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Preface

This year ADBIS – the European Conference on Advances in Databases and
Information Systems – celebrated its 26th anniversary.

The first ADBIS conference was held in Saint Petersburg, Russia (1997). Since then,
ADBIS has taken place annually, with previous editions held in Poznan, Poland (1998);
Maribor, Slovenia (1999); Prague, Czech Republic (2000); Vilnius, Lithuania (2001);
Bratislava, Slovakia (2002); Dresden, Germany (2003); Budapest, Hungary (2004);
Tallinn, Estonia (2005); Thessaloniki, Greece (2006); Varna, Bulgaria (2007); Pori,
Finland (2008); Riga, Latvia (2009); Novi Sad, Serbia (2010); Vienna, Austria (2011);
Poznan, Poland (2012); Genoa, Italy (2013); Ohrid, North Macedonia (2014); Poitiers,
France (2015); Prague, Czech Republic (2016); Nicosia, Cyprus (2017); Budapest,
Hungary (2018); Bled, Slovenia (2019); Lyon, France (2020); and Tartu, Estonia (2021).

The official ADBIS portal – http://adbis.eu – provides up to date information on
all ADBIS conferences, committees, publications, and issues related to the ADBIS
community.

The 26th ADBIS conference was held in Turin, Italy, during September 5–8, 2022,
as a hybrid event. It received significant attention from both the research and industrial
communities, as 90 papers were submitted to the conference. In total, 280 authors
from 32 different countries submitted their research contributions to ADBIS 2022. The
submitted papers had, on average, 3.1 authors each, and most of them were the outcome
of international cooperation. The papers were reviewed by an international Program
Committee (PC) consisting of 85 members.

The Program Committee selected 23 regular research papers for inclusion in this
volume (an acceptance rate of 25%). The selected papers span a wide spectrum of
topics related to the ADBIS conference from different areas of research in database
and information systems, including graph processing, time series and data streams, data
quality, OLAP, advanced querying, performance, and machine learning. The Program
Committee also selected 28 short papers (an acceptance rate of 42%), which were
included in CCIS, volume 1652.

ADBIS 2022 featured the following four keynote speakers:

– Sihem Amer-Yahia (CNRS, University of Grenoble Alpes, France) - AI-Powered
Data-driven Education

– Daniele Quercia (King’s College London and Nokia Bell Labs, UK) - Insider Stories:
Analyzing Stress, Depression, and StaffWelfare at Major US Companies fromOnline
Reviews

– Carlo Curino (Microsoft, USA) - Tensor Query Processing: Neural Network $$ to
speed up Databases and Classical ML!

http://adbis.eu
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– Bruno Lepri (Bruno Kessler Foundation, Italy) - Understanding and rewiring cities
and societies: a computational social science perspective

ADBIS 2022 was also accompanied by the following tutorials:

– Mirjana Ivanović (University of Novi Sad, Serbia) - AI approaches in processing and
using data in personalized medicine

– Rosa Meo (University of Turin, Italy) - Explainable, Interpretable, Trustworthy,
Responsible, Ethical, Fair, Verifiable AI... What’s Next?

– Johann Gamper (Free University of Bozen-Bolzano) - What’s New in Temporal
Databases?

– Stefano Rizzi (University of Bologna, Italy) - OLAP and NoSQL: Happily Ever After

Thanks to the reputation of ADBIS, selected best papers of ADBIS 2022 will be
invited for a special issue of the following Q1 journals: Information Systems (Elsevier)
and Information Systems Frontiers (Springer). Therefore, the PC chairs would like to
express their sincere gratitude to the Information Systems Editors-in-Chief: Dennis
Shasha, Gottfried Vossen, and Matthias Weidlich, as well as the Information Systems
Frontiers Editors-in-Chief: Ram Ramesh and H. Raghav Rao, for their approval of these
special issues.

Finally, we would like to thank everyone who contributed to ADBIS 2022:

– the authors for submitting their research papers to the conference;
– the keynote speakers and tutorial presenters who honored uswith their insightful talks;
– members of the Program Committee and external reviewers for dedicating their time
and expertise to build the conference program;

– members of the ADBIS Steering Committee for their trust and support, and especially
its chair Yannis Manolopoulos;

– all members of the Organizing Committee; and
– our partners:

• Politecnico di Torino for hosting and supporting the event;
• the Department of Control and Computer Engineering and the SmartData center at
Politecnico di Torino for supporting the event; and

• Springer for publishing the proceedings and constant support for the conference
over years.

The ADBIS 2022 Organizing Committee supported diversity and inclusion by
offering some grants, supporting a few researchers to participate in the conference
and become part of the ADBIS community. All grants were assigned based on the
underrepresented community, gender, and role/position. The grants included:

– two free regular registrations, assigned to researchers from Argentina and Brazil,
– three regular registration fee discounts of 200 Euros, assigned to researchers from
Estonia, Lebanon, and Italy, and



Preface vii

– four regular registration fee discounts of 150 Euros, assigned to researchers from
Croatia, France, and Italy.

July 2022 Silvia Chiusano
Tania Cerquitelli
Robert Wrembel
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Mirjana Ivanović University of Novi Sad, Serbia
Marite Kirikova Riga Technical University, Latvia
Manuk Manukyan Yerevan State University, Armenia
Raimundas Matulevicius University of Tartu, Estonia
Tadeusz Morzy Poznan University of Technology, Poland
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Boris Novikov National Research University, Higher School of

Economics, Saint Petersburg, Russia
George Papadopoulos University of Cyprus, Cyprus
Jaroslav Pokorný Charles University in Prague, Czech Republic
Oscar Romero Polytechnic University of Catalonia -

BarcelonaTech, Spain
Sergey Stupnikov Russian Academy of Sciences, Russia
Bernhard Thalheim University of Kiel, Germany
Goce Trajcevski Iowa State University, USA
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Miloš Radovanović University of Novi Sad, Serbia
Franck Ravat University of Toulouse, France
Stefano Rizzi University of Bologna, Italy
Oscar Romero Polytechnic University of Catalonia, Spain
Gunter Saake University of Magdeburg, Germany
Kai-Uwe Sattler TU Ilmenau, Germany
Milos Savic University of Novi Sad, Serbia
Claudia Steinberger University of Klagenfurt, Austria
Sergey Stupnikov Russian Academy of Sciences, Russia
Bernhard Thalheim University of Kiel, Germany
Goce Trajcevski Iowa State University, USA
Raquel Trillo-Lado University of Zaragoza, Spain
Genoveva Vargas Solar CNRS, LIRIS, France



Organization xiii

Goran Velinov Ss. Cyril and Methodius University,
North Macedonia

Peter Vojtas Charles University in Prague, Czech Republic
Isabelle Wattiau ESSEC and Cnam, France
Marek Wojciechowski Poznan University of Technology, Poland
Vladimir Zadorozhny University of Pittsburgh, USA
Ester Zumpano University of Calabria, Italy

Additional Reviewers

Stylianos Argyrou
Paul Blockhaus
Miroslav Blšták
Andrea Brunello
Gabriel Campero Durand
Andrea Chiorrini
Francesco Del Buono
Chiara Forresi
Marco Franceschetti
Matteo Francia
Verena Geist

Joseph Giovanelli
Nicolas Labroche
Christos Mettouris
Simone Monaco
Federico Motta
Uchechukwu Njoku
Thomas Photiadis
Matúš Pikuliak
Nicola Saccomanno
Vladimir A. Shekhovtsov
Emanuele Storti



Abstracts of the Keynote Talks



Toward AI-Powered Data-Driven Education

Sihem Amer-Yahia

CNRS, Univ. Grenoble Alpes, France

Abstract. Educational platforms are increasingly becoming AI-driven.
Besides providing a wide range of course filtering options, personal-
ized recommendations of learning material and teachers are driving
today’s research. While accuracy plays a major role in evaluating those
recommendations, many factors must be considered including learner
retention, throughput, upskilling ability, equality of learning opportu-
nities, and satisfaction. This creates a tension between learner-centered
and platform-centered approaches. I will describe research at the intersec-
tion of data-driven recommendations and education theory. This includes
multi-objective algorithms that leverage collaboration and affinity in peer
learning, studying the impact of learning strategies on platforms and
people, and automating the generation of sequences of courses. I will end
the talk with a discussion of the central role data management systems
could play in enabling holistic educational experiences.



Insider Stories: Analyzing Stress, Depression, and Staff
Welfare at Major US Companies from Online Reviews

Daniele Quercia

King’s College London, and Nokia Bell Labs in Cambridge, UK

Abstract. We mined 440K company reviews published during twelve
successive years on GlassDoor, and developed state-of-the-art deep-
learning frameworks to accurately extract mentions of:

1. Stress [1, 2]. There are two types of stress: distress refers to harmful
stimuli, while eustress refers to healthy, euphoric stimuli that create
a sense of fulfillment and achievement. Telling the two types of
stress apart is challenging, let alone quantifying their impact across
corporations. We scored each company to be either a low stress,
passive, negative stress, or positive stress company. We found that
(former) employees of positive stress companies tended to describe
high-growth and collaborative workplaces in their reviews, and that
such companies’ stock evaluations grew, on average, 5.1 times in 10
years (2009–2019) as opposed to the companies of the other three
stress types that grew, on average, 3.7 times in the same time period.
We also found that the four stress scores aggregated every year –
from 2008 to 2020 – closely followed the unemployment rate in the
U.S.: a year of positive stress (2008) was rapidly followed by several
years of negative stress (2009–2015), which peaked during the Great
Recession (2009–2011).

2. Internal Sustainability Efforts (ISEs) [3], which reflect whether
a company supports gender equality, diversity, and general staff
welfare.Commitment to ISEsmanifested itself not only atmicro-level
(companies scoring high in ISEs enjoyed high stock growth) but also
at macro-level (states hosting these companies were economically
wealthy and equal, and attracted the so-called creative class).

References

1. Pressure Test: Good Stress for Company Success. https://arxiv.org/abs/2107.12362
2. Sen, I., et al.: Depression at Work: Exploring Depression in Major US Companies
from Online Reviews. In: Proceedings of the ACM on Human-Computer Interaction,
2022

3. Insider Stories: Analyzing Internal Sustainability Efforts of Major US Companies
from Online Reviews. https://arxiv.org/abs/2205.01217

https://arxiv.org/abs/2107.12362
https://arxiv.org/abs/2205.01217


Tensor Query Processing: Neural Network $$ to speed
up Databases and Classical ML!

Carlo Curino

Microsoft, USA

Abstract. Massive market interest in AI has driven unprecedented
investments in Special HW and runtimes for Neural Networks. Tensor
computations are emerging as the de-facto API for all these special HW
and runtimes. In this talk, we show how we can automatically transform
and optimize relational queries and Classical ML pipelines into tensor
computations, and run on special hardware. Interestingly the performance
we obtain significantly outperform classical systems and even custom-
build GPU DBMSs. At the same time, this approach retains very low
engineering costs, thanks to a minute code footprint (<10 k LoC) and
free portability—as we piggyback on tensor runtimes getting ported to
all the new HW coming out. We conclude touching on further research
directions that emerge once both queries and ML models are uniformly
represented as tensors computations.



Understanding and Rewiring Cities and Societies:
A Computational Social Science Perspective

Bruno Lepri

Bruno Kessler Foundation, Italy

Abstract. The almost universal adoption of mobile phones, the exponen-
tial growth in the usage of Internet services and social media platforms,
and the proliferation of digital payment systems, wearable devices, and
connected objects has led to the existence of unprecedented amounts
of data about human behavior. Thus, we live in an unprecedented his-
toric moment where the availability of vast amounts of behavioral data,
combined with advances in machine learning, are enabling us to build
predictive computational models of human behavior. In my talk, I will
show examples of how those computational models of human behavior
can be used to better understand and to design more efficient companies,
cities, and societies, For example, I will present some works where we
have leveragedmobile phone data, credit card transactions, Google Street
View images, and social media data in order (i) to infer how vital and liv-
able a city is, (ii) to find the urban conditions that magnify and influence
urban life, (iii) to study their relationship with societal outcomes such as
urban crime and segregation, and (iv) to model the impact of migrations
and pandemic shocks such as COVID-19, etc. Finally, I will also discuss
key human-centric requirements for a positive disruption of these novel
approaches including a fundamental renegotiation of user-centric data
ownership and management, the development of tools and participatory
infrastructures towards increased algorithmic transparency and account-
ability, and the creation of living labs for experimenting and co-creating
data-driven policies.
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Keynote Talk and Tutorials



Understanding and Rewiring Cities

Bruno Lepri(B), Simone Centellegher, and Marco De Nadai

Fondazione Bruno Kessler, Trento, Italy
{lepri,centellegher,denadai}@fbk.eu

Abstract. Nowadays, the ever increasing digitization of our societies
is producing an unprecedented amount of data about human behavior.
At the same time, advances in machine learning and complex systems
enable us to build explanatory and/or predictive computational mod-
els of human behavior. Interestingly, these data and models can also be
used to better understand the factors associated with specific neighbor-
hoods’ outcomes such as vitality, safety perception, crime levels, inno-
vation, segregation, traffic congestion, etc., and to design more efficient
policymakers’ interventions. In particular, leveraging census data, mobile
phone traces, information from OpenStreetMap, and street view images,
we describe a set of studies where we (i) infer how vital and livable a
city is; (ii) find urban appearance conditions that magnify and influence
urban life; (iii) study the relationship of urban conditions with soci-
etal outcomes such as urban crime levels; and (iv) model the impact
of pandemic shocks such as COVID-19 and related non-pharmaceutical
interventions on human behavior.

1 Introduction

Cities have always played an essential role for innovation, economic prosperity
and diversity [1]. Quantitative evidence from many empirical studies points to
an acceleration of economic and social life with the population size of cities [2].
More specifically, these gains apply to a wide variety of quantities, including
gross domestic product (GDP), wages, patents, violent crime, the spreading of
contagious diseases, and the number of human interactions [3–6].

Supposedly, this acceleration is linked to the ability of human beings of learn-
ing from each other [7,8]. Indeed, cities foster this greatest talent to flourish by
supplying diverse high quality amenities and places where to meet each other
and socialize [9], and access to people with different background and skills [10].

However, these empirical studies on the acceleration of emergent phenomena
such as economic output, innovation, crime, etc. [3–5] have considered cities as a
whole, thus neglecting the evidence that extremely diverse neighborhoods coex-
ist within the same city. Instead, several studies in urban demography and urban
sociology have shown that cities have always been economically and ethnically
spatially segregated [11–16], as well as unevenly affected by crime (e.g., crime
hotspots), etc. [17,18]. Until recently, however, empirical studies and advance-
ments on these neighborhood-level differences were limited due to the high cost
c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, LNCS 13389, pp. 3–10, 2022.
https://doi.org/10.1007/978-3-031-15740-0_1
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of census and surveys’ data. For this reason, the digitization of our societies and
the resulting explosion of data sources (e.g., mobile phones, social media, credit
card transactions, etc.) and analytical methods and tools have started to deeply
revolutionize the study of cities [19,20]. In particular, nowadays we can passively
observe and even predict many aspects of human mobility and social behavior
and interactions in cities [20,21].

Here, we describe our approach of studying neighborhoods’ characteristics
and their relationship with people behaviors combining novel sources of auto-
matically collected data (e.g., data on the presence of Point Of Interests from
OpenStreetMap, street view images, mobile phone traces, etc.) and a mixture
of methodologies ranging from more traditional statistical models to machine
learning and complex systems’ approaches. The proposed methodological app-
roach and the variety of obtained results are relevant to researchers within a
broad range of fields, from urban computing, computational social science, and
complex systems to urban-planning, urban sociology and criminology, as well as
to policymakers.

2 Neighborhoods’ Characteristics and Urban Vitality

According to the urban activist Jane Jacobs, in her most influential book “The
Death and Life of Great American Cities” [22], there exist four conditions that
promote life in a city: (i) mixed land uses, for which districts should provide mul-
tiple primary functions to attract people for different purposes; (ii) small blocks,
to promote contacts between people; (iii) buildings diversity (age and form), to
mix high-rent and low-rent tenants; and (iv) sufficient dense concentration of
people and buildings.

Exploiting the large amount of data collected from mobile phones as well as
census data and data from OpenStreetMap (OSM) [23], we were able to empiri-
cally test these conditions, overcoming the extensive difficulties in collecting data
for entire cities (previously collected with surveys). In particular, we used mobile
phone data to extract information for urban vitality, and census data and data
from OpenStreetMap to compute proxies of urban diversity, as per Jacobs’s four
conditions, in six Italian cities (i.e., Bologna, Florence, Milan, Palermo, Rome,
and Turin).

Our results suggest that Jacobs’s four conditions for maintaining a vital
urban life hold for Italian cities despite different structural and socio-economic
conditions from the American cities originally described by Jacobs. We also find
that vibrant Italian districts have a dense concentration of office workers, third
places (e.g., restaurants, pubs, general stores) within walking distance, smaller
streets, and historical buildings.

The findings, the developed methodology and the variety of structural fea-
tures, closely linked to district activity, could be used by municipalities and
regulators to assess the vitality of a neighborhood. Moreover, the methodology
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explained in [23] could be used to monitor and quantify regulatory interventions
and potentially provide suggestions for missing structural features in a particular
neighborhood.

3 How Safety Perception Influences Vitality

In her book, Jane Jacobs has also introduced the natural surveillance hypoth-
esis [22], which suggests that citizens can contribute to maintaining the safety
of their neighbourhoods through a continued natural and informal surveillance.
However, Jacobs argued that neighbourhoods and buildings need certain physi-
cal qualities to support natural surveillance, such as well-lit streets and buildings
with street-facing windows. Jacobs’ idea that the physical quality of a neighbour-
hood can enhance its safety was later expanded by Oscar Newman’s defensible
space theory [24]. The defensible space theory expands on the idea of natural
surveillance by suggesting that neighbours will be more likely to protect an area
when clear physical demarcations are separating what is considered public and
private property [22,24]. Examples of architectural markers of defensible space
are archways in the entrance of building complexes or staircases in the entrance
of townhouses. These archways and staircases serve an aesthetic purpose and sig-
nal the boundary between a city’s public space and the private and semi-private
spaces that neighbours are expected to watch and defend.

In our work [25], we investigate whether safer-looking neighbourhoods are
more likely to experience more human activity and therefore experience more
natural surveillance. Using mobile phone data as a proxy for human activity for
the cities of Rome and Milan, and scores of perceived safety, estimated using a
well-known Convolutional Neural Network (AlexNet [26]) trained on a ground-
truth dataset of Google Street View images scored using a crowdsourced safety
visual perception survey1, we find that (i) safer-looking neighbourhoods are more
active than what is expected from their population density, employee density,
and distance to the city centre; and (ii) there exist a positive correlation between
safety appearance and human activity for females and people over 50 years old,
and a negative correlation for people under 30 years old. This suggests that
safety perception depends on the demographic of the population.

The neural network allowed us also to identify and understand the urban
features that contribute to the safe appearance of a neighbourhood. To do so,
we occlude a portion of the images in input to the Convolutional Neural Network
and compute how the safety prediction changes depending on the part occluded.

Through this approach, we find that greenery and street-facing windows con-
tribute to a positive appearance of safety (in agreement with Oscar Newman’s
defensible space theory [24]). Our results suggest that urban appearance mod-
ulates levels of human activity and, consequently, a neighbourhood’s rate of
natural surveillance [25].

1 http://pulse.media.mit.edu.

http://pulse.media.mit.edu
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4 The Interplay of Neighborhoods’ Socio-Economic
Conditions, Urban Environment, People Behaviors,
and Crime

As seen in the previous section, natural surveillance, namely the mechanisms
by which residents can contribute to maintaining the safety of their neighbour-
hoods, finds its roots in urban planning, where specific aspects of urban physical
characteristics [22,24] are related to urban security. In this work [27], we inves-
tigate which factors are at play with urban crime, particularly how crime levels
are associated with some aspects of social disorganization, the characteristics of
built environment, and the mobility routines of people. We are not interested
in predicting crime, mainly looking at the few places with the highest number
of crimes (i.e., crime hotspots), but in shedding light on the diverse factors at
play with urban crime. Previous studies focused on just a subset of static factors
at a time in a single city. This limits our understanding of the complex urban
interplay between crime, people, places, culture and human mobility. We address
the need for a comprehensive study that explores crime theories across multi-
ple cities of the world, analyzing the cities of Bogotá, Boston, Los Angeles and
Chicago. The four cities differ in cultural, economic, historical and geographical
aspects.

Using data sources such as mobile phone records and OpenStreetMap (OSM),
we have developed a Bayesian hierarchical model that considers proxy variables
for the social disorganization theory (i.e., economic disadvantage, ethnic hetero-
geneity, and residential stability) [28,29], the built environment and the mobility
routines of people. Taking this into account, we extract social disorganization
variables from census data, we compute proxies for the built environment (e.g.,
land use mix, small blocks, building mix, building density, Walkscore, etc.) from
both census and geographical data, while proxies of human mobility are extracted
from mobile phone traces.

We found that the neighborhoods’ built environment characteristics affect
crime, which can be instrumental, especially in cities where census variables are
challenging to collect. Moreover, we have compared two alternative and almost
static definitions of neighbourhood effect: the social disorganization theory and
the Jane Jacobs’ theory on urban vitality conditions. Then, we modelled them
jointly with the dynamics of people extracted from mobile phone data and we
showed that the best description of crime requires modelling the socio-economic
conditions, the built environment and the people mobility all together.

Given the cultural and historical differences between the four analyzed cities,
our analysis shows a great variability of results, and there is not a model that
“fits it all” that can learn from one city and can be used to easily study crime
in another city.

The resulting framework is potentially reproducible at scale and could be
used to analyze crime in different cities. In addition, one could use the insights
to make recommendations for policies and initiatives that could be the most
effective in improving urban citizens’ security.
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5 The Impact of COVID-19 Pandemic on Human
Behavior

As we have seen in the previous sections, leveraging mobile phone data enable
us to study several aspects of cities such as their vitality, safety and criminality.
In [30] we leverage longitudinal GPS mobility data of hundreds of thousands
of anonymous individuals to empirically show and quantify the dramatic dis-
ruption in people’s mobility habits and social behavior due to the diffusion of
the COVID-19 pandemic and to the enacted non-pharmaceutical interventions
(NPIs) such as physical distancing mandates, closures of business venues, stay-
at-home orders, etc.

In order to process raw GPS data and to give them a semantic meaning,
we have computed stop locations defined as places where a person stays for at
least 5 min. within a distance of 65 meters [30]. Moreover, when possible we
associate each stop location to the nearest Point of Interest (POI), extracted
from OpenStreetMap (OSM), where a POI represents a public location that
people use for business or recreational activities.

With this data source, we have explored and characterized individuals’ mobil-
ity trajectories and we have shown how individuals changed their patterns of vis-
its, their routine behaviors and their person-to-person contact activity over time.
During the COVID-19 pandemic, individuals dramatically reduced the number
of visits to POIs, which only partially recovered the pre-pandemic levels, while
the duration of visits to POIs remained, after NPI’s relaxation, significantly
shorter than in the pre-pandemic period. This finding suggests that people were
less willing to spend time in POIs, reasonably to minimise social contacts in
public venues. The reductions in the number of visits are also heterogeneous.
POIs categories such as Arts & Entertainment and Nightlife Spot were severely
impacted by the pandemic. Even inside the Shop & Service there were differ-
ences, where essential shops such as supermarkets faced a lower reduction in the
number of visits than the non-essential shops.

By only looking at aggregated mobility, we have just a partial view of changes
in human behavior during the pandemic. To better understand the complexity
of the individuals’ mobility changes, we focused our attention on mobility motifs
and routines that characterize the chronological sequence of where an individ-
ual goes.

We first transform the individual’s chronological sequence of visits to places
into a sequence of symbols (e.g., Food, Residential, Workplace) and then apply
the Sequitur algorithm [31] to generate a hierarchical compressed representa-
tion of the original sequence. Overall, human routines during the COVID-19
pandemic got shorter and more predictable with respect to the pre-pandemic
period. Moreover, the dramatic change in people’s behavior also emerges from
the similarity between the characteristic routine of different individuals. Apply-
ing agglomerative hierarchical clustering [32] of routines before and during the
pandemic, we observe that clusters became larger, which means that mobility
routines simplify and people’s behavior gets more homogeneous. For example,
by inspecting the everyday routines in the two biggest clusters, we observe that
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individuals limit their mobility to Residential ↔ Residential, Residential ↔
Shops & Services and Shops & Services ↔ Shops & Services routines.

Finally, we have also observed a risk adaptation factor, which increases the
people’s mobility over time regardless of the stringency of non-pharmaceutical
interventions.

In sum, our results show that the policy interventions and people strategies to
minimize the risk of infection have profoundly reshaped individuals’ routines and
habits, changing how they experience places and social interactions during the
pandemic. These findings should inform policymakers in designing interventions
to support individuals and commercial activities that experienced the major
disruption during the pandemic.

6 Looking Ahead

As we have seen in our studies described above, the life of a city and of its neigh-
borhoods is deeply associated with the urban structure and the urban appear-
ance. However, it is still unclear how to design neighborhoods to become more
vital and safer, to reduce traffic congestion, to be resilient to disruptive shocks
such as a pandemic and the related policy restrictions, etc. A possible direction
to explore is resorting to the usage of Generative Adversarial Networks (GANs)
[33]. GANs have been successfully applied in computer vision for transferring
style from an image to another [34], for image super-resolution [35], or to learn
the mapping between different visual domains [36]. Interestingly, novel GAN
architectures that use land use constraints, satellite imagery and/or street view
images can be adopted to generate realistic conditioned urban images where
a given attribute has to satisfy a specific value. More precisely, this sketched
approach could generate a new image that modifies some specific information
(e.g., the presence of a given building or of a set of buildings, the presence of
parks, etc.) conditioned to some constraints (e.g., lowering crime levels, enhanc-
ing attractiveness, etc.).

A similar tool, based on a GAN-framework, may help policymakers and cit-
izens to anticipate the consequences of urban changes as well as it may suggest
to urban planners the specific intervention which would produce the desired
change to a specific attribute (e.g., lowering traffic congestion, increasing safety
perception, etc.)
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Abstract. Nowadays, more and more people suffer from serious diseases and
doctors and patients need sophisticated medical and health support. Accordingly,
prominent health stakeholders have recognized the importance of development
of such services to make patients’ life easier. Such support requires the collec-
tion of patients’ complex data. Holistic patient’s data must be properly aggre-
gated, processed, analyzed, and presented to the doctors/caregivers to recommend
adequate treatment and actions to improve patient’s health related parameters.
Advanced artificial intelligence techniques offer the opportunity to analyze such
big data, consume them, and derive new knowledge to support (personalized)
medical decisions. New approaches like those based on advanced machine/deep
learning, federated learning, transfer learning, explainable artificial intelligence
open new paths for more quality use of health and medical data in future. In
this paper, we will present some crucial aspects and examples of application of
artificial intelligence approaches in (personalized) medical decisions.

Keywords: Artificial intelligence ·Machine learning · Personalised medicine ·
Cancer treatment · Quality of life parameters

1 Introduction

We are witnesses of more and more sick population and it is necessary to take care of
development of sophisticated multi-disciplinary approaches for medical diagnoses and
treatments [7, 21]. Consequently, development of helpful medical services is getting
crucial traction in medical innovation. The importance of improvements of patients’
health related quality of life (QoL) parameters are also widely recognized in thera-
pies and follow-ups of serious diseases survivors. Cancer patients experience a serious
disruption of QoL parameters (fatigue, pain, psychological difficulties, appetite loss,
sexual problems and so on). Additionally, they experience also “usual” problems like
the majority of the population (anxiety, stress, sleep disorders, and so on) during active
oncological treatment period.
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To support the development of sophisticated software services that can help patients
to successfully cope with everyday activities it is necessary to find ways to collect and
properly integrate wide spectra of complex patient data (apart from traditional clinical
data also data collected from smart wearable devices, nutritional data, and so on). Health-
related data should be aggregated in such forms that obtain adequate, useful, and reliable
conclusions after processing. Results achieved after data processing should be presented
to the doctors/clinicians in understandable and friendly form [7].

Modern, emergent approaches in collecting, processing, and analyzing patient’s data
support more appropriate interventions, and usually more tailored and personalized
treatments [4, 10]. In this paper we will present the current state-of the-art in devel-
oping medical and clinical platforms, discuss crucial aspects and functionalities, and
present characteristic examples of applications of artificial intelligence approaches in
(personalized) medical decisions [23, 24].

The rest of the paper is organized as follows. In Sect. 2, different sources of patients’
medical and health-related big data are briefly discussed. Section 3 considers some
emergent artificial intelligence approaches that support quality medical decisions. char-
acteristic medical decision support systems are presented in Sect. 4. Concluding remarks
and future trends in processing big medical data are pointed out in the last section.

2 Different Sources of Patients’ Medical Big Data - Collection
and Processing

Electronic Health Record (EHR) is usually seen as basic source of information for any
patient. It keeps data of several important aspects of a patient (like clinical information,
diagnoses, medication, …). For more reliable follow-ups of patient’s health, it is neces-
sary to consider also other data sources and in modern medical data processing they also
can include so called Patient Health Record (PHR). A PHR usually contains the same (or
similar) kinds of information as an EHR but it is managed by patient. For better analysis
and use of all information collected for a patient it is necessary to combine them but also
if possible, to incorporate patient’s data from other diverse and multiple sources. For
example, the CrowdHEALTH project [5] is oriented to the combination of patient’s data
from various sources to benefit from community knowledge and form Holistic Health
Record (HHR). As a result of this project an integrated holistic platform is developed
and it incorporates big data management mechanisms to support the logical pipeline of
data management: acquisition, cleaning, integration, modelling, analysis, information
extraction and interpretation [13].

Further improvement steps are oriented towards advanced approaches based on the
integration of HHR and Social HHR (SHR). HHR as an extension of EHR usually
contains data like physical activity, nutrition, environmental conditions, information
collected fromvariety of sensors, social care information, and so on. SHRcovers patient’s
aspects of social life and usually contains information about different social aspects and
activities like: relationships, particular events, experiences, etc..

After identifying and considering different patient’s data sources the next step in
medical systems/platforms/frameworks is to find adequate ways and techniques to better
acquire, manage, model, and process this data in order to achieve as much as possible,
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high-quality outcomes and results. Such result, based on huge amounts of data, should
be exploited and presented in a user friendly way to doctors/clinicians, caregivers, or
even to patients. The main intention in such systems is to try to achieve satisfactory level
of tailored decisions to achieving better patient’s QoL parameters.

Another interesting approach oriented towards use of complex patient’s data and
processing it by application of modern AI/ML approaches is developing under BD4QoL
project [2]. The focus in the project is on implementation of a personalized management
of head and neck cancer survivorship by providing doctors and survivors with an unob-
trusive, privacy compliant, real-time monitoring. Such complex supportive environment
should offer personalized interventions based on integration of Big Data-driven AI algo-
rithms and models. Patient’s traditional health data will be integrated with data collected
from mobile and wearable devices for real-time assessment of patient’s QoL.

Measuring cancer patient’s QoL is about understanding the impact of cancer and how
well people are living after their diagnosis and treatment. This includes a wide range of
concerns, such as people’s emotional or social wellbeing, finances, and ongoing physical
problems, such as tiredness, sleep disorders, and pain.

We can conclude that there is trend in medical decision support systems to integrate
“traditional” medical and health data sources with novel ones that include data from
smart and wearable devices, IoT and sensors generated data, open data, environmental
data, etc. Integration of multiscale/multimodal big health data is a challenging task in
intelligent big data processing. Heterogeneous data should be aggregated in such a way
to enable to generate meaningful conclusions to be presented to doctors in user friendly
way.

The rapid development of information communication technologies, applications of
IoT and pervasive smart environments in our everyday life promotes the frequent use of
different smart wearable devices for monitoring and measuring some health parameters
[8]. Constant improvements and development of such devices impose that they should
satisfy specific requirements. So, for standard healthcare intervention 5 main features of
wearable devices are detected in [16] to ease data collection: “(1) wireless mobility; (2)
interactivity and intelligence; (3) sustainability and durability; (4) simple operation and
miniaturization; and (5) wearability and portability.”

If we concentrate on cancer patients, then it is evident that in several last decades
the number of cancer survivors are increasing. Thus, there is a need to develop med-
ical systems with tailored, personalized services that will help in improving patients’
QoL parameters. So, it is important to include in patient’s medical records their per-
sonal experiences. So, in contemporary medical decision support systems a number of
questionnaires/tools to measure cancer patient’s individual views of his/her health sta-
tus should be considered. PROMs (Patient Reported Outcome Measures) and PREMs
(Patient Reported Experience Measures) are widely used to check patient’s perceptions
from two aspects: health and experiences after receiving treatment/care. TheQoL param-
eters are getting very important for cancer survivors. Therefore, the research activities
should be oriented towards obtaining reliable and early predictors and QoL parame-
ters over time, and improve treatment decisions and follow-up strategies. Medical sys-
tems/platforms/frameworks should support the utilization of big HHR and datasets,
powerful AI/ML approaches that facilitate the integration of QoL instruments (like



14 M. Ivanovic et al.

PROMs and PREMs), implementation of a user-centered communication interface, and
personalized support.

Modern societies are getting more and more “smart”. Smart environments equipped
with sensors, mobile and wearable intelligent device have a potential to positively influ-
ence patient’s QoL. Especially, wearable devices play an important primary role to
establish and maintain a connection between patients and doctors which offers a great
potential to support the quality of medical treatment and recommendations. Additionally
acquired complex data generated in smart environments andwithwearable devices offers
numerous opportunities in medicine and healthcare for the development of more pow-
erful mobile health applications [18] or the development of complex IoT sensing-based
health monitoring systems [6, 14].

3 Emergent Artificial Intelligence Approaches for Supporting
Quality Medical Decisions

With appropriate medical treatment and support more and more people suffering from
different critical diseases are living and normally go about their everyday routine activ-
ities. Also, more than ever people are living with and beyond cancer. Receiving ade-
quate treatment tailored to their needs patients can keep and even increase their positive
experience and QoL.

Different personalized services that support humans in their numerous activities are
a modern approach in software development. Personalization is the process of tailoring
specific service to reach the needs of individuals or groups with similar attitudes. Such
an approach is also crucial in medical and healthcare domains. Personalized medical
services for patients with similar needs are adequate therapies, decisions, interventions,
and recommendations adjusted to their specific health status [1, 7]. Therapeutic strategy
for “the right person at the right time” can support improvement and efficiency of the
treatment, reduce possible side effects and increase the QoL.

QoL parameters are getting essential for cancer survivors. They influence the devel-
opment of adequate services for person-centered monitoring and follow-up planning.
Complex patient’s data collected from multiple sources (EHR, PHR, data from wear-
able, smart devices, patient’s reported outcomes, etc.) should be processed to be used
in improving personalized treatment. Powerful AI/ML approaches are essential instru-
ments for quality data processing that lead to better predictions, interventions and good
health status. However, before applyingAI/ML techniques diverse datamust be prepared
in an adequateway (i.e. aggregated, processed, analyzed). ContemporaryAI approaches:
(deep)ML [7], explainableAI (XAI), image processing (IP), natural language processing
(NLP), agent technologies [10], robots, and so on, immensely influence the development
of medical systems/platforms/frameworks. Contemporary AI approaches as federated
learning (closely related to cloud/edge concepts), high possibilities of neural network
architectures combined with transfer learning (e.g., repurposing features of established
models explored to address data heterogeneity) offer great capability for developing
powerful medical applications. Existing but also newly developing medical systems
should utilize patients’ big datasets integrated with QoL instruments, make more power
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and reliable AI/ML engines, support more friendly user-centered communication, visu-
alize results of AI predictive models and make them more understandable to doctors
(employing different XAI techniques), improve personalized support, and so on. Such
holistic systems should: improve post-treatment patients’ health status and QoL; follow-
up the patients to meet their needs and make their everyday life bearable; but also help
in predicting the status of new patients.

Many large projects focus on cancer patients and better QoL parameters based
on their available complex data. Considering some of them (e.g. https://oncorelie
f.eu/, https://www.gatekeeper-project.eu/, http://www.bd2decide.eu/, https://ascape-pro
ject.eu/, etc.), we outline a “typical Health AI system”. Such a system is composed of
several subsystems each containing various components devoted to specific task. Three
groups of such subsystems can be distinguished.

1) Data Management subsystem that is responsible for secured patients’ data col-
lection from multiple sources usually taking care of anonymization [22]. They are also
focused on the aggregation of heterogeneous data, their transformation in some ofwidely
used clinical data standards which address different aspects [21] (like SNOMEDClinical
Terms, openEHR archetype, FAIR) but also to prepare them in formats appropriate for
AI/ML processing. The essential tasks of this subsystem are focused onmultiple sources
data collection and its preparation for AI/ML processing. During these activities privacy
preservation of patients’ data must be guaranteed, and its preprocessing, harmonization,
and semantical alignment is needed based on variety of services: Data Collection ser-
vice, Privacy preserving Service, Data Curation/Filtering services, Data Harmonization
services, and some others.

2) AI/ML subsystem is tightly related to the Data Management subsystem. This
subsystem, for which depending on the nature of the data suitable AI/ML methods
are selected to be applied, is responsible for comprehensive data processing and anal-
yses of computed results. Based on a wide variety of techniques after data process-
ing important and influential features/parameters are discovered, characteristic patterns
of behaviors are noticed, powerful predictive models are generated. Predictive mod-
els, based on available patients’ datasets, produce quality predictions, interventions,
treatment recommendations that should be presented to doctors/caregivers/patients.

This subsystem usually includes Big Data analytics and modelling, and it is the
central in a medical system and represents the logical link between the data management
part and interface part. TheAI/MLsubsystemuses a variety ofMLalgorithms (for feature
selection, outlier detection, classification, regression, and so on) based on available
modern ML frameworks (like TensorFlow, Mahout, etc.). Depending on the application
domain of a platform and particular disease, ML approaches can also include Medical
Imaging Analytics using Recurrent (RNN) and Convolutional Neural Network (CNN)
architectures, communication supported by virtual companions [10].

3) Intelligent/Smart Interface subsystem usually is the connection between
patient’s data and results achieved by AI/ML subsystem. Depending on the main aim
of a medical system this subsystem can generate different forms of interfaces for doc-
tors, caregivers, but also for patients. To extract and represent insights of the patient’s
health status and conditions the interface is usually implemented using powerful AI
techniques (like XAI, data visualization, agent technologies and so on). Interface uses

https://oncorelief.eu/
https://www.gatekeeper-project.eu/
http://www.bd2decide.eu/
https://ascape-project.eu/
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generated AI/MLmodels and suggests adequate, personalised treatments, interventions,
various actions, activities, nutrition and so on. In some advancedmedical systemsAI/ML
models can also be downloaded to patients’ devices, locally analyze patients’ data and
recommend appropriate actions for improving their QoL.

In typical medical systems various predictive models are generated to support per-
sonalized medical decisions. To make results of predictive models more understandable
to doctors and other end-users recently XAI methods are using (like Shapley Additive
exPlanations, LIME, Anchors, Textual Explanations of Visual Models, Integrated Gra-
dients) [9], and different ways of data visualization adjusted to different dashboards,
smartphones and similar devices are applied. Additionally, the devices that end-users
use in communication with a platform should allow for full access to relevant health-
related data, support regular updates and obtain information about the patient’s QoL
parameters and effects of suggested interventions.

Depending on general organization and use of specific medical sys-
tems/platform/frameworks, it can incorporate and consider patients’ datasets from arbi-
trary number of hospitals, train and lately use AI/ML predictive models considering
common knowledge gained from all available datasets. Such types of systems adopt
federate style of data processing, models training and using achieved powerful AI/ML
predictive models. Federated learning (FL) as rather new ML approach creates an ML
pipeline which significantly reduces the risk of data privacy being compromised. Fed-
erated ML is based on existence of multiple clients (edge nodes), that work together to
train a single model organised and stored on single server i.e. cloud. In case of medical
systems edge nodes usually represent hospitals.

An FL system has two actors: multiple edge nodes and the server. The server coor-
dinates the training process between all edge nodes that participate in the construction
of a global model. Each edge node receives a copy of the global model to be trained and
updates it based on available local data. When training phase is finished all edge nodes
are participating in the training send their updated model’s weights back to the server to
synchronize them and produce unique global model.

In such an approach sensitive patient’s data remains decentralized and FL keeps the
data at its local edge nodes (hospitals) and transfers only models’ updates to the main
server. Predictivemodels created and trained on local nodes’/edges’ data are participating
in creating global/centralized federated models. This is succeeded by distributing the
model architecture and initial weights to all edge nodes participating in producing a
global/federated model. Furthermore, edge nodes train their copy of the global model
on local data. When training is finished achieving satisfactory results of the training,
updated weights are sent back to the FL server (cloud) to contribute to creating new or
updating existing common global/central model.

The central AI/ML component in a medical system is the main source of predictive
models trained on a number of datasets from local edge nodes/hospitals, and the models
are constantly updating when new data appears and getting more and more reliable and
with higher prediction power.
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4 Medical Decision Support Systems

In this section we will briefly present two characteristic medical systems based on con-
temporary technological achievements that incorporate abovementioned concepts and
approaches.

4.1 Smart Ambient Intelligent Living Environments

Development of 4G and upcoming 5G and 6G networks have significant influences
on development medical services and decision support systems/platforms/frameworks.
Accordingly, a range of more and more sophisticated smart, intelligent devices support
monitoring patients’ daily activities and follow changes of their health related parame-
ters. In such a way more and more patients are living in technologically interconnected
worlds. Technological advancements and innovations can significantly support patients
to efficiently cope with everyday activities [10].

Ambient Assisted Living (AAL) and Ambient intelligent (AmI) environments facil-
itate patients in their living space. They incorporate intelligent and flexible services
to patients acting in their living space like: Sensors, Networks, Pervasive Ubiquitous
Computing and AI, Unobtrusive Human-Computer Interfaces [20].

AALandAmI encompassmonitoring services that supports patients in their everyday
activities and living habits, also suggesting them possible actions that can improve their
QoL and wellbeing. Main functionalities of a comprehensive ALL environment are
described in [3, 17] for a patients’ residence or house. Numerous sensors are located at
different places, such as sensors for light control, home automation control, presence
sensor, medication control, and others to collect patients’ data and monitor their daily
activities and behaviors (see Fig. 1).

To propose patients’ personalized predictions, treatments, recommendations or even
possibility of prevention some serious diseases a wide variety of data are collected
from such smart environments (like nutrients, physical activities, the microbiome, toxin
exposure) and processed using advanced AI/ML methods.

The availability of the smart devices and wearable sensor technology [25] are promi-
nent in a fast accumulation of patient’s sensitive and complex health data. Emergent
AI/ML techniques are promising in processes of mapping such big data into adequate,
personalized health predictions.

4.2 Intelligent System for Supporting Cancer Patients

There are multiple challenges to be addressed by an AI system that aims to enhance
clinical practice. A good AI engine with excellent analytical performance characteristics
is not sufficient. Matters such as user experience, integration, security, privacy, etc. must
also be addressed. The EU-funded research and innovation project ASCAPE (https://asc
ape-project.eu/) presents an interesting proposition covering all aforementioned aspects
of a system that aims to be in a position to enhance clinical practice.

https://ascape-project.eu/
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Fig. 1. AAL for elderly people’s residence or house (from [17]).

Specifically,ASCAPEaims to provide doctorswith anAI-powered tool thatmonitors
and predicts the progression of QoL metrics corresponding to overall QoL and specific
issues for a specific patient and offers suggestions for interventions that could improve
outcomes. TheASCAPEpersonalized visualisationswidget presents the patient’s overall
QoL timeline, various QoL issues timelines, a spider chart depicting the latest recorded
and the predicted values for the various QoL issues and a list of interventions ASCAPE
deems relevant, allowing the doctor to get an overview of the patient QoL and the
history of interventions without a litany of interactions. The default view provides both
recorded data and predictions for the case that any currently active interventions remain
so. Doctors can see how different choices of interventions affect the predictions for
the patient’s overall QoL and all QoL issues simply by clicking on it. This is a simple
interaction producing a predictable response from the system. The system also offers
shortcuts, including one where the “ASCAPE-Proposed interventions” are selected.

ASCAPE, unlike the majority of similar clinically-targeted AI-focused research
projects, paid particular attention to providing an easy pathway for integrationwith exist-
ing systems. Part of this effort relates to the user interface already discussed. The widget
discussed and likewise the widget showing a summary of the current and predicted QoL
issues status can easily be embedded into existing Health Information Systems (HIS)
doctors are already using. This has the desirable consequence that doctors will not have
to log in to yet another IT system and navigate to the patient again. ASCAPE makes
integration a priority, point we will return to when discussing the ASCAPE architecture.
Another priority for ASCAPE is that hospitals on the one hand maintain control of their
patient data and on the other are able to collaborate on building AI models capturing
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knowledge from multiple hospitals’ patients. For this it relies on two different technolo-
gies: Federated ML (FL) and ML on homomorphic encrypted (HE) data (Fig. 2, https://
ascape-project.eu/marketing-material/ascapeframework-and-technical-innovations).

Fig. 2. The ASCAPE framework architecture.

HIS-ASCAPE Integration Components. These components allow an existing HIS to
send its data (including both EHR and QoL questionnaire data) to ASCAPE and ideally
also integrate the ASCAPE widgets and supporting backend code that provides the HIS
with ASCAPE functionality identical to the stand-alone ASCAPE Dashboard’s making
the latter redundant and offering doctors the benefits of ASCAPE.

The ASCAPE Dashboard. A web application doctors may use, if ASCAPE is not
sufficiently integrated into the HIS, in order to access ASCAPE functionality including
AI-assisted monitoring of their patients’ QoL status and recording information about
proposed interventions, registering and de-registering a patient’s wearable device.

The ASCAPE Edge Components. Installed locally at each hospital, these components
collaborate with the HIS and the Dashboard on one end and, if so configured, with the
ASCAPE Cloud which coordinates privacy-compliant collaborative model training with
all participating hospitals and provides collaboratively training predictive models to all
hospitals. Note that all edge node components that interact with the ASCAPE cloud, any
interactions are initiated from the edge node towards the cloud in order to fit as best as
possible to firewall settings in place at hospitals IT environments.

https://ascape-project.eu/marketing-material/ascapeframework-and-technical-innovations
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A. Edge Gatekeeper - A component that provides TLS/SSL termination, access
control and an additional layer of pseudonymization.

B. Data Aggregators - Components that provide support to the task of sending to
the ASCAPE Edge Node additional patient-related data not collected by the HIS but
rather by ASCAPE-compatible Data Adaptors deployed locally or remotely; currently
a FitBit data adapter and a weather service data adapter are included.

C. Redacted Patient Data Manager - The component responsible for storage of
all patient data received from the HIS or the data aggregators within the Edge Node. It
furthermore includes the extraction of patient specific inference requests and training
datasets for the different target variables to train AI/ML models. The inference requests
are forwarded to the Edge AI Predictions & Simulations Manager. The training datasets
undergo privacy enhancingmethods such as outlier detection and differential privacy and
are then sent to the Edge AI Models Manager and Edge Surrogate Models Manager as
well as after homomorphically encrypted to the ASCAPE cloud. Finally, the component
is responsible for providing stored patient-related data to the HIS and/or the Dashboard.

D. Edge AI Models Manager - The component responsible for training local and
global models with local data in collaboration with the ASCAPE Cloud, as well as for
analytically evaluating models and choosing the ones that best fit local data. For each
training dataset received from the Redacted Patient Data Manager several types of mod-
els are trained both on local data only as well in federated manner orchestrated by the
Cloud Federated Learning Coordinator. For classification tasks, support vector machine
classifiers, Naïve Bayes, K-nearest neighbors’, Decision Tree, and Random Forest clas-
sifiers are trained, and for regression tasks Linear, Ridge, Lasso, Elastic Net, Kernel
Ridge, Support Vector Machine, Random Forest, K-nearest neighbors’, and AdaBoost
regressions are used. All locally trained models are stored in the component as well
as any global model obtained from the ASCAPE cloud. The quality of the models is
evaluated over the locally available datasets, using appropriate metrics.

E. Edge Surrogate Models Manager - The component responsible for training
local surrogate models (linear regression and decision trees) and for training global
surrogate models for global predictive models with using the local data in collaboration
with the ASCAPE Cloud. Surrogate models are trained to make the same predictions
as the primary models (of the Edge AI Models Manager) but due to their nature (e.g.
decision tree models) lend themselves to being used for explaining these predictions.

F. Edge AI Predictions & Simulations Manager - The component that uses the
locally availablemodels (localmodels, globalmodels fromvia federated learning) aswell
as the Homomorphic Encrypted models at the ASCAPE cloud to produce QoL-related
predictions and intervention suggestions to the HIS and/or the Dashboard. The used
models are those with the best evaluation over the local data and the predictions from the
HE models are obtained by sending encrypted patient-specific inference requests to the
ASCAPE cloud and decrypting locally the received encrypted prediction. Furthermore,
the component is responsible to compute feature attributions in form of Shapley Values
to allow to visualize the impact of the different features on the predicted target values.

In addition to computing predictions and explanations, the component also pre-
computes intervention suggestion: the goal is use the predictive capabilities of trained
models and interventions of any kind for the patient and selected by the medical partners
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to provide for each patient with suggestions of interventions that have a positive effect
on the predicted value. This is performed by simulations estimating the treatment effect
of interventions and provide that information for retrieval by the ASCAPE Dashboard
to show it to the doctors treating the patients, which can then take a decision.

The ASCAPE Cloud Components. The component allows privacy-preserving ML
technologies on the ASCAPE Cloud: (i) the coordination and storage components for
FL, (ii) the training, storage components for model training on HE data and encrypted
predictions, and (iii) the components used for collaborative surrogate model training.

A. Cloud Gatekeeper - A component that provides TLS/SSL termination and
controls which Edge Nodes may collaborate with the ASCAPE Cloud.

B. Cloud Federated Learning Coordinator - This component coordinates the fed-
erated training of global predictive models based on the patient data available at each
participating edge node. The same type of models as locally are trained in federated
manner for classification and regression tasks. The federated training is initiated by the
edge nodes. If an edge needs a specific model and no global model is available in Cloud
Knowledge Manager, it starts training locally and sends it as a first instance to the Cloud
Federated Learning Coordinator. If a global model is available, the edge node updates
it with its local training data and submits it again to the cloud (incremental FL mode).
If more than one edge node wants to train a model, this component switches to semi-
concurrent mode, where training happens in several rounds by collecting the trained or
updated model from each edge node, creating an aggregated model.

C. Cloud Knowledge Manager - This component stores all available final global
models on the cloud, from which they can be retrieved by the edge nodes. This way new
edge nodes entering the federation can benefit from models previously trained on data
from all other edge nodes.

D. HE Redacted Patient Manager - This component receives and stores the HE
training datasets from all edge nodes. The training datasets can be identified regarding
cancer type and target variables and are combined to a single HE dataset for each cancer
type and target variable. These aggregated datasets are then forwarded to the HE AI
Models Manager for training global HE predictive models.

E. HE AI Models Manager - This component stores all models trained on the
aggregated HE datasets. They can be retrieved by the HE AI Results Manager to provide
encrypted predictions on encrypted inference requests submitted from the edge.

F. HE AI Results Manager - The HE AI Results receives all encrypted inference
requests for predictions from the different edge nodes. Based on the type, it retrieves the
corresponding model from the HE AIModels Manager. If the model is not yet available,
it waits until the model is available. The encrypted prediction is stored in the component
in order to be retrieved by the edge node that submitted the request. The inference
requests can be of different kinds: of course, any inference request in the edge node
is also submitted to this component. However, during the computation of SHAPLEY
values and the training of surrogate models further requests are created by the edge
components and submitted to this component in order to determine these for the HE
models.

G. Cloud Global Surrogate Models Manager - This component coordinates all
activities to train global surrogate models. The training is initiated as soon as an edge
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node requests a surrogate model which is not yet trained. The Cloud Global Surrogate
Models Manage then initiates the training both for linear regression and decision tree
models. Meanwhile, the Edge Surrogate Model Manager creates the local training for
the surrogate models by taking the local training dataset used for the global model, but
labelling it using the predictions of the global model.

The training of linear regression surrogatemodels essentiallyworks like the federated
learning of normal models. Training of decision tree surrogate models is more involved,
as separate training or update of models and aggregating via averaging is not possible.
The decision tree with the best overall score across all datasets is used as the resulting
surrogate model.

5 Conclusion

Growth of population and rapid technological development offer a variety of possibilities
for implementing sophisticated and highly personalized medical services nowadays but
in the future as well. Development of more and more powerful AI/ML algorithms,
image processing, efficient big data processing, natural language processing, virtual and
augmenter reality (VR/AR), IoT, agent technologies and other [11], offer a significant
shift in medical and health domains [15].

All these possibilities direct medical research and practice in prominent directions
[16]: more reliable and precise health analytics and predictive modeling [7], power
data visualization techniques, tailored therapies, recommendations and interventions,
personal user-friendly interfaces for communication [9] between different participants
and stakeholders.

Avatars, metaverse [16], holographic construction [12] are newest concepts that have
a high potential and can influence future development of holistic, sophisticated medical
systems. In spite the fact that current achievements in these areas are sporadically used
in medical systems it can be expected that they will have great influence and increase
quality and functionality of medical systems in the future.

Ongoing and future research in the health domain needs extensive interdisciplinary
and multidisciplinary collaborations. Important aspect of future medical systems should
take care of patients’ cognitive and emotional behavior and support adequate modelling
in such systems. In this area agent technologies, holograms, AR/VR and metaverse
definitely will play an essential role.

For the future development of complex integrated medical systems, it is also neces-
sary to take care of development of other systems devoted to: 1. Planning and resource
management, 2. Data management systems, 3. Decision support systems/knowledge
base systems, 4. Remote care/self care systems.

However, the near future is not so optimistic [19]. There are a lot of problems like
diverse, limited, and distributed patients’ data sources, satisfactory but not fully reliable
AI/MLmodels, rather slow big data processing mechanisms, integration of wide variety
of multiple AI services, personalized medicine limitations and so on.
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Abstract. Artificial Intelligence plays an increasingly important role in
many knowledge fields: computer science, technology, and other sciences
such as health care, one of its most compelling applications. Artificial
Intelligence has impacted arts, linguistics, law, sociology, society, and
everyday lives. We are demanding many properties from the products
of Artificial Intelligence: users of their application fields need trust and
ask for fairness, accountability, and privacy. We overview the desired
properties and recall the technology that enables Artificial Intelligence
to satisfy them.

Keywords: Explainable AI · Trustworthy AI · Fairness · Ethics ·
Accountability

1 Introduction

Artificial Intelligence (AI) refers to computational systems whose actions and
decisions resemble human intelligence, including functions typically associated
with intelligence, such as learning, problem-solving, planning, and acting ratio-
nally, as defined by Russell and Norvig [18]. We interpret the term AI broadly to
include closely related areas such as machine learning (ML). Systems that heav-
ily use AI, have had a significant impact in domains that include healthcare,
transportation, finance, social networking, e-commerce, and education. These
“intelligent” systems have almost pervaded all the areas of our modern society.
This growing societal impact has brought a set of risks and concerns, including
the mistakes that AI systems can make. As a response, researchers are trying to
design and deploy a new generation of systems that are trustworthy, i.e., meri-
table of trust from human beings and more robust to errors in software, resilient
to cyber-attacks, and secure, in presence of incomplete scenarios.

The ingredients for a trustworthy Artificial Intelligence (AI) are manifolds.
This is related to the deployment of an AI product: sometimes the output of an
AI system is used to support the decision-making, and in this case, end-users
will need to trust the outcomes of the artificial model. Other times the system is
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used to inform the user about the inner structure of the instances coming from
the application domain. In these cases, the end-user needs to be convinced that
the system has grasped a meaningful organization of the application domain
examples.

Systems whose outcomes cannot be well-interpreted are difficult to trust,
especially in sectors, such as healthcare or self-driving cars, in which the impact
of an erroneous decision has moral and fairness implications [15]. This need
for models that are trustworthy, fair, robust with respect to missing data, high-
performing in the real-world applications led to the revival of eXplainable Artifi-
cial Intelligence (XAI) [13]. This field focuses on the understanding and interpre-
tation of AI systems’ behavior. The popularity of the search term “Explainable
Artificial Intelligence” in the last five years, as measured by Google Trends,
is illustrated in Fig. 1. The noticeable spike in recent years reflects also the
increased research output of the same period.

XAI is not a monolithic concept: it reflects several related notions. The
explainability and interpretability terms are often usually used interchange-
ably [5,14]. However, while they are very closely related, some works identify
differences among related concepts [16]. We will distinguish them in the follow-
ing. XAI has numerous applications: model validation, model debugging, and
knowledge discovery [11]. The obtained explanations should show whether a
machine learning model is grounded upon the possible biases in the training
data or show when the learned models ignore important parts of the input data
and instead rely on irrelevant ones. They could show that the flaws of the models
could be caused by flaws in the training data.

As the demand for more explainable machine learning models with inter-
pretable predictions rises, so does the need for methods that can help to achieve
these goals. XAI is centered on the challenge of demystifying the black boxes
but also implies Responsible AI as it can help to produce transparent models.
Responsible AI takes into account societal values and moral and ethical consider-
ations. Responsible AI has three main concepts: Accountability, Responsability,
Transparency ; these are called the A.R.T. of AI [9]. Finally, XAI is a part of
a new generation of AI technologies called the third wave AI [21]. One of the
objectives of this ambitious “wave” is to precisely generate models than can
explain themselves.

Fig. 1. Google Trends popularity index of the term “Explainable Artificial Intelligence”
over the last five years (2017–2022).
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2 Explainability

Explainability is more related to the techniques thought to convince the end-
user about the validity of the model outcomes. The most common methods are
providing post hoc explanations or recalling from the domain similar instances to
the given one in input [11]. These post hoc explanations are local, and specific to
single instances and can be model-agnostic or specific to the single method. The
model agnostic ones treat the model to be explained as a black-box and assume
the predictions of the global model can be approximated as the application of
many interpretable white-box models, valid locally, in a small neighborhood
of each input. Then, they sample the feature space in the neighborhood of each
instance to prepare a training set that is passed to train a white-box model, such
as a sparse linear model (Lasso), or if the local behavior is non-linear using if-then
rules. Another approach is to determine the importance of each feature on the
model by measuring the impact of features’ perturbations on the output score.
The results may be interpreted as counterfactual explanations, that describe a
causal relationship between the input X and the output Y. They have the form:
“If input X had not occurred, output Y would not have occurred”.

Explanation approaches, designed for a specific type of model, leverage on
the characteristics of the model to explain them. For instance, for Deep Neural
Networks (DNN) we need to treat their structure as a white box and describe
their components. There are three methods: back-propagation methods (top-
down) compute the gradient of specific outputs with respect to the input and
back-propagate it to derive the contribution of each feature. This method can
be efficiently implemented in software libraries (PyTorch or TensorFlow) as a
modified gradient function but can give noisy explanatory results. Perturbation
methods work bottom-up (with mask perturbations in an optimization frame-
work) and learn a perturbation mask that preserves the contribution of each
feature and can be trained by an additional DNN. The intermediate methods
either transform the representations at the higher layers of the DNN into a
synthetic image together with an encoding of the target object in a mask, or
they adopt a prediction’s decomposition through the additive contribution of
the hidden vectors in the DNN corresponding to each input (e.g., a word in the
textual input to a Recurrent Neural Network). Therefore, each component of the
decomposition quantifies the contribution of each input to the DNN output.

3 Interpretability

One of the most popular definitions of interpretability is the one of Doshi-Velez
and Kim, who, in their work [10], define it as “the ability to explain or to
present in understandable terms to a human”. Interpretability is more focused
on the task of exploration of the model properties with the goal of providing
transparency to humans. For instance, clarifying the meaning of the components
of a black-box model, like a deep neural network or a Support Vector Machine
with the goal of understanding the model. The most common technique is to put
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aside an obscure model a “white-box” model, trained on the same instances. The
latter model incorporates interpretability directly into its structure. This is the
case of logical models (decision tree or rule-based model), linear models (that
accompany features with coefficients whose magnitude informs their impact on
the model outcome), attention model (for natural language, referred to as the
words in the context).

One of the more interesting goals of learning an interpretation of a black box
model is to understand the representations of the input (images) captured by the
Deep Neural Network (DNN) model like a Convolutional one (CNN). Here we
refer to the CNN internal network nodes because we know they encode artifacts
learned from the input images. One of the most effective methods is finding
the inputs that best activate neurons at a specific layer [11]. The optimization
should be regularized using natural image priors produced by a generative model
(GAN). Instead of directly optimizing the image, these methods optimize the
latent space codes of the GAN to find an image that activates a given neuron.
The visualization results provide several interesting observations. The neurons
from the first layer to the last layer learn representations at several levels of
abstraction, from general to task-specific. The second interesting learned issue is
that a neuron is multifaceted, i.e., could respond to different images, semantically
related to the same concept (i.e. faces). CNN learns distributed code for objects
and learns objects by the representation of their parts that can be shared across
different categories [11].

Based on the above, interpretability is mostly connected with the intuition
behind the outputs of a model [1] and the idea that the more interpretable a
machine learning system is, the easier it is to identify cause-and-effect rela-
tionships within the system inputs and outputs. Doshi-Velez and Kim [10]
proposed the following classification of evaluation methods for interpretabil-
ity: application-grounded, human-grounded, and functionally-grounded; Fig. 2
shows the taxonomy proposed. Application-grounded evaluation concerns itself
with how the results of the interpretation process affect the human, domain
expert, and end-user in terms of a specific and well-defined task or application.
Human-grounded evaluation is similar to application-grounded evaluation; how-
ever, there are two main differences: first, the tester, in this case, does not have
to be a domain expert, but can be any human end-user, and secondly, the end
goal is not to evaluate a produced interpretation with respect to its fitness for a
specific application, but rather to test the quality of the produced interpretation
in a more general setting and measure how well the general notions are cap-
tured. Functionally grounded evaluation does not require any experiments that
involve humans but instead uses formal, well-defined mathematical definitions of
interpretability to evaluate the quality of an interpretability method. This type
of evaluation usually follows the other two types of evaluation: once a class of
models has already passed some interpretability criteria via human-grounded or
application-grounded experiments, then mathematical definitions can be used to
further rank the quality of the interpretability models.
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Fig. 2. Taxonomy of evaluation approaches for interpretability [10].

4 The Problem of Bias

AI explanations might reveal that decisions are influenced by factors that do
not align with explicit organizational policies. Amazon canceled a plan to use
AI to identify the best job candidates for technology positions upon discovering
the models were biased against women because the training data consisted pre-
dominantly of males, reflecting historic hiring practices [7]. The example above
explains that biases in AI mean biases in predictions. The ethical consequences
of algorithmic decision-making by AI systems are a great concern. The emer-
gence of biases in AI-led decision-making has seriously affected the adoption of
AI. In order to build an unbiased system, a strong sense of justice needs to be
in place to help decision makers act fairly without having any prejudice and
favoritism [4].

The survey presented in [20] discusses the different sources of bias. Figure 3
shows a taxonomy of the sources of bias according to the authors.

As it is well-known, the knowledge discovery process in AI stems from
a pipeline composed of different steps: data source cleaning, integration, fea-
ture selection or feature construction, model training, selection, validation, and
finally, outcome presentation. All these steps might be the source of some bias.
Some might be due to the users/analysts insufficient knowledge/preparation that
comes out under the multiple forms of employing a sampling bias, showing a cap-
ture bias, a device bias, a measurement bias, or a negative set bias (insufficient
examples for the negative class), or a confirmation bias (that leads to ignoring
some relevant issues in the domain). All these examples of bias could lead to
unsuitable choices in the data preparation.

Other biases could come from the presence of an ill-posed domain problem:
the framing effect bias is sometimes due to the need to formulate the problem
so that the experimental measured results could reflect some business objective.
Another source of mistakes in the AI model is the confounding bias, that exists
when an omitted feature is not included in the training data: this makes it impos-
sible to measure the correlation between causes and effects. Another example is
the inclusion of a proxy feature that is the source of indirect discrimination
(e.g., zip code could be correlated to the ethnic condition, a sensitive feature
that should be omitted to avoid discrimination based on ethnic conditions).
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Fig. 3. Taxonomy of biases [20].

Other biases are algorithms biases: influence on the model outcome by how
they explore the hypothesis and evaluate constraints, or how they present their
results in a ranking to the users waiting for feedback. The users could not be
impartial or could not be ready in their evaluation due to a recall bias. Finally,
the deployment of the AI model might in turn influence the studied scenario and
alter it.

Some effects of the biases could have serious effects on people’s discrimination
and on give serious doubts about the fair application of some AI models. These
are discussed in Sect. 5.

5 Fairness

Because machine learning systems are increasingly adopted in real-life applica-
tions [1], any inequities or discrimination that are promoted by those systems
have the potential to directly affect human lives [1]. Machine Learning Fairness
is a sub-domain of machine learning interpretability that focuses solely on the
social and ethical impact of machine learning algorithms by evaluating them
in terms of impartiality and discrimination [6]. Traditionally, the fairness of a
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machine learning system has been evaluated by checking the model predictions
and errors across certain demographic segments, for example, groups of a spe-
cific ethnicity or gender. In terms of dealing with a lack of fairness, a number
of techniques have been developed both to remove bias from training data and
from model predictions and to train models that learn to make fair predictions
in the first place.

One of the proposed methods to control the bias in data is by maintaining
diversity in examples’ collection. It could allow the models to achieve statis-
tical parity among the represented categories (or groups, among which some
minorities exist and should be protected from discrimination). There are sev-
eral measures for accounting fairness of treatment of an AI model to groups of
people.

Statistical parity accounts for the parity of the rates of the favorable out-
comes produced by the AI model when applied to exemplars coming from the
unprivileged group and the privileged group.

Equal Opportunity accounts for the true positive rates between the unprivi-
leged group and the privileged group.

Average Odds takes into consideration the odds between the false positive
rates and true positive rates in the two groups.

Disparate impact compares the rates of the favorable outcome in the two
groups by considering their ratio.

Unfortunately, not all of them could be applicable at the same time, because
their satisfaction could depend on the distribution of the categories in the pop-
ulation and on the possible existence of some correlation between the sensitive
attribute and the target.

Some software tools and standards of behavior in the data analysis and AI
model development already exist [2] and are promoted by the big software ven-
dors and by the European Community [17] and should be adopted by the software
developers and the business development teams to verify the existence of some
disparities in treatment by the AI model.

6 Verification

According to [19] the next generation of AI systems shall be verified with tech-
niques similar to the formal methods used in computer science to test integrated
circuits, debug software architectures, and Cyber-Physical Systems (CPS). It is
composed of specifications, systems design that adheres to these specifications,
verification by algorithmic search, specifications testing, simulation, and model
checking. In Fig. 4 we show the tasks involved in the verification of a complex
AI-based CPS, where a modular approach is essential for scalability but not
yet easily reached. Finally, correct-by-construction design methods hold promise
for achieving verified AI, but they are in their infancy and are still premature.
Figure 4 summarizes the five challenge areas for verified AI. For each area, the
current promising approaches are organized into three principles, depicted as
nodes. Edges between nodes show the dependency among the principles, with
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the color denoting a common thread. The authors of [19] developed open-source
tools, VerifAI [8] and Scenic [12] which implement the techniques based on the
principles described.

Fig. 4. Summary of the five challenge areas for verified AI, the corresponding principles
proposed to address them, and their connections and dependencies [19].

For example, runtime assurance (fifth challenge) relies on introspective and
data-driven environment modeling to extract monitorable assumptions and envi-
ronment models (from the first challenge). Similarly, to perform system-level
analysis (second challenge), we require compositional reasoning and abstraction.
Some AI components may require specifications to be mined, while others are
generated correct-by-construction via formal inductive synthesis (from the fifth
challenge).

7 Accountability

The terms accountability, responsibility, and liability are closely related but
carry different meanings. According to the OECD group of experts on AI [17],
“accountability” implies ethical, moral, or in terms of management practices,
codes of conduct. It guides the individuals’ or organizations’ actions and allows
them to explain the reasons for which the actions were taken. From the viewpoint
of moral principles, accountable systems are related to the concepts that guide
“moral machines” [3] AI systems that are proposed and designed in a large-
scale crowd-sourced experiment conducted by MIT researchers in 2018. The aim
of the experiment is to collect and study the ethical and moral principles that
should guide autonomous driving cars to take their decisions, in front of moral
dilemmas. “Liability” generally refers to adverse legal implications arising from
a person’s or an organization’s actions. “Responsibility” can also have ethical or
moral expectations and refers to a causal link between an actor and an outcome.
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Given these meanings, the term “accountability” best captures the essence
of the moral principles behind the decisions of autonomous systems. In this con-
text, “accountability” refers to the expectation that organizations or individuals
will ensure the proper functioning of the AI systems that they design, develop,
operate or deploy, throughout their lifecycle. For proving this, through their
actions and the decision-making process they should provide documentation on
the key decisions throughout the AI system lifecycle or they should conduct or
allow auditing. From these viewpoints, accountability is related to systems that
can be verified, as described in Sect. 6.

8 Conclusions

We provided a summary of the overview of the rapidly evolving field of explain-
able and interpretable AI. While many application areas of the AI systems need
trust and fairness and demand responsible principles to guide the automated
decisions, other applications like Cyber-Physical systems and autonomous driv-
ing need also the principles of the formal methods for obtaining verifiable sys-
tems, to guarantee software security also against cyber-attacks.
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Abstract. NoSQL databases are preferred to relational ones for stor-
ing heterogeneous data with variable schema and structure. However,
their schemaless nature adds complexity to analytical applications, in
which a single OLAP analysis often involves large sets of data with dif-
ferent schemas. In this tutorial we describe the main approaches to enable
OLAP on NoSQL data. We start from schema-on-read approaches, where
data are left unchanged in their structure until they are accessed by the
user, so they are put into multidimensional form at query time. Specif-
ically, we show how this enables a form of approximated OLAP that
embraces the inherent variety of schemaless data. Then we move to
schema-on-write approaches, where a fixed multidimensional structure
is forced onto data, which are loaded into a data warehouse to be then
queried. In particular, we introduce multi-model data warehouses as a
way to store data in multidimensional form and, at the same time, let
each piece of data be natively represented through the most appropriate
NoSQL model.

Keywords: NoSQL databases · OLAP · Multi-model databases

1 Introduction and Motivation

In recent years, NoSQL databases have been progressively eroding the predomi-
nance of relational databases [17]. A NoSQL database provides a mechanism for
storage and retrieval of data that is modeled differently from the tabular relations
used in relational databases; the particular suitability of a given type of NoSQL
database (key-value, columnar, document-based, or graph-based) depends on
the business problem it must address. Among the potential benefits of NoSQL
databases, we mention better performance scaling, no ACID transactions, and
no need for a unique schema. Indeed, NoSQL databases adopt a schemaless
representation for data: schema is a “soft” concept and the instances referring
to the same concept can be stored using different local schemas. Hence, these
databases are preferred to relational ones for storing heterogeneous data with
variable schemas and structural forms, such as those located in data lakes. Typ-
ical schema variants within a collection consist in missing or additional fields, in
different names or types for a field, and in different structures for instances [15].

The growing use of NoSQL databases has resulted in vast amounts of
semi-structured data holding precious information, which could be profitably
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integrated into existing business intelligence (BI) systems [1]. On-Line Analyti-
cal Processing (OLAP) is the querying paradigm normally used in the context of
BI to analyze data stored in data warehouses, and it has been recognized to be an
effective way for running analytics over big NoSQL data as well [12]. The OLAP
paradigm entails dynamic analyses that read a huge quantity of data to com-
pute a set of numbers that quantitatively describe a given business phenomenon.
It assumes that data follow the multidimensional model [18], whose main con-
cepts are facts (i.e., business phenomena such as sales), dimensions (coordinates
used to analyze a fact, e.g., store, product, and date), measures (quantitative
attributes that describe fact occurrences, e.g., sales revenue), and hierarchies
(sequences of attributes that group dimension members at increasing levels of
aggregation). OLAP comes in sessions, i.e., sequences of queries each obtained
from the other by applying one OLAP operator (mainly, roll-up, drill-down,
and slice-and-dice). Unfortunately, although the absence of a unique schema in
NoSQL data grants flexibility to operational applications, it adds complexity to
OLAP applications, in which a single analysis often involves large sets of data
with different (and often conflicting) schemas.

In this tutorial we explore the most promising directions for enabling OLAP
analyses on NoSQL data, distinguishing between the two approaches that can be
followed (see Fig. 1 for an intuition): schema-on-write and schema-on-read [11].
Schema-on-write approaches force a (fixed) multidimensional structure in data,
load them into a data warehouse using an ETL (Extract, Transform, and Load)
process, then let these data be queried by users via OLAP tools. We discuss these
approaches in Sect. 2. Schema-on-read approaches leave data unchanged in their
structure until they are accessed by the user. The multidimensional schema is
not devised at design time and forced in a data warehouse, but decided by every
single user at querying time; clearly, this requires OLAP queries to be rewritten
over NoSQL data sources. These approaches are the subject of Sect. 3. Finally,
in Sect. 4 we draw the conclusions.

Fig. 1. In schema-on-read approaches (top), the user has a multidimensional view
of data stored in their native (heterogeneous) form; in schema-on-write approaches
(bottom), data are put into multidimensional form and stored
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2 Schema-on-Read Approaches

In these approaches, source data are left unchanged in their own model and
structure, to be directly queried in an OLAP fashion by the end-user without
putting them in multidimensional form. Rather than being devised at design
time, a multidimensional schema for accessing data is decided at querying time;
while this requires OLAP queries to be rewritten over data sources on-the-fly and
thus might give performance problems, it entails higher querying flexibility, sim-
pler ETL, and lower effort for evolution. Schema-on-read approaches to enable
OLAP on NoSQL data ground their roots into techniques for (i) schema discov-
ery from XML/JSON documents, which deal with heterogeneity, quality, ver-
sioning, similarity, and comprehensiveness to produce unified schemas, schema
matches, and skeleton schemas [3,22,24]; (ii) schema matching for XML/JSON
documents using clustering or machine learning, in some cases considering a
context [5,14]; (iii) multidimensional design from XML/JSON/columnar data,
possibly by detecting and chasing functional dependencies [13,23].

In this tutorial we focus on two schema-on-read approaches, namely,
Graph OLAP and Approximate OLAP; for other examples of schema-on-read
approaches, see [2,11,19].

2.1 Graph OLAP

Given a graph-structured dataset, Graph OLAP [9] aims at returning a mul-
tidimensional view of it to enable efficient OLAP analyses. Source data are
seen as a collection of network snapshots, each including some informational
attributes (e.g., month and socialNetwork) and one graph (e.g., one where nodes
are users and edges represent their interactions); both nodes and edges of this
graph may be described by attributes (e.g., name is an attribute of user nodes,
numberOfMessages is an attribute of collaboration edges). The multidimensional
view of graph data provided by Graph OLAP relies on the two pillars of the mul-
tidimensional model, namely, dimensions and measures. Two types of dimensions
are distinguished:

– Informational dimensions correspond to informational attributes and orga-
nize snapshots into groups based on different perspectives, where each group
corresponds to a cube cell. Hierarchies can be defined on these dimensions,
for instance, socialNetworks → all and month → year → all.

– Topological dimensions correspond to node/edge attributes and operate on
individual network snapshots. Hierarchies can be defined on these dimensions
too, e.g., user → nation → all.

As to measures, they are computed starting from numerical node/edge attributes
by aggregating them in two different ways: (i) in informational OLAP, aggrega-
tion is done by grouping snapshots with identical values of informational dimen-
sions; (ii) in topological OLAP, aggregation is done by grouping nodes with iden-
tical values of topological dimensions inside individual networks. An example is
shown in Fig. 2.
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Fig. 2. Informational and topological OLAP in the Graph OLAP approach: in the
first case, interactions are grouped on all social networks, in the second one, they are
grouped by user’s nation

2.2 Approximate OLAP

The basic idea of Approximate OLAP [16] is to enable multidimensional querying
of document data with variable schemas, embracing data heterogeneity as an
inherent source of information wealth in schemaless sources. Both inter-schema
and intra-schema variety are considered; aimed at pursuing an inclusive approach
to integration, OLAP querying is carried out on a “soft” schema where each
source attribute is present to some extent. The approach encompasses four phases
(see Fig. 3 for an example):

1. Schema extraction, whose goal is to identify the set of distinct, tree-like local
schemas that occur inside a collection of documents.

2. Schema integration, which relies on inter-schema mappings and schema inte-
gration techniques to determine a tree-like global schema that gives the user
a single and comprehensive description of the contents of the collection.

3. FD enrichment. An OLAP-compliant multidimensional view of the document
data is obtained from the global schema by building a dependency graph, i.e., a
graph that represents functional dependencies between the document fields;
these dependencies are either inferred from the structure of the schema or
determined (in approximate form) by analyzing the documents.

4. Querying. Here, the user can formulate OLAP queries on the dependency
graph and execute them on the documents. To this end, each query is trans-
lated to the query language of the underlying document-oriented DBMS and
reformulated into multiple queries, one for each local schema in the collection;
the results presented to the user are obtained by merging the results of the
single local queries. To make users aware of the impact of schema variety, a
set of indicators describing the quality and reliability of the query result are
computed.
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Fig. 3. Steps in approximate OLAP (adapted from [16]): a JSON document (top-left),
its local schema (top-right, numerical fields in italica), its mappings with the global
schema (bottom-left), and its dependency graph (bottom-right, grey arcs represent
approximate functional dependencies discovered on documents)

3 Schema-on-Write Approaches

In these approaches, source data are moved into a data warehouse; this requires
that they are put into multidimensional form to be then queried in an OLAP
fashion by the user. The multidimensional schema is decided at design time
and forced onto data at the time of writing them in the data warehouse, which
entails better performances and simpler query formulation with no need for query
rewriting. Schema-on-write approaches are based on the literature on (i) multi-
dimensional design from NoSQL data [13,23] and (ii) NoSQL data warehouses,
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that aim at storing warehoused data in document/columnar/graph form by fol-
lowing design guidelines.

In this tutorial we distinguish between mono-model approaches, in which
multidimensional data are stored in the data warehouse according to a single
model (e.g., document-based), and multi-model approaches, in which a multi-
model DBMS is used to grant higher storage flexibility.

3.1 Mono-Model Approaches

Several examples of schema-on-write approaches targeting a single NoSQL model
can be found in the literature.

We start with the document-based model, for which some papers have pro-
posed and compared different solutions to multidimensional design.Specifically,
four solutions are proposed in [10]: (i) a denormalized flat schema (where a fact
is stored using a single collection of documents including all its measures and
levels with no nesting); (ii) a deco schema (denormalized like the previous one,
but the measures and the levels of each dimension are stored in separate subdoc-
uments); (iii) a shattered schema (where each dimension is stored in a separate
collection of documents and connected to the fact documents using a reference,
see Fig. 4 for an example); and (iv) a hybrid schema (like a shattered schema,
but with all documents stored within a single collection). Based on experimental
tests, it is argued that (i) the first two schemas require about 4 times the space
required by the other two, which leads to significantly higher loading times; and
(ii) denormalized flat schemas and shattered schemas tend to have better query-
ing performances; however, there is not a single winner between these two since
the execution times largely depend on the query features (mostly, on the num-
ber of joins they require). Similarly, two solutions are proposed in [8] and [28]:
(i) a simple schema (where the fact and each dimension are stored in separate
documents of the same collection, like in the hybrid schema mentioned above)
and (ii) a hierarchical schema (like a simple schema, but using separate docu-
ments for each dimension hierarchy, much like the shattered schema mentioned
above). The experimental comparison does not highlight significant differences
in loading time and querying performance.

As to the graph-based model, in [26] two solutions are proposed. In the first
one, the fact is stored in a graph node having measures as properties, and each
level is stored in a node with its properties; the fact node points to the dimension
nodes, which in turn point to the level nodes following the structure of the
hierarchies (as also suggested in [7]). The second one is similar, except that the
fact node points to a single node, which in turn points to each dimension node.
A third solution is proposed in [27], where the fact node points to the dimension
nodes, and each dimension node includes all the levels and properties of the
corresponding hierarchy. Note that these three solutions are not experimentally
compared in terms of efficiency.
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Fig. 4. A shattered schema

Finally, as to the column-based model, different strategies to arrange
attributes into column-families (CFs) are proposed in [25]: (i) a sameCF schema,
where all attributes are put in the same CF; (ii) a CNSSB schema, where each
dimension is stored in a different CF; and (iii) a factDate schema, where some of
the most-frequently used dimensions (in their example, the date dimension) are
grouped together with fact data. Based on experimental tests, the authors con-
clude that the sameCF schema provides better performance for high-dimensional
queries (three or four dimensions), while the CNSSB and factDate schemas are
preferable for low-dimensional queries (one or two dimensions). In the same
direction, in [6] the authors propose an approach that clusters in the same CFs
attributes that are frequently used together in the workload queries.

3.2 Multi-model Approaches

A DBMS normally handles a specific data model (e.g., relational DBMSs,
document-based DBMSs, etc.). When an application needs different types of
data, the first possible solution is to integrate all data into a single DBMS; how-
ever, this means that some types of data cannot be stored and analyzed, and that
querying performances may be unsatisfactory. The second solution is to use two
or more DBMSs together (polyglot persistence); even in this case there are draw-
backs, since technically managing more DBMSs is a challenge, the learning curve
for developers is steep, performance optimization may be inadequate, and there
is a risk of data inconsistency. To overcome these issues, multi-model databases
(MMDBMSs, e.g., PostgreSQL and ArangoDB) natively support different data
models under a single query language to grant performance, scalability, and
fault tolerance, so as to reduce maintenance and data integration issues, speed
up development, and eliminate migration problems.
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As argued in [4], a multi-model data warehouse (MMDW) can store data
according to the multidimensional model and, at the same time, let each of its
elements be natively represented through the most appropriate model; among
the benefits, reducing the cost for ETL and ensuring better flexibility, extensi-
bility, and evolvability thanks to the use of schemaless models. However, in a
multi-model setting, several alternatives emerge for the logical representation of
dimensions and facts, and some of them may be better than others from one or
more points of view.Some preliminary tests show that:

– Different dimensions can use different models.
– From the points of view of querying performance, query formulation concise-

ness, data storage, and complexity of ETL, a multidimensional implementa-
tion via the relational model is generally better than a document-based one,
which in turn is better than a graph-based one.

– From the point of view of flexibility, extensibility, and evolvability, schema-
less models (namely, document- and graph-based) are preferable to the rela-
tional one.

Figure 5 shows an optimal multi-model schema for the same multidimensional
data of Fig. 4.

Fig. 5. A multi-model schema that mixes relational tables (e.g., DT Date), documents
(e.g., InfoProduct), and graphs (Customer)

4 Conclusion

Enabling OLAP queries over NoSQL data is getting more and more important
today, but dealing with heterogeneity and schema variety intrinsic to NoSQL
DBs is a challenge. In this tutorial we have discussed some directions for enabling
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OLAP on schemaless NoSQL data, using either schema-on-read or schema-on-
write approaches. Though several solutions have been proposed in the literature,
their level of maturity is not comparable yet to the one reached by relational
implementations. Among the relevant issues to be further investigated, we men-
tion the following:

– increase the efficiency of the querying phase in schema-on-read approaches
by paving the way to a more sophisticated optimization of query;

– develop techniques for online repairing of approximate functional dependen-
cies present in schemaless data, so that the user can get correct analysis
results without modifying the original data;

– extend the existing conceptual models to cope with schemaless data [20,21];
– understand how to select and use materialized views in MMDWs, and what

ad-hoc indexing strategies to adopt for them.

References
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Abstract. Temporal databases has been an active research area since
many decades, ranging from research work on query processing, most
dominantly on selection and join queries, to new directions in models
and semantics, such as for instance temporal probabilistic or streaming
data. At the same time more database vendors have been integrating
temporal features into their systems, most notably, the temporal features
of the SQL standard. In this paper, we summarize the latest research
developments as presented in 30 research papers over the last five years
in the context of temporal relational databases. Additionally, we also
describe the developments of industrial database systems and vendors.

Keyword: Temporal databases

1 Introduction

Temporal databases is an active research area since several decades, with a
renewed interest in recent years. The interest in temporal databases is driven by
a variety of old and new applications that require to store and process tempo-
ral data, such as versioning of web documents [21], management of normative
texts [27], air traffic monitoring and patient care [5], video surveillance [44], sales
analysis [41], financial market analysis [25], and data warehousing and analyt-
ics [48], to name a few.

In temporal databases every fact is associated with one or more times-
tamps [7]. The timestamps are typically formed by either a time period or a
set of time points, though other forms of timestamps exist, such as temporal ele-
ments. While time points are easier from a conceptual viewpoint, time periods
are practically more relevant and allow for efficient implementations. The times-
tamps can represent different aspects of time, most importantly valid time [32]
that indicates the validity of a fact in the real world (e.g., a contract that exists
over a given period of time) and transaction time [31] that indicates the time
when a tuple is/was stored in the database (e.g., a contract that was stored over
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a given period of time and later on updated or deleted from the database). When
both aspects of time are present in a relation, we have a bitemporal relation [30].

Figure 1 shows two temporal relations Mgr and Pro. The timestamps are
half-open intervals and represent the tuples’ valid time. Relation Mgr records
managers of departments, where Dept is the name of the department, MName
is the name of the manager and T is the time period for which the person
manages the department. Relation Pro records projects running in departments,
where PName is the name of the project, PDept is the department which runs
the project, and T is the time period over which the project runs.

Fig. 1. A temporal database with two temporal relations.

The most widely used semantics for temporal databases is known as sequence
semantics, where temporal queries are defined using the concept of snapshot
reducibility [15,35,49]. Snapshot reducibility views a temporal database as a
sequence of snapshots and constrains a temporal operator applied to a temporal
relation to produce, at a time point t, the same result as the corresponding non-
temporal operator applied to the snapshot at t, i.e., all input tuples that are valid
at t. For instance, the result of a temporal count aggregation is defined “point-
wise” by the result of a non-temporal count aggregation. The aim of temporal
databases is to facilitate such kind of operations in queries that would otherwise
result in long, error prone, and inefficient SQL queries [47].

Figure 2 reports the result of two temporal queries on our example database
from Fig. 1. In particular, the result of the temporal join between the two rela-
tions to retrieve for each project the responsible manager is shown in Fig. 2a.
The temporal join is performed by joining two temporal relations according to
overlapping timestamps. That is, the result tuples are timestamped with the
intersection of the overlapping time periods. In the literature the step of finding
overlapping pairs of tuples is also referred to as overlap or interval join. This
result of the temporal join is consistent with the traditional (non-temporal) join
performed at each snapshot of the data. For instance, the snapshot at time point
04/2022 for relation Pro contains two projects: ExTAI from the AI department
and TauDB from the DB department. The snapshot for relation Mgr at the
same time point contains two managers: Tom for the AI department and Ann
for the DB department. Performing a non-temporal join on these two snapshots
gives the same result as the snapshot at time point 04/2022 for the relation in
Fig. 2a, i.e., ExTAI is managed by Tom and TauDB is managed by Ann.
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Fig. 2. Example operations temporal join and aggregation.

Figure 2b shows the result of a temporal aggregation that counts, for each
department, the number of projects stored in relation Pro. Also in this case
the result is defined according to the snapshots, and in the result we have one
project in the AI department from 04/2022 to 01/2023, because each snapshot
within this period contains exactly one project for department AI.

Past research on temporal databases has been focusing on various aspects
of managing and processing temporal data, most notably on data models, SQL-
based query languages, and efficient evaluation algorithms for query processing.
Due to the ubiquity of temporal data and the need for processing such data,
more recently also industry caught up with the topic, resulting in several exten-
sions of commercial and Open Source database systems (e.g., IBM DB2, Oracle,
Teradata, and PostgreSQL) with various degrees of support for temporal data.
Finally, the major extension in the SQL:2011 standard was the support for the
representation of temporal data [7,34].

In this paper, we review the newest developments in temporal relational
databases as presented in 30 research papers over the last five years, which
extend the state of the art as described in [7]. More specifically, Sect. 2 provides
an overview of the works on temporal query processing, mostly focusing on
selection and join queries. Section 3 provides the works that focus on new research
directions in the area of temporal data models and semantics, followed by an
overview on the newest developments in industrial systems in Sect. 4. Finally,
Sect. 5 concludes the paper and provides interesting topics for future work that
received scant attention in the last years.

2 Query Processing of Primitive Operators

In this section, we focus on recent advancements in query processing, mainly
from an algorithmic point of view.

2.1 Temporal Selection

A classic query involving intervals is the overlap query, which retrieves all tuples
whose timestamp overlaps with the query period. Christodoulou et al. [14] intro-
duce Hint, an index addressing this kind of problem. It partitions the timeline
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in a hierarchy of regular grids of geometrically increasing granularities. The addi-
tion of an auxiliary index of non-empty partitions allows to improve efficiency
on skewed data.

A richer type of selection query are range-duration queries, first introduced
by Behrend et al. [4]: matching intervals need to both overlap with the query
and have a duration within a bound that is also defined in the query. Traditional
index structures for intervals deal with only one aspect of intervals, and thus miss
the opportunity to leverage the selectivity of queries on both dimensions.

In [4], the authors introduce Period-Index� to explicitly support range-
duration queries. The index partitions the timeline in buckets that will contain
any interval they intersect. Then, intervals in a bucket are further partitioned in
levels based on their duration, with the minimum duration in each level increas-
ing geometrically. Finally, each level is further partitioned in the time domain
in order to efficiently retrieve intervals of a given duration based on their start
time. This approach is adaptive to the distribution of start times, but assumes
a Zipf-like distribution of durations.

Recently, an index deemed RD-Index supporting range-duration queries has
been introduced by Ceccarello et al. [13]. This index partitions tuples in a two-
dimensional grid according to their start time and their duration by taking
into account the distribution of both dimensions. This allows to adapt to the
distribution of the data, providing better performance than the state of the art.
Experiments show that this index performs better than the state of th e art
also on mixed workloads, where some queries constrain only the duration, some
constrain only the position on the timeline, and some constrain both.

2.2 Temporal Joins

Binary Joins. Temporal binary joins are joins between two relations where the
join predicate requires that the interval timestamps of the tuples in the two rela-
tions overlap. A specialized data structure, called the Overlap Interval Inverted
Index, is proposed by Luo et al. [37] to efficiently compute binary interval joins.
The index uses the end points of intervals as anchor points and approximates the
nesting structure of intervals by establishing relationships between these anchor
points. This information is then used to prune unnecessary comparisons.

Interval joins for in-memory data have also been studied by Bouros et al. [10].
The paper proposes optimizations of the forward scan algorithm [11] and devel-
ops a parallel version, where a thread is responsible of sweeping the timeline,
and then forward scans are executed in parallel.

Another adaptation of the forward scan algorithm, specifically tailored to
skewed data, is proposed by Hellings and Wu [28]. This algorithm enriches the
forward scan algorithm with an auxiliary data structure, termed stab-forests,
which allows to skip portions of the input relations that are provably not part
of the result.

An approach that does not necessarily involve the development of ad-hoc
index structures is presented by Dignös et al. [16]: overlap joins are rewritten as
the union of two range-joins. This rewriting enables the computation of overlap
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joins using an efficient sort-merge based algorithm for range-joins that is on par
with other state-of-the-art techniques and allows to efficiently implement overlap
joins on widely available DBMS systems using B+-trees. Besides traditional
overlap joins, this work also considers additional equality predicates in overlap
joins as well as period boundaries that can have different interval definitions
(e.g., closed or half-open) for different tuples.

Joins involving predicates on intervals can be extended in several directions.
The most natural extension involves considering all of Allen’s interval relations,
as is done by Piatov et al. [46]. The paper takes the moves from [45], leveraging
the endpoint index and the gapless hash map to efficiently process intervals in a
cache-friendly way.

The interval count semi-join problem [9] requires instead to count for each
interval of a relation R, the number of intervals in another relation S with which
it overlaps. The paper extends the plane-sweep algorithm of [45] to solve this
problem directly, without requiring a join followed by an aggregation step.

Finally, another extension is that of band join of intervals [8]. Specifically, the
problem requires to join intervals that either overlap or whose smallest difference
between endpoints is smaller than a parameter ε.

Multi-way Joins. In many cases, multiple temporal relations are to be joined.
The traditional way of addressing this type of queries relies on finding the best
sequence of binary joins. This approach has the drawback of potentially produc-
ing intermediate results which are much larger than the final output. In the past
few years there has been a growing interest for multi-way equi-joins, following
the development of the output optimal worst-case join [40], where the output of
the join is computed by considering all involved relations at the same time.

Very recently, Hu et al. [29] developed an approach based on worst-case
optimal join algorithms to deal with multi-way temporal joins. These algorithms
are worst case optimal in the sense that, for a given query, one can bound the
worst case output size based on the characteristics of the query: the algorithm
will then run in time proportional to this worst case size. Furthermore, they
introduce the problem of durable joins: only the intervals with duration longer
than a given parameter τ are part of the output, allowing to ignore transient
patterns.

The complexity of multi-way interval joins is studied by Khamis et al. [33].
Specifically, the paper provides a reduction of a multi-way interval join to a
disjunction of multi-way equi-joins, and the corresponding backward reduction.
This allows to both upper bound the complexity of multi-way interval joins and
to state hardness results.

General intersection joins are the topic of the work by Tao and Yi [56].
Intersection joins consider overlaps between d-dimensional rectangles; for d =
1 the problem corresponds to overlap joins in temporal databases. The paper
focuses on the dynamic variant of the problem, where one wants to update the
solution as the relations involved in the join are modified. For binary joins of
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intervals, the paper provides an optimal data structure requiring O(n) space and
O(log n) amortized update time.

Multi-way temporal joins also arise in the context of finding temporal sub-
graphs, like k-cliques of overlapping intervals [57].

3 New Directions in Models and Semantics

In this section, we provide an overview about new research directions which go
beyond traditional temporal databases and include new semantics, data models,
and query types.

Semantics. Most works in temporal databases focus on duplicate free tempo-
ral relations, i.e., set semantics, where value-equivalent tuples are not allowed
to overlap. The work by Dignös et al. [17] provides the first theoretical founda-
tions for processing temporal data with multiset semantics under full relational
algebra and aggregation. In particular, this paper defines multiset semantics by
adopting a novel data model based on the concepts of K-relations and semir-
ings, which satisfy the properties of snapshot reducibility. The authors show how
the temporal operators over temporal relations with multiset semantics can be
translated into standard SQL queries via a query rewriting approach.

Implementing sequenced semantics using standard relational algebra is the
goal of [19]. To this end, the paper proposes to use log-segmented timestamps [18]
rather than time intervals. Assuming that the timeline has n = 2k chronons,
labels of b ≤ k bits can be univocally associated to pre-determined time inter-
vals. Therefore, any arbitrary time interval can be encoded using a collection
of at most k labels. The paper proposes to transform a temporal relation in a
non-temporal relation featuring labels in place of temporal intervals, and where
each tuple is replicated up to k times, depending on the temporal interval to
which it is associated. This transformation allows to express temporal queries
using standard (non-temporal) relational algebra, and thus allowing to imple-
ment sequenced semantics in standard DBMSs without modifications.

Temporal Probabilistic Databases. A temporal probabilistic database [42] is
a database complying with both the possible world semantics [51] of probabilistic
databases and the sequenced semantics of temporal databases. In summary, a
temporal probabilistic database can be thought of a collection of probabilistic
databases, one for each time instant. The query semantics then requires that the
result of any operation at any time point t is equivalent to the result derived from
the corresponding probabilistic operation applied to the probabilistic database at
time t. Set operations in this model are investigated by Papaioannou et al. [42],
whereas [43] studies the problems of outer and anti joins.

Streaming Data. Nowadays many applications have to deal with incoming
streams of data, rather than static datasets to be stored and processed offline.
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The work by Suzanne et al. [52,53] considers the aggregation of spanning
events (events with time periods) in the context of data streams. The work
provides a framework that extends window aggregation over regular events with
time points to spanning events with time periods. The framework supports a
wide range of common window definitions for the aggregation, and it considers
different ways how spanning events may be received in a data stream, e.g., an
event may be received only at its end time, or an event is partially received
first at its start time and later on completed at its end time. How window-
slicing for spanning events can be performed to share computational costs among
overlapping windows, is introduced in [54,55].

The work by Grandi et al. [26] proposes a query language and a unified
algebraic framework that integrates streaming, temporal, and standard relational
data in an all-in-one approach. This framework provides an extended relational
algebra for one-time queries with temporal and non-temporal semantics as well
as continuous queries with different types of window expressions, together with
a translation that allows the execution of continuous queries using traditional
temporal operators.

Ongoing Databases. The paper by Mülle and Böhlen [39] studies the concept
of “now” [2,20] in temporal databases. While many approaches deal with time
points declared as now by instantiating them to a given reference time (e.g., the
current time), this solution provides a principled approach to deal with “now”
during query processing, by keeping it uninstantiated and evaluating predicates
and functions at all possible reference times. The result of a query is an ongo-
ing relation that includes reference times. The authors introduce ongoing data
types and their operations, a relational algebra for ongoing relations, and an
implementation in PostgreSQL.

Historical What-If Queries. The work by Campbell et al. [12] introduces his-
torical what-if queries that allow to determine the effect of hypothetical changes
in the transactional history of a database. The approach exploits reenactment [3],
a declarative replay technique for transactions, to simulate the evaluation of
histories together with time travel [50] on transaction time to find the corre-
sponding history of the data to apply the what-if scenario. The authors provide
an optimization to apply historical changes only to the affected data together
with an implementation as a middleware. While this approach does not focus
on explicitly timestamped data, it exploits the transactional history of database
systems.

Temporal Keyword Search. The work by Gao et al. [24] studies the problem
of evaluating keyword queries with temporal predicates in temporal databases.
The work shows how multiple interpretations and their corresponding SQL
queries including temporal joins can be generated from the temporal predicates
in the keyword search. The work in [23] shows how temporal aggregation and
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span temporal aggregation [22] can be employed in temporal keyword search in
order to allow users to query statistical information over time.

Data Warehouse. Ahmed et al. [1] show how to generalize and extend the mul-
tidimensional model used in data warehouses with temporal features and tempo-
ral online analytical processing (OLAP) operators. The work introduces a mul-
tidimensional model that is capable of representing traditional (non-temporal)
and time-varying data independently with consistency constraints. The authors
provide a mapping from the temporal model into the relational model and show
how the temporal OLAP operators can be answered using standard SQL.

The work by Mahlknecht et al. [38] proposes different logical models how
temporal data can be represented in a data warehouse to support efficient aggre-
gations over time. The models differ in the way how data with time periods is
stored: as the set of all time points in a time period, as the start and end time
points of a time period, or as a combination of the two. The different models
may or may not facilitate different aggregation operators over time that are fre-
quently used in data warehouses. The authors show the queries in standard SQL
and provide and experimental evaluation for the different models and aggrega-
tion operators on ETL performance and query time.

4 Systems

Database vendors have been gradually enhancing their database systems with
support for temporal features, particularly with respect to the temporal features
in the SQL:2011 standard [34]. After IBM DB2, Oracle DBMS, Teradata, and MS
SQL Server, other database vendors have been following in the implementation
of temporal features. In this review we focus on the new additions of the last five
years and refer the reader to [6,7] for a more exhaustive study on the temporal
features offered before.

MariaDB as of version 10.3.4 (Jan 2018) supports system-versioned tables1
from the SQL:2011 standard, which provide integrated transaction time support.
As of version 10.4.3 (Feb 2019), the database added also support for application-
time period tables2 (i.e., valid time relations). Since both temporal dimensions
can be combined, MariaDB can also represent bitemporal tables. As of version
10.5.3 (May 2020), temporal uniqueness (WITHOUT OVERLAPS) was added,
which can be used in the declaration of a table schema3. This feature allows to
enforce temporal primary key constraints.

In a similar fashion, the in-memory, column-oriented relational database sys-
tem SAP HANA introduced system-versioned tables as of version 2.0 SPS034

1 https://mariadb.com/kb/en/mariadb-1034-release-notes/.
2 https://mariadb.com/kb/en/mariadb-1043-release-notes/.
3 https://mariadb.com/kb/en/mariadb-1053-release-notes/.
4 https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.03/en-US/

Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf.

https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-1043-release-notes/
https://mariadb.com/kb/en/mariadb-1053-release-notes/
https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.03/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.03/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
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(Oct 2018), and application-time period tables as of version 2.0 SPS045 (Oct
2019).

The Open Source database system PostgreSQL followed a different route
from the SQL:2011 standard. It offers support for temporal features through the
build-in range types (period datatype) with associated operators and functions
since version 9.2 (Sep 2012). As of version 14.06 (Sep 2021) PostgreSQL added
support for multiranges7 as a new data type, which are ordered lists of ranges
with associated operators and functions.

The work by Lu et al. [36] provides a prototype built-in temporal implementa-
tion in Tencent’s distributed database management system. The work integrates
the features of the SQL:2011 standard into the system. It employs query rewrit-
ing in the parser to map queries on valid time into non-temporal queries. For
transaction time several optimizations are proposed: a lazy migration strategy
from the current to the history table that exploits the database management
systems storage claiming procedure; a key/value store based approach to main-
tain only changed data instead of copies between current and history tables; and
an optimized operator that retrieves current and historical data.

Other systems, such as CockroachDB and Snowflake, support time travel
functionalities within a given retention time period. These systems allow to query
and restore historical states of the data (if available). However, unlike in the
SQL:2011 standard, versions and timestamps of the data are implicit and cannot
be accessed.

5 Conclusion and Future Directions

In this paper, we reviewed new contributions in the field of temporal relational
databases from the last five years. As a result, we survey 30 papers that span
different areas in temporal relational databases: query processing with selection
queries and joins, and new directions with topics such as improved temporal
semantics, temporal probabilistic databases, streaming data, and more. Finally,
we also summarized the newest developments with regards to temporal features
in commercial and Open Source database systems.

While we have noticed that join algorithms have received most attention in
the last few years, we also identified several topics that did not receive attention
at all or are underrepresented. One such topic that requires deeper investigations
is cost or cardinality estimation for temporal query operators. This is particularly
important for temporal joins. As of today most query optimizers use heuristics
or constants for the selectivity estimation of joins in the presence of inequalities.
More precise cost estimation algorithms and their tight integration into query
optimizers would be helpful to further improve the efficiency of query processing.

5 https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.04/en-US/
Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf.

6 https://www.postgresql.org/docs/release/14.0/.
7 https://www.postgresql.org/docs/current/functions-range.html.

https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.04/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
https://help.sap.com/doc/d25e2e530606453c9866c695298423b3/2.0.04/en-US/Whats_New_SAP_HANA_Platform_Release_Notes_en.pdf
https://www.postgresql.org/docs/release/14.0/
https://www.postgresql.org/docs/current/functions-range.html
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Secondly, more research work on SQL extensions for temporal operators is
needed, which is not covered in the SQL:2011 standard. While there exists some
past research on this aspect, none of the proposed extensions received wide
acceptance. The availability of a standard for the easy formulation of temporal
queries in SQL may also help industry with the integration of temporal opera-
tors in their DBMS, in a similar fashion as the SQL:2011 standard pushed the
development of temporal features.

Another direction for future research is concerned with query processing
of bitemporal operators, which consider both valid time and transaction time.
While the SQL:2011 standard allows to define and represent bitemporal tables,
there exists only one work in the last five years that considers the computation
of joins on more than one time dimension; all other works only focus on data
that has either a valid time or a transaction time.
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Abstract. A key characteristic of current graph query languages is their
support for path queries. Although a path query looks for paths in a
graph database, current graph query languages are restricted to return
just the source and target nodes connected by each solution path. There-
fore, the user is not able to manipulate the elements (nodes and edges)
of the resulting paths. In order to overcome such restriction, this paper
presents an algebra for path manipulation. Inspired by the relational
algebra, we defined the operators of selection, projection, node-based
join, edge-based join, node-based cartesian product, edge-based cartesian
product, union, intersection and difference. These operators are closed
under sets of paths, i.e. the input and the output are sets of paths. We
study the algebraic properties of the operators and describe use cases
that justify the usefulness of the algebra.

Keywords: Path manipulation · Path operations · Path algebra ·
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1 Introduction

In the last years, there has been an increasing interest around the development
of technologies based on graphs and their use in many application domains [9].
Among such technologies, several graph database systems have been developed
to facilitate the tasks of storing, manipulating and querying graphs.

A key feature of any graph database system is its query language. The
research around graph query languages has been very intensive, in particular
around two main features: graph pattern matching and path queries. The aim
of a path query is to obtain all the paths that connect two nodes in a graph
(recall that a path is a sequence of nodes and edges connecting two nodes). A
popular way to express a path query is a triple of the form (s, r, p) where s is the
source node, p the target node, and r is a regular path expression that defines
the sequence of edges that a resulting path must satisfy [7].
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Most of the current practical graph query languages support path queries,
however the functionalities for manipulating the resulting paths is very
restricted. In the case of SPARQL [13], the standard query language for RDF,
a path query just returns the pairs of nodes satisfying a path expression, so the
user is not able to access specific elements (i.e. nodes and edges) of the result-
ing paths. In Cypher [1], the query language of Neo4j, the paths returned by
a path query can be assigned to a variable, so the elements of each path can
be accessed by using specific functions; unfortunately, the facilities provided by
such functions is reduced. In PGQL [19] and OrientDB [3], each solution path
is returned as a text. In GSQL [2], Gremlin [4] and TypeQL (GraQL) [5] the
result of a path query is a set of objects, so the resulting paths can be processed
by using a programming language. G-Core [6] defines a data model which allows
storing paths, and the query language supports regular path queries; however,
there exists no operators for path manipulation.

The notion of path appears in several application domains, and path manip-
ulation operations can be related to specific use cases. For example, consider
route planning as an application domain where cities and roads in a country are
modeled as a graph. If it is the case that the country is divided into regions,
we could have a database with multiple graphs where each graph contains infor-
mation about a region. Now, consider that we want to obtain the shortest path
between city A which is located in region R1, and city B which is located in
region R2. Current query languages are not able to answer such query as the
scope of a path query is a single graph. Moreover, optimization techniques like
path indexing and query rewriting do not work due to data isolation.

Our hypothesis is that the problems mentioned above can be solved by
extending current query languages with operations allowing the manipulation of
paths (e.g. specifically, operations over collections of paths). Hence, the general
objective of this article is to develop the foundations of query languages sup-
porting path manipulation. Specifically, we define a set of operators that allow
the manipulation of paths (a.k.a. a path algebra closed under sets of paths)
and study some algebraic properties of such operators. Additionally, we present
examples showing that essential queries of graph analysis can be expressed by
using path manipulation operations.

The rest of the article is organized as follows: Sect. 2 presents the related work;
Sect. 3 introduces a data model where paths are first class citizens; Sect. 4 defines
the syntax and semantics of the path algebra; Sect. 5 presents basic rewriting
rules among the operators; Sect. 6 describes use cases for the designed algebra;
and Sect. 7 discusses issues and further research.

2 Related Work

In the current literature we can find some related studies with path operations.
In [12], Gondran defines a general algebraic structure for path operations, includ-
ing sum and multiplication operators. The aim of the algebra is to simplify the
representation of complex path problems. In [16], Manger defines the operators
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of join and product. In this case, the aim is to provide a simpler and more compu-
tationally efficient path algebra. In [18], Naudziunas and Griffin define a specific
domain language for path algebra specification. In [20], Rodriguez and Neubauer
present some path operations whose evaluation is based on automatons.

Path manipulation operations are also used with related data models. In [10],
Frasincar et al. present an algebra for querying XML data. This algebra is based
on the relational algebra, and is used for query rewriting and optimization. The
same idea was applied for RDF query optimization [11]. Stuckenschmidt et al.
[21] shown how to use indexes for optimizing the use of paths in a distributed
RDF path query. In this case, paths are processed by using indexed sub paths
which represent local minimum paths, and they can be concatenated by using a
join operator in order to reconstruct the original path.

On the other hand, multiple academic and commercial graph query languages
support path queries (e.g. Cypher [1], Gremlin [4], G-Core [6], GSQL [2], Ori-
entDB [3], PGQL [19] and TypeQL [5]). These languages support different types
of path queries, however, they are very restricted with respect to the result
of a path query, and its subsequent manipulation. For example, the paths are
returned by using a textual representation (OrientDB and PGQL), or by using
a object-based representation (Cypher, Gremlin, GSQL and TypeQL). G-Core
allows to store the resulting paths in the database, but they cannot be manip-
ulated. Languages such as G-Core and PGQL introduces the notion of “path
template” as a way to define reusable path expression.

Cypher provides procedures and functions which allow path manipulation
(via its APOC Library). Among them: Create allows to create a path from a
start node and a list of relationships; Combine allows to combine two paths
satisfying that the last node of the former is the same as the start node of the
latter; Slice allows to split a path in sub-paths with a desired length and from
a desired node; and Elements allows to convert a path into a list of nodes and
edges. The characteristics and expressiveness of these operations have not been
studied.

In conclusion, current systems and query languages have a limited support
for path manipulation.

3 Data Model

In this section we introduce a graph data model which allows the manipulation
of paths. The proposed model is based on the “Path Property Graph model”
introduced by the G-CORE query language.

In general terms, a graph (database) will be constituted by nodes, edges and
paths, where each of them has an identifier and a label. In comparison with the
graphs supported by current graph database systems, our model considers paths
as first class citizens. It implies that a query language using our model will be
able to return nodes, edges and paths.
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Let O be an infinite set of object identifiers and L be an infinite set of labels.
Given a set X = {a1, . . . , an}, we use FLIST(X) = [a1, . . . , an] to denote a
sequence of elements of X.

Definition 1. A graph is a tuple G = (N,E, P, ρ, δ, λ) where:

1. N ⊂ O is a finite set of node identifiers;
2. E ⊂ O is a finite set of edge identifiers;
3. P ⊂ O is a finite set of path identifiers;
4. N , E and P are disjoint sets;
5. ρ : E −→ (N × N) is a total function;
6. δ : P −→ FLIST (N ∪E) is a total function satisfying that, for each p ∈ P , we

have δ(p) = [n1, e1, n2, e2, ..., ex, nx+1], where x ≥ 0, ni ∈ N where 1 ≤ i ≤
x + 1, ej ∈ E where 1 ≤ j ≤ i, and ρ(ej) = (nj , nj+1) or ρ(ej) = (nj+1, nj)
for each ej ∈ E where 1 ≤ j ≤ x;

7. λ : (N ∪ E ∪ P ) −→ L is a total function.

Function ρ defines the pairs of nodes connected by each edge. Given an edge
e, if ρ(e) = (n1, n2) then n1 is the source node of e and n2 is the target node.
Function δ defines the sequence of nodes and edges related to each path identifier.
Note that δ allows paths containing a single node. Finally, function λ defines a
single label for each object (i.e. nodes, edges and paths) in the graph.

n1 n2 n3

n4

n1 n2 n3

n1 n2 n4

p1

p2

e1 e2

e3

e1 e2

e1 e3

Fig. 1. Graphical representation of a graph with paths. Nodes are represented as circles
(persons), edges as arrows (friend), and paths as dashed squares (potential friend).

Example 1 (Sample graph). Figure 1 shows the graphical representation of a
sample graph whose formal definition is given as follows. Let G = (N,E, P, ρ, δ, λ)
be a graph where N = {n1, n2, n3, n4} is the set of node identifiers; E = {e1,
e2, e3} is the set of edge identifiers; P = {p1, p2} is the set of path identifiers; the
edges are defined by ρ(e1) = (n1, n2), ρ(e2) = (n2, n3) and ρ(e3) = (n2, n4); the
paths are defined by δ(p1) = [n1, e1, n2, e2, n3] and δ(p2) = [n1, e1, n2, e3, n4];
and, the labels are defined by λ(n1) = λ(n2) = λ(n3) = λ(n4) = “person”,
λ(e1) = λ(e2) = λ(e3) = “friend”, λ(p1) = λ(p2) = “potential friend”.

It is good to mention that for this issue, for reasons of simplicity, the use of
properties in the graph elements will not be considered for this definition.
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4 Path Algebra

This section defines a set of operators (or functions) to manipulate paths and
collections of paths. First, we defined operators to extract elements in a path,
and operators to obtain specific properties of a path.

4.1 Operations over Paths

Given an edge e, we have that Source(e) returns the source node identifier of
e, and Target(e) returns the target node identifier of e. Given the path δ(p1) =
[n1, e1, n2, e2, n3] from the Fig. 1, we have that:

– First(p): returns the identifier of the first node occurring in path p, e.g.
First(p1) = n1;

– Last(p): returns the identifier of the last node occurring in path p, e.g.
Last(p1) = n3;

– Node(p, i): returns the identifier of the node occurring in the position i of the
path p, e.g. Node(p1, 2) = n2;

– Edge(p, j): returns the identifier of the edge occurring in the position j of the
path p, e.g. Edge(p1, 1) = e1;

– SubPath(p, i, j): returns a subpath p′ from p where First(p′) = Node(p, i)
and Last(p′) = Node(p, j), e.g. SubPath(p1, 2, 3) = [n2, e2, n3];

– Length(p): returns the length (number of edges) of the path p, e.g.
Length(p1) = 2;

– LeftSubPath(p, j): returns a subpath p′ from the path p where First(p′) =
First(p) and Last(p′) = Node(p, j), e.g. LeftSubPath(p1, 2) = [n1, e1, n2];

– RightSubPath(p, i): returns a subpath p′ from the path p where Last(p′) =
Last(p) and First(p′) = Node(p, i), e.g. RightSubPath(p1, 2) = [n2, e2, n3];

– Label(p, o): returns the label of an object (node or edge) o from the path p,
e.g. Label(p1, Node(p1, 2)) = “person”.

Let p1 and p2 be paths in a graph G. We will say that p1 is equal to p2,
denoted p1 = p2, if they meet the following conditions:

1. p1 and p2 have the same length, i.e. Length(p1) = Length(p2); and
2. p1 and p2 have the same sequence of nodes and edges (identifiers).

n=Length(p1)∧

i=1

Obj(p1, i) = Obj(p2, i)

Based on the above definition, a path p1 and p2 are equals only and only if they
have the same length and the same sequence of nodes and edges. On the other
hand, we will use p1 �= p2 to denote that p1 is not equal to p2.

We say that p1 is node-linkable with p2, denoted p1 �N p2, if Last(p1) =
First(p2). Assuming that p1 �N p2, the node-based natural concatenation of p1
and p2, denoted p1 ◦N p2, returns a path p such that SubPath(p, 1, Length(p1)+
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1) = p1 and SubPath(p, Length(p1) + 1, Length(p1) + Length(p2)) = p2. Addi-
tionally, the node-based cross concatenation of p1 and p2, denoted p1 ∗N p2,
returns a set of paths S where a path p = p′ ◦N p′′ is in S if p′ is a leftsubpath of
p1 denoted p′ � p1, p′′ is a rightsubpath of p2 denoted p′′ � p2, and p′ �N p′′.

Given a pair of paths p1 = [n1
1, e

1
1, ..., e

1
i−1, n

1
i ] and p2 = [n2

1, e
2
1, ..., e

2
j−1, n

2
j ] in

a graph G, we say that p1 is edge-linkable with p2, denoted p1 �E p2, if it exists
an edge e in G such that Last(p1) = Source(e) and First(p2) = Target(e).
Assuming that p1 �E p2, the edge-based natural concatenation of p1 and p2,
denoted p1 ◦E p2, returns a path p such that SubPath(p, 1, Length(p1)+1) = p1
and SubPath(p, Length(p1)+2, Length(p1)+Length(p2)+1) = p2. Furthermore,
the result of p1 ◦E p2 will be the sequence [n1

1, . . . , n
1
i , e, n

2
1, . . . , n

2
j ]. Additionally,

the edge-based cross concatenation of p1 and p2, denoted p1 ∗E p2, returns a set
of paths S where a path p = p′ ◦E p′′ is in S if p′ is a leftsubpath of p1 denoted
p′ � p1, p′′ is a rightsubpath of p2 denoted p′′ � p2, and p′ �E p′′.

Let p be a path, v be a value, k is an integer, id ∈ O and 
 ∈ {=, <,>,≤,≥}.
A selection condition is defined as follows: a simple selection condition is any of
the expressions First(p) = id, Last(p) = id, Node(p, i) = id, Edge(p, j) = id,
Length(p) 
 k and Label(p, o) = v; if c1 and c2 are selection conditions then
(c1 ∧ c2), (c1 ∨ c2) and ¬(c1) are complex selection conditions.

The evaluation of a selection c over a path p, denoted ev(c, p), returns true or
false. If p is a simple selection condition then ev(c, p) is true if the equivalence
applies, and false otherwise. The evaluation of a complex selection condition is
defined by the following Table 1:

Table 1. Evaluation of complex selection conditions. c1 and c2 are selection conditions.

c1 c2 (c1 ∧ c2) (c1 ∨ c2) ¬(c1)
true true true true false

true false false true

false true false true true

false false false false

4.2 Operations over Sets of Paths

Definition 2 (Path Algebra). Let S and S′ be sets of paths, c be a filter
expression, i and j are integers. We define a path algebra integrated by the fol-
lowing operators:

– Selection:
σc(S) = {p ∈ S | ev(p, c) = true}

– Projection:
π(S, i, j) = {p ∈ S | SubPath(p, i, j)}
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– Node-based Join:

S1 ��N S2 = {p1 ◦N p2 | p1 ∈ S1, p2 ∈ S2, p1 �N p2}
– Edge-based Join

S1 ��E S2 = {p1 ◦E p2 | p1 ∈ S1, p2 ∈ S2, p1 �E p2}
– Node-based Cartesian Product:

S1 ×N S2 = {p′
1 ◦N p′

2 | p′
1 � p1 ∈ S1, p

′
2 � p2 ∈ S2, p

′
1 �N p′

2}
– Edge-based Cartesian product

S1 ×E S2 = {p′
1 ◦E p′

2 | p′
1 � p1 ∈ S1, p

′
2 � p2 ∈ S2, p

′
1 �E p′

2}
– Union

S1 ∪ S2 = {p | p ∈ S1 or p ∈ S2}
– Intersection:

S1 ∩ S2 = {p | p ∈ S1 and p ∈ S2}
– Difference

S1\S2 = {p1 ∈ S1 |� ∃ p2 ∈ S2 satisfying that p1 = p2}
It is worth mentioning that every operation defined above, its result is a set

of paths, i.e. our algebra is closed under sets of paths.

4.3 Examples of Queries

Next we present examples of queries using the operators of the algebra. The
examples are based in the routes representations of the Fig. 2, this figure presents
a set of cities, towns and beaches, connected by different roads. Additionally in
the Table 2 is presented a set of paths that represent different bus and train
routes.

– Selection:
Query: I want to get the paths from c4 of the bus bus3.

σfirst(p)=c4(bus3) = {p ∈ bus3 | first(p) = c4}
Result:

result1 = {[c4, r5, b2], [c4, r3, t2]}

Table 2. Routes of different bus lines, represented as paths of the graph in Fig. 2. This
representation is based on the textual representation of a path.

bus1 bus2 bus3 train1

{[c1, h1, c2, h2, c3, h3, c4], {[c3, r4, b1], [b1, r4, c3], {[c4, r5, b2], [b2, r5, c4], {[c5, r6, b3],
[c4, h3, c3, h2, c2, h1, c1]} [c3, r2, t1], [t1, r2, c3]} [c4, r3, t2], [t2, r3, c4]} [b3, r6, c5]}
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c1 c2 c3 c4 c5

t1

b1

t2

b2 b3

h1 h2 h3 h4

r1

r2 r3

r4 r5 r6r7

r8

Fig. 2. Graphical representation of a routes between cities. Nodes are represented as
circles (cities c, towns t and beach b) and edges as arrows (highway h and road r).

– Projection:
Query: I want to know which beaches or towns I can get to from c4 by the
bus3.

π(σfirst(p)=c4(bus3), 2, 2) = {p ∈ σfirst(p)=c4(bus3) | SubPath(p, 2, 2)}
Result:

result2 = {[b2], [t2]}
– Node-based Join:

Query: I want to go from the city c1 to the beach b2, using the bus1 and bus3
correspondingly.

σfirst(p)=c1(bus1) ��N σlast(p)=b2(bus3)

Result:
result3 = {[c1, h1, c2, h2, c3, h3, c4, r5, b2]}

– Node-based Cartesian product:
Query: I want to go from the city c1 through c3 and see what is nearby, using
first the bus1 and then the bus2.

σfirst(p)=c1(bus1) ×N σfirst(p)=c3(bus2)

Result:

result4 = {[c1, h1, c2, h2, c3, r4, b1], [c1, h1, c2, h2, c3, r2, t1]}
– Edge-based Join:

Query: I want to create new routes based on the routes of bus3 and train1.

bus3 ��E train1

Result:

result5 = {[b2, r5, c4, h4, c5, r6, b3], [t2, r3, c4, h4, c5, r6, b3],
[c4, r5, b2, r8, b3, r6, c5]}
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– Edge-based Cartesian product:
Query: I want to create new routes based on the routes of bus1 and train1,
and the existing road in the Fig. 2.

bus1 ×E train1

Result:

result6 = {[c1, h1, c2, h2, c3, h3, c4, h4, c5, r6, b3], [c1, h1, c2, h2, c3, h3, c4, h4, c5],

[c4, h4, c5, r6, b3], [c4, h4, c5]}

– Union:
Query: I want to create a new busx using the routes from the bus2 starting
in t1 and bus3 starting in c4.

(σfirst(p)=t1(bus2)) ∪ (σfirst(p)=c4(bus3))

Result:
result7 = {[t1, r2, c3], [c4, r3, t2]}

– Intersection:
Query: I want to get the common routes between the result1 and result7.

result1 ∩ result7

Result:
result8 = {[c4, r3, t2]}

– Difference:
Query: I want to get the routes that differ between the result1 and result8.

result1\result8

Result:
result9 = {[c4, r5, b2]}

5 Properties

In this section we study the algebraic properties of the path operators defined
above.

We will say that two sets of paths S1 and S2 are equivalent, denoted by
S1 ≡ S2, if �S1�G = �S2�G for each path p from S evaluated in G. The next
lemma allows us to define the next properties: Compositionality, commutativity,
associativity and distributivity.

Lemma 1. The union and intersection operators are associative and
commutative.

(S1 ∪ S2) ≡ (S2 ∪ S1); S1 ∪ (S2 ∪ S3) ≡ (S1 ∪ S2)∪ S3; (S1 ∩ S2) ≡ (S2 ∩ S1);
S1 ∩ (S2 ∩ S3) ≡ (S1 ∩ S2) ∩ S3
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Lemma 2. The Join and cartesian product operators are associative and not
commutative. The Difference operator is not associative and not commutative.
Furthermore, these operators are distributive over the union based in a non-
repeated values semantics.

– (S1 ��N S2) �≡ (S2 ��N S1)
– S1 ��N (S2 ��N S3) ≡ (S1 ��N S2) ��N S3

– S1 ��N (S2 ∪ S3) ≡ (S1 ��N S2) ∪ (S1 ��N S3)
– (S1 ×N S2) �≡ (S2 ×N S1)
– S1 ×N (S2 ×N S3) ≡ (S1 ×N S2) ×N S3

– S1 ×N (S2 ∪ S3) ≡ (S1 ×N S2) ∪ (S1 ×N S3)
– (S1\S2) �≡ (S2\S1)
– S1\(S2\S3) �≡ (S1\S2)\S3

– S1\(S2 ∪ S3) ≡ (S1\S2) ∪ (S1\S3)
– (S1 ��E S2) �≡ (S2 ��E S1)
– S1 ��E (S2 ��E S3) ≡ (S1 ��E S2) ��E S3

– S1 ��E (S2 ∪ S3) ≡ (S1 ��E S2) ∪ (S1 ��E S3)
– (S1 ×E S2) �≡ (S2 ×E S1)
– S1 ×E (S2 ×E S3) ≡ (S1 ×E S2) ×E S3

– S1 ×E (S2 ∪ S3) ≡ (S1 ×E S2) ∪ (S1 ×E S3)

Note that the join and cartesian product operators (for both, node-based and
edge-based) are not commutative due to the concatenation operations defined
in Sect. 4, which are defined based on the order in which the sets are operated,
that is, if there are two paths p1 and p2, p1 ◦N p2 �≡ p2 ◦N p1, p1 ∗N p2 �≡ p2 ∗N p1,
p1 ◦E p2 �≡ p2 ◦E p1 and p1 ∗E p2 �≡ p2 ∗E p1 depending on the case.

Lemma 3. The node-based join, node-based cartesian product, edge-based join,
edge-based cartesian product, difference, union, and intersection operators are
compositional, since each of these always returns a new set of paths P .

6 Use Cases

This section presents application domains where the proposed path operations
can be useful.

6.1 Transportation

A transportation network can be naturally abstracted as a graph [14], where
a node represents a point of interest (POI), and the an edge represents a road
between POIs. A path in a transportation network represents a way to go from
a point A to a point B.

If we have two sets of path respectively, S1 and S2, representing the paths
of two people to some points in a map, we can perform many path operations
with the goal of retrieving some important information like comparisons or other
useful data. Consider the following path operations that can be used to perform
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basic operations in a transportation network: Select : to filter the paths con-
necting two points according to a given selection condition; Project : to project
sub-routes from the set of routes; Node-based Join: extend routes and create new
paths to explore; Edge-based Join: explore a link between two paths; Intersect :
get the common routes between two person; Difference: get the different routes
from one person.

Based on the operations described above, we can formulate some specific
cases that involve the use of more than one operation:

– Found two routes for two persons, from a specific point to another, like going
from the mall (A) to the university (B), without them crossing the others
path. In this case, the select, project and difference operations will be useful,
because we can get the routes from A to B, get the middle path and get
different sub routes.

– If we think that a country is divided into regions, and each region is repre-
sented by a graph that contains the cities and their connections, the opera-
tion Select would be useful to find subpaths within regions and the finding the
desired path by joining with a Node-based Join or Edge-based Join depending
the case.

6.2 Proteins

Some of the path operations can be used in protein analysis. A protein can
be represented as a graph where the nodes represent amino acids and ligands,
and the relationships among them (e.g. precedence, distance or gap) can be
represented as edges.

One useful task to perform with path operations in the context of proteins
is the search of common chains between two proteins. If we see each protein as
a set of paths, where each path represents a specific chain in a protein, we can
perform some path operations in it in order to obtain basic information: Select :
To search specific chains in a protein, or specific amino acids in it; Project : To
project specific objects of the chains; Intersect : To compare two proteins and
retrieve the common chains.

Another useful task to perform with our operations on proteins is to look
for the interaction of ligands with protein subchains. For this case, we can use
the Edge-based Cartesian Product, and Select which allows us, given two sets of
paths, one representing the amino acid subchains and the other the ligands to
interact, to generate the different combinations, and filter by a desired length or
some specific condition.

The search for common chains between proteins or the ligands interaction
with amino-acids, allows discovering similarities between them, with the aim of
analyzing them and discovering new drugs [15,17] and applying this knowledge
in the treatment of diseases [8].
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7 Discussion

In this section we discuss three issues related to path manipulation which are not
covered in this paper but deserve further research: labels and repeated results;
notions of compatibility; and path queries across multiple graphs.

7.1 Labels and Repeated Results

Labels are fundamental to express path queries, as they are used to describe a
regular path expression. In our case, labels are just used by the Select operation
to filter paths occurring in a set of paths. Next we discussion the use of labels
in other operators.

In the Project operation, labels can be used to project sub-paths (occurring
in a set of paths) by using a regular path expression. We have not included
this feature because there are multiple interpretations for such projection (e.g.
semantics for repeated results). Moreover, depending on the given semantics,
the operation could be complex in the sense of the number of paths that can be
returned.

The Join of paths based on labels looks possible at the first time, however
it implies some issues (e.g. create a new node join the paths). Similar problems
arise with the cartesian product operation.

In the case of the set-based operations (Union, Intersection and Difference),
the use of labels can cause a loss of paths because we are comparing labels and
not identifiers. Specifically, two path can have the same structure, have the
same length, have the same order of elements (nodes, edges labels), and can be
“compatible” under a label comparison, but they are not the same path as their
components are different.

7.2 Notions of Compatibility

In Sect. 4 we define a notion of equality with the objective of evaluating two
paths, and such notion was used to define set-based operations (Union, Difference
and Intersection). Such notion of compatibility is based on identifiers, i.e. two
paths are considered equal if their sequence of identifiers is the same. A label-
based definition of compatibility implies a comparison of the labels.

Another option is to compare source and target nodes of a path, in this
case, we have a pair of paths p1 and p2 that will be compatibles if First(p1) =
First(p2) and Last(p1) = Last(p2). This option allows us to obtain paths with
the same origin and destination, regardless of their length or their intermediate
sub-path sequence.

Finding an option to define the compatibility of two paths is not an easy
task, due to the complexity of defining the correct semantics depending of what
we want to evaluate and return.
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7.3 Paths Queries Across Multiple Graphs

An interesting use-case for the path algebra presented here is the evaluation of
path queries over multiple graphs. For example, suppose that the graph shown
in Fig. 2 is divided in three sub-graphs: the graph G1 which includes the nodes
{c1, c2, c3, t1, b1} and the edges {h1, h2, r1, r2, r4}; the graph G2 which includes
the nodes {c4, c5, t2, b2, b3} and the edges {h4, r3, r5, r6, r8}; and the graph G3

which includes the nodes {c3, c4, b1} and the edges {h3, r7}. Based on our exam-
ple, G1 and G2 can represent two regions in a country, and G3 represents the
border between both regions. Now, suppose we want to obtain the paths between
city c1 and beach b3. Note that this query cannot be answered by using a single
path query (e.g. an RPQ expression) as c1 and b3 are in different graphs.

The above query can be solved by using the following algebra expression:

(σfirst(p)=c1(G1) ��N σtrue(G3)) ��N σlast(p)=b3(G2)

First, we Select the paths starting in c1 to any other node in region1, and
storing them in pr1; second, we Select the paths from any node in region2 to b3,
and storing them in pr2; third, we Select the connecting paths occurring in the
“connection graph”, and storing them in cpaths. Then, we can use the Node-based
Join operation, to connect the sets of paths pr1, pr2 and cpaths. It results in a
set containing the paths between c1 and b3.

Now suppose that the user requires the shortest paths between c1 and b3. In
this case, we can extend the path algebra with operations that allow to obtain
the set of shortest paths, e.g. Shortest(S) where S is a set of paths. This type of
query can be also solved by introducing operator for grouping and aggregation
over sets of paths.
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Abstract. The road network is the infrastructure along which the
mobility of users and goods takes place; the analysis of these networks
in terms of spatial and graph theoretical approaches can provide insights
to understand urban mobility, improve daily commuting, and reflect on
new, more sustainable, scenarios. This paper presents an open-source
framework to analyze the road network and investigate the relationship
between its topology and traffic conditions. Open-source geographical
data are stored in a graph database containing roads, junctions, and
Points of Interest (POI), allowing importing of traffic data. The frame-
work includes routing algorithms to obtain the optimal path based on
different aspects such as distance, traffic volume, and the number of
traversed junctions; furthermore, it allows simulating road closures to
observe how they affect road viability. The framework was tested in the
use case of the city of Modena (Italy) providing promising results.

Keywords: Road network · Graph database · Routing · Road traffic ·
Smart city · Network modelling

1 Introduction

At least once in a lifetime, everyone has been stuck in traffic. In recent decades,
researchers have studied the topology and characteristics of the road network to
understand, plan and optimize traffic management, improve commuting time and
reduce emissions. In particular, when it comes to road networks that are complex
non-planar spatial networks, weighted multi-digraphs play a massive role in the
analysis and understanding of their properties. Two main approaches to road
traffic modeling are suggested in the literature: a primal approach described in
[26] and a dual approach presented and exploited in [14,25]. The primal approach
generates a graph where each road intersection (junction) is a node and lanes
or road sections connect the junctions with relationships: a primal graph. The
primal graph is necessary for routing purposes and provides an in-depth repre-
sentation of the road network. The dual approach instead is inverse: it considers
roads as nodes, and the connections between them are created when they meet
at a junction. The obtained graph is a dual graph. Most studies adopt the primal
c© Springer Nature Switzerland AG 2022
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approach because, in the dual graph, the information regarding the geo-location
and the geometry of the roads may be lost. However, both representations can
be useful to unveil different aspects of the road network topology: the dual graph
can help to study the connections between roads and easily determine the ones
where traffic flows converge. For this reason, we realized an open-source frame-
work available on git repository1 that allows directly generating a graph instance
from Open Street Map (OSM)2 data composed of two graph representations: a
primal and a dual graph. The two representations are generated together and
added to the same graph database, keeping a connection between the node repre-
sentation of the road in the dual graph and its geometry memorized in the primal
graph. This combined approach allows exploiting the advantages of a simplified
representation of the relations between roads without losing the complexity of
their geometry construction.

The obtained graph model also includes the Points Of Interest (POI) in the
geographical area and supports the integration of mobility information, such as
traffic volume data. Moreover, the graph can be changed by closing or opening
roads to investigate alternative routes in the different road closure scenarios.
The analysis of the road network can be performed by applying centrality and
community detection algorithms. This paper highlights the importance of inte-
grating traffic information directly into the graph and taking into account the
distance, the volume of traffic and the number of nodes crossed when evaluating
the shortest path. For this reason, three different routing methods have been
compared. Since the framework imports data from OpenStreetMap, it enables
the easy generation of a digital twin of the road network of any city, area, or
region; also, routing can be performed in very few steps. We strongly believe
that this solution will simplify the modeling, analysis, and improvement of road
networks in different cities. We present a use case analysis conducted on the
road network of the city of Modena (Italy) that shows how traffic information
can be generated, integrated, and exploited to gain additional insight into the
traffic conditions of the urban area.

The rest of the paper is organized as follows. Related work is presented
in Sect. 2. The generation of the graph model is described in Sect. 3. Section 4
explains how traffic data can be generated; while, Sect. 5 describes the method-
ology adopted to integrate traffic data in the existing road graph model. Fur-
thermore, Sect. 6 presents three routing approaches and the management of road
closures. In Sect. 7, the results of the analysis performed in the city of Modena
are presented. Finally, conclusions are discussed in Sect. 8.

2 Related Work

There are many examples of the profitable use of graphs for representing road
networks [1,13,20,29]. In [21], several modelling solutions that can be employed
to represent and simplify a road network are presented. A data-driven graph
1 https://github.com/ChiaraBachechi/roadRouting/.
2 https://wiki.openstreetmap.org/.

https://github.com/ChiaraBachechi/roadRouting/
https://wiki.openstreetmap.org/
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model generated from traffic sensors observations based on the primal approach is
described in [16]. They model the road network as an undirected graph weighted
according to the spatial correlation among adjacent traffic intersections; however,
to adopt this solution, traffic sensors are needed at every road intersection. In [15],
a tool that allows studying efficiency in a road network is described. They employed
a PostgreSQL database with pgRouting3 and PostGIS extension to convert OSM
ways into geometric features.Graph algorithms, however, are generally performing
better when executed on a graph database as discussed in [7,22]. For this reason,
we decide to employ the Neo4j graph data platform4 for our framework. In [5], a
library to convert the OSM road network into a road graph is presented. This tool
allows downloading and analyzing the road network as a graph. We rely on this
library for the generation of the initial primal graph, but we enriched the obtained
graph with properties and relations extracted from traffic data, POI nodes and
their connections, additional properties related to the status of the street, and we
generate a dual graph.Moreover, our developed framework allows closing and open-
ing streets and generating different routes according to the new road status. Sev-
eral studies discussed the use of centrality measures to explain traffic flows in urban
areas [11,12] investigating the correlation among different centrality measures and
the corresponding simulated or real traffic flows. The studies are mainly focused
on the primal approach, we further investigate this correlation in this paper con-
sidering also the dual graph. Pathfinding algorithms have been widely studied to
determine the shortest path between a source and a destination. In [30], the labels
associated with each road are taken into account to find label-constrained paths,
employing index-based techniques and decomposing the road network into a tree-
like structure. Moreover, in [27], the authors suggest that the users are looking for
the fastest path rather than the shortest path; thus, they include traffic influence
factors when evaluating the shortest path and develop ‘Trafforithm’ a traffic-aware
shortest path algorithm.

3 Road Network Graph Modelling

To ensure that this methodology can be easily applied to any urban environment,
OSM is the main open data source. OSM provides very high-resolution data
regarding road networks collected through the collaboration of a big community
of users worldwide. The topological data structure has two main elements: nodes
and ways. Nodes represent map features without a size that can be approximated
as points. While, ways are lists of nodes representing polylines and polygons.
The more intuitive conversion of this structure in a graph model is to generate
graph nodes from OSM nodes and relationships from ways that connect them.
As a result, a primal graph is obtained. This graph can be used for routing
purpose since each node maintains a reference to the real point in space where the
junction is located. However, the number of nodes and relationships is very high,
while the density is very low. A simplified representation of the road network
3 https://pgrouting.org/.
4 https://neo4j.com/.

https://pgrouting.org/
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can be generated by the dual approach where the graph nodes are roads (each
identified by their OSM identifier). The resulting dual graph is a modified version
of the named street graph (described in [8]) that assumes as street names their
OSM identifiers. The dual graph’s analysis highlights the interactions between
roads. These two representations of the road network are regenerated in the same
graph database instance maintaining a connection between them to exploit the
advantages of both approaches.

3.1 Primal Graph

The primal graph represent point-to-point relationships between junctions. The
OSMnxPython package [5] was employed to construct the graph database instance
directly from OSM data. Given a point and a radius, the data in the circular area
are converted into a ‘graphml’ format; then, a Neo4j instance is generated through
a query in Neo4j proprietary language: Cypher. To do that we employed the Awe-
some Procedure On Cypher (APOC)5 library. Since our framework is devoted to
vehicular traffic, we decide to consider only the roads where vehicles can travel. We
modify the structure of the graph obtained directly with OSMnx: we changed
the label of OSM nodes to ‘Node’, and we insert a spatial property containing
the node’s location (latitude and longitude). Moreover, relationships between the
junction nodes are called ‘ROUTE’ and contain information about the type of
highway, the street name, the OSM identifier, the length of the road segment, and
the status. The status property has also been added and is ‘active’ when the road
is open to vehicular traffic, or ‘closed’ if not. A relationship is generated for each
travel direction.

Fig. 1. An example of the primal graph structure.

For routing purposes, also POIs are of key importance as sources and targets
of vehicles’ routes. For this reason, the Overpass API6 is queried to get data
5 https://github.com/neo4j-contrib/neo4j-apoc-procedures.
6 http://overpass-api.de/.

https://github.com/neo4j-contrib/neo4j-apoc-procedures
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Fig. 2. Comparison between the paths evaluated with the three approaches.

regarding amenities (e.g. restaurants, bars, pubs, and schools) and insert POI in
the already existing graph as new nodes. The OSM’s flexible structure enables
the association of a variable number and different type of tags to each element
(way or node) that describes its properties. Thus, the POI nodes are labelled
as ‘PointOfInterest’ with a connected ‘Tag’ node containing all the additional
properties of the POI retrieved from OSM. Each POI is connected to a node
labelled as ‘OSMWayNode’ with a ‘MEMBER’ relationship and then connected
to the node of the road network nearest to the exact geographic position of the
POI. When the POI is represented as a point (OSM node), the ‘OSMWayNode’
is a single node. While, when the POI has a complex geometry (e.g. polygon)
and is represented as a way in OSM, it is represented as a collection of connected
‘OSMWayNodes’. Figure 1 shows an example of a POI node connected to: a Tag
node with additional information, and an OSMWayNode connected to the other
nodes of the road network. The Gray relationships are of ‘ROUTE’ type and
the value displayed is the distance in meters. Exploiting the framework for our
use case, we generate a primal graph for the city of Modena containing 19,607
junction nodes, 841 POIs nodes, and 33,571 ‘ROUTE’ relationships. The average
un-directed degree of nodes is 3.41: the incoming and outgoing average degree
are very similar and around 1.71. The graph has a very low density as expected
for a road network (8 × 10−5).

3.2 Dual Graph

The primal graph is a point-to-point oriented graph where the relationship that
connects the nodes are segments of road lanes and to represent a single road
you may need more than one relationship. For example, in Fig. 3, all the nodes
and relationships highlighted in orange in the primal graph correspond to the
same road. For this reason, we decide to generate a simplified version of the
graph that is derived from the primal graph, and thus we will refer to it as
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dual graph. In this graph, each road is represented by a node ‘RoadOsm’, and
the relationships ‘CONNECTED’ are generated between connected roads. Two
roads are connected if there is a junction that allows driving from the source
road to the target road. Thus, each ‘CONNECTED’ relationship is associated
with a junction ‘Node’ in the primal graph. However, for each node in the primal
graph there could be several ‘CONNECTED’ relationships in the dual graph.
This version of the graph is distant from the real street map since the nodes
do not have a spatial reference. For example, in Fig. 3, the node highlighted
in light blue in the primal graph corresponds to the three relationships in the
same color in the dual graph. This alternative representation can be useful to
better understand the relationship between roads and identify the ones that are
more important in the road network. Our framework automatically generate this
simplified dual graph as an additional layer over the primal graph. Moreover, the
graph contains only the roads in the ‘active’ status: open to vehicular circulation.
In this way, the user can generate alternative dual graphs in different scenarios
of road closures and study the different relationships’ contexts that will emerge.
The dual graph generated for the city of Modena contains 4421 nodes and 15037
relationships, the average undirected degree of nodes is 6.8 (the incoming and
the outgoing average degrees are very similar and around 3.4), and a decimal
order higher density compared with the primal graph (7 × 10−4).

Fig. 3. Example of a primal graph (on the left) and the dual graph (on the right).
(Color figure online)

4 Generation of Traffic Data

Traffic information can be generated in many ways from traffic sensors observa-
tions (e.g. induction loop detectors, cameras, Bluetooth sensors), GPS routes,
and open data sources (e.g. Open Transport data7), OD matrices or through
simulations. Each method can provide different data for each road lane such as
vehicle count, speed, type of vehicles, traffic flow (Veh/hour), etc. We are inter-
ested in integrating the annual average daily traffic volume (AADT) for each
road lane in the road network. AADT is a traffic volume metric defined as the

7 http://opentransportmap.info/.

http://opentransportmap.info/
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average daily traffic volume at a given road lane over a full 365 days/year [10].
In the following, we described the solution adopted to generate traffic data and
calculate AADT in our use case.

About 400 induction loop detectors are placed under the surface of the street
in the urban area of the city of Modena; these sensors provide a value of vehicle
count and average speed every minute. Traffic flow data have been collected
from November 2018 to April 2021, cleaned (as described in [4]), and used to
feed a micro-simulation traffic model: SUMO (Simulation for Urban MObility)
[17]. The traffic sensor data of each day are the input of the SUMO model that
simulates the traffic in all the main streets of the urban area. This simulation
allows predicting the traffic flow in all the road segments of the road network,
and it is better described in [2,3,24]. Considering all the simulations of the year
2019, for each road r, AADT was evaluated as:

AADTr =

∑N
i=0

∑24
j=0 flowr,j,i

N

where N is the number of simulated days in the given year, and flowr,j,i is the
observed traffic flow (veh/hour) in the road lane r for the jth hour of the ith

day of the year. The traffic data generated by the traffic model for the city of
Modena are visualized in a dashboard8 and available as open data9. Moreover,
the CSV formatted file used in our use case is available for testing in the git
repository.

5 Traffic Data Integration

The framework allows integrating traffic data directly in the graph, through a
python script. This traffic data need to be formatted as a CSV file containing the
OSM id of the starting OSM node, and the ending OSM node between which the
traffic is measured. A new relationship named ‘AADT’ is inserted in the primal
graph between the source and the target node; then, the traffic volume is added
as a property of this new relation. A new relationship is needed because the
primal graph and the road network the traffic data refers to can be different. In
particular, in our use case, traffic data are lane-based; thus, in the same direction
there could be more lanes and the primal graph has a single ROUTE relation.
Additionally, a new property is added to the ‘ROUTE’ relation: the average
traffic volume in each direction. Moreover, traffic data may not be complete:
they can cover only a reduced part of the total roads. Where traffic data are not
provided, in order to exploit as much as possible the available traffic information,
two main approximations are adopted:

– the traffic volume is evaluated as the average traffic volume of all the observed
relationships in the same direction between 1 to 5-order neighbors,

8 https://trafair.eu/trafficflow/annual-average-traffic-volume.
9 https://dati.emilia-romagna.it/dataset?organization=comune-di-modena&

tags=features&res format=WFS& res format limit=0&page=2.

https://trafair.eu/trafficflow/annual-average-traffic-volume
https://dati.emilia-romagna.it/dataset?organization=comune-di-modena&tags=features&res_format=WFS&_res_format_limit=0&page=2
https://dati.emilia-romagna.it/dataset?organization=comune-di-modena&tags=features&res_format=WFS&_res_format_limit=0&page=2
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– if there are no neighboring traffic relationships, the traffic volume is evaluated
as the average AADT of all the roads of the same type (e.g. highway, primary,
secondary, and residential).

Moreover, in the dual graph, a new ‘traffic’ property is added to each road node.
Since longer roads are supposed to have a higher traffic volume, the traffic prop-
erty is evaluated as the ratio between the average AADT and the total distance
of all the ROUTE relationships that correspond to the given road.

Fig. 4. Comparison between the shortest paths before and after via Wiligelmo closure.

6 Routing

Detecting the optimal route between two points in a network based on differ-
ent traffic conditions is of key importance for traffic management and analysis.
Moreover, routing algorithms can help in generating realistic random routes to
feed simulation models. Pathfinding algorithms find the best path between two
nodes in a graph, comparing all the possible paths based on their cost. The cost
can be evaluated in very different ways: summing the values of a property of the
relation that associates the two nodes (used as weight), or counting the number
of traversed nodes in the path. We explored three main approaches for shortest
path evaluation based on: the number of traversed nodes, the distance, and the
traffic volume. The shortest path based on the number of traversed nodes was
evaluated with the fast algorithm provided by Neo4j. This solution is unweighted
and only needs to search for the path; thus, the implementation is based on the
fast bidirectional breadth-first search algorithm [23]. However, when considering
the ‘distance’ attribute that corresponds to the length of the road segment that
connects the two nodes, we need to employ a more complex algorithm: the A*
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Fig. 5. Map of the 100 junctions with the highest betweenness centrality (on the left)
and the highest degree centrality (on the right) in the city of Modena.

informed search algorithm that uses a heuristic function. This heuristic function
is the Haversine distance between two geo-located points on the earth sphere
[18]. For this reason, each node contains information regarding its position (the
coordinates). Moreover, the distance between the nodes in a road network can be
significantly different from the real distance to travel; thus, the A* algorithm use
as weight the length of the road segment. Finally, if traffic data are available, the
optimal path that considers also the amount of traffic between each node can be
evaluated. In a first attempt, we try to employ the A* algorithm considering the
traffic volume as weight; however, since there are several rural roads outside the
urban area where traffic volume is low, the obtained path was very long and not
realistic. For this reason, we decide to define a new relationship property based
on both distance and traffic volume. The value of this property is estimated as:

wx = 0.5 ∗ dx − mind

maxd − mind
+ 0.5 ∗ AADTx − minAADT

maxAADT − minAADT

where dx is the road length corresponding to the ‘ROUTE’ relation and AADTx

its average traffic volume, mind and maxd are the minimum and maximum
distance values computed on all the road network, and minAADT and maxAADT

the minimum and maximum AADT values on all the road network. As a result,
the weight of each relationship is the equal-weighted sum of the normalized
values of distance and AADT. This solution allows finding the optimal path,
considering both the traffic conditions and the length of the resulting path. In
Fig. 2, the three paths obtained applying the routing procedure between the same
source and the same target node but with different approaches are displayed. We
can observe that the three resulting paths are slightly different.

6.1 Managing Road Closures

For an event or the presence of maintenance work, a street may needs to be
closed for a short period. In this case, the traffic manager need to know an
alternative path that avoids traveling through certain streets. To enable this
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functionality, our street graph can be dynamically modified, setting the status
of a road (identified by its road name) to ‘close’ or ‘open’ to traffic. All the
‘ROUTE’ relations in our road network are characterized by the ‘status’ property
automatically set to ‘open’ when the primal graph is generated; however, the
user can easily change this status by running our ‘ChangeStreetStatus’ script
(available in the git repository). This script takes as input the name of the street
(e.g. Via Wiligelmo), the new status, and the parameters needed to establish the
connection with the Neo4j instance. The status of each ‘ROUTE’ relation that
involves the road with the given name is updated and, to allow the correct
execution of the routing procedure, the road’s connected POIs are detached
and new relationships are established with the other roads in 100 m from each
POI. When the road is re-opened, the original relationships with the POIs are
re-established.

Figure 4 compares the shortest paths obtained considering the traffic volume
when the road via Wiligelmo is open or closed. Our routing algorithm finds the
best path that avoids passing through the closed street.

7 Road Network Analysis

Now that we have converted the road network into a graph, and we have inte-
grated traffic information, we can employ several graph-based algorithms to
investigate the graph structure and its relation to traffic. For doing this, we
rely on the Graph Data Science library of Neo4j. In order to identify the junc-
tion that, given the graph topology, are involved in the majority of the shortest
paths, we employed the Betweenness Centrality (BC) algorithm on the primal
graph. The shortest paths connect two points passing through the minimum pos-
sible number of relations. The BC evaluates the shortest paths between all the
couples of nodes in the network and then associates to each node a score [9].
This score depends on the number of the shortest paths crossing the node and
is evaluated as:

score(n) =
∑

s,tεN

sp(s, t|n)
path(s, t)

where n is the actual node, N is the ensemble of all nodes in the graph, sp(s, t|n)
is the number of the shortest paths between s and t that passes through n, and
path(s, t) the total number of the shortest paths between s and t. In the city
of Modena, we obtained a BC score between 0 and 8 × 107, with an average
score of about 3 × 106. Figure 5 displays the first 100 junctions with the high-
est score. Moreover, we investigate if the BC score of the junction is correlated
with the traffic in the incoming and outgoing roads by evaluating the correla-
tion between the BC score and the sum of all the traffic volumes of the roads.
Since the Person’s and Spearman’s coefficients were both lower than 0.2 (0.12
and 0.15 respectively), as already discussed and demonstrated in [11], we prove
that, also in our use case, the BC score is not significantly correlated with the
traffic volume. Then, we try to test the Harmonic Centrality (HC) algorithm:
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Fig. 6. PR results for the city of Modena.

a modified version of Closeness Centrality that works better with unconnected
graphs [19]. The HC score depends on the average shortest path between the
node and all the other nodes in the graph. The average shortest path is evalu-
ated summing the inverse of the distances between the given node and all the
others. HC algorithm has been applied to the primal graph of the city of Modena
obtaining a Spearman’s correlation coefficient significantly higher (0.61). Simi-
larly, we evaluated the HC score of the dual graph and compared it with the sum
of all the traffic volumes along each road. We obtain a Spearman’s correlation
coefficient of 0.45. Thus, there is a relation between HC score and traffic volume.
If we want to employ centrality to find the most congested junction, however,
the best solution is to exploit the presence of traffic data in the properties of
our graph and use the Degree Centrality (DC) algorithm. The DC algorithm
is a weighted algorithm; thus, it can be weighted by the ratio between AADT
and distance. In this way, the degree of each junction is evaluated as the sum
of this ratio in all of the incoming routes. In the city of Modena, we obtained a
DC between 0 and 8 × 103, with an average degree of 142. The Pearson’s and
Spearman’s correlation coefficients with the traffic flow are obviously very high
(0.95) because the traffic has been used as weight. In Fig. 5, the most important
nodes evaluated with BC and DC are compared. We can observe that the result
is very different since it conveys different information. The BC assumes that:
the drivers are always choosing the shortest path, all the positions in the city
have the same importance, and the same number of vehicles are driving through
them. The DC, instead, considers the AADT traffic and shows the nodes with
the highest incoming traffic: the most congested junctions. The application of
centrality algorithms to the primal graph is an interesting solution to transfer
the traffic information from roads to junctions. As a matter of fact, not only
the roads with an high traffic volume are affected by slowdowns; all the vehi-
cles driving through the roads incoming in a congested junction will have a
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longer traversal times than expected, even if their route does not involve con-
gested roads. Therefore, to investigate the roads prone to slowdowns, we set up
a methodology that uses both the primal and the dual graph. Firstly, we employ
DC on the primal graph in order to assign a score to each junction based on
traffic. Then, the new ‘score’ property of the junction that connects the two
roads is transferred in each relationship between two road sections in the dual
graph. Finally, we decide to apply the PageRank algorithm (PR) [6] to the dual
graph. We employ PR considering as weight the ‘score’ property evaluated with
DC. In this way, a road can have a high rank if many roads are connected to
it, or if some of these connections are through congested junctions. As can be
seen in Fig. 6, the framework allows to automatically visualize the roads with a
PR higher than the average rank plus two times the standard deviation. In the
dual graph of the city of Modena, the roads’ ranks are between 0.15 and 7.28,
with an average of 0.95; thus, the rank’s distribution is left-skewed with a low
number of roads with a high page rank. The displayed road sections are 201.
These are only some examples of the insights that can be obtained through the
primal graph and dual graph analysis supported by our framework.

8 Conclusion

This paper presented an open-source framework to perform an analysis of the
road network, investigate the relation between topology and traffic conditions,
and exploit routing algorithms to obtain the optimal path based on different
aspects such as distance, traffic volume, number of traversed junctions.

The proposed representation of road networks as the combination of primal
graph and dual graph allows users to apply graph algorithms on cascade on both
levels, offering the opportunity to analyze the relationship between the topology
of the road network and the traffic distribution. The framework can be efficiently
employed by users that are not aware of the graph theory or do not know how
a graph database works; moreover, it can provide a good starting point for
knowledgeable users that want to conduct deep analytic by applying graph data
science and machine learning algorithms. To the best of our knowledge, there
are no available open-source frameworks that allow generating both primal and
dual graphs and integrating traffic data.

We also explained how we evaluate traffic in our use case and how we manage
to evaluate the AADT on the roads where traffic data were missing. Thus, a user
that has information about the traffic between a reduced number of nodes can
employ our framework to estimate the traffic in the rest of the road network. In
future work, the framework can be employed to study the robustness of the road
network to different road closure scenarios [28] or compare the road network
graphs of different cities considering their traffic.
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Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds.) ICACDS 2020. CCIS, vol.
1244, pp. 407–418. Springer, Singapore (2020). https://doi.org/10.1007/978-981-
15-6634-9 37

8. Claramunt, C., Winter, S.: Structural salience of elements of the city. Environ.
Plann. B. Plann. Des. 34, 1030–1050 (2007). https://doi.org/10.1068/b32099

9. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40,
35–41 (1977). https://doi.org/10.2307/3033543

10. Fu, M., Kelly, J., Clinch, J.P.: Estimating annual average daily traffic and trans-
port emissions for a national road network: a bottom-up methodology for both
nationally-aggregated and spatially-disaggregated results. J. Transp. Geogr. 58,
186–195 (2017)

11. Gao, S., Wang, Y., Gao, Y., Liu, Y.: Understanding urban traffic-flow character-
istics: a rethinking of betweenness centrality. Environ. Plann. B. Plann. Des. 40,
135–153 (2013). https://doi.org/10.1068/b38141

12. Jayasinghe, A., Sano, K., Nishiuchi, H.: Explaining traffic flow patterns using cen-
trality measures. Int. J. Traffic Transp. Eng. 5, 134–149 (2015). https://doi.org/
10.7708/ijtte.2015.5(2).05

13. Jiang, B., Zhao, S., Yin, J.: Self-organized natural roads for predicting traffic flow:
a sensitivity study. J. Stat. Mech. Theory Exp. 2008 (2008). https://doi.org/10.
1088/1742-5468/2008/07/P07008

https://doi.org/10.1016/j.jum.2018.11.001
https://www.sciencedirect.com/science/article/pii/S2226585618301341
https://www.sciencedirect.com/science/article/pii/S2226585618301341
https://doi.org/10.1007/s10586-021-03445-7
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10586-021-03445-7#citeas
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10586-021-03445-7#citeas
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://www.sciencedirect.com/science/article/pii/S0198971516303970
https://www.sciencedirect.com/science/article/pii/S0198971516303970
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://doi.org/10.1007/978-981-15-6634-9_37
https://doi.org/10.1007/978-981-15-6634-9_37
https://doi.org/10.1068/b32099
https://doi.org/10.2307/3033543
https://doi.org/10.1068/b38141
https://doi.org/10.7708/ijtte.2015.5(2).05
https://doi.org/10.7708/ijtte.2015.5(2).05
https://doi.org/10.1088/1742-5468/2008/07/P07008
https://doi.org/10.1088/1742-5468/2008/07/P07008


88 C. Bachechi and L. Po

14. Jorge, A.A.S., Rossato, M., Bacelar, R.B., Santos, L.B.L.: A unified graph model
for line and segment maps. In: Proceedings of the 10th International Space Syn-
tax Symposium, pp. 146:1–146:11 (2015). https://www.sss10.bartlett.ucl.ac.uk/
wp-content/uploads/2015/07/SSS10Proceedings146.pdf

15. Jorge, A.A.S., Rossato, M., Bacelar, R.B., Santos, L.B.L.: GIS4Graph: a tool
for analyzing (geo) graphs applied to study efficiency in a street network. In:
GEOINFO (2017)

16. Liu, T., Jiang, A., Miao, X., Tang, Y., Zhu, Y., Kwan, H.K.: Graph-based dynamic
modeling and traffic prediction of urban road network. IEEE Sens. J. 21(24),
28118–28130 (2021). https://doi.org/10.1109/JSEN.2021.3124818
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22. Miler, M., Odobašić, D., Medak, D.: The shortest path algorithm performance
comparison in graph and relational database on a transportation network. Promet-
Traffic Transp. 26, 75–82 (2014). https://doi.org/10.7307/ptt.v26i1.1268

23. Needham, M., Hodler, A.: Graph Algorithms: Practical Examples in Apache
Spark and Neo4j. O’Reilly Media (2019). https://books.google.it/books?
id=UwIevgEACAAJ

24. Po, L., Rollo, F., Bachechi, C., Corni, A.: From sensors data to urban traffic
flow analysis. In: 2019 IEEE International Smart Cities Conference, ISC2 2019,
Casablanca, Morocco, 14–17 October 2019, pp. 478–485. IEEE (2019)

25. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a
dual approach. Phys. A Stat. Mech. Appl. 369(2), 853–866 (2006). https://doi.
org/10.1016/j.physa.2005.12.063. https://www.sciencedirect.com/science/article/
pii/S0378437106001282

26. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal
approach. Environ. Plann. B. Plann. Des. 33(5), 705–725 (2006). https://doi.org/
10.1068/b32045

27. Qi, L., Schneider, M.: Trafforithm - a traffic-aware shortest path algorithm in real
road networks with traffic influence factors. In: Proceedings of the 1st Interna-
tional Conference on Geographical Information Systems Theory, Applications and
Management - GISTAM, pp. 105–112. INSTICC, SciTePress (2015). https://doi.
org/10.5220/0005350701050112

28. Sohouenou, P.Y., Christidis, P., Christodoulou, A., Neves, L.A., Presti, D.L.:
Using a random road graph model to understand road networks robustness
to link failures. Int. J. Crit. Infrastruct. Prot. 29, 100353 (2020). https://doi.
org/10.1016/j.ijcip.2020.100353. https://www.sciencedirect.com/science/article/
pii/S1874548220300172

https://www.sss10.bartlett.ucl.ac.uk/wp-content/uploads/2015/07/SSS10Proceedings146.pdf
https://www.sss10.bartlett.ucl.ac.uk/wp-content/uploads/2015/07/SSS10Proceedings146.pdf
https://doi.org/10.1109/JSEN.2021.3124818
https://doi.org/10.1109/WSCAR.2016.16
https://doi.org/10.1109/WSCAR.2016.16
https://doi.org/10.1016/S0378-4371(00)00311-3
https://doi.org/10.5198/jtlu.2015.744
https://www.jtlu.org/index.php/jtlu/article/view/744
https://www.jtlu.org/index.php/jtlu/article/view/744
https://doi.org/10.1007/s11067-018-9427-9
https://doi.org/10.7307/ptt.v26i1.1268
https://books.google.it/books?id=UwIevgEACAAJ
https://books.google.it/books?id=UwIevgEACAAJ
https://doi.org/10.1016/j.physa.2005.12.063
https://doi.org/10.1016/j.physa.2005.12.063
https://www.sciencedirect.com/science/article/pii/S0378437106001282
https://www.sciencedirect.com/science/article/pii/S0378437106001282
https://doi.org/10.1068/b32045
https://doi.org/10.1068/b32045
https://doi.org/10.5220/0005350701050112
https://doi.org/10.5220/0005350701050112
https://doi.org/10.1016/j.ijcip.2020.100353
https://doi.org/10.1016/j.ijcip.2020.100353
https://www.sciencedirect.com/science/article/pii/S1874548220300172
https://www.sciencedirect.com/science/article/pii/S1874548220300172


Road Network Graph Representation for Traffic Analysis and Routing 89

29. Wang, G.M., Li, Y.Q., Xu, M.: Integrating the management and design of urban
road network to alleviate tide traffic*. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 708–713 (2019). https://doi.org/10.1109/ITSC.
2019.8917083

30. Zhang, J., Yuan, L., Li, W., Qin, L., Zhang, Y.: Efficient label-constrained short-
est path queries on road networks: a tree decomposition approach. Proc. VLDB
Endow. 15(3), 686–698 (2021). https://doi.org/10.14778/3494124.3494148

https://doi.org/10.1109/ITSC.2019.8917083
https://doi.org/10.1109/ITSC.2019.8917083
https://doi.org/10.14778/3494124.3494148


Parallel Discovery of Top-k Weighted
Motifs in Large Graphs

Nikolaos Koutounidis and Apostolos N. Papadopoulos(B)

School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
{koutounidis,papadopo}@csd.auth.gr

Abstract. The enumeration of all cliques in a graph or finding the
largest clique are important problems that unfortunately are computa-
tionally intensive. Another alternative is to select only the most impor-
tant motifs (e.g., small subgraphs, or patterns), where significance is
expressed by means of a function that quantifies the importance of the
subgraph. Given a weighted graph G(V, E, w()), where V is the set of
nodes and E is the set of edges and w() is a function that returns the
weight of an edge e we are looking for the efficient computation of the
top-k weighted triangles (and also higher-order cliques, e.g., 4-cliques,
5-cliques, etc.). More specifically, the proposed methodology is based
on a parallel algorithm which is efficient and scalable and exploits the
multi-threading capabilities of modern multi-core processors. Initially
we present a solution for the discovery of top-k triangles, which are the
simplest non-trivial cliques and then we generalize our solution for the
discovery of top-k cliques of higher order. Performance evaluation results
based on real-life networks show that the proposed algorithmic technique
is significantly more efficient than the centralized one and also it is scal-
able showing very good speedups by increasing the number of cores.

Keywords: Graph mining · Graph motifs · Parallel algorithms

1 Introduction

Graph mining is an established and rapidly evolving research area with impor-
tant and useful contributions. Graph mining is the process of extracting poten-
tially useful patterns (and therefore knowledge) from graph-based data. In its
simplest form a graph G consists of a set V of nodes or vertices and a set E of
links or edges connecting pairs of nodes. The interpretation of the edge between
two nodes depends on the application. For example, in a protein-protein inter-
action network, nodes represent proteins and an edge between nodes u, v ∈ V
denotes that the associated proteins interact with each other for a particular
function. As another example, consider a graph where nodes represent authors
and an edge between two nodes denotes that the associated researchers are co-
authors in at least one scientific article. There are numerous applications that
require the management and mining of graph data.
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In many cases, the nodes or the edges of the graph are annotated with addi-
tional information. For example, each edge e may carry a weight w(e) denoting
the importance of this edge. In a weighted graph, the significance of an edge is
quantified by the weight. Likewise, the significance of a subgraph is quantified
by a function that takes into account the edges of the subgraph and returns a
real number representing the weight of the subgraph.

The existence of edge weights results in a difference on the importance of
certain subgraphs. For example, in an unweighted graph all triangles (i.e., 3-
cliques) are of the same importance. However, in a weighted graph, triangles
formed by heavy-weighted edges are considered more important than triangles
formed by light-weighted edges. The same rationale applies in the case of higher-
order cliques.

In general, small graph patterns are very useful. For example, triangles have
been used in other more complex knowledge-discovery tasks of graph data, such
as community detection [10] and dense subgraph discovery [15]. It is not a coinci-
dence that there exists a huge body of research focusing on the efficient discovery
of triangles in large graphs [1,7,11,13]. A triangle is composed of three nodes
u, v, z connected to each other. Essentially, a triangle corresponds to the rela-
tionship: “a friend of a friend is my friend”.

In the same line, higher-order cliques have been also used as a basis for more
advanced knowledge discovery. Clique percolation is a widely used technique for
the analysis of overlapping communities in large graphs [9]. Moreover the concept
of clique conductance has been used for community detection in graphs [8].

Taking into account the importance of triangles and cliques, the work in [6]
proposes an algorithmic technique to detect the top-k triangles in a weighted
graph. It is expected, that in a weighted graph some subgraphs are more impor-
tant than others, depending on the accumulated weight of each subgraph. We
focus on clique-based motifs, starting with triangles and generalizing for higher-
order cliques. However, for large graphs it is expected that performance will
degrade and this is expected to be more intense for higher-order cliques. To alle-
viate this performance issue, in this work, we propose a parallel algorithm for
the discovery of top-k triangles and higher-order cliques. The proposed technique
exploits the multi-core architecture of modern processors and shows satisfactory
speedups with respect to the number of cores being used. Moreover, the proposed
algorithm is extended towards the discovery of top-k cliques, after establishing
a theoretical foundation of how cliques can be detected based on triangles. Per-
formance evaluation results demonstrate that the proposed parallel algorithm
is efficient, scalable and can be used in very large graphs containing millions of
nodes and billions of edges.

The rest of the paper is organized as follows. In Sect. 2 we present related work
in the area. Section 3 presents fundamental concepts whereas Sect. 4 describes
in detail the proposed parallel algorithm. Performance evaluation results are
presented and discussed in Sect. 5 whereas Sect. 6 concludes our work and present
briefly future research directions.
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2 Related Research

The literature is rich in algorithmic techniques for counting and listing all tri-
angles and other small cliques in large graphs. For example, for a graph with
m edges the best known algorithm to count all triangles requires O(m3/2). In
fact, this matches the upper bound of the number of triangles that can be formed
using m edges. The first algorithm achieving this bound has been reported in [5].
Later other alternatives were proposed, depending on weather we iterate over
the set of nodes or the set of edges [7,11].

In addition to the basic techniques, more advanced algorithms have been
reported focusing in different setting. Triangle discovery in disk-resident graphs
has been covered in [4]. The algorithm performs multiple passes over the graph,
since it cannot be loaded in main memory. Also, parallel MapReduce algorithms
have been proposed for counting or listing the triangles of a single large graph,
which is distributed across the nodes of a cluster [12]. Moreover, the triangle
counting problem has been also addressed in the streaming model of compu-
tation, where the graph is seen as a stream of edges. In this setting, only a
small part of the graph can be accommodated in main memory and therefore
techniques in this category are approximate. More specifically, in [2] the authors
propose algorithms for triangle counting that provide the final answer with error
guarantees. The more edges we consume, the more accurate the result becomes.

In addition to the research works focusing on the efficient computation of
triangles, others use the concept of the triangle to achieve more effective knowl-
edge discovery. In [3] the concept of k-truss is introduced, which is based on
the number of triangles formed by each graph node. The number of triangles
per node quantifies how well the node is connected with respect to its 1-hop
neighborhood. This concept has been used to detect subgraphs were the number
of triangles per node exeed k [14,16]. Moreover, triangles have been used by [13]
towards detecting dense subgraphs in large graphs. Also, in [10] the authors ana-
lyze the performance of a novel community detection mechanism which is based
on the number of triangles formed by a set of nodes.

Recently, an algorithmic technique has been proposed in [6] that computes
the top-k triangles based on a scoring function. This function takes into account
the weights of the edges. In fact, this was the first work to use weighting graphs
for triangle counting and listing. Motivated by that work, in the present work
we propose a parallel algorithm for top-k triangle discovery, exploiting the paral-
lelism capabilities of modern processors. Moreover, we extend this idea to top-k
cliques as well.

3 Background

Let G(V,E,w) denote an undirected weighted graph, where each edge e = (u, v)
is annotated with a weight w(e) (or w(u, v)) representing the strength of the
specific edge. Without loss of generality, we assume that higher weight values
are preferable. Given a graph G as input, we need to discover the k best (i.e.,
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the k heaviest) triangles in the graph, based on a scoring function applied on
triangles. More specifically, the score of a triangle formed by nodes u, v and x
(u < v < x) is defined as the generalized p-mean as follows:

score(u, v, x) =
(

1
3
(w(u, v)p + w(v, x)p + w(u, x)p)

)1/p

(1)

where w(u, v) corresponds to the weight of the edge joining nodes u and v, and
p is an integer constant.

The brute-force algorithm to solve the problem discovers all possible trian-
gles, computes the score of each one and, finally, selects the k best. However,
since the number of triangles in a graph with m edges is in O(m3/2), even using
a priority queue to accommodate the best k triangles, leads to a complexity of
O(log k ·m3/2). Therefore, since we are interested in a small subset of the trian-
gles (the value of k is usually very small in comparison to the total number of
triangles in the graph) a more selective algorithm is required in order to avoid
the enumeration of the complete set of triangles.

An algorithm that performs better than brute-force has been proposed in [6].
The algorithm works by first sorting the edges of G in a non-ascending weight
order and computes the triangles that a specific edge is participating in. As long
as the algorithm has not yet found k triangles with a score that exceeds a specific
threshold t, it continues by reading the next edge and enumerating all triangles
that this edge closes. The threshold t represents the score of the heaviest triangle
that may exist in the graph but we have not enumerated it yet.

In order to compute an appropriate threshold value, the algorithm maintains
three different lists of edges, L, H and S. Initially, all edges are inserted in the
L list and once an edge is examined, it is moved to the H list. Once an edge in
the H list, it is examined again and it is moved to the S list. We know that we
have enumerated all the triangles that the edges in the S list are part of. The
threshold t is computed as follows:

t = hw + 2 · lw (2)

where hw and lw are the edge weights that the h counter is pointing to, in the
array with all the edges in descending weight order and the weight of the edge
that the l counter points to in the aforementioned array, respectively.

The algorithm in each iteration enumerates all triangles that are formed
by at least one edge in the H or S list, meaning that the remaining possible
heaviest triangles can only have one edge in the H list and two edges in the L
list. Therefore, r is the weight of the heaviest edge in the H list and two times
the weight of the heaviest edge in the L list. When the algorithm has found
k triangles that have a higher score than t, it is clear that it has found the k
heaviest triangles in the graph.

To clarify the way the centralized algorithm works, we provide a simple exam-
ple demonstrating the course of the algorithm. The algorithm is applied on the
small graph shown in Fig. 1. Moreover, we assume that k = 2, i.e., we require
the two best triangles of the graph.
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Fig. 1. A simple graph used in the example.

Because in the algorithm two different searches are executed and one of them
is computationally more expensive, we use w in order to favor the less expensive
search. w is the power to which we raise the weight of the edge that the l counter
points to before evaluating the clause lww > hw where l and h are the edges the
corresponding counters point to. The value of w is affected by the distribution
of the weights of the graph to be examined. For the following example the value
of w will be set to 1.5.

Iteration 1. During the first iteration, all the edges are inserted into L
and the H and S lists are empty. No triangles have been enumerated up
to now. The variables have the following values: l = 0, h = 0, L =
[e2,5, e1,5, e4,5, e1,3, e3,4, e1,4, e2,4], H = [ ], S = [ ], T = [ ]. The edge e2,5 is
examined first. Since l and h are equal we search for triangles formed by e2,5
and at least one edge in the HS list. e2,5 currently does not participate in any
triangles with at least one edge in the HS list, since that list is empty. e2,5 is
moved to H.

Iteration 2. l = 1, h = 0, L = [e1,5, e4,5, e1,3, e3,4, e1,4, e2,4], H = [e2,5], S = [ ],
T = [ ], t = 17. Since l1.5w > hw we search for triangles that are formed by the
edge e1,5 and at least one edge in the HS list. The edge e1,5 does not participate
in any triangles with at least one edge in list HS, thus the edge e1,5 is moved to
list H.

Iteration 3. l = 2, h = 0, L = [e4,5, e1,3, e3,4, e1,4, e2,4], H = [e2,5, e1,5], S = [ ],
T = [ ], t = 13. Since l1.5w > hw we search for triangles that are formed by the
edge e4,5 and at least one edge in the HS list. The edge e4,5 does participate in
two triangles with at least one edge in the list HS, the triangles (1, 4, 5) with
weight 11 and the triangle (2, 4, 5) with weight 13. These triangles are stored in
the list T . The edge e4,5 is moved to H.

Iteration 4. l = 3, h = 0, L = [e1,3, e3,4, e1,4, e2,4], H = [e2,5, e1,5, e4,5], S = [ ],
T = [(1, 4, 5), (2, 4, 5)], t = 13. Since l1.5w < hw we will search for triangles that
are formed by the e2,5 and two edges in list L. Edge e2,5 does not participate in
any triangles with two edges in list L. The edge e2,5 is moved to S and continue.
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Iteration 5. l = 3, h = 1, L = [e3,4, e1,4, e2,4], H = [e2,5, e1,5, e4,5, e1,3], S = [ ],
T = [145, 245], t = 11. Two triangles have been enumerated and they are above
or equal to the threshold so the two heaviest triangles have been determined.

4 The Proposed Approach

In this section, we explain in detail the proposed parallel algorithm to compute
the top-k heaviest triangles (and cliques in general) in a potentially large graph.
The main characteristic of the centralized algorithm proposed in [6] is that in
each iteration, the centralized algorithm processes only one edge and then pro-
ceeds by detecting triangles. Moreover, the centralized algorithm moves each
examined edge from the light list L to the heavy list H or from heavy list H
to the super heavy list S. This transfer happens before the enumeration of the
triangles that the examined edge closes.

In contrast, the parallel algorithm increases the number of examined edges
in each iteration and also applies a principled strategy in order for the available
cores to work in parallel, boosting efficiency. In addition, moving edges from one
list to another is performed in batches rather than in a one-by-one manner. The
changes applied do not have an impact on the correctness of the algorithm. The
pseudocode of the parallel algorithm is given in Algorithms 1 and 2.

4.1 Correctness

It must be proven that all relevant triangles will be detected. More specifically, it
must be shown that moving the edges from the L list to the H list preemptively,
will not affect the ability of the algorithm to detect the correct answer.

Only the first part of the algorithm (the body of the if statement) is moving
an edge from one list to the other, therefor only the search of triangles that
consist of that edge and one edge in the H ∪ S list and one edge in the L list
can be affected. It is evident that the search for all triangles that consist of that
edge and two edges in the H ∪ S list will not be affected, since the contents of
the H ∪S list after the move operation will always be a super set of the contents
before the move operation.

The above statements are true when multiple edges are moved before search-
ing for triangles that these edges are closing. Therefore, the only search that can
be affected is the search for triangles that consist of the examined edge, one edge
in the list H ∪S and one edge in the list L. When the single-thread algorithm is
moving an edge, the L list will always be the same list after the operation minus
the examined edge and as a result, triangle detection is not affected. However,
the parallel algorithm removes n edges before triangle detection and the L list
will be a subset of itself after the move operation. We identify the following
cases.
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Algorithm 1. Parallel Algorithm for k heaviest triangles
Input:Weighted graph G = (V , E, w), number of triangles k, parameter αρ,

number of edges to read n, number of edges to read for the “expensive” search m,
number of threads th.

1: Sort E in decreasing order of weight
2: Set threshold t = ∞, triangle set T=∅
3: Set partitions HS = ∅, L = E
4: Set edge pointers h = l = -1

// We take the convention that E−1 = ∞
5: while there are < k triangles above weight t in T do
6: Set edges list ef = []
7: if wαρ

l+1 > wh+1 then
8: i=0.
9: while i < n do

10: Move El+1 from L to HS.
11: add El + 1 to ef
12: end while
13: Y = find triangles with one edge in ef list and 2 edges in HS using th

threads using Algorithm 2
14: Z = find triangles with one edge in ef 1 edge from L and 1 edge from HS

using th threads using Algorithm 2
15: T = T ∪ (Y ∪ Z)
16: l = l + n
17: else
18: while i < th ∗ m do
19: add Eh + 1 to ef
20: i = i + 1
21: end while
22: Y = find triangles with one edge in ef list and 2 edges in L using th threads

using Algorithm 2
23: T = T ∪ Y
24: h = h + th * m
25: end if
26: Update threshold t = wp

h+ 2wp
l

27: end while

In the first case, a triangle has one edge in the examined edge set (the edges
we examine simultaneously) and two edges in list L that does not belong to the
examined edge set. This triangle will not be detected during the enumeration
but it is also not affected by the multiple edges that move from the L list to the
H ∪ S list, since each edge is still in the L list except the examined edge.

In the second case, a triangle has one edge in the examined set and two edges
in the H ∪ S list. In this case, there will be no impact either as the triangle will
be enumerated and also the list that its edges are in has not changed by the
move operation.

In the third case, a triangle has two edges in the examined set and one edge
in the H∪S list. In this case, the search for triangles that consist of the examined
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Algorithm 2. Parallel triangle detection
Input:List of edges to examine E, List L of light edges, List H of heavy edges,

number of threads th, integer search mode.

1: Set priority queue T = [ ]
2: Split E to th sub-lists
3: Create th new threads and pass one sub list to each, the L and H list and priority

queue T .
4: In each thread find triangles that the examined edge is part of, the examined edges

are in the sublist for each thread
5: Join all threads
6: Return T

edge, one edge in list L list one in the list H ∪ S will fail to find the triangle
for either the first or the second examined edge. Although the other search, the
one that searches for triangles that consist of the examined edge and two edges
in the list H ∪ S will find the triangle for both the examined edges. Since the
two searches are happening before any other move operation may take place and
before the threshold is reevaluated, we can perceive them as an atomic search
and if one of them can find the triangle we can consider the impact as resolved.

In the fourth case, a triangle has three edges in the examined set. In this case,
the single-thread algorithm would fail to find the triangle for the first edge but it
would succeed finding it after the examination of the second edge. The parallel
algorithm would move all the edges from list L to the list H∪S before executing
any search and as a result, it would find the triangle three times, during the
search for triangles which consists of the examined edge and two edges of the
list H ∪S. Thus, the triangle will be detected by the parallel algorithm and this
algorithm will find it one more time than the single-thread algorithm would.

In the fifth case, a triangle has one edge in the examined set, one edge in L
and one edge in H ∪ S. In that case, the search for triangles that consist of the
examined edge and one edge in list L and one edge in list H ∪ S will detect the
triangle, exactly as the single-thread algorithm would do.

In the sixth and final case, a triangle has two edges in the examined set and
one edge in list L. In this case, the single-thread algorithm would fail to find the
triangle when it would examine the first edge as the other two edges would be
in list L, but it would successfully enumerate the triangle when examining the
second edge as. The parallel algorithm would enumerate the triangle during the
examination of both edges in the examined set.

With these six cases we cover all the possible distribution of the edges of a
triangle in the examined set and the L and HS list. For all the case the multi-
thread algorithm despite moving all the edges in the examined set from the L
list to the HS list is able to find the triangles. The drawback is that for some
cases the multi-thread algorithm will enumerate a triangle one additional time
which is wasted computational time, the searching of triangles is happening in
the threads and the fact that it is happening in parallel should even out the time
lost in enumerating the triangles one excessive time.
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4.2 Extension to 4-Cliques

In this section, we provide an extension of the algorithm in order to enumer-
ate the k heaviest 4-cliques. Also, two theorems are provided to support the
correctness of the algorithms.

Theorem 1. Two (k − 1)-cliques which have k − 2 common vertices and their
remaining non-common vertices are connected, are forming a k-clique, for k >=
4.

Proof. One k-clique has k vertices and all of them are connected with each other.
Every subgraph of a clique is also a clique of a smaller size. Hence, the k − 2
common vertices of the two (k − 1)-cliques also form a clique of size k − 2. The
non-common vertices of the two (k − 1)-cliques are fully connected with the
rest k − 2 common vertices. And since those two non-common vertices are also
connected we have k vertices (the k−2 common vertices and the 2 non-common
vertices) fully connected with each other hence a clique of size k.

Theorem 2. A k-clique consists of k k − 1-cliques that have k − 2 common
vertices with each other and the non-common vertices are connected, for k >= 4.

Proof. Let’s assume that there exists a clique of size k and that it consists of
a clique c of size k − 1 and one vertex connected with all the vertices of the
k − 1-clique named u but it does not form a second or subsequent clique with
these vertices. That is not possible as the vertex u will form exactly k − 1 new
k − 1-cliques with the vertices of the c k − 1-clique as those vertices already
are connected with each other and we have stated that the new vertex has to
connect with each one of them. Also the k − 1 newly created k − 1-cliques will
have exactly k − 2 common vertices with each other and with the initial k − 1-
clique c as the new vertex will need k − 2 vertices to form each one of the k − 1
new k − 1-cliques and those vertices already are part of the initial k − 1-clique
c. And since the k new k − 1-cliques will have each k − 2 vertices from a pool
of k − 1 vertices, they can have only 1 different vertex but the new vertex is
common for all k − 1 new (k − 1)-cliques and therefor they have k − 2 common
vertices.

In the sequel, we provide details of how to compute all k-cliques that a specific
edge participates in. First, we describe the 4-clique case and then we extend to
k-cliques for k > 4. To enumerate all the 4-cliques for Theorem 1 we have to
find triangles with one common edge (two common vertices) and their remaining
vertices should be connected to each other. The first step is to enumerate all the
triangles the examined edge is part of. We have to maintain a data structure for
all the triangles we have enumerate in a previous step. In that data structure
we store one vertex for each triangle, this vertex is the one that is not part of
the examined edge. Then we are searching for connected vertices in this data
structure O(n2) where n is the number of the triangles we enumerated during the
previous step. The data structure should be able to handle queries if two edges
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Algorithm 3. Find all 4-cliques an edge is part of
Input:HashMap with all edges of a graph Edges, edge e.

1: Enumerate all triangles that e is part of and store all the vertices that are part of
a triangles but they are not part of e in a list L

2: for v in L do
3: for u �= v in L do
4: if u connected to v then
5: Edge e and vertices u and v form a 4-clique
6: end if
7: end for
8: end for

are connected in O(1) time. From Theorem 2 we have found all the 4-cliques one
edge is part of since we have checked all the triangles with two common vertices.

For cliques where k >= 5 we have to maintain a data structure with buckets,
one bucket for each k − 2-clique computed during a previous step. While we
enumerate the k − 1-cliques during a previous step of the algorithm we have
to store the vertex that belongs to the k − 1-clique but not to the k − 2-clique
to that k − 2-clique’s corresponding bucket. From Theorem 1 we can find the
k− cliques one edge is part of by finding vertices that are connected and belong
to the same bucket. This requires O(m ∗ n2) time where m is the number of
k − 2-cliques enumerated for this edge and n is number of vertices inside the
bucket with the most vertices. For this we will again need a data structure that
can answer if two vertices are connected in O(1) time. From Theorem 2 we have
enumerated all the k-cliques that an edge is part of (Fig. 2).

Algorithm 4. Find all k-cliques an edge is part of
Input:HashMap with all edges of a graph Edges, edge e.

1: Enumerate all triangles that e is part of and store all the vertices that are part of
a triangles but they are not part of e in a list L.

2: Enumerate all k−1-cliques and store each vertex that is part of the k−1-clique but
not part of one of the k − 2-cliques that constitute the k − 1-clique in a hashmap
H where the key is the k − 2-clique the vertex is not part of and the key is a list
with vertices, add the vertex to that list.

3: for c in H’s keys do
4: for v in H[c] do
5: for u �= v in H[c] do
6: if u connected to v then
7: clique c and vertices u and v form a k-clique
8: end if
9: end for

10: end for
11: end for
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Fig. 2. An example of 4-clique.

With Algorithms 3 and 4 we can enumerate all the k-cliques a specific edge
is part of. If we apply these two algorithms to the previous parallel algorithm,
we can extend it and find the heaviest k-cliques in a given graph. Algorithm 3
detects all 4-cliques for a given edge only if all the triangles that this edge is part
of have been found in a previous step. Algorithm 1 does not find all the triangles
that on edge is part in the same step. It can find the triangles that consist of
the examined edge and at least one edge in the H ∪ S list and in a next step it
can find the triangles that consist of the examined edge and two edges in the L
list. With this limitation in mind, a new way to compute the threshold in each
iteration is required and proposed in the sequel.

Theorem 3. The weight of the heaviest 4-cliques not yet enumerated in the
graph is up to 3wh + 3wl.

Proof. Omitted due to lack of available space.

Utilizing Algorithm 3 and the triangles enumerated previously, the k heaviest
4-cliques can be found. This centralized approach can be converted to parallel if
we take into consideration the proof of the correctness of Algorithm 1.

5 Performance Evaluation

In this section, we evaluate the performance of the algorithms. In the experi-
ments we compare the centralized, Dynamic Heavy Light (DHL), against the
parallel algorithm1. For the performance evaluation, four real-life networks have
been used (available at http://snap.stanford.edu/), shown in Table 1. Using these
networks, weights have been generated for the edges by using two types of distri-
butions: normal and power-law, as shown in Table 2. This enables the evaluation
of the algorithm for different values of the weights. For those experiments, the
graphs described in Table 2 were used.

1 The source code is freely available at https://github.com/nikkout/FindCliques.

http://snap.stanford.edu/
https://github.com/nikkout/FindCliques
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Table 1. Real-life networks used in experimental evaluation.

Network Nodes Edges Triangles

com-LiveJournal 3,997,962 34,681,189 177,820,130

com-Orkut 3,072,441 117,185,083 627,584,181

Table 2. Synthetically generated weighted networks.

Network Based on Distribution

Graph 1 com-LiveJournal Normal

Graph 2 com-LiveJournal Power-Law

Graph 3 com-Orkut Normal

Graph 4 com-Orkut Power-Law

Next, we show the time the two algorithms required in order to find the k
heaviest triangles of the aforementioned four graphs. The number k of heaviest
triangles requested for each graph, is 1000, 100,000 and 1,000,000. The paral-
lel algorithm is executed with 4 threads (Fig. 3). We observe that the parallel
algorithm outperforms the centralized one(DHL). Also, it is evident that the
distribution of the weights is affecting the performance. As a result, the parallel
algorithm has a greater performance improvement over the centralized one when
the weights are following a normal distribution. This happens because in this

Fig. 3. Comparison of centralized and parallel algorithms.
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Table 3. Comparison of centralized and parallel algorithms.

Algo and Graph 1k triangles 100k triangles 1m triangles

DHL 1 1m 0.059 s 1 m 29.361 s 2 m 35.73 s

Parallel 1 52.570 s 1 m 5.306 s 1 m 34.940 s

DHL 2 59.876 s 1 m 15.845 s 2 m 22.266 s

Parallel 2 54.295 s 1 m 9.198 s 1 m 48.445 s

DHL 3 3m 51.11 s 7 m 18.155 s 15 m 73.77 s

Parallel 3 3m 18.322 s 5 m 22.469 s 9 m 58.563 s

DHL 4 3m 30.851 s 4 m 24.355 s 10 m 20.921 s

Parallel 4 3m 2.742 s 4 m 4.292 s 7 m 36.709 s

case the threshold that the two algorithms are sharing converges slower. Table 3
shows the runtimes for all the experiments discussed in this section.

Next, we report the runtime of the parallel algorithm to detect the k heaviest
4-cliques when different number of threads is being used. For these experiments
the first four graphs of Table 2 have been used. As we observe in Fig. 4a, when
more threads are used, the time required for the enumeration of the k heaviest
4-cliques is reduced significantly. The distribution of the weights affects the gain
of the algorithm when more threads are being used. This happens because the
power-law distribution helps the algorithm to converge faster and this reduces
the margin that the additional threads can improve performance.

Fig. 4. Scalability results. Runtime vs number of cores and number k.
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6 Conclusions

This paper proposes a parallel algorithm for the discovery of important motifs in
large graphs, where importance is quantified by the weight of the motifs. More
specifically, we develop a solution which validated both theoretically and experi-
mentally which manages to detect heavy motifs efficiently and with satisfactory
scalability by increasing the number of CPU cores being used. Performance eval-
uation results are also offered, that are based on real-life networks using differ-
ent distributions for the edge weights. An interesting future work direction is to
design a distributed version of the parallel algorithm to work on a cluster.
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Abstract. Data Quality (DQ) plays a critical role in data integration.
Up to now, DQ has mostly been addressed from a single database per-
spective. Popular DQ frameworks rely on Integrity Constraints (IC) to
enforce valid application semantics, which lead to the Denial Constraint
(DC) formalism which models a broad range of ICs in real-world applica-
tions. Yet, current approaches are rather monolithic, considering a single
database and do not suit data integration scenarios. In this paper, we
address DQ for data integration systems. Specifically, we extend virtual
data integration systems to elicit DCs from disparate data sources to be
integrated, using DC-related state-of-the-art, and propagate them to the
integrated schema (global DCs). Then, we propose a method to man-
age global DCs and identify (i) minimal DCs and (ii) potential clashes
between them.

Keywords: Data Quality · Data integration · Denial constraints

1 Introduction

We are nowadays witnessing an unprecedented growth in the volume of data that
organizations are collecting as part of their decision making processes. With the
proliferation of large-scale repositories of heterogeneous data, such as data lakes
or open-data related initiatives, the ability to perform cross-analysis with high
data quality deems a competitive advantage. Indeed, data quality is essential for
the decision making process, where poor data quality can lead to wrong deci-
sion making, poor model performance, and operational instability [9,13,15]. Yet,
in such large-scale data repositories, there coexists data generated by different
providers who independently maintain them adhering to their own business rules
and needs. Hence, the presence of missing, erroneous, out-of-date, or conflicting
data is the norm rather than the exception [3,19].

Data integration systems, which have the main objective of providing an
integrated view over an evolving and heterogeneous set of data sources [8], have
mostly addressed data quality aspects from a warehousing perspective as part
of their Extract-Transform-Load (ETL) processes [11]. This is, quality rules and
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constraints are enforced when materializing source data into the target schema.
Yet, in those scenarios that require fresh query results, which are implemented
via virtual integration systems that rewrite queries posed over the global schema
in terms of queries over the data sources leveraging declarative mappings, the
management of data quality remains a challenge [2,21]. Indeed, the kind of map-
pings adopted in this settings, represented as logical expressions, focus on spec-
ifying relations between source and target schemata but not how quality in the
target schema must be enforced [12].

The state of the art on data quality management is focused on the automatic
derivation of quality rules. This is, from a particular database instance, a set of
rules are inferred via rule mining techniques and then implemented to detect
errors (i.e., violations) [1]. To that end, the formalism of denial constraints has
been widely adopted, as it is expressive enough to represent most data dependen-
cies found in the literature such as key dependencies, functional dependencies,
or order dependencies [5]. Succinctly, denial constraints are first-order formulae
that express that a set of predicates cannot be all true for any combination of
tuples in a relation, which are expressed as relationships between pairs of tuples
of that relation. Despite the wide success of such model, which has given the rise
to systems for denial constraint discovery (e.g., FastDC [6], Hydra [4], DynFD
[20], or DCfinder [17]), or error detection and data repairing (e.g., Llunatic [7],
HoloClean [18], or HoloDetect [10]), to the best of our knowledge they have not
been studied in the context of virtual data integration systems.

In order to overcome the previously identified gap (i.e., manage data qual-
ity via denial constraints in a virtual data integration system), we present an
approach that leverages related work on denial constraint discovery in order to
synthesize rules from different data sources and manage them at the global (i.e.,
integration) level. To that end, our approach builds and extends a graph-based
data integration system, which enables expressive visual query paradigms to non-
expert users [16]. Precisely, we perform a bottom-up approach propagating the
rules discovered at the sources to the target graph. In terms of DQ management,
we take advantage of the techniques based on DC to express DQ rules. Two main
phases are identified. The first step in this process is to elicit DCs at the source
level and then propagate DCs to the target schema. Global rules consolidation
is enabled in the integration graph, where users can actively manage and verify
the rules even before propagating them to the integrated system.

Contributions. We summarize our contributions as follows:

– We define a data quality management framework that identifies quality rules
(as denial constraints) per source, model them into a graph-based represen-
tation, and incrementally propagate them into the integrated schema.

– We globally conciliate rules automatically, which facilitates the identification
of data cleaning tasks in the form of User Defined Functions.

– We extend a query rewriting algorithm to consider global DCs and enforce
them over the underlying data sources.
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Outline. The paper is structured as follows. Sections 2 and 3 discuss related
work and introduce background concepts. Section 4, presents our approach, while
Sect. 6 validates it. Section 7, concludes the paper and outlines future work.

2 Related Work

In this section, we review the state of the art in discovery and management of
DCs. As previously stated, our objective is to leverage and benefit of from such
methods on a graph-based data integration system. Thus, we narrow the scope
to these projects that are openly available and guarantee reproducibility.

FASTDC [6]. It defines the syntax and fundamental semantics for DCs, and
derives sound and complete inference rules. The implication testing algorithm
checks whether a DC is implied by a set of DCs linearly, which effectively reduces
the number of DCs in the output. The main DC discovery algorithm first builds
the predicate space by comparing every tuple pair in the instance set, which
contains all the possible predicates that can be formed into DCs. To overcome
overfitting, FASTDC introduces an approximation parameter in A-FASTDC to
allow flexibility in DCs satisfiability requirement. A DC stays valid if the per-
centage of violations on a instance over the total number of tuple pairs is below
a given approximation threshold.

HYDRA [4]. In the spirit of FASTDC, aims to address the quadratic complexity
in predicate evaluations and accelerate the DCs generation from the evidence
sets. HYDRA devises a sampling technique to quickly approximate the DCs by
processing only a small fraction of all tuples, providing adaptability to scale up
with the number of tuples. It proposes to first samples tuple pairs to build an
initial set of DCs for a dataset. The algorithm corrects the tuple pair samples
from its focused sampling process and determines the complete evidence set to
avoid the expensive comparison of all tuple pairs in FASTDC.

DCFINDER [17]. It follows FASTDC’s approach with improvement on build-
ing evidence sets. DCFINDER generates a predicate space from the input
database, and builds a data structure from the data records. It utilizes attribute
value indexing to avoid the expensive tuple pair comparison of FASTDC.
DCFINDER introduces predicate selectivity to drive efficiency even further to
avoid the unnecessarily large number of logical operations when generating evi-
dence sets. In an approach comparable to FASTDC, DCFINDER uses the DFS
procedure to discover all minimal DCs based on evidence set coverage of DC
candidates.

ADCMiner [14]. Focuses on mining approximate DCs, which discovers con-
straints in inconsistent databases and obtains more general and less contrived
constraints. ADCMiner defines a novel approximation function that does not
assume any specific definition of an approximate DC but takes the semantics as
input. The function consists of two properties called monotonicity and indiffer-
ence. ADCMiner generates all minimal ADCs if the approximation score is under
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a given threshold. Unlike AFASTDC, ADCMiner reduces the process of finding
ADCs by avoiding the post-process after detecting valid exact constraints. In
general, the algorithm involves four parts: a predicate space generator, a sam-
pler, an evidence set constructor, and an enumeration algorithm. Similar to
HYDRA, ADCMiner includes a sampling process to reduce the running time
significantly.

3 Preliminaries

In this section, we introduce the running example, which will be used to illustrate
our approach, and later, discuss the formal background, which is also exemplified.

3.1 Running Example

We consider a (simplified) data integration scenario on the finance domain,
related to organizations and their performance in the stock market. Table 1
presents exemplary data generated from three independent data sources. D1

(see Table 1a) provides information about companies and their standard indus-
trial classification of economic activities (SIC). D2 (see Table 1b) yields contex-
tual information related to the history about companies (i.e., founded year and
founder/s). Finally, D3 (see Table 1c) maintains information about the stock
prices per company and date. In all cases, we consider the stock symbol to be
the attribute used to join the different data sources.

Table 1. Three independent datasets providing information about companies, their
history and stock prices

(a) D1 – SIC

Symb Comp SIC
AAPL Apple 3571
PYPL Paypal 7389

V Visa Inc 7389
GOOGL Google 3571

. . . . . . . . .

(b) D2 – History

S N Y F
GOOGL Alphabet Inc. 2015 LP&SB

F Ford Motor C. 1903 HF
APPLE Apple 1976 SJ&SW&RW

. . . . . . . . . . . .

(c) D3 – Stock

Code Date Price
AAPL 20220406 171.28
MMM 01/01/2001 100

V 20220406 220.86
. . . . . . . . .

As shown in the exemplary data, there exist data quality issues when con-
sidering each dataset individually. D2’s attribute names are coded and non-
descriptive, while D3 presents dates encoded in different formats and contains
erroneous data (i.e., MMM is not a valid stock symbol). Note, however, addi-
tional data quality problems arise when considering their integration. If, as
expected from the domain, we consider the stock symbol to be a company’s
primary key, then we can assume the existence of a functional dependency stat-
ing the symbol determines the company name. This, however, does not hold in
the running example, where the symbol GOOGL has associated different names
in different data sources. To manage such kind of situations (i.e., quality prob-
lems at both the local and the global level), the remainder of this section is
devoted to present the formal background that our approach will build upon.
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3.2 Formal Background

3.2.1 Graph-Based Virtual Data Integration
Here, we present the core components of our graph-based virtual data integration
system. We refer the reader to [16] for further details on how queries are processed
over such constructs.

Relations and Wrappers. A schema R is composed of a finite nonempty set of
relational symbols {r1, . . . , rm}, where each ri has a fixed arity ni. Let A be a set
of attribute names, then each ri ∈ R is associated to a tuple of attributes denoted
by att(ri). Let D be a set of values, a tuple t in ri is a function t : att(ri) → D.
For any relation ri, tuples(ri) denotes the set of all possible tuples for ri. We
define the set of wrappers W as those elements in R that contain a function
exec(w) that returns a set of tuples T ⊆ tuples(w). In practice, wrappers can be
implemented via any language as long as there exists a mapping function from
their data model to first normal form (1NF).

Global Graph. The global graph G = 〈VG , EG〉 is an unweighted, directed, con-
nected graph with no self loops. The vertex set VG is partitioned into two disjoint
sets C and F , respectively concepts and features. The set F itself is further parti-
tioned into two disjoint subsets Fid and F−

id , consisting of id features and non-id
features, respectively. Next, labels in EG contain the analyst’s domain L as well
as the set of semantic annotations A. Semantic annotations are system specific
labels and have a special treatment (e.g., hasFeature). Hence, we formalize the
edge set EG as the union of the sets (C × L × C) and (C × {hasFeature} × F ),
the former assigning labels in L between concepts and the latter linking concepts
and their features.

Source Graph. A source graph S is analogous to G. However, here the vertex
set VS is composed of (W ∪ A), respectively the set of wrappers and attributes
from the previous definition (note that S is a graph-based representation of the
wrappers and their attributes). We use wrap(S) to denote the set of wrappers
in VS . Here, we introduce the semantic annotation hasAttribute, meant to
connect a wrapper with its attributes. Thus, in S the edge set ES is composed
of (W × {hasAttribute} × A).

Schema Mappings. A LAV schema mapping for a wrapper w is a pair M(w) =
〈F , γ〉, where F is an injective function F : att(w) → F ; and γ is a subgraph of
G. Consequently, we define the functions F(w) and γ(w) respectively denoting,
for w, the mapping from attributes to features F and the subgraph γ. Recall
that we encode mappings as part of the graph, precisely M contains F and ϕ.
Thus, to encode F we extend the set of semantic annotations A with the sameAs
label, linking attributes in S to features in G.

Example 1. Figure 1 depicts the complete integration graph based on the run-
ning example depicted in Sect. 3.1.

3.2.2 Data Quality Management
Denial Constraints. A predicate P is a comparison unit in the form v1φv2 or
v1φc where v1, v2 are values, respectively from the tuples tx, ty, φ is a comparison
operator and c is a constant.
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Fig. 1. An example integration graph. Doubly circled features denote IDs. The bottom
colored graphs represent mappings (i.e., subgraphs of G) for each wrapper dashed with
the same color. There, some features have been omitted for clarity.

Definition 1 (Denial constraint). A DC ϕ over a set of tuples T is an
expression of the form ∀tx, ty ∈ T,¬(P1 ∧ ... ∧ Pm) where ϕ is satisfied by T if
and only if for any pair tx, ty ∈ T , at lease one of the predicates P1, ..., Pm is
false.

r |= ϕ denotes a valid DC ϕ over a set of tuples T . This is, all predicates
cannot be true for any tuple pair, otherwise, there is a violation. ϕ.Pred denotes
the set of predicates in ϕ. Then, we say a DC ϕ1 is minimal if there does not
exist a ϕ2 such that r |= ϕ1, r |= ϕ2, and ϕ2.P red ⊂ ϕ1.P red.

Ranking DCs. In order to reduce the search space of valid DCs, a scoring
function is defined to rank them. The interestingness score of each DC is calcu-
lated based on its succinctness and support from data. Succinctness models how
overfitting a constraint rule is. This definition follows Occam’s razor principle,
where the competing hypothesis making fewer assumptions is preferred [6].

Definition 2 (Succinctness). The succinctness of a DC ϕ, denoted Succ(ϕ),
is the minimal possible length of a DC divided by its own length Len(ϕ). This is
defined as Succ(ϕ) = Min({Len(φ)|∀φ}) / Len(ϕ).
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Coverage determines the interestingness of a DC and measures its statistical
significance. By definition, a valid DC ϕ needs to violate at least one predicate
from the evidence. The higher number of satisfied predicates from the evidence,
the more support it gives to ϕ. A pair of tuples satisfying k predicates is a k-
evidence (kE). In the best case, the maximum k for a tuple pair in a DC ϕ is
equal to |ϕ.Pred| − 1, otherwise it violates ϕ. A weight parameter is introduced
to reflect a higher score to high values of k, from 0 to 1.

Definition 3 (Coverage). A k-evidence (kE) for ϕ is a tuple pair 〈tx, ty〉,
where k is the number of predicates in ϕ that are satisfied by 〈tx, ty〉 and k ≤
|ϕ.Pres| − 1. The weight for a kE for ϕ is w(k) = (k + 1) / |ϕ.Pres|. The
Coverage(ϕ) is then defined as:

Coverage(ϕ) =
∑|ϕ.Pred|−1

k=0 |kE| ∗ w(k)
∑|ϕ.Pred|−1

k=0 |kE|

4 Managing Data Quality in Virtual Data Integration

In this section, we present our proposed system structure and algorithms in
detail. As depicted in Fig. 2, rectangles state the solutions we propose in the
following sections. We first generate local DCs for each wrapper (i.e., source),
and then propagate the DCs to the global graph. There, we establish algorithms
to resolve the potential conflicts. Precisely, we address (a) minimal DCs main-
tenance to prune the redundancy of DCs at the global level; and (b) potential
conflicts between DCs derived from contradictory predicates.

Fig. 2. Overview of the proposed solution process.

4.1 DC Generation and Graph-Based Representation

For each wrapper, we first utilize DCFINDER to produce DC rules at the local
level and model them into its equivalent graph representation. For the sake of
simplicity and ease of presentation, we narrow the kind of DCs we deal with to
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those comparing attributes from the same wrapper, and thus no cross-attribute
predicates are involved. Hence, DCFINDER generates DCs from each wrapper
in the form of: {t.w.Ai φ t.w.Aj ∧ ... ∧ t.w.Ax φ t.w.Ay}. Additionally, due to
the fact that DCFINDER tends to generate a large amount of DCs, we keep the
interestingness score for each DC and filter top-k DCs based on the ranking.

Next, we describe how we model DC rules in an integration graph. To that
end, we extend the vertex set of the source graph S with the set D of DCs. A
DC d ∈ D can be connected to a wrapper w via the semantic annotation hasDC.
For each DC, we identify its predicates (via hasPred), which must be connected
to two attributes from the same wrapper via hasAtt1 and hasAtt2, and to an
operator via hasOp. Additionally, we encode as nodes of S the confidence values
of DCs, and link them via hasScore. Such model is likewise for G, however here
we consider the concept of global DC, which identifies a DC that must hold for
all tuples at the global level (i.e., those generated from any of the wrappers via
rewriting in the integration graph). To guarantee traceability and maintenance
of the framework, DCs at the source level are connected to DCs at the global
level via the sameAs semantic annotation.

Example 2. Consider a local DC expressed over w3 stating that the high price
of a stock quote should always be greater than the low one at any given date,
expressed as the predicate: {t.PL ≥ t.PH}. Figure 3, depicts the integration
graph modeling it at the source and global graphs.

Fig. 3. Integration graph with DCs. Some edges, such as sameAs edges from attributes
to features have been omitted for clarity.
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4.2 Global DC Management

Once all local DCs have been propagated to the global graph, we perform two
tasks to globally manage DCs: minimal DC maintenance and clash management.

Minimal DC Maintenance. It is essential to maintain minimal DCs in the
global graph in order to reduce the number of valid constraint rules (as any
minimal DC is still a valid DC if we add any other predicate). When a new DC
ϕ is propagated from a source to the global graph and it happens to subsume a
minimal global DC φ then, φ is considered redundant. Algorithm 1.1 updates the
set of global minimal DCs when a new DC is propagated to the global schema.
To that end, we initialize the set of DCs Σc that covers the same attributes c as
the new global DC ϕ does (Line 1–2). For all the minimal DCs in Σc, we check
whether the predicate sets composing the new global DC ϕ is a subset of any
existing minimal DCs φ. If ϕ.Pred ⊂ φ.Pred, we replace the φ with the new
minimal DC ϕ. Otherwise, the new global DC is recognized as a valid DC but
not labelled as minimal one (Line 3–9).

Algorithm 1.1: Minimal DC management.
Input : Set of all GDCs Σ, new GDC ϕ
Output: Updated set of all GDCs Σi

/* If the new GDC is a valid DC and minimal, replace the previous
GDC containing the same predicates. */

1 c ← ϕ.atts
2 Σc ← Σ.contain(c)

// check minimal GDCs from the impacted features.
3 for φ ∈ Σc.minimal do
4 if ϕ.Pred ⊂ φ.Pred then
5 Σc.minimal ← Σc.minimal − φ
6 Σc.minimal ← Σc.minimal + ϕ

7 else
8 Σ ← Σ + ϕ
9 end

10 end
11 return Σ

Example 3. Consider the following two DCs c1, c2 from the running example:
c1 : ∀tα, tβ ∈ w3,¬(tα.Code = tβ .Code ∧ tα.Date = tβ .Date ∧ tα.PL = tβ .PL),
and c2 : ∀tα, tβ ∈ w3,¬(tα.Code = tβ .Code ∧ tα.Date = tβ .Date). c1 indicates
that the combination of company Symbol, Date and Low Price can identify a
stock quote. c2 expresses the same constraint omitting the Low Price. Since
c2.P reds ⊂ c1.P reds, the minimal DC will be updated to c2.

DC Clash Management. Two global DCs clash if they refer to common fea-
tures and contradict each other. Clashes happen when there is no instance that
may satisfy both DCs. Given the definition of denial constraint, clashing DCs
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must be single-predicated over the same attribute and the logical conjunction of
their predicates must be empty on the set of available instances. Algorithm 1.2
details how we detect clashes between two global DCs, which considers clashing
and partially-clashing DCs.

Definition 4 (Clashing DCs). Given two DCs c1 c2, they are clashing in T,
if there does not exist any pair of tuples 〈tx, ty〉 ∈ T , that can satisfy both DCs
at the same time.

Multi-predicated DCs can only partially clash. The partial clash would hap-
pen when there are contradictory tuple pairs in the sets of all satisfying tuple
pairs from the two DCs due to conflictive predicates. Such predicates must hold
on the same attribute and their logical conjunction must be empty.

Definition 5 (Partially clashing DCs). Given two DCs ci, cj, they are par-
tially clashing in T, if the set of all tuple pairs satisfying ci contains the set of
tuple pairs violating cj.

Algorithm 1.2: DC clash management
Input : Two global DCs ϕi, ϕj

Output: Updated set of all GDCs Σi

1 ci ← ϕi.att, cj ← ϕj .att
// check if the two GDCs are bounded to the same features

2 if ci = cj then
// check if the predicate sets contains contradictory

pairs
3 for pi ∈ ϕi, pj ∈ ϕj do

/* if the pair is contradictory, then a clash is found;
T(pi) is the set of tuples satisfying predicate pi */

4 if T(pi) ∈ T (pj) or T(pj) ∈ T (pi) then
// compare interestingness scores and choose the

highest
5 if ϕi.score > ϕj .score then
6 Σi ← {ϕi}
7 else
8 if ϕj .score ≥ ϕi.score then
9 Σi ← {ϕj}

10 end
11 end
12 else
13 Σi ← {ϕi, ϕj}
14 end
15 end
16 else
17 Σi ← {ϕi, ϕj}
18 end
19 return Σi
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5 Global Query Rewriting with Global DCs

Local DCs propagated to the target and accepted as global DCs may not hold
in some sources. For example, consider Fig. 1. w1, w2 and w3 contain attributes
(e.g., symb, s, code) referring to the same global feature (symbol). Suppose a DC
ϕ from w1 on symb, which is then propagated to the global graph as DC φ on
symbol. When querying the global graph, we must guarantee DC φ is guaranteed
when performing query answering. This means we need to propagate φ to those
sources where it originally did not hold. Algorithm 1.3 presents the method
to construct DCs in the source graphs from a global DC. For a given global
DC ϕ expressed in the graph, we denote att(ϕ) and op(ϕ) to distinguish the
attributes and operators in ϕ. Following the rewriting algorithm in [16], we map
the DC-linked features feat(att(ϑ)) to the attributes in the wrappers. Given the
relations from the global DCs Eϑ, we form the DCs ΣS in the source graph (the
same attribute set can exist in various wrappers, where we form the DC for each
wrapper). dc(Aθ, Eϑ, op(ϑ)) denotes the function to form valid DCs given the
components.

Algorithm 1.3: Reconstruct a global DC
Input : Global DC ϑ
Output: Set of DCs in the source graph ΣS

// Get nodes and edges from the global DC
1 〈Vϑ, Eϑ〉 ← ϑ

// Map features to source attributes
2 Adc ← map(feat(attϑ))

// Get the wrappers for the attributes
3 W ← wrap(Adc)

// Reconstruct DCs in source graph for each wrapper based on the
edges and mapped attributes

4 for w ∈ W do
5 for adc ∈ Adc do
6 if adc ∈ att(w) then
7 AM∪ = adc

8 end
9 ΣS∪ = dc(AM , Edc, op(ϑ))

10 end
11 end
12 return ΣS

5.1 Query with DCs

In [16], a query rewriting algorithm is presented for query answering over the
global graph in terms of queries over the wrappers. Here, we extend the rewriting
algorithm to enable the enforcement of global DCs within a global query. When
rewriting a query Q, the method produces sets of rewritings for each concept in
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the query to further create a union of conjunctive queries. Then, here, we define
gdc(Q) to retrieve the global DCs covered by Q. ΣG denotes the resulted set of
gdc(ϕ). VΣ and EΣ denote the composition of Σ, which are vertices and edges
respectively. For each global DC in ΣG, we form the set of DCs for each wrap-
per and generate the result set of DCs without any duplication. Algorithm 1.4
demonstrates the full method to derive the local DCs from a global query.

Algorithm 1.4: Reconstruct global DCs from a global query to the source
graph.
Input : Global query Q
Output: Set of DCs in the source graph ΣS

// Get the set of all global DCs covered by Q
1 ΣG ← gdc(Q)
2 for ϑ ∈ ΣG do
3 ΣS∪ = ReconstructGDC(ϑ)
4 end
5 return ΣS

This way, when querying a global graph with DCs, we apply the constraint
rules to all wrappers containing the restricted attributes. For example, consider
an integration graph with feature Gender G and FirstName FN , below shows
the SQL-like query to retrieve all the records with the global DCs gdc(G) :
∀tα, tβ ∈ G,¬(tα.FN = tβ .FN ∧ tα.G �= tβ .G):

SELECT G.Gender, G.FirstName
FROM global_graph G WHERE gdc(G)

Consider the same integration graph with two wrappers w1 and w2 containing
the mapped attributes G and FN . The LAV mapping will apply the gdc(G) to
both wrappers and join the results, as shown below.

SELECT w1.GD, w1.FN FROM wrapper_1 w1
UNION
SELECT w2.GD, w2.FN FROM wrapper_2 w2
WHERE gdc(G) /* Apply the gdc as the filter for all wrappers */

6 Validation

We implemented a case study based on financial data. We modeled the SEC
Edgar database which releases the XBRL (eXtensible Business Reporting Lan-
guage) taxonomies every year, given the annual update of U.S. GAAP (Gen-
erally Accepted Accounting Principles). Thus, we build wrappers for Edgar
based on each release year (i.e., one wrapper per year). For each wrapper,
DCFINDER produces sets of DCs. Given the high frequency of the Edgar
schema version updating, the wrappers of Edgar share a large portion of
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attributes, which leads to the overlap of DCs for different wrappers. Follow-
ing the global DC management algorithms, we are able to conciliate the dif-
ferent versions of local DCs and prune the total number of global DCs to
a meaningful level. Following the minimal DC maintenance strategy, we are
able to avoid redundant DCs at the global level and derive meaningful local
DCs such as dc1 : ¬(t0.Assets ≤ t1.Assets ∧ t0.Equity ≥ t1.Equity) and
dc2 : ¬(t0.Liabilities ≥ t1.Liabilities ∧ t0.Assets ≤ t1.Assets). Note dc1
and dc2 are valid minimal DCs since there does not exist valid DCs that
can be derived from their subsets. Interestingly, the DC dc3 : ¬(t0.Assets ≤
t1.Assets ∧ t0.Equity ≥ t1.Equity ∧ t0.Liabilities ≥ t1.Liabilities) implies the
rule of financial reporting (assets equals to the sum of equities and liabilities).

We also apply the clash management algorithm to resolve contradicting DCs.
For instance, the DC dc4 : t0.P eriodEnding �= t1.P eriodEnding is generated
due to the standardized release date in 2012. Then, dc5 : ¬(t0.P eriodEnding =
t1.P eriodEnding) states the possible variance of release date for different com-
panies in 2016. This is due to the U.S. GAAP update to allow flexibility for
companies to define their own financial year. In this scenario, dc4 and dc5 are
partially clashing because of the complementary predicates of PeriodEnding
feature. We first try to resolve this conflict by the interestingness scores, but
both shown high statistical significance in each wrapper. Then, we applied each
DC to the global graph and detect the #violations from all sources. dc5 was
valid in all wrappers, while dc4 generated multiple violations. Thus, we rejected
dc4 and propagated dc5 to the global schema. Overall, with the global DC man-
agement algorithms, we were able to prune the total number of global DCs to
21, which we manually validated as valuable business rules.

7 Conclusions and Future Work

We addressed the DQ problem for virtual data integration systems. The novelty
of our approach lies on the consideration of a (potentially conflicting) set of data
sources, as opposite to the traditional methods on data quality management that
consider a single database instance. To that end, we first elicit DC rules from
the data sources and express them in the integration graph to then define DC
management methods that enable the global conciliation of DCs. We modified
our query rewriting algorithm to guarantee global DCs, while query answering, in
all data sources regardless of where they were generated. As future work, we aim
to fully automate the process of generating, propagating and enforcing DCs. This
requires the extension of traditional knowledge graph bootstrapping methods for
quality rules. Another interesting line of work is that of automatically generating
data flow operators such that they repair the data errors identified in some
sources (instead of fixing them at query time).
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Abstract. Private and professional investors can easily access large
amounts of financial data describing the temporal evolution of the stock
prices. Making appropriate decisions about financial activities often
entails performing comparative studies to get an increased comprehen-
sion of the underlying assets. The aim of this work is to automatically
generate summarized explanations of financial stock series based on the
most established fundamental indicators. Unlike any previous summary
protoform, the newly proposed time series explanations (i) are suited to
comparative analyses, i.e., they express a relative strength of the sum-
mary claim about a given stock compared to a reference stock cluster,
and (ii) are based on a time series embedding representation indicating
the level of similarity between different stocks/stock groups in various
periods. The preliminary results demonstrate the usefulness and appli-
cability of the proposed approach.

Keywords: Time series explanation · Time series embeddings · Data
summarization

1 Introduction

One of the most labour-intensive activities of financial investors is to explore
market-related data, such as financial reports, stock price series and macro-
economic indicators [3,11]. To get an increased comprehension of the underlying
assets investors are very interested in getting readable explanations of time-
variant events. The present work focuses on generating explanations of stock
price series in textual form. Formulating the resulting summaries in natural
language allows human users to better understand the temporal evolution of the
analyzed series and to effectively support decision-making.

Standard protoforms are the most popular way to summarize time series in
textual form. They exemplify relevant patterns in databases using explainable
summary templates [8]. For instance, “The samples of Time Series T acquired in
the last week are very similar to those observed in most of the previous 10 weeks”
is an example of protoform, where last week is the time window under consid-
eration, whereas very similar and most are respectively denoted as protofom
quantifier and summarizer.
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Recently proposed protoform-based approaches automatically generate proto-
forms from time series data by adopting clustering and fuzzy modelling [1,4]. The
main drawbacks of state-of-the-art solutions are enumerated below:

– Standard protoforms are not suited to perform comparative analyses of time
series data at multiple granularity levels (e.g., “The samples of Time Series T
acquired in the last week are very similar to those observed in the time series
group G”).

– Since protoform quantifiers and summarizers are defined using static domain-
specific rules, their values do not necessarily reflect the underlying data dis-
tribution.

– Protoforms are not tailored to the financial domain. Hence, they do not con-
sider domain-specific aggregations (e.g., fundamental indicator levels, market
sector and sentiment).

Paper Contribution. This work aims at generating comparative explanations of
the financial stock price series by exploiting a self-supervised time series embed-
ding representation. The key idea is to first encode the underlying stock series
characteristics (e.g., price trend, seasonality, momentum, sentiment about the
stock) into a unified vector space and then summarize the key differences between
single stock vectors and the encoding of a stocks belonging to a reference group
(e.g., the stocks of the same sector with highest operating profit). Quantifier
and summarizer values are both dynamically defined based on a data-driven
approach on top of the inferred latent space.

Running Example. The summary

Stock S is very similar to most of the most virtuous stocks
of year 2020 for EBITDA indicator

compares the historical price series of a specific stock S with those of a group
of correlated stocks clustered by means of an established fundamental indicator
(EBITDA). Notice that the comparative term very similar, i.e., the summarizer,
synthesizes the observed level of similarity between S and the reference group,
whereas the quantifier most indicates the required level of similarity. year 2015
indicates the reference time period in which the statement holds.

The self-supervised procedure of time series encoding is applied to both his-
torical stock series and stock-related news data. It synthetizes the key informa-
tion about a stock on a daily basis. The purpose is to inherently capture not
only the observed stock price trends, seasonality, and momentum but also the
underlying market movers (e.g., the sentiment of the main market actors).

To empirically evaluate the effectiveness and applicability of the proposed
approach we carry out both intrinsic and extrinsic evaluations. Specifically, in
the intrinsic evaluation the generated summaries are first shortlisted using estab-
lished protoform-based metrics and then evaluated with the help of a domain
expert. In the extrinsic evaluation, we backtest the reliability of the generated
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stock recommendations. The preliminary results achieved on the U.S. stock mar-
ket confirm the applicability of the proposed approach to support stock trading
activities.

The rest of the paper is organized as follows. Section 2 overviews the prior
works. Section 3 describes the analyzed financial data. Sect. 4 presents the pro-
posed method. Section 5 summarizes the main empirical outcomes, whereas
Sect. 6 draws the conclusions of the presented work.

2 Literature Review

The generation of explainable summaries can be based on static domain-specific
rules, statistic/probabilistic approaches, or neural methods [10]. A joint effort
of the Deep Learning community has been devoted to relieving experts of the
definition of static rules by leveraging data and algorithms. Albeit state-of-the-
art probabilistic/statistical approaches and neural methods generate the text
automatically, the quality and readability of the output summaries is not always
guaranteed. For these reasons, most existing time series summarization tech-
niques still partly rely on rule-based methods, which generate standard sum-
mary templates called protoforms [1,2,4,7]. For instance, [2,7] generate narra-
tives of data that summarize the key series trends (e.g., increasing, decreasing),
whereas [1] uses Evolutionary Genetic Algorithms to explore the set of candidates
summary templates and pick those meeting specific (user-specified) constraints.
More recently, [4] adopt sequence pattern mining and clustering techniques to
support the generation of protoforms. This work presents an hybrid approach to
time series summarization that combines the reliability of rule-based strategies
with the flexibility of neural NLP methods. Specifically, it leverages a high-
dimensional vector representation of the time series, generated by an ad hoc
embedding models [13], to dynamically construct summaries providing compar-
ative explanations. To the best of our knowledge, the use of neural network-based
approach to define comparative summaries of financial time series has never been
proposed so far.

3 Data Overview

To generate explainable summaries of financial data we analyze stock-related
data under multiple aspects, i.e., the raw time series of historical prices and
exchange volumes, the most established price trend and volatility indicators, the
news sentiment, and the values of main fundamental indicators.

Time Series Data. We focus on the time series Ts of the daily closing prices of
each stock s belonging to the Standard&Poor (S&P500) index. In our study we
consider historical stock data spanning from 2007 to 20181.

1 We crawled data from AlphaVantage (https://www.alphavantage.co/). In the con-
sidered time span historical data are available for 468 out of the 500 firms.

https://www.alphavantage.co/
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Price-Related Indicators. We consider the following technical indicators describ-
ing the momentum, trend, and volatility of the stock prices [12].

– Exponential Moving Average (EMA) with 5, 20, 50, and 200 periods.
– Moving average convergence divergence (MACD) with the following EMA

combinations: (5, 20), (20, 50), and (50, 200).
– Relative Strength index (momentum oscillator) with cutoff thresholds 30%

(over-sold) and 70% (over-bought).
– Aroon oscillator (trend descriptor).
– Accumulation/distribution indicator (price and volume divergence).

News Sentiment. We analyze the sentiment ss of the news related to each stock
and compute an average per-day and per-stock sentiment score between −1 and
1. A positive score (ss(s) >> 0) indicates a positive sentiment of the market
about the stock s, whereas a negative score (ss(s) << 0) provides a negative
feedback. In our experiments, we collect English-written news on the S&P500
stocks in the period 2007–2018 from Reuters2 and apply VADER to perform
rule-based sentiment analysis [6]. We consider around 5253 news articles per
stock. Notice the number of daily news per stock is rather variable, as most
popular stocks are more likely to be cited.

Fundamental Indicators. They describe the economical and financial factors that
mainly influence the stock and the underlying assets. In this study we consider
the following established indicators: Earnings Before Interests Taxes Deprecia-
tion and Amortization (EBITDA), Return On Equity (ROE), Return On Assets
(ROA), Research & Development investments (R&D), Net Income [5].

4 Financial Data Summarizer

A sketch of the proposed method for financial time series summarization is
depicted in Fig. 1. The summarization pipeline consists of the following steps:

1. Financial data encoding, whose goal is to transform the raw time series and
news data into a unified vector representation of the stocks encoding both
price-related trends, momentum and seasonality, and market sentiment.

2. Quantifier/summarizer evaluation, which entails estimating for each stock
and reference time period the values of the corresponding summarizers and
quantifiers on top of the encoded stock representation.

3. Protoform generation, whose goal is to compose the explainable summaries
of the financial time series and compute the corresponding quality indices.

2 https://www.reuters.com/.

https://www.reuters.com/
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Fig. 1. Sketch of the time series summarization system.

Financial Data Encoding. This step entails encoding multimodal financial data
into a unified, high-dimensional vector space. Each stock is represented by a
vector in the latent space, which encodes both its most significant price-related
features (i.e., trends, seasonalities, momentum) and the sentiment of the market
extracted from the news articles.

Time series and news data are first transformed into a discrete sequence
of symbols using a SAX representation [9] and then encoded the established
Signal2Vec encoder [13]3. In the SAX representation the daily samples of the
series of stock prices, the technical indicators and news sentiment scores are
mapped to a unique symbol to condense the daily multimodal information about
each stock. Signal2Vec encodes discrete sequences of different time periods (e.g.,
yearly periods) annotated with the corresponding stock identifier. In such a
way, sequences that refer to the same stock are used to describe the underlying
behavior of the same stock.

Quantifier and Summarizer Estimation. Quantifiers and summarizers are the
core elements of the comparative summaries. They express the level of adherence
of the summary claim with the analyzed data.

We leverage the multimodal stock vector space trained at the first step to
assign reliable quantifier/summarizer values. Specifically, let s1, s2 be the stocks
under consideration for summary types virtuos stocks, year to stock, and vir-
tuos multivariate. Let v(s1) and v(s2) be the corresponding vectors encoding
the time series and news contents. The data-driven procedure instrumental for
quantifier and summarizer estimation is described by the following procedure:

3 In the experiments Signal2Vec is trained using the PV-DBOW architecture with
vector size 100, 10 epochs, and a training window of 5 symbols.
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Input: stock set S, fundamental indicator set I, reference time period T
for ∀ s ∈ S do

for ∀ i ∈ I do
d(s1, s2) ← compute-distance(v(s1), v(s2))4

vis ← value of indicator i for s within the reference time period T
qis ← quantile of stock s according to i, depending on vis
if qis == 1st then

Ri = Ri ∪ {s} (set of reference stocks according to i)
for ∀ s ∈ S do

Ri
s ← Nearest neighbors of stock s according to i calculated

using set of distances d
end for

end if
end for

end for
Output: Ri

s ∀s ∈ S, i ∈ I

For each fundamental indicator we first shortlist the top-ranked stocks (i.e.,
the stocks in the first quantile for the fundamental indicator. Then, for each stock
in the vector space we compute the distance with each reference stock/group
of stocks (e.g., the sector). Distances among vectors are used to quantify the
similarity level with the reference group. Finally, quantifiers and summarizers in
natural language are derived by uniformly discretizing the per-stock similarity
scores.

Protoform Generation. We generate the five different types of comparative sum-
maries reported in Table 1. Each summary is a sentence, called protoform [4],
that provides a explanable comparison between time series data in natural lan-
guage. Each protoform contains one or more fields denoting any of the following
items:

– Stock: the name of the stock under consideration.
– Sector: the market sector under consideration.
– Indicator: the fundamental indicator under consideration.
– Quantifier: A word or phrase that specifies how often the summarizer is true.
– Summarizer: Word or phrase denoting a level of match between the compared

items.
– Time window: A time window of interest for the given protoform.

Table 2 reports the possible values taken by each field and the summaries in
which they appear. A more detailed description of the proposed protoforms is
given below.

Given a fundamental indicator as reference metric of stock virtuosity, the
summary type named virtuous stocks compares a single stock with the most vir-
tuous stocks, whereas the specular type sectors compares market sectors instead
4 In the experiments we adopt the cosine distance in compliance with [13].
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of single stocks. The type virtuous multivariate specifies a percentage of refer-
ence stocks with the given level of similarity and also allows the inclusion of
multiple indicators for the definition of virtuous stocks.

Summaries years to stock and year to years perform time-based comparisons
between time series. Specifically, the former type indicates for how many years
one stock have been similar to all years of another one. The latter type compares
a single year of the one stock with all the years of the other one defining a level
of similarity and again how many years correspond to it.

Table 1. Proposed protoforms.

Summary type Protoform template

virtuous stocks Stock [stock] is [summarizer] to most of
the most virtuous stocks, for [indicator]

sectors Sector [sector] is [summarizer] to most of
the most virtuous stocks of [sector] sector, for [indicator]

years to stock In [quantifier] years the stock [stock 1] has been
[summarizer] to the stock [stock 2]

year to years In year [period] the stock [stock 1] has been
[summarizer] to [quantifier] years of the stock [stock 2]

virtuous multivariate Stock [stock] is [summarizer] to [quantifier] of
the most virtuous stocks, for [indicator 1]..[indicator n]

Table 2. Fields of the protoforms in Table 1.

Field Values Summaries

[stock] Stock ticker choosen for the comparison virtuous stocks, years to stock,
year to years, virtuous multivariate

[summarizer] very similar, fairly similar, not similar all

[indicator] EBITDA, ROE, ROA, R&D, Net Income virtuous stocks, sectors,
virtuous multivariate

[sectors] Market sector (e.g. Energy, Healthcare, ...) sectors

[quantifier] none, few, many, all years to stock, year to years

[period] reference year year to years

[quantifier] percentage of reference stocks
with given level of similarity

virtuous multivariate

5 Experiments

Hardware and Code. We run the experiments on a hexa-core 2.67 GHz Intel
Xeon with 32 GB of RAM, running Ubuntu Linux 18.04.4 LTS. The framework
is written in Python and is available for research purposes upon request to the
authors.
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Execution Times. Table 3 summarizes the execution times taken by each phase
of the time series summarization process. The computational time required to
generate the time-dependent summaries (i.e., years to stock and years to years)
is roughly one order of magnitude higher than all the other ones. The reason
is that their generation entails partitioning stock series data into multiple time
periods and recompute the indicator ranks separately for each reference period.

Table 3. Execution times per summary type.

Task Execution time (avg ± std)

Time series and news data transformation 240 s ± 3 s

Sentiment Analysis 324 s ± 5 s

Multimodal data encoding 594 s ± 15 s

“virtuous stocks” summary generation 245 s ± 5 s

“sectors” summary generation 220 s ± 3 s

“years to stock” summary generation 2793 s ± 23 s

“year to years” summary generation 5000 s ± 500 s

“virtuous multivariate” summary generation 260 s ± 4 s

5.1 Intrinsic Evaluation

We characterize the generated summaries using a set of reference quality metrics
first introduced in [4]. Metric values are normalized between zero and one. A brief
description of the used metrics is given below.

– Degree of truth (T1): it quantifies the truth of the quantifier-summarizer pair
expressed by the summary. It is valid only for summary types year to years
and years to stock.

– Degree of Imprecision (T2): it measures the precision of the summary with
respect to the whole data collection.

– Degree of covering (T3): it indicates the percentage of data instances that are
covered by the summary statement.

– Degree of Appropriateness (T4): it quantifies the gap between the observed
summarizers’ values and the expected ones. This metric is valid only for the
virtuous multivariate type.

Table 4 reports some representative summary examples belonging to different
type and the corresponding quality metric values. The generated summaries can
be ranked by decreasing coverage and precision to shortlist the most reliable
stock explanations. For example, the summaries of type sectors allow end-users
to compare the market sector Energy with Utilities and Industrial, respectively.
The Degree of covering (T3) indicates that the reported sectors summaries are
supported by roughly half of the covered data instances. According to the Degree
of Imprecision (T2), their precision is almost maximal (99%) in both cases.
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Table 4. Examples of generated summaries.

Summary type Summary T1 T2 T3 T4

virtuous stocks Stock DU is not similar to most of the
most virtuous stocks, for the ROA
indicator

1 0.99

virtuous stocks Stock AAPL is very similar to most of
the most virtuous stocks, for the ROA
indicator

0.99 0.41

sectors Most of the stocks of Energy sector, has
been not similar to most of to the most
virtuous stocks of Utilities sector for the
ROA indicator

0.99 0.47

sectors Most of the stocks of Energy sector, has
been very similar to most of to the most
virtuous stocks of Industrial sector for the
R&D indicator

0.99 0.65

years to stock In few years the stock AAPL has been
fairly similar to the stock SYF

0.83 0.90 0.17

years to stock In most years the stock AAPL has been
very similar to the stock ANSS

0.77 0.74 0.42

year to years In year 2015 the stock HPE has been very
similar to few years of the stock JEF

0.71 0.71 0.14

year to years In year 2015 the stock HPE has been
fairly similar to most years of the stock
FDX

0.93 0.75 0.33

virtuous multivariate Stock FITB is fairly similar to 22% of the
most virtuous stocks, for the ROE and
the Net Income indicator

0.93 0.22 0.24

virtuous multivariate Stock FITB is fairly similar to 32% of the
most virtuous stocks, for the ROE and
the ROA indicator

0.9 0.32 0.17

5.2 Extrinsic Summary Validation

We validate the usability of the information provided by per-stock summaries via
extrinsic evaluation. Specifically, Table 5 reports two summary examples of type
Sectors that compare the performance of the Industrials sector with that of the
Communication Services and to the Materials sectors, respectively. In Fig. 2 we
show the corresponding temporal price variations. The summaries are coherent
with the observed price series trends: the Industrials sector is highly similar to
the most virtuous Communication Services stocks, whereas is weakly similar to
those of the Materials sector.
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Table 5. Sectors-type summary examples.

Summary T1 T2 T3 T4

Most of the stocks of Industrials sector, has been very similar to
most of to the most virtuous stocks of Communication Services
sector for the ROE indicator

0.99 0.44

Most of the stocks of Industrials sector, has been not similar to
most of to the most virtuous stocks of Materials sector for the
ROE indicator.

0,99 0,41

Table 6 reports two summaries of type years to stock that compare the per-
formance of the Apple stock with that of the Vertex Pharmaceuticals and CME
Group stocks. According to the generated summaries, the price movements of
the stocks AAPL are expected to be more similar to those of stock VRTX than
those of CME. The expected result is confirmed by historical time series depicted
in Fig. 3 (see, for example, years 2014–2016).

Table 6. years to stock summary examples.

Summary T1 T2 T3 T4

In most years the stock AAPL has
been very similar to the stock VRTX

0,77 0,74 0,42

In most years the stock AAPL has
been not similar to the stock CME

0.77 0.74 0.42

Fig. 2. Comparison between the Energy Sector and the most virtuous stocks for Indus-
trial and Utilities Sectors.
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Fig. 3. Comparison between APPL, VRTX, and CME stocks.

6 Conclusions and Future Works

The paper proposed a new approach to generate explainable summaries of finan-
cial time series in textual form. The key idea is to represent the key information
about the stocks into a unified latent space, among which price-related time
series data and news sentiment scores. By leveraging the vector representation
to get reliable stock and stock group similarities we are able to automatically
estimate the quantifiers and summarizers needed to generate the protoforms.

The preliminary results show that the provided summary examples (1)
achieve satisfactory quality levels according to the metrics defined in [4], (2)
are coherent with the expectation, and (3) can be exploited by domain experts
to support decision-making.

We plan to extend the empirical validation by designing and test a dedicated
mobile application through which private and professional investors can access
and evaluate the generated summaries and the corresponding evaluation metrics.
We will collect subjective user feedbacks with the twofold aim at improving the
robustness of the empirical validation and exploiting the relevance feedback in
order to selectively filter the generated summaries.
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Abstract. In this work, we consider the problem of summarizing a data
stream through an item-based summary using core items. We consider
an IoT setting, where computing such summaries at the edge devices
instead of emitting the whole data stream can drastically reduce the net-
work traffic and speed up further processing. Core items of a data stream
are the items with the highest values for a given monotone submodular
utility function. To create stream summaries, we propose the SoftSieving
approach for parallel processing with low memory consumption and fast
execution time while attaining acceptable utility gain. Through exten-
sive experiments with real-world datasets, we show the suitability of our
approach and its superiority over state-of-the-art competitors.

1 Introduction

The amount of data that is continuously generated by different applications
and devices, like social networks and deployed sensing devices, is increasing at
an unprecedented speed. Processing such a vast amount of data is still com-
monly done at centralized compute clusters where high computational power
and network bandwidth are available for deep analytical tasks. The required
data transfer from originating sources to such a centralized instance creates sig-
nificant network traffic. This is especially visible when considering data sources
on edge devices that collect and transmit data in real-time. We aim to mini-
mize network traffic to gather data in centralized locations and, simultaneously,
to speed up subsequent data processing. We propose to do so not by pushing
the entire analytical processing to the edge devices —that often have limited
compute power— but by compacting the stream using item-based summaries
that represent the original data in an optimal way given an objective (utility)
function.

As a motivating example, consider the task of determining outliers in camera
surveillance footage to detect wildfire outbreaks in a widespread national park.
When the camera footage has high resolution and high frame rate, and there are
multiple cameras at multiple locations, it is easy to imagine how the amount of
data to be transferred and further processing become difficult to manage, specif-
ically in areas with only rudimentary wireless network coverage. A summary
with only the most useful frames can drastically reduce the amount of data while
keeping the important information to be further evaluated.
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The most obvious and straightforward solution to summarize data are ran-
dom sampling techniques [2,27]. However, while they are understandable and
easy to implement, they can result in important information being lost [8]. To
overcome this problem, one solution is to use a utility function, which can
measure the informativeness [4], representativeness [3,30], coverage [13], etc., of
a selected data subset. With a utility function, the information gain for any new
data point can be calculated and data points can accordingly be added to the
summary. Typically, such functions belong to the class of monotone submodular
functions, which means they are non-decreasing, and possess the diminishing
returns property. Following Zhao et al. [29], we refer to these functions as core
item functions, and the items identified by them are called core items.

As the problem of finding an optimal subset according to one of the func-
tions is NP-hard [10], the main focus has been on finding good approximation
algorithms [3,6,7,15]. In data stream settings, the basis for most state-of-the-
art approaches is the Sieve-Streaming algorithm, introduced by Badanidiyuru
et al. [3], where a data stream summarization is performed by maximizing a
submodular set function subject to a cardinality constraint. However, when con-
sidering stream processing at the edge, Sieve-Streaming and the related variants
Sieve-Streaming++ [15] and ThreeSieves [6] exhibit limitations. We develop our
approach by considering the existing algorithms and addressing their limitations.

The related research investigating submodular function maximization typi-
cally focuses on text data [9,18,19] which enables the usage of natural coverage
functions. However, such data is rarely encountered in edge applications. Addi-
tionally, the datasets are often not realistic representations of data generated on
the edge but rather come from machine learning and bring diverse data points for
classification purposes [3,6,7,15]. Furthermore, most evaluations are performed
on setups with high processing power, not representative of edge devices.

Problem Statement, Contributions, and Outline. In our work, data arrives
in the form of data stream D on k edge devices. To avoid transferring every item
ei from D through the network, we aim at computing item-based summaries
using core items directly at the edge devices. The core items will be computed
as the items that have the highest value for a given monotone submodular utility
function f . The task of computing the core items will be done in parallel on the
k − 1 edge devices such that 1 edge device will be responsible for consolidating
and generating the global core item set.

In this paper, we make the following contributions.

– We introduce an approach for fast core items computation in a data stream
at the edge, which we call SoftSieving.

– We have tailored Sieve-Streaming [3], Sieve-Streaming++ [15], and Three-
Sieves [6] to be applicable inside an Apache Storm topology [1].

– We performed extensive experiments by using two real-world datasets mea-
suring the processing times, latency, and utility values of the approaches.

The remainder of the paper is organized as follows. Section 2 discussed related
work, followed by background information on data stream summarization and
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submodular functions in Sect. 3. Section 4 reviews the shortcomings of existing
approaches and presents our approach. Section 5 reports on the result of the
experimental evaluation before Sect. 6 concludes the paper.

2 Related Work

Although different notions of core sets exist in related work on data streams [13,
21], the terminology in this work is based on the one used by Zhao et al. [29]. The
core items are representative items chosen from a data stream. The problem of
core items tracking is to continuously maintain core items in a streaming setting.
Their approach is based on probabilistic decay. Since this work deals with a
setting where all items within a window are equally important, these approaches
are not considered in the comparisons.

Sieve-Streaming [3] is a popular algorithm for submodular function maxi-
mization of data streams, and the basis for our approach. The authors formalize
the problem of summarizing a data stream to the maximization of a submodu-
lar set function subject to a cardinality constraint. The algorithm, unlike some
previous approaches [17,23], uses a single pass over the data. This approach
achieves the best possible approximation for this setting [11].

Sieve-Streaming++ [15] is motivated by the observation that Sieve-Streaming
unnecessarily maintains sieves that cannot achieve the best utility value over all
sieves anymore. These sieves can be safely discarded and replaced by sieves based
on the new lower bound.

Dynamic Sieve Streaming [7], unlike the previous approaches, is explicitly
aimed at a distributed IoT setting. It proves improved upper and lower bounds
to be used for the active set utility function. However, the experiments were not
done in an IoT-representative setting but on a machine with higher processing
power and memory size. Moreover, the improvements are specific to active set,
and we aim to compare approaches on multiple utility functions. Thus, this
approach will not be included in our experiments.

The two previous algorithms do not weaken the theoretical guarantees of
Sieve-Streaming. In contrast, ThreeSieves [6] ignores the theoretical worst case
and aims for better practical performance. ThreeSieves maintains only one
threshold, drastically reducing memory cost, and dynamically changes that
threshold.

The related research on approaches that focus on submodular function opti-
mization is vast [9,18,19,23,29]. However, these approaches will not be explored
in more detail, as they either do not offer significant improvement over the men-
tioned approaches or do not apply to our edge streaming setting.

3 Preliminaries

3.1 Apache Storm

Apache Storm [1] is a popular real-time, distributed stream processing frame-
work. Data processing in Storm is done through topologies. A topology consists



136 D. Gjurovski et al.

of two types of components, spouts and bolts. Data flows through them in the
form of tuple streams. Tuples are first emitted by the spouts. Bolts receive and
process the tuples by executing an arbitrary function and can send as output
a new tuple to another bolt for more complex operations. Apache Storm can
require too many resources that might not be available in typical edge devices.
Thus, in our work, we use EdgeWise [12]. In Apache Storm, each operation is
assigned to a thread and scheduling is handled by the operating system, which
is not aware of congestion inside the topology. On the edge, this can lead to high
latency and backpressure. In EdgeWise, there is a congestion-aware scheduler
assigning the operations to threads from a fixed-size worker pool. Queue lengths
are balanced and backpressure is minimized.

3.2 Stream Summarization

To form the summaries, we consider utility functions which can measure the
informativeness, representativeness, coverage, etc., of the selected subset.

Utility Functions: To mathematically determine the quality of a summary,
subsets of the data set need to be assigned a function value and then compared.
This is the purpose of a utility function. For any new data item, the new value of
the utility function can be used to determine whether to add it to the summary
or not. A utility function f is any function 2D ⇒ R≥0 that assigns all subsets
a nonnegative value [29]. The objective is to find the subset of size at most K
with the best utility value. Formally put: OPT = S∗ = arg max

S⊆D,|S|≤K

f(S).

Submodular Functions: Suitable utility functions often belong to the class
of monotone submodular functions. They have a diminishing returns property,
i.e., f({e} ∪ A) − f(A) ≥ f({e} ∪ B) − f(B) for A ⊆ B. Additionally, they are
monotone, so f({e} ∪ A) − f(A) ≥ 0 for all e and A. The best approximation
ratio for OPT in existing algorithms is O( 12 − ε), which is also the theoretical
maximum approximation ratio for the streaming setting [11].

Using the submodular functions as utility functions, we create data sum-
maries, i.e., sets of core items. For a utility function f , the marginal gain
for adding item e to the core item set S can be calculated as Δf (e | S) =
f(S ∪ {e}) − f(S). We assume f(∅) = 0. In this work, we consider two different
monotone submodular utility functions based on active sets and exemplar-based
clustering. Active set stems from Gaussian Processes (GP), which are used in
nonparametric regression [28]. In GP the active set is used for efficiency and one
way to choose an active set is the Informative Vector Machine (IVM) [16]. IVM
is monotonic and submodular, as shown by Seeger [24]. The K-medoids prob-
lem aims to build clusters around exemplars from the set of data points [14]. To
compute distances, it requires a nonnegative distance function. However, when
working with data streams a problem arises since the distance to all data points
needs to be known. Fortunately, the function is additively decomposable [22].
Thus, in our setting, we can continuously generate samples needed for the com-
putation.
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4 Algorithms for Core Item Sets Computation

In the following, we present our proposed approach by first analyzing the existing
algorithms and identifying their limitations. The Sieve-Streaming algorithm [3]
and its variants, Sieve-Streaming++ [15] and ThreeSieves [6], provide solutions
of high quality for data stream summarization. However, when considering data
stream summarization on edge devices, we have identified that all of these
approaches have certain limitations and can be further improved.

Fig. 1. Computing sieves in a data stream

The Sieve-Streaming algorithm manages multiple sieves with different thresh-
olds in parallel, as shown in Fig. 1. For a new data item, if it satisfies the marginal
gain, it will be added to any sieve for which it exceeds the specific threshold.
In other words, each sieve filters items based on its threshold. At least one of
the sieves is expected to have a fitting threshold and produce a good core item
set. The elements from the sieve with the best utility value are returned as
a result. The thresholds are approximated using the maximum singleton value
m = maxe∈D f({e}), i.e., the maximum value of the submodular utility function
f for any single item e. The lower bound is m since that value has already been
reached. If the summary has size K, the best case would be K items increasing
the function value by m, resulting in upper bound of K ·m. The number of sieves
depends on the parameter ε > 0, which also influences the quality of the result.

If Sieve-Streaming is implemented in an Apache Storm topology without
modifications, no parallelism is possible since the best utility value over all sieves
is needed for the output. This will lead to increased processing load and increased
latencies. To overcome this, we split the algorithm into a part where sieves are
processing tuples and finding core items and a part where the core item sets of
the different sieves are collected and compared.

When analyzing the Sieve-Streaming algorithm and topology, several limita-
tions are immediately observable. First, the maximum singleton value m can be
updated for every new entry, which also means that the number of sieves can
change when this update occurs. Hence, in the proposed topology, there will be
additional communication overhead between the bolts responsible for computing
sieves and the collector bolt, especially when the maximum singleton value m
changes frequently. Furthermore, the large number of created sieves can directly
lead to problems with both storage and computation times.
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Although Sieve-Streaming++ [15] improves this approach by modifying the
lower bound m for the optimal solution OPT as the algorithm is running, still
the same limitations are present. The number of sieves remains a problem for
low ε. Additionally, since the Storm topology remains the same, the problem of
additional communication overhead when m changes frequently persists.

ThreeSieves [6] maintains only one single sieve and decreases its threshold
over time. The rules for adding an item to a sieve are the same as in Sieve-
Streaming, however, when an item e is not added, a counter t is incremented
by one. If the counter reaches the value of parameter T , the threshold value is
decreased to the next-biggest estimate. This results in a threshold that is low-
ered more and more over time. The implementation of ThreeSieves in a Storm
topology needs only one bolt. Although this eliminates the unnecessary commu-
nication overhead, it leads to an obvious limitation, i.e., lack of parallelization.
This single bolt is a bottleneck, leading to increased processing latencies. Addi-
tionally, the algorithm performance depends heavily on the choice of parameter
T . If it is too small, the threshold will get too low and the summary will be filled
quickly, resulting in lower utility. If it is too large, useful items can be missed.

4.1 SoftSieving

Considering the limitations of the existing approaches, we build our new app-
roach called SoftSieving by keeping the following design goals in mind.

– Use fewer sieves while keeping a high solution quality.
– Facilitate parallelization as much as possible.
– Make the processing as fast as possible by apt assignment of computations.

The first design goal steers in the direction of ThreeSieves [6] since its dynamic
sieve can achieve high utility for many settings. The question then becomes
how to increase the number of sieves. There should be bolt instances running
in parallel that are responsible for computing their own sieves. Each instance
should be independent of the others to minimize the communication overhead.
Thus, there are two general methods that we can take.

1. Split the stream over n bolts and have all of them use the same threshold(s).
2. The n bolt instances process all tuples, each with different threshold(s).

Since one of our design goals is to minimize the number of sieves, it is natural
to consider the first method. However, we cannot expect much gain from hav-
ing additional sieves in every bolt. This comes directly from the ThreeSieves
algorithm since the solution quality is already high while using only one sieve.
The sieve is built starting from the highest possible threshold and lowering the
threshold over time. As a result, high-utility items at the beginning of the data
stream can be wrongly discarded. To better include these items, we can employ
the reverse strategy by starting at the lowest threshold and increasing it. In this
way, when the core item set of the sieve is filled with low utility items, it will
be difficult to replace them later with higher utility items. Thus, we will include
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Algorithm 1 SoftSieving

1: for i = 1, ..., n do
2: Si ← ∅, ti ← 0, bi ← 0

3: while (e ← D.next()) ! = null do
4: m ← max(m, f({e})), O ← {(1 + ε)i | m ≤ (1 + ε)i ≤ K · m}
5: Vn ← n equidistant samples from O, and max(O)
6: Delete all Si such that vi /∈ O and Create new Si all new vi ∈ O
7: for (Si, vi) | i = 1, . . . , n and vi = Vn[i] do

8: if Δf (e | Si) ≥
vi
2 −f(Si)

K−|Si| then

9: if |Si| < K then
10: Si ← Si ∪ {e}
11: else if bi < K then
12: es ← arg mine∈Si Δf (e | Si{e})
13: if Δf (e | Si\{es}) > Δf (Si) then
14: Si ← Si ∪ {e}\{es}
15: bi ← bi + 1

16: ti ← 0
17: else
18: ti ← ti + 1
19: if ti ≥ T then
20: vi ← next lowest threshold from O
21: O ← O\vnext, ti ← 0

22: return arg maxSi|i=1,...,n f(S)

sieves that start from lower thresholds but still decrease them. The number of
sieves depends on how much the thresholding calculations throttle the topology.
Considering the first design goal, we will prefer a small, fixed number of sieves.
Fixing the number of sieves prevents a rapidly increasing number of sieves and
will enable fast inner-bolt processing. Since the data stream is split, we would
require a collector bolt responsible for building the core item sets. However, when
adding a new item, every sieve bolt would need the current set of core items for
their sieves at all times. Thus, this will result in an extensive amount of updates.

To avoid numerous updates, we propose the usage of preemption [5]. Preemp-
tion means that once an item is added to the summary, it does not necessarily
stay there but instead can be replaced by newer items at any point in time. The
first K items are always added to the summary. Further items are swapped if
they improve the solution by more than a defined threshold. If the summary is
not fixed, we do not need to update the sieve bolts. They can continuously send
the core items to the collector, which then checks if they improve the global
solution when using swapping. The collector does not need to process as many
items as the sieve bolts but still checking for every item in the summary quickly
becomes infeasible with increasing K. Thus, the marginal gain of every item in
the summary is stored. If the summary is full, new items are compared only
to the item with the lowest gain. Consequently, we avoid the updates and ful-
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fill our third design goal. To avoid excessive load in the collector and longer
computations in the sieve bolts, the summaries will be restricted to size K.

Following these design decisions, as next, we present the SoftSieving algo-
rithm as shown in Algorithm 1. In Lines (1–2), we initialize the algorithm. O is
the set of thresholds, satisfying the defined lower and upper bounds. Compared
to existing algorithms, not all thresholds are chosen from the set O, nor the max-
imum is only used. Instead, Vn gets n equidistant samples from O (Line 5). For
the items from the data stream, we repeat steps 3 to 21. Similarly to the related
approaches, we update m and the sieves (Lines 4 – 6). Next, we add items to the

Fig. 2. SoftSieving storm topology

sieves (Lines 8–16) such that an item will be added if Lines 8 and 9 are satisfied.
The amount by which adding e to Si increases the utility function must be big
enough such that sieve Si can still reach the approximated optimal value vi, i.e.,
increase by vi − f(Si) after adding K − |Si| items to the summary. To account
for some items in the summary influencing the utility value more that others, vi

2
is used instead of vi. If a sieve is full, we compare the next K items above the
threshold against es, the item with the lowest utility gain from the core item set
Si (Lines 12–13). If item e offers higher utility, e and es are swapped. If an item
is not added and Line 19 is satisfied, the sieve-thresholds are decreased (Lines
17–21). Finally, the sieve with the highest utility is returned (Line 22).

The actual Apache Storm topology responsible for realizing the SoftSieving
algorithm is depicted in Fig. 2. The topology consists of five main components.
First, the multiple instances of the FileReaderSpout are responsible for emitting
the data from the data stream. Since for some data streams the data needs to
be normalized, we introduce the NormalizationBolt. As explained in Sect. 3.2,
we might need samples for computing the utility functions. For that reason, we
introduce the SamplingBolt. The SieveBolt is responsible for maintaining and
updating the sieves. The SieveCollectorBolt receives the core items from the
SieveBolts and updates the core item set with the best utility. Although there can
be several SieveBolts, there can be only one instance of the SieveCollectorBolt.

Theoretical Analysis. We will now analyze the time and space cost as well
as the utility for SoftSieving, with a focus on the Storm implementation. For m
bolt instances and n sieves per bolt, SoftSieving stores O(n · (m + 1) · K) items.
Each bolt instance has its own n summaries with up to K items.

For the time analysis, consider a single item e. For the bolt it is assigned to,
it takes n evaluations of the utility function, which take time TK for a summary
of size K. If instead the core item set and an additional K items have been
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sent, no further evaluations are performed. In the collector bolt, there are two
possibilities. If the global summary S for item e is not full yet, e is added to S in
O(1) and the new utility value is calculated, taking TK time. Otherwise, a swap
is considered, which takes TK time for the utility evaluation of S\{emin} ∪ {e}.
Overall, the collector receives a maximum of 2K core items from each summary,
i.e., a total of m · n · 2K. For a data stream of size N split between m bolt
tasks, the time complexity is O(N

m · (n ·TK)+2nmK ·TK). Considering tumbling
windows of size w, we get O(N

m · (n · TK) + 2nwmK · TK). When considering
the updates of the maximum singleton value, since there is no upper bound
on the number of updates, this increases to O(N

m · (n · TK) + N · TK), or since
m,n << N , O(N · TK). In practice, there will be significantly faster runtimes
since the updates will not happen for every data item. For other approaches, the
number of queries per element is often used [3,6,15], which is O(n) here since
we always use n sieves.

Regarding the quality, we can consider the result in ThreeSieves [6] as a
lower bound since we always include the sieve with threshold K ·m. The authors
prove that the solution S achieves an approximation to the optimal value OPT of
(1−ε)(1− 1

exp(1) )OPT with probability (1−α)K . When using n sieves, we expect

to reach the optimal threshold v∗ for one of them after |O|
2n · T items, instead of

|O|
2 · T for one sieve. This follows from choosing the thresholds equidistant from

O, thus partition O into partitions of size |O|
n . In their proof, the probability

of (1 − α)K comes from P (v1 = v∗
1 , ..., vK = v∗

K) > (1 − − ln(α)
T )K , where,

v∗
i are the thresholds of the sieve and vi = Δ(S | ei) are the marginal gains

achieved by the greedy algorithm (for details see [6], appendix). For SoftSieving,
any of the n sieves can achieve these values, increasing the probability. We can
approximate it with 1− ((1−α)K)n for n sieves, but recall that the n thresholds
are not chosen at random, but to be equidistant. The swapping yields no such
improved theoretical guarantees since we try to swap with the item with the
lowest marginal gain. This is done for performance reasons but can result in
swapping new item e only with its most similar item from the core item set,
bringing minimal improvement.

5 Experimental Evaluation

The proposed topology and the considered competitors are implemented in Edge-
Wise [12]. The experiments were performed on a Raspberry Pi 4 with a 1.5 Ghz
Quad-Core-processor and 8 GB of main memory. The Raspberry Pi runs an
Apache Storm Cluster and ZooKeeper, where the topologies were submitted.
We carried out experiments with the goal of answering the following questions.

1. Can we find summaries in a reasonable timeframe which is preferable to
sending all data items to the core without summarization?

2. How well can the approaches handle increasing load from the IoT-device(s)?
3. Does the SoftSieving approach offer significantly better processing times or

solution quality compared to existing algorithms?
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Thus, we measure the total latency over the topologies (questions 1 and 3). We
measure the processing times in the SieveBolts (questions 2 and 3) and the utility
for all approaches (question 3). We perform experiments with varying summary
sizes K ∈ {5, 20, 100}, window sizes w ∈ {1000, 10000, 100000}, and the param-
eter impacting the number of sieves ε ∈ {0.1, 0.01, 0.001}. For processing times
and total latency, the average over all tuples is taken, the utility is the average
value over all windows.

Fig. 3. Varying summary size (K = 5, K = 20, K = 100) - log scaled

Fig. 4. Varying number of sieves (ε = 0.001, ε = 0.01, ε = 0.1) - a, b log-scaled

Fig. 5. Varying window size (w = 1000, w = 10000, w = 100000)
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Competitors: We considered the Sieve-Streaming [3], Sieve-Streaming++ [15],
ThreeSieves [6], and Reservoir Sampling [27]. All the competitors were imple-
mented in a Storm topology. All sieve-based algorithms are executed with param-
eters K = 20, w = 10000, ε = 0.1, unless otherwise specified. ThreeSieves and
SoftSieving additionally use T = 100 as a standard parameter and SoftSieving
uses n = 4. The utility functions used are Active Set and k-medoids (Sect. 3.2).
The topologies are configured to have 10 SieveBolts and one SieveCollectorBolt.
The NormalizationBolts have 5 instances. The SamplingBolt uses one instance.

Datasets: The approaches were evaluated on two real-world datasets, specif-
ically chosen to simulate a real IoT scenario. The first dataset is a telemetry
dataset from Stafford [26]. The data is collected from three IoT-devices, read-
ing environmental sensor data in regular intervals. The measurements include
temperature, humidity, CO, liquid petroleum gas, smoke, light, and motion, hav-
ing 405184 entries. The distance between two items was implemented as sum of
the euclidean distances of all measurements. The data is normalized. The second
images dataset is an RGB-D dataset [20,25]. It contains image frames from three
Kinect sensors in an university hall. The images in the dataset are stored as 8
bits, 3 channels PPM images with 640 × 480 pixels. We preprocess the data and
transform it into feature vectors of size 804. Distances are calculated as sum of
the euclidean distances of all feature vector entries. Since the feature vector is
normalized the NormalizationBolt is not necessary.

First, we performed experiments on the telemetry dataset. When one param-
eter is varied, the other remain on their standard values.

Varying Summary Size (K): Considering the total latency (Fig. 3a), all
approaches are affected by the summary size, but Sieve-Streaming and Sieve-
Streaming++ perform the worst, with SoftSieving being up to an order of mag-
nitude below them. Reservoir Sampling stays consistent since the sampling cal-
culations are not affected by K. ThreeSieves is also barely affected, which means
that the increase in computation cost is not notable when using only one sieve.
The processing time of the SieveBolt (Fig. 3b) increases as well. Reservoir Sam-
pling, as it is not affected by the summary size, does not show a correlation to K.
Figure 3c depicts the average utilities where a higher value corresponds to a bet-
ter approach. Clearly the results differ more for larger K. SoftSieving lies between
Sieve-Streaming and ThreeSieves, but it constantly outperforms ThreeSieves. As
expected, increasing the summary size leads to increased latency and processing
time, while increasing the utility. Sieve-Streaming and Sieve-Streaming++ are
the most dependent on K having latencies orders of magnitude larger compared
to SoftSieving. ThreeSieves and Reservoir Sampling are barely affected by K
and produce the best latencies. However, they produce the lowest utility.

Varying Number of Sieves (ε): By increasing ε, the number of sieves
decreases and with that the latency for all sieve-based approaches (Fig. 4a).
This is most notable for Sieve-Streaming and Sieve-Streaming++. SoftSieving
achieves lower total latency than ThreeSieves, which is a direct consequence of
the improved parallelization. The local processing times follow the same trend
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(Fig. 4b). Sieve-Streaming and Sieve-Streaming++ have high processing times
for low ε. The utility values in Fig. 4c show the dependence of Sieve-Streaming
and Sieve-Streaming++ on the number of sieves. Their utility decreases when
ε increases and fewer sieves are used. SoftSieving shows a slight increase with
increasing ε, while ThreeSieves has lower utility for both ε = 0.001 and ε = 0.1.
The number of sieves does not change for ThreeSieves, but a lower ε means that,
with constant T , it takes longer to decrease the threshold to a suitable value.
The extreme case is shown for ε = 0.001, where no items were added to the core
item set since the threshold remained too high.

Varying Window Size (w): Different window sizes show how quickly the
approaches build a high-quality summary and how much they improve on their

Fig. 6. Image dataset (standard parameters)

Fig. 7. K-Medoids utility function (standard parameters)

summaries over time. The total latency stays consistent for most approaches
when varying w, with the exception of ThreeSieves for w = 10000 (Fig. 5a). The
local processing times (Fig. 5b) of Sieve-Streaming/++ and SoftSieving show
a decrease when increasing w. The cause for this can be the increase in the
number of sieves that have completed their summary and no longer require
processing over the window. For the utility (Fig. 5c), there is an increase for larger
w for all approaches. Interestingly, this includes reservoir sampling. This may
indicate that for our dataset, the data changes over time, and evenly distributed
sampling naturally includes these changes. SoftSieving achieves higher utility
as w increases such that it reaches the utility of Sieve-Streaming and Sieve-
Streaming++ for w = 100000 while constantly outperforming ThreeSieves.
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Image Dataset: We evaluate on the images dataset using the standard param-
eters and the active set utility function. For the complete processing latency
(Fig. 6a), the approaches show a similar distribution to the sensor data, with
the exception of Reservoir Sampling. When looking at the local processing times
(Fig. 6b) it is apparent that the cause for this is the slow sampling in the respec-
tive bolt. The utility values (Fig. 6c) show SoftSieving being lower than Reservoir
Sampling, with ThreeSieves being the lowest by a large margin. This shows the
impact of tuning T , or parameters like ε. Consequently, they are surpassed by
random sampling in utility since they are too restrictive with their thresholds.

K-Medoids Utility Function: We evaluated the k-medoids utility function
on the telemetry dataset with the standard parameters. All topologies include a
SamplingBolt, collecting sample sets of size 50 to use for the per window utility
calculations. The complete processing latency (Fig. 7a) is low for all approaches
except Sieve-Streaming. This is because the effects of having more sieves, and
therefore more utility function evaluations, are stronger with k-medoids. The
local processing times (Fig. 7b) of SoftSieving are higher than ThreeSieves. Since
the total latency remains low, this indicates effective partitioning of the data
stream. SoftSieving with T = 50 was included to highlight the importance of
T . The utility of SoftSieving (Fig. 7c), although higher than ThreeSieves, is low
compared to the other approaches. However, the high utility for T = 50 shows
that this is a result of the choice of T . In conclusion, the results are comparable
to active sets, but the choice of T can greatly influence our approach.

6 Conclusion

We investigated the problem of continuously extracting core-item–based sum-
maries from a data stream. Specifically, we looked at an edge setting, where
finding such summaries can save network load and speed up centralized appli-
cations that depend on the edge data. We proposed a new algorithm for data
stream summarization using core items, called SoftSieving. It uses a fixed, low
number of dynamic sieves and enables parallelized processing. The summaries
are soft, meaning that core items can be swapped for ones with greater utility
gain. We compared the performance to the state-of-the-art sieve-based algo-
rithms in an extensive experimental evaluation and showed that our approach
achieves acceptable balance between fast processing and high utility.
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Abstract. Given the high data volumes in time series applications, or
simply the need for fast response times, it is usually necessary to rely
on alternative, shorter representations of these series, usually with loss.
This incurs approximate comparisons of time series where precision is
a major issue. In this paper, we propose a new parallel approach for
segmenting time series before their transformation into symbolic rep-
resentations. It can reduce significantly the error incurred by possible
splittings at different steps of the representation calculation, by taking
into account the sum of squared errors (SSE). This is particularly useful
for time series similarity search, which is the core of many data analytics
tasks. We provide theoretical guarantees on the lower bound of similarity
measures, and our experiments illustrate that our technique can improve
significantly the time series representation quality.

Keywords: Time series · Representations · Information retrieval

1 Introduction

Time series have attracted an increasing interest due to their wide applications
in many domains. The continuous flow of emitted data may concern personal
activities (e.g., through smart-meters or smart-plugs for electricity or water con-
sumption) or professional activities (e.g., for monitoring heart activity or through
the sensors installed on plants by farmers). This results in the production of large
and complex data, usually in the form of time series [1,2,4–7,11] that challenges
knowledge discovery.

As a consequence of the high data volumes in such applications, similarity
search can be slow on raw data. One of the issues that hinder the analysis of
such data is the high dimensionality. This is why time series approximation is
often used as a means to allow fast similarity search. SAX [8] is one of the most
popular time series representations, allowing dimensionality reduction on the
classic data mining tasks. SAX constructs symbolic representations by splitting
the time domain into segments of equal size where the mean values of segments
represent the time series intervals (PAA approach). This approximation tech-
nique is effective for time series having a uniform and balanced distribution
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over the time domain. However, we observe that, in the case of time series hav-
ing high variation over given time intervals, this division into segments of fixed
length is not efficient. Our main contribution is to provide an adaptive interval
distribution, rather than an equal distribution in time. However, the number
of possible segmentations of k segments with n can be very high. Furthermore,
when searching for the best variable-size segmentation, a large number of com-
putation is involved in case of large sets of time series. Therefore, we propose
efficient parallel techniques using GPUs for improving the execution time of our
segmentation algorithm. In this paper, we make the following contributions:

– We propose a new representation technique, called ASAX SSE, that allows
obtaining a variable-size segmentation of time series with better precision
in retrieval tasks thanks to its lower information loss. Our representation is
based on SSE measurement for detecting what time intervals should be split.

– We propose a lower bounding method that allows approximating the distance
between the original time series based on their representations in ASAX SSE.

– We propose efficient parallel algorithms for improving the execution time of
our segmentation approach using GPUs.

– We implemented our approach and conducted empirical experiments using
more than 120 real world datasets. The results suggest that ASAX SSE can
obtain significant performance gains in terms of precision for similarity search
compared to SAX. They illustrate that the more the data distribution in the
time domain is unbalanced (non-uniform), the greater is the precision gain
of ASAX SSE. For example, for the ECGFiveDays dataset that has a non-
uniform distribution in the time domain, the precision of ASAX SSE is 93%
compared to 55% for SAX.

The rest of the paper is organized as follows. In Sect. 2, we define the problem
we address. In Sect. 3, we describe the details of ASAX SSE representation, and
in Sect. 4 we present parallel versions of ASAX SSE. In Sect. 5, we present the
experimental evaluation of our approach. Finally, we discuss the related work in
Sect. 6 and give our conclusion in Sect. 7.

2 Problem Definition and Background

We first present the background about SAX representation, and then define the
problem we address. A time series X is a sequence of values X = {x1, ..., xn}.
We assume that every time series has a value at every timestamp t = 1, 2, ..., n.
The length of X is denoted by |X|.

SAX allows a time series T of length n to be reduced to a string of arbitrary
length w.

2.1 SAX Representation

Given two time series X = {x1, ..., xn} and Y = {y1, ..., yn}, the Euclidean
distance between X and Y is defined as [6]: ED(X,Y ) =

√∑n
i=1(xi − yi)2. The
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Fig. 1. A time series X is discretized by obtaining a PAA representation and then using
predetermined break-points to map the PAA coefficients into SAX symbols. Here, the
symbols are given in binary notation, where 00 is the first symbol, 01 is the second
symbol, etc. The time series of Fig. 1a in the representation of Fig. 1c is [first, first,
second, fourth] (which becomes [00, 00, 01, 11] in binary).

Euclidean distance is one of the most popular similarity measurement methods
used in time series analysis.

The SAX representation is based on the PAA representation [8] which allows
for dimensionality reduction while providing the important lower bounding prop-
erty as we will show later. The idea of PAA is to have a fixed segment size, and
minimize dimensionality by using the mean values on each segment. Example 1
gives an illustration of PAA.

Example 1. Figure 1b shows the PAA representation of X, the time series of
Fig. 1a. The representation is composed of w = |X|/l values, where l is the
segment size. For each segment, the set of values is replaced with their mean.
The length of the final representation w is the number of segments (and, usually,
w << |X|).

By transforming the original time series X and Y into PAA representations
X = {x1, ..., xw} and Y = {y1, ..., yw}, the lower bounding approximation of the
Euclidean distance for these two representations can be obtained by:
DRf (X,Y ) =

√
n
w

√∑w
i=1(xi − yi)2

The SAX representation takes as input the reduced time series obtained
using PAA. It discretizes this representation into a predefined set of symbols,
with a given cardinality, where a symbol is a binary number. Example 2 gives
an illustration of the SAX representation.

Example 2. In Fig. 1c, we have converted the time series X to SAX representa-
tion with size 4, and cardinality 4 using the PAA representation shown in Fig.
1b. We denote SAX(X) = [00, 00, 01, 11].

The lower bounding approximation of the Euclidean distance for SAX rep-
resentation X̂ = {x̂1, ..., x̂w} and Ŷ = {ŷ1, ..., ŷw} of two time series X and Y
is defined as: MINDISTf (X̂, Ŷ ) =

√
n
w

√∑w
i=1(dist(x̂i, ŷi))2 where the func-

tion dist(x̂i, ŷi) is the distance between two SAX symbols x̂i and x̂i. The lower
bounding condition is formulated as: MINDISTf (X̂, Ŷ ) ≤ ED(X,Y )
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2.2 Similarity Queries

The problem of similarity queries is one of the main problems in time series
analysis and mining. In information retrieval, finding the k nearest neighbors (k-
NN) of a query is a fundamental problem. Let us define exact and approximate
k nearest neighbors.

Definition 1 (Exact k nearest neighbors). Given a query time series Q
and a set of time series D, let R = ExactkNN(Q,D) be the set of k nearest
neighbors of Q from D. Let ED(X,Y ) be the Euclidean distance between two
time series X and Y , then the set R is defined as follows:

(R ⊆ D) ∧ (|R| = k) ∧ (∀a ∈ R,∀b ∈ (D − R), ED(a,Q) ≤ ED(b,Q))

Definition 2 (Approximate k nearest neighbors). Given a set of time
series D, a query time series Q, and ε > 0. We say that R = AppkNN(Q,D) is
the approximate k nearest neighbors of Q from D, if ED(a,Q) ≤ (1+ε)ED(b,Q),
where a is the kth nearest neighbor from R and b is the true kth nearest neighbor.

2.3 Problem Statement

The SAX representation proceeds to an approximation by minimizing the dimen-
sionality: the original time series are divided into segments of equal size. This
representation does not depend on the time series values, but on their length.
It allows SAX to perform the segmentation in O(n) where n is the time series
length. However, for a given reduction in dimensionality, the modeling error may
not be minimal since the model does not adapt to the information carried by
the series.

Our goal is to propose a variable-size segmentation of the time domain that
minimizes the loss of information in the time series representation. Formally, the
problem we address is stated as follows. Given a database of time series D and a
number w, divide the time domain into w segments of variable size such that the
representation of the times series based on that segmentation lowers the error of
similarity queries.

3 Adaptive SAX Based on the Representation’s Sum
of Squared Errors (ASAX SSE)

We propose ASAX SSE, a variable-size segmentation technique for time series
representation. To create a segmentation with minimum information loss on time
series approximation, ASAX SSE divides the time domain based on the Sum of
squared errors (SSE) value of the representation.
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In the rest of this section, we first describe the notion of Sum of Squared
Errors (SSE) for the time series representation. Then, we describe our algorithm
for creating the variable-size segments based on this measurement. Finally, we
present our method for measuring the lower bound distance between time series
in the proposed representation. This lower bounding is useful for efficient eval-
uation of kNN queries.

3.1 Sum of Squared Errors (SSE)

In Statistics, Sum of Squared Errors (SSE) is defined as the sum of the squares
of the errors. In other words, SSE is the sum of the squared differences between
the actual and the estimated values. Formally, SSE is defined as follows.

Definition 3. Given a vector X of n elements and a vector X̃ being the esti-
mated values generated from X, SSE of the estimation is given by: SSE(X, X̃) =∑n

i=1 (xi − x̃i)2

In our context, we calculate the SSE on the PAA representation obtained
from the transformation of the original time series of a dataset according to a
given segmentation. The SSE computed on this representation allows to measure
the approximation error on the time series by the PAA representation compared
to the original time series. The lower the SSE, the closer is the PAA representa-
tion to original data.

By transforming a time series X = {x1, ..., xn} into a PAA representation
X = {x1, ..., xw}, X is reduced to the PAA representation composed of w seg-
ments. For each segment, the set of values is replaced with their mean. We can
compute the SSE for each segment, that is in this case, the sum of the squared
differences between each value (actual value) and its segment’s mean (estimated
value). In the next subsections, we show how to compute the SSE of a PAA rep-
resentation considering only one segment (called LSSE) or all segments (called
GSSE). As shown by experiments, using these two different SSE measurements
may lead to different results in terms of precision and execution time.

3.2 SSE of PAA Representation Considering One Segment (LSSE)

Let X be the PAA representation of X with w segments. The LSSE (local SSE)
of X for a particular segment is the sum of the squared errors for the time series
values in this segment. Formally, LSSE of X for a segment si is computed as:
LSSE(si, xi) =

∑UB(si)
j=LB(si)

(xj − xi)2 where si is the selected segment, LB(si)
and UB(si) are the start and end time points of si respectively.

3.3 SSE of PAA Representation Considering All Segments (GSSE)

The global SSE (GSSE), is computed by taking into account all segments of
the PAA representation X: GSSE(X,X) =

∑w
i=1

∑UB(si)
j=LB(si)

(xj − xi)2 where
LB(si) and UB(si) are the start and end time points of the segment si respec-
tively.
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Algorithm 1: Variable-size segmentation
Input: D: time series database; n: the length of time series; size: the starting size of

segments; w: the required number of segments
Output: w variable-size segments

1 k = � n
size �

2 segments = {⋃k−1
i=0 [size × i, size × (i+ 1) − 1]} // split time domain into k segments of size

size
3 while k �= w do
4 segmentsToMerge = null
5 msse = ∞
6 for i=1 to k − 1 do
7 s = merge (si, si+1)
8 tempSegments = segments − {si, si+1}
9 tempSegments = tempSegments

⋃
s

10 //merge segment i and segment i + 1 in tempSegments
11 sse = 0
12 foreach ts in D do
13 sse = sse + SSE(ts)

14 if sse < msse then
15 segmentsToMerge = i
16 msse = sse

17 s = merge (ssegmentsToMerge, ssegmentsToMerge+1)
18 segments = segments − {ssegmentsToMerge, ssegmentsToMerge+1}
19 segments = segments

⋃
s

20 k = k-1

21 return segments

3.4 Variable-Size Segmentation Based on SSE Measurement

Given a database of time series D, and a number w, our goal is to find the
k variable size segments that minimize the loss of information in time series
representations by minimizing the approximation error of these representations.

Intuitively, our algorithm works as follows. Based on a starting segment size
value size, it firstly splits the time domain into k segments of length size. The
default value of size is 2. The algorithm performs k − w iterations, and in each
iteration it finds the two adjacent segments si and si+1 whose merging gives the
minimum SSE (MSSE) on the representations, and merges them. By doing this,
in each iteration the two selected segments are merged to form a single segment
which replaces them in the set of segments, reducing the number of segments by
one. This continues until having w segments.

Let us now describe our algorithm in more details. The pseudocode is shown
in Algorithm 1. It first sets the current number of segments, denoted as k, to
n

size . Then, it splits the time domain into k segments of length size that are
included to the set segments (Line 2).

Afterwards, in a loop, until the number of segments is more than w the algo-
rithm proceeds as follows. For each segment si (i from 1 to k − 1), si is merged
with segment si+1 to form a single segment denoted as s (Line 7). Then, a tem-
porary set of segments tempSegments is created including the new segment and
all previously created segments except si and si+1 i.e., except the two that have
been merged (Lines 8, 9). Then, for each time series ts in the database D, the
algorithm generates its PAA representation and calculates the corresponding
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SSE (Line 13) calling either GSSE function in the case that the entire PAA rep-
resentation is considered for the error calculation, or LSSE function if the error
is computed on segment s. Then, it adds the result of the computed SSE to sse
(Line 13). After having calculated the sum of the SSE for the PAA representation
of all the time series contained in D, if the SSE is less than the MSSE (minimum
SSE) obtained so far, the algorithm sets i as the segment to be merged with the
next one, and keeps the SSE of the representation (Lines 15, 16). This procedure
continues by trying the merging of every two adjacent segments of segments at
each time, and computing the SSE. The algorithm selects the merging whose
SSE is the lowest, and updates the set of the segments by removing the selected
segments, and inserting its merging to segments (Lines 17–19). Then, k, which
stands for the number of current segments, is decremented by one (Line 20). The
algorithm ends when k gets equal to the required number, i.e., w.

Let us illustrate the principle of our algorithm using an example. For simplic-
ity, we consider a dataset containing only a single time series and we calculate
the approximation error on the entire time series representation using GSSE
approach.

Example 3. Let us apply our algorithm on the time series X in Fig. 2 by taking
the initial size of 2 for the segments. The algorithm starts by dividing the time
domain into 4 segments of size 2. The next step is to reduce the number of
segments from 4 to 3. To this purpose, the algorithm tests the merging of every
two adjacent segments of the 4 existing segments, in order to find the one that
has the minimum SSE. Three different scenarios are possible:

Scenario 1: The first scenario is shown in Fig. 3a where s1 and s2 of the initial
segmentation (shown in Fig. 2) are merged into one segment. We generate the
PAA representation of X using the 3 segments, and then compute the SSE of
this representation that is SSE1(X,X) ≈ 1.167.

Scenario 2: This scenario is shown in Fig. 3b in which s2 and s3 of the initial
segmentation are merged. As for Scenario 1, we generate the PAA representation
of X using the current segmentation. Here, SSE2(X,X) ≈ 1.915.

Scenario 3: The last scenario is shown in Fig. 3b, where we merge s3 and s4.
For this segmentation, SSE3(X,X) ≈ 1.745.

We have calculated the SSE for the three scenarios. Since we aim to minimize the
SSE, we have to choose the minimum SSE value (MSSE), that is MSSE = 1.167
corresponding to the segmentation generated in Scenario 1. The latter is chosen
for this iteration of our algorithm and we continue the next iterations, until the
number of segment reaches w.
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Fig. 2. PAA representation of a time series X of length 8 with 4 segments.

Fig. 3. The three different scenarios of ASAX SSE segmentation with 3 segments.
Scenario 1 is the one chosen because it provides the MSSE.

3.5 Lower Bounding of the Similarity Measure

SAX [9] defines a distance measure on the PAA representation of time series
as described in Sect. 2.1. Given the representation of two time series, the DRf

function allows obtaining a lower bounding approximation of the Euclidean dis-
tance between the original time series. By the following theorem, we propose a
lower bounding approximation formula for the case of variable size segmentation
in ASAX SSE.

Theorem 1. Let X and Y be two time series. Suppose that by using ASAX SSE
we create a variable size segmentation with w segments, such that the size of the
ith segment is li. Let X and Y be the representations of X and Y in ASAX SSE.
Then, DRv(X,Y ) gives a lower bounding approximation of the Euclidean dis-
tance between X and Y : DRv(X,Y ) =

√∑w
j=1 ((xj − yj)2 × lj)

Proof: The proof has been removed due to lack of space.

4 Parallel Versions of ASAX SSE

We propose efficient parallel techniques using GPUs for improving the execution
time of our segmentation algorithm. In our approach, the CPU controls the
main loop of the segmentation computation process and does light operations,
while the time-consuming tasks are parallelized on GPU, particularly the SSE
computation on a dataset for a given segmentation. We propose two parallel
versions of the algorithm using CUDA framework to provide a fast computation
of the variable-size segmentation over long time series and/or large number of
time series: 1) ASAX DP that performs the parallelization on data; 2) ASAX SP
that makes the parallelization on segments.
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4.1 Parallelization on Data

The main idea of our first parallel algorithm, called ASAX DP (ASAX Data
Parallel), is to divide the dataset into blocks (partitions), and to assign the SSE
computation for the time series of each block to a core of the GPU.

Let us describe the proposed algorithm. Initially, the host (CPU) sends the
whole dataset D to the GPU (this data transfer between the CPU and the GPU
is done only once). Then, the host creates the initial segmentation segments
by splitting the time domain into the k starting segments. Afterwards, in a
loop, until the number of segments is more than w, it generates a candidate
segmentation by merging 2 segments of the last validated segmentation. For each
candidate segmentation, the GPU is used for computing SSE on D. For this, the
host calls the GPU kernel that computes SSE in parallel operating on different
time series of the different dataset blocks. In the kernel, each thread calculates
the SSE on the time series of its block and stores the result in a shared array,
called sseArray, that is sent back to the CPU. The host calculates the sum of
the received results to get the SSE on D, and updates the MSSE (minimum SSE)
if the SSE obtained in this iteration is less than the MSSE obtained until now.
After testing all possible segmentations, it chooses the one that has the minimum
SSE, updates the set of segments segments and decrements the current number
of segments k by one. This process continues until k reaches the required number
of segments w.

4.2 Parallelization on Segments

Here, we propose ASAX SP (ASAX Segment in Parallel), a parallel algorithm in
which the computations related to each possible merging of segments is done by
a different GPU core. As shown by our experiments, this algorithm can be more
efficient than the one presented previously in the cases where the time series are
long (e.g., more than 1000 values per time series).

The initialization of this algorithm is the same as the algorithm presented in
the previous subsection. The host starts by sending the dataset D to the GPU,
and dividing the time domain into k starting segments to form the set segments.

Then, until the number of segments has not reached w, the host calls the
GPU kernel to compute SSE on D of each possible segmentation in parallel.
The number of launched threads is equal to the number of possible segmenta-
tions obtained when reducing the number of segments from k to k − 1. In the
kernel, each thread calculates its segmentation by merging two segments si and
si+1 where i is the thread position. The thread computes the SSE of the segmen-
tation on the dataset D and stores the result in a shared array, called sseArray,
according to its position. The result array is sent back to the CPU. Each element
of the array represents the SSE for a candidate segmentation. The host selects
the one having the lowest SSE value, and then updates segments and k. This
process continues until k reaches w.
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5 Experiments

In this section, we present the experimental evaluation of ASAX SSE. We first
describe the experimental setup. Then, in Subsect. 5.2, we compare the preci-
sion of ASAX SSE representation with that of the existing SAX representation.
Finally, in Subsect. 5.3, we evaluate the performance of the parallel versions of
ASAX SSE by measuring the execution time of the variable-size segmentation
using GPUs.

5.1 Setup

All approaches are implemented with Python programming language. ASAX SSE
and SAX implementations use Numba JIT compiler to optimize machine code at
runtime. The GPU-based part of the parallel algorithms is written in Numba1.

The ASAX SSE and SAX experiments were conducted on a machine using
Ubuntu 18.04.5 LTS operating system with 20 Gigabytes of main memory, and
an Intel Xeon(R) 3,10 GHz processor with 4 cores. The parallel experimental
evaluation was conducted on an NVIDIA GeForce RTX 2080 Ti GPU card,
equipped with 4 352 CUDA cores and 11 GB of memory installed in the same
machine. We compare the proposed ASAX SSE and SAX in terms of precision
on all the real-world datasets available in the UCR Time Series Classification
Archive2. We evaluate the performance of the parallel algorithms on two datasets
taken from the same archive, the size of the datasets is increased to reach 1M
by repeating the contained time series multiple times. For each approach, the
length w of the approximate representations is reduced to 10% of the original
time series length and the variable-size segmentation algorithms are initialized
by splitting the time domain into segments of length 2.

5.2 Precision of k-Nearest Neighbor Search

We compare the quality of ASAX SSE and SAX representation on all 128
datasets of the UCR Time Series Classification Archive. For each dataset, we
measure the precision of the approximate k-NN search as the average pre-
cision for a set of arbitrary random queries taken from this dataset. The
search precision for each query Q from a dataset D is calculated as: p =
|AppkNN(Q,D)∩ExactkNN(Q,D)|

k where AppkNN(Q,D) and ExactkNN(Q,D) are the
sets of approximate k nearest neighbors and exact k nearest neighbors of Q from
D, respectively. AppkNN(Q,D) is obtained using the DRf distance measure for
SAX and DRv for the ASAX SSE representation, while ExactkNN(Q,D) con-
tains the exact k-NN results of Q using the euclidean distance ED. AppkNN(Q,D)
and ExactkNN(Q,D) use a linear search that consists in computing the distance
from the query point Q to every other point in D, keeping track of the “best so
far” result.

1 Our code is available at: https://github.com/lamiad/ASAX SSE.
2 https://www.cs.ucr.edu/eamonn/time series data 2018/.

https://github.com/lamiad/ASAX_SSE
https://www.cs.ucr.edu/eamonn/time_series_data_2018/
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The precision results are reported in Fig. 4 where the precision gain/loss
(as percentage) for ASAX SSE compared to SAX precision is measured for
each dataset. The integer part of the obtained precision is taken into consid-
eration to compare the two methods. Figure 4a shows the precision results for
ASAX GSSE (i.e., ASAX SSE using GSSE) and Fig. 4b those for ASAX LSSE
(i.e., ASAX SSE using LSSE). The results are illustrated using a scatter chart
where the horizontal axis represents the dataset number and the vertical axis
shows the precision gain/loss obtained. We observe a gain in precision for the
large majority of datasets. We obtained a gain in precision for 80% of the datasets
with ASAX GSSE and 84% with ASAX LSSE.

The distribution of time series over the time domain varies from one dataset
to another. There are some for which the distribution is quite balanced, those
which undergo some variations and others whose variation increases a lot. Figure
4 does not allow explaining the precision gain or loss since we need to have
the visualisation of the time series for each datasets, for this, an analysis is
done regarding the precision results obtained and the shape of data. We have
noticed that the more the distribution of the data is unbalanced the more
the gain is important. The maximum gain achieved is a significant 38% for
both ASAX GSSE and ASAX LSSE methods, obtained for the ECGFiveDays
dataset. This high gain is due to the unbalanced data distribution over the
time domain on this dataset. We were able to achieve a precision of 93% for
ASAX SSE while it is 55% for SAX, because ASAX SSE performed a better
distribution of the segments according to information gain by creating several
segments in the parts that undergo a significant variation that produces more
accurate times series representations leading to a better result for the approxi-
mate k-NN search. We can see that for some datasets the computed gain is zero
meaning equivalent precision for ASAX SSE and SAX due to the balanced shape
of the time series over the time domain. Regarding the few datasets where we
obtain lower precision, the loss is relatively low (mostly near zero).

Fig. 4. The precision gain for ASAX GSSE and ASAX LSSE compared to SAX. The
obtained gain is up to 38% for both methods
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Globally, our results suggest the effectiveness of our approach and its advan-
tage over the state of the art when applied to time series especially those with
unbalanced distribution over the time domain.

5.3 Scalability

This subsection presents the time cost of the variable-size segmentation for our
proposed algorithms. We measure the variable-size segmentation time costs of
the parallel algorithms ASAX DP and ASAX SP, and compare them to that of
the variable-size segmentation for the sequential algorithm ASAX SSE. The per-
centage of precision gain computed in the experiments described in the previous
subsection shows that the gain obtained with the ASAX GSSE approach is less
than the one obtained with ASAX LSSE. Furthermore, the evaluation of the
time cost for ASAX GSSE approach (sequential and parallel methods) showed
that this approach is more time consuming than ASAX LSSE. For these reasons,
we present the results of our parallel algorithms, ASAX DP and ASAX SP, only
using the LSSE measurement.

Figure 5 and Fig. 6 report the performance gains of our parallel approaches
compared to the sequential version of ASAX LSSE. Figure 5 reports the variable-
size segmentation time for the ASAX DP and ASAX LSSE with varying dataset
size. The computation time increases with the number of time series for both
algorithms. But, it is much lower in the case of ASAX DP than that of the
sequential ASAX LSSE. The performance gains vary significantly depending on
the number of time series. As seen, the gain reaches ×45 for 1M of time series.

Figure 6 reports the computation time of variable-size segmentation for the
ASAX SP and ASAX LSSE. Here we vary the time series length. The running
time increases with the length of time series and, as one could expect, the sequen-
tial ASAX LSSE takes much more time than ASAX SP. Depending on time
series length, ASAX SP shows performance gains that can reach ×24 for 1000
time series of length 2700.

Fig. 5. Variable-size segmentation time
for ASAX DP and ASAX LSSE as a func-
tion of dataset size. The original time
series are of length 130.

Fig. 6. Variable-size segmentation time
for ASAX SP and ASAX LSSE as a
function of time series length. The
dataset size is fixed to 1000.



160 L. Djebour et al.

Figure 7 and Fig. 8 compare the parallel segmentation computation time
of our approaches. In Fig. 7, we evaluate the two approaches with varying
dataset size (number of time series) and fixed time series length. For this case,
we observe that ASAX DP is always faster than ASAX SP. The results show
that using ASAX DP is advantageous in the case of databases of many small
time series. In Fig. 8, we vary the time series length and we fix the dataset size
for the evaluation. We notice that when time series length n = 100, ASAX DP
is a little faster than ASAX SP, but when the length of time series increases,
ASAX SP becomes faster than ASAX DP. The performance gain reaches ×7.5
for time series of length 1000. ASAX SP allows better performance gains when
the database consists of few and long time series.

Fig. 7. Comparison of parallel seg-
mentation time using ASAX DP and
ASAX SP, as a function of dataset size.
The original time series are of length
300.

Fig. 8. Comparison of parallel seg-
mentation time using ASAX DP and
ASAX SP, as a function of time series
length. The dataset size is fixed to 10
000.

6 Related Work

Several techniques have been yet proposed to reduce the dimensionality of time
series. Examples of such techniques that can significantly decrease the time and
space required for similarity search are: singular value decomposition (SVD) [6],
the discrete Fourier transformation (DFT) [1], discrete wavelets transformation
(DWT) [4], piecewise aggregate approximation (PAA) [7], random sketches [5],
Adaptive Piecewise Constant Approximation (APCA) [3], and symbolic aggre-
gate approXimation (SAX) [9].

SAX [9] is one of the most popular techniques for time series representation.
It uses a symbolic representation that segments all time series into equi-length
segments and symbolizes the mean value of each segment.

Some extensions of SAX have been proposed for improving the similarity
search performance via indexing [2,11]. For example, iSAX [11] is an indexable
version of SAX designed for indexing large collections of time series. iSAX 2.0 [2]
proposes a new mechanism and also algorithms for efficient bulk loading and
node splitting policy, which is not supported by iSAX index.
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There have been SAX extensions designed to improve the representation of
each segment, while using the SAX fixed-size segmentation, e.g., [10,12,15]. For
example, SAX TD improves the representation of each segment by taking into
account the trend of the time series. It uses the values at the starting and ending
points of the segments to measure the trend. TFSA [14] and SAX CP [13] are
other trend-based SAX representation methods. TFSA proposes a representation
method for long time series based on the trend, and SAX CP considers abrupt
change points while generating the symbols in order to capture time series’
trends.

To increase the quality of time series approximation, we propose an adaptive
approach ASAX SSE based on variable-length segmentation of time series by
taking into account the sum of absolute error. Our approach is complementary
to the existing SAX extensions, e.g., in indexing based techniques or those that
use the trend for representing the segments. For example, our variable-size seg-
mentation can be used in iSAX, SAX TD and SAX CP for segmenting the time
series.

7 Conclusion

We addressed the problem of approximating time series, and proposed
ASAX SSE, a new technique for segmenting time series before their transforma-
tion into symbolic representations. ASAX SSE can reduce significantly the error
incurred by possible splittings at different steps of the representation calculation,
by taking into account the sum of squared errors (SSE). We also proposed two
parallel algorithms for improving the execution time of ASAX SSE using GPUs.
We evaluated the performance of our segmentation approach through experi-
mentation using more than 120 real world datasets. The results suggest that the
more the data distribution in the time domain is unbalanced (non-uniform), the
greater is the precision gain of ASAX SSE. For example, for the ECGFiveDays
dataset that has a non-uniform distribution in the time domain, the precision
of ASAX SSE is 93% compared to 55% for SAX. Furthermore, the results illus-
trate the effectiveness of our parallel algorithms, e.g., up to ×45 faster than the
sequential algorithm for 1M time series.
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Abstract. As modern applications gather more and more data, the data
types also become more complex. Traditional retrieval operations based
on identity and order comparisons are not suitable for those types. Instead,
similarity operators are much more interesting for querying complex data
and are gaining increasing attention. Similarity queries retrieve the ele-
ments most similar to a query center but, they tend to return elements that
are very similar to others in the result set, reducing users’ interest in the
answer. To overcome this problem, researchers have considered incorpo-
rating a diversity degree in the similarity operators. Unfortunately, diver-
sified similarity queries are computationally expensive, as they need to
assess the relationship between each pair of elements in the result. Several
works in the literature present techniques to speed up diversity in similar-
ity queries, but they are either not scalable or only consider the diversity
property. In this paper, we propose an index data structure, called the
Omni-Range Tree (ORTree), that partitions the query space into a small
subset of similar elements to a query element and prospect representative
candidates aiming at dispatch diversified similarity queries. Our experi-
mental evaluation shows that our index structure can reduce the query
execution by time up to 95% without harming the quality of the results
concerning other literature methods.

Keywords: Diversified similarity queries · Metric spaces indexing ·
Pivot-based space partitioning

1 Introduction

With the evolution of data acquisition and of the applications domains employing
Database Management Systems (DBMS), it has become needed to store and
retrieve more complex data, such as images, audio, videos, and long texts. Classic
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comparisons performed by current DBMSs are mainly based on identity and
order relationships, which are not adequate for complex data. On the other
hand, similarity queries are the information process that evaluates a element
given by the user, called the query center (sq), and retrieves of a set of elements
that are alike, but not equal, to the reference element (sq) [9,10].

The metric space model [8] is an efficient approach for handling similarity
queries, in which data elements are mapped into a known domain where they
are compared by a distance function (δ) to assess how similar are the elements,
assuming that smaller distances correspond greater similarity among elements.
The two most useful similarity retrieval operators are the similarity range (Rq)
and the k -nearest neighbor (kNNq) queries. A range query retrieves the ele-
ments from the dataset that are farther apart than a radius (r) from the query
center sq. A k -nearest neighbors query retrieves the k elements most similar
to sq. However, when similarity criteria are applied to large datasets with high
cardinality and density, they tend to lose expressiveness and, consequently, qual-
ity. A major semantic-driven problem related to increasing data volume is that
the similarity query operators are unable to filter the result set elements similar
to each other [4]. The problem with too similar objects in result sets is that
they can mislead users to believe that the database does not store the required
information [4,9,11,14].

Several researchers have considered including diversity in query results, aim-
ing at returning elements that are both similar to the query center and diverse
from each other. Several diversification strategies can be found in the literature.
They are classified as based on coverage or on novelty (also called as distance-
similarity) [9]. The former return elements enforcing a dissimilarity threshold,
returning only elements that respect a given distance between them. In this
approach, the goal is to find elements that cover different information. The later
search for elements that maximize a double criteria objective function, where
similarity and diversity are balanced according to a user’s defined preference
parameter. Their goal is to find elements that are not redundant with the ele-
ments already found [4,14,16]. Depending on the data domain, one approach
may be more suitable than the others although are important for result diversi-
fication. This work focuses on novelty-based diversification approaches.

Searches for diversified similarity are intrinsically costlier than searches seek-
ing only similarity. This is due to two facts: more elements need to be loaded and
compared, and each candidate needs to be compared not only to the query center
but also to the other elements already in the answer. Novelty-based algorithms
usually consider diversification as an NP-Hard optimization problem [4,14], but
an exact solution is not usually obtained in a feasible time. An alternative to
reduce computational costs relies either on heuristics or on metaheuristics [10].
However, both algorithms have scalability problems. The most common app-
roach [11,14,15] is to select a subset of candidates to be processed by the diver-
sification algorithms. However, not only the execution time but also the answer
quality is directly impacted on how such selection is performed [11,15]. One
of the most impacting problem of these approaches occurs when elements that
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do not maximize the objective function are selected. This often happens when
applied approaches focus only on diversity [5,15].

In this work we present a strategy and corresponding algorithms to speed
up similarity with diversity based on novelty. We seamlessly integrated an index
structure with candidate selection methods to allow selecting elements consider-
ing both similarity and diversity. Our main contributions are: (i) An index struc-
ture that partitions the search space considering the distance among elements.
(ii) Two algorithms to speed up similarity with diversity query algorithms to
be employed in conjunction with our structure.

The remainder of this paper is organized as follows. Section 2 presents related
works and basic concepts. Section 3 presents our proposal for space partitioning
and selecting elements. Section 4 presents the evaluation environment and the
results obtained. Finally, Sect. 5 presents our conclusions.

2 Background

Here we present related index structures and existing works, which allows parti-
tioning elements of the dataset to perform similarity queries efficiently and foster
obtaining diversified results.

2.1 Range-Tree

The Range-Tree (RT) [3,15] aims at quickly find the elements contained within the
range of the query. It partitions the dataset considering the full range of values in
every dimension. Figure 1a illustrates a RT storing a two-dimensional data, where
the range of the first dimension spans from 0 to 2. In this structure, the root stores
all elements within the range of the first dimension. The other non-leaf (interme-
diate) nodes store the partitions generated by the subranges of the root. To handle
spaces with dimensionality greater than one, each node has a child pointing to a
subrange tree that partitions the elements in the next dimension. During a search,
whenever a node within the range of the current dimension is found, a search in
the next dimension is performed, until there are no more dimensions to search. A
d-dimensional range query Rdr is expressed as a sub-range for each dimension of
the dataset, such as Rdr = {xinit, xfinish, yinit, yfinish}1. The time complexity to
query a RT is O(logd(n)) and its space complexity is O(n logd(n)), where d is the
dataset dimensionality and n is its cardinality.

2.2 MAM - Omni-Technique

A similarity query can be executed by a sequential scan, where every element is
compared to the query center sq. However, calculating every distance slow down
the process, due to the high computational cost of similarity calculations. To

1 Notice that a Rdr correspond to elements within a sequence of values in each d-
Dimension, thus it is distinct from a similarity range query Rq.
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speed up the queries, many Metric Access Methods (MAM) were proposed to
store and efficiently retrieve data based on the Metric Spaces properties, which
allow reducing the number of similarity comparisons [8,13]. Among the several
well-known structures we highlight those based on the Omni-Technique [13].

Given a dataset with a fractal dimension D, the Omni-Technique is a pivot-
based indexing approach that assumes that �D� is the ideal cardinality for a set
of pivots P employed to accelerate query execution. The omni-technique aims
at pre-computing the distances of every element to every pivot. The distances
are called the omni-coordinates of each data element and they are employed
to reduce the number of distance comparisons during a query execution. The
process has two steps: filter and refine. During the filtering step, the omni-
coordinates of the query center sq is calculated and the triangular inequality
property is used to find the regions that contain the query results, which can
include false positives. The refinement step removes the false positives and gen-
erates the final answer.

The omni-coordinates generate a new search space, more compact than the
original one. Thus, they can be used both as an indexing and a dimensional-
ity reduction strategy. We take into account both benefits for developing our
proposed method, as described in Sect. 3.

2.3 The Diversity Problem

A diversified similarity query can be defined as an optimization problem that
looks for elements R that are both similar to the query center but also diverse
from each other. This goal can be expressed as a double-criteria objective func-
tion that targets to maximize similarity and diversity, as follows. Given a dataset
S, a query element sq, an integer k, a function δSim that measures how similar
each element si is from sq, and a function δdiv that measures how diverse two
elements are, the diversification problem can be expressed as [9,11,14]:

R = argmax(F(sq, R)),∀R ⊆ S : |R| = k, (1)

F(sq, R) = (1−λ)·
k∑

i=0

δsim(sq, ri)+
2λ

(k − 1)

k−1∑

i=1

k∑

j=i+1

δdiv(ri, rj) : ri, rj ∈ R (2)

Parameter λ[0, 1] defines how much diversity the user expects. When λ = 0,
the problem is reduced to a kNNq. When λ > 0, the problem becomes NP-Hard
with time complexity O(nk) (where n = |S|), as it must evaluate every subset
R(|R| = k) to find the one with the largest F .

Several approximate algorithms have been proposed to generate a good query
answer in a feasible time, some executing in O(n2) time. However, even consid-
ering this complexity reduction, they still can take a long time to get an answer.
Thus, approximate algorithms typically have two phases: Candidate selection
and Diversification. The candidate selection phase extracts a subset S′ with car-
dinality m = |S′| << |S|. In this way, the search space is reduced to m = |S′|.
In the diversification phase, a similarity with diversity algorithm is applied to
the set of candidates S′ [9,11,14].
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2.4 Diversity Algorithms

One of the first and best-known diveristy algorithm in the literature is the Max-
imal Marginal Relevance (MMR) [2]. An element is marginally more important
if it is as similar to the query element as it is diverse from the elements already
inserted in the answer set. Thereafter, other elements that maximize the MMR
function are incrementally inserted. The time complexity of MMR is O(kn),
however, other algorithms can generate better results.

The Greedy Marginal Contribution (GMC) [14] is an incremental algorithm
that basically follows the same steps of MMR but uses another objective func-
tion, the maximum marginal contribution (MMC). The MMC function evaluates
the contribution of the element si ∈ S considering the similarity between si and
sq, the diversity between si and the elements already in R and the diversity
between si and the elements of the candidate set S′ that are not yet in R.

The Greedy Randomized with Neighbor Expansion (GNE) [14] is based on
the GRASP meta-heuristic (Greedy Randomized Adaptive Search Procedure).
The GNE can be divided in two phases: construction and local search. In the
construction phase, the algorithm iteratively generates an initial solution to max-
imize MMC. In the local search phase, the algorithm improves the initial solution,
looking for a higher quality solution in the neighborhood of the current solution.
If no better solution is found, the current one is returned.

The Max-Sum Dispersion (MSD) [7] algorithm incrementally builds the
answer R, selecting the pair of elements that maximizes the objective func-
tion. Basically, at each iteration it chooses two elements si and sj ∈ S that are
both similar to sq and different from each other. For cases where k is odd, MSD
randomly chooses the last element to be inserted.

GMC, GNE, and MSD are capable of generating better results than MMR.
However, their time complexity are O(n2), which makes the process of analyzing
many elements even longer [11,14].

2.5 Candidate Selection

Several approaches to select/filter elements were developed to improve efficiency
whereas also finding good answers. The most common use a similarity search
(kNNq or Rq) to return the subset S′ with the m elements closest to sq, but
other candidate selection strategies have been considered too [5,11,14,15].

For example, in [11] were conducted an evaluation of distinct filter approaches
combined to novelty algorithm, in which RDI standed out. RDI, returns m
elements using the concept of Result Diversification based on Influence [12].
Although very fast, it is based on a method that does not guarantee that the
selected elements actually maximize the objective function (F). Another point is
that RDI does not restrict the search space, so it is not uncommon that the entire
dataset is analyzed, which can sometimes make the selection process slower than
other approaches.

A modification of the algorithm for the Cover-Tree construction [1] was pre-
sented in [5], which here we call CT, aiming at efficiently find diversified sets
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Fig. 1. Two-dimensional Range Tree and the process of candidate selection to partition
the search space using one pivot. (a) Each node in the first dimension leads to another
Range Tree in the second dimension. (b) Range query defined by Rq(sq, r). (c) The
query range is partitioned (dotted line), generating two subranges. (d) Considering the
generated partition, a candidate selection approach is applied on each partition. The
elements selected from each partition are joined for the diversity algorithm.

in data streams. The proposed algorithm transforms each level of the Cover
Tree into a possible solution for a diversification heuristic. Following up, several
search algorithms were proposed, one of them returns the k elements contained
in one of the upper nodes of the Cover Tree, which can be quickly obtained.
However, the proposed algorithm builds the tree considering only the diversity
between the elements. Furthermore, the construction algorithm has complexity
O(n2), which makes the whole process as expensive as the algorithms previously
presented.

The RC-Index [15] selects candidates using two data structures: a Range Tree
and a Cover Tree. The Range Tree partitions the dataset and, for each partition,
creates a corresponding cover tree. Thereafter, given a search range, the cover
trees within the query range are used to extract a subset of candidates. The can-
didates are extracted in a way similar to the CT approach, the main difference
being that, given a level (Lk) that contains k elements, the candidates at some
lower level are returned: by default, three levels below Lk. However, this app-
roach is ineffective for high-dimensional datasets, since its building complexity
is O(γ6logd+1(n)), in addition, its space complexity is the same as the Range
Tree: O(n logd(n)).

The next section presents a novel structure which, as the RC-Index, partition
the search space also using a Range Tree, but coupled to the Omni-technique
to reduce the space complexity, which allows a much faster similarity query
execution. Distinctly from RC-Index, we also present an algorithm to convert a
similarity range query into a distance range query, which can be executed in an
RT.

3 Methodology

Here we propose an efficient method to answer diversified similarity queries,
based on two concepts: Spatial partition and Candidate selection. The first aims
at partitioning the data into small subsets, so that the elements in each subset
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are similar to each other and the cost of selecting diversified candidate elements
is as small as possible. The second concept aims at quickly selecting the ele-
ments from each subset that can maximize both similarity and diversity. To
partition the dataset, our approach extends the Range Tree with the Omni tech-
niques, creating the Omni-Range Tree (the ORTree). It partitions the dataset
using omni-coordinates, which improves the similarity range query (Rq) effi-
ciency. Moreover, as the amount of evaluated omni-coordinates is defined by the
fractal dimension (D) of the dataset, it almost always reduces the data dimen-
sionality too and, consequently, redux the structure time and space complexity.
The Range Tree is employed due to its low query complexity of O(logD(n)).

Building a ORTree is very similar to build a RT, but instead of the original
attributes, the omni-coordinates are used. Algorithm 1 show the process for
building a ORTree. After choosing the pivots, the omni-coordinates of every
element are calculated (lines 1–8) in time complexity of O(n), generating a D-
dimensional space. Thereafter, a RT is built as follows. The elements are sorted
following the first dimension and inserted into the root node (lines 9–10). At this
point, the elements are partitioned into two subsets considering the median of the
first dimension of the omni-coordinates array. Next, the ‘left’ and ‘right’ children
are built recursively for the current dimension (lines 16–17) and the ‘next’ child
for the next dimension (lines 18–20), repeating recursively until there are no
more dimensions.

Algorithm 1. Building the ORTree
Input: Set of pivot elements P, δ a metric distance function and the dataset S.
Output: ORTree.

1: OS ← ∅ � set of omni-coordinates

2: for ∀ si ∈ S do
3: Osi ← ∅
4: for ∀ p ∈ P do

5: coord ← δ(si, p) � coordinate
corresponding to p.

6: Osi ← Osi ∪ coord
7: end for
8: OS ← OS ∪ Osi

9: end for
10: Sort(OS , 0)

11: ORTree.root = Construct(OS , 0)

12: return ORTree

13: function Construct(set, dim)
14: if set.size == 0 then

15: return NULL

16: end if
17: node.left = Construct(left, dim)

18: node.right = Construct(right, dim)
19: dim = dim + 1
20: Sort(set, dim)

21: node.next = Construct(set, dim)
22: return node

23: end function

Given a Rq(sq, r), the ORTree retrieves the nodes that store elements within
the query range. To obtain the RDr range, the following steps are executed. The
omni-coordinates of sq and then the ranges for each dimension are generated,
defining the search range r as the omni-coordinate of sq (its distance to each
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pivot): range : {Osqi − r,Osqi + r}. The same procedure is applied to all other
dimensions. Given the ranges, the query finds and returns the nodes contained
within the ranges. The distances from sq to each element in nodes is calculated
and only those within r are returned: δ(sq, si) ≤ r. Our approach is able to
support both the k − NNq and Rq similarity queries, but here we are going to
focus on Rq.

Aiming at achieving a selection of better candidates than those provided by
other methods in the literature, we took into account the data structure pro-
vided by ORTree to create a novel process that allows a more efficient selection
of candidates, maintaining a quality equivalent to the other approaches. Our
method uses the nodes retrieved by an ORTree to extract a set of m elements
from each node within the range defined by Rq(sq, r). Thus, we use the partitions
generated by a ORTree to quickly select the candidate elements.

Figure 1 illustrates our strategy. Initially, a range query is performed using
the ORTree (Fig. 1b), then, considering that the returned elements will be in
different nodes (partitions) (Fig. 1c), we apply, at each node, an algorithm to
select m different elements. The selected elements are joined to form the final
candidate set, which is passed to the diversifying algorithm (Fig. 1d). One of the
main advantages of this approach is that the number of comparisons tends to be
much smaller, speeding up the selection algorithm. Based on this principle, we
developed two methods(RT MMR and RT RDI), based on different algorithms,
which can select the candidates, that are both similar to sq and diverse from
others.

The Range Tree MMR (RT MMR) aims at using MMR to select the candi-
dates. It is faster than any of the GMC, GNE, and MSD algorithms, although, it
follows the same diversification strategy, allowing for select elements considering
the diversity preference (λ). When using MMR, it is expected that the elements
selected from each node, be in smaller quantity than it would originally be, but
with equivalent diversity.

The Range Tree RDI (RT RDI) seeks the candidate considering the
influence-based diversification approach. As it is coverage-based, this approach
tends to be very faster than MMR. However, this approach tends to analyze
more elements than the previous approaches and therefore may be slower. To
get around this problem, we use this approach on each of the nodes returned by
ORTree, allowing reducing the number of comparisons between the elements, and
thus making the selection faster. Unlike the original approach that may analyze
the full dataset, our approach reduces the search space to at most Rq(sq, r).

Every approach selects m elements from each node (or all elements when the
node has less than m elements), so the number of elements returned from each
node is expected to be much less than the original amount. Consequently, the
number of elements selected by the approaches tends to be smaller than that
defined by the Rq(sq, r) approach.
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4 Experiments

We performed several experiments to validate our proposal and evaluate whether
the execution of the diversity algorithms were indeed faster and whether the
quality of the results remains equivalent when compared to the base algorithms
from the literature. Three datasets were selected for this purpose: US cities,
NASA [6] and Corel2. The datasets were selected to evaluate the behavior of
the proposed approaches, exploiting data with different cardinalities and dimen-
sionalities, mainly in relation to the fractal dimension, which impacts the con-
struction and querying times. From each dataset, 50 elements were randomly
selected to be used as queries centers following a hold-out strategy. Table 1 sum-
marizes the information about each dataset and the query parameters. We define
the query range (r) so that the number of elements analyzed in each dataset is
approximately the same.

Table 1. Datasets statistics.

Dataset |S| d D Pivot
number

δsim/δdiv Range Elements
retrieved

Dataset description

US Cities 25,374 2 1.62 2 L2 {2.0, 4.0} {560, 1860} Geographic coordinates of
American cities

Nasa 40,150 20 2.63 3 L2 {0.6, 0.7} {716, 1514} Feature vectors generated
from NASA images

Corel 20,000 9 4.8 5 L2 {1.9, 2.3} {680, 1572} Feature vectors generated
from common images

We compared the results of ORTree with the following approaches from the
literature: Rq, RC-Index and CT. Rq uses all elements returned by Rq(sq, r). To
ensure that the elements returned are within the same range, the RC-Index was
implemented using the ORTree instead of the original Range Tree. CT is built
using the results of a Rq(sq, r) performed over the ORTree.

For each experiment, the following values were used as query parameters
for the similarity with diversity queries (in bold are the default values): λ =
{0.3,0.5, 0.7} and k = {10,20, 30}. For the RT MMR and RT RDI approaches,
we define by default that the number of elements to be selected from each ORTree
node is the number of elements to be returned by the query, thus m = k.

4.1 Index Creation Time

Figure 2 shows the ORTree creation time compared to the RC-Index. Figure 2(a),
shows the time for US Cities and Nasa datasets. While Fig. 2(b) shows the
creation time for the Corel dataset when we vary the number of pivots (1–
5). Both figures show that the RC-Index has a much higher construction cost
2 Sample extract from https://archive.ics.uci.edu/ml/datasets/corel+image+features,

accessed at: 06/05/2022.

https://archive.ics.uci.edu/ml/datasets/corel+image+features
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Fig. 2. ORTree and RC-Index build time in log scale for the US Cities, Nasa and Corel
dataset. (a) Time for US Cities and Nasa. (b) Time for Corel dataset, with varying
number of pivots.

than the ORTree. This is due to the difference in the complexity and the larger
number of distance calculations performed by the RC-Index. It is also much
slower than the ORTree, following the time complexity of O(γ6nlogd+1(n)) >
O(nlogd(n)). Furthermore, the ORTree construction does not depend on distance
calculations, whereas the RC-Index builds a cover tree, which requires several
distance calculations, to build each node of the range tree, which greatly increases
the execution time.

4.2 Quality Experiments

For each approach, the queries were performed using the GMC, GNE and MSD
algorithms. Figure 3 shows the values returned by the objective function (Eq. 2)
of each approach and algorithm. The Fig. 3 (a, b and c) show the search results
for each of the algorithms using the US Cities dataset for range = 4, Fig. 3 (d,
e and f) show the results for Corel dataset with range = 2.4 and, Fig. 3 (g, h
and i) show the results for Nasa dataset with range = 0.7.

To the US Cities dataset, several approaches ties when λ = 0.3, but CT
proved to be inferior to the other approaches. For λ = 0.5, all approaches are
practically tied, except CT that achieves better results, for the GMC and GNE
algorithms, including those generated by the traditional approach Rq. For λ =
0.7, we have a tie between the RT MMR, Rq, and RC-Index approaches, the
other approaches achieve lower results, with RT RDI being better than CT. For
the Corel dataset, again, many approaches tie, with CT achieving the worst
results. For λ = 0.5, all approaches tie, and CT achieves better results for the
GMC and GNE algorithms, but worse results for the MSD which is the best
result in this case. At λ = 0.7 all approaches tie, except CT which achieves the
worst results in both algorithms. In the Nasa dataset, for λ = 0.3, all approaches
have very similar results, with CT showing lower results. For λ = 0.5, there is a
tie between the approaches, making it difficult to point out an approach that is
better in all cases. At λ = 0.7, the RT MMR, Rq, and RC-Index approaches tie
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Fig. 3. Quality results according to the diversity objective function (F), for dataset
US Cities (a, b and c) with r = 4, Corel (d, e and f) with r = 2.3 and Nasa (g, h and
i) with r = 0.7

Fig. 4. Number of elements retrieved. (a) Number of elements for dataset US Cities
with r = 4. (b) Number of elements for dataset Corel with r = 2.3. (c) Number of
elements for Nasa dataset with r = 0.7

in the results achieved, RT RDI and CT achieve inferior results, with CT being
the worst approach between the two.

In some datasets, the CT approach was able to generate better results than
the traditional approach. In this case, the candidate selection process is likely to
remove some solutions that are local optimal. Therefore, the candidate selection
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process can not only reduce the execution time of the algorithms but also provide
higher quality. However, candidate selection can also remove optimal solutions.
Therefore, the RT RDI and CT approaches to achieve better results in some
cases and worse in others. This situation did not happen with the RT MMR and
RC-Index approaches, they remain equivalent to Rq.

4.3 Number of Elements Retrieved

Figure 4 shows the average number of candidates selected by each approach.
Figure 4a show the results for dataset US Cities, Fig. 4b show the results for
Corel dataset and Fig. 4c show the results for dataset Nasa. Rq always select the
fixed number of elements, defined by a parameter. For all datasets, the number
of candidates returned by our approaches (RT MMR and RT RDI), like the RC-
Index, grows as k grows. However, in every case, our approaches retrieve fewer
elements than Rq and RC-Index. For the US Cities dataset (Fig. 4a), RT MMR
and RT RDI always retrieve less than 30% of the elements from Rq. The RC-
Index, on the other hand, retrieves around 50% fewer elements but as k grows,
this value drops by approximately 80%. For the Corel dataset (Fig. 4b), the
results are similar, with our approaches retrieving 57% fewer elements. How-
ever, RC-Index retrieves almost the same amount of elements as Rq, (discussed
later). The Nasa dataset exhibits the same behavior of the other datasets, with
RT MMR and RT RDI recovering less than 25% of the elements in relation
to Rq, while RC-Index recovers closely the same amount. In all datasets, CT
retrieves fewer elements because it always returns k elements.

Regarding the number of candidates returned by the RC-Index, because of
the strategy of selecting the three-level elements below the cover trees (Sect. 2),
number of elements is always greater than k. Also, depending on the distribution
of the data, going down three levels may be enough to select all elements of the
node. Another point that contributes to this situation is that the more pivots,
the more partitions in the search space, which implies fewer elements per node in
the ORTree (and RT). However, this situation does not happen with RT MMR,
and RT RDI as they always return k or fewer elements from each node.

4.4 Query Time Evaluation

Figure 5 shows the execution time of the query algorithms using the proposed
approaches. The figures show respectively the run-time for US Cities (a and b),
Corel (c and d) and NASA (e and f) datasets. The execution time using Rq and
RC-Index tends to be longer than the execution time of every other approach,
which is expected, due to the number of elements retrieved. In some cases, the
RC-Index has a slightly higher cost than Rq, this happens because the RC-
Index performs more operations and retrieves more or less the same number of
elements as Rq. In all graphs, it is possible to see that RT RDI is by far the
fastest approach, followed by RT MMR and CT approaches.

Figure 5 (a and b), shows that both RT MMR and RT RDI are faster than Rq,
RC-Index, and CT. RC-Index is faster than Rq and CT faster than both. Figure 5
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Fig. 5. Query time in log scale. (a - b) US Cities, r ∈ {2, 4}. (c - d) Corel, r ∈ {1.9, 2.3}.
(e - f) Nasa , r ∈ {0.6, 0.7}.

(c and d), shows that the results are similar to the previous figures, except that
RC-Index has the same execution time as Rq, and in some cases (Fig. 5c), CT
turns out to be faster than RT MMR. In this case, the smallest amount of can-
didates compensate for the quadratic CT construction time. Finally, Fig. 5 (e and
f), show that the execution time of RC-Index can be longer than that of Rq. For
the other approaches, the results are as before, RT RDI being the fastest, followed
by RT MMR and CT, with RT MMR being many times faster.

The results show that RT MMR and RT RDI are by far the fastest
approaches. regarding the Nasa dataset, the approaches are, respectively, 95%
and 97% faster than the traditional approach (Rq).

5 Conclusions and Future Work

In this work, we present the ORTree, a new indexing structure based on the
Range Tree and on the Omni-Technique, which allows performing diversified
similarity queries much faster without reducing the quality of the answers. Along
with this novel framework, we presented two approaches that use the ORTree to
efficiently select candidates for the diversification process. Our experiments show
that the proposed approaches can significantly reduce the number of elements
that are analyzed in the process of diversification. Consequently, the query time
was significantly reduced, in some cases being 95% faster. In addition, the quality
results show that even reducing the number of candidate elements, the quality
of the results remains equivalent to the traditional approach. Because of this,
the experiments shows that ORTree is the best candidate selection approach for
the analyzed aspects.
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As a future work, we plan to develop new candidate selection approaches that
use the ORTree and to develop alternative approaches for large search spaces.
We also plan to extend the presented approaches, which are based on a similarity
range query, to also handle the k -nearest neighbor queries.
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Abstract. The increased flexibility brought by Data Lake technologies,
along with size and heterogeneity of quickly changing data sources, bring
novel challenges to their management. Making sense of disparate data
and supporting users to identify the most relevant sources for a given
analytic request are indeed critical requirements to make data action-
able. This is particularly relevant in data science applications, where
users want to analyse statistical measures from a variety of data sources.
To this aim, in the paper we introduce a knowledge-based approach for a
Semantic Data Lake, capable of supporting efficient integration of data
sources and their alignment to a Knowledge Graph representing indica-
tors of interest, their mathematical formulas and dimensions of analysis.
By leveraging manipulation of indicator formulas, a query-driven discov-
ery approach is exploited to dynamically identify the sources, along with
the needed transformations, to respond a given .

Keywords: Data Lake · Query-driven discovery · Knowledge Graph ·
Multidimensional model

1 Introduction

Data Lakes (DL) have recently emerged as schema-agnostic repositories for stor-
ing data in their native format, providing centralized access and the capability
to apply data transformation when needed according to an ELT (Extraction,
Load, Transformation) approach. This increased flexibility, along with size and
heterogeneity of growing data sources bring novel challenges related to data
management. In particular, the lack of a global schema and the need to make
sense of disparate raw data require proper modeling of their metadata, to make
data actionable and avoid data swamps (see also [15]). As recognized by recent
literature (e.g., [13]), how to integrate heterogeneous data sources and help users
to find the most relevant data are still open issues in this setting and are often
seen as intertwined operations. This is particularly relevant in data science appli-
cations, where users want to analyse statistical measures from a variety of data
sources. Examples include Open Data Lakes managed by public bodies, e.g., to
monitor the effectiveness of governmental initiatives like a vaccination campaign,
or analysing outcomes from Open Science collaborative projects.

To address such challenges, a novel paradigm called query-driven discovery
was proposed to combine the two aspects [12], following the idea to find datasets
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that are similar to a query dataset and that can be integrated in some way
(either by joins, unions or aggregates).

In the literature, a variety of solutions have been proposed for DL integration,
ranging from approaches based on raw data (and related metadata) management
to semantic-enriched frameworks, the latter being intrinsically more suitable to
address issues related to data variety/heterogeneity and data quality. Among
them, some work focused on holistic models capable of addressing a variety
of structures, e.g., in [8] a DL system is proposed, that discovers, extracts, and
summarizes the structural metadata from the (semi)structured data sources, and
annotates (meta)data with semantic information to avoid ambiguities, while in
[2] a network-based model to represent technical metadata of structured, semi-
structured and unstructured data sources is proposed. Knowledge graphs are
exploited in [5] to drive integration, relying on information extraction tools, e.g.,
Open Calais, that may assist in linking metadata to uniform vocabularies, while
in [6] a graph is built by a semantic matcher, leveraging word embeddings to
find links among semantically related data sources.

In this work, we propose a query-driven knowledge-based approach for inte-
gration and discovery in a Data Lake. The approach builds on a Knowledge
Graph including a formal model of measures (also named indicators) and their
computation formulas [4], in which concepts are used to enrich source metadata.
On top of the model, the contributions of this work are multifold:

– We define mechanisms for integration of data sources into the Semantic Data
Lake and mapping discovery, based on efficient evaluation of set containment
[16] between a source domain and a concept in the Knowledge Graph.

– We define an ontology-based and math-aware query answering function, capa-
ble of identifying the set of sources collectively capable of responding the
user request, and the proper transformation rules to make the needed calcu-
lation. For instance, let us suppose a user is interested in analysing measure
CO2PerPerson, but it is not available in any source. Given that such a mea-
sure can be calculated as TotalCO2

Population , a response can be obtained by combining
sources providing the two components TotalCO2 and Population measures.

– To quantitatively estimate the quality of such results, we define a degree of
joinability index, that evaluates to what extent the sources are joinable, i.e.,
how much they share the same values over the same attributes.

With respect to the content-driven notion of query-driven discovery that
was proposed in [12], our approach also considers metadata (i.e., mappings to
indicators concept in the Knowledge Graph and their formulas) as a support
to reformulate the query and determine which sources can be used to respond.
This helps in reducing the search space by identifying the most semantically
relevant data sources according to the discovery need. The rest of the paper
is structured as follows: in Sect. 2 a case study is introduced that will be used
throughout the paper. Section 3 is devoted to introduce the Semantic Data Lake
model. The approach for source integration is discussed in Sect. 4, while query
answering mechanisms are detailed in Sect. 5. Section 6 discusses an evaluation
of the approach. Finally, Sect. 7 concludes the work and draws future research
lines.
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2 Case Study: Azure COVID-19 Data Lake

In this work we take as example a set of COVID-19 related datasets from the
Microsoft Azure Covid-19 Data Lake [11] and Our World in Data repository:

S1) Bing COVID-19 Data1, which includes confirmed, fatal, and recovered
cases per country/region, updated daily for years 2020–2021.

S2) COVID Tracking Project2, with numbers on tests, confirmed cases, hos-
pitalizations daily from every US state for years 2020–2021.

S3) European Centre for Disease Prevention and Control (ECDC) Covid-19
Cases3, which includes the latest available public data on COVID-19 cases
worldwide from the European Center for Disease Prevention and Control
(ECDC), reported per day and per country for year 2020.

S4) Oxford COVID-19 Government Response Tracker (OxCGRT) [9], which
contains systematic information on measures against COVID-19 taken by
governments, for years 2020–2021.

S5) Open World in Data4, which contains data on the number of people in
hospitals and ICU per day and country, for years 2020–2021.

In Table 1 we summarize relevant detail about the sources, that are derived from
the source metadata provided by the publishers.

Table 1. Details of sources S1-S5.

Source # Rows # Cols Measures Dimensions

S1 3051712 17 confirmed, confirmed_change,
deaths, deaths_change,
recovered, recovered_change

updated, country_region,
admin_region, iso2, iso3,
iso_subdivision

S2 22261 31 positive, negative, death,
recovered, hospitalized_
currently, in_icu_currently,
in_icu_cumulative,
on_ventilator_currently,
on_ventilator_cumulative,
pending

date, iso_country, state,
iso_subdivision

S3 61900 14 cases, deaths date_rep, continent_exp,
countries_and_territories,
iso_country, geo_id,
country_and_territory_code

S4 231192 38 confirmedcases,
confirmeddeaths

countryname, countrycode,
date, ISO_country

S5 28661 8 daily ICU occupancy, daily
ICU occupancy per million,
daily hospital occupancy, daily
hospital occupancy per million

entity, ISO_code, date

1 https://www.bing.com/covid.
2 https://github.com/COVID19Tracking/covid-tracking-data.
3 https://www.ecdc.europa.eu/en/covid-19/data-collection.
4 https://github.com/owid/covid-19-data.

https://www.bing.com/covid
https://github.com/COVID19Tracking/covid-tracking-data
https://www.ecdc.europa.eu/en/covid-19/data-collection
https://github.com/owid/covid-19-data


182 C. Diamantini et al.

3 Semantic Data Lake: Data Model

In this Section, we briefly review the model for a Semantic Data Lake that was
discussed in [4], on top of which the source integration, mapping discovery and
query answering mechanisms will be defined, as discussed in next sections.

We define a Semantic Data Lake as a tuple SDL “ xS,G,K,my, where
S “ {S1, . . . , Sn} is a set of data sources, G “ {G1, . . . , Gn} is the corresponding
set of metadata, K is a Knowledge Graph and m Ď G ˆ K is a mapping function
relating metadata to knowledge concepts. Our approach is agnostic w.r.t. both
the degree of structuredness of the sources, ranging from structured datasets to
semi-structured (e.g., XML, JSON) documents, and the specific DL architecture
at hand, e.g., based on ponds vs. zones (see also [7,15]). If the architecture is
pond-based, in fact, the approach is applied to datasets in a single stage, while
in zone-based DLs the approach can be applied on any stage of the platform,
although it is best suited to the staged area for data exploration/analysis. As
a minimum requirement, we assume a data ingestion process to wrap separate
data sources and load them into a data storage. The model for a Semantic Data
Lake is detailed in the following.

3.1 Metadata Layer

Different typologies of metadata can be related to a resource, depending on how
they are gathered [14]. Hereby, we refer to technical metadata, i.e., related to
data format and, whenever applicable, to their schema. Since the representation
of metadata is highly source-dependent (e.g., the schema definition for a rela-
tional table), a uniform representation of data sources in a metadata layer is
required for the management of a data lake. The procedure to represent tech-
nical metadata of a given source depends on the typology of data source, e.g.,
a relational database has tables with attributes, while XML/JSON documents
include complex/simple elements and their attributes. For each source Sk, meta-
data are represented as a directed graph Gk = xNk, Ak, Ωky, where Nk are nodes,
Ak are edges and Ωk : Ak Ñ Λk is a mapping function s.t. Ωk(a) “ l P Λk is
the label of the edge a P Ak. The graph is built incrementally by a metadata
management system [2], starting from the definition of a node n P Nk for each
metadata element. An edge (nx, ny) P Ak is defined to represent the structural
relation existing between the elements ox, oy, e.g., this corresponds to the rela-
tions between a table and a column of a relational database, or between a JSON
complex object and a simple object. Further details on this modeling approach
are available in [2].
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Fig. 1. Main classes and properties in KPIOnto ontology.

3.2 Knowledge Layer

The knowledge layer of the Semantic Data Lake comprises:

– KPIOnto5 an OWL2-RL ontology aimed to provide the terminology to model
an indicator in terms of description, unit of measurement and mathematical
formula for its computation. The ontology also provides classes and proper-
ties to fully represent multidimensional hierarchies for dimensions (e.g., level
Province rolls up to Country in the Geo dimension) and members. The main
classes and properties, including those aimed at representating a formula in
terms of operands and operator, are shown in Fig. 1.

– a Knowledge Graph K “ xKN ,KA,KΩy, where KN and KA respectively rep-
resent nodes and edges, while KΩ is a mapping function assigning labels to
edges. It provides a representation of the domain knowledge in terms of defini-
tions of indicators, dimension hierarchies and dimension members. Concepts
are represented in RDF as Linked Data according to the KPIOnto ontology,
thus enabling standard graph access and query mechanism.

– Logic Programming rules, which are enacted by a logical reasoner (namely,
XSB6) to automatically provide algebraic services, capable of performing
mathematical manipulation of formulas (e.g., equation solving), which are
exploited to infer all formulas for a given indicator. This functionality is used
to support query answering (see Sect. 5).

Figure 2 shows (a) a fragment of the Knowledge Graph for the case study
representing dimensions Time and Geo with the corresponding levels, and
(b) highlights the mathematical relations among a set of indicators. The full

5 KPIOnto specifications are available at http://w3id.org/kpionto.
6 http://xsb.sourceforge.net/.

http://w3id.org/kpionto
http://xsb.sourceforge.net/
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list of measures defined in the Knowledge Graph is as follows: Positive,
Cumulative_Positive, Negative, Deaths, Cumulative_Deaths, Recovered,
Cases, ICU , Cumulative_ICU , ICU_on_Positive_Rate.

Fig. 2. Case study: (a) dimensions, levels and (b) indicators with their formulas.

4 Integration and Mapping Discovery

This section is aimed to discuss (a) how to identify, given a new data source,
dimensions and measures, and (b) how to properly map them to the Knowledge
Graph. In the following, we refer to data domain as a set of values from a
data source. If the data source is a relation table, a domain can be seen as the
projection of one attribute. Conversely, if the data source is a JSON collection, a
domain is the set of values extracted from all the included documents according
to a given path (e.g., using JSONPath expression). As a result, a data source
corresponds to a set of domains.

Identification of Dimensions. In order to identify whether a given domain
from a data source (e.g., the attribute countryname in S4) and a dimensional
level (e.g., Geo.Country) represent the same concept, a matching step is required.
One of the most widely adopted index for comparing sets is the Jaccard similarity
coefficient, aimed at measuring the similarity between finite sets as the ratio
between their intersection and their union. When sets are skewed, i.e., have very
different cardinality, this index is however biased against the largest one. In such
contexts an asymmetric variant can be used, namely the set containment, that
is independent on the dimension of the second set.

Definition 1 (Set Containment). Given two sets X,Y , the set containment is
given by c(X,Y ) = |XXY |

|X| .
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Given that the cardinality of a domain (without duplicates) is typically much
lower than that of a dimensional level, this index is better suited than Jaccard to
evaluate whether a domain has intersection with a given level7. For this reason,
we rely on set containment in our work. As an example, let us consider a domain
A “ {Rome,Berlin, Paris} and a dimensional level Geo.City including 100
cities in Europe. In this case, c(A,Geo.City) “ 3

3 , meaning that the domain
perfectly matches the dimensional level, while Jaccard(A,Geo.City) “ 3

100 . We
formalize the problem of mapping a domain of a data source to a dimensional
level as a reformulation of the domain search problem [16], which belongs to
the class of R-nearest neighbor search problems. We first give the definition of
relevant dimensional level for a given domain as follows.

Definition 2 (Relevant dimensional levels for a domain). Given a set of dimen-
sional levels L, a domain D, and a threshold t P [0, 1], the set of relevant dimen-
sional levels from L is {X : c(D,X) ě t,X Ď L}.

The number of relevant dimensional level for a domain may be greater than
one, although in practice we are interested in the level with the greatest threshold
t, i.e., the most relevant dimensional level. As an example, the most relevant
dimensional level for domain country_region in data source S1 is Geo.Country,
while for iso_subdivision is Geo.Province_ISO.

Comparing a given domain to a dimensional level involves a linear time com-
plexity in the size of the sets. Given the target scenario, which may include data
sources with hundred of thousands or even millions of tuples, the computation
of the index may often be not scalable in many practical cases. An improvement
discussed in the literature as for the Jaccard index consists in its estimation
using MinHash computation [1], which involves performing the comparison on
their MinHash signatures instead of on the original sets. Given a hash function
h, a domain can be mapped to a corresponding set of integer hash values of the
same length. For a domain X, let hmin(X) be the minimum hash value. Given
two sets X,Y, the probability of their minimum hash values being equal is the
Jaccard index, i.e., P (hmin(X) ““ hmin(Y )) “ J(X,Y ). Since the comparison
can only be true or false, this estimator has a too high variance for a useful esti-
mation of the Jaccard similarity. However, an unbiased estimate can be obtained
by considering a number of hashing functions and averaging results: this is done
by counting the number of equivalences in the corresponding minimum hash
values and dividing by the total number of hash values for a set.

If data sources have high dimensionality, however, pair-wise comparison is
still highly time consuming. In our scenario, for a source with N domains and
M dimensional levels the time complexity is in O(N ∗ M). For such a reason, in
practice MinHash is used with a data structure capable of significantly reducing
the running time, named Locality Sensitivity Hashing (or LSH) [10], a sub-linear
approximate algorithm.

7 Under this assumption, the set containment is equivalent to the overlap (or
Szymkiewicz–Simpson) coefficient, i.e., |XXY |

|min(X,Y )| .
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While the previous approach is targeted to the Jaccard index, an estimation
of the set containment can be obtained through LSH Ensemble [16], which is
proved to be suitable for skewed sets and more performing than alternative
solutions in terms of accuracy and execution time. In our approach, we rely on
LSH Ensemble to obtain the dimensional levels with which a given domain of a
source is estimated to have a containment score above a certain threshold.

Definition 3 (LSH Ensemble). Given a domain D from a data source S, given
a set of dimensional levels L, and a threshold t P [0, 1], LSH_Ensemble is a
function returning the set of relevant dimensional levels for D.

Identification of Measures. In terms of dataset attributes, measures are par-
ticular domains which are purely quantitative. As such, unlike dimensional levels,
a measure belongs to a certain data type but is not constrained to a finite num-
ber of possible values. For this reason, solutions for evaluating domain similarity
through containment such as LSH Ensemble cannot be applied.

In this work we rely on a string-similarity approach, namely LCS (Longest
Common Subsequence) in the comparison of the attribute names of a data source
with the list of measure names in the Knowledge Graph. For each domain, the
measure names that have the highest value of LCS, i.e., that are most similar,
are returned. This is useful to propose only a subset of the measures defined
in the Knowledge Graph to the DL Manager. To make an example, for S2 the
measure in_icu_cumulative is mapped to the Knowledge Graph measure Cumu-
lative_ICU, which is the closest syntactically.

We’d like to note that however a manual revision is ultimately required, as
the recognition can be affected by homonyms and unclear or ambiguous wording
of the domain names. For instance, for S3 the measure cases gets mapped to
the Knowledge Graph measure Cases, but its meaning is different: indeed, by
reviewing the publisher metadata, it is clear that instead it actually accounts
for the number of positive cases. As such, it needs to be mapped to the measure
Positive. More advanced approaches could be considered for this step, including
some based on dictionary, semantic similarity (e.g., [2]) or frequency distribution
and will be discussed in future work.

Representation of Mappings. Given a domain of a data source and the
most relevant dimensional level with respect to a given threshold, the domain is
mapped to the corresponding level in the Knowledge Graph.

Definition 4 (Set of mappings). Let K be the Knowledge Graph, GS be a meta-
data graph for a source S, D Ď S be a domain, L P L be the most relevant
dimensional level for D, the mapping between D and L is defined as a tuple
m=(nD, nL, c(D,L)). The set of mappings MGS

includes all mappings for dimen-
sions in S.

Similarly, given a domain and a related identified measure, a mapping
between the corresponding nodes is created. In the following, we represent by
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DimS the set of dimensional levels available in a source S and by IndS Ď I the
set of measures available in S, where I is the set of indicators defined in K.

5 Query Answering

The mappings defined between the metadata graphs and the Knowledge Graph
are exploited to support query-driven discovery and query answering in the Data
Lake context. This requires to determine what data sources are needed and how
to combine them for a given request. A user query Q is expressed as a tuple
Q “ xind, {L1, . . . , Ln}y, where ind is an indicator and {L1, . . . , Ln} is a set of
levels, each belonging to a different dimension. A data source S has a compatible
dimensional schema with respect to a query if S contains a subset of the levels
in the query.

Definition 5 (Compatible dimensional schemas). Given a data source S, given
a query Q “ xind, {L1, . . . , Ln}y, the dimensional schema of S is compatible with
Q iif DimS Ď {L1, . . . , Ln}.
For all dimensions of the query that are not included in S, the source is assumed
to supply such dimensions at the most aggregate level. For instance, if a query
requires indicator Positive for Country, Day and Age group, data source S2
has a compatible dimensional schema: the missing level Age group is assumed to
be aggregated at the highest level and therefore not reported. A data source can
respond a query if its dimensional schema is compatible and if it provides the
requested indicator. On the other hand, if the indicator is not provided by any
source but it can be calculated from other indicators, a set of data sources may
collectively answer the query if they have a compatible dimensional schema and
provide all the component indicators. In the latter case, the actual calculation
of the indicator requires to join the needed data sources.

Definition 6 (Existence of a solution). Given a query Q “ xind, {L1 . . . , Ln}y
and a set S of data sources, Q has a solution iif: either (1) DSx P S such
that ind P IndSx

^ DimSx
Ď {L1, . . . , Ln}, or (2) D a formula fα “ ind “

f(ind1, . . . , indm) such that @indi (DSi P S such that indi P IndSi
^ DimSi

Ď
{L1, . . . , Ln}).

In the current framework, the derivation of a formula for an indicator relies on
the reasoning services introduced in Sect. 3. A detailed discussion of the working
mechanism for the services is available in [3]. Query answering is aimed to retrieve
a (sorted set of) solution(s) from a user query and involves the following steps,
that are summarized in Algorithm 1:

– (Line 1) the algorithm takes as input the query Q “ xind, {L1, . . . , Ln}y and
an integer k representing the number of solutions to retrieve.

– (Line 2) the find_rewriting(ind,{L1, . . . , Ln}) function is executed, which
returns a formula for ind such that all its component measures
{ind1, . . . , indm} are provided by some data source according to Definition 6,
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and such sources are compatible with the dimensional schema of the query.
For this task, reasoning services are exploited that are capable of manip-
ulating the mathematical relations among indicators to retrieve alternative
rewritings of a formula. The function returns the retrieved formula fα and,
for each component of the formula indi, a set Φi Ď S of sources that provide
indi. In other terms, Φi includes the (alternative) data sources from which
indi can be retrieved.

– (Line 3) the cartesian product of all the sets Φi is computed in order to list all
combinations of data sources that can be used to calculate the formula, where
a combination is a tuple xS1, . . . , Smy. The set Φ’ includes all alternative sets
of sources capable of providing a solution.

– (Lines 4–7) given that more than a single solution may be available, due to
the fact that multiple sources can provide the same measure, sorting them
according to a quality index is needed. Although a set of sources may provide
the needed measures, their join does not necessarily produce a non-empty
result. Here, we refer to the degree of joinability, discussed below, which mea-
sures the likelihood to produce a result out of a join between two (set of)
domains. For each tuple xS1, . . . , Smy in Φ’, a new tuple xx, {S1, . . . , Sn}y is
produced, where x P [0, 1] is the degree of joinability among sets S1, . . . , Sm.

– (Line 8) the set Ψ is sorted in descending order by the degree of joinability.
– Finally, the formula fα and the k-top solutions in Ψsort are returned.

Algorithm 1. Query answering
1: function findsolution(xind, {L1, . . . , Ln}y,k)
2: (fα(ind1, . . . , indm), {Φ1, . . . , Φn})=find_rewriting(ind,{L1, . . . , Ln})
3: Φ’ =

Śn
i“1 Φi

4: Ψ “ H
5: for xS1, . . . , Smy P Φ’ do
6: Ψ Ð compute_joinability({S1, . . . , Sm}, {L1, . . . , Ln})
7: end for
8: Ψsort Ð sort(Ψ)
9: return xfα, Ψsort,ky

10: end function

In the following, we discuss the degree of joinability index and the procedure
for its computation. Two sources are joinable if they have the same values for
domains that are mapped to the same dimensional levels. To check this condition,
the corresponding domains should be compared in order to determine how many
values are shared between the sources through set containment. However, a full
comparison is not practical in a Data Lake scenario. For this reason, we resort to
the LSH Ensemble to provide an estimated evaluation of the joinability of two
data sources. Typical use of LSH Ensemble is based on single join attribute at a
time (similarity between sets), while in our case the match needs to be performed
on sets of dimensional levels. Hence, we apply a combination function (e.g., a
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concatenation of strings) to the domains that represent the dimensional levels, in
order to map them onto a single domain before applying the hashing function.
To give an example, if the query requires levels Geo.Country and Time.Day,
the hash will be calculated on the concatenation of domains country_region +
updated for source S1 (a possible value is “Italy 2020-11-30”). Such “combined
MinHashes” corresponding to concatenated domains for each source are precom-
puted during the integration and mapping step and stored in order to speed up
the query answering.

Finally, as summarized by Algorithm 2 (lines 3–7), the degree of joinability
is iteratively calculated by executing the LSH_Ensemble for each pair of data
sources (Si, Si+1) (line 4) and considering the product of the obtained values
(line 6). Given that the containment is an asymmetric index, we consider the
application of LSH_Ensemble in both directions (from source i to source i + 1
and vice versa, according to the semantics of an inner join) and check for the
highest threshold t (line 5). The search of such a threshold is done through
binary search.

Algorithm 2. Computing degree of joinability
1: function computeDegreeOfJoinabilityScore({S1, . . . , Sm}, {L1, . . . , Lm})
2: MH Ð retrieve_combined_MinHashes({S1, . . . , Sm}, {L1, . . . , Lm})
3: joinability = 1
4: for i=1..n-1 do
5: get the highest t such that max of |LSHEnsemble(MHi, MHi+1)| and

|LSHEnsemble(MHi+1, MHi)| is > 0
6: joinability “ joinability ∗ t
7: end for
8: return xj, {S1, . . . Sm}y
9: end function

6 Evaluation

An evaluation of the approach on the case study is proposed here. Tests have been
carried out on an Intel Core i5-1135G7, 8 cores @ 2.40GHz, x86_64 architecture,
with 8 GB RAM running Linux Fedora 34. A single-thread implementation of
the approach has been used, relying on the Python library datasketch 1.5.7 [18]
for the implementation of MinHash and LSH Ensemble and on pandas 1.3.3 for
manipulation of data structures.

Integration and Mapping Discovery. A preliminary setup of the Knowledge
Graph for the Data Lake has been performed by defining dimensional levels and
measures. Members of levels have been defined programmatically from available
online resources (e.g., list of countries and corresponding ISO alpha 2 and alpha
3 codes8). For any loaded data source, initialization includes computation of
8 https://gist.github.com/tadast/8827699.

https://gist.github.com/tadast/8827699
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MinHashes for any domain, mapping with the dimensional levels and precom-
putation of the combined MinHashes for domains mapped to dimensional levels.
For LSH Ensemble we set the number of hashing permutations to 256 and num-
ber of parts to 32. We report the average and the total execution time in Table 2
and some of the mappings in Table 3. Domains are processed in less than 1.6 s
on average.

Table 2. Case study: execution time for MinHash generation and mapping.

S1 S2 S3 S4 S5

Hashing computation Avg [s] 1.654 0.050 0.005 0.009 0.075
Total [s] 28.125 1.557 0.076 0.376 0.375

Mapping to
dimensional levels

Avg [s] <0.001 <0.001 <0.001 <0.001 <0.001

Total [s] 0.006 0.012 0.011 0.033 0.003

Precomputation of
dimensional MinHashes
for querying

Total [s] 21.235 0.151 0.423 1.610 0.918

Table 3. The set of Knowledge Graph levels and measures which source domains are
mapped to.

Source K levels K measures
S1 Time.Day, Geo.Country Positive, Recovered, Deaths
S2 Time.Day, Geo.Province ICU, Positive, Negative, Recovered, Deaths
S3 Time.Day, Geo.Country Positive, Deaths
S4 Time.Day, Geo.Country Cumulative_Positive, Cumulative_Deaths
S5 Time.Day, Geo.Country ICU, Cumulative_ICU

Query Answering. Let us assume the user is interested in analysing measures
Positive and ICU_on_positives_rate at Geo.Country and Time.Day levels. As
for the first measure, the find_rewriting returns (Positive, {{S1}, {S3}}). In
this case, no join is needed as the measure is directly available from multiple
sources.

As for the second measure, the function returns ( ICU
Positives , {{S5}, {S1, S3}}).

Combination of sources are produced and two alternative solutions are combining
S5 with either S1 or S3. They are checked for joinability as follows:

– S5,S1: the degree of joinability is 0.78, with a query time equal to 3.109 s;
– S5,S3: the degree of joinability is 0.31, with a query time equal to 3.283 s.

As a result, the solution (S5,S1) is preferred over (S5,S3). This is motivated by
the fact that S5 and S1 include data for both years 2020 and 2021, while S3
includes data only on year 2020. Therefore, the degree of joinability of S3 is
lower than that of S1, as the former shares a smaller subset of data with S5.
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Discussion. The approach proposed in [16] requires, for a given query, a number
of set containment evaluations increasing linearly with the number of sources. On
the other hand, the present approach enables to reduce such a number to only the
relevant sources (2 in the example) by performing a preliminary evaluation based
on formula rewriting. In general, by considering M measures and N sources, the
approach requires a number of evaluations equal to N

M , on average. If indicators
are not available at the requested dimensional schema, decomposing indicators in
components requires a further number of evaluations. By considering an average
number s of dependencies per indicator and a number l of hierarchical levels in
the formula graph, the overall number of components to check for an indicator
can analytically be estimated as (1 +

řl
i“1 si)M

N , e.g., for M= 200, N = 10000,
s = 3, l= 2, corresponding to average formula graphs for real-world frameworks
of indicators, the number of evaluations amounts to 500.

7 Conclusion

This paper has introduced a knowledge-based approach for analytic query-driven
discovery in a Data Lake, which is characterized by the formal representation of
indicators’ formulas and efficient mechanisms for source integration and mapping
discovery. Starting from a query, which is expressed ontologically as a measure
of interest and relevant analysis dimensions, the framework determines the set of
sources that are capable of collectively responding, by exploiting math-aware rea-
soning on indicator formulas. A quantitative evaluation of the result, in terms of
joinability of sources, is provided through the degree of joinability index. Future
work will be devoted to individuate real case studies for extensive evaluation
and to extend the approach towards interesting research directions. In partic-
ular, the degree of joinability could be adapted to evaluate the completeness
of a data source with respect to the Knowledge Graph concepts. This would
enable to determine the scope of a source and paves the way for an efficient
evaluation of the overlapping or complementarity among sources, and possible
more efficient indexing approaches. Merging capabilities could also be beneficial
to find unionable sources and hence to vertically integrate data providing the
same measures. Finally, dynamic calculation of indicators can be envisaged for a
variety of analytical tasks, including interactive data exploration or navigation
[17].
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Abstract. Carrying out OLAP analyses in hands-free scenarios requires
lean forms of communication between the users and the system, based for
instance on natural language. In this paper we introduce VOOL, a frame-
work specifically devised for vocalizing the insights resulting from OLAP
sessions. VOOL is self-configurable, extensible, and is aware of the user’s
intentions expressed by OLAP operators. To avoid overwhelming the
user with very long descriptions, we pursue the vocalization of selected
insights automatically extracted from query results. These insights are
detected by a set of modules, each returning a set of independent insights
that characterize data. After describing and formalizing our approach,
we evaluate it in terms of efficiency and effectiveness.

Keywords: Vocalization · OLAP · Data warehouse

1 Introduction

The democratization of data access pushes towards the adoption of OLAP (On-
Line Analytical Processing) tools, which make data fruition and analysis easier
by enabling “point-and-click” queries on the multidimensional cubes stored in a
data warehouse. The scenarios requiring hand-free interfaces (e.g., in the field of
augmented reality [9] or smart assistants [7]) make this push even more pressing
and ask for the introduction of leaner forms of communication between the users
and the system, based for instance on natural language. As argued in [28], this
setting is not only motivated by the needs of specific user groups, such as visually-
impaired ones. More in general, we are assisting to a shift of user-computer
communication towards voice interfaces, which are more convenient if users are
distracted or unable to access screen and keyboard. While the translation of
natural language into actionable OLAP queries has recently been addressed [7],
the way to the vocalization of query results has been paved only partially. The
goal of this paper is to contribute to bridging this gap.

The description of the many facets shown by the cube resulting from an
OLAP query can span from simple insights (e.g., min/max or Top-k) to complex
ones (e.g., clusters and outliers); these, in turn, can be representative of very
different amounts of facts in the cube. Additionally, according to the OLAP
paradigm, data analyses come in the form of sessions, where a query q′ can be
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Fig. 1. Functional view of VOOL

obtained by applying an OLAP operator to the previous one, q. Hence, differently
from a generic sequence of stand-alone queries, q and q′ are strongly related,
which enables the detection of insights based on the comparison of the results
of consecutive queries. These insights should also be related to the intention
expressed by the user when applying an OLAP operator; for instance, drill-
down refines the previous result while slice-and-dice shifts the focus to a specific
part of the result. Overall, in our vision, the desiderata for a framework for the
vocalization of OLAP sessions are the following:

#1 Intention-awareness: it must generate vocalizations that describe the com-
parison of the results of subsequent queries rather than those of a single
one; in generating such vocalizations, it must consider the user’s intention
as expressed by the OLAP operator and aggregation operator applied.

#2 Extensibility : it must rely on interfaces that make ad-hoc modules easily
pluggable since vocalization is inherently multi-faceted.

#3 Timeliness: it must produce vocalizations responsively, avoiding long
delays in returning results to the user.

#4 Conciseness: it must produce vocalizations that take a limited time not
to overwhelm the user.

Following these desiderata, in this paper we present VOOL, a framework
specifically devised for the VOcalization of OLap sessions. A functional view of
VOOL is sketched in Fig. 1 (the querying component is grayed out since it is
out of the scope of this paper and has been extensively discussed in [7]). Given
the result of either a completely-specified query (e.g., “Sales by Customer and
Year”) or an OLAP operator that refined the previous query (e.g., “Drill down
to Month”), the insight generator executes concurrent modules, each returning
a set of independent insights that characterize this result. Out of all the insights
returned, the insight selector applies an optimization algorithm to return only
the most relevant insights given a limited budget (e.g., related to the duration
of vocalization); these insights are then sorted into a comprehensive description
that is vocalized to the user.
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The remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 provides an overview of VOOL by sketching its functional
architecture and the vocalization steps. Section 4 formalizes the necessary back-
ground. Section 5 describes the vocalization process, while Sect. 6 details one of
the modules we implemented to support the VOOL framework. Finally, Sect. 7
evaluates the approach by means of a set of tests, draws the conclusions, and
envisions the directions for evolving VOOL.

2 Related Work

The first research area that intersects with our contribution is exploratory data
analysis, a knowledge discovery process in which users explore datasets through
sessions that concatenate a sequence of operations. In this context, two interest-
ing research directions are recommendation and insight extraction. As to recom-
mendation, many studies focus on learning users’ preferences and profiling data
to give recommendations on the exploration path [25,27]. This is orthogonal to
our approach since our goal is not to suggest to the user how to build a session,
but rather to return concise insights on the data resulting from a user-defined ses-
sion. As to insight extraction, OLAP comes with well-known operators to explore
multidimensional cubes [22]. Additional operators have been recently classified
as [13] coverage (returning insights that cover tuples with certain values [4,12]),
information (returning insights providing information about the distribution of
measure values [10]), and contrast (returning insights occurring with some val-
ues but not the others [8,24]). These operators are complementary to VOOL,
since they are potential modules to be plugged into VOOL (as we have already
done for [4,8,10,29]). Cinecubes [11], the contribution closest to VOOL, com-
pares the results of a query to results obtained over sibling values or drill-downs
to produce insight. With respect to Cinecubes, VOOL allows the description
and vocalization of a user-defined OLAP session and also leverages the user’s
intentions to drive insight extraction.

Another research area closely related to our work is that of conversational
systems. Natural language interfaces to operational databases enable users to
specify complex queries without previous training on formal programming lan-
guages (such as SQL) and software [1]. Some examples of approaches that trans-
late natural language into formal SQL/OLAP queries are [7,17,23]. In hand-free
scenarios, some emphasis has been given on the one hand to providing effective
summarizations of query results, which enables the creation of concise analytic
reports [6,9]; on the other hand, some vocalization approaches have been pro-
posed. In [26], the authors translate a database subset into a narrative that
synthesizes the contents of the subset following a set of rules and templates. In
[5], the authors leverage the provenance of tuples in the query result, detailing
not only the results but also their explanations. Finally, a couple of works are
placed in the context of multidimensional data and OLAP. In [28], the authors
sample the database to evaluate alternative speech fragments; OLAP queries are
not fully evaluated and sampling focuses on result aspects that are relevant for
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voice output. In [21] an end-to-end dialog system is introduced, but the vocal-
ization approach is limited (when too many rows should be returned, only the
count of rows is returned).

Overall, in the light of the above-mentioned contributions, it appears that the
road to full-fledged conversation-driven OLAP is not paved yet, since end-to-end
conversational frameworks are not provided in the domain of analytic sessions
over multidimensional data. The closest contribution to VOOL is [28]; however,
differently from VOOL, that approach only copes with stand-alone queries, so
the vocalization does not take into account the comparison of the sequential
query results emerging from OLAP sessions; besides, it is not extensible and
does not provide a dynamic interest-based vocalization of the insights.

3 Overview

The interaction with VOOL takes place as follows. (i) A user issues an initial
query (typically, the first one in a session), whose result is computed; (ii) a set
of vocalization insights (i.e., descriptions of insights) are extracted out of the
query result; (iii) the most interesting insights are vocalized. Every time the
user issues a new query by applying an OLAP operator (obtaining a refined
query), this process is repeated; the difference is that the insights extracted may
describe not only the result of the last query, but also its comparison with the
results of the previous query.

Vocalization of Initial Queries. The result returned by the Querying component
is sent to the insight generation step, in which a set of modules analyzes the query
result to produce different types of insights. Each insight is characterized by a
natural language description, an interestingness, a coverage (i.e., the number of
tuples covered by the description), and the cost necessary for its vocalization
(e.g., the number of words of its natural language description). An example of
natural language description for an insight produced by a Top-k module is “The
facts with highest Quantity are Beer with 80, Wine with 70, and Cola with 30”.
Since the number of insights can be arbitrarily high (a module can return any
number of insights and there is no limit to the number of modules), the insight
selection step determines the insights eligible for vocalization in such a way that
the total time necessary for vocalization does not overcome a given time budget
and the total interestingness is as high as possible. Finally, the selected insights
are vocalized from the most general (i.e., those with high coverage) to the most
specific (those with low coverage).

Vocalization of Refined Queries. The results of the current query and of the
previous one are sent to the insight generation step. In this case, both cubes are
used to extract the insights entailing the comparison and description of consec-
utive results. For instance, in the sales domain, after drilling down sales from
product category to product, a user might be interested in outstanding products
that were previously hidden within average-performing categories. After insight
generation, vocalization proceeds as for an initial query.
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Fig. 2. (Simplified) DFM representation of the Sales cube schema

4 Formal Background

A cube is the multidimensional representation of a business phenomenon relevant
for decision making, and is defined through the following steps.

Definition 1 (Hierarchy and Cube Schema). A hierarchy is a couple h =
(L,�) where (i) L is a set of categorical levels, each level l being coupled with
a domain of members, Dom(l); (ii) � is a roll-up partial order of L. A cube
schema is a couple C = (H,M) where (i) H is a set of hierarchies; (ii) M is a
set of numerical measures, each coupled with an aggregation operator op(m) ∈
{sum, avg, min, max}.
Example 1. As a working example we will use cube schema Sales = (H,M),
whose conceptual representation according to the DFM [14] is shown in Fig. 2:

H = {hDate, hCustomer, hStore, hProduct}
M = {Quantity,Revenue,UnitPrice}
Date � Month � Year,Store � S.City � S.Country, . . .

We have op(Quantity) = op(Revenue) = sum and op(UnitPrice) = min. �

Aggregation is the basic mechanism to query cubes, and it is captured by
the following definition of group-by. As normally done when working with the
multidimensional model, if a hierarchy h does not appear in a group-by it is
implicitly assumed that a complete aggregation is done along h.

Definition 2 (Group-by and Coordinate). Given cube schema C = (H,M),
a group-by of C is a tuple G of levels. A coordinate of group-by G is a tuple of
members, one for each level of G.

Definition 3 (Base Cube). Let G0 be the finest group-by. A base cube over
C is a partial function C0 that maps the coordinates of G0 to a numerical value
for each measure m in M .

Each coordinate γ that participates in C0, with its associated tuple of measure
values, is called a fact of C0. The value taken by measure m in the fact cor-
responding to γ is denoted γ.m. With a slight abuse of notation, we will also
consider a cube as the set of the coordinates corresponding to its facts.
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Example 2. Three group-by’s of Sales are G0 = 〈Date,Customer,Store,Product〉,
G1 = 〈Month,C.City,Gender〉, and G2 = 〈Year〉, where G0 �H G1 �H

G2. Coordinates of the three group-by’s are, respectively, γ0 = 〈2021-04-15,
Rossi,BigMart,Beer〉, γ1 = 〈2021-04,Rome,Male〉, and γ2 = 〈2021〉. �

Definition 4 ((Cube) query). Given a base cube C0 over schema C, a query
over C0 is a quadruple q = (C0, Gq, Pq,Mq) where (i) Gq is a group-by of C; (ii)
Pq is a (possibly empty) set of selection predicates each expressed over one level
of H; (iii) Mq ⊆ M .

Example 3. A query over Sales is the one returning the total quantity sold by
product, which can be formalized as q = (C0, Gq, Pq,Mq) where Gq = {Product},
Pq = ∅ (i.e., no selection predicate is applied), and Mq = {Quantity}. �

An OLAP session is a sequence of queries; the first query in a session is
completely specified, while each of the others is obtained as a refinement by
applying an OLAP operator to the result of the previous one. A formal definition
of the OLAP operators we will consider in this work can be found in [7]; here
we just give an intuition:

– Roll-up aggregates data (e.g., from Product to Type).
– Drill-down disaggregates data (e.g., from Type to Product).
– Slice-and-dice filters data based on a predicate (e.g., Product = ‘Beer’).

5 The Vocalization Process

As already stated, the VOOL framework includes three main stages, namely,
Insight generation, Insight selection, and Vocalization; all of these are described
in the following subsections.

5.1 Insight Generation

At this stage, a set of modules (e.g., the Top-k function or a clustering func-
tion) are executed to extract insights (e.g., the top-3 facts or a pair of clusters)
describing query results. An insight consists of a set of components, each describ-
ing either a single fact (e.g., a fact belonging to the top-3 facts) or a group of
facts (e.g., a cluster).

Definition 5 (Module). Given two cubes C and C ′ resulting from two consec-
utive queries in an OLAP session (with C = ∅ when vocalizing an initial query),
a module is a function F (C,C ′) = SF , where SF is a set of insights.

The executability of a module is subject to the fulfillment of specific conditions,
which may concern the applied OLAP operators, the measures involved in the
query result, and the aggregation operator used in the query. Note that, consis-
tently with desideratum #2 (Extensibility), this definition allows the application
of any function capable to extract insights from one or two cubes.



Insight-Based Vocalization of OLAP Sessions 199

Fig. 3. The cube C′ resulting from the (initial) query in Example 3, which represents
the Quantity sold by Product

Definition 6 (Insight). An insight s ∈ F (C,C ′) is a set of components; each
component v ∈ s describes a set of facts of C ′, denoted as Desc(v). Insight s is
characterized as follows:

(i) NL(s) is the natural language description of s.
(ii) int(s) is the interestingness of the insight, i.e., its estimated relevance to

the decision-making process, defined as

int(s) =
∑

v∈s

int(v)

where int(v) ∈ (0, 1] is the interestingness of component v.
(iii) cov(s) ∈ (0, 1] is the fraction of cube facts covered by the insight, called

coverage:

cov(s) =
|⋃v∈s v|

|C ′|
(iv) cost(s) ∈ N is the cost related to the vocalization of s, measured as the

number of words in NL(s).

The natural language descriptions of insights, NL(s), are generated from pre-
defined module-specific grammars. The interestingness of insight components,
int(v), is also specific of each module; an example of how int(v) is defined for
one module will be provided in Sect. 6. Intuitively, an insight with high coverage
is more general, one with small coverage is more specific.

Definition 7 (Insight space). Let F be the set of all modules. Given two
consecutive cubes C and C ′ in an OLAP session (possibly with C = ∅), their
insight space is the set of the sets of insights produced by all modules:

S = {F (C,C ′);F ∈ F} = {{sF1 , . . . , sFn };F ∈ F}
To enable concurrent and efficient insight generation and selection (as shown

later), we make two assumptions on insights and modules:

1. Each insight s is self-contained, i.e., NL(s) contains all the information nec-
essary for vocalization and is a self-standing sentence. As a consequence,
insights can be vocalized independently of each other.
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Table 1. Examples of insights describing the query result in Fig. 3

Module Insight NL int cov cost

Statistics sP The average Quantity is 33.2 0.0 1.0 5

Top-k sT1 The fact with highest Quantity is Beer with 80 0.4 0.2 9

sT3 The three facts with highest Quantity are Beer with 80, Wine
with 70, and Cola with 30

1.0 0.5 17

Clustering sC1 Facts can be grouped into 2 clusters, the largest one has 4
facts and 12 as average Quantity

0.8 0.7 18

sC2 Facts can be grouped into 2 clusters, the largest one has 4
facts and 12 as average Quantity, the second one has 2 facts
and 75 as average Quantity

1.6 1.0 29

Assess sA1 When compared to the previous query, the Quantity of Pizza
is 6, tantamount to the average Quantity of Food that is 6.3

1.0 0.2 22

2. The insights generated from the same module F are incremental, i.e., they
can be arranged into a sequence where the description of one insight extends
the previous one by including one more component. In the following we will
assume that the resulting inclusion (total) ordering is reflected in the ordering
of indices: SF = {sF1 , . . . , sFn }, with cov(sFi+1) ≥ cov(sFi ), int(sFi+1) ≥ int(sFi ),
and cost(sFi+1) ≥ cost(sFi ) for 1 ≤ i ≤ n − 1.

Example 4. Given the query result from Fig. 3, examples of insights produced
by different modules are shown in Table 1. Note that, from the informative point
of view, an insight may be an extension of another insight because it includes
additional components (e.g., sT3 extends sT1 with two additional components
corresponding to two facts, namely, Wine and Cola, while sC2 extends sC1 with
an additional component corresponding to a cluster including two facts). �

5.2 Insight Selection

The insight space S can be very large, so a selection must be done on the insights
to be vocalized. The goal of this step is to find the set of insights S ⊆ S such
that (i) the total interestingness is maximum and (ii) the total cost does not
exceed a given time budget tvoc (see desideratum #4, Conciseness). Expressing
tvoc in seconds makes budget definition intuitive for users. However, the insight
cost has been defined as the number of words in its textual description, so as
to decouple it from its vocalization (the optimal speech rate may depend on
the target audience). Transforming tvoc into a maximum number of words is
straightforward; for instance, 180 is the average number of words per minute for
English speakers/readers [3].

The one formulated above is clearly an optimization problem, with two addi-
tional issues to be considered: non-redundancy and right-time response.

Non-redundancy. While, by assumption, different modules produce insights with
different semantics, the insights from the same module have overlapping content
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(since they are built incrementally). As a consequence, given a module F and
its output SF , at most one insight sFz ∈ SF should be selected. Insight selec-
tion can then be formulated as a multiple-choice knapsack problem (MCKP), a
generalization of the ordinary knapsack problem. In the MCKP, the set of items
(S) is partitioned into classes (the SF ’s) and the binary choice of taking or not
an item is replaced by the selection of at most one item out of each class [16].

Right-Time Response. S is incrementally populated since the modules entail dif-
ferent complexities and execution times and are executed in a bag-of-task fashion
(see desideratum #3, Timeliness). On the other hand, to preserve the interac-
tivity of OLAP session, vocalization should begin shortly after query execution,
without waiting until all the modules have completed their execution. Thus,
insight selection is started after a fixed time tgen, and the insights added to S
after tgen are not included in the selection process.

5.3 Vocalization

Vocalization starts with a preamble that describes the query (e.g., “The query
result shows the sum of quantity grouped by product”). The preamble is a pre-
liminary description which acts as a context for the subsequent insights. Note
that, if the time necessary to vocalize the preamble is greater than tgen, the user
will not perceive any pause in the vocalization. After the preamble, the insights
in S are vocalized. Specifically, they are sorted by descending coverage cov (i.e.,
from the most general to most specific), then their natural language descriptions
NL’s are concatenated and vocalized.

6 A Closer Look at the VOOL Modules

The core set of modules currently implemented is summarized below:

– Statistics returns general statistics on the overall result (e.g., the average
value of the Quantity measure and its skewness).

– Bottom-k/Top-k [20], applied to a single measure, returns the worst/best
performing facts (e.g., sales with lowest/highest Quantity).

– Outliers [19] returns the facts whose measure values deviate from the data
distribution (e.g., anomalous sales).

– Clustering [18] returns groups of facts that maximize intra-group similarity
and minimize inter-group similarity (e.g., facts with similar Quantity).

– Correlation returns the degree of Pearson correlation between pairs of mea-
sures (e.g., how Quantity and Revenue correlate).

– Slicing variance, applied to a single measure, returns the degree of correlation
between the values of a measure in the cubes before and after the application
of a slice-and-dice operator (e.g., how quantities by product change after
applying selection predicate StoreCity=‘Rome’).

– Aggregation variance, applied to a single measure, returns the facts with the
highest variation in the values of that measure after a roll-up or drill-down
operator (similarly to [4]; e.g., after a roll-up from Product to Category, returns
the categories showing the highest variation in products’ Quantity).
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Note that some of these modules are inspired from well-known approaches (e.g.,
[4,8,10,29]); in some of these cases we just had to devise a textual description of
the insight and/or adapt the returned measures of interestingness/relevance. As
already mentioned, this set can smoothly be extended with modules that follow
the requirements expressed in Sect. 1.

In the remainder of this section we describe an end-to-end implementation
of the Top-k module, which operates on both initial and refined queries. For
simplicity, we will drop the superscript denoting the module from the notation
of insights. Let q = (C0, Gq, Pq,Mq) be an initial query, with Mq = {m}, and
C ′ the resulting cube. The goal of the Top-k module is to describe the three
facts in C ′ having the highest values of m, namely, {γ1, γ2, γ3} (we will assume
that γ1.m ≥ γ2.m ≥ γ3.m ≥ . . .). Three insights including from one to three
components are returned:

s1 = {{γ1}}, s2 = {{γ1}, {γ2}}, s3 = {{γ1}, {γ2}, {γ3}}
These insights are characterized as follows:

NL(sk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

“The fact with highest m is γ1 with γ1.m”, if k = 1;
“The two facts with highest m are γ1 with γ1.m and
γ2 with γ2.m”, if k = 2;
“The three facts with highest m are γ1 with γ1.m,
γ2 with γ2.m, γ3 with γ3.m”, if k = 3;

cov(sk) =
k

|C ′|
As to the interestingness, for each component vk = {γk} it is

int(vk) =
γk.m − γk.m∑k

i=1(γi.m − γk.m)

where k > 3. While the coverage formula is obvious, the interestingness of sk
corresponds to the percentage of m that is retained by the Top-k tuples (e.g., the
total Quantity retained by the Top-3 products with respect to the overall units
sold by the Top-k facts). The reason for limiting the denominator to the Top-k
facts rather than summing on all the query results is to avoid that a long tail of
several low values makes int() meaningless. Conversely, by considering only the
highest non-top values (in our implementation we set k = 6) the interestingness
function properly expresses how high are the Top-3 as compared to the next
ones. Finally, the reason why all measure values are shifted by γk.m is to cope
with the case of negative values (e.g., if the measure expresses a temperature).

As to refined queries, while NL and cov remain unchanged, the interesting-
ness of a component changes depending on the result of the previous query. Given
two consecutive cubes C and C ′, a fact in C ′ is considered to be interesting (in
the sense of peculiar) if its measures deviate significantly from those in the corre-
sponding fact(s) of C [8]. This is based on the idea of prior belief [2]: specifically,
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Fig. 4. Example of corresponding facts (gray lines) between the results of two consec-
utive queries, C and C′, the latter being obtained by drilling down the former from
Category to Product

the interestingness is defined as the difference of belief for corresponding facts in
the cubes before and after the application of an OLAP operator. For instance,
after drilling down from Category to Product, the more the Quantity of Beer devi-
ates from the Quantity of Beverages, the higher its peculiarity; in other words,
a user is less likely to expect a product with outstanding sales coming from a
category with middling sales. Measuring interestingness in this way requires to
define, for each fact in C ′, the “corresponding fact(s)” in C. To this end we use,
as in [8], a proxy function proxyC(γ) (with γ ∈ C ′) that models a one-to-many
(many-to-one) mapping in case of drill-down (roll-up), and a one-to-one mapping
in case of slice-and-dice or addition/removal of a measure (see Fig. 4 for an exam-
ple). Intuitively, if the OLAP operator changes the group-by, the corresponding
fact(s) of C are determined via the roll-up order; if the operator changes the
selection predicate, the corresponding facts of C are one-to-one mapped to the
facts of C ′; if the operator changes the measure, the corresponding facts are the
empty set. For the formal definition of proxy and peculiarity pec(), we refer the
reader to [8]. Finally, the interestingness of component vk = {γk} describing the
results of a refined query is defined as for initial queries, but weighing measure
values on fact peculiarity:

int(vk) =
(γk.m − γk.m) · pec(γk)

∑k
i=1(γi.m − γk.m) · pec(γi)

Example 5. As already shown in Table 1, if C ′ is the cube in Fig. 3 resulting from
an initial query, examples of insights are

sT1 = (NL = “The fact with higher Quantity is Beer with 80”,

int = 0.44, cov = 0.20, cost = 9)

sT3 = (NL = “The three facts with higher Quantity are Beer with 80,
Wine with 70, and Cola with 30”,
int = 0.98, cov = 0.50, cost = 17)
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On the other hand, if C ′ is the result of a drill-down from Category to Product
as in Fig. 4, the interestingness changes as follows:

sT1 .int =
(80 − 5) · 0.21

64.33
= 0.24

sT3 .int =
(80 − 5) · 0.21 + (70 − 5) · 0.36 + (30 − 5) · 1.0

64.33
= 0.98

Intuitively, following the prior belief principle, since Beer is the top product of
the top-selling category, Beer is less interesting than Cola (which is the worst-
selling beverage). �

7 Evaluation and Conclusion

In this paper we have presented VOOL, an approach for vocalizing selected
insights out of the results of an OLAP session. To test the approach we have
implemented a prototype using Java and Python; the necessary mining models
are imported from the Scikit-Learn library and the insights are vocalized through
the text-to-speech Google APIs.

To evaluate the efficiency of VOOL, we made some experiments against the
Foodmart cube [15] to understand how the performance of each module scales
with respect to the cardinality of the query result. To this end we executed 10
OLAP sessions, each involving 3 OLAP steps; different combinations of modules
were tested, and all the modules were invoked in at least one session. The tests
were run on an Intel(R) Core(TM)i7-6700 CPU@3.40 GHz with 8 GB RAM. The
tests were repeated 10 times and the average results are reported. Figure 5 shows
the scalability of each module against query results with increasing cardinalities
(up to 104). We emphasize that, since our work focuses on the vocalization of
OLAP sessions —and not on the generic mining of multidimensional cubes—, 104

is large enough to be considered unrealistic for OLAP, since the results analyzed
by users are usually constrained by the visualization and interaction metaphors
adopted [9]. Noticeably, for query results including 104 facts, the computation
of all the modules requires less than 1 s. The only exception is Clustering, which
requires 7 s on average for query results with cardinality 104.

To assess the effectiveness of VOOL, we made some preliminary tests with 10
users, mainly master students in data science, with basic or advanced knowledge
of business intelligence and data warehousing. The users were briefly introduced
to the vocalization problem and to VOOL, then they were assigned three OLAP
sessions with different analysis goals (e.g., “As a shop owner, you are analyzing
the sum of quantity sold in each product department”) and the query results
were vocalized. On a scale from 1 (very poor) to 5 (very high), the average
results show that both the user experience and the description of query results
are deemed to be good (4.2 ± 0.6 and 3.8 ± 0.9, respectively). The insights with
highest/lowest appreciation are Aggregation variance and Statistics, respectively
(the latter sometimes is too simple to describe the whole result); the users asked
to refine some of the proposed modules and suggested extensions with new ones.
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Fig. 5. Performance scalability of the modules

Overall, these preliminary results confirm the effectiveness and efficiency of
VOOL. Besides refining and extending the modules, other directions that can be
envisioned for future research are: (i) handling the redundancy of insights over sin-
gle queries (since multiple modules can vocalize the same tuples, the interesting-
ness of an insight should also depend on those previously selected) and sessions
(vocalizing the same insight twice or more reduces its interestingness); (ii) intro-
ducing a “tell me more” interaction, where users can ask for further details as well
as insights retrieved after the time budget; and (iii) conducting additional tests to
assess the correlation between the insights vocalized and the users’ intentions.
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Abstract. Finding anomalies in temporal relational databases is a difficult and
challenging task, in particular if data is integrated from different sources. The
problem is especially pressing in healthcare information systems, where temporal
anomalies can pinpoint critical events such as erroneous drug administration or
prescription. In this paper, we define three different temporal anomalies, which
we call temporal redundancy, contradiction, and incompleteness. We define two
different operators for each of these anomalies: the retrieval operator to retrieve
all tuples of a relation that cause anomalous behaviour, and the labelling operator
to annotate a temporal relation with additional information that marks normal
and anomalous tuples. Finally, we present and evaluate different implementation
techniques for the two operators for relational database systems.

1 Introduction

In many application domains, checking and maintaining the integrity of relational
databases over time has become increasingly important. In particular, detecting and
avoiding temporal inconsistencies enables better data quality and enhances the accuracy
of downstream temporal data analysis [10]. Independently of the concrete application
domain, the following data inconsistencies need to be addressed when working with
temporal data [6,18]: redundancy (redundant data), contradiction (contradicting data),
and incompleteness (incomplete data). In this paper, these inconsistencies are called
temporal anomalies.

As a concrete use case, we consider healthcare information systems. Electronic pre-
scription systems recently emerged in many countries to enhance access to drug pre-
scriptions and administration. These systems help practitioners in identifying when a
new drug administration is started, when the doses are changed, or when a prescrip-
tion is stopped, etc. However, errors occur when feeding data into healthcare informa-
tion systems. Especially when data are integrated from multiple data sources, temporal
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anomalies often occur [11]. For instance, if a patient gets medical services from dif-
ferent healthcare providers for several diseases, he/she might be prescribed the same
drug by each provider, potentially with different doses [23]. Also, the use of more than
one pharmacy can lead to anomalies because systems often do not communicate with
each other [19]. Data inconsistencies include, among others, redundant prescriptions or
contradicting dosages.

Temporal anomalies in relational databases may be indicative of poor quality of the
temporal data (e.g., due to errors that occurred when feeding the data into the system)
or inconsistent behaviour of the real-world system modelled by the database. Espe-
cially in healthcare information systems, detecting temporal anomalies is hence critical
(1) to avoid misinterpretation in temporal data analysis and (2) to flag potentially life-
threatening events such as the administration of a drug that has not been prescribed.

Example 1. Consider the simplified real-world example in Fig. 1. It shows data about
drug prescriptions and administrations that were integrated from different databases.
The relationPrescription stores drug prescriptions, where Pat is the patient ID, Name
is the name of the prescribed drug product, Dose is the prescribed dose, and T is the
time period during which the drug prescription is valid. The relationAdministration
stores the drugs that actually were administered together with the actual amount and the
time period.

Fig. 1. Temporal relations Prescription and Administration.

In this example, we can spot different types of temporal anomalies. For instance, the
tuples d1, d2, and d3 in thePrescription table indicate that the same drug and dose is
prescribed to the same patient over overlapping time periods (temporal redundancy). In
the same table, the tuples d7 and d8 report a contradicting dose of a drug prescribed to
a patient at the same time (temporal contradiction). There are also anomalies across the
two tables. For instance, tuple a2 in tableAdministration reports the administration
of Cardizem to patient P1 during the time period [8, 13), but there is no prescription
in the Prescription table that covers the full period of the administration (temporal
incompleteness).
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In this paper, we provide a formal definition of the above mentioned temporal
anomalies together with two new operators that allow, respectively, to retrieve the
anomalous tuples from a dataset or to label the tuples in a dataset with an indica-
tion whether they are anomalous or not. These two operators support data scientists in
checking the quality of the data and identifying potential anomalies or inconsistencies.
While the running example is from the medical domain, where the detection of anoma-
lous data is particularly important, the solutions are general and can be applied in other
domains as well. Moreover, for all three types of anomalies, we present implementation
techniques of the two operators for relational database management systems.

To summarize, the technical contributions are as follows:

– We formally define three types of temporal anomalies in temporal databases, named
temporal redundancy, temporal contradiction, and temporal incompleteness.

– We provide two operators, termed anomaly retrieval and anomaly labelling, for the
processing of these anomalies and show how they can be implemented efficiently
using temporal aggregation in SQL.

– We perform extensive experiments on real-world medical data to show the feasibility
of the different anomaly operations.

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 introduces preliminary concepts and the definition of the temporal anomalies,
followed by their implementation in Sect. 4. Section 5 discusses experimental results.
Section 6 concludes the paper and points to future work.

2 Related Work

Studies on various aspects of temporal databases started around the 1980 and are still
an active research area. A large number of temporal models and languages have been
proposed since then [1,20]. The incorporation of temporal data definition and manip-
ulation features in the SQL:2011 standard [16] supports the association of data with
time periods, representing application time or system time, as well as basic temporal
queries, i.e., predicates over time periods and time-slice queries. However, there is lit-
tle support for temporal data integrity. Hence, temporal data integrity constraints can
be defined, detected and repaired only at the application level. Date et al. [6] identified
four potential problems that need to be addressed when working with relations that con-
tain intervals: redundancy, contradiction, circumlocution and denseness. We based our
definition of the temporal anomalies on these problems because they can be intuitively
generalized for many application domains without modifications of the RDBMS [15].
In addition to defining the anomalies, we provide two operators that allow data scientists
to identify such anomalies and that can be implemented in existing RDBMSs.

Lorentzos et al. [17] define unfold/fold operators with an SQL extension for interval
data [18] to facilitate the usage of relational operators when querying interval relations.
The unfold operator transforms interval data to point data by replacing each tuple with
a set of tuples with point data. The fold operator performs the inverse operation and
merges identical tuples having consecutive points into tuples with intervals. The oper-
ators can be applied to any interval relation before and after any relational operator.
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We will use unfold/fold as one technique to implement our temporal operators to query
for anomalies.

Böhlen et al. [2] propose a coalescing operation for eliminating redundancies.
During the operation, tuples with identical non-temporal attribute values are coa-
lesced (merged) if their temporal attributes meet or overlap. However, the study
shows that implementations with various algorithms based on nested-loop, explicit
partitioning, explicit sorting, temporal sorting, temporal partitioning, and combined
explicit/temporal sorting are quite expensive. A more recent study presents a new effi-
cient implementation of coalescing using window functions [24] that were introduced
in SQL:2003. The proposed algorithm performs a single scan with linear scalability in
terms of the database size. The intended use of these works on coalescing is to eliminate
redundancies, which is different from our setup, where we want to identify tuples that
cause redundancies since this might be an indication of poor data quality.

Combi et al. [4] define keys and attribute temporal constraints at a conceptual level.
Among these constraints they mention snapshot-reducible keys to avoid redundancy,
time-invariant keys and attribute constraints to avoid contradiction, and time-invariant
relationships to avoid temporal gaps after a starting point in time. The snapshot-
reducible constraint ensures that at any point in time the key attribute uniquely iden-
tifies an entity. The time-invariant constraint ensures that the same entity cannot have
two different values for the key or a non-key attribute for different points in time. The
time-invariant relationship constraint and its variant can be seen as a special case of
inconsistency since they ensure that the involved entities can start at any point in time
during the existence of the involved entities, but it has to hold for all the remaining time.
In [5] temporal constraints are studied from a modelling and reasoning perspective with
a particular focus on the medical domain. The focus of our work is different. We pro-
vide an approach to query for anomalies that do not satisfy a constraint and provide an
efficient implementation that can be readily used in contemporary database systems.

Finally, there have been many works in the past years on processing temporal
data, particularly, focusing on temporal join [3,8,22] and temporal aggregation [14,21].
While many works on temporal aggregation that we use in this paper are based on main
memory algorithms, and thus require an external implementation, some works provide
in-database solutions [7] or solutions based on plain SQL [9]. In this paper, we focus
on solutions that are readily available in contemporary database systems, and we adopt
and extend the window-function based approach for temporal aggregation from [9].

3 Temporal Anomalies

3.1 Preliminaries

We assume a linearly ordered, discrete time domain, ΩT . A time interval is a set of
contiguous time points, and T = [ts, te) denotes the closed-open interval of points
from ts inclusive to te exclusive. We use |t| = te − ts to denote the duration of the time
interval T and T ∩ T ′ to denote the set of time points shared by two intervals T and T ′,
which, if not empty, is itself an interval. The schema of a temporal relation is given by
R = (A1, . . . , Am, T ), where A = A1, . . . , Am are the non-temporal attributes with
domains Ωi and T is the time interval attribute with domain ΩT ×ΩT representing, for
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instance, the tuple’s valid time. A temporal relation r with schema R is a finite set of
tuples, where each tuple has a value in the appropriate domain for each attribute in the
schema. We use r.Ai to denote the value of attribute Ai in tuple r, and r.T = [r.ts, r.te)
to refer to its time interval. We assume the following (non-temporal) relational algebra
operators: selection σ, generalized projection π, union ∪, renaming of attributes and
relations /, and aggregation ϑ. Further we assume SQL’s duplicate elimination with
keyword DISTINCT within aggregation functions to produce the aggregation function
over distinct values. We use the temporal relational aggregation operator ϑT [1,9], for
which each snapshot in the result corresponds to the result of applying non-temporal
aggregation to the corresponding snapshot of the input, and is defined as follows:

Definition 1 (Temporal Aggregation). Let r be a temporal relation with non-temporal
attributes A and time interval attribute T. Further, let C ⊂ A, agg(Ai) be an aggre-
gation function over an attribute Ai ∈ A, and τt(r) be the timeslice operator [12]
that extracts from a temporal relation r the tuples projected to the attributesA that are
valid at time point t. The result of temporal aggregation is defined using non-temporal
aggregation as follows:

∀t ∈ ΩT : τt
(
CϑT

agg(Ai)
(r)

)
= Cϑagg(Ai)

(
τt(r)

)

3.2 Definition of Temporal Anomalies

Temporal Redundancy. A temporal redundancy occurs when more than one tuple in a
relation exist that share the same values for a given set of attributes at a time point t.

Definition 2 (Temporal redundancy). Let r be a temporal relation with non-temporal
attributes A and temporal attribute T. A tuple r ∈ r causes a temporal redundancy at
a time point t iff

∃r′ ∈ r : r �= r′ ∧ r.A = r′.A ∧ t ∈ r.T ∧ t ∈ r′.T

Consider the example in Fig. 1. The Prescription table contains redundant pre-
scriptions with respect to patient, drug name, and dose in the tuples d1, d2 and d3: the
prescription Ibuprofen 600 mg for patient P1 is prescribed 2 times during [2, 4), 2 times
during [6, 10), and 3 times during [4, 6).

Temporal Contradiction. A temporal contradiction occurs when more than one tuple in
a relation exist that share, at some time point t, the same values for a given subset of
the attributes, but have different values for the remaining attributes.

Definition 3 (Temporal contradiction). Let r be a temporal relation with non-
temporal attributes A and temporal attribute T. Further, let C ⊂ A and C′ = C/A.
A tuple r ∈ r causes a temporal contradiction for attributes C at time point t iff

∃r′ ∈ r : r.A = r′.A ∧ r.C′ �= r′.C′ ∧ t ∈ r.T ∧ t ∈ r′.T

Consider the example in Fig. 1. The tuples d7, d8, and d9 in thePrescription table
contain contradicting dosage information: the prescriptions of Clopidogrel for patient
P1 are {75 mg, 95 mg} during [8, 10), {75 mg, 85 mg, 95 mg} during [10, 11), and {75
mg, 85 mg} during [11, 12).



214 C. Khnaisser et al.

Temporal Incompleteness. A temporal incompleteness between two relations occurs
when for a tuple of one relation no tuple in the other relation exists that shares the same
values for a given set of attributes at a time point t.

Definition 4 (Temporal incompleteness). Let r and s be two temporal relation with
non-temporal attributesA1 andA2, respectively, and temporal attribute T. Further, let
C ⊆ A1 ∧ C ⊆ A2. A tuple x ∈ r ∨ x ∈ s causes a temporal incompleteness for
attributes C at time point t iff

t ∈ x.T ∧ (�s ∈ s : x.C = s.C ∧ t ∈ s.T ∨ �r ∈ r : x.xxC = r.C ∧ t ∈ r.T )

Consider the example in Fig. 1. The Prescription and Administration tables
are not complete with respect to the drug name and the patient for the tuples d4 with
a2, d7, d8 with a6. There is a gap in Prescription during [10, 13) for the medication
Cardizem for P1. Similarly, there is a gap in the Administration during [1, 3) and [12,
14) for the medication Clopidogrel for P3.

3.3 Anomaly Labelling and Retrieval

To support data scientists in detecting anomalies, we propose two different operators
to highlight and extract anomalies in a dataset. First, anomaly labelling is a relational
query that extends a relation with a labelling attribute that highlights inconsistent tuples
with a label. This kind of operation is very helpful when anomalies need to be resolved
upstream by a domain expert to improve the quality of the available data. Second,
anomaly retrieval is a relational query that extracts only portions of the data that are
affected by an anomaly (including their label). This kind of operation is very helpful
when anomalies need to be resolved downstream, so that the affected portions of the
data can be quickly identified.

In the following, we use temporal aggregation to define the two operators for all
three temporal anomalies.

Temporal Redundancy. For the redundancy labelling, the relation is extended with the
number of occurrences of tuples. The count aggregation function is used to compute
the number of occurrences of a tuple during a time interval. For a tuple, an occurrence
value of 1 represents that the tuple is defined only once in the relation (i.e., there is no
redundancy).

Definition 5 (Temporal redundancy labelling and retrieval). Let r be a temporal
relation with non-temporal attributesA and temporal attribute T. We define the follow-
ing two operators for temporal redundancy:

– Temporal redundancy labelling:

AϑT
count(∗)/Count(r)

– Temporal redundancy retrieval:

σCount>1

(
AϑT

count(∗)/Count(r)
)
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The result of the retrieval operation for temporal redundancies is simply the restric-
tion of the labelling result to those tuples that have an occurrence value strictly greater
than 1.

Example 2. Consider the relation Prescription from Example 1. To label or
retrieve temporal redundancies we use the queries from Definition 5. We have r =
Prescription and A = (Pat,Name,Dose). The result for temporal redundancy
labelling is shown in Fig. 2a, and the result for retrieval is shown in Fig. 2b.

Fig. 2. Temporal redundancy labelling and retrieval for the Prescription table using A =
(Pat,Name,Dose).

Temporal Contradiction. To provide a meaningful label for the temporal contradiction,
we use the array_agg aggregation function1, which returns an array of all values in
the aggregation. More specifically, to identify contradictions we use array_agg in
combination with DISTINCT to get an array of distinct (contradicting) values.

Definition 6 (Temporal contradiction labelling and retrieval). Let r be a temporal
relation with non-temporal attributes A and temporal attribute T. Further, let C ⊂ A
and C′ = C/A. We define the following two operators for temporal contradiction:

– Temporal contradiction labelling:

πC,T,c/Contradiction

(
CϑT

array_agg(DISTINCT (C′))/c(r)
)

– Temporal contradiction retrieval:

πC,T,c/Contradiction

(
σ|c|>1

(
CϑT

array_agg(DISTINCT (C′))/c(r)
))

The result of the retrieval operation for temporal contradictions is the restriction of
the labelling result to those tuples for which the array contains more than one element.

1 See: https://www.postgresql.org/docs/current/functions-aggregate.html for PostgreSQL or
https://docs.microsoft.com/en-us/u-sql/functions/aggregate/array-agg for MS SQLServer.

https://www.postgresql.org/docs/current/functions-aggregate.html
https://docs.microsoft.com/en-us/u-sql/functions/aggregate/array-agg
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Example 3. Consider the relation Prescription from Example 1. To find contradic-
tions in the dose for each patient and drug, we use C = (Pat,Name). The result for
temporal contradiction labelling in Fig. 3a shows the contradicted doses (Contradiction
attribute) for each combination of patient and drug during a time interval. The tuples
in gray have more than one contradicting dose in the label attribute. The result for the
retrieval is shown in Fig. 3b and includes only tuples with contradictions in the dose.

Fig. 3. Temporal contradiction labelling and retrieval for the Prescription table using C =
(Pat,Name).

Temporal Incompleteness. For the incompleteness labelling, the relation is extended
with an additional column that indicates, for each tuple, the relations in which the tuple
is temporally covered. In the following definition, the label Src returns the array of
distinct relations that contain the tuple during a time interval. If the array contains both
input relations, there is no temporal gap, i.e., the tuple is temporally covered by one
or more tuples in both relations. If, instead, the array contains only one element, this
element indicates the relation in which the tuple is present; hence the other relation
contains a temporal gap.

Definition 7 (Temporal incompleteness labelling and retrieval). Let r and s be two
temporal relation with non-temporal attributesA1 andA2 respectively, and a temporal
attribute T. Further, let C ⊆ A1 ∧ C ⊆ A2. We define the following two operators for
temporal incompleteness:

– Temporal incompleteness labelling:

πC,T,Src

(
CϑT

array_agg(DISTINCT Src)/Src

(
πC,T,’r’/Src(r) ∪ πC,T,’s’/Src(s)

))

– Temporal incompleteness retrieval:

πC,T,Src

(
σ|Src|<2

(

CϑT
array_agg(DISTINCT Src)/Src

(
πC,T,’r’/Src(r) ∪ πC,T,’s’/Src(s)

)))
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The result of the retrieval operation for temporal incompleteness is the restriction
of the labelling result to those tuples for which the array contains only one element.

Example 4. Consider the relations Prescription and Administration from
Example 1. To find for each patient incomplete prescriptions or administrations of a
drug, we use C = (Pat,Name). The result of temporal incompleteness labelling
shown in Fig. 4a. The last column shows the tables in which the tuple is covered. The
tuples highlighted in gray are incomplete since the label contains only one of the two
relations. For instance, the third tuple records the administration of Cardizem to patient
P1 over the time period [10, 13), which is not covered by a corresponding entry in the
Prescription table. The result of the retrieval operation that only returns the incom-
plete tuples is shown in Fig. 4b.

Fig. 4. Temporal incompleteness labeling and retrieval for the Prescription and
Administration tables using C = (Pat,Name).

4 SQL Implementations

In this section, we present three different implementations for the retrieval and labelling
operators of the three anomalies.

4.1 Unfold/Fold

The implementation based on unfold/fold [18] works in a three step fashion. First, time
intervals are transformed into time points of the base granularity (unfold). For this
we can use user-defined functions in contemporary database systems. Second, a non-
temporal operator is performed on the time points, e.g., non-temporal aggregation with
the time point as an additional grouping attribute. Third, the result is transformed back
to an interval-based relation (fold), for which we can again use user-defined functions.

For temporal redundancy, the labelling operation is performed by simply using a
count aggregation in the second step of the approach. For the retrieval operation, the
tuples are restricted to those with a count value greater than 1 before the fold opera-
tion. For temporal contradiction, the approach is very similar to temporal redundancy,



218 C. Khnaisser et al.

with the exception that, instead of a count, the array_agg aggregation over distinct
values is used (cf. Definition 6). For temporal incompleteness, we unfold both relations
and add the relation name as a label. We then union the two intermediate results and
aggregate using the array_agg aggregation function over the distinct label. Similar
to the other two anomalies, also in this case the query is very similar to the definition of
the operators (cf. Definition 7).

4.2 Unfold/Fold Join Filtered

The main issue of the unfold/fold approach is the very large intermediate results that
need to be processed. To tackle this problem, we use a semi-join based technique that
filters the input before it is unfolded. This filtering technique works only for temporal
redundancy and contradiction. Also, it can only be applied for the retrieval operation,
but not for the labelling, because the semi-join removes input tuples that do not con-
tribute to an anomaly. After the filtering step, the approach is the same as unfold/fold
above.

For temporal redundancy, before performing the unfold operation, we add a row
number to the relation, followed by a self semi-join on the attributes of interest, over-
lapping intervals, and different row numbers. In such a way, for temporal redundancy
we restrict the input of unfold to tuples that definitely produce a redundancy. For tempo-
ral contradiction, we use a similar approach that omits the row number and additionally
constrains the join to contradictions, i.e., different values.

4.3 Window Function

For this implementation approach, we use the temporal aggregation technique from [9],
which is based on the SQL window functions and is very similar to the coalescing
approach from [24]. This approach is able to compute an accumulative aggregation
function, e.g., count of sum, using two window functions over the union of start and end
points of a relation. It is currently the most efficient approach for temporal aggregation
applicable in contemporary database systems.

For temporal redundancy, we can use this approach and simply calculate the accu-
mulative aggregation function count as a label. For the retrieval operation, we restrict
the tuples to those with a label that is greater than 1. For temporal contradiction, we need
to adjust the approach, because the array_agg aggregation function over distinct
values cannot be computed incrementally. In this case, we first calculate the count
aggregation to produce the final intervals. Then, we join the result of the aggregation
with the original relation on the attributes of interest and on overlapping time intervals.
Finally, we compute the array_agg aggregation function on distinct values over the
result of the join, thereby grouping on the attributes of interest and the final intervals
produced by the aggregation. For the retrieval of the contradictions, we additionally
restrict the aggregation result before the join to only those tuples with a count larger
than 1 (since we can only have a contradiction if at least two tuples with the same
attribute values exist at the same time). For temporal incompleteness, the approach is
similar as for contradiction. We first use window functions to produce a count aggre-
gation over the union of the two input relations using the attributes of interest. This will
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produce the final intervals for which at least one tuple in either relation exists. Then
we join the aggregation result with the union of the two input relations extended with
an attribute containing the relation name on the attributes of interest and overlapping
intervals. Finally, we use the array_agg aggregation function over distinct relation
names to produce the final result for the incompleteness labelling operator. For the
retrieval operator we restrict the result to tuples that only contain one relation name in
the label.

5 Experimental Evaluation

5.1 Setup and Dataset

The experiments were run on an Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20 GHz
machine with 94 GB main memory running Ubuntu 64-bit (version 16.04.7 LTS). As a
database system we use PostgreSQL version 14, where all configuration parameters are
kept to the default values. We do not use parallelism to avoid interference with other
processes on the same server.

In the experiments, we use the real-world MIMIC-IV (Medical Information Mart
for Intensive Care) [13] dataset, which is a large medical dataset comprising patients’
health data in critical care units between 2008 and 2019. More specifically, we use the
two tables Prescriptions and Pharmacy. The Prescriptions table records 13 280 145 pre-
scribed medications for 226 305 patients. The durations of the prescriptions range from
1 to 1 192 days with an average of 3.3 days. The Pharmacy table records 10 911 112
filled medications that were prescribed to 219 367 patient. The durations range from 1
to 75 981 days with an average of 3.5 days, and contain 9 205 different medications.
While the timestamps in the two tables are recorded at a granularity of minutes, we use
days as the main granularity.

5.2 Results

In the first experiment, we evaluate the runtime of the different implementations for
temporal redundancy. We use the Prescription table and the attributes subject_id, drug,
dose_val_rx, and [startdate, enddate) from the MIMIC dataset as an input and vary the
number of tuples from 2 to 10 million. The results for the retrieval and labelling oper-
ators are shown in Fig. 5. We observe that the implementation based on unfold/fold
is very slow due to the blow-up of the intermediate result into individual time points
caused by the unfold operation before the aggregation. The join-based implementation
for the retrieval operation is able to reduce the size of the intermediate result by filtering
before the unfold and fold. This yields a substantial improvement in the performance,
but it is not applicable for the labelling operation. The approach based on window func-
tions is by far the most efficient one for both operations.

In the second experiment, we evaluate the approaches for temporal contradiction
on the Prescription table from the MIMIC dataset. For this case, we use the subject_id
and drug to find contradictions in the doses. The results for retrieval and labelling for
various number of input tuples are shown in Fig. 6. We observe a similar behaviour as
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Fig. 5. Runtime for temporal redundancy on the Prescription table.

for the redundancy, but the join filtering implementation is less effective compared to
redundancy. This is because less attributes are used, and thus more tuples share the same
values. The approach based on window functions is again the most efficient approach.

Fig. 6. Runtime for temporal contradiction on the Prescription table.

Finally, we evaluate the approaches for temporal incompleteness. For this case we
use the attributes subject_id, pharmacy_id (used to link a prescription to its administra-
tion), and drug, which are in common between the Prescription and Pharmacy tables.
The results for retrieval and labelling for various number of input tuples are shown in
Fig. 7. Note that the join based filtering for unfold/fold has a very large runtime, thus we
omit it from the result. Again we can see that unfold/fold suffers form the large inter-
mediate results that are unioned and then aggregated. The approach based on window
functions provides much better results.
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Fig. 7. Runtime for temporal incompleteness.

6 Conclusion and Future Work

Temporal anomalies may be used to verify data inconsistencies by detecting or enforc-
ing data integrity over time. Standard SQL can be used to store temporal data, but
enforcing integrity and querying is still a challenge, especially in healthcare databases
with a large number of entities. Thus, providing a generic implementation of these
anomalies will help database designers in writing efficient queries to detect temporal
anomalies or even automate their detection for various application domain. This paper
presents temporal queries and efficient implementations to help developers in detecting
common temporal anomalies.

In future work, we would like to (1) extend the temporal anomalies operations to
cover bitemporal models, cross-relational temporal contradictions, and semantic tem-
poral conflicts, (2) develop a federated version for privacy-preserving anomaly mining,
and (3) define a temporal repair system using healthcare expert preferences.
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Abstract. JSON (JavaScript Object Notation) has become popular for
exchanging data sets over the Internet. Many data sets are “geo-tagged”,
since they represent spatial entities. As an effect, spatial analysts have
to perform spatial queries on JSON data sets. While working with large
data sets, crisp (on/off) spatial relations could be marginally effective;
instead, soft relations and “soft spatial querying” could be the right tools,
because they reveal the extent of a given spatial relation. In this paper,
we present the recent evolution of J-CO-QL+, the query language of the
J-CO Framework (under development at University of Bergamo, Italy)
towards soft spatial querying on geo-tagged JSON data sets.

Keywords: Geo-tagged JSON documents · Soft spatial querying ·
Fuzzy operators and fuzzy spatial relations

1 Introduction

The advent of Open Data portals has pushed forward the distribution of geo-
graphical information: public authorities publish authoritative data sets that
describe territories. In this context, JSON (JavaScript Object Notation) has
become very popular to represent data sets over the Internet. In our opinion,
this popularity is due to its simple syntax, which makes JSON data sets easy
to process. Consequently, often analysts and data engineers have to work with
JSON data sets, possibly describing “geo-tagged” data, i.e., data that are asso-
ciated with geometrical descriptions of real-world entities on the Earth surface.

In this regard, GeoJSON is playing an important role, since it is a standard
format that relies on JSON as hosting syntax to represent “geographical infor-
mation layers”. Many data sets concerning spatial data are provided as GeoJSON
documents, on which spatial analysts have to perform “spatial queries”.

When spatial querying is performed on large data sets, often spatial relations
between spatial entities cannot be on/off (or crisp), because what it matters is
the “extent” to which the relation is met. Furthermore, the query itself could
be explained in a vague or tolerant way, so as to catch unexpected situations.
Therefore, we are moving towards “soft spatial querying”.

At University of Bergamo (Italy), we are devising the J-CO Framework [19]:
its goal is to provide analysts with tools to flexibly acquire, integrate and query
c© Springer Nature Switzerland AG 2022
S. Chiusano et al. (Eds.): ADBIS 2022, LNCS 13389, pp. 223–237, 2022.
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JSON data sets, in a way that is independent of the platform that provides and
stores data sets. In the original design of the J-CO-QL query language [3], we
were focused on the native support for spatial querying on geo-tagged JSON
data sets. Later, we realized that soft querying could be a valuable tool for
analysts: we started extending J-CO-QL towards evaluating membership degrees
of JSON documents to fuzzy sets in order to perform soft querying (see [11]). We
understood that, to fully introduce soft-querying capabilities, it was necessary
to revise the whole language, that has become J-CO-QL+: constructs have been
unified, re-arranged and made more intuitive and flexible, for better supporting
soft querying.

The contribution of this paper is to present the recent constructs to perform
soft spatial querying, through the unified JOIN statement (until [11,19] there
were two distinct JOIN statements). The new JOIN statement, which pairs doc-
uments coming from two data sets, now supports fuzzy sets; furthermore, soft
spatial relations can be now evaluated, thus enabling soft spatial querying.

The paper is organized as follows. Section 2 introduces the relevant back-
ground for the paper. Section 3 provides the main contribution of the paper.
Finally, Sect. 4 draws the conclusions and highlights possible future works.

2 Background

In this section, we briefly present the background of our work, i.e., basic notions
on fuzzy sets (Sect. 2.1), the literature on soft querying databases (Sect. 2.2)
and a short introduction to the J-CO Framework (Sect. 2.3).

2.1 Brief Introduction to Fuzzy Sets

The notion of Fuzzy Set (and related theory) was introduced by Zadeh in [20];
here, we report a brief introduction.

Let us denote by U a non-empty universe, either finite or infinite.

Definition 1. A fuzzy set A ⊆ U is a mapping A : U → [0, 1]. The value A(x)
is referred to as the membership degree of the item x ∈ U to the A fuzzy set.

We can say that a fuzzy set A in U is characterized by a membership function
A(x) that associates each item x ∈ U with a real number in the range [0, 1]; this
value denotes the degree with which x is a member of A, also called “membership
degree”. Specifically, if A(x) = 0, this means that x does not belong at all to A;
if 0 < A(x) < 1, this means that x belongs to A only partially, with an extent
that is the membership degree; A(x) = 1 means that x fully belongs to A.

As a example, consider the universe U of scientific papers. The fuzzy set
called RelevantPapers denotes those papers that are relevant for the research
conducted by a researcher named Jane: she judges the relevance of a paper
x, by expressing its membership degree; clearly, RelevantPapers(x) = 1
means that the x paper is fully relevant; given two papers x1 and x2, if
RelevantPapers(x1) = 0.8 and RelevantPapers(x1) > RelevantPapers(x2),
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this means that x1 is more relevant than x2, even though x1 is not fully relevant
to Jane’s research (its membership degree is 0.8).

Some properties can be easily introduced.
A fuzzy set is empty if and only if its membership function is identically zero

for each x ∈ U .
Two fuzzy sets A and B are equal, denoted as A = B, if and only if A(x) =

B(x) for all x ∈ U .
The classical set-oriented operations can be extended to fuzzy sets.

Definition 2. Consider two fuzzy sets A and B in U .
Considering the items x ∈ U in the intersection I = A ∩ B, they have the

membership function I(x) = min(A(x), B(x)).
Considering the items x ∈ U in the union S = A ∪ B, they have the mem-

bership function S(x) = max(A(x), B(x)).
Considering the items x ∈ U in the complement of A, i.e., CA = U −A, they

have the membership function CA(x) = 1 − A(x).

Soft conditions linguistically express the fact that an item belongs to fuzzy
sets. Consequently, the AND operator is mapped to the fuzzy intersection, the OR
operator is mapped to the fuzzy union, the NOT operator is mapped to the fuzzy
complement.

For example, considering again Jane’s research, we could think about a second
fuzzy set called HighlyCitedPapers, which denotes the level of citations; so,
Jane could look for papers x such that

HighlyCitedPapers(x) AND RelevantPapers(x),

which is an example of soft condition. The resulting membership degree denotes
the relevance of a paper x w.r.t. the condition; so it can be used to rank results.

In our work, we consider the universe U of JSON documents. Thus, given a
document d ∈ U , the membership degree A(d) denotes the extent with which d
belongs to the A fuzzy set.

2.2 Related Work

Soft querying on data sets is not a novel topic: in the past, it was deeply inves-
tigated on top of relational databases. The first approach was to work on an
already existing database; under this hypothesis, the query language should
support soft querying, but the underlying database model cannot change; these
query languages extend the concept of “selection condition”, as argued by [2],
so as to formulate “soft queries” in which selection conditions can rely on vague
predicates; the goal is to obtain queries that are tolerant to thresholds, which
is a typical problem in classical crisp querying; for example, given a non-soft
predicate income >=100000 to select people whose annual income is no less than
100000 Euros, a person with 99999 Euros as annual income would not be selected.
By adopting fuzzy sets, it is possible to express the concept of WantedIncome in
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a soft way, so that 99999 Euros is considered not fully wanted, i.e., has a mem-
bership degree slightly less than 1. Since relational databases were considered,
many extensions of SQL towards soft querying were proposed: they preserve the
underlying classical relational data model but provide capabilities of soft query-
ing table rows through fuzzy-set theory. Since it is impossible to be exhaustive
here, we mention SQLf (see [8,9]) and the attempt to implement it (in [13]); the
second proposal we mention is FQUERY for Access (see [15] and [21]), which
was designed to work within Microsoft Access; finally, we mention the proposal
called SoftSQL (see [4–6]), which also covers the definition of user-defined “lin-
guistic predicates” through a dedicated statement, to be used in soft selection
conditions in the SELECT statement.

Removing the hypothesis of working on top of an existing relational database,
the data model can be extended towards “fuzzy-relational databases” (see [7] and
[17]) for representing uncertain and imprecise data directly within the database,
by means of “fuzzy values”. Here, we mention FSQL, presented in [12,14], which
is the most remarkable proposal, in our opinion.

The recent advent of the notion of JSON document stores (NoSQL databases
specifically designed to store JSON documents) seems stimulating novel research
on soft querying, this time on JSON data sets and stores.

The work [1] proposed fMQL, an extension of MQL (the MongoDB Query
Language). The authors worked under the hypothesis that JSON documents are
previously labeled with “fuzzy labels”.

Recently, [16] proposed an extension of the MongoDB data model towards a
fuzzy JSON document store, supporting fuzzy values in single fields.

2.3 The J-CO Framework

The J-CO Framework [3,18,19] is a tool able to retrieve, integrate and query col-
lections of JSON documents either stored in JSON document stores or directly
provided by Web sources. The core of the framework is J-CO-QL+, a novel
declarative query language specifically designed to query heterogeneous JSON
data sets, by natively dealing with spatial relations between geo-tagged docu-
ments. The J-CO Framework is composed of several software tools; the interested
reader can refer to [19] for a complete description. Here, we just mention the
J-CO-QL+ Engine, which actually executes J-CO-QL+ queries/scripts; in par-
ticular, it is worth noticing that this is independent of any JSON document
store, while it is able to retrieve data from and store data to several stores (but
it processes data independently of specific processing capabilities provided by
specific JSON stores).

Here, we briefly introduce the data and execution models.
Data Model. J-CO-QL+ works on collections of standard JSON documents.
Two special root-level fields, named ~fuzzysets and ~geometry, play a specific
role. The ~fuzzysets field works as a map fsn → md, where fsn is a fuzzy-
set name and md is the corresponding membership degree (see Fig. 3c); this
way, the degrees of membership to multiple fuzzy sets of a document can be
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simultaneously represented. The ~geometry field represents spatial geometries
[3,19], by relying on the GeometryCollection format of GeoJSON.
Execution Model. We define the concept of query-process state as a tuple s =
〈tc, IR,DBS,FO〉. Its members have the following meaning: s.tc is called tem-
porary collection of documents; s.IR (Intermediate Results) is a local database
where the process can temporarily store collections; s.DBS is a set of database
descriptors, used to connect to JSONdatabases; s.FO is the set of fuzzy oper-
ators (see Sect. 3.2) defined throughout the query. All members in the initial
state s0 are empty sets.

A query (or script) is a sequence of instructions. An instruction ij works on
the s(j−1) query-process state and generates a new query-process state sj , where
one member can be changed. In particular, consider the temporary collection tc:
ij receives the s(j−1).tc temporary collection as input and may generate a new
sj .tc temporary collection as output.

3 Case Study and J-CO-QL+ Script

We now present the main contribution of the paper. Section 3.1 introduces the
case study. Then, Sect. 3.2 presents how J-CO-QL+ deals with fuzzy concepts.
Section 3.3 shows how to pre-process GeoJSON documents for soft querying.
Finally, Sect. 3.4 shows how to perform soft spatial queries in J-CO-QL+.

3.1 Case Study

Suppose that an analyst has to face the following problem.

Problem 1. Consider a European Union (EU) region R and its provinces P (R),
whose geographical description is provided. Consider also a registry of Gross
Domestic Product (GDP (p)) about P (R), in which GDP in 2017 and 2018
are reported for a EU province p. Finally, consider a GeoJSON document that
describes the set L of lakes that are either partially or totally in the territory
of R. We want to look for provinces p ∈ P (R) such that there is a lake l ∈ L
partially falling in p’s territory (but in a significant way), such that p had a
significant increase in GDP from 2017 to 2018.

The goal of the analyst is to discover if there is a relation between the fact
a significant part of a lake falls into the territory of a given province p and the
province increase in GDP.

In the rest of the paper, we refer to the following territory and data sets:

– R is the Italian region named Lombardia, where our University is located.
– EU NUTS describe administrative regions in the EU. They were downloaded

from the Eurostat website1 as a shape file. The data set encompasses many

1 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-
units-statistical-units/nuts.

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
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administrative levels: Level 0 corresponds to countries; Level 1 corresponds
to macro-regions; Level 2 corresponds to regions; finally, Level 3 corresponds
to provinces. The shape file was converted to geo-tagged JSON documents
where the geometry is compliant with GeoJSON through QGIS, from the
2016 EU NUTS, we filtered the 12 Level-3 ones (provinces) in Lombardy.

– Registry data about provinces were downloaded as an Excel file from the
Eurostat data browser2. Only rows concerning the 12 provinces in Lombardy
were selected and converted into JSON documents.

– Data about lakes were downloaded from Regione Lombardia Open Data por-
tal3. They were provided as shape files and then converted to GeoJSON
through QGIS. The GeoJSON document encompasses 5469 lakes.

In Problem 1, two concepts are naturally imprecise. The first one is “Increas-
ing GDP”: when a GDP is increasing in a significant way? Small variations of
GDP are absolutely normal, both in a positive and in a negative way; so, it is
necessary to define this imprecise concept in a possibly tolerant way.

The second imprecise concept is a “significant portion” of lake in the territory
of a province p. When is a lake portion significant, in such a way it is not marginal
and the lake is not completely contained in the territory of the province p?

The J-CO-QL+ script to address Problem 1 is presented in Listings 1 and 2.
We will present it in the remainder of this section.

2 https://ec.europa.eu/eurostat/databrowser/explore/all/all themes?lang=en.
3 https://www.dati.lombardia.it/Territorio/Lago-10000-CT10/qm9t-uzst.

https://ec.europa.eu/eurostat/databrowser/explore/all/all_themes?lang=en
https://www.dati.lombardia.it/Territorio/Lago-10000-CT10/qm9t-uzst
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3.2 Definition of Fuzzy Concepts

The first two instructions in Listing 1 define two “fuzzy operators”. In J-CO-
QL+, a fuzzy operator is an operator that evaluates the membership degree of
a JSON document to a fuzzy property or relation. Remember that we have to
define two concepts, i.e., “increasing GDP” and “interesting lake”; the two fuzzy
operators defined on lines 1 and 2 correspond to these two concepts.

Increasing GDP. The instruction on line 1 of Listing 1 defines the fuzzy oper-
ator called IncreasingGDP. Its goal is to evaluate if a province had a relevant
increase of GDP in two consecutive years. Details are presented hereafter.

– The PARAMETERS clause specifies the formal parameters of the operator.
Specifically, two floating-point parameters are defined, called gdp0 and gdp1.

– The PRECONDITION clause specifies a condition that must be met by actual
parameters, before evaluating the operator (otherwise an exception is raised
and the evaluation is stopped). Specifically, GDPs must be greater than zero.
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– The EVALUATE clause specifies a mathematical expression evaluated on the
parameters: the value it returns is used as x-axis value of the membership
function specified in the POLYLINE clause. Specifically, the expression com-
putes the percentage of variation of the two GDPs.

– The POLYLINE clause specifies the membership function used to obtain the
membership degree. It is defined as a sequence of points, where x-coordinates
are free, while y-coordinates are in the range [0, 1]. Between two consecutive
points, the function is a segment connecting the two points. For x values less
than the leftmost point, its y-coordinate is returned as membership degree;
similarly, for x values greater than the rightmost point.
Figure 1a depicts the polyline. Notice that the membership degree increases
from 0 to 0.8 up to 1% of GDP increase, becoming significantly interesting
after 1% (degree greater than 0.8). From 1% to 3%, it slowly reaches 1: any
further increase is considered equally of interest.

InterestingLake. The instruction on line 2 defines the second fuzzy operator,
named InterestingLake. Its goal is to evaluate if a lake is interesting (for the
analysis) on the basis of the ownership degree of its area by the province.

The operator receives one single formal parameter: it is called ownership,
since it is the degree with which the province owns the area of a lake. The
expression in the EVALUATE clause does not make any computation on the value
of the parameter, which is used as it is as x-coordinate on the membership
function.

The POLYLINE clause defines the membership function, as depicted in
Figure 1b. The trapezoidal shape excludes those lakes whose area marginally
falls into a province, because the membership degree is 0 up to an ownership
degree of 25%. It is 1 in the range [0.3, 0.8]. After 0.85 it is 0 again (this way,
we exclude those lakes that are substantially fully contained in the territory of
a province).

Notice that by means of the two fuzzy operators, we are able to quantify the
relevance of GDP increase in our context, as well as the relevance of a lake (based
on the percentage of its area owned by a province). Nevertheless, intermediate
membership degrees allow for being tolerant and consider borderline situations
with respect to thresholds (0.3 and 0.8, for the InterestingLake operator).

3.3 Processing a GeoJSON Document

In Listing 1, lines from 3 to 6 acquire and process a GeoJSON document that
describes lakes, stored in a MongoDB database called AdbisDb. This part of the
script is not strictly connected with soft querying: hereafter, we provide a short
introduction (the interested reader can refer to our previous works [10,19]).

– The USE DB instruction on line 3 connects to the MongoDB server and to the
desired database.

– The GET COLLECTION instruction on line 4 retrieves the content of the col-
lection named GeojsonLakes, stored in the AdbisDb database; the collection



Soft Spatial Querying on JSON Data Sets 231

Fig. 1. Membership functions of the fuzzy operators.

contains one single GeoJSON document describing lakes; an excerpt of this
document is reported in Figure 2a: notice that it is a single document, the
root-level field of which, called features, is an array of documents; each
nested document describes a “feature”, i.e., a spatial entity with “properties”
(the properties field) and “geometry” (the geometry field).

– The EXPAND instruction on line 5 unnests documents in the features array:
the instruction generates a new collection of JSON documents, which contains
as many documents as the ones contained in the features array. In details,
each unnested document contains all fields in the source document, except
the features array field; in its place, the LakeGeoData field is added, which
contains two fields named item and position, where the former one contains
the item actually unnested from within the original array, while the latter
denotes the position occupied by the unnested item in the array.

– The FILTER instruction on line 6 restructures the documents in the tem-
porary collection generated by line 5. Specifically, the SETTING GEOMETRY
clause takes the geometry field nested within the LakeGeoData field as the
geo-tagging of the document (as an effect, the ~geometry field is added to
the document). Then, the BUILD block restructures the document, putting the
nested properties field at the top level. An example of documents contained
in the new temporary collection is reported in Figure 2b.

– The instruction on line 7 saves the temporary collection into the IR (Inter-
mediate Results) database, so as to reuse it later during the query process.

3.4 Soft Spatial Querying

The second part of the J-CO-QL+ script (reported in Listing 2) actually performs
a soft query on the data. Provided that line 10 actually saves the final temporary
collection into the AdbisDb database, the key instructions are on lines 8 and 9.
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Fig. 2. Sample documents concerning lakes.

Processing NUTS. The first step is to process data about EU NUTS for the
12 considered provinces, stored within the GeoNuts collection in the AdbisDb
database. Figure 3a reports a sample document: they follow the same structure
of GeoJSON features; nevertheless, they were previously pre-processed, so they
already respect the J-CO-QL+ data model (see the ~geometry field).

The NUTSInfo collection (stored within the same database) actually contains
registry data, about provinces. A sample document is reported in Figure 3b:
notice that this is a very simple JSON document, which provides extra data to
those provided by documents in the GeoNUTS collection (see Figure 3a).

The JOIN instruction on line 8 of Listing 2 pairs documents in the two col-
lections, so as to extend a document g in the GeoNUTS collection (aliased as G)
with the corresponding document i in the NutsInfo collection (aliased as I).
The instruction behaves as follows.

– For each pair (g, i), a new document d is generated, where the G field contains
the source g document, while the I field contains the source i document.

– The SET GEOMETRY clause denotes (if present) the geometry to assign to the
d document. In this case, the left geometry is taken, so as to keep geometries
of NUTS. As an effect, now d has the ~geometry field too.

– The CASE WHERE clause selects those documents the analyst is interested in.
Specifically, documents describing an Italian and level-3 (provinces) NUTS,
that has been paired to the corresponding registry data.

– The CHECK FOR FUZZY SET clause evaluates the membership degree of the
d document to the ImprovingWealth fuzzy set: this is done by means of
the USING sub-clause, where a “soft condition” is expressed. Specifically, the
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IncreasingGDP fuzzy operator is used (see Sect. 3.2). As a consequence, the
d document is further extended with the ~fuzzysets field.

– Finally, the BUILD block simplifies the document, as shown in Figure 3c (notice
that GDP values are converted from strings, as in the source NutsInfo col-
lection, to numerical values through the TO FLOAT built-in function).

Fig. 3. Sample documents concerning NUTS and obtained by Listing 2

Cross-Analyzing Lakes and Provinces. We are now ready to cross-analyze
lakes and provinces, by performing a soft spatial query (on line 9 of Listing 2).

– The instruction builds pairs (n, l), where n comes from the temporary col-
lection generated by line 8 (see the temporary keyword), while l comes from
the Lake collections generated by line 6 and temporarily stored within the
IR database; the collections are aliased as N and L, respectively.

– The ON GEOMETRY clause expresses a “spatial condition” to generate pairs.
Specifically, a pair (n, l) is selected if n’s and l’s geometries intersect.
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– A new document d is generated, having the N field (containing the n docu-
ment) and the L field (containing the l document).
Based on the SET GEOMETRY clause, the ~geometry field is added too, con-
taining the intersection of the two source geometries (i.e., the portion of lake
that falls into the territory of the province).

– To complete the novel d document, it is necessary to deal with fuzzy sets.
First of all, fuzzy sets whose membership was already evaluated for input
documents must be considered (recall, looking at Figure 3c, that documents
generated by line 8 had the membership degree to the fuzzy set called
IncreasingWealth). Second, only here it is possible to exploit “fuzzy spatial
relations”, i.e., gradual relations concerning geometries of source documents.
Both these tasks are done by the SET FUZZY SETS clause:

• LEFT ALL specifies that all membership degrees to fuzzy sets evaluated for
documents coming from the left collection (in this case, those generated
by line 7) must be kept (i.e., the IncreasingWealth fuzzy set);

• the membership degree to the OwnedLake fuzzy set is obtained by means
of the HOW INCLUDE function, which provides the degree of inclusion of
the intersection in the area of the right (as specified within parentheses)
geometry. As a result, d is further extended with the ~fuzzysets field,
which contains two fields (i.e., IncreasingWealth and OwnedLake).

• Alternatively, specific fuzzy-set names and the side they come from (i.e.,
LEFT or RIGHT) could be specified.

J-CO-QL+ provides three functions that evaluate a fuzzy spatial relation
between two source geometries:

• HOW INCLUDE(RIGHT) (resp. HOW INCLUDE(LEFT)) provides the degree the
intersection is included in the right (respectively left) geometry;

• HOW MEET(RIGHT) (resp. HOW MEET(LEFT)) provides the degree the right
perimeter touches the left one (resp., the left perimeter touches the right
one);

• HOW INTERSECT() provides the degree the area of the intersection is contained
in the area of the united geometries.

We can now continue explaining the remainder of line 9.

– The CASE WHERE condition selects those documents so far obtained for which
the membership degrees to the ImprovingWealth and OwnedLake fuzzy sets
has been evaluated (see the KNOWN FUZZY SETS predicate).

– Within the GENERATE block, two FUZZY SET branches are specified in the
CHECK FOR clause.
Specifically, the first one evaluate a fuzzy set that is called WishedLakes: its
membership degree denotes the degree of interest the lake has for the query.
This is done by means of the InterestingLake fuzzy operator (see Sect. 3.2),
which receives the membership degree to the OwnedLake fuzzy set, obtained
through the MEMBERSHIP OF function (remember that a lake is interesting
only if the percentage of its area that falls into the territory of the province
is approximately between 30% and 80%).
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– On the basis of the last evaluated fuzzy set, the second FUZZY SET branch
evaluates the membership degree to the last Wanted fuzzy set. The USING soft
condition says that analyst is interested in those documents that describe
a province that shows IncreasingWealth and whose territory contains
WishedLakes. Notice the use of the AND logical operator, now in the fuzzy
version (that returns the minimum membership degree, see Definition 2).

– The ALPHACUT clause filters documents on the basis of their membership
degree to the Wanted fuzzy set: specifically, documents whose membership
degree is no less than 0.7 (i.e., high satisfaction of the condition) are kept.

– The BUILD block generates the final structure of documents, flattening them.
Furthermore, the rank field is added, taking the membership degree to the
Wanted fuzzy set as value, because the document is “de-fuzzified” (i.e., the
~fuzzysets field is removed). Figure 3d reports a sample output document.

The reader can notice how the last USING clause expresses the soft condition
in a linguistic way, if fuzzy set names are properly chosen: indeed, we are looking
for provinces that have shown increasing wealth and contain a wished lake. The
final membership degree is used to rank retrieved documents, so as to express
the relevance of the document to the query. Even if the soft condition is not
directly expressed on a fuzzy set directly obtained by means of a spatial fuzzy
relation, nevertheless, the WishedLakes fuzzy set derives from the OwnedLake
fuzzy set, evaluated in the SET FUZZY SETS clause when source documents are
actually paired. So, this is a simple yet complete example of soft spatial querying
performed on JSON documents through J-CO-QL+.

To conclude this section, we highlight the novelty introduced in the presented
version of the language. First of all, the general organization of sub-clauses asso-
ciated to the WHERE selection condition has been significantly improved. Further-
more, in place of having two distinct JOIN statements, one for spatial join and
one for non-spatial join, now a unified JOIN statement is provided; not only,
apart from the fact that this statement now supports fuzzy-set evaluation, novel
fuzzy spatial functions have been introduced.

4 Conclusions

The paper presented how the J-CO-QL+ language (the query language of the
J-CO Framework) is now capable to support “soft spatial queries”: evaluation
of membership degree to fuzzy sets is now integrated with soft spatial relations
within the redesigned JOIN statement; it is now able to deal with membership
degrees already available in joined documents; membership degrees to new fuzzy
sets based on spatial relations now can be added too. The J-CO-QL+ script
presented in the paper addressed a problem of soft spatial querying in which
authoritative data sets coming from various sources were integrated.

As a future work, the main activity will be devoted to complete the redesign
of all the statements, so as to fully support soft querying. Specifically, we will
address the concept of fuzzy aggregator, so as to define complex aggregations of
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membership degrees in aggregated documents. Then, we plan to address multiple
models of fuzzy sets, so as to deal with them in an integrated and unified way.
The J-CO Framework is available on a public GitHub repository4.
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Abstract. This work addresses a novel variant of the Maximum Range-
Sum (MaxRS) query for settings in which spatial point objects occur
dynamically and, upon occurrence, their significance (i.e., weight) decays
over time. The objective of the original MaxRS query is to find a loca-
tion to place (the centroid of) a fixed-size spatial rectangle so that the
sum of the weights of the point objects in its interior is maximized. The
unique aspect of the problem studied in this paper, which we call DDW-
MaxRS (Dynamic and Decaying Weights MaxRS), is that the placement
of its solution can vary over time due to the joint impact of the arrival of
new objects and the change of the corresponding weights of the existing
objects over time. To improve the efficiency of the DDW-MaxRS prob-
lem processing, we propose a memory-efficient approximate algorithmic
solution that will naturally infuse uncertainty in the answer. We formally
analyze the error bounds’ properties and provide experimental results to
quantify the effectiveness of the proposed approach.

Keywords: Maximum range-sum · Dynamic objects · Approximation

1 Introduction

The advances in GPS-equipped mobile devices and networking technologies have
enabled generation of large volumes of location-aware data [7,20]. Often, in
addition to location and time, such data includes various semantic (numerical
and/or categorical) attributes, which are of interest in many applications relying
on location-based services (LBS), such as social networks, emergency response,
recommendations, etc. [18]. These settings, in turn, have brought about novel
problems and challenges in query processing and analytics, the efficient manage-
ment of which requires methodologies that extend the traditional spatial/Spatio-
temporal and Moving Objects Database (MOD) approaches [8,25].

One such problem (re)addressed in the recent years is the Maximum Range-
Sum (MaxRS) query, also known as the Maximum-enclosing Rectangle Prob-
lem [26], described as follows: given a set of (weighted) spatial point-objects O
and a rectangle R with fixed dimensions (a× b), determine the location for plac-
ing R such that the sum (of weights) of the objects in R’s interior is maximized.
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Figure 1 shows the positions of a set of input points and their respective
weights. The shaded region indicates the position of the query rectangle such
that the sum of the weights of the (red-colored) objects in its interior is maximum
among all the other possible placements in the horizontal plane.

What motivates this work is that in certain domains, in addition to the
arrival/occurrence of new points, one may face a situation in which the weights
of the previously inserted objects need not be constant over time (e.g., it may
decay). For example, when monitoring a CO concentration through participatory
sensing [3], mobile citizens periodically report the value of the measurement from
their current location, based on incentives [11]. One of the objectives of managing
carbon footprint is to avoid uneven distribution in urban environments [14,19].
A traffic management system may want to enforce reduced driving through an
area of a given size (limited by the constraint not to cause too severe congestion)
for some time. As time evolves, when re-evaluating the critical area to reduce
traffic, one must consider that the value of ppm (particles per million) measured
in a previous location of the mobile volunteer may have declined over time.

A complimentary scenario comes from burglary crime management. To deter-
mine the placement of a fixed-size region that will cover a maximum number of
ongoing burglaries [17] – upon reporting a new one, one needs to consider that
the typical “stay-time” of burglars for each previously reported one in a loca-
tion is between 8–12 min [13]. Similarly, when estimating the (placement of a)
fixed size region in which there is the highest likelihood of getting infected by
a virus due to the concentration of infected persons, one needs to consider that
the capacity of transmitting the infection decays over time [21].

While at their core, such problems resemble the settings of the MaxRS prob-
lem, they also accentuate the joint impact of two factors: (i) dynamic appear-
ances of objects at given locations, with varying weight/importance (e.g., the
severity of symptoms); and (ii) variability over time of the objects’ weights.

None of the available variants of the MaxRS problem can be straightfor-
wardly applied to address the settings described above. Towards that, the main
contributions of this work are threefold: (i) We take a first step towards for-

Fig. 1. Location of MaxRS at time t;
weights of each object are shown as its
third dimension over the z axis.

Fig. 2. MaxRS at time t + 1; decayed
weights changed the answer and a new
WD object arrived (shown in orange).
(Color figure online)
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malizing a novel Dynamic and Decaying Weights MaxRS (DDW-MaxRS) query;
(ii) We identify and formally prove properties that ensure desired bounds for a
novel approximate solution and introduce a corresponding algorithm; and (iii)
We present experiments showing the effectiveness of the proposed approach.

We introduce the notation and formalize the problem in Sect. 2, followed by
the algorithmic solutions in Sect. 3. We discuss generalizations of the parameters
in Sect. 4 and present experimental observations in Sect. 5. Related literature is
presented in Sect.6 and the concluding remarks in Sect. 7.

2 Preliminaries

We consider a time-varying set of objects Ont
(t) = {o1, o2, . . . , ont

}, each of
which is associated with a location in 2D Euclidean space, within a suitable
coordinate system. Each object oi is a triplet ((xi, yi), wi(t), ti), where i is its
unique identifier, ti is the time step in which this object arrived, (xi, yi) repre-
sents its location, and wi(t) is a scalar indicating its (relative) importance – e.g.,
the capability for spreading infection over time – defined as:

wi(t) =

{
wi × λ

(t−ti)
i , if t ≥ ti

0, otherwise
(1)

where wi indicates its initial importance/weight, and λi < 1 captures the decay
over time – i.e., the diminishing of the importance of a particular object. In the
rest of this paper, we assume that at each time step t, at most, one new object oi

is generated in the regions of interest. For brevity, we will refer to such objects
as WD (weighted and decaying) objects in the rest of this paper. For a given
axis-parallel rectangle R, we use C(lR, R) to denote the planar region covered
by R when its center is placed in location lR.

The Dynamic and Decaying Weights variant of the MaxRS over a time inter-
val Δ(t) = [ts, te] (DDW-MaxRS((Ons

(t)), R, (ts, te))) is defined as follows:

Definition 1. Given a (starting) set Ons
(ts) of WD objects Ons

(t) = {o1, o2, ...,
ons

}, and a query rectangle R, the answer to DDW-MaxRS((Ons
(t)), R,

(ts, te)), denoted ADDW-MaxRS (Ons
(t), R, (ts, te)) is a sequence of locations

LR = {lR(ts), . . . , lR(te)} for placing the centroid of R, such that at each
t ∈ [ts, te],

∑
{oi∈(Ont (t)∩C(lR,R))} wi(t) is maximal.

We are interested in two key aspects: (1) trade-offs that arise when sacrificing
the accuracy of the answer for the benefit of the efficiency of the processing
algorithm; and (2) avoiding a complete re-computation of the ADDW-MaxRS
(Ons

(t), R, (ts, te)) at every time instant (i.e., naively invoking the traditional
Max-RS algorithm for each Ont

(t)). For (1), we consider a variant similar to [22],
introducing a factor of ε to quantify the error compared with the exact answer.
We have the following definition (updating the corresponding definition of (1−ε)-
Approximate MaxRS from [22]) for an approximate answer at a time instant t:
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Definition 2. Given a set On(t) of n WD objects On(t) = {o1, o2, ..., on}, the
answer to (1 − ε) Approximate DDW-MaxRS query at any time t, denoted
Aε DDW-MaxRS(Ont

(t), R), is a position lR(t) for placing the center of R such
that the covered wight of R is a (1 − ε)-approximate answer, i.e.,

(1 − ε) × m∗ ≤ m ≤ m∗ (2)

where m =
∑

{oi∈(On(t)∩C(lR,R))} wi(t) is the weight returned by Aε DDW-MaxRS

(On(t), R), and m∗ is the weight returned by A DDW-MaxRS(On(t), R).

However, in our case, answers may vary over time. For illustration, consider
Fig. 2, showing a future time instant of the scenario in Fig. 1. It shows the
change of the (location of the) answer due to the different decays of the weights
over time. In addition, it shows an arrival of a new object (bottom-right) which,
however, does not affect the answer.

3 Approximate Solution to DDW-MaxRS

We note that a naïve way to calculate the answer to DDW-MaxRS would be to
invoke the traditional MaxRS solution (cf. [6]) at each time step, incorporating
a new WD object, and weight modifications of the older object due to the decay
over time. The time complexity of the exact solution, in this case is O(nt log nt)
for each time instant t, where nt is the (progressively increasing) number of WD
objects at time t. To avoid such re-computations every time instant, one can rely
on the approach to maintain the MaxRS in dynamic settings [2].

In the rest of this Section, we focus on a specific case of the DDW-MaxRS
problem, where we assume a fixed decay – i.e., λi = λ for all objects/points (we
will later relax this assumption in Sect. 4).

To explain the intuition behind the approximate solution, let S denote the 2D
space of all the possible locations for all the objects. Assuming a query rectangle
R of size [a× b], we partition this space into cells of the same size [a/j × b/j] for
some value j. Without loss of generality (i.e., with small “boundary zones”), we
assume that S is fully covered by a 2D array of a whole number of cells. Upon
arrival, each new object oi, based on its location, is mapped to a cell. For each
cell cu,v, we store a list of points mapped to it. Given this discretization of S,
upon an arrival of a new object om at some time instant tm, we introduce its
extended dual rectangle Re

om
of a size [(2j + 1)a/j × (2j + 1)b/j] cells, centered

in the center of the cell to which om belongs.
As we will formally demonstrate below, Re

om
enables a more efficient calcula-

tion of the Aε DDW-MaxRS (OnM
(tm), R) based on the solution at the previous

time instant tm − 1. The rationale is that if there is a change in the solution
since tm − 1, it must be due to om and a subset of the older points located in
the cells that are intersecting Re

om
.
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Fig. 3. For j = 2: (a) extended cell ExtCell(c) (b) All extended cells containing c, (c)
Naive approach provides at least a 1

4
-approximate solution to DDW-MaxRS.

Algorithm 1: Grid-based Approximate Solution
input: ExtCList is the sorted list of ExtCells based on their weights, p∗ the

solution to Aε DDW-MaxRS(On(t), R) with weight w∗

// Target rectangle R is of size a × b
1 if new arrival oi then
2 Find the cell c that oi maps into
3 CellSet(c) ← CellSet(c) ∪ oi

4 W (c, t) ← W (c, t) + wi(t)
5 for ExtCell(d) containing c do // There are j2 of such extended cells
6 W (ExtCell(d), t) ← W (ExtCell(d), t) + wi(t)
7 Update the position of ExtCell(d) in ExtCList to keep it sorted

// this step takes O(logN), where N is the total number
of cells

8 end
9 p∗ ← center of ExtCList[−1] // ExtCList[−1] is the ExtCell with the

maximum weight
10 w∗ ← W (ExtCellList[−1], t)

11 end
12 else
13 w∗ ← λ × w∗

14 end

Recall that we aim for an approximate solution(s) which, at each time instant,
provides a faster calculation of the answer(s) at the price of sacrificing accuracy in
terms of the covered weight. We quantify this error by ε as defined in Definition 2.

For each cell c, we store a list of points mapped to it (OList(c)). At any
time t, the weight of a cell c is computed as: W (c, t) =

∑
{oi∈OList(c)} wi(t).

We also define an extended cell ExtCell(c) as the set of cells (CellSet(c)) in the
grid of j × j cells with cell c as its most left-bottom cell (shown in Fig. 3a).
The weight of an extended cell ExtCell(c) is computed as: W (ExtCell(c), t) =∑

{cell∈CellSet(c)} W (cell, t).
We propose an approximate solutions based on the idea of diving the space

S into cells, and the pseudo code is shown in Algorithm 1.
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3.1 Properties of the Approximate Solution

To return an approximate solution to the DDW-MaxRS problem, we do as fol-
lows: (i) At the initial time t0, we keep a list of extended cells and order them
based on their weights (we will refer to this list as ExtCList)). We then return
the extended cell with the highest weight as the approximate solution. (ii) Let
ExtCell(c∗) be our approximate solution to DDW-MaxRS at time t − 1 (for any
t > t0). We will not change the approximate solution if no new point arrives
at time step t. We only update its weight. However, if a new point arrives, we
first find the cell c this point maps into it. Note that there are j2 extended cells
containing c (shown in Fig. 3b for the choice of j = 2). We update the weight of
c and the associated extended cells and their position in the ExtCList so that
our list remains sorted. We then return the extended cell with the maximum
weight as the solution to our DDW-MaxRS. The critical thing to remember is
that the relative order of all the other extended cells remains the same.

Lemma 1. At any time t > t0, upon arrival of a new point o, the relative order
of extended cells, that o does not map into, remains intact.

The proof is rather straightforward, based on the fact that the weight of each
extended cell that the new point is not mapped to decay by a factor of λ < 1.
This algorithm provides at least 1

4 -approximate solution (cf. Lemma 2).

Lemma 2. At any time t, the grid-based algorithm returns at least 1
4 -

approximate solution to the DDW-MaxRS problem.

Proof. For simplicity, we discuss j = 2, but the proof for larger values of j is
similar. Let m be the weight of the extended cell returned by the algorithm at
time t. Also, let the exact solution to the DDW-MaxRS problem, at time t, be as
shown in Fig. 3c, which means it does not fall within any of our defined extended
cells but rather overlaps with multiple of them (R1, R2, R3, and R4).

The proof follows the fact that the weight of points covered in the intersection
of the exact solution R with each of them is bounded by m, and hence, the total
weight covered by R cannot be more than 4m. Note that this is a tight bound �.

Intuitively, larger values for j imply a finer grid, and one may expect that it
will improve the accuracy. However, having a very large j could result in cells
containing only 1 (or 0) point, and there will be no benefit in dividing the space
into cells. There is a trade-off in the choice of j between the accuracy of results
and the computational efficiency. We study the effect of this parameter on the
results in Sect. 5.

3.2 Memory-Efficient Approximate Solution

When mapping WD objects to grids, not all cells will include a point. A sig-
nificant number of cells will be either empty or receive objects infrequently. It
does not makes sense to store such objects or keep track of these sparse cells.
This sub-section introduces an approach to clear sparse cells without hurting the
accuracy. To this end, let us formally define a sparse cell:
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Definition 3. A cell c is called θ-sparse at time t if:

W (c, t) ≤ θ (3)

According to Definition 3, we call a cell θ-sparse at time t if its weight is less
than θ, where θ > 0 is a threshold we set. Later, We will discuss how to choose
this threshold. Lemma 3 investigates lower and upper bounds on the sum of all
WD objects’ weights present in the system at any time t:

Lemma 3. Let tl be the last time step in which a new point arrived. At any
time step t ≥ tl, we have:

(n0 + 1)λt <
∑

{oi∈Ont}
wi(t) < (n0 − 1)λt +

1
1 − λ

(4)

where n0 is the number of points in the system at time t = 0.

Proof. The proof is straightforward: given n0 WD objects were present in the
system at time t0, the total weight is at least n0λ

t+λt−tl . On the other hand, in
the worse case, we had one new WD object added at each time step from t = 0
to t = tl, and the total weight of those objects is bounded by 1

1−λ . �

In the rest of this section, we assume n0 = 1 for simplicity, but the results
are generalizable to n0 > 1.

Let an algorithm clear all the θ-sparse cells (for some predetermined θ). One
question that arises is how does it affect our grid? How many nonempty cells
will remain after clearing such cells? Lemma 4 answers this question:

Lemma 4. At any time t, the number of nonempty cells after deleting the θ-
sparse cells will never exceed L = logλ θ(1 − λ).

Proof. The proof is similar to the proof of Theorem 4.4 in [23]. Let tc be the last
time instant in which cell c received a new point. Therefore, we have:

W (c, t) = λt−tc × W (c, tc) (5)

Consider the case when t − tc > L = logλ θ(1 − λ), then we have:

W (c, t)
(i)
= λt−tcW (c, tc) < λLW (c, tc)

(ii)
<

λL

1 − λ
=

θ(1 − λ)
1 − λ

= θ (6)

Where (i) holds because of (5) and (ii) is true because, according to Lemma 3,
the sum of all weights at time t is less than 1/(1−λ) (for n0 = 1); therefore, the
weight of each cell is also less than this upper bound. 6 concludes that any cell
c that has not received any points within the last L time steps will be θ-sparse
and erased at time t. Therefore, the number of non-empty cells is at most L. �



DDW-MaxRS 245

Our proposed memory-efficient solution is quite similar to Algorithm 1 with
the main difference that θ-sparse cells (and consequently empty ExtCells) will
be removed after line 4. As a consequence of this change, we need to address two
fundamental questions:

Q1: For any cell c, how much does the new weight differ from the actual weight
of c if it was never cleared before? Lemma 5 answers this question.

Lemma 5. Suppose the last time a cell c was cleared because of being θ-sparse
was td. If at current time t the weight of c is Ŵ (c, t), then we have:

W (c, t) ≤ Ŵ (c, t) + (
θ

1 − λL
)λt−td (7)

where L = logλ θ(1 − λ) and W (c, t) is the actual weight of c if it was never
deleted before.

Proof. The proof follows a similar approach as the proof of Theorem 4.3 in [23].
Suppose cell c has been previously deleted at time steps t1, t2, ..., td. Therefore, we
knew that: Ŵ (c, ti) ≤ θ for i = 1, 2, ..., d. Thus, if we choose θ to be a constant
(not a function of tis) and if we never cleared all these previous weights, the
actual weight would be:

W (c, t) − Ŵ (c, t) =
d∑

i=1

Ŵ (c, ti)λt−ti ≤
d∑

i=1

θ × λt−ti = θλt−td ×
d∑

i=1

θλtd−ti

On the other hand, according to Lemma 4, for each i = 2, ...., d, we have
ti − ti−1 ≥ L + 1, where L = logλ θ(1 − λ). Therefore W (c, t) − Ŵ (c, t) ≤
θλt−td

(
1

1−λL

)
. �

Q2: How does the error in the weights of cells (as the result of clearing sparse
cells) affect our approximate solution ? Lemma 6 addresses this question.

Lemma 6. At any time t, the proposed memory-efficient approximate solution
with the choice of θ ≤ 1

(1−λ)

(
1 − λ

α

)
, returns at least 1

4(1+α) -approximate solution
to a DDW-MaxRS query, where α > λ.

Proof. Let c denote the cell with the maximum weight at time t. According to
Lemma 5, we have W (c, t) ≤ Ŵ (c, t) + θλ

1−λL , where L = logλ θ(1 − λ). Now,
similar to the proof of Lemma 2, we can argue that the weight covered by R (the
true answer of DDW-MaxRS at time t) is bounded as follows:

W (R, t) ≤ 4 × W (c, t) ≤ 4 ×
(

Ŵ (c, t) +
θ

1 − λL

)
≤ 4 ×

(
1 +

λ

1 − λL

)
Ŵ (c, t)

For the choice of θ ≤ 1
(1−λ)

(
1 − λ

α

)
, we have λL = θ(1−λ) ≤ (1− λ

α ). Therefore,
(1 + λ

1−λL ) ≤ (1 + α). �

Upon arrival of a new point, the time complexity of the update is O(j2 logL),
where L = logλ θ(1 − λ).
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4 Generalization

So far, we have used certain assumptions on the settings of the DDW problem
– i.e., having an equal initial weight for all objects, the same decaying factor,
and a specific exponential decaying function. This section discusses how these
assumptions can be relaxed and the consequences, i.e., what needs to be changed
in the proposed solutions to make them suitable for more generalized variant(s).

Generalization to Different Initial Weights: The presented results can be
generalized to cases where initial weights are of an interval value [wmin, wmax]
(i.e., wmin ≤ wi ≤ wmax). Lemma 1 and 2 are directly applicable to such WD
objects . Consequently, the approximate solution presented in Algorithm 1 can
be applied and used for this generalized version. In addition, if we define θ′ =
wmax × θ, Lemmas 4, 5, and 6 will hold for this generalized version (i.e., by
replacing θ with θ′). Thus, the proposed memory-efficient approximate solution
can also be used to answer this particular generalized variant.

Generalization to Different Decaying Factors: If the initial weights for
all WD objects are equal (i.e., wi = 1), but their decaying factor is different
(λmin ≤ λi ≤ λmax), Lemma 1 does not hold anymore, and the relative order of
cells changes over time. One possible modification to Algorithm 1 is to check all
the non-empty cells upon arrival of a new object and find the one with maximum
weight. This would result in O(mt) time complexity at each time step t, where
mt is the number of the non-empty extended cells at time t (mt ≤ j2 × nt).
A complimentary observation is that one could (“naïvely”) consider an upper
bound, say, λmax in the statements of the corresponding Lemmas. This would
retain the properties in terms of the respective inequalities (possibly affecting
the discrepancy between the values on the left-hand sides and right-hand sides).
We note that while we provide experimental observations about the impact of λ
in Sect. 5, a more detailed investigation is left for our future work.

Generalization to a Broader Class of Decaying Functions: Let us consider
a class of functions F such that ∀f ∈ F : f(t) ≤ ε(t)× f(t− 1), where ∀t : ε(t) ≤
ε(t − 1) < 1. If the decaying function of the weight of each WD object is from
F , then Lemma 1 and 2 hold and apply directly to this more generalized case.
As a result, Algorithm 1 can be used to provide an approximation solution to
a DDW-MaxRS query. In addition, similar results can be proven by replacing λ
with ε(1) in Lemmas 3–6.

5 Experimental Study

Since there are no existing solutions to the DDW-MaxRS problem, we imple-
mented an adapted (i.e., no external memory) version of the grid-based solution
from [6] as the baseline. We compared it against the Memory Efficient Approx-
imate Solution (MEAS for short)1 from Sect. 3.2. The comparison was done in
1 Implementation and the datasets used are publicly available at

https://github.com/Ashraf-T/DDW-MaxRS.

https://github.com/Ashraf-T/DDW-MaxRS
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two aspects: (1) Efficiency (in terms of speed up compared to the baseline) and
(2) Accuracy of the results in terms of (1 − ε).

Dataset: We use both synthetic and real-world datasets in our experiments. In
synthetic datasets, objects are created using uniform and Gaussian distributions
in a 2D space with a (relative) reference coordinate system . The real dataset we
used is based on the check-ins in NYC collected for about ten months (from 12
April 2012 to 16 February 2013) [24]. We extracted the unique GPS coordinates
(Latitude and Longitude) and mapped them to a Cartesian coordinate system.
This transformation is done using pyproj, cartographic projections, and coor-
dinate transformations library in Python2 We converted the GPS coordinates
from EPSG:4326 to a regional system EPSG:2263.

Table 1. Parameters

Parameter Name and Symbol Possible Values Default value

Object distribution Uniform, Gaussian, Real Uniform

No. of initial objects N0 500, 1000, 5000, 10000, 50000 5000

Size of R 1.0× 1.0, 1.5× 1.5, 2.0× 2.0, 2.5× 2.5 1.0× 1.0

Decay Factor (λ) 0.9, 0.8, 0.7, 0.6 0.9

Ratio of R to cells (j) 1, 2, 4, 8 2

Sparsity threshold (θ) 0.01, 0.05, 0.1, 0.2, 0.5 0.1

Parameters: The list of the studied parameters and their values is provided
in Table 1. We note that the overall area of interest (i.e., the possible range for
the locations of the objects) was bound by a rectangle of size (100×100). Unless
otherwise indicated, when investigating the impact of a specific parameter, we
keep the rest of them fixed to their respective default values, which are indicated
in the rightmost column of Table 1. We scaled the x-y coordinates for the real
dataset to be mapped to a rectangle of size (100 × 100). Also, for the experiments
studying the impact of the number of initial objects, if available, we sampled as
many data points uniformly at random from the dataset.

Environment: All the algorithms were implemented in Python 3.7. The exper-
iments were executed on a machine with an Intel 2.2GHz core i7 processor and
8GB of RAM. We measured the median of the processing time and accuracy for
the reported results over five runs.

Results: We now present the results in the two categories mentioned above.

(1)Efficiency: The results are presented in Fig. 4, which shows the values
corresponding to the ratio of the processing time of Aε DDW-MaxRS relative to
the processing time taken by the exact solution. The colored bars indicate the
different datasets, and for each of them, the reported processing time is obtained

2 cf. https://github.com/pyproj4/pyproj.

https://github.com/pyproj4/pyproj
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by averaging the processing time over 100-time steps through five iterations. We
considered the impact of different parameters:
– N0 - the initial number of WD objects present in the system: MEAS signifi-
cantly reduces the processing time (about 45%) when there are a large number
of initial objects. The processing time for the exact solution does not change
much over time because its time complexity is a function of nt (number of
objects present at time t), which increases by (at most) one at each time step.
Although the impact of the initial number in our settings is quite high, even in
such cases, our proposed solution yields efficiency benefits. The processing time
for the approximate solution also does not vary much over time, as its worst-case
complexity is in order of O(logN), where N is the number of extended cells in
MEAS and does not change over time. Note that there is no bar corresponding
to the real dataset with N0 = 50000 since the number of unique x-y coordinates
in the used dataset was not enough to sample these many records.
– R: As one would expect, the larger |R|, the faster the execution of the approx-
imate algorithm. For the default values of the other parameters, in Fig. 4-b, we
show the impact of the size of R on the speed up relative to executing the exact
algorithm. We observe that similar trends hold in both approximate solutions,
except for the results of the memory-efficient solution for the real dataset.

Fig. 4. Efficiency impact of (a) N0, (b) |R|, (c) λ, and (d) θ

– λ: Larger decaying factor (λ) values diminish the weights of points by a greater
factor after each time step. Therefore, MEAS will remove more cells as their total
weights fall below the threshold and achieve a faster processing time than the
exact solution and the first approximate solution in which the time complexity
depends on the number of objects. Figure 4-c illustrates these results.
– θ: This parameter determines the cut-off line for the weight of sparse cells.
MEAS clears more cells for the larger values of θ and achieves a higher speed up
in its processing time. Figure 4-d shows the results for various choices of θ.
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(2)Accuracy: This part presents the impact of the following four parameters:
N0, j, |R| and θ. The results are shown in Fig. 5 only for the real-world dataset
(the results for uniform and Gaussian distributions were similar).
– N0: The effect of initial objects on the solution of DDW-MaxRS lasts longer
for larger values of N0. This means it may take a while before the solution of
DDW-MaxRS changes due to the arrival of new objects. Figure 5-a shows the
results of this experiment for MEAS. Again, no result is shown when N0 = 50K
since there are not enough unique x-y coordinates in the real dataset to sample
50K of them.
– j - the ratio of the size of R to the size of the cells: Intuitively, a higher accuracy
should be achieved for larger choices of j ; because the intersection of the optimal
solution and the corner cells of an extended dual rectangle (illustrated by the
hatch pattern in Fig. 3c) decrease by having smaller cells and consequently, the
chance of objects being located in those areas also decreases. Figure 5-b confirms
this expectation. Also worth mentioning that time complexity of the approximate
solution is dominated by log(N), where N is the number of extended cells,
and the increase in the number of cells as the result of increasing j does not
significantly affect the processing time.

Fig. 5. Accuracy impact of (a) N0, (b) j, (c) |R|, and (d) θ on MEAS for real-world
dataset over time.

–R: One would expect that the larger size of the query rectangle decreases the
accuracy of the approximate solution because there is a higher chance of having
scenarios similar to the one shown in Fig. 3c. The reported results in Fig. 5-c
support this expectation.

– θ: Choosing larger values of θ expectedly hurts the accuracy of the returned
solution by MEAS. Setting larger values to θ will prune and erode more cells
as sparse cells. Figure 5-d suggests that the memory-efficient solution performs
pretty robust when θ is less than 0.5.

6 Related Work

The MaxRS problem has a long history, during which different variants have
been addressed. It was first tackled by researchers in the computational geometry
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community, where a technique that finds connected components and a maximum
clique of an intersection graph of rectangles in the plane was proposed in [10].
A solution based on the plane sweep strategy was presented in [15], where the
input points/objects were “dualized” into rectangles, centered at the locations of
the input points and with dimensions equivalent to the query rectangle R. To
obtain the regions with the highest number of intersecting (dual) rectangles, an
interval tree was used, updated by a sweep line technique, with events at the
input points (i.e., centroids of the respective dualized rectangles). The algorithm
for possible locations for placing the (center of the) query rectangle yielding the
maximal number of points in its interior had O(n log n) time complexity.

The next “era” of the MaxRS research was motivated by the observations that
the scalability of the existing solutions may not be good for LBS application, and
a scalable solution was proposed in [5]. An extension, considering imprecision vs.
efficiency trade-off and providing an approximate solution, was presented in [22].
Dynamic settings, in which objects can be inserted and/or deleted, were consid-
ered in [2], based on an aggregate graph and yielding an efficient approximation.
The work considered a sliding window-based model, in which the appearance of
new objects implies the removal of old objects. Recently, the dynamic variant
with a constraint on the minimal number of elements from different classes that
must be inside the query rectangle was addressed in [9].

Other variants of the MaxRS problem have also been considered, such as
constraining the locations of spatial points to the underlying road network [16,
26]; considering moving objects, and detecting the “trajectory” of the motion
of the centroid of MaxRS; MaxRS [4] where rectangles do not need to be axes
parallel.

A couple of recent works have addressed uncertain variants. In [1], an index
structure was proposed for efficiently answering the MaxRS query in the d
dimension, in which each point was associated with an existential probability.
PMaxRS (cf. [12]) considered inherent location uncertainty of spatial objects,
coupling candidates generation (pruning), and sampling-based approximation
(refinement) to efficiently solve the problem.

While many of the above results have motivated our present work, there
are some fundamental distinguishing aspects. Namely, we jointly consider the
probabilistic nature of the dynamics of the arrival of new points along with the
impact of the decay factor (i.e., the value of the weight) over time.

7 Conclusions and Future Work

We introduced a novel variant of the MaxRS query – the DDW-MaxRS, which,
given a spatial region of interest, combines the consideration of the arrival of
new objects and the decay of their weight over time. We took the first step
toward providing an approximate algorithm Aε DDW-MaxRS(On(t), R) and for-
mally analyzed error bounds properties compared with the exact solution. Our
experiments demonstrated the impact of the various parameters and the benefits
of the Aε DDW-MaxRS(On(t), R).
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Our future work will focus on three main topics. Firstly, we will investigate
data structures that can improve scalability. Secondly, will address the comple-
mentary settings of data streams – i.e., the arrival rate of the objects is fast,
and the available memory is limited – and devise approximate algorithms based
on effective sampling strategies. In parallel, we will explore the extension of our
results to higher dimensions and the potential joint impact of different param-
eters (e.g., combining N0 and |R|, with different distributions for N0 and the
newly arriving objects).
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Abstract. Database Management Systems and K/V-Stores operate on
updatable datasets – massively exceeding the size of available main mem-
ory. Tree-based K/V storage management structures became particularly
popular in storage engines. B+-Trees [1,4] allow constant search perfor-
mance, however write-heavy workloads yield in inefficient write patterns
to secondary storage devices and poor performance characteristics. LSM-
Trees [16,23] overcome this issue by horizontal partitioning fractions of
data – small enough to fully reside in main memory, but require frequent
maintenance to sustain search performance.

Firstly, we propose Multi-Version Partitioned BTrees (MV-PBT) as
sole storage and index management structure in key-sorted storage
engines like K/V-Stores. Secondly, we compare MV-PBT against LSM-
Trees. The logical horizontal partitioning in MV-PBT allows leveraging
recent advances in modern B+-Tree techniques in a small transparent and
memory resident portion of the structure. Structural properties sustain
steady read performance, yielding efficient write patterns and reducing
write amplification.

We integrated MV-PBT in the WiredTiger [15] KV storage engine.
MV-PBT offers an up to 2× increased steady throughput in comparison
to LSM-Trees and several orders of magnitude in comparison to B+-Trees
in a YCSB [5] workload.

Keywords: Storage engine · Storage management · Append storage

1 Introduction

High performance persistent key-sorted No-SQL storage engines became the
load-bearing backbone of online data-intensive applications. Such engines exist
as standalone K/V-Stores (Key/Value Stores) [7,15] as well as in integrated
in DBMS storage engines [6,11,14]. Obviously, backing tree-based K/V stor-
age management structures – i.e. B+-Trees [1], LSM [16,23] and derivatives
[2,11] – natively enable necessary advanced lookup operations beside equality
search, e.g. key prefix or inclusive and exclusive range searches, with (nearly)
constant logarithmically scaling performance characteristics. Continuous modifi-
cations require special care to preserve constant performance characteristics and
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mentioned search features. Although B+-Trees offer constant search performance
to data in main memory and on secondary storage devices, modifications yield
in inelastic performance characteristics. LSM-Trees sacrifice properties of a sin-
gle tree structure to overcome this issue by buffering modifications in a fraction
of main memory, typically tree-based components, and leveraging flash-based
secondary storage device characteristics on eviction and necessary background
merge operations.

Flash Technology in SSD Secondary Storage Devices exhibit individual
characteristics. I/O operations possibly are independent or decomposed exe-
cuted in multiple structural levels of an SSD, whereas a high internal parallelism
and I/O-performance is enabled [22,24,25]. However, reads perform an order of
magnitude better than writes, yielding in a asymmetric I/O behavior. Whilst
reads perform nearly identical for random and sequential access patterns, write
I/O is preferably sequentially performed [13]. Furthermore, pages are replaced
out-of-place, wherefore much slower erases and background garbage collection is
necessary [3,8].

B+-Trees and Derivatives achieve a constant logarithmically scalable search
performance, since root-to-leaf traversal operations depend on their height – even
in case of massive amounts of stored data records. Commonly used inner nodes
of traversal paths allow fast access to data in leaf nodes with few successive read
I/O. However, B+-Trees are probably vulnerable in case of modifications. Whilst
insertions, updates and deletions of records possibly facilitate steady through-
put in main memory by optimized and highly scalable maintenance procedures
[11,15], massive amounts of maintainable key-sorted data yield in random write
I/O and high write amplification on secondary storage devices once modifications
get persisted on eviction of ’dirty ’ buffers. In order to preserve strict lexicograph-
ical sort order of records, maintenance operations cause cascading node splits,
whereby blank space is created to accommodate additional separator keys in
inner nodes and records in leaves in the designated arrangement. As a result,
sub-optimally filled nodes reduce cache efficiency and contained information is
written multiple times, yielding in a high write and space amplification. Fur-
thermore, read I/O on secondary storage devices of partially filled nodes lead to
high read amplification. Therefore, for massive amounts of contained data, B+-
Trees become write-intensive, even in case of proportionately few modifications,
yielding in following problems:

– low benefit from main memory optimizations, since nodes are frequently
evicted

– low cache efficiency and high read amplification due to partially filled nodes
– massive space and write amplification on secondary storage devices

Alternatively, LSM-Trees are Optimized for High Update Rates and
obtain a sequential write pattern, since modifications are buffered in tree-
based LSM components in main memory. Components get frequently switched,
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merged and evicted to persistent secondary storage devices. Generally, back-
ground merge operations counteract the data fragmentation and increased read
and search effort, however this behavior also increases its write amplification.
Several approaches in merge policies [23] and reduction of read amplification
[12,18,26,27] have been introduced. Certainly, flash allows high internal par-
allelism and multiple reads of parallel traversal operations. Nevertheless, since
components are separate structures, they effectively leverage neither caching
effects on traversal nor logarithmic capacity capabilities per height of B+-Trees.
Moreover, creation of new components on switch procedure is not transparent to
the storage engine and relies on high-level maintenance of the database schema.
Finally, due to append-based record replacement technique in LSM, key unique-
ness is assumed, wherefore the application in storage engines of DBMS with
non-unique indexes is complicated. Challenges in LSM are defined as follows:

– inefficient caching behavior of decoupled components require frequent merges
and yield in considerable write amplification

– hence, high internal parallelism of flash is not leveraged for read operations
– components are non-transparent for further layers of a storage engine
– non-unique indexing requires additional care

We Propose Multi-Version Partitioned BTree (MV-PBT) as sole stor-
age and index management structure in KV-storage engines. MV-PBT is based
on Partitioned BTrees (PBT) [10], an enhancement of a traditional B+-Tree.
(MV-) PBT relies on manipulation of an artificial leading key column of every
record – the partition number; and exploiting the regular lexicographical struc-
ture of B+-Trees for partition management. Recent publications introduced
(MV-) PBT as a highly scalable indexing structure in DBMS with multi-version
concurrency control (MVCC) and massive index update pressure [19–21]. How-
ever, this paper focus on MV-PBT as sole storage management structure in
KV-storage engines. The contributions are:

– Diminishing write amplification in append-based storage management with
MV-PBT by sequential write of saturated partition managed nodes

– Transparent internal partition management and atomic partition switch oper-
ations without schema maintenance requirements

– Single root node as entry point in the B+-Tree structure allows to leverage
logarithmic capacity and commonly cached and traversed inner nodes

– Reduction of merge-triggered write amplification and accompanying pressure
on secondary storage devices by Cached Partitions

– Leveraging scalable in-memory optimizations and compression techniques of
B+-Tree structures for massive amounts of data in a very hot fraction

– Prototypical implementation and experimental evaluation in WiredTiger [15],
which provides competitive B+-Tree and LSM-Tree implementations

Outline. We present an architectural overview of MV-PBT in Sect. 2. Sections 3
and 4 focus on reduction of write amplification by data skipping and fast retrieval
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Fig. 1. Logical horizontal partitioning in MV-PBT and replacement policy of MV-
PBT-Buffer yield in hot/cold separation within one single tree structure and ultimately
enables a sequential write pattern of whole partitions.

in a horizontally partitioned structure and considering defragmentation only as
a result of garbage collection. We evaluated the storage management structures
in the homogeneous storage engine WiredTiger 10.0.1 in Sect. 5 and conclude in
Sect. 6.

2 Architecture of Multi-Version Partitioned BTrees

Multi-Version Partitioned BTree (MV-PBT) as an append-based and version-
aware storage and indexing structure relies on well-studied algorithms and struc-
tures of traditional B+-Trees – with which they share many characteristics and
areas of application. Therefore, MV-PBT is able to adopt and even leverage char-
acteristics of advances in modern B+-Tree techniques. The proposed approach
facilitates straightforward horizontal partition management within one single
B+-Tree structure in order to keep a very hot mutable fraction of leaves in fast
volatile main memory (compare Fig. 1) – the MV-PBT-Buffer including the most
recent partition leaves is temporarily apart from the regular buffer replacement
policy. Reaching a certain dirty memory footprint threshold initiates an atomic
partition switch operation, which asynchronously finalizes in a sequential write
of dense-packed cleaned data in leaves and referring inner nodes, in order to
interference-freely absorb ongoing modifications. Since partitions are principally
defined by the existence of associated records, they appear and vanish as sim-
ply as inserting or deleting records [10], however, auxiliary meta data structures
allow a massive speed-up of operations. Append-based structures allow modifica-
tions of already persisted data by out-of-place replacement. MV-PBT enhances
this behavior by additional record types, which allow internal indexing and non-
uniqueness of data and enables native B+-Tree-like indexing features. More-
over, maintenance of multiple record circumstances imply the adoption of multi-
version capabilities by the assignment of transaction timestamps in MVCC with
snapshot isolation. Low write amplification, sequential writes of dense-packed
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Fig. 2. Auxiliary recoverable MV-PBT data structures.

nodes, commonly utilized inner nodes with one single root as entry point, paral-
lelized multi-partition search operations as well as multi-version indexing capa-
bilities make MV-PBT superior as sole storage and index management structure
in storage engines.

MV-PBTs Auxiliary Data Structures information is entirely contained in
the B+-Tree structure. For instance, the mutable most recent partition number
could be identified by searching the rightmost record in the tree structure. Since
cached information is frequently required and its memory footprint is very low,
auxiliary data structures are cached in RAM (an excerpt is depicted in Fig. 2).
MV-PBT data structures require neither locking for any atomic operation nor
additional logging of modifications, since the lightweight information is com-
pletely recoverable from basic B+-Tree by a scan operation. All information of
horizontal partitioning is anchored within the tree structure, i.e. horizontal par-
titioning is transparent to further storage engine modules – contrary to schema
modifications in LSM-Trees.

Multiple MV-PBT exist within a storage engine, which commonly share the
MV-PBT-Buffer threshold. The MV-PBT Meta Data belongs to a specific rela-
tion in the schema. Its most recent partition number (max_pnr) is frequently
required to determine record prefixes as well as for atomic switching operation.
An MV-PBT comprises of several valid partitions, which contain a set of meta
data like the number of records or specific partition type characteristics. Finally,
auxiliary filter structures for point and/or range queries are referenced; e.g. fence
keys, (prefix) bloom filters or hybrid point and range filters [12,18,26].

Partition Number Prefixes are prepended to each record key with the cen-
tral scope of leveraging lexicographical sort capabilities of B+-Trees in order
to achieve a logical horizontal partitioning. Partition numbers could be of any
comparable data type, e.g. 2 or 4-byte integers, and might are maintained in an
artificial leading key column [10]. However, combining the partition number and
the first record key attribute in a partitioned key type (compare Fig. 3a) enables
cache efficient comparison of co-aligned attributes as evaluated in Fig. 3b. Addi-
tional storage costs are negligible due to prefix truncation techniques. Partitioned
keys are simply allocated when setting search keys and their prefix becomes
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Fig. 3. Horizontal partition maintenance with Partitioned Keys

hidden by returning an offset in the leading key attribute in order to retain
transparent horizontal partitioning.

Multi-Version Capabilities accompanying well the out-of-place replacement
in MV-PBT. Multi-Version Concurrency Control (MVCC) with Snapshot Iso-
lation (SI) are a common technique to enable high transactional parallelism
in storage engines, since readers and writers are not mutually blocking as each
transaction operates on a separate snapshot of data. Therefore, multiple versions
records of one logical tuple are maintained in a version chain – each is valid for
a different period in time. MV-PBT adopts a new-to-old ordering approach of
physically materialized version records with out-of-place update scheme and one-
point invalidation model [9,21] – i.e. predecessor versions remain unchanged on
modification, whereas write amplification is massively reduced. Successor ver-
sion records are annotated with the current transaction timestamp (which may
become truncated on eviction to secondary storage devices, whenever no pre-
ceding snapshot is active) and are inserted in the most recent partition in the
MV-PBT-Buffer. Thereby, it is possible to maintain multiple version records in
one partition, e.g. as separate record [21] or in-memory update lists [15]. Based
on the logical search succession in MV-PBT from new-to-old, transaction snap-
shots identify their visible version record and skip others, based on the annotated
transaction timestamps. Since record data values are physically materialized in
each version record, identified records are directly applicable.

Record Types in MV-PBT feature all operations over logical tuple life-cycle
without modifying predecessor version records. During lifetime, it gets created,
modified and deleted while it is frequently read. Regular Records declare the
begin of the life-cycle, hence there is no predecessor version. Its transaction
timestamp is applied by the inserting transaction and indicates its validation.
Replacement Records indicate a new record value on update. Its timestamp inval-
idates its predecessor as well as validates itself. Replacement Records are also
applied on modifications to the record key, however, invalidation requires an
Anti Record with the predecessor key attribute values and the current transac-
tion timestamp for invalidation. Replacement Records as well as Anti Records
probably store its predecessor value for logical tuple assignment as needed in
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Fig. 4. (1) After atomic partition switch, an MV-PBT consists of (A) persistent, (B) a
victim and (c) a most recent partition. Internal nodes and leaves of the victim partition
delay maintenance effort (e.g. split operations) by flexible page size until a reconciliation
process (2.D). The (E) most recent partition consumes ongoing modifications. Finally,
(3) the (F) victim partition is sequentially written to secondary storage and (G) is the
only memory mapped partition.

non-uniqueness index management constraints, however, modifications to the
key attributes and non-uniqueness indexing constraints with index-only visibil-
ity checks [21] allow MV-PBT to serve as sole storage and index management
structure in storage engines but is out of scope in this paper. Finally, Tomb-
stone Records are inserted on deletion of a logical tuple. Major difference to
Anti Records is, that successor version records are impossible.

Atomic Partition Switch and Sequential Write of dense-packed leaves
and referring inner nodes bring a leading edge in MV-PBT. The whole proce-
dure consists of several partially parallelizable stages. After (a) determination of
switch requirement by a certain dirty buffer threshold in the MV-PBT-Buffer, a
(b) valuable MV-PBT victim partition is selected for eviction. Contrary to LSM-
Trees, MV-PBT partitions become immutable and switched by (c) atomically
incrementing the most recent partition number (max_pnr) in the meta data, since
the required B+-Tree structure is already existent and logged anyways.

However, records are probably not yet in their final (d) defragmented and
dense-packed disk layout, since structure modifications are the result of a ran-
domly inserting workload. One approach to avoid expensive partition-internal
structure modifications (e.g. node merges) is to simply re-inserting the still valid
contents in their final arrangement by manipulating the partition number in a
bulk load operation [21]. B+-Trees allow efficient split policies to support high fill
factors by this operation. Finally, visibility characteristics of both partitions are
swapped and the randomly grown source partition gets cropped from the tree.
Another approach is to leverage modern B+-Tree techniques. In order to avoid

Fig. 5. Flexible MV-PBT-buffer share allows cache preserving handover of a clean
victim partition from (A) the MV-PBT-buffer to (B) a common buffer replacement
policy and (C) flexible growth up to a max. MV-PBT-buffer share.
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structure modifications, referenced main memory nodes are allowed to flexibly
grow and finally get divided and structured in the disk layout in a reconciliation
process (depicted in Fig. 4).

Auxiliary (e) filter structures are generated as a natural by-product of defrag-
mentation and dense-packing, since records are accessed anyways. Whenever (a
fraction of) leaf nodes obtained their final layout, it is possible to (f) perform a
sequential write of leaves and referring inner nodes by traversing the tree struc-
ture and following the sibling pointers – yielding in a bottom-up sequential write
of nodes, level by level. Finally, the persisted leaves are (g) passed to the regu-
lar replacement policy in order to sustain a constant buffer factor and memory
footprint (Fig. 5).

Basic Operations in MV-PBT are based on regular a B+-Tree – i.e. they have
logarithmic complexity. Every modifying operation is treated as an insertion of
a record of a respective type. Thereby, the current transaction timestamp is
set for validation in visibility checks – and one-point-invalidation of conceivable
predecessors, respectively, which can be located in a preceding or the current
partition. However, due to the partitioned key, each modifying operation is per-
formed in the most recent partition in main memory. This is also valid in case of
concurrent partition switch by overwriting the partition number of an insertion
record key and immediate re-traversal from root. Additional constraint support
is very uncommon in pure storage management since records are typically over-
written by blind insertions, however, this is facilitated by MV-PBT in preceding
equality search operations.

Equality and range search operations perform root-to-leaf traversals of a
(sub-)set of partitions by manipulation of the partition number in the parti-
tioned search key. Partitions are preselected by auxiliary filter structures. Logi-
cally, partitions are searched in reverse order from the most recent to the lowest
numbered one. Based on the selectivity of a query, partitions may are sequen-
tially processed or by parallel traversals in a merge sort operation. In case of
equality searches, sequential processing allow minimal read amplification, con-
trary, sorted range searches favorably adopt the merge sort approach, whereby
multiple cursors are applied and get individually moved and returned to a higher
level merge sort cursor. Thereby, record transaction timestamps are checked for
visibility to a transaction snapshot. Based on a regular visibility check, invis-
ible and invalidated records are skipped, invalidating records are remembered
for exclusion of occurring predecessors (which are subsequently accessed) and
matching records are returned [21].

3 Cached Partition: Stop Re-writing Valid Data

MV-PBT introduces a logical horizontal partitioning within one single tree struc-
ture in order to leverage characteristics of secondary storage devices. This data
fragmentation influences the search operations in different ways. Obviously, sev-
eral possible storage locations of a requested record implies additional search
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effort. Actually regular B+-Trees incur increased search costs in randomly grown
structures, due to diminishing cache efficiency of partially filled inner nodes. Con-
trary, LSM-Trees keep a read-optimized layout within each component, how-
ever, multiple entry points and referenced inner nodes are neither commonly
cached nor leverage logarithmic capacity. LSM-Trees counteracting increased
search effort with background merge operations, whereby write amplification of
still valid data is increased.

MV-PBT preserves a read-optimized and cache-efficient layout for immutable
nodes (Fig. 1B) with one commonly shared entry point and referenced inner
nodes (Fig. 1A) which are subjecting to a optimal fill factor, since append based
behavior of referenced data allows efficient split policies (equal to bulk loads). As
outlined in Sect. 2 (Atomic Partition Switch and sequential write), mutable inner
nodes and leaves (Fig. 1C and 1D) are a hot fraction which sustains maintenance
operations of the random workload, however, modern B+-Tree techniques allow
main memory efficient delay of maintenance operations. Since the small fraction
of inner nodes is commonly used, they are well cached, so that a large portion
of the parallel traversal operations is performed without read latencies from
secondary storage devices. Successive read I/O in multiple partitions leverage
parallelism in flash persistent storage. Moreover, search performance in MV-PBT
relies on data skipping by auxiliary filter structures. As a combined result, MV-
PBT is able to sustain comparable search performance for higher fragmentation
as in LSM-Trees.

However, variety of auxiliary filter structures imply caching and probe costs
as well as massive amount of traversal operations result in high read I/O costs
and shrink performance due to growing fragmentation. Instead of adversely re-
writing still valid data records in a consolidated arrangement, due to asymmetry
of flash and write amplification, MV-PBT introduces Cached Partitions. They
are an internal index partition, whose records reference a preceding partition,
containing the latest version record of a logical tuple in a lexicographical sort
order. Several Cached Partitions may exist for a different subset of small parti-
tions and are cyclically created while the MV-PBT evolves. Cached Partitions
are the result of a background merge sort of contents in several immutable lower
numbered partitions with the respective partition number as value or the con-
tents of several preceding Cached Partitions. Background merge sort results are
bulk inserted in an ‘invisible’ partition while proceeding, can be paused and
continue without wasting work and become finally visible by an atomic status
switch.

Since a subset of partitions is fully indexed in a Cached Partition, a subse-
quent search operation is able to traverse the subset on the commonly cached
path as needed, based on the results of the internal partition index. Cached Parti-
tions assume responsibilities of auxiliary filter structures and allow to exclude the
subset of indexed partitions from the regular logical search succession, whereby
comparison costs in an internal merge sort are reduced – the effort is focused on
non-indexed and Cached Partitions. Furthermore, cached index records are very
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space and cache efficient in the search process, since they consist of the key and
one partition number (e.g. 2 or 4-byte integer) in a dense-packed arrangement.

4 Garbage Collection and Space Reclamation

Datasets and tuple values evolve over time. Storage management structures with
out-of-place update approaches allow beneficial sequential write patterns and low
write amplification, however, invalidated predecessor record versions remain exis-
tent on update. Search operations are able to exclude invalid version records from
the result set, though visibility checking entail additional processing. Further-
more, version records which are not visible to any active transaction snapshot
entail space amplification and additional storage costs.

In MV-PBT, additional search costs due to fragmentation by horizontal par-
titioning is well covered by Cached Partitions for insertion of new tuple version
records. However, modifications to logical tuple values leave persisted obsolete
version records behind, yielding in space amplification. Ideally, obsolete version
records are discarded as part of the dense-packing phase on partition switch,
however, many version records become invalidated after they were persisted. For
the only reason of space reclamation, MV-PBT occasionally performs a garbage
collection (GC) process. Similar to the creation of a Cached Partition, GC is
performed by a background merge sort and bulk load operation in a not yet vis-
ible partition. Certainly, the stored record value is the regular value of the most
recent record version of a tuple. As well, the GC process can throttle and con-
tinue without wasting work, since the partition is not yet accessible for querying.
After the successful completion, the partition becomes visible and the records
of purified preceding partitions become invalidated. Once every active search
operation finished, the purified partitions are cropped from the tree structure by
an efficient range truncation [15].

5 Experimental Evaluation

We present the analysis of MV-PBT as storage management structure in compar-
ison beside the baselines LSM-Trees and B+-Trees fully integrated in WiredTiger
10.0.1 (WT) [15]. LSM-Trees in WT build upon components of the provided
B+-Trees upon which MV-PBT is also implemented. A good comparability is
achieved, since all structures commonly operate on equal code lines and B+-Tree
techniques, e.g.: prefix truncation, suffix truncation and snappy compression;
reduced maintenance effort due to flexible page sizes; main memory page repre-
sentation with sorted areas, update-lists and insertion skiplists; MVCC transac-
tion timestamps in main memory record representation; tree-based buffer man-
agement.

Experimental Setup. We deployed WiredTiger(WT) 10.0.1 and WT with
MV-PBT as storage management structure on an Ubuntu 16.04.4 LTS server
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with an eight core Intel(R) Xeon(R) E5-1620 CPU, 2GB RAM and an Intel DC
P3600 enterprise SSD. We used the YCSB framework [5,17] for experimental
evaluation with a dataset size of approx. 50GB, unless stated otherwise. The WT
cache size is set to 100MB and LSM-chunks as well as partitions are allowed to
grow up to 20MB. Direct IO is enabled and the OS page cache is cleaned every
second in order to ensure repeatable, reliable and even conservative results.

Experiment 1: Space and Write Amplification. In Fig. 6a, B+-Tree, LSM-
Tree (merges are disabled for comparability) and MV-PBT are initially bulk
loaded with 100 million records (key and value size are 13 and 16 bytes respec-
tively). Prefix truncation in record keys, suffix truncation in separator keys
and snappy compression allow comparable relative space requirements for all
approaches. There is a clear evidence of the synergy between prefix truncation
and partitioned key, since the enlarged record key by a 2 byte partition number
does not result in higher space requirements. Subsequently, 5 million new records
are inserted – yielding in approx. 60 new partitions/LSM-components. Due to
compression techniques, the additional relative space requirement is lower than
the actually added record size, with slight advantages for MV-PBT. B+-Tree
suffer from insertions in the read-optimized layout due to node splits – yielding
in massive relative space amplification per newly inserted records. Insight: MV-
PBT offers the lowest space amplification, that is between 12% and 31× better.
Finally, the write amplification (Fig. 6a) is evaluated after 5 million inserts. Since
almost each insertion causes escalating node splits in the read-optimized layout
of a B+-Tree, each insertion causes 2.76 write I/Os of half filled nodes. Sequential
writes of dense-packed nodes allow LSM-Trees and MV-PBT to achieve singular
writes of optimally filled nodes, yielding in much less write I/O per insertion.
MV-PBT achieves a better factor due to commonly used inner nodes. Moreover,
merge operations of LSM components would cause a downturn of write amplifi-
cation by orders of magnitude. Insight: compared to LSM-trees, MV-PBT offers
30% less write amplification and is up to 300× better than B-Trees.

Experiment 2: Sequential Write Pattern. Figure 6b depicts a sequential
write pattern with the logical block addresses (LBA) on the ordinate and evolv-
ing time on the abscissa. As a result of the partition switch operation, delayed

Fig. 6. Experiments 1 and 2 evaluate the structural properties of MV-PBT.
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Fig. 7. Experiments 3 and 4 evaluate consistent performance of MV-PBT.

maintenance operations (splits) on leaves followed by inner nodes are performed
in a reconciliation operation. Afterwards, leaves are identified by a tree walk and
ascending written to secondary storage devices, depicted by the continuously
ascending markers. Finally, the referencing levels of immutable inner nodes are
sequentially written, depicted by multiple shorter continuously ascending mark-
ers. Insight: MV-PBT is able to perform advantageous sequential writes.

Experiment 3: Steady Performance by Cached Partitions and Garbage
Collection. The write-heavy YCSB Workload A consists of 50% updates and
reads, respectively (depicted in Fig. 7a). Write amplification in B+-Trees yield
in poor performance characteristics (7M tx). Sequential writes and low write
amplification in base MV-PBT (no Cached Partition and GC) allow much higher
transactional throughput, however, increasing search effort degenerates perfor-
mance (44M tx), whereby LSM-Trees hold search effort down by merges (74M
tx). Insight: the direct structural comparison of LSM-Trees and MV-PBT is with-
out merges and garbage collection, whereby MV-PBT outperforms LSM (11M
tx) by 4×. Enabling Cached Partitions allow MV-PBT increased read efficiency,
however, memory footprint of auxiliary filter structures degenerates its capa-
bilities over time due to effectively reduced cache (94M tx). Insight: occasional
Garbage Collection in MV-PBT (every 400 Partitions) enables stable perfor-
mance characteristics (151M tx), outperforming LSM-Trees by 2×.

Experiment 4: Read-Only Performance Characteristics of Intermedi-
ate Structures States. YCSB Workload C is performed several times after
inserting 500k small random records for 10min, respectively (depicted in Fig. 7b).
B+-Tree remain very stable, but slightly decrease, since the read-optimized lay-
out breaks. LSM-Trees throughput is varying based on the number of LSM com-
ponents. Insight: commonly cached inner nodes and periodically created Cached
Partitions allow MV-PBT to retain comparable read performance even if 80
partitions are created after 10 million random insertions.

Experiment 5: Impact of Different Value Sizes. YCSB basic workloads
(Fig. 8) are performed on small (16 bytes), medium (100 bytes) and large (1000
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Fig. 8. Experiment 5 evaluates performance for different value sizes.

bytes) value sizes, the initial load has been adjusted to match approx. 50GB
dataset size. Insight: MV-PBT outperforms its competitors in the high and
medium update intensive workloads A and B, even the LSM-Tree by 2× in
the workload A. The read-only workload C is performed on the read-optimized
layout after load phase – comparable results prove negligible costs of partitioned
key comparisons, whereas LSM-Trees are only able to retain performance for
one component (compare Figs. 8c and 7b). Workload D searches for few concur-
rently inserted records. B+-Tree benefits from well cached nodes in the traversal
path due to the recent insertion. This is also valid for MV-PBT and LSM-Trees,
however, concurrent insertions are not in the MVCC snapshot and cause search
operations in other partitions or components, which is 2× faster in MV-PBT.
Finally, MV-PBT is able to achieve comparable performance to B+-Tree in the
mostly scan workload E. Cached Partitions and commonly cached inner nodes
enable cheap merge sort scan operations.

6 Conclusion

In this paper we present Multi-Version Partitioned BTrees (MV-PBT) as a sole
storage and index management structure [21] in KV-storage engines. Logical hor-
izontal partitioning yields beneficial appends of version records within a single
tree structure. Partitions leverage properties of B+-Trees by common utiliza-
tion and caching of inner nodes in traversal operations, whereby constant search
performance and high fragmentation are brought together. This behavior lever-
aged by Cached Partition in order to minimize write amplification to secondary
storage devices. Contrary to LSM-Trees, merging is considered for garbage collec-
tion of obsolete version records than for sustained search performance, wherefore
MV-PBT is predestinated to be applied in KV-storage engines.



268 C. Riegger and I. Petrov

References

1. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices.
In: SIGFIDET 1970, New York, NY, USA (1970)

2. Bayer, R., Unterauer, K.: Prefix b-trees. ACM Trans. Database Syst. 2, 11–26
(1977)

3. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In: SIGMETRICS
(2009)

4. Comer, D.: Ubiquitous B-tree. ACM Comput. Surv. 11, 121–137 (1979)
5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: SoCC 2010 (2010)
6. Facebook: MyRocks a RocksDB storage engine with MYSQL (2022). http://

myrocks.io
7. Facebook: RocksDB a persistent key-value store (2022). http://rocksdb.org
8. Gottstein, R.: Impact of new storage technologies on an OLTP DBMS, its archi-

tecture and algorithms. Ph.D. thesis, TU, Darmstadt (2016)
9. Gottstein, R., Petrov, I., Hardock, S., Buchmann, A.P.: SIAS-chains: snapshot

isolation append storage chains. In: ADMS@VLDB (2017)
10. Graefe, G.: Sorting and indexing with partitioned b-trees (2002)
11. Levandoski, J.J., Lomet, D.B., Sengupta, S.: The BW-tree: a b-tree for new hard-

ware platforms. In: ICDE (2013)
12. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos, S.: Rosetta: a

robust space-time optimized range filter for key-value stores. In: SIGMOD (2020)
13. Ma, D., Feng, J., Li, G.: A survey of address translation technologies for flash

memories. ACM Comput. Surv. 46, 1–39 (2014)
14. MongoDB: MongoDB: The application data platform (2022). https://www.

mongodb.com
15. MongoDB-Inc.: Wiredtiger: Wiredtiger developer site (2021). https://source.

wiredtiger.com/
16. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree

(LSM-tree). Acta Inf. 33, 351–385 (1996)
17. Ren, J., Kjellqvist, C., Deng, L.: Github - basicthinker/YCSB-C: Yahoo! cloud

serving benchmark in c++ (2021). https://github.com/basicthinker/YCSB-C
18. Riegger, C., Bernhardt, A., Moessner, B., Petrov, I.: bloomRF: on performing

range-queries with bloom-filters based on piecewise-monotone hash functions and
dyadic trace-trees. CoRR (2020)

19. Riegger, C., Vinçon, T., Petrov, I.: Write-optimized indexing with partitioned b-
trees. In: iiWAS 2017 (2017)

20. Riegger, C., Vinçon, T., Petrov, I.: Indexing large updatable datasets in multi-
version database management systems. In: IDEAS (2019)

21. Riegger, C., Vinçon, T., Gottstein, R., Petrov, I.: MV-PBT: multi-version index
for large datasets and HTAP workloads. In: EDBT (2020)

22. Ruan, X., Zong, Z., Alghamdi, M., Tian, Y., Jiang, X., Qin, X.: Improving write
performance by enhancing internal parallelism of solid state drives. In: IPCCC
(2012)

23. Sears, R., Ramakrishnan, R.: BLSM: a general purpose log structured merge tree.
In: SIGMOD (2012)

24. Shin, I.: Verification of performance improvement of multi-plane operation in SSDS.
Int. J. Appl. Eng. Res. 12, 7254–7258 (2017)

http://myrocks.io
http://myrocks.io
http://rocksdb.org
https://www.mongodb.com
https://www.mongodb.com
https://source.wiredtiger.com/
https://source.wiredtiger.com/
https://github.com/basicthinker/YCSB-C


Storage Management with Multi-Version Partitioned BTrees 269

25. Winata, Y.A., Kim, S., Shin, I.: Enhancing internal parallelism of solid-state drives
while balancing write loads across dies. Electron. Lett. 51, 1978–1980 (2015)

26. Zhang, H., et al.: Surf: practical range query filtering with fast succinct tries. In:
SIGMOD 1918 (2018)

27. Zhong, W., Chen, C., Wu, X., Jiang, S.: REMIX: efficient range query for LSM-
trees. In: FAST (2021)



Generalization Aware Compression
of Molecular Trajectories

Md Hasan Anowar1(B) , Abdullah Shamail1(B) , Xiaoyu Wang2 ,
Goce Trajcevski1(B) , Sohail Murad3 , Cynthia J. Jameson4 ,

and Ashfaq Khokhar1

1 Iowa State University, Ames, IA 50011, USA
{mhanowar,ashamail,gocet25,ashfaq}@iastate.edu

2 University of Notre Dame, Notre Dame, IN 46556, USA
xwang58@nd.edu

3 Illinois Institute of Technology, Chicago, IL 60616, USA
murad@iit.edu

4 University of Illinois Chicago, Chicago, IL 60607, USA
cjjames@uic.edu

Abstract. Molecular Dynamics (MD) simulation is often used to study
properties of various chemical interactions in domains such as drug
development when executing real experimental studies are costly and/or
unsafe. Studying trajectories generated from MD simulations provides
detailed atomic level location data of every atom in the experiment.
The analysis of this data leads to an atomic and molecular level under-
standing of interactions among the constituents of the system-of-interest,
however, the data is extremely large and poses formidable storage and
processing challenges in the analyses and querying of associated atom
level motion trajectories. We take a first step towards applying domain-
specific generalization techniques for trajectory compression algorithms
towards reducing the storage requirements and speeding up the process-
ing of within-distance queries over MD simulation data. We demonstrate
that this generalization-aware compression, when applied to the dataset
used in this case study yields significant efficiency improvements, with-
out sacrificing the effectiveness of within-distance queries for threshold-
based detection of molecular events of interest, such as the formation of
hydrogen-bonds (H-Bonds).

Keywords: Trajectory compression · Molecular dynamics simulation ·
Drug development · Generalization

1 Introduction

In broader terms, data compression can be perceived as any methodology which
takes a dataset D with size |D| = β as input, and produces a dataset D′ with
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size |D′| = β′ as a compact representation of D, where β′ << β. The field of
data compression has a long history [18]. In the past couple of decades, owing
to miniaturization of computing devices, GPS (Global Positioning Systems) and
communication technologies, multiple large trajectories datasets have been gen-
erated to which compression has been extensively applied [21,26].

Fig. 1. Molecules and proximity

Fig. 2. Simplified proximity-based
interaction

A specific domain that we focus upon in
this work is the Molecular Dynamics (MD)
simulation in chemistry. Due to the high costs
of experiments, often times the domain scien-
tists resort to simulation [1] which, in addi-
tion to cost reduction, decreases the failure
rate and can also speed up the drug devel-
opment process. However, one of the conse-
quences of MD simulation-based studies is the
large volume of generated data which is sub-
sequently to be analyzed. Only very recently
the research community investigated the com-
pression of data corresponding to the outputs
of MD simulations [9]. The objective of [9] is to
have a kind of a lossless compression that will
preserve the ring-polymer blends. In contrast,
our work considers the MD dynamics data
as a collection of trajectories of (the motion
of) atoms and molecules and focuses on effi-
ciently processing the spatio-temporal within-
distance query over the compressed data. The
rationale is that this query can indicate a
potential interaction between a polymer and
a drug. More specifically, given the properties

of the molecules (and the forces binding the atoms), in certain cases, a structure
such as Hydrogen Bond (H-Bond) may be formed between atoms from different
molecules. Quite often, the precondition for such an event is that the proximity
of specific atoms is less than a given threshold dθ. An illustration is provided in
Fig. 1 and Fig. 2 where Fig. 1 visualizes the overall process and Fig. 2 shows a
simplified scenario of atoms from two different molecules bonding upon certain
proximity. We note that there are other preconditions for bonding to occur (e.g.,
types of atoms within the distance threshold; angle of the planes between atomic
groups in the participating molecules, etc.).

The datasets from MD simulations corresponding to molecules/atoms motion
trajectories are large (exceeding 10s of GB per run). As such, the compression
of these trajectories can yield significant storage savings and, in turn, speed up
the processing of within-distance query for trajectories – which is often also a
continuous one, in the sense that time-intervals before the actual proximity may
be of interest. Clearly, processing any spatio-temporal query over compressed
(simplified) trajectories data is subject to an uncertainty-based error. However,
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one can eliminate false negatives by augmenting the value of the threshold dθ and
subsequently refining the search around the locations-in-time where a proximity
query may possibly be satisfied.

At the heart of the motivation for this work is the observation that incorpo-
rating certain context-awareness as part of the compression process may enable
further significant speed-ups in processing within-distance queries for a given
threshold. Studies on algorithmic approaches for trajectory data compression
and the impact on the errors in queries’ processing abound [21,26] and, follow-
ing the parlance in cartography, we refer to this as a generalization. Specifically,
generalization means manipulating either the input or the output of the com-
pression (or both), for the purpose of retaining certain semantic features and,
possibly, affecting the compression algorithm itself. Two classical examples are:

(1) When a map scale is lower than a certain ratio, buildings may need to be
“artificially” enlarged after the compression, so that they are still visible to
the human eye [20,24].

(2) When a polyline representing a river is compressed, an object (e.g., city)
may turn out to be on a different (than the original) river bank [17].

Maintaining such semantic/topological consistencies can be done either with
post-processing (as in (1) above), or by pre-processing of the input (e.g., adding
convex hull) and additional conditions in the algorithms (as in (2) above).

In this work, we take a first step towards applying compression to trajectories
of atoms from molecules participating in a chemical interaction. More specifically,
we capitalize on the semantics of the interactions involved in the MD simulations
for the case of flavanone drug (which is the use case for this work) to pre-process
the trajectories data. This, in turn, yields even smaller input for the compression
algorithms, providing increased efficiency speed-ups when processing the query
of interest – in our case, the within-distance query, for a given threshold dθ. Our
main contributions are:

– We present domain-specific approaches to preprocess the trajectories of the
molecules from the MD simulations and obtain their compact representation.

– We use these as a generalization-based application of traditional trajectory
compression algorithms, whereby instead of compressing trajectories for each
individual atom, we compress the trajectories of molecular “representatives”.
We introduce a näıve approach for the compression which works well for the
specific use case in this paper, and apply two existing trajectory compression
algorithms to compare the results.

– We present detailed experimental evaluations to quantify the benefits of the
proposed generalization-based trajectory compression in terms of storage sav-
ings and efficiency gains in terms of processing time of the within-distance
query.

In the rest of this paper, we present the background and problem definition
in Sect. 2, and the proposed generalizations along with application of trajec-
tory compression techniques in Sect. 3. Section 4 elaborates the data set, result
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analysis, and experimental evaluation of the proposed methodology, and Sect. 5
gives concluding remarks and outlines directions for future work.

2 Background

We now describe the chemical events in MD trajectories, some classical
approaches for trajectory compression and related works, and then discuss the
problem in greater detail.

Preliminaries
The MD trajectories used in this study are from our previous work, where we
studied the chiral drug separations on the polymer surface [22,23]. The signifi-
cance of this trajectory data is that it can be used to detect important chemical
phenomena, like the formation of a H-Bond.

H-Bonds are special type of interactions which happen due to attractive
forces between a Hydrogen (H) atom attached to a highly electro-negative atom,
e.g. Nitrogen (N), or Oxygen (O) and another heavy atom which provides a lone
pair of electrons [15], possibly N, O, or Fluorine (F) atoms. In H-Bond formation
(illustrated in Fig. 3), the highly electro-negative atom bearing an H acts as the
donor and the other electro-negative atom with lone pair electrons acts as the
acceptor [11]. Formation of H-Bond is of particular interest in wide range of
research like [3,8,25]. H-Bonds provide significant information in biophysics as
well - as they can be used to determine the properties of biological molecules
[12]. In MD simulations, if a pair of acceptor and donor atoms is within a certain
structural threshold, denoted by dθ, the instance is considered to be a formation
of H-Bonds [13]. The donor-acceptor distance can vary in the range of dθ ∈
[2.2, 4.0] Å [10]. In addition, there is an angle threshold for H-Bond formation
(which is not considered in this work, but is left as a future work).

Fig. 3. Formation of H-Bond between two
molecules. The highly electro-negative
atom (blue) and the attached H atom
(white) belong to one molecule. The
red acceptor atom comes from another
molecule. (Color figure online)

Traditional Compression Algori-
thms: Among the various compression
algorithms, two popularly used ones
which we consider in this work are
Ramer Douglas Peucker [7] (RDP), and
Scan-Pick-Move (SPM) [19]. We note
that there are many other compression
algorithms (e.g., the optimal algorithm,
available for three or higher dimensions
[2], generalizing the 2D version in [5])
which we defer for future work.

RDP Method: RDP algorithm (also
known as Douglas-Peucker (DP)) algo-
rithm is a classical method for trajectory compression [7] which compresses a
polyline given a user defined error-tolerance threshold, ε. It works with offline
data - requiring the complete trajectory before the algorithm can be applied,
and outputs a simplified version of a given initial trajectory or curve. It begins



274 M. H. Anowar et al.

by defining a base line (p0, pL) from the first point, p0, of the trajectory to the
last point, pL, of the trajectory and finding the point, pf , that is farthest from
the base line formed. To find this pf , RDP calculates the Euclidean distance
of each point pi between the line (p0, pL). If distance d(pf ) < ε, then all pi

between the line (p0, pL) are removed from the trajectory. If there exists a point
pf with distance d(pf , p0pL) > ε then the one with maximum distance value
is kept and the base line is divided into two lines (p0, pf ) and (pf , pl) and the
process is repeated for both of the new lines recursively, eventually resulting in
a compressed trajectory with fewer points in the original trajectory.

Fig. 4. Step 1

Fig. 5. Step 2 (Color figure online)

Fig. 6. Final step

SPM Method: Introduced in [19], this algo-
rithm uses same settings as RDP. The idea
is to create a baseline from the first point,
p0, to the last point, pL and then “scan”
the trajectory by iterating over each point
pi from first to last and calculating its dis-
tance to the base line. If d(pi) > ε, then that
point is kept and the baseline is moved from
(p0, pL) to (pi, pL); otherwise pi is removed
from the trajectory. Figure 4 shows an exam-
ple of SPM, with points p1, p2, p3 and their
distances from the baseline. Given a threshold
ε, the algorithm (in this instance) calculates
that d(p1) < ε and d(p2) < ε and so it rejects
those points (colored red) in Fig. 5 and moves
the baseline to p3pL because d(p3, p0pL) > ε.
The method is repeated from p3 towards the
last point pL and, eventually, would yield a
final version of the compressed polyline (cf.
Fig. 6).

We note here that the main difference
between the SPM and RDP algorithms is that
RDP would first scan the entire original poly-
line and find the vertex that is at the furthest
distance ≥ ε from the p0pL, instead of finding
the very first one e.g., p4 in Fig. 4. Then, the original polyline is subdivided into
two parts p0p4 and p4pL which are solved recursively. The stopping criterion is
that all the points in a given subdivision are within distance ≤ ε from the line
segment between the first and the last point of that subdivision.

Related Work: We observe that when the polyline corresponds to a motion of
an object (i.e., there is a time-value associated with the vertices, and the con-
stant speed motion along edges is assumed) RDP and SPM need to be slightly
adjusted. Namely, instead of time-oblivious Euclidean distance between the ver-
tices of the polyline and the attempted compressed representation, the distances
are evaluated at the corresponding temporal instants. The time-aware variant of
the RDP was detailed in [4] (along with the impact of the uncertainty on popu-
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lar spatio-temporal queries). As mentioned in Sect. 1, the problem of trajectory
compression has been studied extensively, and a recent experimental comparison
is presented in [26]. Incorporating the constraint of motion along road network
in trajectory compression has also been considered (cf. [16]). What separates
our work is that while the motion is constrained, it is due to the properties of
molecules (and atoms within), not a road network. Different from the recent work
on compressing MD simulation data in [9], we introduce the notion of general-
ization (i.e., domain-aware semantic pre-processing) and, while our compression
is lossy, we focus on its impact on the within-distance query as an indicator for
a potential interaction.

Problem Description
Existing trajectory compression techniques are usually used for GPS generated
location-in-time data from land vehicles (the motion of which is sometimes con-
strained by a road network), as well as other free-space motion such as water-
borne vessels [14,19]. Unlike such trajectory data where the positional informa-
tion of single (uniquely identifiable) object is considered, the internal structural
behavior of molecules makes the molecular trajectory rather different from the
traditional trajectories. Firstly, each molecule contains a number of atoms with
their own trajectories – and their intra-molecular relative positions are not rigid.
Secondly, inter-molecular interactions may occur, resulting in both attraction as
well as repulsion – and, in extreme cases, may yield creation of bonds between
atoms from different molecules.

Fig. 7. Original vs. compressed trajectory
distance.

To tackle the challenges of storing,
processing, and analyzing the molec-
ular trajectory data, one can readily
apply any of the existing compression
methods (e.g., RDP or SPM) to sepa-
rately recorded trajectories of individ-
ual atoms, regardless of their adher-
ence to specific molecules. These com-
pression methods reduce the amount
of data. However, such “blind appli-
cation” of trajectory compression to each individual atom may ignore certain
contexts/properties of the chemical interactions. In turn, without properly con-
sidering molecular properties, one may not only lose relevant information during
compression but, as we will demonstrate, also lose benefits in the processing
efficiency. A simple example is illustrated in Fig. 7, part (a) of which shows the
original trajectories of two atoms a1 and a2 before the compression (solid poly-
line) and after compression (dashed segments). The minimal distance between
the original trajectories (do) is greater than the minimal distance between the
compressed versions (dc), and we have do > dθ > dc – which yields a false posi-
tive. This, however, can be resolved by double-checking the original data at the
respective time instant (i.e., apply refinement).

In contrast, Fig. 7(b) shows a scenario where for another pair of atoms, a3

and a4, we have a situation that do < dθ but dc > dθ. When processing within-
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distance queries with dθ over the compressed versions this situation yields a
false negative. To avoid such an issue, one can incorporate the impact of the
compression/uncertainty (cf. [4]) – i.e., by adjusting the value of dθ in the query
syntax by ε. In other words, instead of finding pairs points within-distance (dθ),
we query for within-distance (dθ + 2ε) – and then refine to verify for potential
proximity in the actual data. In this work, we introduce a preprocessing method
based on the knowledge of domain experts, which is applied to the MD simulation
data before proceeding with the compression – and, subsequently, processing of
the within-distance query of interest over the compressed data.

In other words, the proposed generalization based preprocessing retains only
the relevant data, in terms of chemical significance, to be compressed and ana-
lyzed. We can then judiciously apply the compression to the generalized data,
yielding further gains in processing time and storage requirements.

3 Methodology

We now present the details of the proposed preprocessing, introduce a näıve
compression algorithm over the preprocessed data, and discuss the application
of existing trajectory compression algorithms. The settings are illustrated in
Fig. 8 showing 3 drug molecules in the top, and a large polymer molecule in the
bottom part, corresponding to an instantaneous time frame of the simulation.

Molecular Features
To provide a compact representation of MD simulation data, we rely on two
basic contexts, described next.

Molecular Center of Mass (CoM): The CoM is obtained by calculating a
weighted average of the coordinates by the respective atomic masses. For a given
molecule with n atoms, let (xi, yi, zi) denotes the coordinates of the i−th atom
present in the molecule, and mi denotes its mass. The x-coordinate of the CoM

of the molecule is then calculated as: xCoM =
1

n∑

i=1

mi

n∑

i=1

mi × xi (similarly for

the yCoM and zCoM ).
The top portion in Fig. 8 illustrates the CoM for one of the drug molecules.

Fig. 8. Polymer and drug
molecules.

Polymer Surface Plane (PSP): In MD simulations,
the drug molecules move faster while the polymer
substrates remain relatively stationary as the poly-
mer backbones themselves are attached to a solid
base. Hence, for practical purposes, chemistry experts
consider the polymer backbone as static which, in
turn, enables the use of plane along xy axis as a rep-
resentative surface for the polymer at a (relatively)
constant height. Thus, the equation of the PSP can
be approximated by z = Constant. In our case study
(flavanone drug separations on the polymer surface),
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the constant value of z is set to 44 Å and it corresponds to the top (horizontal)
plane of the polymer surface. The concept of PSP is illustrated by the white
rectangle in the bottom of Fig. 8. We note that, in general, drug molecules can
be positioned both above and below the PSP.

Generalization and Compression
We now introduce the generalization approaches that will enable obtaining a
compact representation of the molecular trajectories. Subsequently, we discuss
the adaptation of the compression algorithms used in this work.

Generalization-Based Compact Trajectory Representation (GCTR): The
two features specific to the MD domain that we described can be used as a
preprocessing (i.e., generalization) steps to generate a compact representation of
molecular trajectories, which we describe next.

Generalization Based on Drug CoM and PSP: Based on the properties of the
flavanone drug, we can generate a simplified/compact representation of the MD
simulation data as follows:

1. The drug molecule is approximated as a bounding sphere, centered at CoM
and with a radius rB equal to the distance between CoM and the farthest
atom of the drug.

2. The polymer is approximated with its PSP.

Figure 8 illustrates the approximated representation for one of the drug
molecules and the PSP of the polymer. We obtain this compact representa-
tion for every time frame of the MD simulation data and, for different values
of rB across different time frames we keep the maximum among them, denoted
rmax
B .

As mentioned, certain molecular interactions are only possible when atoms
from a drug molecule and polymer molecule are within certain distance dθ. Once
the individual atoms from the drug molecules are substituted by the CoM and
the sphere with radius rmax

B , one cannot simply use dθ from the CoM as a
threshold, as it may yield false negatives. As a specific example, if the distance
between the CoM and the PSP is > dθ in Fig. 8 and, based on that, we rule out
the possibility of the interaction – we will lose the potential of an atom being in
the lower-part of the sphere being considered for an interaction with some of the
polymer atoms. Thus, instead of looking for pairs of atoms from drug molecules
and the polymer potentially satisfying within-distance (dθ), we process within-
distance (d′

θ), where d′
θ = dθ + rmax

B , between the CoM and the PSP. In effect,
we are ensuring to consider the top of the bounding sphere as a limiting distance
threshold, instead of the CoM point only.

Generalization Based on Representative Atom (RA) and PSP: Due to the struc-
ture of the flavanone drug molecule, in this particular case study, the CoM in
each time frame is always close to the coordinates of the ether oxygen atom,
shown as the red colored atom labeled ‘O’ in Fig. 9. This yields an opportunity
for another generalization, in the sense that instead of calculating the CoM, we
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can simply substitute it with an RA corresponding to the ether oxygen atom. To
obtain the radius of the bounding sphere, we calculate the maximum distance
between RA and the rest of the atoms in the drug molecule, and still use the PSP
to represent the polymer surface. We reiterate that, this “alternative” compact
representation is possible due to the specific properties of the flavanone drug and
may not be generalizable to other MD simulation data – and we have used it in
our experiments for comparison.

Generalization Aware Trajectory Compression (GATCo): We now describe
how we combine the proposed generalization GCTR representation of the atomic
trajectories with compression techniques.

Näıve GATCo (N-GATCo): The perpendicular distance between the CoM and
the PSP can be calculated using the standard analytic geometry approaches –
i.e., for a plane specified by the equation Ax + By + Cz + D = 0 and a point
(x1, y1, z1), the perpendicular distance is |Ax1+By1+Cz1+D|√

A2+B2+C2 . The näıve compres-
sion is based on a simple threshold-based criterion:

1. If the perpendicular distance between CoM (respectively, RA) and the PSP
at a time frame t is smaller than a threshold dδ, then the particular CoM
(respectively, RA) is retained as a representative.

2. Otherwise – i.e., the perpendicular distance between CoM (respectively, RA)
and the PSP at a time frame t is greater than dδ – that CoM (respectively,
RA) is excluded from the compressed representation.

The molecular motion is then approximated by the retained CoM (respectively,
RA) time frames, with a linear interpolation in-between them. We provide quan-
titative observations regarding the values of dδ in Sect. 4.

GATCo with Classical Trajectory Compression: After the preprocessing in
which the molecules are compactly represented by a sphere (weighted CoM or
RA) for each time frame, we apply modified versions of the RDP and SPM to
the trajectories of CoM (respectively, RA).

Specifically, the adaptation of the original versions cater to the fact that the
distances between a given point and the corresponding line segment are actually
calculated in 3D space and with time-awareness [4]. The formula needed to cal-

culate the distance is dP =

∣
∣
∣
−→
AP×−−→

AB
∣
∣
∣

∣
∣
∣
−−→
AB

∣
∣
∣

where: A and B denote the starting and

ending points of a segment considered as a candidate for compressed represen-
tation, and P denotes the point on the original trajectory which is a candidate
to be eliminated from the compressed representation (i.e., “absorbed” by the
segment AB).

We refer to the modified versions as SPM-3D-GATCo and RDP-3D-GATCo.
While the complexity in terms of O() bound as a function of the number of time
frames is not changed for any of them, the main speed-ups in the execution of
compression algorithms (and the storage savings), result from the fact that due
to the preprocessing. SPM-3D and RDP-3D are applied only to the generalized
(CoM or RA, with PSP) trajectories, not to the ones of every single atom.
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To cater to the fact that the trajectory compression of CoM (respectively,
RA) with a given tolerance ε may introduce false negatives, when processing
the within-distance query over the compressed representations, we again use
a modified parameter d′

θ = dθ + 2ε to identify potential candidates for inter-
action. Subsequently, we refine each such candidate using the actual values of
the atoms coordinates instead of the compact representation. We note that, as
part of our experimental evaluation, we also investigated the combined effect of
applying SPM-3D and RDP-3D to the output of N-GATCo (denoted as SPM-
3D-N-GATCo and RDP-3D-N-GATCo, respectively).

4 Experiments

Fig. 9. Flavanone drug
(Color figure online)

Fig. 10. One part of the
repeating unit of ADMPC
Polymer

We now present the details of our experimental
observations, including datasets description, exper-
imental setup and the discussion of the results.
For reproducibility, the source code of our imple-
mentations is publicly available at https://github.
com/abdullahshamail/GATCo. Datasets can also be
obtained upon request, by contacting the authors –
and we describe them next, along with the rest of the
setup (queries, simulation platform and evaluation cri-
teria).

Trajectories Data and Platform
The flavanone drug molecule in the MD trajectory
data [22,23] consists of 29 atoms. The structure of
the drug molecule is shown in Fig. 9. The polymer
substrate is Amylose Tris (3,5-dimethylphenyl carba-
mate) commonly known as ADMPC and its struc-
ture is shown in Fig. 10. Each polymer model in the
simulation contains 1459 atoms. The contents of the
drug and polymer molecules are given in Table 1. The
MD simulation produces 200,000 time frames and
each time frame captures the instantaneous 3D coor-
dinates of all the atoms of the four polymers and drug
molecules. For the purpose of analysis, we select only
216 N atoms (referred to as donors) and one ether O atom (referred to as the
acceptor) to construct the uncompressed trajectories used in our experiments.

The experiments are conducted on a PC with Intel(R) Xeon(R) CPU E3-1240
v5 @3.50 GHz, 16 GB RAM, 512 GB disk storage and Windows 10 Enterprise
64-bit OS. The algorithms are implemented by Python 3.9.7.

https://github.com/abdullahshamail/GATCo
https://github.com/abdullahshamail/GATCo
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Table 1. Contents of the drug and polymer

Atoms Atomic mass No. of atoms
in drug

No. of atoms
in polymer

Carbon (C) 12.0107 15 594

Hydrogen (H) 1.00794 12 667

Oxygen (O) 15.9994 2 144

Nitrogen (N) 14.0067 0 54

Within-Distance Threshold Query for H-Bond
The formation of an H-Bond can only occur when the donor and the acceptor
atoms are within a certain proximity. Thus, we can translate the detection of
a possible formation of H-Bond into processing of a within-distance query for
a given threshold, for which the domain expertise (cf. [22]) suggests a value of
dθ = 3.5 Å. We note that the within-distance threshold query, after applying
the periodic boundary adjustments, outputs the first requirement of H-Bond
formation; preprocessing based on angle threshold is left for a future work.

Evaluation Criteria
The following performance evaluation criteria are used to evaluate the efficiency
of traditional and proposed compression approaches.

Compression Ratio: This is the relative reduction of the original data after
applying a data compression algorithm. If the size required to store the trajectory
data before compression is p and after compression is q, then the compression
ratio R is defined as: R = p

q .

Speedup Ratio of Query Processing Time: Let T1 denote the time for pro-
cessing the within-distance query over the original uncompressed trajectory data
and T2 denote the respective time over the compressed trajectory data. The
speedup ratio is defined as: ST = T1

T2
.

Results
We now report the quantitative observations from the comparative study of
our proposed approaches using the trajectory data described in Sect. 4 when
evaluating the within-distance (3.5 Å) query for the purpose of detecting a
formation of H-Bond instances. We note that, the H-Bond query processing
time for uncompressed trajectories is 38.83 s.

Generalization: For the dataset used in this study: (a) When CoM is used as
a spatial representative of the drug molecule, the average value of rB is 5.89 Å
with a standard deviation of 0.057 Å, and the rmax

B value is 6.12 Å; and (b)
When the drug molecule is represented via RA, the average value of rB is 6.04
Å with a standard deviation of 0.106 Å, and the rmax

B value is 6.49 Å.
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Table 2. N-GATCo using CoM and RA

Value of dδ Compress. ratio

CoM RA

6 Å 2.15 2.12

5 Å 2.74 2.69

4 Å 3.16 3.13

3 Å 4.42 4.4

2 Å 9.52 8.03

1 Å 26.67 24.09

Table 3. SPM-3D vs. RDP-3D

Compress.
technique

Epsilon
(ε)

Compress.
ratio

Compress.
time
(mins)

Query
proc.
time (s)

SPM-3D 0.5 1.47 508.37 22.67

0.75 2.50 241.07 18.06

1.0 4.21 145.95 14.56

RDP-3D 0.5 1.39 1391.73 23.52

0.75 2.39 994.81 16.85

1.0 4.08 842.43 15.09

Compression with Traditional Algorithms: We apply both SPM-3D and
RDP-3D with varying epsilons (ε) to compress the original trajectories of all
the atoms – i.e., without any preprocessing/generalization. The values of epsilon
(ε) are selected to be 0.5 Å, 0.75 Å, and 1.0 Å. For the individually compressed
trajectories (donor and acceptor atoms), we need linear interpolation in time for
proper distance comparisons, to avoid losing a relevant instance (cf. Fig. 7).

The respective times required to compress and interpolate (which we jointly
consider as compression time) for the original trajectories are shown in Table 3,
for different values of ε. We see that, for ε = 0.5 Å, SPM-3D and RDP-3D
can yield a compression ratio of 1.47 and 1.39 times, however, for ε = 1 Å the
compression ratio becomes > 4. We also note that, in general:

– SPM-3D is completed rather faster than RDP-3D. This is because SPM-3D
iterates over the trajectory once, as opposed to RDP-3D which keeps iterat-
ing (recursively) over the trajectory based on the split-point at the furthest
distance from a candidate-segment.

– In this particular case study, SPM-3D even yields slightly higher compression
ratio than RDP-3D. We note, however, that this need not be the case in gen-
eral, as they are both heuristics (i.e., none of them is an optimal algorithm).

However, the values shown in Table 3 correspond to the settings in which no
generalization has been applied. In the sequel, we provide observations regarding
the GATCo-based compression approaches.

N-GATCo: We now report our experimental observations regarding the näıve com-
pression introduced in Sect. 3. Recall that we either use the equations to compute
the molecular CoM of the flavanone drug molecule at every time frame, or we
use the ether O atom as RA at every time frame. We note that when it comes
to the RA, the ether O atom is actually the one that acts as an acceptor for
H-Bond. Also, recall that as the polymer is almost static compared to the drug
molecules, the PSP is set to a fixed value. The compression ratios for the respec-
tive values of dδ are shown in Table 2. As the distance from PSP declines (for
both CoM and RA), we observe increase in the compression ratios, with quite
higher values when the distance is ≤ 3 Å – going to 26.67 for CoM and 24.09 for
RA. However, these come at a cost. Namely, when one ignores CoMs and RAs at
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distance 4 Å and above “blindly” (i.e., without considering rB values), there is a
risk of introducing false negatives. Double-checking for them, in effect, amounts
to processing almost the entire dataset. Conversely, if one incorporates the value
of rB (which, as mentioned, on the average was 5.89 Å for CoM and 6.02 Å for
RA), then it amounts to keeping all the instances which are within 6 Å from the
PSP. This yields an effective storage savings of ∼50% – i.e., a compression ratio
of 2. In turn, the speedup ratios for N-GATCo become 2.95 for CoM and 3.03
for RA, as a consequence of the fact that we can prune some of the donor atoms
from the polymer from consideration.

Table 4. SPM-3D and RDP-3D for CoM
and RA GCTR

Compress.
type

ε Compress.
ratio

Compress.
time (s)

Query proc.
time (s)

CoM RA CoM RA CoM RA

SPM-3D-
GATCo

0.5 1.49 1.61 230.68 101.38 21 21.9

0.75 2.32 2.64 182.09 40.47 11.84 14.16

1.0 3.40 4.47 162.10 20.85 6.82 8.34

RDP-3D-
GATCo

0.5 1.48 1.58 517.28 381.26 20.68 22.8

0.75 2.34 2.61 479.35 354.43 12.08 14.6

1.0 3.46 4.45 471.61 333.49 6.72 8.53

Table 5. Compression efficiency

Compress.
techniques

Compress.
ratio

Speedup
ratio

Query
proc. time
(s)

SPM-3D 1.47 1.71 22.67

RDP-3D 1.39 1.66 23.52

N-GATCo (CoM) 2.15 2.95 13.15

N-GATCo (RA) 2.12 3.03 12.82

SPM-3D-GATCo (CoM) 1.49 1.86 21.01

RDP-3D-GATCo (CoM) 1.48 1.89 20.40

SPM-3D-GATCo (RA) 1.61 1.78 21.90

RDP-3D-GATCo (RA) 1.58 1.71 22.80

SPM-3D-N-GATCo (RA) 4.98 3.42 11.40

RDP-3D-N-GATCo (RA) 4.58 3.47 11.30

GATCo with 3D Adapted Trajectory Compression: Here, we show the results
when using GATCo in the settings in which SPM-3D and RDP-3D are applied
for compression over GCTR. Table 4 presents the result, and we see that the
compression time for each of SPM-3D-GATCo and RDP-3D-GATCo is signifi-
cantly improved in comparison to the SPM-3D and RDP-3D compression over
raw trajectories data without generalization. For example, the compression time
for SPM-3D-GATCo (CoM) with ε = 0.5 is about 132 times less than SPM-3D
with same value of ε (cf. Table 3).

Lastly, in Table 5 we show an aggregated summary of the compression ratio
and speedup ratio of all the approaches used in this work, for a fixed value of ε =
0.5 Å. As can be seen, combining SPM-3D and RDP-3D with N-GATCo yield the
largest compression ratios (about 5 times less space compared to uncompressed
trajectories) for RA. The speedup ratio for both cases is ∼3.4. Although the
compression ratios are largest for the last two rows in Table 5, the gains in
speedup ratios for processing the within-distance query are approximately 24%
smaller, relative to the gains in the compression ratios. Most likely, the reason for
this is that, additional false positives may occur as we expand dθ range by 2 ·0.5
Å after applying SPM-3D (respectively, RDP-3D) on the outcome of N-GATCo.
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5 Conclusions and Future Work

We presented an approach for using domain-specific knowledge to preprocess
trajectory data of atoms belonging to molecules from MD simulation domain
and generate compact representations of evolving drug molecules. The semantic
generalization (preprocessing) consists of approximating the polymer substrates
with PSP and the drug molecules with spheres centered at CoM or RA, and
with radii equal to the distance between the center and the furthest atom in the
respective drug molecule. We provided experimental observations of the improve-
ments in terms of storage space savings for different combinations of compression
and generalization, along with the speedup in terms of processing the within-
distance query (essential for detecting a potential chemical interaction). Running
∼30 queries over compressed data – which may be useful for different types of
interaction will amortize the cost of compression. There are multiple extensions
that we plan to address in the future. The immediate next steps include incor-
porating the angle requirement for H-Bonds in the generalization and devising
another volume-boundary of the drug molecule, with less of a dead space than a
sphere (e.g., a bounding ellipsoid in a general position). We will also exploit adop-
tion of other compression algorithms from the existing works in time series and
trajectory [6,26], including the optimal 3D polyline compression algorithm [2]
(an extension of the optimal polyline compression [5]). We also plan to evaluate
the velocity autorcorrelation between the uncompressed and (generalized) com-
pressed trajectories and investigate the impact of compression on the quality of
prediction of the diffusion in MD. This preliminary study was confined to the
case of flavanone drug – and we plan to include other MD data sources for the
purpose of developing more robust compression approaches. In the long run, we
plan to extend the approaches to real-time compression of the partial simulation
outputs.
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Abstract. The Resource Description Framework (RDF) is widely used
to model web data. The scale and complexity of the modeled data empha-
sized performance challenges on the RDF-triple stores. Workload adap-
tion is one important strategy to deal with those challenges on the stor-
age level. In all the current adaptation approaches, the workload statis-
tics are built collectively, and the analysis process is not aware of old or
recent items in the workloads. However, that does not simulate the timely
trends that exist naturally in user queries and causes the analysis process
to lag behind the rapid workload development. In this work, we model
the workload statistics as time series and apply well-known smoothing
techniques allowing the importance of the workload to decay over time.
We apply the proposed approach on UniAdapt [1] which follows a unified
and comprehensive storage adaption process.

Keywords: RDF · Triple-stores · Workload adaption

1 Introduction

The resource description framework (RDF) is increasingly used to model web-
scale data in our digital universe. Despite its simple triple-based structure, it
has shown high efficiency in modeling the resources and their complex relation-
ships. Such RDF data are often cached from their sources into a triple store,
where queries are processed. However, due to the big size of the data sets and
their complex relationships, they need to be properly structured into multiple
types of indexes, caches as well as replications. Those requirements of huge data
structures are often faced by the high storage space consumption. Workload
adaption has emerged as a vital approach to deal with that problem. The first
works considered workload to enhance the RDF partitioning in a distributed
environment. In this context, Partout [6] converted a collection of queries into
global queries graph which then was used to estimate which data fragments are
more probable to be targeted by the same queries. The basic aim was to reduce
the communication cost during query execution. The same approach is extended
by WARP [9], AdPart [7], Peng [14] and UniAdapt [1]. However, UniAdapt pre-
sented a comprehensive approach to adapt the indexes, cache, and replication
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in one optimization problem. In all the given systems, including UniAdapt, the
workload is cumulatively collected from the time the system starts, and up to
the current time. The collected workload is then analysed to detect frequent pat-
terns and assign them numerical values that represent their relative importance.
However, since the statistics are collected accumulatively and with no aware-
ness of their collection’s times, any trend changes would have to be compared to
the whole history of workload. That makes the workload analysis inefficient in
detecting changes in workload trends. Those timely trends are already recognized
in real-world queries [3,18]. They can be processed by analyzing their seasonal
factors [17] or their decay factors [8] over time. The seasonal effect means that
some parts of the data could receive heavy access within some time window that
is repeated after some duration. On the other hand, the decay effect means that
the volume of access would decay over time. In this work, we propose transfer-
ring the workload collection into a set of time series by adding timestamps to
each collected query. That allows applying well-known smoothing techniques to
simulate the trend changes occurring in the real-world users’ queries and thus
boosting the adaption process speed in catching up with those trends.

The rest of this paper is structured as follows: In the next section, we provide
essential background about RDF, query processing, and the unified adaption
process. Section 3 describes our proposed method to change the workload into
time series and apply the smoothing methods. We then provide a comprehensive
experimental evaluation in Sect. 4 where we show the impact of the proposed
approach. Finally, we provide a conclusion and future works in Sect. 5.

2 Background and Related Work

In this section, we review the essential methods used to implement a storage
layer adaption based on the workload.

2.1 RDF Graph and Queries Processing

RDF is a data model that has been widely used to represent web-data, by making
statements about resources using a triple-based format. Each triple is composed
of Subject, Predicate, and Object. Those triple elements are abbreviated by (S,
P, O). The subject represents a certain resource that has a relationship to the
object, which is either another resource or a literal. The predicate is describing
this relationship. A triple is often modeled as a graph G where both its subject
and object are vertices connected by one directed edge. Since the object can be
a subject in other triples, the data set or the data graph grows large and more
triples can be defined to describe each resource and its relationships.

The big data graph G can be queried for certain subgraphs using a SPARQL
query. Such a query q is an RDF graph on its own with some parts of it are left
as variables. Since an RDF triple set can be mapped to an RDF graph (and vice
versa), a query graph can be mapped to a set of triple patterns. The answer of
a query q is all the subgraphs in data graph G that match q and substitute its
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variables. Since the subgraph isomorphism problem is known to be NP-complete
[4], the query execution is only feasible with the assistance of suitable indexes.

Given the multiple evaluations and joining paths, each with different costs,
the query optimizer tries to select an approximate optimal plan using dynamic
programming [13]. However, an execution plan is only possible if the necessary
indexes exist, which highlights the importance of optimizing those structures in
RDF triple stores.

2.2 Indexing and Cache

A typical RDF index is a hash table where the RDF set of triples are hashed
either on the subject, predicate, or object. The chosen triple’s element serves
as the key of the index, while the value is all the triples that have the key in
the correct position. Based on that, we have three basic types of indexes: S,
P, or O. Each index is also sorted on the remaining two triple elements. Since
that there are two possible sorting orders to each of the three basic indexes,
we end up with six possible indexes that are: SPO, SOP, OPS, OSP, POS, and
PSO. Although the query execution engine can sometimes live with two indexes,
a more efficient query execution requires all the given indexes. RDF-3X [13]
and Hexastore [19] decided to fully implement the given six indexes. However,
given that each index contains a duplicate of all the data triples, such a system
may cause a lot of storage space consumption. Thus, other systems selected
only a subset of indexes and restricted their query engine to exploit them. The
selection was mainly based on observations of certain workloads. UniAdapt [1]
allowed the system to dynamically build its indexes structure and adapt it, upon
the workload’s status and the status of other storage needs aiming for the best
performance. Besides the normal indexes, UniAdaptbuilds cache indexes which
are used to cache join results and save the most expensive cost. However, it
requires much more space compared to normal indexes. Nevertheless, UniAdapt
integrates the cost and benefit of such a cache in its storage adaption engine.

2.3 Replication

The RDF data set can grow very large which increases the problem of scal-
able data management. One important approach to deal with this problem is
to exploit the capabilities of distribution systems. Among the multiple methods
to distribute RDF management, is the federation of multiple centralized RDF
stores. In such a method, each working node receives a partition of the global
RDF graph and is responsible for managing and querying it [1,6,7,9,10]. How-
ever, the problem of partitioning has become the point of attention for such
systems. Some of them preferred to use hash-based partitioning [7] aiming for
fast completion. Unfortunately, it might cause a lot of communication costs.
TUNABLE-LSH [2] used locality-sensitive hashing (LSH) to assign records that
are accessed across related queries to close physical pages in the storage sys-
tem. Other approaches depended on using more sophisticated graph partitioning
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methods by relying on METIS [12]. It aims to produce balanced (in size) parti-
tions, that have minimum number of edges between them. That could increase
the chance of a query being locally executed in one working node. However,
the problem is now moved to the border regions: the regions where edges con-
necting vertices belong to different partitions. H-RDF-3X [10] made each node
replicate from its border up to a given depth. Unfortunately, the required stor-
age space for such a replication increases exponentially with that given depth.
WARP [9] proposed to use H-RDF-3X method for a given small depth, then use
the workload to select only the most important triples for further replications.
The main problem in such an approach is related to finding suitable values for
the assumed to be given parameters like the depth. UniAdapt [1] proposed to
allow each node to replicate as much as it can allocate from its storage. It orders
the triples (that are proposed for replication) by their importance, and greedily
fills the replication containers. The expected benefit is derived by rules that are
based on the workload and the distance from the border. Those replication rules
are also competing with other rules about indexes and join cache. In such a way,
the system always tries to optimize its storage with the best assignment of data
to structures.

2.4 Workload Adaption

UniAdapt [1] implements a universal adaption approach by putting the indexes,
cache, replication into a single optimization problem. That maps the problem
into the knapsack problem [5]. The knapsack models the storage space which
is to be filled with best assignments of indexes, cache, or replication aiming
to achieve the best total value within the limited storage. The value of each
assignment is the product of the previous access rate and its derived benefit.
The access rate is calculated from the workload using a workload analysis engine
that is based on the heat queries (Subsect. 2.5). The system collects and builds
its workload statistic during execution phases. At some point in time, the system
has enough resources to perform an adaption round. The access rules for each
index are evaluated and sorted by their importance, and the highest important
data replaces the lowest importance. Running this adaption process whenever
possible makes the system choose the best employment to its storage resources.

2.5 Heat Query

The heat query is used by UniAdapt [1] to collect and store the queries that
have been executed by the system. It keeps the information about the queries
structures, frequencies, used indexes, as well as how the queries relate to each
other. The basic structure of a heat query is a graph, since that the SPARQL
queries are modeled as a graph. Figure 1 shows an example for a heat query
evolving from four queries: 〈Q1, Q2, Q3, Q4〉.
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Fig. 1. Heat query evolving from four
queries

First, the system receives Q1 and
creates a new heat query h for it (oth-
erwise it tries first to combine it with
an existing heat query). Next, Q2 is
received, and it is combined with h
such that the matching part between
Q2 and h becomes hotter – this is
shown as darker color in the right side
of Fig. 1. The above applies also in the
same manner for Q3 and Q4. The vari-
ables within any query (here ?x, ?y
and ?z) are substituted with a single
variable ?x. This normalization method
unifies the variables and allows differ-
ent queries variables to be directly com-
bined. When Q4 is combined, the heat
value of C1 is increased in Fig. 1 but a
new node is created that contains variable ?x and has a heat value equal to
1. With more workload queries received and executed by the system, related
heat queries would be combined and thus be bigger in size regardless of their
order of arrival. The heat values stored within the heat query represent the
access frequencies. However, it stores also other execution statistics needed by
the optimizer to calculate the effective benefit of each item.

Table 1. List of abbreviations

h(t) Accumulative heat values up to time t

H Heat time series

Hr Resulted heat time series after smoothing and seasonality analysis

HT Heat time series after exponential smoothing

y A time series

T The index of the current value of a time series

SSE Sum of squared error

e The calculated error

α First smoothing parameter

β Second smoothing parameter

γ Third smoothing parameter

s Seasonality component

b Trend component

� Level component

τ Time span between two consecutive adaption operations

M Uniform time span to sample the accumulative heat query function h(t)

m Seasonality frequency
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3 Heat Item Gets Colder

The problem of the heat query is that it collectively builds the heat values over
time. Assume for example that a sudden high workload queries certain data parts
only for a very short and limited time; we call this a spark query. The effect of
this spark query would continue to influence the collective calculation of heat
query for a long period of time until it eventually collects enough workload
to overcome that spark. That makes it very difficult for the workload analysis
process to detect the timely changes in query trends. To overcome this problem,
we allow the importance of the collected workload to decay over time, or the
hot items to get colder with time by decaying heat. To simulate this, we add a
timestamp to the heat value for each heat query, then aggregate the heat values
for each item over uniform sampling time spans M . This transfers the heat values
into time series y(t). All notation used in this paper is summarized in Table 1.

Definition 1. If h(t) is the accumulative heat value up to time t, and M is
a given sampling time-span, then we define H as heat time series such that:
Hi = h(M · i) − h(M · (i − 1)).

A time-series is referred to a set of successive data points where traditionally
the data points are used to represent many types of quantifiable items like sale
transactions or temperature. Nevertheless, time series have been also used to
study web search queries [20]. Thus, many well-studied techniques are already
available to process time series. The most relevant concerning our application is
the smoothing functions.

3.1 Smoothing Methods

There are many smoothing functions that can be applied to a time series to
simulate decaying. We select two well-known smoothing methods, adapt them
to our problem, and analyze their behaviour both theoretically and practically.

3.2 Exponential Smoothing

The collective heat query assumes that all parts of the collected workload are of
equal importance independent of its time. This is modeled in a time series by
the average method; that is for T collected observations, the expected value of
the next r’th observation ŷT+r is given by the following formula:

ŷT+r =
1
T

T∑

t=1

yt (1)

To simulate the timely decay factor, the uniform weights of the average
method are changed into exponential weights that favour the most recent val-
ues over the newest ones. That is reflected in well-known exponential smoothing
method [11]:

ŷT+1|T = αyT + α(1 − α)yT−1 + α(1 − α)2yT−2 + ... (2)
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where 0 < α < 1 is the smoothing parameter. The value of the equation at time
T + 1 is the one-step-ahead forecast, and equal to a weighted average of all of
the observations in the series y1, . . . , yT . The parameter α controls the decrease
rate of the weights. A very high value of α (close to one) would highly filter non
recent values. A practical approach for choosing a proper value of α is to make
the system choose it. One way to accomplish that is by minimizing the sum of
squared errors on a training set. The error is then defined as follows:

SSE =
T∑

t=1

e2t =
T∑

t=1

(yt − ŷt|t−1)2 (3)

We aim to use this exponential smoothing approach for modeling the decay
of items’ heat with respect to time within each heat query. For that purpose, the
current heat is then calculated from the previous instead of the future values.
Thus Eq. 2 is then rewritten as:

ĤT = αHt + α(1 − α)Ht−1 + α(1 − α)2Ht−2 + ... (4)

However, the heat expressed by the above equation does not consider the
periods in which some series are repeating themselves. Those periods are more
analysed in the next approach.

3.3 Holt-Winters’ Additive Method

Holt-winter method [11] captures seasonality by decomposing the forecasting
formula into three components: level �, trend b, and seasonal component s. The
forecasting formula according to the additive method will be:

ŷt+h = �t + hbt + st+h+m(k−1) (5)

where m is the number of measurement seasons in a term. The components are
given by the following:

�t = α(yt − st−m) + (1 − α)(�t−1 + bt−1)
bt = β(�t − �t−1) + (1 − β)bt−1

st = γ(yt − �t−1 − bt−1) + (1 − γ)st−m

where k is the integer part of (h−1)
m , which keeps the values of the seasonal

indices within the final term of considered timely data. The seasonal equation
shows a weighted average between (yt − �t−1 − bt−1) (representing the current
seasonal index), and the seasonal index of the same season of the last term (m
time periods ago) [11].

We recall that Eq. 5 models the heat of each item of the heat query. UniAdapt
runs its adaption operation on time spans – when the system has free processing
resources. Thus, the system should use the heat values to predict the data access
rate for the next τ time units. That is the time span until the system starts the
next round of its adaption operation.
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To predict the next expected value of τ , we present the values of τ as a time
series on its own. We may simply consider the average as in Eq. 1 as a proper
value for expectation. However, that can perform poorly when the system has to
rapidly change its adaption span periods. That is highly related to the workload
arrival rates. Thus, the exponential smoothing allows the system to fast adapt
its predication of the next τ with the possible timely changes. That is given in
the following:

τ̂T+1 =
T∑

t=0

α(1 − α)tτT−t (6)

A suitable value of α is again found by minimizing the sum of square error as
in Eq. 3. Having the time series of Eq. 6, we can estimate the time period until
the next round of adaptation begins. The effective heat value of the heat query
results from the intersection of this adaption series with the seasonality series
st of Holt-Winter’s method that is given in Eq. 5. That is the summation of the
seasonality component values of Eq. 5 in the period from now until τ :

i= τ
M∑

i=0

st+i+m(k−1), (7)

where M is the time spans of the heat values’ time series H (see Definition 1).
For each of the heat query items, the heat Hr will be the summation of the
exponential smoothed value of Eq. 4 and the seasonality component given in the
above equation:

Hr = ĤT +
i= τ

M∑

i=0

st+i+m(k−1) (8)

4 Experimental Evaluation

In this section, we evaluate the effect of the time smoothing approach on the
performance of UniAdapt. We measure the enhancement in the workload changes
detection and how fast the system reacts to those changes. For this purpose, we
apply the exponential smoothing method (given in Sect. 3.2) and our modified
Holt-Winter-Winters’ additive method (given in Sect. 3.3), then compare them
to the original collective method of the heat queries. We use the LUBM [15] data
set, which is a generated RDF data set that contains data about universities. The
data set can be easily increased in size by increasing the number of universities
and/or their members (student, teacher, publications...). However, the number
of properties (the unique predicates) is kept small and limited. Two important
workload properties are referenced in our evaluation: query length, and workload
quality. The query graph’s length is the value of the maximum shortest distance
that can be found between any two vertices in the graph. The workload quality
is the standard deviation of the workload’s frequencies distribution.
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4.1 Exponential Smoothing

In the first part of the evaluation, we test the effect of the exponential smooth-
ing on the heat queries’ ability to detect workload change, or more specifically,
how fast and accurate it detects those changes. For that purpose, we generate
the workloads given in Table 2. First, the system receives one of the workloads
given in the table for some initial adaption rounds between three and six rounds,
then it rapidly changes to another workload. Figure 2 depicts the behavior of the
adaption system when moving from one workload to the next. The first part is
the transition from Wg1 to Wg2. Both of the workloads contain general average
access to given indexes in Table 2. The specific accesses to the data parts are
uniform. In such a case, the specific rule of UniAdapt is not in action but rather
the general rules. The transition form Workload Wg1 to Wg2 in adaption period
numbered 4 has caused a big increase in queries execution time. This is because
the system could not provide the OPS index which was mainly not built in the
first adaption periods that mainly required the SPO index. The accumulative
adaption of the original heat query slowly adapts to the required change by
building more of the OPS index in the next adaption round. That is seen mainly
as linear behavior. On the other hand, the smoothed adaption showed an expo-
nential decrease in the queries execution time. That resulted in a much faster
adaption that has saved a lot of latency. We consider then the workloads Wg1

and Wg3 in Fig. 2. The transition from Workload Wg1 to Wg3 caused a direct
decrease in execution time due to that Wg3 is better utilizing the join cache and
still using the same indexes of Wg1. However, that is rapidly enhanced in the next
rounds within the exponential smoothing adaption compared to a slower linear
accumulative adaption. For the two remaining parts of Fig. 2, a big increase in
execution time is again recorded when transitioning from Workload Wg2 towards
both of workloads Wg3 and Wg4 in adaption round numbered 4. The afterward
exponential enhancement is clear when moving towards Workload Wg3, when
the system quickly learned to build index SPO that is highly required by Work-
load Wg3 and replaced OPS index, then it further optimized the cache-usage to
boost the performance. That cache optimization was less effective in Workload
Wg4. Nevertheless, the exponential smoothing was highly effective for speeding
up the adaption of the indexes structures towards the needs of workloads Wg3

and Wg4 with respect to the former Workload Wg2.

4.2 Hot Data Parts

In this section of the experimental evaluation, we test the behavior of the adap-
tion system with respect to the workload that targets specific areas of the data
graph. Those parts are referred to as the hot parts which are widely found in
real-world SPARQL queries [14,16]. To simulate such a workload, we generate
it with a frequencies distribution that follows a normal distribution to the data
graph. Such a normal distribution of edges density in the RDF graph is also
observed by [21]. We aim to test how fast the system responds to the changes
in the hot regions. Those changes are either shifts in the locality of the hot
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Table 2. Generated workloads properties

Workl. Properties

Wg1 General workload requires mainly the indexes: SPO and POS
Wg2 General workload requires mainly the indexes: OPS and POS
Wg3 general workload requires mainly the indexes: OPS, POS and cache index
Wg4 General workload requires mainly the indexes: SPO, POS and cache index
Ws1 Data-specific workload with quality (the standard deviation frequency

distribution) of 0.1
Ws2 Data-specific workload with quality (the standard deviation of frequencies

distribution) of 0.01, and average query length of 3
Ws3 Data-specific workload with quality (the standard deviation of frequencies

distribution) of 0.1, and average query length of 4
Wh Data-specific workload with quality (the standard deviation of frequencies

distribution) of 0.01, and average query length. of 4
Wl Data-specific workload with quality (the standard deviation of frequencies

distribution) of 0.1, and the average query length of 4

region (new hot regions replace the existing) or changes in the ratio of distri-
bution which is mapped to variations in the standard deviation of the given
normal distribution. The smaller is the standard deviation, the more is the ratio
of the workload targeting a small region of the data. That case recognized by
UniAdapt [1] as high workload quality. This is because the optimizer can eas-
ily detect those small hot regions of the data and efficiently structure them
into multiple indexes and caches for better queries execution performance, and
without paying the high cost of storage space. We first test the behavior of the
adaption system assuming a workload that first targets a specific region of the
data graph, then rapidly changes to another region that does not overlap with
the first region. However, the distribution quality is kept the same during that
change. The system performance with respect to Workload WS1 of Table 2, is
recorded in Fig. 3. It starts with five rounds called WS1-a targeting a random
region of the workload, then targets another region in the next five rounds with
Workload WS1-b. However, both of WS1-a and WS1-b are identical to the prop-
erties of WS1, which has high workload quality; that means that only a small
portion of data is the highly accessed part. Thus, despite the target-change of
that portion, the system was able to efficiently adapt to it even with the collec-
tive heat query. However, there is still some recognizable performance difference
recorded for the smoothed method. Moving to Workload WS2 and WS3 of Fig. 3,
we tested data-specific workloads with less quality. The effect of the low work-
load quality is more significant on the collective adaption. That is because the
system required a lot of storage space to handle the big size of targeted data.
When that targeted data are changed, the old ones would continue to affect the
statistic calculation for a longer time in the accumulative adaption with respect
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Fig. 2. Adaption behaviour when transiting between the given workloads

to the smoothed adaption. That is clearly seen in the WS2 and WS3 parts of
Fig. 3, where the accumulative adaption showed linear behavior as compared to
a faster-smoothed adaption. The next experiment deals with a change in the
quality of the workload. That case is shown in Fig. 3 where the system starts
with Workload Wh that has high quality, then changes to Wl after five rounds
of adaption. The initial high performance is directly related to the ability of
the adaption process to optimize the storage resources especially the cache and
indexes making use of the high quality of the workload. The adaption process is
totally affected when the quality suddenly changes.

4.3 Seasonality Factors and Capacity

In this part, we show the effect of changing system capacity on the adaption
process and as a result on the smoothing process. UniAdapt is adaptive with
space, which means that the system can adapt its storage structures to suit the
current status of storage availability enlightened by the workload, and aiming
always for best performance. According to [1], the capacity is defined as the
number of full indexes that the memory can hold. That value is relative to the
data set size and the available storage size.

It is clear from [1] that whenever the relative capacity is too tight, the adap-
tion role is more effective. This is because a limited resource is more precious,
and its optimization is more beneficial. The same capacity context is generally
reflected on the smoothing effects in Fig. 4a. We have six runs, each with a dif-
ferent level of capacity. For each run, we sketch the total seconds saved by the
smoothed adaption Starting with capacity levels of 6 and 4, the high capacity
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Fig. 3. Adaption behaviour with respect to the given workloads

relatively decreases the role of adaption and as a result, the system is less vul-
nerable to the effects of the workload changes. Nevertheless, the saved times
are still avoiding considerable delays that are reflected in better throughput and
more performance. However, going to lower levels of capacity, the adaption role
becomes very vital in optimizing the use of the limited storage. That is shown
in capacity levels of 2.7 and 2.2. The time until the system detects any new
changes in the workload in such a limited capacity, and then adapts its indexes
and storage structure, is reflected in a high cost on the query execution perfor-
mance. The smoothed adaption clearly helped with the quick adaption to the
new workload changes, and thus saved a considerable amount of delays.

In the last part of our evaluation, we consider the behavior of the workload
that has repeated patterns. In this context, we allowed a repeated workload
every four adaption rounds and sketched the results in Fig. 4b. The accumula-
tive adaption line showed decreasing trend after Round 4. It slowly and steadily
absorbed the shock of sudden workload change, making use of the steady accumu-
lated workload stats. On the other hand, the exponentially-smoothed adaption
enhanced the response between the periods. However, it has a very slow reaction
to the periodic component and showed a periodic increase in response time. The
response was much better when it was supported by the Holt-Winters’ additive
method. That was clear after adaption round 12, where the detection of the
periodic workload trend was reflected into smoothing the periodic increase in
the response time.
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Fig. 4. Runtime measurement for smoothed adaption and periodic components

5 Conclusion and Future Work

A fully adaptable RDF triple-store adapts its storage structures (indexes, cache,
and replications) with the current status of the workload. In this paper, we
present a powerful approach to boost the performance of such a triple store. We
convert the simple collective workload analysis module into time-aware sets of
time series. By applying well-known smoothing methods, the system becomes
much faster to adapt to changes in queries trends. That results in a high boost
to the query execution performance as we have validated expediently. In the next
steps, more methods could be developed or integrated to enhance the detection
of periodicity in the workload. Moreover, other temporal behavior of the user
queries could be detected and analyzed like the sequencing in query generations
from single users.
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Abstract. Automated machine learning (AutoML) has made life easier
for data analysts or scientists by providing quick insights into data by
building machine learning (ML) models. AutoML techniques are applied
to vast areas from image processing, speech recognition, natural lan-
guage processing reinforcement learning, and more. However, there is still
room for many improvements. AutoML techniques focus only on prob-
lems related to predictive modeling, and most of them are designed to
work with structured data. AutoML techniques are also time-consuming
as they require time to select the appropriate ML pipeline. This paper
presents an alternative time-efficient approach for mixed data (both cat-
egorical and numerical features obtained from UCI and Kaggle repos-
itory) using a data fusion process, which provides high macro average
accuracy in less time as compared to AutoML. The AutoML tool consid-
ered here is autoscikit-learn (auto-sklearn). This specific library is built
in Python using scikit-learn. The implementation of data fusion is also
done in Python using scikit-learn. We conclude from the experimental
analysis that the pipeline constructed provides better results than the
auto-sklearn. This obtained conclusion is supported by a statistical test
(Wilcoxon signed ranks test) based on macro average accuracy obtained
for both approaches.

Keywords: Automated machine learning · AutoML tools ·
Auto-sklearn · Hyperparameter optimization · Data fusion ·
Combination of interpretation · Prediction models

1 Introduction

Machine learning (ML) has revolutionized many aspects of computer applica-
tions such as computer vision, speech recognition, and gaming during the past
decade. Much progress has been made in developing deep learning models and
automated ML models. However, there is still need for expert knowledge that is
required to implement the “shallow” decision models successfully.
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To understand the benefits of AutoML, the best way is to start by considering
the fundamental limitations and issues of ML models. It is a well-known fact that
ML models are often “hand-crafted” - as they are built on an ad-hoc basis to
resolve a specific problem [5]. It takes much consideration to decide whether
certain steps such as uncertainty estimation and missing data imputation are
necessary or not. Also, what type of feature selection and classifier should be
used depending on the data characteristics. ML engineers or data scientists must
carefully select the accurate ML model and optimization processes (applying
different parameters and hyperparameters to a model and choosing the one with
the best outcome) for all these components to achieve the desired results using
the designed ML model. The Regularization process requires episodes of trial and
error until a good choice of parameters for a particular problem is obtained [22].

Automated ML (AutoML) is designed to build suitable ML models in an
automated way based on the data characteristics. The user only provides data
for a specific problem to the process. The AutoML determines the most suitable
pre-processing, feature selection and classification algorithm with its parameters
and hyperparameters that gives the best outcomes for the problem at hand.
There is no doubt that AutoML has freed the data scientist from the tedious
task of determining the best configuration for the ML pipeline and has made
their work easier and more reliable [11].

Auto-Weka tool considered the problem of simultaneously selecting an ML
algorithm and optimizing its hyperparameters. They dubbed this problem into
the combined algorithm selection and hyperparameter optimization (CASH)
problem [22]. In this particular tool, typically, four decisions need to be made to
construct the whole AutoML pipeline for the CASH problem [11]:

1. Pre-processing algorithm to be used,
2. Feature engineering approach,
3. Learning algorithm to be used,
4. Appropriate values for parameters and hyperparameters.

A detailed description of parameters and hyperparameters is as follows:

1. Parameters: These parameters are optimized during the training of the model
and,

2. Hyperparameters: Hyperparameters are the parameters that the user defines
to control the behavior of the learning algorithm. The values of these hyper-
parameters are set before the learning processing begins.

One of the main challenges in AutoML is that configuration space is huge
for hyperparameter and parameter selection. We can explore certain configura-
tion space areas, but findings these specific combinations (hyperparameters and
parameters) is challenging. Also, it is often unclear which hyperparameter of
an algorithm needs to be optimized and in which range. Moreover, in current
AutoML techniques, the objective kept in mind while building such AutoML
pipelines is to optimize the prediction performance. However, this results in
neglecting the computation cost that it carries along.
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To address the issue of computational cost, Auto-Scikit was introduced. Auto-
sklearn relates closely with Auto-Weka as it uses the same bayesian optimiza-
tion scheme. However, to speed up the optimization performance, the AutoML
tool employs the concept of meta-learning. It collects information from similar
datasets, which helps construct the AutoML pipeline relatively quickly compared
to Auto-Weka.

AutoML provides a way to democratize the use of ML so it can be within
reach of the non-ML expert [8]. Major tech companies are now implementing
their AutoML tools. After taking a look into the challenge of the computational
cost associated with AutoML tools, it can be said that there is still much need
for improvements.

Fig. 1. Data fusion S-COI model

This paper presents an alternative approach to an AutoML tool (auto-
sklearn), which helped us build more effective ML pipelines by consuming less
time and producing higher macro accuracy. In our approach, we have used the
concept of data fusion (DF) [7] which handles diversified data sources (data
present in different formats). The DF approaches have been tested in [7] in a
specific clinical problem where different sources corresponded to results of lab
tests, physical examinations, etc. From these approaches we have selected a sim-
ple combination of interpretation model (S-COI) to construct the ML pipeline
for our current research. For this specific DF process, we have a limitation to
work with mixed structure datasets (feature set with numerical and categorical
values). Minimal pre-processing is done for each numerical (missing value impu-
tation and normalization) and categorical features (missing value imputation
and one-hot encoding). This pre-processing layer in the DF process is labeled as
feature transformation layer. The idea behind the DF process is that we build
a separate ML pipeline for numerical and categorical features, and combine the
outcome by using a base classifier. A limited number of classifiers are used to
construct a DF pipeline with a fixed set of hyperparameters and parameters.
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The study aims to provide an alternative to the present AutoML tool by consid-
ering DF as a simple form of AutoML, which provides an optimized ML pipeline
with less computational cost. We have compared the ML pipeline built using
auto-sklearn (which uses the same Python library, i.e., scikit learn) with the
DF pipeline. Our DF approach gives better macro average accuracy for almost
all datasets in a shorter time. The parameters and hyperparameters for the DF
pipelines used in our approach are set to specific values. They remain consistent
throughout the DF process for the datasets mentioned in Sect. 1 (i.e., we do not
perform hyperparameter optimization).

The paper is structured as follows, in the next section we discuss the related
work done with respect to AutoML process and tools. After that we present
the problem statement from Sect. 3. In Sect. 4 we explained the proposed app-
roach in detail which includes the description of datasets in Sect. 4.1, DF process
in Sect. 4.2, and experimental design in Sect. 4.3. After discussing the proposed
approach in detail, we performed performance evaluation using statistical analy-
sis in Sect. 4.4. In the last Section, we conclude the paper and provide a glimpse
of the future work.

2 Related Work

The most challenging task that appears within AutoML is the optimization of
hyperparameters, and various approaches are used to configure these parameters
for learning algorithms.

The very first techniques for hyperparameter optimization were greedy depth
analysis [15] and pattern analysis [17], both of which were developed to improve
the standard configuration of hyperparameters.

Later, grid analysis was introduced, which was also used to optimize hyper-
parameters since the 1990s [12] and was implemented in ML tools [16]. In grid
search, the user defines a finite set of values for each hyperparameter under
consideration - then the Cartesian product of these values is established. The
major drawback of the grid search approach was that it suffers from the curse of
dimensionality, exponentially growing the search space as the number of hyper-
parameters were increased. An alternative to grid search is the random search
approach that was described by James Bergstra et al. in [1]. In this alternative
approach the hyperparameters values are searched at random until the search
budget is ended [5,9,10].

In 2009, Escalante et al. [3] extended the hyperparameter optimization
(HPO) work to the full model selection problem. This method includes the selec-
tion of pre-processing, feature selection, and learning algorithms and all their
hyperparameters. The authors constructed an ML pipeline by utilizing multi-
ple ML algorithms using hyperparameter optimization and empirically found
that the created models were comparable to those created using expert knowl-
edge; hence no domain knowledge was required to apply their method to any
dataset. The first AutoML tool that we have considered initially was Auto-
WEKA [19]. Auto-WEKA is an automated tool built using WEKA libraries
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and uses sequential model-based algorithm configuration (SMAC) to resolve the
CASH problem. It identifies the automated ML pipeline along with parameters
and hyperparameters of algorithms. The automated ML pipeline constructed
using Auto-WEKA consists of pre-processing data and selection of ML algorithm
(parameters and hyperparameter optimization). However, there was no feature
engineering present there. In [18], Silva et al. detected the presence of breast
cancer among patients with time-series information and used Auto-WEKA to
construct a classifier.

In 2015, Feurer et al. [6] presented an alternative approach to Auto-WEKA.
They developed an automated ML pipeline called auto-sklearn using the scikit-
learn (sklearn) library. It contains some feature engineering as it calculates meta-
features from the datasets; these meta-features provide add-on information while
selecting the different parts of the ML pipeline (pre-processing, ML algorithm
selection, hyperparameter optimization). In the end, the automated ML tool
creates ensemble classifiers using the selected best ML models.

Kietz et al. [13] presented the first approach for the configuration of Rapid
Miner modules using hierarchical task networks (HTN) planning. The algorithm
is driven by a ranking obtained from the frequency of users’ usage of the Rapid-
Miner tool. ML Plan is another automated ML tool that uses HTN planning.
In ML plan, AutoML is reduced to a graph search problem. More specifically,
ML Plan uses a best-fit search algorithm on the graph stimulated by a forward
decomposition procedure of the HTN planning problem. ML Plan splits the
AutoML problem into algorithm selection and algorithm configuration issues.
The ML Plan process starts with a fixed set of pre-processing algorithms, clas-
sification methods, and the associated parameters. In the first phase, a pre-
processing algorithm and classification algorithm are selected and in the second
phase they are configured.

However, the approach we will be presenting in this paper is more straight-
forward and is based on our previous research work completed in [7], based on
DF process (a process of “fusing” data coming from diversified sources). Dur-
ing experimental analysis we found out that DF is a competitor for AutoML
in case when we have diversified data sources. DF models can be of two types
which are combination of data (COD), and combination of interpretation (COI)
approaches. These approaches are defined as follows:

1. COD assumes that all the extracted features from multiple data sources are
initially aggregated into a uniform data space (we refer to this phase as to
aggregation). A single classifier (base classifier) is constructed from this space.

2. COI assumes that a separate classifier is constructed for every data source.
All individual outcomes are then subject to the aggregation carried out by a
“combiner.” The latter can be regarded as a base classifier that generates a
final decision or outcome. COI resembles an ensemble of classifiers (in partic-
ular, the stacking scheme). However, the difference is that there is no feature
transformation layer in the ensemble.
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We concluded that it would be best to use the COI model if we have
datasets coming from different modalities (different sources, i.e., images, lab-
oratory reports, and results from physical examination). Also, these DF models
perform well with an imbalanced class distribution.

3 Problem Statement

As discussed before, the current AutoML tools available consume a lot of time
in creating an optimized ML pipeline. Even after using hours of allocated time
to build an optimized pipeline, there is no guarantee that the presented ML
pipeline would be the best. This restricts the ML engineers and data scientists
to use AutoML tools in routine work. In our paper, we focuse on specific AutoML
tool (auto-sklearn). Auto-sklearn model should be executed for at least 90 min to
produce an optimal ML pipeline. However, the presented pipeline is not always
the best possible solution. As auto-sklearn is based on bayesian optimization
and meta learning approach it takes time to find the best pre-processing, ML
algorithm selection, hyperparameter for classifiers used, which results in current
time consumption.

The time constraint is not the only downside; prolonged run time means
high resource utilization and significant power consumption, which results in
high ecological cost.

To these above mentioned challenges in AutoML, we proposed an alternative
methodological solution, i.e., using a DF model to create a ML pipeline, which
acts as a simplified AutoML process. We have implemented the DF solution
using sklearn library and for consistency we have performed the comparison to
an AutoML (auto-sklearn) tool which is also built using sklearn.

4 Proposed Approach

In this section, we will explain the proposed approach in detail. The idea behind
constructing a DF ML pipeline comes from our previous paper [7] and this paper
aims to compare the performance of the decision models (based on macro average
accuracy) and DF process (based on execution time) with auto-sklearn.

The experimental flow consists of a DF process and an auto-sklearn process.
Only one process can be activated at a time as shown in the Fig. 2. Initial feature
pre-processing (feature transformation) steps are similar for both processes. As
stated earlier datasets consist of mixed structure feature set (numerical and
categorical), we apply different feature transformation schemes based on feature
characteristics, i.e.,

1. For categorical features, we perform missing value imputation (replacing cat-
egorical attribute values with the most frequently occurring) and later apply
one-hot encoding (as ML algorithm present in sklearn do not deal with cate-
gorical attributes so the transformation was necessary).
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Fig. 2. Experimental flow

Fig. 3. Data fusion pipeline

2. For numerical features, we use median value imputation for missing values and
later apply normalization (normalization is applied so all numerical features
have similar range and cannot effect the model performance).

Once the transformation is done, separate pipelines are constructed for auto-
sklearn process and DF process.
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For auto-sklearn, pipeline is constructed after the model parameter settings
are configured, more details are provided in Sect. 4.3. For DF separate pipelines
are constructed for each type of feature (categorical and numerical), and the
outcome of each pipeline is combined using a base classifier.

DF in [7] was designed for diversified data sources in clinical settings, specifi-
cally numerical results of lab tests and other categorical data. Here, we consider
data sets from various domains that are have mixed features (numerical and
categorical) – in this way we can apply DF. The limitation is that our approach
was developed for a clinical problem where data format was associated with its
“meaning” and we do not have it here.

When evaluating the performance of DF and auto-sklearn process, we con-
sidered the macro-averages of the following unique measures: accuracy equal to
mean sensitivity, precision, specificity, and F1 score. The macro-averaged mea-
sure is often used in the context of imbalanced data sets as a better alternative
to overall accuracy [4]. The comparison and selection of the model rely on macro
average accuracy; other measures are reported for completeness.

The paper also aims to demonstrate the benefits of the DF process over auto-
sklearn. These benefits are better performance, better time efficiency, and a much
simpler pipeline for DF than the complex pipeline constructed by auto-sklearn.

4.1 Datasets Description

We have worked on ten datasets collected from UCI and Kaggle repository,
which are publicly available1,2. The limitation of the data selection was that the
datasets should always contain mixed features, i.e., numerical and categorical
features, which restricts us in the data selection process. The detailed charac-
teristics of the considered datasets are provided in Table 1.

4.2 Data Fusion Process

In this section, we compare the results obtained from the DF process presented
in Fig. 1 with the AutoML approach implemented in auto-sklearn. Figure 1 is
a basic COI model. The detailed flow diagram of the DF process is shown in
Fig. 3.

We apply 5-fold cross validation (cv) externally. By following COI model, we
build stacking ensemble classifiers and in order to choose the best ensemble we
employ 10-fold cv scheme internally.

The DF process shown in Fig. 3 is divided into three major parts. Each one
of them is explained in detail below:

1 UCI repository https://archive.ics.uci.edu/ml/index.php.
2 Kaggle repository https://www.kaggle.com/datasets.

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets
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Table 1. Characteristics of datasets considered in the study

Dataset Instances Features Categorical
features

Numerical
features

No. of
classes

Data set
source

Auto-University
(AU)

2500 100 42 58 3 UCI

Student
Performance (SP)

480 16 12 4 3 UCI

Breast Cancer(BC) 286 10 8 2 2 UCI

Cryotherapy
(CRYO)

90 6 3 3 2 UCI

Census Income
(CENSUS)

45211 16 9 7 2 UCI

Insurance (INS) 1338 6 4 2 2 Kaggle

Heart Disease
(HEART)

270 13 5 8 2 UCI

Diabetes (DIA) 8973 48 32 16 3 UCI

Contraceptive
Method Choice
(CMC)

1473 9 4 5 3 UCI

Hepatitis (HEP) 155 19 13 6 2 UCI

1. Module A: Consists of features transformation part which is applied on cat-
egorical and numerical attributes present in data. For each type of attribute
a separate set of pre-processing schemes is used as mentioned in Sect. 4.2.

2. Module B: Five different classifiers are present in the pool of available classi-
fiers with a set of hyperparameters defined (see Table 2). When pre-processed
input is passed to this module, it builds a DF model Fig. 1 using the differ-
ent combinations of classifiers that are used at level-0 (CLC and CLN ) and
level-1 (CLB) as shown in Fig. 1. In the next step, the evaluation measures
are calculated.

3. Module C: The results for each run are compared with the previously stored
maximum result (macro average accuracy) obtained using a different combi-
nation of classifiers. If the newly acquired result is more than the previous
result, the pre-stored maximum values are overwritten by the new outcomes,
and the respective pipeline is selected.

4.3 Experimental Design

In this section, we will discuss the experimental setup for DF and auto-sklearn
models. The auto-sklearn model is configured using the following settings:

1. The per runtime limit is set to 5400 s (90 min).
2. As the datasets are already pre-processed, so the feature pre-processing option

is set to no pre-processing.
3. The Resampling strategy is set to cv with 10 folds internal cv.
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For each outer folds (5-folds cv) the auto-sklearn is executed for 90 min uses
10-fold cv on each inner fold. Once the best ensemble combination has been
identified, the model is reconstructed from the entire learning set and evaluated
using the testing datasets.

The DF models are constructed by combing different types of classifiers into
stacking ensembles. Classifiers employed in our study are described in Table 2;
the selection of classifiers are based on our experience with analysis of clinical
data [21], and on the results of other studies related to data fusion [20]. However,
in our current study we have also considered datasets from different domains
and applied the same set of classifiers on them. We used default values for most
of the classifiers parameters and hyperparameters (NB-G, NB-C and RF), as
they performed well on default parameter settings. For remaining (KNN and
SVM) we have used the outcome of the grid search performed in [7], to find
the best possible values of C (cost) and γ (hyperparameters) for SVM. We have
considered the same values which were used on transformed features. For the
KNN classifier, we checked values of k ranging from 3 to 11 and observed the
best performance for k 3 and 7 neighbors. This range of the parameter k was
defined as arbitrary based on the literature, and our previous experience with
other data sets [21]. The respective parameter and hyperparameters for each
classifier used in DF process are mentioned below:

Table 2. Classifiers considered in the paper and their parameters (scikit-learn)

Symbol Description Parameters

KNN A k-nearest neighbor classifier with
Euclidean distance

k = 3, 7

NB-G, NB-C A naive Bayes classifier where
distribution is Gaussian and
Categorical provided in sklearn
library with default parameters

default parameters in sklearn

RF A random forest classifier default parameters in sklearn

SVM An SVM (called SVC in Python)
classifier with a radial basis kernel
function

C = 1000, γ = 0.0001

For evaluation of the ML pipelines, aside from macro accuracy, we have also
considered computational time and size of the stored model to measure model
complexity. The computational time is the total time consumed (during external
5-fold cv) by a given AutoML or DF pipeline to provide the final output.

4.4 Performance Evaluation

By comparing the output obtained using the suggested DF approach shown
in Table 3 and using auto-sklearn shown in Table 4, we can indicate that in
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Table 3. Results obtained for DF (all values of evaluation measures are macro averages)

Data set CLC CLN CLB Evaluation measures [%]

Accuracy Precision Specificity F1 measure

AU NB-C RF RF 41.0 37.0 72.0 39.0

SP 7NN SVM RF 83.0 82.4 68.0 78.0

BC 3NN RF RF 52.3 69.0 92.3 59.5

CRYO NB-G SVM 1NN 92.0 92.0 93.0 92.0

CENSUS 3NN RF NB-G 73.0 69.7 90.0 71.2

INS NB-G RF 1NN 68.2 68.3 67.7 68.5

HEART 3NN NB-G RF 85.0 86.2 91.0 85.5

DIA NB-G SVM NB-G 42.0 37 72.5 38.2

CMC NB-C 7NN RF 58.6 45.7 60.8 51.6

HEP 7NN NB-G RF 89.1 86.8 44.4 87.9

Table 4. Results obtained for AutoML for the learning time of 90min (all values of
evaluation measures are macro averages)

Data set Evaluation measures [%]

Accuracy Precision Specificity F1 measure

AU 40.1 38.7 76.0 39.3

SP 78.6 80.4 87.6 80.3

BC 43.0 40.0 60.3 41.3

CRYO 92.0 85.7 85.7 88.9

CENSUS 77.4 36.0 84.2 49.1

INS 50.2 65.2 72.0 57.0

HEART 81.2 79.8 81.4 80.0

DIA 43.0 36.2 72.3 36.5

CMC 56.4 55.9 77.9 55.5

HEP 81.0 93.7 77.7 87.2

most cases, the DF process performs better, as we create separate pipelines for
categorical and numerical features. We use different pre-processing schemes and
different classifier based on the type of attributes. The running time is kept
consistent, i.e., 5400 s for all the datasets when running auto-sklearn.

The comparison between both approaches concerning time and model size is
presented in the Table 5.

We considered calculating computational complexity based on the time
required for a given scheme (DF or auto-sklearn) and on the size of the models
generated by both schemes. Model size depends on the complexity of type of
pre-processing, feature selection and classification algorithms used. Conclusions
from results presented in Table 5 are summarized below:

1. Out of 10 datasets for 7 datasets (AU, SP, BC, INSURANCE, HEART, CMC,
and HEP) DF process performed better with higher macro average accuracy
as compared to auto-sklearn.
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Table 5. Computational complexity obtained for auto-sklearn and Data Fusion (DF)
process

Data set Auto ML DF

Running time
(sec)

Size
(MB)

Running time
(sec)

Size
(MB)

AU 54000 777 3.31 0.12

SP 54000 305 1.00 0.10

BC 54000 162 4.21 0.10

CRYO 54000 300 2.89 0.04

CENSUS 54000 870 168.55 0.51

INSURANCE 54000 248 3.33 0.10

HEART 54000 236 1.00 0.07

DIA 54000 300 60.20 0.98

CMC 54000 427 4.35 0.06

HEP 54000 109 1.00 0.041

2. For one dataset, i.e., CRYOTHERAPY, the obtained macro average accuracy
was the same using both processes.

3. For 2 datasets (DIABETES and CENSUS), the macro average accuracy
obtained using auto-sklearn was better than for the DF. approach.

From the results shown in Table 3, 4 and 5 we can conclude that DF perfor-
mance exceeds for majority of datasets. The only datasets where the performance
in terms of macro-accuracy is less than auto-sklearn are DIABETES and CEN-
SUS. However, the difference in macro-accuracy is not large (only 4.4% for CMC
and only 1% more for DIABETES).

To check if there is a statistically significant difference (in terms of macro avg)
between DF and auto-sklearn approaches, we used a two-tailed Wilcoxon test
as recommended by [2]. We were able to reject the null hypothesis at α = 0.05
(Wcrit = 5.9, Wstat = 8), thus confirming the difference between auto-sklearn
and data fusion.

5 Conclusion and Future Work

This paper has compared two AutoML processes – a simple form of AutoML
(DF process) and a more complex one (auto-sklearn). For majority of datasets
the DF process produces better results which high macro average accuracy as
compared to AutoML. However, for only a few (two datasets), the performance
of DF models was lower.

Following are the lesson learned from our experimentation.

– From the performance comparison between the two approaches, we can con-
clude that the DF process works better than auto-sklearn for seven datasets.
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– From the results obtained in Sect. 4.4, we have observed that the performance
of auto-sklearn is slightly better on two datasets (DIABETES and CMC) as
compared to DF models. However, we should keep in mind that the results
obtained through auto-sklearn consumed 90 min of computational time before
producing the outcome, which is higher than the time consumed while using
DF models (less than 3 min).

– From the comparison of model complexity, we can conclude that DF models
produce results quickly and consume way less memory and time as compared
to auto-sklearn models, as shown in Sect. 4.4.

– Statistical results show compelling proof that the two approaches do not
produce similar outcomes, and the difference between these two approaches
is statistically significant.

For future work, we would like to extend the experiment to more datasets;
we want to implement the concept of a mixture of experts (MoE) [14], which will
help us automate classifier selection. It would be also an interesting to identify
guidlines on when it is better to use DF than full AutoML (whether each are
suited for a particular class problems).
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Abstract. Data Warehouses (DWs) are core components of Business
Intelligence (BI). Missing data in DWs have a great impact on data
analyses. Therefore, missing data need to be completed. Unlike other
existing data imputation methods mainly adapted for facts, we propose a
new imputation method for dimensions. This method contains two steps:
1) a hierarchical imputation and 2) a k-nearest neighbors (KNN) based
imputation. Our solution has the advantage of taking into account the
DW structure and dependency constraints. Experimental assessments
validate our method in terms of effectiveness and efficiency.

Keywords: Data imputation · Data warehouses · Dimensions · KNN

1 Introduction

Data warehouses (DWs) are widely used in companies and organizations as a
significant Business Intelligence (BI) tool to help them building their decision
support systems. Data in DWs are usually modelled in a multidimensional way,
which allows the user to analyse data through On Line Analytical Processing
(OLAP). An OLAP model organizes data according to analysis subjects (facts)
associated to analysis axis (dimensions). Each fact is composed of measures.
Each dimension contains one or several analysis viewpoints (hierarchies).

Missing data may exist in a DW. There are 2 types of DW missing data:
dimensional missing data which are missing data in the dimensions and fac-
tual missing data which are in the facts. These missing data have impact on
OLAP analyses. It is important to complete the missing data for the sake of a
better data analysis.

Data imputation is the process of replacing the missing values by some
plausible values based on information available in the data [12]. The current
DW data imputation research mainly focuses on factual data [4,21,25]. Yet the
dimensional missing data make aggregated data incomplete and make it hard
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to analyse them with respect to hierarchy levels. Therefore the imputation for
DW dimensions is also necessary. However the DW dimension has a complex
structure containing different hierarchies with different granularity levels hav-
ing their dependency relationships. When we complete the dimensional miss-
ing data, we have to take the DW structure and the dependency constraints
into account. We proposed a hierarchical imputation based on the inter- and
intra-dimensional hierarchical dependency relationships [27] for the imputation
of dimensional missing data. To the best of our knowledge, there is no other spe-
cific data imputation method for DW dimensions. The hierarchical imputation
is convincible because we use accurate data based on real functional dependency
relationships. However, this method is limited owing to the sparsity problem
which means that for an instance to be completed, there may not be an instance
sharing the same value on a lower-granularity level of the hierarchy.

In order to complete as many values as possible, in this paper, we propose H-
OLAPKNN, an imputation method for DW dimensions by extending the hierar-
chical imputation with a novel dimension imputation method called OLAPKNN.
OLAPKNN is based on K-nearest neighbours (KNN) algorithm. KNN imputa-
tion finds the K nearest neighbors of an instance with missing data then fills in
the missing data based on the mean or mode of the neighbors’ value [23]. We
choose KNN because it is a non-parametric and instance-based algorithm, which
is widely applied for data imputation [3] and has been proved to have relatively
high accuracy [2,23]. Compared to the basic KNN imputation, OLAPKNN con-
siders the structure complexity and the dependency constraints of the dimension
hierarchies. Moreover, the dimensional data are usually qualitative on which we
focus in this paper.

The remainder of this paper is organized as follows. In Sect. 2, we review
the related work about data imputation algorithms. In Sect. 3, we formalize the
DW dimension model. In Sect. 4, we propose a distance calculation method for
dimension instances. In Sect. 5, we explain in detail our proposed dimension
imputation algorithm. In Sect. 9, we validate our proposal by some experiments.
In Sect. 7, we conclude this paper and hint at future research.

2 Related Work

There are various data imputation methods [16]: statistic based imputation,
machine-learning based imputation, rule based imputation, external source based
imputation and hybrid methods etc. The statistic based imputation completes
the missing values by applying the statistical methods like filling average,
the most frequent value or with the value of the most similar record; there
are also methods using the regression to predict the missing values [19]. The
machine learning based imputation methods use algorithms like k-nearest neigh-
bor (KNN) [2,10,17,23], regression models [13], Naive Bayes [9] to predict the
missing values. The rule based imputation methods [5,8,22] complete the miss-
ing values by some business rules, similarity rules or dependency rules. Concern-
ing the external source based methods, the crowdsourcing [14] can be applied
for the data imputation by putting forward the queries in the crowdsourcing
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frameworks and collecting answers to complete the missing data. There are also
methods which realize the imputation through web information [26,29] like web
pages, web lists and web tables. What’s more, there are hybrid methods which
mix different imputation methods to provide a higher performance.

The statistic and machine learning based methods mainly focus on the numer-
ical data, which fit for the imputation of facts where the data are mostly numer-
ical. However, in the dimensions, there are mainly qualitative data which make
it difficult to process the data imputation by such imputation methods. The rule
based and external source based imputation methods may be suitable for the
imputation of dimensions, but they need time and efforts to create rules or find
the appropriate sources. Hence we propose H-OLAPKNN which combines the
hierarchical imputation with a KNN-based imputation method.

3 DW Dimension

As a DW is composed of dimensions and facts and we focus on the dimension
imputation, we introduce the DW dimension concepts used in this paper [20].

Definition 1 (Dimension). In a data warehouse, a dimension, denoted by
D, is defined as (AD,HD, ID). AD = {a1, ..., au} ∪ {id} is a set of attributes,
where id represents the dimension’s identifier; HD = {H1, ...,Hv} is a set of
hierarchies; ID is a matrix of dimension instances, for a given row r, the row
instance vector is denoted as ir; for a given attribute au, their joint instance
value is denoted as ir,au

.

Definition 2 (Hierarchy). A hierarchy of dimension D, denoted by H ∈
HD, is defined as (ParamH ,WeakH). ParamH =< idD, pH2 , ..., pHv > is an
ordered set of dimension attributes, called parameters, which set granularity
levels along the dimensions, ∀k ∈ [1...v], pHk ∈ AD. Parameter pH1 rolls up to pH2
in H is denoted as pH1 �H pH2 ; WeakH = ParamH → 2(A

D−ParamH) is a map-
ping possibly associating each parameter with one or several weak attributes,
which are also dimension attributes providing additional information; All param-
eters and weak attributes of H constitute the hierarchy attributes of H, denoted
by AH = ParamH ∪ (

⋃

pH
v ∈ParamH

WeakH [pHv ])

There exists different types of hierarchy, but the most basic and common
one is the strict hierarchy [15] where a value at a hierarchy’s lower-granularity
belongs to only one higher-granularity value [24]. Thus in this paper, we only
consider the case of the strict hierarchy.

4 Distance Between Dimension Instances

Since the KNN imputation select the k-nearest neighbors of the missing data
instance for the imputation, we should calculate the distance between dimension
instances containing missing data to be completed and other instances. In a



318 Y. Yang et al.

dimension D, for an instance i1 ∈ ID containing missing data on a hierarchy
H1 ∈ HD, and another instance i2 ∈ ID, we propose to calculate their distance
by 4 levels:

– The dimension instance distance is the final distance between two
instances i1 and i2, denoted by Δ(i1, i2). Since the attributes on the same
hierarchy have their dependency relationships, we consider the attributes of
a hierarchy as an entirety. Δ(i1, i2) is thus calculated by the weighted sum of
the hierarchy instance distances.

– The hierarchy instance distance is the distance of the attributes of a
hierarchy H2 ∈ HD i.e. distance between {i1,a1 ∈ i1 : a1 ∈ AH2} and {i2,a1 ∈
i2 : a1 ∈ AH2}, denoted by ΔH2(i1, i2). It is calculated by the weighted sum
of the hierarchy level instance distances. The lowest-granularity level of
each hierarchy is the same i.e. id with its weak attributes, so we consider
the hierarchy instance distance from the second level of the hierarchy and we
regard each weak attribute of id as a hierarchy containing only one parameter.

– The hierarchy level instance distance is the instance distance between
the attributes of a level l on a hierarchy H2 i.e. distance between {i1,a2 ∈ i1 :
a2 ∈ pH2

l ∪WeakH2 [pH2
l ]} and {i2,a2 ∈ i2 : a2 ∈ pH2

l ∪WeakH2 [pH2
l ]}, denoted

by Δ
p
H2
l

(i1, i2). It is calculated by the average of the instance distances of
the level’s parameter and weak attributes (attribute distances).

– The attribute distance is the instance distance of an individual attribute
au ∈ AD i.e. distance between i1,au

and i2,au
, denoted by Δ(i1,au

, i2,au
).

Based on the explanation of the distances, we then give the formulas and
some examples to illustrate them in detail.

Example 1. Given a dimension Product containing two hierarchies H1 and H2

whose schema and instances are shown in Fig. 1. Instance i1 contains missing
values on H1, Fig. 2 shows the calculation of the distance Δ(i1, i2) between i1
and another instance i2.

Fig. 1. Schema and instances of dimension Product
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Fig. 2. Distance between i1 and i2

4.1 Attribute Distance

There are different attribute data types which can be mainly classified into
numerical and textual. For numerical data, we use normalized distance of numeri-
cal data [1]. For textual data, we first apply semantic distance e.g. cosine distance
based on word2vec [11]. If the attribute value cannot be found in the model, we
can then use the syntactic distance e.g. normalized Levenshtein Distance [28].

For an attribute au1, if i1,au1 is missing, then Δ(i1,au1 , i2,au1) cannot be cal-
culated and is not taken into count for the distance calculation. For an attribute
au2, if i2,au2 is missing, then Δ(i1,au2 , i2,au2) is obtained by the average distance
between i1,au2 and other instances whose value of au2 is not missing.

Example 2. Following the calculation rules of the attribute distance, we obtain
Δ(i1,Brand, i2,Brand) = 0.71, Δ(i1,CompanySize, i2,CompanySize) = 0, Δ(i1,Name,
i2,Name) = 0.8, Δ(i1,Id Cat, i2,Id Cat) = 0, Δ(i1,Category, i2,Category) =
0. Since i1,Id Sub and i1,Subcategory are missing, Δ(i1,Id Sub, i2,Id Sub) and
Δ(i1,Subcategory, i2,Subcategory) cannot be calculated and are not taken into count
for the calculation of Δ(i1, i2).

4.2 Hierarchy Level Instance Distance

The hierarchy level instance distance Δ
p
H2
l

(i1, i2) is calculated as (1).

Δ
p
H2
l

(i1, i2) =

Δ(i
1,p

H2
l

, i
2,p

H2
l

) +
∑

w∈Weak[p
H2
l ]

Δ(i1,w, i2,w)

1 + |Weak[pH2
l ]| (1)

As we mentioned that we only consider the levels from the second level of each
hierarchy, we do not calculate the distance for the first level of hierarchies. The
weak attributes of the first hierarchy levels are regarded as hierarchies containing
only one parameter, so their level distance is not needed to be calculated neither.

Example 3. According to (1), for the levels in H1, we have ΔH1
p3

(i1, i2) = (0 +
0)/2 = 0. As the parameter and weak attribute value of the second level i1,Id Sub

and i1,Subcategory are missing, the distance of this level is not taken into account.
For H2, since the two levels contain only one parameter without weak attribute,
their hierarchy level is equal to the attribute distance of the parameter, so we
have ΔH2

p2
(i1, i2) = 0.71, ΔH2

p3
(i1, i2) = 0.
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4.3 Hierarchy Instance Distance

The hierarchy instance distance is calculated as (2), where Wl(pH2
l ) is the hier-

archy level weight.

ΔH2(i1, i2) =
∑

p
H2
l ∈H2\{id}

Wl(pH2
l )Δ

p
H2
l

(i1, i2) (2)

For a weak attribute w ∈ WeakH2 [id] of the first hierarchy level, Δw(i1, i2) =
Δ(i1,w, i2,w).

Hierarchy Level Weight. Since the parameters on the lower levels have thin-
ner granularity, their weight for measuring the hierarchy instance distance should
be higher. Here, we propose two hierarchy level weights: one is based on the car-
dinalities of the parameters and another is an incremental weight.

– For the cardianlity-based weight, we consider the number of the distinct val-
ues of the level as the portion of the weight. Thus for the cardianlity-based
hierarchy level weight of the lth level at H2 is calculated as (3), where dv(n)
denotes the number of distinct values of the nth level.

W c
l (pH2

l ) =
dv(l)

∑|ParamH2 |
j=2 dv(j)

(3)

– However, when the cardinality ratio between certain parameters is very large,
the cardinality-based weight may be biased. So we also propose another type
of incremental hierarchy level distance weight. For the incremental weight, we
consider the weight of the highest-granularity as one portion and it increases
by one portion for each neighboring lower-granularity level. The total weight
should be equal to 1, thus the incremental hierarchy level weight of the lth
level at H2 is calculated as (4).

W i
l (p

H2
l ) =

2(|ParamH2 | − l + 1)
|ParamH2 |2 − |ParamH2 | (4)

Example 4. Our example has only 5 instances, so we can use cardinality-based
weight to get hierachy level weight. We thus have for H1: Wl(pH1

2 ) = 3/(3 +
2) = 0.6 and Wl(pH1

3 ) = 2/(3 + 2) = 0.4. For H2: Wl(pH2
2 ) = 3/(3 + 2) = 0.6

and Wl(pH2
3 ) = 2/(3 + 2) = 0.4. We can then calculate the hierarchy instance

distances: ΔH1(i1, i2) = 0.4 × 0 = 0, ΔH2(i1, i2) = 0.6 × 0.71 + 0.4 × 0 = 0.426,
Δw1(i1, i2) = 0.8.

4.4 Dimension Instance Weight

The dimension instance weight Δ(i1, i2) is calculated as (5), where Wh(H1,H2)
and Wh(H1, w) are hierarchy weights of H2 and w with respect to H1.
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Δ(i1, i2) =
∑

H2∈HD

Wh(H1,H2)ΔH2(i1, i2) +
∑

w∈WeakH2 [id]

Wh(H1, w)Δw(i1, i2)

(5)

Hierarchy Weight. The dependency degree in the rough set theory [18] mea-
sures the degree of the dependency between attributes, so it is applied for the
hierarchy weight.

When calculating the hierarchy distance weight, we can consider a decision
system S = (ID, AH2

n , AH1
n ), since we do not take the first level of a hierarchy into

account, AH1
n = AH1 \ ({id} ∪ WeakH1 [id]), AH2

n = AH2 \ ({id} ∪ WeakH2 [id]).
The second hierarchy level parameters pH1

2 , pH2
2 determine all the other hierarchy

attributes in AH1
n and AH2

n , we can reduce the attribute sets of AH1
n and AH2

n

to the sets containing only the values of the second hierarchy level parameter
pH1
2 , pH2

2 . According to [18], the degree k to which H1 depends on H2, denoted
H2 ⇒k H1 is thus defined as:

k = γ(AH2
n , AH1

n ) = γ(pH2
2 , pH1

2 ) =
card(POS

p
H2
2

(pH1
2 ))

card(ID)
(6)

where POS
p
H2
2

(pH1
2 ) =

⋃
X∈ID/p

H1
2

pH2
2∗ (X) and card(X) is the cardinality of an

non-empty set X, the missing second level parameter values are not taken into
account. For H1 itself, we have γ(AH1

n , AH1
n ) = 1.

The hierarchy distance weight of H2 with respect to H1 is the ratio of their
dependency degree with respect to the sum of the dependency degrees of the all
hierarchies and first level weak attributes in D with respect to H1 as (7).

Wh(H1,H2) =
γ(AH2

n , AH1
n )

∑

H3∈HD

γ(AH3
n , AH1

n ) +
∑

w∈WeakH1 [id]

γ(w,AH1
n )

(7)

Example 5. In our example, we have card(ID) = 5, card(POS
p
H2
2

(pH1
2 )) = 2,

so γ(AH2
n , AH1

n ) = 2/5 = 0.4. In the same way, we can get γ(w1, A
H1
n ) = 2/5 =

0.4, we also have γ(AH1
n , AH1

n ) = 1. We can thus get the hierarchy weights:
Wh(H1,H2) = 0.4/(0.4+0.4+1) = 0.22, Wh(H1,H1) = 1/(0.4+0.4+1) = 0.56
and Wh(w1,H2) = 0.4/(0.4+0.4+1) = 0.22. We can finally obtain the dimension
instance distance Δ(i1, i2) = 0.22 × 0.46 + 0.22 × 0.8 + 0.56 × 0 = 0.28

5 H-OLAPKNN Imputation

5.1 H-OLAPKNN Overview

The H-OLAPKNN imputation is shown in Algorithm1. It is composed of three
steps where the first is the hierarchical imputation and the next two steps concern
the OLAPKNN imputation.
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1. The hierarchical imputation is based on the functional dependencies of the
hierarchy attributes. It searches for an instance having the same value on a
lower-granularity level parameter of the missing value and whose attribute of
the missing value is not empty, we can then replace the missing value with
this non-empty value (line1).

2. The weak attributes’ values are determined by their parameters’ values, so
we complete the parameters before completing their weak attributes. Thus
then, for missing data of each hierarchy (line2), we create candidate lists
of the instances containing possible replaced values and select the k nearest
neighbors in the candidate lists to complete the missing data (line3).

3. There are weak attributes which can be completed together with their param-
eter. Finally for the remaining missing weak attribute data, they are com-
pleted in the similar way (line4).

Next, we explain in detail the OLAPKNN imputation algorithm. A weak
attribute of a hierarchy can be regarded as a “highest level parameter” of a part
of the hierarchy whose imputation is similar to the parameter imputation. So we
only explain the parameter imputation in this paper.

5.2 Imputation for Parameters by OLAPKNN

Parameter Imputation Order. We first introduce the continuous missing
parameter group in order to explain the imputation order for parameters.

Definition 3 (Continuous missing parameter group). For an instance
ir ∈ ID in the dimension D containing missing values on parameters of a hier-
archy H, all these parameters are in a set PmH

r = {pHv ∈ ParamH : ir,pH
v

is empty}. For the parameters in PmH
r , they can be divided into one or sev-

eral continuous missing parameter groups. A continuous missing parame-
ter group (CG) contains one or several parameters which are neighbors on
H and are maximal neighbors in PmH

r . By neighbors on H, we mean that
for the parameter plowest having the lowest-granularity level in the CG on H
and the one phighest having the highest-granularity level, if there exists any
parameter pmiddle ∈ ParamH , such that plowest �H pmiddle �H phighest, then
pmiddle ∈ PmH

r ; By maximal neighbors in PmH
r , we mean that if there exists any

parameter plow2 ∈ ParamH , such that plow2 �H plowest, then plow2 �∈ PmH
r , if

there exists any parameter phigh2 ∈ ParamH , such that phighest �H phigh2 , then
phigh2 �∈ PmH

r . We call all CGs of a hierarchy H containing a same number of
parameters a n-CGs of H, where n denotes the number of parameters.

Algorithm 2 shows the imputation of the parameters. For a given hierarchy H
on a dimension D, we carry out the imputation for parameters in the n-CGs by
the ascending order of n (line1). We can thus make sure that all the (n−1)-CGs
instances are completed so that we can carry out the imputation for the n-CGs
based on the existing data. Then for each n-CGs, we look at all possible CG
combinations (line2−3). Next we verify if there are instances containing missing
values for each possible CG (line4−9). According to Definition 3, the instances
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of a CG on H have missing values on all parameters of the group. If there is a
neighboring lower-granularity or higher-granularity parameter of the group, the
instances do not have missing value on them (line9).

Algorithm 1: H − OLAPKNN(D)

1 hierarchicalImputation(D);
2 for H ∈ HD do
3 imputeParam(D,H) ;
4 imputeWeak(D,H) ;

Algorithm 2: imputeParam(D,H)

1 for ncontinuous ← 1 to |ParamH | − 1 do
2 for i ← 1 to |ParamH | − ncontinuous do
3 PCG ← ParamH [i : i + ncontinuous − 1] ;
4 plow, phigh ← ø ;
5 if i > 1 then
6 plow ← Param[i − 1] ;

7 if i < |ParamH | − ncontinuous then
8 phigh ← Param[i + ncontinuous] ;

9 Imissing = {ir ∈ ID : (∀pcg ∈ PCG, ir,pcg
=

null) ∧ (∃plow =⇒ ir,plow
�=

null) ∧ (∃phigh =⇒ ir,phigh
�= null)} ;

10 lowMap ← Map ;
11 for im ∈ Imissing do
12 Icandidate ← getCandidateList(D,PCG,

phigh, im, 1) ;
13 vWeightMap ← getV WeightMap(D, im,

Icandidate, k, PCG) ;
14 lowMap ← replaceNoP low(D,H,

lowMap, vWeightMap, im, PCG, plow) ;

15 if ∃plow then
16 replaceP low(lowMap, PCG,H,D, plow) ;

Candidate List. Since some missing data are already completed by the hier-
archical imputation, for the remaining missing data, they can no longer be com-
pleted with the aid of their lower-granularity parameters. For a value of one
parent parameter, there may be several possible values on a child parameter of
its. So for a missing data instance of a CG, we can find all possible replaced
values based on their neighboring higher parameter and create a candidate list
(Algorithm 2 line11). The candidate list contains not only the candidate replaced
values of CG attributes but also the values of all other attributes of the dimension
because we need all attribute’s value for the calculation of the distances.

Algorithm 3 shows the candidate list creation for an instance of a CG. If the
neighboring higher-granularity parameter phigh of the CG exists, we search for all
the instances having the same values on phigh as the CG instance, and containing
non-missing values on the CG parameters. Then these instances can be added
into the candidate list (line1−3). If there does not exist a neighboring higher
parameter for a CG, we add all the instances of the dimension which contain
non-missing values on the CG parameters into the candidate list (line4−5).

Creation of Replaced Value Weight Map. For the CG instance, we can
get a map for each possible replaced values in the nearest neighbors with their
distance-based weight for the selection of the final replaced value as described
in Algorithm 4. We first create a map of each instance in the candidate list with
its distance with respect to the missing instance (line1−3). Then we can select
the k nearest candidate instances to create a candidate list if the candidate
list contains more than k instances, if not, we can keep all candidate instances
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(line4−5). The selected candidate instances may contain same replaced values,
so we create a map of each replaced values with their weight (line6). According
to [7], for an instance im of a CG, for a selected candidate list containing k
instances, the distance weight of the n nearest instance icn can be calculated
as (8), where ick denotes the kth nearest instance and ic1 denotes the nearest
instance. It is to be noted that Wd(im, ic) = 1 when Δ(im, ick) = Δ(im, ic1).

Wd(im, ic) =
Δ(im, ick) − Δ(im, icn)
Δ(im, ick) − Δ(im, ic1)

(8)

Thus the weight of a candidate of replaced values is the sum of the weight of
the instances which contain them (line4−5).

Algorithm 3: getCanList(D,PCG, phigh, im, parameter)

1 if parameter = 1 then
2 if ∃phigh then
3 Icandidate ← {ir ∈ ID : (∃pcg ∈ PCG, ir,pcg

�=
null) ∧ (ir,phigh

= irmissing,phigh
)} ;

4 else
5 Icandidate ← {ir ∈ ID : (∃pcg ∈ PCG, ir,pcg

�=
null)} ;

6 else
7 Icandidate ← {ir ∈ ID : (ir,weak �= null)} ;

8 return Icandidate

Algorithm 4: getV WeightMap(D, im, Icandidate, k, PCG)

1 iDistanceMap ← Map ;
2 for ic ∈ Icandidate do
3 iDistanceMap[ic,id] ← Δ(im, ic) ;

4 if |Icandidate| > k then
5 iDistanceMap ← iDistanceMap.top(k);

6 vWeightMap ← Map ;
7 for ic,id ∈ iDistanceMap.keys() do

/* addMap(Map, key, value): Create the map if

it does not exist. Add the value to the

existing value if the key exists, assign

the value to the key if not. */

8 addMap(vWeightMap, {ic,pcg
: ic,pcg

∈
ic,PCG

},Wv(im, ic));

9 return vWeightMap

Replacement of Values. To fill in the missing values of CG, we have two cases:
the first case (Algorithm 2 line13) is that there is no lower non-id parameter of
the missing parameter group, the second case (Algorithm 2 line14−15) is that
there is such parameter. The difference is that for the second case, we have
to take the strictness of hierarchy into account by making sure that a lower
parameter value of the CG has only one higher-granularity level parameter after
the imputation.

The replacement of the values of the first case is described in Algorithm 5.
We can take the values having the highest weight in the weight map (line1) to
fill in the missing values of the CG (line2−3).

The replacement of the values for the second case is described in Algorithms 5
and 6. We create a map lowMap for each neighboring lower-granularity param-
eter value which corresponds to another map of the each possible replaced value
and its total weight (Algorithm2 line10). For each instance of the CG, we get
the replaced values with the highest value weight (Algorithm5 line1). For the
value of its neighboring lower-granularity parameter, we update the replaced
values and the weight (Algorithm5 line8−10). When all the missing instances
of a CG are treated, we get a final lowMap. For each value of the neighboring
lower-granularity level parameter in lowMap, we can take the replaced values
with the highest weight to fill in the missing values (Algorithm6 line1−5).
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Algorithm 5: replaceNoP low(D,H, lowMap,
vWeightMap, im, PCG, plow)

1 ireplace,PCG
← vWeightMap.top(1).key() ;

2 if � ∃plow then
3 im,PCG

← ireplace,PCG
;

4 for pcg ∈ PCG do
5 for wpcg ∈ WeakH [pcg] do
6 if im,wpcg = ø then
7 im,wpcg ← {ir,wpcg ∈ ID : ir,pcg

=
im,pcg

}.getOne() ;

8 else
9 addMap(lowMap[im,plow

], ireplace,PCG
,

vWeightMap[ireplace,PCG
]) ;

10 addMap(lowMap, im,plow
, lowMap[im,plow

]) ;

11 return lowMap

Algorithm 6: replaceP low(lowMap, PCG,H,D, plow)

1 for im,plow
∈ lowMap.keys() do

2 vWeightMap ← lowMap[im,plow
].top(1) ;

3 ireplace,plow
← vWeightMap.key() ;

4 for im ∈ {ir ∈ ID : ir,plow
= im,plow

} do
5 im,PCG

← ireplace,PCG
;

6 for pcg ∈ PCG do
7 for wpcg ∈ WeakH [pcg] do
8 if im,wpcg = ø then
9 im,wpcg ← {ir,wpcg ∈ ID : ir,pcg

=
im,pcg

}.getOne() ;

6 Experimental Assessment

6.1 Technical Environment and Datasets

To evaluate the effectiveness and efficiency of H-OLAPKNN, we implement our
algorithms and conduct experiments with different datasets and compare it to
other imputation methods. Our code is developed in Python 3.7 and is executed
on a Intel(R) Core(TM) i5-10210U 1.60 GHz CPU with a 16 GB RAM. Data
are integrated in R-OLAP format with Oracle 11g. The distance metrics that
we use are like described in Sect. 4.1, for the word embedding based distance,
we use Google’s pre-trained word2vec model1.

We employ 3 real world datasets. The first dataset is a regional sale dataset
(RegionalSales) storing sales data for a company across US regions . The sec-
ond (IBRD) and the third (MIGA) ones are data of world bank which are
respectively the International Bank for Reconstruction and Development balance
sheet data and the Multilateral Investment Guarantee Agency issued projects
data. For each one of the datasets, we create a DW for our experiment. The link
of the dataset source and more information can be found in our github2.

6.2 Experimental Methodology

We apply different missing rates (1%, 5%, 10%, 20%, 30%, 40%) for each
attribute except for the primary keys. To generate missing data for an attribute,
we sort randomly all the instances and remove attribute values of the first certain
percentage of instances. For the effectiveness, since we focus on the qualitative
data, we apply the accuracy (number of correctly replaced values divided by
number of missing values) as the metric instead of the root mean square error
(RMSE) [16] which is widely used but is only suitable for quantitative data

1 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?
resourcekey=0-wjGZdNAUop6WykTtMip30g.

2 https://github.com/Implementation111/H-OLAPKNN/.

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?resourcekey=0-wjGZdNAUop6WykTtMip30g
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?resourcekey=0-wjGZdNAUop6WykTtMip30g
https://github.com/Implementation111/H-OLAPKNN/
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imputation. For the efficiency, we get the run time of each algorithm. We carry
out 20 tests for each dataset and get the average accuracy and run time.

We compare our proposed method with some other methods in the litera-
ture as baseline. H-OLAPKNN(MI): Since the mutual information is widely
used in the KNN based data imputation [10,17]. In this baseline, we apply our
proposed OLAPKNN algorithm by using the mutual information instead of the
dependency degree as the hierarchy distance weight. KNN [6]: This method
use the basic KNN algorithm to generate the replaced values for missing data
Mode: The Mode method simply replace the missing data with the most fre-
quent non-empty value of the attribute in the table.

6.3 Results and Analysis

For each dataset, the optimal k of KNN is different. So we test with different k
values between 1 and 20 and choose the best one for the experiment of each data
set which are respectively 5, 4 and 8. For the Wl, we choose the weight with a
better result as the weight for each dataset which are respectively W i

l , W c
l and

W i
l . Then we compare the accuracy and the run time of each algorithm.

Fig. 3. Results of experiments

Accuracy. The accuracy result is shown as Fig. 3. We can see that the proposed
H-OLAPKNN algorithm outperforms all the other baseline algorithms for each
dataset. The Mode method has the worst result since it is too simple and it
takes nothing into account. Compared to the mutual information, we observe
that using the dependency degree as the hierarchy distance weight can help us
get a more accurate result as it considers the ordered dependency instead of
the inter-dependency. Compared to the basic KNN method, the H-OLAPKNN
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returns a better accuracy results since it considers the structure of the DW
and take the dependencies among the attributes into account. The accuracy of
H-OLAPKNN, H-OLAPKNN(MI) and KNN decreases with the increase of the
missing rate because when there are more missing data, 1) we have less complete
data for getting more precise distance scores and 2) it is more likely that the
proper replaced data do not exist in the table.

Run Time. The run time result is shown as Fig 3. The Mode algorithm costs
less time since it is the simplest method. The run time of the other three algo-
rithms changes linearly with respect to the missing rate. There is no big differ-
ence between H-OLAPKNN and H-OLAPKNN(MI) since they are only different
in terms of the calculation of hierarchy distance weight. The OLAPKNN costs
less time than KNN for dataset RegionalSales, but more time for the other
two datasets. This is because the hierarchical imputation complete most of the
data of RegionalSales so that it takes less time for OLAPKNN to create the
candidate list and compare the similarities.

7 Conclusion and Future Work

In this paper, we propose a DW dimensional data imputation method by combin-
ing hierarchical imputation with a novel KNN-based algorithm. We first define
a 4-level distance calculation method for dimension instances by taking advan-
tage of the DW dimension structure. Then by applying the proposed distances,
we define the KNN-based algorithm. The advantage of the proposed algorithm
is that it takes the dimension structure complexity into account and is able to
make replaced values conform to the dependency constraints of the hierarchies.
Our proposal is validated by a series of experiments and is proved to outper-
form other baselines in the literature. It increases the dimension data imputation
accuracy by up to 25.2% with respect to the basic KNN imputation.

In the future, we will extend our method for the imputation of numerical
data in the dimensions and facts. We also intend to generalize the method for
non-DW data by proposing an approach automatically modelling them in OLAP.
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Abstract. The volume of available data in recent years has rapidly
increased. In consequence, datasets commonly end up with many irrel-
evant features. That increase may disturb human understanding and
even lead to poor machine learning models. This research proposes a
novel feature ranking method that employs trees from a Random For-
est to transform a dataset into a complex network to which centrality
measures are applied to rank the features. That process takes place by
representing each tree as a graph where all the tree features are vertices
on this graph, and the links within the nodes (father → child) of the tree
are represented by a weighted edge between the two respective vertices.
The union of all graphs from individual trees leads to the complex net-
work. Then, three centrality measures are applied to rank the features in
the complex network. Experiments were performed in eighty-five super-
vised classification datasets, with a variation in the feature noise level,
to evaluate our novel method. Results show that centrality measures in
non-oriented complex networks are comparable and may be correlated
to the Random Forest’s variable importance ranking algorithm. Vertex
strength and eigenvector outperformed the Random Forest in 40% noise
datasets, with a not statistically different result at a 95% confidence level.

Keywords: Feature ranking · Random Forest · Complex networks ·
Centrality measures

1 Introduction

The constant increase in technology and applications has rapidly generated
massive amount of data in domains, such as social media, healthcare, bioin-
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formatics, and online education. These data are mostly numbers, videos, image,
text, and eventually involve many irrelevant and redundant features. This high-
dimensional data poses a significant challenge for the machine learning methods.
The model-building process can lead to poor performance when the dataset con-
tains redundant, unnecessary, and noisy features [16,20,25,34]. In scenarios like
this, it is common to use either a ranking to better understand the quality level
of each of the features or a feature selector to find a subset of relevant features.

Considering that we propose a ranker using a complex network, obtained
from a Random Forest, from which features are extracted for analysis of their
relevance. On one hand, Random Forests can provide measures of feature impor-
tance [6]. However, few works have studied the theoretical properties and sta-
tistical mechanisms of these measures [21]. On the other hand, the topological
structure of a complex network allows the use of centrality measures [4] that may
contribute to a better understanding of the features’ importance. Once we ana-
lyze a complex network using any centrality measure’s perspective, it’s possible
to rank these features from the most central to the last. The ranking generated
reflects the relevance of each feature to that complex network.

This work is organized as follows: we present related studies in Sect. 2, includ-
ing basic concepts about Random Forest and Complex Networks. In Sect. 3 we
describe our methodological approach to generating a complex network from
trees in a Random Forest. Section 4 shows the empirical setup used to evalu-
ate the proposed algorithm. Section 5 shows the experiments and discusses the
results; finally, Sect. 6 presents the main conclusions of this study.

2 Related Work

Studies have been representing data into complex networks to solve several prob-
lems in the Machine Learning field. For this reason, new methodologies have
been proposed for converting traditional sets of examples into graphs, such as
KNN-Graph and K-Associated graphs [3]. Some methods use hybrid networks
whose vertices can be either examples or features of the dataset [27]. However,
those studies focus on representing the instances of the dataset as vertices of the
network. In contrast, some studies [26,38] use networks of features and apply
distance-based measures to find the links between features when performing the
representation of a dataset into a complex network. From an already created
network, [26] apply the Laplace centrality measure between the vertices of the
same cluster, then the vertices are sorted by their centrality value, and vertices
with values above the defined threshold are removed. In [38], similarity measure
is employed, which initially calculates the distance of the features by applying
kernel measure in the network adjacency matrix, then a threshold is applied to
remove all vertices considered not relevant, with a value above the established
threshold. In [16] the PageRank centrality was applied for feature selection in
7 multi-label datasets. Firstly, a complete, non-oriented and weighted graph is
created, in which each vertex of the graph represents an attribute of the dataset
and is adjacent to all other vertices. The weight of the edges is obtained by the
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Euclidean distance of the correlation matrix between the attributes × classes
of the dataset. Then, the PageRank metric is applied to generate a score for
each vertex and, finally, the vertices are ordered in descending order of score,
generating a ranking of the attributes; the user defines the number of attributes
of interest to be selected. There are other ways to perform feature selection in
complex networks, such as a path-based method [23], spectral [37], which selects
the features based on the graph structure, and dominant-set clustering associ-
ated with multidimensional interaction information [35]. Our work focuses on
centrality measures. We have extensively tested the feature ranking efficiency of
strength, eigenvector and Katz centralities on oriented and non-oriented feature
networks generated through Random Forests.

2.1 Feature Selection and Ranking

Methods for selecting features can be classified into three groups: wrappers,
filters, and embedded [9]. Wrappers choose and test the features in the same step
and, in the end, select a subset of features that results in a better classification
performance. Filters work in two stages, at first, the features are selected or
ranked, and, in a second stage, the features are used by an independent machine
learning algorithm. Embedded selects the features during the training process of
the algorithm itself.

A ranker is a two-step method also used for feature selection. It firstly gen-
erates a ranking using a metric M. We assume features are better scored with
larger values of the relevance metric M. Secondly, the best features in the gener-
ated ranking are selected, (i) using a threshold θ is applied to select the relevant
features; (ii) alternatively, an integer k can be fixed, and only the top-k features
of the ranking are selected [9]. The feature ranking generated by this method
provides insight into the data by clearly presenting the relevance of each feature,
and when the most relevant ones are selected, it can improve the performance
of learning algorithms [34]. The ranker proposed in this research can be seen
as a filter, since it orders features from the most relevant to the least ones.
By performing two stages, filters act in the preprocessing stage of data mining
tasks [2].

2.2 Random Forests

A Random Forest is formally defined as a classifier composed of a set of trees
{hSl

(x)}, l = 1, 2, . . . , L, induced from {Sl} independent random samples with
identical distribution, generally a bootstrap sample. The tree is grown recursively
repeating these steps: (i) selecting m′ features at random from the m features
(m′ � m); (ii) picking the best feature split-point among the m′ features; and
(iii) splitting the node into children nodes [17].

Each tree predicts the class of the entry x and then the most popular class
among the trees is chosen for this same entry [6,36]. Therefore, Random Forests
apply the same method as bagging [5] to produce random samples (bootstrap
samples) of training sets for each tree. Breiman [6] justifies the use of the bagging
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method in Random Forests for two reasons: the use of bagging seems to improve
performance when random features are used; bagging can be used to provide
continuous estimates of the generalization error of the combined set of trees, as
well as estimates for strength and correlation, using the Out-Of-Bag estimator.
The classification error of the forest depends on the strength of the individual
trees in the forest, the correlation between any two trees in the forest and the
features importance [6,22].

The methodology proposed herein comprises the use of a Random Forest to
determine the links between two features and the weight of these links. From
this definition, the representation of the dataset into a complex network is made.

2.3 Complex Networks

Complex networks are represented through graph theory, which initially, in the
1950s, focused on regular graphs; still, in the same period, large-scale networks,
which had no apparent structural models, initially studied by mathematicians
Paul Erdős and Alfred Rényi were described as random graphs [13]. They then
defined the Erdős-Rényi model with N nodes and a p probability of connection
between pairs of nodes [10]; this model was a reference for a long time. With the
growth of research in this area, it ended up being questioned. Intuitively, many
systems showed to follow some principles of structural organization that would
represent a certain topology and not a random structure [1]. In a simplified
definition, a complex network can be understood as a graph with a nontrivial
structure that is composed of a set of vertices connected by edges [24]. Trivial,
in this case, means a graph with only one vertex and no edges.

Complex networks have been established as a powerful tool; its topological
structure has been shown to be useful for the detection of classes and clusters,
either by clustering or classification algorithms. Accordingly, there has been an
increase in the use of Machine Learning methods based on networks [33], which
has become an area of active research with a diversity of successful applications
in the approach of global information such as: semi-supervised learning [27], data
clustering [14], regression [28] and classification [11].

Common representations of complex networks are (i) weighted directed
graphs (digraphs), and its derivations; (ii) unweighted digraphs; (iii) weighted
graphs; and (iv) unweighted graphs. In a weighted (di)graph, the weight of an
edge is represented by wij whenever there is an edge connecting a pair of vertices
i and j [32].

Several discrete structures, such as lists and trees, can be represented by
graphs. Therefore, there are several situations in the complex networks field
where a structure of interest is firstly represented by a network, and then ana-
lyzed by the topological characteristics using informative measures of this net-
work [10]. Some of those measures are: (i) centrality, in which the importance of
a vertex for the network is calculated according to the number of paths that go
through this vertex; (ii) agglomeration coefficient, which shows how connected
is the neighborhood of a given vertex, this measure captures the local structure
by counting the triangle connections formed by the vertex to be analyzed and
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Fig. 1. General scheme of the ranker proposed. Initially, a Random Forest is trained
on the input dataset (Algorithm 1). The features used and links generated by each tree
are then represented as a complex network (Algorithm 2). Finally, centrality measures
are applied to obtain the ranking of features (Algorithm 3).

two of its neighbors; and (iii) spectral, which is equivalent to the set of eigenval-
ues of the adjacency matrix of a network, these eigenvalues can also be used to
determine the order momentum.

In this research we use centrality measures applied to weighted graphs and
weighted digraphs as metric M.

3 From Trees in a Random Forest to a Complex Network

Our method exploits the trees of a Random Forest as a strategy to identify the
connections between the pairs of features, and the respective weights of these
connections to compose a complex network. Afterward, centrality measures are
applied to rank the features, as shown schematically in Fig. 1. This method is
represented as a pseudocode, by Algorithms 1, 2, and 3.

According to Algorithm 1 (lines 4–5), a Random Forest is initially gen-
erated containing L = 64 trees [29]. Then, each tree in the forest is repre-
sented by an individual weighted graph (lines 6–7). Afterwards, the method
convertTreeToNet (line 7) will convert each tree in the forest to its respective
graph according to Algorithm 2, explained in detail below:

– Assume that a decision tree has E tree edges numbered e = 1, 2, . . . , E. A key
point to be emphasized is that in a decision tree the connection between two
decision nodes (tree edge) that links features (Xi,Xj) can occur more than
once at the same level of the tree or even at other (sub) levels. We denote the
e-th tree edge (Xi,Xj) with weight w

(e)
ij using the notation (e,Xi,Xj , w

(e)
ij )
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Algorithm 1. Dataset to complex network through Random Forest
Require: Instances: a set of n labeled instances {(xi, yi), i = 1, 2, . . . , n} containing m features

{X1, X2, . . . , Xm};
1: L: number of trees in the forest, where L ≥ 1, default L = 64;
2: Directed: Boolean variable specifying if the trees are transformed into oriented graphs (true) or

non-oriented graphs (false), default false.
Ensure: N : the complex network generated from Instances.
3: function convertData2Net(Instances, L, Directed)
4: T ← buildRandomForest(Instances, L)
5: Let {T1, T2, . . . , TL} be the individual trees of the forest T
6: for l ∈ {1, 2, . . . , L} do

7: A(l) ← convertTreeToNet(Tl, Directed)

8: Nij ← ∑L
l=1 A

(l)
ij for 1 ≤ i, j ≤ m � N is the resulting complex network

9: return N

Algorithm 2. Decision Tree to graph
Require: Tree: a decision tree induced from a labeled dataset containing m features

{X1, X2, . . . , Xm};
1: Directed: Boolean variable specifying if the trees are transformed into oriented graphs (true) or

non-oriented graphs (false), default false.
Ensure: A: adjacency matrix representing the Tree transformed into a complex network.
2: function convertTreeToNet(Tree, Directed)

3: Let E = {(Xi, Xj , w
(1)
ij ), . . . , (Xp, Xq, w(E)

pq )} be the list of tree edges in Tree, where |E| = E

4: Aij ← 0 for 1 ≤ i, j ≤ m
5: for e ∈ {1, 2, . . . , E} do

6: Let (Xi, Xj , w
(e)
ij ) be the e-th tree edge in E

7: Aij ← Aij + w
(e)
ij

8: if not Directed then
9: Aji ← Aji + w

(e)
ji

10: return A

which can be simplified to (Xi,Xj , w
(e)
ij ) where it is implicit the fact the

reference is to the e-th tree edge. The set of tree edges will be denoted by
E = {(Xi,Xj , w

(1)
ij ), (Xi,Xj , w

(2)
ij ), . . . , (Xp,Xq, w

(E)
pq )}, where it is clear that

|E| = E.
– In the transformation of the tree into a graph performed by the Algorithm 2,

initially, the adjacency matrix that will represent the tree converted to a
graph contains only zeros, i.e., Aij ← 0 for 1 ≤ i, j ≤ m (line 4). Then, for
each edge e in the tree linking the features (Xi,Xj , w

(e)
ij ) the weight w

(e)
ij will

be added to the current value of the edge (i, j) in the graph represented by
the matrix A, Aij ← Aij + w

(e)
ij (line 7). This process is repeated for all E

tree edges (lines 5–9).
– To assign the weights of the tree edges various global metrics (global for each

tree in the forest) can be used, such as (i) the value of the feature importance
for the tree that the link occur [6]; (ii) assigning a unit weight whenever
an edge exists; local metrics to the tree edge can also be analyzed, such as
(a) Gini index [7] and (b) information gain ratio [31]. In this work we are
using the unit weight metric.

Figure 2 shows the transformation of two trees of a given forest (left) into
their respective weighted individual graphs (center), then into a directed and
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Algorithm 3. Feature ranker through centrality measure
Require: N : A complex network containing m vertices represented by its adjacency matrix
1: C(·): centrality measure, default C(·) = eigen(·). The measure considers the in-degree or out-

degree (according to the value of the Directed and InDegree parameters)
2: Directed: Boolean indicating if the complex network is directed (true) or not directed (false),

default false
3: InDegree: Boolean indicating if the centrality measure is calculated using the in-degree (true)

or the out-degree (false), default true. Only applicable if Directed = true.
Ensure: Ranked: list of features with shape < i, C(i) > ordered by the measure C(·)
4: function featureRanker(N , C(·), Directed, InDegree)
5: centralityList ← ∅ � will hold tuples (feature, centrality measure value)
6: for j ∈ {1, 2, . . . , m} do
7: centralityList ← centralityList ∪ { < j, C(j) > }
8: Ranked ← Order centralityList by measure C(·)
9: return Ranked

non-directed complex networks (right) composed of the union of the two individ-
ual graphs, and lastly the strength centrality value for each node, considering in
and out ways in the directed network. That union is performed by summing the
individual graphs’ edges weights (Algorithm 1, line 8). Finally, the Leaf nodes,
labeled as ‘L’ in the trees, are not represented in the graphs. Nodes labeled with
numbers indicate features.

The ranking method is applied to the complex network generated by Algo-
rithm 1 using metrics M such as vertex strength (a weighted degree measure),
eigenvector and Katz that calculate the centrality of the vertices (features) in
the complex network. These metrics are denoted by the function M = C(·) in
Algorithm 3 (lines 6–7). The values resulting from the function C(·) are ordered
(line 8) aiming to identify the most central features that tend to have greater
importance than the other features according to these metrics. Two networks
were generated (oriented and non-oriented) to analyze if the edges’ orientations
influence the centrality measures’ final score.

Fig. 2. Representation of two trees of a Random Forest (left) in their respective indi-
vidual weighted graphs where edges represent the links between the features in the trees
(center) and the oriented and non-oriented complex networks, generated from the union
of the graphs (right). In trees the leaf nodes, labeled as ‘L’, are not represented in the
graph. Nodes labeled with numbers indicate attributes.
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4 Experimental Setup

In this work, 22 data generators were used (Table 1 in Appendix A) from which
85 distinct and noiseless classification datasets were generated, 10 times each; all
of them for supervised learning. This number of datasets were generated to rep-
resent problems of different dimensions and complexities, as, datasets containing
a large number of features, small number of examples, highly similar features,
and overlapping classes. The number of instances was fixed to 300 and the num-
ber of relevant features (ρ ∈ {2, 3, 5, 7, 21}) and classes (c ∈ {2, 3, 4, 5, 7, 8}) was
varied. After creating the datasets, additional features were inserted as a form
of noise. All original features of each generated dataset are considered relevant
features, and all additional features are noisy copies of the relevant features.

When working with artificially generated data, it is possible to know which
features are the most relevant. The noise insertion in the datasets in a controlled
manner makes it possible to evaluate the ranking’s capability and the efficiency
of the proposed ranker. The noise insertion procedure adopted in this research
is based on the model used in [18] and was then adapted, according to the needs
of our work.

The rates of 5%, 10%, 20%, and 40% of noise were used on the instances,
and 11 levels of noise were used on features. The number of noisy features
increases exponentially, where for each original dataset with ρ relevant fea-
tures, 2i × ρ (i = 0, 1, · · · , 10) new noisy features were generated and appended
after the original (relevant) ones in the noisy dataset. That ensures the rel-
evant features are always in the first ρ columns in the dataset. The total
number of features in the noisy datasets is m = {ρ + 2i × ρ}. For example,
considering an original dataset containing two relevant features (ρ = 2), for
each instance noise rate, it was generated noisy datasets containing a total of
m = {4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050} features.

For each dataset, the noise insertion process was repeated 10 times and results
averaged. In this way, each original dataset resulted in 4400 noisy datasets. Since
there are 85 original datasets, a total of 374,000 noisy datasets were generated
(85×10×4×11×10). The number of features in the datasets varies from m = 4,
in the smaller ones, to m = 21, 525, in the larger ones.

Every single dataset was then represented by a feature-feature complex net-
work. The edge weight metric used here was the unit weight, which assigns a
value of 1 whenever a new edge is added to the network or sums 1 to the edge
weight in case it already exists. After that, three measures of centrality were
applied to each network: i) strength, ii) eigenvector and iii) Katz. Each measure
was then used to rank the features according to their centrality importance to
the network.

After executing the proposed ranker, we evaluated the efficiency of each mea-
sure in finding the relevant features amidst the noisy features. For this purpose,
the ranking score R (0 ≤ R ≤ 1) is proposed (Eq. 1). The R value is based
on the position (rank) of the relevant features in the ranking generated by the
centrality measures and by the Random Forest. S (Eq. 2) represents the sum
of the ρ relevant features’ ranks (ri is the rank found by Algorithm 3 for the
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relevant feature i); B (Eq. 3) is the sum of the best-case ranks, where all the
relevant features are in the first positions of the ranking (top-ρ ranks), and W
(Eq. 4) is the sum of the worst-case ranks, where all the relevant features are
in the last positions (bottom-ρ ranks). The higher the relevant features are in
the ranking the higher their R value will be. For instance, with ρ = 2 relevant
in a total of m = 10 features, B = 1 + 2 = 3, and W = 9 + 10 = 19. R = 1 if
the two relevant are in the top−2 positions (S = B). R = 0 if the two relevant
are in the last two (bottom−2) ranks (S = W). If they are in any other ranks,
B < S < W, and 0 < R < 1.

R = 1 −
( S − B

W − B
)

(1)

S =
ρ∑

i=1

ri (2)

B =
ρ∑

i=1

i =
ρ + ρ2

2
(3)

W =
m∑

i=(m−ρ+1)

i =
(2m − ρ + 1)ρ

2
(4)

5 Results and Discussion

In the following the notation A(noise,orientation,measure) is used, where A()
means the results of running the Algorithms 1, 2 and 3 using one of the following:
noise ∈ {5%, 10%, 20%, 40%}, orientation ∈ {g, in, out}, and measure C(·) ∈
{eigen, katz, str}. Each value of the noise parameter means the percentage of
instances which became noisy in those datasets; when it comes to the orientation
parameter, ‘g’ indicates non-oriented networks, ‘in’ indicates oriented networks,
generated as i ← j, and ‘out’ indicates oriented networks, generated as i → j,
as shown in Fig. 2; ‘eig’, ‘katz’ and ‘str’ indicate the centrality measure applied
to the network for eigenvector, Katz, and vertex strength respectively.

To avoid text repetition within the same table or figure, the noise value has
been replaced by a dot – A(·,orientation,measure). This dot can be read as the
noise rate value described in the caption of its respective table or figure.

The Random Forest’s feature importance ranker was used as a baseline to
compare with the centrality measures obtained from the complex network.

The Friedman test [15] was used as the statistical test of hypotheses, which
rejected the null hypothesis. Therefore, the Bonferroni-Dunn [12] post-hoc test
was applied to detect any significant differences, represented by the Critical
Difference Diagrams in Fig. 3 (a–d). Both tests were conducted with a confidence
level of 95%.

– 40% noise: The best average rank was obtained by A(·,out,str) followed
by A(·,g,eigen), and then rf(·). Fig. 3a shows that all our proposal is not
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statistically different from the Random Forest feature ranker, except for
A(·,out,katz), A(·,out,eigen), and A(·,in,str).

– 20% noise: the best average rank is rf(·) followed by A(·,g,eigen), and then
A(·,g,katz). In Fig. 3b we can notice that although rf(·) obtained the best
average rank, it is not statistically different from A(·,g,eigen), A(·,g,katz),
A(·,g,str), A(·,out,str), and A(·,in,eigen).

– 10% noise: the best average rank was obtained by rf(·) followed by A(·,g,
eigen), and after that, by A(·,g,katz). However, Fig. 3c shows that rf(·) is not
statistically different from A(·,g,eigen), A(·,g,katz), and A(·,g,str).

– 5% noise: the best average rank was obtained by rf(·) followed by
A(·,g,eigen), and then A(·,g,katz). Again, Fig. 3d shows the A(·,g,eigen),
A(·,g,katz), and A(·,g,str) are not statistically different from the Random
Forest feature ranker.

In summary, considering all noise rates, A(·,g,eigen), A(·,g,Katz), A(·,g,str)
presented results statistically not different from rf(·). That indicate that the
centrality measures used in the experiments in non-oriented complex networks
seem to capture the behavior of the Random Forest feature importance ranker,
which is an interesting, and unexpected result.

First, let us remember how Random Forest computes feature importance.
Following the induction of the forest, one of the features has its values permuted
in the Out-Of-Bag (OOB) examples, which are then presented to the respective
tree after the permutation, and, finally, it compares the rate of correct classifica-
tion with and without the permutation of that specific feature. The permutation
process is repeated for each feature in the dataset. The greater the increase in
error rate generated by the permutation of the feature, the greater the impor-
tance of this feature for representing the class in this dataset [6].

In this sense, Random Forest calculates the importance of features in each
tree using information beyond the forest itself (the OOB sample, i.e., using
additional information in the form of future examples not seen during training,
the tree induction process). On the other hand, our approach looks only for edges
on trees without any additional information. Yet, the results obtained show a
relation between these two distinct strategies.

If this correlation exists, in fact, then our results show that the Random For-
est’s feature importance is equivalent to ranking complex networks by centrality
measures. In any way, our results show that it is possible to identify the impor-
tance of each feature without additional information beyond the forest itself, i.e.,
no Out-Of-Bag or future data is necessary.
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Fig. 3. Critical Difference Diagrams (CD) using Bonferroni-Dunn post-hoc test.

6 Conclusions

In this work, a feature ranking method was proposed using centrality measures
in complex networks generated from Random Forests. Datasets with 40% noise
in examples have a lower correlation between features once noisy features are
copies of the relevant features with noise inserted. For this case, two measures,
A(·,out,str) and A(·,g,eigen), outperformed, but not significantly, the Random
Forest for ranking the relevant features. Our results allow us to conclude that
eigenvector, Katz, and vertex strength centrality measures in non-oriented com-
plex networks may capture the behavior of the Random Forest’s feature impor-
tance ranker. Even if this is not the case, our results are strong enough to show
that it is possible to identify the importance of each feature without additional
information (unseen data) other than what is already represented in the forest
itself. In future work, we are analyzing regression datasets as well as other edge
weighting measures in our approach, such as the Gini index and the Random
Forest’s trees scores.

Supplementary Material

The source code, datasets, and other information to replicate the experiments
carried out in this work can be found in the following the GitHub repository
https://github.com/ahcantao/adbis2022 ranker.

https://github.com/ahcantao/adbis2022_ranker


Feature Ranking from Random Forest and Complex Networks 341

A Artificial Dataset Generators

Datasets were generated by the packages Scikit-learn [30], MLBench [19], and
KODAMA [8].

Table 1. Description of the artificial dataset generators.

Package Function name #ρ Features # Classes Total

mlbench spirals 2 2 1

mlbench cassini 2 3 1

mlbench shapes 2 4 1

mlbench smiley 2 4 1

mlbench 2dnormals 2 2, 3, 5, 7 4

mlbench cuboids 3 4 1

mlbench waveform 21 3 1

mlbench circle 2, 3, 5, 7 2 4

mlbench ringnorm 2, 3, 5, 7 2 4

mlbench threenorm 2, 3, 5, 7 2 4

mlbench twonorm 2, 3, 5, 7 2 4

mlbench xor 2,3 2, 4 2

mlbench hypercube 2, 3 4, 8 2

KODAMA spirals 2 2, 3, 5, 7 4

KODAMA dinisurface 3 3 1

KODAMA helicoid 3 3 1

KODAMA swissroll 3 3 1

sklearn make circles 2 2 1

sklearn make moons 2 2 1

sklearn make classification 2, 3, 5, 7 2, 3, 5, 7 14

sklearn make gaussian quantiles 2, 3, 5, 7 2, 3, 5, 7 16

sklearn make blobs 2, 3, 5, 7 2, 3, 5, 7 16

Total 22 85
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Abstract. Data narration is the activity of crafting narratives sup-
ported by facts extracted from data exploration and analysis, using inter-
active visualizations. While data narration has recently attracted much
attention, the process of crafting data narratives is loosely documented
and has not yet been formally described. In this article, we propose a
comprehensive and well-founded process to fill this need. It aims at (i)
supporting the complete cycle of data narration, from the exploration of
data to the visual rendering of the narrative, (ii) being flexible enough
to cover a wide range of crafting practices, and (iii) being well founded
upon with a conceptual model of the domain.

Keywords: Data narrative crafting · Data journalism · Process

1 Introduction

Data narratives are receiving increasing interest from several research communi-
ties (e.g., visualization, data management, computer-human interfaces) [2] and
many application domains (e.g. journalism, business, e-government, health).
They are largely used by journalists, scientists, and other communicators, to
convey striking messages to a given audience. In addition, the crafting of a data
narrative includes a variety of activities, including the analysis of data, the draw-
ing of relevant messages from data, the structuring of messages into a coherent
story and its visual rendering. Despite this diversity of activities, sometimes
even conducted by different people with varied professions and skills, there is no
framework, workflow, or tool for supporting the crafting of data narratives.

In an effort to clarify the concepts of data narratives, we recently defined
a data narrative as a structured composition of messages that (a) convey find-
ings over the data, and, (b) are typically delivered via visual means in order to
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facilitate their reception by an intended audience, and we proposed a conceptual
model describing and structuring the key concepts around data narratives [12].
This model (described in Sect. 2) is organized in 4 layers: factual, intentional,
structural and presentational, which reflect the transition from raw data to the
visual rendering of the story. With this definition and model in mind, our aim in
this paper is to contribute with a study of the dynamic aspects of data narrative
crafting. Like many works in the literature (e.g., [5,8,10]), we postulate that the
different forms of data narration can be described by a comprehensive process
encompassing the various activities ranging from data exploration to the ren-
dering of the narrative. A formal description of this process will benefit novice
data narrators, like e.g., non technical data journalists, and will be instrumental
to the development of tools for supporting advanced data narrators.

Accordingly, we reviewed the literature around the process of crafting data
narratives, and we conducted a survey with data journalists in order to under-
stand how they craft a data narrative. As an outcome of the former, we found
that globally the research communities agreed in the fact that the crafting pro-
cess includes three main phases: (i) the analyzing phase that handles the activi-
ties of exploring data, retrieving findings and formulating messages learned from
data, (ii) the structuring phase that includes the activities to organize the plot
of the narrative in an understandable way and, (iii) the presenting phase that
covers the activities to convey the structured messages visually. However, our
bibliographical study revealed the absence of a comprehensive and well-founded
process that covers the main activities of the crafting process, specially those
dealing with user intentions and their tight relation to data analysis. From the
survey, we observed the crafting workflows regularly followed by 18 data jour-
nalists, and we contrasted them to the literature. It turned out that journalists
follow the same three phases, mostly in a linear way, attaching less attention to
the structuring phase, while spending more time in the analyzing phase.

These considerations from the literature study and the survey with data
journalists enabled us to identify the activities (and their chaining) for crafting
data narratives. Based on those, we propose a comprehensive and well-founded
process that (i) covers the whole cycle of data narrative crafting, from exploration
of the data to the visual presentation of the narrative, (ii) accommodates a wide
range of practices observed on the field, and, (iii) is founded on a conceptual
model of the domain that clarifies the concepts involved in the process [12].

The scope of our method targets the population of data journalists or any
other data enthusiast that constructs data narratives out of existing data. The
reason for proposing the method is exactly the observed discrepancy between
literature and practice, with omissions of important parts from both sides. Thus
one significant contribution of our work is the explicit treatment of all the steps
that should be involved in the process. Secondly, apart from providing a method-
ological guidance, our method can enable the support of the process via tooling.
Indeed, there is a lack of integrated tools covering the whole crafting process
and recommending actions to less-experienced narrators. In particular, an appli-
cation that would automatically document the data exploration and narration
crafting is desperately needed by data workers, who spend hours to document
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Fig. 1. The conceptual model for data narratives (relations in bold were extended w.r.t.
the original version in [12])

their work. This is important for reproducibility, transparency, and linkage, and
requires a conceptual model and a process that are both consensual.

The paper is organized as follows: Sect. 2 recalls the key concepts of the con-
ceptual model proposed in [12]. Section 3 reviews the related work for the pro-
cesses of crafting a data narrative, and Sect. 4 discusses the survey we conducted
with data journalists. The proposed process is detailed in Sect. 5. Section 6 con-
cludes and draw research directions.

2 A Conceptual Model for Data Narratives

We recently proposed in [12] a conceptual model of data narratives providing a
principled definition of the key concepts of the domain, along with their rela-
tionships, and clarifying their role and usage (see Fig. 1).

This model is based on 4 layers following Chatman’s organisation [4], who
defined narrative as a pair of (a) story (content of the narrative), and, (b) dis-
course (expression of it). In our model, the factual layer handles the exploration
of facts (i.e., the underlying data), via a set of collectors that allow for manip-
ulating facts with varied tools and fetching findings, in an objective way, while
the intentional layer models the subjective substance of the story, identifying
the messages, characters and measures the narrator intends to communicate,
and tracing how they are obtained through analytical questions, according to an
analysis goal. As to the discourse, the structural layer models the structure of
the data narrative, its plot being organized in terms of acts and episodes, while
the presentational layer deals with its rendering, that is communicated to the
audience through visual artifacts (dashboards1 and dashboard components).
1 We use the term dashboard since it is general enough to accommodate various types
of visualizations (e.g. a Business Intelligence dashboard, an infographics, a section
in a python notebook, a section in a blog or web page).
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The interested reader is redirected to [12] for a deeper presentation of the
model. Here, we will highlight the main decisions behind the model that are nec-
essary for grasping its essence. Importantly, it should be noted that the concept
of message is the model’s corner stone, which is clearly evidenced by the way we
have related message to the other concepts. A specific message is rooted in the
facts analyzed, conveying essential findings, potentially raising new analytical
questions. The message allows introducing episodes, the building blocks of the
discourse. Each episode of the discourse is specifically tied to a message which
it aims to convey. The relationship between messages and episodes is the basis
for structuring stories that address analysis goals, narrated by structured dis-
courses (with cohesive acts being the backbone of the narrative structure) and
dashboards their presentational counterpart.

3 Related Work

In this section, we review the works describing the internals of the data narration
process, as well as the tools that automate (part of) the crafting process.

3.1 Global Data Narration Processes

Data narration is a complex process, at the crossroads of several domains: data
exploration, data visualization, data management, etc. Despite the many contri-
butions in each of these areas, few works offer comprehensive workflows describ-
ing the entire data narration process. The first attempt to model data narra-
tion processes come from the visualization community. For example, Kosara and
Mackinlay [9] proposed a two-phases process: First, narrators collect informa-
tion and explore their interrelationships, pointing to key facts, and then, they
tie those facts together into a story. Chen et al. [5] surveyed early proposals and
concluded that their crafting processes are composed of two main phases: (a)
visual analytics, which requires seeing all aspects of complex data, explore their
interrelationships, and is supported by multiple coordinated views and sophis-
ticated interaction techniques, and (b) storytelling, which is meant to convey
only interesting or important information (i.e. findings) extracted through the
analysis, presented in a simple and easily understandable way.

To bridge the gap between these two phases, Chen et al. proposed an inter-
mediate one, called data synthesis [5]. In this phase, the narrator assembles and
organizes the findings to be communicated, to represent explicitly the essential
relationships between them, building a compelling narrative. Lee et al. [10] also
identified three main phases: explore data to retrieve findings, make a story to
turn findings into a sequence of narrative pieces to build the plot of the narrative,
and tell a story to materialize the plot in a visual manner. The authors stress the
importance for the data narrator to go back and forth between the exploration
and the story-making phases. More recently, Duangphummet et al. [6] proposed
a protocol consisting of the following phases: conceptualization of the data nar-
rative domain, targeted audience and distribution channel, data preparation to



Data Narrative Crafting via a Comprehensive and Well-Founded Process 351

deliver data that is relevant to the use, realization to deliver a storyline with
detailed content and an initial form of key visualizations, visualization design to
redesign the visualizations and create visualization prototypes, and finally, the
visualization development where technical requirements are defined, and the key
visualizations for target devices are developed and deployed.

In addition to [10], many works underline the importance of moving between
the data narrative crafting phases. For instance, Wang et al. [19] ran a workshop
on data comics, organized by an interdisciplinary team with expertise in data
visualization, graphic design, data comics, and illustration. They observed that
to create stories, students require to move back and forth between the story,
visualizations, and the data.

Besides the previously described works proposing global crafting processes,
some works describe subprocesses, focusing on the necessary activities to be con-
ducted. Without being exhaustive, we mention here some major contributions.
Battle and Heer [1] identified three ways to start a data narrative: having a
precise idea in mind, having a vague idea refined during data exploration, or
having no idea before exploring the data. Weber et al. also point that the craft-
ing process starts by either an idea, a problem or a question [20]. Notably, many
works underline the importance of different story structures and different kinds
of interactivity in data narration [13,20]. In particular, Weber et al. [20] encour-
age to use non-linear structures and set up interactivity. Many works specifically
deal with the phase of structuring the narrative [5,10,14,18].

Finally, very few works highlight the importance of intentional aspects. Thudt
et al. [16] stress that subjective perspectives can be introduced at every step of
visualization creation: during data collection and processing, visual encoding,
and when refining the presentation. In the context of OLAP cube exploration,
Vassiliadis et al. [17] propose a set of intentional operators to express high-level
analytical intentions and automate their translation to database queries.

3.2 Automated Data Narration

Many recent works addressed the automatic generation of data narratives, pro-
viding another source of insights on how this process is perceived.

Wang et al. [18] conducted a qualitative analysis of 245 infographics examples
to explore the infographics design space in terms of structures, sheet layouts, fact
types, and visualization styles. Based on those, the authors propose a system for
supporting a fact sheet generation pipeline consisting of three phases: (i) fact
extraction, (ii) fact composition, and (iii) presentation synthesis. Shi et al. [15]
proposed Calliope, a system that can automatically generate visual data stories
with facts arranged into a logical sequence. It consists of two main modules: (i)
the story generation engine, for generating, choosing and organizing the facts
that will participate in the narrative, and (ii) the story editor, that visualizes
the data story (generated as a series of visualization charts) and allows the users
to change it based on their preferences. Shi et al. [14] described the workflow
for crafting data videos, consisting of 4 phases: (i) collecting a series of data
facts around a certain topic, (ii) constructing a storyline as an assembly of these
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data facts into a sequence, (iii) choosing data visualizations for the data facts and
deciding how to animate them by drawing a storyboard, and finally, (iv) realizing
the storyboard via a design software in which the narrator edits and combines
the animated visualizations until a coherent data video is accomplished.

In CineCubes [7], Gkesoulis et al. detail the process of crafting a data movie in
the form of a powerpoint presentation, to answer a specific user’s need described
by a query. First, an introductory act is built with the initial query, and two
subsequent acts are used to put context. These acts contain visualizations high-
lighting important facts, as well as text and audio describing these facts. A
summary act concludes with all the important highlights of the previous acts.

In all these works, the proposed phases are consistent with those described in
the previous subsection. Being a mostly automatic generation, the construction
is linear in the sense that there is no back and forth movements between phases.
In addition, they target a specific domain or data format and organize stories
accordingly to pre-established patterns. In particular, we highlight the absence
of intentions, that are, at best, modeled via an initial query or a topic.

Lessons Learned. Most of the works describing the data narration process agree
on the 3 general phases of exploration (to retrieve findings), structuring (orga-
nizing the information gathered into narrative pieces) and presentation (crafting
visual artifacts). Automated data narration is still in its infancy, mainly apply-
ing rigid patterns and lacking the necessary flexibility of moving between the
3 phases. One of the key findings is that the intentional layer of the model
presented in Fig. 1 is largely absent from the works reviewed. This means the
substance of the story, i.e., the composition of story elements (analytical ques-
tions and hypothesis, messages, etc.) as pre-processed by the author’s cultural
code [4] is ignored. We claim that this absence is regrettable; if data narrations
are to be shared, reused, their crafting process documented, then this intentional
layer deserves more attention.

4 Data Journalist Practices

A preliminary study, in the form of a survey [3] (in French), investigates the
professional practices of data journalists.

The survey consisted of 32 questions2, answered by 18 data journalists from
14 French regions, who have worked on a big variety of topics, including elec-
tions, environment, cinema, terrorism, paradise-papers, real estate. For nearly
50% of them, data narration is at the core of their professional activity, and is
occasional or marginal for the others. Concerning training, 56.3% studied social
sciences, 18.8% studied sciences and 24.9% graduated from law or journalist
schools. One of the journalists works for the International Consortium of Inves-
tigative Journalists (ICIJ), 5 of them work for the national press, and the 12
2 https://drive.google.com/drive/folders/1zDzP ndSlQUJCbtFMVzJDnIbyXK1D2
l?usp=sharing (in French). Note that for some questions more than one answer was
possible, and that journalists could leave the questions unanswered.

https://drive.google.com/drive/folders/1zDzP_ndSlQUJCbtFMVzJDnIbyXK1D2_l?usp=sharing
https://drive.google.com/drive/folders/1zDzP_ndSlQUJCbtFMVzJDnIbyXK1D2_l?usp=sharing
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Fig. 2. Sequence of activities reported by journalists (Color figure online)

remaining work for the regional press. Regarding their general working habits,
75% of them work alone. They usually work on open data (72.2%) and more
specifically on data from public institutions (44.4%). They consume from min-
utes to months during the data narration and use different tools during data
exploration, such as spreadsheets (93.8%), scripts (50%), notebooks (18.8%),
powerBI-like tools (31.3%) and some machine learning tools (28.6%).

Two main questions were asked on their data narration practices. For the first
one, “How does a data story’s subject emerge?”, multiple answers were possible.
The answers showed that the goal, or subject, of an article emerges from: an
idea to be confirmed by data (68%), a dataset which needs exploration to reveal
important facts (68%), a refinement of the subject while exploring the dataset
(48%). The second, open question was: “What is the general workflow you apply
for data narrative crafting?”. Figure 2 sketches the answers provided by 14 of the
18 journalists, where activity names summarize journalists’ descriptions of their
main activities3, rows correspond to journalists and column numbers reflect the
sequence of activities. We color these activities according to the layers of the
conceptual model: factual (pink), intentional (purple), structural (yellow) and
presentational (blue). Gray-colored cells indicate that the activity may over-
lap structural and (more probably) presentational tasks. In addition, activities
concerning the checking of findings and the validation of messages (namely inter-
views, validation or cross-checking), aiming at transforming a factual object into
an intentional one, are in between the factual and intentional layer. Similarly,
visualizations are used both in the factual layer, to understand data and retrieve

3 Since the question was open, we homogenized the answers and grouped them into
few categories.
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findings, and in the presentational layer, to choose the most suitable one for
communicating findings to the audience in a visual manner.

We have abstracted these sequences in the form of an activity diagram
(top-right corner of Fig. 2). Most frequent paths are highlighted by larger arrows.

Lessons Learned. Figure 2 shows that many activities under different names aim
towards the same action, and that different paths can be followed by journal-
ists when crafting a data narrative. The figure also shows a preponderance of
activities from the factual and the intentional layer. The activity diagram shows
that journalists enter the workflow either in the factual layer, i.e., by exploring
a dataset, or by the intentional layer, i.e., having at least a vague idea of the
subject. After this, the workflow becomes mostly linear, with some movements
between the factual and intentional layers. Usually, data journalists start writing
their articles once the analysis phase is over, and there is no backtrack once the
presentational layer is entered.

Notably, the journalists attached little importance to the activities of the
structural layer. At the exception of one of them, structuring activities are either
hidden in writing activities or even not mentioned explicitly. Precisely, many of
them agree that while data exploration usually takes long, visual storytelling
can be extremely fast, potentially done on the fly, with some of them actually
not even involved in the writing of the article. For those that mention it, the
activity “write article” includes several hidden details concerning the organi-
zation of messages that should be communicated, the visual presentation and
communication of the analysis results.

Overall, we can say that there is a chasm between what practitioners do and
what literature suggests – and in fact, there are deficits in both sides. On the
one hand, compared to what is reported in the literature, the work of the data
journalists is over-emphasizing the intentional part and under-investing on the
structural and the presentational part. On the other hand, when it comes to
the literature, the presented methodologies overemphasize presentation and (to
some extent) structuring, and pay much less attention to the intentional part. A
process that gracefully hosts all aspects of narrative construction would facilitate
narratives that are more complete and intuitive.

5 A Process for Crafting Data Narratives

From the literature review and the survey with journalists, we synthesize a set
of requirements for a comprehensive data narration process and we propose a
process that fulfills these requirements.

5.1 Requirements

First of all, we note the absence in the literature of a whole workflow for crafting
data narratives, including all the activities identified in Sects. 3 and 4. Figure 3
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Fig. 3. The main activities for crafting data narratives identified from the literature
and a survey with data journalists (AQ abbreviates Analytical Question) (Color figure
online)

depicts the activities as phrased in the literature (in gray boxes) and by jour-
nalists (in green boxes). We group those referring to the same task and propose
new names (the bold ones in Fig. 3) which are consistent with the conceptual
model of Fig. 1.

In more details, most authors [5,6,9,10,14,15,18,19] agree that data nar-
ration process includes three main phases: (i) analyzing, (ii) structuring, and
(iii) presenting. The survey reveals that the data journalists agreed with the
literature, especially on the phases (i) and (iii). In Fig. 3, activities are grouped
according to these phases. We remark that activities pertaining to the factual
and intentional layers of the conceptual model are mixed in phase (i). In addition,
while the literature rarely mentions the activities pertaining to the intentional
layer, these activities are often pointed by data journalists. Furthermore, as we
explained in [12], the substance of a story, representing the narrator’s intention
in reporting the story, is a constituent of the data narrative [4]. Conversely, while
the journalists did not attach much importance to the activities of the structural
phase, this aspect is emphasized in the literature. Finally, as noted in [10,19], the
narrator should have the possibility to move freely back and forth between the
different phases of data narration. However, this movement should not prevent
that different groups of activities could be conducted by different persons with
different profiles. These groups of activities, identified by layers in the conceptual
model [12], should be as isolated as possible.

To summarize, a comprehensive workflow for crafting data narratives should
satisfy the following requirements:

– (R1) cover the activities and the paths identified by the survey with data
journalists, which are depicted in Fig. 2,
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Fig. 4. The process of data narrative crafting (Color figure online)

– (R2) cover the activities of the three phases identified from the literature,
– (R3) allow the free back and forth transition between phases,
– (R4) clearly delineate the different layers of the conceptual model [12] within

its activities.

5.2 The Process of Crafting Data Narratives

In this subsection, we propose a comprehensive process for the crafting of data
narratives that covers the activities and paths proposed in the literature and
reported by journalists (requirements R1 and R2), while also being founded
upon and coherent with the conceptual model (R4) and allowing the back and
forth movement between its phases (R3).

The phases of the process are illustrated in Fig. 4. All phases are accompa-
nied by the resulting outcomes, which are exactly the basic constituents of our
conceptual model (R4). We retain the same coloring (pink for factual explo-
ration, purple for intentional question-answering, yellow for the structuring of
the answers of the intentional questions into a plot, and blue for presentation).
Observe that the factual and intentional layers of the conceptual model are well
differentiated here, contrarily to the literature that mix them into one phase.

Consistently with Fig. 2, the process flexibly starts either with the existence
of a data set, which is to be explored for findings, or with the emergence of an
initiating question, that begs to be answered. This flexibility is important in the
sense that prescribing a specific starting point for the collection of findings from
the data is not what actually the practitioners do.

The following paragraphs describe the activities pertaining to each phase,
including the activities abstracted from the literature and survey results (shown
in Fig. 3), and some new activities that intent to cope with missing tasks.

Note that such activities should not be considered as steps to be executed
sequentially. Conversely, many activities can be initiated and executed in par-
allel. Arrows in Fig. 5 indicate a depends on relationship. For example, message
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Fig. 5. Activities for data narrative crafting

validation depends on message formulation, as it is necessary to formulate mes-
sages before validating them. In addition, at any time, it is possible to come
back to previously executed activities (e.g. to rewrite messages or formulate new
ones). Backtrack arrows are omitted for clearness.

Exploration. The exploration phase, handling the factual layer, concerns several
activities: (i) dataset collection, concerning source selection, data extraction,
integration and preprocessing, (ii) trial and reuse of several collectors (i.e. query-
ing, profiling and mining tools) and (iii) trial of diverse visualizations (crosstabs,
graphics, clusters, etc.) for collecting findings, then, (iv) finding formulation, con-
cerning the storage of findings and their relationships, and (v) finding validation,
which is typically done via statistical tests, but also by discussing and crosscheck-
ing with additional data sources (as done by data journalists) and confronting
with the state of the art (as done by data scientists [11]). Note that some findings
may lead to additional analysis, triggering more collectors and visualisations, or
even the collection of more datasets. The exploration phase is time-consuming
(data journalists measure it in days or even in months). Then many activities
are frequently performed asynchronously.

Question-Answering. This phase, neglected in the literature, handles the inten-
tional layer and concerns activities for (i) formulating goals and questions, (ii)
drawing messages from findings, and (iii) validating messages. It supports explic-
itly the data narrator intention, as its proposed activities help in formulating an
analysis goal and a set of analytical questions that reflect their intention.

Furthermore, to cope with literature lacks (evidenced in Fig. 3), we propose
a message formulation activity, concerning the derivation of messages from find-
ings, and the identification of characters and measures (the relevant constituents
of messages [4]) to be highlighted to the audience.

Remember the distinction of outcomes: A finding is a highlight, (or equiv-
alently, a pattern) annotating a dataset, or a subset of it. A finding can be a
typical pattern (like e.g., an association rule, or a path of a decision tree) or the
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verification of rejection of a hypothesis for the data. A message, on the other
hand, is the answer to the intentional question that exploits a finding to label a
character with respect to other characters or a measure. For example, based on
data findings, one can answer questions like:

– By comparing Daily Infections in France to EU Average, we find that they
are similar. Here, the character is the entity France, which is an instance of
the concept Country, and we label its measure DailyInfections with respect
to another peer character, EU Average.

– By correlating the concept News Authenticity to the concept Media outlet,
we find a non-significant correlation, rejecting the hypothesis that the outlet
can solely determine the existence of fake news.

The internals of the process, detailed in Fig. 5, allow the flexibility of explor-
ing several paths, that can be chained according to narrator’s habits and speci-
ficities of the task on hand, alternating data analysis, finding derivation and
message writing, but also allowing for the validation of findings and messages,
or even the expression of new analytical questions.

In any case, the identification of such messages and their structuring is a task
that is practically absent from the related literature, significantly present in the
everyday work of practitioners, and structured in our model for the first time.

Structuring. The structuring phase, the missing part in the data journalists
processes, handles the structural layer, describing activities for organizing the
plot of the narrative in terms of acts and episodes [7] (adopted from the classi-
cal structure of plays). Plot setting starts by (i) determining the audience, (ii)
eventually selecting a subset of messages for such audience, and (iii) choosing
an appropriate narrative structure. Then, (iv) messages are mapped to acts and
episodes. In more details, these activities allow the arrangement of the thoughts
of the data narrator into different layers: an act which is a major piece of infor-
mation, and is composed of several episodes that are of lesser importance on
their own [12]. Remember that the result of the structuring is an episode, which
is the annotation of a message (which has a simple structure and labeling) with
comments on the context, significance, essence, etc., in other words with the
content that makes the message interpretable by human beings.

Also, observe in Fig. 5, the existence of a specific activity to make the actions
of writing acts and episodes explicit. Such activities can be performed before or
at the same time as choosing visual means.

Presentation. Finally, the presentation phase handles the presentational layer,
and includes activities for (i) setting the type of visual narratives, (ii) setting
the interactivity mode, and (ii) implementing dashboards for conveying acts and
episodes to the audience. Such activities carry on the visualization level and build
for each act an associated dashboard and present the narration in a complete
visual narrative. Remember that dashboard components are representations of
episodes in (typically) a visual form of communication, including text, figures,
charts, data plots, or any other means to convey the message.
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5.3 Discussion

The purpose of this paper is to support data storytelling via a method based
on a conceptual model, that fits in all possible domains where storytelling is
applicable. One of the main drivers for the method was to bridge the observed
gap between literature and practice, with omissions of important parts from both
sides. As a result, the method allows the structuring of the overall process in
phases and facilitates valid translations between important intermediate results
that are necessary to construct a data narrative, in a way that is flexible, realistic
and adequately structured.

The intended users of the method are data journalists and data enthusiasts.
We ran various preliminary experiments to empirically assess its potential of
being adopted by various data workers. We organized a challenge4 where data
enthusiasts (among which journalists, students, social workers) were mixed with
data scientists, aiming at producing data narratives using the open data of a
French city. Interestingly, all teams started with a vague idea of the topic they
wanted to treat, which was refined after many iterations among data collec-
tion, data analysis and question formulation. All of them used a unique time-
line for structuring their narratives, which were rendered with varied forms. In
another experiment, 44 students in BI were asked to craft a data narrative using
a dataset they were familiar with, while having no experience in data narratives
crafting. Students were observed during crafting, and some of them, especially
those less skilled, were asked to indicate the sequence of activities they realized.
This helped them to start, particularly having to write down the analytical ques-
tions that guided the data analysis, and to write down messages and early think
about structuring. Finally, some of the authors of the present paper crafted a
data narrative about tuberculosis, targeted for epidemiologists and public health
decision-makers in Gabon. The whole crafting process is described in [11]. We
highlight the importance of goal setting and message formulation activities, both
of them being validated by many experts with different profiles. In particular,
in scientific context, messages are not only validated by statistical tests but also
confronted to other data sources and similar works of the state of the art and
should pass risk assessment tests.

6 Conclusion

In this paper, we proposed a process for crafting data narratives, that covers the
whole cycle of data narration, from data exploration to the visual presentation of
the narrative. Backed by a literature review and a survey with data journalists,
it accommodates a wide range of practices observed on the field, via clearly
delineated activities, while being well founded upon a conceptual model of the
domain [12]. We believe that these two models, static and dynamic, can serve as
a stepping stone for future research in the area of data narration.

Extending the proposal with tool support for guiding the narrator along the
process and (semi-)automating some tasks, is a clear path for future work.
4 Sponsored by French CNRS https://www.madics.fr/event/titre1617704707-3351/#madona.

https://www.madics.fr/event/titre1617704707-3351/#madona
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Abstract. The increasing availability of historical information has
emphasized the importance to explore, understand and extract value
from it in order to achieve both short-term goals and strategic objec-
tives. Intelligent techniques to handle heterogeneous data, together with
user preferences, may be beneficial for end users; among them we can
mention recommendation systems, which are able to guide users through
huge catalogues of alternative items. This kind of systems represent an
invaluable help not only for the users, who can feel disoriented in presence
of so many alternatives at their disposal, but also for service providers
or sellers, which can benefit from inferred hidden knowledge and guide
towards particular items the choices of specific groups of users sharing
some common preferences. This influence capability of recommendation
systems can be particularly useful in the touristic domain, where the need
to control and manage the level of crowding of POIs (Points Of Interest)
has become a pressing need in the recent years. In this paper we study
the role of contextual information in determining POI occupations and
we explore how machine learning and deep learning technologies can
help in producing good POI occupation forecasters by enriching histor-
ical information with contextual one. Throughout the paper we refer to
a real-world application scenario regarding the touristic visits performed
in Verona, a municipality in Northern Italy, between 2014 and 2019.

Keywords: Context · POI occupation and recommendation ·
Crowding forecast · Machine learning · Deep learning

1 Introduction

The collection and analysis of historical data about users’ behaviour is the core
of any recommendation system which needs to understand the preferences and
tastes of users for suggesting them the best next item in a collection. Many
literature solutions demonstrate how the use of contextual information can help
in defining better and more suitable recommendations, both for single users or
group of users [2,3,11]. Recommendation systems are becoming an essential tool
for guiding users through huge catalogues of items, since the increasing amount
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of data is difficult to explore and understand, thus each choice can become a
nightmare instead of an opportunity. They could be used also by service providers
or suppliers not only for increasing their knowledge about users, but also to guide
them towards particular items in their preference list.

Recommendation systems are successfully used in many different application
domains, from e-commerce and on-demand TV shows, to the touristic one. As
regards to the latter, the ability to guide user choices has become particularly
important in the recent years since, due to circumstances such as the COVID-19
pandemic, it has become prominent the need to avoid crowding and restrict the
number of people that can access the same POI together. Therefore, a natural
extension of currently available recommendation systems is the ability to predict
the level of crowding of a given POI and to redirect people to other attractions,
which are equally appreciated, but have currently a less amount of visits [8,9].

Fig. 1. Architecture of a Crowd-aware Recommendation System (CRS) obtained by
combing the results of a classical recommendation system and a crowding forecaster.

In the remainder of this paper, we concentrate on the touristic application
domain and we design a solution able to guide users towards the less crowded
attractions based on historical and contextual information. More specifically, we
will use the term “Recommendation System” for denoting a system that, given
the set of available Points of Interest (POIs) P and the preferences of a user u,
is able to determine a subset of P which contains the most suitable POIs for
u. Conversely, we will use the term “Crowding forcaster” for denoting a sys-
tem that given a POI p and a set of contextual information C = {c1, . . . , cn} is
able to predict the level of crowding for p in C based on historical contextual
information. The combination of a recommendation system and a crowding fore-
caster can allow to produce better suggestions for users, which essentially reduce
waiting time at queue lines, but it can also be an invaluable help for attraction
owners who nowadays need to prevent and manage crowding situations, without
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giving up on pursuing to increase the number of visits in less known or visited
POIs. This kind of system obtained by combining a classical recommendation
system and a crowding forecaster will be denoted in the following as Crowd-aware
recommendation system (CRS ) and its architecture is reported in Fig. 1.

The aim of this paper is twofold: (a) firstly, we will study how contextual
information can impact the level of crowd of a given POI. At this regards, we
will demonstrate that many different and intertwined factors can have an impact
on this aspect. (b) Secondly, we compare the use of machine learning and deep
learning techniques for producing the better crowding forecaster system, which
is able to take care of all these articulated contextual pieces of information. The
aim of this second contribution is to define the better generalized architecture
that can be used for POIs with different features, different amounts of available
historical information and different availability of contextual information.

The remainder of the paper is organized as follows: in Sect. 2 we discuss
some precedent work about contextual recommendations in the tourism domain
and crowding forecasting, Sect. 3 introduces the considered application domains,
Sect. 4 shows how contextual features influence POIs visits, whereas Sect. 5
describes our proposal to forecast POIs occupation with machine learning and
deep learning techniques. Finally, Sect. 6 summarizes the obtained results and
presents some future work.

2 Related Work

In the research area of recommender systems there is a strong interest in develop-
ing context-aware algorithms for decreasing recommendation errors by enriching
available information about items and users with contextual ones [2,3]. In [10,11]
the notion of context is used to infer more precise contextual user preferences
to be used for suggesting the best sequence of items to group of users by con-
sidering the current context they are acting in. In the urban tourist scenario,
and in particular in POI recommendations, multiple factors may be considered
despite most of the approaches developed in the past mainly exploited three con-
textual dimensions, namely time, geolocation and social conditions (e.g. POIs
visted alone, in groups, with kids) [4,6,14]. In general, additional factors may be
included in the recommendation process; indeed, in [7,13] the authors consider
weather conditions in POI recommendations. They propose novel recommender
systems to suggest next points of interest to visit that match users’ preferences
(what to visit) and the specific context of the visit (how to visit each POI).
However, the contextual information is quite limited and restricted to only a
weather feature in [13] and to an hourly weather summary (e.g., cloudy), tem-
perature (e.g., cold) and temporal information such as the time interval related
to the visit (e.g., evening) in [7]. Both proposals do not consider other exter-
nal information like the occupancy rate of each POI, the day of the week, the
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presence of holidays or other important events in the considered city. Since our
main aim is to prevent a high level of crowding in each POI of a certain area
and to consequently suggest interesting, but less crowded POIs to tourists, we
need to be able to consider all the contextual features that may influence POI
visits. In [8,9] the prediction of POI occupancy is obtained only on the base of
historical accesses, without enriching data with context, and then it is used to
balance travelers without considering their personal preferences. To the best of
our knowledge, a proposal that partially tackles a problem similar to ours is [12];
the authors predict parking occupancy in areas where the availability of parking
data produced by sensors is limited and needs to be integrated with heteroge-
neous contextual information, like POIs presence. However, the authors do not
include the analysis of user contextual preferences to suggest free parking slots.

3 Touristic Scenario

In this paper we use a real-world dataset containing the visits performed by
tourists to POIs located in Verona, a city in the Northern Italy. This dataset
contains about 2,1 million records spanning 6 years (i.e., from 2014 to 2019)
regarding about 500,000 tourists and 9 different POIs. Each of these records
reports an anonymised user identifier, the POI identifier and the timestamp
of the visit. The information contained in the dataset has been enriched with
some contextual information regarding the weather conditions and some seman-
tic temporal information, like the presence of holidays. In general, such features
could be extended in order to include the presence of touristic events in the
analyzed area or spatial information (e.g. POIs in the immediate proximity).
Table 1 provides an overview of the dataset statistics.

Table 1. Summary of the touristic datasets considered in the paper.

ID Name Category Num. of visits

49 Arena Amphitheatre Monument 421,490

61 Juliet’s House Museum 375,305

59 Lamberti’s Tower Monument 290,243

71 Castelvecchio Museum Museum 271,552

54 Church of St. Anastasia Church 230,352

52 The Cathedral Church 205,293

42 Archaeological Museum at the Roman Theatre Museum 145,854

58 Palazzo della Ragione Monument 111,440

202 Juliet’s tomb and Cavalcaselle Museum Museum 100,701
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Definition 1 (Touristic Visit). Given a set of POIs P and a set of users U ,
a visit performed by a user u is represented by a tuple:

v = 〈u, p, t, lat, long〉 (1)

where: u ∈ U is a user identifier, p ∈ P identifies the POI, t is a timestamp
representing the date and time of the visit, and lat and long identify the spatial
position (i.e., latitude and longitude) where the POI is located.

The set of all visits performed by users in U is denoted in the following
as V. A tourist visit can be enriched with some contextual information better
characterizing the conditions in which the visit has been performed.

Definition 2 (Visit context). Given a visit v ∈ V, we say that it is performed
in a context C defined as follows:

C = {ts, doy, dow, hol, pres, wind, rain, temp, hum} (2)

where ts is a predefined timeslot inside the day, doy is the day of the year, dow
is the day of the week, hol is a boolean value representing the fact that the visit
is performed in a public holiday and/or during a weekend, or not, pres is the
atmospheric pressure, wind is the wind speed, rain is the amount of precipita-
tion, temp is the temperature, and hum is the percentage of humidity.

In the following section we study the role of context in influencing the number
of tourists visiting a particular POI in a given moment.

4 The Role of Context

Given the dataset presented in the previous section, a preliminary set of analysis
has been performed to confirm the role of the context in influencing the level of
crowding of the considered POIs. In this section we illustrate some of them.

Dependency on the Day of the Week – In Fig. 2(a) we report the average
number of visits for the Juliet’s house in February. As you can notice, the num-
ber of visits has a dependency with the day of the week: visits concentrate on the
weekend and have a peak on Saturday. However, if we enrich the information
regarding the temporal contexts, for instance by distinguishing some anniver-
saries, we are able to better capture the behaviour of tourists and forecast the
number of visits. In particular, for the Juliet’s house, also known as the house
of lovers, the Valentine’s day is a very important anniversary. Indeed, Fig. 2(a)
reports the fact that even if it happens on a Wednesday, which is usually a
very quiet day, the actual number of visits on the Valentine’s day triplicates and
matches the number of visits of the most busy week days.
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Fig. 2. (a) Number of visits to Juliet’s house for each day of the week compared to
the number of visits at Valentine’s day. (b) Average number of visits to “Palazzo della
Ragione” subdivided by month.

Dependency on External Events – The analysis of data reveals also that
some events can have a great influence on the number of visits: they can change
the tourist behaviour on the basis of the period in which they happen. For
instance, the Easter holidays are an annual event that happens in a variable
moment, mainly in March or April. Figure 2(b) shows in blue the average number
of visits performed to the POI denoted as “Palazzo della Ragione”. We can
notice that March is usually a month with few visits compared to others, but
when Easter holidays are in that month, the number of visits drastically increase,
whereas when Easter is in April the peak moves to that month.

Fig. 3. (a) Number of visits to the Amphitheater Arena during April 26th, 2014. (b)
Number of visits to Juliet’s House during April 26th, 2014.
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Fig. 4. Number of visits in the same day of year but in presence of different weather
conditions: blue line in a rainy day, while yellow line in a sunny day. (Color figure
online)

Dependency on the Time Slot – As we have discussed in the introduction,
the goal of a crowding forecasting system could also be to drive the choice of
tourists, for instance by suggesting a different time-slot for their visit. Indeed,
even in the most busy dates, the number of tourists which are present in a given
POI is not constant. Figure 3(a) shows the distribution of the number of visits
performed by tourists to the Arena and Juliet’s House on Saturday, April 26th
2014. This was one of the busiest days, because it is both a weekend day and it
is also close to the anniversary of Italy’s Liberation, or April 25th. As you can
notice, the majority of the visits are concentrate in the morning. In this case a
smart recommendation system can suggest tourists to perform the visit between
1 and 2 p.m., anticipating or postponing the launch time, or it can suggest a
late afternoon visit before closure.

Dependency on Weather Conditions – Finally, another important contex-
tual feature which can influence the number of visits, independently from the
considered day, is represented by the weather conditions. Figure 4 illustrates how
in the same day of the year, the number of visits can depend on the fact that
it is raining or not. We can notice that some POIs, like 42 and 202, are greatly
influenced by this condition, because they are outdoor attractions and in pres-
ence of rain there are no visits. Conversely, other POIs, like 49, are influenced
but in a less extend, and finally, other indoor attractions (like 52 and 58) could
benefit from an adverse weather condition, for instance because they are indoor
attractions where tourists can spend some hours in a rainy day.

5 Forecasting POI Occupation with a ML/DL Model

In this section we discuss how the context-aware forecasting occupation problem
can be modelled with a machine learning or a deep learning approach. More



368 A. Belussi et al.

specifically, we compare the results obtained by considering only the raw histor-
ical records about the performed visits (see Definition 1), or their combination,
with the ones obtained by including also the contextual information presented
in Definition 2. For each POI we try to estimate the level of occupancy in differ-
ent moments of the day by considering three different time slots (i.e., morning,
noon, evening). In both cases (raw and contextual) we compare the accuracy of
a machine learning model represented by a random forest, and a deep learning
model represented by a deep neural network (DNN). Several configurations are
tested in order to determine the best one and study their behaviour in presence
of POIs with different characteristics. The implementation of the models has
been done in Python by using the Tensorflow [1] and the Keras [5] libraries1.

Forecasting with Only Raw Data

As regards to the estimation of the number of tourists in each POI with only the
raw historical records described in Definition 1, we initially use a Random Forest
model and subsequently a DNN model, obtaining the results reported in Table 2
and Table 3 respectively. For the random forest we tried different configurations
represented by a different number of trees. As you can notice, the accuracy
obtained for the various POIs is quite different and it decreases as the number
of available training data decreases: for the default forest with 100 trees, it spans
from about 31.4% in the best case to 50.8% in the worst one which is associated
with POI 202, namely the one with the smallest amount of historical records.
Conversely, the accuracy of the network trained and tested with all the POIs
together (i.e., raw ALL) is about 38% and it is not substantially affected by the
number of trees in the network.

Table 2. Results obtained by applying a Random Forest model on raw data. The row
ALL identifies the network trained with all POIs together. The metric used to evaluate
the accurac y is the well-known Mean Absolute Percentage Error (MAPE)

PoI ID MAPE

10 trees 100 trees 1000 trees

49 31.8% 31.4% 31.3%

61 37.9% 38.4% 38.3%

59 33.4% 33.1% 33.0%

71 38.7% 38.6% 38.5%

54 33.3% 33.1% 33.1%

52 33.6% 33.4% 33.5%

42 36.0% 35.7% 35.8%

58 40.5% 40.6% 40.5%

202 51.0% 50.8% 50.9%

ALL 38.0% 37.9% 37.9%

1 The source code and the datasets used in this paper are available at https://github.
com/smigliorini/crowd-forecaster.

https://github.com/smigliorini/crowd-forecaster
https://github.com/smigliorini/crowd-forecaster
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In case of the DNN model we tried different values for the following hyperpa-
rameters that control the architecture or topology of the network: the number of
nodes, the number of epochs and the dropout. The last two parameters are used
to approximate the best solution without falling into an overfitting. The archi-
tecture of the DNN is illustrated in Fig. 5 and it includes: an input layer, a dense
layer with n nodes and ReLU activation function, a droupout layer with rate
DP, another dense layer with n nodes and ReLU activation function, followed by
another dropout layer with the same rate DP, and finally an output layer with
one node and activation function linear. Notice that in Tensorflow, the Dropout
Layer randomly sets, at each step during the training time, the input units to
zero with a certain frequency DP. In this way a certain percentage of randomly
chosen units (i.e. neurons) are ignored during the training phase. The percentage
of units which are dropped out in the considered DNN model are reported in
column DP of Table 3. Conversely, the first column represents the number of
nodes and column EP reports the number of epochs. For each considered PoI,
the corresponding cells report the MAPE obtained with the current configura-
tion. In the cells we distinguish the following cases: (1) an overfitting (i.e., when
the validation error is significantly greater than the training error) is identified
by the presence of an “*” symbol before the percentage, (2) a potential good
model is identified by a cell with a gray background, (3) the best found model
has a gray background and a bold MAPE value, and finally (4) an unknown fit
(i.e., when the validation error is significantly smaller than the training error) is
represented by a cell without a background color. If we consider the best DNN
models for each POI or for all POIs together in Table 3, they are able to provide

Fig. 5. Architecture of the DNN model. It includes: an input layer, a dense layer with
n nodes and ReLU activation function, a droupout layer with rate DP, another dense
layer with n nodes and ReLU activation function, followed by another dropout layer
with the same rate DP, and finally an output layer with one node.
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a smaller error w.r.t. the corresponding random forest in Table 2. In this case, the
errors span from about 24.7% to 49.4%, while the error for the global network
decreases to about 36%. As you can notice, there is not a single best configura-
tion for all POIs, but each one could require a different model depending on the
number of training records and its behaviour w.r.t. the context dimensions.

Table 3. Results obtained by applying a DNN model on the raw data. The column
ALL identifies the network trained with all PoIs together. Each cell reports the obtained
MAPE error: an “*” symbol before the value denotes an overfitting model, gray cells
identifies good models, white cells represents unknown fit model, and finally gray cells
with a bold MAPE value identifies the best configuration.

DNN MAPE for PoI

Par.
49 61 59 71 54 52 42 58 202 ALL

DP EP

3
2

N
o
d
es

0.0
300 *27.0% 33.1% *30.4% *33.7% 28.5% 26.2% 35.7% *34.0% *48.2% *36.8%

500 *27.5% 33.4% *31.5% *34.0% 26.7% 25.0% *33.6% *34.1% *50.7% *37.3%

0.2
300 25.1% 34.2% 35.8% 39.2% 32.0% 28.4% 39.1% 37.0% 49.6% 41.2%

500 24.5% 37.6% 34.5% 32.7% 29.9% 29.4% 37.4% 38.1% 52.4% 40.1%

0.4
300 31.8% 39.9% 37.1% 40.2% 36.0% 33.7% 42.5% 41.4% 48.3% 41.6%

500 24.5% 39.6% 37.5% 36.4% 35.5% 34.4% 40.3% 41.4% 51.1% 41.8%

6
4

N
o
d
es

0.0
300 *25.7% 32.7% *29.4% 33.1*% 26.1% 25.1% 36.7% *32.3% *48.7% *35.3%

500 *26.0% 30.3% *29.2% *33.5% 26.6% 24.8% *34.0% *33.1% *48.8% *35.8%

0.2
300 25.2% 31.4% 32.5% 32.2% 25.4% 26.7% 34.0% 34.4% 49.4% 35.8%

500 24.7% 30.8% 31.0% 30.5% 25.7% 24.2% 34.5% 36.0% 52.4% 36.2%

0.4
300 24.5% 35.2% 36.0% 30.9% 32.2% 30.4% 35.7% 37.7% 49.0% 38.6%

500 23.5% 36.9% 37.0% 34.3% 36.5% 30.8% 37.8% 36.8% 47.8% 40.8%

1
2
8

N
o
d
es

0.0
300 *25.5% 30.4% *28.9% *32.0% 25.7% 24.9% *34.1% *36.3% *45.8% *35.8%

500 *25.4% *30.7% *29.2% *33.9% 26.0% 25.3% *32.7% *33.3% *48.7% *35.6%

0.2
300 25.9% 30.9% 29.2% 30.9% 25.0% 23.7% 31.8% 32.6% 44.6% 35.8%

500 25.5% 30.8% 27.9% *32.4% 25.2% 23.9% 33.7% 33.2% 46.6% 36.0%

0.4
300 24.6% 30.9% 28.8% 34.0% 25.2% 23.8% 31.6% 34.3% 45.3% 37.5%

500 24.3% 30.1% 28.2% 29.6% 25.5% 24.7% 32.7% 36.3% 50.1% 35.6%

However, the obtained results and the error improvements provided by the
DNN models are not satisfactory. Therefore, we evaluate in the following section
the introduction of contextual information together with the raw historical data
about visits, in order to improve the forecasting capabilities of both the random
forest and the DNN models.
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Forecasting with Contextual Information

In this section, we tried to improve the results obtained in the previous one by
considering also contextual information during training. We continue to compare
both the behaviour of a random forest model with the one of a deep neural
network. The obtained results are reported in Table 4 and Table 5, respectively.

Table 4. Results obtained by using a Random Forest on raw and contextual informa-
tion together. The raw ALL identifies the network trained with all POIs together.

PoI ID MAPE

10 trees 100 trees 1000 trees

49 23.7% 22.7% 22.6%

61 28.4% 28.0% 28.1%

59 26.6% 26.1% 26.0%

71 30.2% 29.1% 29.1%

54 27.7% 26.6% 26.5%

52 28.7% 28.1% 28.0%

42 30.1% 30.2% 30.1%

58 32.7% 31.6% 31.5%

202 41.8% 41.3% 41.2%

ALL 32.8% 32.6% 32.6%

With the addition of contextual information in the training set, the error of
the random forest model decreases with respect to the one reported in Table 2.
In this case, the MAPE error spans from about 22.7% to 41.3%. In particular, if
we consider the global network trained with all the POIs together, we obtain a
decrease of the error from about 38% to 32.6%. Moreover, the random forest is
able to produce a better prediction also with respect to the best DNN in Table 3
for the ALL case, which has a MAPE of 35.8%. Finally, if we consider how the
accuracy changes with the network dimension (i.e., the number of trees), we can
notice that also in this case a decrement or an increment of the number of trees
w.r.t. the default one (i.e., 100) does not produce any evident effect.

As regards to the DNN model, we vary the network parameters as in the
previous case and we report the obtained results in Table 5. In this case, the
MAPE error spans from about 20.7% to 37.0%, with the worst case represented
by POI 202, which is the one with the lowest number of historical records. In
particular, if we consider the global network trained with all the POIs together,
we obtain a decrease of the error from about 35.8% to 31.3%.
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Table 5. Results obtained by applying a DNN model on raw and contextual informa-
tion together. The column ALL identifies the network trained with all POIs together.
Each cell reports the obtained MAPE error: an “*” symbol before the value denotes an
overfitting model, gray cells identifies good models, white cells represents unknown fit
model, and finally gray cells with a bold MAPE value identifies the best configuration.

DNN MAPE for PoI

Par.
49 61 59 71 54 52 42 58 202 ALL

DP EP

6
4

N
o
d
es

0.2
300 *22.2% *25.2% 25.2% *27.6% *28.9% 24.4% *31.5% *33.2% *40.8% 31.8%

500 *20.9% *23.7% 27.2% *27.7% *28.3% *23.5% *30.3% *30.2% *39.0% 32.1%

0.4
300 21.9% 27.5% 28.2% 30.8% 27.0% 27.5% 35.0*% *32.7% 38.6% 33.9%

500 25.3% 27.7% 27.2% 26.9% 27.6% 25.1% *32.8% *31.6% 38.6% 34.1%

0.6
300 27.1% 30.0% 30.0% 33.1% 29.3% 27.6% 33.7% 34.2% 41.5% 38.1%

500 26.7% 30.7% 27.9% 31.9% 29.6% 26.1% 34.8% 34.5% 44.3% 36.4%

1
2
8

N
o
d
es

0.2 300 *22.2% *25.8% *24.5% *27.0% *24.7% *22.9% *31.7% *3.7% *40.9% *31.8%

0.4
300 20.7% 25.0% 24.0% *26.1% 24.2% 27.0% *29.0% *32.8% *39.2% 33.9%

500 *21.4% *26.9% 23.3% *26.4% *24.0% 23.4% *28.3% *31.4% *39% 31.8%

0.6
300 21.9% 28.3% 26.6% 27.0% 27.4% 26.4% 34.2% 33.3% 37.0% 35.6%

500 21.5% 28.7% 28.2% 25.7% 26.9% 26.0% *33.6% 33.9% *37.0% 35.0%

2
5
6

N
o
d
es

0.2 300 *22.6% *26.0% *25.7% *28.9% 26.4*% *23.6% *33.1% *31.6% *40.3% *30.9%

500 *22.3% *25.4% *26.1% *29.0% 25.7*% *24.3% *32.0% *32.0% *41.6% *30.4%

0.4 300 *21.0% *23.4% *23.8% *26.3% *24.4% *23.5% *30.2% *29.3% *37.8% 31.3%

500 *21.3% *23.9% *24.2% *26.9% *24.0% *22.8% *38.9% *29.7% *37.8% 30.7%

0.6
300 21.0% 23.6% 23.2% *26.0% 24.2% 24.6% *27.7% *31.4% *37.0% 32.5%

500 *20.4% 23.2% 23.1% *25.6% 23.9% 22.2% *27.5% *31.5% *36.0% 32.0%

5
1
2

N
. 0.2 300 22.2*% 25.8*% 26.3*% 29.2*% 27.0*% 25.1*% 32.1*% 32.7*% 42.4*% *30.9%

0.4 300 *21.2% *23.7% *24.2% *27.6% *24.9% *22.7% *29.8% *30.2% *38.4% *30.7%

0.6 300 *21.0% *23.2% 22.8% *25.9% *23.6% 22.9% *27.7% *28.7% *36.8% 31.3%

Table 6 compares the best results obtained with the four models: random
forest and DNN trained with only raw data, and random forest and DNN trained
with both raw and contextual data. As you can notice, the best accuracy values
are achieved with the last model (i.e., DNN trained with raw and contextual data
together). The use of a DNN model allows to obtain a initial improvement also on
raw data; for instance, if we consider POI 49 (the one with the greatest number
of training data points) just the change from a random forest to a DNN model
allows to obtain a decrease of the error from 31.4% to 24.7%. However, even
without changing the model, but only including contextual information during
training, we obtain an important decrement in the error: from 31.4% to 22.7%,
confirming the central role of contextual information in crowding forecasting.
This behaviour is confirmed also for the networks trained with all POIs together
(row ALL), were an initial error rate of 37.9%, obtained with a random forest
trained only with raw data, decreases to 31.3% when a DNN model trained with
both raw and contextual data is used. For these four network we evaluate also
the percentage of error in the 95%, 99% and 100% of cases obtaining result in
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Table 6. Comparison of best value obtained by the four models Row ALL* reports
the MAPE values for the 95/99/100% of test data.

POI Raw data Raw + Context

RF DNN RF DNN

MAPE Time MAPE Time MAPE Time MAPE Time

49 31.4% 14 s 24.7% 4 min 22.7% 33 s 20.7% 6 min

61 38.4% 14 s 30.3% 4 min 28.0% 35 s 23.2% 7 min

59 33.1% 17 s 31.0% 3 min 26.1% 34 s 22.8% 4 min

71 38.6% 16 s 30.5% 4 min 29.1% 32 s 25.7% 5 min

54 33.1% 16 s 25.7% 2 min 26.6% 30 s 23.9% 6 min

52 33.4% 14 s 24.8% 4 min 28.1% 31 s 22.2% 6 min

42 35.7% 11 s 35.7% 2 min 30.2% 29 s 34.2% 3 min

58 40.6% 11 s 32.6% 2 min 31.6% 26 s 33.3% 3 min

202 50.8% 12 s 49.4% 3 min 41.3% 33 s 37.0% 3 min

ALL 37.9% 74 s 35.8% 10 min 32.6% 331 s 31.3% 12 min

ALL* 30.2/35.8/37.9% 27.8/33.1/35.4% 25.1/30.5/32.6% 24.4/29.1/31.4%

row ALL*. These values highlight that in the majority of cases the obtained
forecast values are even more accurate.

Generalization Capabilities

In this section we evaluate the capability of the networks proposed in the previ-
ous section to generalize what they have learned to other different situations. In
particular, we consider the four global networks denoted as ALL in the previous
section and we assume to have a recently added POI for which we have collected
a small amount of historical information (i.e., only 6 months in the last year)
and we try to estimate the level of crowding in months never seen before. We
do that for three different POIs and we report the obtained results in Table 7.
If we compare the results in Table 7 with the ones in Table 6, we can observe an
increment in the error values. However, in general such increment is acceptable

Table 7. Evaluation of the generalization capabilities for the four global networks
trained with all POI data. Each row simulate the presence of a new recently added
POI for which we try to estimate the level of crowding for periods not seen before.

POI Raw data Raw + Context

RF MAPE DNN MAPE RF MAPE DNN MAPE

61 35.4% 33.5% 29.2% 23.6%

59 39.0% 39.2% 34.4% 27.1%

71 40.0% 41.0% 29.6% 26.8%
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and the use of contextual information is able to improve the generalization capa-
bilities of the network. For instance, for POI 59, the increment of error is about
8% for the DNN trained with only Raw Data and about 4% when the DNN is
trained with both raw and contextual information. This confirms the assump-
tion that the use of a richer contextualized training dataset not only improves
the accuracy of the model, but also increases its generalization capability. An
interesting case is represented by POI 61, for which the random forest trained
with only raw data has an error less than the one reported in Table 6 for the
same POI (but trained with only the data points of the specific POI). In this
case, the presence of data points related to other POIs decreases the error of the
network, confirming the generalization capabilities of the models.

Fig. 6. Mobile phone app presenting some touristic attractions in Verona. On the right
the description of a POI with the forecasting of its occupation.

6 Conclusion

In this paper we study the role of the context in forecasting the occupation
of different POIs in a given moment through some examples where contextual
information greatly influences the amount of visits in a certain POI. Starting
from such considerations, we define a machine learning model (i.e., a random
forest) and a deep learning model (i.e., a DNN), and we train them firstly with
only raw historical data and secondly with both raw and contextual information.
We conclude that the contextual models are able to forecast the potential occu-
pation of each POI with a smaller error with respect to the ones trained with
only raw historical data, with the DNN outperforming the random forest one.
Moreover, the use of contextual information allows to increase the generalization
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capabilities of the networks, with the DNN providing the best performances. The
proposed approach has been included into a mobile phone app, as illustrated in
Fig. 6, which provides information about touristic attractions of the Verona city
and in particular about their levels of occupation. This app will be available
to end users in the next months and will be integrated into a recommendation
system able to suggest contextual paths, also considering the distance among
POIs.

Acknowledgements. We will thank the touristic office of Verona for providing the
datasets of the VeronaCard city pass.
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{pompianu.livio,salvatore}@unica.it

Abstract. Monitoring applications are increasingly important to enable
predictive maintenance and real-time anomaly detection in industrial
and civil safety-critical infrastructures. Typical monitoring pipelines con-
sist of a sensor network that collects and streams IoT data toward a
cloud infrastructure that provides storage, visualisation and data ana-
lytic capabilities. However, since critical data generated must be often
retained for regulatory and tracking purposes, cloud storage requirements
become poorly sustainable when dealing with critical infrastructures that
have to remain operative for decades while supporting lifelong continu-
ous monitoring. While policies can be applied to remove redundant or
outdated information, anti-tamper mechanisms are required to guaran-
tee that data modifications are not driven by malicious intents to alter
recorded data. This work presents a blockchain-based framework for con-
tinuous monitoring applications enabling certified removal of IoT data
in safety-critical databases. The framework allows for the deployment of
data-evaluation policies to identify redundant/outdated measurements
flowing in the database and, therefore, mark them as eligible for removal.
The novelty of our approach stands in the implementation of the data-
evaluation policy as a smart contract. Furthermore, the use of a block-
chain ensures that critical database operations (like removal) are tamper-
proof and compliant with the guideline determined by system stakehold-
ers. We demonstrate the effectiveness of the proposed framework in a real
case study using accelerometer data of a bridge monitoring application,
and we characterise the overhead of transactions to the blockchain.
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1 Introduction

The deployment of sensor networks for safety-critical systems monitoring is
becoming widespread in many contexts, from Structural Health Monitoring
(SHM) to industrial plants, smart buildings and energy distribution systems.
Typical deployments have a layered structure: (i) Sensing IoT nodes perform-
ing on-field continuous monitoring, (ii) local network layer orchestrating data
collection, and (iii) Cloud components enabling data storage, visualisation and
analysis [11].

Some applications, such as SHM, require high sensors sampling rates for
their data analysis techniques to be effective, resulting in large data throughput.
Monitoring infrastructures that remain in operation for decades pose challenges
to data storage capabilities, causing a boundless growth of the database size.

On-the-edge data filtering is not always available, because of embedded sys-
tems constraints which limit the leaf acquisition devices capabilities. On-cloud
data reducing, when dealing with databases which serve for post-mortem analy-
sis of the monitored safety-critical system, poses the challenge of certifying the
integrity of the collected data, to avoid malicious deletions of critical data. In this
context, the application of blockchain technology to IoT data is a viable solution.
However, the conflicting requirements of data integrity certification and storage
space management pose relevant challenges [1,27].

Recently, in the context of SHM applications, early solutions exploiting block-
chain technology have been proposed [2,24]. However, storage space sustainability
and certification of data-removal policies issues are still not addressed.

In this work, we propose a novel platform architecture which implements
certified data-removal policies to improve the sustainability of cloud databases
for monitoring applications with anti-tampering guarantees. The proposed solu-
tion exploits blockchain and smart contracts to guarantee that the data-removal
policies and algorithms are applied in a certified and tamper-proof manner.

The proposed architecture has been tested in the context of a real case study
of an SHM application for rail bridge monitoring, where accelerometer data are
collected by an IoT network of sensors and streamed towards a remote database.
We performed experiments to demonstrate the feasibility of the proposed app-
roach on the considered case study, showing that we achieve a sustainable SHM
database by applying a realistic and certified data-removal policy. Moreover, we
perform a characterization of the smart contract performance with respect to
deletion policy parameters.

The rest of the paper is organised as follows. In Sect. 2 we discuss the back-
ground relevant to our work discussing both structural health monitoring and
blockchain technologies. In Sect. 3 we investigate the scientific literature on tra-
ditional and blockchain-based monitoring applications. In Sect. 4 we present the
design of our system, detailing the architecture components and our smart con-
tracts. In Sect. 5 we apply our framework to the SHM use case and present the
experimental results. Finally, in Sect. 6 we conclude our work and present some
directions for future works.
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2 Background

2.1 Structural Health Monitoring

Ageing infrastructures require frequent checks by companies and governments
with a consequent increase in cost. Structural Health Monitoring (SHM) is an
innovative field where a continuous assessment of civil structure conditions is
performed to determine the required maintenance with a consequent increase
in security [12,19,20]. A typical SHM infrastructure includes a set of sensors
to be placed on the structure, an in-place computing element to manage the
stream of information, and cloud infrastructure for data processing. The core
components for such a monitoring system are represented by accelerometers that
have to acquire the vibration of the infrastructure to provide data for domain
experts’ analysis. In the last decades, MEMS (Micro-Electro-Mechanical Sys-
tems) capacitive accelerometers have been proposed and experimented within
such scenarios. Their extreme low-cost and low-power features allow designing
and deploying steady measurement infrastructures for continuous monitoring.
These infrastructures can scale up to hundreds of measurement points for a sin-
gle building [17,23,26]. Types of sensors are not restricted to accelerometers but
include inclinometers and crack meters. One of the major open challenges of
SHM infrastructures is managing the large amount of data coming from these
pervasive sensor deployments, which can hopefully be used for detecting or even
predicting anomalies in the structures.

For this reason, sensor networks are often forced to be sparse [19] to reduce
the stream and amount of data stored in the cloud. By contrast, sparse monitor-
ing strongly impairs damage detection capability in complex and wide structures
such as bridges [21], which demand monitoring a vast space at a fine granularity.

2.2 Blockchain

A blockchain [5] is an append-only data structure handled by a decentralized net-
work of mutually distrusting nodes that rely on a consensus protocol for updating
it consistently. Blockchain data is stored within transactions, which usually rep-
resent events involving the final users, like, for instance, the transferring of funds
between users. Blockchains group transactions in blocks, each containing a list of
new transactions, a timestampand the previous block’s hash.While the timestamp
certifies the block’s production time, the hash ensures the immutability of the pub-
lished data: any change in a block would also require updating the hash values of
all subsequent blocks. Blockchains improve security in decentralized contexts by
ensuring entities cannot tamper with or remove data.

The introduction of Bitcoin in 2008 boosted the development of blockchain
technologies [6]. Blockchains can serve many use cases, such as documents and pro-
cesses notarization, supply chain management, healthcare. For instance, shortly
after the Bitcoin introduction, several applications began publishing hashes of doc-
uments on its blockchain to certify their ownership and timestamp [4]. Later, the
development of blockchains that enable users to write software instructions to be
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executed in a decentralized manner has further simplified the blockchain applica-
tion to new use cases. Such instructions are referred to as smart contracts [25], and
the blockchain that spread their adoption is Ethereum [8].

Both Bitcoin and Ethereum are public permissionless blockchains, that is,
systems in which there are no restrictions on the identity of who can join the
network. More recently, permissioned blockchains have been proposed, where
the identity of participants is well defined. One of the most mature projects in
this area is Hyperledger Fabric [3], one of the Hyperledger projects managed
by the Linux Foundation. Hyperledger Fabric is a framework for designing and
deploying permissioned blockchain: it has a modular consensus protocol and
it allows developers to write applications by using standard, general-purpose
programming languages.

2.3 Motivations

As explained in previous sections, database size growth is a critical issue in Con-
tinuous Monitoring applications. In typical safety-critical applications, stake-
holders must rely on a centralized on-cloud data management system for mean-
ingless data removal. This operation, if done incorrectly, can lead to severe con-
sequences that can impact the entire monitoring system and data acquisition
campaign. Moreover, data deletion could be prone to be tampered with by mali-
cious users. To the best of our knowledge, we are the first to address this specific
problem proposing a system for executing policy-based tamper-proof data dele-
tion based on the blockchain technology.

3 Related Works

This section reviews papers from the literature inherent to real-time IoT contin-
uous monitoring systems, with focus on those based on blockchain.

3.1 Continuous Monitoring

Real-world applications require logging mechanisms for the data storage to be
tamper-proof. This is necessary to guarantee that any analysis performed to
assess the status of the monitored infrastructure makes use of genuine data.
Unfortunately, sensor-to-cloud solutions for monitoring applications such as Exa-
Mon [7] and MODRON [2] do not address this issue. ExaMon [7] features real-
time heterogeneous data ingestion from multiple sensing nodes through a MQTT
broker but does not have blockchain bindings and cannot provide tamper-proof
features. It orchestrates KairosDB and Cassandra databases for its operations.
MODRON [2] is a sensor-to-cloud architecture which uses InfluxDB, a database
optimized for time series which requires payments to scale on multiple nodes.
The latest MODRON version comes with a blockchain plugin to store relevant
measurements directly in blockchain [13] but it does not provide the possibility
of shared policy instauration to perform critical operations like data removal.
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3.2 Blockchain

The idea of applying blockchains to the Internet of Things has been getting
considerable attention in recent years, as evidenced by various works in the
literature. The majority of the papers either focus on the possible benefits of
blockchains for IoT [9,10,22] or propose architectures for specific use cases that
show how blockchain technologies can solve some typical problems of the domain
addressed, like healthcare [14] and security [15,16,18]. However, many general
challenges still need to be solved, such as defining architectures to reconcile the
large amount of data generated by IoT systems with blockchain storage and
performance limitations. Accordingly, to the best of our knowledge the main
difference between the works in the literature and our paper, is that we focus on
using smart contracts for recognising obsolete data and removing it.

In [14] the authors propose a smart contracts architecture to improve IoT
systems’ privacy in the medical field through blockchain and smart contracts.
In particular, a private Ethereum-based blockchain is used to improve patients
data management and critical events logging. The paper [15] proposes BoSMoS,
a blockchain-based system for increasing security in industrial systems by moni-
toring device software. The system takes snapshots of device software and stores
them in a blockchain whose consensus mechanism is configurable. In addition,
the authors conduct tests to measure system performance in the event of an
intrusion attempt. In [18] the authors extend their previous work [16] and pro-
pose an architecture that uses a private blockchain to manage and monitor IoT
systems. The authors focus on managing security issues and using the blockchain
to keep track of device configuration history.

Overall, with respect to our primary goal, all the papers discussed focus on
their specific use case and, even when performing an experimental evaluation,
they do not delve into space occupancy issues.

4 System Design

In this section, we illustrate our main design choices. First, in Sect. 4.1 we describe
the general requirements of our framework. Then, in Sect. 4.2 we present the cloud
layer which involves both database and blockchain. Finally, in Sect. 4.3, we focus
on the smart contract. Figure 1 shows framework’s high-level architecture.

Fig. 1. The proposed blockchain-enabled architecture.
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4.1 General Requirements

Different actors may need to interact with Continuous Monitoring systems Cloud
Layer for accessing stored data, based on the nature of the monitored infrastruc-
ture. For instance, in SHM scenarios, that we will use in Sect. 5 as a use case for
validating our approach, it is possible to identify at least four different actors:
i) Infrastructure manager, responsible for the building and its maintenance. ii)
Company that manages data from measurement systems, thus dealing with data
collection and analysis. iii) Company that deals with the installation of measure-
ment systems. iv) Government ministry for transport in the Country.

When disputes occur, often as a result of accidents, all the depicted actors
may not trust each other and different actors may need to access stored data,
based on the nature of the monitored asset. As a result, the cloud layer is respon-
sible for storing data acquired by the sensors while guaranteeing the following
properties: i) Fast access to time-series data is provided for running time-series
analysis. ii) Data cannot be altered or tampered with.

A typical cloud layer is built on top of a data ingestion platform, such as
ExaMon, which exploits a time-series database to provide fast access to stored
time series, thus solving the fast-access needs of the layer itself.

In such a context, non significative data lowers the performance of the whole
system, because of two side-effects. The first is that post-processing non signi-
ficative data leads to calculation outputs which are not meaningful. The latter
is that the data storage space spent for storing non significative data is a waste.

Therefore, we propose a system architecture which is able to assign an expiry
date to stored data, according to a particular policy. The policy should be able
to perform some sort of computations on data coming from sensor network,
and apply an algorithm to establish the expiry time-lapse of data itself, i.e. the
amount of time after which it may be safely deleted from the data storage to
free up data storage space.

4.2 Cloud Layer

The Cloud Layer architecture proposed in this paper will accomplish multiple
tasks: i) Ingest and route data from the sensor network; ii) Store data inside
a database which provides fast-access for scientific stakeholders; iii) Provide a
mechanism to delete non-meaningful data according to a policy shared among
business stakeholders, improving the sustainability of the database over time.

With respect to a standard approach, which consists in a database-centric
data storage, we propose to assist the database with a blockchain, which will
provide the transactions programmed within the Policy Smart Contract. Two
custom services have been designed and built to make the interactions between
blockchain and database possible. The Policy Gateway (PGW) is a service
responsible of routing the data coming from the Network Layer to both the
database and the blockchain system. It will, indeed, be able to request the exe-
cution of transactions to the blockchain, and to write data into the database. The
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Policy Watchdog (PWD), on the other hand, is a service which will be able of
querying the blockchain and performing delete operations against the database.

To achieve consistency between information stored into the database and
blockchain content, the PGW assigns an unique string identifier to each block. It
will thus serve as a key for identifying blocks among heterogeneous data storage
systems. The PWD will indeed be able to make delete requests targeting the
block ids gathered from the blockchain.

4.3 Policy Smart Contract: Requirements and Motivations

A Smart Contract contains a set of suitable methods useful to interact with the
distributed ledger. The methods which are intended to be used by the involved
actor are exposed as transactions. As per Hyperledger Fabric features, the trans-
actions may be used for updating the World State database, while the history
of endorsed transactions is stored within the chain of blocks. In the Hyperledger
Fabric framework, the Smart Contract source code is referred to as chaincode.

The World State can be populated with assets, which are sets of key-value
pairs. The definition of the asset is made within the chaincode, and only the
transactions defined in the chaincode itself are enabled to manage the defined
asset. Therefore, each Smart Contract operates on its distributed ledger assets.

A permissioned blockchain can be set up such that the Smart Contracts may
be installed on the peers only after the approval of all of them. Therefore, in our
context a Smart Contract is suitable for storing and applying the expiry time
lapse policy. Since all the transactions that get executed over time are stored
in the blockchain distributed ledger, the policy application gets tracked over
time in a transparent and immutable ledger. Indeed, considering the architec-
ture represented in Fig. 1, each business stakeholder is required to endorse the
deployment of the Policy Smart Contract. After its approval, it exposes some
transactions which may be triggered both from the PGW, PWD applications
and from the business stakeholders themselves.

4.4 Policy Smart Contract: Technical Details

We propose a Policy Smart Contract as an implementation of the Expiry Date
Policy within the a Hyperledger Fabric blockchain framework. The Smart Con-
tract has been developed as a Go chaincode, which exploits the Hyperledger
Fabric SDK for building a Smart Contract. It defines the asset to be stored by
the blockchain, and a set of available transactions.

The asset is defined as a data structure which holds a unique policy string
identifier, which allows to keep track of which policy have been applied to the
asset, a unique asset string identifier, received along with a data chunk from
the PGW, the md5 hash of the data chunk time series, computed at data chunk
arrival, the asset expiry time lapse, expressed as a time interval, computed by the
applied policy, and the asset expiry date, computed considering the expiry period
and the block creation date, which is a property assigned by the blockchain itself.
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It is worth noting that sensors data is never stored within the blockchain,
avoiding it to grow without tangible benefits. Indeed, it will always be possible
to recover the chunk data from the system database using the chunk unique
identifier.

Our Smart Contract is intended to provide support for different policies,
that may run on assets data based on clients requirements. Therefore, a policy is
defined as a class which contains a unique string identifier, and a function which
receives a chunk of data as input, executes the policy-specific logic and outputs
an expiry period. As a consequence, multiple policy instances may be deployed
within the Smart Contract, each one implementing its own logic. This gives
support to heterogeneous data processing, allowing to apply different policies
based on different inputs in a multi-policy approach.

A set of atomic private transactions are defined to access the World State
and the chain blocks. They implement CRUD operations over the World State
database, which may be used by the transaction functions to read, create, delete
or update the stored assets, and read operations over the chain blocks, which
may be used for retrieving data from past transactions. These transactions can
be invoked by public transactions, which are on the other hand available to the
Smart Contract users for requesting them.

The fundamental public transactions are explained in the following lines.
AddChunkWithPolicy computes a chunk hash, triggers the given policy to
establish its expiry time and creates a corresponding asset which is then commit-
ted to the World State. UpdateChunkExpiryDate updates the given asset
with a deterministic expiry date and time, referred to the asset creation time.
This approach makes impossible to counterfeit the creation date of the asset, thus
making impossible for clients to apply the policy in a fraudulent manner. Get-
ExpiredChunks returns all the assets found in World State which are expired
to the given expiry date, if the expiry date does not belong to the future.

The full documentation on Policy Smart Contract implementation can be
found on the official repository1.

Given the implemented transactions, our Smart Contract enables different
workflows, thus enhancing policies flexibility with respect to the system needs.
The policy, indeed, may be applied when the asset is created, or assigned in a
different moment. Moreover, the policy assigned to an asset may be changed
before the asset gets deleted.

The workflow used by the paper authors is represented in Fig. 2. At the
end of its lifecycle, the asset will no more exist on World State, nor in the
database. However, the complete history of transaction will remain stored inside
the blockchain blocks. As a consequence, it is always possible to ensure that a
missing data chunk has been processed by the Policy Smart Contract.

1 Browse the repository at: gitlab.com/ecs-lab/hyper-watchdog.

https://gitlab.com/ecs-lab/hyper-watchdog/
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Fig. 2. Proposed system workflow and asset lifecycle: Policy Gateway receives
the data chunk from sensor network (1) through an MQTT broker; it requests the
AddChunkWithPolicy transaction (A) to store chunk information into the database
(2a) and the blockchain (2b). Then, UpdateChunkExpiryDate (B) is triggered (3) for
making the blockchain compute the chunk expiry date. When the chunk has expired,
its unique id will be included in the list returned by GetExpiredChunks (C) transaction,
therefore the Policy Watchdog will be aware that the block can be deleted (4) and will
issue a delete request against the database (5). If data removal is successful, the Policy
Watchdog notifies it to the blockchain (6) by triggering the DeleteChunkIfExpired (D).

5 Framework Validation

5.1 The Structural Health Monitoring Use-Case

Our use-case is based on a real railway bridge continuous monitoring application.
Various elements and services make up the whole architecture, as already shown
in Fig. 1. The Sensing Layer represents the acquisition system, composed by sen-
sors which produce data at a certain frequency fs = 833Hz. The Network Layer
takes care of ingesting and pre-processing data: it re-synchronizes the received
time series and builds chunks of data characterized by a certain length, Nchunk.
Therefore, each chunk will contain the time series collected during an amount of
time equal to fsNchunk. The chunks are made available to the remaining com-
ponents of the system by means of an MQTT broker. The Cloud Layer takes
care of storing data chunks received from the previous layer, making it available
to scientific stakeholders for performing data analysis.

5.2 Expiry Time-Lapse Policy

The policy for data deletion should be able to define an algorithm to establish
the expiry time-lapse of stored sensor data, i.e. the amount of time after which
the data may be safely deleted from the data storage.

Considering our use case, we built an example policy based on mean signal
energy of sensors data arrays. Indeed, each 3-axis accelerometer produces three
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data arrays, each of them containing the measurements along a certain axis. Our
policy is able to compute the mean energy of each data array, according to the
formula:

E =
1

Nchunk

Nchunk∑

0

|xi|2 (1)

High-energy data is obtained when the bridge gets stimulated by the passage
of a train. Our application can discard data coming from sensors when the bridge
is not in stress conditions. Thus, the physical meaning of the formula is that low-
energy data is most probably non-meaningful, therefore may be deleted sooner.

The resulting values are compared with axis-specific thresholds. Based on
the results, the policy gives as output a suitable expiry time-lapse.

Fig. 3. Blockchain Elaboration Ratio (BER) and queue length versus simulation time
(s). Overflow condition BER >= 100% is represented as dashed grey line.

5.3 Test Bench Setup

The system has been tested and validated by deploying the Policy Smart Con-
tract as a Go chaincode running on Hyperledger Fabric Test Network. It includes
two peer organizations, each one composed by a peer, and a Raft ordering service
consisting in a single node organization. All experiments were conducted using
an host machine powered by an IntelR CoreTM i7-10750H CPU @ 2.60 GHz
having 64-bit Ubuntu 20.04.4 LTS with 16 GB memory. The Fabric network has
been deployed with Docker Compose, with all nodes being containers running
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under the same Compose network, on the same host machine. As a consequence,
network latency was not taken into account.

For testing purposes, the presence of a real database does not affect the
performance of the system, because the requests against the database may be
made in parallel with the requests made against the blockchain. Therefore, the
tests have been conducted with the only presence of the blockchain network and
the related services: Policy Gateway (PGW) and Policy Watchdog (PWD). The
latter services have been simulated using a Go application, and the data chunks
are injected towards a MQTT broker to the PGW by means of an ad-hoc Python
simulator which reads from a database of historical time-series collected within
the continuous monitoring application mentioned in the previous section.

All the tests have been conducted implementing the workflow proposed in
Sect. 4.3, in a Blockchain-in-the-loop fashion. The policies have been tuned
such that the expiry times allow the system to actually perform deletions at
least a dozen of time within the experiment duration.

5.4 Results

Our use-case dataset contains data coming from a 24h measurement session mon-
itoring. Accordingly, we designed a test to simulate the system in an accelerated
way that allows us to explore different parameters in a narrower time range.

More specifically, our goal is to evaluate the system with a series of iterations
using different chunk sizes, N . This parameter indeed heavily impacts the timings
of transactions as will be shown by the following considerations. Since the sensors
acquisition frequency fs is given, each chunk of data will store measurements for
a timespan equal to tc = N/fs (s). As a consequence, the frequency at which
the PGW is run in real-time context is equal to fPGW = 1/tc (Hz).

Provided that in our Blockchain-in-the-loop test environment the chunks
are available a-priori, the PGW can be fed-up with a higher frequency than
the real-time one, thus we can perform accelerated simulations with a speedup
coefficient of χ = tc/tPGW. The duration of a transaction, δt, will never get
affected by the speed of simulation, therefore, between the PGW interventions,
the transactions will have less time to be executed than they have in real-time
simulations, and they will eventually accumulate. This is why it is necessary to
pose a constraint to force the PWD transactions to be run after a suitable amount
of PGW transactions, which can be computed as tPWD/tc, where tPWD is the
time that occurs between PWD runs. Thus, the transactions requests will start
accumulating if they require more time than tPWD to be executed. Therefore,
PWD may not get the actually expired items correctly. This condition may be
defined as overflow condition, and can be expressed as:

∑t+tPWD
t δt > tPWD.

Consequently we can define the Blockchain elaboration ratio as:

BER = 100
∑t+tPWD

t δt
tPWD

(2)

and express the overflow condition as: BER >= 100%.
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Drawing the evolution of pending transaction requests over time, referred to
as queue length, we can observe that, as we may expect, lower values of tc lead
to longer queues. As demonstrated by the tests shown in Fig. 3, a lower size of
tc implies an higher amount of transactions, leading to higher BER values.

6 Conclusions

In many different application areas, spanning from structural monitoring to logis-
tics, either private or public actors need to manage data flows with the constraint
of being able to store only a portion of them. Leveraging the joint use of two
technologies, continuous monitoring cloud infrastructure (e.g. Examon, Mod-
ron) and blockchain, we propose a pipeline capable of bounding storage space
requirements of a continuous monitoring cloud infrastructure by ensuring the
safe removal of portions of data while still safeguarding critical data.

The resulting system, whose pipeline is depicted in Fig. 1, comprises a data-
base that stores all the data coming from the sensor network. The Policy Smart
Contract evaluates how long each portion of data should last and memorizes this
information in the block-chain, while the PWD filters out data that, according to
the policy, do not meet the relevance criteria anymore. Thus, the scientific stake-
holders will be provided with instruments to carry out high-performance data
analysis, while the business stakeholders will be able to verify data integrity
whenever it is necessary, without the need to trust each other. In this way, a
tampering detection system is provided.

In Sect. 5, we show the implementation of our policy framework using
accelerometric data coming from a sensor network deployed in a railroad bridge
SHM use-case, leveraging Hyperledger Fabric [3] as blockchain framework to
implement the Policy Smart Contract. According to our validation, the policy
is able to detect the stresses on the bridge stimulated by the passage of a train,
marking them differently from less-meaningful data. At the same time, the space
requirements are kept under control, and are prevented from divergence.

More generally, test results demonstrate that, provided that the policies are
well-tuned for the specific use-case, the system is able to free up a significative
amount of database space, while improving the overall system security with
respect to traditional data storage systems.

Independently from the nature of continuous monitoring scenario, if the pol-
icy outputs finite expire time intervals, it’s possible to identify an upper threshold
of occupied storage space, which will depend by the amount of deleted data with
respect to the amount of ingested data. Having an infinite expiry time would
lead to permanent storage of some portion of data, thus causing a divergence
of occupied space. In the former case, our system allow to bound storage occu-
pation to an upper limit, while in the latter case it helps reducing the speed of
data occupation divergence.
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In conclusion, our Policy Smart Contract system may be implemented within
any continuous monitoring application to improve the sustainability of the data-
base over time without performance loss. Indeed, the blockchain technology
exploited at the system core does not affect the data ingestion speed of the data-
base. However, if the number of policies deployed and their parameters result in
a high number of transactions, the data deletion system may work slower than
expected, leading to inconsistent results.

Therefore, to understand if our system is suitable for a certain monitoring
use-case, some simulation tests must be carried out as the one we discussed
within this paper: the BER value must be evaluated, and the overflow condi-
tion must never be met. Moreover, simulations must be carried out to predict
the storage requirements of the blockchain and the impact of different block-
chain deployment configurations, which depend on the underlying blockchain
framework chosen by the user.

When using Fabric, considering that the size of a transaction Str is ∼ 5 KiB,
we can predict the blockchain size as S = Strt

∑
fi, where t is the elapsed time

and fi is the frequency of requested transactions of type i. For instance, our
use-case requires two transactions for policy evaluation triggered by PGW for
chunk creation and expiry date computation, a variable number of transaction,
γ, for policy check and data elimination. γ represents the policy behaviour, that
in our use-case depends on the PGW and PWD frequencies: γ = � fPGW

fPWD
�. Thus,

the blockchain size is equal to S = Strt (2fPGW + (γ + 1)fPWD).
Considering a scenario in which PGW period is 1 min and PWD period is

3 min, and a worst case in which all the chunks elapse instantaneously, thus
γ = 3, we obtain S = 0.0446t GiB/day. Without data deletion, one year of
activity results in 1.7 TiB of database size. With data deletion, implementing
the sample policy discussed in previous sections, we would need to store 8 GiB
of blockchain transactions with the benefit of securely shrinking the database up
to 75%, thus gaining ∼163 times the blockchain size.

Further work is required to assess all the trade-offs this infrastructure involves
and to explore the impact of more complex policy algorithms, such as discarding
too many similar data samples to maintain only subspace prototypes, and re-
programmable policies that can evolve and change in time.
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Abstract. Given a database and one single anomalous data point, the
Outlying Aspect Mining problem consists in explaining the abnormality
of that data point w.r.t. the data population stored in the input database.
Thus, the problem requires the discovery of the sets of attributes and
associated values that account for the abnormality of a data point within
a given data set. In this setting, the abnormality of the data point at
hand is stated beforehand, e.g., as the result of some outlier detection
techniques (which, for the most part, do not provide information about
why the selected data points are actually anomalous). This paper pro-
poses a solution to the OAM problem exploiting a deep learning archi-
tecture. Besides explaining the input data point abnormality by singling
out the smallest set of pairs attribute-value justifying it, our technique
also provides new values for those attributes that would transform the
input outlier into an inlier. Several experiments are also presented that
assess the effectiveness of our approach.

Keywords: Outlier aspect mining · Explainable artificial intelligence ·
Deep learning

1 Introduction

Anomaly detection is an important task in AI and data mining, as witnessed
by the volume of papers appeared on the subject [9,10,24,28]. Accordingly, this
task has many relevant applications in such diverse fields such as finance, cyber-
security, healthcare, fraud detection and others [1,14,16,17,19,23,33].

A relevant problem related to outlier detection is outlying aspect mining
(OAM) (aka, subspace selection, outlier explanation, object explanation, outlier
interpretation, outlying subspaces detection): to explain, given a data point known
to be anomalous beforehand, the goal is to find the characteristics that locate it far
from the non anomalous data. The relevance of the task stems from the fact that
most of the anomaly detection techniques do not explain the reasons for a given
object to be recognized as anomalous, notwithstanding that to expose such expla-
nation is often very important in real applications. The task can thus be defined as
that of looking for feature subset(s) (and related values) on which the given data
point is anomalous w.r.t. the population of data objects it belongs to [26].
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In this paper, we tackle this problem by developing a new approach exploiting
adversarial-like neural networks. Our architecture comprises two modules. The
former one implements the generative component of the procedure that realizes a
generative mechanism different from usual ones in that the goal of the generation
is to modify a sample (the given outlier) finding a way to have it become an
inlier. The latter module acts as an oracle that predicts if the analyzed point
is anomalous or not. The information it provides guides the generative module,
as usual in adversarial like approaches, to find the “right way” to modify the
sample under analysis in order to “relocate” it close to the points of the reference
data set. Summarizing:

– We present a technique, called MMOAM , which stands for Masking Mod-
els for Outlying Aspect Mining to “explain” outliers. To the best of our
knowledge, this technique is the first based on deep learning for the considered
task.

– We assess the effectiveness of our technique over both synthetic and real data
sets.

– We develop a comparison of MMOAM against Subspace Outlier Detection
(SOD), an algorithm of reference for the context at hand.

Relevant related literature is briefly recalled next.
Outlier Aspect Mining methods can be grouped into two macro-categories

that reflect the type of employed strategy: the former one collects techniques
based on feature selection, whereas the latter one includes score-and-search
approaches [30].

The first category includes approaches where feature selection methods, typ-
ically used for classification tasks, are applied. [22] solves the OAM on numerical
data by converting the problem into a two-class classification and uses the out-
puts as the starting point to obtain an explanation for sample outliers. Local
Outliers with Graph Projection (LOGP), proposed in [12], deals both with out-
lier detection and outlier explanation by exploiting concepts borrowed from the
spectral graph embedding theory. [5] presents a technique that, given a cate-
gorical data set and an oulier q, finds the top k attributes associated with the
largest outlier score for q. An extension of the approach to numerical data sets
is presented in [3].

The latter category collects all the methods which use a measure as a quality
metric to choose between sample features. Considering such type of approaches,
the paper [34] propose the High-dimensional Outlying Subspace Miner (HOS-
Miner) technique. HOS-Miner detects the subspaces in which a given data point
turns out to be dissimilar to the other data points. To reach this goal, the Outly-
ing Degree distance function is exploited, which is defined as the sum of the dis-
tances between the query data point and its k-nearest neighbours. Density is used
as subspace score criterion in [13], where a kernel-density estimation is employed
to rank the attribute subspaces and the adoption of such a measure is justified by
the fact that the density measure is affected by the growth of the number of dimen-
sions, since points become sparser as the dimensionality increases. The paper [30]
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presents two dimensional-unbiased measures: the Z-score and the Isolation Path
score (iPath). The latter score here is inspired by Isolation Forrest [21], an outlier
detection algorithm, based on the idea that anomalies are “few” and isolated from
the rest of the data. In addition to these scores, this work also proposes a proce-
dure for searching for attribute subspaces characterizing anomalies. The approach
consists in performing a beam search divided into three steps. First of all, to ana-
lyze all trivial outlying features, the proposed algorithm inspects all 1-D spaces
then, in the second step, it examines all 2-D subspaces through exhaustive research
and, finally, in the last stage, it performs the beam search at level l. In [32], start-
ing from [27], a simple grid-based density estimator for outlying aspect mining,
called sGrid, is presented. The objective is to make mining algorithms faster, a
goal which is actually attained but at the cost of the estimation space unbiased-
ness. A notable further form of score is the Simple Isolation score Using Nearest
Neighbor Ensamble (SiNNE) [25], whose definition is related to an outlier detec-
tion algorithm named Isolation using Nearest Neighbor Ensembles(iNNE) [7].

Possible further alternative strategies could be based on hybrid approaches
[26] where the idea is to combine the strength of both features-selection-based
and score-and-search-based approaches. To the best of our knowledge, to date,
the only algorithm falling in this category is the one named Outlying Aspect
Mining via Feature Ranking (OARank for short) [29]. Here, the hybrid approach
is realized by organizing the procedure into two steps. In the first step, the
framework uses a feature selection technique and the retrieved features are used
as the input for the next step. In second step, the score-and-search algorithm is
applied on the features found in the former step to obtain the final output. The
goal of the second step is to fine-tune the result of the feature selection phase.

In the rest of the paper and whenever to ambiguities arise we will use the
terms “attribute”, “feature” and “dimension” basically interchangeably.

The rest of the paper is organized as follows. Section 2 presents the MMOAM
technique, Sect. 3 illustrates the experimental results and, finally, Sect. 4 con-
cludes this work.

2 The Proposed Technique

In this section, the MMOAM1 technique is described. Its foundational idea is to
exploit an adversarial approach to explain which characteristics make a certain
data point to be located “far” from the given reference data set.

As already mentioned, the architecture we propose realizes a deep learning
solution using a generative component coupled with an adversarial component.
In particular, the adversarial module tries to predict if the input data point is
anomalous or not. The information it outputs is then fed into the generative
module that, in its turn, tries to single out the set of changes (specified as a set
of attribute-values pairs) needed for the input outlier data point (also referred to
as “sample data point” in the following) to be transformed into an inlier w.r.t.
the reference data set.
1 https://github.com/simona-nistico/MMOAM.

https://github.com/simona-nistico/MMOAM
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In deference to the Occam’s razor principle, for an outlier explanation to be
significant, the transformation that changes the nature of the sample transform-
ing it from anomalous to normal must be minimal, which means that the number
of features returned as justification of the given data point outlierness must be
as small as possible (we notice that this also makes the explanation more easily
interpretable by the final user [31]).

Fig. 1. Proposed architecture. The Mask Generator and the Mask Applier represents
the generative module of the MMOAM methodology, the adversarial module acts as
an oracle.

The MMOAM architecture is depicted in Fig. 1 and the following sub-sections
are devoted to report a more detailed description of the modules included therein.

2.1 The Generative Module

The generative module exploits Masking Models [4] to produce a modified version
of the sample data point in order to transform it in such a way that it gets close to
the data points belonging to the reference data set. To this aim, MMOAM divides
the task into a mask generation step (carried out by the Mask Generator module)
and an application step (that is taken care of by the Mask Applier module). The
Mask Generator module is a neural network that learns a transformation which
tells how to modify the data point to remove the anomaly. The thus computed
transformation is encoded into a mask (a sequence of attribute-value pairs, one
attribute for each attribute of the original data set). The Mask Applier module
then applies the learned transformation by using a suitable combination function
(see below).

Figure 2 shows the Mask Generator module architecture: this is a dense neural
network with two output branches. The first of these two branches (the one at the
bottom in the figure) selects the features to be modified using a dense layer with
a sigmoid function as the activation function, so the feature choice is a vector
with the same dimension of the sample and values ranging from 0 to 1. The
latter one (that located at the top of the figure) outputs the magnitude of the
modification to be applied on each involved attribute, this modification are given
in output as a real-valued vector with again the same dimension of the input
sample. Together, the outputs of these branches represent the transformation
that determines the changes to apply by indicating which features need to be
modified and how much to modify them.
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Fig. 2. Mask Generator module architecture. In the green blocks, “Dense” represents
a dense layer which number of units is indicated in the round parenthesis. “ReLU”
stands for the Rectified Linear Unit activation function f(x) = max(0, x), “sigmoid”
stands for the sigmoid activation function f(x) = 1

1+e−x . (Color figure online)

The Mask Applier module takes in input the chosen features, the mask and
the outlier and applies the transformation (encoded in the mask and the chosen
attribute set) to the outlier. As shown in Fig. 3, the information brought by
features choice and the mask is combined via an element-wise multiplication.
The transformation that results after this operation is summed to the outlier,
thus obtaining its “patched” version.

In order to construct an adversarial sample with the desired characteristics,
a loss function lm() is exploited during the training of the Generation Module
with the stated objective of changing the input outlier into an inlier using the
minimum possible number of transformations. To this end, we adopt a loss built
from four different factors, as shown next:

lm(x′, y′,Xn,m, c) = α0fl(0, y′) + α1
1

|Xn|
n∑

s∈Xn

mse(x′, s) + α2bce(c, 0) + α3||m||22
(1)

where x′ is the modified version of x produced by the generation module, y′ is
the classification obtained from the adversarial module for x′, m is the mask
produced by the mask generator submodule, c are the chosen features, Xn are
the data set normal samples, fl is the focal loss [20], mse is the mean squared
error, bce is the binary cross-entropy and α0, α1, α2, α3 are hyper-parameters.

Fig. 3. Mask Applier module structure. In the schema, feature choice and mask are
combined through multiplication then the resulting transformation is applied through
sum to the outlier to obtain the patched sample.
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The first term of the loss function aims at minimizing the anomaly score of
the modified sample, the second one serves the purpose of reducing the distance
to normal points and, finally, the remaining two are devoted to reducing the
number of chosen features and the magnitude of the modification applied to
them, respectively. The hyper-parameters α0, α1, α2 and α3 serve the purpose
of controlling the relative weight of each component in the value computed for
the loss.

2.2 The Adversarial Module

The Adversarial Module is a neural network trained using a data set consisting
in normal and anomalous samples. The task faced by this module is unbalanced
classification, as a matter of fact the data set initially have inside it only one
anomalous sample that is the sample for which we want an explanation. Then,
an iterative strategy where for each iteration the anomalous class is enriched by
one new sample, that is the generative model output, is adopted. The goal of
this strategy is to improve at every step the explanation, bringing the patched
sample as near as possible to the normal data points.

This module outputs a score value (ranging from 0 to 1) obtained from the
sigmoid activation function that measures how much a point is anomalous. The
loss adopted for training is the focal loss [20], chosen because of the imbalance of
the data set. This objective function is a variation of cross-entropy loss, whose
peculiar characteristic is to focus its attention on heavily misclassified examples,
decreasing in such a way the influence of samples that are easy to classify for the
model. Unbalanced classification benefits from this type of strategy. The type of
model used in this paper for the Adversarial Module is a Dense Neural Network,
about which no further detail is provided here since the core of our proposal is
the generation phase, which is its the key-aspect, while the adversarial module
is ancillary to it and might be also substituted by any other neural net based
anomaly detection module.

The training process employed in the architecture is as follows. Given a data
set (X,Y ), including a subset of the normal samples, selected using a criterion
based on the distance to the outlier, and the anomalous sample under analysis,
cumulatively denoted by X, together with their labels, denoted by Y , and an
initial copy (X ′, Y ′) of this data set, the following steps are performed:

1. The Adversarial Module is trained on (X ′, Y ′) for a number ea of epochs.
2. The Generative Module (thus, both the Mask Generator and the Mask

Applier) is trained on (X,Y ) for a number eg of epochs.
3. The patched version õ of the outlier o is computed and added to the extended

training data set, labelled as anomalous, that is, X ′ ← X ′∪{õ}, Y ′ ← Y ′∪{1},
where 1 is the label assigned to anomalous samples.

This procedure is iterated nadv times in order to obtain the final explanation for
the sample outlierness, the explanation given to the user is the result obtained
from the last iteration. nadv is an algorithm parameter, as it is reported also in
Sect. 3, here we consider it equals to 5 and this brings to good results.
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3 Experiments

In this section, the assessment of the proposed methodology is performed con-
sidering both a qualitative and a quantitative evaluation. The objectives are to
evaluate if MMOAM retrieves the correct features to characterize the outlier
and if it is effectively able to mask the sample to make it inlier w.r.t the normal
samples.

To this aim, first, we consider a generated data set to assess the robustness of
the proposed algorithm to the increase in the number of features and the increase
in the number of dimensions characterizing the anomaly. Second, MMOAM is
tested on two real data sets to evaluate its behaviour in real contexts.

In both batteries of experiments, also a comparison with the SOD algorithm
is performed.

3.1 Synthetic Data

In this section, we consider a situation in which there is a data set with indepen-
dent attributes and in which there is a sample that is anomalous on one or more
of these attributes. To illustrate, data are generated from a normal distribution
with mean 3 and standard deviation 0.3; the anomalous point is obtained per-
turbing one sample by changing one or more of its attributes and having each of
these nine standard deviations apart from its original value. Here we test also the
scale performances of the method both as the number of data features increases
and as the number of perturbed ones increase.

The adopted parameters are as follows:

– the number of considered adversarial explanations is equal to 5;
– the number of epochs carried out at each explanation step is equal to 300;
– for the adversarial module, the number of epochs performed for each step is

equal to 150, with a batch size of 16, and
– the number of normal points considered to produce the explanation is equal

to 100.

The anomalous sample for the first considered synthetic data sets is obtained
by a modification performed on a random dimension. In Fig. 4, the explanations
obtained for each test are shown. The figure shows that, in this setting, MMOAM
can modify the sample in such a way as to move it within the data distribution
also when the number of dimensions increases. Furthermore, the figure content
highlights that, in all the tests, the only dimension detected as important is
always the correct one: this proves that MMOAM is capable of consistently
singling out what makes the given point anomalous.

In the second set of experiments, the number of dimensions modified to obtain
an anomalous sample is increased while the total number of dimensions is set
to 20. Except for this, the setting is the same as in the previous test. Thus, to
create the out-of-distribution point an increasing number of random features are
modified. Figure 5 reports the results of this experiment. Again, our approach
allows to correctly detect the features that make the sample anomalous, singling
out both the modified attributes.
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Fig. 4. Explanations produced with increasing number of dimensions. The modified
dimension here is 1, the dimension to perturb is chosen randomly. (a) considers the
data set with 3 dimensions, (b) considers the data set with 5 dimensions, (c) considers
the data set with 10 dimensions and (d) considers the data set with 20 dimensions.

Fig. 5. Explanations produced with increasing number of modified dimensions with a
fixed total number of dimensions set to 20. The dimensions modified in the anomalous
sample are randomly selected. (a) considers the modification of 2 features, (b) considers
the modification of 4 features and (c) considers the modification of 6 features.
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Comparison with SOD. In this section, we compare our method with SOD
[18], a reference algorithm that carries out subspace outlier detection. We note
that, by its nature, SOD allows us to inspect the attributes used for its classi-
fication step. For the battery of experiments illustrated next we use the same
data setting as that described above for previous experiments. Moreover, we set
additional parameters as follows:

– for SOD:
• the number of neighbours utilized is set to 40;
• the reference set size is 200;
• α is set 0.95;

– for MMOAM :
• the number of utilized points is set to 100;
• the number of epochs for each discriminator training is set to 150;
• the discriminator batch size is set to 16;
• the number of epochs for each generative module training is set 500;
• the number of adversarial epochs is set to 5;
• the values of the loss hyperparameters are set to 1.5, 0.6, 0.2 and 0.2,

respectively.

Since the ground truth is available, precision and recall measures can be
exploited to compare the two algorithms. Thus, let Fr be the set of retrieved
features and Fa be the set of features w.r.t. which the sample is anomalous.
Then, the precision P () is defined as the portion of retrieved features that are
actually anomalous, that is:

P (Fr, Fa) =
|Fr ∩ Fa|

|Fr|
while the recall R() is defined as the fraction of anomalous retrieved dimensions,
that is:

R(Fr, Fa) =
|Fr ∩ Fa|

|Fa|
Precision and recall scores reported in this section are obtained by averaging
the value of these scores over 100 runs, each of which uses a different data set
generated using the strategy illustrated above.

The situation depicted in the Fig. 6 is associated to tests performed over data
sets characterized by a growing number of dimensions and, precisely, with 5, 10
and 20 features. Although both MMOAM and SOD recover all the anomalous
characteristics, it is possible to observe that the precision scored by our technique
outperforms the one SOD scores. It is moreover worth noting that SOD preci-
sion decreases quickly as the number of dimensions increases. On the contrary,
notably, this experiment shows that MMOAM reacts better to the increase in
the number of features and it maintains high precision and recall scores.

The experiment whose results are summarized in Fig. 7 is one where the
number of dimensions is fixed to 20 whereas the number of anomalous features of
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Fig. 6. Mean precision (a) and mean recall (b) reached by SOD and MMOAM on data
sets with dimensions 5, 10 and 20. This results are obtained on 100 runs performed on
different data sets generated following the same procedure.

the anomalous sample gets larger and larger. Also in this case, the experimental
evidence shows that MMOAM markedly outperforms SOD in both in precision
and recall. Even if the number of anomalous dimensions is increased, MMOAM
remains accurate and, at the same time, retrieves all the correct features, while
SOD presents a different trend, in which its precision increases while its recall
decreases, so it is no longer able to find all the dimensions to single out.

Fig. 7. Mean precision (a) and mean recall (b) reached by SOD and MMOAM on data
sets with 20 dimensions and 2, 4 and 6 anomalous features. This results are obtained
on 100 runs performed on different data sets generated following the same procedure.

3.2 Real Data Sets

It is crucial to test the proposed technique on real data to understand if it is
effective in concrete contexts. The tests of this subsection are devoted to this
goal. Here, two different types of evaluations are performed. First of all, we assess
the quality of the informative content of the explanation considering a data set
whereby in literature is available evidence provided by domain experts. Then,
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a quantitative evaluation is performed comparing the quality of the subspaces
retrieved by our method with the ones detected by SOD. The data sets employed
in these experiments are the Iris [15] and the Breast Cancer Wisconsin data sets
[8] respectively.

Iris Data Set. The Iris data set [15] contains data regarding three Iris species
and, for each species, it stores 50 samples. Each instance is described through 6
attributes: an identifier, the sepal length and width measures, the petal length
and width measures and the species to which the flower belongs to, where all
the lengths and widths are expressed in centimetres.

For this experiment, the data set has not been considered in its entirety
and, actually, only the instances of Setosa and Virginica Iris flowers are taken
into account. To have a setting coherent with the considered task, Iris Setosa
samples are chosen to represent the inlier data, while anomalous ones are taken
from Iris Setosa samples. The id attribute is dropped since it does not carry any
informative content.

Fig. 8. The explanation for one Iris Setosa sample, the features detected as anomalous
are the petal length and width. The value of these features for the patched sample is
highlighted by the blue point. (Color figure online)

As shown in Fig. 8, the application of our technique results in singling out
petal length and width as the features to act upon (by decreasing their values) in
order to transform an Iris Setosa (outlier) sample into an Iris Virginica (normal)
one. This finding is confirmed by what is known in botany about these flowers:
to distinguish between specimens of these two species only sepal length and sepal
width must be analyzed and compared [2].

To conclude with the comparison of our technique with SOD, it is worth not-
ing that, once run on the same data set, SOD fails to deliver same quality results.
Indeed SOD singles out almost all data features but leaves out only sepal length,
which is, notably, one of the distinctive attributes of the outlier explanation.

Breast Cancer Wisconsin Data Set. Here, the Breast Cancer Wisconsin
data set [8] is considered, it is a collection of 30 features computed from digitized
images of a fine needle aspirate (FNA) of a breast mass. The samples which form
this data collection are annotated as benign or malignant. From this point on,
the benign samples are used as normal points while malignant ones are used as
anomalous.
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Since no ground truth is available for this data set, to compare quantitatively
subspaces retrieved by MMOAM with ones retrieved by SOD, the KNN algo-
rithm [11] is used as an evaluator. The experiment carried out is the following: for
each sample of the outlier class (so for each one labelled as malignant), MMOAM
and SOD algorithms are applied to retrieve a subspace, the results obtained are
evaluated training, using only features belonging to these subspaces, a KNN clas-
sifier. Then, to rank each point, sum of the distances to its k-nearest-neighbours
is used [6], the number of neighbours used is set to 5 since it gives the best results
in terms of classification accuracy. The higher is this score w.r.t. the score of the
other points, the higher is the sample outlierness. Then, the method efficacy is
measured as the fraction of subspaces for which the sample lies in the top-n
ranked points. The score obtained ranges from 0 to 1. The more it is near 1, the
better is the result.

Fig. 9. Comparison of the quality of the subspaces retrieved by MMOAM and SOD,
where on the abscissa there is the value of n for the top-n score and on the ordinate
the score values.

In Fig. 9, are depicted the results of this evaluation. There, on the abscissa,
are reported the values of n used, while on the ordinate, the score values. What is
highlighted by the figure is that MMOAM is more accurate to detect subspaces
for which anomaly rank is high w.r.t. SOD, which subspaces ranking is lower.
It is another proof of the quality of the explanations returned by the proposed
methodology.

4 Conclusions and Future Work, Briefly

In this paper, a deep-learning architecture has been illustrated which solves
the OAM problem also singling out those attribute values that make the input
outlier data point to become an inlier. Several experiments have been presented
that demonstrate the general effectiveness of our approach and its capacity to
outperform the reference SOD algorithm.
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As a future development of this research we envision the possibility to sub-
stitute, in our architecture, the classification-based adversarial model with one
on the unsupervised kind such as, e.g., an auto-encoder network. Furthermore,
we deem it interesting to generalize our approach to make it capable of handling
discrete data domains, which will impose a significant remake of parts of our
neural architecture (particularly, the generative component of it).
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