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Abstract. The present note considers the bowed string instruments of the vio-
lin family and focuses on the string-soundbox dynamical coupling in the low-
frequency range, carrying out a numerical and an analytical modal approach in
parallel and aiming at a simple theoretical model of the sound production. The
numerical results show just slight aperiodic fluctuations of the amplitude and very
slow phase shifts in comparison with the simple analytical solutions, suggesting
the latter as a fairly realistic description of the instrument performances.
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1 Foreword

The vibration analysis of the bowed string instruments started with the early studies of
Helmholtz and Raman [1, 2] but the scientific interest began to grow greatly only from
themiddle of the last century up until today, as testified bymany papers (see [3–9], just as
a few examples). Here, we focus on the string-soundbox coupling in the low-frequency
range, i.e. the range of the signature modes, more or less, carrying out a numerical and an
analytical modal approach in parallel, to identify the coupling effects on the dynamical
response of the instrument and to work out an acceptable approximate model of the
sound production. The analysis takes into account proper functional relations between
the force and displacement at the string-bridge contact and those at the bridge feet, for
symmetric, antisymmetric and general modes. The characteristic equation of the coupled
system is formulated and, assuming realistic values for the soundbox own frequencies,
the coupling frequency spectrum is identified. The motion equations are then solved
in the time domain numerically and compared with the analytical results obtainable
assuming the pure Helmholtz motion as the string exciting motion.

2 Theoretical Model

Let us consider a single bowed string, for example, the string A4 of a violin as in Fig. 1
(440 Hz), and refer to a frame Oxyz with the origin O on the nut, the x-axis along the
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string and the y-axis along the bow motion direction. The string displacement may be
expanded in a series of sinusoidal eigenfunctions ei(x) = aisin(ωix/vw), multiplied by
generalized coordinates qi(t), that is y(x, t) = ∑

i qi(t)ei(x), where ωi are the natural
frequencies, vw = √

T/(μsSs) is the propagation speed, T is the pre-tensioning, μs and
Ss are the mass density and the cross-section area of the string. The eigenfunctions
ei(x) are not orthogonal to each other in general, nor are the frequencies in arithmetic
progression as for the string with fixed-fixed ends, because the extreme on the bridge
vibrates together with the soundbox.

Fig. 1. Violin and reference frame. The detail shows the forces acting on the bridge: 1)FEy, force
applied by the string due to the bow thrust. 2) FEn, force applied by the string due to the string
tensioning. 3) NB, NT , TB, TT , normal and tangent forces applied by the soundbox top plate at
the bass and treble feet of the bridge base, PB and PT , respectively.

The bridge translates along its axis in the symmetric modes of the plate and rotates
around the base mid-point PM in the antisymmetric modes.

Introduce the full symmetric matrix [eji], where eji = μsSs
∫ ls
0 ej(x) ei(x)dx, and

impose that μsSs
∫ ls
0 e

2
i (x)dx = 1, whence, indicating the string mass and length with

ms and ls, one gets

ai =
√
√
√
√

2

ms

[
1 − vw

2ωi ls
sin

(
2ωi ls
vw

)] (1)

so, the physical dimensions of the eigenfunctions ei are [kg−1/2] and those of the gen-
eralized coordinates qi are [kg1/2 × m]. Moreover, introduce the one-dimensional
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Dirac distribution δ(x − x*) in order to manage generic concentrated forces F*, so that
∫ ls
0 δ(x − x∗)F∗ej(x)dx = F∗ej(x∗), and define the vectors

{
FBej(xB)

}
and

{
FEyej(ls)

}
,

where xB is the abscissa of the string-bow contact point B, FB is the bow force and FEy

= −T × ∑
i qi(dei/dx)x=ls is the bridge force (see Fig. 1). The motion equations of the

string sub-system may be written in the matrix form

[
eji

]
{
d2qi
dt2

+ 2ζiωi
dqi
dt

+ ω2
i qi

}T

= {
FBej(xB)

}T − {
FEyej(ls)

}T
j = 1, 2, . . .

(2)

where the damping effects are quite small and are here assumed uncoupled for the various
modes. Observe that qi must be considered in general as the sum of a variable part, qi~(t),
which has the particular form qi~(t) = qixsin(ωit) when considering the natural modes,
and a constant part qi0, which is the static part due to the mean bow force.

The violin string could not emit a vigorous and harmonious sound by itself but needs
the dynamic cooperation of the soundbox. Using capital letters for the quantities of the
soundbox sub-system, we introduce the natural frequencies Ω I , the two-dimensional
eigenfunctionsEI and themodal coordinatesQI , where the subscripts I refer to the single
characterizing modes of the soundbox alone. It is presumed that all these parameters are
obtainable by experimental tests, e. g. by holographic interferometry or impulse hammer
and accelerometers or laser Doppler vibrometry. Besides, other experiments should also
permit evaluating the bandwidths of the singular modes and then the damping factors
ZI . The present analysis is just limited to the low modes (<~1500 Hz), which may
be clearly identified and characterized in the frequency response. As well known, the
high-frequency range coincides with the so-called “bridge hill”, where a large overlap
of bandwidths occurs, the modal approach ceases to provide useful results and other
methods should be applied (e. g. see [6]). The whole frequency response of the soundbox
should be obtained by joining the two frequency ranges.

The detail of the bridge in Fig. 1 shows the forces applied to the bridge by the
string and the soundbox top plate. As the bridge own frequencies are higher than the
examined range, the bridge may be presumed rigid, while its mass may be neglected.
Hence, disregarding the moment of TT + TB with respect to PM , the calculation of the
normal reaction forces at the bridge feet is quite straightforward:

NT = FEy

[
sin θ

2
+ d

b
cos(ϕ − θ)

]

+ FEn

[
sinψ

2
+ d

b
cos(ψ − ϕ)

]

NB = FEy

[
sin θ

2
− d

b
cos(ϕ − θ)

]

+ FEn

[
sinψ

2
− d

b
cos(ψ − ϕ)

] (3a, b)

As the force FEn is induced by the constant string tensioning, it yields only invariant
deflections and is irrelevant in the analysis of the vibratorymotion, so the second terms on
the right sides of Eqs. (3a, b) may be ignored. The concentrated forces on the soundbox
surface, − NT and − NB, may be dealt with using two-dimensional Dirac distributions,
δ(X − X*, Y − Y*), where X and Y are coordinates on this surface. Applying the usual
modal separation technique to the soundbox own motions, these forces turn out to be
multiplied by EI (XPT , YPT ) and EI (XPB, YPB) for each mode I, and moreover, EI (XPT ,
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YPT )= ±EI (XPB, YPB) for the symmetric and antisymmetric mode shapes, respectively.
Therefore, usingPT as a reference point, the overall effect is hfIFEyEI (XPT , YPT ), where
the force factor hfI is sinθ or 2(d/b)cos(ϕ − θ ) for the one or the other shape.

On the other hand, the soundbox vibration, even though very small compared with
the string, implies small vibration components of the latter on the xz plane as well.
Indicating the y-displacement of the string end on the bridge with yE for each individual
mode, the normal displacements of points PT and PB towards the box inside, identifiable
by QIEI (XPT , YPT ) and QIEI (XPB, YPB), are both equal to yE /sinθ for the symmetric
modes, whereas they are opposite to each other and equal to ±yEb/ [2dcos(ϕ − θ )] for
the antisymmetric ones. Hence, one may write yE = hdIQIEI (XPT , YPT ), where the
displacement factor hdI is equal to sinθ or 2(d/b)cos(ϕ − θ ) for the former and latter
modes and is then equal to the force factor hfI , in perfect accordance with the virtual
work principle.

Itmust be clarified that the introduction of the sound post and the bass bar in the inside
of the harmonic box modifies its symmetry characteristic with respect to the preliminary
artefact with no additional elements, so each mode shape turns out to be a sort of
combination of a symmetric and an antisymmetric shape. Therefore, the above factors,
hfI and hdI , must be combined by proper weighting coefficients, somehow guided by the
results from the experimentation, and a similar operation must be applied to the point
values of the eigenfunctions EI (XP, YP). In practice, indicating with ps and pa the values
of any parameter p for the symmetric and antisymmetric deformation, respectively, we
will set pI = psIwsI + paI (1 − wsI ) (with 0 < wsI < 1), where wsI is the “weight” of the
symmetric shape in the specific mode I. Also, it will be assumed for simplicity in the
following that d/b = 1 and ϕ = θ.

Assume normalized eigenfunctions, so that
∫ SP
0 μphpERESdXdY = δRS where μp,

hp and Sp are the mass density, the thickness and the surface area of the vibrating plates
and δRS is the Kronecker delta. Then, the usual modal separation yields the motion
equations of the soundbox sub-system when excited by the forces − NT and − NB,

d2QJ

dt2
+ 2ZJΩJ

dQJ

dt
+ Ω2

J QJ = hfJ EJ
(
XPT ,YPT

)
FEy J = 1, 2, . . . (4)

3 Natural Modes

Looking for the natural modes, one has to ignore the damping terms in Eqs. (4), replace
FEy = − T × ∑

i qi(dei/dx)x=ls , consider only the time-varying terms and solve for
the QJ . Then, taking into account the equality T = μsSsvw2 and using the correlation
formulae reported in the previous section for the forces and displacements, one has
y(t, ls) = ∑

J
hdJQJ (t)EJ

(
XPT ,YPT

)
, that is

∑

i

ai sin

(
ωils
vw

)

qix sin(ωit)

= μsSsls
∑

i

ai

(
ωils
vw

)

cos

(
ωils
vw

)

qix sin(ωit)

⎡

⎢
⎣

∑

J

hdJ hfJ E2
J

(
XPT ,YPT

)

(
ωi ls
vw

)2 −
(

ΩJ ls
vw

)2

⎤

⎥
⎦ (5)
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Since Eq. (5) must hold instant by instant, the summation concerning i and the time
functions qixsin(ωit) may be dropped, obtaining the characteristic equation:

tan
ωils
vw

= μsSsls
∑

J

hdJ hfJ E
2
J (XPT ,YPT )

ωi ls
vw

(
ωi ls
vw

)2 −
(

ΩJ ls
vw

)2 (6)

Since μsSsls is the string mass and the order of magnitude of EJ
2 is the reciprocal

of the vibrating mass of the soundbox, which is much greater than the string mass, the
coupled frequencies ωi turn out to be very close to the uncoupled ones, either to ωi =
iπvw/ls, when tan(ωils/vw)∼= 0, or toΩJ , when ωi ∼= ΩJ . The sequence ΩJ is chosen in
the following calculation using verisimilar soundbox frequencies and realistic values of
the weighting coefficients wsJ . Once fixing the frequencies ΩJ and all other parameters,
the exact values of the natural frequencies ωi of the full system may be calculated
numerically using Eq. (6). It is remarkable that some of the ΩJ are well separated from
the angular frequencies of the string with fixed-fixed ends, so the soundbox is feebly
excited, whereas some are close to the string frequencies, so the soundbox is resonant
and a vigorous sound level is emitted to the surrounding environment.

4 Numerical and Analytical Solutions in the Time Domain

The time solutions may be obtained by use of a Euler-Cauchy solver, considering a finite
but sufficiently large number n of modes.

Observe that Eqs. (2) and (4) refer in practice to the same modes, i. e. the common
modes of the whole coupled system string + soundbox, but only the modes for which
ej(ls) �= 0 give their contribution to the vector {FEyej(ls)}T at the right side of Eq. (2).
These modes have nearly the same frequenciesΩ of the soundbox and are characterized
by QI (t) = qi(t)ei(ls)/[hdIEI (XPT , YPT )], according to Sect. 2. Therefore, it is possible
to eliminate the force FEy between Eqs. (2) and Eqs. (4) obtaining

{
d2qi
dt2

+ 2ζiωi
dqi
dt

+ ω2
i qi

}T

=
[

eji + e2i (ls)δji
hdJ hfJ E2

J

(
XPT ,YPT

)

] −1
{
FBej(xB)

}T (7)

where δji is the Kronecker delta and the small damping factors of the two sub-systems
were equalized for simplicity.

The sequential procedure consists in solving Eqs. (7) for the qi first, replacing the
qi into FEy in Eqs. (4) and then solving Eqs. (4) for the Q’s. This can be considered an
“experimental” result and tends to become all the more exact the more correct the input
data are.

For the damping factors ζ i, the following laws were used, assuming ri = ωils/(πvw):

2ζiωi ∼= 5π
(
2.9 + 0.3r2i

)
s−1 for ri ≤ 3

2ζiωi ∼= 5π [5.6(10−ri)+23(ri−3)]
7 s−1 for ri ≥ 3

(8a, b)

As regards the bow force FB, it depends on the state of slip or stick between the
string and the bow. For the former state, it is possible to assume

FB = Fslip = Fs × [
0.3 + 0.7 × exp(−1.25 × vrel.)

]
(9)
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where vrel. = vB − dyB/dt, vB is the bow velocity and Fs is the maximum static friction
force, a function of the normal force exerted by the violinist, who must control it in a
very shrewd way. We here assume the formula Fs = 0.036[ls/(ls − xB)]1.43 N, which
complies with Schelleng’s diagram [3]. During the stick phase, on the other hand, one
has dyB/dt = vB = constant, whence

∑
i ei(xB)d2qi/dt2 = 0 and Eq. (7) gives

FB = Fstick =
∑

i
ei(xB)

[
2ζiωi

dqi
dt + ω2

i (qi∼ + qi0)
]

∑

i
ei(xB)

∑

j
invji × ej(xB)

(10)

where the coefficients invji are those of the inverse matrix on the right side of Eq. (7).
The mean temporal bow force Fm is found to be roughly equal to the constant slip force
Fslip, so qi0 ∼= Fslip

∑
j

[
invji × ej(xB)

]
/ω2

i by Eq. (7),

Fig. 2. String and soundbox response after a time ti ∼= 0.1 s. Time scale τ = (t − ti)vw/lsA4. (a)
Stick-slip motion of bowed point B. (b) Harmonic table vibration, H =

∑
J QJ (t)EJ

(
XPT ,YPT

)
.

Data: n = 20, μsSs = 0.0008 kg/m, ls = lsA4 = 325 mm, xB = 285 mm, vB = 1 m/s, T = 66 N.
Soundbox: frequencies= 275, 400, 450, 530, 620, 850, 980 [Hz]; quality factors= 50 (all modes).

In parallel, analytical approximations for the soundbox motion can be searched by
expressing the qi~(t) by plausible functions, for example, referring to the Helmholtz
motion and using the terms of its saw-tooth Fourier expansion,

qi∼(t) = 2vB
πωaii2

× ls
(ls − xB)

× sin iωt (11)

adding the static terms qi0, replacing these quantities into the differential equations of
the soundbox vibrations, Eqs. (4), and solving for the QJ~(t) and QJ0 by use of realistic
bandwidths of the frequency response of the soundbox to calculate the ZJ .

Figure 2a, b shows the motion of the bowed point of the string and that of the
reference soundbox pointPT , as they can be obtained by the numerical and the analytical
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procedure, for ls = 325 mm (A4: 440 Hz). The former is quite similar to the Helmholtz
motion (Fig. 2a) and points out that the very short run of the string endpoint does not
affect so much the oscillations of the string itself. Due to the mutual incommensurability
of the string and soundbox frequencies, the steady motions of the bowed point B and
the soundbox point PT , which occur after a transient period of one tenth of a second
roughly, are not rigorously periodic but quasi-periodic with slight fluctuations of the
amplitude and slow phase shifts. The analytical results show a good approximation
anyway. Figure 3 shows results analogous to Fig. 2b when the string length is reduced
by the violinist’s finger to get the note C5 (523 Hz): there is a good agreement also in
this case and a similar agreement may be found in many other test cases.

Fig. 3. Harmonic table vibration H = ∑
J QJ (t)EJ

(
XPT , YPT

)
after a time ti ∼= 0.1 s, as a

function of the dimensionless time τ = (t − ti)vw/lsA4 (same time scale as in Fig. 2). Same data
as in Fig. 2, except ls = lsC5 = 273 mm (C5).

5 Conclusion

The present report proposes a simple analytical approach to describe the low-frequency
behaviour of the bowed string instruments. It proves sufficiently consistent with the
more accurate numerical results and might be completed by adding the higher frequency
response obtainable by other methods described in the literature. The whole frequency
spectra of the various individual instruments are certainly different from each other,
as all luthiers are well aware and careful experimental tests should be carried out to
characterize their tone colour. Yet, the present methodology may provide a useful tool to
analyse the influence of possible structural changes of the soundbox parts on the global
performances of the instruments in the low-frequency range.
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