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Abstract. The dynamics of a harmonically base-excited two pendula
system, is investigated for the practical application of energy harvesting
from rotatory motions [1,2]. The central aim of this study is to iden-
tify system parameter ranges for which pendulum rotations exist. The
external harmonic excitation amplitude and frequency, and the difference
in pendulums lengths are the system parameters which have been varied
thresholds. Bifurcation analysis has been performed for the identification
of values beyond which rotations exist, and the study of corresponding
bifurcation points has been conducted with computational tool ABE-
SPOL, developed at the Centre for Applied Dynamics Research (CADR)
of the University of Aberdeen [3]. Direct simulations and one-parameter
continuation analysis were performed with ABESPOL and some results
were corroborated with direct numerical integration in Matlab, based on
a Runge-Kutta algorithm. One parameter continuation results showed
complex bifurcation scenarios for antiphase rotatory motions, presenting
evidence of existence and form of representation. Further results showed
that pendulum rotations, in phase and antiphase, co-exist with oscilla-
tory motions. Therefore, the basins of attraction have been computed,
enabling attractors to be targeted so as to enable antiphase rotatory
motion.

Keywords: Pendula system · Rotations · Bifurcation analysis · Path
following

1 Introduction

The application of pendula systems for energy harvesting from ambient vibration
has been extensively investigated in the past years by the Centre for Applied
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Dynamics and Research (CADR), University of Aberdeen. The motivation to
harvest energy from sea waves led to novel concept of rotational coupled paramet-
ric pendulum for their application to Wave Energy Converters (WEC). Previous
studies [4] proved the superiority of rotatory over oscillatory pendulum responses
with regards to energy harvesting. Therefore, further understanding of system
parameters and physics governing pendula rotatory motions are needed to enable
rotations for a two-pendula parametrically excited system. The dynamics of a
vertically excited parametric pendulum was studied by Clifford and Bishop [5]
and the experimental research on this matter was conducted by Alevras et al.
[6] to achieve rotations from a single parametric pendulum. Moreover, stochastic
excitations were also considered by Andreeva et al. [7] for the specific application
to sea waves energy harvesting. Further studies by Garira and Bishop [8] as well
as Horton [9] limited the stability of pendula rotations, and associated period-1
rotations with saddle node bifurcations. Further studies from Lenci et al. [10]
also presented saddle node bifurcations, with the birth of pendulum rotatory
responses, identified by a perturbation method. The robustness of rotational
solutions in terms of dynamics integrity was consolidated in later work [11].
Moreover, a classification of the double pendulum states of equilibrium, oscilla-
tions and rotations considering Lyapunov exponent was made by Dudkoski et
al. [12], and the existence of self-sustained rotations was identified by Klimina,
Lokshin and Samsonor [13].

This study is based on previous experimental studies of a two-pendula system
coupled to an elastic base presented by Najdecka et al. under periodic [1] and
stochastic excitation [14]. The analysis to identify rotational orbits in both pen-
dulums excited parametrically and system parameters boundaries are studied by
Marzal et al. [2]. The system parameters that will be considered in subsequent
sections are length of pendulums, amplitude and excitation frequency.

The rest of the paper is organised as follows. Section 2 describes the phys-
ical model of the two-pendula system coupled to a common elastic base and
harmonically excited in the vertical direction. System dynamic responses were
obtained from direct numerical integration. Bifurcation analysis based on one-
parameter continuation in the subsequent section is compared to system qualita-
tive responses predicted by Runge-Kutta algorithm, Sect. 3. Concluding remarks
are shown in Sect. 4, presenting the outcomes from the study.

2 Physical and Mathematical Modelling

The physical system, which can be deployed for energy harvesting, was analysed
in the form of time histories and bifurcation diagrams by Najdecka, Kapitaniak
and Wiercigroch [1], based on two parametric pendulums mounted on a flexi-
ble, common supporting structure excited in the vertical direction by a common
harmonic force Ry, where (Ry = Asin(Ωt)). Figure 1(a) shows the experimen-
tal rig used for model validation and experimental data acquisition. The two
pendulums are able to rotate independently, and the aluminium elastic base
sustains both pendulums, allowing their synchronization. Figure 1(b) shows typ-
ical phase plane responses when both pendulums are synchronized in antiphase
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rotatory motion, and also when the responses are close to heteroclinic cycles.
Data presenting Pendulum 1 is drawn in black while that of Pendulum 2, in red.
Therefore, the system is comprised of three masses: the supporting structure,
M , and the two bob masses, m1 and m2 of pendulum 1 and pendulum 2 respec-
tively; l1 and l2 represent the pendulum lengths and cθ denotes the damping
coefficient. kx, ky, cx and cy represent the total stiffness and damping properties
of the supporting structure in the x and y directions. The system is modelled
with four-degrees-of-freedom where X and Y denote the horizontal and vertical
displacements respectively, and θ1 and θ2 depict the angular displacement of
Pendulum 1 and 2 respectively measured from the vertical.

Fig. 1. (a) Two-pendula experimental rig. (b) Phase plane of typical rotatory and
nearly heteroclinic orbit for Pendulum 1 (black) and Pendulum 2 (red).

The system governing equations of motion have been derived by the Lagran
gian method for equal masses (m1 = m2 = m), and l1 = l and l2 = l+δ; the equa-
tions of motion are expressed in the form Mu + Cu + Ku = f(θ1, θ2) where
u = (X, Y, θ1, θ2)T and f contains the nonlinear terms. The equations of motion
in the dimensionless form can be written as follows:
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θ′′
2 +

γθ

(l + δ)
θ′
2 = −x′′lcos(θ2)

(
1

l + δ

)
− [1 − ω2plsin(ωτ)]sin(θ2). (4)

where ’ denotes differenciation with respect to the non-dimensionalized time τ
and the non-dimensionalised parameters and variables are,
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.

Equations (1) to (4) were non-dimensionalised with respect to a linear natural
frequency, and solved by direct numerical integration to obtain a form of exact
solution based on initial conditions initial conditions of x(0) = x′(0) = 0, θ1(0) =
1.5708, θ′

1(0) = 2.5, θ2(0) = 0.5708 and θ′
2(0) = −2.5. To give an overview of

system qualitative responses, a three-dimensional graph was constructed for the
three parameters in this study, which are the non-dimensionalised amplitude
and frequency of the wave excitation, represented as p and ω, respectively and
the parameter mismatch δ, describing the difference between pendulum lengths.
System qualitative responses in the three-dimensional graph, were differentiated
by colour. Pendulum 1 is oscillating, and Pendulum 2 is rotating, the plot colour
is yellow. If Pendulum 1 is rotating and Pendulum 2 is oscillating, the plot is
green. For both pendulums oscillating, black is used. Red is deployed for both
pendulums rotating. Figure 2(b) present typical phase planes and trajectories,
corresponding to different system qualitative responses.

Direct numerical integration predict the existence of rotations for amplitude
values of p tending towards zero or larger values close to 1.4, when the frequency,
ω, is 2.1. Values close to zero amplitude were studied further and identified to be
values close to 0.05 when frequencies, ω, target between 2.0 and 2.2. The param-
eter mismatch δ ranged between 0.00 and 0.06. To identify the parameter values
beyond which rotations cease to exist, a bifurcation analysis was performed with
the computational tool ABESPOL [3] to identify attractors to be targeted in
practice. This was based on the approach of continuation.

3 Bifurcation Analysis

To identify the ranges of parameter values for which rotations occur, numer-
ical continuation was performed. One parameter numerical continuation has
been performed with ABESPOL, which connects with the continuation core,
COCO [17].

In addition, direct simulation has been carried out for values of p, ω and δ
within the ranges computed by direct numerical integration. Results were shown
in Fig. 2. The results obtained have been summarized for the case of ω = 2.00
and δ = 0.00 and one parameter continuation was implemented for p ∈ [0.01274
1.40000]. Figure 3 present the results obtained from one parameter continua-
tion as well as the direct simulations required to initialize the continuations for
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Fig. 2. Dynamical system responses, where yellow indicated Pendulum 1 oscillations
and Pendulum 2 rotations, green denotes Pendulum 1 rotations and Pendulum 2 oscil-
lations, black implies oscillations and red corresponds to rotations for ranges of system
parameters of (a) δ∈ [00.06], ω ∈ [1.9 2.2] and p∈[0.05 1.4]. (b) Area of future bifur-
cation analysis constrained between δ ∈[00.06], ω∈ [1.9 2.2] and p∈ [0.05 1.5] and a
selection of time histories and phase portraits for both pendulums.

each pendulum. Stable solutions are presented in green, and red lines correspond
to unstable solutions. For both pendulums, the coexistence of phase rotations,
antiphase rotations and oscillations has been identified. Basins of attraction are
required to identify rotational motions for both pendulums so as to apply to
energy harvesting. Some example phase planes are presented for antiphase and
oscillatory motions, to prove the existence of this type of motion. Pendulum
1 experienced a saddle node bifurcation for the antiphase rotational motion,
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Fig. 3. Bifurcation analysis using path following with system initial conditions are
x(0) = x′(0) = 0, θ1(0) = 1.5708, θ′

1(0) = 2.5, θ2(0) = 0.5708 and θ′
2(0) = −2.5. Case

for ω = 2.00 and δ = 0.00 from p = [0 1.40000]. Stable and unstable solutions are
presented in green and red respectively, saddle node bifurcations are represented as
red dots. (a) and (b) Pendulum 1 and 2 bifurcation diagrams.

p = 0.012739, and a period doubling bifurcation at p = 0.42600 for ω = 2.00 and
δ = 0.00. For Pendulum 2, only one saddle node was detected for antiphase rota-
tions at p = 0.012739. Only the first saddle node bifurcation is located at the lim-
iting values of system parameter values. These values distinguish between stable
and unstable orbits. Further work would extend the identification of boundaries
separating rotational and oscillatory motions.
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4 Concluding Remarks

This paper studied a coupled pendula system excited vertically to identify ranges
of system parameters for which pendulums exhibit stable rotations. This can be
applied to wave energy harvesting in a novel WEC concept. Direct numerical
integration showing that rotations for both pendulums exist when p → 0 and
p → 1.4 for ω = 2.10 and δ ∈ [0.00 0.06], and more specifically for ranges of
p∈ [0.0500 0.500], ω ∈ [1.90 2.20] and δ ∈ [0.00 0.06], where p and ω denote
non-dimesionalized amplitude and frequency of excitation respectively; whereas
δ describes the difference in pendulum lengths.

Numerical continuation in ABESPOL has identified bifurcation scenarios and
attractors to be targeted in the practice, and helped to identify ranges of system
parameters for both Pendulum 1 and Pendulum 2. The analysis conducted for p ∈
[0.012739 1.4], ω = 2.00 and δ = 0.00 has located a saddle node bifurcation at p =
0.012739 and period doubling bifurcations at p = 0.42600 for antiphase rotation.
Oscilla-
tions coexist with anti-phase rotations for values of smaller than p = 0.32000.
Chaotic oscillations coexist with period-2 oscillations for both Pendulum 1 and
Pendulum 2.
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