is produced by the video forensics research team
of Sun Yat-sen University. It consists of 100 original videos and 100 tampered
videos corresponding to the original videos. It is currently the largest object-
based forged video dataset. All original videos are directly intercepted from
surveillance videos taken by multiple static surveillance cameras. Tampered
video is made by the producer after decoding the original video, adding, deleting
or changing the original position of the moving objects in the video scene frame
by frame, and then encoding and compressing the video. Each video is about
11 s (25 frames/s) long and has a resolution of 1280×720. The SYSU-OBJFORG
data set is large in scale and complicated in tampering operations, which can
improve the standard of detection and positioning algorithms. Therefore, we
choose the SYSU-OBJFORG dataset as the training sample.

In order to make the scale of the selected data set meet the requirements of
deep learning training, this article processes the video in the data set into image
frames, and then continues to perform cropping and flipping operations on it.
Since time-domain classification and spatial-domain positioning are two different
network models, this paper adopts two different enhancement operations. Both
data enhancement methods operate on five consecutive video frames (the first
two frames of the current frame, the current frame, and the last two frames of
the current frame total five frames).

The training of the temporal domain classification network requires input of
two types of original frames and tampered frames. In the data set, the ratio of
the original frame to the tampered frame is 13:3. In order to ensure the training
effect, the ratio of the two frames needs to be adjusted to about 1:1. Therefore,
this paper adopts the asymmetric data enhancement strategy proposed by Yao
et al. [23], that is, the two frames are cropped according to the inverse ratio

630 K. Zhang et al.

of the original number. The cropping of the tampered frame in the training set
should make most of the tampered area in the frame included in the cropping
range; the cropping of the tampered frame in the test set should make all the
trimmed areas cover the entire frame. When cropping the original frame, crop
it three times randomly, but the cropping position should be consistent for five
consecutive frames. Since the size of the SYSU-OBJFORG data set is 1280×720,
in order to facilitate the operation, this article sets the cropping area to 720×720,
and the cropping method is shown in Fig. 7.

Fig. 7. The cropping method original frame and tampered frame.

The spatial domain localization network only needs to input the tamper
frame for training. When performing enhancement operations on the tampered
frames in the training set, keep 5 consecutive frames and perform horizontal,
vertical, and horizontal and vertical flips at the same time. No action is required
on the test set.

4.2 Experimental Settings

This paper verifies the effect of the spatio-temporal detection and localization
model based on Darknet3D with the use of the SYSU-OBJFORG dataset. In
the training process, 50 pairs, 10 pairs and 40 pairs are randomly selected as
the training video set, validation set and test set, using the data enhancement
method described in Sect. 4.1. After training the two models, input the test set
video into the temporal domain classifier, the classifier will output the detection
results frame by frame to obtain preliminary classification data. After recording
the frame number detected as a tamper type, take the tamper frame sequence
as the input of the spatial locator and make the spatial locator localize the
tampered area in the frame. In order to observe whether the model achieves the
expected effect, we repeat the above process five times, randomly sort all video
sequences each time, and re-divide the training set, validation set, and test set
according to the ratio of 5:1:4. And we will calculate the average value of the
five test results finally.

Video Forensics for Object Removal Based on Darknet3D 631

The spatio-temporal detection network model in this article is built on the
Tensorflow deep learning framework launched by Google, and the training envi-
ronment is TITAN RTX GPU. The relevant parameter settings in the experiment
are as follows: the AdamOptimizer algorithm is used to optimize the loss func-
tion, the initial learning rate is set to 0.0001, the l2 regularization parameter is
0.0005, and the momentum is 0.9. In the part of training the temporal domain
classification network, batchsize is set to 64. In the part of testing, batchsize is
set to 3. The input image is the three batches of test data generated by the oper-
ation described in Sect. 4.1. The detection and classification rules of the network
model in this paper are as follows: if all three images are predicted as original
frames, the intermediate frame is detected as the original frame; otherwise, it
is detected as a tampered frame. For the evaluation indicators used for time-
domain classification and detection, we use the following six metrics defined by
Chen et al. [3]:

PFACC =
∑

correctly classified pristine frames
∑

pristine frames
(1)

FFACC =
∑

correctly classified forged frames
∑

forged frames
(2)

FACC =
∑

correctly classified frames
∑

all the frames
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1Score =
2TP

2TP + FP + FN
(6)

PFACC is the original frame accuracy rate, FFACC is the tampered frame
accuracy rate, and FACC is the accuracy rate of all frames. Precision, recall
and F1 Score can be calculated by three indicators: TP (number of tampered
frames correctly predicted), FP (number of original frames that were incorrectly
predicted as tampered frames), and FN (number of tampered frames that were
incorrectly predicted as original frames).

The batchsize of the spatial positioning network is set to 1, and the loss
function is shown in formula (8).

loss =
1

Ncls

∑

i

Lcls(i) +
1

Nreg

∑

j

Lreg(j) (7)

Ncls represents the number of tampered frames for all foreground and back-
ground frames in a mini-batch. The foreground frame is the frame with the
tampered area frame IoU greater than 0.8, the background frame is the frame
with the tampered area frame IoU less than 0.2, and i represents the number
of boxes, Lcls represents the classification (two classification of foreground and

632 K. Zhang et al.

background boxes) loss function; Nreg is the number of foreground boxes, j is
the subscript, and Lreg is the box regression loss.

Ncls represents the number of tampered frames containing foreground and
background frames in each batch, the boxes whose Intersection of Union
(IOU) [7] with the border of the tampered area is greater than 0.8 are called the
foreground boxes, the boxes whose IOU with the border of the tampered area
is less than 0.2 are called the background boxes, and i indicates which box, Lcls

represents the loss function of classification (two classification of foreground and
background boxes); Nreg is the number of foreground boxes, j is the subscript,
and Lreg is the frame regression loss. In this paper, the ratio of the number of
foreground boxes to background boxes in each frame is set to 1:5 to balance
the number of positive and negative sample frames, strengthen the training of
negative samples, and improve the detection rate of the target area.

The constraint formula adopts the definition in literature [2], and the formula
is as follows:

fg num = min(fg num,
roi num

α + 1
) (8)

bg num = min(roi num − fg num, fg num × α) (9)

fg sum is the number of foreground boxes and bg num is the number of
background boxes; the size of roi num controls the training density of positive
and negative samples, which is a constant and is set to 128.

4.3 Experiment Results

Testing of Temporal Forgery Detection. In order to verify the detection
effect of the time domain classification network, the algorithm in this paper is
compared with the algorithms proposed in [23] and [2], and the measurement
standard described in Sect. 4.1 is used. The comparison result is shown in Fig. 8.
The solid line in the figure is the test result of the algorithm in this paper, and
the dotted line in the figure is the test result of the comparison algorithm. It can
be seen from Fig. 8 that compared with the comparison algorithm, the algorithm
in this paper has higher accuracy and F1Socre, and can achieve better results
in the detection of tampered frames.

Testing of Spatial Forgery Localization. In the field of target detection,
the detected object can be directly observed, and it is clearly distinguished from
the background or undetected objects. Therefore, when performing spatial local-
ization, the predicted area should be compared with the actual tampered area,
rather than simply with the area where the semantic object is located. In the
field of video tampering detection, the tampered area generally undergoes careful
manipulation by the tamperer. The boundary transition between the tampered
area and the original area is natural, and the area of the tampered area is much
larger than the area occupied by the semantic object in the frame.

Video Forensics for Object Removal Based on Darknet3D 633

Fig. 8. The results of the temporal detection test.

The index to measure recognition accuracy in target detection is mAP (mean
average precision). When calculating mAP , IOU is used as a vital function, and
IOU refers to the ratio of intersection and union between the real box and the
predicted box, which is used to evaluate the coincidence between the two boxes.
The successful detection rate is the percentage of the number of frames where
the tampered area is detected to the total number of test frames. Since spatial
localization only predicts the tampered area in the tampered frame, so it is
more intuitive to use the successful detection rate and the mean Intersection
over Union as an evaluation indicator than mAP .

The calculation formula is as follows:

Suc rate =
∑

Fsuc∑
Fsuc +

∑
Fmis

(10)

IOU mean =
1

Nsuc

∑

i

IOUi (11)

When the IOU of the predicted box and the real tampered box is 0 or the
confidence is less than 0.8, it is the missed frame (Fmis). Otherwise, it is a suc-
cessfully detected frame (Fsuc). Nsuc represents the total number of successfully
detected frames, and i is the subscript of the successfully detected frames.

Figure 9 is a flow chart of airspace positioning. After the video clip to be
tested passes through the temporal domain classification network, the temporal
domain classification network will detect the tampered frame. Then five consec-
utive frames including the tamper frame (the tamper frame includes two frames
before and after it) are input into the spatial localization network, then the
prediction boxes on the feature map are sorted according to the size of the cor-
responding confidence, but only the prediction box with the highest confidence
is retained as the prediction area.

634 K. Zhang et al.

Fig. 9. The flow chart of spatial localization.

To verify the accuracy of our method in spatial localization, we compare it
with other spatial localization network using different feature extraction algo-
rithms. The comparison results are shown in Table 1. It can be seen from Table 1,
compared with V GG16 using 2D convolutional layers, both indicators have been
greatly improved. It shows that 3D convolutional neural network can extract and
analyze video features better than 2D convolutional neural network. Compared
with the feature extraction network using C3D, it can be seen that the method
proposed in this article which does not use the pooling layer, and the localization
effect is also improved.

Table 1. Comparison results of different spatial localization models.

Approaches Number of test
frames

Suc rate IOU mean

SRM + VGG16 + RPN 4557 89.47% 45.65%

C3D + RPN 4594 47.60% 29.80%

SRM + C3D + RPN 4594 95.36% 49.07%

SRM + Darknet3D + RPN 4594 96.87% 49.72%

Complete Test of Spatiotemporal Forgery Localization. When testing
the entire spatio-temporal network model, we randomly select 10 tampered
videos from the test set for testing. Firstly, the videos will be pre-processed,
and the whole video will be divided into a continuous frame image sequence,
and then the frame data is input into the temporal domain detection network.
Then the frame data passes through the feature extractor and classifier of the
temporal network to determine whether each frame has been tampered with, and
records the serial number of the tampered frame. Then, the correct tampered
frame sequence is turned into the input of the spatial localization network, and
the spatial localization is performed after the spatial localization feature extrac-
tor and the RPN frame regressor, and finally the overall detection data will be
evaluated.

Video Forensics for Object Removal Based on Darknet3D 635

Table 2. The complete test results of our spatiotemporal forgery localization model.

Test Stage of temporal domain detection Stage of saptial domain detection

Videos Number
of video
frames

Number
of video
frames

Number of
predicted
forged frames

Number of correctly
predicted forged
frames

FACC Suc rate IOU mean

Video 1 291 103 81 81 91.75% 97.58% 48.37%

Video 2 284 98 97 97 99.29% 98.69% 72.16%

Video 3 284 71 68 68 98.59% 97.21% 39.64%

Video 4 284 120 118 118 99.29% 95.16% 35.77%

Video 5 285 123 110 107 93.33% 88.26% 49.67%

Video 6 291 180 179 179 99.31% 99.25% 58.35%

Video 7 292 139 136 136 99.31% 99.34% 52.35%

Video 8 292 64 62 62 98.98% 94.36% 38.61%

Video 9 292 130 131 130 99.65% 96.47% 54.63%

Video 10 284 117 116 116 99.65% 100.0% 58.94%

The overall test results are shown in Table 2. FACC represents all frame cor-
rect rates and is used to evaluate the results of temporal domain classification;
Suc rate and IOU mean are used to evaluate the results of spatial localization.
It can be seen from Table 2 that whether it is to detect the tampered frame or
locate the tampered area, the model proposed in this paper has a good perfor-
mance when it is used for the complete spatio-temporal test.

5 Conclusion

This paper proposes a removal tampering detection model for video objects based
on the optimized Darknet53 network. First, we construct a three-dimensional
Darknet53 network. The information of the Spatio-temporal domain is intro-
duced into the two-dimensional Darknet53 network. Then the two-dimensional
convolutional layer is replaced by a three-dimensional convolutional layer. The
frame image features are jointly extracted from the Spatio-temporal domain to
improve the expression of feature sufficiency. Secondly, we design a Darknet53
optimized network by compressing the number of residual blocks in the three-
dimensional Darknet53 network to reduce the network dimension and feature
redundancy. Finally, the Darknet53 optimized network is applied as a feature
extractor to reduce the use of the pooling layer and retain the detailed informa-
tion within the frame. Experimental results show that the model can effectively
extract the Spatio-temporal features in the video data, which is conducive to
later detection and localization. Compared with other CNN models, this model
can reduce the negative impact of the pooling layer, and has higher detection
accuracy and better localization performance. However, the model in this paper
still has shortcomings such as high memory consumption and undistinguished
transition area of the original frame and the tampered frame. Therefore, we will
consider building a tampered video detection network that saves memory and
does not depend on the training batch size, further improves the detection effect.

636 K. Zhang et al.

References

1. Battiato, S., Farinella, G.M., Messina, E., Puglisi, G.: Robust image alignment for
tampering detection. IEEE Trans. Inf. Forensics Secur. 7(4), 1105–1117 (2012).
https://doi.org/10.1109/TIFS.2012.2194285

2. Chen, L., Yang, Q., Yuan, L.: Passive forensic based on spatio-temporal location
of video object removal tampering. J. Commun. (7) (2020)

3. Chen, S., Tan, S., Li, B., Huang, J.: Automatic detection of object-based forgery in
advanced video. IEEE Trans. Circ. Syst. Video Technol. 26(11), 2138–2151 (2016)

4. Chen, W.B., Yang, G.B., Chen, R.C., Zhu, N.B.: Digital video passive forensics for
its authenticity and source. J. Commun. 32(6), 177–183 (2011)

5. Fadl, S.M., Han, Q., Li, Q.: CNN spatiotemporal features and fusion for surveil-
lance video forgery detection. Sign. Process. Image Commun. 90, 116066 (2020)

6. Hsu, C.C., Hung, T.Y., Lin, C.W., Hsu, C.T.: Video forgery detection using cor-
relation of noise residue. In: 2008 IEEE 10th Workshop on Multimedia Signal
Processing, pp. 170–174 (2008). https://doi.org/10.1109/MMSP.2008.4665069

7. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confi-
dence for accurate object detection (2018)

8. Jin, X., He, Z., Xu, J., Wang, Y., Su, Y.: Object-based video forgery detection via
dual-stream networks. In: 2021 IEEE International Conference on Multimedia and
Expo (ICME), pp. 1–6 (2021). https://doi.org/10.1109/ICME51207.2021.9428319

9. Kono, K., Yoshida, T., Ohshiro, S., Babaguchi, N.: Passive video forgery detec-
tion considering spatio-temporal consistency. In: Madureira, A.M., Abraham, A.,
Gandhi, N., Silva, C., Antunes, M. (eds.) SoCPaR 2018. AISC, vol. 942, pp. 381–
391. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17065-3 38

10. Li, L., Wang, X., Zhang, W., Yang, G., Hu, G.: Detecting removed object from
video with stationary background. In: Shi, Y.Q., Kim, H.J., Pérez-González, F.
(eds.) The International Workshop on Digital Forensics and Watermarking 2012,
pp. 242–252. Springer, Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40099-5 20

11. Long, C., Smith, E., Basharat, A., Hoogs, A.: A C3D-based convolutional neu-
ral network for frame dropping detection in a single video shot. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(2017)

12. Mane, S., Mangale, S.: Moving object detection and tracking using convolutional
neural networks. In: 2018 Second International Conference on Intelligent Com-
puting and Control Systems (ICICCS), pp. 1809–1813 (2018). https://doi.org/10.
1109/ICCONS.2018.8662921

13. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6517–6525 (2017)

14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv e-prints
(2018)

15. Saxena, S., Subramanyam, A., Ravi, H.: Video inpainting detection and localization
using inconsistencies in optical flow. In: 2016 IEEE Region 10 Conference (TEN-
CON), pp. 1361–1365 (2016). https://doi.org/10.1109/TENCON.2016.7848236

16. Su, C., Wei, J.: Hybrid model of vehicle recognition based on convolutional
neural network. In: 2020 IEEE 22nd International Conference on High Perfor-
mance Computing and Communications; IEEE 18th International Conference on
Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 1246–1251 (2020). https://doi.org/10.1109/HPCC-
SmartCity-DSS50907.2020.00161

https://doi.org/10.1109/TIFS.2012.2194285
https://doi.org/10.1109/MMSP.2008.4665069
https://doi.org/10.1109/ICME51207.2021.9428319
https://doi.org/10.1007/978-3-030-17065-3_38
https://doi.org/10.1007/978-3-642-40099-5_20
https://doi.org/10.1007/978-3-642-40099-5_20
https://doi.org/10.1109/ICCONS.2018.8662921
https://doi.org/10.1109/ICCONS.2018.8662921
https://doi.org/10.1109/TENCON.2016.7848236
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00161
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00161

Video Forensics for Object Removal Based on Darknet3D 637

17. Su, L., Luo, H., Wang, S.: A novel forgery detection algorithm for video fore-
ground removal. IEEE Access 7, 109719–109728 (2019). https://doi.org/10.1109/
ACCESS.2019.2933871

18. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotempo-
ral features with 3D convolutional networks. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 4489–4497 (2015). https://doi.org/10.1109/
ICCV.2015.510

19. Wang, Q., Zhang, R.: A blind image forensic algorithm based on double quantiza-
tion mapping relationship of DCT coefficients. J. Electron. Inf. Technol. 36(009),
2068–2074 (2014)

20. Wang, X., Lu, Z.: Automatic localization of image tampering area based on JPEG
block effect difference. Comput. Sci. 37(002), 269–273 (2010)

21. Wu, W., Zhan, L.: Detection of tampering using color filter array characteristics
and fuzzy estimation. Comput. Eng. Des. 28(21), 5179–5180, 5256 (2007)

22. Yang, H., Zhou, Z., Zhou, C.: Mobile image tampering detection based on pattern
noise. J. Comput. Syst. Appl. (2013)

23. Yao, Y., Shi, Y., Weng, S., Guan, B.: Deep learning for detection of object-based
forgery in advanced video. Symmetry 10(1), 3 (2018). https://doi.org/10.3390/
sym10010003

24. Zhang, J., Chen, J., Su, Y.: Detection of region-duplication forgery in the video
streams. Electron. Meas. Technol. 34(011), 66–69 (2011)

25. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Learning rich features for image
manipulation detection. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1053–1061 (2018). https://doi.org/10.1109/CVPR.2018.
00116

https://doi.org/10.1109/ACCESS.2019.2933871
https://doi.org/10.1109/ACCESS.2019.2933871
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.3390/sym10010003
https://doi.org/10.3390/sym10010003
https://doi.org/10.1109/CVPR.2018.00116
https://doi.org/10.1109/CVPR.2018.00116

Author Index

Abhisar, Verma 508
Alazab, Mamoun 261
Alromih, Arwa 281
An, Tongjian 438

Bai, Wanxin 508
Bakiras, Spiridon 472
Belghazi-Mohamed, Nadia 608
Bogdanel, Georgiana 608
Brahmkstri, Krupa 508
Buffett, Scott 546

Caldarola, Daniele 201
Cao, Jinzheng 3
Chang, Tzu-Hsien 376
Chen, Chi 128
Chen, Jiun-Peng 376
Chen, Kaini 128
Chen, Lingwei 359
Chen, Siwei 89
Chen, Yuzhong 508
Cheng, Qingfeng 3
Clark, John A. 281
Conti, Mauro 261
Cui, Xiang 394

Di Pietro, Roberto 201, 472
Ding, Yan 342
Ding, Yaoling 324
Dong, Bo 508
Dong, Pan 342

Fang, Boyue 148

Gao, Hongkui 438
Gao, Jianbo 261
Gao, Jiaqi 240
Gao, Jing 37
Gao, Mohan 492
Gómez-Moreno, Hilario 608
Gope, Prosanta 281
Guo, Tingting 55
Guo, Yong 342
Gurusamy, Mohan 417, 525

Han, Yang 240
Hess, Elie M. 184
Hu, Lei 37
Huang, Ziyi 163

Kummitha, Chinna 508
Kuo, Yen-Ting 376

Lafuente-Arroyo, Sergio 608
Lal, Chhagan 261
Lei, Qi 324
Lei, Yunsen 184
Li, Meng 261
Li, Xiangyu 458
Li, Xiaoting 359
Li, Xinghua 3
Lim, Teng Joon 417
Lin, Yusan 508
Liu, Chaoge 394
Liu, Jiaxi 394
Liu, Mingchang 417, 525
Liu, Qixu 394
Liu, Xiao 359
Liu, Yining 221
Liu, Zhen 221
Lv, Kewei 128

Ma, Zhe 324
Mamun, Mohammad 546
Meng, Weizhi 221
Ming, Jingdian 109
Muneeswaran, Sivaanandh 417, 525

Nascimento, Mattheus C. 184
Nikbakht Bideh, Pegah 589
Noel, Steven 569

Paladi, Nicolae 589
Pan, Li 492
Pan, Yanbin 3
Patil, Rajendra 417, 525
Peng, Hongyi 417, 525
Prajapati, Rupesh 359

Qiao, Zehua 109
Qiu, Zhi 69

640 Author Index

Rabhi, Mouna 472
Raponi, Simone 201

Sachidananda, Vinay 417, 525
Sciancalepore, Savio 201
Shen, Peisong 128
Shue, Craig A. 184
Shui, Xuefei 438
Soh, De Wen 19
Song, Liantao 342
Sun, Shuo 109
Suzuki, Kenta 303
Swarup, Vipin 569

Tan, Teik Guan 19
Tao, Yang 109
Tolbert, Matthew M. 184

Wang, An 324
Wang, Chuang 342
Wang, Ding 163
Wang, Fei 508
Wang, Peng 55
Wang, Qin 324
Wang, Tianyu 37
Wang, Weize 148
Wang, Yuhao 622
Wang, Zhi 394
Wu, Di 394
Wu, Dinghao 359
Wu, Guixing 458
Wu, Peng 492

Wu, Yuhang 508
Wu, Yuxuan 163

Xia, Fengliang 458
Xiang, Zejun 89
Xu, Dawei 240
Xu, Jun 37

Yang, Bo-Yin 376
Yang, Hao 508
Yang, Kang 69
Yang, Zijia 324
Yeh, Micheal 508
Yimin, Zhang 508
Yin, Jie 394
Yoneyama, Kazuki 303
Yu, Xinying 622
Yu, Yu 69
Yuito, Makoto 303

Zeng, Xiangyong 89
Zhang, Kejun 622
Zhang, Mingwei 261
Zhang, Rui 109
Zhang, Shasha 89
Zhao, Guochao 458
Zhao, Yunlei 148
Zhou, Jianying 19
Zhou, Lijing 69
Zhou, Yongbin 109
Zhu, Liehuang 240
Zou, Yunkai 163

	 Preface
	 Organization
	 Contents
	Cryptography
	BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Lattice
	2.2 Lattice Reduction Algorithms
	2.3 Learning with Errors

	3 Block Sieve Algorithm
	3.1 Basic Block Sieve Algorithm
	3.2 Progressive Block Sieve Algorithm

	4 Analysis of BS and PBS
	4.1 Complexity Analysis
	4.2 Performance on Challenge Lattices
	4.3 Performance of PBS on LWE Instances

	5 Conclusion
	References

	Calibrating Learning Parity with Noise Authentication for Low-Resource Devices
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 LPN Basics
	2.3 Assumptions

	3 Exploring Precision
	3.1 Statistical Bounds
	3.2 Computational Simulations
	3.3 Summary of Precision Results

	4 Exploring Key Lengths
	4.1 Key Length Recommendation
	4.2 Effectiveness of Known Attacks
	4.3 Effectiveness of Guessing
	4.4 Effectiveness of Incomplete Attacks
	4.5 Cryptanalytic Progress
	4.6 Summary of Key Length Results

	5 Conclusion
	A Algorithm Pseudocode
	References

	New Results of Breaking the CLS Scheme from ACM-CCS 2014
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 co-ACD Problem
	2.3 CLS Additive Homomorphic Encryption Scheme
	2.4 Lattice
	2.5 Coppersmith's Method

	3 Strategy for Solving Search co-ACD Problem
	3.1 Solution for N=p1@汥瑀瑯步渠pn
	3.2 Experimental Results

	4 Ciphertext-Only Attack
	4.1 Solution for N=p1p2
	4.2 Experimental Results

	5 Conclusion
	A Calculation of wN and wX
	References

	A Note on the Security Framework of Two-key DbHtS MACs
	1 Introduction
	2 Preliminaries
	3 BBB-Security Framework in ch4ShenWGW21
	4 Counter-Examples
	4.1 Counter-Example 1
	4.2 Counter-Example 2
	4.3 Counter-Example 3

	5 The Flaw of the Proof of Theorem 1 in ch4ShenWGW21
	6 Conclusion
	References

	Maliciously Secure Multi-party PSI with Lower Bandwidth and Faster Computation
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Security Model and Functionalities
	2.3 Oblivious Key-Value Stores

	3 Technical Overview
	3.1 Overview of the Best-Known Multi-party PSI Protocol
	3.2 Our Approach to Improve Computation Efficiency
	3.3 Our Approach to Reduce Communication Bandwidth

	4 Maliciously Secure Multi-party PSI Protocol
	4.1 Sub-protocols for Sending and Aggregating Messages
	4.2 Our PSI Protocol with Efficient Bandwidth and Computation
	4.3 Proof of Security

	5 An Attack Against Multi-output Extension of PSI
	A OKVS Overfitting
	References

	Conditional Cube Attacks on Full Members of KNOT-AEAD Family
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Degree Evaluation by Division Property
	2.2 Conditional Cube Attack
	2.3 KNOT-AEAD Family

	3 A Framework of Conditional Cube Attacks for KNOT-AEAD
	4 Conditional Cube Attacks on Full Members of KNOT-AEAD Family
	4.1 Modeling the Division Property Propagation of Conditional S-boxes
	4.2 Key-Recovery Attack on KNOT-AEAD (128, 256, 64)
	4.3 Key-recovery Attacks on KNOT-AEAD (128, 384, 192)

	5 Conclusion
	A Division Trails and Linear Descriptions of the KNOT S-box
	B Some Tables about Estimated Algebraic Degrees
	References

	Fast Fourier Orthogonalization over NTRU Lattices
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Polynomial Rings and Fields
	2.3 The Field Norm
	2.4 The GSO and LDL Decomposition
	2.5 The Fast Fourier Orthogonalization and LDL Tree
	2.6 NTRU Lattices
	2.7 Discrete Gaussians

	3 Fast Fourier Orthogonalization over NTRU Lattices
	3.1 The Cyclotomic Field Q[x]/(xn+1)
	3.2 The Cyclotomic Field Q[x]/(xn-xn/2+1)

	4 Application to FALCON
	4.1 Intel i7-4790
	4.2 ARM Cortex M4

	5 Conclusion
	A Proof of Theorem 2
	References

	Secure Sketch and Fuzzy Extractor with Imperfect Randomness: An Information-Theoretic Study
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 Secure Sketch
	2.2 Fuzzy Extractor
	2.3 Randomness Extractor

	3 Security Analysis of Existing Sketch Sketches with Imperfect Randomness
	3.1 Code Offset-Based Construction
	3.2 Permutation-Based Secure Sketch
	3.3 Fuzzy Vault-Based Secure Sketch

	4 Security Analysis of Existing Fuzzy Extractors with Imperfect Randomness
	5 Further Discussions on Fuzzy Extractors with Imperfect Randomness Based on Two-source Extractor
	5.1 Fuzzy Extractor Based on Length-Consistent Secure Sketch and Two-Source Extractor
	5.2 Fuzzy Extractor Based on Length-Inconsistent Secure Sketch and Two-Source Extractor

	6 Conclusion
	A Appendix
	A.1 Proof of Theorem 1
	A.2 Proof of Lemma 5

	References

	Tight Analysis of Decryption Failure Probability of Kyber in Reality
	1 Introduction
	2 Preliminaries
	2.1 Kyber
	2.2 Distributions on R

	3 Analysis of Decryption Failure Probability
	3.1 Decryption Failures
	3.2 Formula Derivation
	3.3 The Deviation Between the Theoretical Failure Probability and the Actual Failure Probability

	4 Experiment and Sample Test
	References

	Authentication
	Improving Deep Learning Based Password Guessing Models Using Pre-processing
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Background
	2.1 LSTM Based Models
	2.2 PassGAN

	3 Preliminaries
	3.1 Datasets
	3.2 Ethical Considerations

	4 Preprocessing Methods
	4.1 Important Abbreviations
	4.2 Character Feature Based Encoding Method
	4.3 Refined PCFG
	4.4 PassGAN Using PCFG for Preprocessing
	4.5 Chunk+PCFG Preprocessing Method

	5 Experiments
	5.1 Attacking Strategies Design
	5.2 Evaluation Results

	6 Conclusion
	1 Some Statistics About User-Chosen Passwords
	2 Exploratory Experiments
	References

	Exploring Phone-Based Authentication Vulnerabilities in Single Sign-On Systems
	1 Introduction
	2 Background and Related Work
	3 Understanding PBA Goals, Options, and Impacts
	3.1 Threat Model and Experiment Setup
	3.2 Impact of Malicious Relying Party Sites
	3.3 Timing Attacks on Unassociated PBA Approvals
	3.4 Observable Characteristics of the Attack Scenarios

	4 User Study and Findings
	4.1 IRB Process and Participant Recruiting
	4.2 Experimental Setup
	4.3 Participant Responses to the Malicious Relying Party Scenario
	4.4 Participant Responses to Timing Attack Scenario
	4.5 Participant Feedback and Study Limitations
	4.6 Potential Mitigations for Deployment

	5 Concluding Remarks
	References

	FRACTAL: Single-Channel Multi-factor Transaction Authentication Through a Compromised Terminal
	1 Introduction
	2 Scenario and Adversary Model
	2.1 Scenario
	2.2 Adversarial Model

	3 Protocol Description
	3.1 Basic Protocol Flow
	3.2 Scenario #1
	3.3 Scenario #2

	4 Security Considerations
	4.1 Security Features
	4.2 Formal Security Analysis via ProVerif

	5 Implementation and Performance Assessment
	5.1 Implementation Details
	5.2 Experimental Performance Assessment

	6 Related Work and Qualitative Comparison
	7 Conclusion
	References

	Privacy and Anonymity
	Lightweight and Practical Privacy-Preserving Image Masking in Smart Community
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Yolo v5 Object Detection Algorithm
	3.2 ChaCha20-Poly1305 Stream Encryption Algorithm
	3.3 Bilinear Map
	3.4 Proxy Re-encryption

	4 Our Proposed Scheme
	4.1 Preparation and Image Pre-processing Phase
	4.2 Membrane Generation and Image Masking Phase
	4.3 Proxy Re-encryption Phase
	4.4 Image Recovery Phase

	5 Evaluation and Results
	5.1 Evaluation Setup
	5.2 Findings and Results
	5.3 Efficiency Analysis
	5.4 Security Analysis

	6 Conclusions
	References

	Using Blockchains for Censorship-Resistant Bootstrapping in Anonymity Networks
	1 Introduction
	2 Background
	2.1 Tor Network
	2.2 Blockchain Network
	2.3 Public Key Encryption
	2.4 Elliptic Curve Diffie-Hellman

	3 Overview
	3.1 System Model
	3.2 Threat Model
	3.3 Design Goals

	4 Antiblok Details
	4.1 Client Request
	4.2 BridgeDB Response
	4.3 Circuit Creation

	5 Security
	6 Evaluation
	6.1 Experimental Setup
	6.2 Functionality Evaluation

	7 Discussion
	8 Conclusion
	References

	Repetitive, Oblivious, and Unlinkable SkNN Over Encrypted-and-Updated Data on Cloud
	1 Introduction
	1.1 Background
	1.2 Motivations
	1.3 Possible Solutions and Technical Challenges
	1.4 Paper Organization

	2 Related Work
	2.1 SkNN
	2.2 Privacy-Preserving Range Querying

	3 Problem Formulation
	3.1 System Model
	3.2 Threat Model
	3.3 Design Objectives

	4 The Proposed Space Encoding
	5 The Proposed Scheme ROU
	5.1 Overview
	5.2 Index Building
	5.3 Token Generation
	5.4 Query Processing
	5.5 Result Verification

	6 Privacy Analysis
	6.1 Data/Index/Token Privacy
	6.2 Obliviousness
	6.3 Unlinkability
	6.4 Exclusiveness

	7 Performance Analysis
	7.1 Experiment Settings
	7.2 Index Building
	7.3 Token Generation
	7.4 Query Processing
	7.5 Result Verification
	7.6 Comparison

	8 Conclusions
	References

	Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids
	1 Introduction
	1.1 Related Work and Motivation
	1.2 Our Contribution

	2 Preliminaries
	2.1 Anomaly Detection Using Auto-encoders
	2.2 Privacy Preserving Machine Learning and Split Learning

	3 System Model and Threat Model
	3.1 System Model
	3.2 Threat Model

	4 Proposed Theft Detection Model
	4.1 Three-Tier Split Learning
	4.2 Energy Theft Detection Approach

	5 Experimental Setup
	6 Results and Discussion
	6.1 Detection of Energy Thefts Attacks
	6.2 Resilience Against Poisoning Attacks
	6.3 Privacy Analysis via Feature Leakage Attack
	6.4 Communication Analysis
	6.5 Summary of Comparison

	7 Conclusion
	References

	Attacks and Vulnerability Analysis
	Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises
	1 Introduction
	1.1 Backgrounds
	1.2 Our Contribution

	2 Related Work
	2.1 Transfer-Based Black-Box Attacks
	2.2 Score-Based Black-Box Attacks
	2.3 Defense Methods
	2.4 Differences Among Other Black-Box Methods and Our Method

	3 Our Methods
	3.1 Optimization Framework
	3.2 Algorithm

	4 Experiments
	4.1 Experiments on Naturally Trained Models
	4.2 Experiments on Adversarially Trained Models
	4.3 Experiments on Input-Transformation-Based Defenses
	4.4 Ablation Study

	5 Conclusion
	References

	Autoencoder Assist: An Efficient Profiling Attack on High-Dimensional Datasets
	1 Introduction
	2 Primitives and Components
	2.1 Raw ASCAD Dataset
	2.2 Dimension Reduction Techniques in SCA
	2.3 Neural Networks

	3 Model Design
	3.1 Model Overview
	3.2 UAE Structure
	3.3 MLP Structure

	4 Experimental Results
	4.1 Experimental Configurations
	4.2 SNR Parameter
	4.3 Grid Search on UAE Hyperparameters
	4.4 Grid Search on MLP Hyperparameters

	5 Concluding Remarks
	References

	TZ-IMA: Supporting Integrity Measurement for Applications with ARM TrustZone
	1 Introduction
	2 Background
	2.1 IMA
	2.2 Overview of TrustZone

	3 System Design
	3.1 Threat Model and Assumptions
	3.2 TZ-IMA Framework

	4 Local Appraisal Mechanism
	4.1 Reference Value Protection
	4.2 Application Integrity Verification
	4.3 Reference Value Generation and Update

	5 Remote Attestation Mechanism
	5.1 vPCR Module
	5.2 Encrypted Measurement List
	5.3 Application Scenario

	6 Evaluation
	6.1 Boot Time
	6.2 UnixBench
	6.3 LMbench

	7 Security Analysis
	7.1 Local Appraisal
	7.2 Remote Attestation
	7.3 Security Limitations

	8 Related Work
	9 Conclusion
	References

	FuzzBoost: Reinforcement Compiler Fuzzing
	1 Introduction
	2 Overview
	2.1 State
	2.2 Action
	2.3 Environment
	2.4 Reward

	3 Designed Framework
	3.1 Initialization
	3.2 State Extraction
	3.3 Deep Q-Network
	3.4 Termination

	4 Experiments
	4.1 Fuzzing Efficacy
	4.2 Boosting with Pre-training
	4.3 Mutation Example

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Secure Boolean Masking of Gimli
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 GIMLI
	2.2 Threshold Implementation
	2.3 The ARM Cortex-M Processors

	3 Side-Channel Countermeasures
	3.1 2-Share with ChaCha-8 Randomness
	3.2 2-Share with Optimal Masking
	3.3 3-Share Threshold Implementation

	4 Implementation Details
	4.1 Optimization on Original Gimli
	4.2 Implementation Details of Masked Gimli

	5 Experiments and Results
	5.1 Comparison of the Implementations
	5.2 Leakage Detection of Side-Channel Analysis

	6 Conclusion
	References

	DeepC2: AI-Powered Covert Command and Control on OSNs
	1 Introduction
	2 Background and Related Work
	2.1 Command and Control on OSNs
	2.2 Easy Data Augmentation
	2.3 AI-Powered Attacks

	3 Methodology
	3.1 Threat Model
	3.2 Approach Overview
	3.3 Dynamic Addressing
	3.4 Command Embedding

	4 Implementation
	4.1 Siamese Neural Network
	4.2 Experiments on Twitter

	5 Evaluation
	5.1 Tweets Generation
	5.2 Hash Collision
	5.3 Avatar Recognition
	5.4 Crawling Tweets
	5.5 Security Analysis

	6 Possible Countermeasures
	7 Conclusion
	A Easy Data Augmentation
	B Threshold for Distance
	C Enhancement
	References

	Artificial Intelligence for Detection
	ODDITY: An Ensemble Framework Leverages Contrastive Representation Learning for Superior Anomaly Detection
	1 Introduction
	1.1 Research Questions
	1.2 Overview

	2 Background
	3 Related Work
	4 Proposed Approach: ODDITY
	4.1 Diverse Autoencoders
	4.2 Gradient Boosting Ensembles of Diverse Autoencoder

	5 Performance Evaluation
	5.1 Benchmarking Datasets
	5.2 Experiments
	5.3 Results

	6 Robustness Against Evasion Attacks
	6.1 Threat Model
	6.2 Attack Algorithms
	6.3 Experimental Results

	7 Discussion
	8 Conclusion and Future Works
	A Experimental Datasets
	B Feature Importance map
	C ODDITY in Unsupervised setting
	References

	Deep Learning Based Webshell Detection Coping with Long Text and Lexical Ambiguity
	1 Introduction
	2 Challenges in Deep Learning Based Webshell Detection
	2.1 Long Text Challenge
	2.2 Lexical Ambiguity Challenge
	2.3 Model Generalization Challenge
	2.4 Our Contributions

	3 Our Method
	3.1 Method Overview
	3.2 Text Selection Model
	3.3 Token Embedding Model
	3.4 Down-Stream Classifier

	4 Experiment
	4.1 Data Set and Data Split Type
	4.2 Evaluation Criteria
	4.3 Model Parameters and Experiment Setup
	4.4 Evaluation Result Analysis

	5 Conclusion
	Appendix
	References

	SimCGE: Simple Contrastive Learning of Graph Embeddings for Cross-Version Binary Code Similarity Detection
	1 Introduction
	2 Related Work
	2.1 BCSD
	2.2 BERT
	2.3 Graph Neural Network
	2.4 Contrastive Learning

	3 Methods
	3.1 Overall Structure
	3.2 Semantic-Aware Modeling
	3.3 Structural-Aware Modeling
	3.4 Contrastive Framework: Simple Contrastive Learning of Graph Embeddings (SimCGE)

	4 Experiment
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Compared Methods
	4.4 Training
	4.5 Results

	5 Conclusion
	References

	FN2: Fake News DetectioN Based on Textual and Contextual Features
	1 Introduction
	2 Related Work
	2.1 Fake News Detection Based on Textual Features
	2.2 Fake News Detection Based on Contextual Features

	3 Methodology
	3.1 Textual Features Representation
	3.2 Contextual Features Representation.
	3.3 Multi-modal Concatenation

	4 Experiments
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Competing Approaches

	5 Results and Analysis
	5.1 Fake News Detection Performance

	6 Model Evaluation on FakeNewsNet
	7 Conclusions and Future Work
	References

	Malware Detection with Limited Supervised Information via Contrastive Learning on API Call Sequences
	1 Introduction
	2 Related Work
	2.1 Malware Detection
	2.2 Graph Neural Network
	2.3 Contrastive Learning

	3 Problem Formulation
	4 The Proposed Model: SCLMD
	4.1 Structural View Encoder
	4.2 Sequential View Encoder
	4.3 Hybrid Positive Selection Strategy for Contrastive Learning
	4.4 Loss

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Comparative Results
	5.4 Ablation Study
	5.5 Parameter Sensitivity

	6 Conclusion
	A Implementation Details
	References

	Semi-supervised Context Discovery for Peer-Based Anomaly Detection in Multi-layer Networks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Peer-Based Anomaly Detection
	3.2 Anomaly Detection with Multi-layer Graph
	3.3 Weight Optimization

	4 Experiment
	4.1 Experimental Settings
	4.2 Performance on Synthetic Data and Ablation Study
	4.3 Performance on Sensor Network Data
	4.4 Performance on Intrusion Detection Data

	5 Conclusion
	References

	Peekaboo: Hide and Seek with Malware Through Lightweight Multi-feature Based Lenient Hybrid Approach
	1 Introduction
	1.1 Problem Statement and Research Challenges
	1.2 Approach Overview
	1.3 Results Overview
	1.4 Research Contributions

	2 Related Work
	2.1 Single Feature-Based Approaches
	2.2 Multiple Feature-Based Approaches

	3 Peekaboo: Our Proposed Approach
	3.1 Lenient Hybrid Analysis
	3.2 Extraction of API Calls and Opcodes
	3.3 Partial Feature Integration
	3.4 Few-shot Learning (FSL) for API Call Model
	3.5 Achieving Real-Time Detection

	4 Performance Evaluation
	4.1 Datasets
	4.2 Data Preparation
	4.3 Experiments
	4.4 Evaluation on Unseen Malware Classes

	5 Results and Discussion
	5.1 Analysis and Discussion
	5.2 Comparison with Related Works
	5.3 Evaluation on Unseen Malware Classes

	6 Conclusion and Future Work
	A Background
	References

	TapTree: Process-Tree Based Host Behavior Modeling and Threat Detection Framework via Sequential Pattern Mining
	1 Introduction
	1.1 Analyzing the Problem

	2 Overview
	2.1 Assumption

	3 System Design
	3.1 Process-Tree Construction
	3.2 Fusion of Host Behaviors
	3.3 Behavioral Anomaly Detection

	4 Experiment and Evaluation
	4.1 Experiment Dataset
	4.2 Evaluation

	5 Related Work
	6 Limitations
	7 Conclusion
	References

	Network Security and Forensics
	Dependency-Based Link Prediction for Learning Microsegmentation Policy
	1 Introduction
	2 Previous Work
	3 Approach
	3.1 Overview
	3.2 Node Similarities and Grouping
	3.3 Link Induction
	3.4 Model Selection and Tuning

	4 Experimentation
	4.1 Evaluating Models
	4.2 Tuning Selected Model
	4.3 Applying to Cybersecurity Operations
	4.4 Considering Dataset Scale

	5 Summary, Conclusions, and Future Work
	References

	Chuchotage: In-line Software Network Protocol Translation for (D)TLS
	1 Introduction
	2 Background
	2.1 Threat Model

	3 Related Work
	3.1 Protocol Translation
	3.2 TLS Interception

	4 Chuchotage Protocol Translator
	4.1 Architecture
	4.2 Challenges
	4.3 Operating Flow

	5 Implementation
	5.1 Implementation Choices
	5.2 Testbed

	6 Evaluation
	6.1 Performance Evaluation
	6.2 Security Evaluation

	7 Conclusion
	A Appendix
	A.1 Common IoT Communication Protocols
	A.2 Open vSwitch Overview

	References

	Study on the Effect of Face Masks on Forensic Speaker Recognition
	1 Introduction
	1.1 Related Work
	1.2 Threat Model

	2 Method
	2.1 Voice Recordings
	2.2 Acoustic Features
	2.3 Automatic Speaker Recognition Model

	3 Results
	3.1 ASR Results
	3.2 Intensity Analysis

	4 Conclusion
	References

	Video Forensics for Object Removal Based on Darknet3D
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Darknet53
	3 Video Tampering Detection Model Based on Optimized Darknet53
	3.1 Optimized Darknet53 Feature Extraction Network
	3.2 Temporal-Domain Classifier and Spatial-Domain Locator

	4 Experiments
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Experiment Results

	5 Conclusion
	References

	Author Index

