
A Practical Account into Counting
Dung’s Extensions by Dynamic

Programming

Ridhwan Dewoprabowo1, Johannes Klaus Fichte2(B), Piotr Jerzy Gorczyca1,
and Markus Hecher2

1 TU Dresden, Dresden, Germany
piotr.gorczyca@tu-dresden.de

2 TU Wien, Vienna, Austria
{johannes.fichte,markus.hecher}@tuwien.ac.at

Abstract. Abstract argumentation and Dung’s framework are popu-
lar for modeling and evaluating arguments in artificial intelligence. We
consider various counting problems in abstract argumentation under
practical aspects. We revisit algorithms and establish a framework that
employs dynamic programming on tree decompositions for counting
extensions of abstract argumentation frameworks under admissible, sta-
ble, and complete semantics. We provide an empirical evaluation and
investigate conditions under which our approach is useful.

1 Introduction

Abstract argumentation (Dung’s framework) is a concept for modeling and eval-
uating arguments in AI and reasoning [3,8,24]. For finding so-called extensions
to abstract argumentation frameworks (AFs), a variety of solvers are available
and frequently evaluated in competitions, e.g., ASPARTIX, ConArg, μ-toksia,
and PYGLAF. Lately, interest in counting increased due to a variety of appli-
cations in probabilistic reasoning, reasoning about uncertainty, and verification.
For example, abstract argumentation allows to establish cognitive computational
models for human reasoning for which counting enables quantitative reason-
ing [7]. The recent 2021 ICCMA competition also asked for counting [22] despite
being #P-hard. In propositional model counting, a system called DPDB [18]
allows to effectively implement counting algorithms that exploit low primal
treewidth of the input and proved competitive regardless of theoretical worst-
case limitations. In fact, various problems in abstract argumentation can also be
solved efficiently using dynamic programming on tree decompositions if the input
has low treewidth[10]. Here, we consider various counting problems in abstract
argumentation under practical aspects. Our main contributions are as follows.

1. We revisit theoretical algorithms and formulate abstract argumentation prob-
lems in relational algebra, which form the basis for our solver A-DPDB1.

1 System and supplement are available on github:gorczyca/dp on dbs and Zenodo.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 387–400, 2022.
https://doi.org/10.1007/978-3-031-15707-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15707-3_30&domain=pdf
https://github.com/gorczyca/dp_on_dbs
https://zenodo.org/
https://doi.org/10.1007/978-3-031-15707-3_30

388 R. Dewoprabowo et al.

a

d

b

c a, b, dh1

b, c, dh2

Fig. 1. An AF with the given attack relation (left) and a TD of the framework (right).

2. We establish a dedicated counting solver for counting extensions of AFs under
admissible, stable, and complete semantics.

3. We provide an empirical evaluation and illustrate that A-DPDB works fine if
combined with existing solvers.

2 Preliminaries

For a function f that maps from a set S to a set D, we let dom(f) := S be the
domain of f . An argumentation framework [8] is a pair F = 〈A,R〉 where A is
a set of arguments and R ⊆ A × A is an attack relation, representing attacks
among arguments. We write a � b to denote an attack (a, b) ∈ R. In addition,
for S ⊆ A, we denote S � a if there exists b ∈ S such that b � a; and a � S
if a � b, respectively. Further, for S′ ⊆ A, we write S � S′ if S � b′ for
some b′ ∈ S′. Let F = 〈A,R〉 be an AF. A set S ⊆ A is conflict-free (in F) if
there are no a, b ∈ S, such that a � b. An argument a is defended by S in F if
for each b ∈ A with b � a there exists a c ∈ S such that c � b. The semantics
of our main interest are: (i) S is admissible if it is conflict-free in F and each
a ∈ S is defended by S in F . (ii) S is stable if it is conflict-free in F and for
each a ∈ A \ S, there exists a b ∈ S, such that b � a. (iii) S is complete if it is
admissible in F and each a ∈ A that is defended by S in F is contained in S.

Example 1. Consider the AF from Fig. 1. We observe that {a, c} and {b, d}
are admissible, stable, and complete sets. Further, ∅ is complete (admissible). �

Tree Decompositions and Treewidth. We assume that the reader is familiar with
basic graph terminology. We define the tree decomposition, TD for short, of
a graph G as a pair T = (T, χ), where T is a rooted tree and χ a function
that assigns to each node t ∈ V (T) a set χ(t) ⊆ V (G), called bag, such that
(i) V (G) =

⋃
t∈V (T) χ(t), (ii) E(G) ⊆ {{u, v} | t ∈ V (T), {u, v} ⊆ χ(t)}, and

(iii) for each r, s, t ∈ V (T), such that s is a node in the path from r to t, we
have χ(r) ∩ χ(t) ⊆ χ(s). We let width(T) := maxt∈V (T)|χ(t)| − 1 and define the
treewidth tw(G) of G as the minimum width(T) over every TD T of G.

Example 2. Consider the AF from Example 1. We can construct a TD illus-
trated in Fig. 1. Since the largest bag is of size 3, the TD has width 2. �

To simplify case distinctions in the algorithms for sake of presentation, we assume
nice TDs as given below. Our implementation does neither make an assumption
on TDs being nice nor converts TDs into nice TDs. For a node t ∈ V (T), type(t)

Counting Dung’s Extensions by Dynamic Programming 389

is defined as follows: leaf t has no children and χ(t) = ∅; join if t has children
t

′
and t

′′
with t

′ �= t
′′

and χ(t) = χ(t
′
) = χ(t

′′
); intr (“introduce”) if t has a

single child t′, χ(t
′
) ⊆ χ(t) and |χ(t)| = |χ(t

′
)| + 1; and forget (“forget”) if t has

a single child t
′
, χ(t

′
) ⊇ χ(t) and |χ(t

′
)| = |χ(t)| + 1. A tree decomposition is

nice if for every node t ∈ V (T), type(t) ∈ {leaf, join, intr, forget}. It is folklore,
that a nice TD can be computed from a given TD T in linear time without
increasing the width, assuming the width of T is fixed. Let T = (T, χ) be a
tree decomposition of an AF F and let t ∈ T . For a subtree of T that is rooted
in t we define X≥t as the union of all bags within this subtree. Moreover, X>t

denotes X≥t \ χ(t). We also have the sub-framework in t, denoted by F |χ(t) or
Ft, consists of all arguments x ∈ χ(t) and the attack relations (x1, x2) where
x1 ∈ χ(t), x2 ∈ χ(t) and (x1, x2) ∈ R [10].

Relational Algebra. Our algorithms operate on sets of records, which can simply
be seen as tables. It is well-known that operations on tables can consisely be
described by relational algebra [6] forming the basis of SQL (Structured Query
Language) [25]. We briefly recall basic definitions. A column a is of a certain
finite domain dom(a). Then, a row r over set col(r) of columns is a set of pairs of
the form (a, v) with a ∈ col(r), v ∈ dom(a) such that for each a ∈ col(r), there is
exactly one v ∈ dom(a) with (a, v) ∈ r. To access the value v of an attribute a in a
row r, we sometimes write r.a, which returns the unique value v with (a, v) ∈ r.
A table τ is a finite set of rows r over set col(τ) := col(r) of columns, using
domain dom(τ) :=

⋃
a∈col(τ) dom(a). We define renaming of τ, given a set A of

columns and a bijective mapping m : col(τ) → A with dom(a) = dom(m(a))
for a ∈ col(τ), by ρm(τ) := {(m(a), v) | (a, v) ∈ τ}. In SQL, renaming can be
achieved via the AS keyword. Selection of rows in τ according to a given equality
formula ϕ over term variables col(τ) is defined by σϕ(τ) := {r | r ∈ τ, ϕ is
satisfied under the induced assignment r}. We abbreviate for binary v ∈ col(τ)
with dom(v) = {0, 1}, v=1 by v and v=0 by ¬v. Selection in SQL is specified
using keyword WHERE. Given a relation τ ′ with col(τ ′)∩col(τ) = ∅. Then, we refer
to the cross-join by τ × τ ′ := {r ∪ r′ | r ∈ τ, r′ ∈ τ ′}. Further, a θ-join according
to ϕ corresponds to τ 	�ϕ τ ′ := σϕ(τ × τ ′). In SQL a θ-join can be achieved
by specifying the two tables (cross-join) and the selection ϕ by means of WHERE.
Assume a set A ⊆ col(τ) of columns. Then, we let table τ projected to A be given
by ΠA(τ) := {rA | r ∈ τ}, where rA := {(a, v) | (a, v) ∈ r, a ∈ A}. This can be
lifted to extended projection Π̇A,S , additionally given a set S of expressions of
the form a ← f , such that a ∈ col(τ)\A, f is an arithmetic function that takes a
row r ∈ τ, and there is at most one such expression for each a ∈ col(τ) \ A in S.
Formally, we define Π̇A,S(τ) := {rA ∪ rS | r ∈ τ} with rS := {(a, f(r)) | a ∈
col(r), (a ← f) ∈ S}. SQL allows to specify projection directly after the keyword
SELECT. Later, we use aggregation by grouping AG(a←g), where a ∈ col(τ)\A and
a so-called aggregate function g : 2τ → dom(a), which intuitively takes a table of
(grouped) rows. Therefore, we let AG(a←g)(τ) := {r∪{(a, g(τ[r]))} | r ∈ ΠA(τ)},
where τ[r] := {r′ | r′ ∈ τ, r ⊆ r′}. Therefore, we use for a set S of integers the
function g = SUM for summing up values in S. SQL uses projection (SELECT) to
specify A and the function g, distinguished via the keyword GROUP BY.

390 R. Dewoprabowo et al.

Dynamic Programming on TDs. A solver based on dynamic programming (DP)
evaluates a given input instance I in parts along a given TD of a graph rep-
resentation G of the input. Therefore, the TD is traversed bottom up, i.e., in
post-order. For each node t of the TD, the intermediate results are stored in
a set τt of records, table for short. The tables are obtained by a local algo-
rithm, which depends on the graph representation. The algorithm stores results
of problem parts of I in τt, while considering only tables τt′ for child nodes t′

of t. Various solvers that use dynamic programming have been implemented in
the past for SAT, ASP, or ELP. Tools that allow for meta techniques using ASP
for the description of the DP algorithm including various semantics for abstract
argumentation exist. However, these tools are not competitive and do not sup-
port counting problems. DPDB [18] is a tool that utilizes database management
systems (DBMS) to efficiently perform table manipulation operations needed
during DP, which otherwise need tedious manual implementation. Its successor
NestHDB [21] uses abstractions and a different graph representation.

3 Utilizing Treewidth for AFs

First, we revisit existing DP algorithms for counting extensions of AFs under
stable and admissible semantics [10]. From there, we formulate different cases
of the DP algorithm in relational algebra and extend it to counting. Later, we
illustrate that we can instantiate these relational algebras as SQL queries, which
are however created dynamically. In a way, our algorithms present a concise gen-
erator for SQL queries. Above, we already described the main idea on traversing
a TD and constructing tables. Below, we only provide the table algorithms that
are executed in each step during the traversal depending on the semantics.

Stable Semantics. We start with the algorithm for stable semantics, which is less
elaborate than the other semantics and hence easier to understand. We follow
standard definitions [8].We start from describing “local solutions”. An extension
of an argumentation framework is a set S ⊆ A, which satisfies the conditions
for stable semantics. When traversing the TD, the algorithm constructs par-
tial extensions to the input framework according to the vertices that occur in
the bag currently considered. Formally, we are interested in B-restricted stable
sets. Therefore, assume that an argumentation framework F = 〈A,R〉 and the
set B ⊆ A of arguments are given. A set S ⊆ A is a B-restricted stable set for
F , if S is conflict-free in F and S attacks all a ∈ B \S. Then, a partial extension
can simply be that a vertex is known not to be in the set (in), not in the set
(def) due to being defeated by the set, or potentially not in the set (out). More
formally, a (stable) coloring at t for an X>t-restricted stable set S is a mapping
C : χ(t) → {in,def, out} such that (i) C(a) = in if a ∈ S; (ii) C(a) = def if
S � a; and (iii) C(a) = out if S �� a and a �∈ S. Next, we briefly describe the
table algorithm. In order to concisely present and to restrict the number of case
distinctions, we assume that the algorithm runs along a nice TD. In practice,
we need to interleave the cases to obtain competitive runtime behavior. Other-
wise, unnecessary copying operations would make the implementation practically

Counting Dung’s Extensions by Dynamic Programming 391

Listing 1: Table algorithm S(t, χ(t), Ft, 〈τ1, . . . , τ�〉) for stable semantics on TDs.

In: Node t, bag χ(t), AF Ft, sequence 〈τ1, . . . , τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := {〈∅, 1〉}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := {〈J � {b �→ def | b ∈ Jout, J in � b}, c〉 | 〈I, c〉 ∈ τ1,

J ∈ {I+
a�→in, I+

a�→out}, J in 	� J in}
4 else if type(t) = forget, and a 	∈ χ(t) is removed then
5 τt := {〈I−

a , Σ〈J,c〉∈τ1:I
−
a =J−

a ,a/∈Joutc〉 | 〈I, ·〉 ∈ τ1, a /∈ Iout}
6 else if type(t) = join then

7 τt := {〈I1 � {b �→ def | b ∈ Idef
2 }, c1 · c2〉 | 〈I1, c1〉 ∈ τ1, 〈I2, c2〉 ∈ τ2, I

in
1 =I in

2 }
S−

s :=S \ {s �→ in, s �→ def, s �→ out}, Sl :={s | S(s) = l}, S+
s :=S ∪ {s},

S � D :=
⋃

s∈dom(S)\dom(D){s �→ S(s)} ∪ D.

infeasible. Table algorithm S, as presented in Listing 1, details all cases needed
for the stable semantics. Parts of tuples that talk about extensions are illustrated
red and counters in green. Each table τt consist of rows of the form 〈I, c〉, where
I is a coloring at t and c is an integer forming a counter storing the number
of extensions. Leaf node t consist of an empty mapping (coloring) and counter
1. For an introduce node t with introduced variable a ∈ χ(t), we extend each
coloring I of the child table to a coloring J that additionally includes a in its
domain. Therefore, we guess colors for a and keep only well-defined colorings
that are obtained after ensuring conflict-freeness and setting arguments to def
accordingly. When forgetting an atom a at node t, the colorings of child tables
are projected to χ(t) and counters summed up of colorings that are the same
after projection. However, it is important to not consider colorings, where a is
set to out in order to compute X>t-restricted stable sets. For join nodes, we
update def colorings (behaves like a logical “or”) and multiply the counters of
extensions that are colored “in” and coincide in terms of arguments.

Listing 2 naturally introduces the algorithm for stable semantics using rela-
tional algebra instead of set theory. For each node t, tables τt are pictured as
relations, where τt distinguishes for each argument x ∈ χ(t) unique attributes x
and dx, also just called columns, with additional attributes depending on the
problem at hand. So these two columns a and da are of type BOOLEAN for every
argument a ∈ χ(t), where for columns (a, da) we have that (0, 0) represents out,
(0, 1) represents def, and (1,−) represents in where “–” refers to not setting
the value at all. For leaf nodes t, we create a fresh empty table τt, cf., Line 1.
When an argument a is introduced, we perform a Cartesian product with the
previously computed table and guess for argument a whether it is in the exten-
sion or not. We ensure only well-defined colorings, i.e., conflict-freeness and we
potentially update color def for all bag arguments. Further, for nodes t with
type(t) = forget, we ensure that the removed argument is not colored out, we
project out the removed argument, and perform grouping in order to maintain
the counter, since several rows of τ1 might have the exact same coloring after
projection in τt. For a join node t, we use extended projection and θ-joins, where

392 R. Dewoprabowo et al.

Listing 2: Table algorithm S(t, χ(t), Ft, 〈τ1, . . . , τ�〉) for stable semantics.

In: Node t, bag χ(t), framework Ft = (At, Rt), sequence 〈τ1, . . . , τ�〉 of child
tables. Out: Table τt.

1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then

3 τt :=Π̇χ(t),
⋃

b∈χ(t)
{db←db∨(¬b∧[

∨

(c,b)∈Rt

c])}(τ1�� ∧

(b,c)∈Rt

¬b∨¬c {{(a, 1), (da, 0)}, {(a, 0), (da, 0)}})

4 else if type(t) = forget, and a 	∈ χ(t) is removed then
5 τt := {b,db|b∈χ(t)}G

cnt←SUM(cnt)
(Πcol(τ1)\{a,da}(σa∨¬da(τ1)))

6 else if type(t) = join then

7 τt := Π̇χ(t),
⋃

b∈χ(t)
{cnt←cnt·cnt′,db←db∨d′

b
}(τ1 ��∧

b∈χ(t)
b=b′ ρ⋃

x∈col(τ2)
{x �→x′}τ2)

we join on the coloring agreeing on those arguments in the extension, update
defeated colors, and multiply the corresponding counters, accordingly.

Example 3 illustrates a resulting SQL query at an introduce node of the TD,
where we interleave cases and drop the requirement on nice TDs.

Example 3. Consider the TD from Example 2 at node h1, which is both an
introduce and forget node. Following Listing 2 for stable semantics, we obtain
the SQL query below.
1 SELECT a, b, d, d_a , d_b , d_d ,

2 sum(cnt) AS cnt

3 FROM (WITH introduce AS

4 (SELECT true val UNION SELECT false)

5 SELECT i_a.val AS a, i_b.val AS b,

6 i_d.val AS d, d AS d_a ,

7 a AS d_b , false AS d_d , 1 AS cnt

8 FROM introduce i_a , /* introduce a,b,d*/

9 introduce i_b , introduce i_d) AS cand

10 WHERE (a OR d_a) AND /* forget a*/

11 (NOT a OR NOT b) AND /*conflict -free*/

12 (NOT d OR NOT a)

13 GROUP BY a, b, d, d_a , d_b , d_d

�

Admissible Semantics. In the following subsection, we extend the algorithm
presented above. We present colorings for the admissible semantics following
earlier work [10]. Given an argumentation framework 〈A,R〉 and a set B ⊆
A of arguments. A set S ⊆ A is a B-restricted admissible set for F , if S is
conflict-free in F and S defends itself in F against all a ∈ B. Based on this
definition, we construct colorings that locally satisfy certain conditions allowing
to extend them to a coloring of the entire framework, which in turn can then
be used to construct an admissible set of arguments. To this end, assume for an
argumentation framework F a TD T = (T, χ) and a node t of T . Formally, an
(admissible) coloring at t for an X>t-restricted admissible set S is a mapping
C : χ(t) → {in,def, out, att} such that for each a ∈ χ(t): (i) C(a) = in if

Counting Dung’s Extensions by Dynamic Programming 393

Listing 3: Table algorithm A(t, χ(t), Ft, 〈τ1, . . . , τ�〉) for admissible semantics.

In: Node t, bag χ(t), framework Ft = (At, Rt), sequence 〈τ1, . . . , τ�〉 of child
tables. Out: Table τt.

1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then

3 τt := Π̇χ(t),
⋃

b∈χ(t)
{db←dft(db,b)}(τ1 �� ∧

(b,c)∈Rt

¬b∨¬c {{(a, 1), (da, 0)}, {(a, 0), (da, 0)}})

4 else if type(t) = forget, and a 	∈ χ(t) is removed then
5 τt := {b,db|b∈χ(t)}G

cnt←SUM(cnt)
(Πcol(τ1)\{a,da}(σa∨da=1(τ1)))

6 else if type(t) = join then

7 τt := Π̇χ(t),
⋃

b∈χ(t)
{cnt←cnt·cnt′,db←jn(db,d′

b
)}(τ1��∧

b∈χ(t)
b=b′ ρ⋃

x∈col(τ2)
{x �→x′}τ2)

Let jn(d, e) :=2 if d=2 or e=2; else 1 if d=1 or e=1; else 0, and dft(d, b) :=jn(d, 2 if
(

∨

(c,b)∈Rt

c); else 1 if (
∨

(b,c)∈Rt

c); else 0).

a ∈ S; (ii) C(a) = def if S � a; (iii) C(a) = att if S �� a and a � S; and
(iv) C(a) = out if S �� a and a �� S.

The algorithm to compute the admissible semantics extends the algorithm
for stable semantics, as presented above. Intuitively, those arguments colored att
need to become def eventually in order to obtain A-restricted admissible sets. In
our implementation, we represent the range for the colorings in a database table
with a BOOLEAN column a and a SMALLINT column da for every argument a ∈ χ(t).
Then, (0, 0) represents out, (0, 1) represents att, (0, 2) represents def, and (1,−)
represents in. Alternatively, one can also exploit the NULL value in SQL, which
reduces preallocated memory for the da columns as we can use the more compact
data type BOOLEAN instead of SMALLINT. There, we have (0, NULL) represents out,
(0, 0) represents att, (0, 1) represents def, and (1,−) represents in (as before).

The following example illustrates a query that we obtain at node h1 of our
running example similar to the used definition in relational algebra of Listing 2.

Example 4. Consider the TD and introduce/forget node h1 of our running
Example 2. We construct a query for admissible extensions as follows.
1 SELECT a, b, d, d_a , d_b , d_d , sum(cnt) AS cnt

2 FROM (WITH introduce AS

3 (SELECT true val UNION SELECT false)

4 SELECT i_a.val AS a, i_b.val AS b, i_d.val AS d,

5 CASE WHEN i_d.val THEN 2/* coloring */

6 WHEN i_b.val THEN 1 ELSE 0 END AS d_a ,

7 CASE WHEN i_a.val THEN 2 ELSE 0 END AS d_b ,

8 CASE WHEN i_a.val THEN 1 ELSE 0 END AS d_d , 1 AS cnt

9 FROM introduce i_a , /* introduce a,b,d*/

10 introduce i_b , introduce i_d) AS cand

11 WHERE (a OR d_a = 1) AND /* forget a*/

12 (NOT a OR NOT b) AND /*conflict -free*/

13 (NOT d OR NOT a)

14 GROUP BY a, b, d, d_a , d_b , d_d

�

394 R. Dewoprabowo et al.

(a) Distribution of heuristically com-
puted widths. The x-axis lists intervals
into which the heuristically computed
width of a TD falls (K). The y-axis
states the number (N) of instances.

(b) Runtime of various solvers for ad-
missible semantics. The x-axis depicts
the runtime sorted in ascending order
for each solver individually and the y-
axis refers to the number of instances.

Fig. 2. Illustration of results on ICCMA competitions ’17, ’19, and ’21. Distribution of
upper bounds on treewidth (left) and runtime results for admissible semantics (right).

Complete Semantics. Subsequently, we turn our attention to complete semantics.
We provide definitions for colorings that can be used to construct solutions by
dynamic programming and when its satisfying all conditions for the complete
semantics [5]. Given an AF F = 〈A,R〉 and a set B ⊆ A of arguments. A
labeling L = 〈Lin,Ldef ,Lout〉 where Lin,Ldef ,Lout ⊆ A for F is a B-restricted
complete labeling for F if Lin is conflict-free, Lin �� Lout, Lout �� Lin, and for
each a ∈ B we have (i) a ∈ Lin if and only if {b | (b, a) ∈ R} ⊆ Ldef ; (ii) a ∈ Ldef

if and only if Lin � a; (iii) a ∈ Lout if and only if Lin �� a and Lout � a.
Let T = (T, χ) be a TD of F and t be a node of T . A (complete) coloring at t
is a function Ct : χ(t) → {in,def,defp, out, outp} such that for each a ∈ χ(t):
(i) C(a) = in if a ∈ Lin; (ii) C(a) = def if a ∈ Ldef and Lin � a; (iii) C(a) = defp
if a ∈ Ldef and Lin �� a; (iv) C(a) = out if a ∈ Lout, Lin �� a, a �� Lin, and
Lout � a; and (iv) C(a) = outp if a ∈ Lout, Lin �� a, a �� Lin, and Lout �� a.

Intuitively, colors defp and outp are used to mark candidates for def and out.
For such candidates, required properties need to be “proven” eventually. We
further extended the algorithm of Listing 3 and implemented the handling of
complete colorings. In our implementation, we represent the values for colorings
in an SQL database table with a SMALLINT column a and a BOOLEAN column pa

for the “provability of the color of a”, as follows: (0, 1) represents out, (0, 0)
represents outp, (1,−) stands for in, (2, 1) represents def, and (2, 0) states defp.

4 Preliminary Empirical Evaluation

In order to draw conclusions concerning the efficiency of our approach, we con-
ducted a series of experiments. Design of Experiment: We draw a small
experiment to study the following questions: (Q1.1) What are upper bounds
on the treewidth for common instances in abstract argumentation? (Q1.2) Are

Counting Dung’s Extensions by Dynamic Programming 395

there instances on which we can expect that solvers exploiting treewidth perform
well? (Q2.1) Does the parameterized algorithm perform well on instances of low
treewidth? (Q2.2) Is there a certain characteristic on the instances where our
solver performs better than others? (Q2.3) Is the system competitive on its own
with other solvers or can it be useful in a solving portfolio? Instances: We con-
sidered sets of instances from the International Competitions on Computational
Models of Argumentation ICCMA’17, ’19, and ’21. Since the hard instances of
the 2019 competition are partially contained in the ICCMA’21 set, we omit the
2019 instances. In the following, we refer by ’19 to the hard instances of the 2019
competition contained in the ’21 competition and by ’21 to the new instances
of the ’21 competition. The instances originate from various domains. Details
can be found online [22]. Constructing TDs: To construct TDs, we use the
decomposer that heuristically outputs tree decompositions. The outputted TDs
are correct, but are not necessarily of smallest width, i.e., the width of the result-
ing TD can be larger than the treewidth. Note that computing the treewidth is
itself an NP-complete problem. We do not require a tree decomposition of small-
est width. Larger width w increases the runtime of our implementation, since the
runtime is in 2w. There is no effect on correctness with respect to the problem
statement from taking decompositions of larger width. In practice, we favor a
fast heuristic, namely, htd, over decomposers such as Flow-Cutter or TCS-Meiji
that provide slightly smaller width, but require longer running times.

Treewidth Classification of the Instances. Towards answering (Q1.1) and (Q1.2),
we investigate whether the considered instances are relevant and solvable for
an approach where the runtime already theoretically depends on the width of
the heuristically computed TDs. In Fig. 2a, we present the distribution of upper
bounds on the treewidth in intervals of the considered instances by competition.
Decompositions of smaller width can be primarily found in the ’17 instances.
Recall that our parameterized algorithms have single or double exponential run-
time bounds in the treewidth [10]. Hence, we immediately see that the ’19 and
’21 instances are theoretically out of reach for A-DPDB. For the ’19 and ’21
instances, we are currently unable to state a detailed picture as high width
might also originate in unreliable heuristics. It is well-known that certain heuris-
tics cannot provide a small width on very large instances even if a much smaller
width is possible. Still there is a notable number of instances in the 2017 compe-
tition, which seem within reach answering Questions (Q1.1) and (Q1.2). Quite
a number of instances have width beyond 100. There, we have no hope to solve
them by a treewidth-based approach without preprocessing or using abstractions
instead of the primal graph. Still, quite a number of instances have relatively
small treewidth and the instances of high treewidth mostly originate in random
generators.

Performance Comparison and Solvers. In order to address a performance anal-
ysis of A-DPDB itself and in comparison to other argumentation solvers, we run
a more detailed experiment. Counts are represented with arbitrary precision
for all solvers. For comparison, we evaluate leading solvers of the ICCMA’21
competition. Namely, μ-toksia [23], aspartix [9], and pyglaf [1]. The solvers

396 R. Dewoprabowo et al.

μ-toksia, aspartix, pyglaf performed well during ICCMA’17, ’19, and ’21.
In addition, we can employ state-of-the-art propositional model counters such
as the model counting competition 2021 winner SharpSAT-td or d4 on encod-
ings of the argumentation semantics of interest. Therefore, we can use the ASP
encoding from aspartix2 directly by lp2normal and lp2sat, which translates
the ground ASP instance into a SAT formula. There is only a minimal overhead
between a direct CNF encoding and an ASP encoding translated into CNF in
case of the relevant encodings. In more detail, most ASP encodings here are
tight and therefore do not need additional constraints to handle cyclic depen-
dencies of the resulting programs as one might fear from translations into CNF.
SharpSAT-td employs TDs of small width, but only as in a process to speed up
its internal selection heuristic, which is in stark contrast to our approach that
provides strict theoretical guarantees. SharpSAT-td implements dedicated pre-
processing techniques for model counting from which a translation profits. To
our knowledge dedicated preprocessing for argumentation is missing. In addi-
tion, SharpSAT-td uses FlowCutter as heuristic. Both techniques make the solver
incomparable to ours. We did not consider NestHDB as the translation to SAT is
not treewidth-aware. All solvers including A-DPDB support complete and stable
semantics. Admissible semantics is not always available to the user even though
implemented, e.g., μ-toksia. We refrained from modifying the solver.
Enhancing Existing Solvers. From the results above on our instance classification
with respect to treewidth and our theoretical knowledge about the implemented
parameterized algorithm, we must expect clear practical limitations of A-DPDB.
Still, it might solve instances that existing techniques cannot solve. Therefore,
we also consider A-DPDB together with other solvers, which is usually referred to
as portfolio solver. However, classical solving portfolios are oftentimes detected
based on machine-learning techniques that train for specific instances. Our set-
ting is different, we can simply enhance an existing solver by using DP if a
heuristically computed decomposition is below 19. We obtained this threshold
experimentally from simple considerations on memory consumption. Our new
solvers named A-DPDB+X consist of X ∈ {aspartix, μ-toksia, pyglaf}.
Hardware, Measure, and Restrictions. All solvers ran on a cluster consisting of 12
nodes equipped with two Intel Xeon E-2650 v4 CPUs running at 2.2 GHz. We
follow standard guidelines for empirical evaluations [20] and measure runtime
using perf. Details on the hardware will be made available in the supplemental
material. We mainly compare wall clock time and follow the setup of the Inter-
national Competition on Computational Models of Argumentation (ICCMA).
Run times larger than 600 s count as timeout and main memory (RAM) was
restricted to 64 GB. In contrast to dedicated counting competitions the run-
time in the setup of the ICCMA competition is much smaller, which is also far
more resource friendly. Solvers were executed sequentially without any parallel
execution of other runs, i.e., we jobs run exclusively on one machine.

2 μ-toksia does not have encodings readily accessible as it is tightly coupled to a SAT
solver. This would require extraction from source code or implementing it ourselves.

Counting Dung’s Extensions by Dynamic Programming 397

Table 1. Overview on solved instances (left) as well as observed counts (right).

solver adm. complete stable

aspartix 236 362 469

... /d42 347 406 483

... /sharpSAT-td2 368 410 487

dpdb 96 100 113

...+aspartix 311 379 475

...+μ-toksia21 95 367 468

...+pyglaf 300 372 478

μ-toksia21 – 299 446

pyglaf 221 336 463

sharpSAT-td 284 350 387

vbest 371 411 505

(a) Number of solved instances of various

solvers. “–” indicates that the solver does

not support the semantics. Bold entries

indicate the best result, italic entries refer to

the best result among non-portfolio solvers.
2 selects solvers also based on treewidth.

adm. complete stable

median 2.9 0.5 0.0

mean 11.6 8.3 3.8

max 512.6 487.7 498.2

aspartix 7.9 8.3 8.7

dpdb 154.6 119.9 75.0

mu toksia21 – 5.1 5.2

pyglaf 6.1 6.5 5.8

sharpSAT-td 512.6 487.7 498.2

(b) Observed counts. The lower part states

the maximum count observed for the

respective solver. Counts are stated in log10
format, meaning that 2.9 represents a count

of about 0.794 · 103 whereas 516.6

represents about 3.98107 · 10516.

Experimental Results. Table 1a lists the number of solved instances for vari-
ous solvers, considered semantics, and over ’17, ’19, ’21 competition instances.
In addition, Fig. 2b visualizes the runtime behavior of various solvers for the
admissible semantics. Table 1b illustrates the observed counts on the instances
in terms of average and median of the computed count per semantics as well
as the maximum count of an instance solved by solver. Notably, A-DPDB solved
instances for which the decomposer constructed a TD of up to width 19 for com-
plete, 35 for admissible, and 50 for stable semantics. For stable, few instances
were solved where the heuristic computed TDs of width 99 containing few bags.

Discussion. When taking a more detailed look into the results, we observe that
aspartix, μ-toksia, and pyglaf mostly solve instances that have a small num-
ber of solutions and perform overall quite well when the count is fairly low. This
is not surprising, since each of the three solvers works by enumerating exten-
sions, which can be quite expensive in practice. For all semantics, A-DPDB alone
solves the least instances, but is perfectly suitable for enhancing existing solvers
A-DPDB+aspartix and A-DPDB+pyglaf, respectively, solve the most instances.
The solvers d4 and sharpSAT-td can easily be used to solve abstract argumen-
tation instances for various semantics. In fact, we see a reasonable performance
on instances even if counts are larger. For admissible semantics, sharpSAT-td
solves more instances than aspartix and A-DPDB, but much less instances than
our system A-DPDB+aspartix. More precisely, A-DPDB+aspartix solves ≈24%
instances more than aspartix and ≈10% more than sharpSAT-td. When con-
sidering a virtual configuration that takes the best result of sharpSAT-td and
aspartix (sharpSAT-td/aspartix), we obtain the best result. It solves 22%
and 35% more instances than sharpSAT-td and aspartix alone. Note this com-
bination is a virtual best configuration, not a solving portfolio. For complete,
we see an improvement of about 4%, 8%, and 21% more solved instances over
aspartix, sharpSAT-td, and μ-toksia, respectively. d4 and μ-toksia solve a

398 R. Dewoprabowo et al.

similar number of instances, however the former solves also instances that have
high counts. For stable, we observe only 2% improvement of the portfolio, but
it solves 30% more instances than d4 and 21% more than sharpSAT-td.

Summary. In summary, A-DPDB alone has a very limited performance. The behav-
ior was quite well expected from the results in the first part of our experimental
evaluation. We expect this behavior, since DP profits significantly from pre-
processing, which has to our knowledge not been investigated for argumenta-
tion. Our results show that estimating treewidth can provide useful insights into
constructing a solving portfolio – regardless of the used solvers. In contrast to
machine learning-based heuristics, which are commonly used in the automated
reasoning community, we can statically decide which “subsolver” we take with-
out a training phase on a subset of the existing instances. We expect that tightly
coupling a #SAT solver into an argumentation solver would be successful.

5 Conclusion and Future Work

We present a practical approach to counting in abstract argumentation. Count-
ing allows to take quantitative aspects of extensions into account. This enables
us to quantify on extensions and comprehend also semantics that are sometimes
considered problematic, e.g., admissible sets. Beyond, it facilitates reasoning
stronger than brave and skeptical decisions [4,13,14,19]. We can ask for the rela-
tionship between total possible extensions and observed extensions (plausibility),
which also forms the basis for probabilistic tasks. Our implementation A-DPDB
is based on dynamic programming on TDs showing competitive behavior in a
system that combines existing solvers with A-DPDB. While existing solvers can be
used to count solutions by enumeration, we provide an approach that works by
a compact representation and systematically splitting the search space. We also
illustrate translating argumentation problems into propositional model counting
showing notable performance. Since these solvers also implement dedicated sim-
plification techniques for propositional counting, it opens the question whether
argumentation semantics can benefit from argumentation specific preprocessing.

We expect that our work opens a variety of further directions. First, A-DPDB
forms the basis for using more general graph representations (NestHDB), which
showed notable performance gains in the propositional case also over established
model counters [21]. In principle, DP works for problems on any level of the PH.
While theoretical lower-bounds (under the exponential-time-hypothesis) suggest
high runtime (depending on the level of the hierarchy) [12,15], parameters that
combine treewidth with other approaches might be fruitful, e.g., [11]. Besides,
counting might help to improve the reliability of existing systems [2,17]. From
the performance of propositional model counters, which also include preprocess-
ing, we expect notable speed up for argumentation specific preprocessing. Even
though we executed A-DPDB sequentially, parallel execution is possible in princi-
ple, which could improve on larger instances of low treewidth [16].

Counting Dung’s Extensions by Dynamic Programming 399

Acknowledgements. Research was funded by the DFG through the Collabo-
rative Research Center, Grant TRR 248 project ID 389792660, the BMBF, Grant
01IS20056 NAVAS, the Vienna Science and Technology Fund (WWTF) grant ICT19-
065, and the Austrian Science Fund (FWF) grants P32830 and Y698.

References

1. Alviano, M.: The PYGLAF argumentation reasoner. In: ICLP 2017 (Technical
Communications). OASICS, vol. 58, pp. 2:1–2:3, Dagstuhl (2017)

2. Alviano, M., Dodaro, C., Fichte, J.K., Hecher, M., Philipp, T., Rath, J.: Inconsis-
tency proofs for ASP: the ASP - DRUPE format. TPLP 19(5–6), 891–907 (2019)

3. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. AIJ
173(3–4), 413–436 (2009)

4. Besin, V., Hecher, M., Woltran, S.: Utilizing treewidth for quantitative reasoning
on epistemic logic programs. TPLP 21(5), 575–592 (2021)

5. Charwat, G.: Tree-decomposition based algorithms for abstract argumentation
framework. Master’s thesis, TU Wien, Vienna, Austria (2012)

6. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

7. Dietz, E., Fichte, J.K., Hamiti, F.: A quantitative symbolic approach to individual
human reasoning. In: Proceedings of CogSci 2022 (2022, to appear)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. AIJ 77(2), 321–357
(1995)

9. Dvořák, W., Rapberger, A., Wallner, J.P., Woltran, S.: ASPARTIX-V19 - an
answer-set programming based system for abstract argumentation. In: Herzig, A.,
Kontinen, J. (eds.) FoIKS 2020. LNCS, vol. 12012, pp. 79–89. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-39951-1 5

10. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for abstract argumentation. AIJ 186, 1–37 (2012)

11. Fandinno, J., Hecher, M.: Treewidth-aware complexity in ASP: not all positive
cycles are equally hard. In: AAAI 2021, pp. 6312–6320. AAAI Press (2021)

12. Fichte, J.K., Hecher, M., Kieler, M.F.I.: Treewidth-aware quantifier elimination
and expansion for QCSP. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp.
248–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 15

13. Fichte, J.K., Hecher, M., Meier, A.: Knowledge-base degrees of inconsistency: com-
plexity and counting. In: AAA 2021, pp. 6349–6357. No. 7, The AAAI Press (2021)

14. Fichte, J.K., Hecher, M., Nadeem, M.A.: Plausibility reasoning via projected
answer set counting–a hybrid approach. In: IJCAI 2022 (2022, to appear)

15. Fichte, J.K., Hecher, M., Pfandler, A.: Lower bounds for QBFs of bounded
treewidth. In: LICS 2020, pp. 410–424. Associating for Computing Machinery,
New York (2020)

16. Fichte, J.K., Hecher, M., Roland, V.: Parallel model counting with CUDA: algo-
rithm engineering for efficient hardware utilization. In: CP 2021, pp. 24:1–24:20
(2021)

17. Fichte, J.K., Hecher, M., Roland, V.: Proofs for propositional model counting. In:
SAT 2022 (2022, to appear)

18. Fichte, J.K., Hecher, M., Thier, P., Woltran, S.: Exploiting database management
systems and treewidth for counting. TPLP 22(1), 128–157 (2022)

https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-39951-1_5
https://doi.org/10.1007/978-3-030-58475-7_15

400 R. Dewoprabowo et al.

19. Fichte, J.K., Gaggl, S.A., Rusovac, D.: Rushing and strolling among answer sets -
navigation made easy. In: Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI 2022). The AAAI Press (2022, to appear)

20. Fichte, J.K., Hecher, M., McCreesh, C., Shahab, A.: Complications for computa-
tional experiments from modern processors. In: CP 2021, pp. 25:1–25:21 (2021)

21. Hecher, M., Thier, P., Woltran, S.: Taming high treewidth with abstraction, nested
dynamic programming, and database technology. In: Pulina, L., Seidl, M. (eds.)
SAT 2020. LNCS, vol. 12178, pp. 343–360. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-51825-7 25

22. Lagniez, J., Lonca, E., Mailly, J., Rossit, J.: Design and results of ICCMA 2021.
CoRR abs/2109.08884 (2021). https://arxiv.org/abs/2109.08884

23. Niskanen, A., Järvisalo, M.: μ-toksia: an efficient abstract argumentation reasoner.
In: KR 2020, pp. 800–804 (2020)

24. Rago, A., Cocarascu, O., Toni, F.: Argumentation-based recommendations: fan-
tastic explanations and how to find them. In: IJCAI 2018, pp. 1949–1955 (2018)

25. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II. Com-
puter Science Press, New York (1989)

https://doi.org/10.1007/978-3-030-51825-7_25
https://doi.org/10.1007/978-3-030-51825-7_25
https://arxiv.org/abs/2109.08884

	A Practical Account into Counting Dung's Extensions by Dynamic Programming
	1 Introduction
	2 Preliminaries
	3 Utilizing Treewidth for AFs
	4 Preliminary Empirical Evaluation
	5 Conclusion and Future Work
	References

