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Abstract. Using answer set programming in real-world applications
requires that the answer set program is correct and adequately represents
knowledge. In this paper, we present strategies to resolve unintended con-
tradictory statements resulting from modelling gaps and other flaws by
modifying the program without manipulating the actual conflicting rules
(inconsistency-causing rules with complementary head literals). We show
how latent conflicts can be detected to prevent further conflicts during
the resolution process or after subsequent modifications in the future.
The presented approach is another step towards a general framework
where professional experts who are not necessarily familiar with ASP
can repair existing answer set programs and independently resolve con-
flicts resulting from contradictory statements in an informative way. In
such a framework, conflict resolution strategies allow for generating pos-
sible solutions that consist of informative extensions and modifications
of the program. In interaction with the professional expert, these solu-
tion options can then be used to obtain the solution that represents the
underlying knowledge best.

Keywords: Answer Set Programming · Conflicts · Consistency ·
Contradictions · Interactive Conflict Resolution

1 Introduction

In order to use answer set programming in real-world applications, the utilized
answer set programs must be modelled correctly and represent professionally
adequate knowledge. Especially in large programs, unintended contradictory
statements due to modelling gaps and other flaws are hard to detect, and repair-
ing a knowledge base can require both a professional expert and a technical
expert. Approaches as in [1,2] rewrite an updated program using the causal rejec-
tion principle [2] such that in case of contradictory derivations, newer knowledge
is preferred. These approaches, however, are actually “workarounds” that change
the program in an automated fashion and do not guarantee that the underlying
cause of the inconsistency is eliminated. In practice, such a solution may not
always be desirable, e. g. when inconsistencies hint at outdated information or
modelling flaws. Instead, one may wish to resolve the actual conflicting state-
ments in the program. In [10], it is shown how rules directly involved in a conflict
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can be modified to achieve a consistent program. In this paper, we extend this
approach by showing how conflicts can be resolved by modifying rules other than
the conflicting ones in case the conflicting rules themselves are thought to be ade-
quate. For that, we first outline the general relations between a conflict rule and
the rest of the program. Based on these results, we exemplarily showcase two
different strategies that utilize the different rule dependencies to prevent conflict-
ing rules from being simultaneously satisfiable. In place of exploiting technical
devices like causal rejection, the presented strategies, as in [10], produce infor-
mative solution options from which a professional expert can then choose the
most suitable one, where informative means that modifications of rules make use
of the given program language. Another aspect we cover is latent conflicts. We
show that even consistent programs can contain contradictory knowledge that
“hides” behind consistent answer sets due to the nature of answer set seman-
tics that chooses only consistent answer sets, ignoring the inconsistent fixpoints.
Accordingly, such latent conflicts should also be resolved in the process to achieve
robust consistency. This way, it is guaranteed that every implemented modifi-
cation to establish consistency conclusively leads to a program that adequately
reflects professional knowledge.

After presenting the necessary theoretical preliminaries in Sect. 2, we intro-
duce the notion of latent conflicts and causality-based conflict resolution in
Sect. 3 that allows us to resolve conflicts without manipulating the conflicting
rules themselves. In Sect. 4, we examine the general conditions for conflicting
rules to become simultaneously derivable. Using these results and the defini-
tions of the prior section, we present two exemplary strategies that follow the
causality-based conflict resolution approach. After presenting a brief overview
over related work in Sect. 5, the paper concludes with Sect. 6, giving a short
summary and discussion of open issues and further work.

2 Preliminaries

In this paper, we look at non-disjunctive extended logic programs (ELPs) [6].
An ELP is a finite set of rules over a set A of propositional atoms. A (classical)
literal L is either an atom A (positive literal) or a negated atom ¬A (negative
literal). For a literal L, the strongly complementary literal L is ¬A if L = A and
A otherwise. A default-negated literal L, called default literal, is written as ∼L.
A set S of literals is consistent iff S does not contain strongly complementary
literals. A rule r is of the form L0 ←L1, . . . , Lm,∼Lm+1, . . . ,∼Ln., with literals
L0, . . . , Ln and 0 ≤ m ≤ n. The literal L0 is the head of r, denoted by H(r), and
{L1, . . . Lm,∼Lm+1, . . .∼Ln} is the body of r, denoted by B(r). Furthermore,
{L1, . . . , Lm} is denoted by B+(r) and {Lm+1, . . . , Ln} by B−(r). A rule r with
B(r) = ∅ is called a fact, and r is called a constraint if it has an empty head.
An extended logic program (ELP) P is a set of rules.

Given a set S of literals, we say S satisfies L iff L ∈ S, and S satisfies ∼L iff
L /∈ S. S satisfies a rule body B(r) iff for all L ∈ B+(r), S satisfies L, and for
all L ∈ B−(r), S satisfies ∼L. S satisfies a rule r iff S satisfies H(r) whenever S
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satisfies B(r). In case r is a constraint, S satisfies r iff S does not satisfy B(r). A
rule body B(r) is satisfiable if there exists a set S of literals such that S satisfies
B(r). Given a set R of rules, S satisfies R if S satisfies all r ∈ R simultaneously.
S is a pre-model of P if S satisfies P. A pre-model S of P is a model of P if S is
consistent. A rule r is active under S iff S satisfies B(r). The set of all rules in
P that are active under S is denoted by actS(P). Given a literal L, H L denotes
the set of rules in P with the rule head L, i. e. H L = {r ∈ P | H(r) = L}. Given
two rules r, r′ ∈ P, r is supported (resp. opposed) by r′ iff there exists a literal
L ∈ B+(r) (resp. L ∈ B−(r)) such that L = H(r′). Then, r′ is a supporting
(resp. opposing) rule of r.

In the following, we extend the basic idea of answer sets to inconsistent sets
of literals. Given an ELP P without default negation, the pre-answer set of P
is a set S of literals such that S satisfies P and S is ⊆-minimal. In general, an
answer set of an ELP P is determined by its reduct. The reduct PS of a program
P relative to a set S of literals is defined by

PS = {H(r)←B+(r). | r ∈ P, B−(r) ∩ S = ∅}.

A set S of literals is a pre-answer set of P if it is the pre-answer set of PS [6].
A pre-answer set S is a (classical) answer set of P if S is consistent, otherwise,
we call S a pseudo answer set. The set of all pseudo answer sets of a program P
is denoted by AS⊥(P), the set of all (classical) answer set by AS(P), and the set
of all pre-answer sets AS⊥(P) ∪ AS(P) by ASpre(P). Note that AS(P) aligns
with the set of answer sets under usual definitions, e. g. [6].

For every literal of a pre-answer set S, there must exist a rule r ∈ P with
H(r) = L s. t. r ∈ actS(P). This is in complete analogue to answer sets [4].

Example 1. Let P1 be the ELP of our running example in this paper:

r1: drugA← condW . r2: drugA← sympT .

r3: treatmZ ← drugC ,∼drugD . r4: treatmZ ← sympQ ,∼drugD ,∼sympR.

r5: condW ← sympU . r6: drugC ← ∼drugD ,∼sympR.

r7: drugD ← ∼drugC . r8: sympQ . r9: sympT . r10: sympU .

P1 models a knowledge base regarding the conditions for prescribing a drug A
and a treatment Z, as well as the conditions when they must not be prescribed.
For example, r3 represents the condition that treatment Z may only be recom-
mended if the patient is already taking drug C and drug D is not known to be
applied, while r4 says that patients must not be treated with Z if they currently
show symptom Q, drug D is not known to be applied, and symptom R does not
seem to be developed.

P1 has the pre-answer sets S1 = {condW , drugA, drugA, drugD , sympQ ,
sympT , sympU } and S2 = {condW , drugA, drugA, drugC , sympQ , sympT ,
sympU , treatmZ , treatmZ}. Both answer sets are pseudo answer sets as they
contain complementary literals. 	
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To formalize modification operations on programs, we introduce suitable modi-
fication operations:

Definition 1 (Rule Modification Operation). Let P be an ELP with a rule
r ∈ P and X a set of literals and default literals where either X ⊆ B(r) or
X ∩B(r) = ∅. We define the rule modification operation rmod(r,X) as follows:

rmod(r,X) =

{
H(r)←B(r)\X if X ⊆ B(r)
H(r)←B(r) ∪ X if X ∩ B(r) = ∅

In the following, a program modification operation P � r� is either the addition
of a new rule r� to P, i. e. P ∪ {r�} or the replacement of a rule r ∈ P by
a modification r� = rmod(r,X) of r, i. e. P\{r} ∪ {r�}. We express a set of
modifications that shall be applied to P by simply listing the new rules and rule
modifications, i. e. R� = {r�

1 , . . . , r
�
n} denotes a set of modification elements,

where r�
i (1 ≤ i ≤ n) is either a new rule for P or a modification rmod(r,X)

with r ∈ P and a set of (default) literals X. Given a set R� = {r�
1 , . . . , r

�
n} of rule

modifications and new rules for P, the consecutive application of each element
onto P is denoted by P � R�, i. e. P � R� = (((P � r�

1 ) � r�
2 ) � . . . � r�

n).

Example 2 (Example 1 contd.). Suppose studies have shown that condition
W always presents with a symptom V . The addition of a literal sympV to r5
can then be written as rmod(r5, {sympV }), resulting in a rule r�

5 : condW ←
sympU , sympV . Replacing r5 in P1 by r�

5 can then be expressed by P1 �
rmod(r5, {sympV }). 	


3 Causality-Based Conflict Resolution

In this section, we introduce the notion of derivable conflicts and outline a
method named causality-based conflict resolution that can be used to describe
how to modify an inconsistent program to achieve consistency. During the res-
olution process, for every derivable conflict, a set of modifications is applied to
P. Every set of changes leads to the resolution of the respective conflict where
the modifications are built from elements of the underlying language of P.

3.1 Conflicts and Inconsistency

In this paper, we show strategies to resolve inconsistencies that are caused by
rules with complementary head literals by constructing informative program
modifications. To that end, we first specify the type of inconsistency that our
strategies aim to resolve.

Definition 2 (Consistency, Contradictory Program). An ELP P is called
consistent iff AS(P) �= ∅. P is contradictory iff AS(P) = ∅ and AS⊥(P) �= ∅.
This paper solely deals with programs that are inconsistent due to contradictions.

Example 3 (Example 1 contd.). Program P1 is inconsistent as the two existing
pre-answer sets are pseudo answer sets. 	
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Definition 3 (Conflicting Rules, Conflict (cf. [10])). Two rules r1, r2 in
an ELP P are conflicting if H(r1) and H(r2) are strongly complementary and
there exists a consistent set S of literals such that B(r1) and B(r2) are satisfied
by S. A conflict is a set C = {r1, r2} of rules such that r1 and r2 are conflicting.
We denote the set of all conflicts {r1, r2} in an ELP P by Conflicts(P).

A program that contains conflicts is not necessarily inconsistent. A conflict
{r1, r2} in P is only a potential cause of inconsistency whenever the body liter-
als of both B(r1) and B(r2) can be simultaneously derived in P. The program’s
pseudo answer sets can be used to determine whether the body literals of con-
flicting rules are derivable and which rules are causing inconsistency.

Definition 4 (Derivably Conflicting Rules). Given an ELP P over A, a
conflict {r1, r2} ∈ Conflicts(P) is derivable1 in P iff there exists a pseudo answer
set S ∈ AS⊥(P) s. t. r1 and r2 are active under S. Otherwise, a conflict is
nonderivable. The set of all derivable conflicts in P is denoted by Conflictsdv (P).

However, a conflict is only (co-)responsible for inconsistency if the conflict is
derivable. Thus, a program is consistent if it does not possess derivable conflicts.

Proposition 1. Let P be an ELP with Conflicts(P) �= ∅. P is consistent if
every conflict in Conflicts(P) is nonderivable, i. e. Conflictsdv (P) = ∅.
Proof. Let P be an ELP with Conflicts(P) �= ∅ and Conflictsdv (P) = ∅. Suppose
P is inconsistent. Then there exists a pseudo answer set S ∈ AS⊥(P), which in
turn implies that there exist two conflicting rules r1 and r2 that are active under
S. By definition, {r1, r2} is a derivable conflict which contradicts our initial
assumption that Conflictsdv (P) = ∅. 	

Example 4 (Example 1 contd.). P1 has two conflicts C1 = {r1, r2} and C2 =
{r3, r4}. Its answer sets show that both conflicts are derivable since the com-
plementary literals in the answer sets can only originate from the rules in C1

and C2. Answer set S1 shows that to achieve a consistent program, it suffices
to make either drugA or drugA nonderivable as r1 and r2 are the only con-
flicting rules that are active under S1. Let P4 be P1 where the body of r5
is extended by a literal sympV , i. e. P4 = P1 � rmod(r5, {sympV }). P4 now
has the pre-answer sets S4,1 = {drugA, drugD , sympQ , sympT , sympU }, and
S4,2 = {drugA, drugC , sympQ , sympT , sympU , treatmZ , treatmZ}. Since S4,1 is
not a pseudo answer set, P4 is consistent. 	

Example 4 depicts the relationship between derivable conflicts and consistency.

Depending on the actual program modifications, further inconsistency-
causing conflicts, so called latent conflicts, can be revealed. These conflicts should
therefore be handled correspondingly to ensure that after resolving all conflicts,
the program is indeed consistent.
1 Note that literals are classified as derivable once they appear in a pre-answer set and
not only in a (classical) answer set.
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Definition 5 (Latent Conflict). Let P be an ELP with a conflict C. C is a
latent conflict if C is a derivable conflict and AS(P) �= ∅.
Example 5 (Example 4 contd.). In P4, conflict C2 = {r3, r4} is a latent conflict
as its rules are active under S4,2 but not in the (consistent) answer S4,1. Suppose
that it was prescribed that in order to take drug D, the patient also has to show
symptom V . Thus, program P4 has to be modified to a program P5 by adding
the literal sympV to the body of r7, i. e. P5 = P4 � rmod(r7, {sympV }). P5 is
now inconsistent as its only pre-answer set is the pseudo answer set S4,2 from
Example 4 in which the rules of C2 are active. 	


Given the goal of solely “repairing” an inconsistent knowledge base, modi-
fying the corresponding inconsistent program until one gets at least one answer
set seems appropriate (see Example 4). Considering Example 5, one can easily
imagine that in the process of resolving conflicts, other previously latent conflicts
can become effective, meaning they can cause inconsistency.

3.2 Conflict Resolution

In this paper, we want to present strategies to explicitly “resolve” all derivable
conflicts (which include latent conflicts) in a knowledge base in an informative
way, that is, every change made to obtain a consistent program is based on
the underlying language. Therefore, each such strategy modifies the program so
that every (derivable) conflict becomes nonderivable, which as a consequence
also ensures the resolution of latent conflicts. We now outline, given a derivable
conflict C in an ELP P, how one can modify P to a program P� such that C
becomes nonderivable in P� without manipulating the conflicting rules them-
selves. We call this approach causality-based conflict resolution. There, in each
step, a conflict is resolved by applying suitable program modifications to P. The
resolution process results in a modified program P� that is free of derivable
conflicts and thereby consistent.

Definition 6 (Causality-Based Conflict Resolution Step and Process).
Let P be an ELP with Conflictsdv (P) �= ∅. Given a conflict C = {r1, r2} ∈
Conflictsdv (P), a causality-based conflict resolution step in P w.r.t. C is the
modification of P to P� such that r1 and r2 are not derivably conflicting in P�. A
causality-based conflict resolution process w.r.t. P is a sequence 〈P0,P1, . . . ,Pn〉
where P0 = P and for each Pi,Pi+1(0 ≤ i < n), Pi+1 is the result of a causality-
based conflict resolution step in Pi, and Pn contains no derivable conflicts, i. e.
Conflictsdv (Pn) = ∅.

The following example illustrates a causality-based resolution process con-
sisting of a single conflict resolution step.

Example 6 (Example 5 contd.). Let P6 be the following program that extends
P5 from Example 5 by the following two additional rules:

r11 : drugC ← sympT ,∼drugD . r12 : drugC ← sympQ , sympR.
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Here, conflict C2 = {r3, r4} is the only derivable conflict, hence a single conflict
resolution step suffices. One possible set of modifications is R� = {r�

6 , r
�
11} with

r�
6 = rmod(r6, {∼sympT}) and r�

11 = rmod(r11, {sympV }). Program P6 � R�

has the unique answer set {drugA, sympQ , sympT , sympU , treatmZ}. 	

Ergo, in each conflict resolution step, a derivable conflict becomes nonderiv-

able after applying a suitable set of modifications to the program. We now present
two concrete strategies to build suitable program modifications for a conflict.

4 Strategies for Conflict Resolution

After describing the general properties that have to be satisfied in order for two
rules to be not simultaneously satisfiable, we present two explicit strategies to
resolve derivable conflicts. While in [10], the conflicting rules themselves are mod-
ified during a conflict resolution step, the demonstrated strategies yield conflict-
preventing sets that do not involve the conflicting rules by using causality-based
conflict resolution. As in [10], the inconsistent program is modified using infor-
mative extensions, i. e. the modifications are based on the underlying language
rather than inventing technical workarounds. The following section presents some
technical considerations and results that will prove useful for the strategies.

4.1 General Satisfaction Interdependencies

We propose strategies for manipulating P to a consistent program P� such that
AS⊥(P�) = ∅ where for every conflict C = {r1, r2} in P� and S ∈ ASpre(P�),
it holds that if S satisfies B(r1), then S does not satisfy B(r2). In other words,
whenever r1 is active under a pre-answer set, r2 cannot become active.

Proposition 2. Let P be an ELP with Conflicts(P) �= ∅. P is consistent if
there exists at least one pre-answer set S in P such that for every conflict C =
{r1, r2} ∈ Conflicts(P), the following holds:

S satisfies B(r1) =⇒ S does not satisfy B(r2) (1)

Proof. Let S be a pre-answer set such that (1) holds for all conflicts C = {r1, r2}
in Conflicts(P). Assume S is inconsistent. Then there exists at least one conflict
C ∈ Conflicts(P) such that S satisfies both B(r1) and B(r2), which contradicts
the initial specification of S. Thus, every pre-answer set of P where (1) holds for
every conflict in Conflicts(P) is an answer set. 	


Regarding the non-satisfiability of a body, we derive the following assertion:

Proposition 3. Given a pre-answer set S of an ELP P and a rule r ∈ P, the
following holds (where sat. stands for satisfies/satisfy):

S not sat. B(r) iff ∃L ∈ B−(r) s.t. L ∈ S or

∃L ∈ B+(r) s.t. L /∈ S,
(2)

iff ∃r′ ∈ H L, L ∈ B−(r) s.t. S sat. B(r′) or

∀r′ ∈ H L, L ∈ B+(r) s.t. S not sat. B(r′).
(3)
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Proof. Let S be a pre-answer set for an ELP P and r ∈ P a rule in P. Equa-
tion (2) follows directly from the definition of the satisfaction of rule bodies in
Sect. 2. Equation (3) can be shown by using the properties of pre-answer sets:
Since pre-answer sets are defined as minimal sets of literals that satisfy all rules
in a program, each contained literal has to be derived by at least one rule whose
body is satisfied and therefore adds its head literal to the pre-answer set. If there
is at least one rule r′ ∈ H L such that L ∈ B−(r) and S satisfies B(r′), the head
literal H(r′) = L has to be contained in S. Therefore, (2) is fulfilled, and B(r)
is not satisfied by S. Analogously, if for every rule r′ ∈ H L with L ∈ B+(r),
S does not satisfy B(r′), L cannot be contained in S due to the minimality of
pre-answer sets. Again, (2) demands that B(r) is not satisfied by S. 	


The interdependencies illustrated in Proposition 3 can be used to define dif-
ferent strategies to modify a program such that a conflict rule becomes nonderiv-
able without changing the conflicting rules. Basically, (3) demands that any set
of literals that satisfies B(r2) for a conflict C = {r1, r2} should satisfy an oppos-
ing rule of r1 or that there exists a positive body literal L ∈ B+(r1) such that
every supporting rule of r1 w.r.t. to L is not satisfied by S. Proposition 3 also
illustrates the recursive nature of (non-)satisfiability of rules in logic programs,
as the second case in (3) implies (2) with r replaced by each r′.

The proposed strategies focus on manipulating the answer sets in such a way
that the conflicting rules can still be active if the other conflicting rule is not
active under an answer set. The proposed strategies can therefore be seen as a
switch that prevents a conflicting rule from becoming active whenever the other
conflict rule is active under an answer set. Thereby, the approach in Sect. 4.2
exploits the rule dependencies of negative body literals while the alternative
strategy in Sect. 4.3 exploits the rule dependencies of positive body literals.

4.2 Blocking Rules Using Opposing Rules

Our first approach to prevent the derivability of conflicting rules are so-called
blocking rules. A blocking rule adds a specific literal to each pseudo answer
set in which one of the conflicting rules is active. In particular, this specific
literal is part of the negative body of the other conflicting rule, which therefore
gets “blocked”. Thus, no pre-answer set can contain the complementary (head)
literals of the conflicting rules at the same time. As a blocking rule exploits the
negative body literals of a conflicting rule, this approach is only applicable for
conflicts of the form C = {r1, r2} with B−(r1)\B−(r2) �= ∅.

Definition 7 (Blocking Rule). Let P be an ELP with a conflict C = {r1, r2}
for which B−(r1)\B−(r2) �= ∅ holds. Then, a blocking rule r� for C is a rule

r�: E ←B(r2).,where E ∈ B−(r1)\B−(r2).

Definition 7 demands that the bodies of r� and r2 are identical. As the goal is
to assure that r� becomes active under a set of literals whenever r2 is active, it
would suffice that B(r�) ⊆ B(r2) holds. This, however, can lead to unwanted
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side effects as r� can become active in cases where r2 is not, which then again
could lead to additional (latent) conflicts.

Proposition 4. Let P be an ELP with a derivable conflict C = {r1, r2} and r� a
blocking rule for C. Then, it holds that C becomes nonderivable in P�r� = P∪r�,
i. e. for every pre-answer set S ∈ ASpre(P � r�), r1, r2 /∈ actS(P � r�) is true.

Proof. Let C = {r1, r2} be a derivable conflict in P s. t. B−(r1)\B−(r2) �= ∅ and
r� a blocking rule for C which is meant to block r1, i. e. H(r�) ∈ B−(r1)\B−(r2)
and B(r�) = B(r2). If C was derivable in P� = P � r�, there would have to exist
a pseudo answer set S ∈ AS⊥(P�) with r1, r2 ∈ actS(P�). As r2 ∈ actS(P�)
is assumed, r� ∈ actS(P�) holds (due to B(r�) = B(r2)). Thus, H(r�) ∈ S is
true. But, as H(r�) ∈ B−(r1), r1 cannot be active under S, which contradicts
the assumption of r1 and r2 being simultaneously active under S. Thus, there
cannot be any pseudo answer set S ∈ AS⊥(P�) under which r1 and r2 are active.
As due to the definition of answer sets, r1 and r2 can also not be active under
any answer set of AS(P�), C is nonderivable in all pre-answer sets of P�. 	

Example 7 (Example 6 contd.). To make the conflict C2 = {r3, r4} in P6 non-
derivable, the blocking rule r�

13: sympR ← drugC ,∼drugD . can be constructed
according to Proposition 4. The head literal of r�

13 is referring to the negative
body literal sympR ∈ B−(r4)\B−(r3). Because the body of the blocking rule
r�
13 equals the body of r3, r�

13 is guaranteed to be active whenever r3 is active.
The blocking rule r�

13 leads to C2 being nonderivable in the program P6 � r�
13

(Proposition 4). Note that no blocking rule can be constructed for r3 because
B−(r3)\B−(r4) = ∅. 	


Example 7 implies that there can exist multiple possible solutions for a single
conflict. In a corresponding framework, the professional expert has the possibility
to interactively determine the most suitable solution for each conflict. This step
is also reflected in Algorithm 1, where the complete strategy is summarized.

Algorithm 1: Blocking rules using opposing rules
Input: Program P, Conflict C = {r1, r2} ∈ Conflictsdv (P)
Output: Modified program P� with C �∈ Conflictsdv (P�) or ∅

1 Initialize R� := ∅;
2 foreach E ∈ B−(r1)\B−(r2) do
3 R� := R� ∪ {E ←B(r2).};
4 foreach E ∈ B−(r2)\B−(r1) do
5 R� := R� ∪ {E ←B(r1).};
6 if R� = ∅ then return ∅; /* no resolution found */

7 R� := ChooseSuggestion(R�) ; /* expert chooses suitable R� ∈ R� */

8 return P � R�;
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4.3 Relevant Rule Modification

Instead of adding new rules such as the blocking rules presented in Proposition 4,
which represent new opposing rules for conflicting rules, another possibility to
resolve conflicts would be to modify the existing supporting rules of conflicting
rules. We use the notion of rule modification as presented in [10], but instead of
modifying the conflicting rules directly, we focus on the rules that are primarily
responsible for the bodies of the conflicting rules to be true in the pseudo answer
sets of P. Within the rules H L w.r.t. a literal L ∈ B+(r) of a rule r ∈ P, we
can distinguish between rules that are relevant for the conflict resolution, i. e.
rules that can potentially be simultaneously active with both conflicting rules
and irrelevant rules, which cannot become simultaneously active with at least
one conflicting rule.

Definition 8 (Relevant Rule). Let P be an ELP with a conflict C = {r1, r2}
and H L with L ∈ B+(r1)∪B+(r2). A rule r′ ∈ H L is relevant for the conflict res-
olution of C if there exists a consistent set of literals S with r1, r2, r

′ ∈ actS(P).
Otherwise, r′ is irrelevant for the resolution of C.

Example 8 (Example 6 contd.). In P6, r12 is not relevant for the resolution of
C2 = {r3, r4}. As B+(r4) ∪ B+(r12) = {sympQ , sympQ , sympR} contains com-
plementary literals and B−(r4)∩B+(r12) �= ∅ (as well as B−(r3)∩B+(r12) �= ∅),
the three rules cannot be satisfied simultaneously by a consistent set of literals.
Therefore, r12 cannot be responsible for the derivation of drugC when the con-
flicting rules are simultaneously satisfied in a pseudo answer set. 	


The following definition extends the modification used in [10] and guarantees
that at least one body literal of a conflicting rule is not satisfied if the other con-
flicting rule is active under a pre-answer set, i. e. every relevant rule of the body
literal is modified in a way so that it becomes irrelevant for conflict resolution.
The application of this method is illustrated in the ensuing example.

Definition 9 (Relevant rule modification). Let C = {r1, r2} be a conflict
in an ELP P s. t. B+(r1)\B+(r2) �= ∅ holds. Furthermore, suppose an arbitrary
literal L ∈ B+(r1)\B+(r2) and a rule r′ ∈ H L. Then, Pot(Mr′) = {M | M ⊆
Mr′} with Mr′ = B(r2)\B(r′) implies the powerset of possible modifications for
r′. For each Mr′ ∈ Pot(Mr′) and M̃r′ = {∼a | a ∈ Mr′}, each rule modification
r� of r′ of the form rmod(r′, M̃r′) defines a relevant rule modification of r′, i. e.

r�: H(r′)←B(r′), M̃r′ .

Example 9 (Example 6 contd.). If conflict C2 in P6 should be resolved in such a
way that r4 is preferred over r3, we can manipulate the relevant rules of literals
in B+(r3)\B+(r4). As drugC is the only literal in B+(r3)\B+(r4), the rules
H drugC = {r6, r11, r12} have to be considered. As shown in Example 8, rule
r12 is not relevant for the resolution of C2, so that only r6 and r11 have to be
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modified. According to Definition 9, the following relevant rule modifications can
be constructed for r6 and r11:

r�
6 : drugC ← ∼drugD ,∼sympR,∼sympQ .

r�
11,1: drugC ← sympT ,∼drugD ,∼sympQ .

r�
11,2: drugC ← sympR, sympT ,∼drugD .

r�
11,3: drugC ← sympR, sympT ,∼drugD ,∼sympQ . 	


Since we require every rule in P to be satisfiable, any set Mr′ is also satisfi-
able. Furthermore, by definition, Mr′ has no common literal with B(r′). Thus,
for any set M̃r′ , it holds that B(r′) ∪ M̃r′ is also satisfiable.

Proposition 5. Let P be an ELP with a derivable conflict C = {r1, r2}
and B+(r1)\B+(r2) �= ∅. After applying relevant rule modifications R� =
{r�

1 , . . . , r
�
n} for all relevant rules r′

1, . . . , r
′
n of a set H L with L ∈ B+(r1)\B+(r2)

as defined in Definition 9, C becomes nonderivable in the resulting program
P� = P � R� = ((P � rmod(r′

1, M̃r′
1
)) � . . . � rmod(r′

n, M̃r′
n
)).

Proof. Let P be an ELP with a conflict C = {r1, r2} and B+(r1)\B+(r2) �= ∅
as well as L ∈ B+(r1)\B+(r2). Furthermore, let P� be a program that results
from relevant rule modifications of every relevant rule for C. The proof of this
proposition is done by contradiction: If C would still be derivable in P�, there
would have to be at least one pseudo answer set S ∈ AS⊥(P�) with r1, r2 ∈
actS(P�). Then, by the definition of active rules, S satisfies both B+(r1) and
B+(r2) and L in particular since L ∈ B+(r1)\B+(r2). Consequently, there has
to be at least one rule ri ∈ actS(P�) with H(ri) = L, which is, by definition,
also included in H L. If this rule is not relevant for the conflict resolution, ri was
not modified but could not be active under S in the first place as we already
assume r1, r2 ∈ actS(P�). If ri is relevant, it was transformed to a modified rule
r�
i as shown in Definition 9. Then B+(r�

i )∩B−(r2) �= ∅ or B−(r�
i )∩B+(r2) �= ∅

holds. In either case, r�
i cannot be active under S (i. e. r�

i �∈ actS(P�)). This
contradicts the assumption r�

i ∈ actS(P�). As there cannot be any active rule
ri ∈ H L under S, S does not satisfy B+(r1), hence C has to be nonderivable in
P�. 	


Algorithm 2 summarizes the relevant rule modification strategy. The appli-
cation of this strategy is illustrated in Example 10.

Example 10 (Example 9 contd.). By extending the bodies of all relevant rules of
H drugC with ∼sympQ , sympR, or both, all rules in H drugC are now irrelevant
for the conflict resolution of C2, and it is ensured that drugC cannot be derived
in any answer set in which r4 is active. Therefore, r3 and r4 cannot become
active simultaneously in any answer set. As each combination of modifications,
viz. R�

1 = {r�
6 , r

�
11,1}, R�

2 = {r�
6 , r

�
11,2}, and R�

3 = {r�
6 , r

�
11,3}, constitute a possible

way to resolve C2, P6 �R�
1 , P6 �R�

2 and P6 �R�
3 describe three different resolution

possibilities for C2 that use relevant rule modifications. 	
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Algorithm 2: Relevant rule modification
Input: Program P, Conflict C = {r1, r2} ∈ Conflictsdv (P)
Output: Modified program P� with C �∈ Conflictsdv (P�) or ∅

1 Initialize R� := ∅; X := (B+(r1)\B+(r2)) ∪ (B+(r2)\B+(r1));
2 foreach L ∈ X do
3 Y := ∅;
4 foreach relevant rule r′

i ∈ HL do

5 Yi := all possible modifications rmod(r′
i, ˜Mr′

i
);

6 Y := Y ∪ Yi;

7 R� := R� ∪ {{r�
1 , . . . , r

�
|Y|} | r�

i ∈ Yi, 1 ≤ i ≤ |Y|}
8 if R� = ∅ then return ∅ ; /* no resolution found */

9 R� := ChooseSuggestion(R�) ; /* expert chooses suitable R� ∈ R� */

10 return P � R�;

5 Related Work

The presented approach is related to methods developed and investigated in
the area of ASP debugging. Essentially, debugging approaches as in [5,8] aim to
modify knowledge bases of any (not necessarily inconsistent) logic programs in
order to remedy a mismatch between the actual semantics of the program and
the semantics intended by the modeller. In general, the ability to identify errors
in a given program and compute suggestions crucially depends on information
by the expert that is given on top of the original program. Alternatively, with
the approaches in [3,7], the expert can analyze the program step by step in order
to detect error causes. Our approach, however, focuses on a specific subclass of
erronous programs where the original program is by itself sufficient to identify
the problem and generate suitable solution suggestions. Once possible solutions
are available, both the presented method as well as debugging approaches like
those based on the meta-programming technique [5] can be used to successively
obtain the most suitable solution in interaction with the user.

6 Conclusion and Future Work

We have shown how consistency in an inconsistent program can be achieved with-
out modifying the de facto conflicting rules to improve the usability of answer
set programs in practice. The presented causality-based resolution approach is
obligatory if the conflicting rules themselves must not be altered. By examining
the dependencies between rules, we have shown how the satisfaction of conflict-
ing rules can be prevented. For that, we defined two strategies which can be
used to generate informative solutions for a professional expert. The expert can
choose the most suitable solution for each conflict to achieve consistency. We
have also introduced the notion of latent conflicts that can cause inconsistency
either during the conflict resolution process or after subsequent modifications.
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The recursive nature of rule dependencies allows for the application of the
strategies not only to supporting rules of the conflicting rules, but also to their
supporting rules (transitive conflict resolution). That leads to even more possi-
bilities to repair a program, such that even small programs can lead to a vast
amount of possible solutions for a professional expert to scan through. It is
therefore critical that a framework as proposed in [9,10] incorporates different
workflows and procedures to efficiently find the most fitting solution for each
conflict. Such workflows imply suitable interactions with the professional expert
to gather relevant background information with the goal to reduce the amount
of solutions which in turn can reduce the overall complexity of such conflict
resolution approaches.

In future work, we want to extend the presented approach to cover transitive
conflict resolution using established methods from argumentation theory. More-
over, we want to develop methods to resolve multiple conflicts simultaneously.
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