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Abstract. We propose a different way to compute sceptical semantics
in the constellations approach: we define the grounded, ideal, and eager
extension of a Probabilistic Argumentation Framework by merging the
subsets with the maximal probability of complete, preferred, semi-stable
extensions respectively. Differently from the original work (i.e., [19]), the
extension we propose is unique, as the principle of scepticism usually
demands. This definition maintains some well-known properties, as set-
inclusion among the three semantics. Moreover, we advance a quantita-
tive relaxation of these semantics with the purpose to mitigate scepticism
in case the result corresponds to empty-set, which is not very informative.

1 Introduction

Abstract Argumentation is a high-level language describing conflicting infor-
mation, which can be simply represented by a set of arguments and a binary
attack-relationship. Argumentation is “abstract” because the conflict between
two arguments is not formally motivated, and the internal structure of an argu-
ment is not specified. Such an abstraction can be used to capture general proper-
ties of a debate, but it also fostered the enrichment of frameworks with additional
information (e.g., probabilities).

In uncertain reasoning we can distinguish qualitative and quantitative
approaches. The former ones focus on issues such as defeasibility, and default
assumptions: computational models of argumentations are an example. The lat-
ter ones focus on the problem of quantifying the acceptance status of statements:
an example is probabilistic reasoning. Probabilistic Argumentation frameworks
(PrAFs for short) combine them by bringing together the qualitative view of
argumentation and the probability values associated with arguments and attacks.
The two main approaches on PrAFs in the literature consist in the constellations
and epistemic approaches (see Sect. 3).
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In this paper we focus on the former: values determine the likelihood of
arguments and attacks to be part of a framework, thus generating different
frameworks with a different existence probability.

As advanced in several works in the related literature (e.g., [2,13]), the idea
behind the grounded semantics in Abstract Argumentation is to accept only the
arguments that must be accepted and to reject only the arguments that one
cannot avoid to reject. This leads to the definition of the most sceptical (or least
committed) semantics among those based on complete extensions. The ideal [14]
and eager [10] semantics have been defined as less sceptical positions, since the
grounded extension is a subset of the ideal extension, which is a subset of the
grounded one [10]. In case of a sceptical approach, the existence of more than
one possible argumentative position is often dealt with by taking the intersection
of different extensions. For instance, the ideal semantics uses the intersection
of all the preferred extensions in its definition. Even the grounded extension,
though originally defined as the least fixed-point of a framework characteristic
function [13], also corresponds to the intersection of complete extensions.

In this paper we propose a different way to compute sceptical extensions of
a PrAF in the constellations approach [17,19]: hence we focus on the grounded,
ideal, and eager semantics. The main goal is to propose a single extension for
the whole set of frameworks induced from a given PrAF. On the contrary, in [19]
all the most frequent subsets of arguments that belong to a grounded extension
in induced frameworks are equally-good candidates.

A simple example is any PrAF where both P (a) = P (b) = 1, and a, b are not
attacked: they are present in all the induced frameworks and they always belong
to the grounded extension. Hence, either {a} or {b} have the same (highest
possible) probability 1 to satisfy the grounded semantics.

To obtain unicity, we consider the probability of the intersection of the events
i) a set of arguments is a subset of a complete/preferred/semi-stable extension
in an induced framework, and ii) that framework is induced by the considered
PrAF. Then, sceptical semantics can be seen as the union of argument-sets
maximising the probability of these two events: by taking maximum-probability
positions we realise scepticism in PrAFs.

With such an approach, we show that the sceptical extensions of a PrAF
correspond to the intersection of their equivalents obtained on all the induced
frameworks. As introduced before, this intersection operation is also often used
in non-probabilistic frameworks to define classical sceptical semantics. By having
characterised the intersection of possible frameworks in a quantitative (proba-
bilistic) way, we end up with the opportunity of relaxing scepticism by taking
less-than-maximal-probability sets. Therefore, the proposed approach offers a
way to quantitatively relax scepticism, as classical ideal and eager semantics do
in a qualitatively way with respect to the grounded extension instead. Being the
grounded extension the intersection of all the complete extensions from all the
induced frameworks, a (uninformative) result of empty-set is thus very likely.

The paper is organised as follows: Sect. 2 introduces the necessary back-
ground about semantics and PrAFs defined with the constellations approach.
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Section 4 redefines the grounded semantics in PrAFs, with related formal results
and examples, while in Sect. 5 we extend former results to the ideal and eager
semantics. Section 3 summarises some of the related work about PrAFs, and
finally Sect. 6 wraps up the paper with final conclusions and future work.

2 The Constellations Approach

An Abstract Argumentation Framework (AF, for short) [13] is a tuple F = (A,R)
where A is a set of arguments and R is the attack relation R ⊆ A × A.

A set E ⊆ A is conflict-free (in F) if and only if there are no a, b ∈ E with
a → b (i.e., “a attacks b”). E is admissible (i.e., E ∈ ad(F)) if and only if it
is conflict-free and each a ∈ E is defended by E, i.e., E attacks any attacker
of a. Finally, the range of E in F , i.e., E+

F , collects the same E and the set of
arguments attacked by E: E+

F = E ∪ {a ∈ A | ∃b ∈ E : b → a}. Argumentation
semantics determine sets of jointly acceptable arguments, called extensions, by
mapping each F = (A,R) to a set σ(F) ⊆ 2A, where 2A is the power-set of A,
and σ parametrically stands for any of the considered semantics. The extensions
under complete, preferred, semi-stable, grounded, ideal and eager semantics are
respectively defined as follows. Given F = (A,R) and a set E ⊆ A,

– E ∈ co(F) if and only if E is admissible in F and if a ∈ A is defended by E in F
then a ∈ E,

– E ∈ pr(F) if and only if E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′ ⊃ E,
– E ∈ sst(F) if and only if E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′+

F ⊃ E+
F ,

– E ∈ gr(F) if and only if E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′ ⊂ E,
– E ∈ id(F) if and only if E is admissible, E ⊆ ⋂

pr(F) and there is no admissible
E′ ⊆ ⋂

pr(F) s.t. E′ ⊃ E,
– E ∈ eg(F) if and only if E is admissible, E ⊆ ⋂

sst(F) and there is no admissible
E′ ⊆ ⋂

sst(F) s.t. E′ ⊃ E.

A Probabilistic Argumentation Framework (PrAF ) [19] represents the set of
all AFs that can potentially be induced from it. A PrAF is a Dung’s frame-
work where both arguments (Ap) and attacks (Rp) are associated with their
likelihood of existence: i.e., PAp

: Ap → (0, 1], and PRp
: Rp → (0, 1]: hence,

Fp = (Ap,Rp, PAp
, PRp

). An induced AF includes all the arguments and attacks
with a likelihood of 1, as well as further components as specified by Definition 1.

Definition 1 (Inducing an AF [19]). A Dung abstract framework F = (A,R)
is induced from a Fp = (Ap,Rp, PAp

, PRp
) if and only if the remainder holds: i)

A ⊆ Ap, ii) R ⊆ (Rp ∩ (A × A)), iii) ∀a ∈ Ap such that PAp
(a) = 1, then a ∈ A,

iv) ∀(ai, aj) ∈ Rp such that PRp
(ai, aj) = 1 and ai, aj ∈ A, then (ai, aj) ∈ R. We

write I(Fp) to represent the set of all AFs that can be induced from a Fp.

Therefore, arguments and attacks with a likelihood of 1 must be present in
all the induced frameworks whenever possible (i.e., an attack also needs incident
arguments to be present), while not-completely certain components can appear
or not in an induced framework. The probability of an induced AF is computed
as the joint probability of all the independent variables:



A Definition of Sceptical Semantics in the Constellations Approach 65

Definition 2 (Probability of induced F [19]). With Fp = (Ap,Rp, PAp
, PRp

),
the probability of F = (A,R) ∈ I(Fp) is:

P I

Fp
(F) =

∏

ai∈A

PAp(ai)
∏

ai∈(Ap\A)
(1 − PAp(ai))

∏

(ai,aj)∈R

PRp((ai, aj))
∏

(ai,aj)∈(Rp\R) s.t. ai,bj∈A

(1 − PRp((ai, aj))

The set of possible worlds induced by a PrAF sums up to a probability of 1.

Proposition 1 [19]. The sum of all the probability values of all the frameworks
that can be induced from a Fp = (Ap,Rp, PAp

, PRp
) is 1:

∑

Fi∈I(Fp)

P I

Fp
(Fi) = 1

Definition 3 computes the likelihood of a set E of arguments being “consis-
tent” with respect a given argumentation semantics σ.

Definition 3 (Extension probability [19]). Given a Fp = (Ap,Rp, PAp
, PRp

),
the probability that a given set of arguments B ⊆ PAp

satisfies a semantics σ is
(function ξ is discussed in the following paragraph):

Pσ(B,Fp) =
∑

Fi∈I(Fp)

P I

Fp
(Fi) where ξσ(Fi, B) = true

In [19] function ξσ(Fi, B) is said to return true if and only if the set of
arguments B is deemed “consistent” using semantics σ when evaluated over a
framework Fi induced from Fp. For instance, we can consider ξ to return true
if and only if B ∈ σ(Fi), that is if and only if B is an extension in Fi according
to semantics σ, or if B is just a subset of a σ extension, as proposed in [19].

Example 1. In Fig. 1 we show an example of PrAF. Such a relatively small graph
induces thirteen different frameworks: F1 = ({a, e}, {}), F2 = ({a, b, e}, {(a, b)}),
F3 = ({a, c, e}, {}),F4 = ({a, b, c, e}, {(a, b)}),F5 = ({a, b, c, e}, {(a, b), (c, b)}),
F6 = ({a, d, e}, {(d, e)}), F7 = ({a, b, d, e}, {(a, b), (d, e)}), F8 = ({a, c, d, e}, {(d,
c), (d, e)}),F9 = ({a, c, d, e}, {(c, d), (d, c), (d, e)}), F10 = ({a, b, c, d, e}, {(a, b),
(d, c), (d, e)}),F11 = ({a, b, c, d, e}, {(a, b), (c, b), (d, c), (d, e)}), F12 = ({a, b, c, d,
e}, {(a, b), (c, d), (d, c), (d, e)}), F13 = ({a, b, c, d, e}, {(a, b), (c, b), (c, d), (d, c), (d,
e)}), whose probabilities are [0.09, 0.06, 0.21, 0.056, 0.084, 0.09, 0.06, 0.147, 0.063,
0.0392, 0.0588, 0.0168, 0.0252]. These values clearly sum up to 1.

3 Related Work

In the literature there exist two main approaches to probabilistic argumentation:
the constellations [19] and the epistemic approaches [22]. A third approach is
proposed in [20]: in that case, the probability distribution over labellings [9] gives
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Fig. 1. An example of PrAF.

a form of probabilistic argumentation that overlaps with both the constellations
and epistemic approaches.

In the constellations approach, the uncertainty resides in the topology of the
considered AF: probability values label arguments and attacks. The authors of
[15] provided the first proposal to extend abstract argumentation with a prob-
ability distribution over sets of arguments which they use with a version of
assumption-based argumentation in which a subset of the rules are probabilis-
tic rules. In [19] a probability distribution over the sub-graphs of the argument
graph is introduced, and this can then be used to give a probability assignment
for a set of arguments being an admissible set or extension of the argument
graph. In [12] the authors characterise the different semantics from the app-
roach of [19] in terms of probabilistic logic with the purpose of providing an
uniform logical formalisation and also pave the way for future implementations.
Complexity aspects related to computing the probability that a set of arguments
is an extension according to a given semantics are instead presented in [16].

In the epistemic approach instead, the topology of a graph is fixed, but the
more likely an agent is to believe in an argument, the less likely it is to believe in
an argument attacking it. This reminds other related approached such as ranking-
based semantics [1] and weighted argumentation frameworks [5,6,8]. For instance,
in [3] the authors cast epistemic probabilities in the context of de Finetti’s theory
of subjective probability, and they analyse and revise the relevant rationality
properties in relation with de Finetti’s notion of coherence. However, most of the
work in this directions is authored by M. Thimm [22] and A. Hunter [17]. In the
first work, the author proposes a probabilistic approach assigning probabilities
or degrees of belief to individual arguments. The presented semantics generalise
the classical notions of semantics [13]. In the second work, the author starts
from considering logic-based argumentation with uncertain arguments, but ends
showing how this formalisation relates to uncertainty of abstract arguments. The
two authors join their efforts in [18].

Some more related references concern the use of frameworks whose topology is
not completely expressed, similarly to the constellations approach. For example,
the work in [11] introduced the notion of Partial Argumentation Framework
(PAF ), which are defined by a set of arguments, an attack relation →⊆ (A×A)
specifying attacks known to exist, and an ignorance relation ign ⊆ (A × A)
specifying attacks whose existence is not known. This reflects the fact that some
agents may ignore arguments pointed out by other agents, as well as how such
arguments interact with her own ones: the goal of the authors is to merge different
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frameworks together, and thus not all the agents are assumed to share the same
global set of arguments. Incomplete Argumentation Frameworks (IAF ) further
generalise PAFs, since they can represent uncertainty about the existence of
individual arguments, uncertainty about the existence of individual attacks, or
both simultaneously [4].

4 The Grounded Semantics of a PrAF

In [19] the authors suggests ξgr(Fi, B) to return “true” when the set of argu-
ments B is a subset of the grounded extension of Fi (see Definition 3). How-
ever, this choice for ξ leads to some issues related to the non-uniqueness of the
grounded extension, which is indeed a desirable result being it also defined as
a unique-status or single-status semantics in Dung’s frameworks [2]. For exam-
ple, the PrAF in Fig. 1 has two alternative choices for the grounded extension:
Pgr(∅,Fp) = Pgr({a},Fp) = 1.

This is the main motivation that moved us towards a different definition of
the grounded semantics, with the purpose to have one single result (with the
maximal probability), together with the need to connect its characteristic of
scepticism to probabilistic frameworks: the grounded extension minimises the
overall uncertainty and includes only the least questionable arguments present
in complete extensions. In order to rephrase this characteristic into probabilistic
frameworks, the grounded extension should include the arguments that are most
likely included in the complete extensions of all the possible induced frameworks.

To accomplish this, we were inspired by the law of total probability to compute
the average probability of an event U on the probability space defined by the
events {Vn : n = 1, 2, . . . , n}, which are a finite or countably infinite partition of
such sample space: P (U) =

∑
i P (U ∩ Vi) =

∑
i P (U | Vi) · P (Vi).

In our specific case, P (Vi) describes the probability of Fi to be an induced
framework of Fp, that is P I

Fp
(Fi). Such a probability value is weighted by P (U |

Vi), which in our case is not really a probability but the frequency of a subset
B to appear in the complete extensions of Fi instead.

Definition 4 (Probability B is a subset of a complete extension in Fp).
Given Fp = (Ap,Rp, PAp

, PRp
), the probability of B ∈ Ap to be a subset of the

complete extensions in Fp is computed as:

P (B)coFp
=

∑

Fi∈I(Fp)

(|E ∈ co(Fi)| s.t .B ⊆ E) / |co(Fi)| · P I

Fp
(Fi)

For example, if B is a subset of half of the complete extensions in an induced
Fi and P I

Fp
(Fi) = 0.25, then the contribution of Fi to P (B)coFp

is 0.5 · 0.25 =
0.125. To compute the total contribution one has to consider all the Fi.

It is now possible to define the grounded semantics of a PrAF as the union of
the subsets of maximal-probability, with probability as defined in Definition 4.
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Definition 5 (Grounded semantics). Given Fp = (Ap,Rp, PAp
, PRp

), a fam-
ily of sets S, the grounded extension is defined as the union

⋃
of subsets of

maximal P (B)coFp
:

gr(Fp) =
⋃

{B | P (B)coFp
is maximal} (1)

Example 2. Given the PrAF in Fig. 1, the thirteen induced frameworks has the
following sets of complete extensions: co(F1) = {{a, e}}, co(F2) = {{a, e}},
co(F3) = {{a, c, e}}, co(F4) = {{a, c, e}}, co(F5) = {{a, c, e}}, co(F6) =
{{a, d}}, co(F7) = {{a, d}}, co(F8) = {{a, d}}, co(F9) = {{a}, {a, d}, {a, c, e}},
co(F10) = {{a, d}}, co(F11) = {{a, d}}, and co(F12) = {{a}, {a, d}, {a, c, e}},
and co(F13) = {{a}, {a, d}, {a, c, e}}. There exist ten possible subsets of com-
plete extensions in Fp, that is ∅, {a}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e}, {c, e}, {a,
c, e}, whose probability as defined in Definition 4 are respectively defined by the
array [1, 1, 0.385, 0.43, 0.535, 0.385, 0.43, 0.535, 0.385, 0.385]. Hence, as stated by
Definition 5, gr(Fp) = ∅ ∪ {a} = {a}, since both ∅ and {a} have a probability
of 1.

The next remark explains why it is possible to replace “maximal probability”
with P (B)coFp

= 1 in Definition 5 without changing the result.

Remark 1. Note that the probability of empty-set is always maximal, since it is
trivially a subset of any E ∈ co(Fi): as a consequence, empty-set will always
be considered with a probability of 1 in the union of sets in Eq. 1. For the
same reason, any subset B with a probability strictly less than 1 will never be
considered to be part of the grounded extension. Therefore, maximal and equal
to 1 probabilities will be interchangeably used in the rest of the paper.

The grounded semantics always results in a single extension.

Proposition 2 (Unicity). The grounded extension in Fp = (Ap,Rp, PAp
, PRp

)
is unique.

Proof. It straightforwardly follows from the fact that the grounded extension is
defined as the union of some sets of arguments.

In addition, when from Fp it is possible to induce a single framework, i.e.,
|I(Fp)| = 1, then the grounded semantics corresponds to its classical definition
given by P. M. Dung in [13]. This allows to reconnect to classical abstract argu-
mentation in case of no uncertainty in the framework topology.

Theorem 1 (Correspondence with Dung). Given Fp = (Ap,Rp, PAp
, PRp

)
such that I(Fp) = {F}, then gr(Fp) = gr(F).

Proof. Since we only have one induced framework F by hypothesis, whose
probability is 1 according to Proposition 1, then P (B)coFp

=
∑

Fi∈I(Fp)
(|E ∈

co(Fi)| s.t .B ⊆ E) / |co(Fi)| · P I

Fp
(Fi) = (|E ∈ co(F)| s.t .B ⊆ E) / |co(F)|.

Since gr(F) is defined as the intersection of all the complete extensions in F ,
then we have that P (gr(F))coFp

is 1, while for any B 
= ∅ and B 
= gr(F),
P (B)coFp

< 1. From Definition 5 we obtain gr(Fp) = gr(F).
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Example 3. If we consider a PrAF Fp s.t. Ap = {a, b, c, d}, Rp = {(a, b), (b, c), (c,
d)}, PAp

= {1, 1, 1, 1}, PRp
= {1, 1, 1}, we have a single induced framework

whose complete extension is {a, c}. Hence, its subsets are {∅, {c}, {a}, {a, c}}
with probabilities [1.0, 1.0, 1.0, 1.0]. The union of all these maximal-probability
subsets is equivalent to gr(Fp) = {a, c}.

Theorem 2 states that the definition of grounded extension given in Defi-
nition 5 adheres to the principle often used to enforce scepticism in Abstract
Argumentation: as introduced in Sect. 1, the intersection of different extensions
leads to only those arguments that are taken in all of them, thus eliminating
uncertainty. Also in the case of PrAFs, the grounded extension of each induced
Fi is the intersection of complete extensions, while the grounded extension of
the entire Fp is the intersection of all the different grounded extensions for each
Fi.

Theorem 2 (Intersection of grounded ext.s). Being Fp = (Ap,Rp, PAp
,

PRp
) any PrAF, then the grounded extension defined in Definition 5 corresponds

to:
gr(Fp) =

⋂

Fi∈I(Fp)

gr(Fi)

Proof. Given any a ∈ Ap, if ∀Fi ∈ I(Fp) (except the empty framework, if it
exists) a ∈ gr(Fi) then P ({a})coFp

, since a is included in any complete extension
of each Fi. According to Definition 3.2 we have that

⋃
a{a} = gr(Fp), because all

these sets have maximal probability. On the contrary, if ∃Fi ∈ I(Fp).a 
∈ gr(Fi)
then P ({a})coFp

is not maximal (i.e., it has a probability strictly lower than 1).

Note that from Theorem 2 we directly derive that gr(Fp) is conflict-free in
Fp, even if it make little sense to check it in a PrAF, since an attack may or
may not exist depending on the induced framework.

Corollary 1 underlines the scepticism behind the definition of grounded
semantics given in Definition 5. If an induced framework such that its grounded
extension is empty-set exists, or equivalently empty-set is a complete extension
of that framework, then the grounded extension of the whole PrAF is empty-set
as well.

Corollary 1 (Empty-set dominance). If ∃Fi ∈ I(Fp) s.t. ∅ ∈ co(Fi), then
gr(Fp) = ∅.
Proof. We have that P (∅)coFp

= 1 for any Fi ∈ I(Fp). If ∅ ∈ co(Fi), then ∀B 
= ∅
we have that B 
⊆ (E = ∅). For this reason, P (B)coFp

< 1 for any B 
= ∅.
Since Definition 3.2 aggregates maximal-probability subsets only, then gr(Fp)
corresponds to the union of empty-set only.

In the definition of the grounded semantics for probabilistic frameworks we
tried to stick to the principle of scepticism, according to which empty-set is
clearly the most sceptical position to be taken. In the next example we recap
the previous formal results.
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Fig. 2. An example of PrAF. Fig. 3. A second example of PrAF.

Example 4. In Fig. 2 we show an example of a PrAF that induces the four
frameworks represented in Fig. 4. These frameworks respectively have co(F1) =
{{a, b, d}}, co(F2) = {{a, d}}, co(F3) = {{b, d}}, co(F3) = {∅, {a, d}, {b, d}}.
Thus, subsets of complete extensions are ∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d},
{a, b, d} and their probability is [1, 0.583, 0.583, 0.916, 0.25, 0.583, 0.583, 0.25].
The four grounded extensions are gr(F1) = {a, b, d}, gr(F2) = {a, d}, gr(F3) =
{b, d}, and gr(F4) = ∅. The intersection of all the grounded extensions from the
four frameworks is ∅.

Because of the aforementioned motivations, having defined the grounded
extension of a PrAF as the intersection of the grounded extensions of each
induced framework, the probability for a framework to be empty-set is clearly
high. This result is clearly not very informative, and it is a possible drawback of
being too much sceptical. However, by having defined a quantitative approach
to the definition of the grounded semantics, we can also think of relaxing scep-
ticism by imposing a lower threshold on probability when merging the subsets
as suggested in Definition 4, instead of taking the most probable subsets.

Definition 6 (t-relaxed grounded semantics). Given Fp = (Ap,Rp, PAp
,

PRp
), a family of sets S, t ∈ [0, 1], the t-relaxed grounded extension is defined as

the union of subsets whose P (B ⊆ (E ∈ co(Fp))) is greater-equal than t:

t
gr(Fp) =

⋃
{B | P (B)coFp

≥ t} (2)

Example 5. If we set t = 0.9, the t-grounded extension of the PrAF in Fig. 2 is
{d}, since the probability of this subset is 0.916, and ∅ ∪ {d} = {d}.

Clearly,
1
gr(Fp) corresponds to gr(Fp) in Definition 5.

5 Further Sceptical Semantics

There are two other sceptical semantics in the literature, which share the unique-
statusness with the grounded: the ideal and eager semantics. Both eg and id
have been designed to relax scepticism of the former one: gr(F) ⊆ id(F) ⊆
eg(F) [10].

Because of their importance and closeness to the grounded semantics, in
the following of this section we provide a probabilistic definition of these two
semantics, in the style of what proposed in Sect. 4.
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Fig. 4. The four frameworks induced by the PrAF in Fig 2.

Definition 7 (Probability of id and eg). Given Fp = (Ap,Rp, PAp
, PRp

), the
probability of B ∈ Ap to be a subset of the preferred/semi-stable extensions in
Fp, are respectively computed as:

P (B)prFp
=

∑

Fi∈I(Fp)

(|E ∈ pr(Fi)| s.t .B ⊆ E) / |pr(Fi)| · P I

Fp
(Fi) (3)

P (B)sstFp
=

∑

Fi∈I(Fp)

(|E ∈ sst(Fi)| s.t .B ⊆ E) / |sst(Fi)| · P I

Fp
(Fi) (4)

In Definition 8 we use Eq. 3 and Eq. 4 to propose a definition of respectively
ideal and eager semantics in PrAFs.

Definition 8 (Ideal/eager semantics). Given Fp = (Ap,Rp, PAp
, PRp

), the
ideal/eager extensions are defined as the union of maximal-probability subsets,
as defined in Eq. 3 and Eq. 4 respectively:

id(Fp) =
⋃

{B | P (B)prFp
is maximal}, eg(Fp) =

⋃
{B | P (B)sstFp

is maximal}

Example 6. The grounded, ideal, and eager extensions in Fig. 2 are ∅. The
grounded extension in Fig. 2b is ∅, while the ideal and the eager ones are {a}:
in this case, the induced frameworks are F1 = ({a, b}, {(a, b), (b, a), (b, b)}) and
F2 = ({a, b}, {(a, b), (b, b)}). Thus, subsets of complete extensions are ∅ and {a},
with probability of 1 and 0.5.

Remark 2. As in Remark 1, empty-set is always contained in every preferred
and semi-stable extension, and thus P (∅)prFp

= P (∅)sstFp
= 1 for any possible Fp.

For this reason, requiring maximal probability or a probability value equal to 1
is equivalent in Definition 8. Both the ideal and eager extensions will always be
made of only subsets B with a probability of 1.

In case of a single induced framework from Fp, the ideal and eager extensions
correspond to their classical definition in [14] and [10] respectively.
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Proposition 3 (Unicity of ideal and eager). The ideal and eager extensions
in Fp = (Ap,Rp, PAp

, PRp
) are unique.

Proof. It straightforwardly follows from the fact that the ideal and eager exten-
sions are defined as the union of argument sets.

Theorem 3 (Ideal/eager correspondence). Given Fp = (Ap,Rp, PAp
, PRp

)
s.t. I(Fp) = {F}, then id(Fp) = id(F) and eg(Fp) = eg(F).

Proof. Since we only have one induced framework F by hypothesis, whose
probability is 1 according to Prop. 2.1, then P (B)prFp

=
∑

Fi∈I(Fp)
(|E ∈

pr(Fi)| s.t .B ⊆ E) / |pr(Fi)| · P I

Fp
(Fi) = (|E ∈ pr(F)| s.t .B ⊆ E) / |pr(F)|.

Since id(F) is defined as the intersection of all the preferred extensions in F ,
then we have that P (id(F))prFp

is 1, while for any B 
= ∅ and B 
= id(F),
P (B)prFp

< 1. From Definition 3.2 we obtain id(Fp) = id(F). Similar considera-
tions hold for the eager semantics, with respect to semi-stable extensions.

Even for these two sceptical semantics we can prove that they can be both
obtained by intersecting all the respectively ideal/eager extensions on all the
induced frameworks, as Theorem 2 shows for the grounded semantics.

Theorem 4. (Intersection of extensions). Being Fp = (Ap,Rp, PAp
, PRp

)
any PrAF, then the ideal and eager extensions respectively correspond to:

id(Fp) =
⋂

Fi∈I(Fp)

id(Fi) eg(Fp) =
⋂

Fi∈I(Fp)

eg(Fi)

Proof. The proof follows the same approach adopted in Theorem 2.

From Theorem 3, in case of a single induced framework F we straight-
forwardly inherit the result that gr(Fp) ⊆ id(Fp) ⊆ eg(Fp) from previous
works [10,14]. The following theorem extends this result to more than one
induced framework, that is, to all possible PrAFs.

Theorem 5 (Sceptical semantics inclusion). The subset inclusion gr(Fp) ⊆
id(Fp) ⊆ eg(Fp) holds for any PrAF Fp.

Proof. Since for each Fi ∈ I(Fp) it holds that gr(Fi) ⊆ id(Fi) ⊆ eg(Fi)
from Theorem 1 and Theorem 3, then from Theorem 4 the intersection of all
gr(Fi)/id(Fi) is included in the intersection of respectively id(Fi)/eg(Fi).

It is then possible to relax the ideal and eager extensions as shown for the
grounded extension in Definition 6 (similar motivations in mitigating scepticism).

Definition 9 (t-relaxed ideal and eager). Given Fp = (Ap,Rp, PAp
, PRp

)
and t ∈ [0, 1], the t-relaxed ideal/eager extension is defined as the union of
subsets whose P (B)prFp

/P (B)sstFp
is greater-equal than t:

t

id(Fp) =
⋃

{B | P (B)prFp
≥ t} t

eg(Fp) =
⋃

{B | P (B)prFp
≥ t}
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Example 7. The PrAF in Fig. 3 induces 42 different frameworks (which we do

not report here for the sake of conciseness); eg(Fp) = ∅, while
0.601
eg (Fp) is {a, d},

which happens to be the eager extension if we consider the same framework in
the classical Dung’s setting. Moreover,

0.6
eg(Fp) = {a, d, e}, since P ({d})sstFp

=
0.97008, P ({a})sstFp

= 0.60416, and P ({e})sstFp
= 0.6.

Clearly, by increasing the threshold it is possible to progressively include
more arguments.

Proposition 4. For any Fp = (Ap,Rp, PAp
, PRp

) and thresholds t1, t2 ∈ [0, 1],

if t2 < t1 then
t1gr(Fp) ⊆ t2gr(Fp),

t1
id(Fp) ⊆

t2
id(Fp), and

t1eg(Fp) ⊆ t2eg(Fp).

6 Conclusions and Future Work

In this paper we have provided a probabilistic view of sceptical semantics in
the constellations approach, since we have focused on the grounded, ideal, and
eager extensions. The purpose was to compute clear and single solutions for
these semantics, as it happens in Dung’s frameworks. To achieve this, we have
computed how frequently subsets of arguments appear in complete, preferred,
and semi-stable extensions by considering all the induced frameworks. Then,
by merging maximal-probability subsets among them we enforce the idea of
scepticism in PrAFs. Such a quantitative approach reconnects to the qualitative
one often used in argumentation, that is the intersection of different alternatives.
However, by using probability values we now also have a quantitative means to
relax scepticism, besides using the ideal and eager semantics proposed in Sect. 5.
The presented framework has been implemented with a Python script that calls
the Docker container of ConArg [7] to enumerate complete, preferred and semi-
stable extensions on all the induced frameworks.

In the future we plan to enrich the paper with a definition of more credu-
lous semantics, for example the preferred and stable ones, while still satisfying
classical implications among semantics. We will also investigate similarities and
differences w.r.t. standard epistemic extensions [18], which are directly related
to Dung’s semantics. Finally, the presented framework can be equipped with a
more fine-grained probabilistic logic that explicitly takes epistemic uncertainty
and belief (and disbelief as well) into account: i.e., subjective logic [21].
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