
ORTree: Tuning Diversified Similarity
Queries by Means of Data Partitioning

João Victor de Oliveira Novaes1(B) , Lúcio Fernandes Dutra Santos2 ,
Agma Juci Machado Traina1 , and Caetano Traina Jr.1

1 Institute of Mathematics and Computer Sciences, University of São Paulo,
São Carlos, SP 13566-590, Brazil

novaes.jvo@usp.br, {agma,caetano}@icmc.usp.br
2 Federal Institute of Technology of North of Minas Gerais, Montes Claros,

MG 39404-058, Brazil
lucio.santos@ifnmg.edu.br

Abstract. As modern applications gather more and more data, the data
types also become more complex. Traditional retrieval operations based
on identity and order comparisons are not suitable for those types. Instead,
similarity operators are much more interesting for querying complex data
and are gaining increasing attention. Similarity queries retrieve the ele-
ments most similar to a query center but, they tend to return elements that
are very similar to others in the result set, reducing users’ interest in the
answer. To overcome this problem, researchers have considered incorpo-
rating a diversity degree in the similarity operators. Unfortunately, diver-
sified similarity queries are computationally expensive, as they need to
assess the relationship between each pair of elements in the result. Several
works in the literature present techniques to speed up diversity in similar-
ity queries, but they are either not scalable or only consider the diversity
property. In this paper, we propose an index data structure, called the
Omni-Range Tree (ORTree), that partitions the query space into a small
subset of similar elements to a query element and prospect representative
candidates aiming at dispatch diversified similarity queries. Our experi-
mental evaluation shows that our index structure can reduce the query
execution by time up to 95% without harming the quality of the results
concerning other literature methods.

Keywords: Diversified similarity queries · Metric spaces indexing ·
Pivot-based space partitioning

1 Introduction

With the evolution of data acquisition and of the applications domains employing
Database Management Systems (DBMS), it has become needed to store and
retrieve more complex data, such as images, audio, videos, and long texts. Classic

FAPESP (grants No. 2016/17078-0, 2020/07200-9), CAPES (grant 001) and CNPq.

c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, LNCS 13389, pp. 165–178, 2022.
https://doi.org/10.1007/978-3-031-15740-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15740-0_13&domain=pdf
http://orcid.org/0000-0001-6883-9230
http://orcid.org/0000-0002-0495-4763
http://orcid.org/0000-0003-4929-7258
http://orcid.org/0000-0002-6625-6047
https://doi.org/10.1007/978-3-031-15740-0_13

166 J. V. de Oliveira Novaes et al.

comparisons performed by current DBMSs are mainly based on identity and
order relationships, which are not adequate for complex data. On the other
hand, similarity queries are the information process that evaluates a element
given by the user, called the query center (sq), and retrieves of a set of elements
that are alike, but not equal, to the reference element (sq) [9,10].

The metric space model [8] is an efficient approach for handling similarity
queries, in which data elements are mapped into a known domain where they
are compared by a distance function (δ) to assess how similar are the elements,
assuming that smaller distances correspond greater similarity among elements.
The two most useful similarity retrieval operators are the similarity range (Rq)
and the k -nearest neighbor (kNNq) queries. A range query retrieves the ele-
ments from the dataset that are farther apart than a radius (r) from the query
center sq. A k -nearest neighbors query retrieves the k elements most similar
to sq. However, when similarity criteria are applied to large datasets with high
cardinality and density, they tend to lose expressiveness and, consequently, qual-
ity. A major semantic-driven problem related to increasing data volume is that
the similarity query operators are unable to filter the result set elements similar
to each other [4]. The problem with too similar objects in result sets is that
they can mislead users to believe that the database does not store the required
information [4,9,11,14].

Several researchers have considered including diversity in query results, aim-
ing at returning elements that are both similar to the query center and diverse
from each other. Several diversification strategies can be found in the literature.
They are classified as based on coverage or on novelty (also called as distance-
similarity) [9]. The former return elements enforcing a dissimilarity threshold,
returning only elements that respect a given distance between them. In this
approach, the goal is to find elements that cover different information. The later
search for elements that maximize a double criteria objective function, where
similarity and diversity are balanced according to a user’s defined preference
parameter. Their goal is to find elements that are not redundant with the ele-
ments already found [4,14,16]. Depending on the data domain, one approach
may be more suitable than the others although are important for result diversi-
fication. This work focuses on novelty-based diversification approaches.

Searches for diversified similarity are intrinsically costlier than searches seek-
ing only similarity. This is due to two facts: more elements need to be loaded and
compared, and each candidate needs to be compared not only to the query center
but also to the other elements already in the answer. Novelty-based algorithms
usually consider diversification as an NP-Hard optimization problem [4,14], but
an exact solution is not usually obtained in a feasible time. An alternative to
reduce computational costs relies either on heuristics or on metaheuristics [10].
However, both algorithms have scalability problems. The most common app-
roach [11,14,15] is to select a subset of candidates to be processed by the diver-
sification algorithms. However, not only the execution time but also the answer
quality is directly impacted on how such selection is performed [11,15]. One
of the most impacting problem of these approaches occurs when elements that

ORTree: Tuning Diversified Similarity Queries 167

do not maximize the objective function are selected. This often happens when
applied approaches focus only on diversity [5,15].

In this work we present a strategy and corresponding algorithms to speed
up similarity with diversity based on novelty. We seamlessly integrated an index
structure with candidate selection methods to allow selecting elements consider-
ing both similarity and diversity. Our main contributions are: (i) An index struc-
ture that partitions the search space considering the distance among elements.
(ii) Two algorithms to speed up similarity with diversity query algorithms to
be employed in conjunction with our structure.

The remainder of this paper is organized as follows. Section 2 presents related
works and basic concepts. Section 3 presents our proposal for space partitioning
and selecting elements. Section 4 presents the evaluation environment and the
results obtained. Finally, Sect. 5 presents our conclusions.

2 Background

Here we present related index structures and existing works, which allows parti-
tioning elements of the dataset to perform similarity queries efficiently and foster
obtaining diversified results.

2.1 Range-Tree

The Range-Tree (RT) [3,15] aims at quickly find the elements contained within the
range of the query. It partitions the dataset considering the full range of values in
every dimension. Figure 1a illustrates a RT storing a two-dimensional data, where
the range of the first dimension spans from 0 to 2. In this structure, the root stores
all elements within the range of the first dimension. The other non-leaf (interme-
diate) nodes store the partitions generated by the subranges of the root. To handle
spaces with dimensionality greater than one, each node has a child pointing to a
subrange tree that partitions the elements in the next dimension. During a search,
whenever a node within the range of the current dimension is found, a search in
the next dimension is performed, until there are no more dimensions to search. A
d-dimensional range query Rdr is expressed as a sub-range for each dimension of
the dataset, such as Rdr = {xinit, xfinish, yinit, yfinish}1. The time complexity to
query a RT is O(logd(n)) and its space complexity is O(n logd(n)), where d is the
dataset dimensionality and n is its cardinality.

2.2 MAM - Omni-Technique

A similarity query can be executed by a sequential scan, where every element is
compared to the query center sq. However, calculating every distance slow down
the process, due to the high computational cost of similarity calculations. To

1 Notice that a Rdr correspond to elements within a sequence of values in each d-
Dimension, thus it is distinct from a similarity range query Rq.

168 J. V. de Oliveira Novaes et al.

speed up the queries, many Metric Access Methods (MAM) were proposed to
store and efficiently retrieve data based on the Metric Spaces properties, which
allow reducing the number of similarity comparisons [8,13]. Among the several
well-known structures we highlight those based on the Omni-Technique [13].

Given a dataset with a fractal dimension D, the Omni-Technique is a pivot-
based indexing approach that assumes that �D� is the ideal cardinality for a set
of pivots P employed to accelerate query execution. The omni-technique aims
at pre-computing the distances of every element to every pivot. The distances
are called the omni-coordinates of each data element and they are employed
to reduce the number of distance comparisons during a query execution. The
process has two steps: filter and refine. During the filtering step, the omni-
coordinates of the query center sq is calculated and the triangular inequality
property is used to find the regions that contain the query results, which can
include false positives. The refinement step removes the false positives and gen-
erates the final answer.

The omni-coordinates generate a new search space, more compact than the
original one. Thus, they can be used both as an indexing and a dimensional-
ity reduction strategy. We take into account both benefits for developing our
proposed method, as described in Sect. 3.

2.3 The Diversity Problem

A diversified similarity query can be defined as an optimization problem that
looks for elements R that are both similar to the query center but also diverse
from each other. This goal can be expressed as a double-criteria objective func-
tion that targets to maximize similarity and diversity, as follows. Given a dataset
S, a query element sq, an integer k, a function δSim that measures how similar
each element si is from sq, and a function δdiv that measures how diverse two
elements are, the diversification problem can be expressed as [9,11,14]:

R = argmax(F(sq, R)),∀R ⊆ S : |R| = k, (1)

F(sq, R) = (1−λ)·
k∑

i=0

δsim(sq, ri)+
2λ

(k − 1)

k−1∑

i=1

k∑

j=i+1

δdiv(ri, rj) : ri, rj ∈ R (2)

Parameter λ[0, 1] defines how much diversity the user expects. When λ = 0,
the problem is reduced to a kNNq. When λ > 0, the problem becomes NP-Hard
with time complexity O(nk) (where n = |S|), as it must evaluate every subset
R(|R| = k) to find the one with the largest F .

Several approximate algorithms have been proposed to generate a good query
answer in a feasible time, some executing in O(n2) time. However, even consid-
ering this complexity reduction, they still can take a long time to get an answer.
Thus, approximate algorithms typically have two phases: Candidate selection
and Diversification. The candidate selection phase extracts a subset S′ with car-
dinality m = |S′| << |S|. In this way, the search space is reduced to m = |S′|.
In the diversification phase, a similarity with diversity algorithm is applied to
the set of candidates S′ [9,11,14].

ORTree: Tuning Diversified Similarity Queries 169

2.4 Diversity Algorithms

One of the first and best-known diveristy algorithm in the literature is the Max-
imal Marginal Relevance (MMR) [2]. An element is marginally more important
if it is as similar to the query element as it is diverse from the elements already
inserted in the answer set. Thereafter, other elements that maximize the MMR
function are incrementally inserted. The time complexity of MMR is O(kn),
however, other algorithms can generate better results.

The Greedy Marginal Contribution (GMC) [14] is an incremental algorithm
that basically follows the same steps of MMR but uses another objective func-
tion, the maximum marginal contribution (MMC). The MMC function evaluates
the contribution of the element si ∈ S considering the similarity between si and
sq, the diversity between si and the elements already in R and the diversity
between si and the elements of the candidate set S′ that are not yet in R.

The Greedy Randomized with Neighbor Expansion (GNE) [14] is based on
the GRASP meta-heuristic (Greedy Randomized Adaptive Search Procedure).
The GNE can be divided in two phases: construction and local search. In the
construction phase, the algorithm iteratively generates an initial solution to max-
imize MMC. In the local search phase, the algorithm improves the initial solution,
looking for a higher quality solution in the neighborhood of the current solution.
If no better solution is found, the current one is returned.

The Max-Sum Dispersion (MSD) [7] algorithm incrementally builds the
answer R, selecting the pair of elements that maximizes the objective func-
tion. Basically, at each iteration it chooses two elements si and sj ∈ S that are
both similar to sq and different from each other. For cases where k is odd, MSD
randomly chooses the last element to be inserted.

GMC, GNE, and MSD are capable of generating better results than MMR.
However, their time complexity are O(n2), which makes the process of analyzing
many elements even longer [11,14].

2.5 Candidate Selection

Several approaches to select/filter elements were developed to improve efficiency
whereas also finding good answers. The most common use a similarity search
(kNNq or Rq) to return the subset S′ with the m elements closest to sq, but
other candidate selection strategies have been considered too [5,11,14,15].

For example, in [11] were conducted an evaluation of distinct filter approaches
combined to novelty algorithm, in which RDI standed out. RDI, returns m
elements using the concept of Result Diversification based on Influence [12].
Although very fast, it is based on a method that does not guarantee that the
selected elements actually maximize the objective function (F). Another point is
that RDI does not restrict the search space, so it is not uncommon that the entire
dataset is analyzed, which can sometimes make the selection process slower than
other approaches.

A modification of the algorithm for the Cover-Tree construction [1] was pre-
sented in [5], which here we call CT, aiming at efficiently find diversified sets

170 J. V. de Oliveira Novaes et al.

Fig. 1. Two-dimensional Range Tree and the process of candidate selection to partition
the search space using one pivot. (a) Each node in the first dimension leads to another
Range Tree in the second dimension. (b) Range query defined by Rq(sq, r). (c) The
query range is partitioned (dotted line), generating two subranges. (d) Considering the
generated partition, a candidate selection approach is applied on each partition. The
elements selected from each partition are joined for the diversity algorithm.

in data streams. The proposed algorithm transforms each level of the Cover
Tree into a possible solution for a diversification heuristic. Following up, several
search algorithms were proposed, one of them returns the k elements contained
in one of the upper nodes of the Cover Tree, which can be quickly obtained.
However, the proposed algorithm builds the tree considering only the diversity
between the elements. Furthermore, the construction algorithm has complexity
O(n2), which makes the whole process as expensive as the algorithms previously
presented.

The RC-Index [15] selects candidates using two data structures: a Range Tree
and a Cover Tree. The Range Tree partitions the dataset and, for each partition,
creates a corresponding cover tree. Thereafter, given a search range, the cover
trees within the query range are used to extract a subset of candidates. The can-
didates are extracted in a way similar to the CT approach, the main difference
being that, given a level (Lk) that contains k elements, the candidates at some
lower level are returned: by default, three levels below Lk. However, this app-
roach is ineffective for high-dimensional datasets, since its building complexity
is O(γ6logd+1(n)), in addition, its space complexity is the same as the Range
Tree: O(n logd(n)).

The next section presents a novel structure which, as the RC-Index, partition
the search space also using a Range Tree, but coupled to the Omni-technique
to reduce the space complexity, which allows a much faster similarity query
execution. Distinctly from RC-Index, we also present an algorithm to convert a
similarity range query into a distance range query, which can be executed in an
RT.

3 Methodology

Here we propose an efficient method to answer diversified similarity queries,
based on two concepts: Spatial partition and Candidate selection. The first aims
at partitioning the data into small subsets, so that the elements in each subset

ORTree: Tuning Diversified Similarity Queries 171

are similar to each other and the cost of selecting diversified candidate elements
is as small as possible. The second concept aims at quickly selecting the ele-
ments from each subset that can maximize both similarity and diversity. To
partition the dataset, our approach extends the Range Tree with the Omni tech-
niques, creating the Omni-Range Tree (the ORTree). It partitions the dataset
using omni-coordinates, which improves the similarity range query (Rq) effi-
ciency. Moreover, as the amount of evaluated omni-coordinates is defined by the
fractal dimension (D) of the dataset, it almost always reduces the data dimen-
sionality too and, consequently, redux the structure time and space complexity.
The Range Tree is employed due to its low query complexity of O(logD(n)).

Building a ORTree is very similar to build a RT, but instead of the original
attributes, the omni-coordinates are used. Algorithm 1 show the process for
building a ORTree. After choosing the pivots, the omni-coordinates of every
element are calculated (lines 1–8) in time complexity of O(n), generating a D-
dimensional space. Thereafter, a RT is built as follows. The elements are sorted
following the first dimension and inserted into the root node (lines 9–10). At this
point, the elements are partitioned into two subsets considering the median of the
first dimension of the omni-coordinates array. Next, the ‘left’ and ‘right’ children
are built recursively for the current dimension (lines 16–17) and the ‘next’ child
for the next dimension (lines 18–20), repeating recursively until there are no
more dimensions.

Algorithm 1. Building the ORTree
Input: Set of pivot elements P, δ a metric distance function and the dataset S.
Output: ORTree.

1: OS ← ∅ � set of omni-coordinates

2: for ∀ si ∈ S do
3: Osi ← ∅
4: for ∀ p ∈ P do

5: coord ← δ(si, p) � coordinate
corresponding to p.

6: Osi ← Osi ∪ coord
7: end for
8: OS ← OS ∪ Osi

9: end for
10: Sort(OS , 0)

11: ORTree.root = Construct(OS , 0)

12: return ORTree

13: function Construct(set, dim)
14: if set.size == 0 then

15: return NULL

16: end if
17: node.left = Construct(left, dim)

18: node.right = Construct(right, dim)
19: dim = dim + 1
20: Sort(set, dim)

21: node.next = Construct(set, dim)
22: return node

23: end function

Given a Rq(sq, r), the ORTree retrieves the nodes that store elements within
the query range. To obtain the RDr range, the following steps are executed. The
omni-coordinates of sq and then the ranges for each dimension are generated,
defining the search range r as the omni-coordinate of sq (its distance to each

172 J. V. de Oliveira Novaes et al.

pivot): range : {Osqi − r,Osqi + r}. The same procedure is applied to all other
dimensions. Given the ranges, the query finds and returns the nodes contained
within the ranges. The distances from sq to each element in nodes is calculated
and only those within r are returned: δ(sq, si) ≤ r. Our approach is able to
support both the k − NNq and Rq similarity queries, but here we are going to
focus on Rq.

Aiming at achieving a selection of better candidates than those provided by
other methods in the literature, we took into account the data structure pro-
vided by ORTree to create a novel process that allows a more efficient selection
of candidates, maintaining a quality equivalent to the other approaches. Our
method uses the nodes retrieved by an ORTree to extract a set of m elements
from each node within the range defined by Rq(sq, r). Thus, we use the partitions
generated by a ORTree to quickly select the candidate elements.

Figure 1 illustrates our strategy. Initially, a range query is performed using
the ORTree (Fig. 1b), then, considering that the returned elements will be in
different nodes (partitions) (Fig. 1c), we apply, at each node, an algorithm to
select m different elements. The selected elements are joined to form the final
candidate set, which is passed to the diversifying algorithm (Fig. 1d). One of the
main advantages of this approach is that the number of comparisons tends to be
much smaller, speeding up the selection algorithm. Based on this principle, we
developed two methods(RT MMR and RT RDI), based on different algorithms,
which can select the candidates, that are both similar to sq and diverse from
others.

The Range Tree MMR (RT MMR) aims at using MMR to select the candi-
dates. It is faster than any of the GMC, GNE, and MSD algorithms, although, it
follows the same diversification strategy, allowing for select elements considering
the diversity preference (λ). When using MMR, it is expected that the elements
selected from each node, be in smaller quantity than it would originally be, but
with equivalent diversity.

The Range Tree RDI (RT RDI) seeks the candidate considering the
influence-based diversification approach. As it is coverage-based, this approach
tends to be very faster than MMR. However, this approach tends to analyze
more elements than the previous approaches and therefore may be slower. To
get around this problem, we use this approach on each of the nodes returned by
ORTree, allowing reducing the number of comparisons between the elements, and
thus making the selection faster. Unlike the original approach that may analyze
the full dataset, our approach reduces the search space to at most Rq(sq, r).

Every approach selects m elements from each node (or all elements when the
node has less than m elements), so the number of elements returned from each
node is expected to be much less than the original amount. Consequently, the
number of elements selected by the approaches tends to be smaller than that
defined by the Rq(sq, r) approach.

ORTree: Tuning Diversified Similarity Queries 173

4 Experiments

We performed several experiments to validate our proposal and evaluate whether
the execution of the diversity algorithms were indeed faster and whether the
quality of the results remains equivalent when compared to the base algorithms
from the literature. Three datasets were selected for this purpose: US cities,
NASA [6] and Corel2. The datasets were selected to evaluate the behavior of
the proposed approaches, exploiting data with different cardinalities and dimen-
sionalities, mainly in relation to the fractal dimension, which impacts the con-
struction and querying times. From each dataset, 50 elements were randomly
selected to be used as queries centers following a hold-out strategy. Table 1 sum-
marizes the information about each dataset and the query parameters. We define
the query range (r) so that the number of elements analyzed in each dataset is
approximately the same.

Table 1. Datasets statistics.

Dataset |S| d D Pivot
number

δsim/δdiv Range Elements
retrieved

Dataset description

US Cities 25,374 2 1.62 2 L2 {2.0, 4.0} {560, 1860} Geographic coordinates of
American cities

Nasa 40,150 20 2.63 3 L2 {0.6, 0.7} {716, 1514} Feature vectors generated
from NASA images

Corel 20,000 9 4.8 5 L2 {1.9, 2.3} {680, 1572} Feature vectors generated
from common images

We compared the results of ORTree with the following approaches from the
literature: Rq, RC-Index and CT. Rq uses all elements returned by Rq(sq, r). To
ensure that the elements returned are within the same range, the RC-Index was
implemented using the ORTree instead of the original Range Tree. CT is built
using the results of a Rq(sq, r) performed over the ORTree.

For each experiment, the following values were used as query parameters
for the similarity with diversity queries (in bold are the default values): λ =
{0.3,0.5, 0.7} and k = {10,20, 30}. For the RT MMR and RT RDI approaches,
we define by default that the number of elements to be selected from each ORTree
node is the number of elements to be returned by the query, thus m = k.

4.1 Index Creation Time

Figure 2 shows the ORTree creation time compared to the RC-Index. Figure 2(a),
shows the time for US Cities and Nasa datasets. While Fig. 2(b) shows the
creation time for the Corel dataset when we vary the number of pivots (1–
5). Both figures show that the RC-Index has a much higher construction cost
2 Sample extract from https://archive.ics.uci.edu/ml/datasets/corel+image+features,

accessed at: 06/05/2022.

https://archive.ics.uci.edu/ml/datasets/corel+image+features

174 J. V. de Oliveira Novaes et al.

Fig. 2. ORTree and RC-Index build time in log scale for the US Cities, Nasa and Corel
dataset. (a) Time for US Cities and Nasa. (b) Time for Corel dataset, with varying
number of pivots.

than the ORTree. This is due to the difference in the complexity and the larger
number of distance calculations performed by the RC-Index. It is also much
slower than the ORTree, following the time complexity of O(γ6nlogd+1(n)) >
O(nlogd(n)). Furthermore, the ORTree construction does not depend on distance
calculations, whereas the RC-Index builds a cover tree, which requires several
distance calculations, to build each node of the range tree, which greatly increases
the execution time.

4.2 Quality Experiments

For each approach, the queries were performed using the GMC, GNE and MSD
algorithms. Figure 3 shows the values returned by the objective function (Eq. 2)
of each approach and algorithm. The Fig. 3 (a, b and c) show the search results
for each of the algorithms using the US Cities dataset for range = 4, Fig. 3 (d,
e and f) show the results for Corel dataset with range = 2.4 and, Fig. 3 (g, h
and i) show the results for Nasa dataset with range = 0.7.

To the US Cities dataset, several approaches ties when λ = 0.3, but CT
proved to be inferior to the other approaches. For λ = 0.5, all approaches are
practically tied, except CT that achieves better results, for the GMC and GNE
algorithms, including those generated by the traditional approach Rq. For λ =
0.7, we have a tie between the RT MMR, Rq, and RC-Index approaches, the
other approaches achieve lower results, with RT RDI being better than CT. For
the Corel dataset, again, many approaches tie, with CT achieving the worst
results. For λ = 0.5, all approaches tie, and CT achieves better results for the
GMC and GNE algorithms, but worse results for the MSD which is the best
result in this case. At λ = 0.7 all approaches tie, except CT which achieves the
worst results in both algorithms. In the Nasa dataset, for λ = 0.3, all approaches
have very similar results, with CT showing lower results. For λ = 0.5, there is a
tie between the approaches, making it difficult to point out an approach that is
better in all cases. At λ = 0.7, the RT MMR, Rq, and RC-Index approaches tie

ORTree: Tuning Diversified Similarity Queries 175

Fig. 3. Quality results according to the diversity objective function (F), for dataset
US Cities (a, b and c) with r = 4, Corel (d, e and f) with r = 2.3 and Nasa (g, h and
i) with r = 0.7

Fig. 4. Number of elements retrieved. (a) Number of elements for dataset US Cities
with r = 4. (b) Number of elements for dataset Corel with r = 2.3. (c) Number of
elements for Nasa dataset with r = 0.7

in the results achieved, RT RDI and CT achieve inferior results, with CT being
the worst approach between the two.

In some datasets, the CT approach was able to generate better results than
the traditional approach. In this case, the candidate selection process is likely to
remove some solutions that are local optimal. Therefore, the candidate selection

176 J. V. de Oliveira Novaes et al.

process can not only reduce the execution time of the algorithms but also provide
higher quality. However, candidate selection can also remove optimal solutions.
Therefore, the RT RDI and CT approaches to achieve better results in some
cases and worse in others. This situation did not happen with the RT MMR and
RC-Index approaches, they remain equivalent to Rq.

4.3 Number of Elements Retrieved

Figure 4 shows the average number of candidates selected by each approach.
Figure 4a show the results for dataset US Cities, Fig. 4b show the results for
Corel dataset and Fig. 4c show the results for dataset Nasa. Rq always select the
fixed number of elements, defined by a parameter. For all datasets, the number
of candidates returned by our approaches (RT MMR and RT RDI), like the RC-
Index, grows as k grows. However, in every case, our approaches retrieve fewer
elements than Rq and RC-Index. For the US Cities dataset (Fig. 4a), RT MMR
and RT RDI always retrieve less than 30% of the elements from Rq. The RC-
Index, on the other hand, retrieves around 50% fewer elements but as k grows,
this value drops by approximately 80%. For the Corel dataset (Fig. 4b), the
results are similar, with our approaches retrieving 57% fewer elements. How-
ever, RC-Index retrieves almost the same amount of elements as Rq, (discussed
later). The Nasa dataset exhibits the same behavior of the other datasets, with
RT MMR and RT RDI recovering less than 25% of the elements in relation
to Rq, while RC-Index recovers closely the same amount. In all datasets, CT
retrieves fewer elements because it always returns k elements.

Regarding the number of candidates returned by the RC-Index, because of
the strategy of selecting the three-level elements below the cover trees (Sect. 2),
number of elements is always greater than k. Also, depending on the distribution
of the data, going down three levels may be enough to select all elements of the
node. Another point that contributes to this situation is that the more pivots,
the more partitions in the search space, which implies fewer elements per node in
the ORTree (and RT). However, this situation does not happen with RT MMR,
and RT RDI as they always return k or fewer elements from each node.

4.4 Query Time Evaluation

Figure 5 shows the execution time of the query algorithms using the proposed
approaches. The figures show respectively the run-time for US Cities (a and b),
Corel (c and d) and NASA (e and f) datasets. The execution time using Rq and
RC-Index tends to be longer than the execution time of every other approach,
which is expected, due to the number of elements retrieved. In some cases, the
RC-Index has a slightly higher cost than Rq, this happens because the RC-
Index performs more operations and retrieves more or less the same number of
elements as Rq. In all graphs, it is possible to see that RT RDI is by far the
fastest approach, followed by RT MMR and CT approaches.

Figure 5 (a and b), shows that both RT MMR and RT RDI are faster than Rq,
RC-Index, and CT. RC-Index is faster than Rq and CT faster than both. Figure 5

ORTree: Tuning Diversified Similarity Queries 177

Fig. 5. Query time in log scale. (a - b) US Cities, r ∈ {2, 4}. (c - d) Corel, r ∈ {1.9, 2.3}.
(e - f) Nasa , r ∈ {0.6, 0.7}.

(c and d), shows that the results are similar to the previous figures, except that
RC-Index has the same execution time as Rq, and in some cases (Fig. 5c), CT
turns out to be faster than RT MMR. In this case, the smallest amount of can-
didates compensate for the quadratic CT construction time. Finally, Fig. 5 (e and
f), show that the execution time of RC-Index can be longer than that of Rq. For
the other approaches, the results are as before, RT RDI being the fastest, followed
by RT MMR and CT, with RT MMR being many times faster.

The results show that RT MMR and RT RDI are by far the fastest
approaches. regarding the Nasa dataset, the approaches are, respectively, 95%
and 97% faster than the traditional approach (Rq).

5 Conclusions and Future Work

In this work, we present the ORTree, a new indexing structure based on the
Range Tree and on the Omni-Technique, which allows performing diversified
similarity queries much faster without reducing the quality of the answers. Along
with this novel framework, we presented two approaches that use the ORTree to
efficiently select candidates for the diversification process. Our experiments show
that the proposed approaches can significantly reduce the number of elements
that are analyzed in the process of diversification. Consequently, the query time
was significantly reduced, in some cases being 95% faster. In addition, the quality
results show that even reducing the number of candidate elements, the quality
of the results remains equivalent to the traditional approach. Because of this,
the experiments shows that ORTree is the best candidate selection approach for
the analyzed aspects.

178 J. V. de Oliveira Novaes et al.

As a future work, we plan to develop new candidate selection approaches that
use the ORTree and to develop alternative approaches for large search spaces.
We also plan to extend the presented approaches, which are based on a similarity
range query, to also handle the k -nearest neighbor queries.

References

1. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd International Conference on Machine Learning. pp. 97–
104. ACM, New York, NY, USA (2006)

2. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reorder-
ing documents and producing summaries. In: Proceedings of the 21st SIGIR. pp.
335–336. ACM (1998)

3. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry, pp. 1–17. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
540-77974-2

4. Drosou, M., Jagadish, H., Pitoura, E., Stoyanovich, J.: Diversity in big data: a
review. Big Data 5(2), 73–84 (2017)

5. Drosou, M., Pitoura, E.: Diverse set selection over dynamic data. IEEE Trans.
Knowl. Data Eng. 26(5), 1102–1116 (2014)

6. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007). http://www.
sisap.org/Metric Space Library.html

7. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:
WWW2009, pp. 381–390 (2009)

8. Hetland, M.L.: The basic principles of metric indexing. In: Coello, C.A.C., Dehuri,
S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Min-
ing. Studies in Computational Intelligence, vol. 242, pp. 199–232. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03625-5 9

9. Novaes, J.V.O., et al.: J-EDA: a workbench for tuning similarity and diversity
search parameters in content-based image retrieval. J. Inf. Data Manag. 12 (2021)

10. Lopes, C.R., Santos, L.F.D., Jasbick, D.L., de Oliveira, D., Bedo, M.: An empir-
ical assessment of quality metrics for diversified similarity searching. J. Inf. Data
Manag. 12(3) (2021)

11. Santos, L.F.D., Oliveira, W.D., Carvalho, L.O., Ferreira, M.R.P., Traina, A.J.M.,
Traina, C.: Combine-and-conquer: improving the diversity in similarity search
through influence sampling, Proceedings of the 30th SAC, pp. 994–999 (2015)

12. Santos, L.F.D., Oliveira, W.D., Ferreira, M.R.P., Traina, A.J.M., Traina, C.:
Parameter-free and domain-independent similarity search with diversity. In: Pro-
ceedings of the 25th SSDBM. ACM, New York, NY, USA (2013)

13. Traina, C., Filho, R.F., Traina, A.J., Vieira, M.R., Faloutsos, C.: The Omni-family
of all-purpose access methods: a simple and effective way to make similarity search
more efficient. VLDB J.l 16(4), 483–505 (2007)

14. Vieira, M.R., et al.: On query result diversification. In: Proceedings of the 27th
ICDE, 11–16 April 2011, Hannover, Germany, pp. 1163–1174. IEEE (2011)

15. Wang, Y., Meliou, A., Miklau, G.: RCIndex: diversifying answers to range queries.
Proc. VLDB Endow. 11(7), 773–786 (2018)

16. Zheng, K., Wang, H., Qi, Z., Li, J., Gao, H.: A survey of query result diversification.
Knowl. Inf. Syst. 51(1), 1–36 (2016). https://doi.org/10.1007/s10115-016-0990-4

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
http://www.sisap.org/Metric_Space_Library.html
http://www.sisap.org/Metric_Space_Library.html
https://doi.org/10.1007/978-3-642-03625-5_9
https://doi.org/10.1007/s10115-016-0990-4

	ORTree: Tuning Diversified Similarity Queries by Means of Data Partitioning
	1 Introduction
	2 Background
	2.1 Range-Tree
	2.2 MAM - Omni-Technique
	2.3 The Diversity Problem
	2.4 Diversity Algorithms
	2.5 Candidate Selection

	3 Methodology
	4 Experiments
	4.1 Index Creation Time
	4.2 Quality Experiments
	4.3 Number of Elements Retrieved
	4.4 Query Time Evaluation

	5 Conclusions and Future Work
	References

