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Abstract. We consider a vibrating system consisting of a thin rectilin-
ear elastic rod actuated by external loads applied at the ends as well as by
a normal force, which is distributed piecewise constantly in space. Such
a force may be implemented by piezoelectric actuators. The intervals of
constancy of this normal force are equal in length, and the force value
on each of these sections is considered as an independent control input.
We study the longitudinal motions of the rod and the means of control
optimization. Based on the eigenmode decomposition, it is shown in the
case of uniform rod that the original continuous system is split into sev-
eral infinite vibrating subsystems each of which is controlled by a certain
linearly independent combination of control inputs. It follows that if any
of these combinations is taken equal to zero, then the corresponding sub-
system becomes uncontrollable. Next, an optimal control problem on a
finite time horizon is considered, where the terminal mechanical energy of
the rod and energy losses in the control circuit are minimized with some
weighting coefficients. We show that for a fixed number of actuators
distributed along the rod, approximation of the problem is reduced to
the design of linear-quadratic regulators. An example of a uniform rod
is presented where finite expressions for the optimal control functions
are obtained. Amplitudes of controlled and affected but not minimized
modes are derived for approximated suboptimal control.

Keywords: Optimal control · Longitudinal vibrations · LQR ·
Distributed control

1 Introduction

The classical problem of active suppression of vibrations has many practical
applications and has been studied for years, mainly as vibration control of dis-
crete structures. Nowadays, continuous systems, e.g. elastic, are a substantial
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field of ongoing research. However, practical implementation of any control strat-
egy implies reduction of either the vibrating system or its control inputs to
finite-dimensional objects [1]. In this paper, we assume from the beginning that
the input is finite-dimensional in space. Such an assumption allows for splitting
the original continuous system into a finite number of subsystems each actu-
ated by its own combination of the original inputs. We consider an elastic rod
for which inputs, piecewise constant in space, may be implemented by means
of piezo elements [2,3] attached to the rod’s sides. The piezoelectric actuators
are used in a wide range of engineering applications from precision positioning
on nano-scale to motion control and vibration suppression on large scale in the
aerospace field [4,5]. In our study, the subsystems, in which the original contin-
uous system is split, are groups of vibrational modes. Since these groups are still
infinite-dimensional, we most likely have to approximate them. Here, we use a
simple approach by optimizing the motion of some lowest modes while higher
modes are actuated by derived optimal inputs. We also estimate the influence
of proposed strategy on all the modes by considering a suboptimal control law.
This allows us to obtain exact expressions for amplitudes of both controlled and
actuated modes.

In Sect. 2 we introduce the mechanical system and describe how it splits into
subsystems (groups of modes) and state the optimal control problem. In Sect. 3,
the original problem is reformulated in terms of these groups. We construct an
LQ-optimal control strategy for the lowest mode in each group in Sect. 4 and
propose an asymptotic approximation of the optimal feedback law. In Sect. 5
numerical results on the LQ-optimal and suboptimal strategies are presented.

2 Mechanical System

We consider a thin elastic rod that undergoes longitudinal vibrations. It is
assumed that the rod is actuated by boundary forces f±(t) and a distributed
force f(t, x). The force f acts in normal direction to the cross-section and is
distributed along the rod’s length, so that it has N space intervals of constancy
with equal length λ. Such a force may be implemented via a series of identical
piezoelements placed symmetrically on the side surface of the rod. We suppose
that the rod has a length of 2L and its center is at the point x = 0. Denoting the
intervals of constancy of the distributed force f as Ik := (xk−1, xk+1), k ∈ Js,
we introduce auxiliary functions fk(t) (see also Fig. 1) such that

fk(t) := f(t, x), x ∈ Ik, k ∈ Js, f±N±1(t) := f±(t),
xn = nλ

2 , λ = 2L
N , n ∈ Jx, x±N = ±L,

Js = {1 − N, 3 − N, . . . , N − 1}, Jx := {−N,−N − 2, . . . , N}.
(1)

In the dimensionless variables x∗ = x/L, t∗ = t/τ (the asterix is further
omitted) the rod’s motion is described by the following PDE system

ρ(x)v̈(t, x) = (κ(x)v′(t, x) + f(x, t))′, x ∈ (−1, 1), t ∈ (0, T ),
κ(±1)v′(t,±1) = f±(t), v(0, x) = v0(x), v̇(0, x) = v̇0(x). (2)
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Fig. 1. Schematic representation of the elastic rod and applied forces.

Here, v is the longitudinal displacements of the cross-section, ρ and κ are dimen-
sionless density and stiffness of the rod’s material, τ is a characteristic time.

2.1 Control Problem

Let us formulate an optimal control problem of suppressing the rod’s vibrations
while minimizing the terminal internal mechanical energy E and energy losses F

E :=
1
2

1∫

−1

(ρv̇2 + κ(v′)2)|t=T dx, F :=
1
T

T∫

0

1∫

−1

R (f−, f+, f) dxdt, (3)

where R is a positive defined quadratic function w.r.t. forces f±, f. That is, the
aim is to minimize the cost function

Φ := E + γF → min
f±,f

(4)

subject to constraints (2). In (4), γ > 0 is a weighting coefficient. We later assign
different weights for forces fk(t) on each interval Ik in (3), but for simplicity of
presentation we keep F in the form (3) in this section.

We decompose (2) by projecting this system in the weighted space
L2(ρ(x), (−1, 1)) onto eigenfunctions {wn(x)}, where wn, n = 0, 1, . . . , are found
by solving the eigenproblems

(κ(x)w′
n(x))′ = ηnρ(x)wn(x), κ(x)w′

n(±1) = 0, n = 0, 1, . . . . (5)

As a result, the infinite-dimensional ODE system is obtained according to

v̈n = −ηnvn +
∑
j∈Jx

wn(xj)fj , vn(0) = v0
n, v̇n(0) = v̇0

n. (6)

In (6), vn, v0
n and v̇0

n are components of projections of v(t, x), v0(x) and v̇0(x)
onto wn(x), respectively. Additionally, we introduce in (6) the control functions

fj(t) := fj+1(t) − fj−1(t), j ∈ Jx. (7)

That is, the rod is actuated only by the jumps of the forces fk. Therefore, any
forces f(t, x), f±(t) resulting in the same jumps yield the same motion. In what
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follows, we consider such forces equivalent. Moreover, the rod is uncontrollable
if for at least one n we have

∑
j∈Jx

wn(xj)fj(t) ≡ 0. (8)

Therefore, the forces resulting in linear dependent jumps fj s.t. (8) holds for some
n do not actuate this specific mode. We exclude such forces from consideration.

2.2 Controlled Groups for a Uniform Rod

If the values of eigenfunctions are such that wi(xk) = wj(xk) for some i �= j
and all k ∈ Jx, the vibrational modes split in groups. It may happen if the rod
consists of homogeneous pieces or, in the simplest case, both the density ρ and
the rigidity κ are constant. Let ρ = κ = 1 in dimensionless units. Then

wn(x) = cos
(

π
2n(x + 1)

)
, ηn = π2n2

4 , n = 1, 2, . . . ,

w0 = c0 =
√

2/2, η0 = 0,
(9)

and, for example, for N = 2 the system (6) takes the form

v̈n = −ηnvn + wn(−1)f−2 + wn(0)f0 + wn(1)f2. (10)

Since the functions wn(xk) = cos
(

π
2n

(
k
N + 1

))
take only a finite number

of values for fixed k and N , the number of possible linear combinations∑
j∈Jx

wn(xj)fj is also finite. We introduce the effective control functions

un =
∑
j∈Jx

wn(xj)fj . (11)

Then all vibrational modes split into N + 1 independent groups such that each
i-th group, i = 0, . . . , N, with mode numbers n = 2Nj ± i ≥ 0, j = 0, 1, . . . , is
controlled by a specific ui:

v̈n = −ηnvn + ui. (12)

For example, denoting for N = 2

u0 = f2 + f0 + f−2 = f3 − f−3, u1 = −f2 + f−2 = −f3 + f1 + f−1 − f−3,
u2 = f2 − f0 + f−2 = f3 − 2f1 + 2f−1 − f−3,

(13)
we obtain 3 groups, namely,

v̈0 = c0u0, v̈4j+4 = −η4j+4v4j+4 + u0,
v̈2j+1 = −η2j+1v2j+1 + u1, v̈4j+2 = −η4j+2v4j+2 + u2,

(14)

where j = 0, 1, . . . . Similarly, there are 4 groups for N = 3 with n = 6j, 6j ± 1,
6j ± 2, 6j ± 3 where n > 0. Likewise, the groups are formed for any N .
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3 Transforming the Cost Function

Since the vibrational modes are split into independent groups, it is worth trans-
forming the cost function Φ in (4) accordingly. By using the eigenfunction expan-
sion of the displacements v, the internal mechanical energy E and the energy
losses F in (3) take the form

E =
1
2

∑
n

(
v̇2

n(T ) + ηnv2
n(T )

)
, F =

1
2T

∫ T

0

f̄∗Rf f̄dt, (15)

where the vector of control jumps f̄ = (f1−N , . . . , fN−1, fidle)∗ is introduced,
and f̄∗ means the transpose of the vector f̄ ; Rf is a positive weighting matrix.
The component fidle is equal to the sum of all original inputs fk. Since the rod is
effectively controlled by jumps of forces, any forces f±, f having the same jumps
yield the same control. Any ”excessive” input does not change the state of the
system. Minimizing Φ = E+γF , we imply that the function fidle(t) representing
this “excessive” input is taken equal to zero: fidle(t) ≡ 0.

Let us introduce the vector of effective control functions ū = (u0, . . . , uN )∗.
The energy losses F can be written as

F =
1

2T

∫ T

0

f̄∗Rf f̄dt =
1

2T

∫ T

0

ū∗Ruūdt, (16)

where the weighting matrix Ru = C∗RfC corresponds to linear transformation
of f̄ to ū : f̄ = Cū. For the following decomposition, we suppose further that Ru

is equal to the identity matrix I since this can be achieved by assigning specific
weights to each input fj in (3).

As a result, the cost function Φ is split into N + 1 independent terms

Φ = Φ0 + Φ1 + . . . + ΦN ,

Φ0 = v̇2
0(T )
2 + 1

2

∑∞
j=1

(
v̇2
2Nj(T ) + η2Njv

2
2Nj(T )

)
+ γ

2T

∫ T

0
u2
0(t)dt,

Φk = 1
2

∑∞
j=0

(
v̇2
2Nj±k(T ) + η2Nj±kv2

2Nj±k(T )
)

+ γ
2T

∫ T

0
u2

k(t)dt,

(17)

with k ∈ J1, J1 := {1, . . . , N}. Therefore, the problem of vibration suppression
(4) is transformed into N + 1 independent control problems. Since each group
is still infinite-dimensional, the direct solution of the corresponding problems
is not straightforward, although an approximate solution is still possible [6]. In
the next section we consider a finite-dimensional approximation of the optimal
control problem.

4 Controlling a Finite-Dimensional Approximation

We consider the following approximation: let us minimize the cost function

Φ̃ := Φ̃0 + Φ̃1 + . . . + Φ̃N → minuk
, Φ̃0 = v̇2

0(T )
2 + γ

2T

∫ T

0
u2
0(t)dt,

Φ̃k = 1
2

(
v̇2

k(T ) + ηkv2
k(T )

)
+ γ

2T

∫ T

0
u2

k(t)dt, k ∈ J1.
(18)
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That is, we control only the lowest vibrational mode in each group, while the
higher modes are actuated, but their motion is not optimized. For definiteness,
we call the modes with n ≤ N the controlled modes, and the ones with n > N—
the actuated modes. After denoting

y
(0)
1 (t) = v0(t), y

(0)
2 (t) = v̇0(t), y

(0)
1 (0) = v0

0 , y
(0)
2 (0) = v̇0

0 ,

y
(k)
1 (t) = μkvk(t), y

(k)
2 (t) = v̇k(t), y

(k)
1 (0) = μkv0

k, y
(k)
2 (0) = v̇0

k

μk =
√

ηk, y(0) = (y(0)
1 , y

(0)
2 )∗, y(k) = (y(k)

1 , y
(k)
2 )∗, k ∈ J1,

(19)

the cost functions Φ̃k are rewritten as follows

Φ̃k = (y(k)(T ))∗Q(k)y(k)(T ) +
∫ T

0
ū∗

k(t)Rūk(t)dt, ūk = (0, uk)∗,

R =
(

1 0
0 γ

2T

)
, Q(0) = 1

2

(
0 0
0 1

)
, Q(j) = 1

2I, I =
(

1 0
0 1

)
, j ∈ J1.

(20)

Therefore, instead of problem (4) we consider N + 1 minimization problems:

Φ̃k → min
uk(t),t∈[0,T ]

, k ∈ J0, J0 := {0, . . . , N} , (21)

subject to the constraints

ẏ(k) = A(k)y(k) + Būk, k ∈ J0, A(0) =
(

0 1
0 0

)
, B(0) =

(
0 0
0 c0

)
,

A(j) =
(

0 μj

−μj 0

)
, B(j) =

(
0 0
0 1

)
, j ∈ J1,

(22)

with initial conditions introduced in (19).

4.1 Feedback Optimal and Suboptimal Controls

Each subproblem (21), (22) can be solved in a standard way by means of the
LQR theory [7]. The optimal feedback control functions are expressed as follows

u0(t) = − Tc0y
(0)
2 (t)

c20T (T−t)2+γ
,

uk(t) = 2μkαT y
(k)
1 (t)+(μkT 2 sin(2μk(T−t))−2μ2

kβT T )y
(k)
2 (t)

αT+μ2
kβ2

T
,

αT = T 2(cos2(μk(T − t)) − 1), βT = (T (T − t) + 2γ).

(23)

The behavior of the controlled modes is described by substituting (23) into (22)
and integrating the result. For the zeroth mode, the solution is found explicitly

y
(0)
1 (t) = y

(0)
1 (0) +

(
t − Tc20t2

2(T 2c20+γ)

)
y
(0)
2 (0),

y
(0)
2 (t) =

(
1 − Tc20t

T 2c20+γ

)
y
(0)
2 (0).

(24)

The other modes from the zeroth group with k = 2Nj, j > 0, are actuated by
u0 from (23) and expressed as

y
(k)
1 (t) = Tc0(cos(μkt)−1)

μk(T 2c20+γ)
y
(0)
2 (0), y

(k)
2 (t) = −Tc0 sin(μkt)

μk(T 2c20+γ)
y
(0)
2 (0). (25)
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That is, their amplitudes decay as 1
kT for large k or T . It is worth mentioning

that choosing T as a multiple of 4 in dimensionless units we obtain y
(k)
1 (T ) =

y
(k)
2 (T ) = 0. Therefore, the proposed control completely suppresses excitation of

higher modes with n = 2Nj for such T at the terminal time instant.
Note that (23) holds for any N > 0. That is, this solution is applicable to

any number N of piezoelements utilized. It is worth noting that it is possible to
enhance approximation (18) by controlling several modes in each group. How-
ever, since we have to control several pendulums by means of one input in this
case, we encounter a classical control problem when the number of inputs is
much smaller than the number of controlled variables [8].

The behavior of actuated but not suppressed modes yn
1,2, n > N, can be inves-

tigated numerically as done in the next section. However, under the assumption
that N is large, and k 	 1, we can estimate the modes amplitudes explicitly.
Indeed, by introducing an approximate control

ua
k(t) = − T

βT
yk
2 (t) (26)

we obtain explicit expressions for amplitudes:

y
(k)
1a (t) =

(
βT yk

2 (0)
T 2+2γ + T (μk(T

2+2γ)yk
1 (0)+Tyk

2 (0))

μ2
k(T

2+2γ)2

)
sin(μkt)

+
(

βT (μk(T
2+2γ)yk

1 (0)+Tyk
2 (0)

μk(T 2+2γ)2 − Tyk
2 (0)

μk(T 2+2γ)

)
cos(μkt),

y
(k)
2a (t) = −μkβT

(
(μk(T

2+2γ)yk
1 (0)+Tyk

2 (0)) sin(μkt)

μ2
k(T

2+2γ)2
− yk

2 (0) cos(μkt)
μk(T 2+2γ)

)
.

(27)

Note that y2a(T ) = 0 for T that are multiples of 4. The higher actuated modes,
n > N, also can be derived analytically. We omit these lengthy expressions stat-
ing that their amplitudes behave as 1

nT . In the next section, we show numerically
that these approximations are close to the numerical (optimal) solution.

5 Example of Control

5.1 Numerical Results

In this section, we consider a numerical implementation of the strategy (23).
Since the equations of motion (12) are linear, to estimate the influence of the
control on the higher modes vn with n > N , it is enough to consider zero initial
conditions for such modes:

v0
n = v̇0

n = 0 or y
(n)
1 (0) = y

(n)
2 (0) = 0, n > N. (28)

For the lowest controlled modes, we choose initial conditions (ICs) such that
energy of each mode is equal to 1 at t = 0:

E0(0) = (v̇0
0)

2

2 = (y
(0)
1 (0))2

2 = 1,

Ek(0) = 1
2

(
(v̇0

k)2 + ηk(v0
k)2

)
= 1

2

(
(y(k)

2 (0))2 + (y(k)
2 (0))2

)
= 1,

v0
0 =

√
2, v̇0

0 = 0, v0
k = 1√

ηk
= 1

μk
, v̇0

k = 1,

y
(0)
1 (0) =

√
2, y

(n)
2 (0) = 0, y

(k)
1 (0) = y

(k)
2 (0) = 1, k ∈ J1.

(29)
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Fig. 2. The amplitudes yk
1,2 of the controlled modes with k = 0, 1, 2, 3 (left). The

optimal control inputs (middle). The relative error of the approximate control input
(right).

Let us take N = 3. That is, we control the four lowest modes and the other
modes are actuated but not optimized. The optimal control uk acts on the modes
with n = 6j ± k > 0. We fix γ = 1, and T = 12, which corresponds to three
periods of the first mode v1. Fig. 2(left) shows the phase portrait of the controlled
modes, and Fig. 2(middle) presents the controlled inputs. Here, the zeroth mode
y
(0)
1,2 and the input u0 are computed analytically according to (23), (24), while

the amplitudes y
(k)
1,2 , k = 1, 2, 3 are obtained numerically solving (22), with ICs

(29) and uk from (23). In Fig. 2(left), y
(0)
1 is scaled by 7 and at t = T we have

y
(0)
1 ≈ 8.6, y

(0)
2 ≈ 0.02, y

(1)
1 ≈ y

(1)
2 ≈ −0.014, y

(2)
1 ≈ y

(1)
2 ≈ 0.014, y

(3)
1 ≈ y

(3)
2 ≈

−0.014.
Figure 3(left) shows the mechanical energy during the controlled motion. This

figure presents the energy of the controlled modes with k = 0, 1, 2, 3 with the
terminal value E(T ) = 7 · 10−4, and the energy of several actuated modes with
n = 4, . . . , 9. Here, 4th and 8th modes are actuated by u2, 5th and 7th—by u1,
6th—by u0, and 9th—by u3. The terminal energy of these five actuated modes
is E(T ) ≈ 10−11. During the motion, the amplitudes of the actuated modes do
not exceed 0.15 for y

(4)
1,2 and 0.06 for y

(n)
1,2 , n = 5, . . . , 9. The terminal value of

the approximate cost functional (18) is Φ̃ = 5.5 · 10−2.
Next, the time horizon T is varied. In Fig. 3(middle), we present the terminal

mechanical energy of the first ten modes E(T ) (the lowest four are controlled
while the rest are actuated) depending on T ∈ [2, 102] and the corresponding
value of the energy loss F .

Further, we perform analysis of the approximate analytical solution. Figure 2
(right) shows the relative errors in L2(0, T ) of the approximation (26) depending
of the number k of controlled mode: eu = ‖ua

k−uk‖L2
‖uk‖L2

for T = 12. Here, the estimate
for a specific k is valid for any number of control elements N ≥ k +1. The relative

errors eyi = ‖y
(k)
ia −y

(k)
i ‖L2

‖y
(k)
i ‖L2

, i = 1, 2 of approximated mode amplitudes have the

similar value and dependence on k.
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In Fig 3(right), the approximate mechanical energy Ea and the approximate
energy losses Fa are given depending on T for N = 3 for the first ten modes
computed analytically. The zeroth mode is controlled by u0 (23) and for k =
1, 2, 3 we use uk

a (26). The other modes with numbers n > 3 are actuated by one
of these inputs.

Fig. 3. The mechanical energy of the controlled and actuated modes during the motion
(left). The terminal mechanical energy and the energy losses (middle). The approximate
terminal mechanical energy and the energy losses (right)

5.2 Discussion

It follows from the presented results (see Figs. 2, 3) that the proposed control
strategy allows for achieving a state relatively close to zero except for the zeroth
mode. The velocity of this mode is rather small at t = T , but its amplitude,
which corresponds to the motion of the rod as a rigid body, grows in time. This
is due to the cost functional Φ (17) not including v0(T ) since the change of the
rod’s position does not affect the mechanical energy of the rod. To minimize the
displacement of the rod as a rigid body, the initial setup should be modified, e.g.
by adding elastic springs at rod’s ends. Then, all the modes will be described by
similar pendulum equations.

Choosing the time horizon T larger, we allow for more precise control, see
Fig. 3(middle). As can be expected for a vibrational system, for some T , specif-
ically, multiples of 4—the period of the first mode—the proposed strategy is
distinctively more effective. Although the actuated modes are not excited sig-
nificantly in general, for the above-mentioned T their terminal amplitudes are
several orders smaller than the terminal perturbation of the controlled modes.

To estimate analytically the terminal amplitudes of both controlled and actu-
ated modes, we introduce the asymptotic control uk

a. As seen from Fig. 2(right),
this control law provides an approximation that becomes more accurate as k
grows, that is if we utilize more control elements (make N larger). The relative
error of the energy losses F (see Fig. 3, right) achieves about 10−4 as T grows for
fixed N = 3. However, the approximate control (26) does not contain feedback
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in position. Therefore, the terminal values of displacement amplitudes are not
zeros: y

(k)
1a (T ) ∼ 1

kT while y
(k)
2a (T ) = 0, providing larger values of the terminal

energy (of the order
N∑

k=1

1
k2T 2 +

∑
n>N

1
n2T 2 ) than numerical (optimal) solution.

It is worth mentioning that this estimate is stable: the approximate terminal
energy is about 10 times larger than the exact one for all T except for multiples
of 4, when the exact energy is much smaller.

6 Conclusions

In this paper, we study a vibrating system controlled by distributed and bound-
ary inputs, where the distributed force is piecewise constant in space. We have
shown that the continuum system is split into a finite number of subsystems
each actuated by certain linear combination of inputs. We consider an opti-
mal control problem of suppressing the vibrations by minimizing the terminal
mechanical energy and energy losses. Taking an approximation of the original
control problem, the motion of the lowest mode in each group is optimized and
the optimal feedback control law is found explicitly by means of LQR theory. For
the subsystem containing the zeroth mode, the amplitude of both controlled and
actuated modes are obtained analytically. Amplitudes of the other subsystems
are described numerically. To show that the amplitudes of the higher modes are
not excited significantly, we have derived an approximate feedback control and
the corresponding mode behavior. We present a numerical example and analyze
the optimal solution and its analytical approximation.

We plan to derive rigorous estimates of quality of suboptimal control and
combine the proposed feedback strategy with recently developed feedforward
approach providing analytical solution [9]. Also, since the piezoelements may
serve both as actuators and sensors, it is promising to add observes in the model.
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