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Abstract. The increased flexibility brought by Data Lake technologies,
along with size and heterogeneity of quickly changing data sources, bring
novel challenges to their management. Making sense of disparate data
and supporting users to identify the most relevant sources for a given
analytic request are indeed critical requirements to make data action-
able. This is particularly relevant in data science applications, where
users want to analyse statistical measures from a variety of data sources.
To this aim, in the paper we introduce a knowledge-based approach for a
Semantic Data Lake, capable of supporting efficient integration of data
sources and their alignment to a Knowledge Graph representing indica-
tors of interest, their mathematical formulas and dimensions of analysis.
By leveraging manipulation of indicator formulas, a query-driven discov-
ery approach is exploited to dynamically identify the sources, along with
the needed transformations, to respond a given .

Keywords: Data Lake · Query-driven discovery · Knowledge Graph ·
Multidimensional model

1 Introduction

Data Lakes (DL) have recently emerged as schema-agnostic repositories for stor-
ing data in their native format, providing centralized access and the capability
to apply data transformation when needed according to an ELT (Extraction,
Load, Transformation) approach. This increased flexibility, along with size and
heterogeneity of growing data sources bring novel challenges related to data
management. In particular, the lack of a global schema and the need to make
sense of disparate raw data require proper modeling of their metadata, to make
data actionable and avoid data swamps (see also [15]). As recognized by recent
literature (e.g., [13]), how to integrate heterogeneous data sources and help users
to find the most relevant data are still open issues in this setting and are often
seen as intertwined operations. This is particularly relevant in data science appli-
cations, where users want to analyse statistical measures from a variety of data
sources. Examples include Open Data Lakes managed by public bodies, e.g., to
monitor the effectiveness of governmental initiatives like a vaccination campaign,
or analysing outcomes from Open Science collaborative projects.

To address such challenges, a novel paradigm called query-driven discovery
was proposed to combine the two aspects [12], following the idea to find datasets
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that are similar to a query dataset and that can be integrated in some way
(either by joins, unions or aggregates).

In the literature, a variety of solutions have been proposed for DL integration,
ranging from approaches based on raw data (and related metadata) management
to semantic-enriched frameworks, the latter being intrinsically more suitable to
address issues related to data variety/heterogeneity and data quality. Among
them, some work focused on holistic models capable of addressing a variety
of structures, e.g., in [8] a DL system is proposed, that discovers, extracts, and
summarizes the structural metadata from the (semi)structured data sources, and
annotates (meta)data with semantic information to avoid ambiguities, while in
[2] a network-based model to represent technical metadata of structured, semi-
structured and unstructured data sources is proposed. Knowledge graphs are
exploited in [5] to drive integration, relying on information extraction tools, e.g.,
Open Calais, that may assist in linking metadata to uniform vocabularies, while
in [6] a graph is built by a semantic matcher, leveraging word embeddings to
find links among semantically related data sources.

In this work, we propose a query-driven knowledge-based approach for inte-
gration and discovery in a Data Lake. The approach builds on a Knowledge
Graph including a formal model of measures (also named indicators) and their
computation formulas [4], in which concepts are used to enrich source metadata.
On top of the model, the contributions of this work are multifold:

– We define mechanisms for integration of data sources into the Semantic Data
Lake and mapping discovery, based on efficient evaluation of set containment
[16] between a source domain and a concept in the Knowledge Graph.

– We define an ontology-based and math-aware query answering function, capa-
ble of identifying the set of sources collectively capable of responding the
user request, and the proper transformation rules to make the needed calcu-
lation. For instance, let us suppose a user is interested in analysing measure
CO2PerPerson, but it is not available in any source. Given that such a mea-
sure can be calculated as TotalCO2

Population , a response can be obtained by combining
sources providing the two components TotalCO2 and Population measures.

– To quantitatively estimate the quality of such results, we define a degree of
joinability index, that evaluates to what extent the sources are joinable, i.e.,
how much they share the same values over the same attributes.

With respect to the content-driven notion of query-driven discovery that
was proposed in [12], our approach also considers metadata (i.e., mappings to
indicators concept in the Knowledge Graph and their formulas) as a support
to reformulate the query and determine which sources can be used to respond.
This helps in reducing the search space by identifying the most semantically
relevant data sources according to the discovery need. The rest of the paper
is structured as follows: in Sect. 2 a case study is introduced that will be used
throughout the paper. Section 3 is devoted to introduce the Semantic Data Lake
model. The approach for source integration is discussed in Sect. 4, while query
answering mechanisms are detailed in Sect. 5. Section 6 discusses an evaluation
of the approach. Finally, Sect. 7 concludes the work and draws future research
lines.
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2 Case Study: Azure COVID-19 Data Lake

In this work we take as example a set of COVID-19 related datasets from the
Microsoft Azure Covid-19 Data Lake [11] and Our World in Data repository:

S1) Bing COVID-19 Data1, which includes confirmed, fatal, and recovered
cases per country/region, updated daily for years 2020–2021.

S2) COVID Tracking Project2, with numbers on tests, confirmed cases, hos-
pitalizations daily from every US state for years 2020–2021.

S3) European Centre for Disease Prevention and Control (ECDC) Covid-19
Cases3, which includes the latest available public data on COVID-19 cases
worldwide from the European Center for Disease Prevention and Control
(ECDC), reported per day and per country for year 2020.

S4) Oxford COVID-19 Government Response Tracker (OxCGRT) [9], which
contains systematic information on measures against COVID-19 taken by
governments, for years 2020–2021.

S5) Open World in Data4, which contains data on the number of people in
hospitals and ICU per day and country, for years 2020–2021.

In Table 1 we summarize relevant detail about the sources, that are derived from
the source metadata provided by the publishers.

Table 1. Details of sources S1-S5.

Source # Rows # Cols Measures Dimensions

S1 3051712 17 confirmed, confirmed_change,
deaths, deaths_change,
recovered, recovered_change

updated, country_region,
admin_region, iso2, iso3,
iso_subdivision

S2 22261 31 positive, negative, death,
recovered, hospitalized_
currently, in_icu_currently,
in_icu_cumulative,
on_ventilator_currently,
on_ventilator_cumulative,
pending

date, iso_country, state,
iso_subdivision

S3 61900 14 cases, deaths date_rep, continent_exp,
countries_and_territories,
iso_country, geo_id,
country_and_territory_code

S4 231192 38 confirmedcases,
confirmeddeaths

countryname, countrycode,
date, ISO_country

S5 28661 8 daily ICU occupancy, daily
ICU occupancy per million,
daily hospital occupancy, daily
hospital occupancy per million

entity, ISO_code, date

1 https://www.bing.com/covid.
2 https://github.com/COVID19Tracking/covid-tracking-data.
3 https://www.ecdc.europa.eu/en/covid-19/data-collection.
4 https://github.com/owid/covid-19-data.

https://www.bing.com/covid
https://github.com/COVID19Tracking/covid-tracking-data
https://www.ecdc.europa.eu/en/covid-19/data-collection
https://github.com/owid/covid-19-data
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3 Semantic Data Lake: Data Model

In this Section, we briefly review the model for a Semantic Data Lake that was
discussed in [4], on top of which the source integration, mapping discovery and
query answering mechanisms will be defined, as discussed in next sections.

We define a Semantic Data Lake as a tuple SDL “ xS,G,K,my, where
S “ {S1, . . . , Sn} is a set of data sources, G “ {G1, . . . , Gn} is the corresponding
set of metadata, K is a Knowledge Graph and m Ď G ˆ K is a mapping function
relating metadata to knowledge concepts. Our approach is agnostic w.r.t. both
the degree of structuredness of the sources, ranging from structured datasets to
semi-structured (e.g., XML, JSON) documents, and the specific DL architecture
at hand, e.g., based on ponds vs. zones (see also [7,15]). If the architecture is
pond-based, in fact, the approach is applied to datasets in a single stage, while
in zone-based DLs the approach can be applied on any stage of the platform,
although it is best suited to the staged area for data exploration/analysis. As
a minimum requirement, we assume a data ingestion process to wrap separate
data sources and load them into a data storage. The model for a Semantic Data
Lake is detailed in the following.

3.1 Metadata Layer

Different typologies of metadata can be related to a resource, depending on how
they are gathered [14]. Hereby, we refer to technical metadata, i.e., related to
data format and, whenever applicable, to their schema. Since the representation
of metadata is highly source-dependent (e.g., the schema definition for a rela-
tional table), a uniform representation of data sources in a metadata layer is
required for the management of a data lake. The procedure to represent tech-
nical metadata of a given source depends on the typology of data source, e.g.,
a relational database has tables with attributes, while XML/JSON documents
include complex/simple elements and their attributes. For each source Sk, meta-
data are represented as a directed graph Gk = xNk, Ak, Ωky, where Nk are nodes,
Ak are edges and Ωk : Ak Ñ Λk is a mapping function s.t. Ωk(a) “ l P Λk is
the label of the edge a P Ak. The graph is built incrementally by a metadata
management system [2], starting from the definition of a node n P Nk for each
metadata element. An edge (nx, ny) P Ak is defined to represent the structural
relation existing between the elements ox, oy, e.g., this corresponds to the rela-
tions between a table and a column of a relational database, or between a JSON
complex object and a simple object. Further details on this modeling approach
are available in [2].
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Fig. 1. Main classes and properties in KPIOnto ontology.

3.2 Knowledge Layer

The knowledge layer of the Semantic Data Lake comprises:

– KPIOnto5 an OWL2-RL ontology aimed to provide the terminology to model
an indicator in terms of description, unit of measurement and mathematical
formula for its computation. The ontology also provides classes and proper-
ties to fully represent multidimensional hierarchies for dimensions (e.g., level
Province rolls up to Country in the Geo dimension) and members. The main
classes and properties, including those aimed at representating a formula in
terms of operands and operator, are shown in Fig. 1.

– a Knowledge Graph K “ xKN ,KA,KΩy, where KN and KA respectively rep-
resent nodes and edges, while KΩ is a mapping function assigning labels to
edges. It provides a representation of the domain knowledge in terms of defini-
tions of indicators, dimension hierarchies and dimension members. Concepts
are represented in RDF as Linked Data according to the KPIOnto ontology,
thus enabling standard graph access and query mechanism.

– Logic Programming rules, which are enacted by a logical reasoner (namely,
XSB6) to automatically provide algebraic services, capable of performing
mathematical manipulation of formulas (e.g., equation solving), which are
exploited to infer all formulas for a given indicator. This functionality is used
to support query answering (see Sect. 5).

Figure 2 shows (a) a fragment of the Knowledge Graph for the case study
representing dimensions Time and Geo with the corresponding levels, and
(b) highlights the mathematical relations among a set of indicators. The full

5 KPIOnto specifications are available at http://w3id.org/kpionto.
6 http://xsb.sourceforge.net/.

http://w3id.org/kpionto
http://xsb.sourceforge.net/
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list of measures defined in the Knowledge Graph is as follows: Positive,
Cumulative_Positive, Negative, Deaths, Cumulative_Deaths, Recovered,
Cases, ICU , Cumulative_ICU , ICU_on_Positive_Rate.

Fig. 2. Case study: (a) dimensions, levels and (b) indicators with their formulas.

4 Integration and Mapping Discovery

This section is aimed to discuss (a) how to identify, given a new data source,
dimensions and measures, and (b) how to properly map them to the Knowledge
Graph. In the following, we refer to data domain as a set of values from a
data source. If the data source is a relation table, a domain can be seen as the
projection of one attribute. Conversely, if the data source is a JSON collection, a
domain is the set of values extracted from all the included documents according
to a given path (e.g., using JSONPath expression). As a result, a data source
corresponds to a set of domains.

Identification of Dimensions. In order to identify whether a given domain
from a data source (e.g., the attribute countryname in S4) and a dimensional
level (e.g., Geo.Country) represent the same concept, a matching step is required.
One of the most widely adopted index for comparing sets is the Jaccard similarity
coefficient, aimed at measuring the similarity between finite sets as the ratio
between their intersection and their union. When sets are skewed, i.e., have very
different cardinality, this index is however biased against the largest one. In such
contexts an asymmetric variant can be used, namely the set containment, that
is independent on the dimension of the second set.

Definition 1 (Set Containment). Given two sets X,Y , the set containment is
given by c(X,Y ) = |XXY |

|X| .
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Given that the cardinality of a domain (without duplicates) is typically much
lower than that of a dimensional level, this index is better suited than Jaccard to
evaluate whether a domain has intersection with a given level7. For this reason,
we rely on set containment in our work. As an example, let us consider a domain
A “ {Rome,Berlin, Paris} and a dimensional level Geo.City including 100
cities in Europe. In this case, c(A,Geo.City) “ 3

3 , meaning that the domain
perfectly matches the dimensional level, while Jaccard(A,Geo.City) “ 3

100 . We
formalize the problem of mapping a domain of a data source to a dimensional
level as a reformulation of the domain search problem [16], which belongs to
the class of R-nearest neighbor search problems. We first give the definition of
relevant dimensional level for a given domain as follows.

Definition 2 (Relevant dimensional levels for a domain). Given a set of dimen-
sional levels L, a domain D, and a threshold t P [0, 1], the set of relevant dimen-
sional levels from L is {X : c(D,X) ě t,X Ď L}.

The number of relevant dimensional level for a domain may be greater than
one, although in practice we are interested in the level with the greatest threshold
t, i.e., the most relevant dimensional level. As an example, the most relevant
dimensional level for domain country_region in data source S1 is Geo.Country,
while for iso_subdivision is Geo.Province_ISO.

Comparing a given domain to a dimensional level involves a linear time com-
plexity in the size of the sets. Given the target scenario, which may include data
sources with hundred of thousands or even millions of tuples, the computation
of the index may often be not scalable in many practical cases. An improvement
discussed in the literature as for the Jaccard index consists in its estimation
using MinHash computation [1], which involves performing the comparison on
their MinHash signatures instead of on the original sets. Given a hash function
h, a domain can be mapped to a corresponding set of integer hash values of the
same length. For a domain X, let hmin(X) be the minimum hash value. Given
two sets X,Y, the probability of their minimum hash values being equal is the
Jaccard index, i.e., P (hmin(X) ““ hmin(Y )) “ J(X,Y ). Since the comparison
can only be true or false, this estimator has a too high variance for a useful esti-
mation of the Jaccard similarity. However, an unbiased estimate can be obtained
by considering a number of hashing functions and averaging results: this is done
by counting the number of equivalences in the corresponding minimum hash
values and dividing by the total number of hash values for a set.

If data sources have high dimensionality, however, pair-wise comparison is
still highly time consuming. In our scenario, for a source with N domains and
M dimensional levels the time complexity is in O(N ∗ M). For such a reason, in
practice MinHash is used with a data structure capable of significantly reducing
the running time, named Locality Sensitivity Hashing (or LSH) [10], a sub-linear
approximate algorithm.

7 Under this assumption, the set containment is equivalent to the overlap (or
Szymkiewicz–Simpson) coefficient, i.e., |XXY |

|min(X,Y )| .
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While the previous approach is targeted to the Jaccard index, an estimation
of the set containment can be obtained through LSH Ensemble [16], which is
proved to be suitable for skewed sets and more performing than alternative
solutions in terms of accuracy and execution time. In our approach, we rely on
LSH Ensemble to obtain the dimensional levels with which a given domain of a
source is estimated to have a containment score above a certain threshold.

Definition 3 (LSH Ensemble). Given a domain D from a data source S, given
a set of dimensional levels L, and a threshold t P [0, 1], LSH_Ensemble is a
function returning the set of relevant dimensional levels for D.

Identification of Measures. In terms of dataset attributes, measures are par-
ticular domains which are purely quantitative. As such, unlike dimensional levels,
a measure belongs to a certain data type but is not constrained to a finite num-
ber of possible values. For this reason, solutions for evaluating domain similarity
through containment such as LSH Ensemble cannot be applied.

In this work we rely on a string-similarity approach, namely LCS (Longest
Common Subsequence) in the comparison of the attribute names of a data source
with the list of measure names in the Knowledge Graph. For each domain, the
measure names that have the highest value of LCS, i.e., that are most similar,
are returned. This is useful to propose only a subset of the measures defined
in the Knowledge Graph to the DL Manager. To make an example, for S2 the
measure in_icu_cumulative is mapped to the Knowledge Graph measure Cumu-
lative_ICU, which is the closest syntactically.

We’d like to note that however a manual revision is ultimately required, as
the recognition can be affected by homonyms and unclear or ambiguous wording
of the domain names. For instance, for S3 the measure cases gets mapped to
the Knowledge Graph measure Cases, but its meaning is different: indeed, by
reviewing the publisher metadata, it is clear that instead it actually accounts
for the number of positive cases. As such, it needs to be mapped to the measure
Positive. More advanced approaches could be considered for this step, including
some based on dictionary, semantic similarity (e.g., [2]) or frequency distribution
and will be discussed in future work.

Representation of Mappings. Given a domain of a data source and the
most relevant dimensional level with respect to a given threshold, the domain is
mapped to the corresponding level in the Knowledge Graph.

Definition 4 (Set of mappings). Let K be the Knowledge Graph, GS be a meta-
data graph for a source S, D Ď S be a domain, L P L be the most relevant
dimensional level for D, the mapping between D and L is defined as a tuple
m=(nD, nL, c(D,L)). The set of mappings MGS

includes all mappings for dimen-
sions in S.

Similarly, given a domain and a related identified measure, a mapping
between the corresponding nodes is created. In the following, we represent by
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DimS the set of dimensional levels available in a source S and by IndS Ď I the
set of measures available in S, where I is the set of indicators defined in K.

5 Query Answering

The mappings defined between the metadata graphs and the Knowledge Graph
are exploited to support query-driven discovery and query answering in the Data
Lake context. This requires to determine what data sources are needed and how
to combine them for a given request. A user query Q is expressed as a tuple
Q “ xind, {L1, . . . , Ln}y, where ind is an indicator and {L1, . . . , Ln} is a set of
levels, each belonging to a different dimension. A data source S has a compatible
dimensional schema with respect to a query if S contains a subset of the levels
in the query.

Definition 5 (Compatible dimensional schemas). Given a data source S, given
a query Q “ xind, {L1, . . . , Ln}y, the dimensional schema of S is compatible with
Q iif DimS Ď {L1, . . . , Ln}.
For all dimensions of the query that are not included in S, the source is assumed
to supply such dimensions at the most aggregate level. For instance, if a query
requires indicator Positive for Country, Day and Age group, data source S2
has a compatible dimensional schema: the missing level Age group is assumed to
be aggregated at the highest level and therefore not reported. A data source can
respond a query if its dimensional schema is compatible and if it provides the
requested indicator. On the other hand, if the indicator is not provided by any
source but it can be calculated from other indicators, a set of data sources may
collectively answer the query if they have a compatible dimensional schema and
provide all the component indicators. In the latter case, the actual calculation
of the indicator requires to join the needed data sources.

Definition 6 (Existence of a solution). Given a query Q “ xind, {L1 . . . , Ln}y
and a set S of data sources, Q has a solution iif: either (1) DSx P S such
that ind P IndSx

^ DimSx
Ď {L1, . . . , Ln}, or (2) D a formula fα “ ind “

f(ind1, . . . , indm) such that @indi (DSi P S such that indi P IndSi
^ DimSi

Ď
{L1, . . . , Ln}).

In the current framework, the derivation of a formula for an indicator relies on
the reasoning services introduced in Sect. 3. A detailed discussion of the working
mechanism for the services is available in [3]. Query answering is aimed to retrieve
a (sorted set of) solution(s) from a user query and involves the following steps,
that are summarized in Algorithm 1:

– (Line 1) the algorithm takes as input the query Q “ xind, {L1, . . . , Ln}y and
an integer k representing the number of solutions to retrieve.

– (Line 2) the find_rewriting(ind,{L1, . . . , Ln}) function is executed, which
returns a formula for ind such that all its component measures
{ind1, . . . , indm} are provided by some data source according to Definition 6,
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and such sources are compatible with the dimensional schema of the query.
For this task, reasoning services are exploited that are capable of manip-
ulating the mathematical relations among indicators to retrieve alternative
rewritings of a formula. The function returns the retrieved formula fα and,
for each component of the formula indi, a set Φi Ď S of sources that provide
indi. In other terms, Φi includes the (alternative) data sources from which
indi can be retrieved.

– (Line 3) the cartesian product of all the sets Φi is computed in order to list all
combinations of data sources that can be used to calculate the formula, where
a combination is a tuple xS1, . . . , Smy. The set Φ’ includes all alternative sets
of sources capable of providing a solution.

– (Lines 4–7) given that more than a single solution may be available, due to
the fact that multiple sources can provide the same measure, sorting them
according to a quality index is needed. Although a set of sources may provide
the needed measures, their join does not necessarily produce a non-empty
result. Here, we refer to the degree of joinability, discussed below, which mea-
sures the likelihood to produce a result out of a join between two (set of)
domains. For each tuple xS1, . . . , Smy in Φ’, a new tuple xx, {S1, . . . , Sn}y is
produced, where x P [0, 1] is the degree of joinability among sets S1, . . . , Sm.

– (Line 8) the set Ψ is sorted in descending order by the degree of joinability.
– Finally, the formula fα and the k-top solutions in Ψsort are returned.

Algorithm 1. Query answering
1: function findsolution(xind, {L1, . . . , Ln}y,k)
2: (fα(ind1, . . . , indm), {Φ1, . . . , Φn})=find_rewriting(ind,{L1, . . . , Ln})
3: Φ’ =

Śn
i“1 Φi

4: Ψ “ H
5: for xS1, . . . , Smy P Φ’ do
6: Ψ Ð compute_joinability({S1, . . . , Sm}, {L1, . . . , Ln})
7: end for
8: Ψsort Ð sort(Ψ)
9: return xfα, Ψsort,ky

10: end function

In the following, we discuss the degree of joinability index and the procedure
for its computation. Two sources are joinable if they have the same values for
domains that are mapped to the same dimensional levels. To check this condition,
the corresponding domains should be compared in order to determine how many
values are shared between the sources through set containment. However, a full
comparison is not practical in a Data Lake scenario. For this reason, we resort to
the LSH Ensemble to provide an estimated evaluation of the joinability of two
data sources. Typical use of LSH Ensemble is based on single join attribute at a
time (similarity between sets), while in our case the match needs to be performed
on sets of dimensional levels. Hence, we apply a combination function (e.g., a
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concatenation of strings) to the domains that represent the dimensional levels, in
order to map them onto a single domain before applying the hashing function.
To give an example, if the query requires levels Geo.Country and Time.Day,
the hash will be calculated on the concatenation of domains country_region +
updated for source S1 (a possible value is “Italy 2020-11-30”). Such “combined
MinHashes” corresponding to concatenated domains for each source are precom-
puted during the integration and mapping step and stored in order to speed up
the query answering.

Finally, as summarized by Algorithm 2 (lines 3–7), the degree of joinability
is iteratively calculated by executing the LSH_Ensemble for each pair of data
sources (Si, Si+1) (line 4) and considering the product of the obtained values
(line 6). Given that the containment is an asymmetric index, we consider the
application of LSH_Ensemble in both directions (from source i to source i + 1
and vice versa, according to the semantics of an inner join) and check for the
highest threshold t (line 5). The search of such a threshold is done through
binary search.

Algorithm 2. Computing degree of joinability
1: function computeDegreeOfJoinabilityScore({S1, . . . , Sm}, {L1, . . . , Lm})
2: MH Ð retrieve_combined_MinHashes({S1, . . . , Sm}, {L1, . . . , Lm})
3: joinability = 1
4: for i=1..n-1 do
5: get the highest t such that max of |LSHEnsemble(MHi, MHi+1)| and

|LSHEnsemble(MHi+1, MHi)| is > 0
6: joinability “ joinability ∗ t
7: end for
8: return xj, {S1, . . . Sm}y
9: end function

6 Evaluation

An evaluation of the approach on the case study is proposed here. Tests have been
carried out on an Intel Core i5-1135G7, 8 cores @ 2.40GHz, x86_64 architecture,
with 8 GB RAM running Linux Fedora 34. A single-thread implementation of
the approach has been used, relying on the Python library datasketch 1.5.7 [18]
for the implementation of MinHash and LSH Ensemble and on pandas 1.3.3 for
manipulation of data structures.

Integration and Mapping Discovery. A preliminary setup of the Knowledge
Graph for the Data Lake has been performed by defining dimensional levels and
measures. Members of levels have been defined programmatically from available
online resources (e.g., list of countries and corresponding ISO alpha 2 and alpha
3 codes8). For any loaded data source, initialization includes computation of
8 https://gist.github.com/tadast/8827699.

https://gist.github.com/tadast/8827699
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MinHashes for any domain, mapping with the dimensional levels and precom-
putation of the combined MinHashes for domains mapped to dimensional levels.
For LSH Ensemble we set the number of hashing permutations to 256 and num-
ber of parts to 32. We report the average and the total execution time in Table 2
and some of the mappings in Table 3. Domains are processed in less than 1.6 s
on average.

Table 2. Case study: execution time for MinHash generation and mapping.

S1 S2 S3 S4 S5

Hashing computation Avg [s] 1.654 0.050 0.005 0.009 0.075
Total [s] 28.125 1.557 0.076 0.376 0.375

Mapping to
dimensional levels

Avg [s] <0.001 <0.001 <0.001 <0.001 <0.001

Total [s] 0.006 0.012 0.011 0.033 0.003

Precomputation of
dimensional MinHashes
for querying

Total [s] 21.235 0.151 0.423 1.610 0.918

Table 3. The set of Knowledge Graph levels and measures which source domains are
mapped to.

Source K levels K measures
S1 Time.Day, Geo.Country Positive, Recovered, Deaths
S2 Time.Day, Geo.Province ICU, Positive, Negative, Recovered, Deaths
S3 Time.Day, Geo.Country Positive, Deaths
S4 Time.Day, Geo.Country Cumulative_Positive, Cumulative_Deaths
S5 Time.Day, Geo.Country ICU, Cumulative_ICU

Query Answering. Let us assume the user is interested in analysing measures
Positive and ICU_on_positives_rate at Geo.Country and Time.Day levels. As
for the first measure, the find_rewriting returns (Positive, {{S1}, {S3}}). In
this case, no join is needed as the measure is directly available from multiple
sources.

As for the second measure, the function returns ( ICU
Positives , {{S5}, {S1, S3}}).

Combination of sources are produced and two alternative solutions are combining
S5 with either S1 or S3. They are checked for joinability as follows:

– S5,S1: the degree of joinability is 0.78, with a query time equal to 3.109 s;
– S5,S3: the degree of joinability is 0.31, with a query time equal to 3.283 s.

As a result, the solution (S5,S1) is preferred over (S5,S3). This is motivated by
the fact that S5 and S1 include data for both years 2020 and 2021, while S3
includes data only on year 2020. Therefore, the degree of joinability of S3 is
lower than that of S1, as the former shares a smaller subset of data with S5.
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Discussion. The approach proposed in [16] requires, for a given query, a number
of set containment evaluations increasing linearly with the number of sources. On
the other hand, the present approach enables to reduce such a number to only the
relevant sources (2 in the example) by performing a preliminary evaluation based
on formula rewriting. In general, by considering M measures and N sources, the
approach requires a number of evaluations equal to N

M , on average. If indicators
are not available at the requested dimensional schema, decomposing indicators in
components requires a further number of evaluations. By considering an average
number s of dependencies per indicator and a number l of hierarchical levels in
the formula graph, the overall number of components to check for an indicator
can analytically be estimated as (1 +

řl
i“1 si)M

N , e.g., for M= 200, N = 10000,
s = 3, l= 2, corresponding to average formula graphs for real-world frameworks
of indicators, the number of evaluations amounts to 500.

7 Conclusion

This paper has introduced a knowledge-based approach for analytic query-driven
discovery in a Data Lake, which is characterized by the formal representation of
indicators’ formulas and efficient mechanisms for source integration and mapping
discovery. Starting from a query, which is expressed ontologically as a measure
of interest and relevant analysis dimensions, the framework determines the set of
sources that are capable of collectively responding, by exploiting math-aware rea-
soning on indicator formulas. A quantitative evaluation of the result, in terms of
joinability of sources, is provided through the degree of joinability index. Future
work will be devoted to individuate real case studies for extensive evaluation
and to extend the approach towards interesting research directions. In partic-
ular, the degree of joinability could be adapted to evaluate the completeness
of a data source with respect to the Knowledge Graph concepts. This would
enable to determine the scope of a source and paves the way for an efficient
evaluation of the overlapping or complementarity among sources, and possible
more efficient indexing approaches. Merging capabilities could also be beneficial
to find unionable sources and hence to vertically integrate data providing the
same measures. Finally, dynamic calculation of indicators can be envisaged for a
variety of analytical tasks, including interactive data exploration or navigation
[17].
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