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Abstract. Model-based Diagnosis (MBD) is an approach to diagnosis, where an
(objective) model of a system is diagnosed to find a set of explanations revealing
root causes for issues. Temporal behavioral models are prominent approach for
temporal MBD, where their associated temporal formulas (TBFs) by Brusoni et
al. (Artificial Intelligence, 102:39–79, 1998) can be used to relate explanations to
observations under temporal constraints based on Allen’s Interval Algebra (IA).
Due to expressive limitations of the constructs, we envision an extended language
of TBFs that allows for complex formulas and nesting of formulas in temporal
constraints. To this end, we present a language that extends propositional resp. FO
logic with IA relations and provide semantics for it based on here-and-there (HT)
logic as well as on Equilibrium Logic. Furthermore, we lift a well-known tableau
calculus for propositional HT logic to the temporal setting and report about an
experimental prototype implementation. Based on these results, rich notions of
diagnostic explanations from temporal behavior models may be developed.

1 Introduction

Model-based Diagnosis (MBD) [11] is an approach to diagnosis, where an (objective)
model of a system is diagnosed to find a set of explanations revealing root causes for
errors. For instance in Urban Traffic Management (UTM) systems traffic flow is ana-
lyzed over longer periods to reveal root causes for traffic congestions in a road network,
e.g., frequent accidents or delays. Temporal behavioral models (TBMs) by Brusoni et al.
[5] are a prominent approach for temporal MBD, where their associated temporal formu-
las (TBFs) can be used to relate explanations to observations under temporal constraints
based on Allen’s Interval Algebra (IA). However, TBMs are sometimes too restrictive
in expressing complex relationships between possible explanations and observations;
more details and an example are given below. Motivated by this fact, we aim at pro-
viding a language for finding possible explanations for observations, e.g., for a traffic
congestion, using temporal constraints and by extending TBMs for linking temporal
relations directly to atoms, supporting undefined time intervals, and allowing for vari-
ous encodings of “explains”. The extension is a step towards an abduction-based traffic
diagnosis framework that combines TBMs, a flow model for observations, e.g., as we
presented in previous work [8], and a background knowledge base (KB) that allows one
to find likely explanations.
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Temporal Behavioral Models. According to [5], a temporal behavioral model (TBM)
is defined as a set of temporal behavior formulae (TBFs) and a set of global temporal
integrity constraints. For example, a TBF may be used to explain the causal relation
between the cause water retention with no fluid therapy and the effect high blood vol-
ume [5]:

water ret(T1), therapy(absent) explains blood vol(high, T2){T1(before, overlaps)T2}.

Such a TBF captures the idea that statements on the left-hand-side (LHS) explain
observation(s) on the right-hand-side (RHS) taking the local temporal constraints (e.g.,
before) into account, where these constraints must be fulfilled with respect to time inter-
vals assigned to the variables T1 and T2. As Brusoni et al. noted, we may interpret
explains in backward or forward direction. Our work aims at using TBMs for traffic
diagnosis over a stream of observations to find a set of explanations that capture spe-
cific traffic patterns using Allen’s Time Interval Algebra (IA). Therefore, we extend the
original TBF syntax as illustrated by the following formula:

(a(T1)∨ b(T2)), c(T3) explains o1(T4), o2(T5) {TC}
where TC = {((T1� ∼ T3) overlaps (T4 �T5)) ∨ ((T2 � T3) overlaps (T4 � T5))}.
The atoms a and b represent the explanations for normal congestion and accident-
related congestion, c represents an auxiliary atom stating whether roadworks occur in a
time period (with ∼T3 denoting it is known that it is not occurring), and o1 and o2 are
two observations of slow traffic. Note that we require coalescing (denoted by � and �)
for time intervals to check the temporal constraints.

The original TBF syntax appears to be not well-suited for expressing complex rela-
tionships as above. Furthermore, a reduced syntax (not involving explains nor time
intervals explicitly) may be desirable. This can be achieved by the following steps: (a)
combine the LHS, RHS, and constraints to one conjunction dropping explains; (b) make
the temporal information assigned to atoms implicit, with the possibility of having unde-
fined time intervals; and (c) let temporal relations refer directly to atoms, which allows
for nested sub-formulas.

Example 1. We obtain the following formula applying the steps on the TBF above:

(a ∨ b) ∧ c ∧ ((a∧ ∼c) overlaps (o1 ∨ o2)) ∨ ((b ∧ c) overlaps (o1 ∨ o2)) ∧ o1 ∧ o2.

We aim to evaluate whether a or b are explanations supported by observations in various
temporal assignments under the temporal constraints, so (a∧ ∼ c) and (b ∧ c) must
occur on time intervals that overlap with (o1 ∨ o2). The meta directive “explains” can
be replaced based on the desired reasoning task; we may e.g., conjoin the LHS and
RHS for checking the consistency of the new formula according to various temporal
assignments, while we may state that the LHS implies the RHS for abductive reasoning.

The new language requires a suitable semantics, where theories can be character-
ized and an evaluation algorithm can be developed. For this, we build on the work on
here-and-there logic (HT) [12] and its extension to Equilibrium Logic [17], which can
be evaluated using a tableau system or an ASP solver on restricted formulas. The novel
language extends HT logic with coalescing operators, undefined time intervals, and
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temporal relations. For the evaluation, we extend the tableau calculus for HT logic by
Pearce et al. [16] and include temporal expansion rules. We then provide soundness and
completeness results for the new tableau system. Besides the technical results, we devel-
oped a prototypical implementation to enable initial experimentation with the calculus.
Our contributions are developed as follows:

– After stating necessary preliminaries (Sect. 2), we present our temporal extension of
HT logic including a novel syntax and semantics (Sect. 3).

– We present a temporal tableau calculus and give technical details about it (Sect. 4).
– We report on a prototypical implementation and illustrate it on a case study (Sect. 5).
– We discuss related work and compare our approach to others for (qualitative) tem-
poral reasoning and conclude with ongoing and future work (Sect. 6).

2 Preliminaries

To analyze temporal behavioral models, we introduce a novel language that is based
on an extension of here-and-there (HT) logic [12,13] with a FO semantics and strong
negation called FOHT [17]. The authors of [17] also showed that HT and FOHT are
equivalently represented by the five-valued logic N5 and the quantified five-valued logic
QN5, respectively.

FOHT is a FO language over a signature Σ = 〈C,F ,P〉, where C is a (w.l.o.g.
nonempty) set of constants,F a set of functions, andP a set of predicates. We denote by
Term(C,F) and Atom(C,F ,P) the sets of ground terms and atoms induced by C and
F , resp. by C,F , and P; furthermore, Lit(C,F ,P) = {a, ∼a | a ∈ Atom(C,F ,P)}
is the set of ground literals, where ∼ is strong negation and a and ∼ a are contrary
literals; weak negation is denoted by ¬. The notions of free/bound variables and closed
formulas (sentences) are as usual.

Definition 1 (cf. [17]). A FOHT-model is a quadruple M = 〈Dh,H,Dt, T 〉, where
Dh and Dt are domains s.t. C ⊆ Dh ⊆ Dt, and H ⊆ T ⊆ Lit(D,F ,P) are sets of
literals such that T does not contain contrary literals and H does not contain constants
from Dt \Dh. The satisfaction relation M, w |= φ for w ∈ {h, t}, where h ≤ h, h ≤ t,
t ≤ t are totally ordered worlds, and a sentence φ is depending on the structure of φ as
follows (Tw = Term(Dw,F)):

– literal L: w = h ∧ L ∈ H or w =
t ∧ L ∈ T ;

– α ∧ β: M, w |= α and M, w |= β;
– α ∨ β: M, w |= α or M, w |= β;
– α → β: for every w′ ≥ w : M, w′ �|=

α or M, w′ |= β;
– ∀x α(x): for every w′ ≥ w and d ∈

Tw : M, w′ |= α(d);
– ∃x α(x): for some d ∈ Tw : M, w |=

α(d);
– ¬α: no w′ ≤w exists such that

M, w′ |= α;

– ∼ (α ∧ β): M, w |=∼α or M, w |=
∼β;

– ∼(α ∨ β): M, w |=∼α and M, w |=
∼β;

– ∼(α → β): M, w |= α and M, w |=
∼β;

– ∼¬α: M, w |= α;
– ∼∼α: M, w |= α;
– ∼ ∀x α(x): for some d ∈ Tw :

M, w |=∼α(d);
– ∼ ∃x α(x): for every w′ ≥ w and

d ∈ Tw : M, w′ |=∼α(d).
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M is a model of a closed formula φ, denoted M |= φ, if M, h |= φ and M, t |= φ. A
closed formula φ is valid in FOHT if φ is true in all models.

FOHT under the constant domain assumption, i.e., Dh = Dt, is denoted by
FOHTc; we then simplify FOHTc models to triples M = 〈D,H, T 〉 where D =
Dh = Dt.

In [17], equilibrium models were defined using minimal models for FOHTc similar
as in HT logic. A model M = 〈D,H, T 〉 of a theory Π over Σ is an equilibriummodel,
if (1) M is total, i.e., H =T , and (2) M is �-minimal among the models of Π , where
M1 � M2 holds for Mi = 〈Di,Hi, Ti〉, i = 1, 2, if D1 =D2, T1 =T2, and H1 ⊆H2

(tantamount Π has no model 〈D,H ′, T 〉 with H ′ ⊂ H).

QuantifiedMany-Valued Logic. The (quantified) many-valued logic N5 (QN5) allows
one to characterize the Kripke-style model semantics of HT-logic using a five-valued
matrix for the set T5 = {−2,−1, 0, 1, 2} of truth values. We also will use N3 (QN3)
with truth-values T3 = {−2,−0, 2}, when only total models are of interest.

Each k-ary connective F has an associated interpretation function fF : T k
5 → T5

as follows:

F x ∧ y x ∨ y ∼x ¬x x → y

fF min(x, y) max(x, y) −1·x
{
2 if x ≤ 0
−1·x otherwise

{
2 if x ≤ 0 or x ≤ y
y otherwise

Definition 2. A valuation (or truth-value assignment) is a function σ : Atom(C,
F ,P) → T5 that can be uniquely extended to a homomorphism from Σ to T5 via
σ(F (φ1, ..., φi)) = fF (σ(φ1), ..., σ(φi)).

Fig. 1. Truth table for x → y

For N3, interpretations and valuations are restricted to
T3. For S ⊆ Tk, a formula φ is S-satisfiable (resp., an S-
tautology) in Nk, if for some (every) valuation σ over Tk

it holds that σ(φ) ∈ S. In case S = {2}, we say Φ is sat-
isfiable (resp. valid). For instance, we give in Fig. 1 every
valuation for an implication with σ(x), resp., σ(y) shown
on the first column, resp., first row (the grey coloring of
cells is discussed in Sect. 4).

We use φ ≡k ψ to denote semantic equivalence in Nk, i.e., for every valuation σ
we have σ(φ) = σ(ψ). In N3, we then have that (x → y) ≡3 (¬x ∨ y) as σ(x → y) =
σ(¬x ∨ y) holds for all possible valuations of x and y. Note that this equivalence does
not hold for N5: e.g., for σ(x) = 1 and σ(y) = −2 we have σ(x → y) = −2 while
σ(¬x ∨ y) = −1.
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Proposition 1. The following equivalences hold for all formulas α, β, γ in Nk, k =
3, 5:

(i) α∧β ≡k β ∧α and α∨β ≡k β ∨α;
(ii) (α ∧ β) ∧ γ ≡k α ∧ (β ∧ γ)
(iii) α ∨ (β ∧ γ) ≡k (α ∨ β) ∧ (α ∨ γ);
(iv) α ∧ (β ∨ γ) ≡k (α ∧ β) ∨ (α ∧ γ);
(v) ¬¬¬α ≡k ¬α, and ∼∼∼α ≡k ∼α;

(vi) ∼(α ∨ β) ≡k (∼α∧ ∼β) and
∼(α ∧ β) ≡k (∼α∨ ∼β);

(vii) ¬(α ∨ β) ≡3 (¬α ∧ ¬β) and
¬(α ∧ β) ≡3 (¬α ∨ ¬β);

(viii) α → β ≡3 ¬α ∨ β.

In [17], QN5 models are pairs 〈D,σ〉, where D ⊇ C is the domain and σ a valuation
as above, which is extended to closed formulas by σ(∀x φ(x)) = min{σ(φ(t)); t ∈
T }, and σ(∃x φ(x)) = max{σ(φ(t)); t ∈ T }, where T = Term(D,F). If Dh �=
Dt, the many-valued semantics does not always coincide with the FOHT-semantics
as quantifiers are interpreted as supremum and infimum. However, under restriction to
constant domains, FOHTc-models and QN5-models tightly correspond.

Proposition 2. (Theorem 1, [17]). A bijection f between FOHTc-modelsM and QN5-
models exists s.t. for each formula φ, M |= φ iff f(M)(φ)= 2; hence, φ is is valid in
FOHTc iff it is valid in QN5.

Propositional N5-models (given by σ) can be converted from/to HT-models with the fol-
lowing table for truth-value assignments σ(p), where p ∈ Atom(C,F ,P) and H ⊆T
are as in Definition 1.

∼p ∈ H ∼p ∈ T∧ ∼p �∈ H p �∈ T∧ ∼p �∈ T p ∈ T ∧ p �∈ H p ∈ H
σ(p) −2 −1 0 1 2

Furthermore, [17] showed how�-ordering of HT-models can be transferred to N5’s
many-valued semantics. Given a theory Π over Σ in N5, the ordering σ1 � σ2 of N5-
models σ1, σ2 holds, if for every atom p ∈ Atom(C,F ,P) the following conditions
(1)–(3) hold:

(1) σ1(p)= 0 ⇔ σ2(p)= 0; (2) σ1(p)< 1 ∨ σ1(p)≤ σ2(p); and
(3) σ1(p)> −1 ∨ σ1(p)≥ σ2(p).

The equilibrium models of φ amount then to the �-minimal N5-models σ of φ where
no atom is assigned {−1, 1} (called total); intuitively, no model with less assignments
in {−2, 2} is possible.

Example 2. Consider the formula φ : ¬x → y and the following HT-models i1 – i5
(H ⊆ T ):

i1 : (∅, {x}), i2 : ({x}, {x}), i3 : ({x}, {x, y}), i4 : ({y}, {y}), and i5 : ({x, y}, {x, y}).

The corresponding N5 models are σ1 = {x �→ 1, y �→ 0}; σ2 = {x �→ 2, y �→ 0};
σ3 = {x �→ 2, y �→ 1}; σ4 = {x �→ 0, y �→ 2}; σ5 = {x �→ 2, y �→ 2}. The only
equilibrium model of φ among them is i4: indeed, i1 and i3 are not total models; i2 and
i5 are not minimal as i1 � i2 and i3 � i5.
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Table 1. IA relations with inverses and Allen’s naming in brackets

R Definition with start/end points R− Inverse definition

x(p)y before(x, y)=((x, y) : x < x < y < y) x(P )y after(x, y) = before(y, x)

x(m)y meets(x, y)=((x, y) : x < x = y < y) x(M)y metBy(x, y) = meets(y, x)

x(o)y overlaps(x, y)=((x, y) : x < y < x < y) x(O)y overlappedBy(x, y) = overlaps(y, x)

x(s)y starts(x, y)=((x, y) : x = y < x < y) x(S)y startedBy(x, y) = starts(y, x)

x(f)y finishes(x, y)=((x, y) : y < x < x = y) x(F )y finishedBy(x, y) = finishes(y, x)

x(d)y during(x, y)=((x, y) : y < x < x < y) x(D)y contains(x, y) = during(y, x)

x(e)y equal(x, y)=((x, y) : y = x < x = y)

Allen’s Interval Algebra. For temporal constraints, we will focus on Allen’s Time
Interval Algebra (IA) [1] and calculus. IA is based on time intervals and the binary
relations defined between them. The domain of IA relations is the set of intervals over
the linear order of T defined as [pi] = [pi, pi] with pi < pi. The 13 basic relations
are defined according to their start/end points [1] as shown in Table 1. We denote with
IAν(x, y) that a specific relation ν holds between the two intervals. The 13 basic rela-
tions give rise to 213 general relations. Note that several base relations can hold between
two events represented by intervals that can be open.

3 Qualitative Temporal Here-and-There Logic

We now extend the language with (binary) temporal relations, which allow one to state
formulas like (a∧ ∼c) overlaps (o1 ∨ o2) in the introductory example.

For the evaluation, we extend Σ to Σt = 〈C,F ,P,A〉, where A ⊆ L× (Z×Z) is a
relation that associates with each literal in L = Lit(C,F ,P) at most one time interval
from (Z × Z), where for contrary literals g and ∼g the associated intervals [x] and [y]
must be disjoint, i.e., [x] and [y] have no common point in time.

Formally, A induces a function τA : Lit(C,F ,P) → (Z×Z)∪{u} called temporal
assignment, where u is the undefined time instance, and for each g ∈ Lit(C,F ,P):

τA(g) =
{
u if (g, (t1, t2)) �∈ A,
(t1, t2) : (g, (t1, t2)) ∈ A otherwise.

In slight abuse of terminology, we will call A also temporal assignment. Note that
the assignment to contrary literals does not cover the whole timeline; intuitively, τ(g)
expresses that for this interval the truth value of g is certain. The value u stands for time
information that is non-evaluable, due to missing observations (at evaluation time), or
due to intervals that cannot be coalesced (as seen later).

Example 3. Consider a model M2 = 〈D, (H,A1), (T, A1)〉 with D = {x, y, z}
and the formula φ : (p(x) ∨ p(y)) ∧ ((p(x) before p(z)) ∨ (p(y) before p(z))).
A possible temporal assignment over which φ should be evaluated is A1 =
{(p(x), [1, 2]), p(y), [2, 3]), (p(z), [4, 5])}.
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To evaluate a formula a before b, say, where a and b are atoms, we can readily use
τ above to assess the temporal relationship of a and b. However, for complex formulas
α ν β, where α and β are non-atomic, as in case of (a ∧ ∼c) overlaps o1 ∨ o2, an
evaluation on the basis of τ is non-obvious in general. We thus restrict formulas by
disallowing nested temporal relations and some connectives.

Definition 3. A flat temporal formula (FTF) is of the form α ν β, where ν is a temporal
relation and α and β are closed formulas without temporal relations, implication→ and
weak negation ¬.

In the rest of this paper, we then consider formulas in the extended language in which
each occurring subformula α ν β is an FTF.

Coalescing. For the evaluation of formulas α and β nested in FTFs, we introduce
two coalescing operators, where we distinguish between coalescing intervals associated
with a conjunction resp. disjunction.

Definition 4. The coalescing operators coal∧(x, y) and coal∨(x, y) for the intervals
x = τ(α) and y = τ(β) associated with the literals α and β in α ∧ β resp. α ∨ β, are
as in the following table:1

x, y satisfy | x(p)y | x(m)y | x(o)y | x(s)y | x(f)y | x(d)y | x(e)y | x=u or y=u |
coal∧(x, y) | u | [x, x] | [y, x] | [x, x] | [x, x] | [x, x] | [x, x] | u |
coal∨(x, y) | u | [x, y] | [x, y] | [y, y] | [y, y] | [y, y] | [x, x] | u |

In Example 3, we have for instance that coal∨(τA1(p(x)), τA1(p(y))) = [1, 3].
Temporal assignments can then be generalized to formulas α and β inside FTFs by

a (nested) temporal assignment φ �→ τ∗
A(φ) where

τ∗
A(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τA(φ) if φ ∈ Lit(C,F ,P),
coal◦(τ∗

A(φ1), τ∗
A(φ2))) if φ : φ1 ◦ φ2, for ◦ ∈ {∧,∨},

τ∗
A(φ1) if φ =∼∼φ1,

τ∗
A(∼φ1∧ ∼φ2) if φ =∼(φ1 ∨ φ2),

τ∗
A(∼φ1∨ ∼φ2) if φ =∼(φ1 ∧ φ2).

By convention, we regard for τ∗
A conjunctions α ∧ β ∧ γ as α ∧ (β ∧ γ), and similar for

disjunctions.
Next, we introduce FOHTt

c-models over the extended signature Σt. They extend
FOHTc-models to tuples Mt = 〈D, (H,Ah), (T, At)〉, where D, H , and T are as
before, and Ah ⊆ At, are assignments.

Definition 5. The satisfaction relations |= for w ∈ {h, t}, where h, t are defined as
before, is extended based on Definition 1 with temporal relations, denoted as ν (e.g.,
ν := before):

– Mt, w |= (α ν β) if Mt, w |= α and Mt, w |= β, τ∗
w(α) �= u, τ∗

w(β) �= u, and
IAν(τ∗

w(α), τ
∗
w(β)) holds;

1 The entries for the inverse relations x(P )y, x(M)y, x(O)y, x(S)y, x(F )y, x(D)y are omit-
ted.
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– Mt, w |=∼(α ν β) if Mt, w |= α and Mt, w |= β, τ∗
w(α) �= u, τ∗

w(β) �= u, and
IAν(τ∗

w(α), τ
∗
w(β)) does not hold;

Note that Mt, w �|= α ν β iff either (i) Mt, w �|= α, (ii) Mt, w �|= β, (iii) τ∗
w(α) =

u, or (iv) τ∗
w(β) = u.

As previously, we call Mt a model of a closed formula φ, denoted as Mt |= φ if
Mt, h |= φ and Mt, t |= φ; validity is defined accordingly.

To lift the notion of equilibrium models, we need to adjust the minimality property
of FOHTc by taking temporal assignments into account.

Definition 6. A model Mt = 〈D, (H,Ah), (T,At)〉 of a theory Π over Σt is an equi-
librium model if

1. M is total, i.e., H = T and Ah = At, and
2. M is �′-minimal among the models of Π , where Mt

1 �′ Mt
2 holds, for Mt

i =
〈D, (Hi,Ai

h), (Ti,Ai
t)〉, i = 1, 2, if (i) T1 = T2, (ii) A1

h = A2
h,A1

t = A2
t and (iii)

H1 ⊆ H2.

That is, temporal assignments are frozen for model comparison. However, alternatives
may be considered that view the relation between A1 and A2 differently, which we
leave for further study.

In the (quantified) many-valued logics Nk resp. QNk, truth value assignments are
extended to temporal formulas, taking temporal assignments into account as follows.

Definition 7. An extended QNk, model is a triple 〈D,σ, τA〉, where D,σ and τA are
as before, such that σ maps non-temporal formulas φ to Tk as before, and temporal
formulas α ν β to Tk using τ∗

A, with ν as a temporal relation we have

σ(α ν β) =
1
2
·evalν(τ∗

A(α), τ∗
A(β))·min(σ(α), σ(β))

where (i) evalν(x, y) = 2 if x, y �= u and IAν(x, y) holds, (ii) evalν(x, y) = −2 if
x, y �= u and IAν(x, y) does not hold, and (iii) evalν(x, y) = 0 if x = u or y = u.

Note that the strong negation of a temporal formula evaluates to σ(∼ (α ν β)) =
−σ(α ν β).
Example 3 (cont.) For the formula φ, we look at the following five interpretations:
i1 : (∅, {(p(x), [1, 2])}), i2 : ({(p(x), [1, 2])}, {(p(x), [1, 2])}),i3 :({(p(x), [1, 2]), (p(z),
[4, 5])}, {(p(x), [1, 2]), (p(z), [4, 5])}), i4 : ({(p(x), [1, 2]), (p(y), [2, 3]), (p(z), [4, 5])},
{(p(x), [1, 2]), (p(y), [2, 3]), (p(z), [4, 5])}), and i5 : ({(p(y), [2, 3]), p(z), [4, 5])},
{(p(y), [2, 3]), (p(z), [4, 5])}). Only i3 and i5 are equilibrium models, since i1 is not
a total model, i2 is not a model, and i4 is not minimal since i3 � i4 as well as i5 � i4.
If A2 := A1 \ {(p(y), [2, 3])}, the only equilibrium model is i3, since τA2(p(y)) = u.
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4 Temporal Tableau Calculus

As described in [16], the validity of a set of N3 formulas (similarly for N5) can be
checked by a labeled tableau system, where possible truth-values are assigned as labels
(also called signs) in tableau nodes. Then total models can be generated by applying the
tableau rules that work with labels over the set T3 = {−2, 0, 2} of truth values. We first
present the (labeled) non-temporal tableau system in [16], on which we then build our
temporal tableau system.

Tableau system for total models. A tableau system applies
expansion rules (as given in Defn. 8) on an initial tableau
Π = {φ1, ..., φn} of arbitrary N3 formulas, the initial tableau
is defined as shown on the right:

{2} : φ1

. . .

{2} : φn

Definition 8. The tableau expansion rules capture the connectives of N3 in the stan-
dard way; we show them for all connectives, where the label S is from S := {{2}, {0, 2},
{−2, 0}, {−2}}, S+ from S+ := {{2, 0}, {2}} and S− from S− := {{−2, 0}, {−2}}:

S+ : φ ∧ ψ

S+ : φ
S+ : ψ

S− : φ ∧ ψ

S− : φ | S− : ψ

S+ : φ ∨ ψ

S+ : φ | S+ : ψ

S− : φ ∨ ψ

S− : φ
S− : ψ

S+ : φ → ψ

{−2, 0} : φ | S+ : ψ

S− : φ → ψ

{2} : φ
S− : ψ

S+ : ¬φ

{−2, 0} : φ

S− : ¬φ

{2} : φ

S : ∼φ

(−1)·S : φ

where (−1)·S = {(−1)·x | x ∈ S}. Only the labels in S are relevant for the tableau
expansion, e.g., {0} does not occur. The expansion rules for a connective are computed
based on the coverage in its truth table [7]. For instance, the implication connective
was computed based on Fig. 1 with one rule for S− covering the non-blank cells, and
another rule for S+ as disjunction covering the blank cells.

Definition 9. A tableau T is generated by the tableau system for Π = {φ1, ..., φn} by
applying the above tableau expansion rules on formulas S : φ, where S ∈ S, expanding
it to one or more branches. After use, formulas are marked for each branch, so are
applicable only once per branch. A branch in T is

– closed, if for a formula φ in it, there are labels S1 : φ, S2 : φ with S1 ∩ S2 = ∅;
– finished, if all its formulas are marked, and is open if it is finished and not closed.

T is closed, if every branch is closed, it is open if at least one branch is open, and it is
terminated if every branch is either closed or open.

Based on the above definition, the total models of a conjunction φ1 ∧ · · · ∧ φn of N3

formulas, represented as a set Φ = {φ1, ..., φn}, are generated by the tableau system
from the open branches of a tableau T for Φ, where for an atom pi a truth assignment
σ(pi) ∈ Si is taken from the signed literals Σ = {S1 : p1, ..., Sn : pn} of an open
branch in T (Theorem 3 in [16]); notably, if pi does not occur in Σ, any truth value can
be assigned to it.
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Example 4. For Φ = { ∼ q,¬p → q,¬r → p} [16], the generated tableau tree is
given in Fig. 2a. For the two open branches, we can derive three models: i1 : ({p, ∼
q, r}, {p, ∼ q, r}), i2 : ({p, ∼ q}, {p, ∼ q}), and i3 : ({p, ∼ q, ∼ r}, {p, ∼ q, ∼ r});
only i2 is minimal, as i2 � i1 as well as i2 � i3.

Validity of a formula φ in N3 can be established via a tableau proof, which is any
closed tableau T for ¬φ. We write �N3 φ in this case.

Definition 10. A branch θ in T is satisfiable, if for every signed formula Si : φi on θ,
there is a valuation such that σ(φi) ∈ S1 ∩ · · · ∩ Sn where S1 : φi to Sn : φi are on
branch θ. A tableau T is satisfiable if at least one branch of T is satisfiable.

We recall from [9] that soundness, resp., completeness, of a tableau system is, if a
theory Π has a tableau proof, then Π is a tautology, i.e., �N3 Π implies |=N3 Π , resp.,
if Π is a tautology, then Π has a tableau proof, i.e., |=N3 Π implies �N3 Π . Both were
merely sketched in Theorem 2 of [16]. However, Fitting’s method [9] can be extended
to show soundness by establishing that satisfiability is a tableau system’s loop invariant.
For the completeness proof, we follow the generic approach by Hähnle [10] and use its
machinery. Due to space limitations, we only show the proofs for the temporal tableau
system since the non-temporal system is its special case.

Temporal Tableau Extension. A temporal tableau system is an extension of the non-
temporal tableau of the previous section and introduces the process of signing up N3

formulas with temporal labels. Besides the existing labels of tableau nodes, we also
sign-up formulas in the tableau according to given temporal assignments A, where the
functions τ and τ∗ are defined as before.

Definition 11. Given a set A of pairs (p, [x]) inducing a temporal assignment τ and a
formula φ, we let tA(φ) = {(p, [x]) ∈ A | p = a or p =∼ a, a ∈ atm(φ)} denote
the local temporal assignment for φ w.r.t. A, where atm(φ) denotes the set of atoms
occurring in φ.

Temporal tableau system for total models. A temporal
tableau system applies expansion rules on an initial tableau
Π = {φ1, ..., φn} of (Π,A) with the temporal assignment
A; the initial tableau, shown to the right, includes labels with
temporal assignments denoted as S : (φi)tA(φi).

{2} : (φ1)tA(φ1)

. . .

{2} : (φn)tA(φn)

Definition 12. The tableau expansion rules from above are extended with temporal
assignments; we show some exemplary rules; the other rules can be extended similarly:

S+ : (φ ∧ ψ)A′

S+ : (φ)tA′ (φ)
S+ : (ψ)tA′ (ψ)

S+ : (φ ∨ ψ)A′

S+ : (φ)tA′ (φ) | S+ : (ψ)tA′ (ψ)

S : (∼φ)A′

(−1) · S : (φ)tA′ (φ)

Note that the assignments tA′(φ) and tA′(ψ) are easily calculated from A′ and φ
resp. ψ; in any tableau extending the initial tableau, they amount to tA(φ) resp. tA(ψ)
for the given assignmentA. The reason for the use of (local) assignments in each branch
relates (besides it is purely syntactical nature) to future work, where nested temporal
formulas and multiple intervals per literal could be allowed.
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Furthermore, there are additional expansion rules for temporal formulas:

{2}, {−2} : (φ ν ψ)A′

{2} : (φ)τ∗
A′ (φ)

{−2} : (φ)τ∗
A′ (φ)

if E = 0
{0, 2}, {0, −2} : (φ ν ψ)A′

{0, 2} : (φ)τ∗
A′ (φ) | {0, −2} : (φ)τ∗

A′ (φ)

if E = 0

S : (φ ν ψ)A′

S+ : (φ)τ∗
A′ (φ)

S+ : (ψ)τ∗
A′ (ψ)

1
2
·E·S = S+

S : (φ ν ψ)A′

S− : (φ)τ∗
A′ (φ) | S− : (ψ)τ∗

A′ (ψ)

1
2
·E·S = S−

where E := evalν(τ∗
A′(φ), τ∗

A′(ψ)) is as in Definition 7. Since the temporal formula
must evaluate to 0 if E = 0, the upper left rules generate a closed branch and the upper
right rules a branch that cannot be closed. The lower left rules work only for S+ =
{0, 2} and S+ = {2}: E �= 0 must hold. If E = 2, the input S must be {0, 2} resp.
{2} and the case amounts to conjunction; if E = −2, the input must be {0,−2} resp.
{−2} and the case amounts to conjunction of the strongly negated formulas φtA′ (φ)
and ψtA′ (ψ). The lower right rule similarly requires E �= 0. It covers for E = 2 and
S = {0,−2}, {−2} the conjunction of the sub-formulas, and for E = −2 and S =
{0, 2}, S = {2} the conjunction of the strongly negated sub-formulas. This reflects the
truth value assignment described in Definition 7.

A tableau Tt is generated from the tableau system on (Π,A) by applying the above
expansion rules on formulas S : φA′ to expand it to one or more branches. The formulas
are marked for each branch after being used. The notions of closed, finished, and open
branch in Tt can be carried over, and similarly whether Tt is closed or open.

Definition 13. Given a tableau system (Π,A), a temporal tableau proof is a closed
tableau Tt for {¬Π} and A; Π is a theorem in this case.

Next, we show soundness for the temporal tableau system.

Definition 14. Let Φ = {(φi)tA(φi) | i = 1, . . . , n} be temporal assigned formulas
for A. Then, (Φ,A) is satisfiable for T3, if for some valuation σ (with τ∗ embedded),
σ((φi)tA(φi)) = 2 for all i = 1, . . . , n. A branch θ in a temporal tableau Tt is satisfi-
able, if for some valuation σ every formula S : (φ)tA(φ) on θ fulfills σ((φ)tA(φ)) ∈ S.
A temporal tableau Tt is satisfiable under A, if some branch of Tt is satisfiable.

Proposition 3. Any application of the tableau expansion rules defined in Definition 12
to a satisfiable tableau yields another satisfiable tableau.

Proof. Assume a tableau Tt that is satisfiable, and a tableau expansion rule is applied
to Tt to a signed formula Si : φA′ resulting in the tableau Tt′

; we show that Tt′
is also

satisfiable. We distinguish several cases as follows, where we choose some satisfiable
branch θ′ in Tt (which must exist):

Case 1 θ′ �= θ: The rule was applied to θ, hence θ′ and Tt′
are still satisfiable.

Case 2 θ′ = θ. We distinguish between sub-cases depending on the tableau expan-
sion rule type:

Case 2a Si : (φ1 ∧ φ2)A′ : As (φ1 ∧ φ2)A′ is on the branch already, it is satisfied by
some valuation σ, and w.l.o.g. σ(φA′) = σ((φ1 ∧ φ2)A′) ∈ Si. If Si = {0,−2}, {−2},
then σ(φA′) ≤ 0 and by the expansion rule Si : φA′ may be put on θ′, and so θ′ remains
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satisfiable. Otherwise, if Si = {0, 2}, {2}, both Si : (φ1)tA′ (φ1) and Si : (φ2)tA′ (φ2)

are on the branch θ′, and as σ((φ1)tA′ (φ1)) ≤ σ((φ2)tA′ (φ2)) holds σ((φ2)tA′ (φ2)) ∈ Si

hold as well. Thus, θ′ is satisfiable and Tt′
is satisfiable.

Case 2b Si : (φ1∨φ2)A′ : The argument is similar to the one on Case 2a, respecting
max(x, y) for ∨ instead of min(x, y) for ∧.

Case 2c Si : (∼ φi)A′ : Here, θ was sequentially extended with (−1) · Si :
(φi)tA′ (φi) resulting in Tt′

. Satisfiability is preserved since σ((φi)tA′ (φi)) ∈ (−1) · Si

iff σ((∼φi)A′) ∈ Si by Definition 2.
Case 2d Si : ¬(φi)A′ : Based on Definition 2, we have two subcases, for

σ(¬(φi)A′) ∈ Si: where (i) σ(¬(φi)A′) = 2 or (ii) σ(¬(φi)A′) = −2. By the expan-
sion rules of Definition 8, in case (i) θ was sequentially extended with {−2, 0} : (φi)A′ ,
and in case (ii) with {2} : (φi)A′ . As with Case 2c, satisfiability is preserved as
σ(¬(φi)A′) = 2 implies σ((φi)A′) ∈ {−2, 0} respectively σ(¬(φi)A′) = −2 implies
σ((φi)A′) ∈ {2}.

Case 2e Si : (φ1 → φ2,)A′ : Let x := σ((φ1 → φ2)A′). For Si = {2} or Si =
{−2}, the expansion rules of Definition 8 clearly preserve satisfiability via Definition 2.
For Si = {0, 2}, in case x = 2 satisfiability is preserved by the branch {−2, 0} :
(φ1)tA′ (φ1) if σ((φ1)tA′ (φ1)) = −2 or σ((φ1)tA′ (φ1)) = 0, and by the branch {0, 2} :
(φ2)tA′ (φ2) if σ((φ2)tA′ (φ2)) = 2; likewise, if x = 0 satisfiability is preserved by the
branch {0, 2} : (φ2)tA′ (φ2) as σ((φ2)tA′ (φ2)) = 0. Finally, for Si = {−2, 0}, in case
x = −2 (resp., x = 0) by Definition 2 σ((φ1)tA′ (φ1)) = 2 and σ((φ2)tA′ (φ2)) = −2
(resp., σ((φ2)tA′ (φ2)) = 0), which are in the respective labels {2} and {−2, 0}. Thus,
satisfiability of Tt′

is preserved.
Case 2f Si : (φ ν ψ)A′ : We distinguish three cases according to E :=

evalν(τ∗
A′(φ), τ∗

A′(ψ)):

(i) E = 0. We have σ((φ ν ψ)A′) = 1
2 ·min(σ(φ), σ(ψ)) = 0; as θ is satisfiable, the

rule for E = 0 cannot be applied.
(ii) E = 2. As θ is satisfiable, min(σ(φ), σ(ψ)) ∈ S. Now if the rule for 1

2E·S = S+

is applied, we have S = S+ = {0, 2} or S = S+ = {2}; hence σ(φ) ∈ S+

and σ(ψ) ∈ S+follows, and thus θ′ is satisfiable. If the rule for 1
2E·S = S− is

applied, we have S = S− = {0,−2} or S = S− = {−2}; thus, either σ(φ) ∈ S−

or σ(ψ) ∈ S− must hold. Hence, extending θ with S− : (φ)τ∗
A′ (φ) resp. S− :

(ψ)τ∗
A′ (ψ) yields a satisfiable branch θ′ and Tt′

is satisfiable.
(iii) E = −2. The argument is analogous to the one for the case E = 2. ��

Case 2f takes nested FTFs into account, hence θ′ is only expanded by non-temporal
rules applied to Si : (φ)τ∗

A′ (φ) and Si : (ψ)τ∗
A′ (ψ) with the local temporal assignments

τ∗ carried over. They do not affect satisfiability in derived branches of θ′, but are needed
to evaluate minimal models and future work, where also nested temporal formulas are
allowed.

Proposition 4. If there is a closed tableau for (Π,A), then (Π,A) is not satisfiable.

Proof. Assume towards a contradiction that we have a closed tableau while (Π,A)
is satisfiable. We construct a tableau Tt from (Π,A) with the initial branch θ that is
constructed from (Π,A) and is satisfiable. Then according to Proposition 3, either θ or



A Qualitative Temporal Extension of Here-and-There Logic 171

one of the successor branches of θ will not be closed, hence we obtain a contradiction
to the assumption. ��

Theorem 1. (Soundness) If (Π,A) has a tableau proof, then (Π,A) is a tautology.

Proof. As a consequence of Proposition 4, if there is a closed tableau for the set {¬Π}
of negated temporal N3 formulas and A, then {¬Π} is not a satisfiable set. It follows
that (Π,A) is a tautology. ��

Completeness is shown based on propositional Hintikka sets for the many-valued
setting, enriched with further (local) temporal assignments. We follow the generic app-
roach in [10] and use its machinery.

A many-valued sets-as-signs (mvs) Hintikka set is a set Φ of signed formulas such
that

(H1) Φ is open, i.e., there are no signed formulas S1 : φ, . . . , Sn : φ in Φ such that⋂n
i=1 Si = ∅, nor any formulas S : γ(φ1, . . . , φm) such that S ∩ rg(γ) = ∅,

where rg(γ) are the possible truth values for the connective γ, and
(H2) if φ = S : γ(φ1, . . . , φm) is in Φ and ψ =

∨l
i=1 Ci is some sets-as-signs

DNF representation of φ, then for some Ci =
∧ni

j=1 Si,j :ψi,j , it holds that
{Si,1 :ψi,1, . . . , Si,ni

:ψi,ni
} ⊆ Φ.

Here γ is a connective and a sets-as-signs DNF representation of φ is a satisfiability
preserving formula ψ of the given form where each Si,j is from S ∪ {{0}} and each
ψi,j is from φ1, . . . , φm. Then

Proposition 5 (cf. [10]). Every mvs-Hintikka set Φ has a model, i.e. a truth assignment
σ such that σ(φ) ∈ S for each S : φ ∈ Φ.

Notably, from DNF representations corresponding tableau rules can be readily
obtained.

Definition 15 (Defn. 33 in [10]). Let φ = S : γ(φ1, . . . , φm) , m ≥ 1, be a
signed formula. Given a sets-as-signs DNF representation

∨l
i=1 Ci of φ where Ci =∧ni

j=1 Si,j :φi,j , the corresponding sets-as-signs tableau expansion rule for φ is, where∧
ψ∈F ψ = Ci:

S : γ(φ1, . . . , φm)
F1 | · · · | Fl .

From Proposition 5, we can then conclude that an open branch θ in a tableau T for a
formula ¬Π on which all possible rules have been applied, is an mvs-Hintikka set and
thus has a model; hence, ¬Π is satisfiable. It follows that if Π is valid then a tableau
proof for Π exists.

We extend mvs-Hintikka sets and sets-as-signs DNFs to the temporal setting for
formulas S : φA′ where S : φ is a signed temporal formula labeled with a temporal
assignment A′ as in the extension of the tableau rules. As for temporal operators, we
observe:
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Lemma 1. Every FTF formula φ = (φ ν ψ) can be viewed as a formula γE(φ1, φ2)
where E := evalν(τ∗

A(φ1), τ∗
A(φ2)), i.e. as a connective γE depending on the operator

ν and the assignment A.

In (H1), the notion of open set is extended by labeling each Si : φi resp. S :
γ(φ1, . . . , φm) with an assignment A′; in (H2), the notion of sets-as-sign DNF rep-
resentation is extended by requiring that satisfiability of φ = S : γ(φ1, . . . , γm)A′ is
preserved by ψ =

∨l
i=1 Ci, with Ci =

∧ni

j=1 Si,j : ψi,jA′
i,j
, where each formula αA′

is evaluated using the assignment A′. Proposition 5 then generalizes to the resulting
temporal mvs-Hintikka sets.

For our concerns, we note that the tableau rules above ensure for the formulas on a
temporal tableau Condition (H2).

Example 5. This example shows the theories Φ1 = {{2}:(a ∨ b)A1 , {2}:(a before
c)A2 , {2}:(c)A3}, and Φ2 = {{2}:(a ∧ b)A1 , {2}:(b before c)A4 , {2}:(c)A3}, where
the temporal assignments are not given but we assume that eval(p)(τ∗

A2
(a), τ∗

A2
(c)) = 2

and eval(p)(τ∗
A4

(b), τ∗
A4

(c)) = −2. Then Φ1 can be represented by a mvs-Hintikka set
since Condition (H2) is fulfilled as it can be converted from CNF to sets-as-sign DNF;
(H1) is fulfilled since for all formulas, the signs do overlap. Φ2 is not representable by
a mvs-Hintikka set since (H1) is violated by {−2}:b or {−2}:c that are derived from
{2}:(b before c).

Lemma 2. Every temporal tableau expansion rule of Definition 12 corresponds to a
temporal set-as-signs DNF representation for S : γ(φ1, . . . , φn)A′ .

Proof. By inspecting the expansion rules of Definition 12, we can see that they are
already in the form of Definition 15. The sets-as-signs representation were computed
directly from the coverage of the truth tables (as illustrated by Fig. 1), which is accord-
ing to [10] an eligible method.

Thus, the formulas on an open branch in a temporal tableau T for (Π,A) form a
temporal mvs-Hintikka set and are satisfiable if each formula S : φA′ is evaluated with
assignment A′. However, each such A′ is by construction the restriction of A to the
literals relevant for φ, i.e. A′ = tA(φ), and thus σA′(φ) = σtA(φ)(φ) = σA(φ) holds
for every truth assignment σ. Consequently,

Proposition 6. Every open branch θ in a temporal tableau T for (Π,A) on which all
possible rules have been applied, has a model and hence ¬Π is satisfiable under A.

We then readily obtain the claimed completeness result for the temporal tableau
calculus.

Theorem 2. (Completeness) If a temporal N3 formula Π is a tautology with the tem-
poral assignment A, then (Π,A) has a temporal tableau proof.

Proof. Towards a contradiction, suppose that (Π,A) has no temporal tableau proof.
Hence no closed temporal tableau for {¬Π} and A exists, which implies that some
temporal tableau T for {¬Π} and A with an open branch θ exists on which all possible
rules have been applied. By Proposition 6 ¬Π is satisfied by some truth value assign-
ment σ, i.e., σ(¬Π) = 2; hence σ(Π) �= 2, which means Π is not a tautology, which
is a contradiction. ��
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5 Prototypical Implementation

As for the implementation of a tableau prover, it may be convenient to restrict the input
formulas to a specific form. Well-known such forms are CNF, DNF, as well as negation
normal form (NNF). For our concerns, we may consider a temporal version of CNF.

Definition 16. A temporal conjunctive normal form (CNF) in N3, is a conjunction∧n
i=1 Ci of clauses Ci = Li1 ∨ ... ∨ Lim , where each Lij is of the form α, ∼ α, ¬α,

¬¬α, or ¬ ∼ α, where α is either an atom or an FTF formula. Temporal disjunctive
normal form (DNF) in N3 is defined dually as usual.

By means of equivalence preserving rewritings, every temporal formula in N3 that we
consider can be rewritten to temporal CNF (and similarly, to temporal DNF); indeed,
Proposition 1 generalizes to the case where α, β, and γ can be FTFs. In addition, any
FTF α ν β can be due to the definition of τ∗

A(α ν β) be rewritten into NNF (i.e. α and β
become NNF) by applying Proposition 1. We remark that a temporal CNF is infeasible
for N5 as there is no equivalence preserving rewriting for implications.

Implementation. We have implemented an initial temporal tableau solver in Python
3.7, which currently evaluates N3-theories in temporal CNF. The solver is intended for
prototyping and no optimization techniques of modern tableau solvers are implemented.
It also includes a model generator, and outputs all models extracted from the open
branches in a tableau. The implementation is available on https://github.com/patrik999/
EL-TempTableau, and is used to evaluate the cased study.

Case Study.We recall the slightly modified theory Π of Example 1 and the assignment
A :

Π = {¬a ∨ b, ∼c, ((a∧ ∼c) (o) (o1 ∨ o2)) ∨ ((b ∧ c) (o) (o1 ∨ o2)), o1, o2},
A = {(a, [1, 4]), (b,u), (c, [1, 2](∼c, [3, 5]), (o1, [1, 3]), (o2, [3, 5])}.

The tableau tree for Π is shown in Fig. 2b, where o is short for (o) and
the temporal assignments are for instance (all others are derivable accordingly):
A1 = {(a, [1, 4]), (b,u)}, A3,1,1 = {(a, [3, 4]), (∼ c, [3, 4])}, and A3,1,2 =
{(o1, [1, 5]), (o2, [1, 5])}. For the two open branches, we can derive two models, where
the temporal assignments can be seen in A3,1,1 and A3,1,2. Two branches were closed
since the a temporal formula was evaluated over (b,u), thus the expansion rule for
E = 0 was applied. The leftmost branch was closed due to {−2}:a and {2}:a being on
the same branch.

https://github.com/patrik999/EL-TempTableau
https://github.com/patrik999/EL-TempTableau
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{2} : (¬a ∨ b)A1 �

{−2} : (c)A2 �

{2} : (((a∧ ∼c) o (o1 ∨ o2)) ∨ ((b ∧ c) o (o1 ∨ o2)))A3 �

{2} : (o1)A4

{2} : (o2)A5

{2} : (¬a)A1,1

{2} : ((a∧ ∼c) o (o1 ∨ o2))A3,1 �

{2} : (a∧ ∼c)A3,1,1 �

{2} : (o1 ∨ o2)A3,1,2

{2} : (a)A3,1,1,1

{−2} : (c)A3,1,1,2

×

{2} : ((b ∧ c) o (o1 ∨ o2)))A3,2

×

{2} : (b)A1,2

{2} : ((a∧ ∼c) o (o1 ∨ o2))A3,1 �

{2} : (a∧ ∼c)A3,1,1 �

{2} : (o1 ∨ o2)A3,1,2 �

{2} : (o1)A3,1,2,1

{2} : (a)A3,1,1,1

{−2} : (c)A3,1,1,2

�

{2} : (o2)A3,1,2,2

{2} : (a)A3,1,1,1

{−2} : (c)A3,1,1,2

�

{2} : ((b ∧ c) o (o1 ∨ o2)))A3,2

×

Fig. 2. Tableau tree for (a) Example 4 on the left and (b) the case study on the right

6 Related Work and Conclusion

This work is inspired by Temporal Behavioral Models [5] and builds mainly on here-
and-there (HT) logic [13] and Equilibrium Logic [17], with a tableau system for rea-
soning [16]. The syntax/semantics presented in [17] is extended with temporal assign-
ments/relations, which then affect the extension of the tableau system of [16]. In a
broader perspective, the work is related to tableau calculi for many-valued logics [7]
and to nested expressions in logic programs [15], but neither of them considers the
temporal setting. Qualitative temporal reasoning was introduced to ASP by Brenton
et al. [4] and Janhunen and Sioutis [14], where the former encoded temporal relations
in ASP directly while the latter presented a hybrid-approach based on an extension of
ASP with difference logic. Both focused on a particular encoding in ASP but did not
provide a novel semantics nor a respective tableau system. With Metric Temporal ASP
[6] and DatalogMTL under stable models semantics [18], Cabalar et al. and Walega et
al. respectively, extended HT and Equilibrium logic, defining metric linear time con-
nectives such as always or until over finite respectively infinite traces. Our approach is
different from them regarding (a) the language, which is in [18] and [6] restricted to
rules, (b) the (qualitative) temporal relations of Allen’s Time Interval Algebra, and (c)
the temporal annotation instead of trace-based valuation of time. Arias et al. [2] focused
on goal-oriented top-down execution of Constraint ASP, which differs from our aim of
model generation; in principle, one could encode intervals by fluents in this framework.

This work provides the initial step towards a framework for an abduction-based traf-
fic diagnosis framework. Temporal behavior formulas (TBFs) [5] can be used in it to
define relations between explanations and observations that take temporal constraints
into account, where the constraints are based on Allen’s IA [1]. Since TBFs offer lim-
ited expressive means, we have introduced a novel language that allows for nesting of
temporal formulas, where associated time intervals are coalesced, and temporal assign-
ments can express undefined time instances. We provided for this language a semantics
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based on an extension of HT logic and Equilibrium logic [17]. For reasoning, we have
extended the three-valued propositional tableau calculus for HT logic in [16] with tem-
poral expansion rules and provided soundness and completeness results. Furthermore,
we have implemented a proof-of-concept prototype and demonstrated it on a case study.

Outlook. The work on the new language and the temporal tableau system can be
extended in several directions. One direction is to equip the tableau system with mini-
mality checking of models in order to support Equilibrium logic semantics. Pearce et al.
[16] considered for this the use of sub-tableaux. However, we believe that an approach
to minimality checking akin to the modular one in [3], which uses a super-dependency
graph derived from an atom-clause dependency graph, could be more attractive. In con-
nection with this, alternative notions of minimal models may be considered that allow
for differences in temporal assignments. Regarding syntactic extensions of the language,
richer nesting in temporal formulas may be investigated, e.g., restricted or arbitrary use
of weak negation or temporal formulas. This however would require redefining (unde-
fined) time instances and coalescing. Another direction is refined temporal semantics,
where undefinedness may be avoided in some cases (e.g., (α before α) should always
evaluate to false), or where literals are assigned with sets of intervals rather than a sin-
gle interval. The current tableau system was designed for N3, but it can be extended
to N5, moreover in combination with quantifiers. Finally, we aim to advance the proof-
of-concept implementation of the prototype, using optimization techniques of tableau
reasoners, and to evaluate an improved reasoner on benchmarks for temporal reasoning,
e.g., on traffic flows [8].

Acknowledgements. This work was supported by the Humane AI Net project (ICT-48–2020-
RIA/952026).

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983)

2. Arias, J., Chen, Z., Carro, M., Gupta, G.: Modeling and reasoning in event calculus using
goal-directed constraint answer set programming. Theor. Pract. Logic Program. 22(1), 51–
80 (2022)

3. Ben-Eliyahu-Zohary, R., Angiulli, F., Fassetti, F., Palopoli, L.: Decomposing minimal mod-
els. In: Proceedings of the Workshop on Knowledge-based Techniques for Problem Solv-
ing and Reasoning, IJCAI 2016. CEUR Workshop Proceedings, vol. 1648. CEUR-WS.org
(2016)

4. Brenton, C., Faber, W., Batsakis, S.: Answer set programming for qualitative spatio-temporal
reasoning: Methods and Experiments. In: ICLP 2016. vol. 52, pp. 4:1–4:15. Dagstuhl, Ger-
many (2016)

5. Brusoni, V., Console, L., Terenziani, P., Dupré, D.T.: A spectrum of definitions for temporal
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