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Abstract. Temporal databases has been an active research area since
many decades, ranging from research work on query processing, most
dominantly on selection and join queries, to new directions in models
and semantics, such as for instance temporal probabilistic or streaming
data. At the same time more database vendors have been integrating
temporal features into their systems, most notably, the temporal features
of the SQL standard. In this paper, we summarize the latest research
developments as presented in 30 research papers over the last five years
in the context of temporal relational databases. Additionally, we also
describe the developments of industrial database systems and vendors.
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1 Introduction

Temporal databases is an active research area since several decades, with a
renewed interest in recent years. The interest in temporal databases is driven by
a variety of old and new applications that require to store and process tempo-
ral data, such as versioning of web documents [21], management of normative
texts [27], air traffic monitoring and patient care [5], video surveillance [44], sales
analysis [41], financial market analysis [25], and data warehousing and analyt-
ics [48], to name a few.

In temporal databases every fact is associated with one or more times-
tamps [7]. The timestamps are typically formed by either a time period or a
set of time points, though other forms of timestamps exist, such as temporal ele-
ments. While time points are easier from a conceptual viewpoint, time periods
are practically more relevant and allow for efficient implementations. The times-
tamps can represent different aspects of time, most importantly valid time [32]
that indicates the validity of a fact in the real world (e.g., a contract that exists
over a given period of time) and transaction time [31] that indicates the time
when a tuple is/was stored in the database (e.g., a contract that was stored over
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a given period of time and later on updated or deleted from the database). When
both aspects of time are present in a relation, we have a bitemporal relation [30].

Figure 1 shows two temporal relations Mgr and Pro. The timestamps are
half-open intervals and represent the tuples’ valid time. Relation Mgr records
managers of departments, where Dept is the name of the department, MName
is the name of the manager and T is the time period for which the person
manages the department. Relation Pro records projects running in departments,
where PName is the name of the project, PDept is the department which runs
the project, and T is the time period over which the project runs.

Fig. 1. A temporal database with two temporal relations.

The most widely used semantics for temporal databases is known as sequence
semantics, where temporal queries are defined using the concept of snapshot
reducibility [15,35,49]. Snapshot reducibility views a temporal database as a
sequence of snapshots and constrains a temporal operator applied to a temporal
relation to produce, at a time point t, the same result as the corresponding non-
temporal operator applied to the snapshot at t, i.e., all input tuples that are valid
at t. For instance, the result of a temporal count aggregation is defined “point-
wise” by the result of a non-temporal count aggregation. The aim of temporal
databases is to facilitate such kind of operations in queries that would otherwise
result in long, error prone, and inefficient SQL queries [47].

Figure 2 reports the result of two temporal queries on our example database
from Fig. 1. In particular, the result of the temporal join between the two rela-
tions to retrieve for each project the responsible manager is shown in Fig. 2a.
The temporal join is performed by joining two temporal relations according to
overlapping timestamps. That is, the result tuples are timestamped with the
intersection of the overlapping time periods. In the literature the step of finding
overlapping pairs of tuples is also referred to as overlap or interval join. This
result of the temporal join is consistent with the traditional (non-temporal) join
performed at each snapshot of the data. For instance, the snapshot at time point
04/2022 for relation Pro contains two projects: ExTAI from the AI department
and TauDB from the DB department. The snapshot for relation Mgr at the
same time point contains two managers: Tom for the AI department and Ann
for the DB department. Performing a non-temporal join on these two snapshots
gives the same result as the snapshot at time point 04/2022 for the relation in
Fig. 2a, i.e., ExTAI is managed by Tom and TauDB is managed by Ann.
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Fig. 2. Example operations temporal join and aggregation.

Figure 2b shows the result of a temporal aggregation that counts, for each
department, the number of projects stored in relation Pro. Also in this case
the result is defined according to the snapshots, and in the result we have one
project in the AI department from 04/2022 to 01/2023, because each snapshot
within this period contains exactly one project for department AI.

Past research on temporal databases has been focusing on various aspects
of managing and processing temporal data, most notably on data models, SQL-
based query languages, and efficient evaluation algorithms for query processing.
Due to the ubiquity of temporal data and the need for processing such data,
more recently also industry caught up with the topic, resulting in several exten-
sions of commercial and Open Source database systems (e.g., IBM DB2, Oracle,
Teradata, and PostgreSQL) with various degrees of support for temporal data.
Finally, the major extension in the SQL:2011 standard was the support for the
representation of temporal data [7,34].

In this paper, we review the newest developments in temporal relational
databases as presented in 30 research papers over the last five years, which
extend the state of the art as described in [7]. More specifically, Sect. 2 provides
an overview of the works on temporal query processing, mostly focusing on
selection and join queries. Section 3 provides the works that focus on new research
directions in the area of temporal data models and semantics, followed by an
overview on the newest developments in industrial systems in Sect. 4. Finally,
Sect. 5 concludes the paper and provides interesting topics for future work that
received scant attention in the last years.

2 Query Processing of Primitive Operators

In this section, we focus on recent advancements in query processing, mainly
from an algorithmic point of view.

2.1 Temporal Selection

A classic query involving intervals is the overlap query, which retrieves all tuples
whose timestamp overlaps with the query period. Christodoulou et al. [14] intro-
duce Hint, an index addressing this kind of problem. It partitions the timeline
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in a hierarchy of regular grids of geometrically increasing granularities. The addi-
tion of an auxiliary index of non-empty partitions allows to improve efficiency
on skewed data.

A richer type of selection query are range-duration queries, first introduced
by Behrend et al. [4]: matching intervals need to both overlap with the query
and have a duration within a bound that is also defined in the query. Traditional
index structures for intervals deal with only one aspect of intervals, and thus miss
the opportunity to leverage the selectivity of queries on both dimensions.

In [4], the authors introduce Period-Index� to explicitly support range-
duration queries. The index partitions the timeline in buckets that will contain
any interval they intersect. Then, intervals in a bucket are further partitioned in
levels based on their duration, with the minimum duration in each level increas-
ing geometrically. Finally, each level is further partitioned in the time domain
in order to efficiently retrieve intervals of a given duration based on their start
time. This approach is adaptive to the distribution of start times, but assumes
a Zipf-like distribution of durations.

Recently, an index deemed RD-Index supporting range-duration queries has
been introduced by Ceccarello et al. [13]. This index partitions tuples in a two-
dimensional grid according to their start time and their duration by taking
into account the distribution of both dimensions. This allows to adapt to the
distribution of the data, providing better performance than the state of the art.
Experiments show that this index performs better than the state of th e art
also on mixed workloads, where some queries constrain only the duration, some
constrain only the position on the timeline, and some constrain both.

2.2 Temporal Joins

Binary Joins. Temporal binary joins are joins between two relations where the
join predicate requires that the interval timestamps of the tuples in the two rela-
tions overlap. A specialized data structure, called the Overlap Interval Inverted
Index, is proposed by Luo et al. [37] to efficiently compute binary interval joins.
The index uses the end points of intervals as anchor points and approximates the
nesting structure of intervals by establishing relationships between these anchor
points. This information is then used to prune unnecessary comparisons.

Interval joins for in-memory data have also been studied by Bouros et al. [10].
The paper proposes optimizations of the forward scan algorithm [11] and devel-
ops a parallel version, where a thread is responsible of sweeping the timeline,
and then forward scans are executed in parallel.

Another adaptation of the forward scan algorithm, specifically tailored to
skewed data, is proposed by Hellings and Wu [28]. This algorithm enriches the
forward scan algorithm with an auxiliary data structure, termed stab-forests,
which allows to skip portions of the input relations that are provably not part
of the result.

An approach that does not necessarily involve the development of ad-hoc
index structures is presented by Dignös et al. [16]: overlap joins are rewritten as
the union of two range-joins. This rewriting enables the computation of overlap
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joins using an efficient sort-merge based algorithm for range-joins that is on par
with other state-of-the-art techniques and allows to efficiently implement overlap
joins on widely available DBMS systems using B+-trees. Besides traditional
overlap joins, this work also considers additional equality predicates in overlap
joins as well as period boundaries that can have different interval definitions
(e.g., closed or half-open) for different tuples.

Joins involving predicates on intervals can be extended in several directions.
The most natural extension involves considering all of Allen’s interval relations,
as is done by Piatov et al. [46]. The paper takes the moves from [45], leveraging
the endpoint index and the gapless hash map to efficiently process intervals in a
cache-friendly way.

The interval count semi-join problem [9] requires instead to count for each
interval of a relation R, the number of intervals in another relation S with which
it overlaps. The paper extends the plane-sweep algorithm of [45] to solve this
problem directly, without requiring a join followed by an aggregation step.

Finally, another extension is that of band join of intervals [8]. Specifically, the
problem requires to join intervals that either overlap or whose smallest difference
between endpoints is smaller than a parameter ε.

Multi-way Joins. In many cases, multiple temporal relations are to be joined.
The traditional way of addressing this type of queries relies on finding the best
sequence of binary joins. This approach has the drawback of potentially produc-
ing intermediate results which are much larger than the final output. In the past
few years there has been a growing interest for multi-way equi-joins, following
the development of the output optimal worst-case join [40], where the output of
the join is computed by considering all involved relations at the same time.

Very recently, Hu et al. [29] developed an approach based on worst-case
optimal join algorithms to deal with multi-way temporal joins. These algorithms
are worst case optimal in the sense that, for a given query, one can bound the
worst case output size based on the characteristics of the query: the algorithm
will then run in time proportional to this worst case size. Furthermore, they
introduce the problem of durable joins: only the intervals with duration longer
than a given parameter τ are part of the output, allowing to ignore transient
patterns.

The complexity of multi-way interval joins is studied by Khamis et al. [33].
Specifically, the paper provides a reduction of a multi-way interval join to a
disjunction of multi-way equi-joins, and the corresponding backward reduction.
This allows to both upper bound the complexity of multi-way interval joins and
to state hardness results.

General intersection joins are the topic of the work by Tao and Yi [56].
Intersection joins consider overlaps between d-dimensional rectangles; for d =
1 the problem corresponds to overlap joins in temporal databases. The paper
focuses on the dynamic variant of the problem, where one wants to update the
solution as the relations involved in the join are modified. For binary joins of
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intervals, the paper provides an optimal data structure requiring O(n) space and
O(log n) amortized update time.

Multi-way temporal joins also arise in the context of finding temporal sub-
graphs, like k-cliques of overlapping intervals [57].

3 New Directions in Models and Semantics

In this section, we provide an overview about new research directions which go
beyond traditional temporal databases and include new semantics, data models,
and query types.

Semantics. Most works in temporal databases focus on duplicate free tempo-
ral relations, i.e., set semantics, where value-equivalent tuples are not allowed
to overlap. The work by Dignös et al. [17] provides the first theoretical founda-
tions for processing temporal data with multiset semantics under full relational
algebra and aggregation. In particular, this paper defines multiset semantics by
adopting a novel data model based on the concepts of K-relations and semir-
ings, which satisfy the properties of snapshot reducibility. The authors show how
the temporal operators over temporal relations with multiset semantics can be
translated into standard SQL queries via a query rewriting approach.

Implementing sequenced semantics using standard relational algebra is the
goal of [19]. To this end, the paper proposes to use log-segmented timestamps [18]
rather than time intervals. Assuming that the timeline has n = 2k chronons,
labels of b ≤ k bits can be univocally associated to pre-determined time inter-
vals. Therefore, any arbitrary time interval can be encoded using a collection
of at most k labels. The paper proposes to transform a temporal relation in a
non-temporal relation featuring labels in place of temporal intervals, and where
each tuple is replicated up to k times, depending on the temporal interval to
which it is associated. This transformation allows to express temporal queries
using standard (non-temporal) relational algebra, and thus allowing to imple-
ment sequenced semantics in standard DBMSs without modifications.

Temporal Probabilistic Databases. A temporal probabilistic database [42] is
a database complying with both the possible world semantics [51] of probabilistic
databases and the sequenced semantics of temporal databases. In summary, a
temporal probabilistic database can be thought of a collection of probabilistic
databases, one for each time instant. The query semantics then requires that the
result of any operation at any time point t is equivalent to the result derived from
the corresponding probabilistic operation applied to the probabilistic database at
time t. Set operations in this model are investigated by Papaioannou et al. [42],
whereas [43] studies the problems of outer and anti joins.

Streaming Data. Nowadays many applications have to deal with incoming
streams of data, rather than static datasets to be stored and processed offline.
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The work by Suzanne et al. [52,53] considers the aggregation of spanning
events (events with time periods) in the context of data streams. The work
provides a framework that extends window aggregation over regular events with
time points to spanning events with time periods. The framework supports a
wide range of common window definitions for the aggregation, and it considers
different ways how spanning events may be received in a data stream, e.g., an
event may be received only at its end time, or an event is partially received
first at its start time and later on completed at its end time. How window-
slicing for spanning events can be performed to share computational costs among
overlapping windows, is introduced in [54,55].

The work by Grandi et al. [26] proposes a query language and a unified
algebraic framework that integrates streaming, temporal, and standard relational
data in an all-in-one approach. This framework provides an extended relational
algebra for one-time queries with temporal and non-temporal semantics as well
as continuous queries with different types of window expressions, together with
a translation that allows the execution of continuous queries using traditional
temporal operators.

Ongoing Databases. The paper by Mülle and Böhlen [39] studies the concept
of “now” [2,20] in temporal databases. While many approaches deal with time
points declared as now by instantiating them to a given reference time (e.g., the
current time), this solution provides a principled approach to deal with “now”
during query processing, by keeping it uninstantiated and evaluating predicates
and functions at all possible reference times. The result of a query is an ongo-
ing relation that includes reference times. The authors introduce ongoing data
types and their operations, a relational algebra for ongoing relations, and an
implementation in PostgreSQL.

Historical What-If Queries. The work by Campbell et al. [12] introduces his-
torical what-if queries that allow to determine the effect of hypothetical changes
in the transactional history of a database. The approach exploits reenactment [3],
a declarative replay technique for transactions, to simulate the evaluation of
histories together with time travel [50] on transaction time to find the corre-
sponding history of the data to apply the what-if scenario. The authors provide
an optimization to apply historical changes only to the affected data together
with an implementation as a middleware. While this approach does not focus
on explicitly timestamped data, it exploits the transactional history of database
systems.

Temporal Keyword Search. The work by Gao et al. [24] studies the problem
of evaluating keyword queries with temporal predicates in temporal databases.
The work shows how multiple interpretations and their corresponding SQL
queries including temporal joins can be generated from the temporal predicates
in the keyword search. The work in [23] shows how temporal aggregation and
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span temporal aggregation [22] can be employed in temporal keyword search in
order to allow users to query statistical information over time.

Data Warehouse. Ahmed et al. [1] show how to generalize and extend the mul-
tidimensional model used in data warehouses with temporal features and tempo-
ral online analytical processing (OLAP) operators. The work introduces a mul-
tidimensional model that is capable of representing traditional (non-temporal)
and time-varying data independently with consistency constraints. The authors
provide a mapping from the temporal model into the relational model and show
how the temporal OLAP operators can be answered using standard SQL.

The work by Mahlknecht et al. [38] proposes different logical models how
temporal data can be represented in a data warehouse to support efficient aggre-
gations over time. The models differ in the way how data with time periods is
stored: as the set of all time points in a time period, as the start and end time
points of a time period, or as a combination of the two. The different models
may or may not facilitate different aggregation operators over time that are fre-
quently used in data warehouses. The authors show the queries in standard SQL
and provide and experimental evaluation for the different models and aggrega-
tion operators on ETL performance and query time.

4 Systems

Database vendors have been gradually enhancing their database systems with
support for temporal features, particularly with respect to the temporal features
in the SQL:2011 standard [34]. After IBM DB2, Oracle DBMS, Teradata, and MS
SQL Server, other database vendors have been following in the implementation
of temporal features. In this review we focus on the new additions of the last five
years and refer the reader to [6,7] for a more exhaustive study on the temporal
features offered before.

MariaDB as of version 10.3.4 (Jan 2018) supports system-versioned tables1
from the SQL:2011 standard, which provide integrated transaction time support.
As of version 10.4.3 (Feb 2019), the database added also support for application-
time period tables2 (i.e., valid time relations). Since both temporal dimensions
can be combined, MariaDB can also represent bitemporal tables. As of version
10.5.3 (May 2020), temporal uniqueness (WITHOUT OVERLAPS) was added,
which can be used in the declaration of a table schema3. This feature allows to
enforce temporal primary key constraints.

In a similar fashion, the in-memory, column-oriented relational database sys-
tem SAP HANA introduced system-versioned tables as of version 2.0 SPS034

1 https://mariadb.com/kb/en/mariadb-1034-release-notes/.
2 https://mariadb.com/kb/en/mariadb-1043-release-notes/.
3 https://mariadb.com/kb/en/mariadb-1053-release-notes/.
4 https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.03/en-US/

Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf.

https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-1043-release-notes/
https://mariadb.com/kb/en/mariadb-1053-release-notes/
https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.03/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.03/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
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(Oct 2018), and application-time period tables as of version 2.0 SPS045 (Oct
2019).

The Open Source database system PostgreSQL followed a different route
from the SQL:2011 standard. It offers support for temporal features through the
build-in range types (period datatype) with associated operators and functions
since version 9.2 (Sep 2012). As of version 14.06 (Sep 2021) PostgreSQL added
support for multiranges7 as a new data type, which are ordered lists of ranges
with associated operators and functions.

The work by Lu et al. [36] provides a prototype built-in temporal implementa-
tion in Tencent’s distributed database management system. The work integrates
the features of the SQL:2011 standard into the system. It employs query rewrit-
ing in the parser to map queries on valid time into non-temporal queries. For
transaction time several optimizations are proposed: a lazy migration strategy
from the current to the history table that exploits the database management
systems storage claiming procedure; a key/value store based approach to main-
tain only changed data instead of copies between current and history tables; and
an optimized operator that retrieves current and historical data.

Other systems, such as CockroachDB and Snowflake, support time travel
functionalities within a given retention time period. These systems allow to query
and restore historical states of the data (if available). However, unlike in the
SQL:2011 standard, versions and timestamps of the data are implicit and cannot
be accessed.

5 Conclusion and Future Directions

In this paper, we reviewed new contributions in the field of temporal relational
databases from the last five years. As a result, we survey 30 papers that span
different areas in temporal relational databases: query processing with selection
queries and joins, and new directions with topics such as improved temporal
semantics, temporal probabilistic databases, streaming data, and more. Finally,
we also summarized the newest developments with regards to temporal features
in commercial and Open Source database systems.

While we have noticed that join algorithms have received most attention in
the last few years, we also identified several topics that did not receive attention
at all or are underrepresented. One such topic that requires deeper investigations
is cost or cardinality estimation for temporal query operators. This is particularly
important for temporal joins. As of today most query optimizers use heuristics
or constants for the selectivity estimation of joins in the presence of inequalities.
More precise cost estimation algorithms and their tight integration into query
optimizers would be helpful to further improve the efficiency of query processing.

5 https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.04/en-US/
Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf.

6 https://www.postgresql.org/docs/release/14.0/.
7 https://www.postgresql.org/docs/current/functions-range.html.

https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.04/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.04/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
https://www.postgresql.org/docs/release/14.0/
https://www.postgresql.org/docs/current/functions-range.html
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Secondly, more research work on SQL extensions for temporal operators is
needed, which is not covered in the SQL:2011 standard. While there exists some
past research on this aspect, none of the proposed extensions received wide
acceptance. The availability of a standard for the easy formulation of temporal
queries in SQL may also help industry with the integration of temporal opera-
tors in their DBMS, in a similar fashion as the SQL:2011 standard pushed the
development of temporal features.

Another direction for future research is concerned with query processing
of bitemporal operators, which consider both valid time and transaction time.
While the SQL:2011 standard allows to define and represent bitemporal tables,
there exists only one work in the last five years that considers the computation
of joins on more than one time dimension; all other works only focus on data
that has either a valid time or a transaction time.
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