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Abstract. Piezoactuators are popularly employed in precise position-
ing applications at the micro- and nanometer scales. Their position-
ing performance, especially for low-frequency responses, is significantly
impacted by creep - a phenomenon where the actuator deformation grad-
ually changes in the presence of a persistently applied constant voltage.
This change in deformation manifests itself in the gradual drifting of
the end-effector position that the piezoactuator is driving. A significant
research effort has therefore focussed on the accurate modelling of creep.
This paper compares three popularly employed creep models against
experimentally measured creep data obtained from a piezo-drive nanopo-
sitioner axis and quantifies their modelling accuracy. The quantification
demonstrates that the fractional-order model (double logarithmic model)
outperforms the other two integer-order models (Logarithmic and LTI
models) along multiple, key performance indices.

Keywords: Creep dynamics · Nanopositioning · Piezoelectric
actuator · Fractional-order modelling

1 Introduction

Nanopositioning encompasses a number of technologies that deliver nanometer-
scale mechanical displacement with high precision. It underpins many conven-
tional and emerging technical advances, e.g., scanning probe microscopy, disk-
drive data storage, and nano-surgery. Piezoelectric actuation is most popularly
employed to deliver nanopositioning due to several desirable characteristics, e.g.,
repeatability, lack of friction and stiction due to the absence of moving parts,
easy control, and system integration. However, the positioning performance of
piezoactuated nanopositioners is severely limited by the inherent linear resonance
and nonlinear dynamics, i.e., hysteresis and creep.

Creep is a nonlinear phenomenon inherent to piezoactuators that results in
drift over time in the output displacement despite fixed applied voltage; severely
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impacting slow-pace/start-from-previous-stop operations. To reduce this drift,
the piezoelectric actuator should operate relatively fast and in a relatively short
time interval [11]. However, even more accuracy is needed in many applications,
e.g., while the measuring operation in scanning probe microscopes, the mea-
suring sample should completely stay still without small movement, otherwise,
the measured image will be distorted [6]. Another remedy can be using feed-
back methods. Nevertheless, these are not implementable in many situations as
several displacement sensors should be mounted on the system, which is not
always possible [11]. Therefore, precise modelling of the creep phenomenon is of
great importance, whereas feedback methods can still be employed for further
improvement in positioning. While Hysteresis is typically affecting all trajecto-
ries (operation speeds) and therefore is well studied [5,16], the creep is typically
left unmodelled/unquantified in most nanopositioning literature [7,15]. With the
advent of soft actuators, creep modelling has also seen renewed interest [8,14].

Extensive research efforts have focused on the mathematical modelling and
open-/closed-loop compensation of the performance-limiting creep dynamics.
Most modelling and control techniques proposed thus far lie within the span
of integer-order calculus, categorized as: (i) logarithmic model [12], and (ii) lin-
ear time-invariant (LTI) model [17]. Recently, fractional-order (FO) calculus has
emerged as a viable candidate capable of furnishing further improvements in
the state-of-the-art in nanopositioning by allowing the formulation of improved
models and controller designs [13]. Considering the PEA as a resistocaptance, a
fractional-order model for creep phenomenon is proposed in [11]. In [10], another
fractional-order model is presented by employing a physics-based fractional-order
Maxwell resistive capacitor approach, and in [9], a simplified phenomenon-based
fractional-order creep model is proposed.

In this paper, the integer-order and fractional-order modelling approaches
describing the creep phenomenon are presented and numerically compared. Fur-
thermore, experimental results are employed to further validate the fractional-
order models, and demonstrate the superiority of this kind of modelling. Sum-
marizing, the main contributions of this paper are (i) making a comparison
between integer- and fractional-order models for creep, and (ii) validating a
creep fractional-order model with experimental data.

The paper is organized as follows. In Sect. 2, two integer-order creep models
as well as a fractional-order creep model are presented. Section 3 describes the
experimental platform employed to record creep data that is subsequently used
to quantify the accuracy of the three creep models being quantified in this work.
Furthermore, the parameter choices of each model are explained and illustrative
comparison is presented. Section 4 concludes this paper.



A Comparative Quantification of Existing Creep Models for Piezoactuators 421

2 Creep Models

2.1 Integer-Order Logarithmic Model

In the logarithmic model, the output displacement y(t) at time t is described
with the following linear equation as a function of the logarithmic scaled time
[11]:

y(t) = y1(1 + γlog
t

t1
), (1)

with y1 the displacement at time t1 that is the time after which the creep occurs,
and the constant γ specifies the creep rate.

2.2 Integer-Order Linear Time Invariant (LTI) Model

The LTI model considers a series of n + 1 springs and n dampers to model the
creep response. Consequently, the transfer function between the output response
Y (s) and the input voltage U(s) is given by [11]:

Gc(s) =
Y (s)
U(s)

=
1
k0

+
n∑

i=1

1
cis + ki

, (2)

where ci, i = 1, ..., n are the damping coefficients and ki, i = 0, ..., n are the
stiffness constants of the springs.

2.3 Fractional-Order Double Logarithmic Model

A fractional-order integrator, with an order between 0 and 1, causes drift, and
hence, can be exploited to model the creep phenomenon. This is concluded based
on two facts: (i) the PEA is a distributed-parameter component with memory
effect, and (ii) it is proved that a fractional-order system is able to successfully
model distributed-parameter systems which have memory effect [4]. Motivated
by these facts, a piezoelectric actuator can be described as a resistocaptance
(RC) as follows [2,4]:

Q(s)
U(s)

=
K

sα
, (3)

where Q(s) and U(s) are the input charge and driving voltage in frequency
domain, respectively, and K and 0 < α < 1 are constants. The output displace-
ment y(t) is given by the following dynamics:

mÿ(t) + cẏ(t) + ky(t) = Fp + Fext, (4)

with m, c, and k the mass, damping, and stiffness constants, respectively. Herein,
Fp = Tq(t), where T is the electro-mechanical transformer ratio and q(t) is the
input charge. When the external force Fext is zero, the transfer function G(s) is
given by:

G(s) :=
Y (s)
U(s)

=
b

sα(1 + a1s + a2s2)
, (5)
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where a1 = c
k , a2 = m

k , and b = TK
k . For sufficiently large time, the above PEA

model in (5) melts down to a fractional-order integrator, as follows:

lims→0G(s) =
b

sα
, (6)

which actually shows that the mechanical response can be disregarded after a
certain time tc, so (5) can be written as:

G(s) =
b

sα
, t ≥ tc. (7)

Let U(s) = 1
s , the an approximate displacement would be [3]:

y(t) = L −1{G(s)U(s)} =
btα

αΓ (α)
, t ≥ tc, (8)

with Γ (α) the gamma function, which gives the following ”double-logarithmic”
creep model:

log
(
y(t)

)
= αlog(t) + log

( b

αΓ (α)
)

t ≥ tc. (9)

3 Experimental Validation and Comparative
Quantification

3.1 Experimental Setup

The experimental results in this paper are obtained by using a two-axis piezo-
actuated serial kinematic nanopositioning stage, shown in Fig. 1. The actuation
voltage, which is in the range of 0 V to 200 V, is supplied by two voltage ampli-
fiers, PDL200 and Piezodrive, with an amplification factor of 20. The voltage
off-set is 100 V, and its consecutive full-range displacement is ±20µm along
each axis. To gauge the real-time displacement in the matter of voltage signal,
ranging from −10 V to 10 V, Microsense 4810, probe 2805, range of ±50µm, is
used, which is a high resolution capacitive sensor. The data acquisition system
is performed via the National Instruments card (PCI-6621) on a PC that has a
real-time module, also equipped with OPTIPLEX 780 with an Intel Core (TM)2
Duo Processor running at 3.167 GHz and 2 GB of DDR3 RAM memory. The
cross-coupling between the two scanning axes is down to −40 dB. Therefore,
two axes can be assumed decoupled and, consequently, treated as independent
single-input-single-output systems. Moreover, the axis with its resonance at 716
Hz (i.e., the fast axis) is chosen as the test platform with 20 kHz sampling
frequency [1].

3.2 Simulation Results

The logarithmic model (1) includes one parameter γ that needs to be identified.
As shown in Fig. 2b, the steady-state error is zero for γ = 0.56. Moreover, the
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Fig. 1. Two-axis piezo-actuated serial kinematic nanopositioning stage, designed by
the EasyLab, University of Nevada, Reno, USA [1].

minimum of the Root Mean Square (RMS) error and zero mean error occurs at
γ = 0.65, as illustrated. The displacement for each of these γ are demonstrated
in Fig. 2a in comparison to the experimental data.

Figure 2c illustrates the following reduced-order LTI model (n is set to one
in (2)):

Gc(s) =
1
k0

+
1

c1s + k1
, (10)

in which three constants k0, k1, and c1 are to be identified. Since the displacement
starts at 0µm, the constant k0 should be selected large enough, e.g., 1000. The
values for the stiffness constant k1 can also be computed such that the final
value at t = 600 s reaches 19.4191µm, which leads to k1 = 0.0515. Therefore,
only one parameter c1 has to be selected. This constant specifies the sharpness
of the unit response. Figure 2d shows the errors with respect to different values
of c1, from which c1 = 0.1 is selected since it makes the mean error zero. Note
that the steady-state error is zero for all values of c1 since this error, as discussed
above, is only influenced by k1.

The fractional-order double logarithmic model (8) is illustrated in Fig. 2e.
Two constants α and b are involved in this model, which should be identified. The
constant α specifies the creep rate and the constant b can be selected afterwards
such that the final model error at t = 600 s is zero. Consequently, as shown in
Fig. 2f, the steady-state error is zero for all values of α. Therefore, this model
also includes one independent constant α. The mean error is zero at α = 0.003
where the RMS error is also minimum (with b = 4.5684). Using this α, the result
of the double logarithmic model perfectly fits the experimental result, as can be
seen in Fig. 2e.
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(a) The integer-order logarithmic model.
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(b) Errors of the logarithmic model for
γ.
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(c) The integer-order LTI model.
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(d)
parameters c1.
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(e) The fractional-order double logarith-
mic model.
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Fig. 2. Choosing the model parameter that minimizes the modelling error and com-
paring the results with the experimental data.
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Remark 1. Although the selected values for c1 and α makes the mean error
of both the LTI and double logarithmic model zero, the corresponding RMS
error is smaller in the latter (RMS error is 0.75 in LTI model and 0.07 for
double logarithmic model, see Figs. 2d and 2f). Thus, the fractional-order double
logarithmic model fits more precisely to the experimental data in comparison to
the integer-order LTI model. To support this, an illustrative comparison is shown
in Fig. 3.

Remark 2. Assuming a higher order LTI model (n > 1) may lead to a more
accurate modelling but it also increases the number of parameters (2n + 1) that
need to be identified. Whereas, the fractional-order double logarithmic model
results in an excellent accuracy, as shown in Fig. 3, with only one independent
parameter.

Summarizing, in this paper, three different modelling schemes were studied
and their modelling errors were compared based on measured system dynamics
data for a specific input amplitude. These models can capture the creep dynamics
for different input amplitudes.
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(a) Time frame t = (0 : 600)s.
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(b) Zoomed at t = (0 : 20)s.

Fig. 3. Comparison between two integer-order models and a fractional-order model to
capture creep phenomenon.

4 Conclusions

Creep is a key limiting factor in the controlled performance of artificial mus-
cles/soft actuators/dielectric actuators/electroactive polymers that have signif-
icant additional nonlinearities such as hysteresis. Establishing accurate creep
models will allow for improved control schemes for these actuators which enable
a spectrum of exciting research avenues such as bioinspired robotics, flexible
prosthetics and life-like haptic interfaces.
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