
A Data Quality Framework
for Graph-Based Virtual Data Integration

Systems

Yalei Li, Sergi Nadal(B) , and Oscar Romero

Universitat Politècnica de Catalunya (BarcelonaTech), Barcelona, Spain
yalei.li@estudiantat.upc.edu, {snadal,oromero}@essi.upc.edu

Abstract. Data Quality (DQ) plays a critical role in data integration.
Up to now, DQ has mostly been addressed from a single database per-
spective. Popular DQ frameworks rely on Integrity Constraints (IC) to
enforce valid application semantics, which lead to the Denial Constraint
(DC) formalism which models a broad range of ICs in real-world applica-
tions. Yet, current approaches are rather monolithic, considering a single
database and do not suit data integration scenarios. In this paper, we
address DQ for data integration systems. Specifically, we extend virtual
data integration systems to elicit DCs from disparate data sources to be
integrated, using DC-related state-of-the-art, and propagate them to the
integrated schema (global DCs). Then, we propose a method to man-
age global DCs and identify (i) minimal DCs and (ii) potential clashes
between them.

Keywords: Data Quality · Data integration · Denial constraints

1 Introduction

We are nowadays witnessing an unprecedented growth in the volume of data that
organizations are collecting as part of their decision making processes. With the
proliferation of large-scale repositories of heterogeneous data, such as data lakes
or open-data related initiatives, the ability to perform cross-analysis with high
data quality deems a competitive advantage. Indeed, data quality is essential for
the decision making process, where poor data quality can lead to wrong deci-
sion making, poor model performance, and operational instability [9,13,15]. Yet,
in such large-scale data repositories, there coexists data generated by different
providers who independently maintain them adhering to their own business rules
and needs. Hence, the presence of missing, erroneous, out-of-date, or conflicting
data is the norm rather than the exception [3,19].

Data integration systems, which have the main objective of providing an
integrated view over an evolving and heterogeneous set of data sources [8], have
mostly addressed data quality aspects from a warehousing perspective as part
of their Extract-Transform-Load (ETL) processes [11]. This is, quality rules and
c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, LNCS 13389, pp. 104–117, 2022.
https://doi.org/10.1007/978-3-031-15740-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15740-0_9&domain=pdf
http://orcid.org/0000-0002-8565-952X
http://orcid.org/0000-0001-6350-8328
https://doi.org/10.1007/978-3-031-15740-0_9

A DQ Framework for Graph-Based Virtual Data Integration Systems 105

constraints are enforced when materializing source data into the target schema.
Yet, in those scenarios that require fresh query results, which are implemented
via virtual integration systems that rewrite queries posed over the global schema
in terms of queries over the data sources leveraging declarative mappings, the
management of data quality remains a challenge [2,21]. Indeed, the kind of map-
pings adopted in this settings, represented as logical expressions, focus on spec-
ifying relations between source and target schemata but not how quality in the
target schema must be enforced [12].

The state of the art on data quality management is focused on the automatic
derivation of quality rules. This is, from a particular database instance, a set of
rules are inferred via rule mining techniques and then implemented to detect
errors (i.e., violations) [1]. To that end, the formalism of denial constraints has
been widely adopted, as it is expressive enough to represent most data dependen-
cies found in the literature such as key dependencies, functional dependencies,
or order dependencies [5]. Succinctly, denial constraints are first-order formulae
that express that a set of predicates cannot be all true for any combination of
tuples in a relation, which are expressed as relationships between pairs of tuples
of that relation. Despite the wide success of such model, which has given the rise
to systems for denial constraint discovery (e.g., FastDC [6], Hydra [4], DynFD
[20], or DCfinder [17]), or error detection and data repairing (e.g., Llunatic [7],
HoloClean [18], or HoloDetect [10]), to the best of our knowledge they have not
been studied in the context of virtual data integration systems.

In order to overcome the previously identified gap (i.e., manage data qual-
ity via denial constraints in a virtual data integration system), we present an
approach that leverages related work on denial constraint discovery in order to
synthesize rules from different data sources and manage them at the global (i.e.,
integration) level. To that end, our approach builds and extends a graph-based
data integration system, which enables expressive visual query paradigms to non-
expert users [16]. Precisely, we perform a bottom-up approach propagating the
rules discovered at the sources to the target graph. In terms of DQ management,
we take advantage of the techniques based on DC to express DQ rules. Two main
phases are identified. The first step in this process is to elicit DCs at the source
level and then propagate DCs to the target schema. Global rules consolidation
is enabled in the integration graph, where users can actively manage and verify
the rules even before propagating them to the integrated system.

Contributions. We summarize our contributions as follows:

– We define a data quality management framework that identifies quality rules
(as denial constraints) per source, model them into a graph-based represen-
tation, and incrementally propagate them into the integrated schema.

– We globally conciliate rules automatically, which facilitates the identification
of data cleaning tasks in the form of User Defined Functions.

– We extend a query rewriting algorithm to consider global DCs and enforce
them over the underlying data sources.

106 Y. Li et al.

Outline. The paper is structured as follows. Sections 2 and 3 discuss related
work and introduce background concepts. Section 4, presents our approach, while
Sect. 6 validates it. Section 7, concludes the paper and outlines future work.

2 Related Work

In this section, we review the state of the art in discovery and management of
DCs. As previously stated, our objective is to leverage and benefit of from such
methods on a graph-based data integration system. Thus, we narrow the scope
to these projects that are openly available and guarantee reproducibility.

FASTDC [6]. It defines the syntax and fundamental semantics for DCs, and
derives sound and complete inference rules. The implication testing algorithm
checks whether a DC is implied by a set of DCs linearly, which effectively reduces
the number of DCs in the output. The main DC discovery algorithm first builds
the predicate space by comparing every tuple pair in the instance set, which
contains all the possible predicates that can be formed into DCs. To overcome
overfitting, FASTDC introduces an approximation parameter in A-FASTDC to
allow flexibility in DCs satisfiability requirement. A DC stays valid if the per-
centage of violations on a instance over the total number of tuple pairs is below
a given approximation threshold.

HYDRA [4]. In the spirit of FASTDC, aims to address the quadratic complexity
in predicate evaluations and accelerate the DCs generation from the evidence
sets. HYDRA devises a sampling technique to quickly approximate the DCs by
processing only a small fraction of all tuples, providing adaptability to scale up
with the number of tuples. It proposes to first samples tuple pairs to build an
initial set of DCs for a dataset. The algorithm corrects the tuple pair samples
from its focused sampling process and determines the complete evidence set to
avoid the expensive comparison of all tuple pairs in FASTDC.

DCFINDER [17]. It follows FASTDC’s approach with improvement on build-
ing evidence sets. DCFINDER generates a predicate space from the input
database, and builds a data structure from the data records. It utilizes attribute
value indexing to avoid the expensive tuple pair comparison of FASTDC.
DCFINDER introduces predicate selectivity to drive efficiency even further to
avoid the unnecessarily large number of logical operations when generating evi-
dence sets. In an approach comparable to FASTDC, DCFINDER uses the DFS
procedure to discover all minimal DCs based on evidence set coverage of DC
candidates.

ADCMiner [14]. Focuses on mining approximate DCs, which discovers con-
straints in inconsistent databases and obtains more general and less contrived
constraints. ADCMiner defines a novel approximation function that does not
assume any specific definition of an approximate DC but takes the semantics as
input. The function consists of two properties called monotonicity and indiffer-
ence. ADCMiner generates all minimal ADCs if the approximation score is under

A DQ Framework for Graph-Based Virtual Data Integration Systems 107

a given threshold. Unlike AFASTDC, ADCMiner reduces the process of finding
ADCs by avoiding the post-process after detecting valid exact constraints. In
general, the algorithm involves four parts: a predicate space generator, a sam-
pler, an evidence set constructor, and an enumeration algorithm. Similar to
HYDRA, ADCMiner includes a sampling process to reduce the running time
significantly.

3 Preliminaries

In this section, we introduce the running example, which will be used to illustrate
our approach, and later, discuss the formal background, which is also exemplified.

3.1 Running Example

We consider a (simplified) data integration scenario on the finance domain,
related to organizations and their performance in the stock market. Table 1
presents exemplary data generated from three independent data sources. D1

(see Table 1a) provides information about companies and their standard indus-
trial classification of economic activities (SIC). D2 (see Table 1b) yields contex-
tual information related to the history about companies (i.e., founded year and
founder/s). Finally, D3 (see Table 1c) maintains information about the stock
prices per company and date. In all cases, we consider the stock symbol to be
the attribute used to join the different data sources.

Table 1. Three independent datasets providing information about companies, their
history and stock prices

(a) D1 – SIC

Symb Comp SIC
AAPL Apple 3571
PYPL Paypal 7389

V Visa Inc 7389
GOOGL Google 3571

.

(b) D2 – History

S N Y F
GOOGL Alphabet Inc. 2015 LP&SB

F Ford Motor C. 1903 HF
APPLE Apple 1976 SJ&SW&RW

.

(c) D3 – Stock

Code Date Price
AAPL 20220406 171.28
MMM 01/01/2001 100

V 20220406 220.86
.

As shown in the exemplary data, there exist data quality issues when con-
sidering each dataset individually. D2’s attribute names are coded and non-
descriptive, while D3 presents dates encoded in different formats and contains
erroneous data (i.e., MMM is not a valid stock symbol). Note, however, addi-
tional data quality problems arise when considering their integration. If, as
expected from the domain, we consider the stock symbol to be a company’s
primary key, then we can assume the existence of a functional dependency stat-
ing the symbol determines the company name. This, however, does not hold in
the running example, where the symbol GOOGL has associated different names
in different data sources. To manage such kind of situations (i.e., quality prob-
lems at both the local and the global level), the remainder of this section is
devoted to present the formal background that our approach will build upon.

108 Y. Li et al.

3.2 Formal Background

3.2.1 Graph-Based Virtual Data Integration
Here, we present the core components of our graph-based virtual data integration
system. We refer the reader to [16] for further details on how queries are processed
over such constructs.

Relations and Wrappers. A schema R is composed of a finite nonempty set of
relational symbols {r1, . . . , rm}, where each ri has a fixed arity ni. Let A be a set
of attribute names, then each ri ∈ R is associated to a tuple of attributes denoted
by att(ri). Let D be a set of values, a tuple t in ri is a function t : att(ri) → D.
For any relation ri, tuples(ri) denotes the set of all possible tuples for ri. We
define the set of wrappers W as those elements in R that contain a function
exec(w) that returns a set of tuples T ⊆ tuples(w). In practice, wrappers can be
implemented via any language as long as there exists a mapping function from
their data model to first normal form (1NF).

Global Graph. The global graph G = 〈VG , EG〉 is an unweighted, directed, con-
nected graph with no self loops. The vertex set VG is partitioned into two disjoint
sets C and F , respectively concepts and features. The set F itself is further parti-
tioned into two disjoint subsets Fid and F−

id , consisting of id features and non-id
features, respectively. Next, labels in EG contain the analyst’s domain L as well
as the set of semantic annotations A. Semantic annotations are system specific
labels and have a special treatment (e.g., hasFeature). Hence, we formalize the
edge set EG as the union of the sets (C × L × C) and (C × {hasFeature} × F),
the former assigning labels in L between concepts and the latter linking concepts
and their features.

Source Graph. A source graph S is analogous to G. However, here the vertex
set VS is composed of (W ∪ A), respectively the set of wrappers and attributes
from the previous definition (note that S is a graph-based representation of the
wrappers and their attributes). We use wrap(S) to denote the set of wrappers
in VS . Here, we introduce the semantic annotation hasAttribute, meant to
connect a wrapper with its attributes. Thus, in S the edge set ES is composed
of (W × {hasAttribute} × A).

Schema Mappings. A LAV schema mapping for a wrapper w is a pair M(w) =
〈F , γ〉, where F is an injective function F : att(w) → F ; and γ is a subgraph of
G. Consequently, we define the functions F(w) and γ(w) respectively denoting,
for w, the mapping from attributes to features F and the subgraph γ. Recall
that we encode mappings as part of the graph, precisely M contains F and ϕ.
Thus, to encode F we extend the set of semantic annotations A with the sameAs
label, linking attributes in S to features in G.

Example 1. Figure 1 depicts the complete integration graph based on the run-
ning example depicted in Sect. 3.1.

3.2.2 Data Quality Management
Denial Constraints. A predicate P is a comparison unit in the form v1φv2 or
v1φc where v1, v2 are values, respectively from the tuples tx, ty, φ is a comparison
operator and c is a constant.

A DQ Framework for Graph-Based Virtual Data Integration Systems 109

Fig. 1. An example integration graph. Doubly circled features denote IDs. The bottom
colored graphs represent mappings (i.e., subgraphs of G) for each wrapper dashed with
the same color. There, some features have been omitted for clarity.

Definition 1 (Denial constraint). A DC ϕ over a set of tuples T is an
expression of the form ∀tx, ty ∈ T,¬(P1 ∧ ... ∧ Pm) where ϕ is satisfied by T if
and only if for any pair tx, ty ∈ T , at lease one of the predicates P1, ..., Pm is
false.

r |= ϕ denotes a valid DC ϕ over a set of tuples T . This is, all predicates
cannot be true for any tuple pair, otherwise, there is a violation. ϕ.Pred denotes
the set of predicates in ϕ. Then, we say a DC ϕ1 is minimal if there does not
exist a ϕ2 such that r |= ϕ1, r |= ϕ2, and ϕ2.P red ⊂ ϕ1.P red.

Ranking DCs. In order to reduce the search space of valid DCs, a scoring
function is defined to rank them. The interestingness score of each DC is calcu-
lated based on its succinctness and support from data. Succinctness models how
overfitting a constraint rule is. This definition follows Occam’s razor principle,
where the competing hypothesis making fewer assumptions is preferred [6].

Definition 2 (Succinctness). The succinctness of a DC ϕ, denoted Succ(ϕ),
is the minimal possible length of a DC divided by its own length Len(ϕ). This is
defined as Succ(ϕ) = Min({Len(φ)|∀φ}) / Len(ϕ).

110 Y. Li et al.

Coverage determines the interestingness of a DC and measures its statistical
significance. By definition, a valid DC ϕ needs to violate at least one predicate
from the evidence. The higher number of satisfied predicates from the evidence,
the more support it gives to ϕ. A pair of tuples satisfying k predicates is a k-
evidence (kE). In the best case, the maximum k for a tuple pair in a DC ϕ is
equal to |ϕ.Pred| − 1, otherwise it violates ϕ. A weight parameter is introduced
to reflect a higher score to high values of k, from 0 to 1.

Definition 3 (Coverage). A k-evidence (kE) for ϕ is a tuple pair 〈tx, ty〉,
where k is the number of predicates in ϕ that are satisfied by 〈tx, ty〉 and k ≤
|ϕ.Pres| − 1. The weight for a kE for ϕ is w(k) = (k + 1) / |ϕ.Pres|. The
Coverage(ϕ) is then defined as:

Coverage(ϕ) =
∑|ϕ.Pred|−1

k=0 |kE| ∗ w(k)
∑|ϕ.Pred|−1

k=0 |kE|

4 Managing Data Quality in Virtual Data Integration

In this section, we present our proposed system structure and algorithms in
detail. As depicted in Fig. 2, rectangles state the solutions we propose in the
following sections. We first generate local DCs for each wrapper (i.e., source),
and then propagate the DCs to the global graph. There, we establish algorithms
to resolve the potential conflicts. Precisely, we address (a) minimal DCs main-
tenance to prune the redundancy of DCs at the global level; and (b) potential
conflicts between DCs derived from contradictory predicates.

Fig. 2. Overview of the proposed solution process.

4.1 DC Generation and Graph-Based Representation

For each wrapper, we first utilize DCFINDER to produce DC rules at the local
level and model them into its equivalent graph representation. For the sake of
simplicity and ease of presentation, we narrow the kind of DCs we deal with to

A DQ Framework for Graph-Based Virtual Data Integration Systems 111

those comparing attributes from the same wrapper, and thus no cross-attribute
predicates are involved. Hence, DCFINDER generates DCs from each wrapper
in the form of: {t.w.Ai φ t.w.Aj ∧ ... ∧ t.w.Ax φ t.w.Ay}. Additionally, due to
the fact that DCFINDER tends to generate a large amount of DCs, we keep the
interestingness score for each DC and filter top-k DCs based on the ranking.

Next, we describe how we model DC rules in an integration graph. To that
end, we extend the vertex set of the source graph S with the set D of DCs. A
DC d ∈ D can be connected to a wrapper w via the semantic annotation hasDC.
For each DC, we identify its predicates (via hasPred), which must be connected
to two attributes from the same wrapper via hasAtt1 and hasAtt2, and to an
operator via hasOp. Additionally, we encode as nodes of S the confidence values
of DCs, and link them via hasScore. Such model is likewise for G, however here
we consider the concept of global DC, which identifies a DC that must hold for
all tuples at the global level (i.e., those generated from any of the wrappers via
rewriting in the integration graph). To guarantee traceability and maintenance
of the framework, DCs at the source level are connected to DCs at the global
level via the sameAs semantic annotation.

Example 2. Consider a local DC expressed over w3 stating that the high price
of a stock quote should always be greater than the low one at any given date,
expressed as the predicate: {t.PL ≥ t.PH}. Figure 3, depicts the integration
graph modeling it at the source and global graphs.

Fig. 3. Integration graph with DCs. Some edges, such as sameAs edges from attributes
to features have been omitted for clarity.

112 Y. Li et al.

4.2 Global DC Management

Once all local DCs have been propagated to the global graph, we perform two
tasks to globally manage DCs: minimal DC maintenance and clash management.

Minimal DC Maintenance. It is essential to maintain minimal DCs in the
global graph in order to reduce the number of valid constraint rules (as any
minimal DC is still a valid DC if we add any other predicate). When a new DC
ϕ is propagated from a source to the global graph and it happens to subsume a
minimal global DC φ then, φ is considered redundant. Algorithm 1.1 updates the
set of global minimal DCs when a new DC is propagated to the global schema.
To that end, we initialize the set of DCs Σc that covers the same attributes c as
the new global DC ϕ does (Line 1–2). For all the minimal DCs in Σc, we check
whether the predicate sets composing the new global DC ϕ is a subset of any
existing minimal DCs φ. If ϕ.Pred ⊂ φ.Pred, we replace the φ with the new
minimal DC ϕ. Otherwise, the new global DC is recognized as a valid DC but
not labelled as minimal one (Line 3–9).

Algorithm 1.1: Minimal DC management.
Input : Set of all GDCs Σ, new GDC ϕ
Output: Updated set of all GDCs Σi

/* If the new GDC is a valid DC and minimal, replace the previous
GDC containing the same predicates. */

1 c ← ϕ.atts
2 Σc ← Σ.contain(c)

// check minimal GDCs from the impacted features.
3 for φ ∈ Σc.minimal do
4 if ϕ.Pred ⊂ φ.Pred then
5 Σc.minimal ← Σc.minimal − φ
6 Σc.minimal ← Σc.minimal + ϕ

7 else
8 Σ ← Σ + ϕ
9 end

10 end
11 return Σ

Example 3. Consider the following two DCs c1, c2 from the running example:
c1 : ∀tα, tβ ∈ w3,¬(tα.Code = tβ .Code ∧ tα.Date = tβ .Date ∧ tα.PL = tβ .PL),
and c2 : ∀tα, tβ ∈ w3,¬(tα.Code = tβ .Code ∧ tα.Date = tβ .Date). c1 indicates
that the combination of company Symbol, Date and Low Price can identify a
stock quote. c2 expresses the same constraint omitting the Low Price. Since
c2.P reds ⊂ c1.P reds, the minimal DC will be updated to c2.

DC Clash Management. Two global DCs clash if they refer to common fea-
tures and contradict each other. Clashes happen when there is no instance that
may satisfy both DCs. Given the definition of denial constraint, clashing DCs

A DQ Framework for Graph-Based Virtual Data Integration Systems 113

must be single-predicated over the same attribute and the logical conjunction of
their predicates must be empty on the set of available instances. Algorithm 1.2
details how we detect clashes between two global DCs, which considers clashing
and partially-clashing DCs.

Definition 4 (Clashing DCs). Given two DCs c1 c2, they are clashing in T,
if there does not exist any pair of tuples 〈tx, ty〉 ∈ T , that can satisfy both DCs
at the same time.

Multi-predicated DCs can only partially clash. The partial clash would hap-
pen when there are contradictory tuple pairs in the sets of all satisfying tuple
pairs from the two DCs due to conflictive predicates. Such predicates must hold
on the same attribute and their logical conjunction must be empty.

Definition 5 (Partially clashing DCs). Given two DCs ci, cj, they are par-
tially clashing in T, if the set of all tuple pairs satisfying ci contains the set of
tuple pairs violating cj.

Algorithm 1.2: DC clash management
Input : Two global DCs ϕi, ϕj

Output: Updated set of all GDCs Σi

1 ci ← ϕi.att, cj ← ϕj .att
// check if the two GDCs are bounded to the same features

2 if ci = cj then
// check if the predicate sets contains contradictory

pairs
3 for pi ∈ ϕi, pj ∈ ϕj do

/* if the pair is contradictory, then a clash is found;
T(pi) is the set of tuples satisfying predicate pi */

4 if T(pi) ∈ T (pj) or T(pj) ∈ T (pi) then
// compare interestingness scores and choose the

highest
5 if ϕi.score > ϕj .score then
6 Σi ← {ϕi}
7 else
8 if ϕj .score ≥ ϕi.score then
9 Σi ← {ϕj}

10 end
11 end
12 else
13 Σi ← {ϕi, ϕj}
14 end
15 end
16 else
17 Σi ← {ϕi, ϕj}
18 end
19 return Σi

114 Y. Li et al.

5 Global Query Rewriting with Global DCs

Local DCs propagated to the target and accepted as global DCs may not hold
in some sources. For example, consider Fig. 1. w1, w2 and w3 contain attributes
(e.g., symb, s, code) referring to the same global feature (symbol). Suppose a DC
ϕ from w1 on symb, which is then propagated to the global graph as DC φ on
symbol. When querying the global graph, we must guarantee DC φ is guaranteed
when performing query answering. This means we need to propagate φ to those
sources where it originally did not hold. Algorithm 1.3 presents the method
to construct DCs in the source graphs from a global DC. For a given global
DC ϕ expressed in the graph, we denote att(ϕ) and op(ϕ) to distinguish the
attributes and operators in ϕ. Following the rewriting algorithm in [16], we map
the DC-linked features feat(att(ϑ)) to the attributes in the wrappers. Given the
relations from the global DCs Eϑ, we form the DCs ΣS in the source graph (the
same attribute set can exist in various wrappers, where we form the DC for each
wrapper). dc(Aθ, Eϑ, op(ϑ)) denotes the function to form valid DCs given the
components.

Algorithm 1.3: Reconstruct a global DC
Input : Global DC ϑ
Output: Set of DCs in the source graph ΣS

// Get nodes and edges from the global DC
1 〈Vϑ, Eϑ〉 ← ϑ

// Map features to source attributes
2 Adc ← map(feat(attϑ))

// Get the wrappers for the attributes
3 W ← wrap(Adc)

// Reconstruct DCs in source graph for each wrapper based on the
edges and mapped attributes

4 for w ∈ W do
5 for adc ∈ Adc do
6 if adc ∈ att(w) then
7 AM∪ = adc

8 end
9 ΣS∪ = dc(AM , Edc, op(ϑ))

10 end
11 end
12 return ΣS

5.1 Query with DCs

In [16], a query rewriting algorithm is presented for query answering over the
global graph in terms of queries over the wrappers. Here, we extend the rewriting
algorithm to enable the enforcement of global DCs within a global query. When
rewriting a query Q, the method produces sets of rewritings for each concept in

A DQ Framework for Graph-Based Virtual Data Integration Systems 115

the query to further create a union of conjunctive queries. Then, here, we define
gdc(Q) to retrieve the global DCs covered by Q. ΣG denotes the resulted set of
gdc(ϕ). VΣ and EΣ denote the composition of Σ, which are vertices and edges
respectively. For each global DC in ΣG, we form the set of DCs for each wrap-
per and generate the result set of DCs without any duplication. Algorithm 1.4
demonstrates the full method to derive the local DCs from a global query.

Algorithm 1.4: Reconstruct global DCs from a global query to the source
graph.
Input : Global query Q
Output: Set of DCs in the source graph ΣS

// Get the set of all global DCs covered by Q
1 ΣG ← gdc(Q)
2 for ϑ ∈ ΣG do
3 ΣS∪ = ReconstructGDC(ϑ)
4 end
5 return ΣS

This way, when querying a global graph with DCs, we apply the constraint
rules to all wrappers containing the restricted attributes. For example, consider
an integration graph with feature Gender G and FirstName FN , below shows
the SQL-like query to retrieve all the records with the global DCs gdc(G) :
∀tα, tβ ∈ G,¬(tα.FN = tβ .FN ∧ tα.G �= tβ .G):

SELECT G.Gender, G.FirstName
FROM global_graph G WHERE gdc(G)

Consider the same integration graph with two wrappers w1 and w2 containing
the mapped attributes G and FN . The LAV mapping will apply the gdc(G) to
both wrappers and join the results, as shown below.

SELECT w1.GD, w1.FN FROM wrapper_1 w1
UNION
SELECT w2.GD, w2.FN FROM wrapper_2 w2
WHERE gdc(G) /* Apply the gdc as the filter for all wrappers */

6 Validation

We implemented a case study based on financial data. We modeled the SEC
Edgar database which releases the XBRL (eXtensible Business Reporting Lan-
guage) taxonomies every year, given the annual update of U.S. GAAP (Gen-
erally Accepted Accounting Principles). Thus, we build wrappers for Edgar
based on each release year (i.e., one wrapper per year). For each wrapper,
DCFINDER produces sets of DCs. Given the high frequency of the Edgar
schema version updating, the wrappers of Edgar share a large portion of

116 Y. Li et al.

attributes, which leads to the overlap of DCs for different wrappers. Follow-
ing the global DC management algorithms, we are able to conciliate the dif-
ferent versions of local DCs and prune the total number of global DCs to
a meaningful level. Following the minimal DC maintenance strategy, we are
able to avoid redundant DCs at the global level and derive meaningful local
DCs such as dc1 : ¬(t0.Assets ≤ t1.Assets ∧ t0.Equity ≥ t1.Equity) and
dc2 : ¬(t0.Liabilities ≥ t1.Liabilities ∧ t0.Assets ≤ t1.Assets). Note dc1
and dc2 are valid minimal DCs since there does not exist valid DCs that
can be derived from their subsets. Interestingly, the DC dc3 : ¬(t0.Assets ≤
t1.Assets ∧ t0.Equity ≥ t1.Equity ∧ t0.Liabilities ≥ t1.Liabilities) implies the
rule of financial reporting (assets equals to the sum of equities and liabilities).

We also apply the clash management algorithm to resolve contradicting DCs.
For instance, the DC dc4 : t0.P eriodEnding �= t1.P eriodEnding is generated
due to the standardized release date in 2012. Then, dc5 : ¬(t0.P eriodEnding =
t1.P eriodEnding) states the possible variance of release date for different com-
panies in 2016. This is due to the U.S. GAAP update to allow flexibility for
companies to define their own financial year. In this scenario, dc4 and dc5 are
partially clashing because of the complementary predicates of PeriodEnding
feature. We first try to resolve this conflict by the interestingness scores, but
both shown high statistical significance in each wrapper. Then, we applied each
DC to the global graph and detect the #violations from all sources. dc5 was
valid in all wrappers, while dc4 generated multiple violations. Thus, we rejected
dc4 and propagated dc5 to the global schema. Overall, with the global DC man-
agement algorithms, we were able to prune the total number of global DCs to
21, which we manually validated as valuable business rules.

7 Conclusions and Future Work

We addressed the DQ problem for virtual data integration systems. The novelty
of our approach lies on the consideration of a (potentially conflicting) set of data
sources, as opposite to the traditional methods on data quality management that
consider a single database instance. To that end, we first elicit DC rules from
the data sources and express them in the integration graph to then define DC
management methods that enable the global conciliation of DCs. We modified
our query rewriting algorithm to guarantee global DCs, while query answering, in
all data sources regardless of where they were generated. As future work, we aim
to fully automate the process of generating, propagating and enforcing DCs. This
requires the extension of traditional knowledge graph bootstrapping methods for
quality rules. Another interesting line of work is that of automatically generating
data flow operators such that they repair the data errors identified in some
sources (instead of fixing them at query time).

Acknowledgements. This work was partly supported by the DOGO4ML project,
funded by the Spanish Ministerio de Ciencia e Innovación under project PID2020-
117191RB-I00. Sergi Nadal is partly supported by the Spanish Ministerio de Cien-
cia e Innovación, as well as the European Union - NextGenerationEU, under project
FJC2020-045809-I.

A DQ Framework for Graph-Based Virtual Data Integration Systems 117

References

1. Abedjan, Z., et al.: Detecting data errors: where are we and what needs to be done?
Proc. VLDB Endow. 9(12), 993–1004 (2016)

2. Batini, C., Rula, A.: From data quality to big data quality: a data integration
scenario. In: SEBD, Volume 2994 of CEUR Workshop Proceedings, pp. 36–47.
CEUR-WS.org (2021)

3. Batini, C., Rula, A., Scannapieco, M., Viscusi, G.: From data quality to big data
quality. J. Database Manag. 26(1), 60–82 (2015)

4. Bleifuß, T., Kruse, S., Naumann, F.: Efficient denial constraint discovery with
hydra. Proc. VLDB Endow. 11(3), 311–323 (2017)

5. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1–2), 90–121 (2005)

6. Chu, X., Ilyas, I.F., Papotti, P.: Discovering denial constraints. Proc. VLDB
Endow. 6(13), 1498–1509 (2013)

7. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Cleaning data with Llunatic. VLDB
J. 29(4), 867–892 (2020). https://doi.org/10.1007/s00778-019-00586-5

8. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294
(2001). https://doi.org/10.1007/s007780100054

9. Haug, A., Zachariassen, F., Van Liempd, D.: The costs of poor data quality. J. Ind.
Eng. Manag. (JIEM) 4(2), 168–193 (2011)

10. Heidari, A., McGrath, J., Ilyas, I.F., Rekatsinas, T.: HoloDetect: few-shot learning
for error detection. In: SIGMOD Conference, pp. 829–846. ACM (2019)

11. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and quality in
data warehouses. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413,
pp. 93–113. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054221

12. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In:
PODS, pp. 61–75. ACM (2005)

13. Laranjeiro, N., Soydemir, S.N., Bernardino, J.: A survey on data quality: classifying
poor data. In: PRDC, pp. 179–188. IEEE Computer Society (2015)

14. Livshits, E., Heidari, A., Ilyas, I.F., Kimelfeld, B.: Approximate denial constraints.
Proc. VLDB Endow. 13(10), 1682–1695 (2020)

15. Loshin, D.: Evaluating the business impacts of poor data quality. Inf. Qual. J.
(2011)

16. Nadal, S., Abello, A., Romero, O., Vansummeren, S., Vassiliadis, P.: Graph-driven
federated data management. IEEE Trans. Knowl. Data Eng. (2021)

17. Pena, E.H.M., de Almeida, E.C., Naumann, F.: Discovery of approximate (and
exact) denial constraints. Proc. VLDB Endow. 13(3), 266–278 (2019)

18. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: HoloClean: holistic data repairs with
probabilistic inference. Proc. VLDB Endow. 10(11), 1190–1201 (2017)

19. Sadiq, S.W., Papotti, P.: Big data quality - whose problem is it? In: ICDE, pp.
1446–1447. IEEE Computer Society (2016)

20. Schirmer, P., et al.: DynFD: functional dependency discovery in dynamic datasets.
In: EDBT, pp. 253–264. OpenProceedings.org (2019)

21. Xiao, G., et al.: Ontology-based data access: a survey. In: IJCAI, pp. 5511–5519.
ijcai.org (2018)

https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1007/s007780100054
https://doi.org/10.1007/BFb0054221

	A Data Quality Framework for Graph-Based Virtual Data Integration Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Running Example
	3.2 Formal Background

	4 Managing Data Quality in Virtual Data Integration
	4.1 DC Generation and Graph-Based Representation
	4.2 Global DC Management

	5 Global Query Rewriting with Global DCs
	5.1 Query with DCs

	6 Validation
	7 Conclusions and Future Work
	References

