
QLDT: A Decision Tree Based
on Quantum Logic

Ingo Schmitt(B)

Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany
schmitt@b-tu.de

https://www.b-tu.de/fg-dbis

Abstract. Besides a good prediction a classifier is to give an explanation
how input data is related to the classification result. Decision trees are
very popular classifiers and provide a good trade-off between accuracy
and explainability for many scenarios. Its split decisions correspond to
Boolean conditions on single attributes. In cases when for a class decision
several attribute values interact gradually with each other, Boolean-logic-
based decision trees are not appropriate. For such cases we propose a
quantum-logic inspired decision tree (QLDT) which is based on sums
and products on normalized attribute values. In contrast to decision trees
based on fuzzy logic a QLDT obeys the rules of the Boolean algebra.

Keywords: Quantum logic · Decision tree · Interpretable AI

1 Introduction and Related Work

Data mining is the task of finding patterns in a large data collection. Methods
of supervised learning find a mapping, called a model, between input objects
and a target property. For the classification task the target property is cat-
egorical. Without loss of generality, we discuss classification tasks where the
target property distinguishes between two classes denoted by the values 0 and
1, respectively. Let D be a set of objects (tuples of reals). Every object is char-
acterized by its values for n given attributes: o = (o1, . . . , on). Furthermore, we
assume the existence of a hidden mapping m from D to the classes, that is,
m : D → {0, 1}. We explicitly know the mapping only for a subset O ⊂ D. That
is, we hold M = {(o,m(o))|o ∈ O}. Let TR ⊂ M be the set of training data and
TE = M \ TR be test data.

Solving a classification problem means to construct a mapping function
cl : D → {0, 1}, called a classifier, from given training data TR. The classifier
should approximate m and should provide a prediction on TE with high accu-
racy. The accuracy of a classifier is quantified as the fraction of correctly classified
objects of all test objects: accuracy = |{(o,m(o)) ∈ TE|m(o) = cl(o)}|/|TE|. In
addition to a good accuracy a classifier should explain to users the connection
between object attributes and the corresponding class, see [2]. A very popular

c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, CCIS 1652, pp. 299–308, 2022.
https://doi.org/10.1007/978-3-031-15743-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15743-1_28&domain=pdf
http://orcid.org/0000-0002-4375-8677
https://doi.org/10.1007/978-3-031-15743-1_28

300 I. Schmitt

classification method is the decision tree (DT), see [1]. The DT is based on rules
of Boolean logic and can be seen as a good trade-off between accuracy and power
in order to explain the classifier [3]. That is, in contrast to works like [7,15] we
use logic as a means for explanation.

For finding the class of an object using a DT we navigate from the root to
a leaf. Following such a path means to check conjunctively combined conditions
on object attribute values. If we regard objects as points in [0, 1]n then every
tree node split on an attribute corresponds to one or more hyperplanes being
parallel to n − 1 axes.

Fig. 1. (left) Class decision lines for (x > 0.5) ∧ (y > 0.5) (dashed) and x ∗ y > 0.5
(solid) and (right) space decomposition by axis-parallel decisions for x ∗ y > 0.5

See Fig. 1 (left) for a two-dimensional case where the dashed line refers to the
class separation for (x > 0.5) ∧ (y > 0.5). For that class decision the attribute
values interact conjunctively on the level of Boolean truth values. But what
about scenarios where the interaction takes place on object values directly? See
for example the solid class separation line in Fig. 1 (left) for x ∗ y > 0.5. Let, for
example, x ∈ [0, 1] encodes age and y ∈ [0, 1] encodes continuously the BMI of a
person. Furthermore, the risk of severe health damage from COVID may increase
gradually in the shape of a product of age and BMI. In that and similar cases,
decision trees based on axis parallel decisions can only roughly approximate non-
parallel decision lines and deteriorate, see Fig. 1 (right). A tighter approximation
would lead to even more deterioration.

In contrast to the traditional decision tree based on Boolean decisions we
develop a quantum-logic inspired decision tree (QLDT). Instead of combining
Boolean values we regard attribute values from [0, 1] as results from quantum
measurements and combine them directly by using negation, conjunction and
disjunction following the concepts of quantum logic [9,12]. Different from fuzzy
logic, quantum logic based on mutually commuting conditions obeys the rules
of a Boolean algebra. Therefore, in contrast to decision trees based on fuzzy
logic [5,6,10], every logical formula can be represented as a set of disjunctively
combined minterms which are themselves conjunctions of positive or negated

QLDT: A Decision Tree Based on Quantum Logic 301

conditions (disjunctive normal form) [4]. After deriving a logic expression e in
disjunctive normal form we generate a QLDT (qldt(e)) from it.

Referring to the solid decision line (left) in Fig. 1 we obtain the quantum
logical expression x ∧ y with x, y ∈ [0, 1].

The evaluation of a traditional decision tree against an input object differs
from the evaluation [qldt(e)] of a QLDT. Starting from the QLDT root we navi-
gate in a parallel manner to all leaves where for each leaf we obtain a leaf-specific
evaluation value from [0, 1]. All evaluation values of class-1-leaves are summed
up to a class value from [0, 1]. A final threshold τ is applied to the class value
for a discrete class decision. The class decision can be written as [qldt(e)] > τ
(in the example we yield x ∗ y > 0.5).

For our quantum logic decision tree approach we identify the following advan-
tages:

1. Quantum logic deals directly with continuous truth values;
2. In contrast to fuzzy logic our quantum-logic inspired approach obeys the rules

of the Boolean algebra [8], for example [e ∧ ¬e] = 0 and [e ∧ e] = [e];
3. Class separation lines are not restricted to be axis-parallel.1

In following sections we will develop the QLDT. It is based on the concepts
of CQQL. The quantum-logic inspired language CQQL (commuting quantum
query language) was introduced in [12,14].

2 Commuting Quantum Query Language (CQQL)

Syntactically, a CQQL expression is an expression of propositional logic based on
conjunction, disjunction, and negation. We assume n atomic, unary conditions
on the n values of an object o. Such a condition expresses gradually whether an
input value is a high value, e.g. a high BMI value. Each of the conditions returns a
value from [0, 1]. The upper bound 1 is interpreted as true and the lower bound
0 as false. In [11] we prove that a quantum logic expression based on atomic
conditions on different attributes form a Boolean (orthomodular, distributive)
lattice.

A CQQL expression e in a specific syntactical normal form (CQQL normal
form, see [11,12,14]) can be evaluated arithmetically. Each CQQL expression
can be transformed into that normal form, see [12,14].

Let the function atoms(e) return the set of atomic conditions involved by
a possibly nested condition e. The CQQL normal form requires that for each
conjunction e1 ∧ e2 and for each disjunction e1 ∨ e2 (but not for the special case
of an exclusive disjunction) the atom sets are disjoint: atoms(e1)∩atoms(e2) = ∅.
If for e1 ∨ e2 the conjunction e1 ∧ e2 is unsatisfiable in propositional logic then
the disjunction is exclusive. We mark each exclusive disjunction by

.∨.
The evaluation of a CQQL expression e in the required normal form against

an object o is written as [·]o. For brevity, we drop the object o and write just [·].
In the following recursive definition of [e], we distinguish five cases:
1 Of course, there exist classification problems for which the decision tree based on

Boolean logic fits perfectly.

302 I. Schmitt

1. Atomic condition: If e is an atomic condition then [e] ∈ [0, 1] returns the
result from applying the corresponding condition on o.

2. Negation: [¬e] = 1 − [e];
3. Conjunction: [e1 ∧ e2] = [e1] ∗ [e2];
4. Non-exclusive disjunction: [e1 ∨ e2] = [e1] + [e2] − [e1] ∗ [e2]; and
5. Exclusive disjunction: [e1

.∨ e2] = [e1] + [e2].

We now extend the expressive power of a CQQL condition by introducing
weighted conjunction (e1 ∧θ1,θ2 e2) and weighted disjunction (e1 ∨θ1,θ2 e2). The
work [13] develops the concept of weights in CQQL from quantum mechanics
and quantum logic. Weight variables θ1, θ2 stand for values out of [0, 1]. A weight
[θi] = 0 means that the corresponding argument has no impact and a weight
[θi] = 1 equals the unweighted case (full impact). We regard every weight variable
θi as a 0-ary atomic condition. Before we evaluate a condition with weights we
map every weighted conjunction and weighted disjunction in e to an unweighted
condition:

(e1 ∧θ1,θ2 e2) → ((e1 ∨ ¬θ1) ∧ (e2 ∨ ¬θ2))
(e1 ∨θ1,θ2 e2) → ((e1 ∧ θ1) ∨ (e2 ∧ θ2)).

For a certain classification problem we want to find a matching CQQL expression
e together with a well-chosen output threshold value τ for cl: clτe (o) = thτ ([e]o)

with thτ (x) =
{

1 if x > τ
0 otherwise.

From the laws of the Boolean algebra we know that every expression e can
be expressed in the complete disjunctive normal form, that is, every expression
is equivalent to a subset of 2n minterms. We implicitly assume for each of the
n object attributes exactly one atomic condition cj for j = 1, . . . , n and for an
object o = (o1, . . . , on) the equivalence oj = [cj]o ∈ [0, 1]. The minterm subset
relation for any logic expression can be expressed by use of minterm weights
θi ∈ {0, 1}:

e =
.∨2n

i=1
mintermi,θi

mapped to
.∨2n

i=1
mintermi ∧ θi = e (1)

and mintermi =
∧n

j=1 cij with cij =
{

cj if (i − 1) & 2j−1 > 0
¬cj otherwise .

That is, the value i − 1 is considered as a bitcode and identifies a minterm
uniquely and j−1 stands for a bit position. The symbol ‘&’ stands for the bitwise
and.

Please note that the disjunction of any two different complete minterms is
always exclusive. Thus, e is in CQQL normal form and its evaluation against
object o yields

[e]o =
2n∑
i=1

θi

n∏
j=1

[cij]o. (2)

QLDT: A Decision Tree Based on Quantum Logic 303

3 Extraction of Minterms and Finding the Output
Threshold

Next, we will extract a CQQL expression e in complete disjunctive normal form
from training data. We have to find the weight θi for every minterm i. The
starting point is the training set TR = {(x, y)} = {(o,m(o))} with the input
tuples (objects) x = o ∈ [0, 1]n and y = m(o) ∈ {0, 1}.

One important requirement for a classifier is high accuracy. Therefore, we
maximize the accuracy of expression (1) depending on the minterm weights θi

based on TR = {(x, y)}.
Accuracy acc for a continuous evaluation can be measured as sum over the

two correct cases (y = 1) ∧ [e]x and (y = 0) ∧ [¬e]x over all pairs (x, y) ∈ TR:

acc =
∑

(x,y)∈TR

(y ∗ [e]x + (1 − y)(1 − [e]x))

=
2n∑
i=1

θi

∑
(x,y)∈TR

⎛
⎝(2y − 1) ·

n∏
j=1

[cij]x

⎞
⎠ +

∑
(x,y)∈TR

(1 − y).

We see after applying Eq. (2) and some reformulations, that accuracy shows
a linear dependence on the minterm weight θi for fixed TR-pairs. The first
derivative yields a constant gradient on θi:

∂acc

∂θi
=

∑
(x,y)∈TR

(2y − 1) ·
n∏

j=1

[cij]x=
∑

(x,1)∈TR

n∏
j=1

[cij]x −
∑

(x,0)∈TR

n∏
j=1

[cij]x.

For maximizing accuracy a minterm weight θi should have the value 1 if ∂acc
∂θi

> 0
and 0 otherwise. In other words, for the decision whether a minterm should be
active or not it is sufficient to compare the impact of positive training data Ei

against the impact of the negative training data Ni with

Ei =
∑

(x,1)∈TR

n∏
j=1

[cij]x and Ni =
∑

(x,0)∈TR

n∏
j=1

[cij]x.

Please note that the decision depends on the relative number of positive training
objects in TR. Therefore, let γ1 = |{(x, 1) ∈ TR}| and γ0 = |{(x, 0) ∈ TR}| be
the number of positive and negative training objects, respectively. The fraction
of negative objects is then given by γ = γ0

γ1+γ0
. In the unbalanced case (γ
= 1/2)

we compensate the effect on the minterm weight decision by:

[θi] =
{

1 if γ · Ei > (1 − γ) · Ni

0 otherwise
. (3)

Following that minterm decision rule we can decide for every minterm whether
it is active or inactive. In case of γ ·Ei ≈ (1−γ) ·Ni the decision is not clear. We

304 I. Schmitt

call such kind of minterms unstable because adding a single new training object
may change the decision. Instable minterms are less expressive then stable ones
and have a low impact on accuracy. We are interested in stable minterms. For
measuring stability we compute the ratio ρi of γ · Ei to the sum of γ · E1 and
(1 − γ) · Ni of a minterm i . A value for ρi close to 1/2 indicates an unstable
minterm i, a value near 1 means a stable active minterm i, and a value near 0
means a stable inactive minterm i.

The question arises: should instable minterms be active or inactive? We pro-
pose to sort all minterms by their values ρi and choose a ρ-threshold θρ from them
that provides a good trade-off between accuracy and compactness of expression
e. The modified minterm decision rule is:

[θi] =
{

1 if γEi

γEi+(1−γ)Ni
> θρ

0 otherwise
. (4)

After applying our minterm decision rule (4) we obtain the expression:

e =
.∨

i:[θi]=1

n∧
j=1

cij with [e]x =
∑

i:[θi]=1

n∏
j=1

[cij]x.

Next we have to find the output threshold value τ for clτe (x) = thτ ([e]x). Let
min1 = min(x,1)∈TR[e]x be the smallest evaluation result of the positive training
objects and max0 = max(x,0)∈TR[e]x be the highest result of the negative training
objects. In case of max0 < min1, positive objects and negative objects are well
separated and we set τ to (max0 + min1)/2.

Otherwise, we have to choose a value τ from the interval [min1,max0]. In
order to find a threshold which maximizes discrete accuracy we use the training
objects from TR:

τ = arg max
(x,) ∈ T R
τx := [e]x

τx ∈ [min1, max0]

accuracy(e, τx, TR)

where accuracy(e, τx, TR) = |{(x, y) ∈ TR|y = clτx
e (x)}|/|TR|.

4 Quantum Logic Decision Tree

Our expression e has so far been a disjunction of active minterms. The last step
is to generate a quantum-logic inspired decision tree from e. The QLDT is just a
compact presentation of the CQQL expression e based on active minterms. The
basic idea is to regard the derived minterm weights as training data and to use
a traditional DT algorithm for constructing the QLDT. The training data for
the decision tree construction are just the bit values 0 and 1 from the binary
code bitcode(i − 1) = x1 . . . xn of all minterm identifiers i: The bit values of the
bitcode are regarded as attribute values and the minterm weight as target for
the DT algorithm:

TR′ = {(bitcode(i − 1), [θi]) | i = 1, . . . , 2n}.

QLDT: A Decision Tree Based on Quantum Logic 305

For example, following minterm weights for n = 3 and e = (x1 ∧ x2 ∧ x3)
.∨

(¬x1 ∧ x2 ∧ x3) = x2 ∧ x3 with evaluation [e]x = x2 ∗ x3 produce the QLDT
shown on the right hand side. The leaves correspond to the minterm weights:

i x1 x2 x3 [θ]
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1

But what about the evaluation of a QLDT? The generated decision tree looks
like a traditional decision tree. However, its evaluation differs. The evaluation
result of a QLDT should be the same as the evaluation result of e in disjunctive
normal form:

[e]x =

⎡
⎣ .∨

i:[θi]=1

n∧
j=1

cij

⎤
⎦

x

=
∑

i:[θi]=1

n∏
j=1

[cij]x. (5)

Please note, that the disjunction of minterms is always exclusive and, that is
why, its evaluation leads to a simple sum. The same holds for a split node of a
QLDT. A QLDT assigns implicitly to every leaf a set of minterms sharing the
same path conditions (split attributes). Let LA refers to the set of all active
leaves where every leaf is represented by the identifier i of one of its assigned
minterms and let pathi be the path from the root to leaf i. Then the evaluation
of a QLDT is given by:

[qldt(e)]x =
∑

i∈LA

∏
j∈pathi

[cij]x = [e]x =
∑

i:[θi]=1

n∏
j=1

[cij]x.

Actually, the evaluation of a QLDT takes into account only active leaves. The
inactive leaves correspond to ¬e and are connected to the active leaves by [e]x +
[¬e]x = 1. Therefore, the inactive leaves are removed from the QLDT without
any loss of semantics and as result the QLDT becomes more compact.

So, we end up with the QLDT classifier:

clτe (x) = thτ ([qldt(e)]x) =
{

1 if
∑

i∈LA

∏
j∈pathi

[cij]x > τ

0 otherwise.
.

5 Experiment

Next, we shall apply our approach to an example scenario and compare the
resulting traditional decision tree with the generated quantum-logic inspired
decision tree.

306 I. Schmitt

recency 0.496
gini = 0.5

samples = 300
value = [149, 151]
class = Transfusion

frequency 0.519
gini = 0.426

samples = 172
value = [53, 119]

class = Transfusion

True

gini = 0.375
samples = 128
value = [96, 32]

class = NoTransfusion

False

time 0.335
gini = 0.498
samples = 60
value = [32, 28]

class = NoTransfusion

time 0.695
gini = 0.305

samples = 112
value = [21, 91]

class = Transfusion

gini = 0.497
samples = 48
value = [22, 26]

class = Transfusion

gini = 0.278
samples = 12
value = [10, 2]

class = NoTransfusion

gini = 0.182
samples = 69
value = [7, 62]

class = Transfusion

frequency 0.877
gini = 0.439
samples = 43
value = [14, 29]

class = Transfusion

gini = 0.465
samples = 19
value = [12, 7]

class = NoTransfusion

gini = 0.153
samples = 24
value = [2, 22]

class = Transfusion

time

recency

frequency

monetary

t

r

f

m

transfusion

Fig. 2. Traditional decision tree for blood transfusion with 6 leaves (left) and quantum-
logic inspired decision trees with best accuracy (right)

Our experimental dataset is the blood transfusion service center dataset.2 A
classifier needs to be found which predicts whether a person donates blood or
not. To make that decision for every person we know recency (months since
last donation), frequency (total number of donation), monetary (total blood
donated in c.c.), and time (months since first donation). In the balanced case
178 people donated blood and 178 did not. 300 of the 356 people belong to the
training set and the remaining ones to the test set. For further processing the
attribute values of the four attributes are mapped to the unit cube [0, 1]4 using
a normalized rank position mapping. For that mapping all values of an attribute
are sorted. Then, every value is mapped to its rank position divided by the total
number of values. For tied values the rank maximum is taken.

We obtain a traditional decision tree with highest accuracy of 64%, 6 leaves,
and 5 levels, see Fig. 2 (left). The QLDT, see Fig. 2 (right), with its highest
accuracy of 70% is achieved when we choose θρ = 0.71 and τ = 0.045. That
QLDT corresponds to the expression

e := ¬t ∧ ¬r ∧ f ∧ m

and its evaluation is
[e] = [¬t] · [¬r] · [f] · [m].

2 https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php

QLDT: A Decision Tree Based on Quantum Logic 307

Table 1. Differences between Boolean-logic-based decision tree and quantum-logic
inspired decision tree

Criterion DT QLDT

Logic Boolean logic Quantum logic

Thresholds On node level On tree level

No. of classes Many-class-classifier One-class-classifier

No. of node children ≥2 ≤2

Type of attributes Categorical, ordinal, metric Ordinal, metric

Class decision Based on one single leaf Based on all leaves

Complexity At most exponential Exponential

6 Conclusion

In our paper we suggest a decision tree classifier based on quantum logic. In
contrast to Boolean logic, quantum logic can directly deal with continuous data,
which is beneficial for many classification scenarios. Other than fuzzy logic, our
quantum logic approach obeys the rules of the Boolean algebra. Thus, Boolean
expressions can be transformed accordingly and a check of hypotheses against a
Boolean expression becomes feasible.

In Table 1 we compare Boolean-logic-based decision trees with our quantum-
logic inspired decision tree with respect to several criteria.

In a Boolean-logic-based decision tree every split decision at node level rep-
resents Boolean conditions and can be regarded as axis-parallel decision lines
within the input space. For a QLDT the restriction on axis-parallel lines does
not hold. A QLDT is appropriate in scenarios where the classification decision
relies on sums and products rather than on a combination of Boolean values.
The input for the threshold-based class decision is the evaluation result of the
QLDT.

A QLDT represents syntactically a Boolean expression for one class. Thus, a
QLDT classifier is a one-class classifier. Many-class classification problems can
be transformed to multiple one-class classifier decisions.

Every inner QLDT node corresponds to exactly one logical expression with
two outcomes. Since we drop 0-class leaves, some inner nodes have only one
child. In contrast, a split rule in a traditional decision tree leads to more than
or exactly two children.

For our QLDT we assume attribute values from the unit interval. The nor-
malized rank position mapping maps ordinal and metric attribute values to the
unit interval. But what about categorical attributes? We did not discuss this
aspect but it can be easily solved by introducing an artificial attribute for each
category.

As discussed above, the class decision in a traditional decision tree depends
on exactly one leaf in contrast to the sum of all leave scores in a QLDT.

308 I. Schmitt

The complexity of a Boolean-logic-based decision tree for a number n of
attributes corresponds to the number of leaves. In the worst case, that number
is exponential. However, in many real-case-scenarios the number of leaves is much
lower. In contrast, the generation of the QLDT requires to compute the weight
for all 2n minterms. Thus, too many attributes cause a complexity problem more
for the QLDT rather than for a Boolean-logic-based decision tree.

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-14142-8

2. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

3. Freitas, A.A.: Comprehensible classification models: a position paper. ACM
SIGKDD Explor. Newsl. 15(1), 1–10 (2014)

4. Hüllermeier, E., Schmitt, I.: Non-additive utility functions: Choquet integral versus
weighted DNF formulas. In: Gaul, W., Geyer-Schulz, A., Baba, Y., Okada, A. (eds.)
German-Japanese Interchange of Data Analysis Results. SCDAKO, pp. 115–123.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01264-3 10

5. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Trans. Syst. Man
Cybern. Part B (Cybernetics) 28(1), 1–14 (1998)

6. Jiménez, F., Mart́ınez, C., Marzano, E., Palma, J.T., Sánchez, G., Sciavicco, G.:
Multiobjective evolutionary feature selection for fuzzy classification. IEEE Trans.
Fuzzy Syst. 27(5), 1085–1099 (2019)

7. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

8. Mittelstaedt, P.: Quantum logic. In: PSA 1974, pp. 501–514. Springer, Cham
(1976). https://doi.org/10.1007/978-94-010-1449-6 28

9. Mittelstaedt, P.: Quantum Logic. D. Reidel Publishing Company, Dordrecht (1978)
10. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets Syst.

138(2), 221–254 (2003)
11. Schmitt, I.: Quantum query processing: unifying database querying and informa-

tion retrieval. Citeseer (2006)
12. Schmitt, I.: QQL: a DB&IR query language. VLDB J. 17(1), 39–56 (2008)
13. Schmitt, I.: Incorporating weights into a quantum-logic-based query language. In:

Aerts, D., Khrennikov, A., Melucci, M., Toni, B. (eds.) Quantum-Like Models for
Information Retrieval and Decision-Making. SSTEAMH, pp. 129–143. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25913-6 7

14. Schmitt, I., Baier, D.: Logic based conjoint analysis using the commuting quan-
tum query language. In: Algorithms from and for Nature and Life, pp. 481–489.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00035-0 49

15. Strumbelj, E., Kononenko, I.: An efficient explanation of individual classifications
using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)

https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8
http://arxiv.org/abs/1702.08608
https://doi.org/10.1007/978-3-319-01264-3_10
https://doi.org/10.1007/978-94-010-1449-6_28
https://doi.org/10.1007/978-3-030-25913-6_7
https://doi.org/10.1007/978-3-319-00035-0_49

	QLDT: A Decision Tree Based on Quantum Logic
	1 Introduction and Related Work
	2 Commuting Quantum Query Language (CQQL)
	3 Extraction of Minterms and Finding the Output Threshold
	4 Quantum Logic Decision Tree
	5 Experiment
	6 Conclusion
	References

