
Storage Management with Multi-Version
Partitioned BTrees

Christian Riegger(B) and Ilia Petrov

Reutlingen University, Reutlingen, Germany
{christian.riegger,ilia.petrov}@reutlingen-university.de

https://www.dblab.reutlingen-university.de

Abstract. Database Management Systems and K/V-Stores operate on
updatable datasets – massively exceeding the size of available main mem-
ory. Tree-based K/V storage management structures became particularly
popular in storage engines. B+-Trees [1,4] allow constant search perfor-
mance, however write-heavy workloads yield in inefficient write patterns
to secondary storage devices and poor performance characteristics. LSM-
Trees [16,23] overcome this issue by horizontal partitioning fractions of
data – small enough to fully reside in main memory, but require frequent
maintenance to sustain search performance.

Firstly, we propose Multi-Version Partitioned BTrees (MV-PBT) as
sole storage and index management structure in key-sorted storage
engines like K/V-Stores. Secondly, we compare MV-PBT against LSM-
Trees. The logical horizontal partitioning in MV-PBT allows leveraging
recent advances in modern B+-Tree techniques in a small transparent and
memory resident portion of the structure. Structural properties sustain
steady read performance, yielding efficient write patterns and reducing
write amplification.

We integrated MV-PBT in the WiredTiger [15] KV storage engine.
MV-PBT offers an up to 2× increased steady throughput in comparison
to LSM-Trees and several orders of magnitude in comparison to B+-Trees
in a YCSB [5] workload.

Keywords: Storage engine · Storage management · Append storage

1 Introduction

High performance persistent key-sorted No-SQL storage engines became the
load-bearing backbone of online data-intensive applications. Such engines exist
as standalone K/V-Stores (Key/Value Stores) [7,15] as well as in integrated
in DBMS storage engines [6,11,14]. Obviously, backing tree-based K/V stor-
age management structures – i.e. B+-Trees [1], LSM [16,23] and derivatives
[2,11] – natively enable necessary advanced lookup operations beside equality
search, e.g. key prefix or inclusive and exclusive range searches, with (nearly)
constant logarithmically scaling performance characteristics. Continuous modifi-
cations require special care to preserve constant performance characteristics and
c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, LNCS 13389, pp. 255–269, 2022.
https://doi.org/10.1007/978-3-031-15740-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15740-0_19&domain=pdf
http://orcid.org/0000-0003-4057-5493
http://orcid.org/0000-0001-6042-9878
https://doi.org/10.1007/978-3-031-15740-0_19


256 C. Riegger and I. Petrov

mentioned search features. Although B+-Trees offer constant search performance
to data in main memory and on secondary storage devices, modifications yield
in inelastic performance characteristics. LSM-Trees sacrifice properties of a sin-
gle tree structure to overcome this issue by buffering modifications in a fraction
of main memory, typically tree-based components, and leveraging flash-based
secondary storage device characteristics on eviction and necessary background
merge operations.

Flash Technology in SSD Secondary Storage Devices exhibit individual
characteristics. I/O operations possibly are independent or decomposed exe-
cuted in multiple structural levels of an SSD, whereas a high internal parallelism
and I/O-performance is enabled [22,24,25]. However, reads perform an order of
magnitude better than writes, yielding in a asymmetric I/O behavior. Whilst
reads perform nearly identical for random and sequential access patterns, write
I/O is preferably sequentially performed [13]. Furthermore, pages are replaced
out-of-place, wherefore much slower erases and background garbage collection is
necessary [3,8].

B+-Trees and Derivatives achieve a constant logarithmically scalable search
performance, since root-to-leaf traversal operations depend on their height – even
in case of massive amounts of stored data records. Commonly used inner nodes
of traversal paths allow fast access to data in leaf nodes with few successive read
I/O. However, B+-Trees are probably vulnerable in case of modifications. Whilst
insertions, updates and deletions of records possibly facilitate steady through-
put in main memory by optimized and highly scalable maintenance procedures
[11,15], massive amounts of maintainable key-sorted data yield in random write
I/O and high write amplification on secondary storage devices once modifications
get persisted on eviction of ’dirty ’ buffers. In order to preserve strict lexicograph-
ical sort order of records, maintenance operations cause cascading node splits,
whereby blank space is created to accommodate additional separator keys in
inner nodes and records in leaves in the designated arrangement. As a result,
sub-optimally filled nodes reduce cache efficiency and contained information is
written multiple times, yielding in a high write and space amplification. Fur-
thermore, read I/O on secondary storage devices of partially filled nodes lead to
high read amplification. Therefore, for massive amounts of contained data, B+-
Trees become write-intensive, even in case of proportionately few modifications,
yielding in following problems:

– low benefit from main memory optimizations, since nodes are frequently
evicted

– low cache efficiency and high read amplification due to partially filled nodes
– massive space and write amplification on secondary storage devices

Alternatively, LSM-Trees are Optimized for High Update Rates and
obtain a sequential write pattern, since modifications are buffered in tree-
based LSM components in main memory. Components get frequently switched,



Storage Management with Multi-Version Partitioned BTrees 257

merged and evicted to persistent secondary storage devices. Generally, back-
ground merge operations counteract the data fragmentation and increased read
and search effort, however this behavior also increases its write amplification.
Several approaches in merge policies [23] and reduction of read amplification
[12,18,26,27] have been introduced. Certainly, flash allows high internal par-
allelism and multiple reads of parallel traversal operations. Nevertheless, since
components are separate structures, they effectively leverage neither caching
effects on traversal nor logarithmic capacity capabilities per height of B+-Trees.
Moreover, creation of new components on switch procedure is not transparent to
the storage engine and relies on high-level maintenance of the database schema.
Finally, due to append-based record replacement technique in LSM, key unique-
ness is assumed, wherefore the application in storage engines of DBMS with
non-unique indexes is complicated. Challenges in LSM are defined as follows:

– inefficient caching behavior of decoupled components require frequent merges
and yield in considerable write amplification

– hence, high internal parallelism of flash is not leveraged for read operations
– components are non-transparent for further layers of a storage engine
– non-unique indexing requires additional care

We Propose Multi-Version Partitioned BTree (MV-PBT) as sole stor-
age and index management structure in KV-storage engines. MV-PBT is based
on Partitioned BTrees (PBT) [10], an enhancement of a traditional B+-Tree.
(MV-) PBT relies on manipulation of an artificial leading key column of every
record – the partition number; and exploiting the regular lexicographical struc-
ture of B+-Trees for partition management. Recent publications introduced
(MV-) PBT as a highly scalable indexing structure in DBMS with multi-version
concurrency control (MVCC) and massive index update pressure [19–21]. How-
ever, this paper focus on MV-PBT as sole storage management structure in
KV-storage engines. The contributions are:

– Diminishing write amplification in append-based storage management with
MV-PBT by sequential write of saturated partition managed nodes

– Transparent internal partition management and atomic partition switch oper-
ations without schema maintenance requirements

– Single root node as entry point in the B+-Tree structure allows to leverage
logarithmic capacity and commonly cached and traversed inner nodes

– Reduction of merge-triggered write amplification and accompanying pressure
on secondary storage devices by Cached Partitions

– Leveraging scalable in-memory optimizations and compression techniques of
B+-Tree structures for massive amounts of data in a very hot fraction

– Prototypical implementation and experimental evaluation in WiredTiger [15],
which provides competitive B+-Tree and LSM-Tree implementations

Outline. We present an architectural overview of MV-PBT in Sect. 2. Sections 3
and 4 focus on reduction of write amplification by data skipping and fast retrieval



258 C. Riegger and I. Petrov

Fig. 1. Logical horizontal partitioning in MV-PBT and replacement policy of MV-
PBT-Buffer yield in hot/cold separation within one single tree structure and ultimately
enables a sequential write pattern of whole partitions.

in a horizontally partitioned structure and considering defragmentation only as
a result of garbage collection. We evaluated the storage management structures
in the homogeneous storage engine WiredTiger 10.0.1 in Sect. 5 and conclude in
Sect. 6.

2 Architecture of Multi-Version Partitioned BTrees

Multi-Version Partitioned BTree (MV-PBT) as an append-based and version-
aware storage and indexing structure relies on well-studied algorithms and struc-
tures of traditional B+-Trees – with which they share many characteristics and
areas of application. Therefore, MV-PBT is able to adopt and even leverage char-
acteristics of advances in modern B+-Tree techniques. The proposed approach
facilitates straightforward horizontal partition management within one single
B+-Tree structure in order to keep a very hot mutable fraction of leaves in fast
volatile main memory (compare Fig. 1) – the MV-PBT-Buffer including the most
recent partition leaves is temporarily apart from the regular buffer replacement
policy. Reaching a certain dirty memory footprint threshold initiates an atomic
partition switch operation, which asynchronously finalizes in a sequential write
of dense-packed cleaned data in leaves and referring inner nodes, in order to
interference-freely absorb ongoing modifications. Since partitions are principally
defined by the existence of associated records, they appear and vanish as sim-
ply as inserting or deleting records [10], however, auxiliary meta data structures
allow a massive speed-up of operations. Append-based structures allow modifica-
tions of already persisted data by out-of-place replacement. MV-PBT enhances
this behavior by additional record types, which allow internal indexing and non-
uniqueness of data and enables native B+-Tree-like indexing features. More-
over, maintenance of multiple record circumstances imply the adoption of multi-
version capabilities by the assignment of transaction timestamps in MVCC with
snapshot isolation. Low write amplification, sequential writes of dense-packed



Storage Management with Multi-Version Partitioned BTrees 259

Fig. 2. Auxiliary recoverable MV-PBT data structures.

nodes, commonly utilized inner nodes with one single root as entry point, paral-
lelized multi-partition search operations as well as multi-version indexing capa-
bilities make MV-PBT superior as sole storage and index management structure
in storage engines.

MV-PBTs Auxiliary Data Structures information is entirely contained in
the B+-Tree structure. For instance, the mutable most recent partition number
could be identified by searching the rightmost record in the tree structure. Since
cached information is frequently required and its memory footprint is very low,
auxiliary data structures are cached in RAM (an excerpt is depicted in Fig. 2).
MV-PBT data structures require neither locking for any atomic operation nor
additional logging of modifications, since the lightweight information is com-
pletely recoverable from basic B+-Tree by a scan operation. All information of
horizontal partitioning is anchored within the tree structure, i.e. horizontal par-
titioning is transparent to further storage engine modules – contrary to schema
modifications in LSM-Trees.

Multiple MV-PBT exist within a storage engine, which commonly share the
MV-PBT-Buffer threshold. The MV-PBT Meta Data belongs to a specific rela-
tion in the schema. Its most recent partition number (max_pnr) is frequently
required to determine record prefixes as well as for atomic switching operation.
An MV-PBT comprises of several valid partitions, which contain a set of meta
data like the number of records or specific partition type characteristics. Finally,
auxiliary filter structures for point and/or range queries are referenced; e.g. fence
keys, (prefix) bloom filters or hybrid point and range filters [12,18,26].

Partition Number Prefixes are prepended to each record key with the cen-
tral scope of leveraging lexicographical sort capabilities of B+-Trees in order
to achieve a logical horizontal partitioning. Partition numbers could be of any
comparable data type, e.g. 2 or 4-byte integers, and might are maintained in an
artificial leading key column [10]. However, combining the partition number and
the first record key attribute in a partitioned key type (compare Fig. 3a) enables
cache efficient comparison of co-aligned attributes as evaluated in Fig. 3b. Addi-
tional storage costs are negligible due to prefix truncation techniques. Partitioned
keys are simply allocated when setting search keys and their prefix becomes



260 C. Riegger and I. Petrov

Fig. 3. Horizontal partition maintenance with Partitioned Keys

hidden by returning an offset in the leading key attribute in order to retain
transparent horizontal partitioning.

Multi-Version Capabilities accompanying well the out-of-place replacement
in MV-PBT. Multi-Version Concurrency Control (MVCC) with Snapshot Iso-
lation (SI) are a common technique to enable high transactional parallelism
in storage engines, since readers and writers are not mutually blocking as each
transaction operates on a separate snapshot of data. Therefore, multiple versions
records of one logical tuple are maintained in a version chain – each is valid for
a different period in time. MV-PBT adopts a new-to-old ordering approach of
physically materialized version records with out-of-place update scheme and one-
point invalidation model [9,21] – i.e. predecessor versions remain unchanged on
modification, whereas write amplification is massively reduced. Successor ver-
sion records are annotated with the current transaction timestamp (which may
become truncated on eviction to secondary storage devices, whenever no pre-
ceding snapshot is active) and are inserted in the most recent partition in the
MV-PBT-Buffer. Thereby, it is possible to maintain multiple version records in
one partition, e.g. as separate record [21] or in-memory update lists [15]. Based
on the logical search succession in MV-PBT from new-to-old, transaction snap-
shots identify their visible version record and skip others, based on the annotated
transaction timestamps. Since record data values are physically materialized in
each version record, identified records are directly applicable.

Record Types in MV-PBT feature all operations over logical tuple life-cycle
without modifying predecessor version records. During lifetime, it gets created,
modified and deleted while it is frequently read. Regular Records declare the
begin of the life-cycle, hence there is no predecessor version. Its transaction
timestamp is applied by the inserting transaction and indicates its validation.
Replacement Records indicate a new record value on update. Its timestamp inval-
idates its predecessor as well as validates itself. Replacement Records are also
applied on modifications to the record key, however, invalidation requires an
Anti Record with the predecessor key attribute values and the current transac-
tion timestamp for invalidation. Replacement Records as well as Anti Records
probably store its predecessor value for logical tuple assignment as needed in



Storage Management with Multi-Version Partitioned BTrees 261

Fig. 4. (1) After atomic partition switch, an MV-PBT consists of (A) persistent, (B) a
victim and (c) a most recent partition. Internal nodes and leaves of the victim partition
delay maintenance effort (e.g. split operations) by flexible page size until a reconciliation
process (2.D). The (E) most recent partition consumes ongoing modifications. Finally,
(3) the (F) victim partition is sequentially written to secondary storage and (G) is the
only memory mapped partition.

non-uniqueness index management constraints, however, modifications to the
key attributes and non-uniqueness indexing constraints with index-only visibil-
ity checks [21] allow MV-PBT to serve as sole storage and index management
structure in storage engines but is out of scope in this paper. Finally, Tomb-
stone Records are inserted on deletion of a logical tuple. Major difference to
Anti Records is, that successor version records are impossible.

Atomic Partition Switch and Sequential Write of dense-packed leaves
and referring inner nodes bring a leading edge in MV-PBT. The whole proce-
dure consists of several partially parallelizable stages. After (a) determination of
switch requirement by a certain dirty buffer threshold in the MV-PBT-Buffer, a
(b) valuable MV-PBT victim partition is selected for eviction. Contrary to LSM-
Trees, MV-PBT partitions become immutable and switched by (c) atomically
incrementing the most recent partition number (max_pnr) in the meta data, since
the required B+-Tree structure is already existent and logged anyways.

However, records are probably not yet in their final (d) defragmented and
dense-packed disk layout, since structure modifications are the result of a ran-
domly inserting workload. One approach to avoid expensive partition-internal
structure modifications (e.g. node merges) is to simply re-inserting the still valid
contents in their final arrangement by manipulating the partition number in a
bulk load operation [21]. B+-Trees allow efficient split policies to support high fill
factors by this operation. Finally, visibility characteristics of both partitions are
swapped and the randomly grown source partition gets cropped from the tree.
Another approach is to leverage modern B+-Tree techniques. In order to avoid

Fig. 5. Flexible MV-PBT-buffer share allows cache preserving handover of a clean
victim partition from (A) the MV-PBT-buffer to (B) a common buffer replacement
policy and (C) flexible growth up to a max. MV-PBT-buffer share.



262 C. Riegger and I. Petrov

structure modifications, referenced main memory nodes are allowed to flexibly
grow and finally get divided and structured in the disk layout in a reconciliation
process (depicted in Fig. 4).

Auxiliary (e) filter structures are generated as a natural by-product of defrag-
mentation and dense-packing, since records are accessed anyways. Whenever (a
fraction of) leaf nodes obtained their final layout, it is possible to (f) perform a
sequential write of leaves and referring inner nodes by traversing the tree struc-
ture and following the sibling pointers – yielding in a bottom-up sequential write
of nodes, level by level. Finally, the persisted leaves are (g) passed to the regu-
lar replacement policy in order to sustain a constant buffer factor and memory
footprint (Fig. 5).

Basic Operations in MV-PBT are based on regular a B+-Tree – i.e. they have
logarithmic complexity. Every modifying operation is treated as an insertion of
a record of a respective type. Thereby, the current transaction timestamp is
set for validation in visibility checks – and one-point-invalidation of conceivable
predecessors, respectively, which can be located in a preceding or the current
partition. However, due to the partitioned key, each modifying operation is per-
formed in the most recent partition in main memory. This is also valid in case of
concurrent partition switch by overwriting the partition number of an insertion
record key and immediate re-traversal from root. Additional constraint support
is very uncommon in pure storage management since records are typically over-
written by blind insertions, however, this is facilitated by MV-PBT in preceding
equality search operations.

Equality and range search operations perform root-to-leaf traversals of a
(sub-)set of partitions by manipulation of the partition number in the parti-
tioned search key. Partitions are preselected by auxiliary filter structures. Logi-
cally, partitions are searched in reverse order from the most recent to the lowest
numbered one. Based on the selectivity of a query, partitions may are sequen-
tially processed or by parallel traversals in a merge sort operation. In case of
equality searches, sequential processing allow minimal read amplification, con-
trary, sorted range searches favorably adopt the merge sort approach, whereby
multiple cursors are applied and get individually moved and returned to a higher
level merge sort cursor. Thereby, record transaction timestamps are checked for
visibility to a transaction snapshot. Based on a regular visibility check, invis-
ible and invalidated records are skipped, invalidating records are remembered
for exclusion of occurring predecessors (which are subsequently accessed) and
matching records are returned [21].

3 Cached Partition: Stop Re-writing Valid Data

MV-PBT introduces a logical horizontal partitioning within one single tree struc-
ture in order to leverage characteristics of secondary storage devices. This data
fragmentation influences the search operations in different ways. Obviously, sev-
eral possible storage locations of a requested record implies additional search



Storage Management with Multi-Version Partitioned BTrees 263

effort. Actually regular B+-Trees incur increased search costs in randomly grown
structures, due to diminishing cache efficiency of partially filled inner nodes. Con-
trary, LSM-Trees keep a read-optimized layout within each component, how-
ever, multiple entry points and referenced inner nodes are neither commonly
cached nor leverage logarithmic capacity. LSM-Trees counteracting increased
search effort with background merge operations, whereby write amplification of
still valid data is increased.

MV-PBT preserves a read-optimized and cache-efficient layout for immutable
nodes (Fig. 1B) with one commonly shared entry point and referenced inner
nodes (Fig. 1A) which are subjecting to a optimal fill factor, since append based
behavior of referenced data allows efficient split policies (equal to bulk loads). As
outlined in Sect. 2 (Atomic Partition Switch and sequential write), mutable inner
nodes and leaves (Fig. 1C and 1D) are a hot fraction which sustains maintenance
operations of the random workload, however, modern B+-Tree techniques allow
main memory efficient delay of maintenance operations. Since the small fraction
of inner nodes is commonly used, they are well cached, so that a large portion
of the parallel traversal operations is performed without read latencies from
secondary storage devices. Successive read I/O in multiple partitions leverage
parallelism in flash persistent storage. Moreover, search performance in MV-PBT
relies on data skipping by auxiliary filter structures. As a combined result, MV-
PBT is able to sustain comparable search performance for higher fragmentation
as in LSM-Trees.

However, variety of auxiliary filter structures imply caching and probe costs
as well as massive amount of traversal operations result in high read I/O costs
and shrink performance due to growing fragmentation. Instead of adversely re-
writing still valid data records in a consolidated arrangement, due to asymmetry
of flash and write amplification, MV-PBT introduces Cached Partitions. They
are an internal index partition, whose records reference a preceding partition,
containing the latest version record of a logical tuple in a lexicographical sort
order. Several Cached Partitions may exist for a different subset of small parti-
tions and are cyclically created while the MV-PBT evolves. Cached Partitions
are the result of a background merge sort of contents in several immutable lower
numbered partitions with the respective partition number as value or the con-
tents of several preceding Cached Partitions. Background merge sort results are
bulk inserted in an ‘invisible’ partition while proceeding, can be paused and
continue without wasting work and become finally visible by an atomic status
switch.

Since a subset of partitions is fully indexed in a Cached Partition, a subse-
quent search operation is able to traverse the subset on the commonly cached
path as needed, based on the results of the internal partition index. Cached Parti-
tions assume responsibilities of auxiliary filter structures and allow to exclude the
subset of indexed partitions from the regular logical search succession, whereby
comparison costs in an internal merge sort are reduced – the effort is focused on
non-indexed and Cached Partitions. Furthermore, cached index records are very



264 C. Riegger and I. Petrov

space and cache efficient in the search process, since they consist of the key and
one partition number (e.g. 2 or 4-byte integer) in a dense-packed arrangement.

4 Garbage Collection and Space Reclamation

Datasets and tuple values evolve over time. Storage management structures with
out-of-place update approaches allow beneficial sequential write patterns and low
write amplification, however, invalidated predecessor record versions remain exis-
tent on update. Search operations are able to exclude invalid version records from
the result set, though visibility checking entail additional processing. Further-
more, version records which are not visible to any active transaction snapshot
entail space amplification and additional storage costs.

In MV-PBT, additional search costs due to fragmentation by horizontal par-
titioning is well covered by Cached Partitions for insertion of new tuple version
records. However, modifications to logical tuple values leave persisted obsolete
version records behind, yielding in space amplification. Ideally, obsolete version
records are discarded as part of the dense-packing phase on partition switch,
however, many version records become invalidated after they were persisted. For
the only reason of space reclamation, MV-PBT occasionally performs a garbage
collection (GC) process. Similar to the creation of a Cached Partition, GC is
performed by a background merge sort and bulk load operation in a not yet vis-
ible partition. Certainly, the stored record value is the regular value of the most
recent record version of a tuple. As well, the GC process can throttle and con-
tinue without wasting work, since the partition is not yet accessible for querying.
After the successful completion, the partition becomes visible and the records
of purified preceding partitions become invalidated. Once every active search
operation finished, the purified partitions are cropped from the tree structure by
an efficient range truncation [15].

5 Experimental Evaluation

We present the analysis of MV-PBT as storage management structure in compar-
ison beside the baselines LSM-Trees and B+-Trees fully integrated in WiredTiger
10.0.1 (WT) [15]. LSM-Trees in WT build upon components of the provided
B+-Trees upon which MV-PBT is also implemented. A good comparability is
achieved, since all structures commonly operate on equal code lines and B+-Tree
techniques, e.g.: prefix truncation, suffix truncation and snappy compression;
reduced maintenance effort due to flexible page sizes; main memory page repre-
sentation with sorted areas, update-lists and insertion skiplists; MVCC transac-
tion timestamps in main memory record representation; tree-based buffer man-
agement.

Experimental Setup. We deployed WiredTiger(WT) 10.0.1 and WT with
MV-PBT as storage management structure on an Ubuntu 16.04.4 LTS server



Storage Management with Multi-Version Partitioned BTrees 265

with an eight core Intel(R) Xeon(R) E5-1620 CPU, 2GB RAM and an Intel DC
P3600 enterprise SSD. We used the YCSB framework [5,17] for experimental
evaluation with a dataset size of approx. 50GB, unless stated otherwise. The WT
cache size is set to 100MB and LSM-chunks as well as partitions are allowed to
grow up to 20MB. Direct IO is enabled and the OS page cache is cleaned every
second in order to ensure repeatable, reliable and even conservative results.

Experiment 1: Space and Write Amplification. In Fig. 6a, B+-Tree, LSM-
Tree (merges are disabled for comparability) and MV-PBT are initially bulk
loaded with 100 million records (key and value size are 13 and 16 bytes respec-
tively). Prefix truncation in record keys, suffix truncation in separator keys
and snappy compression allow comparable relative space requirements for all
approaches. There is a clear evidence of the synergy between prefix truncation
and partitioned key, since the enlarged record key by a 2 byte partition number
does not result in higher space requirements. Subsequently, 5 million new records
are inserted – yielding in approx. 60 new partitions/LSM-components. Due to
compression techniques, the additional relative space requirement is lower than
the actually added record size, with slight advantages for MV-PBT. B+-Tree
suffer from insertions in the read-optimized layout due to node splits – yielding
in massive relative space amplification per newly inserted records. Insight: MV-
PBT offers the lowest space amplification, that is between 12% and 31× better.
Finally, the write amplification (Fig. 6a) is evaluated after 5 million inserts. Since
almost each insertion causes escalating node splits in the read-optimized layout
of a B+-Tree, each insertion causes 2.76 write I/Os of half filled nodes. Sequential
writes of dense-packed nodes allow LSM-Trees and MV-PBT to achieve singular
writes of optimally filled nodes, yielding in much less write I/O per insertion.
MV-PBT achieves a better factor due to commonly used inner nodes. Moreover,
merge operations of LSM components would cause a downturn of write amplifi-
cation by orders of magnitude. Insight: compared to LSM-trees, MV-PBT offers
30% less write amplification and is up to 300× better than B-Trees.

Experiment 2: Sequential Write Pattern. Figure 6b depicts a sequential
write pattern with the logical block addresses (LBA) on the ordinate and evolv-
ing time on the abscissa. As a result of the partition switch operation, delayed

Fig. 6. Experiments 1 and 2 evaluate the structural properties of MV-PBT.



266 C. Riegger and I. Petrov

Fig. 7. Experiments 3 and 4 evaluate consistent performance of MV-PBT.

maintenance operations (splits) on leaves followed by inner nodes are performed
in a reconciliation operation. Afterwards, leaves are identified by a tree walk and
ascending written to secondary storage devices, depicted by the continuously
ascending markers. Finally, the referencing levels of immutable inner nodes are
sequentially written, depicted by multiple shorter continuously ascending mark-
ers. Insight: MV-PBT is able to perform advantageous sequential writes.

Experiment 3: Steady Performance by Cached Partitions and Garbage
Collection. The write-heavy YCSB Workload A consists of 50% updates and
reads, respectively (depicted in Fig. 7a). Write amplification in B+-Trees yield
in poor performance characteristics (7M tx). Sequential writes and low write
amplification in base MV-PBT (no Cached Partition and GC) allow much higher
transactional throughput, however, increasing search effort degenerates perfor-
mance (44M tx), whereby LSM-Trees hold search effort down by merges (74M
tx). Insight: the direct structural comparison of LSM-Trees and MV-PBT is with-
out merges and garbage collection, whereby MV-PBT outperforms LSM (11M
tx) by 4×. Enabling Cached Partitions allow MV-PBT increased read efficiency,
however, memory footprint of auxiliary filter structures degenerates its capa-
bilities over time due to effectively reduced cache (94M tx). Insight: occasional
Garbage Collection in MV-PBT (every 400 Partitions) enables stable perfor-
mance characteristics (151M tx), outperforming LSM-Trees by 2×.

Experiment 4: Read-Only Performance Characteristics of Intermedi-
ate Structures States. YCSB Workload C is performed several times after
inserting 500k small random records for 10min, respectively (depicted in Fig. 7b).
B+-Tree remain very stable, but slightly decrease, since the read-optimized lay-
out breaks. LSM-Trees throughput is varying based on the number of LSM com-
ponents. Insight: commonly cached inner nodes and periodically created Cached
Partitions allow MV-PBT to retain comparable read performance even if 80
partitions are created after 10 million random insertions.

Experiment 5: Impact of Different Value Sizes. YCSB basic workloads
(Fig. 8) are performed on small (16 bytes), medium (100 bytes) and large (1000



Storage Management with Multi-Version Partitioned BTrees 267

Fig. 8. Experiment 5 evaluates performance for different value sizes.

bytes) value sizes, the initial load has been adjusted to match approx. 50GB
dataset size. Insight: MV-PBT outperforms its competitors in the high and
medium update intensive workloads A and B, even the LSM-Tree by 2× in
the workload A. The read-only workload C is performed on the read-optimized
layout after load phase – comparable results prove negligible costs of partitioned
key comparisons, whereas LSM-Trees are only able to retain performance for
one component (compare Figs. 8c and 7b). Workload D searches for few concur-
rently inserted records. B+-Tree benefits from well cached nodes in the traversal
path due to the recent insertion. This is also valid for MV-PBT and LSM-Trees,
however, concurrent insertions are not in the MVCC snapshot and cause search
operations in other partitions or components, which is 2× faster in MV-PBT.
Finally, MV-PBT is able to achieve comparable performance to B+-Tree in the
mostly scan workload E. Cached Partitions and commonly cached inner nodes
enable cheap merge sort scan operations.

6 Conclusion

In this paper we present Multi-Version Partitioned BTrees (MV-PBT) as a sole
storage and index management structure [21] in KV-storage engines. Logical hor-
izontal partitioning yields beneficial appends of version records within a single
tree structure. Partitions leverage properties of B+-Trees by common utiliza-
tion and caching of inner nodes in traversal operations, whereby constant search
performance and high fragmentation are brought together. This behavior lever-
aged by Cached Partition in order to minimize write amplification to secondary
storage devices. Contrary to LSM-Trees, merging is considered for garbage collec-
tion of obsolete version records than for sustained search performance, wherefore
MV-PBT is predestinated to be applied in KV-storage engines.



268 C. Riegger and I. Petrov

References

1. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices.
In: SIGFIDET 1970, New York, NY, USA (1970)

2. Bayer, R., Unterauer, K.: Prefix b-trees. ACM Trans. Database Syst. 2, 11–26
(1977)

3. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In: SIGMETRICS
(2009)

4. Comer, D.: Ubiquitous B-tree. ACM Comput. Surv. 11, 121–137 (1979)
5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: SoCC 2010 (2010)
6. Facebook: MyRocks a RocksDB storage engine with MYSQL (2022). http://

myrocks.io
7. Facebook: RocksDB a persistent key-value store (2022). http://rocksdb.org
8. Gottstein, R.: Impact of new storage technologies on an OLTP DBMS, its archi-

tecture and algorithms. Ph.D. thesis, TU, Darmstadt (2016)
9. Gottstein, R., Petrov, I., Hardock, S., Buchmann, A.P.: SIAS-chains: snapshot

isolation append storage chains. In: ADMS@VLDB (2017)
10. Graefe, G.: Sorting and indexing with partitioned b-trees (2002)
11. Levandoski, J.J., Lomet, D.B., Sengupta, S.: The BW-tree: a b-tree for new hard-

ware platforms. In: ICDE (2013)
12. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos, S.: Rosetta: a

robust space-time optimized range filter for key-value stores. In: SIGMOD (2020)
13. Ma, D., Feng, J., Li, G.: A survey of address translation technologies for flash

memories. ACM Comput. Surv. 46, 1–39 (2014)
14. MongoDB: MongoDB: The application data platform (2022). https://www.

mongodb.com
15. MongoDB-Inc.: Wiredtiger: Wiredtiger developer site (2021). https://source.

wiredtiger.com/
16. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree

(LSM-tree). Acta Inf. 33, 351–385 (1996)
17. Ren, J., Kjellqvist, C., Deng, L.: Github - basicthinker/YCSB-C: Yahoo! cloud

serving benchmark in c++ (2021). https://github.com/basicthinker/YCSB-C
18. Riegger, C., Bernhardt, A., Moessner, B., Petrov, I.: bloomRF: on performing

range-queries with bloom-filters based on piecewise-monotone hash functions and
dyadic trace-trees. CoRR (2020)

19. Riegger, C., Vinçon, T., Petrov, I.: Write-optimized indexing with partitioned b-
trees. In: iiWAS 2017 (2017)

20. Riegger, C., Vinçon, T., Petrov, I.: Indexing large updatable datasets in multi-
version database management systems. In: IDEAS (2019)

21. Riegger, C., Vinçon, T., Gottstein, R., Petrov, I.: MV-PBT: multi-version index
for large datasets and HTAP workloads. In: EDBT (2020)

22. Ruan, X., Zong, Z., Alghamdi, M., Tian, Y., Jiang, X., Qin, X.: Improving write
performance by enhancing internal parallelism of solid state drives. In: IPCCC
(2012)

23. Sears, R., Ramakrishnan, R.: BLSM: a general purpose log structured merge tree.
In: SIGMOD (2012)

24. Shin, I.: Verification of performance improvement of multi-plane operation in SSDS.
Int. J. Appl. Eng. Res. 12, 7254–7258 (2017)

http://myrocks.io
http://myrocks.io
http://rocksdb.org
https://www.mongodb.com
https://www.mongodb.com
https://source.wiredtiger.com/
https://source.wiredtiger.com/
https://github.com/basicthinker/YCSB-C


Storage Management with Multi-Version Partitioned BTrees 269

25. Winata, Y.A., Kim, S., Shin, I.: Enhancing internal parallelism of solid-state drives
while balancing write loads across dies. Electron. Lett. 51, 1978–1980 (2015)

26. Zhang, H., et al.: Surf: practical range query filtering with fast succinct tries. In:
SIGMOD 1918 (2018)

27. Zhong, W., Chen, C., Wu, X., Jiang, S.: REMIX: efficient range query for LSM-
trees. In: FAST (2021)


	Storage Management with Multi-Version Partitioned BTrees
	1 Introduction
	2 Architecture of Multi-Version Partitioned BTrees
	3 Cached Partition: Stop Re-writing Valid Data
	4 Garbage Collection and Space Reclamation
	5 Experimental Evaluation
	6 Conclusion
	References




