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Abstract. Axiom pinpointing is the task of identifying the axiomatic
causes for a consequence to follow from an ontology. Different approaches
have been proposed in the literature for finding one or all the subset-
minimal subontologies that preserve a description logic consequence. We
propose an approach that leverages the capabilities of answer set pro-
gramming for transparent axiom pinpointing. We show how other asso-
ciated tasks can be modelled without much additional effort.
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1 Introduction

Axiom pinpointing [16] is the task of identifying the axioms in an ontology that
are responsible for a consequence to follow. It has been extensively studied in
description logics (DLs) and, under different names, in other areas [11,13]. To-
date, the most successful approach to axiom pinpointing which does not rely on
repeated (black-box) calls to a reasoner is a reduction to MUS enumeration on
a propositional formula [1,17]. The main disadvantage of this approach is that
it requires, as a pre-processing step, the construction of a huge formula, which
makes the reasoning steps explicit. It is also limited to enumerating one or all
so-called justifications.

We propose a novel approach based on a translation to Answer Set Program-
ming (ASP) [7,12]. The approach is general, and can be applied to any ontology
language which allows a “modular” ASP representation in the sense that each
axiom is translatable to a set of rules. We instantiate it to deal with the simple
DL HL and the more expressive EL. In addition to finding one or all justifica-
tions, we show that justifications of minimal cardinality and the intersection of
all justifications can be easily computed through standard ASP constructs and
reasoning tasks.
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2 Preliminaries

We assume that the reader is familiar with the basic terminology and struc-
ture of answer set programming (ASP) [5,7]. Here, we recall the basic ideas of
description logics (DLs) [3], with a particular focus on the lightweight DL EL [2],
and of axiom pinpointing [15].

Description Logics. Description logics (DLs) are a family of knowledge repre-
sentation formalisms characterised by a clear syntax and a formal unambiguous
semantics based on first-order logic. The main building blocks of all DLs are
concepts (corresponding to unary predicates) and roles (binary predicates). The
knowledge of an application domain is encoded in an ontology, which restricts the
class of relevant interpretations of the terms, thus encoding relationships between
them. Among the many existing DLs, a prominent example is the lightweight
DL EL. EL has a very limited expressivity, but allows for efficient (standard)
reasoning tasks. For the scope of this paper, we use EL as a prototypical exam-
ple, following the fact that most work on axiom pinpointing has focused on this
logic as well. Other DLs are characterised by a different notion of concepts and
a larger class of axioms.

Definition 1 (EL). Let NC and NR be two disjoint sets of concept names and
role names, respectively. EL -concepts are built through the grammar rule

C ::= A | � | C � C | ∃r.C,

where A ∈ NC , r ∈ NR, and � is a distinguished top concept.
An interpretation is a pair I = (ΔI , ·I) where ΔI is a non-empty set called

the domain and ·I is the interpretation function which maps every A ∈ NC

to a set AI ⊆ ΔI and every r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . This
interpretation is extended to EL-concepts setting �I := ΔI , (C�D)I := CI∩DI ,
and (∃r.C)I := {δ | ∃η ∈ CI .(δ, η) ∈ rI}.
Ontologies are finite sets of general concept inclusions (GCIs), which specify the
relationships between concepts.

Definition 2 (ontology). A GCI is an expression of the form C � D where
C,D are two concepts. An ontology is a finite set of GCIs. The interpretation I
satisfies the GCI α iff CI ⊆ DI . It is a model of the ontology O iff it satisfies
all GCIs in O. We often call GCIs axioms.

The ontology O entails the GCI α (O |= α) iff every model of O satisfies α.
In this case we say that α is a consequence of O.

Although many reasoning tasks can be considered, along with an ample selection
of axioms in the ontologies, we focus on the problem of deciding whether α
is a consequence of an ontology. For simplicity, we will consider only atomic
subsumption relations A � B where A,B ∈ NC . It is well known that this
problem can be solved in polynomial time through a completion algorithm [2].
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In a nutshell, the algorithm runs in two phases. First, the original GCIs are
decomposed into a set of GCIs in normal form; that is, having only the shapes

A1 � B, A1 � A2 � B, A1 � ∃r.B, ∃r.A1 � B

where r ∈ NR and A,B ∈ NC ∪ {�}. These axioms are then combined through
completion rules to make consequences explicit (more details in Sect. 3). The
method is sound and complete for all atomic subsumptions over the concept
names appearing in the original ontology.

As an additional example of a logic, we consider the sublanguage HL of EL,
which uses only concept names and the conjunction (�) constructor. It can be
seen that HL is a syntactic variant of directed hypergraphs. Specifically, a GCI
A1 �· · ·�Am � B1 �· · ·�Bn represents a directed hypergraph connecting nodes
A1, . . . , Am with nodes B1, . . . , Bn, and the entailment problem is nothing more
than reachability in this hypergraph.

Axiom Pinpointing. Beyond standard reasoning, it is sometimes important
to understand which axioms are responsible for a consequence to follow from an
ontology. This goal is interpreted as the task of identifying justifications.

Definition 3. A justification for a consequence α w.r.t. the ontology O is a set
M ⊆ O such that (i) M |= α and (ii) for every N ⊂ M, N �|= α.

In words, a justification is a subset-minimal subontology that still entails the
consequence. Most work focuses on computing one or all justifications. While
the former problem remains polynomial in EL, the latter necessarily needs expo-
nential time, as the number of justifications may be exponential on the size
of the ontology. Despite some potential uses, which have been identified for non
standard reasoning [6], only very recently have specific algorithms for computing
the unions and intersection of justifications been developed [9,14]. To the best
of our knowledge, no previous work has considered computing the justifications
of minimal cardinality directly.

3 Reasoning Through Rules

Before presenting our approach to axiom pinpointing using ASP, we briefly
describe how to reduce reasoning in EL to ASP. The approach simulates the
completion algorithm sketched in Sect. 2 through a small set of rules, while the
ontology axioms (in normal form) are represented through facts.

Consider an ontology O in normal form, and let C(O) and R(O) be the
sets of concept names and role names appearing in O, respectively. For each
A ∈ C(O) we use a constant a, and for each r ∈ R(O) we use a constant r. We
identify the four shapes of normal form axioms via a predicate. Hence, s1(a,b)
stands for the GCI A � B and analogously for the expressions s2(a1,a2,b),
s3(a,r,b), and s4(r,a,b). For each axiom in normal form appearing in O,
we write the associated fact. As previously mentioned, the reasoning process is
simulated through rules. In the specific case of EL, these rules are shown in Fig. 1
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Fig. 1. The rules for EL reasoning (left) and the translation of HL GCIs (right).

(left). To decide whether the atomic subsumption A � B is a consequence of
the ontology, we need only ask the query s1(a,b). Since the original ontology
may not be in normal form, the facts obtained this way are the result of the
normalisation step over the original GCIs. In the case of HL, one can produce a
more direct reduction, which takes into account the hyperedges without the need
for normalisation or general derivation rules. We again represent each concept
name A through a constant a, and associate a new constant gi for each GCI in
O. Then the GCI A1 � · · · � Am � B1 � · · · � Bn is translated to the set of rules
in Fig. 1 (right). To decide whether A � B is a consequence, we add the fact a.
and verify the query b. The correctness of the approach follows from the results
in [8,15].

4 Axiom Pinpointing Through ASP

We present a general approach for solving axiom pinpointing tasks through an
ASP solver. The approach is applicable to any logic (including other DLs) with
a modular ASP encoding. Roughly, an encoding is modular if each axiom in O
translates to a set of rules, such that an ASP encoding ΠO of O is obtained by
the union of the encodings of its axioms, possibly together with some additional
rules (independent of the axioms in O) needed to simulate reasoning in ASP.

Definition 4. An encoding in ASP ΠO of the ontology O is modular iff (i) for
each α ∈ O there is an ASP program Πα, and (ii) there is a (possibly empty)
set of rules R such that ΠO =

⋃
α∈O Πα ∪ R

The encodings from Sect. 3 for EL and HL are both modular. In the former case,
R is exactly the set of rules in Fig. 1 (left), while in the latter R = ∅.

We now formulate the problem of computing justifications in ASP. First, we
apply an adornment step, which allows to identify and keep track of the rules of
a module corresponding to a given axiom.

Definition 5. Let P be an ASP program, and δ be an atom not occurring in
P . The δ-adornment for P is the program Δ(P ) = {rδ : r ∈ P}, where rδ is s.t.
head(rδ) = head(r), and body(rδ) = body(r) ∪ δ.

In words, the δ-adornment adds a new identifying atom δ to the body of each
rule of the program. This guarantees that the rules trigger only when δ is true.
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Definition 6. The adorned ASP encoding of the ontology O is the program

δ(ΠO) =
⋃

α∈O
Δα(Πα) ∪ R ∪ C

where for each α ∈ O, δα is a fresh atom not occurring in Π(O), and C is the
ASP program containing a choice rule {δα} for each α ∈ O.

In the case of EL, the adornment will change each fact (corresponding to a
GCI in normal form) si(...). into the rule si(...) :- xj, where xj is the
chosen constant for the original axiom αj . Importantly, this approach handles
the original axioms in the ontology, and not those already normalised as done
e.g. in [4].

We now describe an ASP program that can be used for axiom pinpointing.
Given the ontology O and consequence c, we identify the justifications for c
through the following property.

Proposition 1. Let O be an ontology, c an atom modelling a consequence of
O, and P the program P = δ(ΠO) ∪ {← not c}. M ⊆ O is a justification for
c iff there is an answer set A of P that is minimal w.r.t. {δα | α ∈ O} and
{δα | α ∈ M} ⊆ A.

Justifications that are cardinality minimal (and thus also subset minimal) can
be directly computed using an ASP program with weak constraints.

Proposition 2. Let O be an ontology, c an atom modelling a consequence of
O, and P the program P = δ(ΠO) ∪ {: − not c} ∪ {:∼ δα : α ∈ O}. M ⊆ O
is a justification for c iff there exists an optimal answer set A of P such that
{δα | α ∈ M} ⊆ A.

Before concluding, we note that the translation permits computing the intersec-
tion of all justifications, and consequences derived from it, through the appli-
cation of cautious reasoning [5]. In ASP, a cautious consequence is one that
holds in every answer set. Since the program P from Proposition 1 provides a
one-to-one correspondence between answer sets and sub-ontologies deriving a
consequence, cautious reasoning refers to reasoning over the intersection of all
those sub-ontologies, and in particular over the subset-minimal ones; that is,
over the justifications. Unfortunately, an analogous result does not exist for the
union of all justifications. Indeed, every axiom would be available for brave rea-
soning (consequences which hold in at least one answer set) [5] over the same
program P , but not all axioms belong to some justification.

5 Conclusions

We presented a general approach for axiom pinpointing based on a reduction to
ASP. As a proof of concept, we have shown how the reduction works for the light-
weight DL HL and the more expressive EL. The same approach works for any
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logic with a modular translation to ASP, for instance any DL with a consequence-
based reasoning algorithm [10,18] should enjoy such a translation. Compared
to existing approaches [1,17], ours is more general and does not require the
construction of a specific propositional formula encoding the reasoning task.

In future work we will extend the translation to ALC and more expressive
DLs, and test the efficiency of our method on ASP solvers. We will also study the
implementation of other axiom pinpointing services based on ASP constructs.
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