
Blink: Lightweight Sample Runs for Cost
Optimization of Big Data Applications

Hani Al-Sayeh1(B) , Muhammad Attahir Jibril1 , Bunjamin Memishi2 ,
and Kai-Uwe Sattler1

1 TU Ilmenau, Ilmenau, Germany
{hani-bassam.al-sayeh,muhammad-attahir.jibril,kus}@tu-ilmenau.de

2 Riinvest College, Pristina, Kosovo
bunjamin.memishi@riinvest.net

Abstract. Distributed in-memory data processing engines accelerate
iterative applications by caching datasets in memory rather than recom-
puting them in each iteration. Selecting a suitable cluster size for caching
these datasets plays an essential role in achieving optimal performance.
We present Blink, an autonomous sampling-based framework, which
predicts sizes of cached datasets and selects optimal cluster size without
relying on historical runs. We evaluate Blink on iterative, real-world,
machine learning applications. With an average sample runs cost of 4.6%
compared to the cost of optimal runs, Blink selects the optimal cluster
size, saving up to 47.4% of execution cost compared to average cost.

1 Introduction

Modern distributed systems such as Spark [17] enhance the performance of iter-
ative applications by caching crucial datasets in memory instead of recomputing
or fetching them from slower storage (e.g., HDFS) in each iteration [16]. To
measure the impact of repetitive re-computations on system performance, we
run Support Vector Machine application (svm in Spark MLLib 2.4.0 [11]) on an
input dataset of 59.5GB using different cluster sizes (1–12 machines) on our pri-
vate cluster (cf. Sect. 6). We measure the execution time and the cost (#machines
× time) of each run. As depicted in Fig. 1, we distinguish three areas:

– Area A : Increasing the cluster size decreases both execution time and cost.
– Area B : Increasing the cluster size decreases time but increases cost.
– Area C : The junction of A&B , where the highest cost efficiency is achieved.

In area A, the total memory capacity of the cluster machines is not enough
for caching all partitions of a certain crucial dataset in svm. As a result, many
of its partitions do not fit in memory and are re-computed in all iterations,
which is very expensive. A deeper dive into a single iteration shows that: 1. The
percentage of cached data partitions in area A for 1 to 7 machines are 17%, 35%,
52%, 70%, 87%, 92% and 100% respectively. 2. On average, a task that reads
an already cached partition runs 97× shorter than a task that recomputes a
partition of equal size. In area B, increasing the cluster size reduces the execution
c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, CCIS 1652, pp. 144–154, 2022.
https://doi.org/10.1007/978-3-031-15743-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15743-1_14&domain=pdf
http://orcid.org/0000-0002-4381-6865
http://orcid.org/0000-0003-2138-881X
http://orcid.org/0000-0003-3557-3426
http://orcid.org/0000-0003-1608-7721
https://doi.org/10.1007/978-3-031-15743-1_14


Blink: Lightweight Sample Runs for Cost Optimization 145

time of the parallel part of the application but does not influence the serial
part [6]. The data transfer overhead between machines also increases. These
factors decrease cost efficiency.

Fig. 1. Selection of cluster size (svm)

Currently, optimal resource
provisioning based on accurate
prediction of the size of cached
datasets remains an open chal-
lenge. In summary, we make the
following contributions:

– We introduce an efficient app-
roach for minimizing the cost
of sample runs.

– We present Blink, a light-
weight sampling-based frame-
work that predicts the size
of cached datasets and selects
an optimal cluster size (area C).

– We perform an extensive anal-
ysis of machine learning applications and stress their minimal sampling
requirements for an optimal cluster size selection.

We evaluate Blink on 8 real-world applications. Relying on tiny sample
datasets, Blink selects the optimal cluster size for all 8 actual runs, which
reduces execution cost to 52.6% compared to the average cost across all cluster
sizes with an average sample runs cost of 4.6%.

2 Related Work

Caching decision support tools help application developers to determine
which datasets to cache and when to purge them from memory [1,10]. However,
these tools do not consider the size of the datasets and the required cluster
configuration that guarantees eviction-free runs.

Cache eviction policies and approaches to auto-tuning of memory con-
figuration tackle cache limitation in a best-effort manner but with penalties
caused by cache eviction. This makes them suitable solutions if an inappropriate
cluster size is selected (area A in Fig. 1). MRD [12] and LRC [16] are DAG-aware
cache eviction policies in Spark that rank cached datasets based on their refer-
ence distance and reference count respectively. We apply both policies for the
same svm experiments (depicted in Fig. 1) and do not realize any performance
improvement. This is because only one dataset is cached in svm. MemTune [15]
is a memory manager that re-adjusts memory regions during application run.
RelM [9] introduces a safety factor to ensure error-free execution in resource-
constrained clusters.

Runtime Prediction Approaches. Ernest [14] is a sampling-based framework
that predicts the runtime of compute-intensive long-running Spark applications.



146 H. Al-Sayeh et al.

To reduce the overhead of sample runs, it decreases the number of iterations
during these sample runs to make their overhead tolerable. This is not always
practical because tuning an application parameter like the number of iterations
during sample runs requires end users to have knowledge of the application and
its parameters, which they might lack. Masha [4] is a sampling-based framework
for runtime prediction of big data applications. Both frameworks do not address
cache limitation issues.

Approaches for recommendation of cluster configuration rely on sample
(or historical) runs to predict (near-to-) optimal cluster configuration. CherryP-
ick [5] aims to be accurate enough to identify poor configurations and adap-
tive using a black-box approach, but without considering cache limitations. Jug-
gler [3] considers application parameters to recommend cluster configurations
with autonomous selection of datasets for caching. But, its offline-training over-
head is not tolerable and, thus, it is limited to recurring applications.

3 Background

Spark runs applications on multiple executors that perform various parallel oper-
ations on partitioned data called Resilient Distributed Dataset or RDD [17]. A
class of operations called transformations (e.g., filter, map) create new RDDs
from existing ones while another class called actions (e.g., count, collect) return
a value to the (driver) program after making computations on RDDs. An
application is the highest level of computation and consists of one or more
sequential jobs, each of which is triggered by an action. A job comprises of
a sequence of transformations, represented by a DAG, followed by a single
action. When a transformation is applied on an RDD, a new one is created.
The parent-child dependency between RDDs is represented in a logical plan,
by way of a lineage or DAG starting from an action up to either the root
RDDs that are cached or original data blocks from the distributed file system.

Fig. 2. Merging DAGs.

Fig. 3. Spark: Memory layout.

As different jobs may consist of many
transformations in common, we merge
all their DAGs to represent an appli-
cation in a single DAG of transforma-
tions, as illustrated with the Logistic
Regression application in Fig. 2. The
number of times a dataset is computed
is determined by the number of its
child branches in the resulting DAG.

As depicted in Fig. 3, Spark splits
memory into multiple regions. We
focus on the storage and the execution
regions, respectively used for caching
datasets and computation [18]. Both
regions share the same memory space
(i.e., the unified region M ) such that if the execution memory is not utilized, all
the available memory space can be used for caching, and vice versa. There is a



Blink: Lightweight Sample Runs for Cost Optimization 147

minimum storage space R below which cached data is not evicted. That is, in
each executor, at least R and at most M can be utilized to cache datasets.

4 Efficient Sample Runs

In this section, we explain how to minimize the cost of sample runs with empir-
ical evaluations. Specifically, we show that the sample run phase required for
predicting the size of the cached datasets is less challenging than that required
for execution time prediction. As previous studies tackle data sampling chal-
lenges [7,8], we do not address them in this work, similar to Ernest [14] and
Masha [4].

4.1 Size of Sample Runs

Few sample runs are sufficient to predict the size of the cached datasets.
For example, if we conduct two short-running experiments of the same
application using the same data and same cluster configuration, the sizes
of datasets do not vary. However, this is not the case regarding exe-
cution time. To validate this, we select svm, which caches one dataset,
to run 10 experiments on 738.1MB (data scale 1, 12 blocks), 10 exper-
iments on 1501.6MB (data scale 2, 24 blocks) and 10 experiments on
2.2GB (data scale 3, 36 blocks). We conduct all runs on a single machine.

Fig. 4. Short-running experiments.

As illustrated in Fig. 4, we see
that the size of the cached
dataset remains constant in
all runs of the same data
scale. Also, we notice a con-
siderable variance in execution
time between the runs of the
same data scale, which affects
the construction and training
of prediction models. To over-
come this problem, we either
run several experiments on the
same data scale and obtain the
statistical average (or median)
or increase the size of sample
datasets to make sample runs longer and, thus, the execution time variance rel-
atively lower. However, both solutions increase the cost of sample runs tremen-
dously, which explains why runtime prediction approaches are limited to long-
running applications.

To build size prediction models of the cached datasets, we carry out sample
runs on tiny datasets within the range of 0.1%–0.3% of the original data.



148 H. Al-Sayeh et al.

4.2 Parallelism

Distributed file systems (e.g., HDFS) store original data by fragmenting it into
equal chunks, namely blocks. The size of blocks is configurable (64 or 128 MB
by default). In order to decrease the data size during sample runs, we either (1)
reduce the size of each block (block-s), or (2) select few data blocks (block-n).
For example, if the block size is configured to be 64 MB, 1 TB of data is stored
in 16K blocks. Thus, 16 blocks out of them could be selected for a sample run
of 0.1% of the original data.

block-n is less costly than block-s because it requires selecting data blocks
from a distributed file system. block-s is more complicated and brings extra
overhead in preparing the sample data. Since we are not expecting memory
limitation during sample runs, increasing the parallelism increases the execution
time of each sample run (i.e., data shuffling and cleaning).

In order to validate this, we conduct two runs of svm with an input data
of 1.2GB on a single machine. The number of data blocks in the first run is
10 and it takes 41 s. In the second run, the number of data blocks is 1000 and
it takes 3.5min. In addition, during the first and second runs, the size of the
cached dataset is 728.9MB and 747.8MB, respectively. This shows that the size
of datasets is influenced by the parallelism level. Hence, in the case of block-
n, if we reduce the number of tasks during sample runs, then predicting the
size of the cached datasets might be affected. To tackle this problem, we keep
the number of tasks proportional to the data scale by fixing the block size. For
example, if the full-scale dataset consists of 16K blocks, then the sample runs
with 0.1%, 0.2% and 0.3% of the input data scale will contain 16, 32, and 48
tasks respectively.

For some applications, the size of the original data is relatively small (as we
will show in Sect. 6) and, thus, the number of its blocks is not enough to apply
block-n. In such cases, block-s is used in spite of its costs.

4.3 Cluster Configuration

We carry out all sample runs on a single machine to reduce the cost of the sample
runs. The serial part of a short-running experiment is relatively high compared
with the parallel part and, hence, adding more machines during a sample run
might not speed up the execution time. Rather, it leads to higher execution costs
because of the increased overhead of negotiating resources (e.g., by yarn) and
the increase in data transfer overhead with the addition of more machines. To
validate this, we run svm on 1.2GB input data using a single machine and also
using 12 machines. The execution cost on 12 machines is 13.9× higher than on a
single machine. The exception that makes carrying out sample runs on a single
machine too costly is when cached datasets do not fit in the memory of a single
machine. However, this is unlikely for sample runs with tiny datasets.



Blink: Lightweight Sample Runs for Cost Optimization 149

4.4 Number of Sample Runs

Our experiments with all applications in HiBench 7.0 show that the prediction
models for the size of the cached (and non-cached) datasets with respect to the
input data scale are linear. Therefore, two sample runs are sufficient to construct
a model. However, knowing that sample runs are lightweight, more sample runs
could be conducted to apply cross validation to choose a well-fitting linear model.

5 Blink

We present Blink, a sampling-based framework that performs optimal resource
provisioning for big data applications. As depicted in Fig. 5, the Sample runs
manager (Sect. 5.1) first carries out lightweight sample runs on 0.1%–0.3% data
samples of the original data. Based on these runs, the size predictor (Sect. 5.2)
and execution memory predictor (Sect. 5.3) train prediction models to predict
the size of cached datasets and the required amount of execution memory per
machine in the actual run respectively. Finally, based on these models and the
allocated memory in each machine, the cluster size selector (Sect. 5.4) selects
the optimal cluster size that guarantees eviction-free runs.

Fig. 5. Overview of Blink.

5.1 Sample Runs Manager

The sample runs manager carries out three sample runs on tiny data samples
(0.1%–0.3% of the original data) on a single machine and monitors the sample
runs to make quick decisions regarding the following atypical cases:

– If there is no cached dataset in the application, the sample runs manager
selects a single machine (the longest execution time but the cheapest cost).

– If there are cached datasets and eviction occurs, which is unusual with tiny
datasets, it carries out new sample runs with smaller sampling scales.

While conducting sample runs, SparkListener collects runtime metrics and stores
them as log files in the distributed file system (e.g., HDFS). The sample runs
manager analyzes the logs and collects the size of each cached dataset.



150 H. Al-Sayeh et al.

5.2 Data Size Predictor

After carrying out sample runs, the data size predictor trains the following model
to predict the size of cached datasets in the actual runs:

dsize = θ0 + θ1 × datascale (1)

Our experiments show that the sizes of all cached datasets fit into this model. For
each cached dataset, the data size predictor takes the scale of the data sample
as a feature and its size as a label. Thus, the scales in sample runs are 1, 2, and
3; while in the actual run, the scale is 1000. We use the curve_fit solver with
enforced positive bounds to train the models while avoiding negative coefficients,
and Root Mean Square Error (RMSE) to evaluate the models.

5.3 Execution Memory Predictor

The minimum and the maximum amount of memory for caching in each machine
are known (M and R in Fig. 3) and, in turn, the minimum and the maximum
number of machines can be determined using the following equations:

Machinesmin = �
∑CachedDs dsize

M
�

Machinesmax = �
∑CachedDs dsize

R
�

where
∑CachedDs dsize is the total size of cached datasets, R is the memory

region used for caching and M is the unified memory region for both caching
and execution (cf. Fig. 3). Selecting less than Machinesmin leads to cache evic-
tion because utilizing the whole unified memory space (i.e., M) in each machine
for caching will not be enough to cache all datasets. In contrast, allocating more
than Machinesmax gives no caching benefits since utilizing the storage mem-
ory (i.e., R) in each machine will be enough for caching all datasets. In other
words, Machinesmax is required to cache datasets without eviction when the
entire (M−R) memory region is utilized for execution. If M is not utilized at
all, then the entire region can be used for caching and, hence, Machinesmin is
required to cache datasets without evictions. Considering that the gap between
Machinesmin and Machinesmax may be quite wide and the execution memory
utilization differs from one application to another, there is a need for a precise
prediction of the amount of memory required for execution. Similar to the data
size predictor (cf. Sect. 5.2), the execution memory predictor analyzes the execu-
tion memory usage in sample runs and trains linear models to predict the total
amount of execution memory required for the actual runs. Our experiments show
that the relationship between the data sample scale and the amount of execution
memory fits into the following model, although the execution memory predictor
evaluates many other models:

Memoryexecution = θ2 + θ3 × datascale



Blink: Lightweight Sample Runs for Cost Optimization 151

5.4 Cluster Size Selector

Based on M and R in Fig. 3 (i.e., machine/instance specification), the cluster size
selector calculates the required memory for execution per machine as follows:

MachineMemoryexecution = min(M − R,
Memoryexecution

Machines
)

Then, it selects the minimal number of machines that fulfills the condition below:
∑CachedDs dsize

Machines
< (M − MachineMemoryexecution) × Machines

In multi-tenant environments, the recommended cluster configuration is not
affected by concurrent application runs hosted on the same machines because
they are deployed in isolated virtual machines, and cluster managers (e.g.,
YARN [13]) do not offer an occupied memory region (i.e., M) to newly sub-
mitted applications.

Table 1. Evaluated Spark MLlib applications. Recommended cluster size is shown in
bold. Shadowed cells refer to cluster sizes that do not cause cache evictions. Time unit
is represented in minutes. Cost unit is represented in machine minutes.

#Machines
als bay gbt km lr pca rfc svm

Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost
Sample runs 1 5.8 5.8 1.4 1.4 1.4 1.4 1.2 1.2 1.0 1.0 7.7 7.7 3.9 3.9 1.2 1.2
Approach block-s block-n block-s block-s block-n block-s block-n block-n

Scale 100% (size) 5.6 GB 17.6 GB 30.6 MB 21.5 GB 22.4 GB 1.5 GB 29.8 GB 59.6 GB
Scale 100% (#Blocks) 100 2K 100 200 2K 50 2K 2K
Actual runs 1 27.2 27.2 63.3 63.3 9.8 9.8 137.2 137.2 337 337 77.4 77.4 361.6 361.6 804.8 804.8
(100% data scale) 2 14.5 29.0 29.1 58.2 6.3 12.6 45.4 90.9 133.5 266.9 41.9 83.9 125.4 250.7 325.6 651.2

3 9.6 28.8 22.2 66.5 5.2 15.6 18.2 54.5 47.6 142.7 30.7 92 91.2 273.6 172.3 516.9
4 8.7 34.9 14.3 57.1 8.7 34.9 3.5 13.9 17.3 69.3 28.8 115.3 60.3 241 88.5 354.1
5 8.3 41.4 11 54.8 6.9 34.5 3.2 15.8 8.6 42.9 26.7 133.3 52.3 261.3 40.7 203.3
6 7.5 45.2 10.1 60.8 5 29.9 2.7 16.5 7.7 46 25.2 151.2 51.4 308.4 15.7 94.4
7 4.5 31.4 4.1 28.5 7.7 53.9 2.1 14.8 7.2 50.6 24.8 173.3 46.5 325.4 9.6 67.2
8 4.1 33.1 3.8 30.4 4 32.2 2.3 18.8 6.9 55.6 22.4 179.5 47.2 377.8 8.6 68.9
9 3.9 35.2 3.7 33.2 4.7 42 2.1 18.9 6.4 57.6 20.9 187.9 41.2 370.5 8.4 75.2
10 3.6 36.3 3.5 35.3 6.2 62 1.9 19.3 6.3 63 19.5 194.6 39.8 397.5 8.3 83.5
11 3.6 39.6 3.5 38.3 5.5 60.6 1.9 21.4 5.9 65.2 18.6 204.4 40.2 442.3 8.4 92.5
12 3.2 38.9 3.4 41 6.1 72.9 1.9 23.2 5.5 66.2 18.3 219.1 36.7 440.6 7.7 92.9
Avg 8.2 35.1 14.3 47.3 6.3 38.4 18.5 37.1 49.2 105.2 29.6 151 82.8 337.6 124.9 258.7

6 Evaluation

For evaluation, we use 8 applications from Spark MLlib 2.4.0: Alternating Least
Squares (als), Bayesian Classification (bay), Gradient Boosted Trees (gbt), K-
means clustering (km), Logistic Regression (lr), Principal Components Analysis
(pca), Random Forest Classifier (rfc), and Support Vector Machine (svm).

Sample Runs. For conducting sample runs and measuring the robustness of
the extracted models for re-usability on clusters with different machine types,
we use a single node – Intel Core i3-2370M CPU running at 4x 2.40GHz, 3.8
GB DDR3 RAM and 388 GB disk. For each application, we carried out 3 runs
on sample data size in the range of 0.1%–0.3% of the complete input data scale.



152 H. Al-Sayeh et al.

Actual Runs. We made all actual runs on a private 12-node cluster equipped
with Intel Core i5 CPU running at 4x 2.90GHz, 16 GB DDR3 RAM, 1 TB disk,
and 1 GBit/s LAN. All nodes used in the experiments run Hadoop MapReduce
2.7, Spark 2.4.0, Java 8u102 and Apache yarn on top of HDFS. In our extended
evaluation [2], we show that the models extracted from the sample runs are
reusable for larger data scales (up to 18 × 104%) and are useful to determine
the bounds on resource-constrained clusters (i.e., the maximum data scale of an
application that a cluster can run without eviction).

6.1 Selected Cluster Size

As mentioned in Sect. 1, we consider an optimal cluster size as the minimum num-
ber of machines that fit all cached datasets in memory without cache eviction.
The Shadowed cells in Table 1 show the cluster sizes where no eviction occur,
while the bold numbers indicate the cluster sizes selected by Blink for each
application. Table 1 shows that for all applications, Blink selects the optimal
cluster size (see the first shadowed cell of each application actual run in bold).

Fig. 6. Blink cost optimization.

To evaluate the efficiency
of Blink, we compare
the sum of sample runs
cost and actual run cost
for the cluster size selected
by Blink to the average
and worst costs of actual
runs. Figure 6 shows that
compared to the aver-
age and the worst costs,
Blink reduces the cost
to 52.6% and 25.1%, respectively. In some cases, the worst cluster size (that
leads to the highest cost) is a single machine due to lots of recomputations
(svm) and in other cases, it is the maximum cluster size because resources are
wasted during data shuffling and processing of serial parts (rfc).

6.2 Overhead of Sample Runs

Fig. 7. Sample runs cost of Blink and Ernest.

We compare the cost of
sample runs with the cost
of the corresponding actual
run on optimal cluster con-
figuration. Figure 7 shows
that on average, sample
runs cost 8.1% compared
with the cost of the actual
run on optimal cluster size.
At worst, the overhead is
21.3% (als) while at best, it



Blink: Lightweight Sample Runs for Cost Optimization 153

is 1.6% (rfc). Taking each sampling approach separately, we see that the aver-
age cost of sample runs of block-n is 2.7%, with a worst case of 5.1% (bay)
and a best case of 1.6% (rfc). For block-s, the average cost of sample runs
is 13.3%, with a worst case of 21.3% (als) and a best case of 8.6% (km). Alto-
gether, block-s costs about 4.9× more than block-n. Nonetheless, the cost of
block-s is still tolerable because we are comparing its cost with the costs of opti-
mal actual runs. Note that all sample runs are carried out without changing any
application parameter (e.g., number of iterations). Taking km as a short-running
application (3.5min on the optimal cluster size; cf. Table 1), sample runs cost
8.6% of the cost of the actual run on the optimal cluster size. Hence, Blink is
also effective for short-running applications.

Even though Ernest (cf. Sect. 2) predicts application runtime rather than
cluster size, we compare the cost of its sample runs with the cost of those carried
out by the sample runs manager (cf. Sect. 5.1). We carry out 7 sample runs, as
recommended by Ernest’s optimal experiment design, on 1–2 machines with
sample datasets (1% –10% of the original data). The sample runs of Ernest cost
16.4× more than those of Blink (as depicted in Fig. 7).

7 Conclusion

Blink is an autonomous sampling-based framework that selects an optimal clus-
ter size with the highest cost efficiency for running big data applications. The
evaluation of Blink shows very good results in terms of selecting an optimal
cluster size with high prediction accuracy.

Acknowledgement. This research was partially funded by the Thuringian Ministry
for Economy, Science and Digital Society under the project thurAI and by the Carl-
Zeiss-Stiftung under the project MemWerk.

References

1. Al-Sayeh, H., Jibril, M.A., Bin Saeed, M.W., Sattler, K.U.: SparkCAD: caching
anomalies detector for spark applications. In: VLDB 2022 (2022)

2. Al-Sayeh, H., Jibril, M.A., Memishi, B., Sattler, K.U.: Blink: lightweight sample
runs for cost optimization of big data applications. In: CoRR (2022). https://arxiv.
org/abs/2207.02290

3. Al-Sayeh, H., Memishi, B., Jibril, M.A., Paradies, M., Sattler, K.U.: Juggler:
autonomous cost optimization and performance prediction of big data applications.
In: ACM SIGMOD 2022 (2022)

4. Al-Sayeh, H., Memishi, B., Paradies, M., Sattler, K.U.: Masha: sampling-based
performance prediction of big data applications in resource-constrained clusters.
In: VLDB DISPA 2020 (2020)

5. Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.: Cher-
ryPick: adaptively unearthing the best cloud configurations for big data analytics.
In: USENIX NSDI 2017 (2017)

https://arxiv.org/abs/2207.02290
https://arxiv.org/abs/2207.02290


154 H. Al-Sayeh et al.

6. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: AFIPS 1967 (Spring), Spring Joint Computer Confer-
ence (1967)

7. Chakaravarthy, V.T., Pandit, V., Sabharwal, Y.: Analysis of sampling techniques
for association rule mining. In: ICDT 2009 (2009)

8. Hamidi, H., Mousavi, R.: Analysis and evaluation of a framework for sampling
database in recommenders. J. Glob. Inf. Manag. 26, 41–57 (2018)

9. Kunjir, M., Babu, S.: Black or white? How to develop an AutoTuner for memory-
based analytics. In: ACM SIGMOD 2020 (2020)

10. Li, H., et al.: Detecting cache-related bugs in spark applications. In: ACM SIG-
SOFT 2020 (2020)

11. Meng, X., et al.: MLlib: machine learning in apache spark. J. Mach. Learn. Res.
17, 1235–1241 (2016)

12. Perez, T.B.G., Zhou, X., Cheng, D.: Reference-distance eviction and prefetching
for cache management in spark. In: ACM ICPP 2018 (2018)

13. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator.
In: ACM SoCC 2013 (2013)

14. Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient
performance prediction for large-scale advanced analytics. In: USENIX NSDI 2016
(2016)

15. Xu, L., Li, M., Zhang, L., Butt, A.R., Wang, Y., Hu, Z.Z.: MEMTUNE: dynamic
memory management for in-memory data analytic platforms. In: IEEE IPDPS
2016 (2016)

16. Yu, Y., Wang, W., Zhang, J., Letaief, K.B.: LRC: dependency-aware cache man-
agement for data analytics clusters. In: IEEE INFOCOM 2017 (2017)

17. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: USENIX NSDI 2012 (2012)

18. Zhu, Z., Shen, Q., Yang, Y., Wu, Z.: MCS: memory constraint strategy for unified
memory manager in spark. In: IEEE ICPADS 2017 (2017)


	Blink: Lightweight Sample Runs for Cost Optimization of Big Data Applications
	1 Introduction
	2 Related Work
	3 Background
	4 Efficient Sample Runs
	4.1 Size of Sample Runs
	4.2 Parallelism
	4.3 Cluster Configuration
	4.4 Number of Sample Runs

	5 Blink
	5.1 Sample Runs Manager
	5.2 Data Size Predictor
	5.3 Execution Memory Predictor
	5.4 Cluster Size Selector

	6 Evaluation
	6.1 Selected Cluster Size
	6.2 Overhead of Sample Runs

	7 Conclusion
	References




