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Preface

This volume contains the papers presented at the 16th International Conference on
Logic Programming and Non-monotonic Reasoning (LPNMR 2022) held during
September 5–9, 2022, in Genova Nervi, Italy.

LPNMR 2022 was the sixteenth in the series of international meetings on logic
programming and non-monotonic reasoning. LPNMR is a forum for exchanging ideas
on declarative logic programming, non-monotonic reasoning, and knowledge repre-
sentation. The aim of the conference is to facilitate interactions between researchers and
practitioners interested in the design and implementation of logic-based programming
languages and database systems, and those working in knowledge representation and
non-monotonic reasoning. LPNMR strives to encompass theoretical and experimental
studies that have led or will lead to advances in declarative programming and
knowledge representation, as well as their use in practical applications. The past edi-
tions of LPNMR were held in Washington, D.C., USA (1991), Lisbon, Portugal
(1993), Lexington, Kentucky, USA (1995), Dagstuhl, Germany (1997), El Paso, Texas,
USA (1999), Vienna, Austria (2001), Fort Lauderdale, Florida, USA (2004), Diamante,
Italy (2005), Tempe, Arizona, USA (2007), Potsdam, Germany (2009), Vancouver,
Canada (2011), Coruña, Spain (2013), Lexington, Kentucky, USA (2015), Espoo,
Finland (2017), and Philadelphia, USA (2019).

LPNMR 2022 received 57 submissions. Every submission was reviewed by at least
three Program Committee members. In total, 34 papers were accepted as regular long
papers, and five as short papers. Thus, 39 of the 57 papers were accepted. The scientific
program also included four invited talks by Nicola Leone, University of Calabria, Italy;
Sheila McIlraith, University of Toronto, Canada; Alessandra Russo, Imperial College
London, UK; and Stefan Woltran, TU Wien, Austria. Moreover, the program was
completed by three thematic invited tutorials by Stefania Costantini, University of
L’Aquila, Italy; Viviana Mascardi, University of Genoa, Italy; and Andreas Pieris,
University of Edinburgh, UK.

Springer sponsored the best technical paper award, while the Italian Association for
Logic Programming (GULP) sponsored for the best student paper award. These awards
were granted during the conference, followed by the selection of papers to have their
long versions invited for Rapid Publication Track to the Artificial Intelligence Journal
and to the journal of Theory and Practice of Logic Programming.

Three workshops were co-located with LPNMR 2022: the 4th International
Workshop on the Resurgence of Datalog in Academia and Industry (DATALOG 2.0),
the First International Workshop on HYbrid Models for Coupling Deductive and
Inductive ReAsoning (HYDRA 2022), and the 29th RCRA Workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA
2022). A Doctoral Consortium (DC) was also part of the program. We thank the
workshop and DC organizers for their efforts.



We would like to express our warmest thanks and acknowledgments to those who
played an important role in the organization of LPNMR 2022: the Program Committee
and additional reviewers for their fair and thorough evaluations of submitted papers;
Viviana Mascardi for coordinating the workshops, Martin Gebser for organizing the
Doctoral Consortium, Jessica Zengari for advertising the conference and its workshops
through a number of channels, and the members of the Local Organizing Committee
(Angelo Ferrando, Matteo Cardellini, and Marco Mochi) and the other volunteer
members for working hard towards the success of the event.

The LPNMR 2022 conference received support from several organizations. We
gratefully acknowledge the DIBRIS Department of the University of Genoa, the
National Science Foundation, the Artificial Intelligence Journal, the Italian Association
for Logic Programming (GULP), Springer, the Association for Logic Programming,
Potassco Solutions, SurgiQ, DLVSystem, the Royal Society (supporting G. Gottlob by
Project RAISON DATA No. RP\R1\201074), and the Alan Turing Institute.

The conference was managed with the help of EasyChair.

September 2022 Georg Gottlob
Daniela Inclezan
Marco Maratea
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DLV Evolution from Datalog to Ontology
and Stream Reasoning

N. Leone, M. Alviano, F. Calimeri, C. Dodaro, G. Ianni, M. Manna,
E. Mastria, M.C. Morelli, F. Pacenza, S. Perri, K. Reale, F. Ricca,

G. Terracina, and J. Zangari

University of Calabria, Italy
{n.leone,m.alviano,f.calimeri,c.dodaro,g.ianni,

m.manna,e.mastria,m.c.morelli,f.pacenza,s.perri,

k.reale,f.ricca,g.terracina,j.zangari}@unical.it

Abstract. DLV has been one of the first solid and reliable integrated systems for
Answer Set Programming (ASP). DLV has significantly contributed both in
spreading the use of ASP and in fostering AI-based technological transfer
activities. This paper overviews the history and the recent evolution of the
system, which enable effective reasoning on ontologies and streams of data, and
the development of new applications.

Keywords: Answer set programming � Ontologies � Stream reasoning

The DLV System

DLV [27] has been one of the first solid and reliable integrated ASP systems. Its project
started a few years after the first definition of answer set semantics [21]. It has always
been, since the beginning, a suitable tool for applications in academic and real-world
scenarios, and significantly contributed both in spreading the use of ASP and in fos-
tering AI-based technological transfer activities [2, 19, 23]. After years of incremental
updates, a brand new version has been released, namely DLV-2 [4], a modern ASP
system featuring efficient evaluation techniques, proper development tools, versatility,
and interoperability. The project firstly focussed on developing separate solutions for
grounding and solving, releasing the I-DLV grounder [13] and the WASP solver [5];
later on, the two systems have been integrated in a monolithic, yet slender body. As for
the input language, DLV-2 was born fully compliant with the ASP-Core-2 standard
language; in addition, it offers additional constructs and tools for further enhancing
usability in real-world contexts [2, 23]. Historically, one of the most distinctive traits of
DLV is a full-fledged deductive-database system nature; nevertheless, it has been
steadily maintained and properly updated beyond this scope to handle an increasing
number of real-world and industrial applications. Actually, the development of
industrial applications of DLV started around 2010, with the first success story being
the development of a team-building system [23]. The number of DLV-based industrial
applications is constantly growing, among latest we mention: a system querying



DBpedia in natural language [17], a tool for rescheduling of nurse shifts in hospitals
[6], a decision support system for the diagnosis of headache disorders [16], and a
system for compliance-checking of electric panels [8]. Recently, DLV has been
empowered with tools and extensions to handle large scale reasoning with Datalog, run
on smart devices, and connect to big data systems [26, 28]. Nonetheless, some of the
most compelling challenges consist of empowering DLV with means for ontological
reasoning, and stream reasoning.

DLV for Ontological Reasoning

Since 2012, DLV has been actively supporting Ontology-Based Query Answering
(OBQA) [10], where a query q(x) is evaluated over a knowledge base consisting of an
extensional dataset D paired with an ontology R. In this context, Description Logics
(DLs) [1] and Datalog± [10] have been recognized as the two main formalisms to
specify ontologies. Unfortunately, in both cases, OBQA is generally undecidable [9].
To overcome this limitation, a number of classes of ontologies that guarantee the
decidability of query answering have been proposed with the aim of offering a good
balance between computational complexity and expressiveness. Since DLV natively
deals with plain Datalog, it can deal with Linear [11], Guarded [9] and Sticky [12],
which are Datalog rewritable under conjunctive queries, namely the ontology and the
query can be rewritten, independently from datasets, into an equivalent Datalog pro-
gram. Analogously, since DLV natively supports function symbols and value invention
in a controlled way, it directly supports Weakly�Acyclic, which admits canonical
models of finite size. In 2012, DLV started supporting Shy, which encompasses and
generalizes plain Datalog, Linear and DL-LiteR. In particular, DLV9 [25]—the branch
of DLV supporting Shy—implements a fixed-point operator called parsimonious
chase and it is still considered a top system over these classes [7]. Subsequently, a new
branch of DLV, called OWL2DLV [3], has been developed with the aim of evaluating
SPARQL queries over very large OWL 2 knowledge bases. In particular, OWL2DLV
supports Horn-SHIQ and a large fragment of EL++. Moreover, OWL2DLV incor-
porates novel optimizations sensibly reducing memory consumption and a server-like
behavior to support multiple query scenarios. The high potential of OWL2DLV for
large-scale reasoning is outlined by the results of an experiment on data-intensive
benchmarks, and confirmed by the direct interest of a major international industrial
player, which has stimulated and partially supported this work. More recently, DaR-
Ling [20]—a Datalog rewriter for DLP ontologies under SPARQL queries—enriched
the DLV suite for OBQA to deal with the sameAs and to support concrete datatypes.
Finally, by exploiting a novel algorithm designed for the so called dyadic existential
rules [22], it is now possible to exploit DLV9 to deal also with Ward ontologies.

DLV for Stream Reasoning

DLV has been empowered with Stream Reasoning capabilities, which are nowadays a
key requirement for deploying effective applications in several real-world domains,

xiv N. Leone et al.



such as IoT, Smart Cities, Emergency Management. Stream Reasoning (SR) [18]
consists in the application of inference techniques to highly dynamic data streams, and
ASP is generally acknowledged as a particularly attractive basis for it. In this view, a
new incarnation of DLV has been released, namely I-DLV-sr [15], that features a
language ad-hoc conceived for easily modeling SR tasks along with robust perfor-
mance and high scalability. In fact, the input language consists in normal (i.e.,
non-disjunctive) stratified ASP programs featuring streaming literals in rule bodies,
over the operators: in, always, count, at least, and at most; recursion involving
streaming literals is allowed. The system takes advantage from Apache Flink for effi-
ciently processing data streams and from incremental evaluation techniques [14, 24] to
efficiently scale over real-world application domains. I-DLV-sr proved to be effectively
usable over real-world SR domains; nevertheless, being under steady development, it
has been significantly improving over time with respect of stability, performance and
language features; for instance, inspired by applications in the smart city domain, new
constructs have been recently introduced that further ease the modeling of reasoning
tasks and enable new functionalities, such as external sources of computation, trigger
rules, means for explicitly refer to time, generalized streaming atoms.

Conclusion

DLV is one of the first solid and reliable integrated ASP systems. We reported on the
development of DLV, mentioned some of the latest applications, and focused on some
recent enhancements for reasoning on ontologies and streams of data.
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Reward Machines: Formal Languages
and Automata for Reinforcement Learning

Sheila McIlraith

University of Toronto, Toronto, Canada
sheila@cs.toronto.edu

Reinforcement Learning (RL) is proving to be a powerful technique for building
sequential decision making systems in cases where the complexity of the underlying
environment is difficult to model. Two challenges that face RL are reward specification
and sample complexity. Specification of a reward function – a mapping from state to
numeric value – can be challenging, particularly when reward-worthy behaviour is
complex and temporally extended. Further, when reward is sparse, it can require
millions of exploratory episodes for an RL agent to converge to a reasonable quality
policy. In this talk I’ll show how formal languages and automata can be used to
represent complex non-Markovian reward functions. I’ll present the notion of a Reward
Machine, an automata-based structure that provides a normal form representation for
reward functions, exposing function structure in a manner that greatly expedites
learning. Finally, I’ll also show how these machines can be generated via symbolic
planning or learned from data, solving (deep) RL problems that otherwise could not be
solved.



Logic-Based Machine Learning: Recent
Advances and Their Role
in Neuro-Symbolic AI

Alessandra Russo, Mark Law, Daniel Cunnington, Daniel
Furelos-Blanco, and Krysia Broda

Department of Computing, Imperial College London
{a.russo, mark.law09, d.cunnington20,

d.furelos-blanco18, k.broda}@imperial.ac.uk

Abstract. Over the last two decades there has been a growing interest in
logic-based machine learning, where the goal is to learn a logic program, called
a hypothesis, that together with a given background knowledge explains a set of
examples. Although logic-based machine learning has traditionally addressed
the task of learning definite logic programs (with no negation), our logic-based
machine learning approaches have extended this field to a wider class of for-
malisms for knowledge representation, captured by the answer set programming
(ASP) semantics. The ASP formalism is truly declarative and due to its
non-monotonicity it is particularly well suited to commonsense reasoning. It
allows constructs such as choice rules, hard and weak constraints, and support
for default inference and default assumptions. Choice rules and weak constraints
are particularly useful for modelling human preferences, as the choice rules can
represent the choices available to the user, and the weak constraints can specify
which choices a human prefers. In the recent years we have made fundamental
contributions to the field of logic-based machine learning by extending it to the
learning of the full class of ASP programs and the first part of this talk provides
an introduction to these results and to the general field of learning under the
answer set semantics, referred here as learning from answer sets (LAS).

To be applicable to real-world problems, LAS has to be tolerant to noise in
the data, scalable over large search spaces, amenable to user-defined
domain-specific optimisation criteria and capable of learning interpretable
knowledge from structured and unstructured data. The second part of this talk
shows how these problems are addressed by our recently proposed FastLAS
approach for learning Answer Set Programs, which is targeted at solving
restricted versions of observational and non-observational predicate learning
from answer sets tasks. The advanced features of our family of LAS systems
have made it possible to solve a variety of real-world problems in a manner that
is data efficient, scalable and robust to noise. LAS can be combined with sta-
tistical learning methods to realise neuro-symbolic solutions that perform both
fast, low-level prediction from unstructured data, and high-level logic-based
learning of interpretable knowledge. The talk concludes with presenting two
such neuro-symbolic solutions for respectively solving image classification
problems in the presence of distribution shifts, and discovering sub-goal
structures for reinforcement learning agents.



Non-monotonic Logic-Based Machine Learning

Over the last decade we have witnessed a growing interest in Machine Learning. In
recent years Deep Learning has been demonstrated to achieve high-levels of accuracy
in data analytics, signal and information processing tasks, bringing transformative
impact in domains such as facial, image, speech recognition, and natural language
processing. They have best performance on computational tasks that involve large
quantities of data and for which the labelling process and feature extraction would be
difficult to handle. However, they suffer from two main drawbacks, which are crucial in
the context of cognitive computing. They are not capable of supporting AI solutions
that are good at more than one task. They are very effective when applied to single
specific tasks, but applying the same technology from one task to another within the
same class of problems would often require retraining, causing the system to possibly
forget how to solve a previously learned task. Secondly, and most importantly, they are
not transparent. Operating primarily as black boxes, deep learning approaches are not
amenable to human inspection and human feedbacks, and the learned models are not
explainable, leaving the humans agnostic of the cognitive and learning process per-
formed by the system. This lack of transparency hinders human comprehension,
auditing of the learned outcomes, and human active engagement into the learning and
reasoning processes performed by the AI systems. This has become an increasingly
important issue in view of the recent General Data Protection Regulation (GDPR)
which requires actions taken as a result of a prediction from a learned model to be
justified.

There has been a growing interest in logic-based machine learning approaches
whose learned models are explainable and human interpretable. The goal of these
approaches is the automated acquisition of knowledge (expressed as a logic program)
from given (labelled) examples and existing background knowledge. One of the main
advantage of these machine learning approaches is that the learned knowledge can be
easily expressed into plain English and explained to a human user, so facilitating a
closer interaction between humans and the machine. Logic-based machine learning has
traditionally addressed the task of learning knowledge expressible in a very limited
form [14] (definite clauses). Our logic-based machine learning systems [1, 2, 7] have
extended this field to a wider class of formalisms for knowledge representation, cap-
tured by the answer set programming (ASP) semantics [4]. This ASP formalism is truly
declarative, and due to its non-monotonicity it is particularly well suited to common-
sense reasoning It allows constructs such as choice rules, hard and weak constraints,
and support for default inference and default assumptions. Choice rules and weak
constraints are particularly useful for modelling human preferences, as the choice rules
can represent the choices available to the user, and the weak constraints can specify
which choices a human prefers. In the recent years we have made fundamental con-
tributions to the field of logic-based machine learning by extending it to the learning
of the full class of ASP programs [5]. Early approaches to learning ASP programs can
mostly be divided into two categories: brave learners aim to learn a program such that
at least one answer set covers the examples; on the other hand, cautious learners aim to
find a program which covers the examples in all answer sets. Most of the early
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ASP-based ILP systems were brave. In [7], we showed that some ASP programs cannot
be learned using either the brave or the cautious settings, and in fact a combination of
both brave and cautious semantics is needed. This has the original motivation for the
Learning from Answer Sets family of frameworks [8–11] which we have developed
since then and have been shown to be able to learn any ASP program.

One of the main features of our LAS framework is the ability to support
non-monotonic learning. Non-monotonicity permits incremental learning, allowing the
machine to periodically revise rules and knowledge learnt, as examples of user beha-
viours are continuously observed. The non-monotonicity property is particularly rele-
vant in pervasive computing, where systems are expected to autonomously adapt to
changes in user context and behaviour, whilst operating seamlessly with minimal user
intervention. We have used our non-monotonic LAS systems in mobile privacy [13],
where devices learn and revise user’s models from sensory input and user actions (e.g.
user’s actions on mobile devices), and in security [3], where anomaly detection policies
are learned from historical data using domain-specific function for scoring candidate
rules to guide the learning process towards the best policies. In both applications, the
declarative representation of the learned programs make them explainable to human
users, and providing way for users to understand and amend what has been learnt.

Often, many alternative solutions can be learned to explain given set of examples,
and most logic-based learning systems employ a bias towards shorter solutions, based
on Occam’s razor (the solution with the fewest assumptions is the most likely).
Choosing the shortest hypothesis may lead to very general hypotheses being learned
from relatively few examples. While this can be a huge advantage of logic-based
machine learning over other machine learning approaches that need larger quantities of
data, learning such general rules without sufficient quantities of data to justify them
may not be desirable in every application domain. For example, in access control,
wrongly allowing access to a resource may be far more dangerous than wrongly
denying access. So, learning a more general hypothesis, representing a more permissive
policy, would be more dangerous than a specific hypothesis, representing a more
conservative policy. Equally, for access control where the need for resources is time
critical, wrongly denying access could be more dangerous than wrongly allowing
access. When learning such policies, and choosing between alternative hypotheses, it
would be useful to specify whether the search should be biased towards more or less
general hypotheses. In [6], we have proposed a logic-based machine learning system,
called FastLAS, targeted at solving a restricted version of the context-dependent
learning from answer sets tasks that require only observational predicate learning. This
system has two main advantages: it allows for domain-specific scoring function for
hypotheses which generalises the standard Occam’s razor approach, where hypotheses
with the lowest number of literals are normally assumed to be preferred; and it is
specifically designed to be scalable with respect to the hypothesis space. Its restriction
to observational predicate learning has been lifted in [12], where the FastNonOPL
system is proposed to solve non observational predicate learning from answer set tasks,
whilst preserving scalability is a challenging open problem.
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Abstract. Abstract argumentation frameworks are among the best researched
formalisms in the last two decades. They can be used to model discourses,
provide a common ground for several nonmonotonic logics, and are employed
to define semantics for more advanced argumentation formalisms. In the latter
two domains, it is not the abstract argument’s name, but the claim the argument
represents, which should be in the focus of reasoning tasks. In this context, the
fact that different arguments can represent the same claim leads to certain
intricacies when it comes to the actual definition of semantics and in terms of
computational aspects. In this talk, we give an overview on recent results in this
direction. Those include the relation between argumentation and logic pro-
gramming semantics, as well as a complexity analysis of acceptance problems in
terms of claims and the effect of preferences in this setting.

Keywords: Argumentation Semantics � Claim-based Reasoning � Computational
Complexity � Preferences

A Claim-Based Perspective on Logic Programming

Computational argumentation is a vibrant research area in AI [1, 2]; it is concerned
with conflict resolution of inconsistent information and the justification of defeasible
statements (claims) through logical or evidence-based reasoning. The abstract repre-
sentation of conflicting information, significantly shaped by Dung [6], is among the
most prominent approaches in this context. In his abstract argumentation frameworks
(AFs), each argument is treated as an abstract entity while an attack relation encodes
(asymmetric) conflicts between them. Acceptance of arguments is evaluated with
respect to argumentation semantics. In recent years, the acceptance of claims received
increasing attention [3, 9]. Claim-augmented argumentation frameworks (CAFs) [9]
extend Dung’s model by assigning each argument its own claim, allowing for sys-
tematic study of structural and relational properties of claim acceptance. Formally, a
CAF is a triple ðA;R; clÞ consisting of a set of arguments A, a set of directed attacks

1 Supported by WWTF through project ICT19-065, and FWF through projects P30168
and W1255-N23.



R�A� A between arguments, and a claim-function cl assigning a claim to each
argument. They can be represented as directed labeled graphs (cf. Example 1).

Argumentation and logic programming are closely related [5, 6, 13]. The corre-
spondence of stable model semantics with stable semantics in AFs is probably the most
fundamental example [6], but also other logic programming semantics admit equivalent
argumentation semantics [13]. With CAFs, the correspondence is particularly close:
when identifying atoms in a given logic program (LP) P with claims of arguments
constructed from rules in P we obtain a natural correspondence between LP semantics
and AF semantics in terms of claims.
Example 1 (adapted from [5]). Consider the following logic program P:

When we interpret each rule ri as an argument xi with claim headðriÞ and consider
attacks between arguments xi and xj if the claim of xi appears negated in the body of the
rule rj corresponding to xj, we obtain the following CAF F :

x0

ax2b

x3c

x1d
x5

e

x4

e

P returns ;, fag, and fd; bg under p-stable model semantics (where one allows for
undecided atoms). The complete2 argument-sets of F in turn are ;, fx0g, and fx1; x2g.
Inspecting the claims of these sets, F thus yields the same outcome as P. This is not a
coincidence: as shown in [5], complete semantics correspond to p-stable model
semantics when extracting the claims of the arguments. �

Hence the representation as CAF establishes the connection between the two
paradigms without detours, i.e., no additional steps or mappings are needed. Moreover,
with CAFs, it is possible to capture semantics that make direct use of the claims. This
advantage becomes apparent when we consider semantics that take false atoms into
account: L-stable semantics [10] minimizes the set of undecided atoms in a p-stable
model. Semi-stable semantics can be seen as their AF counter-part: here, the set of
arguments which are neither accepted (i.e., contained in a complete extension) nor
attacked is minimized. However, when evaluating our LP P under L-stable model
semantics and its corresponding CAF F under semi-stable semantics we observe an
undesired discrepancy.
Example 2 (Example 1 ctd.). The L-stable models of P are fag (atoms b; c; d are false)
and fd; bg (here, a; c are false). We obtain the single semi-stable extension fx0g in F
(x0 attacks all remaining arguments except x4, minimizing undecided arguments),
hence fag is the only semi-stable claim-set of F . �

2 A set of arguments E is complete if it is conflict-free, defends itself, and contains all arguments it
defends (E defends a if each attacker b of a is counter-attacked).
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With CAFs, it is possible to define argumentation semantics such that they mimic
the behavior of performing maximization on conclusion-level and minimize the set of
undecided claims instead. For this, it is crucial to consider the defeated claims of an
extension: intuitively, a claim is defeated iff all arguments carrying this claim are
attacked. We illustrate the idea on our example.
Example 3 (Example 1 ctd.). We model L-stable semantics by maximizing accepted
and defeated claims of complete sets: The set fx0g defeats claims b; c; d; claim e is not
defeated because x0 does not attack all occurrences of e. The set of accepted and
defeated claims w.r.t. the extension fx0g (the claim-range of fx0g) is thus given by
fa; b; c; dg. Note that we obtain the same claim-range for the complete set fx1; x2g,
which provides us with two semi-stable extensions under this evaluation method. Now,
F yields the same outcome as P when evaluated under L-stable semantics. �

Advances in Claim-Based Reasoning in a Nutshell

Claim-Based Semantics. We sketched two different evaluation methods for CAFs,
taking into account different aspects of claim-based reasoning: In the first method,
semantics are evaluated with respect to the underlying AF and the claims are extracted
in the final step of the evaluation. We call this variant inherited semantics [9]. In the
second method, we considered claim-defeat (as illustrated in Example 3) and per-
formed maximization on claim-level. We call this variant claim-level semantics [8, 12].
Both variants capture claim-based reasoning in different aspects. While inherited
semantics are well-suited to investigate justification in structured argumentation,
claim-level semantics capture reasoning in conclusion-oriented formalisms. In the talk,
we will review a detailed comparison between these two variants, cf. [8].

Well-formed CAFs. Observe that in CAFs obtained from LPs (cf. Example 5), any two
arguments with the same claim attack the same arguments, i.e., if x and y have the same
claim then x attacks the argument z iff y attacks z. This behavior is common to many
instantiations of CAFs, and gives rise to the important class of well-formed CAFs.
Formally, a CAF ðA;R; clÞ is well-formed iff for all x; y 2 A with clðxÞ ¼ clðyÞ we
have fz jðx; zÞ 2 Rg ¼ fz jðy; zÞ 2 Rg. As mentioned, well-formed CAFs capture
LP-instantiations. Moreover, well-formed CAFs have benefits over general CAFs with
regards to semantical properties and computational complexity. We furthermore note
that the inherited and claim-based versions of prominent (e.g., stable) semantics
coincide on well-formed CAFs [8].

Preferences in Claim-Based Reasoning. While well-formed CAFs are a natural
sub-class of CAFs, they fail to account for a notion common to many formalisms
instantiated into AFs, namely preferences. Specifically, in the course of the instantia-
tion process, it often occurs that one argument x is considered stronger than (or:
preferred to) another argument y (x � y). If there is an attack violating this preference,
i.e., ðy; xÞ 2 R, then this is called a critical attack. This notion of preference in terms of
argument strength leads to a generalization of well-formed CAFs to so-called
Preference-based CAFs (PCAFs) [4]. Formally, a PCAF is given as ðA;R; cl;�Þ where
ðA;R; clÞ is a well-formed CAF and � is an asymmetric preference relation over A.
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Preferences are then resolved via so-called preference-reductions which transform
PCAFs into CAFs. The literature [11] describes several such reductions for AFs: a
prominent method is to delete critical attacks; further approaches revert critical attacks
or delete them only if there is also an attack from the stronger to the weaker argument,
Finally a combination of the latter two is often considered. These four reductions give
rise to four new CAF-classes being strictly located between well-formed CAFs and
general CAFs. Also, only some of these classes preserve certain benefits of
well-formed CAFs while others exhibit the same behavior as general CAFs.

Complexity Results. In the talk, we finally review complexity results obtained for
CAFs and PCAFs [4, 7, 9]. It has been shown that the verification problem (testing
whether a given claim set is an extension for a given CAF/PCAF) can have higher
complexity for CAFs than for AFs, while this gap does not show up for most semantics
when restricting ourselves to well-formed CAFs. Interestingly, for PCAFs this effect
depends on the chosen reduction.
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Syntactic ASP Forgetting with Forks
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Abstract. In this paper, we present a syntactic transformation, called
the unfolding operator, that allows forgetting an atom in a logic program
(under ASP semantics). The main advantage of unfolding is that, unlike
other syntactic operators, it is always applicable and guarantees strong
persistence, that is, the result preserves the same stable models with
respect to any context where the forgotten atom does not occur. The
price for its completeness is that the result is an expression that may
contain the fork operator. Yet, we illustrate how, in some cases, the
application of fork properties may allow us to reduce the fork to a logic
program, even in conditions that could not be treated before using the
syntactic methods in the literature.

Keywords: Answer Set Programming · Equilibrium Logic ·
Forgetting · Strong Persistence · Strong Equivalence · Forks

1 Introduction

A common representational technique in Answer Set Programming [13,15] (ASP)
is the use of auxiliary atoms. Their introduction in a program may be due to
many different reasons, for instance, looking for a simpler reading, providing
new constructions (choice rules, aggregates, transitive closure, etc.) or reducing
the corresponding ground program. When a program (or program fragment)
Π for signature AT uses auxiliary atoms A ⊆ AT , they do not have a relevant
meaning outside Π. Accordingly, they are usually removed1 from the final stable
models, so the latter only use atoms in V = AT \ A, that is, the relevant or
public vocabulary that encodes the solutions to our problem in mind. Thus, when
seen from outside, Π becomes a black box that hides internal atoms from A and
provides solutions in terms of public atoms from V. A reasonable question is
whether we can transform these black boxes into white boxes, that is, whether
we can reformulate some program Π exclusively in terms of public atoms V,

1 Most ASP solvers allow hiding the extension of some chosen predicates.
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forgetting the auxiliary ones in A. A forgetting operator f(Π,A) = Π ′ transforms
a logic program Π into a new program Π ′ that does not contain atoms in A
but has a similar behaviour on the public atoms V . Of course, the key point
here is the definition of similarity between Π and Π ′ (relative to V ) something
that gave rise to different alternative forgetting operators, further classified in
families, depending on the properties they satisfy – see [9] for an overview. From
all this wide spectrum, however, when our purpose is forgetting auxiliary atoms,
similarity can only be understood as preserving the same knowledge for public
atoms in V , and this can be formalised as a very specific property. In particular,
both programs Π and Π ′ = f(Π,A) should not only produce the same stable
models (projected on V ) but also keep doing so even if we add a new piece
of program Δ without atoms in A. This property, known as strong persistence,
was introduced in [12] but, later on, [10] proved that it is not always possible
to forget A in an arbitrary program Π under strong persistence. Moreover, [10]
also provided a semantic condition, called Ω, on the models of Π in the logic
of Here-and-There (HT) [11] (the monotonic basis of Equilibrium Logic [16]) so
that atoms A are forgettable in Π iff Ω does not hold. When this happens,
their approach can be used to construct f(Π,A) from the HT models using,
for instance, the method from [5,7]. Going one step further in this model-based
orientation for forgetting, [1] overcame the limitation of unforgettable sets of
atoms at the price of introducing a new type of disjunction, called fork and
represented as ‘|’. To this aim, [1] defined an HT-based denotational semantics
for forks.

Semantic-based forgetting is useful when we are interested in obtaining a
compact representation. For instance, the method from [7] allows obtaining a
minimal logic program from a set of HT-countermodels. However, this is done
at a high computational cost (similar to Boolean function minimisation tech-
niques). When combined with the Ω-condition or, similarly, with the use of
HT-denotations, this method becomes practically unfeasible without the use of
a computer. This may become a problem, for instance, when we try to prove
properties of some new use of auxiliary atoms in a given setting, since one
would expect a human-readable proof rather than resorting to a computer-based
exhaustive exploration of models. On the other hand, semantic forgetting may
easily produce results that look substantially different from the original program,
even when this is not necessary. For example, if we apply an empty forgetting
f(Π, ∅) strictly under this method, we will usually obtain a different program
Π ′, strongly equivalent to Π, but built up from countermodels of the latter,
possibly having a very different syntactic look.

An alternative and in some sense complementary orientation for forgetting
is the use of syntactic transformations. [12] introduced the first syntactic for-
getting operator, fas, that satisfied strong persistence. This operator forgot a
single atom A = {a} at a time and was applicable, under some conditions, to
non-disjunctive logic programs. More recently, [4] presented a more general syn-
tactic operator fsp, also for a single atom A = {a}, that can be applied to any
arbitrary logic program and satisfies strong persistence when the atom can be
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forgotten (i.e. the Ω condition does not hold). Moreover, Berthold et al. [4] also
provided three syntactic sufficient conditions (that they call a-forgettable) under
which Ω does not hold, and so, under which fsp is strongly persistent. Perhaps
the main difficulty of fsp comes from its complex definition: it involves 10 dif-
ferent types of rule-matching that further deal with multiple partitions of Π
(using a construction called as-dual). As a result, even though it offers full gen-
erality when the atom is forgettable, its application by hand does not seem very
practical, requiring too many steps and a careful reading of the transformations.

In this paper, we provide a general syntactic operator, called unfolding, that
is always applicable and allows forgetting an atom in a program, although it
produces a result that may combine forks and arbitrary propositional formulas.
We also discuss some examples in which a fork can be removed in favour of a
formula, something that allows one to obtain a standard program (since formulas
can always be reduced to that form [6]). We show examples where sufficient
syntactic conditions identified so far are not applicable, whereas our method can
still safely be applied to obtain a correct result, relying on properties of forks.
Unfolding relies on another syntactic operator for forgetting a single atom, fc,
based on the cut rule from a sequent calculus and is close to the application of
fsp from [4]. This operator produces a propositional formula without forks, but
is only applicable under some sufficient syntactic conditions.

The rest of the paper is organised as follows. Section 2 contains a background
with definitions and results from HT, stable models and the semantics of forks.
Section 3 presents the cut transformation that produces a propositional formula.
Then, Sect. 4 introduces the unfolding, which makes use of the cut and produces
a fork in the general case. Finally, Sect. 5 concludes the paper.

2 Background

We begin by recalling some basic definitions and results related to the logic
of HT. Let AT be a finite set of atoms called the alphabet or vocabulary. A
(propositional) formula ϕ is defined using the grammar:

ϕ ::= ⊥
∣
∣
∣
∣
∣
∣ p

∣
∣
∣
∣
∣
∣ ϕ ∧ ϕ

∣
∣
∣
∣
∣
∣ ϕ ∨ ϕ

∣
∣
∣
∣
∣
∣ ϕ → ϕ

where p is an atom p ∈ AT . We define the language LAT as the set of all
propositional formulas that can be formed over alphabet AT . We use Greek
letters ϕ,ψ, γ and their variants to stand for formulas. Implication ϕ → ψ will
be sometimes reversed as ψ ← ϕ. We also define the derived operators ¬ϕ def=
(ϕ → ⊥), 
 def= ¬⊥ and ϕ ↔ ψ def= (ϕ → ψ) ∧ (ϕ ← ψ). We use letters p, q, a, b
for representing atoms in AT , but normally use a for an auxiliary atom to be
forgotten. A theory Γ is a finite2 set of formulas that can be also understood as
their conjunction. When a theory consists of a single formula Γ = {ϕ} we will

2 As we will see, the cut operator support is a conjunction built from a finite set
of rules that is sometimes negated. Generalising to infinite theories would require
infinitary Boolean connectives.
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frequently omit the brackets. Given any theory Γ , we write Γ [γ/ϕ] to denote
the uniform substitution of all occurrences of subformula γ in Γ by formula ϕ.
An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn ∧ ¬¬pn+1 ∧ · · · ∧ ¬¬pk → pk+1 ∨ · · · ∨ ph

where all pi above are atoms in AT and 0 ≤ m ≤ n ≤ k ≤ h. The antecedent and
consequent of a rule r are respectively called the body and the head. We define
the sets of atoms Hd(r) def= {pk+1, . . . , ph}, Bd+(r) def= {p1, . . . , pm}, Bd−(r) def=
{pm+1, . . . , pn}, Bd−−(r) def= {pn+1, . . . , pk} and Bd(r) def= Bd+(r) ∪ Bd−(r) ∪
Bd−−(r). We say that r is an extended normal rule if |Hd(r)| ≤ 1. A rule with
Hd(r) = ∅ is called a constraint. A normal rule with Bd(r) = ∅ and |Hd(r)| = 1
is called a fact. Given some atom a, a rule r is said to contain an a-choice if
a ∈ Bd−−(r) ∩ Hd(r), that is, the rule has the form ϕ ∧ ¬¬a → ψ ∨ a. A
program is a finite set of rules, sometimes represented as their conjunction. We
say that program Π belongs to a syntactic category if all its rules belong to
that category. For instance, Π is an extended normal program if all its rules
are extended normal. We will usually refer to the most general class, extended
disjunctive logic programs, just as logic programs for short.

A classical interpretation T is a set of atoms T ⊆ AT . We write T |= ϕ to
stand for the usual classical satisfaction of a formula ϕ. An HT-interpretation is
a pair 〈H,T 〉 (respectively called “here” and “there”) of sets of atoms H ⊆ T ⊆
AT ; it is said to be total when H = T . The fact that an interpretation 〈H,T 〉
satisfies a formula ϕ, written 〈H,T 〉 |= ϕ, is recursively defined as follows:

– 〈H,T 〉 �|= ⊥
– 〈H,T 〉 |= p iff p ∈ H
– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ → ψ iff both (i) T |= ϕ → ψ and (ii) 〈H,T 〉 �|= ϕ or 〈H,T 〉 |= ψ

An HT-interpretation 〈H,T 〉 is a model of a theory Γ if 〈H,T 〉 |= ϕ for all
ϕ ∈ Γ . Two formulas (or theories) ϕ and ψ are HT-equivalent, written ϕ ≡ ψ, if
they have the same HT-models. The logic of HT satisfies the law of substitution
of logical equivalents so, in particular:

Π ∧ a ≡ Π ∧ (a ↔ 
) ≡ Π[a/
] ∧ a (1)
Π ∧ ¬a ≡ Π ∧ (a ↔ ⊥) ≡ Π[a/⊥] ∧ ¬a (2)

Π ∧ ¬¬a ≡ Π ∧ (¬a ↔ ⊥) ≡ Π[¬a/⊥] ∧ ¬¬a (3)

A total interpretation 〈T, T 〉 is an equilibrium model of a formula ϕ iff 〈T, T 〉 |= ϕ
and there is no H ⊂ T such that 〈H,T 〉 |= ϕ. If so, we say that T is a stable
model of ϕ. We write SM(ϕ) to stand for the set of stable models of ϕ and
SMV (ϕ) def= {T ∩V | T ∈ SM(ϕ) } for their projection onto some vocabulary V .

In [1], we extended logic programs to include a new construct ‘ | ’ we called
fork and whose intuitive meaning is that the stable models of two logic programs
Π1 | Π2 correspond to the union of stable models from Π1 and Π2 in any context



Syntactic ASP Forgetting with Forks 7

Π ′, that is SM((Π1 | Π2) ∧ Π ′) = SM(Π1 ∧ Π ′) ∪ SM(Π2 ∧ Π ′). Using this
construct, we studied the property of projective strong equivalence (PSE) for
forks: two forks satisfy PSE for a vocabulary V iff they yield the same stable
models projected on V for any context over V . We also provided a semantic
characterisation of PSE that allowed us to prove that it is always possible to
forget (under strong persistence) an auxiliary atom in a fork, something proved
to be false in standard HT. We recall now some definitions from [1] and [3].

Definition 1. Given T ⊆ AT , a T -support H is a set of subsets of T , that is
H ⊆ 2T , satisfying that H �= ∅ iff T ∈ H.

To increase readability, we write a support as a sequence of interpretations
between square brackets. For instance, possible supports for T = {a, b} are
[{a, b} {a}], [{a, b} {b} ∅] or the empty support [ ]. Given a propositional for-
mula ϕ and T ⊆ AT , the set of HT-models {H ⊆ T | 〈H,T 〉 |= ϕ} forms a
T -support we denote as �ϕ �T .

For any T -support H and set of atoms V , we write HV to stand for {H ∩V |
H ∈ H}. We say that a T -support H is V -feasible iff there is no H ⊂ T in
H satisfying that H ∩ V = T ∩ V . The name comes from the fact that, if this
condition does not hold for some H = �ϕ �T with T ⊆ V , then T cannot be
stable for any formula ϕ∧ψ with ψ ∈ L(V ) because 〈H,T 〉 |= ϕ∧ψ and H ⊂ T .

We can define an order relation � between T -supports by saying that, given
two T -supports, H and H′, H � H′ iff either H = [ ] or [ ] �= H′ ⊆ H. It is clear
that [ ] and [T ] are the bottom and top elements, respectively, in the class of all
T -supports. Given a T -support H, we define its complementary support H as:

H def=
{

[ ] if H = 2T

[ T ] ∪ {H ⊆ T | H /∈ H} otherwise

We also consider the ideal of H defined as ↓H = {H′ | H′ � H} \ { [ ] }. Note
that, the empty support [ ] is not included in the ideal, so ↓[ ] = ∅. If Δ is any
set of supports:

↓Δ def=
⋃

H∈Δ

↓H =
⋃

H∈Δ

{ H′ � H
∣
∣ H′ �= [ ] }

Definition 2. A T -view Δ is a set of T -supports that is �-closed, i.e., ↓Δ = Δ.

A fork is defined using the grammar:

F ::= ⊥
∣
∣
∣
∣
∣
∣ p

∣
∣
∣
∣
∣
∣ (F | F )

∣
∣
∣
∣
∣
∣ F ∧ F

∣
∣
∣
∣
∣
∣ ϕ ∨ ϕ

∣
∣
∣
∣
∣
∣ ϕ → F

where ϕ is a propositional formula and p ∈ AT is an atom. We write LAT
to stand for the language formed by all forks for signature AT . Given a fork
(F | G), we say that F and G are its left and right branches, respectively.

We provide next the semantics of forks in terms of T -denotations. To this
aim, we will use a weaker version of the membership relation, ∈̂, defined as
follows. Given a T -view Δ, we write H∈̂Δ iff H ∈ Δ or both H = [ ] and Δ = ∅.
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Definition 3 (T -denotation of a fork). Let AT be a propositional signature
and T ⊆ AT a set of atoms. The T -denotation of a fork F , written 〈〈F 〉〉T , is a
T -view recursively defined as follows:

〈〈⊥ 〉〉T def= ∅
〈〈 p 〉〉T def= ↓� p �T for any atom p

〈〈F ∧ G 〉〉T def= ↓{ H ∩ H′ ∣
∣ H ∈ 〈〈F 〉〉T and H′ ∈ 〈〈G 〉〉T }

〈〈ϕ ∨ ψ 〉〉T def= ↓{ H ∪ H′ ∣
∣ H ∈̂ 〈〈ϕ 〉〉T and H′ ∈̂ 〈〈ψ 〉〉T }

〈〈ϕ → F 〉〉T def=
{

{2T } if �ϕ �T = [ ]
↓{ �ϕ �T ∪ H

∣
∣ H ∈ 〈〈F 〉〉T } otherwise

〈〈F | G 〉〉T def= 〈〈F 〉〉T ∪ 〈〈G 〉〉T

If F is a fork and T ⊆ V ⊆ AT , we can define the T -view:

〈〈F 〉〉T
V

def= ↓{ H|V
∣
∣ H ∈ 〈〈F 〉〉Z s.t. Z ∩ V = T and H is V -feasible }

Definition 4 (Projective Strong Equivalence). Let F and G be forks and
V ⊆ AT a set of atoms. We say that F and G are V -strongly equivalent, in
symbols F ∼=V G, if for any fork L in LV , SMV (F ∧ L) = SMV (G ∧ L). When
V = AT we write F ∼= G dropping the V subindex and simply saying that F and
G are strongly equivalent.

The properties listed in the following theorem were proved in [1].

Theorem 1. Let F and G be arbitrary forks, and ϕ and ψ propositional formu-
las all of them for signature AT , and let V ⊆ AT . Then:

(i) F ∼=V G iff 〈〈F 〉〉T
V = 〈〈G 〉〉T

V , for every T ⊆ V
(ii) F ∼= G iff 〈〈F 〉〉T = 〈〈G 〉〉T , for every T ⊆ AT
(iii) 〈〈ϕ 〉〉T = ↓�ϕ �T for every T ⊆ AT
(iv) ϕ ∼= ψ iff �ϕ �T = �ψ �T , for every T ⊆ AT , iff ϕ ≡ ψ in HT.
(v) The set of atoms AT \ V can be forgotten in F as a strongly persistent

propositional formula3 iff for each T ⊆ V , 〈〈F 〉〉T
V has a unique maximal

support. ��

Proposition 1. For every pair α and β of propositional formulas:

(
 | α) ∼= (¬α | α) ∼= ¬¬α → α ∼= α ∨ ¬α (4)
(⊥ | α) ∼= α (5)

(¬α | ¬¬α) ∼= 
 (6)
(α ∧ ¬β | α ∧ ¬¬β) ∼= α (7)

Proposition 2. Let F, F ′, G and G′ be forks for some signature AT and let
V ⊆ AT . If F ∼=V F ′ and G ∼=V G′ then (F | G) ∼=V (F ′ | G′). ��
3 This is, therefore, equivalent to not satisfying the Ω condition from [10].
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3 The Cut Operator

Given any program Π, let us define the syntactic transformation beheada(Π) as
the result of removing all rules with a ∈ Hd(r)∩Bd+(r) and all head occurrences
of a from rules where a ∈ Hd(r) ∩ Bd−(r). Intuitively, beheada(Π) removes
from Π all rules that, having a in the head, do not provide a support for a. In
fact, rules with a ∈ Hd(r) ∩ Bd+(r) are tautological, whereas rules of the form
ϕ ∧ ¬a → a ∨ ψ are strongly equivalent to ϕ ∧ ¬a → ψ. As a result:

Proposition 3. For any logic program Π: Π ∼= beheada(Π). ��
The cut operator is defined in terms of the well-known cut inference rule

from the sequent calculus which, when rephrased for program rules, amounts to:

ϕ ∧ a → ψ ϕ′ → a ∨ ψ′

ϕ ∧ ϕ′ → ψ ∨ ψ′ (CUT)

where ϕ, ϕ′ are conjunctions of elements that can be an atom a, its negation ¬a
or its double negation ¬¬a, and ψ′ and ψ are disjunctions of atoms. If r and r′

stand for ϕ ∧ a → ψ and ϕ′ → a ∨ ψ′ respectively, then we denote Cut(a, r, r′)
to stand for the resulting implication ϕ ∧ ϕ′ → ψ ∨ ψ′.

Example 1 (Example 9 from [4]). Let Π1 be the program:

a → t (8)
¬a → v (9)

s → a (10)
r → a ∨ u (11)

Then, Cut(a, (8), (11)) = (r → t ∨ u) is the result of the cut application:


 ∧ a → t r → a ∨ u


 ∧ r → t ∨ u

In this program we can also perform a second cut through atom a corresponding
to Cut(a, (8), (10)) = (s → t). ��

Given a rule r with a ∈ Bd+(r), we define the formula:

NES(Π, a, r) def=
∧

{ Cut(a, r, r′) | r′ ∈ Π, a ∈ Hd(r′) }

that is, NES(Π, a, r) collects the conjunction of all possible cuts in Π for a
given atom a and a selected rule r with a in the positive body. For instance, in
our example program Π1 for rule (8) we get:

NES(Π1, a, (8)) = (r → t ∨ u) ∧ (s → t). (12)

When r = ¬a = (
 ∧ a → ⊥) we can observe that:

NES(Π, a,¬a) =
∧

{(
 ∧ ϕ′ → ⊥ ∨ ψ′) | (ϕ′ → a ∨ ψ′) ∈ Π}

=
∧

{(ϕ′ → ψ′) | (ϕ′ → a ∨ ψ′) ∈ Π}
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That is, we just take the rules with a in the head, but after removing a from that
head. As an example, NES(Π1, a,¬a) = (s → ⊥) ∧ (r → u) = ¬s ∧ (r → u).
Note that, since a was the only head atom in (10), after removing it, we obtained
an empty head ⊥ leading to (s → ⊥).

An interesting relation emerges from the negation of NES that can be con-
nected with the so-called external support from [8]. In particular, we can use de
Morgan and the HT equivalence ¬(ϕ′ → ψ′) ≡ ¬¬ϕ′ ∧ ¬ψ′ to conclude:

¬NES(Π, a,¬a) = ¬¬
∨

{(ϕ′ ∧ ¬ψ′) | (ϕ′ → a ∨ ψ′) ∈ Π} = ¬¬ESΠ(a)

where ESΠ(a) corresponds to the external support4 ESΠ(Y ) from [8] for any
set of atoms Y , but applied here to Y = {a}. In the example:

¬NES(Π1, a,¬a) = ¬(¬s ∧ (r → u)) ≡ ¬¬s ∨ (¬¬r ∧ ¬u) (13)

Definition 5 (Cut operator fc). Let Π be a logic program for alphabet AT
and let a ∈ AT . Then fc(Π, a) is defined as the result of:

(i) Remove atom ‘a’ from non-supporting heads obtaining Π ′ = beheada(Π);
(ii) Replace each rule r ∈ Π ′ with a ∈ B+(r) by NES(Π ′, a, r).
(iii) From the result, remove every rule r with Hd(r) = {a};
(iv) Finally, replace the remaining occurrences of ‘a’ by ¬NES(Π ′, a,¬a). ��

Example 2 (Example 1 continued). Step (i) has no effect, since beheada(Π1) =
Π1. For step (ii) , the only rule with a in the positive body is (8) and so, the latter
is replaced by (12). Step (iii) removes rule (10) and, finally, Step (iv) replaces
a by (13) in rules (9) and (11). Finally, fc(Π1, a) becomes to the conjunction of:

(s → t) ∧ (r → t ∨ u) (14)
¬(¬¬s ∨ (¬¬r ∧ ¬u)) → v (15)
r → ¬¬s ∨ (¬¬r ∧ ¬u) ∨ u (16)

Now, by simple HT transformations [6], it is easy to see that the antecedent
of (15) amounts to ¬s ∧ (¬r ∨ ¬¬u)), so (15) can be replaced by the two rules
(17) and (18) below, whereas (16) is equivalent to the conjunction of (19) below
that stems from r → ¬¬s ∨ ¬u ∨ u, plus the rule r → ¬¬s ∨ ¬¬r ∨ u that is
tautological and can be removed.

¬s ∧ ¬r → v (17)
¬s ∧ ¬¬u → v (18)

r ∧ ¬s ∧ ¬¬u → u (19)

To sum up, fc(Π1, a) is strongly equivalent to program (14) ∧ (17) ∧ (18) ∧
(19). ��
4 In fact, [2] presented a more limited forgetting operator fes based on the external

support.
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The program we obtained above is the same one obtained with the fsp operator
in [4] although the process to achieve it, is slightly different. This is because, in
general, fc(Π, a) takes a logic program Π but produces a propositional formula
where a has been forgotten, whereas fsp produces the logic program in a direct
way. Although, at a first sight, this could be seen as a limitation of fc, the truth
is that it is not an important restriction, since there exist well-known syntactic
methods [6,14] to transform a propositional formula5 into a (strongly equivalent)
logic program under the logic of HT. Moreover, in the case of fsp, directly
producing a logic program comes with the cost of a more complex transformation,
with ten different cases and the combinatorial construction of a so-called as-dual
set of rules generated from multiple partitions of the original program6. We
suggest that well-known logical rules such as de Morgan or distributivity (many
of them still valid in intuitionistic logic) are far easier to learn and apply than
the fsp transformation when performing syntactic transformations by hand. On
the other hand, we may sometimes be interested in keeping the propositional
formula representation inside HT (for instance, for studying strong equivalence
or the relation to other constructions) rather than being forced to unfold the
formula into a logic program, possibly leading to a combinatorial explosion due
to distributivity.

As happened with fsp, the main restriction of fc is that it does not always
guarantee strong persistence. Note that this was expected, given the already
commented result on the impossibility of arbitrary forgetting by just produc-
ing an HT formula. To check whether forgetting a in Π is possible, we can
use semantic conditions like Theorem 1(v) or the Ω-condition, but these imply
inspecting the models of Π. If we want to keep the method at a purely syntactic
level, however, we can at best enumerate sufficient conditions for forgettability.
For instance, [4] proved that a can be forgotten under strong persistence in any
program Π that satisfies any of the following syntactic conditions:

Definition 6 (Definition 4 from [4]). An extended logic program Π is a-
forgettable if, at least one of the following conditions is satisfied:

1. Π contains the fact ‘a’ as a rule.
2. Π does not contain a-choices.
3. All rules in Π in which a occurs are a-choices.

It is not difficult to see that Condition 2 above is equivalent to requiring that
atom a does not occur in NES(Π, a,¬a), since the only possibility for a to occur
in that formula is that there is a rule in Π of the form ¬¬a∧ϕ → a∨ψ. In fact,
as we prove below, Definition 6 is a quite general, sufficient syntactic condition
for the applicability of fc.

5 In most cases, after unfolding fc as a logic program, we usually obtain not only a
result strongly equivalent to fsp but also the same or a very close syntactic repre-
sentation.

6 In fact, the as-dual set from [4] can be seen as an effect of the (CUT) rule. Moreover,
our use of the latter was inspired by this as-dual construction.
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Theorem 2. Let Π be a logic program for signature AT , let V ⊆ AT and a ∈
AT \ V and let Π ′ = beheada(Π). If Π ′ is a-forgettable, then: Π ∼=V fc(Π, a). ��
In our example, it is easy to see that this condition is satisfied because
beheada(Π1) = Π1 and this program does not contain a-choices.

4 Forgetting into Forks: The Unfolding Operator

As we have seen, syntactic forgetting is limited to a family of transformation
operators whose applicability can be analysed in terms of sufficient syntactic
conditions. This method is incomplete in the sense that forgetting a in Π may
be possible, but still the syntactic conditions we use for applicability may not
be satisfied. Consider the following example.

Example 3. Take the following logic program Π3:

¬¬a → a (20)
¬a → b (21)

a → c (22)
b → c (23)
c → b (24)

This program does not fit into the a-forgettable syntactic form, but in fact we
can forget a under strong persistence to obtain b ∧ c, as we will see later. ��

If we look for a complete forgetting method, one interesting possibility is allowing
the result to contain the fork operator. As proved in [1], forgettability as a fork
is always guaranteed: that is, it is always possible to forget any atom if we allow
the result to be in the general form of a fork. The method provided in [1] to
obtain such a fork, however, was based on synthesis from the fork denotation,
which deals with sets of sets of HT models. We propose next an always applicable
syntactic method to obtain a fork as the result of forgetting any atom.

In the context of propositional logic, forgetting an atom a in a formula ϕ
corresponds to the quantified Boolean formula ∃a ϕ which, in turn, is equivalent
to the unfolding ϕ[a/⊥]∨ϕ[a/
]. In the case of Equilibrium Logic, we will apply
a similar unfolding but, instead of disjunction, we will use the fork connective,
and rather than ⊥ and 
 we will have to divide the cases into ¬a and ¬¬a,
since (¬a | ¬¬a) ≡ 
. More precisely, using (6) and (7) from Proposition 1 we
can build the chain of equivalences Π ∼= Π ∧ 
 ∼= Π ∧ (¬a | ¬¬a) ∼= (Π ∧ ¬a |
Π ∧¬¬a). Then, by Proposition 2, we separate the task of forgetting a in Π into
forgetting a in each one of these two branches, leading to:

Definition 7 (Unfolding operator, f|). For any logic program Π and atom
a we define: f|(Π, a) def= ( fc(Π ∧ ¬a, a) | fc(Π ∧ ¬¬a, a) ) ��

Theorem 3. Let Π be a logic program for signature AT , let V ⊆ AT and
a ∈ AT \ V . Then, Π ∼=V f|(Π, a). ��
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Corollary 1. If a �∈ V and Π is a-forgettable then f|(Π, a) ∼=V fc(Π, a), and
so, f|(Π, a) ∼= fc(Π, a). ��

Using (2) and (3), it is easy to prove:

Theorem 4. For any logic program Π and atom a:

f|(Π, a) ∼= ( fc(Π[a/⊥] ∧ ¬a, a) | fc(Π[¬a/⊥] ∧ ¬¬a, a) )
∼= ( Π[a/⊥] | fc(Π[¬a/⊥] ∧ ¬¬a, a) )

This theorem provides a simpler application of the unfolding operator: the left
branch, for instance, is now the result of replacing a by ⊥. The right branch
applies the cut operator, but introducing a prior step: we add the formula ¬¬a
and replace all occurrences of ¬a by ⊥. It is easy to see that, in this previous
step, any occurrence of a in the scope of negation is removed in favour of truth
constants7. This means that the result has no a-choices since a will only occur
in the scope of negation in the rule ¬¬a = (¬a → ⊥). Therefore, the use of fc

in f| is always applicable. Moreover, in many cases, we can use elementary HT
transformations to simplify the programs Π[a/⊥] and Π[¬a/⊥] ∧ ¬¬a, to look
for a simpler application of fc, or to apply properties about the obtained fork.

As an illustration, consider again forgetting a in Π3 and let us use the
transformation in Theorem 4. We can observe that Π3[a/⊥] replaces (20),
(21) and (22) respectively by (¬¬⊥ → ⊥) (a tautology), (¬⊥ → b) ≡ b
and (⊥ → c) (again, a tautology), leaving (23)-(24) untouched. To sum up,
Π3[a/⊥] ≡ b∧ (b → c)∧ (c → b) ≡ (b∧c). On the other hand, Π3[¬a/⊥] replaces
(20) and (21) respectively by (¬⊥ → a) ≡ a and (⊥ → b) (a tautology), so that
Π3[¬a/⊥] ∧ ¬¬a amounts to the formula a ∧ (a → b) ∧ (b → c) ∧ (c → b) ∧ ¬¬a
which is equivalent to a ∧ b ∧ c and, trivially, fc(a ∧ b ∧ c, a) = (b ∧ c). Putting
everything together, we get f|(Π3, a) ∼= ( b∧ c | b∧ c ) ∼= (b∧ c) since forks satisfy
the idempotence property for ‘|’ – see (11) from Proposition 12 in [1]. In this
way, we have syntactically proved that a was indeed forgettable in Π3 leading
to b ∧ c even though this program was not a-forgettable. We claim that the f|
operator plus the use of properties about forks (like the idempotence used above)
opens a wider range of syntactic conditions under which forks can be reduced
into formulas, and so, under which an atom can be forgotten in ASP.

An important advantage of the unfolding operator is that, since it is always
applicable, it can be used to forget a set of atoms by forgetting them one by one.
We illustrate this with another example.

Example 4. Suppose we want to forget atoms {a, b} in the program Πtwoatoms
def=

(20) ∧ (21) ∧ (22) where we simply removed (23) and (24) from Π3.

This program is not a-forgettable, but nevertheless let us assume that we start
forgetting a with the application of the unfolding f|(Π4, a). For the left hand

7 Truth constants can be removed using trivial HT simplifications.
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side, we get that Π4[a/⊥] ≡ (¬¬⊥ → a) ∧ (¬⊥ → b) ∧ (⊥ → c) ≡ b as we had
seen before. Similarly, for the right hand side:

Π4[¬a/⊥] ∧ ¬¬a = (¬⊥ → a) ∧ (⊥ → b) ∧ (a → c) ∧ ¬¬a ∼= a ∧ c

so the application of fc becomes trivially fc(a ∧ c, a) = c and the final result
amounts to f|(Π4, a) = (b | c) that is, a fork of two atoms, which as discussed
in [1], is (possibly the simplest case of) a fork that cannot be reduced to a formula.
Still, we can use Proposition 2 to continue forgetting b in each of the two branches
of (b | c). As none of them contains b-choices, we can just apply fc to obtain
the fork ( fc(b, b) | fc(b, c) ) = (
 | c) which, by (4), is equivalent to the formula
(¬¬c → c). We end up with one more example.

Example 5. Suppose we want to forget q in the following program Π5:

¬¬q → q q → u q → s ¬q → t

Although this program is not q-forgettable, it was included as Example 7 in [4]
to illustrate the application of operator fsp. If we use f|(Π5, q), it is very easy
to see that Π5[q/⊥] ∼= t whereas Π5[¬q/⊥] ∧ ¬¬q ∼= q ∧ u ∧ s so that we get
f|(Π5, q) = ( t | fc(q∧u∧s, q) ) = ( t | (u∧s) ). This fork cannot be represented as
a formula, since t and u∧s have no logical relation and the fork is homomorphic
to (b | c) obtained before. In other words, atom q cannot be forgotten in Π5 as
a formula, and so, fsp(Π5, q) from [4] does not satisfy strong persistence.

5 Conclusions

We have presented a syntactic transformation, we called unfolding, that is always
applicable on any logic program and allows forgetting an atom (under strong
persistence), producing an expression that may combine the fork operator and
propositional formulas. Unfolding relies on another syntactic transformation, we
called the cut operator (close to fsp from [4]), that can be applied on any program
that does not contain choice rules for the forgotten atom and, unlike unfolding, it
returns a propositional formula without forks. Although, in general, the forks we
obtain by unfolding cannot be reduced to propositional formulas, we have also
illustrated how the use of general properties of forks makes this possible some-
times, even in conditions where previous syntactic methods were not known to
be applicable. Future work will be focused on extending the syntactic conditions
under which forks can be reduced to formulas – we claim that this is an analo-
gous situation to finding conditions under which second order quantifiers can be
removed in second order logic. We will also study the extension of the unfolding
operator to sets of atoms, instead of proceeding one by one.
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Abstract. Modal logic S5 is used extensively for representing knowledge that
includes statements about necessity and possibility, owing to its simplicity in
handling chained modal operators. Significant research effort has been devoted in
developing efficient reasoning mechanisms over complex S5 formulas, resulting
in various solvers taking advantage of the boolean satisfiability problem (SAT).
Among them, the most performant solver implements a heuristic for identify-
ing worlds that can be merged, hence reducing the size of SAT instances to be
checked. Recently, Answer Set Programming (ASP) has also been considered,
and different ASP encodings were proposed and tested, reaching state-of-the-art
performance. In particular, a heuristic for identifying the propositional atoms that
are relevant in every world resulted in a performance gain in previous experi-
ments. This work addresses the open question of whether the aforementioned
two heuristics can be combined, as well as possibly enabling lazy instantiation
of the resulting encodings, and what their potential impact is on the performance
of the ASP-based solver. Experiments show that lazy creation of worlds provides
some further performance gain to the ASP-based solver on the tested instances.

Keywords: Modal Logic · S5 · Answer Set Programming

1 Introduction

Modal logics extend standard logic-based languages to include the ability to express
modalities qualifying truth statements, and have numerous applications, among them
legal reasoning [4], linguistics [15] and multi-agent systems [13]. S5 is one of the most
well-known and studied syntax systems, while Kripke semantics [11] is the commonly
accepted model-theoretic approach to defining modal logic semantics. The defining
characteristic of S5 is that it allows simplifying complex sequences of modal oper-
ators by retaining only the last one in the sequence and pruning all the rest. Kripke
semantics interprets formulas as true or false in a set of possible worlds and defines an
accessibility relation that can link pairs of these worlds, meaning that if a formula is
true in one world then it is possibly true in all other worlds that lead to it. While, in
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general, the accessibility relation can be any binary relation, each modal logic syntax
system restricts its definition. In the case of S5, the accessibility relation is an equiva-
lence relation, satisfying all three of the reflexive, symmetric and transitive properties.

S5 satisfiability is an NP-complete problem [12], and it has been addressed by
adopting techniques like resolution [16], tableau [9] and propositional satisfiability
(SAT). Solvers relying on SAT have shown great potential, but their need for Skolemi-
sation to represent truth values in different possible worlds may lead to long formulas.
State-of-the-art solvers use different methods to attack such an issue, with S52SAT [6]
reducing the number of possible worlds that need to be explored to find a model and
using structural caching techniques, and S5CHEETAH [10] using formula normalisation
and optimising conflicts between modalised literals through the use of graphs.

Recently, a novel S5 solver named S5PY [1] was designed and implemented based
on Answer Set Programming (ASP) [5,14]. ASP was considered due to its close rela-
tionship with SAT and the readability and configurability afforded by ASP encodings
due to their logic programming nature [2,3]. The most efficient algorithm implemented
by S5PY is based on a heuristic for identifying the propositional atoms that are rel-
evant in every world. Whether such a heuristic can be combined with the heuristic
employed by S5CHEETAH to merge non-conflictual worlds remains an open question,
which is addressed in this work. Additionally, we report on a lazy algorithm for the
incremental instantiation of the ASP encoding used by S5PY, where worlds associated
with modalised literals are not immediately introduced but delayed until required.

The main contributions of this paper can be summarised as follows:

– The heuristic implemented by S5CHEETAH using graph colouring to identify non-
conflictual worlds is integrated in S5PY. The main differences between the way such
a heuristic is implemented in S5CHEETAH and S5PY are discussed in Sect. 6.

– The most efficient encoding of S5PY presented in [1] is redesigned so that lazy
instantiation can be enabled, as well as the heuristic using graph colouring. In this
way, the underlying ASP system is not obliged to eagerly materialise all proposi-
tional atoms and rules before starting the search for an answer set, and in fact it may
complete its computational task without materialising worlds associated with false
modalised literals.

– An empirical evaluation of four different configurations of S5PY is reported, show-
ing that some small performance gain is achieved by lazy creation of worlds, while
merging worlds introduces overhead to the implemented solver.

2 Background

S5 extends propositional logic with the modal operators � for encoding necessity and
♦ for encoding possibility. The language is defined by the grammar

φ := p | ¬φ | φ ∧φ | φ ∨φ | �φ | ♦φ (1)

where p is a propositional atom among those of a fixed countably infinite setA . More-
over, logical connectives for implication and equivalence are used as syntactic sugar
with the usual meaning, i.e. φ → ψ := ¬φ ∨ψ and φ ↔ ψ := (φ → ψ)∧ (ψ → φ), for
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every pair of formulas φ and ψ . The complement of a propositional literal is defined as
usual, i.e. p = ¬p and ¬p = p for all p ∈ A , and the notation is naturally extended to
sets of propositional literals.

The semantics of S5 formulas is given by Kripke structures, that is, non-empty
sets of worlds connected by an accessibility relation; the accessibility relation can be
assumed to be total for S5 formulas [7], so for the purposes of this paper only the set
of worlds will be used, and actually worlds will be represented in a list so to associate
the i-th ♦-literal with the world in position i. A world is an interpretation of proposi-
tional logic, that is, a function I assigning a truth value of either 0 (false) or 1 (true)
to every propositional atom in A . Interpretations are usually represented by the sets of
propositional atoms that are assigned a value of true.

Let I be the list [I0, . . . , In] of worlds, for some n ≥ 0, and let 0 ≤ i ≤ n. The sat-
isfiability relation |= for S5 formulas is defined as follows: (I, i) |= p iff Ii(p) = 1;
(I, i) |= ¬φ iff (I, i) 	|= φ ; (I, i) |= φ ∧ ψ iff (I, i) |= φ and (I, i) |= ψ; (I, i) |= φ ∨ ψ
iff (I, i) |= φ or (I, i) |= ψ; (I, i) |= �φ iff (I, j) |= φ for all j ∈ [0..n]; (I, i) |= ♦φ iff
(I, j) |= φ for some j ∈ [0..n]. The satisfiability problem associated with S5 is the fol-
lowing: given an S5 formula φ , is there a list I= [I0, . . . , In] (for some n ≥ 0) such that
(I,0) |= φ?

Every S5 formula ψ can be transformed into an equi-satisfiable S5 normal form (S5-
NF) formula [1,10], defined as follows. A propositional literal � is either a propositional
atom or its negation. A�-literal has the form�(�1∨·· ·∨�n), where n≥ 1 and �1, . . . , �n
are propositional literals. A ♦-literal has the form ♦(�1 ∧ ·· · ∧ �n), where n ≥ 1 and
�1, . . . , �n are propositional literals. An S5-literal is a propositional literal, a �-literal,
or a ♦-literal. A disjunction of S5-literals is called an S5-clause. A formula φ is in
S5-NF if φ is a conjunction of S5-clauses. Let atoms(φ) and lits(φ) denote the sets of
propositional atoms and literals occurring in φ , respectively.

3 S5 Satisfiability Checking Encodings

S5 satisfiability can be expressed in monadic first-order logic, and eventually reduced
to SAT by applying Skolemisation and Herbrand expansion, optimising the Tseitin-
like transformation by enabling only worlds associated with true ♦-literals not already
witnessed by world 0 [1]. The resulting encoding can be improved by means of some
properties related to an overestimate of the literals involved in unit propagation [1,10].
In this section, we first review such encodings by adopting a uniform notation, and then
show how they can be combined in a new encoding.

Let φ be an S5-NF formula, and let us fix an enumeration�ψ�
1 , . . . ,�ψ�

m ,♦ψ♦
1 , . . . ,

♦ψ♦
n of its �- and ♦-literals, for some m ≥ 0 and n ≥ 0. Let ψ(x) denote the monadic

first-order formula obtained from ψ by adding argument x to all propositional atoms
occurring in ψ . The following propositional atoms are used:

– p(i), representing truth of atom p in world i, for i ∈ [0..n];
– bi, representing truth of �ψ�

i , for i ∈ [1..m];
– d j, representing truth of ♦ψ♦

j , for j ∈ [1..n];
– implied j, representing that ♦ψ♦

j is witnessed by world 0, for j ∈ [1..n].
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The basic encoding of φ , denoted basic(φ), comprises the following formulas:

1. bi → ψ�
i (0), and bi ∧d j ∧¬implied j → ψ�

i ( j), for all i ∈ [1..m] and j ∈ [1..n];
2. implied j ↔ ψ♦

j (0), implied j → d j, and d j ∧¬implied j → ψ♦
j ( j) for all j ∈ [1..n];

where any remaining propositional atom p (i.e. those not under the scope of any modal)
is replaced by p(0). Intuitively, formulas in the first group enforce that clauses in �-
literals are satisfied in all worlds associated with true-and-not-implied ♦-literals, and
formulas in the second group define implied ♦-literals as those witnessed by world 0
and impose the satisfaction of true-and-not-implied ♦-literals in their worlds.

Example 1 (Running example). Let φ be �(p ∨ q) ∧ ♦p ∧ ♦¬p ∧ ♦¬q. Clauses in
basic(φ) encode the following formulas:

b1 ∧d1 ∧d2 ∧d3 b1 → p(0)∨q(0) b1 ∧d1 ∧¬implied1 → p(1)∨q(1)
b1 ∧d2 ∧¬implied2 → p(2)∨q(2) b1 ∧d3 ∧¬implied3 → p(3)∨q(3)
implied1 ↔ p(0) implied1 → d1 d1 ∧¬implied1 → p(1)
implied2 ↔ ¬p(0) implied2 → d2 d2 ∧¬implied2 → ¬p(2)
implied3 ↔ ¬q(0) implied3 → d3 d2 ∧¬implied3 → ¬q(3)

Formula φ is satisfied by I = [{p},{p,q},{q},{p}], and the associated model of
basic(φ) is I = {b1,d1,d2,d3, p(0), p(1),q(1),q(2), p(3)}. �

Proposition 1. For every S5-NF formula φ , basic(φ) is equi-satisfiable to φ .

Proof. By combining Proposition 3.1 and Theorem 3.1 in [1].

The basic encoding can be improved thanks to a property that can be checked by
computing an overestimate of the literals involved in unit propagation starting from
those in ♦-literals. Formally, for a set L of literals

UP(L) := L∪
⋃{

lits(ψ�
i )\{�} | � ∈ L, i ∈ [1..m], � ∈ lits(ψ�

i )
}

(2)

Bj :=
{
i ∈ [1..m] | UP ⇑ lits(ψ♦

j )∩ lits(ψ�
i ) 	= /0

}
(3)

Intuitively, UP(L) is the set of literals that may be used to satisfy every ψ�
i affected

by the assignment of L, UP ⇑ lits(ψ♦
j ) is the set of literals reached in this way from

the literals in ψ♦
j , and Bj represents the set of �-literals involved in this computation.

The reach encoding of φ , denoted reach(φ), is obtained from basic(φ) by removing
formulas encoding bi ∧ d j ∧¬implied j → ψ�

i ( j), for all i ∈ [1..m] and j ∈ [1..n] such
that i /∈ Bj (i.e. the truth of �ψ�

i in the world associated with ♦ψ♦
j can be witnessed by

world 0).

Example 2 (Continuing Example 1). To construct reach(φ), we have to compute sets
B1, B2 and B3, respectively associated with ♦-literals ♦p, ♦¬p and ♦¬q. Let us first
determine the sets of reached literals from {p}, {¬p} and {¬q} according to (2):
UP({p}) = {p}, as p /∈ lits(p ∨ q); UP({¬p}) = {¬p,q}, as ¬p ∈ lits(p ∨ q) and
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Fig. 1. Diamond conflict graph of formula φ from Examples 1–3, with graph colouring

therefore literals in lits(p∨ q) \ {¬p} = {q} are added to UP({¬p}); UP({¬p,q}) =
{¬p,q}, as q /∈ lits(p ∨ q) and therefore no other literal is added to UP({¬p,q});
UP({¬q}) = {¬q, p}, as ¬q ∈ lits(p∨ q) and therefore literals in lits(p∨ q) \ {¬q} =
{p} are added to UP({¬q}); UP({¬q, p}) = {¬q, p}, as p /∈ lits(p∨ q) and therefore
no other literal is added to UP({¬q, p}). Hence, we have that UP ⇑ lits({p}) = {p},
UP ⇑ lits({¬p}) = {¬p,q} and UP ⇑ lits({¬q}) = {¬q, p}. Now using (3), B1 = /0 and
B2 = B3 = {1}, that is, ♦p does not interact with the �-literal, while ♦¬p and ♦¬q
interact with the �-literal. Accordingly, reach(φ) is obtained from basic(φ) by remov-
ing clauses encoding b1 ∧d1 ∧¬implied1 → p(1)∨q(1). In fact, such a formula can be
satisfied by assigning to q(1) the same truth value of q(0). For example, if I is a model
of reach(φ) such that I(q(0)) = 1, then I∪{q(1)} is a model of basic(φ); similarly, if I
is a model of reach(φ) such that I(q(0)) = 0, then I \{q(1)} is a model of basic(φ). �

Proposition 2. For every S5-NF formula φ , reach(φ) is equi-satisfiable to basic(φ).

Proof. Shown in [1] as Theorem 3.2.

Alternatively, the basic encoding can be improved by merging some
“non-conflictual” worlds, an idea first introduced in [10] and revised here. Formally,
the diamond conflict graph of φ , denoted Gφ , has vertex set [1..n], and edge set
{ij | ∃� ∈ lits(ψ♦

i ) such that � ∈ UP ⇑ lits(ψ♦
j )}. Let colour : [1..n] → [1..n] be a graph

colouring of Gφ , that is, colour is such that colour(i) 	= colour( j) holds for all edges ij
in Gφ . The basic-merge encoding of φ wrt. colour, denoted basic(φ ,colour), is obtained
from basic(φ) by replacing

1. bi ∧d j ∧¬implied j → ψ�
i ( j) with bi ∧d j ∧¬implied j → ψ�

i (colour( j)), for all i ∈
[1..m] and j ∈ [1..n];

2. d j ∧¬implied j → ψ♦
j ( j) with d j ∧¬implied j → ψ♦

j (colour( j)), for all j ∈ [1..n].

(Note that the basic encoding is a special case of the basic-merge encoding in which
colour is the identity function id : i �→ i.) Essentially, the idea underlying the basic-merge
encoding is that ♦-literals whose propositional literals cannot produce any conflict via
unit propagation can share the same world.

Example 3 (Continuing Example 2). The diamond conflict graph Gφ of φ is shown
in Fig. 1, where vertices are also annotated with the reached literals. The figure also
shows the graph colouring colour = {1 �→ 1,2 �→ 2,3 �→ 1}, where colour 1 is white
and colour 2 is gray. It turns out that the first and third ♦-literals can share the same
world, and therefore the following formulas of basic(φ)

b1 ∧d3 ∧¬implied3 → p(3)∨q(3) d2 ∧¬implied3 → ¬q(3)
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are replaced by

b1 ∧d3 ∧¬implied3 → p(1)∨q(1) d2 ∧¬implied3 → ¬q(1)
to obtain basic(φ ,colour). Note that if I is a model of basic(φ), then it must sat-
isfy I(p(1)) = 1 and I(q(3)) = 0 because of the ♦-literals. Moreover, I(p(3)) = 1
because of the �-literal. Hence, worlds 1 needs p, and worlds 3 needs p and ¬q. A
model of basic(φ ,colour is then obtained from I by merging worlds 1 and 3 as follows:
(I∪{p(1)})\{q(1), p(3),q(3)}. �

Proposition 3. For every S5-NF formula φ and every graph colouring colour of Gφ ,
basic(φ ,colour) is equi-satisfiable to basic(φ).

Proof. Let I |= basic(φ ,colour). Hence, the following is a model of basic(φ):

{bi ∈ I | i ∈ [1..m]} ∪{d j ∈ I | j ∈ [1..n]} ∪{implied j ∈ I | j ∈ [1..n]}
∪{p(0) | p(0) ∈ I} ∪{p( j) | j ∈ [1..n], p(colour( j)) ∈ I}.

Essentially, multiple copies of the shared worlds are introduced.
Let I |= basic(φ). For every colour i ∈ [1..n], let us define the following set of non-

conflictual literals: Li := {� ∈ UP ⇑ lits(ψ♦
j ) | j ∈ [1..n], colour( j) = i, I(d j) = I(�) =

1}. Hence, the following is a model of basic(φ ,colour):

{bi ∈ I | i ∈ [1..m]} ∪{d j ∈ I | j ∈ [1..n]} ∪{implied j ∈ I | j ∈ [1..n]}
∪{p(0) | p(0) ∈ I} ∪{p(colour( j)) | j ∈ [1..n], p ∈ Lcolour( j)}.

Essentially, multiple worlds are merged according to the given graph colouring. ��
A new encoding, denoted reach(φ ,colour) and called reach-merge encoding of φ

w.r.t. colour, can be obtained by combining the ideas presented in [1] and [10]. It com-
prises all formulas of basic(φ ,colour) but those of the form bi ∧ d j ∧ ¬implied j →
ψ�
i (colour( j)), for all i ∈ [1..m] and j ∈ [1..n] such that i /∈ Bj (i.e. the truth of �ψ�

i in
the world associated with ♦ψ♦

j can be witnessed by world 0). Also note that the reach
encoding is a special case of the reach-merge encoding in which colour is the identity
function id.

Example 4 (Continuing Example 3). The reach-merge encoding of φ w.r.t. colour is
obtained from basic(φ ,colour) by removing formula b1∧d3∧¬implied3 → p(1)∨q(1),
similar to how reach(φ) is obtained from basic(φ). �

Lemma 1. For every S5-NF formula φ and every graph colouring colour of Gφ ,
reach(φ ,colour) is equi-satisfiable to basic(φ ,colour).

Proof. The construction is aligned to the proof of Theorem 3.2 in [1].
I |= basic(φ ,colour) implies I |= reach(φ ,colour) because reach(φ ,colour) ⊆
basic(φ ,colour). As for the other direction, let I |= reach(φ ,colour) be such that
I |= bi ∧ d j ∧¬implied j ∧¬ψ�

i (colour( j)) for some i ∈ [1..m] and j ∈ [1..n] such that
i /∈ Bj—otherwise I |= basic(φ ,colour). Since bi → ψ�

i (0) belongs to reach(φ ,colour),
we have that I |= ψ�

i (0), and we can copy a portion of world 0 into world
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colour( j) to construct a model I′ for reach(φ ,colour) such that I′ |= ψ�
i (colour( j)):

L = atoms(ψ�
i (colour( j))) \ atoms(ψ♦

j (colour( j))); I′ = I \ {p(colour( j)) ∈ L} ∪
{p(colour( j)) ∈ L | p(0) ∈ I}. By reiterating the process, we end up with a model
of basic(φ ,colour). ��
Theorem 1. For every S5-NF formula φ and every graph colouring colour of Gφ ,
reach(φ ,colour) is equi-satisfiable to φ .

Proof. By combining Lemma 1, Proposition 3 and Proposition 1. ��
We conclude this section by observing that both basic(φ ,colour) and

reach(φ ,colour) merge worlds, and not ♦-literals. Actually, the fact that two worlds
are merged does not immediately imply that the associated ♦-literals can be jointly sat-
isfied in that world, but instead that those satisfied in a Kripke structure can also be
satisfied in a single world. The following example clarifies this fact.

Example 5. Consider the S5-formula φ := �p∧ (♦q∨ ♦¬p), which can be satisfied
by I = [{p},{p,q}]. The two ♦-literals are non-conflictual, and therefore colour =
{1 �→ 1,2 �→ 1} is a graph colouring of Gφ . The model of basic(φ ,colour) and
reach(φ ,colour) associated with I is {b1,d1, p(0), p(1),q(1)}, and reflect the fact that
the worlds of ♦q and ♦¬p can be merged. On the other hand, note that ♦¬p is not
satisfied by I, and in fact merging the two ♦-literals would result into �p∧ (♦q∧¬p),
an unsatisfiable formula. �

4 Implementation in Answer Set Programming

This section presents an ASP implementation of the propositional theory
reach(φ ,colour) introduced in the previous section. As already observed, colour can
also be the identity function id (for example, in case one does not want to afford for
the computation of a graph colouring). Moreover, many formulas associated with world
colour( j) in reach(φ ,colour) are vacuously true if atom d j is false, that is, if the associ-
ated ♦-literal is assumed false. Based on this observation, an incremental instantiation
strategy is introduced, materialising such formulas only after d j is assigned true for the
first time.

The S5-NF formula φ and the graph colouring colour are encoded by the following
facts, denoted Πre(φ ,colour) and called the relational encoding of φ :

– atom(p), for every propositional atom p occurring in φ ;
– box(b), pos box(b,pi), and neg box(b,p j), for every �-literal of φ of the form

�(p1∨·· ·∨ pm∨¬p m+1∨·· ·∨¬pn), with n≥ 1 and n≥m≥ 0, and all i∈ [1..m]
and j ∈ [m+1..n], where b is an identifier for the �-literal;

– diamond(d), pos diamond(d,pi), and neg diamond(d,p j), for every ♦-literal
of φ of the form ♦(p1∧·· ·∧ pm∧¬p m+1∧·· ·∧¬pn), with n≥ 1 and n ≥m≥ 0,
and all i ∈ [1..m] and j ∈ [m+1..n], where d is an identifier for the ♦-literal;

– clause(c), pos clause(c,liti), and neg clause(c,p j), for every S5-clause
of φ of the form �1 ∨·· ·∨ �m ∨¬p m+1∨·· ·∨¬pn, with n ≥ 1 and n ≥ m ≥ 0, and
all i ∈ [1..m] and j ∈ [m+ 1..n], where c is an identifier for the S5-clause and each
liti is the identifier of the associated S5-literal �i;
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– lrl(pi,si,p j,s j), where pi and p j are propositional atoms, and si,s j belong to
{pos,neg}, to encode the reach relation introduced in Sect. 3 for literals occurring
in some ♦-literal of φ—essentially, set UP(L) in (2);

– lrb(p j,s j,bi), where p j is a propositional atom, s j belongs to {pos,neg}, and
i ∈ [1..m], to encode the reach relation introduced in Sect. 3 for �-literals reached
by the associated ♦-literals—essentially, sets Bj in (3);

– diamond world(d,w), where d is the identifier of a ♦-literal, and w the associated
world—essentially, colour(d) = w.

Example 6 (Continuing Example 4). Let φ be �(p∨q)∧♦p∧♦¬p∧♦¬q, and colour
be {1 �→ 1,2 �→ 2,3 �→ 1}. Program Πre(φ ,colour) contains the following facts:

box(b1). pos_box(b1,p). pos_box(b1,q). atom(p). atom(q).

diamond(d1). pos_diamond(d1,p). clause(c1). pos_clause(c1,b1).

diamond(d2). neg_diamond(d1,p). clause(c2). pos_clause(c2,d1).

diamond(d3). neg_diamond(d1,q). clause(c3). pos_clause(c2,d2).

clause(c4). pos_clause(c2,d3).

lrl(p,pos, p,pos).

lrl(p,neg, p,neg). lrl(p,neg, q,pos). lrb(p,neg, b1).

lrl(q,neg, q,neg). lrl(q,neg, p,pos). lrb(q,neg, b1).

diamond_world(d1,1). diamond_world(d2,2). diamond_world(d3,1).

Note that replacing colour with id results in the same set of facts, with the exception of
diamond world(d3,1), which would be replaced by diamond world(d3,3). �

In order to possibly enable a progressive instantiation of the ASP program, two sets
of rules are used, where the first set is processed once, and the second set is processed
at most once for each world associated with some ♦-literals of φ . The following atoms
are defined in these sets of rules:

– true(X), to guess true atoms in world 0, true �-literals, and true ♦-literals;
– true(W,X), to guess true atoms in each world (different from 0);
– dra(D,Y), to determine atoms reached by ♦-literals;
– drb(D,B), to determine �-literals reached by ♦-literals;
– world need atom(W,X), to determine if atoms in a world can be ignored because

all associated ♦-literals are false;
– active box in world(B,W), to determine if a �-literals is reached by some true-

and-not-implied ♦-literals associated with world W.

Let Πbase be the following set of rules:

r1 : {true(X)} :- box(X).

r2 : {true(X)} :- diamond(X).

r3 : {true(X)} :- atom(X).

r4 : dra(D,Y) :- pos_diamond(D,X); lrl(X,pos,Y,_).

r5 : dra(D,Y) :- neg_diamond(D,X); lrl(X,neg,Y,_).

r6 : drb(D,B) :- pos_diamond(D,X); lrb(X,pos,B).

r7 : drb(D,B) :- neg_diamond(D,X); lrb(X,neg,B).

r8 : :- clause(C); not true(X) : pos_clause(C,X);

true(X) : neg_clause(C,X).



24 M. Alviano et al.

r9 : :- box(B), true(B); not true(X) : pos_box(B,X);

true(X) : neg_box(B,X).

r10 : implied(D) :- diamond(D); true(X) : pos_diamond(D,X);

not true(X) : neg_diamond(D,X).

r11 : :- diamond(D), implied(D), not true(D).

r12 : true_not_implied(D) :- diamond(D), true(D), not implied(D).

Let Πw(world) be the following set of rules parameterized by constant world:

r13 : {true(X,W)} :- W = world; diamond_world(D,W);

diamond_reach_atom(D,X).

r14 : :- W = world; diamond(D), true_not_implied(D);

diamond_world(D,W); pos_diamond(D,X); not true(X,W).

r15 : :- W = world; diamond(D), true_not_implied(D);

diamond_world(D,W); neg_diamond(D,X); true(X,W).

r16 : world_need_atom(W,X) :- W = world; diamond_world(D,W);

diamond_reach_atom(D,X); true(D)_not_implied(D).

r17 : :- W = world; true(X,W); not world_need_atom(W,X).

r18 : active_box_in_world(B,W) :- W = world;

diamond_world(D,W), drb(D,B);

box(B), true(B), diamond(D), true_not_implied(D).

r19 : :- W = world; active_box_in_world(B,W);

not true(X,W) : pos_box(B,X); true(X,W) : neg_box(B,X).

The above programs can be combined in several ways. Let colour be a graph colour-
ing of Gφ obtained by a greedy algorithm which considers the vertices in descending
order according to their degrees, and assigns to each vertex the smallest available colour
in this order [17]. For an ASP program Π , let Search(Π) return a stable model I of Π
if any, or otherwise ⊥. We define the following four algorithms for S5 satisfiability
checking:

A1. Search(Πre(φ , id)∪Πbase ∪⋃
i∈[1..n] Πw(i))—no merge, no lazy;

A2. Search(Πre(φ ,colour)∪Πbase ∪⋃
i∈[1..n] Πw(i))—merge, no lazy;

A3. SearchWithLazyWorlds(φ , id)—no merge, lazy;
A4. SearchWithLazyWorlds(φ ,colour)—merge, lazy;

where SearchWithLazyWorlds is shown as Algorithm 1 and is characterised by the
incremental instantiation of the rules in Πw(world).

5 Evaluation

The ASP encodings presented in Sect. 4 have been implemented into the solver S5PY
[1]. The solver is written in Python and uses CLINGO version 5.4.0 [8] to search for
answer sets. This section reports on an empirical comparison between the algorithms
discussed in the previous section. S5PY and pointers to benchmark files are provided
at http://www.mat.unical.it/∼alviano/LPNMR2022-s5py.zip. The experiments were run
on an Intel Xeon 2.4GHz with 16 GB of memory. Time and memory were limited to
300 s and 15 GB, as in [1]. For each instance solved within these limits, we measured
both execution time and memory usage.

http://www.mat.unical.it/~alviano/LPNMR2022-s5py.zip
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Algorithm 1. SearchWithLazyWorlds(ψ: S5-NF formula, colour: a graph colour-
ing of Gφ )

1 Π := Πre(φ ,colour)∪Πbase; W := /0;
2 loop
3 I := Search(Π);
4 if I = ⊥ then return ⊥;
5 W ′ := {w | ∃d s.t. diamond_world(d,w) and true(d) are true in I}\W ;
6 ifW ′ = /0 then return I;
7 Π := Π ∪⋃

world∈W ′ Πw(world); W :=W ∪W ′;

The first algorithm (A1—no merge, no lazy) is essentially the reach encoding with
no incremental instantiation, the most performant algorithm presented in [1], which is
therefore our baseline for comparing how the other techniques discussed in this paper
affect the computation of S5PY. As reported in Fig. 2, the baseline on the number of
solved instances is already over 99%, but a small performance gain is provided by
the lazy creation of worlds (2 new solved instances, as well as an improvement of
around 0.4 s and 14 MiB on average, when A1 is replaced by A3). On the other hand,
the heuristic based on the merging of non-conflictual worlds introduces a significant
overhead (A2 has 44 timeouts more than A1), which is only minimally compensated by
the lazy creation of worlds (A4 solves 8 instances more than A2). Figure 2 also shows a
cactus plot of the running time of the tested algorithms, confirming that the lazy creation
of worlds provides a minimal but consistent performance gain (A1 vs A3; A2 vs A4).

Figure 3 shows scatter plots comparing the running time of the tested algorithms
on each tested instance. A point above the diagonal (dotted red line) means that the
algorithm on axis x is faster than the algorithm on axis y. It can be observed that the
first two plots (A1 vs A2 and A3 vs A4) evidence the fact that the performance of S5PY
deteriorates when non-conflictual worlds are merged. On the other hand, the other two
plots (A1 vs A3 and A2 vs A4) witness the small performance gain ascribable to the
lazy creation of worlds.

6 Related Work

Directly related work in literature includes the research on the SAT-based S5CHEETAH

solver [10] and the original version of the ASP-based solver S5PY [1]. The algorithm
that is implemented by S5CHEETAH estimates an upper bound on possible worlds by
applying the graph colourability heuristic, which is used for identifying non interacting
worlds that can be essentially merged. In this work we adapt such an heuristic to S5PY,
using the same greedy algorithm for computing graph colouring in polynomial time
[17], but differently from S5CHEETAH we associate worlds with ♦-literals rather than
S5-clauses. The argument in favour of associating worlds with S5-clauses is that in this
way some ♦-literals are possibly grouped if they occur under the scope of the same dis-
junction connective. On the other hand, literals can be combined to form exponentially
many clauses, which is the argument in favour of our choice.
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Fig. 2. Number of solved instances within a time budget (cactus plot), and overall statistics on
2214 instances (no memory out recorded).

Example 7. Consider the formula (p∨♦q)∧ (¬p∨♦q). Even if there is only one ♦-
literal, namely ♦q, there are two different clauses containing some ♦-literal. In such a
case, it is preferable to associate worlds with ♦-literals, as it is done by S5PY. �

According to the experiment reported in [1], the original version of the S5PY solver
introduced several encodings to address S5 satisfiability checking via ASP, and reached
a comparable performance with S5CHEETAH. In particular, the most efficient encoding
is the one relying on the reachability relation associated with unit propagation and used
to define the reach encoding in Sect. 3. Such an encoding is now the default strategy
used by S5PY, while the other encodings presented in [1] are no longer considered
because of their minimal or negative impact on computation. Additionally, the new
version of S5PY presented in this work can take advantage of incremental instantiation
as implemented by CLINGO.
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Fig. 3. Instance by instance comparison on execution time (in seconds; timeouts normalised to
the limit): Impact of the merging of worlds (top) and the lazy creation of worlds (bottom).

7 Conclusion

This work confirms that ASP is an ideal language for implementing a solver for modal
logic S5, and that the good performance achieved by S5PY is mainly ascribable to the
reachability relation used to optimise its knowledge compilation algorithm. We have
also shown how such a reachability relation can be combined with the graph coloura-
bility heuristic implemented by S5CHEETAH, and how the resulting encodings can be
incrementally instantiated. Our experiments report no significant gain when combining
the two heuristics. This is not necessarily considered a negative result, since the base-
line on the number of solved instances is already over 99% and because lazy creation
of worlds provides some further performance gain to the original ASP-based solver.

In the future, we intend to further investigate the potential positive impact of incre-
mental instantiation. For instance, we can employ the search heuristic of CLINGO in
order to falsify ♦-literals with the aim of reducing the number of worlds to be actu-
ally materialised. We also intend, to explore whether improvements can be made to the
graph colourability heuristic to mitigate the overhead it introduces and the increased
implementation complexity which negatively affects the performance of S5PY.
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Abstract. Several AI problems can be conveniently modelled in ASP,
and many of them require to enumerate solutions characterized by an
optimality property that can be expressed in terms of subset-minimality
with respect to some objective atoms. In this context, solutions are often
either (i) answer sets or (ii) sets of atoms that enforce the absence of
answer sets on the ASP program at hand—such sets are referred to as
minimal unsatisfiable subsets (MUSes). In both cases, the required enu-
meration task is currently not supported by state-of-the-art ASP solvers.

Keywords: Answer Set Programming · Enumeration · Minimal
models · MUS

1 Introduction

Answer Set Programming (ASP) [7] is a well-known formalism for Knowledge
Representation and Reasoning (KRR) developed in the areas of logic program-
ming and non-monotonic reasoning. ASP became popular because it combines
two important features for a KRR formalism: high knowledge-modeling power
and efficient implementations [16]. These features made ASP a convenient choice
for modeling and solving several industrial and academic problems, and also
made it attractive for companies [12].

The classic idea of problem solving in ASP is to write a logic program in such
a way that the solution of the problem to be solved correspond to its answer
sets (or stable models). Thus, ASP implementations were primarily focused on
the computation of the answer sets of logic programs provided as input [16].
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As a matter of fact, besides answer set computation, there are several other
tasks that are very important from both the theoretical and practical perspec-
tive [16], such as the computation of brave and cautious consequences (i.e., atoms
that are true in some (resp. all) answer sets) [3] or the computation of some form
of optimal and preferred answer sets [6,21]. Thus, the implementations of these
computational tasks have found stable place in state of the art ASP solvers.

In the last few years, the development of ASP-based solutions for AI problems
of various nature, such as the debugging of ASP programs [10,20] and paraco-
herent semantics [5], suggests there is the need for supporting additional tasks in
ASP solvers. In particular, the above-mentioned solutions are based on the tasks
of enumerating solutions characterized by an optimality property that can be
expressed in terms of subset-minimality with respect to some objective atoms.
In this context, solutions are often either (i) answer sets or (ii) sets of atoms that
enforce the absence of answer sets on the ASP program at hand (such sets are
referred to as minimal unsatisfiable subsets (MUSes) [18,20]). In both cases, the
required enumeration task is not currently supported by state-of-the-art ASP
solvers, like clasp [15] and wasp [2].

In this paper, we fill the gap by proposing several algorithms to enumerate
subset-minimal answer sets and MUSes, which we also implement on top of
wasp. Eventually, we report the results of an experimental analysis on several
hard benchmarks showing that wasp configured with the proposed algorithms
is competitive with state-of-the-art approaches.

2 Preliminaries

This section introduces syntax and semantics of ASP programs, where the syntax
is properly simplified to ease the presentation.

Let A be a set of atoms. An atomic formula is either an atom, or the connec-
tive ⊥. A literal is an atomic formula possibly preceded by the default negation
symbol ∼. For a literal �, let � denote the complement of �, that is, p = ∼p and
∼p = p for all p ∈ A ∪ {⊥}; for a set L of literals, let L be {� | � ∈ L}. Let � be
a compact representation of ∼⊥.

A rule is of one of the following forms:

p1 ∨ · · · ∨ pm ← �1, . . . , �n (1)
{p1, . . . , pm} ≥ b ← � (2)

where m ≥ 1, n ≥ 0, p1, . . . , pm are atomic formulas, �1, . . . , �n are distinct
literals, and b is a non-negative integer. For a rule r, let H(r) denote the set
{p1, . . . , pm} ∩ A of head atoms (note that H(r) is a set of atoms, so ⊥ /∈ H(r)
even if pi = ⊥ for some i ∈ [1..m]). For a rule r of the form (1), called disjunctive
rule, let B(r) denote the set {�1, . . . , �n} of body literals. For a rule r of the form
(2), called choice rule, let bound(r) denote the bound b.
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Algorithm 1: Minimal Models Enumeration
Input : A program Π, a set of objective atoms O
Output: Stable models of Π that are subset-minimal w.r.t. O.

1 loop
2 I := ComputeMinStableModel(Π, O);
3 if I = ⊥ then return;

4 Enumerate(Π, (O ∩ I) ∪ (O \ I));
5 Π := Π ∪ {⊥ ← O ∩ I};

A program Π is a finite set of rules. Let atoms(Π), rules(Π), and rules#(Π)
denote respectively the set of atoms occurring in Π, the set of disjunctive rules
in Π, and the set of choice rules in Π. For an atom p ∈ A, let heads(p) := {r |
p ∈ H(r)} be the set of rules where p appears in the head.

An interpretation I for a program Π is a set of atoms such that I ⊆
atoms(Π); intuitively, atoms in I are true, those in atoms(Π) \ I are false.
Relation |= is inductively defined as follows. For an atomic formula p ∈ A∪{⊥},
I |= p if p ∈ I, and I |= ∼p if p /∈ I—hence, I �|= ⊥, and I |= �; for a disjunc-
tive rule r, I |= B(r) if I |= � for all � ∈ B(r), I |= H(r) if I |= p for some
p ∈ H(r), and I |= r if I |= H(r) whenever I |= B(r); for a choice rule r, I |= r
if |{p ∈ H(r) | I |= p}| ≥ bound(r); for a program Π, I |= Π if I |= r for all
r ∈ Π. For any expression π, if I |= π, we say that I is a model of π.

ΠI denotes the reduct of a program Π with respect to an interpretation I.
For each disjunctive rule r of Π such that I |= B(r), ΠI contains a rule rI of
the form (1) with H(rI) = H(r), and B(rI) = B(r) ∩ A; and for each choice
rule r of Π, ΠI contains a rule of the form p ← � for every true head atom, i.e.,
for every p ∈ H(r) ∩ I. An interpretation I is a stable model of a program Π if
I |= Π and there is no J ⊂ I such that J |= ΠI . Let SM (Π) denote the set of
stable models of Π. A program Π is said to be incoherent if SM (Π) = ∅.

3 Enumeration of Minimal Stable Models

This section introduces the algorithms for the enumeration of minimal models.
In the following, we assume the reader to be familiar with the stable model
search algorithm (CDCL) implemented by modern ASP solvers [2,15]. Moreover,
ComputeStableModel(Π,A) denotes a call to such an algorithm, where Π is a
propositional program, and a set A of literals, called assumption literals (or
assumptions). The output of the algorithm is a pair (I, ∅), where I is a stable
model of Π such that I |= � for all � ∈ A, if such an I exists. Otherwise, the
algorithm returns as output a set (⊥, C), where C ⊆ A is such that SM (Π∪{⊥ ←
� | � ∈ C}) = ∅; such a set C is called an unsatisfiable core of Π with respect to
A. We will also use a slightly different version of ComputeStableModel, called
ComputeStableModel∗, which returns as output (I, B) where I is a stable model
and B is the set of branching literals used to compute I; or (⊥, ∅) if the program
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Function. Enumerate(Π, S)
1 A := [...S, ⊥]; F := ∅; // initialize assumptions and flipped literals

2 loop
3 while A �= [ ] and top(A) ∈ F do
4 F := F \ {pop(A)}; // remove flipped assumptions

5 if A = [...S] then return; // no assumptions to flip

6 push(A, pop(A)); F := F ∪ top(A); // flip top assumption

7 (I, B) := ComputeStableModel∗(Π, A); // search I ∈ SM (Π) s.t.

A ⊆ I
8 if I �= ⊥ then // found I using branching literals B
9 print I;

10 for � ∈ B \ A do push(A, �); // extend A with new elements in B

does not admit stable models. Algorithm 1 provides a common skeleton shared
by several algorithms for enumerating minimal models w.r.t. a set of objective
atoms O. These algorithms take as input a program Π and a set of atoms O,
and print as output all stable models of Π that are subset-minimal w.r.t. O.
The algorithms take advantage of the function ComputeMinStableModel, whose
input is a program Π and a set O of objective atoms, and whose output is a
minimal stable model of Π w.r.t. O. The idea of the algorithm is to iteratively
call ComputeMinStableModel to compute one minimal stable model, say I. If
such a model does not exist, the algorithm terminates. Otherwise, the algorithm
enumerates all stable models where objective atoms are fixed w.r.t. I by calling
function Enumerate. In particular, function Enumerate takes advantage of literal
assumptions to perform chronological backtracking on the branching literals used
to find a minimal stable model as proposed by Alviano and Dodaro in [1]. Note
that ...S denotes the expansion of S, so that [...S,⊥] is the list comprising the
elements of S and terminated by ⊥. After the enumeration, Π is extended with
a new rule, called block-up, which ensures that enumerated minimal models are
not found again in subsequent iterations.

Example 1. Let O = {o1, o2} be the set of objective atoms and let Π1 be the
following program:

r1 : p1 ∨ p2 ← r2 : p3 ← ∼p4 r3 : p4 ← ∼p3
r4 : {p5, p6} ≥ 1 ← � r5 : ⊥ ← p5, p6 r6 : o1 ← p1
r7 : o2 ← p2 r8 : o1 ← p3 r9 : o2 ← p4

Then, SM (Π1 ) is {I1 = {o1, o2, p1, p4, p6}, I2 = {o1, o2, p1, p4, p5}, I3 = {o1, p1,
p3, p5}, I4 = {o1, p1, p3, p6}, I5 = {o1, o2, p2, p3, p6}, I6 = {o2, p2, p4, p6}, I7 =
{o1, o2, p2, p3, p5}, and I8 = {o2, p2, p4, p5} }. ComputeMinStableModel(Π1 , O)
returns a stable model between {I3, I4, I6, I8}, say I3. The subsequent call to
Enumerate(Π1 , {o1, ∼o2}) enumerates and prints each stable model M such
that o1 ∈ M and o2 �∈ M , thus I3 and I4. After the enumeration Π is extended
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Function. Opt(Π, O)
1 A := [ ]; // stack of assumptions, also used as a set

2 loop

3 while O \ (A ∪ A) �= ∅ do

4 A.push(∼ OneOf(O \ (A ∪ A)));
5 Propagate(Π, A);

6 (I, C) := ComputeStableModel(Π, A);
7 if I �= ⊥ then return I;
8 if C = ∅ then return ⊥;
9 while C �⊆ A do A.pop(); // restore consistency

with ⊥ ← o1. The next call to ComputeMinStableModel(Π1 , O) returns a sta-
ble model between {I6, I8}, say I6. The next call to Enumerate(Π1 , {∼o1, o2})
enumerates and prints each stable model M such that o2 ∈ M and o1 �∈ M , thus
both I6 and I8. Then, Π is extended with ⊥ ← o2. Thus, the subsequent call
ComputeMinStableModel(Π1 , O) returns ⊥ and the algorithm terminates. �

Algorithm 1 is actually a meta-algorithm that can be instantiated in sev-
eral ways by using different versions of the function ComputeMinStableModel.
Several alternatives are presented in the following, i.e., Opt is based on the tech-
niques implemented by Dodaro and Previti in [11], One is based on the MaxSAT
algorithm proposed by Alviano et al. in [4], and Minimize and Split are exten-
sions of the algorithms proposed by Amendola et al. in [5].

Opt. The idea of this strategy is to force the branching heuristic of the solver to
select p for each p in the set of objective literals O, before any other unassigned
literal. In this way, the stable model search is driven to falsify as many atoms
in O as possible. When all atoms in O are assigned, standard stable model
search procedure is applied. Therefore, whenever a stable model is found, it is
guaranteed to be minimal w.r.t. O. Otherwise, if the partial assignment cannot
be extended to a stable model, then a conflict involving some objective atoms is
detected, and the assignment of some atom in O is then flipped. Therefore, the
procedure is repeated with a different assignment for the objective atoms.

Function Opt reports such a strategy. In particular, Opt takes advantage
of a stack A of assumption literals, initially empty (line 1), that is populated
with O (line 4). After each insertion, propagate(Π,A) is used to extend A with
(unit) implied literals, if possible; otherwise, in case of conflict, Π is extended by
the learning procedure, some literal in A is flipped, and propagation is repeated.
When all atoms in O occur in A, a stable model extending A is searched (line 6).
If such a stable model is found, it is returned (line 7). Otherwise, ComputeStable-
Model returns an unsatisfiable core C. If C is empty, then the inconsistency of
Π does not depend on A and thus the algorithm terminates returning ⊥ (line 8).
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Function. One(Π, O)

1 S := O; A := atoms(Π);
2 loop
3 (I, C) := ComputeStableModel(Π, S);
4 if I �= ⊥ then return I ∩ A;
5 if C = ∅ then return ⊥;
6 Let p′

1, . . . , p
′
n be |C| − 1 fresh atoms;

7 S := (S \ C) ∪ {∼p′
1, . . . , ∼p′

n};
8 Π := Π ∪ {C ∪ {p′

1, . . . , p
′
n} ≥ n ← �} ∪ {⊥ ← p′

i, ∼p′
i−1 | i ∈ [2..n]};

Function. Minimize(Π, O)
1 (I, C) := ComputeStableModel(Π, ∅);
2 if I = ⊥ then return ⊥;
3 S := O \ I;
4 Let P := p′, po1 , . . . , pon be |O| + 1 fresh atoms where o1, . . . , on ∈ O;
5 R := {← p′, ∼po1 , . . . , ∼pon} ∪ {← o1, po1} ∪ . . . ∪ {← on, pon};
6 Π := (Π \ {← p | p ∈ P}) ∪ {{p′, po1 , . . . , pon} ≥ 0 ← �};
7 loop

8 (I, C) := ComputeStableModel(Π ∪ R, {p′} ∪ S ∪ {∼po | o ∈ S});
9 if I = ⊥ then Π := Π ∪ {← p | p ∈ P}; return O \ S;

10 S := O \ I;

Otherwise, some literals in A are removed so to not incur again in the returned
unsatisfiable core (line 9).

One. Cardinality-minimal models are special cases of subset-minimal models.
Therefore, in this section, we employ a state-of-the-art algorithm, namely One,
to compute a cardinality-minimal model. In more detail, function One takes
as input a coherent program Π and a set O of objective atoms, and returns
a minimal stable model of Π with respect to O. Then, One keeps a set S of
soft literals to be maximized, initially set to the complements of the atoms in
O (line 1). At each step of computation, a stable model of Π subject to the
assumptions S is searched (line 3), and eventually returned (line 4). When the
search fails, instead, an unsatisfiable core C is computed. If C is empty, then
function ComputeStableModel terminates returning ⊥, since Π does not admit
stable models (line 5). Otherwise, soft literals in C are replaced by fresh literals
p1, . . . , pn (line 6), and the program is extended with a choice rule enforcing the
satisfaction of at least n literals among those in C ∪ {p1, . . . , pn} (line 8). Since
the next stable model search is forced to assign false to the fresh atoms, the rule
drives the search to a stable model containing at least n literals among those in
the unsatisfiable core. Additionally, constraints of the form ⊥ ← pi, ∼pi−1 are
added to the program to eliminate symmetric solutions.
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Function. Split(Π, O)
1 (I, C) :=ComputeStableModel(Π, ∅);
2 if I = ⊥ then return ⊥;
3 S := O ∩ I; T := ∅;
4 loop
5 if S \ T = ∅ then return T ;
6 o := OneOf(S \ T );

7 (I, C) := ComputeStableModel(Π, {∼o} ∪ (O \ S));
8 if I �= ⊥ then S := S ∩ I;
9 else T := T ∪ {o};

Minimize. The idea of this strategy is to build a minimal model by iteratively
removing at least one literal from a minimal stable model candidate until there
are no further literals to remove. In particular, function Minimize first computes
a stable model of Π, say I (line 1). If such a stable model does not exist, the
algorithm terminates returning ⊥. Otherwise, all objective literals that are false
w.r.t. I are stored in a set S. Then, the algorithm creates a set of fresh atoms,
namely P , containing one fresh atom, say p′, for each objective literal in O,
where such fresh atoms are used to ensure the correctness of the enumeration.
Then, it creates a set of rules and add them to P . Intuitively, such rules enforce
that (i) when p′ is true then at least one of the other atoms in P is true; and
(ii) when an atom po ∈ P \ {p′} is true then the atom o ∈ O is false (line 4). It
is important to remark here that the creation of P and R is done only once in
the actual implementation. Then, the algorithm performs a stable model search
enforcing that at least one of the objective literals that are not in S is falsified.
If such a model exists, say I, then S is updated by adding the objective literals
that are false w.r.t. I. If such a model does not exists, then all literals in O \ S
are necessarily in a minimal model, since none of them can be removed, and the
algorithm terminates returning it. Moreover, an additional rule ← p is added
for each atom in P . In this way, the enumeration of the minimal models is not
affected by the rules R added in Π.

Split. The idea of this strategy is to build a minimal model by removing, one by
one, all unnecessary literals from a minimal stable model candidate. In particular,
function Split first computes a stable model of Π, say I (line 1). If such a
stable model does not exist, the algorithm terminates returning ⊥. Otherwise,
all objective literals that are true w.r.t. I are stored in S. Moreover, a set of
necessarily true literals, namely T , is created. If there are no more literals in S
to test then the algorithm terminates returning T (line 5). Otherwise, a literal
in S that is not in T is selected, say o. Then, a stable model I is searched, where
I must falsify o and all the literals in O\S (line 7). If such an I exists, then all
false literals w.r.t. I are removed from S. Otherwise, o must be necessarily true
and is added to T . The algorithm then loops until there are no further literals
in S to test.
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Algorithm 2: MUS Enumeration
Input : A program Π, a set of atoms O | ∀o ∈ O, heads(o) = {{o} ≥ 0 ← �}
Output: MUSes of Π w.r.t. O.

1 Πs := {O ≥ 0 ← �}; // atoms(Πs) = O
2 loop

3 I := Opt(Πs, O); // Minimal models of Πs w.r.t. O
4 if I = ⊥ then return;
5 (I ′, C) := ComputeStableModel(Π, I);

6 if I ′ �= ⊥ then Πs := Πs ∪ {⊥ ← (O \ I)} ;
7 else
8 M := Minimize(Π, C) ; // where M ⊆ C ⊆ I
9 Print(M); // M is a MUS

10 Πs := Πs ∪ {⊥ ← M};

4 Enumeration of MUSes

In this section, we present the algorithm for enumerating Minimal Unsatisfiable
Subsets (MUSes) of a given program.

Definition 1 (Minimal Unsatisfiable Subset—MUS). Let Π be a pro-
gram, and O ⊆ atoms(Π) be a set of objective atoms. A set U ⊆ O is an
unsatisfiable subset for Π w.r.t. O if

Π ∪ {O ≥ 0 ← �} ∪ {⊥ ← ∼o | o ∈ U} (3)

is incoherent, that is, the program extended with a free choice of objective atoms
is incoherent after forcing truth of atoms in U . A minimal unsatisfiable subset
for Π w.r.t. O is an unsatisfiable subset U ⊆ O for Π w.r.t. O such that there
is no U ′ ⊂ U being an unsatisfiable subset for Π w.r.t. O.

An important property of Definition 1 is that unsatisfiable subsets are mono-
tone. More specifically, given a program Π and a set of objective atoms O, if
U ⊆ O is an unsatisfiable subset, then U ⊆ U ′ ⊆ O implies that U ′ is also an
unsatisfiable subset.

Equipped with the definition of MUS, we are now able to present an algo-
rithm for their enumeration, reported as Algorithm 2, which represents a slight
adaptation of the algorithm emax proposed by Menćıa and João Marques-Silva
in [20] to enumerate MSISes.

The algorithm takes as input a program Π and a set of objective atoms
O, and prints as output all MUSes of Π w.r.t. O. Then, the algorithm takes
advantage of another program, namely Πs, initialized with a choice rule for
each atom in O, thus atoms(Πs) = O, which is used later on to block the
sets of printed MUSes. Then, the algorithm computes a subset-minimal model
I of ϕ w.r.t. O using function Opt described in Sect. 3. ComputeStableModel
is then called trying to find a stable model I ′ ⊇ I. If such a stable model
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exists then Πs is extended with a new constraint enforcing that at least one of
the objective atoms that are not included in I is flipped (line 6). Otherwise,
ComputeStableModel(Π, I) returns (⊥, C), and C is minimized (line 8; e.g.,
by using the algorithm QUICKXPLAIN [17]). Note that since I contains only
atoms, the notion of unsatisfiable core returned by the solver corresponds to the
one of Unsatisfiable Set of Definition 1. Therefore, minimizing C coincides with
computing a MUS M , that is later on printed. Moreover, a novel constraint is
added to Πs enforcing that M is not found in future searches (line 10).

5 Experiments

The algorithms for minimal stable models and MUSes enumeration given in
Sects. 3 and 4 have been implemented in wasp [2], an ASP solver imple-
menting non-chronological backtracking and handling assumption literals. Bina-
ries, source code, and instructions to reproduce the experiments can be found
at https://www.mat.unical.it/∼dodaro/research/enumeration/. In the experi-
ments, time and memory were limited to 5 min and 10 GB, respectively.

Benchmarks. The analysis was executed on a set of incoherent instances pro-
posed in the literature. In particular, concerning minimal stable models enumer-
ation, we used the benchmarks in the folder decisional and optimization used by
Amendola et al. in [5] and available at https://doi.org/10.5281/zenodo.3963790.
In the following we will omit the benchmarks graph colouring, stable marriage,
and system synthesis since all tested solvers could not find even the first model.
This experiment concerns the computational task of enumerating paracoherent
answer sets using the semistable semantics [5]. In particular, for each incoherent
instance we applied the rewriting technique proposed by Amendola et al. in [5],
then minimal stable models w.r.t. the atoms of the form gap(·) correspond to
the paracoherent answer sets. Concerning MUSes, we used all the benchmarks
proposed in [20]. This experiment investigates the problem of explaining the
inconsistency of ASP programs, where an ASP encoding is assumed to be cor-
rect and we are interested in enumerating all the (minimal) sets of facts leading
to the inconsistency. In particular, to compute MUSes as defined in this paper,
we converted each fact of the form p ← in a rule of the form p ← auxp and
a choice rule of the form {auxp} ≥ 0 ← �, where auxp is a fresh atom not
appearing in the program. Then, we considered as the set of objective atoms all
the atoms of the form auxp .

Solvers. Concerning minimal stable model enumeration, the performance of the
algorithms is compared in terms of computed solutions with the state-of-the-
art tool asprin (v. 3.1.1) [6]. Concerning MUSes enumeration, we employed
the tool presented in [20] configured with the algorithm emax, and referred in
the following as emax. In the following, opt, one, min, split refer to wasp
employing the algorithm based on the functions Opt, One, Minimize, and Split,
respectively; and wasp-mus refer to wasp configured for enumerating MUSes.

https://www.mat.unical.it/~dodaro/research/enumeration/
https://doi.org/10.5281/zenodo.3963790
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Table 1. Total sum of enumerated minimal models. Best results are in bold.

Benchmark asprin one opt min split

KnightTour 0 2 490 1 846 0 0

MinimalDiagn 0 27 901 27 107 0 23 784

QualSpatReas 0 9 923 18 158 20 987 12 895

Visit-all 729 220 407 840 333 190 295 465 438 113

ADF 27 297 528 1 597 652 1 918 437 1 925 346 1 678 899

Bayes 719 768 13 222 883 13 884 518 9 001 178 10 311 603

ConMaxStillLife 20 740 0 2 171 561 775 825 89 670

CrossingMin 18 549 858 27 152 665 35 604 656 31 421 298 42 338 833

Markov 781 574 447 590 658 308 196 423 655

MaxClique 25 0 42 740 261 66

SteinerTree 976 339 666 442 201 554 410 290 106

Supertree 131 027 0 603 937 630 603 336 975

TSP 11 338 1 041 987 662 644 1 746 535 890 064

VideoStreaming 811 45 046 50 482 48 261 50 752

Table 2. Number of different solved instances by each solver with a limit to the number
of models to enumerate set to 10, 103, and 104. Best results are in bold.

Max 10 models Max 103 models Max 104 models

Benchmark asprin one opt min split asprin one opt min split asprin one opt min split

KnightTour 0 2 1 0 0 0 2 1 0 0 0 0 0 0 0

MinimalDiagn 0 64 62 0 63 0 3 3 0 3 0 0 0 0 0

QualSpatReas 0 19 30 38 26 0 0 0 0 0 0 0 0 0 0

Visit-all 5 5 5 4 5 5 5 5 4 5 5 3 4 3 3

ADF 196 143 191 166 145 194 142 191 164 143 178 76 75 75 74

Bayes 54 60 60 60 60 26 60 60 60 60 13 60 60 59 58

ConMaxStillLife 120 0 120 105 120 0 0 117 103 33 0 0 101 28 0

CrossingMin 85 76 85 85 85 85 77 85 85 85 85 74 85 85 85

Markov 11 50 50 48 42 0 50 49 33 15 0 16 17 7 5

MaxClique 0 0 136 1 0 0 0 12 0 0 0 0 0 0 0

SteinerTree 25 21 44 49 49 2 21 34 45 32 2 18 21 27 20

Supertree 24 0 20 58 41 24 0 20 53 25 3 0 17 21 11

TSP 70 47 61 72 67 2 44 47 63 34 2 31 20 30 23

VideoStreaming 8 43 43 43 43 0 39 39 39 39 0 0 0 0 0

Enumeration of Minimal Stable Models. Results are shown in Table 1, where we
report, for each tested solver and for each benchmark, the total sum of enumer-
ated minimal stable models. The best performance overall is obtained by split,
which enumerated the greatest number of minimal stable models, followed by
opt that obtained a similar performance. It is interesting to compare the perfor-
mance of asprin with the one of opt, since they employ the same technique for
computing a single minimal stable model. In this case, opt outperforms asprin
in all the domains but Visit-all and ADF, where the latter is much faster than all



Enumeration of Minimal Models and MUSes in WASP 39

Table 3. Total sum of enumerated MUSes, solved instances, and wins for each solver.
Best results are in bold.

Sum of enumerated MUSes Number of solved Number of wins

Benchmark # emax wasp-mus emax wasp-mus emax wasp-mus

GracefulGraphs 120 153 401 60 60 4 33

KnightTour 120 7570 5273 41 36 31 43

Solitaire 120 976 510 34 24 31 0

wasp-based alternatives. To obtain a clearer picture of the results, we conducted
an additional analysis. In particular, we executed the solvers with different lim-
its on the number of minimal stable models to enumerate. Results are reported
in Table 2, where for each tested solver and for each benchmark, we report the
sum of solved instances within the budget. In this case, it is possible to observe
that the performance difference between the tested solvers is reduced when the
limit is set to 10 models. In particular, asprin and opt obtained similar perfor-
mance on benchmarks of the optimization setting. Interestingly, the performance
of asprin deteriorates when the limit is set to 103. Indeed, overall it solves 598
instances when the limit is set to 10 and 338 instances when the limit is set
to 103, with a percentage loss equal to 77%, whereas algorithms implemented
in wasp report a lower percentage loss that are 20%, 37%, 12%, and 57% for
one, opt, min, and split, respectively. This performance can be explained by
the fact that asprin adds exponentially many blocking constraints to avoid the
enumeration of the same minimal models (see Sect. 6), whereas function Enu-
merate described in Sect. 3 requires no additional space. A similar result was
observed by Alviano and Dodaro in [1].

Enumeration of MUSes. Results are shown in Table 1, where we report, for each
tested solver and for each benchmark, the total sum of enumerated muses, the
number of solved instances (i.e., where all MUSes have been computed), and the
number of wins (where an instance is counted as a win for a solver if it enumerates
more MUSes than the other one). In this case, the two solvers obtain similar
performance overall, since emax outperforms wasp-mus in terms of enumerated
MUSes in KinghtTour and Solitaire, whereas wasp-mus outperforms emax in
GracefulGraphs. Interestingly, if we consider the number of wins, wasp-mus
outperforms emax on both GracefulGraphs and KnightTour, whereas emax is
much faster on instances of Solitaire.

6 Related Work

The computational task of enumerating stable models was widely studied in
the context of ASP. Modern solvers, like clasp [15] and wasp [2], support two
strategies. The first one is based on blocking constraints, where the idea is to
add a single constraint for each enumerated stable model, whose drawback is
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that in the worst case the number of introduced constraints is exponential in the
size of the input program. The second (polyspace) strategy [1,14] is similar to
the one proposed in function Enumerate, whose idea is to combine chronological
backtracking on the branching literals of the latest printed answer set with the
non-chronological backtracking implemented in the solver. We adopted such a
strategy for the enumeration of minimal models, whereas the tool asprin [6]
is instead based on blocking constraints, and as shown in the experiments (see
Sect. 5), this strategy quickly deteriorates the performance of the solver. More-
over, enumeration strategies were also studied in presence of weak constraints,
e.g., Pajunen and Janhunen [21] proposed the enumeration of stable models
ordered by their optimality costs.

Algorithm 1 captures a family of strategies that basically differ on how a
minimal model is computed. In particular, the algorithm Opt adapts the optsat
algorithm [9] and extends it in the way suggested by Dodaro and Previti in
[11], that uses a novel heuristic for the implementation of the function OneOf .
The ASP system clingo also supports the computation of a minimal model
with an algorithm similar to Opt by using the #heuristic directive [13] and
the command line option -heuristic=domain. Moreover, using the command
line option -enum-mode=domRec, clingo introduces a blocking clause after each
minimal model found. This is similar to the execution of Algorithm 1 with the
function Opt but without calling the function Enumerate. Algorithm One is
instead based on the MaxSAT algorithm One [4]. Algorithms Minimize and
Split extend the algorithms proposed by Amendola et al. in [5].

MUSes are widely studied in the context of propositional satisfiability [18,19].
The algorithm proposed in Sect. 4 represents a native implementation of the
one proposed by Menćıa and Marques-Silva in [20]. Concerning ASP, different
definitions of MUSes have been proposed. In particular, Brewka et al. in [8]
introduced the notion of strong inconsistency, showing that it plays a similar role
as MUS in propositional satisfiability. Similarly, Dodaro et al. in [10] introduced
the notion of a (minimal) reason of incoherence.

7 Conclusions

Enumeration of subset-minimal solutions w.r.t. set of objective atoms can be
efficiently implemented in modern ASP solvers. In this paper, we provide the
description of a meta-algorithm for enumerating stable models that are subset-
minimal w.r.t. a set of objective atoms. Such an algorithm efficiently combines
several techniques presented in the literature and can be easily instantiated in
multiple ways by updating one of its components. Moreover, we provided the
first native implementation of an existing algorithm for enumerating MUSes in
the ASP solver wasp.
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20. Menćıa, C., Marques-Silva, J.: Reasoning about strong inconsistency in ASP. In:
Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 332–342. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 24

21. Pajunen, J., Janhunen, T.: Solution enumeration by optimality in answer set pro-
gramming. Theory Pract. Log. Program. 21(6), 750–767 (2021)

https://doi.org/10.1007/978-3-030-51825-7_24


Statistical Statements in Probabilistic
Logic Programming

Damiano Azzolini1(B) , Elena Bellodi2 , and Fabrizio Riguzzi1

1 Dipartimento di Matematica e Informatica, Università di Ferrara,
Via Saragat 1, 44122 Ferrara, Italy

{damiano.azzolini,fabrizio.riguzzi}@unife.it
2 Dipartimento di Ingegneria, Università di Ferrara,

Via Saragat 1, 44122 Ferrara, Italy
elena.bellodi@unfe.it

Abstract. Probabilistic Logic Programs under the distribution seman-
tics (PLPDS) do not allow statistical probabilistic statements of the form
“90% of birds fly”, which were defined “Type 1” statements by Halpern. In
this paper, we add this kind of statements to PLPDS and introduce the
PASTA (“Probabilistic Answer set programming for STAtistical probabil-
ities”) language. We translate programs in our new formalism into prob-
abilistic answer set programs under the credal semantics. This approach
differs from previous proposals, such as the one based on “probabilistic
conditionals” as, instead of choosing a single model by making the max-
imum entropy assumption, we take into consideration all models and we
assign probability intervals to queries. In this way we refrain from making
assumptions and we obtain a more neutral framework. We also propose an
inference algorithm and compare it with an existing solver for probabilistic
answer set programs on a number of programs of increasing size, showing
that our solution is faster and can deal with larger instances.

Keywords: Probabilistic Logic Programming · Statistical statements ·
Statistical Relational Artificial Intelligence

1 Introduction

Probabilistic Logic Programming (PLP) [19] extends Logic Programming (LP)
by considering various probabilistic constructs. ProbLog [8] is an example of a
PLP language based on the distribution semantics (PLPDS) [20]. This semantics
assumes that every program has a two-valued well-founded model [24].

In giving a semantics to First-Order knowledge bases, Halpern [13] dis-
tinguishes statistical statements from statements about degrees of belief, and
presents two examples: “the probability that a randomly chosen bird flies is 0.9”
and “the probability that Tweety (a particular bird) flies is 0.9”. The first state-
ment captures statistical information about the world while the second captures
a degree of belief. The first type of statement is called “Type 1” while the latter
“Type 2”. The first statement can be read as “90% of the population of birds
flies”.
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The distribution semantics allows statements stating that, if a specific x is
a bird, then x flies with probability 0.9 (or it does not with probability 0.1).
In fact, the semantics of general rules of the form 0.9::flies(X) :- bird(X).
is given by the set of its ground instantiations of the form 0.9::flies(x) :-
bird(x)., which has the just described meaning. In this paper, we aim at adding
to PLPDS the possibility of expressing “Type 1” statements, exploiting for this
purpose Probabilistic Answer Set Programming.

Answer Set Programming (ASP) [5] is a powerful rule-based language for
knowledge representation and reasoning. An extension to ASP that manages
uncertain data is Probabilistic Answer Set Programming (PASP). The credal
semantics [6] assigns a probability range to every query to probabilistic answer
set programs - instead of a sharp value as in PLPDS - where lower and upper
probability bounds are computed by analyzing the stable models of every world.

“Type 1” statements are called “probabilistic conditionals” in [15], where they
are given a semantics in terms of the principle of maximum entropy: the unique
model with maximum entropy is chosen. Instead of selecting only one model, we
keep all models at the cost of inferring a probability interval instead of a sharp
probability. We think this is of interest because it avoids making the rather
strong maximum entropy assumption.

We propose a new language, called PASTA for “Probabilistic Answer set pro-
gramming for STAtistical probabilities”, where we exploit the credal semantics
to take into account “Type 1” statements in PLPDS. In particular, probabilis-
tic conditionals are converted into an ASP rule plus two constraints: the rule
characterizes the elements of the domain while the constraints inject the statis-
tical information on the possible stable models of every world. To perform exact
inference under this semantics we developed an algorithm, taking the same name
of the language, which returns lower and upper bounds for the probability of
queries, and compared it with PASOCS [23]. The results show that, if we pre-
process the input program into a form that allows reasoning about its structure,
it is possible to obtain better performance on every program we tested.

The paper is structured as follows: in Sect. 2 we review the basic knowledge
relative to ASP, PLPDS, the credal semantics, and probabilistic conditionals. In
Sect. 3 we describe the PASTA language. In Sect. 4 we introduce an algorithm
to perform exact inference on PASTA programs, that is experimentally tested
in Sect. 5. Section 6 surveys related work and Sect. 7 concludes the paper.

2 Background

2.1 Answer Set Programming

We expect the reader to be familiar with the basic concepts of Logic Program-
ming and First-Order Logic. We consider here also aggregate atoms [1] of the
form g0 �0#f{e1; . . . ; en}�1 g1, where f is an aggregate function symbol, �0 and
�1 are arithmetic comparison operators, and g0 and g1 are constants or vari-
ables called guards; each ei is an expression of the form t1, . . . , tl : F , where F
is a conjunction of literals and t1, . . . , tl, with l > 0, are terms whose variables
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appear in F . g0�0 or g1�1 or even both can be omitted. Moreover, �0 and �1 can
be omitted as well and, if omitted, are considered equivalent to ≤. A disjunctive
rule (or simply rule) is an expression of the form

H1 ∨ · · · ∨ Hm ← B1, . . . , Bn

where each Hi is an atom and each Bi is a literal. H1 ∨ · · · ∨ Hm is the head
of the rule and B1, . . . , Bn is the body. We will usually replace ∨ with ; and
← with :- when describing actual code. We consider only safe rules, where all
variables occur in a positive literal in the body. If m = 0 and n > 0, the rule is an
integrity constraint. Facts can also be defined through a range with the notation
f(a..b), where both a and b are integers. A rule is ground when it does not
contain variables. A program, also called knowledge base, is a finite set of rules.
Given an answer set program P, we define its Herbrand base (denoted with BP)
as the set of all ground atoms that can be constructed using the symbols in the
program. An interpretation I for P is a set such that I ⊂ BP . An interpretation
I satisfies a ground rule if at least one head atom is true in I when the body
is true in I. If an interpretation satisfies all the groundings of all the rules of a
program it is called a model. Given a ground program Pg and an interpretation
I we call reduct [10] of Pg with respect to I the program obtained by removing
from Pg the rules in which a literal in the body is false in I. An interpretation I
is an answer set (also called stable model) for P if I is a minimal model (under
set inclusion) of the reduct of Pg. We denote with AS (P) the set of all the
answer sets of a program P. Sometimes, not all the elements of an answer set
are needed, so we can project the computed solution into a set of atoms. That
is, we would like to compute the projective solutions [12] given a set of ground
atoms V , represented by the set ASV (P) = {A ∩ V | A ∈ AS(P)}. An atom
a is a brave consequence of a program P if ∃A ∈ AS (P) such that a ∈ A. We
denote the set containing all the brave consequences with BC (P). Similarly, a is
a cautious consequence if ∀A ∈ AS (P), a ∈ A, and we denote the set containing
all the cautious consequences with CC (P).

Example 1 (Bird). Consider the following answer set program P:
bird(1..4).
fly(X) ; not_fly(X):- bird(X).
:- #count{X:fly(X),bird(X)} = FB,

#count{X:bird(X)} = B, 10*FB < 6*B.

The first line states that there are 4 birds, indexed with 1, 2, 3, and 4. The
disjunctive rule states that a bird X can fly or not fly. In the constraint, the
first aggregate counts the flying birds and assigns this value to FB, while the
second aggregate counts the birds and assigns the result to B. Overall, the con-
straint imposes that at least 60% of the birds fly (we converted the values into
integers since ASP cannot easily manage floating point numbers). This program
has 5 answer sets, BC(P) = {b(1) b(2) b(3) b(4) f(1) nf(1) f(2) nf(2)
f(3) nf(3) f(4) nf(4)}, CC(P) = {b(1) b(2) b(3) b(4)}, and ASV (P) =
{{b(1) b(2) b(3) b(4)}} where b/1 stands for bird/1, f/1 for fly/1, nf/1
for not_fly/1 and V = {b(1), b(2), b(3), b(4)}.
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2.2 Probabilistic Logic Programming

In LP, a large body of work has appeared for allowing probabilistic reasoning.
One of the most widespread approaches is the distribution semantics (DS) [20]
according to which a probabilistic logic program defines a probability distri-
bution over normal logic programs called worlds. The DS underlies many lan-
guages such as ProbLog [8]. Following the ProbLog syntax, probabilistic facts
take the form Π :: f. where f is a fact and Π ∈ ]0, 1]. For example, with
0.9::fly(tweety). we are stating that the probability that tweety flies is 0.9,
i.e., we believe in the truth of fly(tweety) with probability 0.9. This is a“Type
2” statement.

An atomic choice indicates whether a grounding fθ, where θ is a substitution,
for a probabilistic fact Π :: f is selected for a world or not, and it is represented
with the triple (f, θ, k) where k can be 1 (fact selected) or 0 (fact not selected).
A composite choice is a consistent set of atomic choices, i.e., only one choice can
be made for a single ground probabilistic fact. The probability of a composite
choice κ can be computed with the formula:

P (κ) =
∏

(fi,θ,1)∈κ

Πi ·
∏

(fi,θ,0)∈κ

(1 − Πi) (1)

If a composite choice contains one atomic choice for every grounding of each
probabilistic fact, it is called a total composite choice or selection, and it is
usually indicated with σ. Every selection identifies a normal logic program w
called world composed of the rules of the program and the probabilistic facts
that correspond to atomic choices with k = 1. Finally, the probability of a query
q (a ground literal or a conjunction of ground literals) is computed as the sum
of the probabilities of the worlds where the query is true:

P (q) =
∑

w|=q

P (w) (2)

where P (w) is given by the probability of the corresponding selection (computed
with Eq. 1).

2.3 Credal Semantics

The DS considers only programs where each world has a two-valued well-founded
model [24]. However, in the case of answer set programs, this often does not hold.
When logic programs are not stratified, they may have none or several stable
models, in which case the well-founded model is not two-valued. If the program
has multiple stable models, there are various available semantics: here we focus
on the credal semantics [6,7]. Under this semantics, every query q is described
by a lower and an upper probability, denoted respectively with P (q) and P (q),
with the intuitive meaning that P (q) lies in the range [P (q), P (q)]. If every world
has exactly one stable model, P (q) = P (q) and the credal semantics coincides
with the DS. A world w contributes to the upper probability if the query is true
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in at least one of its stable models and to the lower probability if the query is
true in all its stable models. In formulas,

P (q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi), P (q) =
∑

wi|∀m∈AS(wi), m|=q

P (wi) (3)

[6] also suggested an algorithm to compute the probability of q given evidence e
(conditional probability). In this case, the upper conditional probability is given
by

P (q | e) =
P (q, e)

P (q, e) + P (¬q, e)
(4)

If P (q, e) + P (¬q, e) = 0 and P (¬q, e) > 0, P (q | e) = 0. If both P (q, e) and
P (¬q, e) are 0, this value is undefined. The formula for the lower conditional
probability is

P (q | e) =
P (q, e)

P (q, e) + P (¬q, e)
(5)

If P (q, e)+P (¬q, e) = 0 and P (q, e) > 0, P (q | e) = 1. As before, if both P (q, e)
and P (¬q, e) are 0, this value is undefined.

2.4 Probabilistic Conditionals

Following [15], a probabilistic conditional is a formula of the form K = (C |
A)[Π] where C and A are First-Order formulas and Π ∈ [0, 1]. The intuitive
meaning is: the number of individuals that satisfy C is 100 · Π percent of the
individuals that satisfy A.

Example 2 (Bird conditional). Consider the following example, inspired by [25]:

bird(1)
(fly(X) | bird(X))[0.6]

The second statement says that, out of all the birds, 60% fly.

In this setting, [21] define a possible world w as an interpretation. Let Ω be
the set of all possible worlds. A probabilistic interpretation P is a probability
distribution over Ω, i.e., a function P : Ω → [0, 1]. Given a conjunction of
ground literals q, P (q) =

∑
w|=q P (w). The aggregating semantics states that

a probability distribution P over interpretations is a model of a First-Order
formula if and only if w �|= F =⇒ P (w) = 0 ∀w, and is a model of a conditional
K = (C | A)[Π] if and only if

∑
(Ci|Ai)∈G(K) P (Ai, Ci)∑

(Ci|Ai)∈G(K) P (Ai)
= Π (6)

where G(K) is the set containing all the ground instances of a conditional K.
A probabilistic interpretation is a model for a knowledge base if it models all
the formulas and all the conditionals. According to [18,25], the semantics of a
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knowledge base composed of probabilistic conditionals is given by the model
with the highest entropy. The maximum entropy (MaxEnt) distribution for a
knowledge base K is defined as:

PMaxEnt = argmax
P |=K

−
∑

wi

P (wi) · log(P (wi))

With this formulation, it is possible to assign a sharp probability value to every
query. In this paper, we follow a different approach and we consider probabilistic
conditionals as statistical “Type 1” statements [13], interpreting them under the
credal semantics.

3 Probabilistic Answer Set Programming for Statistical
Probabilities (PASTA)

A probabilistic conditional expresses statistical information about the world of
interest, but we would like to avoid selecting a model making the maximum
entropy assumption. We would rather consider all possible models and derive
lower and upper bounds on the probability of queries using the credal semantics.
Here, we consider “Type 1”/probabilistic conditionals of the form

(C | A)[Πl,Πu].

with a lower (Πl) and an upper (Πu) bound, with the intuitive meaning that the
fraction of As that are also Cs is between Πl and Πu. Note that Πl and Πu can
be vacuous, i.e., they can be respectively 0 and 1. We follow an approach based
on the DS, so here worlds are ground programs. The meaning of the statement
above is that the models of a world where the constraint

Πl ≤ #count{X : C(X), A(X)}
#count{X : A(X)} ≤ Πu (7)

does not hold should be excluded, where X is the vector of variables appearing
in C and A.

We consider a program as being composed of regular rules, probabilistic facts,
and conditionals of the previously described form, and we assign a semantics to it
by translating it into a probabilistic answer set program. We call this language
PASTA (Probabilistic Answer set programming for STAtistical probabilities).
Probabilistic facts and rules appear unmodified in the probabilistic answer set
program. The conditional (C | A)[Πl,Πu] is transformed into three answer set
rules. The first is a disjunctive rule of the form C;not_C:-A. We require this
rule to be safe. Then, we introduce two integrity constraints that mimic Eq. 7
through aggregates: we count all the ground atoms that satisfy A (call this value
ND) and A and C (call this value NN) and we impose that NN must be greater
than or equal to 100 · Πl percent of ND and smaller than or equal to 100 · Πu

percent of ND. The constraints are not generated if the bounds are vacuous. The
conditional (fly(X) | bird(X))[0.6] of Example 2 is transformed into the
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rule and the constraint shown in Example 1. Finally, the probability interval of
a query from a PASTA program is the probability interval of the query computed
from the transformed probabilistic answer set program.

Example 3 (Bird probabilistic). Consider the program

0.4::bird(1..4).
(fly(X)|bird(X))[0.6].

This program is transformed into a probabilistic answer set program includ-
ing four probabilistic facts, the rule, and the constraint from Example 1. There
is only one constraint since the upper bound is vacuous. Consider the query q =
fly(1). There are 24 = 16 possible worlds. The query is false if bird(1) is false,
so we can consider only 23 = 8 worlds. There is 1 world with 4 birds, and it has
5 models. The query is true only in 4 of them, so we have a contribution of 0.44
to the upper probability. There are 3 worlds with 3 birds: these have 4 models
each and the query is true in only three of them, so we have a contribution of
3 · (0.43 · (1 − 0.4)) to the upper probability. There are 3 worlds with 2 birds:
these have only one model and the query is true in it, so we have a contribution
to both lower and upper probabilities of 3 ·(0.42 ·(1−0.4)2). Finally, there is only
1 world with 1 bird, it has only 1 model and the query is true in it, so we have a
contribution to both lower and upper probabilities of 0.4 · (1−0.4)3. Overall, for
the query fly(1) we get 0.2592 for the lower and 0.4 for the upper probability, so
the probability lies in the range [0.2592, 0.4]. Similarly, by applying Formulas 4
and 5, the probability of the same query given evidence e = fly(2) is in the
range [0.144, 0.44247] since P (q, e) = 0.0576, P (q, e) = 0.16, P (¬q, e) = 0.2016,
and P (¬q, e) = 0.3424.

4 Inference in PASTA

By rewriting probabilistic conditionals as ASP rules, computing the probability
of a query requires performing inference in PASP. To the best of our knowl-
edge, the only system that allows (exact) inference in probabilistic answer set
programs with aggregates is PASOCS [23], an implementation of the algorithm
presented in [6]. The algorithm computes the probability of a query by generat-
ing all possible worlds (2n, where n is the number of ground probabilistic facts in
the program). For each world, it computes the brave and cautious consequences
(there is no need to compute all the answer sets). If the query is present in the
brave consequences of a world, that world contributes to the upper probabil-
ity. If the query is also present in the cautious consequences, that world also
contributes to the lower probability. Despite its simplicity, this algorithm relies
on the generation of all the possible worlds and does not take advantage of the
structure of a program. For example, in Example 3, with query fly(1), the
probabilistic fact bird(1) must be true to get a contribution to the lower or
upper probability, and so we can avoid generating the worlds where this fact is
not present. Moreover, for both conditional and unconditional queries, we do not
need to generate all the possible models for every world, we just need to check
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whether there is at least one model that satisfies the required constraints. To
accommodate these ideas, we propose Algorithm 1, that we call PASTA like the
language.

Consider first the problem of computing the probability of a query q (without
evidence). We generate a non-probabilistic answer set program as follows. Every
certain rule is kept unchanged. Every conditional is converted into three ASP
rules as described in Sect. 3. Every ground probabilistic fact of the form P::f is
converted into two rules of the form f(P1):- f. not_f(1-P1):- not f. where
P1 is P ·10n (since ASP cannot manage floating point numbers). The atom f is
then defined by a rule of the form 0{f}1. Function ConvertProbFactsAnd-
Conditionals performs these conversions. Let us call the resulting program
PASPp . We then add to PASPp a constraint (line 4) imposing that the query
must be true, represented with :- not query. (for Example 3 it becomes :-
not fly(1).). We are not interested in all possible solutions, but only in the
cautious consequences projected over the ground probabilistic facts, since we
want to extract the probabilistic facts that are true in every answer set. These
will constitute the minimal set of probabilistic facts. Function ComputeMini-
malSet computes this set. These facts can be set to true since they are always
present in the answer sets when the query is true, and so when there is a contri-
bution to the probabilities. In the worst case, the resulting set will be empty. If
we consider Example 3 and query fly(1), the only atom (already converted as
described before with n = 3) in this set will be bird(1,400), so the correspond-
ing probabilistic fact must be always true. After this step, we add to PASPp

one integrity constraint for every element in the minimal set of probabilistic
facts, to set them to true. Note that now PASPp does not contain the constraint
imposed on the query in the previous step. For Example 3 and query fly(1),
we add :- not bird(1,400). to the program (line 9). Moreover, we add two
more rules that indicate whether a model contains or not the query (line 11).
For Example 3 and query fly(1) these are: q:- fly(1). nq:- not fly(1).
Finally, we project the answer sets [12] to the probabilistic facts and atoms q
and nq, since we need to consider only the truth values of the probabilistic facts
to compute the probability of a world (line 13). The probabilistic facts present
in the projected answer sets identify a world. Given an answer set, its proba-
bility (the probability of the world it represents) is given by the product of the
probabilities of the probabilistic facts in it. Function ComputeContribution
(line 18) computes the probability of every world and counts the models, the
models where the query is true, the models where the query is false, the models
where the query and evidence are true, and the models where the query is false
and the evidence is true. For a query without evidence, the number of models
where the query is true and the number of models where the query is false will
only be either 0 or 1. To get the lower and upper probabilities, we apply For-
mulas 3. If we consider again Example 3 with query fly(1), two of the possible
projective solutions are:

b(1,400) b(2,400) b(3,400) b(4,400) nq
b(1,400) b(2,400) b(3,400) b(4,400) q
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where, for the sake of brevity, b/2 stands for bird/2. These two solutions show
that the world with 4 birds has at least one model where the query is true and
at least one model where the query is false, so it only contributes to the upper
probability with 0.4 · 0.4 · 0.4 · 0.4 = 0.0256. Here, we also see the improvement
given by computing the projective solutions: we only need to know whether the
query is true or false in some models of a world, and not the exact number
of models in which the query is true. For example, as shown in Example 1,
the world with 4 birds has 5 models: 4 where the query is true and 1 where the
query is false. However, to compute the probability bounds, it is not necessary to
know the exact number: at most two stable models (one with the query true and
one with the query false) for each world are needed instead of five. A difference
with [23] is that PASOCS computes both brave and cautious consequences for
every world, while PASTA computes projective solutions only once.

Consider now a conditional query. As before, we need to identify the mini-
mal subset of probabilistic facts. However, we now add a constraint forcing the
evidence (ev) to true instead of the query (line 6). We then add two more rules
of the form e:- ev. and ne:- not ev. (line 15) and project the solutions also
on the e and ne atoms (line 16). Finally, we analyse the resulting answer sets to
compute the values that contribute to the lower (lp) and upper (up) probability,
as described in Formulas 4 and 5.

5 Experiments

We implemented Algorithm 1 with Python3 using clingo [11] to compute answer
sets.1 We performed a series of experiments to compare PASTA with PASOCS [23].
For PASOCS, we use the single threaded mode and select exact inference. For
PASTA, the execution time includes both the computation of the minimal set
of probabilistic facts and the computation of the projective solutions. Usually,
the time required for the first operation is negligible with respect to the compu-
tation of the probability. We selected three different programs described in [25].
The first program, brd, is {(fly(X) | bird(X))[0.8,1],0.1::fly(1)} with an
increasing number of probabilistic facts bird/1 with an associated probability of
0.5. The goal is to compute the probability of the query fly(1). The second pro-
gram, mky, represents the pair of conditionals {(f(X) | h(X)) [0.2,1],(f(X,Y)
| h(Y),r(X,Y))[0.9,1]}, with an increasing number of probabilistic facts h/1
and r/2, both with an associated probability of 0.5. The distribution of the facts
r/2 follows a Barabási-Albert model, i.e., a graph, generated with the Python
networkx package with parameter m0 (representing the number of edges to attach
from a new node to existing nodes) set to 3 and an increasing number of nodes.
We randomly selected half of the total number of nodes to generate the h/1 facts.
The query is f(0),f(0,1). The third program, smk, represents the conditional
{(smokes(Y) | smokes(X),friend(X,Y))[0.4,1]} with an increasing number
of probabilistic facts friend/2 with an associated probability of 0.5, following the
Barabási-Albert model. The query is smokes(I), where I is a random node. For
both mky and smk, the results are averaged over 10 different programs, to make

1 Source code and programs available at: https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta
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Algorithm 1. Function ComputeProbabilityBounds: computation of the
probability bounds of a query query given evidence ev in a PASTA program P.
1: function ComputeProbabilityBounds(query, ev , P)
2: probFacts,PASPp ← ConvertProbFactsAndConditionals(P)
3: if ev is undefined then
4: minSet ← ComputeMinimalSet(PASPp ∪ {: - not query.})
5: else
6: minSet ← ComputeMinimalSet(PASPp ∪ {: - not ev .})
7: end if
8: for all a ∈ minSet do � a represents a probabilistic fact
9: PASPp ← PASPp ∪ {: - not a.}
10: end for
11: PASPq

p ← PASPp ∪{q: - query.,nq: - not query.}
12: if ev is undefined then
13: AS ← ProjectSolutions(PASPq

p , probFacts, q ∪ nq)
14: else
15: PASPqe

p ← PASPq
p ∪{e: - ev .,ne: - not ev .}

16: AS ← ProjectSolutions(PASPqe
p , probFacts, q ∪ nq ∪ e ∪ ne)

17: end if
18: worldsList ← ComputeContribution(AS)
19: lp ← 0, up ← 0
20: for all w ∈ worldsList do � Loop through answer sets
21: if ev is undefined then
22: if w .modelQueryCounter > 0 then
23: up ← up +P (w)
24: if w .modelNotQueryCounter == 0 then
25: lp ← lp +P (w)
26: end if
27: end if
28: else
29: upqe ← 0, lpqe ← 0, upnqe ← 0, lpnqe ← 0
30: if w .modelQueryEvCounter > 0 then
31: upqe ← upqe + P (w)
32: if w .modelQueryEvCounter = w .models then
33: lpqe ← lpqe + P (w)
34: end if
35: end if
36: if w .modelNotQueryEvCounter > 0 then
37: upnqe ← upnqe + P (w)
38: if w .modelNotQueryEvCounter = w .models then
39: lpnqe ← lpnqe + P (w)
40: end if
41: end if
42: end if
43: end for
44: if ev is not undefined then
45: if upqe + lpnqe == 0 and upnqe > 0 then
46: lp ← 0, up ← 0
47: else if lpqe + upnqe == 0 and upqe > 0 then
48: lp ← 1, up ← 1
49: else
50: lp ← lpqe

lpqe+upnqe
, up ← upqe

upqe+lpnqe

51: end if
52: end if
53: return lp, up
54: end function

them more representative since the graph generation is not deterministic, and thus
some instances can be easier to query. For all the three programs, the minimal set
of probabilistic facts is empty, so the PASOCS and PASTA work on the same set
of worlds. Inference times are shown in Fig. 1a. PASOCS on mky returned an inter-
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Fig. 1. Results for the experiments.

nal error of the solver while parsing the program. In a second experiment, bird,
we modify the brd program by removing 0.1::fly(1), and we ask two queries:
fly(1), and fly(1) given that fly(2) has been observed. For these two experi-
ments, the minimal set of probabilistic facts contains bird(1). Results are shown
in Fig. 1b. Overall, with our solution we can manage a larger number of proba-
bilistic facts. Moreover, the introduction of the minimal set of probabilistic facts
gives a substantial improvement, as shown in Fig. 1b. However, both PASOCS and
PASTA rely on the generation of all the worlds, which increase in an exponen-
tial way.

6 Related Work

There are several PASP systems such as P-log [4], LPMLN [16], PrASP [17],
and SMProbLog [22]: these aim at finding sharp probability values. We compare
PASTA only with PASOCS [23] since, to the best of our knowledge, it is the
only system that performs inference on probabilistic answer set programs with
aggregates under the credal semantics. The solver proposed in [9] allows counting
the answer sets of a given program, so, in principle, may be applied to perform
inference in PASTA programs, however, aggregates are not allowed. The solution
proposed in [2] adopts ASP techniques to perform inference in probabilistic logic
programs but it is still focused on the computation of a sharp probability value.
Statistical statements are considered also by [14] where a semantics is given
by resorting to cross entropy minimization. Similarly to the case of [25], we
differ because we do not select a specific model but we consider all the models
consistent with the statements and we compare lower and upper bounds.

7 Conclusions

In this paper, we considered probabilistic conditionals as statistical statements
- “Type 1” statements according to Halpern’s definition - and interpreted them
under the credal semantics of probabilistic answer set programs. Our approach,
called PASTA, includes both a language and an inference algorithm: the lan-
guage is given a semantics by converting a probabilistic conditional into three
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ASP rules, one corresponding to the possible combinations of facts, and two con-
straints, one for the lower and one for the upper bound; the algorithm computes
lower and upper probability values for conditional queries. On various programs,
PASTA is able to handle a larger number of probabilistic facts than the state of
the art solver for probabilistic answer set programs under the credal semantics.
As future work, we plan to introduce abductive reasoning in this framework [3].
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Università degli Studi di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy

stefania.monica@unimore.it

Abstract. An interesting feature that traditional approaches to induc-
tive logic programming are missing is the ability to treat noisy and non-
logical data. Neural-symbolic approaches to inductive logic programming
have been recently proposed to combine the advantages of inductive logic
programming, in terms of interpretability and generalization capability,
with the characteristic capacity of deep learning to treat noisy and non-
logical data. This paper concisely surveys and briefly compares three
promising neural-symbolic approaches to inductive logic programming
that have been proposed in the last five years. The considered approaches
use Datalog dialects to represent background knowledge, and they are
capable of producing reusable logical rules from noisy and non-logical
data. Therefore, they provide an effective means to combine logical rea-
soning with state-of-the-art machine learning.

Keywords: Neural-symbolic learning · Inductive logic programming ·
Machine learning · Artificial intelligence

1 Introduction

Inductive logic programming (ILP) (e.g., [6]) has been studied for more than
thirty years with the major goal of delivering effective algorithms to induce
logical rules from data. State-of-the-art ILP algorithms now provide advanced
features, like recursive rules, that were considered as huge obstacles a few years
ago. Despite these progresses, ILP algorithms are typically not able to cope
with noisy and non-logical data like sounds, images, and videos. Moreover, the
background knowledge that ILP algorithms process is normally expressed as
facts and rules that do not contempt uncertainty. On the other hand, deep
learning is very good at treating noisy and erroneous data, but its limitations
with respect to explainability and interpretability are evident. Therefore, ILP
and deep learning can be considered as complementary, and the literature is
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witnessing several attempts at combining them in the so-called neural-symbolic
approaches to ILP (e.g., [11]).

The major contribution of this paper is to briefly survey three promising
neural-symbolic approaches to ILP that have been proposed in the last five years,
paying particular attention to the reusability of the learned rules. Actually, the
discussed approaches generate logical rules written in Datalog dialects, so that
generated rules are immediately reusable.

Note that this paper is not a comprehensive survey of the literature on neural-
symbolic ILP, rather it is intended to briefly compare the features of the three
discussed algorithms in terms of reusability, interpretability, and related char-
acteristics. Interested readers are invited to consult recent surveys on neural-
symbolic approaches (e.g., [1,4,10,11]) for a wider overview of the subject.

2 Studied Neural-Symbolic Algorithms for ILP

This section briefly discusses three of the most relevant neural-symbolic
approaches to ILP that have been considered in the literature in the last five
years. The selection of the approaches to take into consideration started from
recent surveys on ILP and neural-symbolic algorithms [1,2,4,10,11], and then it
was extended by considering (possibly indirect) references taken from the men-
tioned surveys. Only the techniques designed to learn logical rules expressed in
a Datalog dialect were finally selected for inclusion in this paper.

δILP [5] is a neural-symbolic approach to ILP in which rules are generated
using a program template before being tested against training data. In order to
effectively treat noisy and erroneous data, δILP uses a continuous relaxation of
the truth value of each rule, and it associates each pair of rules with a weight
that represents the probability of the pair to be part of the induced program.
In order to choose the correct value for the weights associated with the pairs of
rules, δILP trains a deep neural network to predict the truth values of random
atoms from the training set. The supervised training of this neural network
requires the expected truth values of positive and negative examples, and these
values are obtained by performing a predetermined number of forward chaining
steps followed by the application of the generated rules to background facts.

dNL-ILP [8,9] associates a membership weight with each atom that can be
part of the generated formulae. In addition, it defines a specific neural network,
whose nodes implement fuzzy operators, to model generated formulae, which
are expressed in a, conjunctive or disjunctive, normal form. For each generated
formula, dNL-ILP generates a list that contains the atoms that can be part of
the formula. The algorithm then performs a predetermined number of forward
chaining steps to continuously update the values Xt

p[e], which are computed using
the expected truth value of all the substitutions that would produce the atom e.
At each forward chaining step, dNL-ILP updates the membership weights, and,
at the end of the training, dNL-ILP uses the obtained membership weights to
extract the learned formulae from the network. Finally, note that dNL-ILP is
genuinely different from δILP because dNL-ILP associates weights with atoms
while δILP associates weights with rules.
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Unlike δILP and dNL-ILP, MetaAbd [3] works only on images. MetaAbd tries
to map non-logical data to symbolic input and, at the same time, it induces a
set of rules that defines the target predicate. MetaAbd is composed of two mod-
ules: the perception module and the reasoning module. The perception module
performs the mapping between the sub-symbolic input x and the symbolic input
z. The perception module is a neural network with parameters θ that estimates
the conditional probability P (z|x, θ). The reasoning module comprises the rea-
soner H, which is expressed as a set of rules used to infer the output symbol y,
provided that z is available together with sufficient background knowledge. The
goal of MetaAbd is to learn θ and H simultaneously from training data.

3 A Comparison Based on Four Characteristics

This section compares the discussed algorithms using four characteristics: the
type of representation used for the data in the training set and in the back-
ground knowledge, the language bias that is (possibly implicitly) enforced to
guide the generation of the rules, if recursion is allowed in the induced rules, and
if predicates can be invented during the generation of the rules. Table 1 summa-
rizes the proposed comparison among the three studied algorithms using these
characteristics, as detailed in the remaining of this section.

3.1 Representation of Data

The representations of the background knowledge and of the training examples
play important roles in the considered learning tasks. Normally, ILP algorithms
assume that the background knowledge is provided in terms of a set of facts and
logical rules, while the training examples are represented as a set of facts used to
define the target predicate. Unfortunately, these representations cannot be used
to adequately treat noisy and erroneous data, and they must be reconsidered in
the scope of neural-symbolic approaches to ILP.

The training examples are provided in different forms to the three studied
algorithms: both δILP and dNL-ILP define target predicates using sets of facts,
while MetaAbd requires a training set composed of images. However, all the
studied algorithms allow mislabelled examples because they all minimize an error
function instead of trying to satisfy a strict constraint, which is what traditional
ILP algorithms do. Finally, it is worth noting that δILP was coupled with a
perception module implemented using a neural network trained to recognize
handwritten numbers [5]. δILP was then tested together with this perception
module, but the results were not considered satisfactory [5]. This negative result
suggests that a finer integration between a perception module and a neural-
symbolic algorithm, like the integration proposed by MetaAbd, is needed to reach
a satisfactory performance.

The background knowledge is provided in different forms to the three studied
algorithms: both δILP and dNL-ILP define initial predicates as sets of facts,
while MetaAbd represents the background knowledge as a set of clauses. The
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Table 1. Summary of the features that characterize surveyed algorithms, where the
representation of data is detailed for the background knowledge (BK column) and for
the training set (Dataset column).

Algorithm BK Dataset Language bias Recursion Predicate invention

δILP Facts Facts Templates and constraints Yes Partially

dNL-ILP Facts Facts Templates Yes Partially

MetaAbd Rules Images Meta-rules Yes Yes

representation adopted by MetaAbd is advantageous because it does not require
to manually specify the set of ground atoms that define the initial predicates.
In particular, the use of clauses allows to treat large, or even infinite, domains.
Actually, the description of the background knowledge in terms of facts makes
the learning process impractical when the number of domain elements is large.
From the perspective of noisy background knowledge, both δILP and dNL-ILP
assign a value in [0, 1] to background facts, while MetaAbd assumes that the
background knowledge is free from uncertainty. This limitation of MetaAbd is
problematic because background knowledge is often uncertain.

3.2 Language Bias

The induction of rules requires searching in a large search space. In order to guide
the search, ILP algorithms normally employ a language bias, which is typically
defined as a set of restrictions that partially define accepted solutions.

δILP assumes several restrictions on the generation of rules, as follows:

1. Constants are not allowed;
2. A predicate can be defined only by two rules;
3. Predicates of arity higher than three are not allowed;
4. Each rule must contain exactly two atoms in its body;
5. Each variable that appears in the head of a rule must appear also in its body;
6. Two rules cannot differ only in the order of the atoms in their bodies; and
7. An atom cannot be used in the head and the body of the same rule.

These restrictions on the generation of rules, combined with a program template,
allow δILP to effectively learn from data. However, this approach is not suffi-
ciently scalable because the number of weights grows quickly as the difficulty of
the learning task increases.

dNL-ILP is more flexible, and it only requires a few parameters to define
the search space for the generation of rules. Rules are generated by specifying
the target and the auxiliary predicates in terms of the name and the arity of
each predicate together with the number of variables in the body of each rule.
Note that dNL-ILP is more scalable than δILP because the number of required
weights is smaller.

Finally, MetaAbd follows a different approach than δILP and dNL-ILP
because it uses meta-rules to define the structure of the generated rules. The
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adoption of meta-rules allows domain experts to use their domain knowledge to
improve the learning process. However, it is rarely possible to accurately foresee
the structure of the searched rules, which makes meta-rules impractical for many
real-world applications.

3.3 Recursion

The execution of an unlimited number of deductions using a finite logic program
requires learning recursive rules. Recursion allows generalizing from a small num-
ber of examples because it allows defining a general rule instead of learning a
separate rule for each specific situation. δILP and dNL-ILP support recursion
by design because they generate all the possible rules, including recursive rules.
On the contrary, MetaAbd follows a different approach, and it uses meta-rules
to provide for recursion. Meta-rules represent predicate symbols with generic
predicate names, and therefore recursion is not specified explicitly, but the algo-
rithm tries to correctly associate the predicate names in the meta-rule with the
predicate names defined as part of the learning task.

3.4 Predicate Invention

In many real-world problems, it is difficult, or even impossible, to provide an
appropriate background knowledge. Therefore, predicate invention is useful to
automatically generate new predicates and extend the background knowledge
without the explicit intervention of domain experts. Predicate invention is a
major challenge in ILP, and most of the ordinary algorithms do not support
it. δILP and dNL-ILP support predicate invention only partially because they
require domain experts to manually specify the name and the arity of each aux-
iliary predicate. However, it is often very difficult, or even impossible, to foresee
the structure of a possible solution for many real-world learning tasks. This
makes the use δILP and dNL-ILP impractical from the perspective of predicate
invention. On the contrary, MetaAbd is an extension of the MIL interpreter [7],
which natively supports predicate invention. MetaAbd uses meta-rules to prune
the search space and to invent new predicates whenever necessary. Therefore,
invented predicates are coherently defined using meta-rules.

4 Open Challenges and Conclusion

This paper surveys three relevant neural-symbolic approaches to ILP focusing
specifically on approaches that produce rules in a Datalog dialect and that
appeared in the literature in the last five years. In summary, from the per-
spective of the studied features, it is worth noting that the studied approaches
do not satisfactory support predicate invention. Moreover, the language biases
used to guide the generation of rules impose too many restrictions, or they
require the domain experts to inject too much domain knowledge. In addition,
it is worth recalling that MetaAbd represents the background knowledge as a
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set of rules, while the other studied algorithms require that the background
knowledge is represented in terms of ground atoms only. Therefore, MetaAbd is
capable of handling infinite domains, unlike δILP and dNL-ILP. On the other
hand, MetaAbd does not support noisy background knowledge, which is instead
supported by the two other algorithms. None of the discussed algorithms sup-
port both infinite domains and noisy background knowledge, and it would be
interesting to further investigate in this direction to support both these features.

The proposed comparison suggests that several improvements to the stud-
ied algorithms are possible. Actually, many problems remain to be tackled, like,
for example, well-maintained implementations, standard benchmarks, reasonable
constraints and domain knowledge requirements for induction of rules, and a sat-
isfactory support of infinite domains and noisy background knowledge. Nonethe-
less, the works discussed in this paper witness that neural-symbolic ILP has the
potential to overcome the limitations of traditional ILP, allowing to produce
reusable solutions to real-world problems.
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4. De Raedt, L., Dumančić, S., Manhaeve, R., Marra, G.: From statistical relational
to neural-symbolic artificial intelligence. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 4943–4950. Interna-
tional Joint Conferences on Artificial Intelligence Organization (2021)

5. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018)

6. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

7. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015)

8. Payani, A., Fekri, F.: Inductive logic programming via differentiable deep neural
logic networks. arXiv preprint arXiv:1906.03523 (2019)

9. Payani, A., Fekri, F.: Learning algorithms via neural logic networks. arXiv preprint
arXiv:1904.01554 (2019)

10. Sarker, M.K., Zhou, L., Eberhart, A., Hitzler, P.: Neuro-symbolic artificial intelli-
gence: current trends. arXiv preprint arXiv:2105.05330 (2021)

11. Yu, D., Yang, B., Liu, D., Wang, H.: A survey on neural-symbolic systems. arXiv
preprint arXiv:2111.08164 (2021)

https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
http://arxiv.org/abs/1906.03523
http://arxiv.org/abs/1904.01554
http://arxiv.org/abs/2105.05330
http://arxiv.org/abs/2111.08164


A Definition of Sceptical Semantics
in the Constellations Approach

Stefano Bistarelli and Francesco Santini(B)

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
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Abstract. We propose a different way to compute sceptical semantics
in the constellations approach: we define the grounded, ideal, and eager
extension of a Probabilistic Argumentation Framework by merging the
subsets with the maximal probability of complete, preferred, semi-stable
extensions respectively. Differently from the original work (i.e., [19]), the
extension we propose is unique, as the principle of scepticism usually
demands. This definition maintains some well-known properties, as set-
inclusion among the three semantics. Moreover, we advance a quantita-
tive relaxation of these semantics with the purpose to mitigate scepticism
in case the result corresponds to empty-set, which is not very informative.

1 Introduction

Abstract Argumentation is a high-level language describing conflicting infor-
mation, which can be simply represented by a set of arguments and a binary
attack-relationship. Argumentation is “abstract” because the conflict between
two arguments is not formally motivated, and the internal structure of an argu-
ment is not specified. Such an abstraction can be used to capture general proper-
ties of a debate, but it also fostered the enrichment of frameworks with additional
information (e.g., probabilities).

In uncertain reasoning we can distinguish qualitative and quantitative
approaches. The former ones focus on issues such as defeasibility, and default
assumptions: computational models of argumentations are an example. The lat-
ter ones focus on the problem of quantifying the acceptance status of statements:
an example is probabilistic reasoning. Probabilistic Argumentation frameworks
(PrAFs for short) combine them by bringing together the qualitative view of
argumentation and the probability values associated with arguments and attacks.
The two main approaches on PrAFs in the literature consist in the constellations
and epistemic approaches (see Sect. 3).
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In this paper we focus on the former: values determine the likelihood of
arguments and attacks to be part of a framework, thus generating different
frameworks with a different existence probability.

As advanced in several works in the related literature (e.g., [2,13]), the idea
behind the grounded semantics in Abstract Argumentation is to accept only the
arguments that must be accepted and to reject only the arguments that one
cannot avoid to reject. This leads to the definition of the most sceptical (or least
committed) semantics among those based on complete extensions. The ideal [14]
and eager [10] semantics have been defined as less sceptical positions, since the
grounded extension is a subset of the ideal extension, which is a subset of the
grounded one [10]. In case of a sceptical approach, the existence of more than
one possible argumentative position is often dealt with by taking the intersection
of different extensions. For instance, the ideal semantics uses the intersection
of all the preferred extensions in its definition. Even the grounded extension,
though originally defined as the least fixed-point of a framework characteristic
function [13], also corresponds to the intersection of complete extensions.

In this paper we propose a different way to compute sceptical extensions of
a PrAF in the constellations approach [17,19]: hence we focus on the grounded,
ideal, and eager semantics. The main goal is to propose a single extension for
the whole set of frameworks induced from a given PrAF. On the contrary, in [19]
all the most frequent subsets of arguments that belong to a grounded extension
in induced frameworks are equally-good candidates.

A simple example is any PrAF where both P (a) = P (b) = 1, and a, b are not
attacked: they are present in all the induced frameworks and they always belong
to the grounded extension. Hence, either {a} or {b} have the same (highest
possible) probability 1 to satisfy the grounded semantics.

To obtain unicity, we consider the probability of the intersection of the events
i) a set of arguments is a subset of a complete/preferred/semi-stable extension
in an induced framework, and ii) that framework is induced by the considered
PrAF. Then, sceptical semantics can be seen as the union of argument-sets
maximising the probability of these two events: by taking maximum-probability
positions we realise scepticism in PrAFs.

With such an approach, we show that the sceptical extensions of a PrAF
correspond to the intersection of their equivalents obtained on all the induced
frameworks. As introduced before, this intersection operation is also often used
in non-probabilistic frameworks to define classical sceptical semantics. By having
characterised the intersection of possible frameworks in a quantitative (proba-
bilistic) way, we end up with the opportunity of relaxing scepticism by taking
less-than-maximal-probability sets. Therefore, the proposed approach offers a
way to quantitatively relax scepticism, as classical ideal and eager semantics do
in a qualitatively way with respect to the grounded extension instead. Being the
grounded extension the intersection of all the complete extensions from all the
induced frameworks, a (uninformative) result of empty-set is thus very likely.

The paper is organised as follows: Sect. 2 introduces the necessary back-
ground about semantics and PrAFs defined with the constellations approach.
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Section 4 redefines the grounded semantics in PrAFs, with related formal results
and examples, while in Sect. 5 we extend former results to the ideal and eager
semantics. Section 3 summarises some of the related work about PrAFs, and
finally Sect. 6 wraps up the paper with final conclusions and future work.

2 The Constellations Approach

An Abstract Argumentation Framework (AF, for short) [13] is a tuple F = (A,R)
where A is a set of arguments and R is the attack relation R ⊆ A × A.

A set E ⊆ A is conflict-free (in F) if and only if there are no a, b ∈ E with
a → b (i.e., “a attacks b”). E is admissible (i.e., E ∈ ad(F)) if and only if it
is conflict-free and each a ∈ E is defended by E, i.e., E attacks any attacker
of a. Finally, the range of E in F , i.e., E+

F , collects the same E and the set of
arguments attacked by E: E+

F = E ∪ {a ∈ A | ∃b ∈ E : b → a}. Argumentation
semantics determine sets of jointly acceptable arguments, called extensions, by
mapping each F = (A,R) to a set σ(F) ⊆ 2A, where 2A is the power-set of A,
and σ parametrically stands for any of the considered semantics. The extensions
under complete, preferred, semi-stable, grounded, ideal and eager semantics are
respectively defined as follows. Given F = (A,R) and a set E ⊆ A,

– E ∈ co(F) if and only if E is admissible in F and if a ∈ A is defended by E in F
then a ∈ E,

– E ∈ pr(F) if and only if E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′ ⊃ E,
– E ∈ sst(F) if and only if E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′+

F ⊃ E+
F ,

– E ∈ gr(F) if and only if E ∈ co(F) and there is no E′ ∈ co(F) s.t. E′ ⊂ E,
– E ∈ id(F) if and only if E is admissible, E ⊆ ⋂

pr(F) and there is no admissible
E′ ⊆ ⋂

pr(F) s.t. E′ ⊃ E,
– E ∈ eg(F) if and only if E is admissible, E ⊆ ⋂

sst(F) and there is no admissible
E′ ⊆ ⋂

sst(F) s.t. E′ ⊃ E.

A Probabilistic Argumentation Framework (PrAF ) [19] represents the set of
all AFs that can potentially be induced from it. A PrAF is a Dung’s frame-
work where both arguments (Ap) and attacks (Rp) are associated with their
likelihood of existence: i.e., PAp

: Ap → (0, 1], and PRp
: Rp → (0, 1]: hence,

Fp = (Ap,Rp, PAp
, PRp

). An induced AF includes all the arguments and attacks
with a likelihood of 1, as well as further components as specified by Definition 1.

Definition 1 (Inducing an AF [19]). A Dung abstract framework F = (A,R)
is induced from a Fp = (Ap,Rp, PAp

, PRp
) if and only if the remainder holds: i)

A ⊆ Ap, ii) R ⊆ (Rp ∩ (A × A)), iii) ∀a ∈ Ap such that PAp
(a) = 1, then a ∈ A,

iv) ∀(ai, aj) ∈ Rp such that PRp
(ai, aj) = 1 and ai, aj ∈ A, then (ai, aj) ∈ R. We

write I(Fp) to represent the set of all AFs that can be induced from a Fp.

Therefore, arguments and attacks with a likelihood of 1 must be present in
all the induced frameworks whenever possible (i.e., an attack also needs incident
arguments to be present), while not-completely certain components can appear
or not in an induced framework. The probability of an induced AF is computed
as the joint probability of all the independent variables:
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Definition 2 (Probability of induced F [19]). With Fp = (Ap,Rp, PAp
, PRp

),
the probability of F = (A,R) ∈ I(Fp) is:

P I

Fp
(F) =

∏

ai∈A

PAp(ai)
∏

ai∈(Ap\A)
(1 − PAp(ai))

∏

(ai,aj)∈R

PRp((ai, aj))
∏

(ai,aj)∈(Rp\R) s.t. ai,bj∈A

(1 − PRp((ai, aj))

The set of possible worlds induced by a PrAF sums up to a probability of 1.

Proposition 1 [19]. The sum of all the probability values of all the frameworks
that can be induced from a Fp = (Ap,Rp, PAp

, PRp
) is 1:

∑

Fi∈I(Fp)

P I

Fp
(Fi) = 1

Definition 3 computes the likelihood of a set E of arguments being “consis-
tent” with respect a given argumentation semantics σ.

Definition 3 (Extension probability [19]). Given a Fp = (Ap,Rp, PAp
, PRp

),
the probability that a given set of arguments B ⊆ PAp

satisfies a semantics σ is
(function ξ is discussed in the following paragraph):

Pσ(B,Fp) =
∑

Fi∈I(Fp)

P I

Fp
(Fi) where ξσ(Fi, B) = true

In [19] function ξσ(Fi, B) is said to return true if and only if the set of
arguments B is deemed “consistent” using semantics σ when evaluated over a
framework Fi induced from Fp. For instance, we can consider ξ to return true
if and only if B ∈ σ(Fi), that is if and only if B is an extension in Fi according
to semantics σ, or if B is just a subset of a σ extension, as proposed in [19].

Example 1. In Fig. 1 we show an example of PrAF. Such a relatively small graph
induces thirteen different frameworks: F1 = ({a, e}, {}), F2 = ({a, b, e}, {(a, b)}),
F3 = ({a, c, e}, {}),F4 = ({a, b, c, e}, {(a, b)}),F5 = ({a, b, c, e}, {(a, b), (c, b)}),
F6 = ({a, d, e}, {(d, e)}), F7 = ({a, b, d, e}, {(a, b), (d, e)}), F8 = ({a, c, d, e}, {(d,
c), (d, e)}),F9 = ({a, c, d, e}, {(c, d), (d, c), (d, e)}), F10 = ({a, b, c, d, e}, {(a, b),
(d, c), (d, e)}),F11 = ({a, b, c, d, e}, {(a, b), (c, b), (d, c), (d, e)}), F12 = ({a, b, c, d,
e}, {(a, b), (c, d), (d, c), (d, e)}), F13 = ({a, b, c, d, e}, {(a, b), (c, b), (c, d), (d, c), (d,
e)}), whose probabilities are [0.09, 0.06, 0.21, 0.056, 0.084, 0.09, 0.06, 0.147, 0.063,
0.0392, 0.0588, 0.0168, 0.0252]. These values clearly sum up to 1.

3 Related Work

In the literature there exist two main approaches to probabilistic argumentation:
the constellations [19] and the epistemic approaches [22]. A third approach is
proposed in [20]: in that case, the probability distribution over labellings [9] gives
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Fig. 1. An example of PrAF.

a form of probabilistic argumentation that overlaps with both the constellations
and epistemic approaches.

In the constellations approach, the uncertainty resides in the topology of the
considered AF: probability values label arguments and attacks. The authors of
[15] provided the first proposal to extend abstract argumentation with a prob-
ability distribution over sets of arguments which they use with a version of
assumption-based argumentation in which a subset of the rules are probabilis-
tic rules. In [19] a probability distribution over the sub-graphs of the argument
graph is introduced, and this can then be used to give a probability assignment
for a set of arguments being an admissible set or extension of the argument
graph. In [12] the authors characterise the different semantics from the app-
roach of [19] in terms of probabilistic logic with the purpose of providing an
uniform logical formalisation and also pave the way for future implementations.
Complexity aspects related to computing the probability that a set of arguments
is an extension according to a given semantics are instead presented in [16].

In the epistemic approach instead, the topology of a graph is fixed, but the
more likely an agent is to believe in an argument, the less likely it is to believe in
an argument attacking it. This reminds other related approached such as ranking-
based semantics [1] and weighted argumentation frameworks [5,6,8]. For instance,
in [3] the authors cast epistemic probabilities in the context of de Finetti’s theory
of subjective probability, and they analyse and revise the relevant rationality
properties in relation with de Finetti’s notion of coherence. However, most of the
work in this directions is authored by M. Thimm [22] and A. Hunter [17]. In the
first work, the author proposes a probabilistic approach assigning probabilities
or degrees of belief to individual arguments. The presented semantics generalise
the classical notions of semantics [13]. In the second work, the author starts
from considering logic-based argumentation with uncertain arguments, but ends
showing how this formalisation relates to uncertainty of abstract arguments. The
two authors join their efforts in [18].

Some more related references concern the use of frameworks whose topology is
not completely expressed, similarly to the constellations approach. For example,
the work in [11] introduced the notion of Partial Argumentation Framework
(PAF ), which are defined by a set of arguments, an attack relation →⊆ (A×A)
specifying attacks known to exist, and an ignorance relation ign ⊆ (A × A)
specifying attacks whose existence is not known. This reflects the fact that some
agents may ignore arguments pointed out by other agents, as well as how such
arguments interact with her own ones: the goal of the authors is to merge different
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frameworks together, and thus not all the agents are assumed to share the same
global set of arguments. Incomplete Argumentation Frameworks (IAF ) further
generalise PAFs, since they can represent uncertainty about the existence of
individual arguments, uncertainty about the existence of individual attacks, or
both simultaneously [4].

4 The Grounded Semantics of a PrAF

In [19] the authors suggests ξgr(Fi, B) to return “true” when the set of argu-
ments B is a subset of the grounded extension of Fi (see Definition 3). How-
ever, this choice for ξ leads to some issues related to the non-uniqueness of the
grounded extension, which is indeed a desirable result being it also defined as
a unique-status or single-status semantics in Dung’s frameworks [2]. For exam-
ple, the PrAF in Fig. 1 has two alternative choices for the grounded extension:
Pgr(∅,Fp) = Pgr({a},Fp) = 1.

This is the main motivation that moved us towards a different definition of
the grounded semantics, with the purpose to have one single result (with the
maximal probability), together with the need to connect its characteristic of
scepticism to probabilistic frameworks: the grounded extension minimises the
overall uncertainty and includes only the least questionable arguments present
in complete extensions. In order to rephrase this characteristic into probabilistic
frameworks, the grounded extension should include the arguments that are most
likely included in the complete extensions of all the possible induced frameworks.

To accomplish this, we were inspired by the law of total probability to compute
the average probability of an event U on the probability space defined by the
events {Vn : n = 1, 2, . . . , n}, which are a finite or countably infinite partition of
such sample space: P (U) =

∑
i P (U ∩ Vi) =

∑
i P (U | Vi) · P (Vi).

In our specific case, P (Vi) describes the probability of Fi to be an induced
framework of Fp, that is P I

Fp
(Fi). Such a probability value is weighted by P (U |

Vi), which in our case is not really a probability but the frequency of a subset
B to appear in the complete extensions of Fi instead.

Definition 4 (Probability B is a subset of a complete extension in Fp).
Given Fp = (Ap,Rp, PAp

, PRp
), the probability of B ∈ Ap to be a subset of the

complete extensions in Fp is computed as:

P (B)coFp
=

∑

Fi∈I(Fp)

(|E ∈ co(Fi)| s.t .B ⊆ E) / |co(Fi)| · P I

Fp
(Fi)

For example, if B is a subset of half of the complete extensions in an induced
Fi and P I

Fp
(Fi) = 0.25, then the contribution of Fi to P (B)coFp

is 0.5 · 0.25 =
0.125. To compute the total contribution one has to consider all the Fi.

It is now possible to define the grounded semantics of a PrAF as the union of
the subsets of maximal-probability, with probability as defined in Definition 4.
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Definition 5 (Grounded semantics). Given Fp = (Ap,Rp, PAp
, PRp

), a fam-
ily of sets S, the grounded extension is defined as the union

⋃
of subsets of

maximal P (B)coFp
:

gr(Fp) =
⋃

{B | P (B)coFp
is maximal} (1)

Example 2. Given the PrAF in Fig. 1, the thirteen induced frameworks has the
following sets of complete extensions: co(F1) = {{a, e}}, co(F2) = {{a, e}},
co(F3) = {{a, c, e}}, co(F4) = {{a, c, e}}, co(F5) = {{a, c, e}}, co(F6) =
{{a, d}}, co(F7) = {{a, d}}, co(F8) = {{a, d}}, co(F9) = {{a}, {a, d}, {a, c, e}},
co(F10) = {{a, d}}, co(F11) = {{a, d}}, and co(F12) = {{a}, {a, d}, {a, c, e}},
and co(F13) = {{a}, {a, d}, {a, c, e}}. There exist ten possible subsets of com-
plete extensions in Fp, that is ∅, {a}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e}, {c, e}, {a,
c, e}, whose probability as defined in Definition 4 are respectively defined by the
array [1, 1, 0.385, 0.43, 0.535, 0.385, 0.43, 0.535, 0.385, 0.385]. Hence, as stated by
Definition 5, gr(Fp) = ∅ ∪ {a} = {a}, since both ∅ and {a} have a probability
of 1.

The next remark explains why it is possible to replace “maximal probability”
with P (B)coFp

= 1 in Definition 5 without changing the result.

Remark 1. Note that the probability of empty-set is always maximal, since it is
trivially a subset of any E ∈ co(Fi): as a consequence, empty-set will always
be considered with a probability of 1 in the union of sets in Eq. 1. For the
same reason, any subset B with a probability strictly less than 1 will never be
considered to be part of the grounded extension. Therefore, maximal and equal
to 1 probabilities will be interchangeably used in the rest of the paper.

The grounded semantics always results in a single extension.

Proposition 2 (Unicity). The grounded extension in Fp = (Ap,Rp, PAp
, PRp

)
is unique.

Proof. It straightforwardly follows from the fact that the grounded extension is
defined as the union of some sets of arguments.

In addition, when from Fp it is possible to induce a single framework, i.e.,
|I(Fp)| = 1, then the grounded semantics corresponds to its classical definition
given by P. M. Dung in [13]. This allows to reconnect to classical abstract argu-
mentation in case of no uncertainty in the framework topology.

Theorem 1 (Correspondence with Dung). Given Fp = (Ap,Rp, PAp
, PRp

)
such that I(Fp) = {F}, then gr(Fp) = gr(F).

Proof. Since we only have one induced framework F by hypothesis, whose
probability is 1 according to Proposition 1, then P (B)coFp

=
∑

Fi∈I(Fp)
(|E ∈

co(Fi)| s.t .B ⊆ E) / |co(Fi)| · P I

Fp
(Fi) = (|E ∈ co(F)| s.t .B ⊆ E) / |co(F)|.

Since gr(F) is defined as the intersection of all the complete extensions in F ,
then we have that P (gr(F))coFp

is 1, while for any B 
= ∅ and B 
= gr(F),
P (B)coFp

< 1. From Definition 5 we obtain gr(Fp) = gr(F).
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Example 3. If we consider a PrAF Fp s.t. Ap = {a, b, c, d}, Rp = {(a, b), (b, c), (c,
d)}, PAp

= {1, 1, 1, 1}, PRp
= {1, 1, 1}, we have a single induced framework

whose complete extension is {a, c}. Hence, its subsets are {∅, {c}, {a}, {a, c}}
with probabilities [1.0, 1.0, 1.0, 1.0]. The union of all these maximal-probability
subsets is equivalent to gr(Fp) = {a, c}.

Theorem 2 states that the definition of grounded extension given in Defi-
nition 5 adheres to the principle often used to enforce scepticism in Abstract
Argumentation: as introduced in Sect. 1, the intersection of different extensions
leads to only those arguments that are taken in all of them, thus eliminating
uncertainty. Also in the case of PrAFs, the grounded extension of each induced
Fi is the intersection of complete extensions, while the grounded extension of
the entire Fp is the intersection of all the different grounded extensions for each
Fi.

Theorem 2 (Intersection of grounded ext.s). Being Fp = (Ap,Rp, PAp
,

PRp
) any PrAF, then the grounded extension defined in Definition 5 corresponds

to:
gr(Fp) =

⋂

Fi∈I(Fp)

gr(Fi)

Proof. Given any a ∈ Ap, if ∀Fi ∈ I(Fp) (except the empty framework, if it
exists) a ∈ gr(Fi) then P ({a})coFp

, since a is included in any complete extension
of each Fi. According to Definition 3.2 we have that

⋃
a{a} = gr(Fp), because all

these sets have maximal probability. On the contrary, if ∃Fi ∈ I(Fp).a 
∈ gr(Fi)
then P ({a})coFp

is not maximal (i.e., it has a probability strictly lower than 1).

Note that from Theorem 2 we directly derive that gr(Fp) is conflict-free in
Fp, even if it make little sense to check it in a PrAF, since an attack may or
may not exist depending on the induced framework.

Corollary 1 underlines the scepticism behind the definition of grounded
semantics given in Definition 5. If an induced framework such that its grounded
extension is empty-set exists, or equivalently empty-set is a complete extension
of that framework, then the grounded extension of the whole PrAF is empty-set
as well.

Corollary 1 (Empty-set dominance). If ∃Fi ∈ I(Fp) s.t. ∅ ∈ co(Fi), then
gr(Fp) = ∅.
Proof. We have that P (∅)coFp

= 1 for any Fi ∈ I(Fp). If ∅ ∈ co(Fi), then ∀B 
= ∅
we have that B 
⊆ (E = ∅). For this reason, P (B)coFp

< 1 for any B 
= ∅.
Since Definition 3.2 aggregates maximal-probability subsets only, then gr(Fp)
corresponds to the union of empty-set only.

In the definition of the grounded semantics for probabilistic frameworks we
tried to stick to the principle of scepticism, according to which empty-set is
clearly the most sceptical position to be taken. In the next example we recap
the previous formal results.
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Fig. 2. An example of PrAF. Fig. 3. A second example of PrAF.

Example 4. In Fig. 2 we show an example of a PrAF that induces the four
frameworks represented in Fig. 4. These frameworks respectively have co(F1) =
{{a, b, d}}, co(F2) = {{a, d}}, co(F3) = {{b, d}}, co(F3) = {∅, {a, d}, {b, d}}.
Thus, subsets of complete extensions are ∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d},
{a, b, d} and their probability is [1, 0.583, 0.583, 0.916, 0.25, 0.583, 0.583, 0.25].
The four grounded extensions are gr(F1) = {a, b, d}, gr(F2) = {a, d}, gr(F3) =
{b, d}, and gr(F4) = ∅. The intersection of all the grounded extensions from the
four frameworks is ∅.

Because of the aforementioned motivations, having defined the grounded
extension of a PrAF as the intersection of the grounded extensions of each
induced framework, the probability for a framework to be empty-set is clearly
high. This result is clearly not very informative, and it is a possible drawback of
being too much sceptical. However, by having defined a quantitative approach
to the definition of the grounded semantics, we can also think of relaxing scep-
ticism by imposing a lower threshold on probability when merging the subsets
as suggested in Definition 4, instead of taking the most probable subsets.

Definition 6 (t-relaxed grounded semantics). Given Fp = (Ap,Rp, PAp
,

PRp
), a family of sets S, t ∈ [0, 1], the t-relaxed grounded extension is defined as

the union of subsets whose P (B ⊆ (E ∈ co(Fp))) is greater-equal than t:

t
gr(Fp) =

⋃
{B | P (B)coFp

≥ t} (2)

Example 5. If we set t = 0.9, the t-grounded extension of the PrAF in Fig. 2 is
{d}, since the probability of this subset is 0.916, and ∅ ∪ {d} = {d}.

Clearly,
1
gr(Fp) corresponds to gr(Fp) in Definition 5.

5 Further Sceptical Semantics

There are two other sceptical semantics in the literature, which share the unique-
statusness with the grounded: the ideal and eager semantics. Both eg and id
have been designed to relax scepticism of the former one: gr(F) ⊆ id(F) ⊆
eg(F) [10].

Because of their importance and closeness to the grounded semantics, in
the following of this section we provide a probabilistic definition of these two
semantics, in the style of what proposed in Sect. 4.
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Fig. 4. The four frameworks induced by the PrAF in Fig 2.

Definition 7 (Probability of id and eg). Given Fp = (Ap,Rp, PAp
, PRp

), the
probability of B ∈ Ap to be a subset of the preferred/semi-stable extensions in
Fp, are respectively computed as:

P (B)prFp
=

∑

Fi∈I(Fp)

(|E ∈ pr(Fi)| s.t .B ⊆ E) / |pr(Fi)| · P I

Fp
(Fi) (3)

P (B)sstFp
=

∑

Fi∈I(Fp)

(|E ∈ sst(Fi)| s.t .B ⊆ E) / |sst(Fi)| · P I

Fp
(Fi) (4)

In Definition 8 we use Eq. 3 and Eq. 4 to propose a definition of respectively
ideal and eager semantics in PrAFs.

Definition 8 (Ideal/eager semantics). Given Fp = (Ap,Rp, PAp
, PRp

), the
ideal/eager extensions are defined as the union of maximal-probability subsets,
as defined in Eq. 3 and Eq. 4 respectively:

id(Fp) =
⋃

{B | P (B)prFp
is maximal}, eg(Fp) =

⋃
{B | P (B)sstFp

is maximal}

Example 6. The grounded, ideal, and eager extensions in Fig. 2 are ∅. The
grounded extension in Fig. 2b is ∅, while the ideal and the eager ones are {a}:
in this case, the induced frameworks are F1 = ({a, b}, {(a, b), (b, a), (b, b)}) and
F2 = ({a, b}, {(a, b), (b, b)}). Thus, subsets of complete extensions are ∅ and {a},
with probability of 1 and 0.5.

Remark 2. As in Remark 1, empty-set is always contained in every preferred
and semi-stable extension, and thus P (∅)prFp

= P (∅)sstFp
= 1 for any possible Fp.

For this reason, requiring maximal probability or a probability value equal to 1
is equivalent in Definition 8. Both the ideal and eager extensions will always be
made of only subsets B with a probability of 1.

In case of a single induced framework from Fp, the ideal and eager extensions
correspond to their classical definition in [14] and [10] respectively.
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Proposition 3 (Unicity of ideal and eager). The ideal and eager extensions
in Fp = (Ap,Rp, PAp

, PRp
) are unique.

Proof. It straightforwardly follows from the fact that the ideal and eager exten-
sions are defined as the union of argument sets.

Theorem 3 (Ideal/eager correspondence). Given Fp = (Ap,Rp, PAp
, PRp

)
s.t. I(Fp) = {F}, then id(Fp) = id(F) and eg(Fp) = eg(F).

Proof. Since we only have one induced framework F by hypothesis, whose
probability is 1 according to Prop. 2.1, then P (B)prFp

=
∑

Fi∈I(Fp)
(|E ∈

pr(Fi)| s.t .B ⊆ E) / |pr(Fi)| · P I

Fp
(Fi) = (|E ∈ pr(F)| s.t .B ⊆ E) / |pr(F)|.

Since id(F) is defined as the intersection of all the preferred extensions in F ,
then we have that P (id(F))prFp

is 1, while for any B 
= ∅ and B 
= id(F),
P (B)prFp

< 1. From Definition 3.2 we obtain id(Fp) = id(F). Similar considera-
tions hold for the eager semantics, with respect to semi-stable extensions.

Even for these two sceptical semantics we can prove that they can be both
obtained by intersecting all the respectively ideal/eager extensions on all the
induced frameworks, as Theorem 2 shows for the grounded semantics.

Theorem 4. (Intersection of extensions). Being Fp = (Ap,Rp, PAp
, PRp

)
any PrAF, then the ideal and eager extensions respectively correspond to:

id(Fp) =
⋂

Fi∈I(Fp)

id(Fi) eg(Fp) =
⋂

Fi∈I(Fp)

eg(Fi)

Proof. The proof follows the same approach adopted in Theorem 2.

From Theorem 3, in case of a single induced framework F we straight-
forwardly inherit the result that gr(Fp) ⊆ id(Fp) ⊆ eg(Fp) from previous
works [10,14]. The following theorem extends this result to more than one
induced framework, that is, to all possible PrAFs.

Theorem 5 (Sceptical semantics inclusion). The subset inclusion gr(Fp) ⊆
id(Fp) ⊆ eg(Fp) holds for any PrAF Fp.

Proof. Since for each Fi ∈ I(Fp) it holds that gr(Fi) ⊆ id(Fi) ⊆ eg(Fi)
from Theorem 1 and Theorem 3, then from Theorem 4 the intersection of all
gr(Fi)/id(Fi) is included in the intersection of respectively id(Fi)/eg(Fi).

It is then possible to relax the ideal and eager extensions as shown for the
grounded extension in Definition 6 (similar motivations in mitigating scepticism).

Definition 9 (t-relaxed ideal and eager). Given Fp = (Ap,Rp, PAp
, PRp

)
and t ∈ [0, 1], the t-relaxed ideal/eager extension is defined as the union of
subsets whose P (B)prFp

/P (B)sstFp
is greater-equal than t:

t

id(Fp) =
⋃

{B | P (B)prFp
≥ t} t

eg(Fp) =
⋃

{B | P (B)prFp
≥ t}
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Example 7. The PrAF in Fig. 3 induces 42 different frameworks (which we do

not report here for the sake of conciseness); eg(Fp) = ∅, while
0.601
eg (Fp) is {a, d},

which happens to be the eager extension if we consider the same framework in
the classical Dung’s setting. Moreover,

0.6
eg(Fp) = {a, d, e}, since P ({d})sstFp

=
0.97008, P ({a})sstFp

= 0.60416, and P ({e})sstFp
= 0.6.

Clearly, by increasing the threshold it is possible to progressively include
more arguments.

Proposition 4. For any Fp = (Ap,Rp, PAp
, PRp

) and thresholds t1, t2 ∈ [0, 1],

if t2 < t1 then
t1gr(Fp) ⊆ t2gr(Fp),

t1
id(Fp) ⊆

t2
id(Fp), and

t1eg(Fp) ⊆ t2eg(Fp).

6 Conclusions and Future Work

In this paper we have provided a probabilistic view of sceptical semantics in
the constellations approach, since we have focused on the grounded, ideal, and
eager extensions. The purpose was to compute clear and single solutions for
these semantics, as it happens in Dung’s frameworks. To achieve this, we have
computed how frequently subsets of arguments appear in complete, preferred,
and semi-stable extensions by considering all the induced frameworks. Then,
by merging maximal-probability subsets among them we enforce the idea of
scepticism in PrAFs. Such a quantitative approach reconnects to the qualitative
one often used in argumentation, that is the intersection of different alternatives.
However, by using probability values we now also have a quantitative means to
relax scepticism, besides using the ideal and eager semantics proposed in Sect. 5.
The presented framework has been implemented with a Python script that calls
the Docker container of ConArg [7] to enumerate complete, preferred and semi-
stable extensions on all the induced frameworks.

In the future we plan to enrich the paper with a definition of more credu-
lous semantics, for example the preferred and stable ones, while still satisfying
classical implications among semantics. We will also investigate similarities and
differences w.r.t. standard epistemic extensions [18], which are directly related
to Dung’s semantics. Finally, the presented framework can be equipped with a
more fine-grained probabilistic logic that explicitly takes epistemic uncertainty
and belief (and disbelief as well) into account: i.e., subjective logic [21].
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Abstract. SHACL is a W3C-proposed language for expressing struc-
tural constraints on RDF graphs. In recent years, SHACL’s popularity
has risen quickly. This rise in popularity comes with questions related
to its place in the semantic web, particularly about its relation to OWL
(the de facto standard for expressing ontological information on the web)
and description logics (which form the formal foundations of OWL). We
answer these questions by arguing that SHACL is in fact a description
logic. On the one hand, our answer is surprisingly simple, some might
even say obvious. But, on the other hand, our answer is also controver-
sial. By resolving this issue once and for all, we establish the field of
description logics as the solid formal foundations of SHACL.

Keywords: Shapes · SHACL · Description Logics · Ontologies

1 Introduction

The Resource Description Framework (RDF [20]) is a standard format for pub-
lishing data on the web. RDF represents information in the form of directed
graphs, where labeled edges indicate properties of nodes. To facilitate more effec-
tive access and exchange, it is important for a consumer of an RDF graph to
know what properties to expect, or, more generally, to be able to rely on certain
structural constraints that the graph is guaranteed to satisfy. We therefore need
a declarative language in which such constraints can be expressed formally.

Two prominent proposals in this vein have been ShEx [8] and SHACL [23].
In both approaches, a formula expressing the presence (or absence) of certain
properties of a node (or its neighbors) is referred to as a “shape”. In this paper,
we adopt the elegant formalization of shapes in SHACL proposed by Corman,
Reutter and Savkovic [9]. That work has revealed a striking similarity between
shapes and concept expressions, familiar from description logics (DLs) [5].

The similarity between SHACL and DLs runs even deeper when we account
for named shapes and targeting, which is the actual mechanism to express con-
straints on an RDF graph using shapes. A shape schema is essentially a finite
list of shapes, where each shape φs is given a name s and additionally associated
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with a target query qs. The shape–name combinations in a shape schema specify,
in DL terminology, an acyclyc TBox consisting of all the formulas

s ≡ φs.

Given an RDF graph G, this acyclic TBox determines a unique interpretation
of sets of nodes to shape names s. We then say that G conforms to the schema
if for each query qs, each node v returned by qs on G satisfies s in the extension
of G.

Now interestingly, the types of target queries q considered for this purpose
in SHACL as well as in ShEx, actually correspond to simple cases of shapes φqs

and the actual integrity constraint thus becomes

φqs
� s.

As such, in description logic terminology, a shape schema consists of two
parts: an acyclic TBox (defining the shapes in terms of the given input graph)
and a general TBox (containing the actual integrity constraints).

2 The Wedge

Despite the strong similarity between SHACL and DLs, and despite the fact that
in a couple of papers, SHACL has been formalized in a way that is extremely
similar to description logics [3,9,14], this connection is not recognized in the
community. In fact, some important stakeholders in SHACL recently even wrote
the following in a blog post explaining why they use SHACL, rather than OWL:

“OWL was inspired by and designed to exploit 20+ years of
research in Description Logics (DL). This is a field of mathe-
matics that made a lot of scientific progress right before cre-
ation of OWL. I have no intention of belittling accomplishments
of researchers in this field. However, there is little connection
between this research and the practical data modeling needs of
the common real world software systems. — [19]”thereby suggesting that SHACL and DLs are two completely separated worlds

and as such contradicting the introductory paragraphs of this paper. On top of
that, SHACL is presented by some stakeholders [25] as an alternative to the Web
ontology language OWL [16], which is based on the description logic SROIQ [10].

This naturally begs the question: which misunderstanding is it that drives
this wedge between communities? How can we explain this discrepancy from a
mathematical perspective (thereby patently ignoring strategic, economic, social,
and other aspects that play a role).
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3 SHACL, OWL, and Description Logics

Our answer is that there are two important differences between OWL and
SHACL that deserve attention. These differences, however, do not contradict
the central thesis of this paper, which is that SHACL is a description logic.

1. The first difference is that in SHACL, the data graph (implicitly) rep-
resents a first-order interpretation, while in OWL, it represents
a first-order theory (an ABox). Of course, viewing the same syntactic
structure (an RDF graph) as an interpretation is very different from view-
ing it as a theory. While this is a discrepancy between OWL and SHACL,
theories as well as interpretations exist in the world of description logic and
as such, this view is perfectly compatible with our central thesis. There is,
however, one caveat with this claim that deserves some attention, and that
is highlighted by the use of the world “implicitly”. Namely, to the best of
our knowledge, it is never mentioned that the data graph simply represents
a standard first-order interpretation, and it has not been made formal what
exactly the interpretation is that is associated to a graph. Instead, SHACL’s
language features are typically evaluated directly on the data graph. There
are several reasons why we believe it is important to make this translation of
a graph into an interpretation explicit.

– This translation makes the assumptions SHACL makes about the data
explicit. For instance, it is often informally stated that “SHACL uses
closed-world assumptions” [13]; we will make this statement more precise:
SHACL uses closed-world assumptions with respect to the relations, but
open-world assumptions on the domain.

– Once the graph is eliminated, we are in familiar territory. In the field
of description logics a plethora of language features have been studied.
It now becomes clear how to add them to SHACL, if desired. The 20+
years of research mentioned in [19] suddenly become directly applicable
to SHACL.

2. The second difference, which closely relates to the first, is that OWL and
SHACL have a different (default) inference task: the standard infer-
ence task at hand in OWL is deduction, while in SHACL, the main task is
validation of RDF graphs against shape schemas. In logical terminology, this
is evaluating whether a given interpretation satisfies a theory (TBox), i.e.,
this is the task of model checking.
Of course, the fact that a different inference task is typically associated with
these languages does not mean that their logical foundations are substantially
different. Furthermore, recently, other researchers [14,17,18] have started to
investigate tasks such as satisfiability and containment (which are among the
tasks typically studied in DLs) for SHACL, making it all the more obvious
that the field of description logics has something to offer for studying prop-
erties of SHACL.

In the next section, we develop our formalization of SHACL, building on the
work mentioned above. Our formalization differs form existing formalizations of
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SHACL in a couple of small but important ways. First, as we mentioned, we
explicitly make use of a first-order interpretation, rather than a graph, thereby
indeed showing that SHACL is in fact a description logic. Second, the semantics
for SHACL we develop would be called a “natural” semantics in database theory
[1]: variables always range over the universe of all possible nodes. The use of the
natural semantics avoids an anomaly that crops up in the definitions of Andreşel et
al. [3], where an “active-domain” semantics is adopted instead, in which variables
range only over the set of nodes actually occurring in the input graph. Unfortu-
nately, such a semantics does not work well with constants. The problem is that a
constant mentioned in a shape may or may not actually occur in the input graph.
As a result, the semantics adopted by Andreşel et al. violates familiar logic laws like
De Morgan’s law. This is troublesome, since automated tools (and humans!) that
generate and manipulate logic formulas may reasonably and unwittingly assume
these laws to hold. Also other research papers (see Remark 4) contain flaws related
to not taking into account nodes that do not occur in the graph. This highlights
the importance of taking a logical perspective on SHACL.

A minor caveat with the natural semantics is that decidability of validation
is no longer totally obvious, since the universe of nodes is infinite. A solution to
this problem is well-known from relational databases [1, Theorem 5.6.1]. Using
an application of solving the first-order theory of equality, one can reduce, over
finite graphs, an infinite domain to a finite domain, by adding symbolic constants
[4,11]. It turns out that in our case, just a single extra constant suffices.

In this paper, we will not give a complete syntactic translation of SHACL
shapes to logical expressions. In fact, such a translation has already been devel-
oped by Corman et al. [9], and was later extended to account for all SHACL
features by Jakubowski [12]. Instead, we show very precisely how the data graph
at hand can be viewed as an interpretation, and that after this small but crucial
step, we are on familiar grounds and know well how to evaluate expressions.

As already mentioned before, our formalization of SHACL differs in a couple
of ways from existing work. These design choices are grounded in true SHACL:
with each of them we will provide actual SHACL specifications that prove that
SHACL validators indeed behave in the way we expected. All our examples have
been tested on three SHACL implementations: Apache Jena SHACL1 (using
their Java library) TopBraid SHACL2 (using their Java library as well as their
online playground), and Zazuko3 (using their online playground). The raw files
encoding our examples (SHACL specifications and the corresponding graphs)
are available online.4

All our SHACL examples will assume the following prefixes are defined:

@prefix ex: <http://www.example.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .

1 https://jena.apache.org/documentation/shacl/index.html.
2 https://shacl.org/playground/.
3 https://shacl-playground.zazuko.com/.
4 https://vub-my.sharepoint.com/:f:/g/personal/bart bogaerts vub be/

Eicv10DwSnVEnT0BWNwEW8QBFuQjYTbwYYct1WYrkoefKQ?e=XhE8o0.

https://jena.apache.org/documentation/shacl/index.html
https://shacl.org/playground/
https://shacl-playground.zazuko.com/
https://vub-my.sharepoint.com/:f:/g/personal/bart_bogaerts_vub_be/Eicv10DwSnVEnT0BWNwEW8QBFuQjYTbwYYct1WYrkoefKQ?e=XhE8o0
https://vub-my.sharepoint.com/:f:/g/personal/bart_bogaerts_vub_be/Eicv10DwSnVEnT0BWNwEW8QBFuQjYTbwYYct1WYrkoefKQ?e=XhE8o0
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4 SHACL: The Logical Perspective

In this section of the paper we begin with the formal development. We define
shapes, shape schemas, and validation. Our point of departure is the treatment
by Andreşel et al. [3], which we adapt and extend to our purposes.

From the outset we assume three disjoint, infinite universes N , S, and P of
node names, shape names, and property names, respectively.5

We define path expressions E and shapes φ by the following grammar:

E ::= p | p− | E ∪ E | E ◦ E | E∗ | E?
φ ::= � | s | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ≥n E.φ | eq(p,E) | disj (p,E) | closed(Q)

where p, s, and c stand for property names, shape names, and node names,
respectively, n stands for nonzero natural numbers, and Q stands for finite sets
of property names. In description logic terminology, a node name c is a constant,
a shape name is a concept name and a property name is a role name.

As we will formalize below, every property/role name evaluates to a binary
relation, as does each path expression. In the path expressions, p− represents
the inverse relation of p, E ◦ E represents composition of binary relations, E∗

the reflexive-transitive closure of E and E? the reflexive closure of E. As we
will see, shapes (which represent unary predicates) will evaluate to a subset of
the domain. The three last expressions are probably the least familiar. Equality
(eq(p,E)) means that there are outgoing p-edges (edges labeled p) exactly to
those nodes for which there is a path satisfying the expression E (defined below).
Disjointness (disj (p,E)) means that there are no outgoing p-edges to which there
is also a path satisfying E. For instance in the graph in Fig. 1, eq(p, p∗) would
evaluate to {c}, since c is the only node that has direct outgoing p-edge to all
nodes that are reachable using only p-edges, and disj (p, p−) would evaluate to
{d} since d is the only node that has no symmetric p-edges. Closedness is also
a typical SHACL feature: closed(Q) represents that there are no outgoing edges
about any predicates other than those in Q. In our example figure closed({p})
would evaluate to {a, b, c, d} and closed({q}) to the empty set.

Remark 1. Andreşel et al. [3] also have the construct ∀E.φ, which can be omitted
(at least for theoretical purposes) as it is equivalent to ¬ ≥1 E.¬φ. In our
semantics, the same applies to φ1 ∧φ2 and φ1 ∨φ2, of which we need only one as
the other is then expressible via De Morgan’s laws. However, here we keep both
for the sake of our later Remark 3. In addition to the constructors of Andreşel
et al. [3], we also have E?, disj , and closed , corresponding to SHACL features
that were not included there. ��

5 In practice, node names, shape names, and property names are IRIs [20], hence the
disjointness assumption does not hold. However, this assumption is only made for
simplicity of notation.
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Fig. 1. An example graph to illustrate language features of SHACL.

Table 1. Semantics of a path expression E in an interpretation I over Σ.

E �E�I

p− {(a, b) | (b, a) ∈ �p�I}
E1 ∪ E2 �E1�

I ∪ �E2�
I

E1 ◦ E2 {(a, b) | ∃c : (a, c) ∈ �E1�
I ∧ (c, b) ∈ �E2�

I}
E∗ the reflexive-transitive closure of �E�I

E? �E�I ∪ {(a, a) | a ∈ ΔI}

A vocabulary Σ is a subset of N ∪ S ∪ P . A path expression or shape is said
to be over Σ if it only uses symbols from Σ.

On the most general logical level, shapes are evaluated in interpretations. We
recall the familiar definition: An interpretation I over Σ consists of

1. a set ΔI , called the domain of I;
2. for each constant c ∈ Σ, an element �c�I ∈ ΔI ;
3. for each shape name s ∈ Σ, a subset �s�I of ΔI ; and
4. for each property name p ∈ Σ, a binary relation �p�I on ΔI .

On any interpretation I as above, every path expression E over Σ evaluates to
a binary relation �E�I on ΔI , and every shape φ over Σ evaluates to a subset of
ΔI , as defined in Tables 1 and 2.

As argued above, we define a shape schema S over Σ as a tuple (D,T ), where

– D is an acyclic TBox [5], i.e., a finite set of expressions of the form s ≡ φs

with s a shape name in Σ and φs a shape over Σ and where
1. each s occurs exactly once as the left-hand-side of such an expression and
2. the transitive closure of the relation {(s, t) | t occurs in φs} is acyclic.

– T is a TBox, i.e., a finite set of statements of the form φ1 � φ2, with φ1 and
φ2 shapes.

If S = (D,T ) is a shape schema over Σ and I an interpretation over Σ \ S,
then there is a unique interpretation I�D that agrees with I outside of S and that
satisfies D, i.e., such that for every expression s ≡ φs ∈ D, �s�I�D = �φs�

I�D. We
say that I conforms to S, denoted by I |= S, if �φ1�

I�D is a subset of �φ2�
I�D,

for every statement φ1 � φ2 in T . In other words, I conforms to S if there exists
an interpretation that satisfies D ∪ T that coincides with I on N ∪ P .
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Table 2. Semantics of a shape φ in an interpretation I over Σ. For a set X, we use
�X to denote its cardinality. For a binary relation R and an element a, we use R(a) to
denote the set {b | (a, b) ∈ R}.

φ �φ�I

� ΔI

{c} {cI}
φ1 ∧ φ2 �φ1�

I ∩ �φ2�
I

φ1 ∨ φ2 �φ1�
I ∪ �φ2�

I

¬φ1 ΔI \ �φ1�
I

≥n E.φ1 {a ∈ ΔI | �(�φ1�
I ∩ �E�I(a)) ≥ n}

eq(p, E) {a ∈ ΔI | �p�I(a) = �E�I(a)}
disj (p, E) {a ∈ ΔI | �p�I(a) ∩ �E�I(a) = ∅}
closed(Q) {a | �p�I(a) = ∅ for every p ∈ Σ \ Q}

Remark 2. In real SHACL, a shape schema is called a “shapes graph”. There
are some notable differences between shapes graphs and our shape schemas.

First, we take abstraction of some features of real SHACL, such as checking
data types like numbers and strings.

Second, in real SHACL, the left-hand side of an inclusion statement in T
is called a “target” and is actually restricted to shapes of the following forms:
a constant (“node target”); ∃r.{c} (“class-based target”, where r is ‘rdf:type’);
∃r.� (“subjects-of target”); or ∃r−.� (“objects-of target”). Our claims remain
valid if this syntactic restriction imposed.

Third, in real SHACL not every shape name needs to occur in the left-hand
side of a defining rule. The default that is taken in real SHACL is that shapes
without a definition are always satisified. On the logical level, this means that
for every shape s name that has no explicit definition, a definition s ≡ � is
implicitly assumed. The example that illustrates that our chosen default indeed
corresponds to actual SHACL. ��
Example 1. The following SHACL shape ex:MyShape states that all nodes with
an ex:r-edge must conform to the ex:NoDef and ex:AlsoNoDef shapes which
we do not define.

ex:MyShape a sh:NodeShape ;
sh:and ( ex:NoDef ex:AlsoNoDef ) .

ex:MyShape sh:targetSubjectsOf ex:r .

In our formal notation, this shapes graph corresponds to the shape schema

ex:MyShape ≡ ex:NoDef ∧ ex:AlsoNoDef
∃ex:r.� � ex:MyShape

where the first line is the definition of ex:MyShape, and the second line its target.



82 B. Bogaerts et al.

When validating a graph containing only the triple ex:a ex:r ex:b (as we
will show later, this corresponds to an interpretation in which the property name
ex:r has the interpretation {(ex:a, ex:b)} and the interpretation of all other
property names is empty), and thus targeting the node ex:a, it validates without
violation. This supports our observation that shapes without an explicit
definition are assumed to be satisfied by all nodes (i.e., are interpreted
as �).

To further strengthen this claim, if instead we consider the SHACL shapes
graph

ex:MyShape a sh:NodeShape ;
sh:not ex:NoDef .

ex:MyShape sh:targetSubjectsOf ex:r .

i.e., the shape schema

ex:MyShape ≡ ¬ex:NoDef
∃ex:r.� � ex:MyShape

validation on the same graph yields the validation error that “node ex:a does
not satisfy ex:MyShape since it has shape ex:NoDef”. ��

5 From Graphs to Interpretations

Up to this point, we have discussed the logical semantics of SHACL, i.e., how to
evaluate a SHACL expression in a standard first-order interpretation. However,
in practice, SHACL is not evaluated on interpretations but on RDF graphs. In
this section, we show precisely and unambiguously how to go from a graph to a
logical interpretation (in such a way that the actual SHACL semantics coincides
with what we described above). A graph is a finite set of facts, where a fact is
of the form p(a, b), with p a property name and a and b node names. We refer
to the node names appearing in a graph G simply as the nodes of G; the set
of nodes of G is denoted by NG. A pair (a, b) with p(a, b) ∈ G is referred to as
an edge, or a p-edge, in G. The set of p-edges in G is denoted by �p�G (this set
might be empty).

We want to be able to evaluate any shape on any graph (independently of
the vocabulary the shape is over). Thereto, we will unambiguously associate, to
any given graph G, an interpretation I over N ∪ P as follows:

– ΔI equals N (the universe of all node names).
– �c�I equals c itself, for every node name c.
– �p�I equals �p�G, for every property name p.

If I is the interpretation associated to G, we use �E�G and �φ�G to mean �E�I

and �φ�I , respectively.
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RDF also has a model-theoretic semantics [21]. These semantics reflect the
view of an RDF graph as a basic ontology or logical theory, as opposed to the
view of an RDF graph as an interpretation. Since the latter view is the one
followed by SHACL, it is thus remarkable that SHACL effectively ignores the
W3C-recommended semantics of RDF.

Remark 3. Andreşel et al. [3] define �φ�G a bit differently. For a constant c, they
define �{c}�G = {c} like we do. For all other constructs, however, they define
�φ�G to be �φ�I , but with the domain of I taken to be NG, rather than N . In
that approach, if c /∈ NG, �¬¬{c}�G would be empty rather than {c} as one
would expect. For another illustration, still assuming c /∈ NG, �¬(¬φ ∧ ¬{c})�G

would be �φ�G rather than �φ�G ∪ {c}, so De Morgan’s law would fail. The next
examples shows that actual SHACL implementations indeed coincide with our
semantics. ��
Example 2. The following SHACL shape ex:MyShape states that it cannot be
so that the node ex:MyNode is different from itself (i.e., that it must be equal to
itself, but specified with a double negation).

ex:MyShape a sh:NodeShape ;
sh:not [ sh:not [ sh:hasValue ex:MyNode ] ] .

ex:MyShape sh:targetNode ex:MyNode .

In our formal notation, this shapes graph corresponds to the shape schema

ex:MyShape ≡ ¬¬{ex:MyNode}
{ex:MyNode} � ex:MyShape

Clearly, this shape should validate every graph, also graphs in which the node
ex:MyNode is not present and it indeed does so in all SHACL implementations
we tested. This supports our choice of the natural semantics, rather than
the active domain semantics of [3]. Indeed, in that semantics, this shape will
never validate any graph because the right-hand side of the inclusion will be
evaluated to be the empty set. ��
Example 3. Another example in the same vein as the previous, to show that the
natural semantics correctly formalizes is the one where [3]’s semantics does
not respect the De Morgan’s laws, as follows:

ex:MyShape a sh:NodeShape ;
sh:not [

sh:and (
[ sh:not [

sh:path ex:r ;
sh:minCount 1 ] ]

[ sh:not [ sh:hasValue ex:MyNode ] ] ) ] .
ex:MyShape sh:targetNode ex:MyNode .
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This shapes graph corresponds to the shape schema

ex:MyShape ≡ ¬(¬∃ex:r.� ∧ ¬{ex:MyNode})
{ex:MyNode} � ex:MyShape

In the formalism of Andreşel et al. [3], this schema does not validate on graphs
that do not mention the node ex:MyNode, but in our formalism (and all SHACL
implementations), it does validate. ��
Remark 4. The use of active domain semantics has also introduced some errors
in previous work. For instance [14, Theorem 1] is factually incorrect. The problem
originates with the notion of faithful assignment introduced by Corman et al. [9]
and adopted by Leinberger et al. This notion is defined in an active-domain
fashion, only considering nodes actually appearing in the graph. For a concrete
counterexample to that theorem, consider a single shape named s defined as
∃r.�, with target {b}. In our terminology, this means that

D = {s ≡ ∃r.�}, and
T = {{b} � s}.

On a graph G in which b does not appear, we can assign {s} to all nodes from G
with an outgoing r-edge (meaning that all these nodes satisfy s and no other shape
(names)), and assign the empty set to all other nodes (meaning that all other nodes
do not satisfy any shape). According to the definition, this is a faithful assignment.
However, the inclusion {b} � s is not satisfied in the interpretation they construct
from this assignment, thus violating their Theorem 1. ��

The bug in [14], as well as the violation of De Morgan’s laws will only occur in
corner cases where the shape schema mentions nodes that not occur in the graph.
After personal communications, Leinberger et al. [14] included an errata section
where they suggest to fix this by demanding that (in order to conform) the target
queries do not mention any nodes not in the graph. While technically, this indeed
resolves the issue (under that condition, Theorem 1 indeed holds), this solution
in itself has weaknesses as well. Indeed, shape schemas are designed to validate
graphs not known at design-time, and it should be possible to check conformance
of any graph with respect to any shape schema. As the following example shows,
it makes sense that a graph should conform to a schema in case a certain node
does not occur in the graph (or does not occur in a certain context), and that—
contrary to the existing SHACL formalizations—the natural semantics indeed
coincides with the behaviour of SHACL validators in such cases.

Example 4. Consider a schema with D = ∅ and T consisting of a single inclusion

{MarcoMaratea} � ¬∃(author ◦ venue).{LPNMR22},

which states that Marco Maratea (one of the LPNMR PC chairs) does not author
any LPNMR paper. If Marco Maratea does not occur in the list of of accepted



SHACL: A Description Logic in Disguise 85

papers, this list should clearly6 conform to this schema. This example can be
translated into actual SHACL as follows:

ex:NotAnAuthor a sh:NodeShape ;
sh:not [

a sh:PropertyShape ;
sh:path (ex:author ex:venue) ;
sh:qualifiedValueShape [ sh:hasValue ex:LPNMR22 ] ;
sh:qualifiedMinCount 1 ] .

ex:NotAnAuthor sh:targetNode ex:MarcoMaratea .

where we simply give the name ex:NotAnAuthor to the shape that holds for
all nodes that do not author any LPNMR paper and subsequently enforce that
Marco Maratea satisfy this shape. We see that indeed, in accordance with our
proposed semantics, graphs without a node ex:MarcoMaratea validate with
respect to this SHACL specification. The fix in the erratum of Leinberger et
al. [14], on the other hand, specifies that this does not validate. ��

The definition of I makes—completely independent of the actual language
features of SHACL—a couple of assumptions explicit. First of all, SHACL uses
unique names assumptions (UNA): each constant is interpreted in I as a different
domain element. Secondly, if p(a, b) does not occur in the graph, it is assumed
to be false. However, if a node c does not occur anywhere in the graph, it is not
assumed to not exist: the domain of I is infinite! Rephrasing this: SHACL makes
the Closed World Assumption (CWA) on predicates, but not on objects.

Effective Evaluation. Since the interpretation defined from a graph has the infi-
nite domain N , it is not immediately clear that shapes can be effectively evalu-
ated over graphs. As indicated above, however, we can reduce to a finite inter-
pretation. Let Σ ⊆ N ∪P be a finite vocabulary, let φ be a shape over Σ, and let
G be a graph. From G we define the interpretation I� over Σ just like I above,
except that the domain of I� is not N but rather

NG ∪ (Σ ∩ N) ∪ {�},

where � is an element not in N . We use �φ�G
� to denote �φ�I� and find:

Theorem 1. For every x ∈ NG ∪ (Σ ∩ N), we have x ∈ �φ�G if and only if
x ∈ �φ�G

� . For all other node names x, we have x ∈ �φ�G if and only if � ∈ �φ�G
� .

Hence, I conforms to S if and only if I� does.

Theorem 1 shows that conformance can be performed by finite model check-
ing, but other tasks typically studied in DLs are not decidable; this can be shown
with a small modification of the proof of undecidability of the description logic
ALRC, as detailed by Schmidt-Schauß [22].

6 Technically, the standard is slightly ambiguous with respect to nodes not occurring
in the data graph.



86 B. Bogaerts et al.

Theorem 2. Consistency of a shape schema (i.e., the question whether or not
some I conforms to S) is undecidable.

Following description logic traditions, decidable fragments of SHACL have been
studied already; for instance Leinberger et al. [14] disallow equality, disjointness,
and closedness in shapes, as well as union and Kleene star in path expressions.

6 Related Work and Conclusion

Formal investigations of SHACL have started only relatively recently. We already
mentioned the important and influential works by Corman et al. [9] and by
Andreşel et al. [3], which formed the starting point for the present paper. The
focus of these papers is mainly on the extending the semantics to recursive
SHACL schemas, which are not present in the standard yet, and which we also
do not consider in the current paper.

The connection between SHACL and description logics has also been
observed by several other groups of researchers [2,14,17,18]. There, the focus
is on typical reasoning tasks from DLs applied to shapes, and on reductions
of these tasks to decidable description logics or decidable fragments of first-
order logic. In its most general form, this cannot work (see Theorem2), but the
addressed works impose restrictions on the allowed shape expressions.

Next to shapes, other proposals for adding integrity constraints to the seman-
tic web have been proposed, for instance by integrating them in OWL ontologies
[15,24]. There, the entire ontology is viewed as an incomplete database.

None of the discussed works takes the explicit viewpoint that a data graph
represents a standard first-order interpretation or that SHACL validation is
model checking. We took this viewpoint and in doing so formalized precisely
how SHACL relates to the field of description logics. There are (at least) three
reasons why this formalization is important. First, it establishes a bridge between
two communities, thereby allowing to exploit the many years of research in DLs
also for studying SHACL. Second, our formalization of SHACL clearly separates
two orthogonal concerns:

1. Which information does a data graph represent? This is handled in the trans-
lation of a graph into its natural interpretation.

2. What is the semantics of language constructs? This is handled purely in the
well-studied logical setting.

Third, as we showed above, our formalization corresponds closer to actual
SHACL than existing formalizations, respects well-known laws (such as De Mor-
gan’s) and avoids issues with nodes not occurring in the graph requiring special
treatment. As such, we believe that by rooting SHACL in the logical setting, we
have devised solid foundations for future studies and extensions of the language.
We already build on the logical foundations of the current paper in our work on
extending the semantics to recursive shape schemas [6], as well as in an analysis
of the primitivity of the different language features of SHACL [7].
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Abstract. Answer set programming (ASP) solvers have advanced in
recent years, with a variety of different specialisation and overall devel-
opment. Thus, even more complex and detailed programs can be solved.
A side effect of this development are growing solution spaces and the
problem of how to find those answer sets one is interested in. One gen-
eral approach is to give an overview in form of a small number of highly
diverse answer sets. By choosing a favourite and repeating the process,
the user is able to leap through the solution space. But finding highly
diverse answer sets is computationally expensive. In this paper we intro-
duce a new approach called Tunas for Trade Up Navigation for Answer
Sets to find diverse answer sets by reworking existing solution collec-
tions. The core idea is to collect diverse answer sets one after another by
iteratively solving and updating the program. Once no more answer sets
can be added to the collection, the program is allowed to trade answer
sets from the collection for different answer sets, as long as the collection
grows and stays diverse. Elaboration of the approach is possible in three
variations, which we implemented and compared to established methods
in an empirical evaluation. The evaluation shows that the Tunas app-
roach is competitive with existing methods, and that efficiency of the
approach is highly connected to the underlying logic program.

Keywords: multi-shot answer set programming · navigation · diverse
answer sets

1 Introduction

Answer set programming (ASP) is a rising declarative programming paradigm
based on logic programming and non-monotonic reasoning [12]. ASP is partic-
ularly well suited to model and solve combinatorial search problems such as
scheduling [1,22], planning [8,11], and product configuration [24,25]. Over the
last decade ASP solvers such as clingo [16], WASP [4] and dlv [2] have been
improved and further developed to solve and enumerate answer sets faster [17],
allow for more control over the grounding and solving process [14] and even
enhanced with theory reasoning capabilities [21].

Due to these developments ASP finds more and more it’s way into industrial
applications [10,19]. Which reveals the issue that for real world applications the
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solution space can be extremely large. Recently Fichte et al. [13] introduced a
framework that allows to navigate the solution space by introducing weights
on atoms that occur in some but not all answer sets. Another way to tackle
this problem is to search for optimal solutions by formulating preferences [5,6]
or optimisation criteria [3,15]. However, the user might not have a particular
preference in mind. For example consider the product configuration domain,
where the producer models the product to configure in terms of ASP. This kind
of combinatorial problem usually allows for many combinations of parts of the
product, together with a rather low number of constraints, leading to a com-
binatorial explosion of solutions (answer sets). For the potential customer it is
not possible to inspect all (possibly several million) configurations. Therefore,
it would be beneficial to be able to provide a small collection of highly diverse
configurations, such that the customer obtains an overview on the different char-
acteristics of the potential products. Eiter et al. [9] introduced several approaches
how to compute similar and diverse answer sets, ranging from post processing
enumerations over parallel solving to iterative solving. The approaches diverge
in behaviour, so is the parallel solving complete but becomes infeasible quickly
while the fast iterative solving often leads to suboptimal results.

In this work we revisit four problems formulated in [9] and propose a novel
approach for computing diverse answer sets based on reworking collections of
solutions. The main idea is to trade solutions from a collection is allowed as
long as the collection grows. Therefore the approach works iteratively, improv-
ing the result stepwise and thus can be interrupted at anytime. For our approach
we introduce the corresponding problem and analyse its complexity by forming
a many-one hierarchy. Furthermore we lay out three different elaborations to
implement the core functionality. We compare our approach with the methods
based on Eiter et al. [9] in an empirical evaluation, showing that the novel Tunas
approach is competitive. Also the implementations of the iterative approaches
benefit from the multi-shot functionality within the clingo solver, by updating
existing logic programs instead of re-grounding and solving from scratch. There-
fore a re-evaluation of the established methods using state-of-the art solvers and
wrappers is of interest as well.

2 Preliminaries

2.1 Multi-shot Answer Set Programming

A (disjunctive) program P in ASP is a set of rules r of the form:

a1; . . . ; am : − am+1, . . . , an, not an+1, . . . , not ao.

where each atom ai is of the form p(t1, . . . , tk), p is a predicate symbol of arity
k and t1, . . . , tk are terms built using constants and variables. For k = 0 p()
abbreviates to p. A naf (negation as failure) literal is of the form a or not a for
an atom a. A rule is called fact if m = o = 1, normal if m = 1 and integrity
constraint if m = 0. Each rule can be split into a head h(r) = {a1, . . . , am} and
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a body B(r) = {am+1, . . . , not ao}, which divides into a positive part B+(r) =
{am+1, . . . , an} and a negative part B−(r) = {an+1, . . . , ao}. A term, atom,
rule or program is said to be ground if it does not contain variables. For a
program P its ground instance Grd(P) is the set of all ground rules obtained
by substituting all variables in each rule with ground terms. Let M be a set
of ground atoms, for a ground rule r we say that M |= r iff M ∩ h(r) �= ∅
whenever B+(r) ⊆ M and B−(r)∩M = ∅. M is a model of P if M |= r for each
r ∈ P. M is a stable model (also called answer set) iff M is a ⊆-minimal model
satisfying the Gelfond-Lifschitz reduct of P w.r.t. M . The reduct is defined as
PM = {h(r) ← B+(r)|M ∩ B−(r) = ∅, r ∈ P} [18].

For the solver clingo several meta-statements are available, such as the
#show directive to selectively include (and rename) atoms in the output. The
multi-shot [14] feature within clingo allows altering and rerunning logic pro-
grams by defining parametrised subprograms. Subprograms are identified by
a name sp and arity k and require a list of arguments (p1, . . . , pk). Within the
logic program, the subprogram sp(p1, . . . , pk) starts after the directive #program
sp(p1, . . . , pk). and ends before the next subprogram. If not declared the first
block is attached to base/0. Usually the multi-shot program is handled by a
wrapper script, communicating with the grounder and solver through a control
object. Subprograms can be altered dynamically, allowing for flexible implemen-
tation at runtime. Truth values of atoms can be pre-assigned for each solve call
via assumptions or external atoms. If used, assumptions need to be declared
explicitly for each solve call, while external values are set persistently.

2.2 Diverse Solutions

Problems. The umbrella term similar/diverse covers a bouquet of problems
focusing mainly around four decision problems [9]. In our work we target the
diverse problem and therefore omit the (symmetric) similar co-problem. For
convenience, the problems are often referenced by their short notation (Γ). The
term “P and Δ for P ” abbreviates “an ASP program P that formulates a com-
putational problem P and a distance measure Δ that maps a set of solutions for
P to a nonnegative integer”. The complexity class is added to each problem.

(1) Γnk
PΔ - n k-DIVERSE SOLUTIONS: Given P and Δ for P and two nonnegative

integers n and k, decide whether a set S of n solutions for P exists such that
Δ(S) � k. (Complexity: NP-complete)

(2) Γ+1
PΔ - k-DISTANT SOLUTION: Given P and Δ for P , a set S of solutions

for P , and a nonnegative integer k, decide whether some solution s (s /∈ S)
for P exists such that Δ(S ∪ {s}) � k. (Complexity: NP-complete)

(3) Γk↑
PΔ - n-MOST DIVERSE SOLUTIONS: Given P and Δ for P and a nonneg-

ative integer n, find a set S of n solutions for P with the maximum distance
Δ(S). (Complexity: FNP//log-complete)

(4) Γn↑
PΔ - MAXIMAL n k-DIVERSE SOLUTIONS: Given P and Δ for P and a

nonnegative integer k, find a ⊆-maximal set S of at most n solutions for
P s.t. Δ(S) � k. (Complexity: FPNP-complete; FNP//log-complete if k is
bounded)
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Γnk
PΔ addresses the core problem: finding a set S of n solutions for a given

program for which the distance measure is larger than k. The distance measure Δ
is a function which maps a set of solutions to a non-negative integer. In practice
Δ is usually monotone (Δ(S) � Δ(S∪S′) for any sets S, S′ of solutions) and
can be customised. A default implementation is the minimum of the hamming
distance for any pair of solutions within the collection. Γ +1

PΔ asks for one solution
which is at least k-distant to each element of a provided solution set (collection).
Therefore Γ +1

PΔ can be utilised to semi-decide Γnk
PΔ . The other two problems target

maximising k (Γ k↑
PΔ) and n (Γn↑̄

PΔ
1) and can be decided by repeatedly solving Γnk

PΔ

for increasing k (resp. n).

Related Work. In [9] the following approaches targeting Γnk
PΔ were introduced.

Offline solves Γnk
PΔ directly by collecting some or all answer sets and picking

diverse answer sets in a detached process, which in principle solves the NP-
complete k − clique problem for a potentially exponential input. Since solutions
are generated in vaguely sorted order, restricting the output size will impact the
outcome drastically. Therefore Offline faces heavy drawbacks and will not be
covered in our evaluation.

Online1 is based on manipulating the original logic program to solve n copies
of the problem at the same time while satisfying constraints on the distance
measure, targeting Γnk

PΔ in a single shot. Online1 is a complete approach.
Online2 tries to solve the main problem Γnk

PΔ by repeatedly solving Γ +1
PΔ. The

program generates a solution and wrapper script adds it to the program, forcing
the next solution to be diverse to the collected solutions. This process repeats
until the collection has the desired quantity or the program becomes unsatis-
fiable. Additional to the original program and a wrapper script, this approach
requires a method to add distance constraints. Online2 semi-decides Γnk

PΔ .
Online3 works similar to Online2 but the functionality is embedded into the

solver instead of a script. [9] presented clasp-nk, a branch-development of clasp
1.1.3 which included hard-coding a distance calculation for one freely selectable
predicate. Since this solver is not competitive with current generation solvers,
we did not include Online3 despite showing comparable results to Online2.

Further Related Work. Romero et al. [23] propose a multi-shot framework
for computing diverse preferred answer sets for asprin. The paper presents three
advanced diversification techniques for programs with preferences, which are
generalised methods based on [9], partly utilising preferences into the solving
process. Since Romero et al. are using preferences, the methods are not directly
empirical comparable to our work.

3 Iterative Reworking Strategies

So far there exist four problems and two promising approaches. The parallel
approach (Online1) lifts the original program to solve Γnk

PΔ , while the iterative

1 Γn↑̄
PΔ asks for ⊆-maximal sets and restricts the maximal value to bound output size.
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approach (Online2) collects solutions by repeatedly solving and updating the logic
program. Once the program becomes unsatisfiable, the diverse collection is subset-
maximal and can not grow in any further. In our iterative reworking strategy, we
aim to surpass this subset-maximal boundary by trading m ≥ 0 solutions from a
given collection S for at least m + 1 new solutions. This novel approach does not
target any of the introduced problems directly, therefore we define and analyse the
corresponding problem before introducing the actual approach.

3.1 Problem Definition and Complexity

Based on the notations from Sect. 2.2 we describe a new problem, which intro-
duces the possibility of replacing at most m solutions from a given collection S
with at least m + 1 solutions to form an improved diverse collection S′.

(5) Γ�m
PΔ - m-DIFFERENT k-DISTANT SET: Given P and Δ for P , a set S of

solutions for P , two nonnegative integer k and m with m�|S|, decide if a
set S′ of solutions for P exists s.t. |S′|>|S|, |S\S′|�m and Δ(S′) � k.

In other words: we try to expand the given, potentially empty collection S of
solutions by exchanging up to m solutions for a greater number of solutions. It is
valid to exchange less than m solutions as long as the collection grows. While shar-
ing similarities with Γnk

PΔ and Γ +1
PΔ, Γ �m

PΔ introduces a new parameter m, creating
|S| + 1 possible sub-problems for a given set S of solutions. For convenience we
will write “Γ �m

PΔ with m = t” as Γ �t
PΔ for any non-negative integer t. We will pro-

ceed to show equality of Γ +1
PΔ and Γ �0

PΔ (Lemma 1) as well as interchangeability of
Γnk

PΔ and Γ �n−1
PΔ (Lemma 2). We will furthermore establish a hierarchy within Γ �m

PΔ

(Lemma 3) to show NP-completeness (Theorem 1). For the proofs we assume Δ
to be monotone (Δ(S) � Δ(S∪S′) for any sets S, S′ of solutions).

Lemma 1. Γ +1
PΔ(S, k) iff Γ �0

PΔ(S, k).

Proof. Γ +1
PΔ(S, k) ⇒ Γ �0

PΔ(S, k): if there exists a solution s s.t. Δ(S∪{s}) � k then
the set S′ = S∪{s} satisfies |S′|>|S|, |S\S′|�0 and Δ(S′) � k.
Γ �0

PΔ(S, k) ⇒ Γ +1
PΔ(S, k): if there exists a set of solutions S′ s.t. |S′|>|S|, |S\S′|�0

and Δ(S′) � k then S⊂S′ and for all s ∈ (S′\S): Δ(S ∪ {s}) � k. �
Lemma 2. Γ nk

PΔ(n, k) and Γ �n−1
PΔ (S, k) are interchangeable for |S| = n − 1.

Proof. Γnk
PΔ(n, k) ⇒ Γ �n−1

PΔ (S, k) with |S| = n−1: if there exists a set of solutions
S′ s.t. |S′| = n and Δ(S′) � k then for any possible set S of solutions with
|S| = n − 1: |S′|>|S|, |S\S′|�n − 1 and Δ(S′) � k.2
Γ �n−1

PΔ (S, k) ⇒ Γnk
PΔ(n, k): given a set S of at least n−1 solutions, if there exists a

set S′ of solutions s.t. |S′|>|S| � n − 1 and Δ(S′) � k then there exists S′′ ⊆ S′

where |S′′| = n and Δ(S′′) � k. �
We covered complexity for Γ �m

PΔ (S, k) for m = 0 and m = |S|, for the remaining
0 < m < |S| we can build a hierarchy using a poly-time many-one-reduction.
2 This implication even holds if S and S′ share elements (S ∩ S′ �= ∅) or if Δ(S) < k.
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Lemma 3. Γ �m
PΔ (S, k) ≤pΓ

�m+1
PΔ (S, k) (poly-time many-one-reduction)

Proof. Γ �m
PΔ (S, k) has the problem instance (P,Δ, S, k) which we will convert

to (P±,Δ±, S±, k±) for Γ �m+1
P±,Δ±(S±, k±) by introducing two artificial, unique

solutions ε+ and ε–. The program P is altered to accept ε+ and ε–, forming P±.
Δ± is derived from Δ by adding distance information for ε– and ε+: ε–has distance
0 to any solution and ε+ has distance k + 1 to any original solution. To avoid
loopholes regarding k = 0, the distance value for each original solution pair is
increased by 1 for Δ±, therefore k has to be updated as well (k± = k + 1). The
“negative” solution ε– is added to the initial solution set S± = S ∪ {ε–}, whereas
the “positive” solution ε+ remains as potential solution to compensate for the
forced selection of ε–. Both instances return the same value for their problem:

Γ �m
PΔ (S, k) ⇒ Γ �m+1

P±Δ±(S±, k±): if there is a solution set S′ for s.t. |S′|>|S|,
|S\S′|�m and Δ(S′) � k with ε–, ε+ �∈ (S∪S′) then the solution set S±′ = S′∪{ε+}
satisfies all criteria for Γ �m+1

P±Δ±(S∪{ε–}, k + 1): |S±′| > |S∪{ε–}|, |(S∪{ε–}) \
S±′| � m + 1 and Δ±(S±′) � k + 1.

Γ �m+1
P±Δ± (S±, k±) ⇒ Γ �m

PΔ (S, k): if there is a solution set S±′ such that
|S±′|>|S∪{ε–}|, |(S∪{ε–}) \ S±′| � m + 1 and Δ±(S±′) � k + 1 (implying
ε–, ε+�∈ S and ε–�∈S±′) then S′ = S±′\{ε+} satisfies |S′|>|S|, |S \ S′| � m and
Δ(S′) � k. This implication holds for both cases ε+ ∈ S±′ and ε+�∈S±′.

�
Theorem 1. Problem Γ �m

PΔ - m-DIFFERENT k-DISTANT SET is NP-complete.

Proof. As proven in Lemma 3 there exists a hierarchy within Γ �m
PΔ where

Γ �m
PΔ ≤p Γ �m+1

PΔ . Since the problem for the lowest m (m = 0) corresponds
to the NP-complete problem Γ +1

PΔ (Lemma 1), all problems are NP-hard. And
since the top-most problem (m = |S|) corresponds to the NP-complete prob-
lem Γnk

PΔ(Lemma 2) all problems in the hierarchy lie within NP. Since lower and
upper bound are NP-complete, all problems in Γ �m

PΔ are NP-complete as well. �

3.2 Reworking Methods

The Trade Up Navigation for Answer Sets (short Tunas) approach is a frame-
work that allows to solve Γnk

PΔ by iteratively solving Γ �m
PΔ . The core idea is to

remove up to m solutions from a collection to gain a larger collection, therefore
improving the result. Since Γ �m

PΔ is easier to compute than Γ �m+1
PΔ , the approach

begins with m = 0 and ends at a given maximal value m = M . Like this,
building an initial collection equals Online2. Only when the program becomes
unsatisfiable, the actual reworking process starts working. An outline of the gen-
eral implementation can be seen in Algorithm 1. The different implementations of
the core function replaceM(ctl,m, pool, idx), which provides deletion candidates
and new solutions, are explained afterwards.

Some notes to the general framework: The logic program itself is handled by
the control structure ctl which allows for grounding and solving as well as for
additional functionality such as managing external atoms. The wrapper script
uses indices to reference solutions, the set pool holds all indices from the current
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Algorithm 1: Tunas Framework
Input: A fitting multi-shot logic program P , minimum distance measure K,

number of solutions N , maximum Number M of deletion candidates, set
Init of subprograms to ground initially, implementation of replaceM

1 ctl.load(P )
2 ctl.ground(Init) // ground original program
3 idx ← 1
4 pool ← {}
5 do :
6 for m ← 0 to M :
7 (delS,newS, idx) ← replaceM(ctl,m, pool, idx) // core function
8 if newS �= ∅ :
9 for del ∈ delS :

10 ctl.release_external(visible(del)) // remove from collection
11 pool ← ( pool \ delS ) ∪ newS
12 break
13 while (|pool| ≤ N) and (newS �= ∅)

collection. The basic framework consists mainly of two loops: one to enlarge the
collection and one to escalate the current m up to the maximum M . A core
function is called (line 7) to solve the current problem which returns indices of
deletion candidates (delS ) and indices of new solutions (newS ) to be added to
the collection. If a solution for the current m was found, the deletion is made
permanent by releasing corresponding atoms (line 10) and updating the set pool
which represents the collection. Also the current escalation of m is disrupted to
start over from 0.

Since the basic framework is explained, let us have a detailed look into the
possible implementations of replaceM. Each implemtation requires a base pro-
gram in the form of subprogram calls (Init, line 2).

TunasMND. implements generating multiple (M) solutions and nondetermin-
istic (ND) choosing of deletion candidates. In other words: the logic program
guesses the deletion candidates and generates all new solutions in a single call.
An outline of the wrapper functionality can be seen in Algorithm 2 implementing
replaceM from the framework in Algorithm 1. The initial program (see Init from
Algorithm 2) contains the subprogram names of the modified original program.
For TunasMND this is comparable to Online1 to compute up to M + 1 diverse
solutions.

The amount m of deletion candidates (and consequently m + 1 new solutions)
is predetermined by the wrapper and passed onto the logic program via an
assumption over a corresponding predicate (line 1). An internal mechanism
induces the temporary concealment of exactly m solutions. If successful, their
indices can be extracted from the model (line 8). Also the model contains m + 1
new solutions. The #show directive (line 2) within the logic program is used to
distinguish between solution defining atoms (goal atoms) and auxiliary atoms.
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Algorithm 2: TunasMND - replaceM(ctl, m, pool, idx) : (delS, newS, idx)
Input: A control structure ctl which handles the current logic program, a

number m � 0 of deletion candidates, a set pool of indices representing
established solutions, the next solution index idx

Output: A set of indices referencing to deletion candidates, a set of indices
referencing to new solutions, the next solution index

1 if mdl ← ctl.solve(assumption = {(chooseNum(m), true)}) :
2 grnd ← {p(idx+i, t1, ..., tk) : p(i, t1, ..., tk)∈mdl∧#show(p(i, t1, ..., tk))∈Init}
3 registerPredicates(ctl, grnd )
4 ctl.ground( grnd )
5 for i ← 0 to m :
6 ctl.ground( {itDistM(idx + i))} )
7 ctl.assign_external(visible(idx + i), true)
8 return({i : choose(i) ∈ mdl}, {idx, ..., idx + m}, idx + m + 1)

9 return(∅, ∅, idx)

Since generated solutions proceed to become collected solutions, their index is
updated before grounding them back into the logic program (line 2).

For multi-shot programs, adding atoms to a program is possible by defin-
ing sub-programs which contain the atoms. We implemented the function
registerPredicates to construct and register those subprograms automatically,
allowing flexible and dynamic handling of heterogenous goal atoms. Afterwards
the distance constraints for the new solutions are grounded (line 6), which
become active, when setting the corresponding external atom to true (line 7).

If successful the set of indices for the deletion candidates and the newly
generated solutions are returned (line 8). Otherwise empty sets are returned.

TunasMIT implements generating multiple (M) solutions and iterative (IT)
choosing of deletion candidates: all new solutions are generated at once, while the
deletion candidates are provided by the wrapper. In comparison to TunasMND,
two mayor changes are required: disabling the choosing mechanism and handling
the deletion candidates before solving. The candidates are selected by iterating
over all combinations of size m from the set pool. The current set of deletion can-
didates is temporarily excluded from the collection by setting the corresponding
external key predicate (visible/1) to false before solving the current program. If
no solution could be found, the deletion candidates are made visible again and
the wrapper continues with the next combination of m deletion candidates.

We will use TunasM to address TunasMIT and TunasMND at once.

TunasS implements the single (S) generating, iterative choosing (IT) approach.
The underlying logic program is an extension of the logic program for Online2 - in
fact Online2 and TunasS are equivalent for M = 0. In comparison to TunasMIT
the solve call is embedded into another loop because each solve call generates
only one instead of m + 1 solutions. The currently generated solution streak is
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held in limbo until either all m + 1 solutions could be computed or the program
becomes unsatisfiable, resulting in the deletion of the current streak.

We left out the single solving (S), nondeterministic choosing (ND) approach
due to contradiction in progression: The (ongoing) suggestion of deletion can-
didates requires the program to stay unaltered in case the generating part fails
and different deletion candidates need to be derived. Yet at the same time the
program needs to be updated and solved to generate solutions. Splitting the
program into two separate programs boils down to TunasS.

4 Experimental Evaluation

To show feasibility of our approach, we compare it with the established meth-
ods Online1 and Online2. The evaluation focuses around solving Γ k↑

PΔ- n-MOST

DIVERSE SOLUTIONS, which combines highest complexity along with highest rele-
vance for applications. We analyse the behaviour of the approaches regarding the
following questions: Q1: Is the Tunas approach competitive with existing meth-
ods in terms of solving the problem Γ k↑

PΔ? Q2: How do the approaches perform
in time? Q3: How reliable are the methods?

Software: We implemented our approaches along with Online1 and a multi-
shot version of Online2. Online1 was extended to maximise for k to solve Γ k↑

PΔ.
The other approaches required repetitive solving Γnk

PΔ(n, k) for increasing k since
they only semi-decide Γnk

PΔ(n, k): if Γnk
PΔ(n, k) was satisfied, k is incremented.

This repeats infinitely but can be interrupted at any time (timeout).

Setup and Hardware: Our environment is a virtual machine (Debian 5.10.46,
64Bit, Intel Xeon Gold, 3 GHz, clingo 5.5, python 3.8.8). We tested for n ∈
{3, 5, 10, 15, 25}, timeout at 300 s sharp. Each configuration was repeated 20
times. We use random generated seeds (random frequency: 10%). The test-setup
including all data is available for download [7].

Test instances: We used 5 instances for our evaluation: (I1) Phylogenesis
(ancestry tress for languages) and (I2) blocks-world (planing problem) from
[9] (I3) PC configurator (configuration problem) from [20] (with 2 instead of
the default 10 hardware instances) (I4) an encoding of stable extensions and
(I5) preferred extensions, both for the same argumentation framework (AF)
instance [13]. I1 uses a custom distance (nodal), all other use hamming dis-
tance. The first three instances have a vast search space (>109 answer sets).
The AF instances I4 and I5 share an identical and comparatively small solution
space (7696 answer sets), but the problem classes differ in complexity.

The average maximal k for I3, I4 and I5 are listed in Table 1. For I1 and
I2 all approaches reached the maximal k, and thus they will not be discussed
further here. We ordered the methods from non-deterministic to iterative, where
each Tunas method is evaluated for M ∈ {1, 2}. The entries can be ranked for
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Table 1. maximal k for Γ k↑
PΔ(n) for 3 instances, average over 20 runs. For Tunas

numbers outside (resp. inside) of brackets reference to M = 1 (resp. M = 2).
* marks a proven maximal value by Online1, best results are bold.

PC I3 n = 3 n = 5 n = 10 n = 15 n = 25

Online1 46.5 37.7 29.3 23.7 9.3

TunasMND 42.5 (43.2) 39.5 (40.0) 36.2 (36.3) 33.8 (33.9) 23.4 (22.3)
TunasMIT 42.0 (43.0) 39.8 (39.6) 36.4 (36.1) 34.0 (34.0) 30.6 (30.9)
TunasS 41.9 (42.0) 39.8 (39.7) 36.5 (36.4) 34.0 (34.0) 31.1 (30.9)

Online2 42.0 39.8 36.2 33.9 30.9

AF stable I4 n = 3 n = 5 n = 10 n = 15 n = 25

Online1 81.0* 63.0 47.9 40.9 34.3

TunasMND 81.0 (81.0) 61.8 (61.7) 48.8 (48.3) 42.0 (42.0) 36.0 (35.5)
TunasMIT 81.0 (81.0) 61.7 (62.2) 48.4 (48.9) 42.2 (42.3) 36.0 (35.9)
TunasS 81.0 (81.0) 61.6 (62.1) 48.4 (48.8) 42.3 (43.0) 36.0 (35.9)

Online2 75.1 58.6 46.4 41.0 35.0

AF pref. I5 n = 3 n = 5 n = 10 n = 15 n = 25

Online1 54.9 35.1 23.2 15.1 5.1

TunasMND 77.6 (73.7) 54.0 (54.1) 43.5 (43.9) 37.9 (37.7) 31.4 (31.1)
TunasMIT 77.8 (73.2) 54.5 (54.4) 43.2 (43.9) 37.9 (37.6) 31.2 (30.9)
TunasS 70.7 (72.2) 55.4 (55.9) 44.3 (44.0) 38.1 (38.1) 31.9 (31.4)

Online2 71.9 56.7 45.0 39.1 33.1

each instance and n, for example for I4 and n = 5, Online1 has the highest
value (63.0), whereas the Online2 has the lowest value (58.6), implying better
results from Online1 than Online2 for this setting.

In general we observe that Online1 performs best for smaller n, which is
not surprising since the size of the problem encoding is related to n. For I3 all
iterative methods perform on the same level (except TunasMND for n = 25).
Notably is the lead for Online1 for n = 3, which results from low chances to
guess a solution which can form a diverse collection of size 3. A closer look at
the data reveals that I3 has no repeating attempts, implying high time cost
for returning unsatisfiable. This explains the equal performance of the iterative
methods, since all Tunas methods start with m = 0 and are unable to progress
to m = 1.

The upper bounds of k for I4 and I5 are identical since they share an identical
solution space, but belong to different complexity classes. Online1 shows good
results for I4, even leading for n ≤ 5 but performs worst for I5. Online2 performs
unexpected sub-optimal for I4 but leads for I5. For I4 all Tunas methods perform
at similar levels. For I5 TunasS performs slightly better than TunasM with
exception for n = 3 where TunasM outperforms all other methods. To better
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Fig. 1. Median timelines of current k for 20 runs, n = 5. Tunas methods: solid lines
for M = 2, striped lines for M = 1. The right figure includes AF stable (solid colors)
and AF preferred (light colors).

understand the results, the median3 run time can be seen in Fig. 1 for n = 5.
The maximal value on the x-axis for each curve corresponds to the data in
Table 1 while the y-axis reflects the median time to reach the corresponding k.
The optimal curves are wide and flat: large k values for low execution times.
The plot visualises also different results for different timeouts. For Example
with timeout = 10 s TunasS has a larger k for both AF instances as Online2,
implying better performance for this timeout. Timelines for TunasS and Online2
progress similar, while TunasM requires more time for larger M . In contrast to
the iterative methods, Online1 has unsteady escalation times. One interesting
curve is Online2 for I4: at around k = 56 Online2 struggles to keep the pace,
implying lower probability of satisfying Γnk

PΔ(n, k). This effect can be seen for
the Tunas methods as well but for higher k. The curves for I3 (PC, n = 5)
hint an explanation to the performance drop of TunasMND for n = 25: since
TunasMND progresses significantly slower it is expected to be the first to suffer
a performance decline for increased difficulty or lower timeout.

Now, let us answer the question. Q1: None of the evaluated methods is supe-
rior, all methods lead at least once for maximal k. The outcome depends highly
on the instance, n and the timeout. Q2: Online1 is fastest for lower n. Also it is
the only terminating approach, since the other approaches are allowed to start
over. Online2 is the fastest method, providing good results in a short amount
of time. TunasS behaves similar as Online2: in most cases they are comparable
in speed and performance. Depending on instance, n and timeout one performs
better than the other. The TunasM methods proceed comparatively slow but
perform surprisingly good in some cases, such as I5 for n = 3. The value of M
seems to have no major impact for TunasS, but for TunasM; the performance
differs most for n = 3. Also a higher M is often related to higher computation
time, which is important for low timeouts. Q3: Online1 is suited for smaller n
but can not guarantee providing any result, since grounding and solving may

3 Not all timelines cover the same k due to the time limit, distorting the mean value.
The median is robust against those outliers by setting missing data to the time limit.
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require excessive time in comparison to the original problem. Online2 generates
good results but not for all instances: for I4 Online2 shows the weakest results,
for n = 3 it is the only method not reaching the maximum. The performance for
the Tunas methods in comparison with Online2 seems to be tied to the perfor-
mance of Online1: The more a program is suited for Online1, the better perform
the Tunas methods, often surpassing both, Online1 and Online2. This implies
the combination of traits of both methods, which makes sense when interpreting
Tunas as the progression from Online2 to Online1. Therefore for an unknown
program, TunasS states a good choice, since it inherits a similar time behaviour
as Online2 but can surpass Online2 if the program would be suited for Online1.

5 Conclusion and Future Work

We presented a novel and competitive approach to compute diverse answer sets
of logic programs based on reworking methods. To characterise the base mech-
anism, we introduced a new problem related to the approach and prove NP-
completeness. Basic analysis of the approach leads to three elaborations, which
we implemented along with two methods from Eiter et al. [9] (as multi-shot
variant). Our empirical evaluation to find n-MOST DIVERSE SOLUTIONS reveals
no superior method, since problem instance, number n of solutions and timeout
highly influence the performance. However the Tunas methods show promising
results, especially for large solution spaces and typical NP problems.

For future work, we believe investigating the connection of facet counting
weights [13] and diverse answer sets is a promising direction. Furthermore, the
extension to preferred logic programs would be of interest [23].
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Abstract. This paper introduces formal models for emotional reason-
ing, expressing emotional states and emotional causality, using action
reasoning and transition systems. A general framework is defined, com-
prised of two main components: 1) a model for emotions based on the
Appraisal theory of Emotion (AE), and 2) a model for emotional change
based on Hedonic Emotion Regulation (HER). A particular transition
system is modelled in which states correspond to human emotional states
and transitions correspond to restrictive (safe) ways to influence emotions
while reducing negative emotional side-effects. The introduced emotional
reasoning can be applied to guide a software agent’s actions for dealing
with emotions while estimating and planning future interactions with
humans.

Keywords: Emotional reasoning · Human-aware planning · Action
languages · Appraisal theory

1 Introduction

An aim in the area of Human-Agent Interaction (HAI) is to develop interactive
cognitive systems that are human-aware, providing a proactive and personalized
interaction. Human-Aware Planning (HAP) [11] regards a scenario where an
intelligent system is situated in an environment populated by humans, in which
the system must plan its actions by meeting the requirements of human plans
and goals. In order for a software agent to execute suitable actions in interactions
with humans, the agent must consider the mental states of its human interlocu-
tors in its internal reasoning and decision-making. This is an ability, referred to
as Theory of Mind (ToM) [12], to infer another agent’s beliefs, such as emotions,
motivations, goals and intentions. We need to develop dynamic ways for systems
to compute a ToM of their users, making systems aware of human mental prop-
erties and their causes. “Emotions” play a fundamental role in human behavior
and interactions [2]. By providing a system mathematical computational models
for emotional reasoning [9] when planning its actions, interaction capabilities of
an agent can be greatly improved. The software agent must be aware of what
emotions that are present in the mind of the human and what emotions that can
be triggered, in each state of the interaction.
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Challenges when building emotion-aware [4] interactive systems include to
provide capabilities of: 1) backward reasoning, e.g., recognizing and reasoning
about causes of emotions, 2) context reasoning, e.g., evaluating timely and appro-
priate emotional states, 3) forward reasoning, e.g., predicting the effects of their
actions on emotions of humans, and 4) action reasoning for adapting their behav-
iors accordingly, promoting appropriate emotions while avoiding unintended
emotional side-effects. To achieve such capabilities, intelligent systems require
models that capture explanations to why and how emotions arise and change.
Previous approaches to computational emotional reasoning [1,9,12,14] mainly
focus on recognizing emotional context, e.g., by simulating emotional behavior
[12] or to model expected human behavior in response to emotions [9], and do not
capture explanations for emotional change as state transitions. In order to predict
the effects of an agent’s actions on emotions of humans, the agent needs a way
to reason backward and forward using models that specify how human emotions
are caused and change, in terms of states and transitions. Given the challenges
of emotional reasoning in the setting of HAI, the following research question
arises:—How to track emotional states of human agents in a goal-oriented inter-
action between humans and software agents?

We introduce a methodology to model emotional state transitions by formal-
izing two emotion theories, the Appraisal theory of Emotion (AE) [6] and Hedo-
nic Emotion Regulation (HER) [17], capturing links between human emotions
and their underlying beliefs, using transition systems and action reasoning [7].
To this end, a set of action specifications is introduced, CAE , that captures tran-
sitions between human emotions. The proposed emotional reasoning framework
regards two main components: 1) a model for emotion representation, following
the psychological theory of AE, through which a set of 16 basic human emotions
is explained, and 2) a model for emotional change, following the theory of HER,
aiming to increase positive emotion and decrease negative emotion.

This paper is organized as follows. In Sect. 2, the state-of-the-art in emotional
reasoning is presented. In Sect. 3, the theoretical (computational and psycholog-
ical) background is presented. In Sect. 4, syntax and semantics of the proposed
emotional framework reasoning are presented. Finally, in Sect. 5 and 6, the paper
is concluded by discussing potential applications, limitations, and directions for
future work.

2 Related Work

There is a diverse body of research related to the ideas presented in the present
work. In the area of affective agents and computational theory of mind [1,12],
agent models have been developed to reason about emotion and behavior.
For instance, agents based on Partially Observable Markov Decision Processes
(POMDP) [12] have been used to (similar to the present study) model appraisal
and emotion. Their models show potential in simulating human emotional behav-
ior. They have, however, lacked to capture human emotional change to deliberate
about emotion regulation, future interactions and emotional effects of actions.
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A variety of Emotion BDI (Belief, Desire, Intention) frameworks [9,14,15]
have been introduced. These approaches have aimed, e.g., to model behaviors
which are expected from agents under the influence of emotions [14], or to provide
modular generic interfaces for emotional agents [9] to enable emotion theory-
based models as filters for emotional reasoning. While these works define generic
architectures for emotional agents, they need to be coupled with emotion theory-
based models to enable reasoning about emotional change, and human-aware
reasoning to avoid unintended emotional side-effects in their interactions.

3 Theoretical Background

This section presents the emotion theories of AE and HER, the theoretical base
of the proposed emotional reasoning framework. The section then presents action
reasoning languages and transition systems, serving as a platform on which emo-
tional reasoning is formalized and characterized.

3.1 Emotion Theories: AE and HER

AE [6] proposes that emotions are caused by an appraisal of a situation in
terms of 1) being consistent or inconsistent with needs, 2) being consistent or
inconsistent with goals, 3) the accountability of a situation, which can be the
environment, others, or oneself, and 4) as being easy or difficult to control.
According to AE, the difference between goal consistency and need consistency
determines negative, stable and positive emotions. More intense negative emo-
tions (e.g., Anger or Fear) arise when the need consistency is greater than the
goal consistency, while less intense negative emotions can arise when both the
need consistency and goal consistency are low. On the other hand, positive emo-
tions (e.g., Joy or Liking) arise when the goal consistency is greater than the
need consistency, or when both are high. By ranking consistency values as Low
< Undecided < High and by looking at the difference between need and goal
consistency, positive and negative emotions can be distinguished.

HER [17] is a theory for regulating emotions, guided by the goals to 1)
increase positive emotion and 2) decrease negative emotion. According to HER,
both of these emotion regulation goals are associated with improved well-being,
where decreasing of negative emotion has been most effective [13]. The principles
of HER can be applied in the framework of AE to reason about emotional change.

3.2 Action Reasoning and Transition Systems

A transition system is a directed graph, whose nodes correspond to states (con-
figurations of variables) and edges correspond to valid transitions between states.
A transition system has an initial state (the current observation) and a set of goal
states (which it aims to reach). Action reasoning [7] regards logical descriptions
of actions that result in transitions between states. As a platform for our emo-
tional reasoning specification, we build on the action language CTAID [5]. The
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alphabet of CTAID consists of two nonempty disjoint sets of symbols F and A.
They are called the set of fluents F and the set of actions A. A fluent expresses
a property of an object in a world, and forms part of the description of states
of the world. A fluent literal is a fluent or a fluent preceded by ¬. A state σ is
a collection of fluents. A fluent f holds in a state σ if f ∈ σ. A fluent literal ¬f
holds in σ if f /∈ σ.

4 Emotional Reasoning

The contribution of the paper starts in this section, which presents an emotional
reasoning specification, CAE . Components of AE are formalized as a particular
transition system, called an emotion decision-graph (EDG), to reason about
emotional states and (safe) emotional change to reduce unintended emotional
side-effects. The EDG specifies transitions between emotional states (in terms
of HER), which serve as safety restrictions for emotion-influencing actions.

Recall that AE defines emotions as a composition of an individual’s appraisal
of a situation, in terms of consistency with needs, consistency with goals,
accountability and control potential. By following this definition of emotional
causes, we specify states with emotion fluents and values of the following form:

– need_consistency(ne), ne ∈ {low= l, high = h, undecided = u},
– goal_consistency(go), go ∈ {low= l, high = h, undecided = u},
– accountability(ac), ac ∈ {environment= e, others = o, self = s, unde-

cided = u},
– control_potential(co), co ∈ {low= l, high = h, undecided = u}

By defining a set of emotions following AE in this way, and by utilizing prin-
ciples of hedonic emotion regulation, we can specify preferable (safe) transitions
between emotional states. In the following subsection, we specify an EDG to
reason about emotional transitions.

4.1 Emotion Decision-Graph (EDG)

Following AE, 16 emotional states are specified, one for each basic emotion
explained by AE theory, i.e., {Anger, Dislike, Disgust, Sadness, Hope, Frustra-
tion, Fear, Distress, Joy, Liking, Pride, Surprise, Relief, Regret, Shame, Guilt}.
We can model these states and transitions as a graph, an EDG, that represents
a prioritized focus of emotional change given a recognized emotional state (see
Fig. 1).

Definition 1. An emotion decision-graph EDG is a transition system that is a
tuple of the form EDG = (E,Act, T,O) where E is a non-empty set of states
such that each state contains emotion fluents in terms of AE, Act is a set of
actions, T ⊆ E ×E is a non-empty set of transition relations between emotional
states, O is a set of initial observations.

The emotion decision-graph is formalized by the semantics of the action
language specification CAE , serving as restrictions for safe emotional change,
presented in the following section.
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Anger
ne:h go:l ac:o co:h

Dislike
ne:u go:l ac:o co:l

Surprise
ne:u go:u ac:e co:u

Frustration
ne:h go:l ac:e co:h

Shame
ne:l go:l ac:s co:h

Guilt
ne:h go:h ac:s co:h

Regret
ne:u go:l ac:s co:l

Liking
ne:u go:h ac:o co:u

Hope
ne:u go:h ac:e co:l

Joy
ne:h go:h ac:e co:u

Pride
ne:u go:h ac:s co:u

Relief
ne:h go:h ac:e co:u

Sadness
ne:h go:l ac:e co:l

Fear
ne:u go:l ac:e co:l

Distress
ne:l go:l ac:e co:l

Disgust
ne:l go:l ac:e co:h

Fig. 1. Emotional states following Appraisal theory of Emotion [6].

4.2 Action Language Specifications

CAE is comprised of sets of symbols to represent emotional appraisals, which
define an emotion-aware alphabet as follows:

Definition 2 (Emotion-aware alphabet). Let A be a non-empty set of
actions and F be a non-empty set of fluents.

– F = FE ∪ FH such that FE is a non-empty set of fluent literals describing
observable items in an environment and FH is a non-empty set of fluent
literals describing the emotional-states of humans. FE and FH are pairwise
disjoint.

– FH = FN ∪ FG ∪ FA ∪ FC such that FN ,FG, FA and FC are non-empty
pairwise disjoint sets of fluent literals describing a human agent’s need con-
sistency, goal consistency, accountability and control potential, respectively.

– A = AE ∪ AH such that AE is a non-empty set of actions that can be
performed by a software agent and AH is non-empty set of actions that can
be performed by a human agent. AE and AH are pairwise disjoint.

Definition 3 (Emotion fluent). An emotion fluent is a predicate f(X, Y, Z)
of arity 3 such that X ∈ {ne, go, ac, co}, Y ∈ {l, h, u, e, o, s} and Z ∈ N∪{0}.
An emotion fluent f(X, Y, Z) is well-formed if the following conditions hold true:

1. if X ∈ ne, go, co, then Y ∈ {l, h, u}
2. if X = ac, then Y ∈ {e, o, s, u}

where ne represents need consistency, go represents goal consistency, ac repre-
sents accountability and co represents control potential; l represents low, h repre-
sents high, u represents undecided, e represents environment, o represents other
and s represents self; and Z represents a point in time.

CAE defines a set of static and dynamic causal laws of actions. These laws
specify emotional influences, either as effects of actions or as indirect causal
effects. Laws for emotional change work by influencing appraisal of a situation
in the human agent while complying with the constraints of the EDG.
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Definition 4 (Emotion-aware domain description language). An
emotion-aware domain description language Dae(A,F) consists of static and
dynamic causal laws of the following form:

CTAID domain description language:
(a causes f1, . . . , fn if g1, . . . gm) (1)
(f1, . . . , fn if g1, . . . gm) (2)
(f1, . . . , fn triggers a) (3)
(f1, . . . , fn allows a) (4)
(f1, . . . , fn inhibits a) (5)
(noconcurrency a1, . . . , an) (6)
(default g) (7)
CAE emotional reasoning extension:
(a influences need consistency f if f1, . . . fn) (8)
(a influences goal consistency f if f1, . . . fn) (9)
(a influences accountability f if f1, . . . fn) (10)
(a influences control potential f if f1, . . . fn) (11)
(f1, . . . , fn influences need consistency f) (12)
(f1, . . . , fn influences goal consistency f) (13)
(f1, . . . , fn influences accountability f) (14)
(f1, . . . , fn influences control potential f) (15)
(f1, . . . , fn intervenes action tendency a) (16)
(f1, . . . , fn facilitates action tendency a) (17)

where a ∈ A and ai ∈ A (0 ≤ i ≤ n) and fj ∈ F, (0 ≤ j ≤ n) and gj ∈ F,
(0 ≤ j ≤ n), and f ∈ F is a well-formed emotion fluent.

The semantics of CAE is characterized by the constraints of the EDG, cap-
tured by the definition of emotional state, specified through a set of static causal
laws. In this way, we can restrict states and state-transitions to comply with safe
emotional change.

Definition 5 (Emotional state). An emotional state s ∈ S of the domain
description Dae(A,F) is an interpretation over F such that

1. for every static causal law (f1, . . . , fn if g1, . . . gm) ∈ Dae(A,F), we have
{f1, . . . , fn} ⊆ s whenever {g1, . . . gm} ⊆ s.

2. for every static causal law (f1, . . . , fn influences need consistency f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and f ∈ FN .

3. for every static causal law (f1, . . . , fn influences goal consistency f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and f ∈ FG.

4. for every static causal law (f1, . . . , fn influences accountability f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and f ∈ FA.

5. for every static causal law (f1, . . . , fn influences control potential f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and f ∈ FC .

S denotes all the possible states of Dae(A,F).
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The general definition of emotional state captures a fully connected EDG
transition system. For any particular application, we need to define an EDG
that, based on application specific interaction goals and relevant theories for
emotion regulation, avoids unintended emotional states. Here, we define a safe
emotional state that follows principles of HER. Note that this specifies an EDG
with a subset of transitions (in the fully connected graph) that is considered
safe/valid.

Definition 6 (Safe emotional state). A safe emotional state s ∈ S of the
domain description Dae(A,F) is an emotional state following principles of hedo-
nic emotion regulation, where s is an interpretation over F such that

1. for every static causal law (f1, . . . , fn if g1, . . . gm) ∈ Dae(A,F), we have
{f1, . . . , fn} ⊆ s whenever {g1, . . . gm} ⊆ s.

2. for every static causal law (f1, . . . , fn influences need consistency f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and
(f ∈ FN ∧ f(ne, high,_) ∈ s ∧ ∃fi ∈ FN (1 ≤ i ≤ n) ∧ fi(ne, low,_) ∈
s ∧ ∃fj ∈ FG(1 ≤ j ≤ n) ∧ fj(go, high,_) ∈ s) ∨
(f ∈ FN∧f(ne, undecided,_) ∈ s ∧ ∃fi ∈ FN (1 ≤ i ≤ n) ∧ fi(ne, low,_) ∈
s ∧ ∃fj ∈ FG(1 ≤ j ≤ n) ∧ fj(go, high,_) ∈ s).

3. for every static causal law (f1, . . . , fn influences goal consistency f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and
(f ∈ FG ∧ f(go, high,_) ∈ s).

4. for every static causal law (f1, . . . , fn influences accountability f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and (f ∈ FA ∧
f(ac, other,_) ∈ s ∧ (∃fj ∈ FG(1 ≤ j ≤ n) ∧ fj(go, high,_) ∈ s)) ∨
(f ∈ FA ∧ f(ac, environment,_) ∈ s ∧ (∃fj ∈ FG(1 ≤ j ≤ n) ∧
fj(go, high,_) ∈ s)) ∨ (f ∈ FA ∧ f(ac, self,_) ∈ s ∧ (∃fj ∈ FG(1 ≤ j ≤
n) ∧ fj(go, high,_) ∈ s)).

5. for every static causal law (f1, . . . , fn influences control potential f) ∈
Dae(A,F), we have {f} ⊂ s whenever {f1, . . . , fn} ⊆ s, and ((f ∈ FC ∧
f(co, high,_) ∈ s ∨ f(co, undecided,_) ∈ s) ∧ (∃fj ∈ FG(1 ≤ j ≤ n) ∧
fj(go, high,_) ∈ s))∨ (f ∈ FC ∧ f(co, high,_) ∈ s ∧ (∃fi ∈ FN (1 ≤ i ≤
n) ∧(fi(ne, low,_) ∈ s∨fi(ne, undecided,_) ∈ s)∧(∃fj ∈ FG(1 ≤ j ≤ n) ∧
fj(go, low,_) ∈ s)∧ (∃fk ∈ FA(1 ≤ k ≤ n) ∧ fk(ac, environment,_) ∈ s))).

S denotes all the possible safe emotional states of Dae(A,F).

Definition 7. Let Dae(A,F) be a domain description and s a state of
Dae(A,F).

1. An inhibition rule (f1, . . . , fn inhibits a) is active in s, if s |= f1, . . . , fn ,
otherwise, passive. The set AI(s) is the set of actions for which there exists
at least one active inhibition rule in s (as in CTAID [5]).
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2. A triggering rule (f1, . . . , fn triggers a) is active in s, if s |= f1, . . . , fn
and all inhibition rules of action a are passive in s, otherwise, the triggering
rule is passive in s. The set AT (s) is the set of actions for which there exists
at least one active triggering rule in s. The set AT (s) is the set of actions
for which there exists at least one triggering rule and all triggering rules are
passive in s (as in CTAID [5]).

3. An allowance rule (f1, . . . , fn allows a) is active in s, if s |= f1, . . . , fn
and all inhibition rules of action a are passive in s, otherwise, the allowance
rule is passive in s. The set AA(s) is the set of actions for which there exists
at least one active allowance rule in s. The set AA(s) is the set of actions
for which there exists at least one allowance rule and all allowance rules are
passive in s (as in CTAID [5]).

4. A facilitating rule (f1, . . . , fn facilitates action tendency a) is active in
s, if a ∈ AH and s |= f1, . . . , fn and all inhibition rules and intervening
rules of action a are passive in s, otherwise, the facilitating rule is passive
in s. The set AFAC(s) is the set of actions for which there exists at least
one active facilitating rule in s. The set AFAC(s) is the set of actions for
which there exists at least one facilitating rule and all facilitating rules are
passive in s.

5. An intervening rule (f1, . . . , fn intervenes action tendency a) is active
in s, if a ∈ AH and s |= f1, . . . , fn and all inhibition rules and facilitating
rules of action a are passive in s, otherwise, the intervening rule is passive
in s. The set AINT (s) is the set of actions for which there exists at least
one active intervening rule in s. The set AINT (s) is the set of actions for
which there exists at least one intervening rule and all intervening rules are
passive in s.

6. A dynamic causal law (a causes f1, . . . , fn if g1, . . . , gn ) is applicable in s,
if s |= g1, . . . , gn.

7. A static causal law (f1, . . . , fn if g1, . . . , gn ) is applicable in s, if s |=
g1, . . . , gn.

8. A dynamic causal law (a influences need consistency f if f1, . . . , fn )
is applicable in s, if s |= f1, . . . , fn , and f ∈ FN , and ∃fi ∈ FN (1 ≤ i ≤ n),
and ∃fj ∈ FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤
m ≤ n).

9. A dynamic causal law (a influences goal consistency f if f1, . . . , fn ) is
applicable in s, if s |= f1, . . . , fn , and f ∈ FG, and ∃fi ∈ FN (1 ≤ i ≤ n),
and ∃fj ∈ FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤
m ≤ n).

10. A dynamic causal law (a influences accountability f if f1, . . . , fn ) is
applicable in s, if s |= f1, . . . , fn , and f ∈ FA, and ∃fi ∈ FN (1 ≤ i ≤ n),
and ∃fj ∈ FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤
m ≤ n).

11. A dynamic causal law (a influences control potential f if f1, . . . , fn )
is applicable in s, if s |= f1, . . . , fn , and f ∈ FC , and ∃fi ∈ FN (1 ≤ i ≤ n),
and ∃fj ∈ FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤
m ≤ n).
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12. A static causal law (f1, . . . , fn influences need consistency f) is applicable
in s, if s |= f1, . . . , fn , and f ∈ FN , and ∃fi ∈ FN (1 ≤ i ≤ n), and ∃fj ∈
FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤ m ≤ n).

13. A static causal law (f1, . . . , fn influences goal consistency f) is applicable
in s, if s |= f1, . . . , fn , and f ∈ FG, and ∃fi ∈ FN (1 ≤ i ≤ n), and ∃fj ∈
FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤ m ≤ n).

14. A static causal law (f1, . . . , fn influences accountability f) is applicable
in s, if s |= f1, . . . , fn , and f ∈ FA, and ∃fi ∈ FN (1 ≤ i ≤ n), and ∃fj ∈
FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤ m ≤ n).

15. A static causal law (f1, . . . , fn influences control potential f) is applicable
in s, if s |= f1, . . . , fn , and f ∈ FC , and ∃fi ∈ FN (1 ≤ i ≤ n), and ∃fj ∈
FG(1 ≤ j ≤ n), and ∃fk ∈ FA(1 ≤ k ≤ n), and ∃fm ∈ FC(1 ≤ m ≤ n).

Definition 8 (Trajectory). Let Dae(A,F) be a domain description. A tra-
jectory 〈s0, A1, s1, A2, . . . , An, sn〉 of Dae(A,F) is a sequence of sets of actions
Ai ⊆ A and states si of Dae(A,F) satisfying the following conditions for 0 ≤ i
< n:

1. (si, A, si+1) ∈ S × 2A\{} × S
2. AT (si) ⊆ Ai+1

3. AFAC(si) ⊆ Ai+1

4. AINT (si) ⊆ Ai+1

5. AT (si) ∩ Ai+1 = ∅
6. AA(si) ∩ Ai+1 = ∅
7. AI(si) ∩ Ai+1 = ∅
8. AFAC(si) ∩ Ai+1 = ∅
9. AINT (si) ∩ Ai+1 = ∅

10. |Ai ∩ B| ≤ 1 for all (noconcurrency B) ∈ Dae(A,F).

Definition 9 (Action Observation Language). The action observation lan-
guage of CAE (similar to CTAID) consists of expressions of the following form:

(f at ti) (a occurs_at ti) (8)

where f ∈ F, a is an action and ti is a point of time.

Definition 10 (Action Theory). Let D be a domain description and O be a
set of observations. The pair (D,O) is called an action theory.

Definition 11 (Trajectory Model). Let (D,O) be an action theory. A tra-
jectory 〈s0, A1, s1, A2, . . . , An, sn〉 of D is a trajectory model of (D,O), if it
satisfies all observations of O in the following way:

1. if (f at t) ∈ O, then f ∈ st
2. if (a occurs_at t) ∈ O, then a ∈ At+1.
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Definition 12 (Action Query Language). The action query language of
CAE regards assertions about executing sequences of actions with expressions that
constitute trajectories. A query is of the following form: (f1, . . . , fn after Ai

occurs_at ti, . . . , Am occurs_at tm) where f1, . . . , fn are fluent literals ∈ F,
Ai, . . . , Am are subsets of A, and ti, . . . , tm are points in time.

We can observe that actions in a trajectory model can be actions executed
by a rational agent, to influence appraisals of the situation, or action tendencies
estimated to be executed by the human agent. Adjustments of appraisal must be
done in a controlled and safe way to reduce unintended emotional side-effects.
In the next section, we present a proof for safe emotional change.

4.3 Proving Safe Emotional Change

We present a theorem and prove that trajectories generated by CAE preserve a
safety property in terms of avoiding unintended emotional side-effects. An invari-
ance property is defined by following principles of hedonic emotion regulation,
called an Emotional Invariant (EI), a state predicate which is preserved by the
state conditions of the EDG. This is proven using the invariance principle [8].
To support readability of the proof, we define an emotion labeling.

Definition 13 (Emotion labeling). For any trajectory 〈s0, A1, s1, A2, . . . ,
An, sn〉 of Dae(A,F), there is a transition emotion labeling 〈EO, . . . , En〉 such
that Labeling(si) = Ei (0 ≤ i ≤ n), and Ei = [VN , VG, VA, VC , i], where VN ,
VG, VA, VC are values of well-formed emotion fluents eN , eG, eA, eC ∈ si, repre-
senting need consistency, goal consistency, accountability and control potential,
respectively.

Theorem 1 (Safe emotional change). Let (Dae, Oinitial) be an action theory
such that Oinitial are the fluent observations of the initial state, i.e., the fluents
of the situation/interaction and the fluents of the estimated emotional state of
the human agent. Let Q be a query according to Definition 12 and let

AQ = {(a occurs_at ti) | a ∈ Ai, 1 ≤ i ≤ m}.

If there is a trajectory model M = 〈s0, A1, s1, A2, . . . , An, sm〉 where Ai ⊆ A
(0 ≤ i ≤ m) of CAE (Dae, Oinitial ∪AQ), then all states s ∈ M at the time points
0 ≤ t ≤ m preserve a state predicate EI, where the goal consistency is equal or
higher than the need consistency, denoted according to Definition 6 as [VN , VG,
VA, VC , t] ∧ VN ≤ VG and where VN , VG ∈ {low, undecided, high} are ranked
as low < undecided < high (following the intuition of AE in Sect. 3).

Proof. We must show that EI holds in each state condition (Definition 6) of the
EDG. We do this by showing that an initial observation holds, which we specify
as [undecided, undecided, undecided, undecided, 0] ∧ VN ≤ VG. We then show
that any transition from time step t to t+1 preserves EI, such that
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[VN , VG, VA, VC , t] ∧ VN ≤ VG implies [VN ’, VG’, VA’, VC ’, t+1] ∧ VN ’ ≤
VG’.

Looking at each transition rule, we can observe that

– it is clear that the emotional invariant [VN , VG, VA, VC , t] ∧ VN ≤ VG holds
in the initial observation [undecided, undecided, undecided, undecided, 0] ∧
undecided ≤ undecided.

– for every static causal law (f1, . . . , fn influences need consistency f) ∈
Dae(A,F), only changes of VN to high or undecided are permitted, and
require that VG is high. It is clear that undecided∨high ≤ high preserves EI
in a transition from t to t+1.

– for every static causal law (f1, . . . , fn influences goal consistency f) ∈
Dae(A,F), only changes of VG to high are permitted. It is clear that a con-
dition VN ≤ high preserves EI in a transition from t to t+1.

– for every static causal law (f1, . . . , fn influences accountability f) ∈
Dae(A,F), no changes regard either VN or VG, which preserves EI in a tran-
sition from t to t+1.

– for every static causal law (f1, . . . , fn influences control potential f) ∈
Dae(A,F), no changes regard either VN or VG, which preserves EI in a tran-
sition from t to t+1.

We can conclude, by looking at an initial observation, and all state condi-
tions in any transition from time step t to t+1, that the emotional invariant is
preserved in the EDG according to hedonic emotion regulation, and show that
the system avoids unintended emotional side-effects.

4.4 Example Scenario: Backward Reasoning

Backward reasoning is a process of searching past states in the interaction to
reason about why a certain emotional state was reached. In the case of AE, this
is explained by changes in appraisal of a situation. For instance, in the past
trajectory:

〈 s0 : {Frustration[h, l, e, h, 0]},
A1 : {Influence_accountability(o)},
s1 : {Anger[h, l, o, h, 1]}〉

In this example, the agent looks one state backward (s0) to find that the emo-
tional state of frustration led to the emotional state of anger in the initial state
(s1). In addition, the agent can find that the state of anger was promoted due to
a change of accountability from environment (e) to other (o). Such inferences
can be taken in consideration when planning future interactions.

4.5 Example Scenario: Forward Reasoning

Forward reasoning is a process of planning future interactions by considering
emotional change in response to actions that adapt the human agent’s appraisal.
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This is a process of generating a set of alternative trajectories for reaching the
goal of the interaction while reasoning about emotions in each state of the inter-
action. For instance, an alternative trajectory can be:

〈 s0 : {Anger[h, l, o, h, 0]},
A1 : {Influence_accountability(e)},
s1 : {Frustration[h, l, e, h, 1]},
A2 : {Influence_need(u), Influence_goal(h), Influence_control(l)},
s2 : {Hope[u, h, e, l, 2]},
A3 : {Influence_need(h), Influence_control(u)},
s3 : {Joy[h, h, e, u, 3]}〉.
In this example, starting in an emotional state of anger, the agent plans an

interaction while managing the human agent’s emotions to decrease frustration
and maintain a pleasurable interaction. Following the specified transition system
for safe emotional change (Definition 6), the agent filters alternative trajectories
and selects actions to avoid negative emotional side-effects.

5 Discussion

In this paper, we introduce emotion-aware planning. Emotional reasoning has
been formalized in a structure called CAE , in terms of action reasoning and transi-
tion systems, formalizing the emotion theories of AE and HER. This constitutes
computational models for emotions and emotional change, which can provide
emotion-aware planning and decision-making in human-agent interactions.

An emotional state, to be captured by an agent, needs a representation of
the emotion. Through a set of variables, recognized by an aggregation of the
appraisal theory of emotion, abstractions of emotions are given. The emotion
decision graph (transition system) is a representation, and we expect human
emotions to be represented there. In that respect, the agent creates a theory
of the mind of the human as an abstraction based on appraisal theory of emo-
tion. This is one of the main contributions of this paper; We take psychological
(emotion) theories and transform them into tangible, computational and multi-
dimensional models of emotion.

Limitations of the proposed framework can be inherited from the appraisal
theory of emotion, where emotions are solely based on appraisal [6]. This can
limit the expressiveness of the model, not accounting for other components
of emotions which are not related to human conscious reasoning. There are
many other emotion theories that can be applied to model emotional states. For
instance, emotions can be defined in terms of Arousal and Valence [10]. However,
the chosen theory is particularly interesting for the current work due to its way
of capturing emotional causes.

6 Conclusion and Future Work

The proposed framework for emotional reasoning enables a software agent to
acquire a particular theory of the mind of the human to deal with emotions in
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interaction. The formal specifications assure that generated plans comply with
safe emotional change. The main contribution of this paper is a framework to
enable: 1) backward reasoning, by modelling causes to emotions; 2) context rea-
soning, to infer emotional states; 3) forward reasoning, by modelling emotional
change in terms of state transitions; and 4) emotion-aware planning, to plan an
agent’s actions to be in balance with emotions in each state of the interaction,
aiming to avoid unintended emotional side-effects.

The specified EDG filters trajectories by capturing principles of AE and HER,
aiming to reduce negative emotions and increase positive emotions. However,
depending on the goal of the interaction (such as stress-management, coaching
or therapy), different emotion regulation theories are suitable. In a generalization
of the framework, we can replace AE and HER for other emotion theories (such
as the Two-Factor Theory of Emotion [3] or the Cognitive-Mediational Theory
[16]). In this way, the proposed emotional reasoning framework can provide a
modular tool for integrating, evaluating and comparing different emotion theories
(by analyzing filtered trajectories). This is a focus for future work.
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Abstract. In temporal extensions of Answer Set Programming (ASP)
based on linear-time, the behavior of dynamic systems is captured by
sequences of states. While this representation reflects their relative order,
it abstracts away the specific times associated with each state. In many
applications, however, timing constraints are important like, for instance,
when planning and scheduling go hand in hand. We address this by
developing a metric extension of linear-time temporal equilibrium logic,
in which temporal operators are constrained by intervals over natural
numbers. The resulting Metric Equilibrium Logic provides the founda-
tion of an ASP-based approach for specifying qualitative and quantitative
dynamic constraints. To this end, we define a translation of metric formu-
las into monadic first-order formulas and give a correspondence between
their models in Metric Equilibrium Logic and Monadic Quantified Equi-
librium Logic, respectively. Interestingly, our translation provides a blue
print for implementation in terms of ASP modulo difference constraints.

1 Introduction

Reasoning about action and change, or more generally about dynamic systems,
is not only central to knowledge representation and reasoning but at the heart of
computer science [14]. In practice, this often requires both qualitative as well as
quantitative dynamic constraints. For instance, when planning and scheduling at
once, actions may have durations and their effects may need to meet deadlines.

Over the last years, we addressed qualitative dynamic constraints by combin-
ing traditional approaches, like Dynamic and Linear Temporal Logic (DL [16]
and LTL [26]), with the base logic of Answer Set Programming (ASP [21]),
namely, the logic of Here-and-There (HT [17]) and its non-monotonic extension,
called Equilibrium Logic [24]. This resulted in non-monotonic linear dynamic
and temporal equilibrium logics (DEL [5,8] and TEL [1,11]) that gave rise to
the temporal ASP system telingo [7,10] extending the ASP system clingo [15].

Another commonality of dynamic and temporal logics is that they abstract
from specific time points when capturing temporal relationships. For instance,
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in temporal logic, we can use the formula �(use → ♦clean) to express that
a machine has to be eventually cleaned after being used. Nothing can be said
about the delay between using and cleaning the machine.

A key design decision was to base both logics, TEL and DEL, on the same
linear-time semantics. We continued to maintain the same linear-time semantics,
embodied by sequences of states, when elaborating upon a first “light-weight”
metric temporal extension of HT [9]. The “light-weightiness” is due to treating
time as a state counter by identifying the next time with the next state. For
instance, this allows us to refine our example by stating that, if the machine is
used, it has to be cleaned within the next 3 states, viz. �(use → ♦[1..3]clean).
Although this permits the restriction of temporal operators to subsequences of
states, no fine-grained timing constraints are expressible.

In this paper, we address this by associating each state with its time, as done
in Metric Temporal Logic (MTL [20]). This allows us to measure time differences
between events. For instance, in our example, we may thus express that whenever
the machine is used, it has to be cleaned within 60 to 120 time units, by writing:

�(use → ♦[60..120]clean) .

Unlike the non-metric version, this stipulates that once use is true in a state,
clean must be true in some future state whose associated time is at least 60 and
at most 120 time units after the time of use. The choice of time domain is crucial,
and might even lead to undecidability in the continuous case. We rather adapt
a discrete approach that offers a sequence of snapshots of a dynamic system.

2 Metric Temporal Logic

Given m ∈ N and n ∈ N∪{ω}, we let [m..n] stand for the set {i ∈ N | m ≤ i ≤ n},
[m..n) for {i ∈ N | m ≤ i < n}, and (m..n] stand for {i ∈ N | m < i ≤ n}.

Given a set A of propositional variables (called alphabet), a metric formula
ϕ is defined by the grammar:

ϕ ::= p | ⊥ | ϕ1 ⊗ ϕ2 | •Iϕ | ϕ1 SI ϕ2 | ϕ1 TI ϕ2 | ◦Iϕ | ϕ1 UI ϕ2 | ϕ1 RI ϕ2

where p ∈ A is an atom and ⊗ is any binary Boolean connective ⊗ ∈ {→,∧,∨}.
The last six cases above correspond to temporal operators, each of them indexed
by some interval I of the form [m..n) with m ∈ N and n ∈ N∪{ω}. In words, •I ,
SI , and TI are past operators called previous, since, and trigger, respectively;
their future counterparts ◦I , UI , and RI are called next, until, and release. We
let subindex [m..n] stand for [m..n+1), provided n 
= ω. Also, we sometimes use
the subindices ‘≤n’, ‘≥m’ and ‘m’ as abbreviations of intervals [0..n], [m..ω) and
[m..m], respectively. Also, whenever I = [0..ω), we simply omit subindex I.

A metric theory is a (possibly infinite) set of metric formulas.
We also define several common derived operators like the Boolean connectives

�def
= ¬⊥, ¬ϕ

def
= ϕ → ⊥, ϕ ↔ ψ

def
= (ϕ → ψ)∧(ψ → ϕ), and the following temporal

operators:
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�Iϕ
def
= ⊥ TI ϕ always before

�Iϕ
def
= � SI ϕ eventually before

I def
= ¬•� initial

̂•Iϕ
def
= •Iϕ ∨ ¬•I� weak previous

�Iϕ
def
= ⊥ RI ϕ always afterward

♦Iϕ
def
= � UI ϕ eventually afterward

F def
= ¬◦� final

̂◦Iϕ
def
= ◦Iϕ ∨ ¬◦I� weak next

Note that initial and final are not indexed by any interval; they only depend on
the state of the trace, not on the actual time that this state is mapped to. On
the other hand, the weak version of next can no longer be defined in terms of
final, as done in [11] with non-metric ̂◦ϕ ≡ ◦ϕ ∨ F. For the metric case ̂◦Iϕ,
the disjunction ◦Iϕ ∨ ¬◦I� must be used instead, in order to keep the usual
dualities among operators (the same applies to weak previous).

The definition of Metric Equilibrium Logic (MEL for short) is done in two
steps. We start with the definition of a monotonic logic called Metric logic of
Here-and-There (MHT), a temporal extension of the intermediate logic of Here-
and-There [17]. We then select some models from MHT that are said to be in
equilibrium, obtaining in this way a non-monotonic entailment relation.

An example of metric formulas is the modeling of traffic lights. While the
light is red by default, it changes to green within less than 15 time units (say,
seconds) whenever the button is pushed; and it stays green for another 30 s at
most. This can be represented as follows.

�(red ∧ green → ⊥) (1)
�(¬green → red) (2)

�
(

push → ♦[1..15)(�≤30 green)
)

(3)

Note that this example combines a default rule (2) with a metric rule (3), describ-
ing the initiation and duration period of events. This nicely illustrates the interest
in non-monotonic metric representation and reasoning methods.

A Here-and-There trace (for short HT-trace) of length λ ∈ N ∪ {ω} over
alphabet A is a sequence of pairs (〈Hi, Ti〉)i∈[0..λ) with Hi ⊆ Ti ⊆ A for any
i ∈ [0..λ). For convenience, we usually represent an HT-trace as the pair 〈H,T〉
of traces H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ). Notice that, when λ = ω, this
covers traces of infinite length. We say that 〈H,T〉 is total when H = T, that
is, Hi = Ti for all i ∈ [0..λ).

Definition 1. A timed trace (〈H,T〉, τ) over (N, <) is a pair consisting of

– an HT-trace 〈H,T〉 = (〈Hi, Ti〉)i∈[0..λ) and
– a function τ : [0..λ) → N such that τ(i) ≤ τ(i+1).

A timed trace of length λ > 1 is called strict if τ(i) < τ(i+1) for all i ∈
[0..λ) such that i + 1 < λ and non-strict otherwise. We assume w.l.o.g. that
τ(0) = 0. ��
Function τ assigns, to each state index i ∈ [0..λ), a time point τ(i) ∈ N repre-
senting the number of time units (seconds, miliseconds, etc., depending on the
chosen granularity) elapsed since time point τ(0) = 0 chosen as the beginning
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of the trace. The difference to the variant of MHT presented in [9] boils down
to the choice of function τ . In [9], this was the identity function on the interval
[0..λ).

Given any timed HT-trace, satisfaction of formulas is defined as follows.

Definition 2 (MHT-satisfaction). A timed HT-trace M = (〈H,T〉, τ) of
length λ over alphabet A satisfies a metric formula ϕ at step k ∈ [0..λ), written
M, k |= ϕ, if the following conditions hold:

1. M, k 
|= ⊥
2. M, k |= p if p ∈ Hk for any atom p ∈ A
3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ
4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ
5. M, k |= ϕ → ψ iff M′, k 
|= ϕ or M′, k |= ψ, for both M′ = M and

M′ = (〈T,T〉, τ)
6. M, k |= •I ϕ iff k > 0 and M, k−1 |= ϕ and τ(k) − τ(k−1) ∈ I
7. M, k |= ϕSI ψ iff for some j ∈ [0..k] with τ(k)−τ(j) ∈ I, we have M, j |= ψ

and M, i |= ϕ for all i ∈ (j..k]
8. M, k |= ϕTI ψ iff for all j ∈ [0..k] with τ(k) − τ(j) ∈ I, we have M, j |= ψ

or M, i |= ϕ for some i ∈ (j..k]
9. M, k |= ◦I ϕ iff k + 1 < λ and M, k+1 |= ϕ and τ(k+1) − τ(k) ∈ I

10. M, k |= ϕUIψ iff for some j ∈ [k..λ) with τ(j)−τ(k) ∈ I, we have M, j |= ψ
and M, i |= ϕ for all i ∈ [k..j)

11. M, k |= ϕRI ψ iff for all j ∈ [k..λ) with τ(j) − τ(k) ∈ I, we have M, j |= ψ
or M, i |= ϕ for some i ∈ [k..j) ��

Satisfaction of derived operators can be easily deduced:

Proposition 1. Let M = (〈H,T〉, τ) be a timed HT-trace of length λ over
A. Given the respective definitions of derived operators, we get the following
satisfaction conditions:

13. M, k |= I iff k = 0
14. M, k |= ̂•I ϕ iff k = 0 or M, k−1 |= ϕ or τ(k) − τ(k−1) 
∈ I
15. M, k |= �I ϕ iff M, i |= ϕ for some i ∈ [0..k] with τ(k) − τ(i) ∈ I
16. M, k |= �I ϕ iff M, i |= ϕ for all i ∈ [0..k] with τ(k) − τ(i) ∈ I
17. M, k |= F iff k + 1 = λ
18. M, k |= ̂◦I ϕ iff k + 1 < λ or M, k+1 |= ϕ or τ(k+1) − τ(k) 
∈ I
19. M, k |= ♦I ϕ iff M, i |= ϕ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I
20. M, k |= �I ϕ iff M, i |= ϕ for all i ∈ [k..λ) with τ(i) − τ(k) ∈ I ��

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for any
timed HT-trace M and any k ∈ [0..λ). MHT is the logic induced by the set of
all such tautologies. For two formulas ϕ,ψ we write ϕ ≡ ψ, iff |= ϕ ↔ ψ, that
is, M, k |= ϕ ↔ ψ for any timed HT-trace M of length λ and any k ∈ [0..λ). A
timed HT-trace M is an MHT model of a metric theory Γ if M, 0 |= ϕ for all
ϕ ∈ Γ . The set of MHT models of Γ having length λ is denoted as MHT(Γ, λ),
whereas MHT(Γ ) def

=
⋃ω

λ=0 MHT(Γ, λ) is the set of all MHT models of Γ of any
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length. We may obtain fragments of any metric logic by imposing restrictions
on the timed traces used for defining tautologies and models. That is, MHTf

stands for the restriction of MHT to traces of any finite length λ ∈ N and MHTω

corresponds to the restriction to traces of infinite length λ = ω.
An interesting subset of MHT is the one formed by total timed traces

(〈T,T〉, τ). In the non-metric version of temporal HT, the restriction to total
models corresponds to Linear Temporal Logic (LTL [26]). In our case, the restric-
tion to total traces defines a metric version of LTL, that we call Metric Temporal
Logic (MTL for short). It can be proved that MTL are those models of MHT
satisfying the excluded middle axiom schema: �(p ∨ ¬p) for any atom p ∈ A.
We present next several properties about total traces and the relation between
MHT and MTL.

Proposition 2 (Persistence). Let (〈H,T〉, τ) be a timed HT-trace of length
λ over A and let ϕ be a metric formula over A. Then, for any k ∈ [0..λ), if
(〈H,T〉, τ), k |= ϕ then (〈T,T〉, τ), k |= ϕ. ��
Thanks to Proposition 2 and a decidability result in [23], we get:

Corollary 1 (Decidability of MHTf). The logic of MHTf is decidable. ��
Proposition 3. Let (〈H,T〉, τ) be a timed HT-trace of length λ over A and let
ϕ be a metric formula over A. Then, (〈H,T〉, τ), k |= ¬ϕ iff (〈T,T〉, τ), k 
|= ϕ.

��
Proposition 4. Let ϕ and ψ be metric formulas without implication (and so,
without negation either). Then, ϕ ≡ ψ in MTL iff ϕ ≡ ψ in MHT. ��

Many tautologies in MHT or its fragments have a dual version depending
on the nature of the operators involved. The following pair of duality properties
allows us to save space and proof effort when listing interesting valid equiva-
lences. We define all pairs of dual connectives as follows: ∧I/∨I , �I/⊥I , UI/RI ,
◦I/̂◦I , �I/♦I , SI/TI , •I/̂•I , �I/�I . For any formula ϕ without implications,
we define δ(ϕ) as the result of replacing each connective by its dual operator.

Then, we get the following corollary of Proposition 4.

Corollary 2 (Boolean Duality). Let ϕ and ψ be formulas without implica-
tion. Then, MHT satisfies: ϕ ≡ ψ iff δ(ϕ) ≡ δ(ψ). ��

Let UI/SI , RI/TI , ◦I/•I , ̂◦I/̂•I , �I/�I , and ♦I/�I be all pairs of
swapped-time connectives and σ(ϕ) be the replacement in ϕ of each connec-
tive by its swapped-time version. Then, we have the following result for finite
traces.

Lemma 1. There exists a mapping 
 on finite timed HT-traces M of the same
length λ ≥ 0 such that for any k ∈ [0..λ), M, k |= ϕ iff 
(M), λ−1−k |= σ(ϕ).

Theorem 1 (Temporal Duality Theorem). A metric formula ϕ is a MHTf -
tautology iff σ(ϕ) is a MHTf -tautology. ��



122 P. Cabalar et al.

As in traditional Equilibrium Logic [24], non-monotonicity is achieved by a
selection among the MHT models of a theory.

Definition 3 (Metric Equilibrium/Stable Model). Let S be some set of
timed HT-traces. A total timed HT-trace (〈T,T〉, τ) ∈ S is a metric equilibrium
model of S iff there is no other H < T such that (〈H,T〉, τ) ∈ S. The timed
trace (T, τ) is called a metric stable model of S. ��
We talk about metric equilibrium (or metric stable) models of a theory Γ when
S = MHT(Γ ), and we write MEL(Γ, λ) and MEL(Γ ) to stand for the metric
equilibrium models of MHT(Γ, λ) and MHT(Γ ), respectively. Metric Equilib-
rium Logic (MEL) is the non-monotonic logic induced by the metric equilibrium
models of metric theories. As before, variants MELf and MELω refer to MEL
when restricted to traces of finite and infinite length, respectively.

Proposition 5. The set of metric equilibrium models of Γ can be partitioned
on the trace lengths, namely,

⋃ω
λ=0 MEL(Γ, λ) = MEL(Γ ). ��

We can enforce metric models to be traces with a strict timing function τ ,
that is, τ(i) < τ(i + 1) for any i such that i + 1 ∈ [1..λ). This can be achieved
with the simple addition of the axiom �¬◦0�. In the following, we assume that
this axiom is included and consider, in this way, strict timing. For instance, a
consequence of strict timing is that one-step operators become definable in terms
of other connectives. For non-empty intervals [m..n) with m < n, we get:

•[m..n)ϕ ≡ �[1..m)⊥ ∧ �[h..n)ϕ

◦[m..n)ϕ ≡ �[1..m)⊥ ∧ ♦[h..n)ϕ where h = max(1,m);

whereas for empty intervals with m ≥ n, we obtain •[m..n)ϕ ≡ ◦[m..n)ϕ ≡ ⊥.
Back to our example, suppose we have the theory Γ consisting of the

formulas (1)–(3). In the example, we abbreviate subsets of the set of atoms
{green, push, red} as strings formed by their initials: For instance, pr stands for
{push, red}. For readability sake, we represent traces (T0, T1, T2) as T0 · T1 · T2.
Consider first the total models of Γ : the first two rules force one of the two
atoms green or red to hold at every state. Besides, we can choose adding push
or not, but if we do so, green should hold later on according to (3). Now, for
any total model (〈T,T〉, τ), 0 |= Γ where green or push hold at some states, we
can always form H where we remove those atoms from all the states and it is
not difficult to see that (〈H,T〉, τ), 0 |= Γ , so (〈T,T〉, τ) is not in equilibrium.
As a consequence, metric equilibrium models of Γ have the form (〈T,T〉, τ)
being T = 〈Ti〉i∈[0..λ) with Ti = {red} for all i ∈ [0..λ) and any arbitrary strict
timing function τ . To illustrate non-monotonicity, suppose now that we have
Γ ′ = Γ ∪ {◦5 push} and, for simplicity, consider length λ = 3 and traces of the
form T0 · T1 · T2. Again, it is not hard to see that total models with green or
push in state T0 are not in equilibrium, being the only option T0 = {red}. The
same happens for green at T1, so we get T1 = {push, red} as only candidate for
equilibrium model. However, since push ∈ T1, the only possibility to satisfy the
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consequent of (3) is having green ∈ T2. Again, we can also see that adding push
at that state would not be in equilibrium so that the only trace in equilibrium
is T0 = {red}, T1 = {push, red} and T2 = {green}. As for the timing, τ(0) = 0
is fixed, and satisfaction of formula (◦5 push) fixes τ(1) = 5. Then, from (3)
we conclude that green must hold at any moment starting at t between 5 + 1
and 5 + 14 and is kept true in all states between t and t + 30 time units, but as
λ = 2, this means just t. To sum up, we get 14 metric equilibrium models with
τ(0) = 0 and τ(1) = 5 fixed, but varying τ(2) between 6 and 19.

We observe next the effect of the semantics of always and eventually on truth
constants. Let ϕ be an arbitrary metric formula and m,n ∈ N. Then, �[m..n)⊥
means that there is no state in interval [m..n) and ♦[m..n)� means that there is
at least one state in this interval. The formula �[m..n)� is a tautology, whereas
♦[m..n)⊥ is unsatisfiable. The same applies to past operators �[m..n) and �[m..n).

The following equivalences state that interval I = [0..0] makes all binary
metric operators collapse into their right hand argument formula, whereas unary
operators collapse to a truth constant. For metric formulas ψ and ϕ, we have:

ψ U0 ϕ ≡ ψ R0 ϕ ≡ ϕ (4)

◦0 ϕ ≡ •0 ϕ ≡ ⊥ (5)
̂◦0 ϕ ≡ ̂•0 ϕ ≡ � (6)

The last two lines are precisely an effect of dealing with strict traces: For instance,
◦0 ϕ ≡ ⊥ tells us that it is always impossible to have a successor state with the
same time (the time difference is 0) as the current one, regardless of the formula
ϕ we want to check. The next lemma allows us to unfold metric operators for
single-point time intervals [n..n] with n > 0.

Lemma 2. For metric formulas ψ and ϕ and for n > 0, we have:

ψ Un ϕ ≡ ∨n
i=1 ◦i(ψ Un−i ϕ) (7)

ψ Rn ϕ ≡ ∧n
i=1

̂◦i(ψ Rn−i ϕ) (8)

♦nϕ ≡∨n
i=1 ◦i♦n−iϕ (9)

�nϕ ≡∧n
i=1

̂◦i�n−iϕ (10)

The same applies for the dual past operators. ��
Going one step further, we can also unfold until and release for intervals of

the form [0..n] with the application of the following result.

Lemma 3. For metric formulas ψ and ϕ and for n > 0, we have:

ψ U≤n ϕ ≡ϕ ∨ (ψ ∧ ∨n
i=1 ◦i(ψ U≤(n−i) ϕ)) (11)

ψ R≤n ϕ ≡ϕ ∧ (ψ ∨ ∧n
i=1

̂◦i(ψ R≤(n−i) ϕ)) (12)

The same applies for the dual past operators. ��
Finally, the next theorem contains a pair of equivalences that, when dealing

with finite intervals, can be used to recursively unfold until and release into
combinations of next with Boolean operators (an analogous result applies for
since, trigger and previous due to temporal duality).
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Theorem 2 (Next-unfolding). For metric formulas ψ and ϕ and for m,n ∈
N such that 0 < m and m < n − 1 we have:

ψ U[m..n) ϕ ≡∨m
i=1 ◦i(ψ U[m−i..n−i) ϕ) ∨ ∨n−1

i=m+1 ◦i(ψ U≤(n−1−i) ϕ) (13)

ψ R[m..n) ϕ ≡∧m
i=1

̂◦i(ψ R[(m−i)..(n−i)) ϕ) ∧ ∧n−1
i=m+1

̂◦i(ψ R≤(n−1−i) ϕ) (14)

The same applies for the dual past operators. ��
As an example, consider the metric formula p U[2..4) q.

p U[2..4) q ≡ ∨2
i=1 ◦i(p U[(2−i)..(4−i)) q) ∨ ∨3

i=2+1 ◦i(p U≤(3−i) q)

≡ ◦1(p U[1..3) q) ∨ ◦2(p U≤1 q) ∨ ◦3(p U0 q)
≡ ◦1(p U[1..3) q) ∨ ◦2(q ∨ (p ∧ ◦1q)) ∨ ◦3q

≡ ◦1(◦1(q ∨ (p ∧ ◦1q)) ∨ ◦2q) ∨ ◦2(q ∨ (p ∧ ◦1q)) ∨ ◦3q

Another useful result that can be applied to unfold metric operators is the
following range splitting theorem.

Theorem 3 (Range splitting). For metric formulas ψ and ϕ, we have

ψ U[m..n) ϕ ≡ (ψ U[m..i) ϕ) ∨ (ψ U[i..n) ϕ) for all i ∈ [m..n)
ψ R[m..n) ϕ ≡ (ψ R[m..i) ϕ) ∧ (ψ R[i..n) ϕ) for all i ∈ [m..n)

The same applies for the dual past operators. ��

3 Translation into Monadic Quantified Here-and-There
with Difference Constraints

In a similar spirit as the well-known translation of Kamp [19] from LTL to first-
order logic, we consider a translation from MHT into a first-order version of
HT, more precisely, a function-free fragment of the logic of Quantified Here-
and-There with static domains (QHT s in [25]). The word static means that the
first-order domain D is fixed for both worlds, here and there. We refer to our
fragment of QHT s as monadic QHT with difference constraints (QHT [�δ]). In
this logic, the static domain is a subset D ⊆ N of the natural numbers containing
at least the element 0 ∈ D. Intuitively, D corresponds to the set of relevant time
points (i.e. those associated to states) considered in each model. Note that the
first state is always associated with time 0 ∈ D.

The syntax of QHT [�δ] is the same as for first-order logic with several restric-
tions: First, there are no functions other than the 0-ary function (or constant)
‘0’ always interpreted as the domain element 0 (when there is no ambiguity, we
drop quotes around constant names). Second, all predicates are monadic except
for a family of binary predicates of the form �δ with δ ∈ Z ∪ {ω} where δ is
understood as part of the predicate name. For simplicity, we write x �δ y instead
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of �δ(x, y) and x �δ y �δ′ z to stand for x �δ y ∧y �δ′ z. Unlike monadic pred-
icates, the interpretation of x �δ y is static (it does not vary in worlds here and
there) and intuitively means that the difference x − y in time points is smaller
or equal than δ. A first-order formula ϕ satisfying all these restrictions is called
a first-order metric formula or FOM-formula for short. A formula is a sentence
if it contains no free variables. For instance, we will see that the metric formula
(3) can be equivalently translated into the FOM-sentence:

∀x (x �0 0 ∧ push(x) → ∃y (x �−1 y �14 x ∧ ∀z (y �0 z �30 y → green(z))))
(15)

We sometimes handle partially grounded FOM sentences where some variables
in predicate arguments have been directly replaced by elements from D. For
instance, if we represent (15) as ∀x ϕ(x), the expression ϕ(4) stands for:

4 �0 0 ∧ push(4) → ∃y (x �−1 y �14 x ∧ ∀z (y �0 z �30 y → green(z)))

and corresponds to a partially grounded FOM-sentence where the domain ele-
ment 4 is used as predicate argument in atoms 4 �0 0 and push(4).

A QHT [�δ]-signature is simply a set of monadic predicates P. Given D as
above, Atoms(D,P) denotes the set of all ground atoms p(n) for every monadic
predicate p ∈ P and every n ∈ D. A QHT [�δ]-interpretation for signature P
has the form 〈D,H, T 〉 where D ⊆ N, 0 ∈ D and H ⊆ T ⊆ Atoms(D,P).

Definition 4 (QHT [�δ]-satisfaction; [25]). A QHT [�δ]-interpretation M =
〈D,H, T 〉 satisfies a (partially grounded) FOM-sentence ϕ, written M |= ϕ, if
the following conditions hold:

1. M |= � and M 
|= ⊥
2. M |= p(d) iff p(d) ∈ H
3. M |= t1 �δ t2 iff t1 − t2 ≤ δ, with t1, t2 ∈ D
4. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ
5. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ
6. M |= ϕ → ψ iff 〈D,X, T 〉 
|= ϕ or 〈D,X, T 〉 |= ψ, for X ∈ {H,T}
7. M |= ∀x ϕ(x) iff M |= ϕ(t), for all t ∈ D
8. M |= ∃x ϕ(x) iff M |= ϕ(t), for some t ∈ D ��
We can read the expression x �δ y as just another way of writing the difference
constraint x − y ≤ δ. When δ is an integer, we may see it as a lower bound
x − δ ≤ y for y or as an upper bound x ≤ y + δ for x. For δ = ω, x �ω y is
equivalent to � since it amounts to the comparison x − y ≤ ω. An important
observation is that this difference predicate �δ satisfies the excluded middle
axiom, that is, the following formula is a QHT [�δ]-tautology:

∀x∀y ( x �δ y ∨ ¬(x �δ y) ) (16)

for every δ ∈ Z ∪ {ω}. We provide next several useful abbreviations:

x ≺δ y
def
= ¬(y �−δ x)

x ≤ y
def
= x �0 y x 
= y

def
= ¬(x = y)

x = y
def
= (x ≤ y) ∧ (y ≤ x) x < y

def
= (x ≤ y) ∧ (x 
= y)
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For any pair �, ⊕ of comparison symbols, we extend the abbreviation x � y ⊕ z
to stand for the conjunction x � y ∧ y ⊕ z. Note that the above derived order
relation x ≤ y captures the one used in Kamp’s original translation [19] for LTL.

Equilibrium models for first-order theories are defined as in [25].

Definition 5 (Quantified Equilibrium Model; [25]). Let ϕ be a first-order
formula. A total QHT [�δ]-interpretation 〈D,T, T 〉 is a first-order equilibrium
model of ϕ if 〈D,T, T 〉 |= ϕ and there is no H ⊂ T satisfying 〈D,H, T 〉 |= ϕ. ��

Before presenting our translation, we need to remark that we consider non-
empty intervals of the form [m..n) with m < n.

Definition 6 (First-order encoding). Let ϕ be a metric formula over A.
We define the translation [ϕ]x of ϕ for some time point x ∈ N as follows:

[⊥]x
def
= ⊥

[p]x
def
= p(x), for any p ∈ A

[ϕ ⊗ ψ]x
def
= [ϕ]x ⊗ [β]x , for any connective ⊗ ∈ {∧,∨,→}

[◦[m,n)ψ]x
def
= ∃y (x < y ∧ (¬∃z x < z < y) ∧ x �−m y ≺n x ∧ [ψ]y)

[̂◦[m,n)ψ]x
def
= ∀y (x < y ∧ (¬∃z x < z < y) ∧ x �−m y ≺n x → [ψ]y)

[ϕ U[m,n) ψ]x
def
= ∃y (x ≤ y ∧ x �−m y ≺n x ∧ [ψ]y ∧ ∀z (x ≤ z < y → [ϕ]z))

[ϕ R[m,n) ψ]x
def
= ∀y ((x ≤ y ∧ x �−m y ≺n x) → ([ψ]y ∨ ∃z (x ≤ z < y ∧ [ϕ]z)))

[•[m,n)ψ]x
def
= ∃y (y < x ∧ ¬∃z (y < z < x) ∧ x ≺n y �−m x ∧ [ψ]y)

[̂•[m,n)ψ]x
def
= ∀y ((y < x ∧ ¬∃z (y < z < x) ∧ x ≺n y �−m x) → [ψ]y)

[ϕ S[m,n) ψ]x
def
= ∃y (y ≤ x ∧ x ≺n y �−m x ∧ [ψ]y ∧ ∀ (y < z ≤ x → [ϕ]z))

[ϕ T[m,n) ψ]x
def
= ∀y ((y ≤ x ∧ x ≺n y �−m x) → ([ψ]y ∨ ∃z (y < z ≤ x ∧ [ϕ]z)))

��
Each quantification introduces a new variable. For instance, consider the trans-
lation of (3) at point x = 0. Let us denote (3) as �(push → α) where
α := ♦[1..15)(�≤30 green). Then, if we translate the outermost operator �, we
get:

[�(push → α)]0
= [⊥ R[0..ω) (push → α)]0
= ∀y ((0 ≤ y ∧ 0 �−0 y ≺ω 0) → ([push → α]y ∨ ∃z (0 ≤ z < y ∧ ⊥)))
≡ ∀y (0 ≤ y ∧ 0 ≤ y ∧ � → ([push]y → [α]y) ∨ ⊥)
≡ ∀y (0 ≤ y ∧ push(y) → [α]y)
≡ ∀x (0 ≤ x ∧ push(x) → [α]x)
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where we renamed the quantified variable for convenience. If we proceed further,
with α as ♦[1..15)β letting β := (�≤30 green), we obtain:

[α]x = [♦[1..15)β]x
= [� U[1..15) β]x
= ∃y (x ≤ y ∧ x �−1 y ≺15 x ∧ [β]y ∧ ∀z (x ≤ z < y → �))
≡ ∃y (x �−1 y ≺15 x ∧ [β]y) ≡ ∃y (x �−1 y �14 x ∧ [β]y)

Finally, the translation of β at y amounts to:

[�≤30 green]y
= [⊥ R[0..30) green]y
= ∀y′ ( y ≤ y′ ∧ y �−0 y′ ≺30 y → green(y′) ∨ ∃z (y ≤ z < y′ ∧ ⊥) )
≡ ∀y′ ( y ≤ y′ ∧ y �0 y′ ∧ y′ ≺30 y → green(y′) )
≡ ∀y′ ( y �0 y′ ≺30 y → green(y′) )
≡ ∀z ( y �0 z ≺30 y → green(z) )

so that, when joining all steps together, we get the formula (15) given above.
The following model correspondence between MHTf and QHT [�δ] interpre-

tations can be established. Given a timed trace (〈H,T〉, τ) of length λ > 0 for
signature A, we define the first-order signature P = {p/1 | p ∈ A} and a cor-
responding QHT [�δ] interpretation 〈D,H, T 〉 where D = {τ(i) | i ∈ [0..λ)},
H = {p(τ(i)) | i ∈ [0..λ) and p ∈ Hi} and T = {p(τ(i)) | i ∈ [0..λ) and p ∈ Ti}.
Under the assumption of strict semantics, the following model correspondence
can be proved by structural induction.

Theorem 4. Let ϕ be a metric temporal formula, (〈H,T〉, τ) a metric trace,
〈D,H, T 〉 its corresponding QHT [�δ] interpretation and i ∈ [0..λ).

(〈H,T〉, τ), i |= ϕ iff 〈D,H, T 〉 |= [ϕ]τ(i) (17)
(〈T,T〉, τ), i |= ϕ iff 〈D,T, T 〉 |= [ϕ]τ(i) (18)

��

4 Discussion

Seen from far, we have presented an extension of the logic of Here-and-There with
qualitative and quantitative temporal constraints. More closely, our logics MHT
and MEL can be seen es metric extensions of the linear-time logics THT and TEL
obtained by constraining temporal operators by intervals over natural numbers.
The current approach generalizes the previous metric extension of TEL from [9]
by uncoupling the ordinal position i of a state in the trace from its location in
the time line τ(i), which indicates now the elapsed time since the beginning of
that trace. Thus, while ♦[5..5] p meant in [9] that p must hold exactly after 5
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transitions, it means here that there must be some future state (after n > 0
transitions) satisfying p and located 5 time units later. As a first approach,
we have considered time points as natural numbers, τ(i) ∈ N. Our choice of
a discrete rather than continuous time domain is primarily motivated by our
practical objective to implement the logic programming fragment of MEL on top
of existing temporal ASP systems, like telingo, and thus to avoid undecidability.

The need for quantitative time constraints is well recognized and many metric
extensions have been proposed. For instance, actions with durations are consid-
ered in [27] in an action language adapting a state-based approach. Interestingly,
quantitative time constraints also gave rise to combining ASP with Constraint
Solving [3]; this connection is now semantically reinforced by our translation
advocating the enrichment of ASP with difference constraints. Even earlier,
metric extensions of Logic Programming were proposed in [6]. As well, met-
ric extensions of Datalog are introduced in [28] and applied to stream reasoning
in [29]. An ASP-based approach to stream reasoning is elaborated in abundance
in [4]. Streams can be seen as infinite traces. Hence, apart from certain dedicated
concepts, like time windows, such approaches bear a close relation to metric rea-
soning. Detailing this relationship is an interesting topic of future research. More
remotely, metric constructs were used in trace alignment [13], scheduling [22],
and an extension to Golog [18].
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Abstract. Epistemic Logic Programs (ELPs), extend Answer Set Programming
(ASP) with epistemic operators. The semantics of such programs is provided in
terms of world views, which are sets of belief sets. Different semantic approaches
propose different characterizations of world views. Recent work has introduced
semantic properties that should be met by any semantics for ELPs, like the Epis-
temic Splitting Property, that, if satisfied, allows to modularly compute world
views in a bottom-up fashion, analogously to ‘traditional’ ASP. We analyze
the possibility to change the perspective, shifting from a bottom-up to a top-
down approach to splitting. Our new definition: (i) copes with concerns regard-
ing unfoundedness of world views and subjective constraint monotonicity; (ii) is
provably applicable to many of the existing semantics; (iii) operates similarly to
“traditional” ASP; (iv) provably coincides with the bottom-up notion of splitting
at least on the class of Epistemically Stratified Programs (which are, intuitively,
those where the use of epistemic operators is stratified).

Keywords: Answer Set Programming · Epistemic Logic Programs · Epistemic
Splitting

1 Introduction

Epistemic Logic programs (ELPs, in the following just ‘programs’ if not explicitly
stated differently), were first introduced in [9,12], and extend Answer Set Programs,
defined under the Answer Set Semantics [11], with epistemic operators that are able
to introspectively “look inside” a program’s own semantics, which is defined in terms
of its “answer sets”. In fact, KA means that (ground) atom A is true in every answer
set of the very program Π where KA occurs. Related operators that can be defined in
terms of K are MA (not treated here), meaning that A is true in some of the answer
sets of Π , and the epistemic negation operator not A, which expresses that A is not
provably true, meaning that A is false in at least one answer set of Π . The semantics
of ELPs is provided in terms of world views: instead of a unique set of answer sets (a
unique “world view” in the new terminology) like in Answer Set Programming (ASP),
there is now a set of such sets. Each world view consistently satisfies (according to
a given semantics) the epistemic expressions that appear in a given program. Many
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semantic approaches for ELPs have been introduced beyond the seminal work of Gel-
fond and Przymusinska [12], among which we mention [2,8,10,14,19,21,22]. Recent
work aims to extend to Epistemic Logic Programming notions that have already been
defined for ASP, and that might prove useful in ELPs as well. In particular, Cabalar et al.
consider splitting (introduced for ASP in [17]), which allows a program to be divided
into parts in a principled way: the answer sets of a given program can be computed
incrementally, starting from the answer sets of the bottom part, used to simplify the top
part, and then computing the answer sets of the simplified top part (such a procedure
can be iterated for as many levels as the program has been divided into, i.e., the top and
the bottom could be split recursively). Cabalar et al. then extend to ELPs the concept
of splitting and the method of incremental calculation of the semantics (here, it is the
world views that must be calculated). This by defining a notion of Epistemic Splitting,
where top and bottom are defined w.r.t. the occurrence of epistemic operators, and a cor-
responding property which is fulfilled by a semantics if it allows the world views to be
computed bottom up (a precise definition is seen below). Further, Cabalar et al. adapt
properties of ASP to ELPs, which are implied by this property, namely the fact that
adding constraints leads to reduce the number of answer sets (Subjective Constraint
Monotonicity), and Foundedness, meaning that atoms composing answer sets cannot
have been derived through cyclic positive dependencies. Finally, they define the class
of Epistemically Stratified Programs that, according to [1, Theorem 2], admit a unique
world view (these programs are those where, intuitively, the use of epistemic operators
is stratified). In substance, Cabalar et al. establish the properties that a semantics should
fulfil, and then they compare the existing semantics with respect to these properties.

In this paper, we explore a different stance: we analyze the possibility to change the
perspective about how to perform a splitting, shifting from a bottom-up to a top-down
approach. Our new definition: (i) copes with concerns regarding, e.g. “unfoundedness”
of world views and “subjective constraint monotonicity”; (ii) is applicable to many
of the existing semantics; (iii) operates similarly to splitting in “traditional” ASP; (iv)
provably coincides with the bottom-up notion of splitting on a significant class of pro-
grams, including at least those which are epistemically stratified; (v) is compatible with
ASP programming practice, where one defines a problem solution (that would consti-
tute the top) that will be merged with a problem instance (that would constitute the
bottom).

The paper is organized as follows. In Sects. 2 and 3 we recall ASP and ELPs, report-
ing some definitions from [1] (in the appendix, for the sake of completeness, we report
at more length definitions from [1].) In Sect. 4 we introduce some observations on ELPs
that lead to formulate our proposal, that we discuss in Sect. 5 where we present the proof
of our main theorem, and a relevant corollary.

2 Answer Set Programming and Answer Set Semantics

One can see an answer set program (for short ‘ASP program’) as a set of statements
that specify a problem, where each answer set represents a solution compatible with
this specification. A consistent ASP program has one or more answer sets, while an
inconsistent one has no answer sets, meaning that no solution could be found. Several
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well-developed freely available answer set solvers exist that compute the answer sets of
a given program. Syntactically, an ASP program Π is a collection of rules of the form

A1| . . . |Ag ← L1, . . . , Ln.

where each Ai, 0 ≤ i ≤ g, is an atom and | indicates disjunction, and the Lis, 0 ≤
i ≤ n, are literals (i.e., atoms or negated atoms of the form not A). The left-hand side
and the right-hand side of the rule are called head and body, resp. A rule with empty
body is called a fact. Notation A |B indicates disjunction, usable only in rule heads
and, so, in facts. A rule with empty head (or, equivalently, with head ⊥), of the form
‘← L1, ..., Ln.’ or ‘⊥ ← L1, ..., Ln.’, is a constraint, stating that literals L1, . . . , Ln

are not allowed to be simultaneously true in any answer set; the impossibility to fulfil
such a requirement is one of the reasons that make a program inconsistent.

All extensions of ASP not explicitly mentioned above are not considered in this
paper. We implicitly refer to the “ground” version of Π , which is obtained by replacing
in all possible ways the variables occurring in Π with the constants occurring in Π
itself, and is thus composed of ground atoms, i.e., atoms which contain no variables.

The answer set (or “stable model”) semantics can be defined in several ways [5,16].
However, answer sets of a program Π , if any exists, are the supported minimal classi-
cal models of the program interpreted as a first-order theory in the obvious way. The
original definition from [11], introduced for programs where rule heads were limited
to be single atoms, was in terms of the ‘GL-Operator’ Γ . Given set of atoms I and
program Π , ΓΠ(I) is defined as the least Herbrand model of the program ΠI , namely,
the Gelfond-Lifschitz reduct of Π w.r.t. I . ΠI is obtained from Π by: 1. removing all
rules which contain a negative literal not A such that A ∈ I; and 2. removing all neg-
ative literals from the remaining rules. The fact that ΠI is a positive program ensures
that a least Herbrand model exists and can be computed via the standard immediate
consequence operator [18]. Then, I is an answer set whenever ΓΠ(I) = I .

3 Epistemic Logic Programs and Their Properties

Epistemic Logic Programs introduce into ASP programs, in the body of rules, so-called
subjective literals (w.r.t. objective literals)1. Such new literals are constructed via the
epistemic operator K (disregarding without loss of generality the other epistemic oper-
ators). An ELP program is called objective if no subjective literals occur therein, i.e., it
is an ASP program. A constraint involving (also) subjective literals is called a subjective
constraint, where one involving objective literals only is an objective constraint.

Let At be the set of atoms occurring (within either objective or subjective literals)
in a given program Π , and Atoms(r) be the set of atoms occurring in rule r. By some
abuse of notation, we denote by Atoms(X) the set of atoms occurring in X , whatever
X is (a rule, a program, an expression, etc.). Let Head(r) be the head of rule r and
Bodyobj (r) (resp., Bodysubj (r)) be the (possibly empty) set of objective (resp., sub-
jective) literals occurring in the body of r. For simplicity, we often write Head(r) and
Bodyobj (r) in place of Atoms(Head(r)) and Atoms(Bodyobj (r)), respectively, when

1 Nesting of subjective literals is not considered here.
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the intended meaning is clear from the context. We call subjective rules those rules
whose body is made of subjective literals only.

LiteralKA intuitively means that the (ground) atom A is true in every answer set of
given programΠ (it is a cautious consequence ofΠ). Since, as it turns out, whatever the
semantic account one will choose there can be several sets of answer sets (called world
views), the actual meaning of KA is that A is true in every answer set of some world
view of Π . Each world view thus determines the truth value of all subjective literals in
a program. There are in fact several semantic approaches to ELPs, dictating in different
ways how one finds the world views of a given program. Although all such approaches
provide the same results on some basic examples, they instead differ on others.

Formally, a semantics S is a function mapping each ELP program into sets of ‘world
views’, i.e., sets of sets of objective literals, where ifΠ is an objective program, then the
unique member of S(Π) is the set of stable models of Π . Otherwise, each member of
S(Π) is a S-world view of Π . (We will often write “world view” in place of ”S-world
view” whenever mentioning the specific semantics will be irrelevant.) For a S-world
view W and a literal KL, we write W |= KL if L is true in all elements of W .

For instance, for program {a← not b, b ← not a, e← notKf, f ← notKe}, every
semantics returns two world views:
{{a, e}, {b, e}}, where Ke is true and Kf is false, and {{a, f}, {b, f}} where Kf is
true and Ke is false. The presence of two answer sets in each world view is due to the
cycle on objective atoms, whereas the presence of two world views is due to the cycle
on subjective atoms (in general, the existence and number of world views is related to
such cycles, cf., [4] for a detailed discussion).

Below we report some definitions from [1], that will be used in what follows.

Definition 1 (Epistemic splitting set). A set of atoms U ⊆ At is said to be an epis-
temic splitting set of a program Π if for any rule r in Π one of the following conditions
hold: (i) Atoms(r) ⊆ U , or

(
Bodyobj (r) ∪ Head(r)

) ∩ U = ∅.
An epistemic splitting of Π is a pair 〈BU (Π), TU (Π)〉 satisfying BU (Π) ∩

TU (Π) = ∅ and BU (Π) ∪ TU (Π) = Π , such that all rules in BU (Π) satisfy (i)
and all rules in TU (Π) satisfy (ii).

Definition 2. Given a semantics S, a pair 〈Wb,Wt〉 is said to be an S-solution of Π
with respect to an epistemic splitting set U , if Wb is a S-world view of BU (Π) and Wt

is a S-world view of EU (Π,Wb), which is a version of Π where each subjective literal
L is substituted by � if Wb |= L or by ⊥ otherwise.

Consider the following operation, that we call WBT, on sets of propositional interpre-
tations Wb and Wt:

Wb  Wt = {Ib ∪ It|Ib ∈ Wb ∧ It ∈ Wt

As stated in [1], we have the following property:

Property 1 (Epistemic Splitting Property). A semantics S satisfies the epistemic split-
ting property if for any epistemic splitting set U of any program Π: W is an S-world
view of Π iff there is an S-solution 〈Wb,Wt〉 of Π w.r.t. U such that W = Wb  Wt.
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This property implies subjective constraint monotonicity, i.e., for any epistemic pro-
gram Π and any subjective constraint r, W is a world view of Π ∪ {r} iff both W is a
world view of Π and W satisfies r.

4 Our Observations and Proposal

The subdivision of an ELP into layers suggests that, in the upper layer, epistemic lit-
erals referring to the lower layer may be aimed at performing some kind of meta-
reasoning about that layer. If the epistemic splitting property is enforced, however,
meta-level reasoning is in practice prevented. This is so because if the semantics sat-
isfies such property, then, it is the lower layer that determines the truth value of the
subjective literals that connect the two layers. In fact, according to Property 1, through
the simplification w.r.t. the answer sets of the lower layer, the upper layer is strongly
(maybe sometimes too strongly) constrained. For instance, let us consider the program
Π0 = {a | b, ⊥ ← notKa}. We can see that, while the lower level {a | b}, consid-
ered as a program ‘per se’, has the unique world view {{a}, {b}}, the overall program
has no world views. In fact, in such world view Ka does not hold, thus the constraint
is violated. Notice, however, that the world view {{a}} is instead accepted by some
semantics, such as those defined in [10] and [19], that do not satisfy the epistemic split-
ting property. This world view may be seen as corresponding to an approach where the
upper layer, in order to retain consistency, ‘requires’ the lower layer to entail a, which
is absolutely feasible by choosing a over b in the disjunction. From this perspective, the
knowledge modeled by the upper layer is not just used to reject potential world views of
the bottom level, but, instead, can affect the way in which they are composed, by filter-
ing out some of the answer sets. This situation is reminiscent of what actually happens
for ASP: consider the plain ASP program {a | b, c ← a, ← not c}, which has unique
answer set {a, c}, originating from the answer set {a} of the lower layer {a | b}.

We follow (since a long time) the line, amply represented in the literature, in which
meta-reasoning is aimed not only at ‘observing’ lower layer(s), but also at trying to
influence them; this by suitably enlarging and/or restricting, as an effect of meta-rules
application, the set of possible consequences of such layer(s). We discuss at length this
point of view, also proposing technical solutions and several examples, in [6]. Moreover,
let us notice that a common approach in modeling a problem, consists in formalizing
some problem domain as the “top” part of a program. Then, such top program will be
joined with a specific “bottom”, representing a specific problem instance at hand, that
may vary and may be, in general, unknown while defining the top. Below is an example
of what we mean (over-simplified and in “skeletal form” for the sake of conciseness),
taken from the realm of digital investigations, that the authors have been studying in
the context of the Action COST CA17124 DIGital FORensics: evidence Analysis via
intelligent Systems and Practices (DigForASP). In the example, an investigation must
be concluded with a judgement, that can be: of innocence if in no plausible scenario
(i.e., in no answer set) evidence can be found of an involvement; of demonstrable guilt
if in every possible scenario the evidence of guilt can be found; of presumed innocence
otherwise. Clearly, the details of each specific case (which will represent the “bottom”
of the program) are added whenever needed to this general “top” part (see [4] for more
examples taken from this field).
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judgement ← guilty .
judgement ← presumed innocent .
judgement ← innocent .
← not K judgement .

guilty ← provably guilty .
presumed innocent ← not provably guilty .
provably guilty ← K sufficient evidence against .
innocent ← K not sufficient evidence against .

So, a study of how the semantics of any resulting overall programmight be built is in
order here, and in many other practical cases (think of a top part including ontological
definitions). In fact, being able to compute and check a program’s semantics only in
dependence of each specific instance, does not seem to be elaboration-tolerant.

Therefore, we tried to understand whether the concept of splitting might be applied
top-down, and how the existing semantics would behave in the new perspective. In our
approach, the notion of splitting set remains the same, save for one detail concerning
subjective constraints. As noticed in [1], according to the definition of splitting, subjec-
tive constraints can be placed at either level. Notice that subjective literals may either
occur in a constraint directly or affect constraint’s satisfaction through indirect depen-
dencies, such as, e.g., in the program ⊥ ← a. a ← Kp (see [7] for a formal definition of
direct and indirect dependencies). Without loss of generality, we exclude here indirect
dependencies concerning subjective literals involved in constraints. Moreover, notice
that, as it is well-known, a constraint can be also represented as a unary odd cycle, for
⊥ ← Kp it would be of the form a ← not a,Kp (with a as a fresh atom), or even
(as discussed in depth in [3]) as an odd cycle of any arity, of which Kp is the unique
handle. For the sake of simplicity, we consider constraints in their plain form, such
as ⊥ ← Kp. For convenience concerning definitions that will be introduced later, we
impose the additional condition that subjective rules satisfying condition 1 of Defini-
tion 1 and subjective constraints are put in TU (Π).

Let us proceed step by step towards the new definition of Top-down Epis-
temic Splitting Property. Let be given a semantics S, a program Π , and an epis-
temic splitting 〈BU (Π), TU (Π)〉 of Π , according to Definition 1. Let FU (Π)
denote the set of all subjective literals KLi occurring in TU (Π) (even in
negative form notKLi) and referring to BU (Π) (in the sense that the atom
involved in KLi occurs in BU (Π) but not in TU (Π)), together with their
negations notKLi. Intuitively, subjective literals in FU (Π) constitute the “inter-
face” between the top and the bottom part. Notice that Atoms(FU (Π)) ⊆ U .
Assuming FU (Π) = {KL1, . . . ,KLz, notKL1, . . . , notKLz}, let fU (Π) =
{kl1, . . . , klz, nkl1, . . . , nklz} be a set of fresh atoms, and let T ′

U (Π) denote the
detached version of TU (Π), namely the program made of:

• the rules obtained from rules in TU (Π) by substituting each occurrence of the sub-
jective literalKLi ∈ FU (Π) or notKLi ∈ FU (Π) by the corresponding fresh atom
kli ∈ fU (Π) or nkli ∈ fU (Π), for each i ∈ {1, . . . , z}

• the facts kli | nkli, for each i ∈ {1, . . . , z}.
The program T ′

U (Π) does not contain subjective literals referring to BU (Π), yet it
may contain “local” epistemic literals. So, according to the semantics S that one wants
to consider, it will have a number of world views. Notice however that, a disjunction
between an epistemic literal KL and its negation notKL determines, as discussed in
[4], two world views, one entailing KL and the other one entailing notKL. So, each
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world view W of T ′
U (Π) has to be split into two world views, say W1 and W2, the

former composed of the answer sets that contain kli, and the latter composed the answer
sets that contain nkli. This splitting must be done, for each world view of T ′

U (Π),
iteratively for each such disjunction, where it is easy to see that the order does not
matter. Notice that, each resulting world view W ′

j of the epistemic program T ′
U (Π),

describes a world viewWj for TU (Π), that can be obtained asWj = {X\fU (Π) |X ∈
W ′

j}. For each of such world views Wj of TU (Π), Definition 3 identifies the set of
subjective literals that are relevant in extending Wj to a world view of the entire Π .

Definition 3 (Epistemic Top-down Requisite Set). Let 〈BU (Π), TU (Π)〉 be an epis-
temic splitting for a program Π , W ′

j be a world view of T ′
U (Π), and Wj = {X \

fU (Π) |X ∈ W ′
j}. The set ESTU (Π)(Wj) = {KLh |W ′

j |= klh} ∪ {notKLh |W ′
j �|=

klh} is the (epistemic top-down) requisite set for Wj (w.r.t. 〈BU (Π), TU (Π)〉).
Now we partition the requisite set, identifying two relevant subsets (technical rea-

sons for doing so will be seen below).

Definition 4. Given fU (Π) = {kl1, . . . , klz, nkl1, . . . , nklz} and the above definition
of requisite set ESTU (Π)(Wj), (w.r.t. an epistemic splitting 〈BU (Π), TU (Π)〉), let set
S include those kli/nkli that occur in some constraints in T ′

U (Π). Then, we split the
requisite set ESTU (Π)(Wj) as the union of the following two (disjoint) sets:

• the epistemic top-down constraint set:
ECTU (Π)(Wj) = ({KLi |kli ∈ S} ∪ {notKLi |nkli ∈ S}) ∩ ESTU (Π)(Wj)

• the requirement set: RQTU (Π)(Wj) = ({KLi |kli ∈ fU (Π)\S} ∪ {notKLi |nkli ∈
fU (Π)\S}) ∩ ESTU (Π)(Wj).

There is an important reason for distinguishing these two subsets. Literals in
ECTU (Π)(Wj), if not entailed in some world view of the bottom part of the program,
lead to a constraint violation and so to the non-existence of some world view of Π
extending Wj . Thus, ECTU (Π)(Wj) expresses prerequisites on which epistemic liter-
als must be entailed in a world view of BU (Π), so that such world view can be merged
with Wj in order to obtain a world view of Π . Those in RQTU (Π)(Wj) instead, can
be usefully exploited, as seen below, to drive the selection of which world view of the
bottom can be combined with a given world view of the top.

Given a world view W of TU (Π), and considering literals belonging to
ECTU (Π)(W ) which occur in the bodies of rules in BU (Π), we proceed the follow-
ing simplification.

Definition 5 (Top-down Influence). Given a world view W of TU (Π), and its corre-
sponding top-down constraint set ECTU (Π)(W ), the W -tailored version BW

U (Π) of
BU (Π) is obtained by substituting in BU (Π) all literals KL ∈ ECTU (Π)(W ) by L.

The intuition behind the above definition is that, if KA is in ECTU (Π)(W ), then
A must necessarily belong to every answer set of a world view of the bottom that can
be possibly merged with W in order to obtain a world view of the overall program Π;
so it is indifferent that in the body of rules of BU (Π) it occurs A rather than KA, if
KA ∈ ECTU (Π)(W ). Substituting KA with A can however be useful, as discovered
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during the development of the K15 semantics [13] from G11 [10] (and as seen below
in the examples), to “break” unwanted positive cycles among subjective literals, that
might lead to unfounded world views (cf., [1, Definition 15]).

The world views of a given program Π are obtained from the world views of the
top and the bottom, as in the bottom-up approach (see operation WBT)) but with two
important differences: (i) top-down influence is exploited; (ii) a subset of a world view
of the bottom (i.e., some of the answer sets occurring therein) may be cut out, so as to
enable the merging with a ‘compatible’ world view of the top. Preliminarily:

Definition 6. Given a set E of epistemic literals and a set of sets of atoms W , we say
that W fulfils E iff ∀KL ∈ E,W |= L and ∀notKL ∈ E,W �|= L.

Definition 7 (Candidate World View). Given an epistemic splitting 〈BU (Π),
TU (Π)〉 for a program Π , let WT be a world view of TU (Π) and let WB be a subset of
a world view of BWT

U (Π) that fulfils ECTU (Π)(WT ) (provided that, if such set EC is
empty, WB is the entire world view of the bottom) such that WB fulfils RQTU (Π)(WT ).
Then,

W = WB  WT = {Ib ∪ It|Ib ∈ WB ∧ It ∈ WT }
is a candidate world view for Π (obtained from WT and WB).

Note that, candidate world views are computed after applying top-down influence. It
is possible that no subset of any world view of the bottom complies with the conditions
posed by world views of the top. In such case, Π has no candidate world views.

We can now state a property for semantics concerning top-down epistemic splitting:

Definition 8 (Top-down Epistemic Splitting Property (TDESP)). A semantics S sat-
isfies top-down epistemic splitting if any candidate world view of Π according to Defi-
nition 7 is indeed a world view of Π under S.

Let us experiment this methodology on some of the examples proposed in recent
literature. Consider program Π1, taken from [20]:

p | q (r1) ⊥ ← notKp (C)

Here, BU (Π1) consists of rule (r1), and TU (Π1) consists of constraint (C). So,
T ′

U (Π1) is (where kp and nkp are fresh atoms):

kp | nkp ⊥ ← nkp

whose unique world view is {{kp}}. After cancelling kp, we obtain WT = {∅} for
TU (Π1), with ESTU (Π1)(WT ) = ECTU (Π1)(WT ) = {Kp} and RQTU (Π1)(WT ) = ∅.
Regardless of the epistemic semantics S, as no subjective literals occur therein, the
unique world view of BU (Π1) is Ŵ = {{p}, {q}}. Since WB = {{p}} is only subset
of Ŵ fulfilling ECTU (Π1)(WT ) (cf. Definition 7), then it is the one selected. It is also a
world view for Π1, as the unique world view of the top part is empty. This world view
violates subjective constraint monotonicity, still it is the one delivered by the semantics
proposed in [19] and, as noticed in [20], by those proposed in [14,21]. In our opinion
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the world view {{p}} captures the ‘intended meaning’ of the program Π1, where the
top layer “asks” the bottom layer to support, if possible, Kp (in order not to make the
overall program inconsistent).

Consider now the following program Π2.

p | q (r1) ⊥ ← notKp (C) p ← Kq (r2) q ← Kp (r3)

Here, BU (Π2) consists of rules (r1-r3), and TU (Π2) consists of constraint (C). So,
T ′

U (Π2) is (where kp and nkp are fresh atoms):

kp | nkp ⊥ ← nkp

whose unique world view is {{kp}}. After cancelling kp, we obtain world view
WT = {∅} for TU (Π2) where ESTU (Π2)(WT ) = ECTU (Π2)(WT ) = {Kp} and set
RQ is empty. Regardless of the semantics S, the potential world views of BU (Π2)
are W1 = {{p}}, W2 = {{q}}, W3 = {{p}, {q}}, W4 = {{p, q}}. Actually, W4 is
the only one fulfilling ESTU (Π2)(WT ); W1 has the problem that, having p and fulfilling
Kp, (r3) might be applied thus getting q. Note that W4 is in fact the world view returned
by semantics proposed, for instance, in [13] and [19]. It is easy to see that W4 violates
foundedness. However, in our approach q is not derived via the positive cycle (extended
to subjective literals), but from the Kp “forced” by the upper layer via top-down influ-
ence, which substitutes Kp with p in rule (r3) of BU (Π2). This actually guarantees
foundedness. Since the unique world view for the top is empty, then the unique world
view of the overall program is indeed, according to our method, W = W4 = {{p, q}}.

Let us now consider, Π3 to be the seminal example introduced in [12], which is dis-
cussed in virtually every paper on ELP. Π3 is epistemically stratified (see the Appendix
and [1, Definition 6]). This formulation (variations have appeared over time) is from [1].

eligible(X ) ← high(X ) (r1)
eligible(X ) ← minority(X ), fair(X ) (r2)
noeligible(X ) ← not fair(X ), not high(X ) (r3)
fair(mike) | high(mike) (f1)
interview(X ) ← notK eligible(X ), notKnoeligible(X ) (r4)
appointment(X ) ← K interview(X ) (r5)

Since in this version of the program we have only mike as an individual, we may
obtain the following ground abbreviated version:

e ← h (r1)
e ← m, f (r2)

ne ← not f, not h (r3)
f | h (f1)

in ← notKe, notKne (r4)
a ← Kin (r5)

Here, we consider (r5) as the top TU (Π3), and (r1–r4) plus (f1) as bottom, which
can be however in turn divided into the top T1U (Π3) including (r4), and the bottom
BU (Π3), made of (r1–r3) and (f1). So, T ′

U (Π3) is (with fresh atoms kin, nkin):

a ← kin (r5′) kin | nkin
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with two answer sets: {a, kin}, {nkin}. As explained in Sect. 4, kin | nkin stands for
a disjunction between the epistemic literal Kin and its negation notKin. This deter-
mines the existence of two world views, each entailing only one of these fresh atoms,
i.e. epistemic literals, where atom a can however be derived only from the former.
Thus, we have W11 = {{a}} with ESTU (Π3)(W11) = {Kin}, and W12 = {∅} with
ESTU (Π3)(W12) = {notKin}. ECT1U (Π3) is empty for all world views, as no con-
straint is present in Π3. Then, T1′

U (Π3) is (with ke, nke, kne, nkne fresh atoms):

in ← nke, nkne (r4′) ke | nke kne | nkne.

By the same reasoning as above, since there are two disjunctions among fresh
atoms representing epistemic literals, four world views can be found. After can-
celling the fresh atoms, in fact we have W21 = {{in}}, with EST1′

U (Π3)(W21) =
{notKe, notKne}, and three empty world views W22 = W23 = W24 = {∅}, with
requisite sets {Ke,Kne}, {Kne, notKe}, and {notKne,Ke}, respectively. Clearly,
also ECT1′

U (Π3) is empty.
Finally, BU (Π3), which is made of the rules (r1–r3) and (f1), has the world view

W3 = {{h, e}, {f}}. Since the requirement set relative to world view W21 for the
immediately upper level is satisfied in both answer sets of W3, we can obtain an inter-
mediate world view W213 = {{h, e, in}, {f, in}} for the part of the program includ-
ing (r1–r4). Considering also the top, it is easily seen that W213 is compliant with the
requirement set of W11 = {a}. So, we can obtain for the overall program the unique
candidate world view W = {{h, e, in, a}, {f, in, a}}, which is indeed a world view.
Notice that, in fact, the world views that are part of the union, corresponding to the
various sub-programs, would be the same under all known semantics for ELPs.

Assume now that, instead of f | h, the program would contain the bare fact h. Then,
the world view of the bottom would be W3 = {{h, e}}. This world view implies Ke,
so it could be combined with a world view {∅} of the middle layer and since it also
implies notKin, the further combination is with world view W12 = {∅} of the top. So,
W3 = {{h, e} is the unique world view of the overall program.

5 Discussion and Conclusions

It is at this point interesting to try to assess formally which semantics (if any) satisfy
the top-down epistemic splitting property. For lack of space, we examine below only
the case of the semantics introduced in [13], that we call for short K15. The reason
for choosing K15 however is that in [1] it is noticed that K15 slightly generalizes the
semantics proposed in [10] (called G11 for short) and can be seen as a basis for the
semantics proposed in [19] (called S16 for short). In particular, S16 (which considers
instead of K the operator notA which means notKA) treats K15 world views as can-
didate solutions, to be pruned in a second step, where some unwanted world views are
removed by maximizing what is not known. Thus, should K15 satisfy top-down epis-
temic splitting property, S16 would do as well, and so would G11, the latter however
only for the class of programs where its world views coincide with those of K15.
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Definition 9 (K15-world views). The K15-reduct of Π with respect to a non-empty set
of interpretations W is obtained by: (i) replacing by ⊥ every subjective literal L ∈
Bodysubj (r) such that W �|= L, and (ii) replacing all other occurrences of subjective
literals of the form KL by L. A non-empty set of interpretations W is a K15-world view
of Π iff W is the set of all stable models of the K15-reduct of Π with respect to W .

We are able to prove the following:

Theorem 1 (K15 TDESP). The K15 semantics satisfies the Top-down Epistemic Split-
ting Property. I.e., given an ELP Π , and set of sets W , where each set is composed of
atoms occurring in Π , W is a K15 world view for Π if and only if it is a candidate
world view for Π according to Definition 7.

Proof. Assume an Epistemic Splitting of given program Π into two layers, top TU (Π)
and bottom BU (Π) (where the reasoning below can however be iterated over a subdivi-
sion into an arbitrary number of levels). Notice that, given a K15 world view W , since
each atom A that occurs in the sets composing W is derived in the part of the program
including rules with head A, then W can be divided into two parts, WT and WB which
are world views of TU (Π) and BU (Π), resp., each one composed of stable models of
the K15-reduct of that part of the program.

If part. Given a K15 world view W , let SlT be the subjective literals occurring
in TU (Π) which are entailed by the bottom, i.e., either of the form KA, for which
WB |= A, or of the form notKA, for which WB �|= A. Let such set of literals form the
set ESTU (Π)(WT ). (As mentioned, the subset of SlT that consists of literals involved
in constraints in TU (Π)will form setECTU (Π)(WT ), and the remaining ones will form
set RQTU (Π)(WT ).) Therefore, we can conclude that W , which is a K15 world view,
is indeed a candidate world view according to Definition 7.

Only if part. Consider a candidate world view W w.r.t. the K15 semantics, obtained
by combining a subset WB of a K15 world view of BU (Π) with a K15 world view
WT of TU (Π) after top-down influence. According to Definition 7, the combination is
possible only if for each epistemic literal KA ∈ ESTU (Π)(WT ), WB |= A, and for
each epistemic literal notKA ∈ ESTU (Π)(WT ), WB �|= A. If any such literal belongs
to ECTU (Π)(WT ), if this is not the case then there would be a constraint violation in
TU (Π), so there would be no world views for TU (Π), and for the overall program
Π . Considering a subjective literal in RQTU (Π)(WT ), if it were not the case that WB

entails such literal, then by definition of K15 it would have been substituted by ⊥, so
WT would have been a different set. The top-down influence step can be disregarded,
since it performs in advance on elements of ESTU (Π)(WT ), that are required to be
entailed by WB anyway, the same transformation performed by K15, step (ii). Then, a
candidate world view W obtained according to Definition 7 is a K15 world view.

In [1, Theorem 2] it is proved that, for any semantics obeying epistemic splitting,
an epistemically stratified program has a unique world view. Actually, it can be seen
that epistemically stratified programs admit one (and the same) world view under any
semantics among those considered here: as it is well-known (see, e.g. [4,9,19]), multi-
ple world views can arise only in consequence of negative cycles involving epistemic
literals, clearly not present in such programs. So, the unique world view of an epistemi-
cally stratified program is in particular a K15 world view. Thus, we have the following.
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Corollary 1. Epistemically Stratified Programs satisfy both the Top-down and Bottom-
up Epistemic Splitting Properties.

An investigation of which other semantics might satisfy the Top-down Epistemic
Splitting Property is a subject of future work. A question that may arise concerns effi-
ciency of computing world views in a top-down fashion. If the subjective literals “con-
necting” adjacent layers are in small number (as it seems reasonable), then efficiency
might not be a concern. Also, it remains to be seen in which kinds of applications the
different approaches (top-down and bottom-up) might be most profitably exploited.

A Epistemic Logic Programs: Useful Properties

Following [1], an (abstract) semantics S is a function mapping each program Π into
sets of S-world view of Π , i.e., sets of sets of objective literals, where if Π is an objec-
tive program, then the unique member of S(Π) is the set of its stable models. Draw-
ing inspiration from the Splitting Theorem [17], an analogous properties is defined for
ELPs:

Definition 1 (Epistemic splitting set. [1, Definition 4])
A set of atoms U ⊆ At is said to be an epistemic splitting set of a program Π if for any
rule r in Π one of the following conditions hold: (i) Atoms(r) ⊆ U ; (ii) Bodyobj (r) ∪
Head(r)) ∩ U = ∅. An epistemic splitting of Π is a pair 〈BU (Π), TU (Π)〉 satisfying
BU (Π)∩TU (Π) = ∅, BU (Π)∪TU (Π) = Π , and also that all rules in BU (Π) satisfy
(i) and all rules in TU (Π) satisfy (ii).

Intuitively, condition (ii) means that the top program TU (Π)may refer to atoms inU
which occur as heads of rules in the bottom BU (Π), only through epistemic operators.

Epistemic splitting can be used, similarly to ‘traditional’ Lifschitz&Turner splitting,
for iterative computation of world views. Indeed, Cabalar et al. [1] propose to compute
first the world views of the bottom program BU (Π) and, for each of them, simplify the
corresponding subjective literals in the top part. Given an epistemic splitting setU forΠ
and a set of interpretations W , they define the subjective reduct of the top with respect
to W and signature U , called EU (Π,W ). This operator, according to [1] considers all
subjective literals L occurring in TU (Π), such that the atoms occurring in them belong
to BU (Π). In particular, L will be substituted by � in EU (Π,W ) if W |= L, and by ⊥
otherwise. So, EU (Π,W ) is a version of TU (Π) where some subjective literal, namely
those referring to the bottom part of the program, have been simplified as illustrated.

Definition [1, Definition 5]
Given a semantics S, a pair 〈Wb,Wt〉 is said to be an S-solution of Π with respect to
an epistemic splitting set U if Wb is a S-world view of BU (Π) and Wt is a S-world
view of EU (Π,Wb).

The definition is parametric w.r.t. S, as each different semantics S will define in its
own way the S-solutions for a given U and Π . So, world views of the entire program
will be obtainable by suitably combining some world view of the bottom with some
world view of the top, i.e., the world views of the entire program should be obtained as
(where Ib and It are answer sets occurring respectively in Wb and Wt): Wb  Wt =
{Ib ∪ It|Ib ∈ Wb ∧ It ∈ Wt}. Therefore, the following property can be stated:
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Property (Epistemic splitting. [1, Property 4])
A semantics S satisfies epistemic splitting if, for any epistemic splitting set U of any
given program Π: W is an S-world view of Π iff there is an S-solution 〈Wb,Wt〉 of
Π with respect to U such that W = Wb  Wt.

As discussed in [1], many semantics do not satisfy this property, which is satisfied
only by the very first semantics of ELPs, proposed in [12] (and in some of its general-
izations), and by Founded Autoepistemic Equilibrium Logic (FAEEL), defined in [2].
Epistemic splitting property implies subjective constraint monotonicity.

Another interesting property is foundedness. Again, such a notion has been extended
from objective programs (see [1, Definition 15]). Intuitively, a set X of atoms is
unfounded w.r.t. a (objective) program Π and an interpretation I , if for every A ∈ X
there is no rule of r by which A might be derived, without incurring in positive circu-
larities and without forcing the derivation of more than one atom from the head of a
disjunctive rule (see, e.g., [15] for a formal definition). For ELPs one has to consider
that unfoundedness can originate also from positive dependencies on positive subjec-
tive literals, like, e.g., in the program A ← KA. Among the existing semantics, only
FAEEL satisfies foundedness.

Definition [1, Definition 6] [Epistemic Stratification]
We say that an ELP Π is epistemically stratified if we can assign an integer mapping
λ : At → N to each atom [occurring in the program] such that:

• λ(a) = λ(b) for any rule r ∈ Π and atoms a, b ∈ (Atoms(r) \ Bodysubj (r)), and
• λ(a) > λ(b) for any pair of atoms a, b for which there is a rule r ∈ Π with a ∈
(Head(r) ∪ Bodyobj (r)) and b ∈ Bodysubj (r).
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Abstract. Answer Set Programming (ASP) is a well-established declar-
ative AI formalism for knowledge representation and reasoning. ASP sys-
tems were successfully applied to both industrial and academic problems.
Nonetheless, their performance can be improved by embedding domain-
specific heuristics into their solving process. However, the development
of domain-specific heuristics often requires both a deep knowledge of the
domain at hand and a good understanding of the fundamental working
principles of the ASP solvers. In this paper, we investigate the use of deep
learning techniques to automatically generate domain-specific heuristics
for ASP solvers targeting the well-known graph coloring problem. Empir-
ical results show that the idea is promising: the performance of the ASP
solver wasp can be improved.

Keywords: answer set programming · deep learning · heuristics ·
graph coloring

1 Introduction

Answer Set Programming (ASP) [5] is a well-established declarative AI formal-
ism for knowledge representation and reasoning. ASP is a popular paradigm for
solving complex problems mainly because it combines high modeling power with
efficient solving technology [7]. The rich language, the intuitive semantics and
the availability of efficient solvers are the key ingredients of the success of ASP
on solving several industrial and academic problems [10].

Modern ASP solvers employ an extended version of the Conflict-Driven
Clause Learning (CDCL) algorithm [16]. As a matter of fact, the performance
of a CDCL solver heavily depends on the adoption of heuristics that drive the
search for solutions. Among these, the heuristic for the selection of the branch-
ing literal (i.e., the criterion determining the literal to be assumed true at a
given stage of the computation) can dramatically affect the overall performance
of an implementation [8]. As default strategies, ASP implementations feature
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very good general purpose heuristics belonging to the family of VSIDS [9]. How-
ever, they may fail to compute solutions of the hardest problems in a reasonable
amount of time. Nonetheless, it is well-known that the performance of ASP
solvers can be improved by embedding domain-specific heuristics into their solv-
ing process [2,8,11], and this is particularly true in the case of real-world indus-
trial problems [24]. However, the development of domain-specific heuristics often
requires both a deep knowledge of the domain at hand and a good understanding
of the fundamental working principles of the ASP solvers. Thus, one might won-
der whether it is possible to ease the burden of the ASP developer by leaving the
task of defining proper heuristics to a machine that can learn effective heuris-
tics from the observation of the behavior of solvers on instances from the same
domain. A first positive answer to this question was provided by Balduccini in
[3] who proposed the DORS framework, where the solver learns domain-specific
heuristics while solving instances of a given domain [3]. The DORS framework
was implemented in smodels, yielding interesting performance improvements.
However, DORS was tailored for DPLL-style algorithms and we are not aware of
any attempt to experiment with automatic learning of domain heuristics in mod-
ern solvers. Starting from the observation that the recent success of AI technology
was largely propelled by the developments in deep neural networks [4], which
proved to be very effective tools for solving tasks where the presence of humans
was considered fundamental; we decided to investigate the use of deep learning
techniques to automatically generate domain-specific heuristics for CDCL-based
ASP solvers.

This paper presents our first results on employing neural networks to improve
the performance of an ASP solver, and to this end, we targeted the well-known
graph coloring problem as a use case. The heuristic is learned by observing
the behavior of the ASP solver wasp [1] on a test set of instances randomly
sampled from a population, where each sample corresponds to an ASP instance.
The proposed neural network model takes inspiration from previous experiments
conducted by Selsam and Bjørner in [22] and possesses a particular structure
specifically designed for being invariant to permutations between literals and
their negations, between literals belonging to the same rule and, finally, between
rules themselves. The neural network is then trained on the test set, and the
resulting model is used to alter the initial values of the heuristic counters used
by wasp default heuristics so to make the most promising choices first. Empirical
results show that the idea is promising: the performance of wasp can be improved
by plugging-in automatically-generated neural domain heuristics.

2 Background

2.1 Graph Coloring Problem

The graph coloring problem consists of assigning colors to nodes of a graph, such
that two connected nodes do not share the same color. More formally, let C be
a set of colors and let G = (N,L) be an undirected graph, where N is a set
of natural numbers representing the nodes of G, and L ⊆ N × N be a set of
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links between nodes in N . The graph coloring problem consists of finding a total
function col : N �→ C such that col(n1) �= col(n2) for each (n1, n2) ∈ L. The
following example shows an ASP encoding of the graph coloring problem. Note
that the encoding represents a simplified version of the one used in the recent
ASP Competitions [7].

Example 1 (ASP encoding of the graph coloring problem). Let C be a set of
colors and G = (N,L) be a graph. Let ΠC

G be the following program:

col(n, c) ← ∼ncol(n, c) ∀n ∈ N, c ∈ C
ncol(n, c) ← col(n, c2), c �= c2 ∀n ∈ N, c ∈ C
ncol(n, c) ← col(n2, c) ∀(n2, n) ∈ L s.t . n2 < n, c ∈ C

colored(n) ← col(n, c) ∀n ∈ N, c ∈ C
⊥ ← ∼colored(n) ∀n ∈ N

If C = {b, g} and G = ({1, 2}, {(1, 2)}), then ΠC
G is the following program:

r1 : col(1, b) ← ∼ncol(1, b) r2 : col(1, g) ← ∼ncol(1, g)
r3 : col(2, b) ← ∼ncol(2, b) r4 : col(2, g) ← ∼ncol(2, g)
r5 : ncol(1, b) ← col(1, g) r6 : ncol(1, g) ← col(1, b)
r7 : ncol(2, b) ← col(2, g) r8 : ncol(2, g) ← col(2, b)
r9 : ncol(2, b) ← col(1, b) r10 : ncol(2, g) ← col(1, g)
r11 : colored(1) ← col(1, b) r12 : colored(1) ← col(1, g)
r13 : colored(2) ← col(2, b) r14 : colored(2) ← col(2, g)
r15 : ⊥ ← ∼colored(1) r16 : ⊥ ← ∼colored(2)

ΠC
G admits two solutions, i.e., {col(1, g),col(2, b),ncol(1, b),ncol(2, g),colored(1),

colored(2)} and {col(1, b), col(2, g), ncol(1, g), ncol(2, b), colored(1), colored(2)}
corresponding to the ones of the graph coloring problem. �

Moreover, in the following, an ASP program modeling the graph coloring
problem is coherent if it admits a solution, i.e. there is a function col satisfying
the requirements, otherwise it is incoherent.

2.2 Stable Model Search

Modern algorithms for computing stable models of a given ASP program Π
employ a variant of the CDCL algorithm [16], whose idea is to build a stable
model step-by-step starting from a set of literals S initially empty.

During the execution of the algorithm, some of the literals to be added in S
(called branching literals) are selected according to a heuristic. Modern imple-
mentations use the minisat [9] heuristic (or one of its variants), whose key idea
is to associate each atom to an activity value, that is initially set to 0. This value
is incremented by a value inc, whenever the atom (or its corresponding literal) is
used to compute a learned constraint. Then, after each learning step, the value
of inc is multiplied by a constant greater than 1, to promote variables that occur
in recently-learned constraints. When a branching literal must be selected, the
heuristic chooses ∼a (denoted as negative polarity), where a is the undefined
atom with the highest activity value (ties are broken randomly).
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2.3 Deep Neural Networks

Machine Learning (ML) comprises by now a huge number of algorithms to tackle
several different problems [12,23]. In particular, ML algorithms observe a given
data set and refine iteratively their understanding of it through measurable
error’s estimation. The data set is characterized by an input space X ⊆ R

D

and an output space Y. The goal consists in determining the unknown function
f , associating input and output spaces f : X → Y. If Y is not empty the problem
can be defined supervised and it determines an ease error estimation [23].

Within this context, the supervised training approach is applied to a popular
ML algorithm called Deep Neural Network (DNN) [12], that can be seen as a
black-box model able to extract and approximate the function f∗, governing the
data set under analysis. The DNN, often called also Deep Feedforward Neural
Network or Multilayer Perceptrons (MLPs), maps y = f(x; θ), where x is the set
of input features and θ the set of parameters that need to be learned in order to
better approximate the function f [12]. The neural adjective takes inspiration
from neuroscience, since the simplest unit of such a model (i.e., the neuron) is
connected to previous and following units similarly to biological neurons [12].
The neurons are organized in layers, whose number determines the depth of the
network under development [12]. The number of neurons per layer defines the
width of the model and neurons belonging to the same layer act in parallel [12].
Each unit computes the weighted sum of the previous layer’s outputs in addition
to an optional bias value [12]. The result will be then processed by a function,
also called activation function to emulate the firing activity of the biological
neuron, and will be passed to the next layer or to the model’s output according
to its position within the network. The equation y = σ(wTx + b) summarizes
the computations performed by each neuron, where w represents the vector
of weights connecting each neuron with previous layer’s ones, x is the vector
of inputs coming from previous layer, b corresponds to the bias, σ identifies the
activation function characterizing the current neuron and all its layer’s neighbors
and, finally, y is the neuron’s output. As described above, y can be passed as
input to following neurons or can be directly interpreted as the model’s output.
Typically, in a binary classification scenario [23] like the one proposed in this
paper, the DNN is asked to determine if the given input belongs or not to
a specific class. Consequently, the output space Y ∈ {0, 1} [23]. Even though
DNNs and MLPs give the human practitioners the possibility not to identify the
precise function to estimate the desired non-linearity, as it can be inferred from
the universal approximation theorem [15], it is still their responsibility to design
the architecture and to tune properly its hyperparameters H through a Model
Selection (MS) procedure [20]. It is fundamental to perform a reasoned MS and
to choose properly the values to be assigned to the hyperparameters in order
to obtain reasonable results and a good level of generalization. Thereafter, the
resulting model will pass through an Error Estimation (EE) phase [20], during
which its performances will be evaluated on a specific test set.

The width and the depth of the model, the activation functions of the var-
ious layers and the connections between neurons all fall into the architectural
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parameters to be defined. In addition to these, developers should choose the
proper optimization algorithm, the size of the samples’ batch to be processed
before a backward propagation phase [21], the learning rate, the cost function
and the regularization approach to adopt in order to guarantee a good level of
generalization and to prevent under and overfitting [13].

3 Generation of Domain-Specific Heuristics in ASP

In this section, we describe the main challenges to face in order to automatically
generate domain-specific heuristics, that are: finding a suitable representation of
ASP instances in order to be used by deep learning algorithms, which usually
operate on matrices (Sect. 3.1); generating a meaningful set of training instances
(Sect. 3.2); creating a deep learning model to generate the heuristics (Sect. 3.3);
embedding the heuristics into an ASP solver (Sect. 3.4).

3.1 Representation of ASP Instances

In order to create a representation of the input program that is suitable for
the deep learning model, we used a variant of the matrix representation used in
NeuroCore [22]. In particular, a given program Π is represented as a |Π| × 2 ·
|atoms(Π) ∪ {⊥}| sparse matrix denoted with letter G, where the rows are the
rules of Π and the columns are all literals occurring in Π (including ⊥ and ∼⊥).
Then, a triple (r,�,−1) represents that the literal � occurs in the head of rule r;
a triple (r,�,1) represents that the literal � occurs in the body of rule r; and a
triple (r,�,0) represents that the literal � does not occur in r.

Example 2. Consider again program ΠC
G of Example 1. The first row of G is rep-

resented by the following triples: (r1,col(1, b),−1), (r1,∼ncol(1, b),1), and (r1,�,0)
for each other literal � occurring in ΠC

G . Similarly, the last row of G is represented
by the following triples: (r16,⊥,−1), (r16,∼colored(2),1), and (r16,�,0) for each
other literal � occurring in ΠC

G .

3.2 Generation of the Training Set

Deep learning algorithms operate on a set of labeled examples, referred to as
training set. In our setting, the training set is composed by a set of tuples (Π,
I), where Π represents an instance of the graph coloring problem, and I is a
stable model of Π. The generation of a meaningful set of training instances
is a challenging problem since deep learning algorithms require huge sets of
examples to be successfully trained. Moreover, instances must be easily solvable
for the ASP solver, since it is required to compute one stable model. Note that in
principle one could also enumerate a fixed number of stable models, however in
our preliminary experiments we observed this was not beneficial for the solver.

Our generation strategy is as follows. Given a graph G = (N,L), a set C of
colors, and a positive number k; we build a set of programs P representing the
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training set, where each program in the set is a smaller portion of G. In particular,
as first step, we block L and we randomly select n% of the nodes in N (with
n ∈ {10, 20, 30, 40, 50}). For each value of n, we randomly generate k new graphs,
whose corresponding programs are added to Π. Similarly, we block N and we
randomly select l% of the links in L (with l ∈ {10, 20, 30, 40, 50}). As before,
for each value of l, we randomly generate k new graphs, whose corresponding
programs are added to Π. Finally, we randomly select n% of the nodes in N and
l% of the links in L (with n, l ∈ {10, 20, 30, 40, 50}, and for each combination of n
and l we randomly generate k new graphs. Hence, this strategy 35 · k programs
starting from a single input graph. In order to generate the training set, we
considered all the sixty instances submitted to a recent ASP Competition [7]
and we set the value of k to 100, for a total of 210 000 training instances.

3.3 Generation of the Deep Learning Model

In this section we provide the details for training a DNN model to learn the
heuristic characterizing a set of graph coloring instances expressed according to
the ASP formalism. After the tuning phase, the resulting model is then queried
to estimate the best initial configuration to be submitted to the wasp solver to
enhance the CDCL branching routine and, consequently, the solving process.

The DNN model designed in this context takes inspiration from the Neu-
roCore architecture proposed by Selsam and Bjørner in [22]. Despite the dif-
ferent targets, NeuroCore model shows distinctive characteristics that can fit
this paper’s needs. Recalling Sect. 3.1 and Example 2, we know that we have to
deal with matrix representations. NeuroCore is able to manage problems of such
matrix form thanks to its architecture, comprising three different MLPs:

Rupdate : IR2d → IRd,Lupdate : IR3d → IRd,Vproj : IR2d → IR

where d is a fixed parameter and identifies the embedding associated with each
atom and rule during model’s iterations. In a nutshell, at each training step the
model goes through T iterations of message passing, during which the rules’ and
literals’ embeddings are continuously updated. The MLPs involved within these
operations are Rupdate and Lupdate, respectively. For the sake of clarity, the term
embedding is usually exploited by practictioners to identify the vector exploited
to translate a feature or a variable characterizing a data set in order to make
the training process easier. In this context, we build a mono-dimensional vector
with size d to represent each rule and each literal to be ingested by the latter
MLPs. At each iteration, the output matrices of Lupdate and Rupdate are recur-
sively combined and concatenated with the matrix G, introduced in Sect. 3.1.
These continuous combinations are necessary to guarantee the robustness of
the DNN model against rules’ and literals’ permutations, allowed in this con-
text. Moreover, the embedding’s exploitation is crucial to manage ASP programs
with different number of atoms and rules, since, in this way, the number of neu-
rons of the different MLP’s layers involved can be fixed and the only varying
dimension is the number of row of the input matrices. This does not represent
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a problem since each program is managed singularly as a batch. Consequently,
each batch represents the set of embeddings characterizing the literals or rules
belonging to the same ASP program. After T iterations, Lupdate’s output is hor-
izontally split and the two even sub matrices, corresponding to each literal’s
and its negated correspondent’s embeddings respectively, are vertically merged
in order to build a matrix V, whose dimensions are nv × 2d and where each row
intuitively corresponds to a atom. At this point, V goes through the last MLP
Vproj and v̂ is finally obtained, which consists of a numerical score for each atom
and it is finally passed to the softmax function to build a suitable probability
distribution over the atoms. Concerning the embedding’s size d, the number of
iterations T and depth and width of the MLPs, the original values assigned by
Selsam and Bjørner in [22] have been kept and are the following: 4 Iterations (T);
80 Embedding (d); 2 Cupdate layers; 2 Lupdate layers; 4 Vproj layers; 80 hidden
layers neurons. The activation function exploited between each MLP’s hidden
layer is ReLU and the optimization algorithm adopted for training purpose is
the ADAM one [17] with a constant learning rate of 10−4. The considerations
regarding Vproj’s output layer and v̂ interpretation need a further explanation.
This paper’s aim consists in determining a promising heuristic starting point for
the solver’s activity, which means that a value between 0 (false) and 1 (true)
should be assigned to every literal of the instance under analysis. Moreover, it
is fundamental to underline that literals corresponding to candidate colors for
the same node are inevitably correlated and mutually exclusive. Due to this rea-
son, the model should be able to assign a value of 1 exclusively to one of such
literals in order to avoid contradictory scenarios. Consequently, Vproj’s output
activation function is kept linear and the softmax function is selectively applied
to each group of atoms referring to the same node. Thereafter, the maximum
value within each group is identified and assigned the value of 1, while 0s are
assigned indistinctly to the remaining literals.

Furthermore, it is worth noting that, differently from Selsam and Bjørner’s
attempt in [22], the shape of the training instances, referring to the number of
literals characterizing each of them, has not been fixed to a unique value. The
data set considered in this context includes instances with varying sizes in the
range comprised between 510 and 6032. It is feasible thanks to the NeuroCore
architecture that is able to manage different shape instances through embed-
ding representation. Nonetheless, it complicates the training process and poses
important challenges to the generalization search.

3.4 Integration of the Deep Learning Model in wasp

The integration of the domain-heuristic in wasp is based on the algorithm
reported as Algorithm 1. In a nutshell, the algorithm takes as input a pro-
gram Π and a set of parameters (namely, k1, k2, k3, h1, and h2, such that
0 < ki < 1 (i = [1..3]), and h1, h2 ∈ N, h1 > h2) and returns as output a set
of heuristic assignments for the atoms of the form col(_,_) ∈ atoms(Π ). Such
assignments will be used later on by wasp as initial activities of the atoms. In
more details, it first invokes the deep learning model to obtain the predictions
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Algorithm 1: Integration of the heuristic
Input : A program Π, parameters k1, k2, k3, h1, and h2

Output: A set of pairs H
1 H := ∅;
2 (Pr ,Conf ) := DeepLearning(Π); // Returns predictions and confidences
3 N := {node | col(node, _) ∈ atoms(Π)}; // Nodes of the graph
4 for node ∈ N do
5 S := {col(node, _) | col(node, _) ∈ atoms(Π)};
6 (first , second) := ComputeAtomWithMaxConfidence(S, Conf );
7 if Pr(first) is true and Conf (first) ≥ k1 then
8 H := H ∪ {(first , h1)} ;
9 diff := Conf (first) − Conf (second);

10 sum := (
∑

p∈S Conf (p)) − diff ;
11 if diff ≤ k2 and Conf (second) > k3 · sum then
12 H := H ∪ {(second , h2)};

13 return H;

(Pr) and confidences (Conf ) for the atoms of the form col(_,_) (line 2), where
a prediction can be either true (if the atom must be selected as positive) or false
(if the atom must be selected as negative), and a confidence is a positive (dec-
imal) number less than 1, where for a given node n the sum of the confidences
of the atoms of the form col(n,_) is equal to 1. Then, the algorithm computes
the set N of the nodes of the graph by processing the program Π (line 3; in
particular, a node n is added to the set if an atom of the form col(n,_) occurs
in Π). Later on, for each node n in N , the algorithm collects the set of atoms,
say S, of the form col(n,_) (line 5). Then, it computes the two atoms in S
associated to the highest confidences, say first the atom with the highest value,
and second the other one (line 6). At this point, if the prediction of first is true
and its confidence is greater than a given threshold (k1), then the atom first
is associated to the initialization h1 (line 8). Moreover, an additional check is
performed to provide a heuristic score also for the atom second . In particular, if
the difference between the confidence associated to first and the one associated
to second is less than or equal to a given threshold (k2) and the confidence of
second is greater than a threshold (k3) times the sum of the confidences of all
other atoms in S, then the atom second is associated to the initialization h2

(line 12). Then, the default polarity of the minisat heuristic is set to positive
for atoms in H. Intuitively, for each node, the atom with the highest confidence
(first) is used only if its confidence is greater than k1. In this way, if the deep
learning model is not sufficiently confident about the color to assign to the node
then the heuristic is not applied to the node. Similarly, the atom with the second
highest confidence (second) is used only if its confidence is similar to the one of
first (i.e., their difference is smaller than k2) and is greater than the confidence
of all other atoms multiplied by k3. Finally, the initialization of the activities of
first and second to h1 and h2 permits the solver to select first the most promising
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atoms, and then thanks to the decay of the minisat heuristic the activities are
progressively reduced if the atoms are not used during the search.

4 Experiment

Hardware and software settings. With respect to the NeuroCore’s-related model
introduced in Sect. 3.3, the 210 000 instances obtained after the data generation
process of 3.2 have been randomly split into training, validation and test sets.
More specifically, 60% of the instances have been picked to build the training
set and the remaining 40% has been equally divided between validation and
test sets. The training has been performed on a NVIDIA A100 Tensor Core
GPU, dividing the training samples in batches of 128 instances and applying the
backward propagation algorithm in relation to the binary cross entropy (BCE)
loss measured on each batch. The stopping criterion adopted to this extent has
been designed to monitor the BCE loss on the validation set and to interrupt
the execution in case of consecutive lack of improvements.

Then, the performance of wasp without heuristics (referred to as wasp-
default) have been compared with the ones of wasp with the domain heuristics
introduced as Algorithm 1. In particular, we experimented with different values
of k1, k2, k3, h1, and h2. In the following, we report the two sets obtaining the
best performance overall, where k1 = 0.15, k2 = 0.15, k3 = 1.0, h1 = 10, and
h2 = 5 for the first strategy and k1 = 0.15, k2 = 0.35, k3 = 1.0, h1 = 10,
and h2 = 5 for the second one, that are referred to as wasp-strat1 and wasp-
strat2, respectively. All the variants of wasp have been executed on all the sixty
instances of the graph coloring problem submitted to a recent ASP Competition
[7]. Note that the training set is built on random subgraphs of the input ones
used in the ASP Competition, thus the experiment is not executed on instances
used during the training of the deep learning model. Time and memory limit
were limited to 1200 s and 8 GB, respectively.

Results Deep Learning. Table 1 reports DNN trained model’s performances mea-
sured on the test set. Recalling model’s generation of Sect. 3.2, outputs can be
interpreted as the confidences of the model in stating that the value of 1 can be
assigned to a specific literal. The model has been evaluated in terms of TOP N
accuracy, where N ∈ {1, 2, 3}, and it corresponds to the ratio between the pre-
dicted and expected 1s among the first N most confident estimations. Moreover,
the percentage of predicted 1s for increasing confidence C ∈ {20, 30, 40, 50} %
is measured. As expected, the percentage accuracy increases in agreement with
N and C, with approximately 80% for N = 3 and 70% for C ≥ 50%. The same
confidence levels is not guaranteed for all the instances under analysis, as it is
underlined by the performances measured for decreasing values of C and N .
Nonetheless, it is fundamental to keep in mind the complexity of the proposed
target, continuously managing graphs with different shapes.

Result on ASP Instances. Table 2 reports the results of the comparison of the
different approaches implemented in wasp, where for each heuristic, we show
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Table 1. DNN’ EE on the test in terms of TOP N and Confidence Accuracies.

Accuracy (%)
TOP N Confidence ≥ C%

N = 1 N = 2 N = 3 C = 20 C = 30 C = 40 C = 50

39.59 63.62 79.55 39.59 51.66 63.08 70.74

Table 2. Comparison of the different heuristics on ASP competition instances.

Coherent Incoherent

Heuristic # solved PAR10 # solved PAR10
wasp-default 14 12 1744.90 24 24 449.43
wasp-strat1 14 13 914.97 24 20 2393.44
wasp-strat2 14 14 82.94 24 19 2837.65

Table 3. Comparison of the different heuristics on generated instances.

130 nodes 135 nodes 140 nodes

Heuristic # solved PAR10 # solved PAR10 # solved PAR10
wasp-default 60 60 15.24 89 77 1707.73 85 76 1322.17
wasp-strat1 60 60 32.95 89 78 1609.21 85 76 1338.02
wasp-strat2 60 60 31.80 89 78 1620.13 85 78 1066.18

the number of solved instances, and the PAR10. We recall that the PAR10 is
the average solving time where unsolved instances are counted as 10 · timeout.
PAR10 is a metric commonly used in machine learning and SAT communities,
as it allows to consider both coverage and solved time. As a first observation,
we mention that the call to the deep learning model requires on average less
than one second, thus it has no negative impact on the performance of the
domain-specific heuristics. Then, we observe that both wasp-strat1 and wasp-
strat2 are faster than wasp-default on coherent instances, solving 1 and 2
more instances, respectively. Additionally, wasp-strat2 has a PAR10 equals to
82.94 and it is approximately 21 times lower than the one of wasp-default. The
same result cannot be obtained for incoherent instances, where wasp-default
solves 4 and 5 instances more than wasp-strat1 and wasp-strat2, and also
with a much lower PAR10. This result is expected since only coherent instances
were used during the training and also since the heuristic is oriented towards
finding a stable model. As an additional experiment, we generated, starting
from the set of known incoherent instances, another set of coherent instances by
randomly removing a certain number of links from the input instance. Table 3
reports the results of such an experiment, where we classified instances into three
sets according to the number of nodes, i.e., 130 nodes, 135 nodes, and 140 nodes.
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Interestingly, domain-specific heuristics are not effective on instances with 130
nodes, which are solved quite fast by the default version of wasp. However, on
instances with 135 and 140 nodes the domain-specific wasp-strat2 outperforms
wasp-default solving three more instances overall and being faster in terms of
PAR10. Finally, concerning the usage of memory, we observe that all the tested
approaches never exceed memory limits.

5 Related Work

Several ways of combining domain heuristics and ASP are proposed in the lit-
erature. In [3], a technique which allows learning of domain-specific heuristics
in DPLL-based solvers is presented. The basic idea is to analyze off-line the
behavior of the solver on representative instances from the domain to learn and
use a heuristic in later runs. A declarative approach to definition of domain
specific heuristics in ASP is presented in [11]. The techniques presented in this
paper might be also applied in combination with such a framework by properly
setting the _heuristic predicate. Andres et al. in [2] and Dodaro et al. in [8]
proposed domain-specific heuristics for tackling hard problems. However, their
approach was based on the implementation of the heuristic made by a domain
expert. ML-solutions have been also adopted to predict the best solver for a
given instance [6,14,19]. We are not aware of any attempt to experiment with
automatic learning of domain heuristics in modern CDCL-based solvers.

In the context of SAT, our work is related to the one of Selsam and Bjørner
[22] and their system NeuroCore. In particular, our deep learning model takes
inspiration of their proposal. Nonetheless, in our model we do not fix the shape of
the training instances to a unique value. Another important difference is that our
training set contains coherent instances only, whereas the one used by NeuroCore
is instead based on (minimal) unsatisfiable cores. This difference was motivated
by the fact that the computation of (minimal) unsatisfiable cores is not currently
supported by state-of-the-art ASP solvers. The integration of such techniques
can be also beneficial in the context of domain-specific heuristics. Moreover, the
deep learning model introduced by NeuroCore is periodically queried during the
search to re-configure the branching heuristic. However, our preliminary experi-
ments (not included in the paper for space reason) show that considering learned
constraints deteriorate the performance of the solver, since multiple calls to the
deep learning model on larger and larger programs were counterproductive. Wu
in [25] pointed out the lack of efficiency of CDCL algorithm in solving formu-
lae of even moderate sizes, e.g. 300 to 500 variables involved, and proposes to
take advantage of ML techniques to train a model able to wisely assign initial
values to branching variables in order to prevent possible conflicts and to find a
solution in relatively short time. After the experimental phase, it was observed a
consistent decrease in the number of conflicts. However, the computational time
required to perform the preprocessing phase was non-negligible compared to the
timing necessary to run the enhanced version of the solver taken as a bench-
mark. Moreover, Liang et al. in [18] proposed a ML-based approach to predict
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the so called Literal Block Distance (LBD), defined as the number of different
decision levels of the variables in the clause. They choose to exploit an Adam
SGD algorithm that autonomously triggers a restart if the next LBD exceeds the
linear sample mean for 3.08 standard deviations (i.e. the 99.9th percentile). The
experiments show that the proposed approach performs coherently with state-
of-the-art methods. Xu et al. in [26] proposed a ML-based strategy to evaluate
3-SAT instances on the phase transition. In particular, they trained a model
on a 3-SAT dataset comprising instances with varying number of variables in
the range 100–600. They initially opt for a random forest algorithm with the
aim of discriminating between SAT or UNSAT instances basing on 61 cheap-to-
compute features. Then, they progressively simplify their model and reduce the
number of features considered still achieving reasonable performances.

6 Conclusion

In this paper, we presented a strategy based on deep learning to automatically
generate domain-specific heuristics. In particular, we focus on one single bench-
mark, i.e. the graph coloring problem. This choice was motivated by the fact that
(i) the encoding does not include advanced features such as aggregates, choice
rules, and weak constraints; (ii) the problem allows to control the hardness of
the instance by either reducing the number of nodes and/or the number of links.
Moreover, the training set used to automatically generate the heuristics contains
coherent instances only and, as expected, this lead to poor performance on inco-
herent ones. As future work, alternative strategies consist of exploiting minimal
unsatisfiable cores, or automatically tuning parameters used by Algorithm 1.
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Abstract. Model-based Diagnosis (MBD) is an approach to diagnosis, where an
(objective) model of a system is diagnosed to find a set of explanations revealing
root causes for issues. Temporal behavioral models are prominent approach for
temporal MBD, where their associated temporal formulas (TBFs) by Brusoni et
al. (Artificial Intelligence, 102:39–79, 1998) can be used to relate explanations to
observations under temporal constraints based on Allen’s Interval Algebra (IA).
Due to expressive limitations of the constructs, we envision an extended language
of TBFs that allows for complex formulas and nesting of formulas in temporal
constraints. To this end, we present a language that extends propositional resp. FO
logic with IA relations and provide semantics for it based on here-and-there (HT)
logic as well as on Equilibrium Logic. Furthermore, we lift a well-known tableau
calculus for propositional HT logic to the temporal setting and report about an
experimental prototype implementation. Based on these results, rich notions of
diagnostic explanations from temporal behavior models may be developed.

1 Introduction

Model-based Diagnosis (MBD) [11] is an approach to diagnosis, where an (objective)
model of a system is diagnosed to find a set of explanations revealing root causes for
errors. For instance in Urban Traffic Management (UTM) systems traffic flow is ana-
lyzed over longer periods to reveal root causes for traffic congestions in a road network,
e.g., frequent accidents or delays. Temporal behavioral models (TBMs) by Brusoni et al.
[5] are a prominent approach for temporal MBD, where their associated temporal formu-
las (TBFs) can be used to relate explanations to observations under temporal constraints
based on Allen’s Interval Algebra (IA). However, TBMs are sometimes too restrictive
in expressing complex relationships between possible explanations and observations;
more details and an example are given below. Motivated by this fact, we aim at pro-
viding a language for finding possible explanations for observations, e.g., for a traffic
congestion, using temporal constraints and by extending TBMs for linking temporal
relations directly to atoms, supporting undefined time intervals, and allowing for vari-
ous encodings of “explains”. The extension is a step towards an abduction-based traffic
diagnosis framework that combines TBMs, a flow model for observations, e.g., as we
presented in previous work [8], and a background knowledge base (KB) that allows one
to find likely explanations.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Temporal Behavioral Models. According to [5], a temporal behavioral model (TBM)
is defined as a set of temporal behavior formulae (TBFs) and a set of global temporal
integrity constraints. For example, a TBF may be used to explain the causal relation
between the cause water retention with no fluid therapy and the effect high blood vol-
ume [5]:

water ret(T1), therapy(absent) explains blood vol(high, T2){T1(before, overlaps)T2}.

Such a TBF captures the idea that statements on the left-hand-side (LHS) explain
observation(s) on the right-hand-side (RHS) taking the local temporal constraints (e.g.,
before) into account, where these constraints must be fulfilled with respect to time inter-
vals assigned to the variables T1 and T2. As Brusoni et al. noted, we may interpret
explains in backward or forward direction. Our work aims at using TBMs for traffic
diagnosis over a stream of observations to find a set of explanations that capture spe-
cific traffic patterns using Allen’s Time Interval Algebra (IA). Therefore, we extend the
original TBF syntax as illustrated by the following formula:

(a(T1)∨ b(T2)), c(T3) explains o1(T4), o2(T5) {TC}
where TC = {((T1� ∼ T3) overlaps (T4 �T5)) ∨ ((T2 � T3) overlaps (T4 � T5))}.
The atoms a and b represent the explanations for normal congestion and accident-
related congestion, c represents an auxiliary atom stating whether roadworks occur in a
time period (with ∼T3 denoting it is known that it is not occurring), and o1 and o2 are
two observations of slow traffic. Note that we require coalescing (denoted by � and �)
for time intervals to check the temporal constraints.

The original TBF syntax appears to be not well-suited for expressing complex rela-
tionships as above. Furthermore, a reduced syntax (not involving explains nor time
intervals explicitly) may be desirable. This can be achieved by the following steps: (a)
combine the LHS, RHS, and constraints to one conjunction dropping explains; (b) make
the temporal information assigned to atoms implicit, with the possibility of having unde-
fined time intervals; and (c) let temporal relations refer directly to atoms, which allows
for nested sub-formulas.

Example 1. We obtain the following formula applying the steps on the TBF above:

(a ∨ b) ∧ c ∧ ((a∧ ∼c) overlaps (o1 ∨ o2)) ∨ ((b ∧ c) overlaps (o1 ∨ o2)) ∧ o1 ∧ o2.

We aim to evaluate whether a or b are explanations supported by observations in various
temporal assignments under the temporal constraints, so (a∧ ∼ c) and (b ∧ c) must
occur on time intervals that overlap with (o1 ∨ o2). The meta directive “explains” can
be replaced based on the desired reasoning task; we may e.g., conjoin the LHS and
RHS for checking the consistency of the new formula according to various temporal
assignments, while we may state that the LHS implies the RHS for abductive reasoning.

The new language requires a suitable semantics, where theories can be character-
ized and an evaluation algorithm can be developed. For this, we build on the work on
here-and-there logic (HT) [12] and its extension to Equilibrium Logic [17], which can
be evaluated using a tableau system or an ASP solver on restricted formulas. The novel
language extends HT logic with coalescing operators, undefined time intervals, and
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temporal relations. For the evaluation, we extend the tableau calculus for HT logic by
Pearce et al. [16] and include temporal expansion rules. We then provide soundness and
completeness results for the new tableau system. Besides the technical results, we devel-
oped a prototypical implementation to enable initial experimentation with the calculus.
Our contributions are developed as follows:

– After stating necessary preliminaries (Sect. 2), we present our temporal extension of
HT logic including a novel syntax and semantics (Sect. 3).

– We present a temporal tableau calculus and give technical details about it (Sect. 4).
– We report on a prototypical implementation and illustrate it on a case study (Sect. 5).
– We discuss related work and compare our approach to others for (qualitative) tem-
poral reasoning and conclude with ongoing and future work (Sect. 6).

2 Preliminaries

To analyze temporal behavioral models, we introduce a novel language that is based
on an extension of here-and-there (HT) logic [12,13] with a FO semantics and strong
negation called FOHT [17]. The authors of [17] also showed that HT and FOHT are
equivalently represented by the five-valued logic N5 and the quantified five-valued logic
QN5, respectively.

FOHT is a FO language over a signature Σ = 〈C,F ,P〉, where C is a (w.l.o.g.
nonempty) set of constants,F a set of functions, andP a set of predicates. We denote by
Term(C,F) and Atom(C,F ,P) the sets of ground terms and atoms induced by C and
F , resp. by C,F , and P; furthermore, Lit(C,F ,P) = {a, ∼a | a ∈ Atom(C,F ,P)}
is the set of ground literals, where ∼ is strong negation and a and ∼ a are contrary
literals; weak negation is denoted by ¬. The notions of free/bound variables and closed
formulas (sentences) are as usual.

Definition 1 (cf. [17]). A FOHT-model is a quadruple M = 〈Dh,H,Dt, T 〉, where
Dh and Dt are domains s.t. C ⊆ Dh ⊆ Dt, and H ⊆ T ⊆ Lit(D,F ,P) are sets of
literals such that T does not contain contrary literals and H does not contain constants
from Dt \Dh. The satisfaction relation M, w |= φ for w ∈ {h, t}, where h ≤ h, h ≤ t,
t ≤ t are totally ordered worlds, and a sentence φ is depending on the structure of φ as
follows (Tw = Term(Dw,F)):

– literal L: w = h ∧ L ∈ H or w =
t ∧ L ∈ T ;

– α ∧ β: M, w |= α and M, w |= β;
– α ∨ β: M, w |= α or M, w |= β;
– α → β: for every w′ ≥ w : M, w′ �|=

α or M, w′ |= β;
– ∀x α(x): for every w′ ≥ w and d ∈

Tw : M, w′ |= α(d);
– ∃x α(x): for some d ∈ Tw : M, w |=

α(d);
– ¬α: no w′ ≤w exists such that

M, w′ |= α;

– ∼ (α ∧ β): M, w |=∼α or M, w |=
∼β;

– ∼(α ∨ β): M, w |=∼α and M, w |=
∼β;

– ∼(α → β): M, w |= α and M, w |=
∼β;

– ∼¬α: M, w |= α;
– ∼∼α: M, w |= α;
– ∼ ∀x α(x): for some d ∈ Tw :

M, w |=∼α(d);
– ∼ ∃x α(x): for every w′ ≥ w and

d ∈ Tw : M, w′ |=∼α(d).
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M is a model of a closed formula φ, denoted M |= φ, if M, h |= φ and M, t |= φ. A
closed formula φ is valid in FOHT if φ is true in all models.

FOHT under the constant domain assumption, i.e., Dh = Dt, is denoted by
FOHTc; we then simplify FOHTc models to triples M = 〈D,H, T 〉 where D =
Dh = Dt.

In [17], equilibrium models were defined using minimal models for FOHTc similar
as in HT logic. A model M = 〈D,H, T 〉 of a theory Π over Σ is an equilibriummodel,
if (1) M is total, i.e., H =T , and (2) M is �-minimal among the models of Π , where
M1 � M2 holds for Mi = 〈Di,Hi, Ti〉, i = 1, 2, if D1 =D2, T1 =T2, and H1 ⊆H2

(tantamount Π has no model 〈D,H ′, T 〉 with H ′ ⊂ H).

QuantifiedMany-Valued Logic. The (quantified) many-valued logic N5 (QN5) allows
one to characterize the Kripke-style model semantics of HT-logic using a five-valued
matrix for the set T5 = {−2,−1, 0, 1, 2} of truth values. We also will use N3 (QN3)
with truth-values T3 = {−2,−0, 2}, when only total models are of interest.

Each k-ary connective F has an associated interpretation function fF : T k
5 → T5

as follows:

F x ∧ y x ∨ y ∼x ¬x x → y

fF min(x, y) max(x, y) −1·x
{
2 if x ≤ 0
−1·x otherwise

{
2 if x ≤ 0 or x ≤ y
y otherwise

Definition 2. A valuation (or truth-value assignment) is a function σ : Atom(C,
F ,P) → T5 that can be uniquely extended to a homomorphism from Σ to T5 via
σ(F (φ1, ..., φi)) = fF (σ(φ1), ..., σ(φi)).

Fig. 1. Truth table for x → y

For N3, interpretations and valuations are restricted to
T3. For S ⊆ Tk, a formula φ is S-satisfiable (resp., an S-
tautology) in Nk, if for some (every) valuation σ over Tk

it holds that σ(φ) ∈ S. In case S = {2}, we say Φ is sat-
isfiable (resp. valid). For instance, we give in Fig. 1 every
valuation for an implication with σ(x), resp., σ(y) shown
on the first column, resp., first row (the grey coloring of
cells is discussed in Sect. 4).

We use φ ≡k ψ to denote semantic equivalence in Nk, i.e., for every valuation σ
we have σ(φ) = σ(ψ). In N3, we then have that (x → y) ≡3 (¬x ∨ y) as σ(x → y) =
σ(¬x ∨ y) holds for all possible valuations of x and y. Note that this equivalence does
not hold for N5: e.g., for σ(x) = 1 and σ(y) = −2 we have σ(x → y) = −2 while
σ(¬x ∨ y) = −1.
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Proposition 1. The following equivalences hold for all formulas α, β, γ in Nk, k =
3, 5:

(i) α∧β ≡k β ∧α and α∨β ≡k β ∨α;
(ii) (α ∧ β) ∧ γ ≡k α ∧ (β ∧ γ)
(iii) α ∨ (β ∧ γ) ≡k (α ∨ β) ∧ (α ∨ γ);
(iv) α ∧ (β ∨ γ) ≡k (α ∧ β) ∨ (α ∧ γ);
(v) ¬¬¬α ≡k ¬α, and ∼∼∼α ≡k ∼α;

(vi) ∼(α ∨ β) ≡k (∼α∧ ∼β) and
∼(α ∧ β) ≡k (∼α∨ ∼β);

(vii) ¬(α ∨ β) ≡3 (¬α ∧ ¬β) and
¬(α ∧ β) ≡3 (¬α ∨ ¬β);

(viii) α → β ≡3 ¬α ∨ β.

In [17], QN5 models are pairs 〈D,σ〉, where D ⊇ C is the domain and σ a valuation
as above, which is extended to closed formulas by σ(∀x φ(x)) = min{σ(φ(t)); t ∈
T }, and σ(∃x φ(x)) = max{σ(φ(t)); t ∈ T }, where T = Term(D,F). If Dh �=
Dt, the many-valued semantics does not always coincide with the FOHT-semantics
as quantifiers are interpreted as supremum and infimum. However, under restriction to
constant domains, FOHTc-models and QN5-models tightly correspond.

Proposition 2. (Theorem 1, [17]). A bijection f between FOHTc-modelsM and QN5-
models exists s.t. for each formula φ, M |= φ iff f(M)(φ)= 2; hence, φ is is valid in
FOHTc iff it is valid in QN5.

Propositional N5-models (given by σ) can be converted from/to HT-models with the fol-
lowing table for truth-value assignments σ(p), where p ∈ Atom(C,F ,P) and H ⊆T
are as in Definition 1.

∼p ∈ H ∼p ∈ T∧ ∼p �∈ H p �∈ T∧ ∼p �∈ T p ∈ T ∧ p �∈ H p ∈ H
σ(p) −2 −1 0 1 2

Furthermore, [17] showed how�-ordering of HT-models can be transferred to N5’s
many-valued semantics. Given a theory Π over Σ in N5, the ordering σ1 � σ2 of N5-
models σ1, σ2 holds, if for every atom p ∈ Atom(C,F ,P) the following conditions
(1)–(3) hold:

(1) σ1(p)= 0 ⇔ σ2(p)= 0; (2) σ1(p)< 1 ∨ σ1(p)≤ σ2(p); and
(3) σ1(p)> −1 ∨ σ1(p)≥ σ2(p).

The equilibrium models of φ amount then to the �-minimal N5-models σ of φ where
no atom is assigned {−1, 1} (called total); intuitively, no model with less assignments
in {−2, 2} is possible.

Example 2. Consider the formula φ : ¬x → y and the following HT-models i1 – i5
(H ⊆ T ):

i1 : (∅, {x}), i2 : ({x}, {x}), i3 : ({x}, {x, y}), i4 : ({y}, {y}), and i5 : ({x, y}, {x, y}).

The corresponding N5 models are σ1 = {x �→ 1, y �→ 0}; σ2 = {x �→ 2, y �→ 0};
σ3 = {x �→ 2, y �→ 1}; σ4 = {x �→ 0, y �→ 2}; σ5 = {x �→ 2, y �→ 2}. The only
equilibrium model of φ among them is i4: indeed, i1 and i3 are not total models; i2 and
i5 are not minimal as i1 � i2 and i3 � i5.
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Table 1. IA relations with inverses and Allen’s naming in brackets

R Definition with start/end points R− Inverse definition

x(p)y before(x, y)=((x, y) : x < x < y < y) x(P )y after(x, y) = before(y, x)

x(m)y meets(x, y)=((x, y) : x < x = y < y) x(M)y metBy(x, y) = meets(y, x)

x(o)y overlaps(x, y)=((x, y) : x < y < x < y) x(O)y overlappedBy(x, y) = overlaps(y, x)

x(s)y starts(x, y)=((x, y) : x = y < x < y) x(S)y startedBy(x, y) = starts(y, x)

x(f)y finishes(x, y)=((x, y) : y < x < x = y) x(F )y finishedBy(x, y) = finishes(y, x)

x(d)y during(x, y)=((x, y) : y < x < x < y) x(D)y contains(x, y) = during(y, x)

x(e)y equal(x, y)=((x, y) : y = x < x = y)

Allen’s Interval Algebra. For temporal constraints, we will focus on Allen’s Time
Interval Algebra (IA) [1] and calculus. IA is based on time intervals and the binary
relations defined between them. The domain of IA relations is the set of intervals over
the linear order of T defined as [pi] = [pi, pi] with pi < pi. The 13 basic relations
are defined according to their start/end points [1] as shown in Table 1. We denote with
IAν(x, y) that a specific relation ν holds between the two intervals. The 13 basic rela-
tions give rise to 213 general relations. Note that several base relations can hold between
two events represented by intervals that can be open.

3 Qualitative Temporal Here-and-There Logic

We now extend the language with (binary) temporal relations, which allow one to state
formulas like (a∧ ∼c) overlaps (o1 ∨ o2) in the introductory example.

For the evaluation, we extend Σ to Σt = 〈C,F ,P,A〉, where A ⊆ L× (Z×Z) is a
relation that associates with each literal in L = Lit(C,F ,P) at most one time interval
from (Z × Z), where for contrary literals g and ∼g the associated intervals [x] and [y]
must be disjoint, i.e., [x] and [y] have no common point in time.

Formally, A induces a function τA : Lit(C,F ,P) → (Z×Z)∪{u} called temporal
assignment, where u is the undefined time instance, and for each g ∈ Lit(C,F ,P):

τA(g) =
{
u if (g, (t1, t2)) �∈ A,
(t1, t2) : (g, (t1, t2)) ∈ A otherwise.

In slight abuse of terminology, we will call A also temporal assignment. Note that
the assignment to contrary literals does not cover the whole timeline; intuitively, τ(g)
expresses that for this interval the truth value of g is certain. The value u stands for time
information that is non-evaluable, due to missing observations (at evaluation time), or
due to intervals that cannot be coalesced (as seen later).

Example 3. Consider a model M2 = 〈D, (H,A1), (T, A1)〉 with D = {x, y, z}
and the formula φ : (p(x) ∨ p(y)) ∧ ((p(x) before p(z)) ∨ (p(y) before p(z))).
A possible temporal assignment over which φ should be evaluated is A1 =
{(p(x), [1, 2]), p(y), [2, 3]), (p(z), [4, 5])}.
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To evaluate a formula a before b, say, where a and b are atoms, we can readily use
τ above to assess the temporal relationship of a and b. However, for complex formulas
α ν β, where α and β are non-atomic, as in case of (a ∧ ∼c) overlaps o1 ∨ o2, an
evaluation on the basis of τ is non-obvious in general. We thus restrict formulas by
disallowing nested temporal relations and some connectives.

Definition 3. A flat temporal formula (FTF) is of the form α ν β, where ν is a temporal
relation and α and β are closed formulas without temporal relations, implication→ and
weak negation ¬.

In the rest of this paper, we then consider formulas in the extended language in which
each occurring subformula α ν β is an FTF.

Coalescing. For the evaluation of formulas α and β nested in FTFs, we introduce
two coalescing operators, where we distinguish between coalescing intervals associated
with a conjunction resp. disjunction.

Definition 4. The coalescing operators coal∧(x, y) and coal∨(x, y) for the intervals
x = τ(α) and y = τ(β) associated with the literals α and β in α ∧ β resp. α ∨ β, are
as in the following table:1

x, y satisfy | x(p)y | x(m)y | x(o)y | x(s)y | x(f)y | x(d)y | x(e)y | x=u or y=u |
coal∧(x, y) | u | [x, x] | [y, x] | [x, x] | [x, x] | [x, x] | [x, x] | u |
coal∨(x, y) | u | [x, y] | [x, y] | [y, y] | [y, y] | [y, y] | [x, x] | u |

In Example 3, we have for instance that coal∨(τA1(p(x)), τA1(p(y))) = [1, 3].
Temporal assignments can then be generalized to formulas α and β inside FTFs by

a (nested) temporal assignment φ �→ τ∗
A(φ) where

τ∗
A(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τA(φ) if φ ∈ Lit(C,F ,P),
coal◦(τ∗

A(φ1), τ∗
A(φ2))) if φ : φ1 ◦ φ2, for ◦ ∈ {∧,∨},

τ∗
A(φ1) if φ =∼∼φ1,

τ∗
A(∼φ1∧ ∼φ2) if φ =∼(φ1 ∨ φ2),

τ∗
A(∼φ1∨ ∼φ2) if φ =∼(φ1 ∧ φ2).

By convention, we regard for τ∗
A conjunctions α ∧ β ∧ γ as α ∧ (β ∧ γ), and similar for

disjunctions.
Next, we introduce FOHTt

c-models over the extended signature Σt. They extend
FOHTc-models to tuples Mt = 〈D, (H,Ah), (T, At)〉, where D, H , and T are as
before, and Ah ⊆ At, are assignments.

Definition 5. The satisfaction relations |= for w ∈ {h, t}, where h, t are defined as
before, is extended based on Definition 1 with temporal relations, denoted as ν (e.g.,
ν := before):

– Mt, w |= (α ν β) if Mt, w |= α and Mt, w |= β, τ∗
w(α) �= u, τ∗

w(β) �= u, and
IAν(τ∗

w(α), τ
∗
w(β)) holds;

1 The entries for the inverse relations x(P )y, x(M)y, x(O)y, x(S)y, x(F )y, x(D)y are omit-
ted.
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– Mt, w |=∼(α ν β) if Mt, w |= α and Mt, w |= β, τ∗
w(α) �= u, τ∗

w(β) �= u, and
IAν(τ∗

w(α), τ
∗
w(β)) does not hold;

Note that Mt, w �|= α ν β iff either (i) Mt, w �|= α, (ii) Mt, w �|= β, (iii) τ∗
w(α) =

u, or (iv) τ∗
w(β) = u.

As previously, we call Mt a model of a closed formula φ, denoted as Mt |= φ if
Mt, h |= φ and Mt, t |= φ; validity is defined accordingly.

To lift the notion of equilibrium models, we need to adjust the minimality property
of FOHTc by taking temporal assignments into account.

Definition 6. A model Mt = 〈D, (H,Ah), (T,At)〉 of a theory Π over Σt is an equi-
librium model if

1. M is total, i.e., H = T and Ah = At, and
2. M is �′-minimal among the models of Π , where Mt

1 �′ Mt
2 holds, for Mt

i =
〈D, (Hi,Ai

h), (Ti,Ai
t)〉, i = 1, 2, if (i) T1 = T2, (ii) A1

h = A2
h,A1

t = A2
t and (iii)

H1 ⊆ H2.

That is, temporal assignments are frozen for model comparison. However, alternatives
may be considered that view the relation between A1 and A2 differently, which we
leave for further study.

In the (quantified) many-valued logics Nk resp. QNk, truth value assignments are
extended to temporal formulas, taking temporal assignments into account as follows.

Definition 7. An extended QNk, model is a triple 〈D,σ, τA〉, where D,σ and τA are
as before, such that σ maps non-temporal formulas φ to Tk as before, and temporal
formulas α ν β to Tk using τ∗

A, with ν as a temporal relation we have

σ(α ν β) =
1
2
·evalν(τ∗

A(α), τ∗
A(β))·min(σ(α), σ(β))

where (i) evalν(x, y) = 2 if x, y �= u and IAν(x, y) holds, (ii) evalν(x, y) = −2 if
x, y �= u and IAν(x, y) does not hold, and (iii) evalν(x, y) = 0 if x = u or y = u.

Note that the strong negation of a temporal formula evaluates to σ(∼ (α ν β)) =
−σ(α ν β).
Example 3 (cont.) For the formula φ, we look at the following five interpretations:
i1 : (∅, {(p(x), [1, 2])}), i2 : ({(p(x), [1, 2])}, {(p(x), [1, 2])}),i3 :({(p(x), [1, 2]), (p(z),
[4, 5])}, {(p(x), [1, 2]), (p(z), [4, 5])}), i4 : ({(p(x), [1, 2]), (p(y), [2, 3]), (p(z), [4, 5])},
{(p(x), [1, 2]), (p(y), [2, 3]), (p(z), [4, 5])}), and i5 : ({(p(y), [2, 3]), p(z), [4, 5])},
{(p(y), [2, 3]), (p(z), [4, 5])}). Only i3 and i5 are equilibrium models, since i1 is not
a total model, i2 is not a model, and i4 is not minimal since i3 � i4 as well as i5 � i4.
If A2 := A1 \ {(p(y), [2, 3])}, the only equilibrium model is i3, since τA2(p(y)) = u.
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4 Temporal Tableau Calculus

As described in [16], the validity of a set of N3 formulas (similarly for N5) can be
checked by a labeled tableau system, where possible truth-values are assigned as labels
(also called signs) in tableau nodes. Then total models can be generated by applying the
tableau rules that work with labels over the set T3 = {−2, 0, 2} of truth values. We first
present the (labeled) non-temporal tableau system in [16], on which we then build our
temporal tableau system.

Tableau system for total models. A tableau system applies
expansion rules (as given in Defn. 8) on an initial tableau
Π = {φ1, ..., φn} of arbitrary N3 formulas, the initial tableau
is defined as shown on the right:

{2} : φ1

. . .

{2} : φn

Definition 8. The tableau expansion rules capture the connectives of N3 in the stan-
dard way; we show them for all connectives, where the label S is from S := {{2}, {0, 2},
{−2, 0}, {−2}}, S+ from S+ := {{2, 0}, {2}} and S− from S− := {{−2, 0}, {−2}}:

S+ : φ ∧ ψ

S+ : φ
S+ : ψ

S− : φ ∧ ψ

S− : φ | S− : ψ

S+ : φ ∨ ψ

S+ : φ | S+ : ψ

S− : φ ∨ ψ

S− : φ
S− : ψ

S+ : φ → ψ

{−2, 0} : φ | S+ : ψ

S− : φ → ψ

{2} : φ
S− : ψ

S+ : ¬φ

{−2, 0} : φ

S− : ¬φ

{2} : φ

S : ∼φ

(−1)·S : φ

where (−1)·S = {(−1)·x | x ∈ S}. Only the labels in S are relevant for the tableau
expansion, e.g., {0} does not occur. The expansion rules for a connective are computed
based on the coverage in its truth table [7]. For instance, the implication connective
was computed based on Fig. 1 with one rule for S− covering the non-blank cells, and
another rule for S+ as disjunction covering the blank cells.

Definition 9. A tableau T is generated by the tableau system for Π = {φ1, ..., φn} by
applying the above tableau expansion rules on formulas S : φ, where S ∈ S, expanding
it to one or more branches. After use, formulas are marked for each branch, so are
applicable only once per branch. A branch in T is

– closed, if for a formula φ in it, there are labels S1 : φ, S2 : φ with S1 ∩ S2 = ∅;
– finished, if all its formulas are marked, and is open if it is finished and not closed.

T is closed, if every branch is closed, it is open if at least one branch is open, and it is
terminated if every branch is either closed or open.

Based on the above definition, the total models of a conjunction φ1 ∧ · · · ∧ φn of N3

formulas, represented as a set Φ = {φ1, ..., φn}, are generated by the tableau system
from the open branches of a tableau T for Φ, where for an atom pi a truth assignment
σ(pi) ∈ Si is taken from the signed literals Σ = {S1 : p1, ..., Sn : pn} of an open
branch in T (Theorem 3 in [16]); notably, if pi does not occur in Σ, any truth value can
be assigned to it.
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Example 4. For Φ = { ∼ q,¬p → q,¬r → p} [16], the generated tableau tree is
given in Fig. 2a. For the two open branches, we can derive three models: i1 : ({p, ∼
q, r}, {p, ∼ q, r}), i2 : ({p, ∼ q}, {p, ∼ q}), and i3 : ({p, ∼ q, ∼ r}, {p, ∼ q, ∼ r});
only i2 is minimal, as i2 � i1 as well as i2 � i3.

Validity of a formula φ in N3 can be established via a tableau proof, which is any
closed tableau T for ¬φ. We write �N3 φ in this case.

Definition 10. A branch θ in T is satisfiable, if for every signed formula Si : φi on θ,
there is a valuation such that σ(φi) ∈ S1 ∩ · · · ∩ Sn where S1 : φi to Sn : φi are on
branch θ. A tableau T is satisfiable if at least one branch of T is satisfiable.

We recall from [9] that soundness, resp., completeness, of a tableau system is, if a
theory Π has a tableau proof, then Π is a tautology, i.e., �N3 Π implies |=N3 Π , resp.,
if Π is a tautology, then Π has a tableau proof, i.e., |=N3 Π implies �N3 Π . Both were
merely sketched in Theorem 2 of [16]. However, Fitting’s method [9] can be extended
to show soundness by establishing that satisfiability is a tableau system’s loop invariant.
For the completeness proof, we follow the generic approach by Hähnle [10] and use its
machinery. Due to space limitations, we only show the proofs for the temporal tableau
system since the non-temporal system is its special case.

Temporal Tableau Extension. A temporal tableau system is an extension of the non-
temporal tableau of the previous section and introduces the process of signing up N3

formulas with temporal labels. Besides the existing labels of tableau nodes, we also
sign-up formulas in the tableau according to given temporal assignments A, where the
functions τ and τ∗ are defined as before.

Definition 11. Given a set A of pairs (p, [x]) inducing a temporal assignment τ and a
formula φ, we let tA(φ) = {(p, [x]) ∈ A | p = a or p =∼ a, a ∈ atm(φ)} denote
the local temporal assignment for φ w.r.t. A, where atm(φ) denotes the set of atoms
occurring in φ.

Temporal tableau system for total models. A temporal
tableau system applies expansion rules on an initial tableau
Π = {φ1, ..., φn} of (Π,A) with the temporal assignment
A; the initial tableau, shown to the right, includes labels with
temporal assignments denoted as S : (φi)tA(φi).

{2} : (φ1)tA(φ1)

. . .

{2} : (φn)tA(φn)

Definition 12. The tableau expansion rules from above are extended with temporal
assignments; we show some exemplary rules; the other rules can be extended similarly:

S+ : (φ ∧ ψ)A′

S+ : (φ)tA′ (φ)
S+ : (ψ)tA′ (ψ)

S+ : (φ ∨ ψ)A′

S+ : (φ)tA′ (φ) | S+ : (ψ)tA′ (ψ)

S : (∼φ)A′

(−1) · S : (φ)tA′ (φ)

Note that the assignments tA′(φ) and tA′(ψ) are easily calculated from A′ and φ
resp. ψ; in any tableau extending the initial tableau, they amount to tA(φ) resp. tA(ψ)
for the given assignmentA. The reason for the use of (local) assignments in each branch
relates (besides it is purely syntactical nature) to future work, where nested temporal
formulas and multiple intervals per literal could be allowed.
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Furthermore, there are additional expansion rules for temporal formulas:

{2}, {−2} : (φ ν ψ)A′

{2} : (φ)τ∗
A′ (φ)

{−2} : (φ)τ∗
A′ (φ)

if E = 0
{0, 2}, {0, −2} : (φ ν ψ)A′

{0, 2} : (φ)τ∗
A′ (φ) | {0, −2} : (φ)τ∗

A′ (φ)
if E = 0

S : (φ ν ψ)A′

S+ : (φ)τ∗
A′ (φ)

S+ : (ψ)τ∗
A′ (ψ)

1
2 ·E·S = S+ S : (φ ν ψ)A′

S− : (φ)τ∗
A′ (φ) | S− : (ψ)τ∗

A′ (ψ)

1
2 ·E·S = S−

where E := evalν(τ∗
A′(φ), τ∗

A′(ψ)) is as in Definition 7. Since the temporal formula
must evaluate to 0 if E = 0, the upper left rules generate a closed branch and the upper
right rules a branch that cannot be closed. The lower left rules work only for S+ =
{0, 2} and S+ = {2}: E �= 0 must hold. If E = 2, the input S must be {0, 2} resp.
{2} and the case amounts to conjunction; if E = −2, the input must be {0,−2} resp.
{−2} and the case amounts to conjunction of the strongly negated formulas φtA′ (φ)
and ψtA′ (ψ). The lower right rule similarly requires E �= 0. It covers for E = 2 and
S = {0,−2}, {−2} the conjunction of the sub-formulas, and for E = −2 and S =
{0, 2}, S = {2} the conjunction of the strongly negated sub-formulas. This reflects the
truth value assignment described in Definition 7.

A tableau Tt is generated from the tableau system on (Π,A) by applying the above
expansion rules on formulas S : φA′ to expand it to one or more branches. The formulas
are marked for each branch after being used. The notions of closed, finished, and open
branch in Tt can be carried over, and similarly whether Tt is closed or open.

Definition 13. Given a tableau system (Π,A), a temporal tableau proof is a closed
tableau Tt for {¬Π} and A; Π is a theorem in this case.

Next, we show soundness for the temporal tableau system.

Definition 14. Let Φ = {(φi)tA(φi) | i = 1, . . . , n} be temporal assigned formulas
for A. Then, (Φ,A) is satisfiable for T3, if for some valuation σ (with τ∗ embedded),
σ((φi)tA(φi)) = 2 for all i = 1, . . . , n. A branch θ in a temporal tableau Tt is satisfi-
able, if for some valuation σ every formula S : (φ)tA(φ) on θ fulfills σ((φ)tA(φ)) ∈ S.
A temporal tableau Tt is satisfiable under A, if some branch of Tt is satisfiable.

Proposition 3. Any application of the tableau expansion rules defined in Definition 12
to a satisfiable tableau yields another satisfiable tableau.

Proof. Assume a tableau Tt that is satisfiable, and a tableau expansion rule is applied
to Tt to a signed formula Si : φA′ resulting in the tableau Tt′

; we show that Tt′
is also

satisfiable. We distinguish several cases as follows, where we choose some satisfiable
branch θ′ in Tt (which must exist):

Case 1 θ′ �= θ: The rule was applied to θ, hence θ′ and Tt′
are still satisfiable.

Case 2 θ′ = θ. We distinguish between sub-cases depending on the tableau expan-
sion rule type:

Case 2a Si : (φ1 ∧ φ2)A′ : As (φ1 ∧ φ2)A′ is on the branch already, it is satisfied by
some valuation σ, and w.l.o.g. σ(φA′) = σ((φ1 ∧ φ2)A′) ∈ Si. If Si = {0,−2}, {−2},
then σ(φA′) ≤ 0 and by the expansion rule Si : φA′ may be put on θ′, and so θ′ remains
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satisfiable. Otherwise, if Si = {0, 2}, {2}, both Si : (φ1)tA′ (φ1) and Si : (φ2)tA′ (φ2)

are on the branch θ′, and as σ((φ1)tA′ (φ1)) ≤ σ((φ2)tA′ (φ2)) holds σ((φ2)tA′ (φ2)) ∈ Si

hold as well. Thus, θ′ is satisfiable and Tt′
is satisfiable.

Case 2b Si : (φ1∨φ2)A′ : The argument is similar to the one on Case 2a, respecting
max(x, y) for ∨ instead of min(x, y) for ∧.

Case 2c Si : (∼ φi)A′ : Here, θ was sequentially extended with (−1) · Si :
(φi)tA′ (φi) resulting in Tt′

. Satisfiability is preserved since σ((φi)tA′ (φi)) ∈ (−1) · Si

iff σ((∼φi)A′) ∈ Si by Definition 2.
Case 2d Si : ¬(φi)A′ : Based on Definition 2, we have two subcases, for

σ(¬(φi)A′) ∈ Si: where (i) σ(¬(φi)A′) = 2 or (ii) σ(¬(φi)A′) = −2. By the expan-
sion rules of Definition 8, in case (i) θ was sequentially extended with {−2, 0} : (φi)A′ ,
and in case (ii) with {2} : (φi)A′ . As with Case 2c, satisfiability is preserved as
σ(¬(φi)A′) = 2 implies σ((φi)A′) ∈ {−2, 0} respectively σ(¬(φi)A′) = −2 implies
σ((φi)A′) ∈ {2}.

Case 2e Si : (φ1 → φ2,)A′ : Let x := σ((φ1 → φ2)A′). For Si = {2} or Si =
{−2}, the expansion rules of Definition 8 clearly preserve satisfiability via Definition 2.
For Si = {0, 2}, in case x = 2 satisfiability is preserved by the branch {−2, 0} :
(φ1)tA′ (φ1) if σ((φ1)tA′ (φ1)) = −2 or σ((φ1)tA′ (φ1)) = 0, and by the branch {0, 2} :
(φ2)tA′ (φ2) if σ((φ2)tA′ (φ2)) = 2; likewise, if x = 0 satisfiability is preserved by the
branch {0, 2} : (φ2)tA′ (φ2) as σ((φ2)tA′ (φ2)) = 0. Finally, for Si = {−2, 0}, in case
x = −2 (resp., x = 0) by Definition 2 σ((φ1)tA′ (φ1)) = 2 and σ((φ2)tA′ (φ2)) = −2
(resp., σ((φ2)tA′ (φ2)) = 0), which are in the respective labels {2} and {−2, 0}. Thus,
satisfiability of Tt′

is preserved.
Case 2f Si : (φ ν ψ)A′ : We distinguish three cases according to E :=

evalν(τ∗
A′(φ), τ∗

A′(ψ)):

(i) E = 0. We have σ((φ ν ψ)A′) = 1
2 ·min(σ(φ), σ(ψ)) = 0; as θ is satisfiable, the

rule for E = 0 cannot be applied.
(ii) E = 2. As θ is satisfiable, min(σ(φ), σ(ψ)) ∈ S. Now if the rule for 1

2E·S = S+

is applied, we have S = S+ = {0, 2} or S = S+ = {2}; hence σ(φ) ∈ S+

and σ(ψ) ∈ S+follows, and thus θ′ is satisfiable. If the rule for 1
2E·S = S− is

applied, we have S = S− = {0,−2} or S = S− = {−2}; thus, either σ(φ) ∈ S−

or σ(ψ) ∈ S− must hold. Hence, extending θ with S− : (φ)τ∗
A′ (φ) resp. S− :

(ψ)τ∗
A′ (ψ) yields a satisfiable branch θ′ and Tt′

is satisfiable.
(iii) E = −2. The argument is analogous to the one for the case E = 2. ��

Case 2f takes nested FTFs into account, hence θ′ is only expanded by non-temporal
rules applied to Si : (φ)τ∗

A′ (φ) and Si : (ψ)τ∗
A′ (ψ) with the local temporal assignments

τ∗ carried over. They do not affect satisfiability in derived branches of θ′, but are needed
to evaluate minimal models and future work, where also nested temporal formulas are
allowed.

Proposition 4. If there is a closed tableau for (Π,A), then (Π,A) is not satisfiable.

Proof. Assume towards a contradiction that we have a closed tableau while (Π,A)
is satisfiable. We construct a tableau Tt from (Π,A) with the initial branch θ that is
constructed from (Π,A) and is satisfiable. Then according to Proposition 3, either θ or
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one of the successor branches of θ will not be closed, hence we obtain a contradiction
to the assumption. ��

Theorem 1. (Soundness) If (Π,A) has a tableau proof, then (Π,A) is a tautology.

Proof. As a consequence of Proposition 4, if there is a closed tableau for the set {¬Π}
of negated temporal N3 formulas and A, then {¬Π} is not a satisfiable set. It follows
that (Π,A) is a tautology. ��

Completeness is shown based on propositional Hintikka sets for the many-valued
setting, enriched with further (local) temporal assignments. We follow the generic app-
roach in [10] and use its machinery.

A many-valued sets-as-signs (mvs) Hintikka set is a set Φ of signed formulas such
that

(H1) Φ is open, i.e., there are no signed formulas S1 : φ, . . . , Sn : φ in Φ such that⋂n
i=1 Si = ∅, nor any formulas S : γ(φ1, . . . , φm) such that S ∩ rg(γ) = ∅,

where rg(γ) are the possible truth values for the connective γ, and
(H2) if φ = S : γ(φ1, . . . , φm) is in Φ and ψ =

∨l
i=1 Ci is some sets-as-signs

DNF representation of φ, then for some Ci =
∧ni

j=1 Si,j :ψi,j , it holds that
{Si,1 :ψi,1, . . . , Si,ni

:ψi,ni
} ⊆ Φ.

Here γ is a connective and a sets-as-signs DNF representation of φ is a satisfiability
preserving formula ψ of the given form where each Si,j is from S ∪ {{0}} and each
ψi,j is from φ1, . . . , φm. Then

Proposition 5 (cf. [10]). Every mvs-Hintikka set Φ has a model, i.e. a truth assignment
σ such that σ(φ) ∈ S for each S : φ ∈ Φ.

Notably, from DNF representations corresponding tableau rules can be readily
obtained.

Definition 15 (Defn. 33 in [10]). Let φ = S : γ(φ1, . . . , φm) , m ≥ 1, be a
signed formula. Given a sets-as-signs DNF representation

∨l
i=1 Ci of φ where Ci =∧ni

j=1 Si,j :φi,j , the corresponding sets-as-signs tableau expansion rule for φ is, where∧
ψ∈F ψ = Ci:

S : γ(φ1, . . . , φm)
F1 | · · · | Fl .

From Proposition 5, we can then conclude that an open branch θ in a tableau T for a
formula ¬Π on which all possible rules have been applied, is an mvs-Hintikka set and
thus has a model; hence, ¬Π is satisfiable. It follows that if Π is valid then a tableau
proof for Π exists.

We extend mvs-Hintikka sets and sets-as-signs DNFs to the temporal setting for
formulas S : φA′ where S : φ is a signed temporal formula labeled with a temporal
assignment A′ as in the extension of the tableau rules. As for temporal operators, we
observe:
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Lemma 1. Every FTF formula φ = (φ ν ψ) can be viewed as a formula γE(φ1, φ2)
where E := evalν(τ∗

A(φ1), τ∗
A(φ2)), i.e. as a connective γE depending on the operator

ν and the assignment A.

In (H1), the notion of open set is extended by labeling each Si : φi resp. S :
γ(φ1, . . . , φm) with an assignment A′; in (H2), the notion of sets-as-sign DNF rep-
resentation is extended by requiring that satisfiability of φ = S : γ(φ1, . . . , γm)A′ is
preserved by ψ =

∨l
i=1 Ci, with Ci =

∧ni

j=1 Si,j : ψi,jA′
i,j
, where each formula αA′

is evaluated using the assignment A′. Proposition 5 then generalizes to the resulting
temporal mvs-Hintikka sets.

For our concerns, we note that the tableau rules above ensure for the formulas on a
temporal tableau Condition (H2).

Example 5. This example shows the theories Φ1 = {{2}:(a ∨ b)A1 , {2}:(a before
c)A2 , {2}:(c)A3}, and Φ2 = {{2}:(a ∧ b)A1 , {2}:(b before c)A4 , {2}:(c)A3}, where
the temporal assignments are not given but we assume that eval(p)(τ∗

A2
(a), τ∗

A2
(c)) = 2

and eval(p)(τ∗
A4

(b), τ∗
A4

(c)) = −2. Then Φ1 can be represented by a mvs-Hintikka set
since Condition (H2) is fulfilled as it can be converted from CNF to sets-as-sign DNF;
(H1) is fulfilled since for all formulas, the signs do overlap. Φ2 is not representable by
a mvs-Hintikka set since (H1) is violated by {−2}:b or {−2}:c that are derived from
{2}:(b before c).

Lemma 2. Every temporal tableau expansion rule of Definition 12 corresponds to a
temporal set-as-signs DNF representation for S : γ(φ1, . . . , φn)A′ .

Proof. By inspecting the expansion rules of Definition 12, we can see that they are
already in the form of Definition 15. The sets-as-signs representation were computed
directly from the coverage of the truth tables (as illustrated by Fig. 1), which is accord-
ing to [10] an eligible method.

Thus, the formulas on an open branch in a temporal tableau T for (Π,A) form a
temporal mvs-Hintikka set and are satisfiable if each formula S : φA′ is evaluated with
assignment A′. However, each such A′ is by construction the restriction of A to the
literals relevant for φ, i.e. A′ = tA(φ), and thus σA′(φ) = σtA(φ)(φ) = σA(φ) holds
for every truth assignment σ. Consequently,

Proposition 6. Every open branch θ in a temporal tableau T for (Π,A) on which all
possible rules have been applied, has a model and hence ¬Π is satisfiable under A.

We then readily obtain the claimed completeness result for the temporal tableau
calculus.

Theorem 2. (Completeness) If a temporal N3 formula Π is a tautology with the tem-
poral assignment A, then (Π,A) has a temporal tableau proof.

Proof. Towards a contradiction, suppose that (Π,A) has no temporal tableau proof.
Hence no closed temporal tableau for {¬Π} and A exists, which implies that some
temporal tableau T for {¬Π} and A with an open branch θ exists on which all possible
rules have been applied. By Proposition 6 ¬Π is satisfied by some truth value assign-
ment σ, i.e., σ(¬Π) = 2; hence σ(Π) �= 2, which means Π is not a tautology, which
is a contradiction. ��
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5 Prototypical Implementation

As for the implementation of a tableau prover, it may be convenient to restrict the input
formulas to a specific form. Well-known such forms are CNF, DNF, as well as negation
normal form (NNF). For our concerns, we may consider a temporal version of CNF.

Definition 16. A temporal conjunctive normal form (CNF) in N3, is a conjunction∧n
i=1 Ci of clauses Ci = Li1 ∨ ... ∨ Lim , where each Lij is of the form α, ∼ α, ¬α,

¬¬α, or ¬ ∼ α, where α is either an atom or an FTF formula. Temporal disjunctive
normal form (DNF) in N3 is defined dually as usual.

By means of equivalence preserving rewritings, every temporal formula in N3 that we
consider can be rewritten to temporal CNF (and similarly, to temporal DNF); indeed,
Proposition 1 generalizes to the case where α, β, and γ can be FTFs. In addition, any
FTF α ν β can be due to the definition of τ∗

A(α ν β) be rewritten into NNF (i.e. α and β
become NNF) by applying Proposition 1. We remark that a temporal CNF is infeasible
for N5 as there is no equivalence preserving rewriting for implications.

Implementation. We have implemented an initial temporal tableau solver in Python
3.7, which currently evaluates N3-theories in temporal CNF. The solver is intended for
prototyping and no optimization techniques of modern tableau solvers are implemented.
It also includes a model generator, and outputs all models extracted from the open
branches in a tableau. The implementation is available on https://github.com/patrik999/
EL-TempTableau, and is used to evaluate the cased study.

Case Study.We recall the slightly modified theory Π of Example 1 and the assignment
A :

Π = {¬a ∨ b, ∼c, ((a∧ ∼c) (o) (o1 ∨ o2)) ∨ ((b ∧ c) (o) (o1 ∨ o2)), o1, o2},
A = {(a, [1, 4]), (b,u), (c, [1, 2](∼c, [3, 5]), (o1, [1, 3]), (o2, [3, 5])}.

The tableau tree for Π is shown in Fig. 2b, where o is short for (o) and
the temporal assignments are for instance (all others are derivable accordingly):
A1 = {(a, [1, 4]), (b,u)}, A3,1,1 = {(a, [3, 4]), (∼ c, [3, 4])}, and A3,1,2 =
{(o1, [1, 5]), (o2, [1, 5])}. For the two open branches, we can derive two models, where
the temporal assignments can be seen in A3,1,1 and A3,1,2. Two branches were closed
since the a temporal formula was evaluated over (b,u), thus the expansion rule for
E = 0 was applied. The leftmost branch was closed due to {−2}:a and {2}:a being on
the same branch.

https://github.com/patrik999/EL-TempTableau
https://github.com/patrik999/EL-TempTableau
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{2} : (¬a ∨ b)A1 �

{−2} : (c)A2 �

{2} : (((a∧ ∼c) o (o1 ∨ o2)) ∨ ((b ∧ c) o (o1 ∨ o2)))A3 �

{2} : (o1)A4

{2} : (o2)A5

{2} : (¬a)A1,1

{2} : ((a∧ ∼c) o (o1 ∨ o2))A3,1 �

{2} : (a∧ ∼c)A3,1,1 �

{2} : (o1 ∨ o2)A3,1,2

{2} : (a)A3,1,1,1

{−2} : (c)A3,1,1,2

×

{2} : ((b ∧ c) o (o1 ∨ o2)))A3,2

×

{2} : (b)A1,2

{2} : ((a∧ ∼c) o (o1 ∨ o2))A3,1 �

{2} : (a∧ ∼c)A3,1,1 �

{2} : (o1 ∨ o2)A3,1,2 �

{2} : (o1)A3,1,2,1

{2} : (a)A3,1,1,1

{−2} : (c)A3,1,1,2

�

{2} : (o2)A3,1,2,2

{2} : (a)A3,1,1,1

{−2} : (c)A3,1,1,2

�

{2} : ((b ∧ c) o (o1 ∨ o2)))A3,2

×

Fig. 2. Tableau tree for (a) Example 4 on the left and (b) the case study on the right

6 Related Work and Conclusion

This work is inspired by Temporal Behavioral Models [5] and builds mainly on here-
and-there (HT) logic [13] and Equilibrium Logic [17], with a tableau system for rea-
soning [16]. The syntax/semantics presented in [17] is extended with temporal assign-
ments/relations, which then affect the extension of the tableau system of [16]. In a
broader perspective, the work is related to tableau calculi for many-valued logics [7]
and to nested expressions in logic programs [15], but neither of them considers the
temporal setting. Qualitative temporal reasoning was introduced to ASP by Brenton
et al. [4] and Janhunen and Sioutis [14], where the former encoded temporal relations
in ASP directly while the latter presented a hybrid-approach based on an extension of
ASP with difference logic. Both focused on a particular encoding in ASP but did not
provide a novel semantics nor a respective tableau system. With Metric Temporal ASP
[6] and DatalogMTL under stable models semantics [18], Cabalar et al. and Walega et
al. respectively, extended HT and Equilibrium logic, defining metric linear time con-
nectives such as always or until over finite respectively infinite traces. Our approach is
different from them regarding (a) the language, which is in [18] and [6] restricted to
rules, (b) the (qualitative) temporal relations of Allen’s Time Interval Algebra, and (c)
the temporal annotation instead of trace-based valuation of time. Arias et al. [2] focused
on goal-oriented top-down execution of Constraint ASP, which differs from our aim of
model generation; in principle, one could encode intervals by fluents in this framework.

This work provides the initial step towards a framework for an abduction-based traf-
fic diagnosis framework. Temporal behavior formulas (TBFs) [5] can be used in it to
define relations between explanations and observations that take temporal constraints
into account, where the constraints are based on Allen’s IA [1]. Since TBFs offer lim-
ited expressive means, we have introduced a novel language that allows for nesting of
temporal formulas, where associated time intervals are coalesced, and temporal assign-
ments can express undefined time instances. We provided for this language a semantics
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based on an extension of HT logic and Equilibrium logic [17]. For reasoning, we have
extended the three-valued propositional tableau calculus for HT logic in [16] with tem-
poral expansion rules and provided soundness and completeness results. Furthermore,
we have implemented a proof-of-concept prototype and demonstrated it on a case study.

Outlook. The work on the new language and the temporal tableau system can be
extended in several directions. One direction is to equip the tableau system with mini-
mality checking of models in order to support Equilibrium logic semantics. Pearce et al.
[16] considered for this the use of sub-tableaux. However, we believe that an approach
to minimality checking akin to the modular one in [3], which uses a super-dependency
graph derived from an atom-clause dependency graph, could be more attractive. In con-
nection with this, alternative notions of minimal models may be considered that allow
for differences in temporal assignments. Regarding syntactic extensions of the language,
richer nesting in temporal formulas may be investigated, e.g., restricted or arbitrary use
of weak negation or temporal formulas. This however would require redefining (unde-
fined) time instances and coalescing. Another direction is refined temporal semantics,
where undefinedness may be avoided in some cases (e.g., (α before α) should always
evaluate to false), or where literals are assigned with sets of intervals rather than a sin-
gle interval. The current tableau system was designed for N3, but it can be extended
to N5, moreover in combination with quantifiers. Finally, we aim to advance the proof-
of-concept implementation of the prototype, using optimization techniques of tableau
reasoners, and to evaluate an improved reasoner on benchmarks for temporal reasoning,
e.g., on traffic flows [8].

Acknowledgements. This work was supported by the Humane AI Net project (ICT-48–2020-
RIA/952026).
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Abstract. Abstract dialectical frameworks (ADFs) are a well-studied
generalisation of the prominent argumentation frameworks due to Phan
Minh Dung. In this paper we propose to use reduced ordered binary deci-
sion diagrams (roBDDs) as a suitable representation of the acceptance
conditions of arguments within ADFs. We first show that computational
complexity of reasoning on ADFs represented by roBDDs is milder than
in the general case, with a drop of one level in the polynomial hierarchy.
Furthermore, we present a framework to systematically define heuris-
tics for search space exploitation, based on easily retrievable properties
of roBDDs and the recently proposed approach of weighted faceted
navigation for answer set programming. Finally, we present preliminary
experiments of an implementation of our approach showing promise both
when compared to state-of-the-art solvers and when developing heuristics
for reasoning.

Keywords: Abstract dialectical frameworks · Binary decision
diagrams

1 Introduction

Computational argumentation is an active research topic within the broader
field of Artificial Intelligence, which provides dialectical reasons in favour of or
against disputed claims [3]. Deeply rooted in non-monotonic reasoning and logic
programming, formal frameworks for argumentation provide the basis for hetero-
geneous application avenues, such as in legal or medical reasoning [2]. Within the
field, formalisms in so-called abstract argumentation have proven to be useful for
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argumentative reasoning. Here arguments are represented as abstract entities,
and only the inter-argument relations decide argumentative acceptance, which is
formalized via argumentation semantics. Several semantics exist, ranging from
a more skeptical to a more inclusive stance towards acceptance of arguments.

Based on the prominent approach by Dung [12], a core formal approach
to abstract argumentation are abstract dialectical frameworks [7], or ADFs for
short, which also represent arguments as abstract entities, and allow for flexible
relations between arguments, modelled as Boolean functions. Recently, ADFs
were shown to be applicable in the legal field [1], in online dialog systems [20],
and also for text exploration [9].

However, ADFs face the barrier of high complexity of reasoning [16,24],
reaching up to the third level of the polynomial hierarchy. To address this
obstacle, several approaches were proposed and studied: considering various frag-
ments of the ADF language [18], quantified Boolean formulas [11], and utilizing
advanced techniques in answer set programming [6,23].

A method for addressing high complexity, nevertheless, was not considered
so far in depth for (abstract) argumentation: knowledge compilation [10]. A
key principle behind knowledge compilation is that tasks of high complex-
ity are translated to formal languages where reasoning has milder complex-
ity, while at the same time taking possible translation performance issues into
account. Applying techniques of knowledge compilation to abstract argumenta-
tion appears natural: abstract argumentation formalisms themselves can be seen
as “argument compilations” of knowledge bases, e.g., ADFs can be instantiated
from knowledge bases [22].

In this paper we take up the opportunity to fill this gap in the research land-
scape and propose to model a lingering source of complexity of ADFs, namely
that of representing acceptance conditions per argument, via the prominent lan-
guage of binary decision diagrams (BDDs) [8], with the following main contri-
butions.

– We first formally introduce ADFs whose acceptance conditions are repre-
sented via BDDs.

– We show that complexity of reasoning for ADFs represented via reduced and
ordered BDDs enjoys the same complexity (drop) as bipolar ADFs [24] or
argumentation frameworks [13], after the compilation procedure.

– The representation via BDDs opens up a different opportunity: poly-time
decidability of several tasks on BDDs allows to extract various kinds of infor-
mation from the ADF. We use a recently proposed framework [15] that allows
for exploring search spaces to arrive at a framework for developing heuristics
for reasoning in ADFs.

– We present preliminary experiments showing promise of our approach in two
directions: while at current we do not outperform the state-of-the-art ADF
solver k++ADF [18], our results suggest that (i) computing the grounded
semantics is as good via our approach than for k++ADF (including com-
pilation times) and (ii) heuristics based on our framework show promise of
performance increase.
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a ϕa = (a → (b ∨ ¬c)) ∧ (¬d ∨ b)

b

ϕb = ¬c

c

ϕc = b ∧ ¬d

d

ϕd = c

Fig. 1. Components of example ADF D1, where the node labels represent statements
and the attached formulae represent the respective acceptance condition.

2 Background

Abstract Dialectical Framework. We recall basics of Abstract Dialectical Frame-
works (ADFs) and refer the interested reader to the recent Handbook of Formal
Argumentation [3,7] for more details.

Definition 1. An ADF is a triple D := (S,L,C) where S is a fixed finite
set of statements; L ⊆ S × S is a set of links; and C := {ϕs}s∈S consists of
acceptance conditions for statements, which correspond to propositional formulas
ϕ ::= s ∈ S | ⊥ | � | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) over the parents
P (s) := {s′ ∈ S | (s′, s) ∈ L} of statement s.

Since links can be determined by acceptance conditions, throughout this paper
we will mostly omit links and simply define ADFs as a tuple consisting of state-
ments and their respective acceptance conditions.

Example 1. Let D1 = ({a, b, c, d}, {(a → (b ∨ ¬c)) ∧ (¬d ∨ b),¬c, b ∧ ¬d, c}).
Figure 1 illustrates the components of D1.

The semantics of ADFs are based on three-valued interpretations. An interpre-
tation is a function I : S → {t, f ,u} that maps each statement to either t
(true), f (false) or u (undefined). An interpretation I is two-valued, denoted
by I2, if I(s) ∈ {t, f} for each s ∈ S. We define an information ordering ≤i

such that ≤i is the reflexive transitive closure of <i and u <i v for v ∈ {t, f}.
This ordering is extended to interpretations by I ′ ≤i I iff I ′(s) ≤i I(s) for each
s ∈ S, and I ′ <i I if I ′ ≤i I and for some s ∈ S we have I ′(s) <i I(s). By
ϕ[I] := ϕ[s/� : I(s) = t][s/⊥ : I(s) = f ] we define the partial evaluation of ϕ
with respect to I.

Definition 2. Let D = (S,C) be an ADF and I be a three-valued interpreta-
tion over S. The characteristic operator ΓD(I) = I ′ is defined by the revisited
interpretation I ′ of I, such that

I ′(s) =

⎧
⎪⎨

⎪⎩

t if |= ϕs[I];
f if ϕs[I] |= ⊥;
u otherwise.
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We are now in position to define Dung’s standard semantics for ADFs.

Definition 3. Let D = (S,C) be an ADF, and I a three-valued interpretation.
Interpretation I is admissible in D if I ≤i ΓD(I); I is complete in D if I =
ΓD(I); I is grounded in D if I is the least fixed-point of ΓD; and I is preferred
in D if I is ≤i-maximal admissible in D.

A complete interpretation I is called a model of D if I is two-valued.

Definition 4. Let D = (S,C) be an ADF and I2 be a two-valued interpretation.
Define the reduced ADF DI2 := (SI2 , CI2) where SI2 := {s ∈ S | I2(s) = t}
and CI2 := {ϕs[s′/⊥ : I2(s′) = f ] | s ∈ SI2 , s′ ∈ S}. If I2 is a model of D and
for the grounded interpretation G of DI2 it holds that I2(s) = t implies G(s) = t,
then I2 is a stable model of D.

Main reasoning tasks on ADFs under a semantics σ include credulous reasoning,
i.e., asking whether there is a σ interpretation assigning a queried statement to
true, and skeptical reasoning, i.e., is it the case that all σ interpretations assign
a queried statement to true. Verification refers to the task of deciding whether
a given interpretation is a σ interpretation.

Example 2 (cont’d). The grounded interpretation of D1 is {a 
→ u, b 
→ u, c 
→
u, d 
→ u}. This interpretation is also complete in D1. D1 has no stable models.

Reduced Ordered Binary Decision Diagram. A (reduced ordered) binary decision
diagram [8] is an efficient representation of a Boolean function. We follow the
convention of referring to reduced ordered binary decision diagrams as BDDs.

Definition 5. A binary decision diagram B over variables X is a rooted directed
acyclic graph with two external nodes labeled with 0 or 1 and internal nodes u
with two outgoing edges given by low(u) and high(u). Each internal node u is
associated with a variable x ∈ X, denoted by var(u) = x. It is ordered, if on all
paths the variables respect a linear order x1 < x2 < · · · < xn and it is reduced if
it satisfies the following two conditions:

(a) if var(u) = var(v), low(u) = low(v) and high(u) = high(v), then u = v, for
each pair of internal nodes u, v; and

(b) low(u) �= high(u) for each internal node u.

Paths from the root to 1 correspond to partial assignments on X (true for high
and false for low), and their completions (assigning remaining variables in X)
to models of B. We use Bϕ, for a formula ϕ, to denote a binary decision diagram
for ϕ over the variables of ϕ s.t. the models of ϕ coincide with the models of Bϕ.
Define restriction Bϕ[x1/v1, . . . , xn/vn] of Bϕ s.t. each xi is set to vi ∈ {0, 1} by

1. redirecting incoming edges of each node u with var(u) = xi to low(u), if
vi = 0, and to high(u), if vi = 1; and

2. removing u.
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Fig. 2. BDDs of the acceptance condition ϕa with respect to D1: (a) with ordering
a < b < c < d; (b) with ordering b < d < a < c; and (c) which corresponds to (b)
restricted such that a is set to 1 and b is set to 0. Solid lines denote low and dashed
lines denote high.

By vars(Bϕ) = {var(u0), . . . , var(um)} we denote the variables of internal nodes
of Bϕ and by #Bϕ := 2 · m we denote the size of Bϕ, which corresponds to the
number of edges for m internal nodes.

It is well-known [17] that reduced ordered binary decision diagrams admit each
of the following operations in time polynomial in the size of the BDD: con-
sistency check, validity check, clausal entailment check, implicant check, equiva-
lence check, sentential entailment check, model counting and model enumeration.

However, note that the ordering matters when it comes to the size of a BDD.
Figure 2 illustrates that the lexicographic ordering leads to a BDD (a) with 10
edges including two nodes labeled with b, whereas b < d < a < c leads to a
BDD (b) of size 8, including exactly one node for each variable. In fact, finding
an optimal variable ordering for ordered binary decision diagrams is an NP-hard
problem [5]. Even approximating it, is hard [21].

3 Representing ADFs as BDDs

An ADF is defined by acceptance conditions (propositional formulas) over state-
ments (propositions). Utilizing BDDs directly leads to the following definition.
See Fig. 3 for a BDD representation of our running example ADF.

Definition 6. The BDD representation B(D) = (Bϕs1
, . . . ,Bϕsn

) of an ADF
D = (S,C) is a tuple consisting of one BDD for each acceptance condition ϕsi

of si ∈ S where i = 1 . . . n.

We show that complexity of reasoning on ADFs represented by BDDs coincides
with complexity results of argumentation frameworks (AFs) [12,13]. Based on
polytime procedures reducing and restricting BDDs [8], we can show a polytime
result for computing the result of the characteristic operator.

Theorem 1. Given the BDD representation B(D) of an ADF D, the result of
applying ΓD to any three-valued interpretation I can be computed in polynomial
time.
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Fig. 3. The BDD representation of D1 using lexicographic ordering.

Further, by previous results [24, Theorem 3.18], we obtain several upper bounds
directly for ADFs represented by BDDs.

Theorem 2. Given an ADF D represented by B(D), it holds that

– verification under admissibility and complete semantics is in P,
– credulous reasoning under admissibility, complete, and preferred semantics is

in NP;
– verification under preferred semantics is in coNP;
– and skeptical reasoning under preferred semantics is in ΠP

2 .

Stable and grounded semantics are not covered by the corresponding theo-
rem [24], nevertheless complexity exhibits a drop, as well. We first deal with
grounded semantics, as an ingredient for stable semantics.

Theorem 3. Given an ADF D represented by B(D), there is a polynomial algo-
rithm that computes the grounded interpretation of D.

Based on this result, it follows that verifying whether a model of an ADF repre-
sented by BDDs is stable is in P, and credulous and skeptical reasoning lies on
the first level of the polynomial hierarchy, since all checks regarding the reduct
are then polytime. For both credulous and skeptical reasoning, the membership
results hold via a direct non-deterministic guess of an interpretation.

Corollary 1. Verifying whether a three-valued interpretation is a model or is
stable in an ADF represented by BDDs is in P. Moreover, credulous reasoning
is in NP and skeptical reasoning in coNP.

Regarding hardness, one can directly utilize hardness results for AFs (see [13]
for an overview), since one can translate a given AF directly (in polytime) to
an ADF under the BDD representation. Thus, credulous reasoning under admis-
sible, complete, stable, and preferred semantics is NP-complete, verification of
preferred interpretations is coNP-complete, and skeptical reasoning under stable
is coNP-complete and ΠP

2 -complete for preferred semantics.
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4 Search Space Exploitation: Profiting from BDDs

Fichte et al. [15] define a navigation framework for answer set programming
(ASP) [19], called weighted faceted navigation, that allows for quantifying the
effect of navigation steps in a search space. So far it has been used to explore
solution spaces, we utilize it to exploit information provided by a search space.

The idea is to navigate the search space (the set of interpretations) via heuris-
tics that weight decisions (assigning truth values to statements). A decision,
called here facet, is either inclusive (assigning true, denoted by +s) or exclusive
(assigning false, denoted by −s). We use symbols + and − to distinguish true
and false. A route is then an iteratively extended sequence of such facets (with
the possibility of backtracking). That is, a route can be seen as a partial (two-
valued) assignment on the statements, together with a partial evaluation of each
acceptance condition under this partial assignment (like ϕ[I] for a partial I).
Weight functions then indicate heuristic goals, by assigning weights to facets,
given a current route (current partial assignment). To make use of strengths of
BDDs, we can include weights that are hard to compute on general formulas, but
tractable on BDDs (such as number of models). We formalize these ingredients
next into a generic framework for designing heuristics on ADFs represented by
BDDs. We first define facets formally. The intuition behind a statement s being
a facet is that it is contained in the variables of at least one BDD.

Definition 7. We define facets of D = (S,C) by F(D) = F(D)+ ∪ F(D)−

where F(D)+ = {+s | s ∈ ⋃
B∈B(D) vars(B)} denotes inclusive facets and

F(D)− = {−s | s ∈ ⋃
B∈B(D) vars(B)} denotes exclusive facets.

In ADFs with acceptance conditions represented via Boolean formulas, state-
ments inside acceptance conditions might have no effect. For instance for
φa = (b ∨ ¬b) ∧ c it follows that the status of b is irrelevant for acceptance
of a (formally in ADFs such links are called redundant). Reduced BDDs directly
take care of such forms of redundancy, which leads to a simple observation: uti-
lizing BDDs (for faceted navigation) reduces statements to consider. Formally, a
navigation step towards facet f ∈ {+s,−s} ⊆ F(D) over an ADF D means that
we modify B(D) with respect to f , denoted by B(D)[f ], by applying a restriction
to each BDD of the BDD representation B(D) of D s.t.

B(D)[f ] :=

{
(Bϕs1

[s/1], . . . ,Bϕsn
[s/1]), if f = +s;

(Bϕs1
[s/0], . . . ,Bϕsn

[s/0]), if f = -s.

We define a route δ := 〈f1, . . . , fn〉 as a finite sequence of facets fi ∈ F(D)
denoting n arbitrary navigation steps over D. We assume that such a route does
not contain complementary facets. By ΔD we denote all possible routes over D.
We define B(D)δ = B(D)[f1] . . . [fn], which means that B(D) is first restricted
by f1, then B(D)[f1] is restricted by f2 and so on. For simplicity, we write Dδ

to denote the restriction B(D)δ.

Example 3 (cont’d). Suppose we activate +c ∈ F(D1), then F(D〈+c〉
1 ) = F(D1)\

{+c,−c}. Proceeding by activating −b ∈ F(D〈+c〉
1 ), we obtain F(D〈+c,−b〉

1 ) = ∅.
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That is, we “choose” to assign c true and b false, and iteratively shrink the
remaining search space (available facets).

To make decisions during search, we need to make sense of the search space.
The weight of a facet f is a parameter that quantifies what kind of effect acti-
vating f has on the search space.

Definition 8. Let D = (S,C), δ ∈ ΔD and f ∈ F(Dδ). The weight of f is a
function ω : F(Dδ) × ΔD → N.

That is, ω(f, δ) gives a weight of a facet (a potential next decision) with respect
to a current route δ. In the following, we introduce several weights.

Definition 9. Let D = (S,C), δ ∈ ΔD, f ∈ F(Dδ) correspond to s ∈ S and
Bϕs

∈ B(D)δ. We define the following weights

– ωM (f, δ) := |M(ϕs)| if f = +s, otherwise ωM (f, δ) := n − |M(ϕs)| where
M(ϕs) denotes models of ϕs and n := 2|vars(Bϕs )| (model-counting weight)

– ωAI (f, δ) := |{B ∈ B(Dδ) | s ∈ vars(B)}| (active impact weight)
– ωPI (f, δ) := |vars(Bϕs

)| (passive impact weight)
– ωP (f, δ) is the number of paths leading to 1 (resp. 0) in Bϕs

, if f = +s (resp.
f = −s) (path-counting weight)

– ωMD(f, δ) is the length of the largest simple path in Bϕs
(max-depth weight)

Each of the introduced weights refers to a value that can be computed in
polynomial time using the BDD representation. Every weight tries to approxi-
mate information about the search space of each BDD in the ADF. The most
obvious one is the model-counting weight, which counts how many models exist
and is completely based on semantics notions. A bit more exact is the path-
counting weight, by considering the semantics notions as well as the represen-
tation in BDD structures. The max-depth is a bit more exotic, as it computes
the maximum length of the given BDD. Intuitively, this is a measurement on
the maximum number of variables needed to decide the truth value of the BDD,
and allows one to approximate how many additional values are required to be
decided in order to ensure that the BDD represents a truth constant. Passive
impact weight follows the same idea, but only allows one to see how many vari-
ables will have an impact on the BDD over all possible paths in the BDD. The
active impact weight has the same idea as max-depth and the passive impact
weight, but operates on a more global estimation by computing how many other
BDDs might be impacted by the chosen facet.

Navigation-based heuristics, as introduced next, use weights for computing
semantics. In a preliminary analysis we focus on enumerating stable interpreta-
tions. As computing stable models relies on finding two-valued models, here the
objective is to use weights in order to find facets (make decisions) that ease the
search for two-valued models using the characteristic operator ΓD.

Similar to the notion of navigation modes in previous works [15], we are inter-
ested in minimal and maximal weighted facets of an ADF Dδ with respect to
weight ω as defined by minδ

ω(F(Dδ)) := {f ∈ F(Dδ) | ∀f ′ ∈ F(Dδ) : ω(f, δ) ≤
ω(f ′, δ)} and max δ

ω(F(Dδ)) := {f ∈ F(Dδ) | ∀f ′ ∈ F(Dδ) : ω(f, δ) ≥ ω(f ′, δ)}.
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Table 1. Facet weights of D1 on the empty route 〈〉.

+a +b +c +d −a −b −c −d

ωM 11 1 1 1 5 1 3 1

ωAI 1 2 3 2 1 2 3 2

ωPI 4 1 2 1 4 1 2 1

ωP 4 1 1 1 3 1 2 1

ωMD 4 1 1 2 4 1 1 2

That is, we rank facets according to maximum (minimum) weight (given the
current route). A navigation-based heuristic h suggests a set of facets to activate
on the current route, by recursively determining minimal or maximal weighted
facets in a given order with respect to specified weights. For a given ADF, a
heuristic is determined by a current route and a list of weighting functions, to
flexibly allow that decision shall be reached according to prioritized weight func-
tions. For instance, Ω = 〈maxδ

ωM
,minδ

ωPI
〉 specifies that facets shall be ordered

by considering maximally ωM (highest priority) and, in case of equal ranking,
consider minimizing ωPI (second-level priority).

Definition 10. Let D = (S,C) be an ADF. A ranking Ω = 〈m1, . . . ,mn〉 is
a sequence with mi ∈ {minδ

ω0
, . . . ,minδ

ωk
,max δ

ωk+1
, . . . ,max δ

ω�
} and weights ωj

for j = 0 . . . �. A navigation-based heuristic is a function

h(Ω,F(Dδ)) := mn(mn−1(· · · (m2(m1(Dδ))) · · · )).
A heuristic is essentially defined by Ω, which specifies preferences of mini-
mal or maximal weighted facets. Aiming at enumerating stable models, we
conducted experiments using two heuristics h0 and h1, which should add
intelligence to the search for two-valued models using BDDs as described by
Algorithm 1. Heuristics h0, h1 are defined by Ω0 = 〈max δ

ωP I
,minδ

ωAI
,minδ

ωP
〉

and Ω1 = 〈minδ
ωP

,max δ
ωP I

〉, respectively. The intuition behind Ω0 is to find
those statements, which have the highest impact on the BDDs, with a small
amount of own variables and view choices in reaching a specific truth value. Ω1

represents the approach to reduce the possible choices in one BDD to reach a
specific truth value and maximises the impact on other BDDs afterwards. If the
heuristic does not find a unique best option, we follow the BDD ordering.

Example 4 (cont’d). Applying rankings Ω0 and Ω1 on the data illustrated in
Table 1, we see that heuristic h0 suggests facet {−a}, since max δ

ωPI
(F(D1)) =

{+a,−a}, minδ
ωAI

({+a,−a}) = {+a,−a} and finally minδ
ωP

({+a,−a}) = {−a}
for D1 on the empty route. However, heuristic h1 suggests to activate facet +c,
since h1 first considers minδ

ωP
(F(D1)) = {+b,−b,+c,+d,−d} and afterwards

max δ
ωPI

({+b,−b,+c,+d,−d}) = {+c}.

The recursive Algorithm 1 uses a specified heuristic (such as Ω0 and Ω1), an
ADF in BDD representation and an empty set of nogoods. If one of the nogoods
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Algorithm 1. Recursively Enumerating Two-valued Models
Procedure: models
In: BDD representation B(Dδ); set of nogoods F ⊆ F(D); heuristic Ω
Out: two-valued models of D;

1: set the set of two-valued models M := ∅;
2: if f ′ = +s (resp. f ′ = −s) implies �|= ϕs (resp. ϕs �|= ⊥) for each f ′ ∈ F
3: if F(Dδ) �= ∅ then choose a facet f ∈ h(Ω, F(Dδ)) and activate f on δ
4: traverse routes δ′ ∈ Δ(Dδ)

5: set B′ to the BDD that corresponds to s in B(Dδ′
)

6: update B(Dδ′
) to obtain B′′(Dδ′

) where
7: B′ is set to 	, if f = +s, otherwise B′ is set to ⊥
8: set M := M∪ models(B′′(Dδ′

), F , Ω);
9: add the inverse facet f of f to nogoods F and activate f on δ
10: set M := M∪ models(B(Dδ), F , Ω);
11: else return {{s ∈ S | C ∈ Dδ, C = 	, S ∈ D}}
12: return M

is violated by the current state of the BDDs, we cannot find a two valued model
with the given nogoods (Line 2 and 12). Otherwise we choose and activate a
facet, based on the given heuristic. In Line 4 we now identify all interpretations
of the BDD, which correspond to the activated facet value. The following four
lines then propagate the truth values of one of these interpretations to all other
BDDs and reduce the facet corresponding BDD to be only � (resp. ⊥) and go one
step down in the recursion by using this new BDD representation as the updated
input. After the propagation of each of the corresponding interpretations, we can
now deduce by tertium non datur that the truth value of the chosen facet needs
to be its inverse. Therefore we now assume the inverse and add the chosen facet
as a nogood. This will allow to go down the recursion depth on Line 10 with the
updated nogoods. Finally in Line 11 we see that no further facet can be chosen,
therefore all BDDs are either � or ⊥ and we have found a two-valued model.
Afterwards a simple stability check for the two valued models can be done.

5 Preliminary Experiments

We have implemented the presented ideas as a tool, called adf-bdd. It stands
for “Abstract Dialectical F rameworks solved by B inary Decision Diagrams,
developed in Dresden”. The tool allows one to compute the grounded, complete,
and stable models of a given ADF. We support the currently prevalent input for-
mat for ADFs [14]. Due to this choice of compatibility we need to note that all
presented tests have transformed the given acceptance conditions into roBDDs.
In a nutshell, the system allows the use of two different BDD libraries, a state
of the art competitive library by the Biodivine tool [4] and our own imple-
mentation. Our own implementation can compute all of the previously intro-
duced weights and has more efficient computations of backtracking, as well as a
data structure which allows to exploit the common signature of all acceptance
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Fig. 4. Experiments on the mean run-times (seconds) of various solvers.

conditions and similar properties of BDDs and ADFs. Biodivine is more effi-
cient in the instantiation, so we provide a combined approach too.

For the implementation we have a deterministic and straight forward app-
roach for the grounded semantics, which computes the least fixed point of the
ΓD operator. The complete semantics are handled by a naive approach, where all
possible three valued interpretations are constructed in a lazily evaluated list and
are checked by applying relational operations on the corresponding roBDDs.
Stable semantics have been implemented in a similar naive way as well as with
the proposed Algorithm 1 and the two discussed heuristics. Note that we do not
exploit different variable orders so far and that we use the occurrence order of
statements from the input file as the only used variable order.

We have chosen to compare our approach1 with the currently fastest solver
k++adf [18] (version 2021-03-31), goDiamond [23] (version goDiamond 2017-
06-26), and yadf [6] (version 0.1.1). The latter two tools are using answer set solv-
ing (ASP) to solve the computational problems. The test machine specifications
are as follows: An Intel Xeon E5-2637v4 Quadcore 64bit Processor with 3.7 GHz
frequency, 384 GB working memory, running a Debian 9.13 Linux, with exclu-
sive computation time for the tests. Note that none of the tools used an excessive
amount of the provided memory and has been capped by CPU-performance. Due
to the very different running times of the tools, we have chosen to use hyperfine
as a benchmarking tool harness. The tool decided how many runs shall be done to
reduce the load bias and provided mean performance times over up to 900 runs per
test-feature. Therefore all times are the mean run-times of all runs per instance for
each tool. In addition we imposed a ten second time-out limit for all the computa-
tions. We have seen in preliminary tests that the behaviour on the timeout-count
does not derivate noticeable with a twenty seconds time limit. As the test cases,

1 https://github.com/ellmau/adf-obdd/releases/tag/v0.2.4-beta.1 v0.2.4-beta.1.

https://github.com/ellmau/adf-obdd/releases/tag/v0.2.4-beta.1
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we have chosen the already multiple times used benchmarking set of 600 instances,
already used by yadf and k++adf. Due to text limitations we need to keep this
analysis short, full evaluations and references of the data and the datasets can be
found at https://doi.org/10.5281/zenodo.6498235.

We summarize our results in Fig. 4. Note that a missing tool indicates it
does not support that semantics. For the grounded semantics our tool competes
with k++adf, suggesting that the BDD representation does not present a sig-
nificant barrier for the considered instances (BDD compilation time is included
in running times). The computation of the complete semantics shows that the
naive approach is already as good as the ASP based goDiamond. For the sta-
ble models we see that our approach is better than the ASP based yadf, while
there is still a gap towards k++adf. Regarding heuristics, our results suggest
that use of the two heuristics improved overall performance, suggesting that the
heuristics improved search space navigation.

6 Conclusions

In this work we proposed to utilize knowledge compilation in the form of BDDs
for the abstract argumentation formalism of ADFs. After showing milder com-
plexity after the compilation process, we proceeded to present a generic frame-
work for devising heuristics using the recently proposed framework of faceted
navigation, which makes use of features (weights) that are computationally hard
to obtain on Boolean formulas, but direct to retrieve from BDDs. Our prelimi-
nary experiments suggest that heuristics arising from the framework can indeed
be helpful in the search space navigation, but cannot compete with the current
state-of-the-art SAT-based approach of k++adf. This latter solver is based on a
candidate generation and subsequent verification procedure. Combining heuris-
tics for search space navigation using BDDs and the SAT-based approach appear
intriguing: potentially one could combine interesting heuristics on argumentation
problems together with advanced SAT techniques.
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Abstract. This paper studies the problem of arguing program cor-
rectness for logic programs with aggregates in the context of Answer
Set Programming. Cabalar, Fandinno, and Lierler (2020) championed a
modular methodology for arguing program correctness. We show how a
recently proposed many-sorted semantics for logic programs with aggre-
gates allows us to apply their methodology to this type of program. This
is illustrated using well-known encodings for the Graph Coloring and
Traveling Salesman problems. In particular, we showcase how this mod-
ular approach allows us to reuse the proof of correctness of a Hamiltonian
Cycle encoding studied in a previous publication when considering the
Traveling Salesman program.

Keywords: ASP · Program Verification · Aggregate Semantics ·
Modular Proofs of Correctness

1 Introduction

Answer Set Programming (ASP) [12,13] is a well-established Knowledge Repre-
sentation paradigm for solving (knowledge-intensive) search/optimization prob-
lems. Based on logic programming under the answer set semantics [11], the
ASP methodology relies on devising a logic program so that its answer sets are
in one-to-one correspondence to the solutions of the target problem. The fact
that this approach is fully declarative positions it as a firm candidate for pro-
ducing trustworthy Artificial Intelligence (AI) systems, which require, among
other qualities, the assessment that those systems produce correct judgments.
Given the declarative nature of ASP, it also seems natural to consider an ASP
program as a formal specification on its expected solutions [2,6]. This formal
specification is usually the first program that an ASP practitioner writes and
later refines to achieve higher solving efficiency [1,10]. The equivalence between
the formal specification and the refined program can be manually and, in many
cases, even automatically checked using existing tools [2,6,14]. Unfortunately,
all these approaches deal exclusively with programs without aggregates, which
are expressive constructs commonly used in practice.
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In this paper, we extend the verification methodology for logic programs (or,
VLP methodology) developed in [2] to programs that contain non-recursive
aggregates. This methodology is reviewed in Sect. 3. Consider the Graph Col-
oring (GC) problem encoded in Listing 1.1 using a choice rule with cardinality
bounds. Here aggregates provide a succinct and convenient way to model the
problem. Arguing correctness of this encoding was out of the scope of [2] as
a choice rule with cardinality bounds (exemplified by the rule in line 1 of List-
ing 1.1) is an abbreviation for a pair of rules that includes an integrity constraint
with a count aggregate [3]. We show how a recent extension of the SM oper-
ator to programs with aggregates [4] allows us to apply this methodology to
programs of this kind. In addition to the GC problem, we also illustrate this

Listing 1.1. Encoding of the graph coloring problem using the ASP language.

1 { assign(V,C) : color(C) } = 1 :- vertex(V).

2 :- edge(V1,V2), assign(V1,C), assign(V2,C).

VLP methodology on the Traveling Salesman (TS) problem. These two problems
are widely-studied and well understood in the ASP community, and they allow
us to highlight two different use cases of aggregates. Additionally, the applica-
tion of the VLP methodology to the TS problem illustrates the benefits of the
“modular approach” it advocates. In particular, we are able to reuse a proof of
correctness devised for another program—an encoding of the Hamiltonian Cycle
problem studied in [2] that forms a subprogram of the TS encoding—as part of
the argument of correctness for the TS encoding.

2 Review: Logic Programs via the Many-Sorted
Approach

We start by reviewing elements of the syntax and semantics of a logic program
with aggregates using the SM operator recently developed in [4]. In this app-
roach, a logic program is considered to be an abbreviation for a many-sorted
first-order sentence. The semantics of this sentence are characterized by the
“agg” models of the second-order sentence obtained from the application of the
SM operator to this first-order sentence. We assume familiarity with basic termi-
nology of logic programs and the SM operator. For the sake of brevity, we focus
only on the concepts necessary to understand the contributions of this paper.
We refer the reader to [4] for details.

2.1 Syntax of Logic Programs with Aggregates

We consider (non-disjunctive) rules of the form Head ← B1, . . . , Bn where Head
is an atom or the symbol ⊥, and each B is a literal. We typically omit the ⊥
symbol and instead write a constraint as a rule with an empty head. A literal
is either a symbolic literal or an aggregate literal. A symbolic literal is either
an atom or a comparison possibly preceded by one or two occurrences of not .
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Listing 1.2. Encoding of a Hamiltonian Cycle problem.

1 vertex(X) :- edge(X,Y).

2 vertex(X) :- edge(Y,X).

3 { in(X,Y) } :- edge(X,Y).

4 ra(Y) :- in(a,Y).

5 ra(Y) :- in(X,Y), ra(X).

6 :- not ra(X), vertex(X).

7 :- in(X,Y), in(X,Z), Y != Z.

8 :- in(X,Y), in(Z,Y), X != Z.

Similarly, an aggregate literal is an aggregate atom possibly preceded by one or
two occurrences of not. We assume familiarly with the definitions of program
terms, atoms and comparisons and we focus here on describing the syntax of
aggregate atoms.

An aggregate element is an expression of the form t1, . . . , tk :
l1, . . . , lm, where each ti (1 ≤ i ≤ k) is a program term and each li (1 ≤ i ≤ m)
is a symbolic literal. An aggregate atom has the form #op{E} ≺ u, where op
is an operation name, E is an aggregate element, ≺ is a comparison symbol,
and u is a program term, called the guard. We consider operation names count
and sum. For example, the following two expressions are two aggregate atoms

#count{ V,C : assign(V,C), color(C) } = 1 (1)
#sum{ K,X,Y : in(X,Y), cost(K,X,Y) } > J (2)

that will be used in our examples throughout the paper.
A choice rule is an expression of the form

{A0 : A1, . . . , Ak} ≺ u :- B1, . . . , Bn. (3)

where each Ai is an atom, each Bi is a literal, ≺ is a comparison symbol and u
is a numeral; it is understood as an abbreviation for the following pair of rules

A0 :- A1, . . . Ak, B1, . . . , Bn, not not A0. (4)
:- B1, . . . , Bn, not #count{t : A0, A1, . . . , Ak} ≺ u. (5)

where t is a list of program terms such that A0 is of the form p(t) for some
symbolic constant p. As usual, we allow that “≺ u” or “: A1, . . . Ak,” (or both
of them) are omitted from choice rules. If “≺ u” is omitted, then (5) is omitted;
and if “: A1, . . . Ak” is omitted, then A1, . . . Ak is omitted from (4–5).

For instance, rule 3 in Listing 1.2—capturing the Hamiltonian Cycle encoding
used later in the paper as part of the TS encoding—is a choice rule where both
elements are omitted and, thus, it is an abbreviation for the rule

in(X,Y) :- edge(X,Y), not not in(X,Y). (6)

As another example, rule 1 in Listing 1.1 is a choice rule where both of these
elements are present, and it is understood as an abbreviation for rules

assign(V,C) :- vertex(V), color(C), not not assign(V,C). (7)
:- vertex(V), not #count{ V,C : assign(V,C), color(C) } = 1. (8)

A program is a finite set of rules.
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2.2 From Rules to Many-Sorted First-Order Formulas

A logic program is understood as many-sorted first-order sentences over a signa-
ture σΠ of two sorts, one for program terms and one for sets of tuples of program
terms. We name these sorts program and set, respectively. To define the class
of function symbols of the sort set we introduce the concepts of global variables
and set symbols. A variable is said to be global in a rule if (i) it occurs in any
non-aggregate literal, or (ii) it occurs in a guard of any aggregate literal. A vari-
able that is not global is called local. For instance, in rule (8), variable V is global
and variable C is local. In primitive rules, all variables are trivially global. A set
symbol is a pair E/X, where E is an aggregate element and X is a list of vari-
ables occurring in E. We say that E/X occurs in rule R if this rule contains an
aggregate literal with the aggregate element E and X is the list of all variables
in E that are global in R. For instance,

V,C : assign(V,C), color(C)/V (9)

is the only set symbol occurring in rule (8). We say that E/X occurs in a
program if E/X occurs in some rule of the program. For the sake of readability
we associate each set symbol E/X with a different name |E/X|.

As stated earlier, for a program Π, we consider a signature σΠ over two
sorts that contains: (i) all ground terms as object constants of the program
sort; (ii) all predicate symbols occurring in Π as predicate constants with all
arguments of sort program; (iii) the comparison symbols other than equality
and inequality as binary predicate constants whose arguments are of the program
sort; (iv) unary function constants count and sum of sort program whose unique
argument is of sort set; and (v) for each set symbol E/X occurring in Π, a
function constant set |E/X| of the sort set. This function symbol takes as many
arguments of the program sort as there are variables in X. If X is an empty list,
then set |E/X| is an object constant.

We refer to [4] for the precise definition of the translation τ∗ that converts a
program into a finite set of first-order sentences. For the purposes of this paper
it is only necessary to know the result of applying such a translation to the logic
programs encoding the GC problem and the TS problem. For instance, consider
rule (8). Translation τ∗ applied to this rule produces the first-order sentence:

∀V (vertex (V ) ∧ ¬count(setasg(V )) = 1 → ⊥), (10)

where asg is the name for set symbol (9). The translation of the program in
Listing 1.1 is completed by the following two sentences:

∀V C
(
vertex (V ) ∧ color(C) ∧ ¬¬assign(V,C) → assign(V,C)

)
(11)

∀V 1 V 2 C
(
edge(V 1, V 2) ∧ assign(V 1, C) ∧ assign(V 2, C) → ⊥)

(12)

Sentence (11) corresponds to rule (7). Sentences (10) and (11) together are the
translation of rule 1 in Listing 1.1. Formula (12) is the the result of applying
translation τ∗ to rule 2 in Listing 1.1. We describe the translation of the TS
encoding in Sect. 3.2. From now on, we assume that, unless otherwise made
explicit, formulas with free variables stand for their universal closures.
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2.3 Semantics via the SM Operator

The SM operator transforms first-order sentences into second-order sentences
with equality. Ferraris, Lee and Lifschitz show that programs without aggre-
gates can be considered as abbreviations for first-order sentences to which this
operator is applied [7, Sect. 2.1]. When a set of such sentences Π is transformed
by the SM operator into a second-order theory SMp[Π], the satisfying Herbrand
interpretations of SMp[Π] where p is the list of all predicates occurring in the
program are exactly the stable models of Π as defined by Gelfond and Lifschitz
(1988). Fandinno, Hansen, and Lierler (2022) extend this approach to programs
with aggregates by relying on a many-sorted generalization of the SM operator.
We refer to [4] for the precise definition of the SM operator. For this paper it is
enough to understand two properties of this operator, namely, the Splitting and
Completion Theorems.

Splitting and Modules. The Splitting Theorem in [8] forms one of the foun-
dations of the VLP methodology championed here. This theorem was recently
generalised to the two-sorted case [6]; and a look to the proof shows that its
generalization to the many-sorted case is straightforward. Let us recall some
necessary notation for this result. An occurrence of a predicate symbol in a for-
mula is called negated if it belongs to a subformula of the form F → ⊥ (often
abbreviated as ¬F ) and nonnegated otherwise. An occurrence of an expression in
a formula is called positive if the number of implications containing that occur-
rence in the antecedent is even. It is called strictly positive if that number is 0. A
rule of a first-order formula F is a strictly positive occurrence of an implication
in F . The dependency graph of a formula is a directed graph that: (i) has all
intensional predicate symbols as vertices; and (ii) has an edge from p to q if, for
some rule G → H of F , formula G has a positive nonnegated occurrence of q
and H has a strictly positive occurrence of p.

Theorem 1 (Splitting Theorem). Let F and G be many-sorted first-order
sentences and let p and q be two disjoint tuples of distinct predicate symbols such
that (i) each strongly connected component of the dependency graph of F ∧ G is
a subset either of p or q; (ii) F does not have strictly positive occurrences of
symbols from q; and (iii) G does not have strictly positive occurrences of symbols
from p. Then, SMpq[F ∧ G] is equivalent to SMp[F ] ∧ SMq[G].

In the sequel, we often refer to expression SMp[F ] as a module, whereas list p
of predicate symbols is called intensional. The Splitting Theorem tells us how
we can, at times, view a module in terms of other modules. When the list of
predicate symbols p is empty, SMp[F ] is identical to F . Thus, we may refer to
any first-order sentence F as a module.

Completion. The theorem on completion presented here forms an important
result that allows us, at times, to replace second-order formula (capturing a
module) by an equivalent first-order formula. This is important when we con-
struct formal arguments about models of these formulas as the later is easier to
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understand. Let p be a list of intensional predicate constants. A rule G → H is
called non-disjunctive if H is an atomic formula or does not contain intensional
symbols (i.e., elements of p). We say that G → H is a constraint with respect
to p if H does not contain members of p. About a nondisjunctive rule G → H
we say that it defines an intensional symbol p if H is an atomic formula that
begins with p. In the following we assume that F is a conjunction of the uni-
versal closures of nondisjunctive rules and constraints with respect to p. If the
argument sorts of an intensional symbol p are s1, . . . , sn, and the rules defining p
in F are

Gi → p(ti) i = 1, . . . , k,

then the completed definition of p in F is the sentence

∀V
(

p(V) ↔
k∨

i=1

∃Ui (Gi ∧ V = ti)

)

, (13)

where V is an n-tuple of fresh variables of sorts s1, . . . , sn, and Ui is the list of
all variables that are free in Gi → p(ti). The expression V = ti here stands for
the conjunction of n equalities between the corresponding members of the tuples
V and ti. The completion COMPp[F ] of F is the conjunction of all completed
definitions of all members of p in F and all constraints of F . The following result
immediately follows from the Main Lemma in [5]:

Theorem 2. If the dependency graph of F is acyclic, then SMp[F ]
and COMPp[F ] are equivalent.

Agg-interpretations. The semantics of aggregates are defined with respect to
a particular class of interpretations that we call agg-interpretations. Consider
the following additional notation. For a tuple X of distinct variables, a tuple x
of ground terms of the same length as X, and an expression α that contains
variables from X, αX

x denotes the expression obtained from α by substituting x
for X. An agg-interpretation I is a many-sorted interpretation that satisfies the
following conditions:

1. the domain of the program sort, denoted |I|sprg , is the set containing all ground
terms of the program sort (or ground program terms, for short);

2. I interprets each ground program term as itself;
3. I interprets predicate symbols >,≥, <,≤ according to the total order chosen

in [4] (this is the natural interpretation when applied to numerals, but it also
apply to symbolic constants);

4. the domain of the set sort, denoted |I|sset , is the set of all sets of non-empty
tuples that can be formed with elements from |I|sprg ;

5. if E/X is a set symbol, where E is an aggregate element, Y is the list of all
variables occurring in E that are not in X, and x and y are lists of ground pro-
gram terms of the same length as X and Y respectively, then set |E/X|(x)I

is the set of all tuples of the form 〈(t1)XY
xy , . . . , (tk)XY

xy 〉 such that I satis-
fies (l1)XY

xy ∧ · · · ∧ (lm)XY
xy ;
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6. for d ∈ |I|sset , count(d)I is the numeral corresponding to the cardinality of d,
if d is finite; and sup otherwise.

7. for d ∈ |I|sset , sum(d)I is the numeral corresponding to the sum of the weights
of all tuples in d, if d contains finitely many tuples with non-zero weights;
and 0 otherwise.(The sum of a set of integers is not always defined. We could
choose a special symbol to denote this case, we chose to use 0 following the
description of abstract gringo [9].) If d is empty, then sum(d)I = 0.

An agg-interpretation satisfies the standard name assumption for object con-
stants of the program sort, but not for function constants of the set sort.

We say that an agg-interpretation I is a p-stable model of program Π if
it satisfies SMp[τ∗Π], where p is a list of predicate symbols occurring in Π
(note that this excludes predicate constants for comparisons >,≥, <,≤). An
agg-interpretation I is a stable model of program Π if it is a p-stable model,
where p is the list of all predicate symbols occurring in Π. The stable models
of a program defined in this way correspond to the answer sets of the abstract
gringo language [9] when the aggregates have no positive recursion [4] and with
the answer sets of ASP-Core-2 [3].

3 Proving the Correctness of Logic Programs

Cabalar, Fandinno and Lierler (2020) developed a methodology for arguing the
correctness of answer set programs, partially reproduced below:

Step I: Decompose the informal description of the problem into independent
(natural language) statements1.

Step II: Fix the public predicates used to represent the problem and its solu-
tions.

Step III: Formalize the specification of the statements as a non-ground mod-
ular program, possibly introducing auxiliary predicates.

Step IV: Construct an argument (a “metaproof” in natural language) for the
correspondence between the constructed program and the informal
description of the problem.

An optional fifth step is to construct a formal proof from the constructed program
(treated as a specification) to an alternative encoding. Here we consider proving
the adherence of the constructed program to the natural language specification.
We now put this methodology in practice for the case of the encodings of two
problems: Graph Coloring and Traveling Salesman. The considered encodings
contain aggregates. The extension of the SM operator applicable to programs
with aggregates makes the use of this methodology possible in our context.

1 In fact, this is also the first step that students are taught in the introduction to
modeling in the ASP course taught at the University of Potsdam: https://teaching.
potassco.org/.

https://teaching.potassco.org/
https://teaching.potassco.org/
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3.1 The Graph Coloring Problem

Step I applied to the GC problem consists in identifying statements

C1 find an assignment from nodes to colors such that
C2 connected nodes do not have the same color.

Formally, an instance of the GC problem is a triple 〈V,E,C〉, where

– 〈V,E〉 is a graph with vertices V and edges E ⊆ V × V , and
– C is a set of labels named colors.

A solution to the GC problem is

CF1 a function asg : V −→ C such that
CF2 every edge (a, b) ∈ E satisfies condition asg(a) �= asg(b).

Step II consists of choosing the public predicates to represent the problem,
in this example: vertex/1, edge/2, color/1, and assign/2. Step III consists in
formalizing the statements from Step I as a non-ground modular program Π.
The GC problem is a great illustratory example due to the simplicity of its ASP
encoding and the fact that each natural language statement is encoded as exactly
one rule. In other words, in this example, each rule constitutes its own module.
Rule 1 in Listing 1.1 corresponds to the module

SMassign [(10) ∧ (11)] (14)

while rule 2 corresponds to the first-order sentence/module (12). Module (14)
formalizes statement CF1, that is, it ensures that predicate assign/2 encodes
a function from vertices to colors. Module (12) formalizes statement CF2: it
ensures that the function encoded by predicate assign/2 satisfies the condition
of the statement. By the Splitting Theorem, the conjunction of two modules—
(12) and (14)—has the same assign-stable models as the assign-stable models
of the conjunction (10) ∧ (11) ∧ (12); recall that this conjunction corresponds
to τ∗ applied to the GC encoding in Listing 1.1.

We now turn our attention to Step IV. To formalise claim CF1 about
module (14), we prove a general result about modules of a similar form. We say
that relation r encodes function f : A −→ B when r = {(a, f(a)) | a ∈ A}.
Given sets A and B, we can construct a program whose stable models encode
all functions from A to B as follows. (By d∗ we denote the name of domain
element d, that is, an object constant whose interpretation is d.) Let G(X)
and H(Y ) be two first-order formulas such that G(d∗) is satisfiable iff d belongs
to A and H(d∗) is satisfiable iff d belongs to B. Then, FunA,B is the conjunction
of formulas

∀X
(
G(X) ∧ ¬count(set fe(X)) = 1 → ⊥)

(15)

∀XY
(
G(X) ∧ H(Y ) ∧ ¬¬f(X,Y ) → f(X,Y )

)
(16)

where fe is the name of the set symbol X,Y : f(X,Y ),H(Y )/X.
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Proposition 1. For an agg-interpretation I and first-order formulas G(X) and
H(Y ) containing no positive nonnegated occurrences of f/2, take

A = {d | d ∈ |I|sprg and I |= G(d∗)} and B = {d | d ∈ |I|sprg and I |= H(d∗)}.

Then, condition I |= SMf [FunA,B ] holds iff (f/2)I encodes a function from A
to B.

Proof. If A is empty, then (f/2)I encodes the empty function. Hence, in the
rest of the proof, we assume that A is non-empty. By the Splitting Theo-
rem SMf [(15) ∧ (16)] is equivalent to SMf [(16)] ∧ (15). By the Completion The-
orem, sentence SMf [(16)] is equivalent to the first-order sentence

∀XY
(
f(X,Y ) ↔ G(X) ∧ H(Y ) ∧ ¬¬f(X,Y )

))
. (17)

In turn, this sentence is equivalent in first-order logic to

∀XY
(
f(X,Y ) → G(X) ∧ H(Y )

)
. (18)

Let F denote the conjunction of (15) and (18), which is equivalent
to SMf [FunA,B ]. Left-to-right. Assume that I |= F . Pick any a ∈ A. Then,
I |= G(a∗) and, since I |= (15), it follows that I |= (count(set fe(a∗)) = 1).
Hence, set fe(a∗)I = {〈a, ba〉} for some ba ∈ |I|sprg such that I |= f(a∗, b∗

a)∧H(b∗
a).

Let f̂ be the function such that f̂(a) = ba; f̂ is a function from A to B encoded
by (f/2)I . Right-to-left. Let f̂ be a function from A to B such that (f/2)I =
{(a, f̂(a)) | a ∈ A}; in other words (f/2)I encodes f̂ . Let us show that I |= F .
First, for any term a ∈ |I|sprg such that I |= G(a∗), it follows that a ∈ A

and, thus, set fe(a∗)I = {〈a, f̂(a)〉}. This implies that I |= (15). Second, for
any a ∈ |I|sprg and b ∈ |I|sprg such that I |= f(a∗, b∗) it follows by construction
that a ∈ A and b = f̂(a) and b ∈ B. Hence, I |= G(a∗) ∧ H(b∗) and, thus,
I |= (18).

Claim CF2 about module (12) is argued within the proof of the following
theorem that can also be seen as a proof of correctness for the GC encoding
presented in Listing 1.1.

Theorem 3. Let I be an agg-interpretation such that 〈vertex I , edgeI , color I〉
forms an instance of the Graph Coloring problem. Then, I |= (12) ∧ (14) iff
(assign/2)I encodes a function that forms a solution to the considered instance.

Proof. From Proposition 1, we get that I |= (14) iff (assign/2)I encodes a func-
tion asg : vertex I −→ color I such that (assign/2)I = {(a, asg(a)) | a ∈ vertex I}.
Sentence (12) is equivalent to

∀V 1 V 2 C1 C2
(
edge(V 1, V 2) ∧ assign(V 1, C1) ∧ assign(V 2, C2) → C1 �= C2

)
.

This sentence is satisfied by I iff every edge (a, b) ∈ edgeI satisfies
asg(a) �= asg(b).
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The use of the SM operator allows us to argue the correctness of an encod-
ing in isolation from the way its instances are obtained. In Theorem3, we only
implicitly refer to a specific instance of the GC problem by considering an inter-
pretation I such that 〈vertex I , edgeI , color I〉 forms this instance. In practice, to
compute a solution for a considered GC instance one has to extend the program
corresponding to the GC problem with an encoding of the instance. Such an
instance can be represented by a set of facts utilizing predicates chosen for the
representation. For example, facts

vertex(a). vertex(b). edge(a, b). color(g). color(b). color(r).

encode an instance 〈{a, b}, {(a, b)}, {g, b, r}〉 of the GC problem. Answer sets of
the program in Listing 1.1 extended with these facts will encode the solutions
to the specified instance. However, the general approach followed in Theorem3
actually allows those facts to be generated by a, perhaps very complex, logic
program, as long as it does not use the predicate symbols used in the GC encod-
ing other than the ones used to describe the problem instance. We take the same
approach of implicit reference to an instance when arguing the correctness of the
TS problem.

3.2 The Traveling Salesman Problem

Let us look into the following variant of the Traveling Salesman problem:

We are given a directed graph with nodes as cities and edges as roads. We
assume the presence of a city named “a”. Each road directly connects a pair of
cities, and costs a salesman some time to traverse (time is expressed as an integer
value). The salesman may pass each city exactly once. Find: a route traversing
all the cities under a certain maximum cost of total time starting and finishing
at city a.

Formally, an instance of the TS problem is a quadruple 〈V,E, cst ,m〉, where

– 〈V,E〉 is a graph assuming one vertex in V named a,
– cst is a function from edges E to integers, and
– m is some integer.

A solution to this instance is a subset of edges P ⊆ E such that

T1 P forms a Hamiltonian cycle of graph 〈V,E〉 and
T2 the following inequality holds

∑

e∈P

cst(e) ≤ m. (19)

This constitutes the application of Step I to the TS problem. Step II consists
in choosing the public predicates to represent the problem: vertex/1, edge/2,
cost/3, maxCost/1, and in/2. We say that an agg-interpretation I encodes
instance 〈V,E, cst ,m〉 if it satisfies the following conditions:
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– (vertex/1)I = V and (edge/2)I = E;
– (cost/3)I = {(c, v1, v2) | (v1, v2) ∈ E and cst

(
(v1, v2)

)
= c};

– (maxCost/1)I = {m};

Predicate symbol in/2 is meant to capture a solution to the TS problem, i.e.,
an agg-interpretation I encoding an instance of the TS problem also encodes a
solution P whenever (in/2)I = P . Using the mentioned predicate symbols, we
can capture the TS problem by adding the following rule to the encoding of the
Hamiltonian Cycle problem in Listing 1.2:

:- #sum{ K,X,Y : in(X,Y), cost(K,X,Y) } > J, maxCost(J). (20)

Translation τ∗ applied to the rules in Listing 1.2 and rule (20) results in the
sentences (recall that we identify formulas below with their universal closures):

edge(X,Y ) → vertex (X) (21)
edge(Y,X) → vertex (X) (22)
¬¬in(X,Y ) ∧ edge(X,Y ) → in(X,Y ) (23)
in(a, Y ) → ra(Y ) (24)
in(X,Y ) ∧ ra(X) → ra(Y ) (25)
¬ra(X) ∧ vertex (X) → ⊥ (26)
in(X,Y ) ∧ in(X,Z) ∧ Y �= Z → ⊥ (27)
in(X,Y ) ∧ in(Z, Y ) ∧ X �= Z → ⊥ (28)
maxCost(J) ∧ sum(set tp) > J → ⊥, (29)

where tp is the name of the set symbol

K,X, Y : in(X,Y ), cost(K,X, Y ).

Note that this set symbol has no global variables in rule (20). By HC we denote
the conjunction of sentences (21–28). By hc we denote the tuple containing all
predicate symbols in HC except edge/2 and vertex/1. By the Splitting Theo-
rem, SMhc[HC ∧ (29)] is equivalent to SMhc[HC ] ∧ (29) so that SMhc[HC ] and
(29) form modules. The former module, corresponding to a program in List-
ing 1.2, formalizes statement T1; the latter module formalizes statement T2.
Thus, we have completed Step III.

We turn our attention to Step IV. Propositions 5 and 8 in [2] prove that
module SMhc[HC ] correctly encodes the Hamiltonian Cycle problem. The proof
of that claim used the one-sorted version of the SM operator. It is easy to see
that for formulas that include only predicates of one sort, such as HC , there
is an immediate correspondence between the one-sorted and the many-sorted
models of the formula. Hence, the following is an immediate consequence of
Propositions 5 and 8 mentioned above.

Proposition 2. Let I be an agg-interpretation s.t. G = 〈vertex I , edgeI〉 is a
graph with a ∈ vertex I . Then, I |= SMhc[HC ] iff (in/2)I forms a Hamiltonian
cycle of G.
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All that remains is to prove the following result about sentence (29).

Lemma 1. Let I be an agg-interpretation that encodes an instance 〈V,E, cst ,m〉
of the Traveling Salesman problem such that inI ⊆ edgeI . Then, I |= (29) iff
inequality (19) holds, where P = (in/2)I .

Proof. Since I is an agg-interpretation that encodes 〈V,E, cst ,m〉 and satis-
fies inI ⊆ edgeI , it follows that

setI
tp = {〈c, a, b〉 | 〈a, b〉 ∈ inI and 〈c, a, b〉 ∈ costI}

= {〈c, a, b〉 | 〈a, b〉 ∈ inI and 〈a, b〉 ∈ edgeI and cst(〈a, b〉) = c}
= {〈c, a, b〉 | 〈a, b〉 ∈ inI and cst(〈a, b〉) = c}

Therefore, sum(set tp)I =
∑

e∈P

cst(e). Finally, since I encodes 〈V,E, cst ,m〉, it

follows that maxCostI = {m} and, thus, I |= (29) iff (19) holds.

The following auxiliary lemma follows from the Splitting and Completion Theo-
rems and is due to the presence of sentence (23) in HC. It allows us to complete
the argument for the TS problem.

Lemma 2. SMhc[HC ] |= ∀XY (in(X,Y ) → edge(X,Y )).

Theorem 4. Let I be an agg-interpretation encoding an instance 〈V,E, cst ,m〉
of the Traveling Salesman problem. Then, I |= SMhc[HC ∧ (29)] iff I encodes a
solution to the considered instance of the problem.

Proof. By the SplittingTheorem, I |= SMhc[HC ∧ (29)] iff I |= SMhc[HC ] ∧ (29).
Then, from Proposition 2, it follows that the latter holds iff (in/2)I forms a Hamil-
tonian cycle of G = 〈vertex I , edgeI〉 and I |= (29). Finally, by Lemma2, we get
that I |= SMhc[HC ] implies I |= ∀XY (in(X,Y ) → edge(X,Y )) and, thus,
that inI ⊆ edgeI . Therefore, the result follows from Lemma 1.

Theorem 4 can be seen as a proof of correctness for the TS encoding consisting
of rules in Listing 1.2 and rule (20).

4 Conclusions and Future Work

We have shown how the semantics for programs with aggregates based on a
many-sorted extension of the SM operator [4] can be used for arguing correct-
ness of logic programs of this kind. For this we followed a modular methodol-
ogy [2] and showed how it allows us to reuse the proof of correctness of other
programs when they form sub-modules in the encoding of a new problem. One
of the limitations of our approach is that it is only applicable to programs where
aggregates do not have positive recursion. This limitation is inherited from the
semantics for programs with aggregates in which it is based. Although aggregates
with positive recursion are rare in practical applications, future work should be
directed towards removing this limitation. It will be also interesting to consider
programs with weak constraints.

The work by Yuliya Lierler was partially supported by NSF grant 1707371.
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Abstract. Answer set programming (ASP) is a declarative program-
ming paradigm where the solutions of a search problem are captured by
the answer sets of a logic program describing its solutions. Besides native
algorithms implemented as answer-set solvers, the computation of answer
sets can be realized (i) by translating the logic program into propositional
logic or its extensions and (ii) by finding satisfying assignments with
appropriate solvers. In this work, we recall the graph-based extension of
propositional logic, viz. SAT modulo graphs, and the case of acyclicity
constraint which keeps a digraph associated with each truth assignment
acyclic. This particular extension lends itself very well for answer set
computation, e.g., using extended SAT solvers, such as GraphSAT, as
back-end solvers. The goal of this work, however, is to translate away
the acyclicity extension altogether using a vertex elimination technique,
giving rise to a translation from ASP into propositional clauses only.
We use non-tight benchmarks and a state-of-the-art SAT solver, Kissat,
to illustrate that performance obtained in this way can be competitive
against GraphSAT and native ASP solvers such as Clasp and Wasp.

1 Introduction

Answer set programming (ASP) is a paradigm for declarative programming
where the solutions of a search problem are described in terms of rules (see, e.g.,
[6,15] for overviews). A central idea behind the paradigm is that the solutions of
the problem are captured by the answer sets [16] of the logic program formed by
the rules. Then, solutions can be sought using dedicated search engines, known
as answer-set solvers, for the computation of answer sets. The performance of
answer-set solvers has been evaluated in a series of ASP competitions, see [12]
for the results of the seventh competition. The latest competitions have been
dominated by native answer-set solvers Clasp [11] and Wasp [1], making them
as natural targets for comparison when improving answer set computation.

Besides native native answer-set solvers, the computation of answer sets can
be realized via translations into propositional (Boolean) logic such that Boolean
satisfiability (SAT) checkers, also known as SAT solvers, can be used to find
satisfying assignments corresponding to answer sets. Such a strategy for answer
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set computation is more generally known as translation-based ASP [14] that was
originally proposed to combine the knowledge representation capabilities of ASP
with the efficiency of existing solver technology. There is some variety of trans-
lations from ASP to pure SAT, including worst-case exponential [18], quadratic
[17], and sub-quadratic [13] ones. Yet more compact (linear) translations are
enabled if one considers extensions of propositional logic such as difference logic
(DL) [20] and SAT modulo graphs [9]. The latter is particularly relevant for the
purposes of this work in the case of acyclicity constraint which keeps a digraph
associated with each truth assignment acyclic. This primitive is well-suited for
expressing the essentials of answer sets [8] as well as for their computation, e.g.,
using extended SAT solvers, such as GraphSAT [10], as back-ends. As reflected
by ASP competition results, the level of performance obtained via translations
can be sometimes comparable to that of native solvers, but no translation-based
approach has really been able to challenge native ASP solvers so far. At best,
non-native back-end solvers scale similarly, but the performance is degraded by
slower propagation due to blow-ups and primitives used in translation.

In this work, however, we take advantage of a recently introduced method
that translates away the acyclicity constraints altogether using a vertex elim-
ination technique [21]. Our translation is therefore from ASP into pure SAT.
While GraphSAT relies on a specialized algorithm for satisfying the acyclicity
constraint, our method offers an easy way to use any state-of-the-art SAT solver
as the back-end solver without additional implementation effort.

Our translation of ASP into pure SAT is produced through four stages,
which respectively are normalization, instrumentation with acyclicity constraint,
program completion, and translating the acyclicity constraint to propositional
clauses using vertex elimination. We theoretically show how the correctness of
our method can be derived from the correctness of the mentioned stages. As for
the empirical analysis, by considering non-tight decision problem sets of previ-
ous ASP competitions, we show that our new translation-based method, when
accompanied by a state-of-the-art SAT solver, Kissat [2], outperforms previous
translation-based methods, and is also quite competitive against state-of-the-art
native ASP solvers such as Clasp and Wasp. To the best of our knowledge and
referring to ASP Competition results, this is the first time when a translation-
based approach to answer-set solving has actualized its intended potential.

The rest of this article is organized as follows. In Sect. 2, we recall basic
concepts and definitions of ASP and identify the class of weight constraint pro-
grams (WCPs) that is central for this study. Then, in Sect. 3, we discuss the
three basic steps required to transform a WCP P into a set of clauses amended
by a dynamically varying digraph that is enforced to be acyclic. In Sect. 4, we
recall how vertex elimination can be used to check whether a given digraph is
acyclic. Then, we describe how SAT modulo acyclicity can be translated back
to pure SAT using vertex elimination in Sect. 5. In Sect. 6, we combine the tech-
niques presented so far and present a novel translation of WCPs into pure SAT,
improving the efficiency of computing answer sets with SAT solvers. To this end,
we present practical evidence in Sect. 7 based on an experimental evaluation of
the resulting method for answer set computation. The analysis is based on six
non-tight benchmark problems. Finally, we conclude the paper in Sect. 8.
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2 Preliminaries

In the sequel, weight constraint programs (WCPs) consist of rules of the forms:

a ← b1 , . . . , bn, not c1 , . . . , not cm. (1)
{a} ← b1 , . . . , bn, not c1 , . . . , not cm. (2)

a ← k ≤ [b1 = w1 , . . . , bn = wn, not c1 = wn+1 , . . . , not cm = wn+m]. (3)

The symbols a, b1 , . . . , bn with n ≥ 0, and c1 , . . . , cm with m ≥ 0 occurring in
the rules are (propositional) atoms and “not” denotes negation by default. The
bound k and the weights w1 , . . . , wn+m in (3) are non-negative integers. Rules
of the forms (1)–(3) are known as normal, choice, and weight rules, respectively
[23]. Intuitively, each rule r gives a reason to derive its head head(r) = a if the
conditions in its body body(r) are met, i.e., atoms involved can be either derived
or not by other rules. For a choice rule r of form (2), the derivation of head(r) is
optional and, for a weight rule r of form (3), the sum of weights associated with
satisfied body conditions must reach k. We write body+(r) and body−(r) for the
sets of atoms b1 , . . . , bn (resp. c1 , . . . , cm) occurring positively (resp. negatively)
in body(r). A normal logic program (NLP) consists of normal rules only whereas
the rules of a positive logic program satisfy m = 0, i.e., are negation free. Given
a WCP P , the definition of an atom a in P is defP (a) = {r ∈ P | head(r) = a}.

The signature of a WCP P is the set of atoms At(P ) =
⋃

r ∈ P ({head(r)} ∪
body+(r) ∪ body−(r)) that occur in P . The positive dependency graph of P
is DG+(P )〈At(P ),�〉 where a � b holds for a, b ∈ At(P ) if head(r) = a and
b ∈ body+(r) for some rule r ∈ P . A strongly connected component (SCC) of
DG+(P ) is a maximal subset S ⊆ At(P ) such that all distinct atoms a, b ∈ S
depend (transitively) on each other via a directed path in DG+(P ).

An interpretation I ⊆ At(P ) determines which atoms a ∈ At(P ) are true
(a ∈ I) and which are false (a � ∈ I). Then I satisfies a rule r ∈ P of forms (1)
and (3), denoted I |= r, if the satisfaction of the body, denoted I |= body(r),
implies that head(r) ∈ I, i.e., I |= head(r). For a choice rule r of form (2),
I |= r unconditionally. Moreover, the interpretation I is a (classical) model of
P if I |= r holds for every r ∈ P . Each positive program P has a unique least
model LM(P ) obtained as the intersection

⋂{I ⊆ At(P ) | I |= P}.
Given an interpretation I, the reduct rI of r with respect to I is obtained by

partially evaluating the negative conditions of r. For a normal rule (1), rI = ∅
if ci ∈ I for some 1 ≤ i ≤ m and rI = {a ← b1 , . . . , bn} otherwise. For a
choice rule (2), the latter case additionally requires that a ∈ I. For a weight
rule (3), rI = {a ← l ≤ [b1 = w1 , . . . , bn = wn]} where the revised bound l
is obtained from k by deducing wn+i for each 1 ≤ i ≤ m such that ci � ∈ I.
Finally, for an entire WCP P , the reduct P I =

⋃{rI | r ∈ P} and I is a stable
model of P iff I = LM(P I). For the purposes of this work, it is also useful to
distinguish the supporting rules of P with respect to I, i.e., SRP (I) = {r ∈ P |
head(r) ∈ I, I |= body(r)}. Then, a model I |= P is supported (by P ) when
I = {head(r) | r ∈ SRP (I)}. Each stable model of P is supported by P , but
supported models are not necessarily stable, such as I = {a} for P = {a ← a.}.
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Example 1. Consider a WCP P consisting of the following three rules:

a ← b, c. {b}. c ← 3 ≤ [a = 1, b = 2, not b = 3].

The signature At(P ) = {a, b, c} and DG+(P ) has SCCs S1 = {a, c} and S2 =
{b}. There are two stable models M1 = {b} and M2 = {c} justified by reducts
PM1 = {a ← b, c. b. c ← 3 ≤ [a = 1, b = 2].} and PM2 = {a ← b, c. c ← 0 ≤
[a = 1, b = 2]}. But the model M2 = {a, b, c} is only supported, not stable. �

3 Translating ASP into SAT Modulo Graphs/Acyclicity

In this section, we recall the translation of logic programs under answer set
semantics into SAT modulo Graphs. The original translation [8] was formulated
directly from normal programs into SAT modulo acyclicity. This approach pre-
sumes that WCPs are first normalized in the sense of [3], i.e., rewritten in terms
of normal rules only. An improved translation [4] instruments a WCP with extra
rules that make the acyclicity constraint explicit in the program. The result-
ing logic program encodes the minimality of answer sets in two parallel ways if
the program is interpreted under the ASP modulo acyclicity semantics [4]. Since
instrumentation covers WCPs in general, it is possible to postpone normalization
after this phase, which can be deemed beneficial for the size of the resulting NLP
because normalization tends to enlarge SCCs in logic programs. The final step
of the translation is based on Clark’s completion [7] but to keep the resulting
blow-up linear, new atoms in the sense of Tseitin [24] are required. Moreover,
the interpretation of atoms involved in the acyclicity constraint must be kept
intact. In what follows, we review the essentials of normalization (Sect. 3.1),
instrumentation (Sect. 3.2), and program completion (Sect. 3.3).

3.1 Normalization

The extended rule types [23] can be rewritten using normal rules only [3], but
for the sake of compactness new atoms are necessary. For instance a choice
rule r in (2), can be expressed using a new atom a for the head along with
normal rules a ← not a,body(r) and a ← not a. The normalization schemes
for weight rules (3) are far more complex. For instance, the normalization of
a ← k ≤ [b1 = 1 , . . . , bn = 1] would require

(
n
k

)
positive normal rules without

new atoms. Fortunately, there are (low-degree) polynomial designs based on, e.g.,
binary decision diagrams, sorting networks, and mixed radix number systems [3].
Given a WCP P , we write TrNORM(P ) for the result of normalizing P using some
(fixed) normalization schemes for choice (2) and weight (3) rules.

Proposition 1 ([3,5]). Let P be a WCP.

1. If an interpretation M ⊆ At(P ) is a stable model of P , then there is a stable
model N of the normalization TrNORM(P ) such that M = N ∩ At(P ).

2. If N ⊆ At(P ) is a stable model of the normalization TrNORM(P ), then M =
N ∩ At(P ) is a stable model of P .
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Most normalization schemes [3,5] are faithful in even a stronger (bijective) sense,
i.e., the program P and its normalization TrNORM(P ) are visibly equivalent [13]:
their answer sets are in one-to-one correspondence and coincide up to At(P ).

Example 2. Recalling WCP P from Example 1, one potential normalization is:

a ← b, c. b ← not b. b ← not b. c ← a, b. c ← not b.

Its stable models N1 = {b} and N2 = {b, c} correspond to the earlier ones. �

3.2 Instrumentation with Acyclicity Constraint

Our next target is to recall the acyclicity translation TrACYC(P ) of a WCP P
[4] that deploys special dependency atoms dep(a, b) to express the activation of
the respective edge 〈a, b〉 ∈ DG+(P ) in the acyclicity constraint. This trans-
formation is feasible on an atom-by-atom basis and required only for atoms
a ∈ At(P ) involved in non-trivial SCCs S of P with |S| > 1. Given such
an S and an atom a ∈ S, the idea is to instrument P with additional rules
that capture well-support for a (cf. [4]). For each edge 〈a, b〉 ∈ DG+(P ) spe-
cific to S, the potential dependency of a on b is expressed using a choice rule
{dep(a, b)} ← b. Besides this, special atoms ws(r1) , . . . , ws(rk) for the defining
rules {r1 , . . . , rk} = defP (a) enforce the well-support for a in terms of a con-
straint f ← a, not ws(r1) , . . . , not ws(rk), not f where f is new. Given the
SCC S of a in P , we assume that each body+(r) in (1)–(3) is ordered so that
for some 0 ≤ l ≤ n, b1 ∈ S , . . . , bl ∈ S while bl+1 � ∈ S , . . . , bn � ∈ S. Then, if a
defining rule r ∈ defP (a) is of the form (1) or (2), the rule (4) below captures
well-support mediated by r, but if it is of the form (3), then the rule is (5).

ws(r) ←dep(a, b1) , . . . , dep(a, bl), bl+1 , . . . , bn, not c1 , . . . , not cm. (4)
ws(r) ←k ≤ [dep(a, b1) = w1 , . . . , dep(a, bl) = wl, bl+1 = wl+1 , . . . , bn = wn,

not c1 = wn+1 , . . . , not cm = wn+m]. (5)

For the program TrACYC(P ) obtained in this way, the distinction between stable
and supported models disappears if we insist on acyclic models I for which the
digraph induced by the set of arcs {〈a, b〉 | dep(a, b) ∈ I} is acyclic.

Proposition 2 ([4, Theorem 3.11]). Let P be a WCP.

1. If M is a stable model of P , then TrACYC(P ) has an acyclic supported model
N such that M = N ∩ At(P ).

2. If N is an acyclic supported model of TrACYC(P ), then M = N ∩
At(P ) is a stable model of P and well-supported by R = {r ∈ P |
ws(r) ∈ N,head(r) ∈ N}.

Example 3. Normalization in Example 2 preserves SCCs as is, in particular, the
SCC S = {a, c}. Let r1 be the defining rule for a, and r2 and r3 the ones for c.
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Adding

{dep(a, c)} ← c. {dep(c, a)} ← a.
ws(r1) ← dep(a, c), b. ws(r2) ← dep(c, a), b. ws(r3) ← not b.
f ← a, not ws(r1), not f. f ← c, not ws(r2), not ws(r3), not f.

ensure that acyclic supported models are stable. In particular, note that N =
{a, b, c, dep(a, c), dep(c, a), ws(r1), ws(r2)} is supported, but not acyclic. �

3.3 Program Completion Modulo Acyclicity

The final phase of translating logic programs into SAT modulo acyclicity pre-
sumes an NLP P as input, potentially involving dependency atoms dep(a, b)
where a and b are ordinary (non-dependency) atoms in P , see Sect. 3.2. Given
a normal rule r ∈ P of the form (1), we introduce a new atom bt(r) denot-
ing the satisfaction of body(r), thus following the idea of Tseitin-transformation
[24]. The equivalence (6) below gives a name bt(r) for body(r) and then the
definition defP (a) of an ordinary atom a can be written as the equivalence (7).

bt(r) ↔
∧

b ∈ body+(r)

b ∧
∧

c ∈ body−(r)

¬c (6)

a ↔
∨

r ∈ defP (a)

bt(r) (7)

Choice rules {dep(a, b)} ← b introduced by TrACYC are completed as dep(a, b) ↔
b ∧ dep(a, b). What remains is the clausification of these formulas, (6) for every
r ∈ P , and (7) for each ordinary atom a ∈ At(P ). Omitting details, we denote
the resulting set by TrCOMP(P ). The correctness of TrCOMP builds on the fol-
lowing.

Proposition 3 ([4,8]). Let P be an NLP subject to acyclicity constraint.

1. If an interpretation I ⊆ At(P ) is an acyclic supported model of P , then
I ∪ {bt(r) | r ∈ P, I |= body(r)} is an acyclic model of TrCOMP(P ).

2. If an interpretation I ⊆ At(TrCOMP(P )) is an acyclic model of TrCOMP(P ),
then I ∩ At(P ) is an acyclic supported model of P .

Example 4. The rules introduced by normalization (Example 2) and by instru-
mentation for well-support (Example 3) effectively yield the following clauses:

a ∨ ¬b ∨ ¬c, ¬a ∨ b, ¬a ∨ c, b ∨ b, ¬b ∨ ¬b,
c ∨ ¬a, c ∨ b, ¬c ∨ a ∨ ¬b, ¬dep(a, c) ∨ c, ¬dep(c, a) ∨ a,

¬ws(r1) ∨ dep(a, c), ¬ws(r1) ∨ b, ws(r1) ∨ ¬b ∨ ¬dep(a, c),
¬ws(r2) ∨ dep(c, a), ¬ws(r2) ∨ b, ws(r2) ∨ ¬b ∨ ¬dep(c, a),

¬ws(r3) ∨ b, ws(r3) ∨ ¬b,
ws(r1) ∨ ¬a, ws(r2) ∨ ws(r3) ∨ ¬c.

Then, the stable models of the original WCP P are captured by acyclic models
I1 = {b} and I2 = {c, b, ws(r3)} while N from Example 3 is a model with a cycle.

�
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4 Vertex Elimination

Vertex elimination for digraphs was originally introduced by Rose and Tar-
jan [22]. Quite recently, it was successfully used to prevent cycles in digraphs
associated with propositional formulas [21]. We now recall these methods.

Given a digraph G = 〈V,E〉, an ordering of V is a bijection α : {1, . . . , n} →
V . For a vertex v, the fill-in of v, denoted by F (v), is the set of edges from the
in-neighbors of v to the out-neighbors of v, formally defined by

F (v) = {〈x, y〉|〈x, v〉 ∈ E, 〈v, y〉 ∈ E, x �= y}. (8)

The v-elimination graph of G is produced by removing v from G, and adding
the fill-in of v to the resulting graph. Formally, G(v) = (V − {v}, E(v) ∪ F (v),
where E(v) = {〈x, y〉|〈x, y〉 ∈ E, x �= v, y �= v}.

Given a digraph G and an ordering α of its vertices, the elimination process
of G according to α is the sequence G = G0, G1, . . . , Gn−1, where Gi is the
α(i)-elimination graph of Gi−1 for i = 1, . . . , n − 1.

The fill-in of the digraph G according to α, denoted by Fα(G), is the set of
all edges added to G in the elimination process. Formally, Fα(G) is defined by
(9), where Fi−1(α(i)) is the fill-in of α(i) in Gi−1.

Fα(G) =
|V |−1⋃

i=1

Fi−1(α(i)) (9)

The vertex elimination graph of G according to α, denoted by G∗
α, is the

union of all graphs produced in the elimination process of G according to α:

G∗
α = 〈V,E ∪ Fα(G)〉. (10)

For any digraph G, the number of arcs of the vertex elimination graph
depends on the ordering function α. It has been shown that the problem of
finding the optimal ordering function, the one resulting in the smallest number
of arcs in the vertex elimination graph, is NP-complete [22]. Nevertheless, there
are effective heuristics for finding empirically usable orderings. Examples are
the minimum fill-in and minimum degree that accordingly choose a vertex for
removal at each step during the elimination process.

One important property of vertex elimination graphs is that if the original
graph G has a directed cycle, no matter what the ordering α is, the vertex
elimination graph G∗

α will have a cycle of length 2. Example 5 shows how cycles
go through contraction during the vertex elimination process.

Example 5. Let G be the cycle depicted in Fig. 1a. Figure 1a to 1g show the
vertex elimination process of G according to α, where α(1) to α(8) are 2, 4,
6, 8, 1, 5, 3, and 7, respectively. Figure 1h depicts the vertex elimination graph
according to α. As it can be seen in Fig. 1, after elimination of each node, the size
of the remaining cycle decreases by one node. Therefore, the produced vertex
elimination graph must have a cycle of length 2.
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Fig. 1. The vertex elimination process of an eight-node cycle

5 Translating SAT Modulo Acyclicity into Pure SAT

Let φ be a propositional formula associated with graph G = 〈V,E〉, such that
arc 〈vi, vj〉 ∈ E is represented by the atom ei,j ∈ At(φ). An interpretation
I is an acyclic model of formula φ iff I |= φ in the classical sense and the
digraph GI = (V, {〈vi, vj〉|ei,j ∈ I}) is acyclic. We are interested in producing
a propositional formula φ′, such that φ′ is satisfiable in the classical sense if and
only if there is an acyclic model for φ.

Vertex elimination has recently been used for translating SAT modulo
acyclicity into pure SAT [21]. This is achieved by adding atoms and clauses to
φ that dynamically simulate the vertex elimination process of GI for a classical
model I of φ. Considering the cycle contraction property of vertex elimination
graphs mentioned above, the acyclicity of GI can then be ensured by prohibiting
cycles of length 2 in the vertex elimination graph of GI .

Let α be an arbitrary ordering of V . Without loss of generality, we assume
that members of V are indexed such that for i = 1, . . . , n, α(i) = vi. For the sake
of simplicity, we denote the vertex elimination graphs of G and GI according
to α, simply by G∗ = 〈V,E∗〉 and G∗

I = 〈V,E∗
I 〉, respectively. To simulate the

vertex elimination process of GI , we need atoms e′
i,j to represent the arcs of G∗

I .
We know that every arc of GI is also an arc of G∗

I . In other words, ei,j implies
e′
i,j . Hence, we add to the original formula

∧

〈vi,vj〉 ∈ E

ei,j → e′
i,j . (11)

Let G = G0, G1, . . . , Gn−1 be the vertex elimination process of G, and GI =
G′

0, G
′
1, . . . , G

′
n−1 be the vertex elimination process of GI . Since GI is a subgraph

of G, G′
i must be a subgraph of Gi for i = 1, . . . , n − 1. Therefore, the fill-in of
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vi in G′
i−1 is also a subset of the fill-in of vi in Gi−1. Since the fill-in of vi in

Gi−1 can be computed statically, we can use it to reduce the number of formulas
and atoms needed for dynamic computation of the fill-in of vi in G′

i−1. Based on
this, we add formula (12) to ensure that for i = 1, . . . , n − 1, the fill-in of vi in
G′

i−1 is included in G∗
I . In (12), Fi−1(vi) denotes the fill-in of vi in Gi−1.

∧

vi ∈ V,〈vj ,vk〉 ∈ Fi−1(vi)

(e′
j,i ∧ e′

i,k) → e′
j,k (12)

Finally, we guarantee the acyclicity of GI by prohibiting cycles of length 2
in the vertex elimination graph of GI , using formula (13).

∧

〈vi,vj〉 ∈ E∗,〈vj ,vi〉 ∈ E∗,i<j

e′
i,j → ¬e′

j,i (13)

Consider φ′ to be the conjunction of φ and formulas (11) to (13). Theorem 1
and Theorem 2 of [21] show that for any given ordering α of V , φ′ is satisfiable in
classical sense iff there is an acyclic model for φ. Nevertheless, by straightforward
consideration, one can reach to a stronger theoretical result as follows.

Proposition 4. Let φ be a propositional formula subject to acyclicity constraint,
associated with graph G = 〈V,E〉, and α be any ordering of V .

1. If an interpretation I ⊆ At(φ) is an acyclic model of φ, then the interpretation
J = I ∪ {e′

i,j | 〈vi, vj〉 ∈ E∗
I } is a classical model of φ′.

2. If an interpretation J ⊆ At(φ′) is a classical model of φ′, then the interpre-
tation I = J ∩ At(φ) is an acyclic model of φ.

6 Translating ASP into Pure SAT

Considering a WCP P , let φ denote the conjunction of all clauses produced by the
translation TrCOMP(TrACYC(TrNORM(P ))). By construction, φ is a propositional
formula with acyclicity constraint imposed on a graph G = 〈V,E〉, where V
is the set of ordinary (non-dependency) atoms in TrNORM(P ), and E is the
set of pairs 〈a, b〉 such that dep(a, b) is an atom in TrACYC(TrNORM(P )). Let
G = G0, G1, . . . , Gn−1, Fi−1(vi), and G∗ = 〈V,E∗〉 be defined as in Sect. 5 and
TrSAT(P ) the set of clauses in φ extended by clauses derived from formulas
(11)–(13). Theorem 1 is a direct consequence of Propositions 1–4.

Theorem 1. Let P be a WCP.

1. If an interpretation M ⊆ At(P ) is a stable model of P , then there is a classical
model N of TrSAT(P ) such that M = N ∩ At(P ).

2. If an interpretation N ⊆ At(TrSAT(P )) is a classical model of TrSAT(P ), then
M = N ∩ At(P ) is a stable model of P .

Theorem 1 does not provide a bijection between the set of classical models of
TrSAT(P ) and the set of stable modes of P but admits the following result.
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Table 1. Comparison of coverage of competing methods

Problem Set Problems Solved

SAT CLASP WASP GRAPHSAT BIN

CombinedConfiguration 99 66 65 19 26 33

Hamiltonian 300 282 199 276 300 194

KnightTourWithHoles 300 44 40 37 31 26

Labyrinth 246 205 209 191 109 156

MazeGeneration 50 50 50 50 50 22

RandomNonTight 14 14 14 12 14 14

Total 1219 661 577 585 530 445

Corollary 1. Let P be a WCP. The set of projections of classical models of
TrSAT(P ) to At(P ) is equal to the set of stable models of P .

Example 6. Consider the clauses of Example 4. After our vertex elimination
based translation, clauses ¬dep(a, c) ∨ dep′(a, c) and ¬dep(c, a) ∨ dep′(c, a) are
produced according to formula (11), and dep′(a, c) ∨ ¬dep′(c, a) is produced
by formula (13), rendering TrSAT(P ) not satisfiable by any superset of N from
Example 3. �

7 Experimental Evaluation

We have implemented our vertex elimination based translation of SAT modulo
acyclicity into pure SAT as Graph2SAT 1.0 within the ASPTOOLS1 collec-
tion [14]. To translate ASP to SAT modulo acyclicity, we use lp2acyc 1.30,
lp2normal2 1.14, lp2sat 1.26, all provided by the ASPTOOLS collection. All
experiments are run on a cluster of Linux machines with Intel Xeon 2.40 GHz
CPUs, using a timeout of 600 s per problem, and, a memory limit of 16 GB. For
determining the vertex elimination order, we implemented the minimum degree
heuristic. As the SAT solver, we use Kissat 1.0.3 [2].

As regards competing methods, we compare against state-of-the-art native
ASP solvers Clasp 3.3.5 and Wasp 2.0, the translation-based method using
SAT modulo acyclicity formulas fed to Graphsat as the solver, as well as the
previously introduced binary counter encoding of acyclicity constraint into pure
SAT [13] accompanied by Kissat as the solver, henceforth denoted by Bin.
As the benchmark set, we use all problem sets of previous ASP competitions
whose complexity is not beyond NP and are in the non-tight decision category.

1 https://github.com/asptools.

https://github.com/asptools
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Fig. 2. Cumulative numbers of problems solved by the competing methods

The problem sets with such properties are: CombinedConfiguration, KnightTour-
WithHoles, Labyrinth, MazeGeneration, and RandomNonTight. We also use the
Hamiltonian cycle encoding presented in [19]. This problem set includes 30 ran-
domly generated planar graphs with 60, 70, . . . , 150 nodes, summing up to 300
instances. In total, 1219 problem instances are used in our experiments. Here,
we report the solving times of the competing methods. The time spent by our
method on translation is negligible compared to the solving time. We checked
that taking the translation time into account would not render any of the cur-
rently solved instances unsolvable within the time limit of 600 s.

The number of problems solved by the mentioned methods on our benchmark
suite is stated in Table 1. In total, our method solves 84, 76, 131, and 221 prob-
lems more than Clasp, Wasp, Graphsat, and Bin, respectively. Figure 2 shows
the cumulative number of problems solved by the competing methods. As it can
be observed, when given more than 30 s, our method solves more problems than
any other competing solver. Also, Fig. 3, which depicts the cumulative number
of problems solved by the competing methods in each problem set, shows that
our method is among the top two solvers in every problem set.
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(a) CombinedConfiguration
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(b) Hamiltonian
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(c) KnightTourWithHoles
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(d) Labyrinth
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(e) MazeGeneration
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(f) RandomNonTight

Fig. 3. Cumulative numbers of problems solved by the competing methods in each
problem set

8 Discussion and Conclusion

In this work, we take into reconsideration the translation of ASP into SAT
modulo graphs and, more specifically, SAT modulo acyclicity [8,9]. This trans-
formation along its refactored version [4] enable the computation of answer sets
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using appropriately extended SAT solvers such as GraphSAT. The recent app-
roach of [21] makes the graph extension involved in SAT modulo acyclicity obso-
lete using yet another transformation based on vertex elimination. The central
goal of this work is to check the effect on performance if the composition of
these translations is deployed and a state-of-the-art SAT solver [2] is used as
the back-end solver. The results obtained for six non-tight benchmarks are very
promising as the approach presented in this work turns out to be competitive
against GraphSAT and the native ASP solvers Clasp and Wasp. This can be
interpreted as a realization of the long-term objective of translation-based ASP,
i.e., taking advantage of the development of solver technology. An immediate
conclusion is that the designs of native ASP solvers should be revised to reflect
recent developments in SAT solvers. Otherwise, the performance gap is to grow.

Acknowledgments. Financial support from the Academy of Finland (Project
XAILOG, #345633) is gratefully acknowledged.
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Abstract. Answer set programming (ASP) is a popular declarative pro-
gramming paradigm with various applications. Programs can easily have
so many answer sets that they cannot be enumerated in practice, but
counting still allows to quantify solution spaces. If one counts under
assumptions on literals, one obtains a tool to comprehend parts of the
solution space, so called answer set navigation. But navigating through
parts of the solution space requires counting many times, which is expen-
sive in theory. There, knowledge compilation compiles instances into rep-
resentations on which counting works in polynomial time. However, these
techniques exist only for CNF formulas and compiling ASP programs into
CNF formulas can introduce an exponential overhead. In this paper, we
introduce a technique to iteratively count answer sets under assumptions
on knowledge compilations of CNFs that encode supported models. Our
anytime technique uses the principle of inclusion-exclusion to system-
atically improve bounds by over- and undercounting. In a preliminary
empirical analysis we demonstrate promising results. After compiling the
input (offline phase) our approach quickly (re)counts.

Keywords: ASP · Answer set counting · Knowledge compilation

1 Introduction

Answer set programming (ASP) [11] is a widely used declarative problem mod-
eling and solving paradigm with many applications in knowledge representation,
artificial intelligence, planning, and many more. It is widely used to solve difficult
search problems while allowing compact modeling [7]. In ASP, a problem is rep-
resented as a set of rules, called logic program, over atoms. Models of a program
under the stable semantics form its solutions, so-called answer sets. Beyond the
search for one solution or an optimal solution, an increasingly popular ques-
tion is counting answer sets, which provides extensive applications for quantita-
tive reasoning. For example, counting is crucial for probabilistic logic program-
ming, c.f., [6,13] or encoding Bayesian networks and their inference [12]. Interest-
ingly, counting also facilitates more fine-grained reasoning modes between brave
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and cautious reasoning. To this end, one examines the ratio of an atom occur-
ring in answer sets over all answer sets, which yields a notion of plausibility of
an atom. When considering sets of literals, which represent assumptions, one
obtains a detailed tool to comprehend search spaces that contain a large num-
ber of answer sets [5]. However, already for ground normal programs, answer
set counting is #·P-complete, making it harder than decision problems. Recall
that brave reasoning is just NP-complete, but by Toda’s Theorem we know that
PH ⊆ P#·P where

⋃
k∈N

ΔP
k = PH and NP ⊆ ΔP

2 = PNP. Approximate count-
ing is in fact easier, i.e., approx-#·P ⊆ BPPNP ⊆ ΣP

3 , and approximate answer
set counters have very recently been suggested [8]. Still, when navigating large
search spaces, we need to count answer sets many times rendering such tools
conceptually ineffective. There, knowledge compilation comes in handy [3].

In knowledge compilation, computation is split in two phases. Formulas are
compiled in a potentially very expensive step into a representation in an offline
phase and reasoning is carried out in polynomial time on such representations in
an online phase. Such a conceptual framework would be perfectly suited when
answer sets are counted many times, providing us with quick re-counting. While
we can translate programs into propositional formulas and directly apply tech-
niques from propositional formulas, it is widely known that one can easily run
into an exponential blowup [10] or introduce level mappings that are oftentimes
large grids and hence expensive for counters. In practice, solvers that find one
answer set or optimal answer sets can avoid a blowup by computing supported
models, which can be encoded into propositional formulas with limited overhead,
and implementing propagators on top [7].

In this paper, we explore a counterpart of a propagator-style approach for
counting answer sets. We encode finding supported models as a propositional
formula and use a knowledge compiler to obtain, in an offline phase, a represen-
tation, which allows us to construct a counting graph that in turn can be used
to efficiently compute the number of supported models. The resulting counting
graph can be quite large, but can be evaluated in parallel. Counting supported
models provides us only with an upper bound on the number of answer sets. We
suggest a combinatorial technique to systematically improve bounds by over-
and undercounting while incorporating the external support, whose absence can
be seen as cause of overcounting in the first place. Our technique can be used
to approximate the counts, but also provides the exact count on the number of
answer sets when taking the entire external support into account.
Contributions. Our main contributions are as follows.

1. We consider knowledge compilation from an ASP perspective. We recap
features such as counting under assumptions, known as conditioning, that
make knowledge compilations (sd-DNNFs) quite suitable for navigating search
spaces. We suggest a domain-specific technique to compress counting graphs
that were constructed for supported models using Clark’s completion.

2. We establish a novel combinatorial algorithm that takes an sd-DNNF of a
completion formula and allows for systematically improving bounds by over-
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and undercounting. The technique identifies not supported atoms and com-
pensates overcounting on the sd-DNNF.

3. We apply our approach to instances tailored to navigate incomprehensible
answer set search spaces. While the problem is challenging in general, we
demonstrate feasibility and promising results on quickly (re-)counting. We
can quickly (re-)count after every search space navigation step.

Related Works. Previous work [1] considered knowledge compilation for logic
programs. There an eager incremental approximation technique incrementally
computes the result whereas our approach can be seen as an incremental lazy
approach on the counting graph. Moreover, the technique by Bogarts and Broeck
focuses on well-founded models and stratified negation, which does not work
for normal programs in general without translating ASP programs into CNFs
directly. Note that common reasoning problems on answer set programs without
negation can be solved in polynomial time. Model counting can significantly
benefit from preprocessing techniques, which eliminate variables. Widely used
propositional knowledge compilers are c2d [2] and d4 [9].

2 Preliminaries

We assume familiarity with propositional satisfiability, graph theory, proposi-
tional ASP [7]. Recall that a cycle C on a (di)graph G is a (directed) walk of G
where the first and the last vertex coincide. For cycle C, we let VC be its vertices
and cycles(G) := {VC | C is a cycle of G}. We consider propositional variables
and mean by formula a propositional formula. By � and ⊥ we refer to the vari-
ables that are always evaluated to 1 or 0 (constants). A literal is an atom a or
its negation ¬a, we assume ¬¬a = a, and vars(ϕ) denotes the set of variables
that occur in formula ϕ. The set of models of a formula ϕ is given by M(ϕ).
Answer Set Programming (ASP). In the context of ASP, we usually say
atom instead of variable. A (logic) program Π is a finite set of rules r of the form
a0 ← a1, . . . , am,¬am+1, . . . ,¬an where 0 ≤ m ≤ n and a0, . . . , an are atoms
and usually omit � and ⊥. For a rule r, we define H(r) := {a0} called head
of r. The body consists of B+(r) := {a1, . . . , am} and B−(r) := {am+1, . . . , an}.
The set at(r) of atoms of r consists of H(r) ∪ B+(r) ∪ B−(r). Let Π be a
program. Then, we let the set at(Π) :=

⋃
r∈Π at(r) of Π contain its atoms.

Its positive dependency digraph DP(Π) = (V,E) is defined by V := at(Π)
and E := {(a1, a0) | a1 ∈ B+(r), a0 ∈ H(r), r ∈ Π}. The cycles of Π are
given by cycles(Π) := cycles(DP(Π)). Π is tight, if DP(Π) is acyclic. An
interpretation of Π is a set I ⊆ at(Π) of atoms. I satisfies a rule r ∈ Π if
H(r) ∩ I 
= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies Π, if I
satisfies each rule r ∈ Π. The GL-reduct ΠI is defined by ΠI := {H(r) ←
B+(r) | I ∩ B−(r) = ∅, r ∈ Π}. I is an answer set, sometimes also called sta-
ble model, if I satisfies ΠI and I is subset-minimal. The completion of Π is
the formula comp(Π) := {a ↔ ∨

r∈Π,H(r)=a BF (r) ∨ ⊥ | a ∈ at(Π)} where
BF (r) :=

∧
b∈B+(r) b∧∧

c∈B−(r) ¬c∧�. An interpretation I is a supported model
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Fig. 1. Counting graph G(ϕ ∧ ¬c) labeled with literals, operations and val.

of Π, if it is a model of the formula comp(Π). Let S(Π) be the set of all supported
models of Π. It holds that AS(Π) ⊆ S(Π), but not vice-versa. If Π is tight, then
AS(Π) = S(Π). In practice, we use the completion in CNF, thereby introducing
auxiliary variables and still preserving the number of supported models.

Example 1. Let Π1 = {a ← b; b ←; c ← c}. We see that DP(Π1) is cyclic due
to rule c ← c. Thus, Π1 is not tight and its respective answer sets AS(Π1) =
{{a, b}} and supported models S(Π1) = {{a, b}, {a, b, c}} differ.

Assumptions. We define ¬L := {¬a | a ∈ L} for a set L of literals. Let Π
be a program and L(Π) := at(Π) ∪ ¬at(Π) be its literals. An assumption is a
literal � ∈ L(Π) interpreted as rule ic(�) := {⊥ ← ¬�}. For set L of assumptions
of Π, we say that L is consistent, if there is no atom a ∈ L for which ¬a ∈ L.
Throughout this paper, by L we refer to consistent assumptions. Furthermore,
we define ic(L) :=

⋃
�∈L ic(�) and let ΠL := Π ∪ ic(L).

Example 2 (cont’d). Since AS(Π1) = {{a, b}}, we see that if L ⊆ {a, b,¬c}, we
obtain AS(Π1) = AS(ΠL

1 ), and otherwise AS(ΠL
1 ) = ∅.

3 Counting Supported Models

In our applications mentioned in the introduction, we are interested in count-
ing multiple times under assumptions. Therefore, we extend known techniques
from knowledge compilation [3]. The general outline for a given program Π is as
follows: (i) we construct the formula comp(Π) that can (ii) be compiled in a com-
putationally expensive step into a formula Φcomp(Π) in a normal form, so-called
sd-DNNF by existing knowledge compilers. Then, (iii) on the sd-DNNF Φcomp(Π)

counting can be done in polynomial time in the size of Φcomp(Π).We can even
count under a set L of propositional assumptions by a technique used as con-
ditioning. However, this approach yields only the number of supported models
under assumptions and we overcount compared to the number of answer sets. To
this end, in Sect. 4, (iv) we present a technique to incrementally reduce the over-
count. First, we recall how knowledge compilation can be used to count formulas
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under assumptions by assuming that a formula is in sd-DNNF and constructing
a counting graph.
Knowledge Compilation [3] and Counting on Formulas in sd-DNNF.
Let ϕ be a formula. ϕ is in NNF (negation normal form) if negations (¬) occur
only directly in front of variables and the only other operators are conjunction
(∧) and disjunction (∨). NNFs can be represented in terms of rooted directed
acyclic graphs (DAGs) where each leaf node is labeled with a literal, and each
internal node is labeled with either a conjunction (∧-node) or a disjunction (∨-
node). We use an NNF and its DAG interchangeably. The size of an NNF ϕ,
denoted by |ϕ|, is given by the number of edges in its DAG. Formula ϕ is in
DNNF, if it is in NNF and it satisfies the decomposability property, that is,
for any distinct subformulas ψi, ψj in a conjunction ψ = ψ1 ∧ · · · ∧ ψn with
i 
= j, we have vars(ψi) ∩ vars(ψj) = ∅. ϕ is in d-DNNF, if it is in DNNF and it
satisfies the decision property, that is, disjunctions are of the form ψ = (x∧ψ1)∨
(¬x ∧ ψ2). Note that x does not occur in ψ1 and ψ2 because of decomposability.
ψ1 and ψ2 may be conjunctions. ϕ is in sd-DNNF, if all disjunctions in ψ are
smooth, meaning for ψ = ψ1 ∨ ψ2 we have vars(ψ1) = vars(ψ2). Determinism
and smoothness permit traversal operations on sd-DNNFs to count models of ϕ
in linear time in |ϕ|. The traversal takes place on the so called counting graph of
an sd-DNNF. The counting graph G(ϕ) is the DAG of ϕ where each node N is
additionally labeled by val(N) := 1, if N consists of a literal; labeled by val(N) :=
Σi val(Ni), if N is an ∨-node with children Ni; labeled by val(N) := Πi val(Ni),
if N is an ∧-node. By val(G(ϕ)) we refer to val(N) for the root N of G(ϕ).
Function val can be constructed by traversing G(ϕ) in post-order in polynomial
time. It is well-known that val(G(ϕ)) equals the model count of ϕ. For a set L
of literals, counting of ϕL := ϕ ∧ ∧

�∈L � can be carried out by conditioning of ϕ
on L [2]. Therefore, the function val on the counting graph is modified by setting
val(N) = 0, if N consists of � and ¬� ∈ L. This corresponds to replacing each
literal � of the NNF ϕ by constant ⊥ or �, respectively. From now on, we denote
by ΦΠL an equivalent sd-DNNF of comp(ΠL) and its counting graph by GΠL .
Note that ΠL = Π for L = ∅. The conditioning of GΠ on L is denoted by (GΠ)L.

Example 3. Consider sd-DNNF ϕ1 = ((x3 ∧¬c)∨ (¬x3 ∧c))∧ (¬x1 ∧¬x2 ∧¬x5 ∧
a∧ b). We observe in Fig. 1 that its DAG has 14 nodes, 7 variables and 13 edges,
so that |ϕ1| = 13. By conditioning, each variable in L will be removed from G(ϕ1)
and ϕ1 ∧ ¬c = ((x3 ∧ ¬⊥)∨ (¬x3 ∧ ⊥))∧ (¬x1 ∧ ¬x2 ∧ ¬x5 ∧ a ∧ b). From Fig. 1,
we observe that the model count val(G(ϕ ∧ ¬c)) of ϕ ∧ ¬c is 1.

Counting Supported Models. Using the techniques as described above, we
can compile the formula comp(Π) into an sd-DNNF Φcomp(Π) and count the
number |S(Π)| of supported models. We illustrate this in the following example.

Example 4. Consider Π1 from Example 1. When constructing comp(Π1) in CNF,
we obtain 10 clauses with 4 new auxiliary variables x1, x2, x3, x5. We can compile
it into an sd-DNNF ΦΠ1 which is logically equivalent to comp(Π1). For illustra-
tion purposes, we chose ϕ1 from Example 3 such that ΦΠ1 is equivalent to ϕ1.
Hence, we can obtain the number | S(Π1)| of supported models from val(GΠ1).
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3.1 Counting Supported Models Under Assumptions

Since assumptions of formulas and programs slightly differ, it is not immediately
clear that we can use conditioning to obtain the number of supported models
of a program under given assumptions. However, supported models of Π under
assumptions L coincide with models of ΦΠL .

Observation 1. M(ΦΠL) = S(ΠL) for program Π and assumptions L.

For any program Π the conditioning (ΦΠ)L on assumptions L allows us to
identify supported models of a program ΠL.

Lemma 1 (	1). M((ΦΠ)L) = S(ΠL) for program Π and assumptions L.

Immediately, we obtain that we can count the number of supported models by
first compiling the completion into an sd-DNNF and then applying conditioning.
For tight programs, this already yields the number of answer sets.

Corollary 1. val((GΠ)L) = |M((ΦΠ)L)| = |S(ΠL)| for program Π and
assumptions L. If Π is tight, also val((GΠ)L) = |AS(ΠL)| holds. Furthermore,
counting can be done in time linear in |ΦΠ |.
Example 5 (cont’d). Π1 has two supported models {a, b} and {a, b, c}. Without
setting val(c) to 0 in Fig. 1, we would obtain 2, which corresponds to these two
models. By assumption ¬c, we set val(c) to 0, which results in total count of 1
as the ∧-node (+) gives only one count in the subgraph.

3.2 Compressing Counting Graphs

When computing the counting graph of the completion of a program Π, in prac-
tice, we usually construct a CNF of the completion by the well-known Tseitin
transformation. It is well-known that there is a one-to-one correspondence, how-
ever, auxiliary variables are introduced. For counting, the one-to-one correspon-
dence immediately allows to establish a bijection between the models of the CNF
and the supported models making it practicable on CNFs.

However, from Corollary 1, we know that the runtime counting models
on (GΠ)L depends on the size of ΦΠ . In consequence, introducing auxiliary vari-
ables affects the runtime of our approach. To this end, we introduce a compress-
ing technique in Algorithm1 that takes a counting graph GΠ and produces a
compressed counting graph (CCG) τ(GΠ), thereby removing auxiliary variables
that have been introduced by the Tseitin transformation, which we describe by
Algorithm1. Algorithm1 takes as input an sd-DNNF ΦΠ , and literals L(Π);
and returns the compressed counting graph τ(GΠ). In Line 2, we check whether
the literal node consists of an auxiliary variable, and if so, it will be ignored.
The case distinction in Lines 5–7 distinguishes how many not ignored children
a non-literal node still has. Remember that each non-literal node is either an
∧-node or an ∨-node. In Line 5, the node can be removed, as it has no child.
1 Statements marked by “�” are proven in appendix https://tinyurl.com/iascar-p.

https://tinyurl.com/iascar-p
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Algorithm 1. Counting Graph Compression
In: Program Π, sd-DNNF ΦΠ ; Out: τ(GΠ)

1: initialize array t and traverse nodes N ∈ ΦΠ bottom-up such that
2: if N contains a literal � ∈ L(Π) then label N with val(N)
3: else if N contains a literal � /∈ L(Π) then mark N as ignored

4: else check the number of children of N that are not marked as ignored

5: if N has no remaining children then mark N as ignored

6: else if N has one remaining child C then N ← C and mark N as ignored
7: else v ← val(N) w.r.t. t and remaining children of N and label N with v
8: add N to t

9: remove all nodes marked with ignored from t

10: return t

In Line 6, the node needs to be absorbed, as it has only one child meaning that
the node ultimately becomes its child. In all other cases (Line 7), the node needs
to be evaluated on the CCG t such that the ignored nodes are treated as neu-
tral element of the respective sum or product. Ignored nodes are then removed
from t. It remains to show that compressing GΠ leaves val unchanged.

Lemma 2 (	). Let Π be a program, ΦΠ an sd-DNNF of comp(Π) after a trans-
formation that preserves the number of models, but introduces auxiliary variables,
and GΠ its counting graph. Then, val(τ(GΠ)) = val(GΠ) and τ(GΠ) can be con-
structed in time O(2 · |ΦΠ |).
Corollary 2. If Π is tight, then val(τ(GΠ)) = |AS(Π)|.

4 Incremental Counting by Inclusion-Exclusion

In the previous section, we illustrated how counting on tight programs works
and introduced a technique to speed-up practical counting. To count answer sets
of a non-tight program, we need to distinguish supported models from answer
sets on τ(GΠ), which can become quite tedious. Therefore, we use the positive
dependency graph DP(Π) of Π. A set X ⊆ at(Π) of atoms is an answer set,
whenever it can be derived from Π in a finite number of steps. In particular, the
mismatch between answer sets and supported models is caused by cyclic atoms
C ∈ cycles(Π) in DP(Π) that are not supported by atoms from outside the
cycle. We call those supporting atoms of C the external support of C.

Definition 1. Let Π be a program and r ∈ Π. An atom a ∈ B+(r) is an
external support2of C ∈ cycles(Π), whenever H(r) ⊆ C and a /∈ C. By ES (C)
we denote the set of all external supports of C.

Next, we illustrate the effect of external supports on the answer sets derivation.

2 Note that external supports are sets of literals. However, we can simulate such
a set by introducing an auxiliary atom; hence one atom, as in this definition, is
sufficient [7].
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Example 6. Let Π2 = {a ← b; b ← a; a ← c; c ← ¬d; d ← ¬c}. We obtain a cycle
C = {a, b} due to rules a ← b and b ← a with external support ES (C) = {c} due
to rule a ← c. However, due to rules c ← ¬d and d ← ¬c, we see that whenever
d is true, c is false, so that d deactivates the support of C, which means that
{a, b, d} cannot be derived from Π2 in a finite number of steps. Accordingly, we
have S(Π2) = {{a, b, c}, {a, b, d}, {d}}, but AS(Π2) = {{a, b, c}, {d}}.

Example 7. Let a ← b, b ← a, and b ← c,¬d be rules. Then the external support
of cyclic atoms {a, b} is {c,¬d}. If instead of b ← c,¬d we use two alternative
rules br ← c,¬d and b ← br, we have ES ({a, b}) = {br}, see Footnote (see
Footnote 2).

To approach the answer set count of a non-tight program under assump-
tions, we employ the well-known inclusion-exclusion principle, which is a count-
ing technique to determine the number of elements in a finite union of finite sets
X1, . . . , Xn. Therefore, first the cardinalities of the singletons are summed up.
Then, to compensate for potential overcounting, the cardinalities of all inter-
sections of two sets are subtracted. Next, the number of elements that appear
in at least three sets are added back, i.e., the cardinality of the intersection
of all three sets – to compensate for potential undercounting – and so on.
As an example, for three sets X1,X2,X3 the procedure can be expressed as
|X1∪X2∪X3| = |X1|+|X2|+|X3|−|X1∩X2|−|X1∩X2|−|X2∩X3|+|X1∩X2∩X3|.
This principle can be used to count answer sets via supported model counting.

We define the unsupported constraint λ(C) for a set C = {c0, . . . , cn} ∈
cycles(Π) of cyclic atoms and its resp. external supportsES (C) = {s0, . . . , sm} by
λ(C) := ⊥ ← c0, . . . , cn,¬s0, . . . ,¬sm. The unsupported constraints as defined
here contain the whole set C, which is slightly weaker than constraints (nogoods)
defined in related work [7], but sufficient for characterizing answer sets.

Lemma 3 (	). For any given program Π where Ci ∈ cycles(Π) and 1 ≤ i ≤ n,
we have that AS(Π) = S(Π ∪ {λ(C1), . . . , λ(Cn)}).
Before we discuss our approach on incremental answer set counting, we need
some further notation. From now on, by Λd(Π) := {{λ(C1), . . . , λ(Cd)} |
{C1, . . . , Cd} ⊆ cycles(Π)} we denote the set of all combinations of unsup-
ported constraints of cycles that occur in any subset of cycles(Π) with cardinal-
ity 0 ≤ d ≤ n, where n := |cycles(Π)|. Now, we define the approach of |AS(ΠL)|
by aL

d , using the combinatorial principle of inclusion-exclusion as follows:

aL
d :=

∑d

i=0
(−1)i

∑
Γ∈Λi(Π)

|S(ΠL ∪ Γ )| = |S(ΠL)| −
∑

Γ∈Λ1(Π)
|S(ΠL ∪ Γ )|

+
∑

Γ∈Λ2(Π)
|S(ΠL ∪ Γ )| − · · · + (−1)d

∑
Γ∈Λd(Π)

|S(ΠL ∪ Γ )|

By subtracting |S(ΠL ∪ Γ )| for each Γ ∈ Λ1(Π) we subtract the number of
supported models that are not answer sets under assumptions L with respect to
each cycle C ∈ cycles(Π). However, we need to take into account the interaction
of cycles and their respective external supports under assumptions L. Thus we
enter the first alternation step, where we proceed by adding back |S(ΠL ∪ Γ )|
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Algorithm 2. Incremental Counting by Anytime Refinement
In: program Π; assumptions L; compressed counting graph τ(GΠ); alternation depth
d; Out: aL

d

1: count ← val(τ(GΠ)L) and c ← 0
2: if d is odd then d ← d + 1
3: for every 1 ≤ i ≤ d
4: if c = count then break else c ← count

5: for every 1 ≤ j ≤ i
6: c′ ← val(τ(GΠ)L∪L′

) where L′ is the set of literals appearing in Γj ∈ Λi(Π)
7: count ← count − c′ if i is odd otherwise count ← count+ c′

8: return count

for each Γ ∈ Λ2(Π), which means that we add back the number of supported
models that were mistakenly subtracted from |S(ΠL)| in the previous step, and
so on, until we went through all Λi where 0 ≤ i ≤ d. Note that therefore in total
we have d alternations. In general, we show that aL

n = |AS(ΠL)| as follows.

Theorem 1 (	). Let Π be a program, cycles(Π) = {C1, . . . , Cn}, and further
U := {λ(C1), . . . , λ(Cn)} be the set of all unsupported constraints of Π. Then,
|S(ΠL ∪ U)| = ∑n

i=0(−1)i
∑

Γ∈Λi(Π) |S(ΠL ∪ Γ )| for assumptions L.

Finally, one can count answer sets correctly.

Corollary 3 (	). Let n = |cycles(Π)|. Then, aL
n = |AS(ΠL)| for program Π

and assumptions L.

In fact, we can characterize aL
n with respect to alternation depths. If there is no

change from one alternation to another, the point is reached where the number
of answer sets is obtained, as the following lemma states.

Lemma 4 (	). Let Π be a program and L be assumptions. If aL
i = aL

i+1 for
some integer i ≥ 0, then aL

i = |AS(ΠL)|.
Using our approach on computing aL

n , we end up with 2n (supported model)
counting operations where n := |cycles(Π)| on the respective compressed count-
ing graph τ(GΠ), which, since counting is linear in k := |τ(G(Π))|, gives us that
approaching the answer set count under assumptions is by 2n · k exponential in
time. However, we can restrict the alternation depth to d such that 0 ≤ d < n in
order to stop after Λd(Π). Then we need to count n times for each cycle and its
respective unsupported constraints and another

(
n
i

)
times for 1 < i ≤ d, that is,

for each number of subsets of cycles and their respective unsupported constraints
with cardinality i. These considerations yield the following result.

Theorem 2. Let Π be a program, L be assumptions, and 0 ≤ d ≤ n with n :=
|cycles(Π)|. We can compute aL

d in time O(m · |τ(G(Π))|) where m =
∑

i≤d

(
n
i

)
.

Note that if we choose an even d, we will stop on adding back, potentially over-
counting, and otherwise we will stop on subtracting, potentially undercounting.
Algorithm2 ensures that we end on an add-operation to avoid undercounting in
Line 2. Furthermore, it uses Lemma 4 as a termination criterion in Line 4.
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Table 1. Runtimes of compiling input program to an NNF when directly counting
answer sets (sat), counting supported models (comp), compressing counting graphs (T)
and approaching the answer set count (A) under assumptions with specified alternation
depth (d) of several instances with varying numbers of simple cycles (#SC) and sup-
ported models (#S), sd-DNNF sizes (NNF size) and CCG sizes (CCG size). Depths
marked with * indicates restricting alternation depths. IASCAR# corresponds to the
approximation of the number of answer sets.

Instance sat[s] comp[s] NNF size T[s] CCG size #S #SC d IASCAR# A[s]

8_queens 5.2 4.5 48, 791 0.0 3, 490 9.200 · 101 0 0 0.000 · 100 0.0

10_queens 9.7 6.9 532, 645 0.0 31, 172 7.240 · 102 0 0 1.200 · 101 0.0

12_queens 95.6 46.0 12,529,332 0.7 649,354 1.420 · 104 0 0 7.500 · 101 0.1

3x3_grid 5.7 4.5 788, 711 0.1 210, 893 3.629 · 105 0 0 7.200 · 102 0.0

AF_stable 3.0 2.9 11, 141 0.0 3, 284 7.696 · 103 0 0 3.080 · 103 0.0

3_coloring 8.5 7.2 6, 677 0.0 2, 839 1.026 · 1017 0 0 3.028 · 1016 0.0

arb_2_coloring 0.4 0.4 1, 061 0.0 446 5.193 · 1033 0 0 6.490 · 1032 0.0

simple 1.3 0.1 90 0.0 59 1.400 · 101 3 3 0.000 · 100 0.0

nrp_accenture 6.0 0.3 119 0.0 84 6.000 · 100 5 5 0.000 · 100 0.0

nrp_autorit 6.6 0.4 166 0.0 123 1.600 · 101 5 5 4 .000 · 10 1 0.0

nrp_california 12.8 0.5 201 0.0 133 8.000 · 100 15 15 0.000 · 100 0.5

nrp_hanoi 280.2 4.1 4, 119 0.0 3,128 1.017 · 1014 77 ∗2 3 .197 · 10 12 0.3

nrp_berkshire 311.3 2.7 10,626 0.0 7,914 1.162 · 1013 206 ∗2 0.000 · 100 5.0

nrp_benton 20.4 0.7 642 0.0 446 5.200 · 101 38 *2 0.000 · 100 0.0

nrp_bart 105.1 2.1 1, 645 0.0 1, 223 2.295 · 107 46 *2 5.767 · 106 0.1

nrp_aircoach 253.8 3.2 8, 874 0.0 6, 667 8.563 · 1011 130 *2 0.000 · 100 1.6

nrp_a1210993 64.7 1.6 1, 280 0.0 954 3.642 · 105 29 *2 0.000 · 100 0.0

nrp_kyoto 0.0 0.0 57 0.0 38 2.000 · 100 2 2 0.000 · 100 0.0

Example 8. Let Π3 = Π2 ∪ {b ← g; f ← g; e ← f ; f ← e}, which has 2
cycles C0 = {a, b} and C1 = {e, f}. Their corresponding external supports
are ES (C0) = {c, g} and ES (C1) = {g}. Program Π3 has 6 supported mod-
els {{d}, {d, e, f}, {a, b, d}, {a, b, c}, {a, b, c, e, f}, {a, b, d, e, f}} of which {d} and
{a, b, c} are answer sets. Suppose we want to determine a

{d}
1 , then: a

{d}
1 =

|S(Π{d})| − |S(Π{d} ∪ {⊥ ← a, b,¬c,¬g})| − |S(Π{d} ∪ {⊥ ← e, f,¬g})| =
4− 2− 2 = 0. We see that restricting the alternation depth to 1, leads to under-
counting. However, not restricting the depth leads to the exact count as: a

{d}
2 =

a
{d}
1 + |S(Π{d} ∪ {⊥ ← a, b,¬c,¬g;⊥ ← e, f,¬g})| = 0 + 1 = 1 = |AS(Π{d}

3 )|.

5 Preliminary Empirical Evaluation

To demonstrate the capability of our approach, we implemented a prototypical
system, called IASCAR. The system binary is publicly available for download3.
Our system counts on CCGs constructed from sd-DNNFs. Therefore, we imple-
ment Algorithms 1 and 2, which first construct a CCG and then count based on
3 See https://tinyurl.com/iascar-b for a Linux binary, instances, and raw data.
gringo cuts off trivial supported models when grounding, not affecting us here.

https://tinyurl.com/iascar-b
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the inclusion-exclusion technique. However, for simplicity in our experiments we
use IASCAR only on simple cycles, i.e., only first and last vertex repeat. While in
theory, as stated in Corollary 3, we need to take all cycles into account to obtain
an exact result, our use of IASCAR approximates by overcounting.

In order to obtain the CCGs, we use a chain that consists of (a) construct-
ing a positive dependency graph from ground input program and encoding
simple cycles as unsupported constraints for later use separately; (b) convert-
ing extended rules of the ground input program (gringo) into normal rules
(lp2normal); (c) constructing as CNF the completion of the resulting program
(lp2sat); and (d) compiling CNF into an (sd-D)NNF (c2d). Alternatively, when
converting programs into CNF instances for directly counting the number of
answer sets, we insert a Step (b1) after (b) which adds loop formulas (lp2atomic)
and obtain the count after Step (d) without using IASCAR.

We design a small experiment to study the questions: (1) are modern knowl-
edge compilers capable of outputting sd-DNNFs that allow for counting sup-
ported models or can we even output sd-DNNFs that allow for counting answer
sets; (2) do we benefit from counting on sd-DNNFs when counting many times
for counting under assumptions; (3) how much do we benefit from our approach
to systematically reduce overcounting.

We take instances that encode a prototypical ASP domain with reachability
(nrp_*) and use of transitive closure [4] containing cycles. This problem distin-
guishes from simple SAT for which we could use knowledge compilers without
encoding a program into CNF by using level mappings or loop formulas. There-
fore, we take as instances real-world graphs of public transport networks from all
over the world, which were used in the PACE’16 and ’17 challenges. In addition,
we chose the well-known n-queens problem for n ∈ {8, 10, 12}; a sudoku sub-grid
(3x3_grid) that has to be filled uniquely with numbers from 1 to 9; an encoding
for stable extensions of an argumentation framework instance (AF_stable) [5];
the 3-coloring problem on a graph (3_coloring); an encoding that ensures arbi-
trary 2-coloring for the same graph (arb_2_coloring). These instances admit no
simple cycles. In general, the instances result in varying NNF sizes, CCG sizes,
and number of simple cycles, answer sets and supported models. Prototypical
problems benefiting from counting many times are probabilistic settings or nav-
igation problems. These domains are quite unexplored due to absence of ASP
systems, and to the best of our knowledge, there are no standard benchmark sets
for counting under assumptions. For counting under assumptions, we selected a
small number of atoms (3) in the program to keep it consistent and having a
sufficiently high number of solutions. We selected uniform at random.

We ran the experiments on an 8-core intel I7-10510U CPU 1.8GHz with
16GB of RAM on Manjaro Linux 21.1.1 (Kernel 5.10.59-1-MANJARO). We
follow standard guidelines for empirical evaluations; runtime is measured by
perf.

Before we state the results, we formulate expectations from the design of
experiment and our theoretical understanding. (E1): We anticipate limitations
of counting answer sets when compiling plain level encodings/loop formulas,
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as generating sd-DNNF takes long. (E2.1): Compressing the counting graph
can significantly reduce its size and works fast. (E2.2): The runtime of IASCAR
depends on the number of cycles and size of the CCG due to the structural
parameter of the underlying algorithm. (E2.3): Counting works fast on instances
with few cycles. Otherwise, depth restriction makes our approach utilizable.
(E3): There are instances on which simple cycles are insufficient for counting
answer sets.

We summarize our results in Table 1. (O1): From column sat[s], we can
see that constructing an sd-DNNF of a CNF, which encodes answer sets of
an input program, and subsequent counting varies notably. For example, on
smaller instances such as 8_queens, 3x3_grid, or arb_2_coloring, we can com-
pile and count answer sets in reasonable time. Whereas on instances such as
nrp_california, nrp_hanoi, or nrp_berkshire we observe a high runtime; in par-
ticular, there we see that sd-DNNFs can become quite large. By correlating this
observation with column #S, we can see that instances, which can be solved
fast, have no simple cycles. This matches with our expectation E1 and the
knowledge on how CNFs are generated from a program as cycles are a pri-
mary source of hardness in ASP. Unsurprisingly, compiling CNFs without level
encodings/loop formulas, as stated in column comp[s], works much faster. This
is particularly visible for instances nrp_california, nrp_hanoi, nrp_berkshire,
nrp_bart, nrp_aircoach, or nrp_a1210993. (O2): From column T[s], we can see
that compressing the counting graph can significantly reduce its size. On many
instances, we see a reduction by one order, for example, 10_queens by factor 17.1,
12_queens by 19.3, 3x3_grid by 3.7, or AF_stable by 3.4. This confirms Expec-
tation (E2.1). However, compressing instances with a large number of cycles,
such as nrp_berkshire, is less effective than on those with a small number of
cycles, such as nrp_kyoto and 12_queens. (O3): From columns #SC, depth,
and A[s], we can see that the runtime depends on both parameters. A medium
number of simple cycles and depth effects the runtime; similar to high number
of simple cycles and small depth. Still, with a high number of simple cycles and
a small depth, we can obtain the count under assumption sufficiently fast. This
partially confirms our Expectation (E2.2). Interestingly, the size of the CCG
itself has a much less impact than anticipated, see instance 12_queens. (O4):
The runtime, as stated in column A[s], indicates that we can still obtain a rea-
sonable count for instances, which ran with restricted depth, marked by *; see for
example nrp_hanoi, nrp_aircoach, or nrp_berkshire. Restricting depth d to 2
led to overcounting for instance nrp_hanoi. (O5): Finally, there is one instance,
namely, nrp_autorit, for which we overcounted by 3 when restricting to simple
cycles, which confirms Expectation (E3). However, on all other instances, we
obtained the exact number of answer sets.

The evaluation indicates that our approach clearly pays off on instances con-
taining reasonably many cycles. In particular, we see promising results when
counting under assumptions, clearly benefiting from knowledge compilation.
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6 Conclusion and Future Work

We establish a novel technique for counting answer sets under assumptions com-
bining ideas from knowledge compilation and combinatorial solving. Knowledge
compilation and known transformations of ASP programs into CNF formulas
already provide us with a basic toolbox for counting answer sets. However, com-
pilations suffer from an overhead when constructing CNFs. One can view our
approach similar to propagation-based solving when searching for one solution.
We construct compilations that allow reasoning for supported models and apply
a combinatorial principle to count answer sets. Our approach gradually reduces
overcounting that we obtain when simply considering supported models. Further,
we introduce domain specific simplification techniques on counting graphs.

We expect our technique to be useful for navigating answer sets or answering
probabilistic questions on ASP programs, requiring counting under assumptions.
For future work, we plan to investigate techniques to reduce the size of compi-
lations for supported models, which can in fact already be a bottleneck due
to the added clauses modeling the support of an atom. There, domain specific
preprocessing or an alternative compilation could be promising. A large scale
in-depth analysis of benefits of various counting techniques, such as enumera-
tion on instances with few expected answer sets, approximations if one needs
to count only once, or knowledge compilations could be fruitful for users. From
the theoretical side, questions on effectiveness of knowledge compilations in ASP
might be interesting similar to considerations for formulas [3].
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Abstract. We propose an approach for reasoning about actions with domain
descriptions including an EL⊥ ontology in a temporal action theory. The action
theory is based on a Dynamic Linear Time Temporal Logic, whose extensions
are defined through temporal answer sets. The work provides conditions under
which action consistency can be guaranteed with respect to an EL⊥ ontology, by
polynomially encoding an EL⊥ knowledge base into a domain description of the
temporal action theory.

1 Introduction

The integration of description logics and action formalisms has gained a lot of interest
in the past years [2,5,6,13]. In this paper we explore the combination of a temporal
action logic [22] and EL⊥ ontologies [3], with the aim of allowing reasoning about
action execution in the presence of the constraints given by an EL⊥ knowledge base.

As usual in many formalisms integrating Description Logics (DLs) and action lan-
guages [2,6,7,13], we regard inclusions in the KB as state constraints of the action
theory, which we expect to be satisfied in all states resulting after action execution.
In the literature of reasoning about actions it is well known that causal laws and
their interplay with domain constraints are crucial for solving the ramification prob-
lem [14,20,25,31,33,34]. When domain knowledge is expressed in a description logic,
the issue has been considered, e.g., in [5] where causal laws are used to ensure the
consistency with the TBox (the set of terminological axioms) of the resulting state,
after action execution. For instance, given a TBox containing ∃Teaches.Course �
Teacher , and an ABox (i.e., a set of assertions on individuals) containing the asser-
tion Course(math), an action which adds the assertion Teaches(john,math), with-
out also adding Teacher(john), will not give rise to a consistent next state with
respect to the knowledge base. The addition of the causal law caused Teacher(john)
if Teaches(john,math) ∧ Course(math) would force, for instance, the above TBox
inclusion to be satisfied in the resulting state.

The approach by Baader et al. [5] uses causal relationships to deal with the ramifica-
tion problem in an action formalism based on description logics; it exploits a semantics
in the style of Winslett’s [35] and McCain and Turner’s [33] fixpoint semantics. In this

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 231–244, 2022.
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paper, we aim at extending this approach to reason about actions with an EL⊥ ontol-
ogy with temporal answer sets, building on previous work [22,23] defining a temporal
logic programming language for reasoning about complex actions and infinite compu-
tations. This language, besides the usual LTL operators, allows for general Dynamic
Linear Time Temporal Logic (DLTL) formulas [28] to be included in domain descrip-
tions to constrain the space of possible extensions. In [22], temporal answer sets for
domain descriptions are proposed as a generalization of answer sets [18], and a trans-
lation to ASP is provided; a bounded model checking (BMC) technique is used for
the verification of DLTL constraints, extending the approach developed by Helianko
and Niemela [27] for bounded LTL model checking with Stable Models. An alterna-
tive ASP translation is investigated in [23], with a BMC approach exploiting the Büchi
automaton construction to achieve completeness. Our temporal action logic has been
shown to be related to extensions of the A language [8,10,15,19,25]. Its LTL fragment
also relates to the recent temporal extension of Clingo, telingo [11], dealing with finite
computations, and with the LTL fragment of Temporal Equilibrium Logic (TEL), as the
restriction of TEL to the rule based case leads to a linear-time temporal ASP [16].

The paper studies extended temporal action theories, combining the temporal action
logic mentioned above with an EL⊥ ontology. It is shown that, for EL⊥ knowledge
bases in normal form, the consistency of the action theory extensions with the ontology
can be assured by adding to the action theory a set of causal laws and state constraints,
by exploiting the fragment for EL⊥ of the materialization calculus by Krötzsch [29].
Sufficient conditions on the action theory can be defined to repair the states resulting
from action execution and guarantee consistency with TBox. To this purpose, for each
inclusion axiom in TBox, a suitable set of causal laws can be added to the action theory.
Our approach provides a polynomial encoding of an action theory, extended with an
EL⊥ ontology, into the language of the (DLTL) temporal action logic studied in [22].
The proof methods for this temporal action logic, based on bounded model checking in
ASP, can then be exploited for reasoning about actions in the extended action theory.

A preliminary version of the work was presented in the ICLP 2021 workshops [1].

2 The Description Logic EL⊥

We consider a fragment of the logic EL++ [3] that, for simplicity of presentation, does
not include role inclusions and concrete domains. The fragment, let us call it EL⊥,
includes the concept ⊥ (the inconsistent concept) as well as nominals {a}.

We let NC be a set of concept names, NR a set of role names and NI a set of
individual names. Concepts in EL⊥ are defined inductively as C := A | � | ⊥ |
C � C | ∃r.C | {a}, where a ∈ NI , A ∈ NC and r ∈ NR; {a} is the concept only
containing a. Complement, disjunction and universal restriction are not allowed.

A knowledge base K is a pair (T ,A), where T is a TBox containing a finite set of
concept inclusions C1 � C2 and A is an ABox containing assertions of the form C(a)
and r(a, b), where C,C1, C2 concepts, r ∈ NR and a, b ∈ NI .

We will assume that the TBox is in normal form [4]. Let BCK be the smallest set
of concepts containing �, all the concept names occurring in K and all nominals {a},
for any individual name a occurring in K . An inclusion is in normal form if it has one



Reasoning About Actions with EL Ontologies and Temporal Answer Sets for DLTL 233

of the following forms: C1 � D, C1 � C2 � D, C1 � ∃r.C2, ∃r.C2 � D,
where C1, C2 ∈ BCK , and D ∈ BCK ∪ {⊥}. In [4] it is shown that any TBox can be
normalized in linear time, by introducing new concept and role names.

In the following we will denote with NC,K , NR,K and NI,K the (finite) sets of
concept names, role names and individual names occurring in K .

Definition 1 (Interpretations and models). An interpretation in EL⊥ is any structure
(ΔI , ·I) where: ΔI is a domain; ·I is an interpretation function that maps each concept
name A to set AI ⊆ ΔI , each role name r to a binary relation rI ⊆ ΔI × ΔI , and
each individual name a to an element aI ∈ ΔI . Furthermore: �I = ΔI , ⊥I = ∅;
{a}I = {aI}; (C � D)I= CI ∩ DI ; (∃r.C)I= {x ∈ Δ | ∃y ∈ CI : (x, y) ∈ rI}.
An interpretation (ΔI , ·I) satisfies an inclusion C � D if CI ⊆ DI ; it satisfies an
assertion C(a) if aI ∈ CI ; it satisfies an assertion r(a, b) if (aI , bI) ∈ rI .

Given a knowledge base K = (T ,A), an interpretation (ΔI , ·I) is a model of T
if (ΔI , ·I) satisfies all inclusions in T ; (ΔI , ·I) is a model of K if (ΔI , ·I) satisfies all
inclusions in T and all assertions in A. A is consistent with T if there is a model of T
satisfying all the assertions in A.

3 Temporal Action Theories in DLTL and Temporal Answer Sets

In this paper we refer to the notion of the temporal action theory in [21], a rule based
fragment of which has been studied in [22,23]; it exploits the dynamic extension of
LTL called Dynamic Linear Time Temporal Logic (DLTL) [28]. In DLTL the next state
modality is indexed by actions and the until operator Uπ is indexed by a program π
which, as in PDL, can be any regular expression (complex action) built from atomic
actions in a finite non-empty set Σ, using sequence (;), nondeterministic choice (+) and
finite iteration (∗). The derived modalities 〈π〉 and [π] can be defined as: 〈π〉α ≡ �Uπα
and [π]α ≡ ¬〈π〉¬α. Similarly, © (next), � and � operators of LTL can be defined.

A domain description Π is a set of laws describing the effects of actions and their
executability preconditions. Atomic propositions describing the state of the domain are
called fluents. Actions may have direct effects, described by action laws, and indirect
effects, described by causal laws capturing the causal dependencies among fluents.

Let L be a first order language which includes a finite number of constants and
variables, but no function symbol. Let P be the set of predicate symbols, V ar the set
of variables and Cons the set of constant symbols. We call fluents atomic literals of
the form p(t1, . . . , tn), where, for each i, ti ∈ V ar ∪ Cons. A simple fluent literal (or
s-literal) l is an atomic literals p(t1, . . . , tn) or its negation ¬p(t1, . . . , tn). We denote
by LitS the set of all simple fluent literals. LitT is the set of temporal fluent literals:
if l ∈ LitS , then [a]l,©l ∈ LitT , where a is an action name (an atomic proposition,
possibly containing variables), and [a] and © are the temporal operators introduced
in the previous paragraph. Let Lit = LitS ∪ LitT ∪ {⊥,�}, where ⊥ represents the
inconsistency and � truth. A (simple or temporal) fluent literal l, and its negation not l
(representing the default negation of l) are called extended fluent literals.

The laws are formulated as rules of a temporally extended logic programming lan-
guage. Rules have the form �(l0 ← l1, . . . , lm, not lm+1, . . . , not ln), where the li’s
are either simple or temporal fluent literals, with the following restrictions: (i) If l0 is a
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simple literal, then the body cannot contain temporal literals; (ii) If l0 = [a]l, then the
temporal literals in the body must have the form [a]l′; (iii) If l0 = ©l, then the temporal
literals in the body must have the form ©l′. As usual in ASP, the rules with variables
will be used as a shorthand for the set of their ground instances.

In the following we use of a notion of state: a set of ground fluent literals. A state is
said to be consistent if it is not the case that both f and ¬f belong to the state, or that
⊥ belongs to the state. A state is said to be complete if, for each fluent f , either f or
¬f belong to the state. The execution of an action in a state may possibly change the
values of fluents in the state through its direct and indirect effects, thus giving rise to a
new state. While the law above can be applied in all states, a law

l0 ← l1, . . . , lm, not lm+1, . . . , not ln

which is not prefixed by �, only applies to the initial state.
The following action laws describe the deterministic effects of actions assign(y , x ),

of assigning a course to a teacher, and retire(x ), of retiring from work (rules with
variables stand for all their propositional groundings, as usual in ASP):

�([assign(y , x )]teaches(x , y) ← course(y)) �[retire(x )]¬teacher(x )

The following precondition law: �([assign(y , x )]⊥ ← not likes(x , y)) specifies that
y cannot be assigned to x, if x does not like y.

The following program π(x, y) repeatedly tries to convince that course y is a good
choice for x, until either x likes y and y is assigned to x, or the assignment is rejected:

(¬likes(x , y)?; convince(x , y))∗; (likes(x , y)?; assign(x , y)+reject(x , y)?)

where (likes(x , y)? and (¬likes(x , y)? are test actions (only executable if the corre-
sponding fluent holds, see [22]). The constraint �〈π(a, c)〉� can, e.g., be included in
the set of temporal constraints C, meaning that all runs must eventually include an exe-
cution of π(a, c). Nondeterministic actions can be represented using default negation,
e.g., �([flip]head ← not [flip]¬tail) and �([flip]¬tail ← not [flip]head). Static and
dynamic causal laws (see below), similar to the ones in the action languages K [15] and
C+ [25], can represent different kinds of causal dependencies among fluents.

The semantics of a domain description has been defined based on temporal answer
sets [22,23], extending the notion of answer set [17] to the linear structure of temporal
models. In the following, we consider the ground instantiations of the domain descrip-
tion Π , and we denote by Σ the set of ground instances of the action names in Π .

A temporal interpretation is defined as a pair (σ, S), where σ ∈ Σω is a sequence
of actions and S is a consistent set of ground literals of the form [a1; . . . ; ak]l, where
a1 . . . ak is a prefix of σ and l is a ground simple fluent literal, meaning that l holds in
the state obtained by executing a1 . . . ak. S is consistent iff it is not the case that both
[a1; . . . ; ak]l ∈ S and [a1; . . . ; ak]¬l ∈ S, for some l, or [a1; . . . ; ak]⊥ ∈ S. A temporal
interpretation (σ, S) is said to be total if either [a1; . . . ; ak]p ∈ S or [a1; . . . ; ak]¬p ∈
S, for each a1 . . . ak prefix of σ and for each fluent name p.

We define the satisfiability of a simple, temporal or extended literal t in a partial
temporal interpretation (σ, S) after a1 . . . ak, (written (σ, S), a1 . . . ak |= t) as:
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(σ, S), a1 . . . ak |= �, (σ, S), a1 . . . ak �|= ⊥
(σ, S), a1 . . . ak |= l iff [a1; . . . ; ak]l ∈ S, for l s-literal
(σ, S), a1 . . . ak |= [a]l iff [a1; . . . ; ak; a]l ∈ S or a1 . . . ak, a is not a prefix of σ
(σ, S), a1 . . . ak |= ©l iff [a1; . . . ; ak; b]l ∈ S, where a1 . . . akb is a prefix of σ
(σ, S), a1 . . . ak |= not l iff (σ, S), a1 . . . ak �|= l

The satisfiability of rule bodies in a temporal interpretation (σ, S) is defined as
usual. A rule �(H ← Body) is satisfied in (σ, S) if, for all action sequences a1 . . . ak

(including the empty one ε), (σ, S), a1 . . . ak |= Body implies (σ, S), a1 . . . ak |= H .
A rule H ← Body is satisfied in (σ, S) if, (σ, S), ε |= Body implies (σ, S), ε |= H .

Let Π be a set of rules not containing default negation, and let σ ∈ Σω .

Definition 2. A temporal interpretation (σ, S) is a temporal answer set of Π if S is
minimal (with respect to set inclusion) among the S′ such that (σ, S′) is a partial inter-
pretation satisfying the rules in Π .

To define answer sets of a program Π containing negation, the reduct, Π(σ,S), of Π
relative to a temporal interpretation (σ, S) is defined, extending Gelfond and Lifschitz’
transform [18], to compute a different reduct of Π for each prefix a1, . . . , ah of σ.

Definition 3. The reduct, Π
(σ,S)
a1,...,ah , of Π relative to (σ,S ) and to the prefix

a1 , . . . , ah of σ , is the set of all the rules [a1 ; . . . ; ah ](H ← l1 , . . . , lm) such that
�(H ← l1 , . . . , lm , not lm+1 , . . . ,not ln) is in Π and (σ,S ), a1 , . . . , ah �|= li , for all
i = m + 1 , . . . ,n (and similarly for prefix ε). The reduct Π(σ,S) of Π relative to (σ,S )
is the union of all reducts Π

(σ,S)
a1,...,ah for all prefixes a1 , . . . , ah of σ.

In definition above, we say that rule [a1; . . . ; ah](H ← Body) is satisfied in a temporal
interpretation (σ, S) if (σ, S), a1 . . . ak |= Body implies (σ, S), a1 . . . ak |= H .

Definition 4 ([22]). A temporal interpretation (σ, S) is an answer set of Π if (σ, S) is
an answer set of the reduct Π(σ,S).

Observe that a partial interpretation (σ, S) provides, for each prefix a1 . . . ak, a partial
evaluation of fluents in the state corresponding to that prefix. The state obtained by the
execution of the actions a1 . . . ak can be defined as: w

(σ,S)
a1...ak = {l : [a1; . . . ; ak]l ∈ S}.

Although the answer sets of a domain description Π are partial interpretations, in
some cases, e.g., when the initial state is complete and all fluents are inertial, it is
possible to guarantee that the temporal answer sets of Π are total. The case of total
temporal answer sets is of special interest as a total temporal answer set (σ, S) can
be regarded as a temporal model (σ, VS), where, for each finite prefix a1 . . . ak of σ,
VS (a1 , . . . , ak ) = {p : [a1 , . . . , ak ]p ∈ S}. In the following, we restrict our consider-
ation to domain descriptions Π whose answer sets are total (called well-defined in [22]).
We say that a total answer set S over σ satisfies a DLTL formula α if MS , ε |= α.

We can now introduce the notion of extension of a well-defined domain description
D = (Π, C) over Σ in two steps: first, we find the temporal answer sets of Π; second,
we filter out all the temporal answer sets which do not satisfy the constraints in C.

Definition 5 ([22]). An extension of a well-defined domain description D = (Π, C)
over Σ is a (total) answer set (σ, S) of Π which satisfies the constraints in C.
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4 Combining Temporal Action Theories with EL⊥ Ontologies

In this section we define a notion of extended temporal action theory, consisting of a
temporal action theory plus an EL⊥ knowledge base. Our approach, following most of
the proposals for reasoning about actions in DLs [2,5–7,13], is to regard TBox as a set
of state constraints, i.e. conditions that must be satisfied in all states and extensions of
the action theory, and ABox as a set of constraints on all possible initial states.

We regard DL assertions as fluents that may occur in our action laws as well as in the
states of the action theory. Given a (normalized) EL⊥ knowledge base K = (T ,A), we
require that: (a) for each (possibly complex) concept C occurring in K there is a unary
predicate C ∈ P; (b) for each role name r ∈ NR,K there is a binary predicate r ∈ P;
(c) the set Cons includes all the individual names occurring in K , i.e. NI,K ⊆ Cons.

Observe that if a concept such as ∃r.C occurs in K , there exists a predicate name
∃r.C ∈ P and, for each a ∈ NI,KB , the fluent literals (∃r.C)(a) and ¬(∃r.C)(a)
belong to the set Lit. We will still call such literals assertions. Although classical nega-
tion is not allowed in EL⊥, we use explicit negation [17] to allow negative literals of
the form ¬C(a) in the action language (to allow for deleting an assertion from a state).

A simple literal in Lit is said to be a simple assertion if it has the form B(a) or
r(a, b) or ¬B(a) or ¬r(a, b), where B ∈ BCK is a base concept in K , r ∈ NR,K and
a, b ∈ NI,K . Observe that {a}(c) and ¬{a}(c) are simple assertions, while (∃r.C)(a)
and ¬(∃r.C)(a) are non-simple assertions.

In order to deal with existential restrictions, in addition to the individual names
NI,KB occurring in the KB we introduce a finite set Aux of auxiliary individual names,
as proposed in [29] to encode EL⊥ inference in Datalog, where Aux contains a new
individual name auxA�∃r.B , for each inclusion A � ∃r.B occurring in the KB . We
further require that Aux ⊆ Cons.

Definition 6 (Extended action theory). An extended action theory is a tuple
(K ,Π, C), where: K = (T ,A) is an EL⊥ knowledge base; Π is a set of laws: action,
causal, executability and initial state laws (see below); C is a set of DLTL formulae
(constraints).

Besides action laws�([a]l ← l1, . . . , lm, not lm+1, . . . , not ln) which describe the
immediate effects of actions, including nondeterministic ones, Π allows for two kinds
of causal laws: Static causal laws �(l0 ← l1, . . . , lm, not lm+1, . . . , not ln), where
the li’s are simple fluent literals, whose meaning is: if l1, . . . , lm hold in a state and
lm+1, . . . , ln do not hold in that state, than l0 is caused to hold in that state. Dynamic
causal laws �(©l0 ← t1, . . . , tm, not tm+1, . . . , not tn), where l0 is a simple fluent
literal and the ti’s are simple fluent literals or temporal fluent literals of the form ©li,
e.g., ©Teacher(x )← ©Teaches(x , y)∧Course(y). Differently from [5,6], direct and
indirect effects of actions are not required to be simple DL assertions.

Precondition laws describe the executability conditions of actions. They have the
form: �([a]⊥ ← l1, . . . , lm, not lm+1, . . . , not ln) where a ∈ Σ and the li’s are
simple fluent literals.

Initial state laws are needed to introduce conditions that have to hold in the initial
state. They have the form: l0 ← l1, . . . , lm, not lm+1, . . . , not ln where the li’s are
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simple fluent literals. As a special case, the initial state can be defined as a set of simple
fluent literals (and simple assertions).

State constraints, that apply to the initial state or to all states, can be obtained when
⊥ occurs in place of l0 in the head of initial state laws or static causal laws.

Following Lifschitz [30] we call frame fluents the fluents to which the law of iner-
tia applies. Persistency of frame fluents from a state to the next one can be captured by
introducing in Π a set of causal laws, said persistency laws for all frame fluents f :

�(©f ← f, not © ¬f) �(©¬f ← ¬f, not © f)

meaning that, if f holds in a state, then f will hold in the next state, unless its negation
¬f is caused to hold (and similarly for ¬f ). Persistency of a fluent is blocked by the
execution of an action which causes the value of the fluent to change. The persistency
laws above play the role of inertia rules in C [26], C+ [25] and K [15].

If f is non-frame with respect to an action a, f is not expected to persist and may
change its value when an action α is executed, either non-deterministically, by laws

�(©f ← not © ¬f) �(©¬f ← not © f)

(non-frame laws), or by taking some default value (see [22] for examples).
In the following we assume that persistency laws and non-frame laws can be applied

to simple assertions but not to non-simple ones (such as (∃r.B)(x)), whose value in a
state (as we will see) is determined from the value of simple assertions. For simple
assertions A(c) in a domain description, one has to choose whether the concept A is
frame or non-frame (so that either persistency laws or non-frame laws can be intro-
duced). We assume that nominals are frame fluents, that is, (¬){a}(b) persists from a
state to the next one unless cancelled by the direct or indirect effects of an action.

ABox assertions may incompletely specify the initial state. As we want to rea-
son about states corresponding to EL⊥ interpretations, we assume that the laws:
f ← not¬f and ¬f ← notf for completing the initial state are introduced in Π for all
simple literals f (including assertions with nominals). As shown in [22], the assumption
of complete initial states, together with suitable conditions on the laws in Π , gives rise
to semantic interpretations (extensions) of the domain description in which all states are
complete. In particular, for simple assertions it is sufficient to assume that either persis-
tency laws or non-frame laws are introduced, as for all simple fluents. Under such con-
dition, starting from an initial state, complete for simple fluents, all the reachable states
are also complete for simple fluents, that is, the domain description is well-defined.

The third component C of a domain description (K,Π, C) is the set of temporal
constraints in DLTL, which allow general temporal conditions to be imposed on the
executions of the domain description, restricting the space of the possible executions
(or extensions), as shown in Sect. 3. The next section generalizes the notion of extension
to domain descriptions (K,Π, C) including an EL⊥ ontology K.

5 Ontology Axioms as State Constraints

Given an action theory (K ,Π, C), where K = (T ,A), we define an extension of
(K ,Π, C) as an extension (σ, S) of the action theory (Π, C) satisfying all axioms of
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the ontology K. Informally, each state w in the extension is required to correspond to
an EL⊥ interpretation and to satisfy all inclusion axioms in TBox T . Additionally, the
initial state must satisfy all assertions in the ABox A.

To define the extensions of an action theory (K ,Π, C), we restrict to well-defined
domain descriptions (K ,Π, C), so that all states in an extension are complete for simple
fluents (and for simple assertions). We prove that such states represent EL⊥ interpre-
tations on the language of K, provided an additional set of laws ΠL(K) is included in
the action theory. Next, we further add to Π a set ΠT of constraints, to guarantee that
each state satisfies the inclusion axioms in T , and a set of laws ΠA, to guarantee that
all assertions in A are satisfied in the initial state.

Overall, this provides a transformation of the action theory (K ,Π, C) into a new
DLTL action theory (Π ∪ ΠK , C), by eliminating the ontology while introducing the
set of static causal laws and constraints ΠK = ΠL(K) ∪ΠT ∪ΠA, intended to exclude
those extensions which do not satisfy the axioms in K.

The set of domain constraints and causal laws in ΠL(K) is intended to guarantee
that any state w of an extension respects the semantics of DL concepts occurring in
K . The definition of ΠL(K) is based on a fragment of the materialization calculus for
EL⊥ [29], which provides a Datalog encoding of an EL⊥ ontology. Here, the idea is
that of regarding an assertion C(a) in a state w as the evidence that aI ∈ CI in the
corresponding interpretation. Let ΠL(K) be the following set of causal laws:

(1) �(⊥ ← ⊥(x )) (2) �(�(x ) ←) (3) �({a}(a) ←)
(4) �(exists r B(x ) ← r(x , y) ∧ B(y))
(5) �((∃r .B)(x ) ← exists r B(x )) (6) �(¬(∃r .B)(x ) ← not exists r B(x ))
(7) �(⊥ ← {a}(x ) ∧ B(x ) ∧ not B(a)), for x �= a
(8) �(⊥ ← {a}(x ) ∧ B(a) ∧ not B(x )), for x �= a
(9) �(⊥ ← {a}(x ) ∧ r(z , x ) ∧ not r(z , a)), for x �= a

for all x, y ∈ Δ, a ∈ NI,K , B ∈ BCK (the base concepts occurring in K ) and
r ∈ NR,K (the roles occurring in K ). Observe that the first constraint has the effect that
a state S, in which the concept ⊥ has an instance, is made inconsistent. Law (4) makes
exists r B(x) hold in any state in which there is a domain element y such that r(x, y)
and B(y) hold (where exists r B is an additional auxiliary predicate for B ∈ BCK

and r ∈ NR,K ). Laws (5) and (6) guarantee that, for all x ∈ Δ, either (∃r.B)(x) or
¬(∃r.B)(x) is contained in the state. State constraints (7–9) are needed for the treatment
of nominals and are related to rules (27–29) of the materialization calculus [29].

Let (σ, S) be an extension of the action theory (Π∪ΠL(K), C). It can be proven that
any state w of (σ, S) represents an EL⊥ interpretation. Given a state w, let w+ be the
set of EL⊥ assertions C(a) (r(a, b)), such that C(a) ∈ w (resp., r(a, b) ∈ w). Let w−

be the set of EL⊥ assertions C(a) (r(a, b)), such that ¬C(a) ∈ w (resp., ¬r(a, b) ∈ w).

Proposition 1. Let (σ,S ) be an extension of action theory (Π ∪ ΠL(K ), C) and w be a
state of (σ,S ). Then there is an interpretation (ΔI , ·I ) that satisfies all the assertions
in w+ and falsifies all assertions in w− (and we say that (ΔI , ·I ) agrees with state w).

As mentioned, we are interested in the states satisfying the TBox T of K. Provided Π
is well-defined, for each extension (σ, S) of the action theory (Π ∪ΠL(K), C), any state
w is consistent and complete for all simple literals (and hence, by (5) and (6), for all
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assertions). We say that w satisfies the TBox T if for all interpretations (ΔI , ·I) such
that (ΔI , ·I) agrees with state w, (ΔI , ·I) is a model of T .

The requirement that each w should satisfy T can be incorporated in the action
theory through a set of constraints ΠT , exploiting the fact that T is in normal form.
ΠT contains the following state constraints:

�(⊥ ← A(x) ∧ not D(x)), for each A � D in T ;
�(⊥ ← A(x) ∧ B(x) ∧ not D(x)), for each A � B � D in T ;
�(⊥ ← A(x) ∧ not (∃r.B)(x)), for each A � ∃r.B in T ;
�(⊥ ← (∃r.B)(x) ∧ not D(x)), for each ∃r.B � D in T ;

where A,B ∈ BCK , D ∈ BCK ∪{⊥} and x ∈ NI,K ∪Aux. For D = ⊥, the condition
not D(x) is omitted. The following proposition can be proved for a well-defined Π .

Proposition 2. Let (σ, S) be an extension of the action theory (Π ∪ΠL(K), C). A state
w of (σ, S) satisfies T iff w satisfies all constraints in ΠT .

We can then add the constraints in ΠT to an action theory (Π ∪ ΠL(K), C) to single
out the extensions (σ, S) whose states all satisfy the TBox T . In a similar way, we can
restrict to answer sets (σ, S) whose initial state w

(σ,S)
ε satisfies all assertions in A, by

defining a set of initial state constraints as:

ΠA = {⊥ ← not A(c)) | A(c) ∈ A} ∪ {⊥ ← not r(c, d)) | r(c, d) ∈ A}
We define the extensions of the extended action theory (K ,Π, C) as the extensions of
the action theory (Π ∪ ΠK , C), where ΠK = ΠL(K) ∪ ΠT ∪ ΠA.

6 Causal Laws for Repairing Inconsistencies: Sufficient
Conditions

Introducing state constraints corresponding to Tbox inclusions is not enough to take
them into account across state changes. Consider the example in the introduction.

Example 1. Let K = (T ,A) be a knowledge base such that T = {∃Teaches.Course �
Teacher} and A = {Person(john),Course(cs1 )}. We assume that all simple asser-
tions, i.e., Person(x ), Teacher(x ), Course(x ),Teaches(x , y), are frame for all x, y ∈
NI,K ∪Aux. Let us consider a state w0 where John does not teach any course and is not
a teacher. If an action Assign(cs1 , john) were executed in w0, given a Π containing the
action law [Assign(cs1 , john)]Teaches(john, cs1 ), the resulting state would contain
Teaches(john,cs1) and (∃Teaches. Course)(john), but would not contain Teacher(john),
thus violating the state constraint �(⊥ ← (∃Teaches.Course)(x ) ∧ not Teacher(x )),
in ΠT . In this case, there is no extension of the action theory in which action
Assign(cs1 ,john) can be executed in the initial state.

As observed in [5], when this happens, the action specification can be regarded
as being underspecified, as it is not able to capture the dependencies among fluents
which occur in the TBox. To guarantee that TBox is satisfied in the new state, causal
laws are needed which allow the state to be repaired. In the specific case, adding the
causal law �(Teacher(x ) ← Teaches(x , y) ∧ Course(y)) to Π would suffice to cause
Teacher(x ) in the resulting state, as an indirect effect of action Assign(cs1 , john).
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Can we identify the conditions needed to guarantee that an action theory is able to
repair the state, after executing an action, so to satisfy all inclusions of a (normalized)
EL⊥ TBox, when possible? Let us continue Example 1.

Example 2. Consider the case when action retire(john) is executed in a state w1 where
Person(john), Course(cs1), Teaches(john,cs1) and Teacher(john) hold. Suppose that
the action law: [retire(john)]¬Teacher(john) is in Π . Then, ¬Teacher(john) will
belong to the new state w2, but w2 would still contain Course(cs1), Teaches(john,cs1),
persisting from the previous state (as Course and Teaches are frame fluents). Hence,
w2 would violate the TBox T . The causal law �(¬Teaches(x , y) ←¬ Teacher(x ) ∧
Course(y)) would repair the inconsistency: when John retires he stops teaching all the
courses he was teaching before. In particular, he stops teaching cs1. On the contrary,
�(¬Course(y) ← ¬Teacher(x ) ∧ Teaches(x , y)) is presumably unintended.

As we can see, the causal laws needed to restore consistency when an action is exe-
cuted can be obtained from the inclusions in the TBox also considering some of their
contrapositives, even though not all them are always intended. The choice of the causal
rules to include should not be done automatically. For EL⊥ knowledge bases in nor-
mal form, the set of constraints in ΠT can be replaced by a set of repair rules, i.e., a
set of causal laws which can be used to recover a consistent state, whenever possible.
In the following we identify the set of repair rules for each axiom in normal form and
sufficient conditions to guarantee that Tbox T is satisfied.

The case of a (normalized) inclusion A � B, with A,B ∈ NC , is relatively simple;
the execution of an action α with effect A(c) (but not B(c)), in a state in which none
of A(c) and B(c) holds, would lead to a state which violates the constraints in the KB .
Similarly for an action β with effect ¬B(c). Deleting B(c) should cause A(c) to be
deleted as well, if we want the inclusion A � B to be satisfied. Hence, to guarantee
that the TBox is satisfied in the new state, for each inclusion A � B, two causal laws
are needed: �(B(x) ← A(x)) and �(¬A(x) ← ¬B(x)).

For an axiom A � B � ⊥, consider the concrete case pending � approved �
⊥, representing mutually exclusive states of a claim in a process of dealing with an
insurance claim, we expect the following causal laws to be included:

�(¬pending(x ) ← approved(x )) �(¬approved(x ) ← pending(x ))

even though the second one is only useful if a claim can become pending again after
having become (temporarily) approved. For the general case, let us define, for each
possible axiom in normal form, a set of causal laws or repair laws as follows:

1- For A � B in T : �(B(x) ← A(x)) and �(¬A(x) ← ¬B(x));
2- For A � B � D in T : �(D(x) ← A(x) ∧ B(x)), �(¬A(x) ← ¬D(x) ∧ B(x))

and �(¬B(x) ← ¬D(x) ∧ A(x));
3- For A � ∃r.B in T : �(r(x, auxA�∃r.B) ← A(x)), �(B(auxA�∃r.B) ← A(x))

and �(¬A(x) ← ¬(∃r.B)(x));
4- For ∃r.B � A in T : �(A(x) ← (∃r.B)(x), �(¬r(x, y) ← ¬A(x) ∧ B(y)) and

�(¬B(y) ← ¬A(x) ∧ r(x, y)).

Let ΠC(T ) be a set of causal laws containing at least: one law for each axiom of
type 1, 2 and 4, and the first two rules or the third one for each axiom of type 3.
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Proposition 3. Given a well-defined action theory (Π, C) and a TBox T , any state w
of an extension (σ, S) of (Π ∪ ΠL(K) ∪ ΠC(T ) ∪ ΠA, C) satisfies T .

Observe that, for the case for A � ∃r.B, from r(x, auxA�∃r.B) and B(auxA�∃r.B)
(∃r.B)(x) is caused by laws (4–5) in ΠL(K). While the causal laws in ΠC(T ) are
sufficient to guarantee the consistency of a resulting state with TBox T , one cannot
exclude that an action has effects inconsistent with TBox (e.g., an action with direct
effects A(c) and ¬B(c), conflicting with an axiom A � B in T ). In such a case, the
action would not be executable. The more are the repair causal laws considered, the
more is the repair ability and the more are the extensions of the domain description.

Notice that the above encoding of an EL⊥ TBox into a set of temporal action laws
requires a polynomial number of laws to be added to the action theory (in the size of
K). Based on this mapping, the proof methods for our temporal action logic, which
are based on the ASP encodings of bounded model checking [22,23], can be exploited
(with the same PSPACE complexity) for reasoning about actions in an action theory
extended with an EL⊥ knowledge base.

7 Conclusions and Related Work

In this paper we have proposed an approach for reasoning about actions by combining a
temporal action logic [22], whose semantics is based on a notion of temporal answer set,
and an EL⊥ ontology. It is shown that, for EL⊥ knowledge bases in normal form, the
consistency of the action theory extensions with respect to an ontology can be verified
by adding to the action theory a set of causal laws and state constraints, by exploiting
a fragment of the materialization calculus by Krötzsch [29]. Starting from the idea
by Baader et al. [5] that causal rules can be used to ensure the consistency of states
with the TBox, we have defined sufficient conditions on the action theory to repair
the states resulting from action execution and guarantee consistency with TBox. Our
approach provides a polynomial encoding of an action theory extended with an EL⊥

knowledge base in normal form, into the language of the (DLTL based) temporal action
logic studied in [22]. The proof methods for this temporal action logic, based on ASP
encodings of bounded model checking [22,23], can then be exploited for reasoning
about actions in an extended action theory. It would be interesting, for action domains
with finite executions, to investigate whether the action theories in [22] can be encoded
in telingo [11], so to exploit the optimized implementation of telingo.

Many of the proposals in the literature for combining DLs with action theories focus
on expressive DLs. In their seminal work [6], Baader et al. study the integration of
action formalisms with expressive DLs, from ALC to ALCOIQ, under Winslett’s pos-
sible models approach (PMA) [35], based on the assumption that TBox is acyclic and
on the distinction between defined and primitive concepts, where only primitive con-
cepts are allowed in action effects. They determine the complexity of the executability
and projection problems and show that they get decidable fragments of the situation
calculus. Our semantics departs from PMA as causal laws are considered. As [5,32] we
do not require a restriction to acyclic TBoxes and primitive concepts in postconditions.
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The requirement of acyclic TBoxes is lifted in the work by Liu et al. [32], where an
approach to the ramification problem is proposed which does not use causal relation-
ships, but exploits occlusion to provide a specification of the predicates that can change
through the execution of actions. The idea is to leave to the designer of an action domain
the control of the ramification of the actions.

Similar considerations are at the basis of the approach by Baader et al. [5] that,
instead, exploits causal relationships for modeling ramifications in an action language
for ALCO, and defines its semantics in the style of McCain and Turner fixpoint seman-
tics [33]. Temporal projection is proven decidable and EXPTIME-complete. In this
paper, following [5], we exploit causal laws for modeling ramifications in the context of
a temporal action language for EL⊥. We allow for non-deterministic effects of actions
(not allowed in [5]) and for the distinction between frame and non-frame fluents [30],
which is strongly related to occlusion used in [32]. We have also provided sufficient
conditions for an action specification to be consistent with a normalized EL⊥ ontology.

Ahmetai et al. [2] study the evolution of Graph Structured Data as a result of updates
expressed in an action language. They provide decidability and complexity results for
expressive DLs such as ALCHOIQbr (under finite satisfiability) as well as for vari-
ants of DL-lite. Complex actions including action sequence and conditional actions are
considered. Complex actions are considered as well in [13], where an action formalism
is introduced for a family DLs, from ALCO to ALCHOIQ, exploiting PDL program
constructors to define complex actions. As in [6], the TBox is assumed to be acyclic.

In [9] Description Logic and Action Bases are introduced, where an initial Abox
evolves over time due to actions which have conditional effects. In [12] the approach is
extended to allow for different notions of repair of the resulting state, such as a maximal
subset consistent with the Tbox, or the intersection of all such subsets. In this paper, we
rely on causal laws for repairing states; selecting the appropriate causal laws means
acquiring more knowledge, and allows for a finer control on the resulting state.

Our semantics for actions, as many of the proposals in the literature, requires that
a state provides a complete description of the world and is intended to represent an
interpretation of the EL⊥ knowledge base. An alternative approach has been adopted in
[9], where a state can provide an incomplete specification of the world. In our approach,
an incomplete state could be represented as an epistemic state, to distinguish what is
known to be true (or to be false) and what is unknown. An epistemic extension of
our action logic, based on temporal answer sets, has been developed in [23], and it
can potentially be exploited for reasoning about actions with incomplete states also in
presence of ontological knowledge. We leave the study of this case for future work,
as well as the investigation of ASP approaches for combining temporal reasoning with
weighted conditional knowledge bases for lightweight DLs [24].
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Abstract. The process of explaining a piece of evidence by construct-
ing a set of assumptions that are a good explanation for that evidence
is ubiquitous in real-life (e.g. in legal systems). In this paper, we intro-
duce, discuss, and formalise the notion of stable explanations in a non-
monotonic setting. We show how, while applying it to the process of (1)
computing a set of literals able to (2) derive a conclusion (3) from a set
of defeasible rules, we obtain a restricted version of the notion of abduc-
tion. This is both interesting and useful: when an explanation for a given
conclusion is stable, it can, in fact, be used to infer the same conclusion
independently of other pieces of evidence that are found afterwards.

1 Introduction

Abduction is the inference process of finding a set of assumptions able to derive
a given conclusion, possibly under a given set of restrictions on how the assump-
tions or the rules used to derive the desired conclusions can be selected. When
this reasoning is performed in a non-monotonic setting, where the classical
derivation rules such as Modus Ponens, or Ex Falso Sequitur Quodlibet, are
substituted by rules specified within the theory itself, we encounter novel issues.

The abduction literature is vast, encompassing philosophy, logic, and comput-
ing science. When looking at the general picture, we may imagine that we should
be processing a logical theory where we have a piece of evidence, something the
theory actually proves. We aim at devising a set of assumptions actually able to
derive those conclusions through that theory. We are looking for the best expla-
nation of a conclusion that has been reached. Hartman mastered this concept in
its foundational work on abduction [17].

Clearly, when we look at the mentioned vast literature, we come across sev-
eral papers that analyse the powerful concept of abduction in a classical way,
including some from the perspective of non-monotonic systems [3,8,11].
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There is, however, a neatly different notion that has not yet been studied: the
stability of an explanation. Non-monotonic systems have indeed a substantially
different behaviour than classical theories. In a classical theory, the operation of
adding a new axiom to the theory itself (since this means that new constraints
are added for the models of the theory) causes, simultaneously (i) the expansion
of the set of conclusions that can be obtained from the theory itself, and (ii)
a contraction of the set of models the theory is interpreted with. This does
not happen with non-monotonic theories that could both expand and contract
conclusions and models as an effect of changing the theory (by either adding or
removing an axiom/rule).

The notion we introduce in this paper is as simple as this: an explanation
for a given conclusion is stable when adding new elements to that explanation
does not affect its power to explain the observed conclusion. This property can
be observed in both monotonic and non-monotonic systems. (The most general
case is, however, the here-studied non-monotonic one.)

In non-monotonic settings, and in particular, in Defeasible Logic (henceforth
DL), we have three types of elements: (1) facts (2) rules, and (3) superiority rela-
tions. Facts describe those indisputable things that are true beyond any doubts.
Rules are instead ways to obtain conclusions that are considered plausible (or
typical), whereas the superiority relation is thought as a means to establish
whether one rule for a conclusion might prevail against another rule for the
opposite conclusion. In fact, the formalism sceptically concludes only those lit-
erals that are either factual or are concluded by a sequence of derivation steps
involving rules that are never beaten by rules for the opposite conclusion.

Let us introduce an actual example of an abductive process based upon the
determination of a candidate set of literals, whose assumption would be sufficient
to prove a given conclusion.

Let us consider a (simplified) fragment of the Australian National Consumer
Credit Protection Act 2009, in particular, Section 29 forbidding engaging in
credit activities without a credit license. Furthermore, Section 29 (Subsection 3)
permits such activities for a person acting on behalf of another person (the prin-
cipal), when the person is an employee or the director of the principal, and the
principal holds a credit license. Moreover, Section 80 specifies conditions under
which a person could be banned for credit activities. Thus, for example, a person
is banned if they became insolvent or was convicted of fraud. The conditions can
be represented by the following rules:

s29.1: person ⇒ ¬creditActivity
s29.1e : person, creditLicense ⇒ creditActivity
s29.3a : actsOnBehalfPrincipal , principalCreditLicense ⇒ creditActivity

s80: banned ⇒ ¬creditActivity
s80.1b : insolvent ⇒ banned
s80.1c : convictedFraud ⇒ banned
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where the superiority relation contains the following instances s29.1e > s29.1,
29.3a > s29.1 and s80 > s29.3a.

Suppose that person A wants to engage in a credit activity. What are the
conditions that person A has to satisfy to legally engage in a credit activity?
According to rule s29.1e if person A holds a credit license, then they can legally
engage in a credit activity, and we do not have to look for other conditions. In case
A does not have a credit activity, they can still legally engage if A acts on behalf
of the principal and the principal has a credit license. Those two conditions,
in absence of additional information, would allow us to say that A is legally
permitted to engage in credit activities. However, if the further information that
A was insolvent is provided, then we conclude that A was banned, and then rule
s80 becomes applicable preventing us to conclude that A is entitled to engage in
credit activities. Thus, in the first case, after we have established that A holds a
credit license, we do not have to investigate other conditions. On the contrary,
in the second case, being able to determine that A acts on behalf of a principal
that holds a credit license is not enough. We have to see if A was banned. This,
in turn, requires us to check if A was either insolvent or convicted of fraud.
To sum up the set of facts {person, creditLicence} is stable for the conclusion
creditActivity , in the sense that it is resilient to the addition of other facts; on
the other hand, {person, actsOnBehalfPrincipal , principalCreditLicense} is not
stable for creditActivity since the addition of insolvent prevents the derivation
of such conclusion.

By the example above, we can conclude that stable explanations are more
naturally considered because they are insensitive to the change in knowledge of
the facts. In other terms, stable explanations are, to some extent, monotonic.
In this paper, we concentrate on those abductive processes that only involve
the expansion of the set of facts (to determine stability), and do not involve
contraction of facts, revision of facts, or manipulation of rules.

Before going into the details of this study, let us make some observations
regarding the complexity of the revision processes mentioned before. So far, in the
current literature on these processes, only negative results have been obtained.
In fact, both rules and preference revision processes are problems that are NP-
hard, and, as we shall see in the remainder of this study, the same happens in
the case of fact revision. There is, however, an important difference. In order to
achieve the desired result of abductive reasoning, we shall be forced to employ
the discussed notion of stability.

When a theory is revised in a way that only involves stable literals, the pro-
cess of revision is simpler than it is when unstable literals are involved. This
is a strong suggestion in the direction of finding out a subset of instances of
the abduction of facts that could be treated polynomially. This is however com-
pensated by the unfortunate condition that testing the stability of a literal is a
coNP-complete problem, thus making imaginable a process of preliminary analy-
sis (typically expensive in computational terms) followed by an overhead of tests
that works on stable literals and is performed in a better computational fashion.
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The interest in these notions is also general. With this investigation we have
provided a third and potentially final chapter of the analysis of revision processes
as discussed in the literature on Defeasible Logic.

The rest of the paper is organised as follows. Section 2 provides an introduc-
tion to the logical framework of defeasible logic. Section 3 introduces the formal
definitions of when a case is stable as well as some related notions. Section 4
studies the asymptotic computational analysis of the problems. Section 5 estab-
lishes the relationships between the problem of determining whether a case is
stable to the notion of theory change (or belief revision in Defeasible Logic par-
lance). Section 6 discusses some related relevant works and Sect. 7 takes some
conclusions and sketches how this research can be taken further.

2 The Logical Framework of Defeasible Logic

The logical apparatus we shall utilise for our investigation is the Standard Defea-
sible Logic (SDL) [1]. We start by defining the language.

Let PROP be the set of propositional atoms, then the set of literals Lit =
PROP ∪ {¬p | p ∈ PROP}. The complementary of a literal p is denoted by ∼p:
if p is a positive literal q then ∼p is ¬q, if p is a negative literal ¬q then ∼p is q.
Literals are denoted by lower-case Roman letters. Let Lab be a set of labels to
represent names of rules, which will be denoted as lower-case Greek letters.

A defeasible theory D is a tuple (F,R,>), where F is the set of facts (indis-
putable statements), R is the rule set, and > is a binary relation over R.

R is partitioned into three distinct sets of rules, with different meanings
to draw different “types of conclusions”. Strict rules are rules in the classical
sense: whenever the premises are the case, so is the conclusion. We then have
defeasible rules which represent the non-monotonic part (along which defeaters)
of the logic: if the premises are the case, then typically the conclusion holds
as well unless we have contrary evidence that opposes and prevents us from
drawing such a conclusion. Lastly, we have defeaters, which are special rules
whose purpose is to prevent contrary evidence from being the case. It follows
that in DL, through defeasible rules and defeaters, we can represent in a natural
way exceptions (and exceptions to exceptions, and so forth).

We finally have the superiority relation >, a binary relation among couples
of rules that is the mechanism to solve conflicts. Given the two rules α and β,
we have (α, β) ∈> (or simply α > β), in the scenario where both rules may fire
(can be activated), α’s conclusion will be preferred to β’s.

A rule α ∈ R has the form α : A(α) � C(α), where: (i) α ∈ Lab is the unique
name of the rule (ii) A(α) ⊆ Lit is α’s (set of) antecedents (iii) C(α) = l ∈ Lit
is its conclusion, and (iv) �∈ {→,⇒,�} defines the type of rule, where: → is
for strict rules, ⇒ is for defeasible rules, and � is for defeaters.

Some standard abbreviations. Rs denotes the set of strict rules in R, and the
set of strict and defeasible rules by Rs; R[l] denotes the set of all rules whose
conclusion is l.

A conclusion of D is a tagged literal with one of the following forms:
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±Δl means that l is definitely proved (resp. strictly refuted/non provable) in
D, i.e., there is a definite proof for l in D (resp. a definite proof does not
exist).

±∂l means that l is defeasibly proved (resp. defeasibly refuted) in D, i.e., there
is a defeasible proof for l in D (resp. a definite proof does not exist).

The definition of proof is also the standard in DL. Given a defeasible theory
D, a proof P of length n in D is a finite sequence P (1), P (2), . . . , P (n) of tagged
formulas of the type +Δl, −Δl, +∂l, −∂l, where the proof conditions defined in
the rest of this section hold. P (1..n) denotes the first n steps of P .

All proof tags for literals are standard in DL [1]. We present only the positive
ones as the negative proof tags can be straightforwardly obtained by applying
the strong negation principle to the positive counterparts. The strong negation
principle applies the function that simplifies a formula by moving all negations
to an innermost position in the resulting formula, replaces the positive tags with
the respective negative tags, and the other way around see [16].

Positive proof tags ensure that there are effective decidable procedures to
build proofs; the strong negation principle guarantees that the negative condi-
tions provide a constructive and exhaustive method to verify that a derivation
of the given conclusion is not possible.

The definition of +Δ describes forward-chaining of strict rules.

Definition 1 (+Δ).
+Δl: If P (n + 1) = +Δl then either

(1) l ∈ F , or
(2) ∃α ∈ Rs[l].∀a ∈ A(α). + Δa ∈ P (1..n).

A literal is strictly proved if it is a(n initial) fact of the theory or a strict rule
exists.

Defeasible derivations are based on the notions of a rule being applicable or
discarded. A rule is applicable at a given derivation step when every antecedent
has been proved at any previous derivation step. Symmetrically, a rule is dis-
carded when at least one antecedent has been previously refuted.

Definition 2 (Applicable & Discarded).
Given a defeasible theory D, a literal l, and a proof P (n), we say that

– α ∈ R[l] is applicable at P (n + 1) iff ∀a ∈ A(α). + ∂a ∈ P (1..n).
– α ∈ R[l] is discarded at P (n + 1) iff ∃a ∈ A(α). − ∂a ∈ P (1..n).

Note that a strict rule can be used to derive defeasible conclusions when it is
applicable and at least one of its premises is defeasibly but not strictly proved.
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Definition 3 (+∂).
+∂l: If P (n + 1) = +∂l then either

(1) +Δl ∈ P (1..n), or
(2.1) −Δ∼l ∈ P (1..n), and
(2.2) ∃α ∈ R[l] applicable s.t.
(2.3) ∀β ∈ R[∼l] either

(2.3.1) β discarded, or
(2.3.2) ∃ζ ∈ R[l] applicable s.t. ζ > β.

A literal is defeasibly proved if (1) it has already proved as a strict conclusion, or
(2.1) the opposite is not and (2.2) there exists an applicable, defeasible or strict,
rule such that any counter-attack is either (2.3.1) discarded or (2.3.2) defeated
by an applicable, stronger rule supporting l. Note that, whereas β and ζ may be
defeaters, α may not, as we need a strict or defeasible, applicable rule to draw a
conclusion.

The last notions introduced in this section are those of extension of a defeasi-
ble theory. Informally, an extension is everything that is derived and disproved.

Definition 4 (Theory Extension). Given a defeasible theory D, we define
the set of positive and negative conclusions of D as its extension:

E(D) = (+Δ,−Δ,+∂,−∂),

where ±# = {l| l appears in D and D 
 ±#l}, # ∈ {Δ, ∂}.
Example 1. Assume theory D = (F = {a, b}, R, {(ζ, γ)}), with

R = { α : a ⇒ z β : b → c γ : c ⇒ ∼l ζ : z → l }.

As a and b are facts, by Condition 1 of +Δ, we have D 
 +Δa,+Δb, which
by Condition 2 of +Δ concludes D 
 +Δc. Given that there are no rules that
support ∼z and α is applicable, Conditions (2.2) and (2.3.1) of +∂ are satisfied
and we conclude D 
 +∂z. Both γ and ζ are applicable (ζ is indeed a strict rule,
but as its only consequence z is here defeasibly but not strictly proved it can
be used to support the defeasible derivability of l): given that ζ > γ, we have
D 
 +∂l and D 
 −∂∼l. The resulting extension is thus E(D) =

(+Δ = {a, b, c}, −Δ = {∼a,∼b,∼c, l,∼l, z,∼z},

+∂ = {a, b, c, l, z}, −∂ = {∼a,∼b,∼c,∼l,∼z} ).

Theorem 1. [19] Given a defeasible theory D, its extension E(D) can be com-
puted in time polynomial to the size of the theory. (The size of the theory is given
by the number of occurrences of literals, rules, and instances of the superiority
relation in it).
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3 Computational Problem and Methodology

As outlined in the previous sections, the output theory, as well as the whole
operations, must satisfy certain properties. First, we shall impose that only lit-
erals that do not appear as a consequence of any rule can be facts of the output
theory, as in Definition 5 below.

Definition 5 (Admissible factual literals). Given (an initial) theory
Dinit = (∅, R,>), we define the set of admissible factual literals (shortly factual
literals) as

{p,¬p |R[p] ∪ R[¬p] = ∅}.

It follows that the set of factual literals is the set of literals for which there are
no rules and, consequently, such literals can only be derived if they are facts.

A set of literals is consistent if it does not contain any pair of literals (p,¬p).

Example 2. Assume Dinit is (∅, R, ∅), with

R = {α : a ⇒ z ζ : z ⇒ l β : b ⇒ ∼l γ : g ⇒ l}.

Here, a, b, and g are (admissible) factual literals, whilst z, l, and ∼l are not.
Secondly, the output theory must be stable, i.e., consistently adding facts

does not change the provability of the target literal. In order to formalise a
theory being stable, we firstly define which characteristics the output theory
must satisfy, and we name such “valid” output theories cases.

Definition 6 (Case). Given the initial theory Dinit = (∅, R,>) and the target
literal l, we say that a theory D = (F,R,>) is a case for l of Dinit iff

1. F is consistent,
2. for all f ∈ F , f is a factual literal, and
3. D 
 +∂l.

When l or Dinit are clear from the context, we shortly say that D is a case.
Moreover, whenever clear from the context, we use the term case for both the
theory and the set of facts in it. Referring to Example 2, theory D = (F =
{a}, R, ∅) is a case for l of Dinit.

Definition 7 (Stable Case). Given the initial theory Dinit = (∅, R,>) and
the target l, we say that a theory D = (F,R,>) is a stable case for l of Dinit iff
(1) D is a case for l (of Dinit), and (2) for all D′ = (F ′, R,>) s.t. if F � F ′

and F ′ is consistent, then D′ 
 +∂l.

The case theory D = (F = {a}, R, ∅) is not stable as D′ = (F ′ = {a, b}, R, ∅)
defeasibly rejects l. On the contrary, theories with set of facts {a,∼b}, {c,∼b},
or {a,∼b, c} are stable cases for l as motivated in Sect. 1, even if ∼b does not
appear in any rule antecedent/consequent, we may impose ∼b ∈ F , provided
that the letter from which the literal is obtained appears in a rule either as an
antecedent or as a consequent.
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In the current investigation, we will not concern ourselves with finding min-
imal stable cases and leave such an investigation for future works.

Symmetric to the concept of case, we now introduce the notion of refutation
case, which is the base to consequently define the notion of stable refutation case.

Definition 8 (Refutation case). Given the initial theory Dinit = (∅, R,>)
and the target literal l, we say that a theory D = (F,R,>) is a refutation case
for l of Dinit iff

1. F is consistent,
2. for all f ∈ F , f is a factual literal, and
3. D 
 −∂l.

Definition 9 (Stable Refutation Case). Given the initial theory Dinit =
(∅, R,>) and the target literal l, we say that a theory D = (F,R,>) is a stable
refutation case for l of Dinit iff (1) D is a refutation case for l (of Dinit), and
(2) for all D′ = (F ′, R,>) s.t. if F � F ′ and F ′ is consistent, then D′ 
 −∂l.

The last notion introduced is that of unstable case, namely the situation when
a case is not resilient to the addition of facts to the theory.

Definition 10 (Unstable Case). Given the initial theory Dinit = (∅, R,>)
and the target l, we say that a theory D = (F,R,>) is an iff (1) D is a case
for l (of Dinit), and (2) there exists D′ = (F ′, R,>) s.t. if F � F ′ and F ′ is
consistent, then D′ 
 +∂∼l.

Note that, naturally, D is “just” a case for l, and not a stable (refutation) case.

4 Complexity Results

We shall prove the complexity results of the three problems of determining
whether: a case is stable, a refutation case is stable, or a case is unstable.

Theorem 2. Given a Defeasible Theory and a case, the problem of determining
if the case is stable is co-NP-complete.

Proof. To prove that the problem is co-NP-complete, we show that its comple-
ment is NP-complete. Namely, given the theory and the case, to show that the
case is not stable. Hence, we have to show that a superset of the case that does
not prove the target literal exists. As usual, the proof consists of two parts. Given
an oracle that guesses a theory where the set of facts is a superset of the case,
we can check polynomially whether this theory proves the target literal or not
(Theorem 1). For the second part, we provide a polynomial encoding of 3-SAT,
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and we demonstrate that if the theory encoding the 3-SAT instance is not stable,
then the 3-SAT instance is satisfiable. A 3-SAT instance is given by

n∧

i=1

di

where di = c1i ∨ c2i ∨ c3i . Its encoding in Defeasible Logic is given by the theory
D = (∅, R, ∅) where R contains, for every clause di, the following rules1:

ri,j : cji ⇒ di j ∈ {1, 2, 3}
plus the two rules:

rsat : d1, . . . , dn ⇒ sat

rnsat : ⇒ ¬sat

Clearly, the encoding is polynomial (actually, linear) in the size of the 3-SAT
instance. We consider the case given by the empty set of facts and ¬sat as
the target literal. It is immediate to verify that D 
 +∂¬sat: rnsat is the only
applicable rule; all other rules are discarded. The set of admissible literals consists
of all literals cji and ∼cji . To show that ∅ is not stable we have to find a subset
of admissible literals C such that D′ = (C,R, ∅) 
 −∂¬sat. For a (consistent)
set of admissible literals C, we build the interpretation I as follows:

I(cji ) =

{
TRUE cji ∈ C

FALSE otherwise

We can not prove that D′ 
 −∂¬sat iff I |= ∧n
i=1 di. To prove −∂¬sat, the rule

rsat has to be applicable. This means we need to have +∂di. This implies that for
each di at least of the rules ri,1, ri,2 and ri,3 is applicable too. Consequently, one
of c1i , c2i , and c3i is defeasible derivable. Given there are no rules for cji , +∂cji iff
cji ∈ C. Accordingly, I(cji ) = TRUE. Thus, for every clause we have an element
in it that makes the clause true, thus I(di) = TRUE, for every i and so the
3-SAT instance is satisfiable. Conversly, when I |= ∧n

i=1 di, I |= di for every
1 ≤ i ≤ n. Thus, for each di, there is a cji such that I(cji ) = TRUE, and so
cji ∈ C. Therefore, D′ 
 +∂cji , from which we derive that for every i, D′ 
 +∂di,
making rsat applicable, which implies D′ 
 −∂¬sat.

Theorem 3. Given a Defeasible Theory and a refutation case, the problem of
determining if the refutation case is stable is co-NP-complete.

Proof. We can use the proof of Theorem 2, but we set the target literal to −∂sat.

Theorem 4. Given a Defeasible Theory and a case, the problem of determining
if the case is unstable is NP-complete.

Proof. We can use the same transformation of Theorem 2 and add the instance
of the superiority relation rsat > rnsat.
1 Notice that we use di as a variable for a clause in the 3-SAT instance and as a literal

(representing the clause) in the corresponding defeasible logic encoding.
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5 Abduction and Theory Change

In Sect. 3, we defined the issue of whether a case is stable or not, namely, the
problem of determining whether adding new facts makes the target literal no
longer derivable. In Sect. 4, we then investigated the complexity of such a prob-
lem. To this end, we examined the complement of the problem: whether it is
possible to find a superset of the case that can change the derivability status
of the target literal. It should be clear that this operation is a form of belief
revision.

In the literature of DL [13,15], belief revision is more appropriately called
“theory change”. Three types of theory changes are identified in DL: expansion,
revision, and contraction. Expansion is the process of transitioning from a theory
where “something” is refuted to a theory where that something is proved. Con-
traction is conceptually the opposite operation, from derived to refuted. Lastly,
revision is going from something being proved to the opposite being proved.

The authors of [4] provide simple (constant time) operations to change a
theory via adding new rules. The problem of changing a theory by modifying
the superiority relation (either by adding or removing instances of it) was proved
to be computationally intractable in [12,13]. In this section, we show how to use
the results of Sect. 4 to establish the computational complexity results for the
problem of theory change by adding facts (different from the target literal).

Formally, given the initial theory Dinit, the output theory D, and the target
literal l, we can formally define such operations under a (DL’s) proof theoretical
perspective as

Expansion: from Dinit 
 −∂l to D 
 +∂l.
Contraction: from Dinit 
 +∂l to D 
 −∂l.
Revision: from Dinit 
 +∂l to D 
 +∂∼l.

Using the results in Sect. 4, we can establish the following complexity results:

Theorem 5. When the target literal is not admissible and the new set of facts
does not include it or its complement, then

1. The problem of determining whether it is possible to expand a theory by only
adding facts is equivalent to the problem of determining whether the case
corresponding to the initial theory is not a stable refutation case.

2. The problem of determining whether it is possible to contract a theory by
only adding facts is equivalent to the problem of determining whether the case
corresponding to the initial theory is not a stable case.

3. The problem of determining whether it is possible to expand a theory by only
adding facts is equivalent to the problem if determining whether the case cor-
responding to the initial theory is an unstable case.

Moreover, the three problems above are NP-complete.

First of all, we recall a result of [1] where the authors show that there is a
polynomial transformation of a theory into an equivalent one, where the set of
facts is empty. After this step, we can immediately use Theorems 2–4 to set the
complexity of the above theory change problems.
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6 Related Work

The abduction process as devised by [17] is the process of understanding which
explanations could be found that come from the assumption that a given con-
clusion has to be accepted. The literature on abduction is vast as we already
observed in Sect. 1.

The non-monotonic nature of revision of beliefs has been stressed out since
the beginnings. In primis, the idea of non-monotonicity has been investigated
as a means to represent the way in which conclusions are derived when the
derivations are not universal but only typical [1,14,20]. In a closely related but
parallel approach it has been regarded as a way to represent theory change [22].

Another fruitful area of investigation for revision that involves also abduction
is the argumentation theory. In particular Snaith and Reed [23] discussed the
ways in which arguments can be revised, and Augusto and Simar [2] the nature
of temporal arguments.

Naturally, a computational perspective on this arose rather soon in the vari-
ous communities that studied these issues. The initial investigations on this topic
have been reviewed by the authors of [7] and devised in terms of their complex-
ity. However, until some years further, no study was able to focus the main point
of abduction processes from a computational point of view: the nature of abduc-
tion is to make a case for a proven conclusion, not only to find an explanation
for that conclusion that aims at a general and philosophical perspective. When
Eiter and Gotlob discussed this point in [9], a somehow disruptive approach to
the issue was adopted by the majority of scholars and neat progresses have been
made in understanding how to treat the problem in a correct way.

Recent advances in this investigation line, relatively to the complexity of
abduction have been focusing on the notion of adaptation, where a theory adapts
to the conclusions have not a factual nature [18]. A relevant issue in abduction
methods relates to minimisation, as devised in [21] lately.

Another interesting recent work is [5,6] where the concept of strong explana-
tion has been introduced for non-monotonic reasoning. The addressed problem
is precisely how to determine minimal subsets of the knowledge base entailing
a certain formula. The authors show that strong explanations coincide with the
standard notion for monotonic logics, but also handle the nonmonotonic case
adequately. This contribution does not consider DL, but we see interesting over-
laps, which we will explore in future works.

Case-based reasoning issues in abduction led to considering, in fact, not only
a general process for propositional theories, but also the base for a large set of
methodological issues related to non-monotonic systems such as default logic
[10,11].

7 Conclusions and Future Investigations

In this paper we introduced a novel concept for abduction in non-monotonic
systems: the one of stability. An explanation is stable, when adding new facts
does not prevent such an explanation to work for that literal.
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Stable explanations are provided for abduction processes that only increase
the set of facts; without loss of generality, we assumed the initial set of facts
to be empty. Computing stability is hence the prime problem to be solved in
order to obtain a good explanation for a literal. However, determining whether
an explanation exists is computationally hard. We have also proven that the
revision problem of a theory with an empty set of facts is related to the stability
problem, thus providing a proof that the revision problem is computationally
hard as well.

There are diverse research lines that are worth to pursuing. First of all, all
our results are for a single target literal. It is not possible to extend them trivially
to a set of literals. In fact, though the problem is similar, it is technically not
true that we can derive separately such elements of a set to conclude, somehow,
that a set operation on the resulting sets of assumptions gives us an answer on
it. Analogously, establishing whether a set of literals is stable does not consist
in proving stability for each literal separately.

Further, it is important to understand how to introduce specific constraints
on what can be changed, and what may not. In particular, what if we assume
that some facts cannot be changed/eliminated. This could be important, for
instance, if we have a situation like the one depicted in Sect. 1.

Rather naturally, it would also be an issue to study the behaviour of the
facts contraction operator, that completes, along the facts expansion operator,
the range of possible ways in which a set of facts can be abducted on a non-
monotonic theory. Contraction alone could possibly be interesting, as well as
paired with expansion.

Last but not least: the problems introduced here are computationally hard,
and some of the ones that we can define as future work actually include these
problems (expansion of sets, constrained expansion) while the contraction and
revision problems cannot be trivially considered as supersets of the expansion
of a single literal. Is there any way to reduce the complexity? In particular, are
there any subsets of the instances of the defined problems that are polynomially
tractable? If this is the case we can reduce the computational cost by detect-
ing whether a single instance belongs to one of these classes, and then solve it
polynomially.
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Abstract. Conditional literals are an expressive Answer Set Program-
ming language construct supported by the solver clingo. Their seman-
tics are currently defined by a translation to infinitary propositional logic,
however, we develop an alternative characterization with the SM oper-
ator which does not rely on grounding. This allows us to reason about
the behavior of a broad class of clingo programs/encodings containing
conditional literals, without referring to a particular input/instance of an
encoding. We formalize the intuition that conditional literals behave as
nested implications, and prove the equivalence of our semantics to those
implemented by clingo.

Keywords: ASP · Semantics · Conditional Literals

1 Introduction
Answer Set Programming (ASP) [13,14] is a widely utilized branch of logic
programming that combines an expressive modeling language with efficient
grounders and solvers. It has found a number of prominent applications since its
inception, such as diagnostic AI and space shuttle decision support systems [1].
For various classes of logic programs, there are multiple equivalent ways to char-
acterize their semantics [12]. Most of the semantics for non-propositional pro-
grams (used in the practice of ASP) are defined via grounding – a process of
instantiating variables for passing constants. This often makes it difficult to rea-
son about parts of logic programs in isolation. The SM operator [7] is one of the
few approaches to interpreting logic programs without reference to grounding.
In this approach, a logic program is viewed as an abbreviation for a first-order
sentence. The semantics of a program are defined by means of an application of
the SM operator to the program, which results in a second-order formula. The
Herbrand models of this formula coincide with the answer sets of the considered
logic program. In this work, we extend the class of programs to which the SM
operator is applicable by providing a translation to first-order formulas for con-
structs known as “conditional” literals. We then illustrate that the newly defined
semantics via the SM operator for programs with conditional literals coincides
with that by Harrison, Lifschitz, and Yang (2014). In that work, the authors
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captured the meaning of programs with conditional literals via grounding/trans-
formation of a logic program into infinitary propositional formulas. Importantly,
the answer set system clingo [9] obeys their semantics.

Rules with conditional literals are common in so-called meta-
programming [11], where reification of constructs is utilized to build ASP-based
reasoning engines that may go beyond the ASP paradigm itself. The meta-
programming technique is well illustrated in [11] by means of multiple examples,
where conditional literals are widespread. For instance, Kaminski et al. (2021) use
this technique in the implementation of optimization statements, reasoning about
actions, reasoning about preferences, and guess-and-check programming. Here, we
showcase the utility of conditional literals on the well-studied graph (k) coloring
problem. This problem has a simple specification: For an undirected graph, the k-
coloring problem assigns one of k colors to each vertex such that no two vertices
connected by an edge share a color. It is an NP-complete problem to decide if a
given graph admits a k-coloring for any k ≥ 3. This problem can be elegantly
encoded in a few lines of ASP code. First consider the encoding in Listing 1.1,
where color(I;J) and vtx(V ;W ) abbreviate expressions color(I); color(J) and
vtx(V ); vtx(W ), respectively. This is an instructional encoding by Lierler (2017,
Sect. 5) modulo the changes in predicate names.

Listing 1.1. 3-coloring problem encoding.

1 {asg(V,I)} :- vtx(V); color(I).

2 :- not asg(V,r); not asg(V,g); not asg(V,b); vtx(V).

3 :- asg(V,I); asg(V,J); I != J; vtx(V); color(I;J).

4 :- asg(V,I); asg(W,I); vtx(V;W); color(I); edge(V,W).

Given an instance of a graph, the program in Listing 1.1 assigns colors from
the set {r, g, b} to its vertices. Yet, however concise and self-explanatory this
solution is, it lacks elaboration tolerance. It is restricted to the color names hard-
coded into the program, and it only solves the 3-coloring problem as opposed to
the k-coloring problem. Conditional literals provide us with a convenient means
to address this shortcoming. Consider the encoding in Listing 1.1 with line 2
replaced by

:- not asg(V, I) : color(I); vtx(V). (1)

where expression not asg(V, I) : color(I) constitutes a conditional literal. The
original rule in line 2 forbade solutions that did not assign any of the three
colors to a vertex. In rule (1), the conditional literal is satisfied when no colors
are assigned to a given vertex. In the sequel, we refer to the program consisting of
the rules in lines 1, 3, and 4 of Listing 1.1 and rule (1) as the k-coloring encoding.
Note how the k-coloring encoding is agnostic to the naming and number of colors,
providing us with a truly elaboration tolerant solution for the k-coloring problem.

The remainder of this paper is organized as follows. Section 2 starts by pre-
senting the syntax of logic programs considered in this paper. These programs
contain conditional literals and we call them conditional programs. Section 3
continues by defining a translation from conditional programs to first-order for-
mulas, and uses the SM operator to provide their semantics. Section 4 describes
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the semantics of conditional programs using infinitary propositional logic. In
Sect. 5 we connect these two characterizations of conditional programs, formally
illustrating that they coincide. Thus, the SM-based semantics introduced here
for conditional programs captures the behavior of clingo. In Sect. 6, we illus-
trate the utility of the SM-based semantics by arguing the correctness of the
k-coloring program.

2 Syntax of Conditional Programs

In this section, we introduce a fragment of the input language of clingo with
conditional literals. A term is a variable, or an object constant, or an expression
of the form f(t), where f is a function constant of arity k and t is a k-tuple
of terms. When a term does not contain variables we call it ground. An atomic
formula is either (i) an expression of the form t = t′ where t and t′ are terms
or (ii) an atom p(t1, . . . , tn), where p is a predicate symbol of arity n and ti
(1 ≤ i ≤ n) is a term; if n = 0, we omit the parentheses and write p (p is a
propositional atom). A basic literal is an atomic formula optionally preceded by
not; we identify a basic literal of the form not t = t′ with the expression t �= t′.
A conditional literal is an expression of the form H : l1, . . . , lm, where H is a
basic literal or the symbol ⊥ (denoting falsity) and l1, . . . , lm is a nonempty list
of basic literals. We often abbreviate such an expression as H : L.

A (conditional logic) program is a finite set of rules of the form

H1 | · · · | Hm ← B1; . . . ;Bn. (2)

(m,n ≥ 0), where each Hi, Bi is a basic or conditional literal; if m = 0 then
we identify the head of the rule (left hand side of rule operator ←) with ⊥. The
right hand side of the rule operator ← is called the body. We call a rule, where
m = 1 and n = 0 a fact. We consider rules of the form {p(t)} ← B1; . . . ;Bn to
be shorthand for p(t) | not p(t) ← B1; . . . ;Bn, where p is a predicate constant
of arity k and t is a k-tuple of terms.

Let σ = (O,F ,P) be a signature of a first-order language, where O is the
set of object constants, F is the set of function constants of non-zero arity,
and P is the set of predicate constants; by Gσ we denote the set of all ground
terms that one may construct from the sets O and F of σ. For example, take
O = {a} and F = {f/1} in some σ: then, Gσ = {a, f(a), f(f(a)), . . . }. It is
customary in logic programming that a program defines its signature implicitly,
yet here it is convenient to make it explicit. For a program Π, we refer to its
signature as a triple (OΠ ,FΠ ,PΠ), where OΠ , FΠ , and PΠ contain all the object
constants, function symbols of non-zero arity, and predicate constants occurring
in Π, respectively. To simplify the notation, we use GΠ to denote G(OΠ ,FΠ ,PΠ).

3 Semantics via the SM Operator

We now propose a syntactic transformation φ from logic programs to first-
order sentences. The majority of this translation is implicitly described in
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[7, Section 2.1], where rules are viewed as an alternative notation for particular
types of first-order sentences. We extend these ideas to programs with condi-
tional literals.

First, we define some required concepts. A variable is global in a conditional
literal H : L if it occurs in H but not in L. Given a rule, all variables occurring
in basic literals outside of conditional literals are considered global. A variable is
global in a rule if it is global in one or more of the rule’s literals. For example,
in rule (1), variable V is global whereas variable I is not. Let R be a rule of the
form (2) such that at least one Hi or Bi in the rule is a conditional literal L. Let
v be the list of variables occurring in L. Let z be the list of the global variables
in R. Then we call x = v \ z the local variables of L within R.

To transform a rule R of the form (2) into a first order sentence, we define a
translation φz, where z is the list of global variables occurring in R:

1. φz(⊥) is ⊥;
2. φz(A) is A for an atomic formula A;
3. φz(notA) is ¬φzA for an atomic formula A;
4. φz(L) is φz(l1) ∧ · · · ∧ φz(lm) for a list L of basic literals;
5. for a conditional literal H : L occurring in the body of R with local variables x,

φz(H : L) is ∀x (φz(L) → φz(H)) ;
6. for a conditional literal H : L occurring in the head of R with local variables x,

φz(H : L) is ∃x(
(φz(L) → φz(H)) ∧ ¬¬φz(L)

)
.

Recall rule (1) containing the conditional literal not asg(V, I) : color(I). Vari-
able V is the only global variable of that rule, whereas variable I is local within
this conditional literal. Hence, φV turns this conditional literal into formula
∀i (color(i) → ¬asg(v, i)) , where in accordance with the convention of first-order
logic we turn variables into lower case.

We now define the translation φ on rules and programs as follows:

1. for every rule R of the form (2), its translation φ(R) is the formula

∀z(φz(B1) ∧ · · · ∧ φz(Bn) → φz(H1) ∨ · · · ∨ φz(Hm)),

where z is the list of the global variables of R;
2. for every program Π, its translation φ(Π) is the first-order sentence formed

by the conjunction of φ(R) for every rule R in Π.

As a result, the rules of the k-coloring conditional program discussed in the
Introduction are identified with the following sentences by translation φ:

∀vi
(
(vtx(v) ∧ color(i)) → asg(v, i) ∨ ¬asg(v, i)

)
(3)

∀v
(
(∀i(color(i) → ¬asg(v, i)) ∧ vtx(v)) → ⊥)

(4)

∀vij
(
(asg(v, i) ∧ asg(v, j) ∧ i �= j ∧ vtx(v) ∧ color(i) ∧ color(j)) → ⊥)

(5)

∀viw
(
(asg(v, i) ∧ asg(w, i) ∧ vtx(v;w) ∧ color(i) ∧ edge(v, w)) → ⊥)

(6)

where vtx(v;w) abbreviates vtx(v)∧vtx(w). The first-order sentence correspond-
ing to the k-coloring program consists of the conjunction of Formulas (3-6). We
refer to this first-order sentence as KC.
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We now review the operator SM following Ferraris, Lee, and Lifschitz (2011).
The symbols ⊥,∧,∨,→,∀, and ∃ are viewed as primitives. The formulas ¬F
and � are abbreviations for F → ⊥ and ⊥ → ⊥, respectively. If p and q are
predicate symbols of arity n then p ≤ q is an abbreviation for the formula
∀x(p(x) → q(x)), where x is a tuple of variables of length n. If p and q are tuples
p1, . . . , pn and q1, . . . , qn of predicate symbols then p ≤ q is an abbreviation for
the conjunction (p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn), and p < q is an abbreviation for
(p ≤ q)∧¬(q ≤ p). We apply the same notation to tuples of predicate variables
in second-order logic formulas. If p is a tuple of predicate symbols p1, . . . , pn (not
including equality), and F is a first-order sentence then SMp[F ] (called the stable
model operator with intensional predicates p) denotes the second-order sentence
F ∧ ¬∃u(u < p) ∧ F ∗(u), where u is a tuple of distinct predicate variables
u1, . . . , un, and F ∗(u) is defined recursively:

– pi(t)∗ is ui(t) for any tuple t of terms;
– F ∗ is F for any atomic formula F that does not contain members of p;
– (F ∧ G)∗ is F ∗ ∧ G∗;
– (F ∨ G)∗ is F ∗ ∨ G∗;
– (F → G)∗ is (F ∗ → G∗) ∧ (F → G);
– (∀xF )∗ is ∀xF ∗;
– (∃xF )∗ is ∃xF ∗.

We define the semantics of conditional logic programs using the SM operator.
We note that if p is the empty tuple then SMp[F ] is equivalent to F . We call
an interpretation a p-stable model of F when it is a model of SMp[F ]. For a
conditional logic program Π and a Herbrand interpretation I over the signature
(OΠ ,FΠ ,PΠ), I is an answer set of Π when I is a PΠ -stable model of φ(Π).

As is customary, the concept of an answer set is defined for Herbrand interpre-
tations. It is common to identify Herbrand interpretations with the set of ground
atoms that are evaluated to true by this interpretation. When convenient, we
follow this convention. It is worth noting that dropping the word Herbrand from
the definition of an answer set allows us to extend the notion of an answer
set/stable model to non-Herbrand interpretations following, for example, the
tradition of [7,15]. Also, the provided definitions allow us to consider p-stable
models of conditional programs, where p is a tuple of predicate symbols in Π
to characterize interesting properties of conditional programs. We articulate the
utility of p-stable models in Sect. 6. In that section we extend the k-coloring
program with a sample set of facts encoding an instance of the k-coloring prob-
lem and argue how the answer sets of the resulting program correspond to the
solutions of this instance.

4 Semantics via Infinitary Propositional Logic

Programs with conditional literals were first formalized by (i) their reduction to
infinitary (propositional logic) formulas [10] and (ii) utilizing the definition of
a stable model for such formulas introduced by Truszczyński (2012). We refer
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the reader to Definition 1 in [15] for the details on what constitutes a stable
model for an infinitary formula as its details are not required in understanding
the content of this paper. We now review the syntax of an infinitary formula and
the details of the translation of conditional programs to infinitary formulas by
Harrison, Lifschitz, and Yang (2014).

Let A be a set of ground atoms. We define sets F0,F1, . . . by induction:

– F0 = A;
– Fi+1 adds to Fi all expressions H∧,H∨ for all subsets H of Fi, and F → G

for all F,G ∈ Fi.

The set of infinitary formulas over A is defined as ∪∞
i=0Fi. {F,G}∧ can be written

as F ∧ G, and {F,G}∨ can be written as F ∨ G. The symbols ⊥ and � will
be understood as abbreviations for ∅∨ and ∅∧, respectively. Expression ¬F is
understood as F → ⊥.

Harrison, Lifschitz, and Yang (2014) define the semantics of programs with
conditional literals using a translation τ that transforms rules of a given pro-
gram into infinitary propositional formulas. It is worth noting that they allow a
broader syntactic class of rules than we consider here. For instance, rules with
aggregates are allowed; these rules are outside the scope of this paper, but we
refer interested readers to [4] for a review of how the SM operator can define
semantics for programs with aggregates. Here, we restrict our review of τ to con-
ditional programs. The translation τ is summarized below using the following
notation: if t is a term, x is a tuple of variables, and r is a tuple of terms of
the same length as x, then [t]xr (equivalently, txr ) is the term obtained from t by
substituting x by r. We use similar notation for other expressions such as literals
or their lists, e.g., we may write [l1, . . . , lm]xr which stands for [l1]xr , . . . , [lm]xr and
[H : L]xr which stands for Hx

r : Lx
r . A conditional literal or a rule is closed if it

contains no global variables. |x| denotes the number of elements in a list x.
To transform a closed rule R into an infinitary propositional formula w.r.t.

a set G of ground terms, translation τ is defined as follows:

1. τ(⊥) is ⊥;
2. τ(A) is A for a ground atom A;
3. τ(t1 = t2) is � if t1 is identical to t2, and ⊥ otherwise, for ground terms t1, t2;
4. τ (not A) is ¬τA;
5. τ(L) is τ(l1) ∧ · · · ∧ τ(lm) for a list L of basic literals;
6. for a closed conditional literal H : L occurring in the body of rule R, τ(H : L)

is the conjunction of the formulas τ(Lx
r ) → τ(Hx

r ) where x is the list of
variables occurring in the conditional literal, over all tuples of ground terms
r ∈ G|x| (recall that Gn denotes the Cartesian product G×· · ·×G of length n);

7. for a closed conditional literal H : L occurring in the head of rule R,
τ(H : L) is the disjunction of formulas

(
τ(Lx

r ) → τ(Hx
r )

) ∧ ¬¬τ(Lx
r ) where

x is the list of variables occurring in the conditional literal, over all tuples of
ground terms r ∈ G|x|;

8. for a closed rule r of form (2), τ(r) is τB1 ∧ · · · ∧ τBn → τH1 ∨ · · · ∨ τHm.
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Now, we formalize the rule instantiation process from [10]. Let z denote the
global variables of rule R. By instG(R) we denote the instantiations of rule R
w.r.t. a set G of ground terms, i.e., instG(R) = {Rmathbfuz | mathbfu ∈ G|z|}∧.
Clearly, every rule r ∈ instG(R) is closed, as is each (conditional) literal occurring
in r.

Let Π be a conditional program. For a rule R in Π, its translation is defined as
τ(R) = {τ(r) | r ∈ instGΠ

(R)}∧. Similarly, τ(Π) = {τ(R) w.r.t. GΠ | R ∈ Π}∧.
A set of ground atoms constructed over the signature of Π forms a clingo
answer set of a program Π when it is a stable model of τ(Π) in the sense of
Definition 1 by Truszczyński (2012).

5 Connecting Two Semantics of Conditional Programs

In this section our goal is to connect our proposed semantics for conditional
(logic) programs via the SM operator (Sect. 3) to the semantics defined for such
programs in [10] (Sect. 4). For that purpose we review some of the details of [15]
that help us to construct an argument for the formal relationship between the
considered semantics for conditional programs.

Truszczynski (2012) provides a definition of stable models for first-order sen-
tences. These models may be Herbrand and non-Herbrand interpretations. He
defines the grounding of a sentence F w.r.t. interpretation I, denoted by grI(F ),
as a transformation of F into infinitary propositional formulas over a given sig-
nature [15, Section 3]. If we restrict our attention to Herbrand interpretations,
we may note that: For arbitrary Herbrand interpretations I1 and I2 of a first-
order sentence F , grI1(F ) is identical togrI2(F ). Thus, we drop the subscript I
from the definition of grI(F ) when we review this concept.

Let σ be a signature and let I be a Herbrand interpretation over σ. For a
ground term c in Gσ, we use c to denote both this ground term and its respective
domain element in I, i.e., c = cI . Let F be a first-order sentence over σ. The
grounding of F (w.r.t. σ), denoted by gr(F ), is defined recursively, mapping F
into an infinitary propositional formula:

1. gr(⊥) = ⊥;
2. gr(A) = A for a ground atom A;
3. gr(t1 = t2) is � if t1 is identical to t2, and ⊥ otherwise, for ground terms

t1, t2;
4. If F = G ∨ . . . ∨ H, then gr(F ) = gr(G) ∨ · · · ∨ gr(H);
5. If F = G ∧ . . . ∧ H, then gr(F ) = gr(G) ∧ · · · ∧ gr(H);
6. If F = G → H, then gr(F ) = gr(G) → gr(H);
7. If F = ∃xG(x), then gr(F ) = {gr(G(mathbfu)) | mathbfu ∈ G|x|

σ }∨;
8. If F = ∀xG(x), then gr(F ) = {gr(G(mathbfu)) | mathbfu ∈ G|x|

σ }∧.

We now observe a key property relating gr, φ, and τ transformations that
is essential in connecting the SM-based semantics proposed for conditional pro-
grams and the infinitary logic-based semantics reviewed in the previous section.
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Theorem 1 (Syntactic Identity). For any conditional logic program Π con-
taining at least one object constant, gr

(
φ(Π)

)
is identical to τ(Π).

By Theorem 5 from [15], it follows that for a first-order sentence F , Herbrand
interpretations of F are answer sets of F if and only if they are stable models
of gr(F ) in the sense of Definition 1 by Truszczyński (2012). The following
theorem is an immediate consequence of this formal result and the Theorem on
Syntactic Identity.

Theorem 2 (Main Theorem). For any conditional logic program Π con-
taining at least one object constant and any Herbrand interpretation I over
(OΠ ,FΠ ,PΠ), the following conditions are equivalent:

– I is an answer set of Π as defined in Sect. 3;
– I is a clingo answer set of Π as defined in Sect. 4.

The remainder of this section presents auxiliary results required in constructing
the proof of the Theorem on Syntactic Identity, followed by the theorem’s proof.
The following lemma captures basic equivalences between φ, function composi-
tion gr ◦ φ, and τ transformations.

Lemma 1. Let z be a list of variables. Then, the following equivalences hold:

1. φz(⊥) = τ(⊥);
2. gr(φz⊥) = τ(⊥);

Let A be an atom, x be a list that includes all variables in A, and r be a list of
ground terms of the same length as x. Then, the following equivalences hold:

3. φz(Ax
r ) = τ(Ax

r );
4. φz(not Ax

r ) = τ(not Ax
r ).

5. gr(φz(Ax
r )) = τ(Ax

r );
6. gr(φz(not Ax

r )) = τ(not Ax
r ).

Let A be an atomic formula of the form t1 = t2, x be a list that includes all
variables in A, and r be a list of ground terms of the same length as x. Then,
the following equivalences hold:

7. gr(φz(Ax
r )) = τ(Ax

r );
8. gr(φz(not Ax

r )) = τ(not Ax
r ).

Let L be a list of basic literals, x be a list that includes all variables in L, and r
be a list of ground terms of the same length as x. The equivalence below holds:

9. gr
(
φz(Lx

r )
)

= τ(Lx
r ).

Proof. Equivalences 1-5, 7 follow immediately from the definitions of φ, gr, and τ
transformations (and preceding equivalences, e.g., proof of equivalence 2 takes
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into account equivalence 1.). The claim of equivalences 6 and 8 relies on equiv-
alences 5 and 7, respectively, and is supported by the following chain

gr(φz(not Ax
r )) = gr(¬φz(Ax

r )) = gr(φz(Ax
r ) → ⊥) =

gr(φz(Ax
r )) → gr(⊥) = τ(Ax

r ) → ⊥ = ¬τ(Ax
r ) = τ(not Ax

r ).

Equivalence 9 follows immediately from the definitions of φ, gr, and τ transfor-
mations and equivalences 5-8. The remaining lemmas of this section capture less
trivial equivalences between gr ◦ φ and τ transformations.

Lemma 2. Let Π be a conditional logic program containing at least one object
constant. Let B be a literal in the body of a rule R in Π, where z is the list of
global variables occurring in R and u is a list of ground terms of the same length
as z. Then, gr

(
φz([B]zu)

)
is identical to τ([B]zu) w.r.t. GΠ .

Proof. For the case when B is a basic literal, the claim immediately follows from
Lemma 1. What remains to be shown is that it is also the case when B is a
conditional literal of the form H : L. Take x to denote the set of local variables
in B. Per condition 5 of the definition of φz, φz(H : L) = ∀x (φz(L) → φz(H)) .

gr
(
φz([H : L]zu)

)
= gr

(
∀x(

φz(L
z
u(x)) → φz(H

z
u(x))

))

= {gr(φz(L
zx
umathbfv) → φz(H

zx
umathbfv)) | mathbfv ∈ G|x|

Π }∧

= {gr(φz(L
zx
umathbfv)) → gr(φz(H

zx
umathbfv)) | mathbfv ∈ G|x|

Π }∧

= {τ(Lzx
umathbfv) → τ(Hzx

umathbfv) | mathbfv ∈ G|x|
Π }∧

= τ([H : L]zu)

Condition 8 of the definition of the gr transformation allows us to move from the
first line to the second in the chain above. Condition 6 of that definition allows
us to move from the second line to the third. Lemma 1 provides us with grounds
to move from the third to the fourth line. The final step is due to condition 6 of
the τ transformation definition.

Lemma 3. Let Π be a conditional logic program containing at least one object
constant. Let H be a literal in the head of a rule R in Π, where z is the list of
global variables occurring in R and u is a list of ground terms of the same length
as z. Then, gr

(
φz([H]zu)

)
is identical to τ([H]zu) w.r.t. GΠ .

The proof of Lemma 3 is similar in structure to the proof of Lemma 2.

Lemma 4. Let Π be a conditional logic program containing at least one object
constant. For any rule R in Π, gr

(
φ(R)

)
is identical to τ(R) w.r.t. GΠ .
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Proof. Let z be the list of the global variables of R.

gr
(
φ(R)

)
= gr

(
∀z(φz(B1) ∧ · · · ∧ φz(Bn) → φz(H1) ∨ · · · ∨ φz(Hm)

))

= {gr
(
φz([B1]zu) ∧ · · · ∧ φz([Bn]zu) → φz([H1]zu) ∨ · · · ∨ φz([Hm]zu)

)

| u ∈ G|z|
Π }∧

= {gr
(
φz([B1]zu)

)
∧ · · · ∧ gr

(
φz([Bn]zu)

)

→ gr
(
φz([H1]zu)

)
∨ · · · ∨ gr

(
φz([Hm]zu)

)
| u ∈ G|z|

Π }∧

= {τ([B1]zu) ∧ · · · ∧ τ([Bn]zu) → τ([H1]zu) ∨ · · · ∨ τ([Hm]zu) | u ∈ G|z|
Π }∧

= {τ(Rz
u) | u ∈ G|z|

Π }∧ = {τ(r) | r ∈ instGΠ
(R)}∧

= τ(R)

Lemmas 2 and 3 provide grounds for the fourth equality in the chain. The remain-
der follows from the definitions of gr, φ and τ transformations. The case when
the head of the rule is ⊥ follows the same lines.

The following equality follows immediately from Lemma 4 and constitutes a
proof of the Theorem on Syntactic Identity:

gr
(
φ(Π)

)
= {gr(φ(R)) | R ∈ Π}∧ = {τ(R) | R ∈ Π}∧ = τ(Π).

6 Arguing Correctness of the K-Coloring Problem

In this section, we apply the verification methodology for logic programs proposed
in [2] to the k-coloring encoding containing conditional literals. This methodology
consists of four steps:

1. Decompose the informal description of the problem into independent (natural
language) statements.

2. Fix the vocabulary/predicate constants used to represent the problem and its
solutions.

3. Formalize the specification of the statements as a logic (modular) program.
4. Construct a “metaproof” in natural language for the correspondence between

the constructed program and the informal description of the problem.

An instance of the k-coloring problem is a triple 〈V,E,C〉, where

– 〈V,E〉 is a graph with vertices V and edges E ⊆ V × V , and
– C is a set of labels named colors, whose cardinality is k.

A solution to the k-coloring problem is

K1 a function ãsg : V −→ C such that
K2 every edge (a, b) ∈ E satisfies condition ãsg(a) �= ãsg(b).
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We view statements K1 and K2 as the formalization of Step 1. In fact, this
formalization of Step 1 follows the lines by Fandinno, Hansen, and Lierler (2022),
who considered another encoding of k-coloring problem (containing aggregates)
and argued its correctness.

We fix predicate constants vtx/1, edge/2, color/1, asg/2 to represent the
k-coloring problem and its solutions. In particular, predicate constants vtx/1,
edge/2, and color/1 are used to encode a specific instance of the problem;
whereas predicate constant asg/2 is used to encode the function ãsg. Formally,
we call a binary relation r functional when for all pairs (a1, b1), (a2, b2) in r,
if a1 = a2, then b1 = b2. Clearly, functional relations can be used to encode
functions in an intuitive manner, where each pair (a, b) in functional relation
r suggests a mapping from element a to element b. In other words, asg/2 will
encode a functional relation meant to capture mapping ãsg that forms a solution
to the considered instance of the k-coloring problem. This constitutes Step 2.

Splitting Theorem [8] is a fundamental result that allows us to uncover the
internal structure of a logic program. For example, consider the context of the
k-coloring program. Using the φ-transformation, we identify this program with
sentence KC that is the conjunction of formulas (3-6). By K1 we denote the
conjunction of formulas (3-5) and by K2 we denote formula (6). The Splitting
Theorem tells us that

SMasg[KC] ≡ SMasg[K1] ∧ K2. (7)

Within this verification methodology, Step 3 can be implemented by considering
SMasg[K1] and K2 as two modules of a logic (modular) program that formalize
statements K1 and K2, respectively. We now make this claim precise by stat-
ing formal results that culminate in capturing Step 4. Intuitively, the following
Lemmas 5 and 6 state that modules SMasg[K1] and K2 formalize statements K1
and K2, respectively.

Lemma 5. Let I be an Herbrand interpretation such that 〈vtxI , edgeI , colorI〉
forms an instance of the k-coloring problem. Then, I |= SMasg[K1] if and only
if relation asgI encodes a function from vtxI to colorI .

Lemma 6. Let I be an Herbrand interpretation such that 〈vtxI , edgeI , colorI〉
forms an instance of the k-coloring problem and asgI encodes a function ãsg from
vtxI to colorI . Then, I |= K2 if and only if every edge (a, b) ∈ edgeI satisfies
condition ãsg(a) �= ãsg(b).

By equivalence (7) and the two preceding lemmas the following theorem immedi-
ately follows. This theorem can be seen as a proof of correctness for the k-coloring
encoding.

Theorem 3. Let I be an Herbrand interpretation such that 〈vtxI , edgeI , colorI〉
forms an instance of the k-coloring problem. Then, I |= SMasg[KC] if and only
if (asg/2)I encodes a function that forms a solution to the considered instance.

Due to space constraints, we omit the proofs of the formal results of this
section. We refer the reader to similar arguments, namely, the proofs by Cabalar,
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Fandinno, and Lierler (2020) when they argue correctness of logic program mod-
ules for the Hamiltonian Cycle problem, and the proofs by Fandinno, Hansen,
and Lierler (2022) when they do the same for the Traveling Salesman problem
and an alternative encoding of the k-coloring problem.

We note that in practical settings answer set systems accept instances of
problems, typically encoded as sets of facts. For instance, the set ΠG of facts

vtx(a). vtx(b). edge(a, b). color(g). color(b). color(r). (8)

corresponds to the following instance of the 3-coloring problem:

〈{a, b}, {(a, b)}, {g, b, r}〉. (9)

Consider module SMvtx,edge,color[φ(ΠG)]. It captures the considered set of facts.
For a Herbrand model I of this module, the extension 〈vtxI , edgeI , colorI〉
forms (9). This claim trivially follows from Theorem on Completion [8]. Note that
the program composed of the facts in ΠG and the k-coloring rules has answer sets
that are the Herbrand models of formula SMvtx,edge,color,asg[φ(ΠG) ∧ KC]. By
the Splitting Theorem, it is equivalent to SMvtx,edge,color[φ(ΠG)] ∧ SMasg[KC].
By Theorem 3 we may immediately conclude that any answer set of a program
composed of the facts in ΠG and rules in the k-coloring program is such that
the extension of predicate constant asg/2 encodes a solution to instance (9) of
the 3-coloring problem.

The previous paragraph illustrates an important idea stemming from [3].
Given a problem P and a signature σP to encode it, in place of discussing the
specifics of encoding of a particular instance of problem P , we may associate
Herbrand interpretations over σP satisfying some conditions with this instance.
This way we may speak of an encoding for problem P in separation from details
on how an instance for this problem is encoded. The statement of the final theo-
rem illustrates this idea. For example, the following rules vtx(X):-edge(X,Y).
vtx(Y):-edge(X,Y). can be used to replace the first two facts in (8) to encode
the same instance of the k-coloring problem. As long as we may associate this
new encoding of an instance with an Herbrand interpretation capturing that
instance from the perspective of the claim of Theorem 3, we can claim the cor-
rectness of the resulting ASP program composed of a newly encoded instance and
the k-coloring encoding. This is true whenever the Splitting Theorem supports
modularization of a program as illustrated.

Conclusions, Future Work, Acknowledgements

In this paper we present semantics for conditional programs that do not refer
to grounding. These semantics demonstrate that conditional literals represent
nested implications within rules. The benefits of this contribution are three-fold.
First, it has pedagogical value. The nested implication approach provides a sim-
ple characterization of conditional literals, supplying students with an intuitive
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perspective on their behavior. Our work provides rigorous support for this pre-
viously informal intuition. Second, conditional literals are a step towards devel-
oping ASP rules with complex, nested bodies that are closer to classical logic
languages. This makes the language more expressive. Finally, we have broad-
ened the class of ASP programs that can be formally verified without referring
to grounding. For instance, the final section of this paper illustrates the use of
the proposed semantics by arguing the correctness of the k-coloring encoding. In
the Introduction we mentioned how conditional literals are omnipresent in meta-
programming. The users of meta-programming may now apply similar ideas in
constructing proofs of correctness for their formalizations.

We also note that for so called tight conditional programs [8], our character-
ization provides a way to associate such programs with classical first-order logic
formulas by means of the Theorem on Completion [5, Section A.3]. This fact
forms a theoretical foundation for a possible extension of the software verifica-
tion tool anthem [6] to programs with conditional literals. This tool allows its
users to formally and automatically verify the correctness of tight logic programs
(without conditional literals). The k-coloring program presented in this paper is
tight and the suggested extension of anthem would therefore be applicable to
it. Implementing the corresponding extension in anthem is a direction of future
work.

Acknowledgements. The work was partially supported by NSF grant 1707371. We
are grateful to Jorge Fandinno, Vladimir Lifschitz, and Miroslaw Truszczynski for valu-
able discussions and comments on this paper.
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Abstract. In this paper we develop a state transition function for par-
tially observable multi-agent epistemic domains and implement it using
Answer Set Programming (ASP). The transition function computes the
next state upon an occurrence of a single action. Thus it can be used
as a module in epistemic planners. Our transition function incorporates
ontic, sensing and announcement actions and allows for arbitrary nested
belief formulae and general common knowledge. A novel feature of our
model is that upon an action occurrence, an observing agent corrects his
(possibly wrong) initial beliefs about action precondition and his observ-
ability. By examples, we show that this step is necessary for robust state
transition. We establish some properties of our state transition function
regarding its soundness in updating beliefs of agents consistent with their
observability.

Keywords: Answer Set Programming · Multi-agent systems ·
Epistemic planning · State transition

1 Introduction

Many Artificial Intelligence applications involve multiple autonomous agents
interacting with each other and the environment. Agents can take actions that
may change the physical state of the world as well as beliefs of agents. A typical
problem in a multi-agent setting is how to update agents’ beliefs in a sound
manner upon an action occurrence, especially when some agents initially have
incorrect or incomplete beliefs about the world and other agents. Another chal-
lenge is that not all agents might be able to fully observe the effect of the action.
Some agents might only observe that the action takes place but not its effects
(partial observer agents) and some agents might be completely unaware of the
action occurrence (oblivious agents).

In this paper, we study the abovementioned problem of robust state transi-
tion upon an action occurrence in multi-agent epistemic settings. We use pos-
sible world semantics in the form of Kripke structure [11] to represent agents’
beliefs and investigate action occurrences in possible world semantics. We clas-
sify actions into three categories: An ontic action changes the actual state of the
world by changing the value of fluent(s). A sensing action allows an agent to
learn the value of a set of fluent variable(s). An announcement action conveys
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 273–286, 2022.
https://doi.org/10.1007/978-3-031-15707-3_21
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the value of a set of fluent variable(s) to other agents. We develop a novel state
transition function for ontic, sensing, announcement actions using Answer Set
Programming (ASP), a popular logic programming paradigm. Our model allows
for different levels of observability, uncertainity of the initial state, arbitrarily
nested belief formulae and general common knowledge. Hence our ASP program
can be imported as a module into single and multi agent epistemic planners
to compute the next state. Our choice of ASP is due to its capability in writ-
ing compact and understandable rules in recursive form for state transition and
entailment of belief formulae.

One important feature of our state transition is that when an action occurs,
full and partial observer agents correct their initial (possibly wrong) beliefs about
action precondition and their observability before the effect is realized. Namely,
an observing agent realizes that the precondition of the action holds and he is
not ignorant of the action. This correction step is vital for robust state transition
because whether the effect of the action is applicable to a world in the Kripke
structure depends on satisfaction of precondition and observability conditions
at that world. We provide some examples to illustrate that without correcting
beliefs, state transition is not robust1 This is indeed the problem with the existing
models of state transition.

One method to compute state transition is to employ action models, intro-
duced in [1,2] and later extended to event update models in [6,10]. Event update
models involve different events and agents’ accessibility relations between events
depending on their observability. The next state is computed by cross product
of the initial Kripke structure with the event update model. However, Example
1 shows that the standard event update model [4,6], by itself, is not capable of
correcting agents’ beliefs and robust state transition.

Example 1. We examine a scenario with two agents A,B in a power plant. Agent
B has a voltmeter device which senses the level of the voltage. At the actual
state, the voltmeter is sound and the voltage level is normal. Agent A initially
believes that the voltmeter is defective and he does not know the voltage level.
This state is represented as a pointed Kripke structure, as in Fig. 1(a), top.
Possible worlds are represented by circles. A double circle represents the true
world. Links between worlds encode the belief accessibility relations of agents.
Suppose that agent B takes the check voltage action which senses the voltage
level. Its precondition is the device being sound, i.e., sound and the condition
for full observability is �. Hence A and B are full observers at all worlds. The
event update model for check voltage is given in Fig. 1(a), bottom left. The σ
event corresponds to sensed value being normal and the τ event corresponds to
¬normal. The result of applying this event model to the initial state is given
in Fig. 1(a) bottom right. The action model removes the accessibility relation of
agent A from world s to u and v because u, v do not satisfy action precondition.
In the next state, A has no accessibility relation and believes in every formula.

1 Details of state transition in these examples can be found in our online appendix at
https://github.com/yizmirlioglu/Epistemic.

https://github.com/yizmirlioglu/Epistemic
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Intuitively, when A observes the action, he should realize that the meter is sound
and learn the voltage level. Therefore, the event model in [4,6], by itself, is not
capable of correcting agent’s beliefs and robust state transition.

a b

Fig. 1. (a) The first example (b) The second example

Example 2. Consider a variation of Example 1 depicted in Fig. 1 (b). Now agent A
initially knows that the meter is sound, but he has incorrect belief that the voltage
level is not normal. Agent B performs the check voltage action as before. Applying
the event model for the check voltage action to the initial Kripke structure, we
obtain the next state shown in Fig. 1(b) (bottom right). Again agent A ends up
having no accessibility relation. Ideally A should change his belief and knows that
the voltage level is normal. Hence the next state is counter-intuitive.

[7] has constructed a model of state transition where agents correct their
beliefs about action precondition. However, their transition function does not
involve belief correction for observability. Their framework requires two separate
operators for belief and knowledge. As the next example suggests, correcting
beliefs for an agent’s own observability as well as his beliefs about other agents’
observability are necessary for robust state transition.

Example 3. We examine another scenario in Fig. 2(left) with two agents A,B. The
knowledge and beliefs of the agents are encoded with the knowledge and the belief
accessibility relations. At the actual world, the door is closed and both agents are
near to the door. Initially agent A believes that both A,B are near the door, how-
everB believes thatA is near butB is far from the door (wrong initial belief).Agent
A performs the open door action whose precondition is haskey a and effect is open.
The condition for full observability of agent A,B is near a, near b respectively.
The next state according to transition function of [7] is shown in Fig. 2 (right). At
the next state according to [7], agent B believes that the door is open but believes
that he is far from the door. This is not a realistic outcome because B wouldn’t
observe opening the door if he were far from the door.

The above discussion inspires us to develop a robust state transition function
for multi-agent domains. Using ASP, we compute state transition which corrects
agents’ beliefs about action precondition, observability and effect of the action. In
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Fig. 2. Example 3

sensing/announcement actions, partial observer agents correct their beliefs about
precondition and observability; full observer agents, in addition, also correct their
beliefs about the sensing/announcement variables. We provide theorems about
soundness of our state transition function in updating beliefs of the agents.

2 Preliminaries

Possible World Semantics: Let AG be a finite and non-empty set of agents
and F be a set of fluents encoding the properties of the world. Belief formulae
over 〈AG,F〉 are defined by the BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Biϕ

where p ∈ F is a fluent and i ∈ AG. We refer to a belief formula which does not
contain any occurrence of Bi as a fluent formula. In addition, for a formula γ
and a non-empty set α ⊆ AG, Bαγ and Cαγ denote

∧
i∈α Biγ and

∧∞
k=0 B

k
αγ,

where B0
αγ=γ and Bk+1

α γ=Bk
αBαγ for k ≥ 0, respectively. Let LAG denote the

set of belief formulae over 〈AG,F〉.
Satisfaction of belief formulae is defined over pointed Kripke structures [11].

A Kripke structure M is a tuple 〈S, π,B1, . . . ,Bn〉, where S is a set of worlds
(denoted by M [S]), π : S 
→ 2F is a function that associates an interpretation
of F to each element of S (denoted by M [π]), and for i ∈ AG, Bi ⊆ S × S is a
binary relation over S (denoted by M [i]). For convenience, we will often draw
a Kripke structure M as a directed labeled graph, whose set of labeled nodes
represent S and whose set of labeled edges contains s

i−→ t iff (s, t) ∈ Bi. The
label of each node is its interpretation and the name of the world is written
above the node. For u ∈ S and a fluent formula ϕ, M [π](u) and M [π](u)(ϕ)
denote the interpretation associated to u via π and the truth value of ϕ with
respect to M [π](u). For a world u ∈ M [S], (M,u) is a pointed Kripke structure,
also called state hereafter.

Given a belief formula ϕ and a state (M,u), (M,u) � Biϕ if (M, t) � ϕ for
every t such that (u, t) ∈ Bi. (M,u) � CGϕ if (M,u) � ϕ and (M, t) � ϕ for
every t such that (u, t) ∈ R∗

G where R∗
G is the transitive closure of Bi, i ∈ G.

For a fluent f ∈ F , let f = ¬f and ¬f = f ; and for a set of fluent literals
X, let X = {� | � ∈ X}. If χ = b1 ∧ ... ∧ be and γ = l1 ∧ ... ∧ lg are conjunctions
of fluent literals, χ ∪ γ denotes the set {b1, ..., be, l1, ..., lg}.
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Domain Description: Let D = 〈AG, F , A〉 be a multi-agent epistemic domain.
We assume that the precondition of an action is of the form ψ =h1 ∧ ... ∧ hr ∧ ξ
where ξ is a belief formula. In the multi-agent action language mA∗ [4], the
precondition of action a is encoded by the statement “executable a if ψ”. We
allow for conditional effects of an ontic action a. In mA∗, effect of an ontic action
a is described by “a causes β if μ”, where μ is a fluent formula and β is a set
of literals. Intuitively, if condition μ holds at a world u, the action replaces the
relevant literals in the world with the ones in β. Let Effectsa be the set of
(μ, β) pairs. We assume that if (μ, ϕ) and (μ′, ϕ′) are in Effectsa then μ ∧ μ′

is inconsistent. M ′[π](u′)= φ(a, π(u)) stands for interpretation of the resultant
world u′ upon applying the action a on the world u. Formally, if (M,u) � μ
and (μ, β) ∈ Effectsa, then M ′[π](u′) = (π(u) \ β) ∪ β. If (M,u) � μ for any
(μ, β) ∈ Effectsa then M ′[π](u′)= π(u).

mA∗ describes the effects of sensing and announcement actions by the state-
ments “a determines ϕ” and “a announces ϕ” respectively. In the sensing
actions, ϕ = {ρ1, ..., ρo} is the set of fluents that the agent senses, whereas in the
announcement actions, ϕ is the set of fluents that the agent announces.

Full and partial observability conditions are encoded in mA∗ as “i observes a
if δi,a” and “i aware of a if θi,a” respectively. We assume δi,a, θi,a are conjuction
of literals and they are pairwise disjoint. Note that observability depends on a
world and it is defined over pointed Kripke structures. In case neither δi,a nor
θi,a holds at (M,u), then agent i is oblivious at (M,u).

We say that a domain D is consistent if it satisfies the above conditions
for action description and observability rules. We define the initial state as
T = (M, s) where s is the actual world.

Answer Set Programming: Answer Set Programming (ASP) is a knowledge
representation and reasoning paradigm [12,13] which provides a formal framework
for declaratively solving problems. The idea of ASP is to model a problem by a set
of logical formulas (called rules), so that its models (called answer sets) character-
ize the solutions of the problem. Our ASP formulation is based on stable model
semantics [12]. ASP provides logical formulas, called rules, of the form

Head ← L1, . . . , Lk, not Lk+1, . . . , not Ll (1)

where l ≥ k ≥ 0, Head is a literal (i.e., an atom A or its negation ¬A) or ⊥,
and each Li is a literal. A rule is called a constraint if Head is ⊥, and a fact if
l = 0. A set of rules is called a program. ASP provides special constructs to express
nondeterministic choices, cardinality constraints, and aggregates. Programs using
these constructs can be viewed as abbreviations for programs that consist of rules
of the form (1). Further information about ASP can be found in [14].

3 State Transition Using ASP

Let D = 〈AG, F , A〉 be a consistent multi-agent domain and (M, s) be the initial
state. We study the problem of computing the next state ΦD(a, (M, s)) given the
initial state (M, s) and the occurrence of action a. Our state transition function
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ΦD(a, (M, s)) works as follows: In ontic actions, we first correct full observer
agents’ beliefs about action precondition and observability, and then apply the
effect of the action by modifying the relevant fluents. Namely, full observers
observe the effects of the action and correct their beliefs, while oblivious agents
remain in the old state.

Sensing and announcement actions do not alter the actual world, they only
change beliefs of the agents. We assume that agents always announce truthfully
and the listening agents always believe in the announced value of variables and
update their beliefs accordingly. In sensing/announcement actions, a full observer
agent i will correct his beliefs about precondition, his observability, and the
sensing/announcement variables, i.e., he will correct the literals in ψ, δi,a and ϕ.
A partial observer agent i will correct his beliefs about only precondition and
his observability, but not about the sensing/announcement variables. Beliefs of
oblivious agents do not change. By construction, agents also correct their beliefs
about belief of other agents, for all types of actions.

Below we build the ASP program ΠD,T,a which computes the next state
ΦD(a, T ) given an initial state T = (M, s) and occurrence of an action a. Due to
limited space, we provide only the core ASP rules that illustrate the idea behind
the formulation; for the full code we refer to our online repository2.

Input: We represent agents and agent sets by ag(I), ag set(G) atoms.
formula(F ) atom shows the belief formulae that appear in the domain D.
Actions are described by action(A), type(A, Y ), exec(A,F ), causes(A,L, F ),
determines(A,F ), announces(A,F ) atoms. observes(I,A, F ) and aware(I,A,
F ) atoms state the condition for full observability and partial observability of agent
I, respectively. pre lit(A,F ) denote the literals h1, ..., hr in action precondition ψ,
full lit(I,A, F ) denote the literals in δi,a and partial lit(I,A, F ) denote the liter-
als in θi,a. Sensing/announcement variables are identified by varphi(A,F ) atoms.

The worlds, accessibility relations and the valuations at the initial state T
are encoded by world(U), access(I, U, V ), val(U,F ) atoms, respectively, where
I denotes an agent, U and V are worlds, and F is a fluent. For efficiency, we
state only the positive literals in the valuation of a world. actual(S) stands for
the actual world S. occ(a) atom shows the action a that occurs. The next state
is represented by world n(U), actual n(Z), access n(I, U, V ), val n(U,F ).

State Transition: We first compute entailment of belief formulae at the initial
state T . entails(U,F ) atom denotes that the world U ∈ M [S] satisfies the belief
formula F . Some of the rules that compute entailment of belief formula are:

entails(U,F ) ← world(U), val(U,F ), f luent(F ). (2)
entails(U,¬F ) ← world(U), not val(U,F ), f luent(F ). (3)
entails(U,F1 ∧ F2) ← world(U), entails(U,F1), entails(U,F2),

formula(F1 ∧ F2). (4)
¬entails(U,BIF ) ← world(U), access(I, U, V ), not entails(V, F ),

formula(BIF ). (5)
2 https://github.com/yizmirlioglu/Epistemic.

https://github.com/yizmirlioglu/Epistemic
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entails(U,BIF ) ← not ¬entails(U,BIF ), world(U), formula(BIF ). (6)

Rule (5) states that the belief formula BIF is not entailed at world U if there
is a world V (that agent I considers at U) and V does not satisfy F . If there is
no such case, U entails BIF by the rule (6).

Then we compute observability of the agents at each world by

f obs(I, A, U) ← observes(I, A, F ), entails(U,F ), world(U), occ(A). (7)
p obs(I, A, U) ← aware(I, A, F ), entails(U,F ), world(U), occ(A). (8)
obliv(I,A, U) ← not f obs(I,A, U), not p obs(I, A, U), world(U), ag(I), occ(A). (9)

The rule below checks whether the action is executable i.e. the precondition
of the action a holds at the actual world (M, s). In this case, s′ is the actual
world at the next state.

pre hold(S) ← actual(S), entails(S, F ), exec(A,F ), occ(A). (10)
actual n(S′) ← actual(S), pre hold(S), occ(A). (11)

We identify the worlds in the next state M ′ by the rules below. If the pre-
condition of the action holds at (M, s), then s′ is a world in M ′. The worlds that
are reachable from s′ are also worlds in M ′.

world n(S′) ← actual(S), pre hold(S), occ(A). (12)
world n(V ) ← actual n(Z), access n(I, Z, V ). (13)
world n(V ) ← world n(U), access n(I, U, V ). (14)

We construct the accessibility relations of full observers in the next state M ′

for an ontic action as below. Full observers correct their beliefs about action pre-
condition and observability and observe the effect of the action. Suppose that
(M,U) � δi,a and (U, V ) ∈ M [i]. In the next state, we keep only the accessibil-
ity relations of agent i from U to the worlds V which satisfy action precondition
and observability of i. In this case we apply the effect of the action to world V ,
obtain V ′ ∈ M ′[S] and create the accessibility relation (U ′, V ′) ∈ M ′[i]. However,
if all the V worlds that agent i considers possible at U violate precondition and/or
observability (indicated by the ontic cond(i, U) atom), we cannot remove all the
edges, thus we amend the worlds to obtain Vi and create relations from U ′ to Vi.

formula full(I, A, F1 ∧ F2) ← exec(A,F1), observes(I, A, F2), ag(I). (15)
¬ontic cond(I, U) ← access(I, U, V ), entails(V, F ), formula full(I,A, F ),

occ(A), type(A, ontic). (16)
access n(I, U ′, V ′) ← world n(U ′), access(I, U, V ), f obs(I, A, U),

entails(V, F ), formula full(I,A, F ), occ(A), type(A, ontic). (17)
access n(I, U ′, VI) ← world n(U ′), access(I, U, V ), f obs(I, A, U),

not ¬ontic cond(I, U), occ(A), type(A, ontic). (18)
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Oblivious agents remain at the old state and their beliefs do not change. We
keep all accessibility relations in M so that beliefs of oblivious agents remain the
same, namely M [i] ⊆ M ′[i] for all i ∈ AG.

access n(I, U, V ) ← world n(U), access(I, U, V ), occ(A). (19)
access n(I, U ′, V ) ← world n(U ′), access(I, U, V ), obliv(I,A, U),

occ(A), type(A, ontic). (20)
access n(I, UJ , V ) ← I �= J, world n(UJ ), access(I, U, V ), obliv(I, A, U),

occ(A), type(A, ontic). (21)

For sensing/announcement actions, we need to check whether sens-
ing/announcement variables are the same across two worlds U, V ∈ M [S].
var diff(U, V ) indicates that at least one variable differs across U and V .

var diff(U, V ) ← access(I, U, V ), val(U,F ), not val(V, F ), varphi(A,F ), occ(A). (22)
var diff(U, V ) ← access(I, U, V ), not val(U,F ), val(V, F ), varphi(A,F ), occ(A). (23)

Now we create accessibility relations in the next state for a sensing/
announcement action. We first consider full observers. Suppose that (M,U) � δi,a

and (U, V ) ∈ M [i]. In the next state agent i keeps links to those V worlds which
satisfy precondition, observability of i and whose value of sensing/announcement
variables are the same as U ; and removes links to V worlds which do not satisfy
such conditions. If all V worlds that agent i considers possible at U , violate pre-
condition and/or observability and/or value of sensing/announcement variables
(indicated by the sa f cond(i, U) atom), then i will amend all these V worlds
and create link to amended V f

i,U worlds.

¬sa f cond(I, U) ← access(I, U, V ), entails(V, F ), formula full(I,A, F ),

not var diff(U, V ), occ(A), type(A, sa). (24)
access n(I, U ′, V ′) ← world n(U ′), access(I, U, V ), f obs(I,A, U), entails(V, F ),

formula full(I,A, F ), not var diff(U, V ), occ(A), type(A, sa). (25)
access n(I, U ′, V f

I,U ) ← world n(U ′), access(I, U, V ), f obs(I, A, U),

not ¬sa f cond(I, U), occ(A), type(A, sa). (26)

Partial observers correct for only the precondition and observability, but
not for the sensing/announcement variables. Suppose that (M,U) � θi,a and
(U, V ) ∈ M [i]. In the next state, agent i keeps links to those V worlds which
satisfy precondition and observability of i; and remove links to V worlds which
do not satisfy precondition and observability. However, if all V worlds that agent
i considers possible at U violate precondition and/or observability (indicated by
the sa p cond(i, U) atom), then i will amend all these V worlds and create links
to amended V p

i worlds.

formula partial(I, A, F1 ∧ F2) ← exec(A,F1), aware(I, A, F2), ag(I). (27)
¬sa p cond(I, U) ← access(I, U, V ), entails(V, F ), formula partial(I,A, F ),

occ(A), type(A, sa). (28)
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access n(I, U ′, V ′) ← world n(U ′), access(I, U, V ), p obs(I, A, U),

entails(V, F ), formula partial(I,A, F ), occ(A), type(A, sa). (29)
access n(I, U ′, V p

I ) ← world n(U ′), access(I, U, V ), p obs(I, A, U),

not ¬sa p cond(I, U), occ(A), type(A, sa). (30)

Accessibility relations of oblivious agents are constructed in a similar manner
to the ontic actions. We also need to compute the valuation function at the next
state M ′. We first consider ontic actions. Note that μ, β for an ontic action may
include common fluent(s) with precondition and/or observability formula. For
robust state transition, the observing agent should first correct for precondition
and observability, and then apply the effect of the action. Let λ(Ui) = (π(U) \
(ψ ∪ δi,a)) ∪ (ψ ∪ δi,a) be an interpretation such that agent i corrects his beliefs
at world U ∈ M [S] about precondition and his observability. We compute λ(Ui)
by the rules

lambda(UI , H) ← world n(UI), pre lit(A,H), f luent(H),

occ(A), type(A, ontic). (31)
lambda(UI , H) ← world n(UI), full lit(I, A,H), f luent(H),

occ(A), type(A, ontic). (32)
lambda(UI , H) ← world n(UI), val(U,H), not pre lit(A,¬H),

not full lit(I, A,¬H), f luent(H), occ(A), type(A, ontic). (33)

Whether the interpretation λ(Ui) satisfies a belief formula is denoted by
entails lambda(Ui, F ) atom and can be computed by the ASP rules similar to
(2)–(6). Valuation of U ′, Ui ∈ M ′[S] are computed by M ′[π](U ′)= φ(a, π(U))
and M ′[π](Ui)= φ(a, λ(Ui)) respectively. Namely, if π(U) (resp. λ(Ui)) satisfies
μ, then the literals in β are placed into the valuation of U ′ (resp. Ui).

val n(U ′, E) ← world n(U ′), entails(U,F ), causes(A,E, F ), f luent(E),

occ(A), type(A, ontic). (34)
val n(U ′, H) ← world n(U ′), val(U,H), entails(U,F ), not causes(A,¬H,F ),

f luent(H), occ(A), type(A, ontic). (35)
val n(UI , E) ← entails lambda(UI , F ), causes(A,E, F ), f luent(E),

occ(A), type(A, ontic). (36)
val n(UI , H) ← lambda(UI , H), entails lambda(UI , F ), not causes(A,¬H,F ),

f luent(H), occ(A), type(A, ontic). (37)

Last, we compute the valuation of worlds at the next state for a sensing/
announcement action. The valuation of the world U ′ ∈ M ′[S] is the same as
valuation of U ∈ M [S]. Valuation of Up

i and V f
i,U worlds may be different from

π(U). Recall that Up
i is created for partial observer agent i where he corrects for

action precondition and observability; and V f
i,U is created for full observer agent

i where he corrects for precondition, observability and sensing/announcement
variables (with respect to U ∈ M [S]).
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val n(Up
I , H) ← world n(Up

I ), pre lit(A,H), f luent(H), occ(A), type(A, sa). (38)
val n(Up

I , H) ← world n(Up
I ), partial lit(I,A,H), f luent(H),

occ(A), type(A, sa). (39)
val n(Up

I , H) ← world n(Up
I ), val(U,H), not pre lit(A,¬H),

not partial lit(I, A,¬H), f luent(H), occ(A), type(A, sa). (40)
val n(V f

I,U , H) ← world n(V f
I,U ), pre lit(A,H), f luent(H), occ(A), type(A, sa). (41)

val n(V f
I,U , H) ← world n(V f

I,U ), full lit(I, A,H), f luent(H),

occ(A), type(A, sa). (42)
val n(V f

I,U , F ) ← world n(V f
I,U ), varphi(A,F ), val(U,F ), occ(A), type(A, sa). (43)

val n(V f
I,U , h) ← world n(V f

I,U ), val(V,H), not pre lit(A,¬H),

not full lit(I, A,¬H), not varphi(A,H), f luent(H), occ(A), type(A, sa). (44)

To compute the entailment of belief formulae at the next state, we add
rules that are analogous to the rules (2)–(6) by replacing entails(U,F ),
world(U), access(I, U, V ), val(U,F ) atoms with entails n(U,F ), world n(U),
access n(I, U, V ), val n(U,F ) respectively.

4 Properties of the State Transition Function

We now provide results that our ASP formulation updates the state and beliefs of
agents in a robust way. The proof of the theorems can be found in the appendix,
available online3. Throughout the section, we assume D = 〈AG, F , A〉 is a multi-
agent epistemic domain and T = (M, s) is the initial state where s is the actual
world. We first ensure that the ASP program ΠD,T,a yields an answer set.

Theorem 1. The ASP program ΠD,T,a has an answer set provided that D is a
consistent domain.

Theorem 2 describes how beliefs of full observer and oblivious agents change
due to the occurrence of an ontic action. Full observers observe the effect of the
action and update their beliefs accordingly. Beliefs of oblivious agents do not
change. Moreover a full observer agent knows that another full observer agent
has updated his beliefs and beliefs of oblivious agents stay the same.

Theorem 2. Suppose that a is an ontic action, (μ, β) ∈ Effectsa, Z is an
answer set of the ASP program ΠD,T,a and occ(a), pre hold(s) ∈ Z.

1. For i ∈ AG, if entails(s, δi,a), entails(s,Bi μ) ∈ Z then entails n(s′,Bi �) ∈
Z for � ∈ β.

2. Suppose that entails(s,¬δi,a) ∈ Z. For a belief formula η, entails n(s′,Bi η) ∈
Z if and only if entails(s,Bi η) ∈ Z.

3 https://github.com/yizmirlioglu/Epistemic.

https://github.com/yizmirlioglu/Epistemic
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3. Suppose that entails(s, δi,a), entails(s,Bi δj,a) ∈ Z where i �= j, i, j ∈ AG.
If entails(s,Bi Bj μ) ∈ Z then entails n(s′,Bi Bj �) ∈ Z holds, for � ∈ β.

4. Suppose that entails(s,Bi ¬δj,a) ∈ Z holds where i �= j, i, j ∈ AG. For a
belief formula η, if entails(s,Bi Bj η) ∈ Z then entails n(s′,Bi Bj η) ∈ Z.

Theorem 3 states that full observers learn the value of the sensing/announce-
ment variables � ∈ ϕ while partial observers know that full observers know the
value of sensing variables; belief of oblivious agents stays the same.

Theorem 3. Suppose that a is a sensing/announcement action, Z is an answer
set of the ASP program ΠD,T,a and occ(a), pre hold(s) ∈ Z.

1. For i∈AG, �∈ϕ, if entails(s, δi,a), entails(s, �)∈Z then entails n(s′,Bi�)∈Z.
2. For i∈AG, �∈ϕ, if entails(s, δi,a), entails(s,¬�)∈Z then entails n(s′,

Bi¬�)∈Z.
3. Suppose that entails(s, θi,a), entails(s,Bi δj,a) ∈ Z where i �= j, i, j ∈ AG.

Then entails n(s′,Bi (Bj � ∨ Bj �)) ∈ Z for � ∈ ϕ.
4. Suppose that obliv(i, a, s) ∈ Z. For a belief formula η, entails n(s′,Bi η) ∈ Z

if and only if entails(s,Bi η) ∈ Z.

5 Example Scenarios

This section demonstrates our state transition function by applying it to the
example scenarios in the introduction. We consider the belief operator in the
Kripke structures at Fig. 1, 2. The ASP encoding of input and output for these
scenarios can be found in our online repository. For instance, the initial state
and the computed next state of the first scenario are

actual(s). world(s). world(u). world(v).

val(s, normal). val(s, sound). val(u, normal). access(a, s, u). access(a, s, v). access(b, s, s).

actual n(prime(s)). world n(prime(s)). world n(subf(u, a, s)). world n(subf(v, a, s)).

val n(prime(s), normal). val n(prime(s), sound). val n(subf(u, a, s), normal).

val n(subf(u, a, s), sound). val n(subf(v, a, s), normal). val n(subf(v, a, s), sound).

access n(a, prime(s), subf(u, a, s)). access n(a, prime(s), subf(v, a, s)). access n(b, prime(s), prime(s)).

The next state of each scenario is depicted in Fig. 3 according to the ASP
output. Now the next state is intuitive: In the first scenario, agent A has corrected
his beliefs at world u, v and he believes that the meter is sound and the voltage
level is normal. In the second scenario, the transition function was able to revert
agent A’s initial incorrect belief about the sensing variable normal. After the
sensing action, A believes that the voltage level is normal as expected. In the
third scenario, at the next state B knows that the door is open and he has
realized that he is full observer (near b). Besides agent A believes that B is full
observer and A believes that B believes that B is full observer.
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Fig. 3. Solution of example scenarios in the introduction

6 Related Literature

In dynamic epistemic logic literature, state transition in possible world semantics
have been studied by [3,4,7,15]. Event update models have also been employed
for state transition [1,2,6]. For multi-agent contexts, [4,16] have developed action
languages that describe the domain, actions and observability of agents. [4] uti-
lizes a simple belief correction mechanism for sensing/announcement actions
where the full observer agents “directly learn the actual state of the world”.

[7] proposed an alternative state transition function, where full and partial
observers correct their beliefs about action precondition, but not about observ-
ability. Observability of agents is computed at the actual world and assumed to
be fixed across worlds. Thus an agent corrects his beliefs even in those worlds
where he is not a full or partial observer. Conditional effects are not allowed for
an ontic action. The authors do not examine how an agent’s beliefs about other
agents change during state transition. In our model, the knowledge operator is
not required and the belief operator is sufficient for belief correction. Besides,
we do not assume a fixed observability across all worlds. By construction, our
state transition function corrects an agent’s first order beliefs and beliefs about
other agents (higher order beliefs).

Our work also contributes to the field on applications of Answer Set Program-
ming. ASP has been utilized in epistemic reasoning literature by [5,8,9,17]. [5]
have used ASP to encode Kripke structures and showed that epistemic prob-
lems such as “Muddy child”, “Sum and Product” can be solved in this setting.
[9,17] have developed conditional epistemic planners for single agent setting. A
multi-agent planner have been implemented using ASP by [8].

7 Conclusion

We have developed an ASP-based state transition function for ontic, sensing and
announcement actions for partially observable multi-agent epistemic domains.
One novel feature of our transition function is that agents correct their belief
about precondition, observability and sensing/announcement variables upon an
action occurrence. By examples, we have shown that this step is crucial for
observing the effect of the action, and thus for robust state transition.
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Answer Set Programming enables us to write state transition in terms of sim-
ple, understandable logical rules in recursive form. We establish some properties
of our planner regarding its robustness in updating beliefs of agents consistent
with their level of observability. For future work, we aim to implement a planner
using this ASP formulation. Our transition function can also be used in existing
conformant and conditional epistemic planning systems as a module to compute
the next state.
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Abstract. A rapidly increasing amount of data, information and knowl-
edge is becoming available on the Web, often written in different formats
and languages, adhering to standardizations driven by the World Wide
Web Consortium initiative. Taking advantage of all this heterogeneous
knowledge requires its integration for more sophisticated reasoning ser-
vices and applications. To fully leverage the potential of such systems,
their inferences should be accompanied by justifications that allow a
user to understand a proposed decision/recommendation, in particular
for critical systems (healthcare, law, finances, etc.). However, determin-
ing such justifications has commonly only been considered for a single
formalism, such as relational databases, description logic ontologies, or
declarative rule languages. In this paper, we present the first approach
for providing provenance for heterogeneous knowledge bases building on
the general framework of multi-context systems, as an abstract, but very
expressive formalism to represent knowledge bases written in different
formalisms and the flow of information between them. We also show
under which conditions and how provenance information in this formal-
ism can be computed.

Keywords: Provenance · Heterogeneous knowledge bases ·
Multi-context systems

1 Introduction

A rapidly increasing amount of data, information and knowledge is becoming
available on the Web, driven by the Semantic Web initiative led by the World
Wide Web Consortium (W3C).1 A number of language standards have been
established in this initiative and to take advantage of all this available knowledge
often requires their integration. This is particularly true for (but not limited to)
integrations of rule languages, e.g., under answer set semantics [4] and ontology
languages based on description logics [1], that are both highly expressive, but
with orthogonal/complementary characteristics and modelling features (see, e.g.,
[12,21,23,24] and references therein).
1 https://www.w3.org/.
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However, in the course of the integration of such heterogeneous knowledge, it
becomes increasingly difficult to trace the causes for a certain inference, or find
the justification for some proposed decision, in particular, if the pieces of knowl-
edge originate from different authors. It would therefore be important to provide
methods that accompany inferences/decisions with explanations/justifications in
a way a user can understand to allow for the validation of reasoning results, in
particular for critical systems (healthcare, law, finances, etc.).

This has been recognized in different areas of Artificial Intelligence, and for
several Knowledge Representation and Reasoning formalisms, the problem of
finding justifications has been considered. In particular, a lot of work has focussed
on tracing the origins of derivations, commonly under the name of provenance [5],
e.g., in relational databases and Datalog [18,19], Logic Programming [8], Answer
Set Programming [13], Description Logics ontology languages [2,6,20], as well
as in SPARQL [7] and data streams [16]. Yet, provenance for heterogeneous
knowledge bases has mostly been ignored, with the exception of [10], though
limited to two very restricted settings.

In this paper, we investigate provenance for heterogeneous knowledge bases,
utilising multi-context systems (MCSs) [3] as our formalism of choice. MCSs
allow for the integration of a large variety of logic-based formalisms, and model
the flow of information between them. They cover very general approaches for
integrating ontologies and rules [22], thus allowing to study provenance in a
more general manner, which then paves the way towards provenance in related
approaches in the literature. We focus on providing justifications of inferences
(the only question that has been handled in the literature are explanations of
inconsistencies when repairing inconsistent multi-context systems [11], which is
inherently different). Our contributions can be summarized as follows:

– We develop the first general approach for provenance in heterogeneous knowl-
edge bases, and in multi-context systems in particular, annotating inferences
with their justifying provenance information.

– We provide means to compute this provenance information annotating mod-
els, so-called equilibria, in MCSs.

– We establish under which conditions this provenance information can indeed
be computed, showing its applicability to a wide class of formalisms.

The remainder of the paper is structured as follows. We recall notions on
provenance semirings in Sect. 2. Then, in Sect. 3, we introduce provenance multi-
context systems as a non-trivial extension of MCSs. In Sect. 4, we show how and
when model notions for such provenance MCSs can be computed and provide
considerations on complexity, before we conclude in Sect. 5.

2 Provenance Semirings

In the context of databases, commutative semirings have been introduced as a
means of representing provenance information [18,19], such as providing infor-
mation regarding what combination of tuples in a database certain query results
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were obtained from. Subsequently, commutative semirings have been adopted
for representing provenance information in a wide variety of different logic for-
malisms and it has been shown that they cover other related approaches in
the literature, such as finding minimal explanations/justifications [15]. They are
thus well-suited to capture provenance information in formalisms composed of
knowledge bases written in different (knowledge representation) languages, and
we recall the main notions here.

A commutative semiring is an algebraic structure K = (K ,⊕K,⊗K, 0K, 1K)
where ⊕K and ⊗K are commutative and associative binary operators over a set
K , called the annotation domain of K. The operators ⊕K and ⊗K have neutral
elements 0K and 1K, respectively, where ⊗K distributes over ⊕K, and 0K is an
annihilating element of ⊗K. This allows the definition of functions (so-called K-
relations) that map tuples (in the case of databases) to annotations over K such
that only finitely many tuples are annotated with a value different from 0K.

As an example in the case of databases, we may consider a commutative
semiring where each tuple in any given table is annotated with an annotation
name. Then, the annotations of query results correspond to the combinations
of these annotations names, i.e., those corresponding to tuples, using ⊕K to
represent alternatives and ⊗K to represent the join of tuples.

This idea is captured in general in the provenance polynomials semiring
N[X] = (N[X],+,×, 0, 1) where polynomials over annotation variables X are
used with natural number coefficients and exponents over these variables. Other
relevant semirings in the literature can be obtained from it by introducing addi-
tional properties on the operations such as idempotence on + and/or ×, or
absorption, giving rise to a hierarchy of semirings [19]. Several such semirings
have been used for notions of provenance in different logic-based formalisms
(e.g., [2,6], and also [15] for further references). Among these semirings, N[X] is
the most general one and universal, in the sense that for any other commutative
semiring K, a semiring homomorphism can be defined, allowing the computa-
tions for K to be done in N[X].

Monus semirings or m-semirings [14] extend such commutative semirings by
adding natural orders �K, which are partial orders that order elements of the
annotation domain based on the ⊕K operation, namely, k1 �K k2 if there exists
k3 such that k1 ⊕K k3 = k2. The monus operation k1 �K k2 then refers to the
unique smallest element k3 in such a partial order such that k2⊕Kk3 �K k1. This
allows capturing negation and has been generalized to recursive Datalog queries
and logic programs under different semantics [8] using a semiring that utilizes
boolean formulas over two sets of variables – positive facts and their negations.
Similar ideas have been applied to handle semiring provenance for First-Order
Logic [17,25], utilizing first-order formulas in negation normal form.

3 Provenance Multi-context Systems

Multi-context systems (MCSs) [3] are defined as a collection of components,
so-called contexts, each of which allows one to represent knowledge in some
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logic-based formalism. Each such logic is associated with a set of well-formed
knowledge bases in the logic (its admitted syntax), possible belief sets, indicat-
ing how models are defined in this logic (its admitted semantics), and a function
assigning to each possible knowledge base a set of acceptable such belief sets.
MCSs use so-called bridge rules that allow one to model the flow of informa-
tion between these contexts, in the sense that they admit the incorporation of
knowledge in one context based on the beliefs considered true in other contexts.
The semantics of MCSs is then assigned using equilibria that take the acceptable
belief sets and the interaction between contexts into account.

In this section, we introduce provenance multi-context systems that extend
MCSs with the means to explain inferences obtained from the modular inte-
gration of its contexts. Here, rather than recalling first MCSs and then intro-
duce their extension, to not unnecessarily burden the presentation with partially
repetitive technical definitions, we introduce provenance multi-context systems
right away clarifying in the course of this introduction how and where our notion
extends the previous one.

The first important question is how provenance should be represented in such
a modular framework. Given that different notions of provenance have been intro-
duced for different logical formalisms, with varying granularity of the provided
provenance information, our objective is to maintain the modular character of
MCSs, and admit that possibly different notions of provenance be used in each
of the contexts, and provide provenance annotations for inferences in the contexts
taking into account provenance information from other contexts via bridge rules.

We start by defining the set of variables allowed to be used as annotations. To
account for possibly varying algebras in different contexts with differing binary
operators, we introduce a number of different annotation languages Vi, each
intended to correspond to one of the contexts, that can be interleaved by means
of one particular language V∗, which is meant to correspond to the integration
of information in bridge rules between contexts.

Definition 1. Let N = N∗ ∪ ⋃
Ni be a countably infinite set of names and

Σ = Σ∗ ∪⋃
Σi be a countably infinite set of binary operators such that, for all i,

all Ni are mutually distinct, N∗ ∩Ni = ∅, and N ∩Σ = ∅. The set of annotation
variables V = V∗ ∪ ⋃

Vi is defined inductively for all i with 1 ≤ i ≤ n :

(1) Ni ⊆ Vi;
(2) (v1 ◦ v2) ∈ Vi for v1, v2 ∈ Vi and ◦ ∈ Σi;
(3) (r ◦ v1 ◦ · · · ◦ vm) ∈ V∗ for r ∈ N∗, for all k, 1 ≤ k ≤ m, vk ∈ Vi for some

i, ◦ ∈ Σ∗, and m ≥ 0;
(4) V∗ ⊆ Vi.

Condition (1) specifies that names intended to annotate formulas are valid anno-
tation variables within the respective sublanguage. Then, condition (2) indicates
how to obtain complex annotations within each of the defined sublanguages. Con-
dition (3) defines that annotation variables in the language V∗ are composed of
one name from N∗ and 0 or more annotations from the other languages, which
is intended to represent the composition of annotations vk within a bridge rule
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(as defined in the following). Finally, condition (4) admits that annotations from
V∗ be used in the other annotation languages.

Note that names, which are meant to be used to identify formulas in indi-
vidual contexts, are distinct, while operators may overlap in between different
Σi, and between Σ∗ and different Σi, to account for the possibility that different
contexts may use the same provenance formalism.

Based on this, we can introduce provenance logics as a means to capture a
large variety of formalisms that allow tracing the reasons for inferences, thus
generalizing the logics of MCSs as described in the beginning of this section.

Definition 2. A provenance logic L is a tuple (K,KB,BS,ACC) where

(1) K is a commutative semiring over polynomials over some Vi with ⊕K,⊗K ∈
Σi, and a natural order �K;

(2) KB is the set of well-formed knowledge bases of L such that each kb ∈ KB
is a set composed of formulas distinctly annotated with elements from Vi;

(3) BS is the set of possible annotated belief sets, i.e., functions that map beliefs
from the set of possible beliefs BL of L to Vi, such that false beliefs are
mapped to 0K;

(4) ACC : KB → 2BS is a function describing the semantics of L by assigning
to each knowledge base a set of acceptable annotated belief sets.

In comparison to logics for MCSs [3], provenance logics include a commutative
semiring K and formulas in knowledge bases are in addition annotated accord-
ing to one of the languages Vi (see Definition 1). Also, the idea of possible belief
sets from MCSs is extended in that sets of annotated beliefs are used. I.e., rather
than using sets of beliefs that are meant to be true, sets of beliefs with their corre-
sponding annotations are considered. The function ACC then assigns semantics
to knowledge bases by associating them with acceptable annotated belief sets.

Note that some approaches in the literature assign polynomials to beliefs that
are not true, e.g., to account for possible changes so that something becomes true,
but here, for the sake of generality and in the spirit of MCSs, we omit this, and
focus on determining the provenance of true elements.

Example 1. We present some example provenance logics.

– Ldb – Databases with provenance under bag semantics [18]:
• Kdb: N[X];
• KBdb: the set of annotated databases together with queries expressed in

an appropriate query language, such as Datalog;
• BSdb: the set of sets of atoms with annotations;
• ACCdb(kb): the set of tuples in kb and query results over db with their

annotation according to Kdb;
– Ldl – Description Logic ELHr [2]:

• Kdl: Trio[X], i.e., N[X] with idempotent ×;
• KBdl: set of well-formed annotated ELHr ontologies;
• BSdl: the set of sets of annotated atomic inferences;
• ACCdl(kb): the set of atomic inferences from kb with their annotation

according to Kdl;
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– Llp – Normal logic programs under answer set semantics (adapted from [8]):
• Klp: PosBool[X], i.e., N[X] with idempotent + and × and absorption on

+, over positive atoms;
• KBlp: the set of annotated normal logic programs;
• BSlp: the set of sets of atoms with annotations;
• ACClp(kb): the answer sets of kb with annotations according to Klp;

Similar to MCSs, bridge rules are used to specify how knowledge is transferred
between the different components, but here we also have to take provenance
information into account.

Definition 3. Given a collection of provenance logics L = 〈L1, . . . , Ln〉, an Li-
bridge rule over L, 1 ≤ i ≤ n, is of the form:

π@s ← (r1 : p1), . . . , (rj : pj), (1)
not (rj+1 : pj+1), . . . ,not (rm : pm)

where π ∈ N∗ and, for 1 ≤ k ≤ m, 1 ≤ rk ≤ n and pk ∈ BLrk
, and, for

each kb ∈ KBi, kb ∪ {v@s} ∈ KBi for every v ∈ V∗. We refer with H(π) and
B(π) to the head and the body of the bridge rule, respectively. A bridge rule is
called monotonic if it does not contain elements of the form not (r : p), and
non-monotonic otherwise.

Note that each of the rk refer to one of the logics and the beliefs pk belong to the
corresponding set of possible beliefs BLrk

of logic Lrk
(cf. (3) of Definition 1).

Also note that π is the annotation name of the bridge rule itself, whereas v
is an annotation variable associated to the bridge rule head s, intended to be
incorporated into the knowledge base kbi, such that v takes the annotations
of the bridge rule elements into account (as made precise when we define the
semantics).

With this in place, we can introduce provenance multi-context systems.

Definition 4. A provenance multi-context system (pMCS) is a collec-
tion of contexts M = 〈C1, . . . , Cn〉 where Ci = (Li, kbi, br i), Li =
(Ki,KBi,BSi,ACCi) is a provenance logic, kbi ∈ KBi a knowledge base, and
br i is a set of Li-bridge rules over 〈L1, . . . , Ln〉.
We assume that the annotations used for the elements occurring in the individual
kbi are unique elements from Ni, and that each context uses a different set
of annotations Vi. Also, while different forms of specifying the annotations of
formulas can be found in the literature, here we use uniformly the notation
introduced for bridge rules, i.e., the annotation is given in front of a formula
with @ as separator.

Example 2. Consider M = 〈C1, C2, C3〉 such that:

– C1 is a database context with Ldb, kb = {d1@p(1, 1), d2@p(1, 2)} with a single
relation p/2 with two tuples, br1 = ∅, and query q defined by q(x, y) ←
p(e, x), p(e, y);
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– C2 a DL context with Ldl, kb2 = {o1@A � B}, and
br2 = {b1@A(w) ← not (3 : l)};

– C3 an ASP context with Llp, kb3 = {r1@l ← not m, n}, and
br3 = {c1@n ← (1 : q(1, 1)), c2@m ← (2 : B(w))}.

As C1 has no bridge rules, we obtain ACCdb(kb1) = {S1} with S1(p(1, 1)) = d1,
S1(p(1, 2)) = d2, S1(q(1, 1)) = d21, S1(q(1, 2)) = S1(q(2, 1)) = d1 × d2, and
S1(q(2, 2)) = d22. For both kb2 and kb3, ACCi(kbi) = {Si} with Si mapping
every atomic inference/atom to 0 (as the bridge rules are not considered for the
semantics of individual contexts).

We now turn to the semantics of pMCSs. We first introduce belief states that
contain one possible annotated belief set for each context and serve as suitable
model candidates.

Definition 5. Let M = 〈C1, . . . , Cn〉 be a pMCS. A belief state of M is a
collection S = 〈S1, . . . , Sn〉 such that each Si is an element of BSi.

We next identify specific belief states, called equilibria, that take bridge rules
into account for determining acceptable belief states, similar to MCSs. We adapt
this with annotations building on the algebraic approach for non-monotonic rules
[8] to pass annotation information via bridge rules. The main idea is to use
annotations from V∗ assuming the existence of distinct negative names (using
not ) in the respective Ni, one per negated pk with j+1 ≤ k ≤ m for bridge rules
of the form (1). This is necessary as we assume that false beliefs are annotated
with 0K, thus no annotations exist for such negations.

We first fix the commutative semiring for bridge rules.

Definition 6. The commutative semiring for bridge rules BR is defined as
PosBool[V∗], for ∧,∨ ∈ Σ∗, with idempotent meet (∧) and join (∨), absorp-
tion on ∨, and logical consequence as natural order, i.e., k1 �BR k2 iff k1 |= k2.

We can now define when a bridge rule is applicable in a belief state, namely
when the beliefs in the rule body hold true for positive elements and false for
negative elements.

Definition 7. Let M = 〈C1, . . . , Cn〉 be a pMCS and π an Li-bridge rule over
L of form (1). Then π is applicable in a belief state S, denoted S |= B(π), iff

(1) for 1 ≤ k ≤ j, Srk
(pk) = n for some annotation n �= 0;

(2) for j + 1 ≤ k ≤ m, Srk
(pk) = 0.

As false elements are annotated with 0, we can use the annotations corresponding
to beliefs being false in the annotations of the inferred/added bridge rule heads.
This allows us to define equilibria.

Definition 8. Let M = 〈C1, . . . , Cn〉 be a pMCS. A belief state S = 〈S1, . . . , Sn〉
of M is an equilibrium if, for all i with 1 ≤ i ≤ n, the following condition holds:

Si ∈ ACCi(kbi ∪ { v@H(π) | π ∈ br i and S |= B(π) })
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where the annotation of H(π), v, is defined over all πl ∈ br i with H(πl) = H(π)
such that S |= B(πl) as:

v =
∨

πl ∧ v1 ∧ . . . ∧ vj ∧ not pj+1 ∧ . . .not pm

such that, for 1 ≤ k ≤ j, Srk
(pk) = vk.

Hence, a belief state S is an equilibrium if, for each context, the corresponding
annotated belief set is acceptable for the knowledge base of the context enhanced
with the heads of those bridge rules of the context that are admissible in S. The
corresponding annotations for bridge rule heads are constructed as representa-
tions of the alternative provenance information (via disjunction) resulting from
different bridge rules with the same head. Before we explain the reason for that,
we consider an example without bridge rules with the same head.

Example 3. Consider M from Example 2. Since C1 does not contain bridge rules,
S1 is fully determined in Example 2. Then, by the first rule in br3, we have
that S3(n) = c1 ∧ d21. If the other rule in br3 is not applicable, then S3(l) =
r1 ×3 (c1 ∧ d21) holds. In this case, the only bridge rule in br2 is not applicable,
thus B(w) cannot be inferred from C2 which ensures that the second rule in br3

is not applicable. In fact, together with S2 mapping every atomic inference to 0,
we obtain an equilibrium.

We next provide an example showing that absorption on disjunctions is nec-
essary to ensure the existence of equilibria.

Example 4. Consider M = 〈C1〉 with L1 = Llp, kb1 = {n@q}, br1 = {r1@p ←
(1 : p), r2@p ← (1 : q)}. Then, S = 〈S1〉 with S1(q) = n and S1(p) = r2 ×1 n is
an equilibrium of M . Note that both bridge rules are applicable in S, so without
absorption, v would be (r2×1n)∨(r1×1 r2×1n) and no equilibrium would exist.

One could argue that this problem can be avoided by not joining disjunctively
the provenance information for bridge rules with the same head and by passing
several bridge rule heads with differing provenance information. But this requires
that absorption be present in the target context’s provenance notion, and since
this cannot be guaranteed, nor do we want to impose it as an additional restric-
tion, we deem the solution where absorption is resolved on the level of bridge
rules the most suitable one.

We also illustrate that idempotency of ∧ is required.

Example 5. Take M = 〈C1〉 with L1 = Llp, kb1 = {}, br1 = {r@p ← (1 : p)}.
Then, S = 〈S1〉 with S1(p) = 0 and S′ = 〈S1〉 with S1(p) = r ×1 p are equilibria
of M . Note that r is applicable in S′ and without idempotency of ∧, v would be
r ×1 r ×1 p, i.e., S′ would not be an equilibrium.

One may wonder whether S′ indeed should be an equilibrium, since the truth
of p relies on self-support using the bridge rule, i.e., we would be interested in
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minimal equilibria. Formally, an equilibrium S is minimal if there is no equi-
librium S′ = 〈S′

1, . . . , S
′
n〉 such that S′

i �Ki
Si for all i with 1 ≤ i ≤ n and

S′
j ≺Kj

Sj for some j with 1 ≤ j ≤ n. However, it has been shown [3] that
equilibria in MCSs are not necessarily minimal due to cyclic dependencies as in
Example 5, and this carries over to pMCSs.

Still, we can show that equilibria of pMCSs are faithful with equilibria of
MCSs as well as the provenance annotations in individual formalisms in the
following sense.

Proposition 1. Let M = 〈C1, . . . , Cn〉 be a pMCS and M ′ the MCS obtained
from M by omitting all semirings K and all annotations from M , and, in each
logic, replace the annotated belief sets by the set of beliefs not mapped to 0.

• For context Ci in M with br i = ∅ and equilibrium S of M , Si ∈ ACCi(kbi).
• If S is an equilibrium of M , then S′ is an equilibrium of M ′ with S′

i = {b |
Si(b) �= 0}.

The converse of 2. does not hold in general because we require a method to
determine the provenance annotations corresponding to equilibria of MCSs. In
the next section, we investigate how and under which conditions such equilibria
together with their provenance information can be effectively determined.

4 Grounded Equilibria

Building on material developed for MCSs [3], we introduce a restriction of
pMCSs, called reducible pMCSs, for which minimal equilibria can be computed.
To this end, we first consider definite pMCSs, a further restriction similar in
spirit to definite logic programs, where reasoning is monotonic and where a
unique minimal equilibrium exists.

We start with monotonic logics, where ACC is deterministic and monotonic.
Formally, a logic L = (K,KB,BS,ACC) is monotonic if (1) ACC(kb) is a
singleton set for each kb ∈ KB, and (2) S �K S′ whenever kb ⊆ kb′, ACC(kb) =
{S }, and ACC(kb′) = {S′ }.

This excludes non-monotonic logics, but many of them are reducible, namely,
if for some KB∗ ⊆ KB and some reduction function red : KB × BS → KB∗:

(1) the restriction of L to KB∗ is monotonic, and
(2) for each kb ∈ KB, and all S, S′ ∈ BS:

(a) red(kb, S) = kb whenever kb ∈ KB∗,
(b) red(kb, S) ⊆ red(kb, S′) whenever S′ � S, and
(c) S ∈ ACC(kb) iff ACC(red(kb, S)) = {S }.

This is adapted from MCSs, and inspired by the Gelfond-Lifschitz reduction
for logic programs, indicating that (a) reduced kbs do not need to be reduced
any further, (b) red is antitonic, and (c) acceptable annotated belief sets can be
checked based on red . Note that the latter condition implies that the annotations
are determined based on the reduced knowledge base.
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This is generalized to contexts that are reducible, namely, if their logic is
reducible, and if the reduction function is not affected by the addition of anno-
tated bridge rule heads. Formally, a context Ci = (Li, kbi, br i) is reducible if

– its logic Li is reducible and,
– for all belief sets Si and all H ⊆ { v@H(π) | π ∈ br i, v ∈ Vi }: red(kbi ∪

H,Si) = red(kbi, Si) ∪ H.

A pMCS is reducible if all of its contexts are.
It has been argued that a wide variety of logics is reducible [3]. Thus, reducible

pMCSs admit the integration of a wide variety of logical formalisms provided
the provenance notion fits or can be adjusted to the semiring requirements in
Definition 2 and annotations can be determined based on reduced kbs, which
arguably is the case for many KR formalisms.

We can now determine definite pMCSs as follows. A reducible pMCS M =
〈C1, . . . , Cn〉 is definite if

1. all bridge rules in all contexts are monotonic,
2. for all i and all S ∈ BSi, kbi = red i(kbi, S).

Thus, in definite pMCSs, bridge rules are monotonic and knowledge bases are
already in reduced form. Therefore, its logics are monotonic, ACCi(kbi) is a
singleton set, and the ACCi themselves are monotonic. Hence, reasoning is
montonic, and a unique minimal equilibrium exists.

Definition 9. Let M be a definite pMCS. A belief state S of M is the grounded
equilibrium of M , denoted by GE(M), if S is the unique minimal equilibrium
of M .

This unique equilibrium of a pMCS M = 〈C1, . . . , Cn〉 can be computed as
follows. For 1 ≤ i ≤ n, kb0i = kbi and for each sucessor ordinal α + 1,

kbα+1
i = kbα

i ∪ {v@H(π)|π ∈ br i ∧ Eα |= B(π)}
where Eα = (Eα

1 , . . . , Eα
n ), ACCi(kbα

i ) = {Eα
i }; and v defined as in Definition 8,

and for limit ordinal α, kbα
i =

⋃
β≤α kbβ

i . Furthermore, let kb∞
i =

⋃
α>0 kbα

i .
Essentially, we start with the set of given knowledge bases and E0 corresponds

to the belief state resulting from M without the bridge rules. The iteration
then stepwise checks based on the current belief state which bridge rules are
applicable, enhancing the knowledge bases which in turn increases the annotated
belief sets in the iteration of Eα, based on which further bridge rules become
applicable, until a fixpoint is reached. This indeed yields the unique grounded
equilibrium.

Proposition 2. Let M be a definite pMCS. Then, belief state S = (S1, . . . , Sn)
is the grounded equilibrium of M iff ACCi(kb∞

i ) = {Si}, for 1 ≤ i ≤ n.

Note that this construction not only allows us to iteratively determine what
is true (with annotation �= 0)/can be inferred as in MCSs, it also allows us to
simultaneously calculate what are the actual corresponding annotations.
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Example 6. Consider M from Example 2 with br2 = ∅ and kb reduced to
{r1@l ← n}, i.e., such M is definite. We can verify that the computed grounded
equilibrium is S = 〈S1, S2, S3〉 with S1 and S2 defined as in Example 2 and S3

s.t. S3(l) = r1 ×3 (c1 ∧ d21) and S3(n) = c1 ∧ d21. Here, S1 is determined based on
kb01, whereas S3(n) results from the applicable bridge rule, and S3(l) from that
and rule r1.

In the more general case of reducible pMCSs, we introduce a reduct taking
into account the provenance information.

Definition 10. Let M = 〈C1, . . . , Cn〉 be a reducible pMCS s.t. Ci =
(Li, kbi, br i), and S = 〈S1, . . . , Sn〉 a belief state of M . The S-reduct of
M is defined as MS = 〈CS

1 , . . . , CS
n 〉, where, for 1 ≤ i ≤ n, CS

i =
(Li, red i(kbi, Si), brS

i ), and

brS
i = {v@s ← (r1 : p1), . . . , (rj : pj) | π ∈ br i of the form (1) such that

Sri
(pi) = 0 for all j + 1 ≤ i ≤ m, and v = π ∧ not pj+1 ∧ . . .not pm}.

Thus, in the reduct, knowledge bases are reduced w.r.t. the considered belief
state, and bridge rules are either omitted if there is a not (rk : pk) in the bridge
rule such that pk is true in Sri

, i.e., with annotation different from 0, or main-
tained in the reduct with the negated elements, just adapting the annotation v
to take these negated elements into account in the annotation.

The resulting S-reduct of M is definite and we can check whether S is a
grounded equilibrium in the usual manner.

Definition 11. Let M be a reducible pMCS. A belief state S of M is a grounded
equilibrium of M if S = GE(MS).

We can show that such grounded equilibria are minimal equilibria.

Proposition 3. Every grounded equilibrium of a reducible pMCS M is a mini-
mal equilibrium of M .

Thus, for grounded equilibria, the converse of 2. (Prop. 1) can be obtained, and
pMCSs indeed provide provenance annotations for grounded equilibria in MCSs.

Example 7. Consider M from Example 2. Note that M is reducible using the
usual Gelfond-Lifschitz reduct for C3 and since C1 and C2 are monotonic. We
obtain one grounded equilibrium S as specified in Example 6 because b1 in br2

and c2 in br3 are not applicable in S. There is a second grounded equilibrium
S′ = 〈S′

1, S
′
2, S

′
3〉 with S′

1 = S1 for S1 from Example 6, S′
2 with S′

2(A(w)) =
b1 ∧ not l and S′

2(B(w)) = o1 ×2 (b1 ∧ not l), and S′
3 with S′

3(m) = c2 ∧ o1 ×2

(b1 ∧ not l) and S′
3(n) = c1 ∧ d21.

We observe that the resulting annotations concisely represent the formulas
required to obtain an inference, and that this information modularily preserves
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the characteristics of the semirings used in individual contexts, e.g., the anno-
tation of n in S′

3 contains that d1 is used twice (in the database context), even
though in C3 such repetition would be omitted due to idempotent ×.

We close the section with considerations on the computational complexity
where we assume familiarity with basic notions including the polynomial hierar-
chy. First, we recall that output-projected equilibria have been considered in the
context of MCSs [11] as a means to facilitate consistency checking, by restricting
the focus to the beliefs that occur in the bridge rules, showing in particular that
for each output-projected equilibrium there exists a corresponding equilibrium.
Then, consistency of an MCS, whose size, for fixed logics, is measured in the
size of the knowledge bases and the size of the bridge rules, can be determined
by guessing an output-projected belief state S and checking for each context
whether it accepts the guessed S w.r.t. the active bridge rule heads. The com-
plexity of the latter step, called context complexity, influences the complexity
of consistency checking and has been determined for a number of logics [11].
Then, the context complexity of an MCS M , CC(M), can be determined based
on upper and lower context complexities, which allows one to study the com-
plexity of problems such as the existence of equilibria w.r.t. context complexity
of MCSs.

Now, for pMCSs, we have to take the anotations into account, and it turns out
that this increases the computational complexity in general. As argued in the case
of DL ELHr, where standard reasoning problems are polynomial, annotations
may be exponential in size [2], and similar problems can be observed for other
logics. Still, for definite pMCSs, we can take advantage of the deterministic way
to compute the unique grounded equilibrium and show that we can avoid this
exponential size of annotations when solving the problem of whether there is a
grounded equilibrium such that the annotation of belief p is n, i.e., Si(p) = n.
The essential idea is to take advantage of the bound on the size of annotations
imposed by n, and limit the computation to the relevant part of the equilibrium,
and adapt at the same time the notion of CC(M) from MCSs to take size of the
monomials in the individual context into account.

Proposition 4. Let M be a definite pMCS with context complexity CC(M) and
S its unique grounded equilibrium. The problem of determining whether Si(p) =
n for p ∈ BLi

and n ∈ Vi, is in C if CC(M) = C for C ⊇ P.

It turns out that this result does not hold in the general case, because verifying
whether some belief state is an equilibrium requires the computation of the entire
belief state, thus subject to the exponential size of annotations in general.

5 Conclusions

We have introduced provenance multi-context systems as the first approach for
provenance in heterogeneous knowledge bases, allowing us to obtain annotations
for the inferences in the models of the integrating formalism. We have shown
how these models with annotations, equilibria, can be computed and, given the
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generality of the approach, under which conditions this is possible, showing that
the approach is viable for the integration of a wide variety of formalisms.

For future work, we will investigate the usage of power series for dealing with
provenance approaches that use infinite semirings [18], as well as consider the
application of semiring provenance for fixed-point logic [9].
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Abstract. Computing small (subset-minimal or smallest) explana-
tions is a computationally challenging task for various logics and non-
monotonic formalisms. Arguably the most progress in practical algo-
rithms for computing explanations has been made for propositional logic
in terms of minimal unsatisfiable subsets (MUSes) of conjunctive nor-
mal form formulas. In this work, we propose an approach to comput-
ing smallest MUSes of quantified Boolean formulas (QBFs), building
on the so-called implicit hitting set approach and modern QBF solv-
ing techniques. Connecting to non-monotonic formalisms, our approach
finds applications in the realm of abstract argumentation in computing
smallest strong explanations of acceptance and rejection. Justifying our
approach, we pinpoint the complexity of deciding the existence of small
MUSes for QBFs with any fixed number of quantifier alternations. We
empirically evaluate the approach on computing strong explanations in
abstract argumentation frameworks as well as benchmarks from recent
QBF Evaluations.

Keywords: Quantified boolean formulas · Minimum unsatisfiability ·
Abstract argumentation · Strong explanations

1 Introduction

Explaining inconsistency in different logics is a central problem setting with a
range of applications. Finding small explanations for inconsistency is intrinsically
a computationally even more challenging task than deciding satisfiability. What
comes to practical algorithms for computing small explanations, arguably themost
progress has been made in the realm of classical logic, in particular in proposi-
tional satisfiability where algorithms for computing minimal unsatisfiable subsets
(MUSes) of conjunctive normal form formulas have been developed [4,7,8,25].
Extensions to computing smallest MUSes [17,21] and, on the other hand, to com-
puting MUSes of quantified Boolean formulas (QBF) [16,17] have also been pro-
posed. Recently, it has been shown that the notion of so-called strong inconsis-
tency [10,36] provides for non-monotonic reasoning a natural counterpart of the
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inconsistency notion studied in the classical setting, satisfying the well-known hit-
ting set duality between explanations and diagnoses [30]. The general notion of
strong inconsistency has already been instantiated for computing explanations in
the non-monotonic formalisms of answer set programming [11,26] and abstract
argumentation [27,34,35,37].

We propose an approach to computing smallest MUSes of quantified Boolean
formulas (QBFs), building on the so-called implicit hitting set approach [12,17,
31,32] and modern QBF solving techniques [18,22,23]. Our approach generalizes
an implicit hitting set approach [17] and a quantified MaxSAT approach [16] to
computing smallest MUSes of propositional formulas to general QBFs. Justifying
our approach, we pinpoint the computational complexity of deciding the existence
of small MUSes for QBFs with any fixed number of quantifier alternations, gener-
alizing and supplementing earlier complexity results related to MUSes [10,20,29].
While our approach is generic, a central motivation for developing the approach
comes from the realm of abstract argumentation [13], in particular for explaining
acceptance [1,5,15,37] and rejection [27,33,34] of arguments. As we will detail,
computation of smallest strong explanations [27,34,37] in abstract argumentation
frameworks can naturally be viewed as the task of computing smallest MUSes of
quantified formulas. While there is work on practical procedures for computing
strong explanations for credulous rejection in abstract argumentation [27,34], even
the task of verifying a minimal strong explanation for credulous acceptance under
admissible and stable semantics is by complexity arguments presumably beyond
the reach of the earlier-proposed approaches [37]. The approach developed in this
work hence provides a first practical approach to computing smallest strong expla-
nations in particular for credulous acceptance and skeptical rejection in abstract
argumentation frameworks.

Empirically, the approach scales favorably towards computing smallest strong
explanations in abstract argumentation for ICCMA competition instances,
despite the fact that this task is presumably considerably more challenging than
the standard tasks of deciding acceptance considered in the ICCMA competi-
tions. We also show that the approach allows for computing smallest MUSes for
small unsatisfiable benchmarks from QBF Evaluation solver competitions.

2 Preliminaries

Quantified Boolean Formulas (QBFs). We consider closed QBFs in prenex
normal form Φ = Q1X1 · · · QkXk.ϕ, where Qi ∈ {∃,∀} are alternating quan-
tifiers, X1, . . . , Xk are pairwise disjoint nonempty sets of variables, and ϕ is a
Boolean formula over the variables

⋃k
i=1 Xi and the truth constants 1 and 0

(true and false). The sequence of quantifier blocks Q1X1 · · · QkXk is called the
prefix and ϕ the matrix of Φ. We denote an arbitrary prefix of k alternating
quantifier blocks by

−→
Qk. For a truth assignment τ : X → {0, 1}, the formula

ϕ [τ ] is obtained by replacing, for each x ∈ X, all occurrences of x in ϕ by
τ(x). As convenient, we interchangeably view assignments as either sets of non-
contradictory literals or as functions mapping variables to truth values. The QBF
Φ∃ = ∃X

−→
Qk.ϕ is true iff there exists a truth assignment τ : X → {0, 1} for which
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−→
Qk.ϕ [τ ] is true. In this case we call τ a solution to Φ∃. The QBF Φ∀ = ∀X

−→
Qk.ϕ

is true iff for all truth assignments τ : X → {0, 1}, the QBF
−→
Qk.ϕ [τ ] is true. If

this is not the case, that is, there is a truth assignment τ for which
−→
Qk.ϕ [τ ] is

false, we call τ a counterexample to Φ∀.

Smallest MUSes of QBF Formulas. Consider a QBF Φ = ∃S
−→
Qk.ϕ. A set

S� ⊂ S is a (an unsatisfiable) core of Φ if ∃S
−→
Qk.ϕ [S�] is false. The smallest

minimal unsatisfiable subsets (SMUSes) are smallest-cardinality cores: S� is a
SMUS iff |S�| ≤ |S′| holds for all cores S′ of Φ. A set cs ⊂ S is a correction
set (CS) if the QBF ∃S

−→
Qk.ϕ [S \ cs] is true. Note that these definitions are in

line with conjunctive forms: for a QBF
−→
Qk.

∧m
j=1 ϕj , where ϕj are formulas,

unsatisfiable subsets (resp. correction sets) over {ϕ1, . . . , ϕm} can be computed
as cores (resp. correction sets) of ∃S

−→
Qk.

∧m
j=1(sj → ϕj) with S = {s1, . . . , sm}.

Important to our approach is a relationship between correction sets and
SMUSes of QBFs: lower bounds on the size of SMUSes of a QBF are obtained via
the minimum-cost hitting sets over any sets of its correction sets. A set hs ⊂ S
is a hitting set over a collection C of correction sets if it intersects with each
cs ∈ C. A hitting set hs is minimum-cost if |hs| ≤ |hs′| for all hitting sets hs′.

Proposition 1. Let C be a set of correction sets of the QBF Φ = ∃S
−→
Qk.ϕ, hs

a minimum-cost hitting set over C, and S� a SMUS of Φ. Then |hs| ≤ |S�|.
Proof. (Sketch) We show that S� is also a hitting set over C. The claim follows
by observing that hs is minimum-cost. Assume for a contradiction that S� ∩
cs = ∅ for some cs ∈ C. Then S� ⊂ S \ cs. Since ∃S

−→
Qk.ϕ [S \ cs] is true, so is

∃S
−→
Qk.ϕ [S�], contradicting the fact that S� is a core. 
�

Abstract Argumentation. An argumentation framework (AF) [13] F =
(A,R) consists of a (finite) set of arguments A is and an attack relation
R ⊆ A×A. Argument b attacks argument a if (b, a) ∈ R. A S ⊆ A is conflict-free
in F = (A,R) if b ∈ S or a ∈ S for each (b, a) ∈ R. The set of conflict-free sets
in F is denoted by cf (F ). An AF semantics σ maps each AF to a collection
σ(F ) of jointly acceptable subsets of arguments, i.e., extensions. A conflict-free
set S ∈ cf (F ) is admissible if for each attack (b, a) ∈ R with a ∈ S there is an
attack (c, b) ∈ R with c ∈ S, i.e., for each attack on S there is a counterattack
from S. A conflict-free set S ∈ cf (F ) is stable if for each argument a ∈ A\S there
is an attack (b, a) ∈ R with b ∈ S, i.e., all arguments outside S are attacked by
S. The sets of admissible and stable extensions in F are denoted by adm(F ) and
stb(F ), resp. An argument q ∈ A is credulously accepted in F under semantics
σ if there is an E ∈ σ(F ) with q ∈ E, and skeptically accepted in F under σ if
q ∈ E for all E ∈ σ(F ). Given an AF F = (A,R) and S ⊆ A, the subframework
induced by S is F [S] = (S,R ∩ (S × S)).

Computational Complexity. We assume familiarity with standard complexity
classes of the polynomial hierarchy, namely Σp

0 = Πp
0 = P, Σp

k+1 = NPΣp
k ,

Πp
k+1 = coNPΣp

k and Dp
k = {L1 ∩ L2 | L1 ∈ Σp

k , L2 ∈ Πp
k}, and the concepts of

hardness and completeness [28].
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3 Smallest Strong Explanations

Computing smallest MUSes of QBF formulas is motivated by the fact that it
captures smallest strong explanations for credulous acceptance [37] under admis-
sible and stable semantics and skeptical rejection under stable semantics in the
realm of abstract argumentation. Let F = (A,R) be an AF and Q ⊆ A be a
set of arguments. Following [37], a set S ⊆ A is a strong explanation for credu-
lously accepting Q under σ if for each S ⊆ A′ ⊆ A and F ′ = F [A′] there exists
E ∈ σ(F ′) with Q ⊆ E. Similarly, explanations for skeptically rejecting Q ⊆ A
under σ are sets S ⊆ A for which, for all S ⊆ A′ ⊆ A and F ′ = F [A′], there
exists E ∈ σ(F ′) with Q � E.

We focus on smallest-cardinality strong explanations. Our approach builds
on the line of work on employing propositional SMUS extractors for com-
puting smallest strong explanations for credulous rejection [27]. We similarly
declare Boolean variables xa and ya for each argument a ∈ A, interpret-
ing xa = 1 as argument a being included in an extension, and ya = 1
as argument a being included in a subframework. We denote Y = {ya |
a ∈ A} and X = {xa | a ∈ A}. We define the propositional formula
ϕcf (F ) =

∧
(a,b)∈R ((ya ∧ yb) → (¬xa ∨ ¬xb)) for conflict-free sets, and for-

mulas ϕadm(F ) = ϕcf (F ) ∧ ∧
(b,a)∈R

(
(ya ∧ yb ∧ xa) → ∨

(c,b)∈R(yc ∧ xc)
)

and

ϕstb(F ) = ϕcf (F ) ∧ ∧
a∈A

(
(ya ∧ ¬xa) → ∨

(b,a)∈R(yb ∧ xb)
)

encoding admissi-
ble and stable semantics. That is, for any assignment τY over Y , the satisfying
assignments over X of the formula ϕσ(F ) [τY ] correspond exactly to σ(F [A′])
with A′ = {a ∈ A | τ(ya) = 1}, since ϕσ(F ) [τY ] reduces to a standard SAT
encoding of semantics σ for which this result is well-known [9].

For extracting a smallest strong explanation for credulous acceptance and
skeptical rejection, it suffices to compute a SMUS of a 2-QBF formula.1

Proposition 2. Given an AF F = (A,R), Q ⊆ A, and semantics σ ∈
{adm, stb}. Let S∗ ⊆ A. It holds that Y [S∗] = {ya | a ∈ S} is a SMUS of

a) ΦCA
σ (F,Q) = ∃Y ∀X(ϕσ(F ) → ∨

q∈Q ¬xq) if and only if S∗ is a smallest
strong explanation for credulously accepting Q in F under σ,

b) ΦSR
stb (F,Q) = ∃Y ∀X(ϕstb(F ) → ∧

q∈Q xq) if and only if S∗ is a smallest
strong explanation for skeptically rejecting Q in F under stb.

Proof. Case a): Suppose S∗ is a strong explanation for credulously accepting Q in
F under σ, that is, for all S∗ ⊆ A′ ⊆ A there is an extension E ∈ σ(F [A′]) contain-
ing Q. Equivalently, for all assignments τY over Y which set τY (ya) = 1 for a ∈ S∗,
there is an assignment τX over X which satisfies ϕσ(F ) [τY ] and sets τX(xq) = 1 for

all q ∈ Q. This means that the QBF ∀Y ∃X
(
ϕσ(F ) [Y [S∗]] ∧ ∧

q∈Q xq

)
is true,

which in turn means that ΦCA
σ (F,Q) [Y [S∗]] is false. That is, Y [S∗] is a core of

1 The proposition also holds when considering subset-minimal strong explanations and
MUSes of the corresponding 2-QBF.
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ΦCA
σ (F,Q). By applying the same steps in the other direction, we obtain a one-

to-one mapping between strong explanations for credulous acceptance in F and
cores of ΦCA

σ (F,Q). The reasoning is similar for case b) and skeptical rejection.
The claims follow. 
�

The SMUSes of a 2-QBF ΦSR
com(F,Q) with a subformula ϕcom(F ) for com-

plete semantics (see e.g. [6]) capture strong explanations for skeptical rejection
under complete, which in turn coincides with (credulous and skeptical) rejection
under grounded semantics. Further, QBF encodings for second-level-complete
argumentation semantics [2,14] allow for similarly capturing strong explanations
for, e.g., skeptical rejection under preferred semantics as SMUSes of 3-QBFs. In
terms of computational complexity, verifying that a given subset of arguments is
a minimal strong explanation for credulous acceptance is already Dp

2-complete
under admissible and stable semantics [37]. In contrast, for credulous rejection
this task is Dp

1-complete, and deciding whether a small strong explanation exists
is Σp

2 -complete [27]. By Proposition 2, the complexity of computing a smallest
strong explanation for credulous acceptance and skeptical rejection is bounded
by the complexity of computing a SMUS of a given 2-QBF formula. We find it
likely that for credulous acceptance this task is complete for the third level of the
polynomial hierarchy, namely, that deciding whether a small strong explanation
exists is Σp

3 -complete. This would be in line with the complexity of deciding
whether a 2-QBF has a small unsatisfiable subset, detailed next.

4 On Complexity of Computing Smallest MUSes of QBFs

In the context of propositional logic, verification of a MUS is Dp
1-complete [29],

and deciding the existence of MUS of small size is Σp
2 -complete [20]. Further,

verifying whether a given QBF with k ≥ 2 alternating quantifiers is minimally
unsatisfiable is Dp

k-complete [10]. However, to the best of our knowledge, the
complexity of deciding whether a QBF has a small–of size at most a given
integer–unsatisfiable subset has not been established so far. We show that the
problem is Σp

k+1-complete for k-QBFs when the leading quantified is existential.

Theorem 1. Consider a QBF ∃X1∀X2 · · · QkXk.
∧m

j=1 ϕj, where ϕj are propo-

sitional formulas over
⋃k

i=1 Xi. Deciding whether there is an unsatisfiable subset
ϕ∗ ⊆ {ϕj | j = 1, . . . , m} with |ϕ∗| ≤ p is Σp

k+1-complete.

Proof. (Sketch) For membership, guess a subset ϕ∗ and verify using a Πp
k -oracle

that ∃X1∀X2 · · · QkXk.ϕ∗ is false. For hardness, we reduce from the Σp
k+1-

complete problem of deciding whether a QBF Ψ = ∃X1∀X2 · · · Qk+1Xk+1.ψ is
true. We may assume w.l.o.g. that ψ is in conjunctive normal form (CNF) if k is
even (Qk+1 = ∃), and in disjunctive normal form (DNF) if k is odd (Qk+1 = ∀).
For our reduction, we adapt (and simplify) the reduction for the propositional
case [20]. Let X1 = {x1, . . . , xn} and declare variables P = {pi | i = 1, . . . , n}
and N = {ni | i = 1, . . . , n}. Let ψ′ be the formula obtained from ψ by replacing
each literal xi with pi and ¬xi with ni. Finally, consider ϕ =

∧n
i=1(pi∨ni) → ¬ψ′.
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It holds that Φ = ∃(P ∪ N ∪ X2)∀X3 · · · Qk+1Xk+1.ϕ ∧ ∧n
i=1 pi ∧ ∧n

i=1 ni has an
unsatisfiable subset of size at most n + 1 iff Ψ is true. Intuitively, a solution of
Ψ gives rise to an unsatisfiable subset of Φ containing ϕ and exactly one pi or
ni for each i = 1, . . . , n. On the other hand, all unsatisfiable subsets of Φ must
contain ϕ, and due to the bound n+1, exactly one pi or ni for each i = 1, . . . , n,
which simulates a truth assignment which is a solution of Ψ . 
�

Note that for even (resp. odd) k, the reduction gives hardness for k-QBFs
of form ∃X

−→
Qk−1.ϕ ∧ S where S ⊂ X and ϕ is in DNF (resp. CNF—to see

this, consider additional variables for each disjunct pi ∨ ni in ϕ). This is in line
with SMUSes of QBFs being subsets of the first existential quantifier block.
Interestingly, there is a difference between the complexity of computing a SMUS
in the case Q1 = ∀ and in the case Q1 = ∃. For Q1 = ∀ the problem turns out to
be merely Σp

k-complete. This is because a nondeterministic guess may contain
both an unsatisfiable subset candidate and a counterexample assignment.

Proposition 3. Consider a QBF ∀X1∃X2 · · · QkXk.
∧m

j=1 ϕj, where ϕj are

propositional formulas over
⋃k

i=1 Xi. Deciding whether there is an unsatisfiable
subset ϕ∗ ⊆ {ϕj | j = 1, . . . ,m} with |ϕ∗| ≤ p is Σp

k-complete.

Proof. For membership, guess a subset ϕ∗ and a counterexample τ to the QBF.
Verify using a Πp

k−1 oracle that ∃X2 · · · QkXk.ϕ∗ [τ ] is false. Hardness follows
by a reduction from the Σp

k-complete problem of deciding whether a QBF
∃X1∀X2 · · · QkXk.ϕ is true (consider the negation). 
�

5 Computing Smallest MUSes via Implicit Hitting Sets

SMUS-IHS, the implicit-hitting set based approach for computing a SMUS of a
given QBF Φ = ∃S

−→
Qk.ϕ is detailed in Algorithm 1. The algorithm works by

1 SMUS-IHS

Input: A QBF Φ = ∃S
−→
Qk.ϕ

Output: A SMUS S� ⊂ S of Φ
2 (τ, true? ) ← QBF-Solve(Φ, S);
3 if true? then
4 return ”no cores”;
5 UB ← |S|; LB ← 0;
6 S� ← S; C ← ∅;
7 while true do
8 (hs, opt?) ← Min-Hs(C, S,UB);
9 if opt? then LB ← |hs|;

10 if LB = UB then break;
11 C ←

C ∪ Extract-MCS(S�,UB , Φ, S);
12 if LB = UB then break;

13 return S�;
Algorithm 1: Computing a QBF SMUS

Fig. 1. Hitting set IP
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Fig. 2. Extracting (left) and minimizing (right) correction sets of a QBF.

iteratively refining a lower and upper bound LB and UB on the size of the
SMUSes of Φ. The lower bounds are obtained by extracting an increasing collec-
tion C of correction sets of Φ with a QBF oracle in the Extract-MCS subroutine,
and computing hitting sets hs over them with an integer programming solver,
in the Min-Hs subroutine. The correction set extraction subroutine also obtains
unsatisfiable cores of Φ, the smallest core found at any point is stored in S� and
the upper bound UB set to UB = |S�|. The search terminates when UB = LB
and returns S� which at that point is known to be a SMUS.2

We abstract the use of a QBF oracle into the function QBF-Solve. Given a
subset Ss ⊂ S, the call QBF-Solve(Φ, Ss) returns a tuple (τ, true?) where true?
is true iff ∃S

−→
Qk.ϕ [Ss] is true. In the affirmative case the oracle returns a solution

τ to Φ that sets τ(s) = 1 for all s ∈ Ss. A useful intuition here is that if the
QBF oracle returns true, then the set cs = (S \ {s | τ(s) = 1}) ⊃ (S \ Ss) is a
correction set of Φ. Similarly, if the result is false, then Ss is a core of Φ and |Ss|
an upper bound on the size of the SMUSes.

More specifically, given an input QBF Φ = ∃S
−→
Qk.ϕ, SMUS-IHS begins by

checking that the QBF has no solutions by invoking QBF-Solve(Φ, S) on Line 2.
If the result is true, then there are no cores (and as such no SMUSes) of Φ so
the search terminates on Line 4. Otherwise, S is a core of Φ, so the upper bound
UB is set to |S|, the smallest known core S� to S, the set C of correction sets to
∅, and the lower bound LB on the size of the SMUSes to 0 (Lines 5 and 6).

Each iteration of the main search loop (Lines 7–12) starts by computing
a hitting set hs over the collection C of correction sets extracted so far. The
procedure Min-Hs on Line 8 computes an incumbent solution hs to the inte-
ger program representation of the hitting set problem detailed in Fig. 1. The
solution either (a) is optimal, i.e., represents a minimum-cost hitting set or

2 Note that by employing integer programming our approach also allows for computing
weighted SMUSes, i.e., cores with smallest total weight over their elements.
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(b) has |hs| < UB . In addition to hs, the procedure returns an indicator opt?
on whether hs is minimum-cost. If it is, then by Proposition 1 |hs| is a lower
bound on the size of the SMUSes, so the LB is updated on Line 9 and the ter-
mination criterion (UB = LB) checked on Line 10. If UB > LB , the procedure
Extract-MCS next extracts correction sets of Φ that do not intersect with hs. In
addition to new correction sets, the procedure will also compute new unsatisfi-
able cores of the instance, thereby potentially tightening the upper bound UB ,
which is why the termination criterion is checked again on Line 12 before the
loop is reiterated. An important note here is that no correction sets are ever
removed from C so the sequence of LB values will be increasing.

The procedure Extract-MCS (Fig. 2, left) computes MCSes that do not
intersect with hs by using a QBF oracle. The procedure maintains a subset
A ⊂ S (initialized to hs) and iteratively invokes the QBF oracle by calling
QBF-Solve(Φ,A). If the result is false, the set A is a core of Φ, so the procedure
checks whether the upper bound can be improved before terminating and return-
ing the set Cn of new corrections sets extracted. Otherwise (i.e., if the result is
true) the oracle also returns a solution τ to Φ that sets τ(s) = 1 for each s ∈ A.
Since hs ⊂ A holds in each iteration of Extract-MCS, the set S \ {s | τ(s) = 1}
is a correction set of Φ that does not intersect with hs. The correction set is
then minimized in the MinCS procedure (Fig. 2, right) by repeated queries to the
QBF oracle, each asking for a solution that sets at least one more variable in
S \ {s | τ(s) = 1} to true. The minimization procedure ends when the oracle
reports false. Then a new core of Φ is also obtained, potentially allowing the
upper bound to be tightened. The minimized cs is added to the set Cn of new
correction sets and to A to prevent it from being rediscovered.

The following proposition establishes the correctness of SMUS-IHS.

Proposition 4. On input Φ = ∃S
−→
Qk.ϕ, SMUS-IHS terminates and returns a

SMUS S� of Φ.

Proof. Subject to termination, S� is a subset of S for which ∃S
−→
Qk.ϕ [S�] is

false (since the set S� is only updated after the QBF oracle reports false) and
|S�| = |hs| for some minimum-cost hitting set hs over a set of correction sets
of Φ. Termination follows by the finite number of correction sets of Φ and the
fact that each hitting set hs is computed at most twice during the execution of
the algorithm. More precisely, consider a hitting set hs returned by Min-Hs. In
the next invocation of Extract-MCS either (i) a new correction set cs for which
cs ∩ hs = ∅ is computed, or (ii) the set hs is shown to be a core of Φ. In case (i)
cs is added to C, preventing hs from being recomputed in subsequent iterations.
In case (ii) SMUS-IHS will either terminate on Line 12 if LB = |hs| (i.e., we know
hs is minimum-cost), or compute a new hitting set hs′ that is either a minimum-
cost hitting set over C or has |hs′| < UB ≤ |hs|. That is, the only way in which
hs can be recomputed in subsequent iterations is if it was of minimum cost in
which case the algorithm terminates after computing hs for a second time. 
�

The proof of Proposition 4 is similar to a correctness proof of IHS for
MaxSAT [3]. Note that the correctness of SMUS-IHS does not rely on correc-
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tion sets being minimal or the extraction of all disjoint correction sets at each
iteration; as long as the loop on Lines 3–12 is executed at least once on each invo-
cation of Extract-MCS, the algorithm will either compute a previously unseen
correction set, or be able to determine that the input hitting set is a SMUS.
Similarly, the minimization of the correction sets need not be exhaustive. The
set S \ A will be a correction set of Φ after each iteration of the loop in MinCS.

Dual IHS for leading universal quantifier. A way of employing SMUS-IHS for
computing a SMUS of ∀X1

−→
Qk−1.

∧m
j=1 ϕj over {ϕ1, . . . , ϕm} is to give the (k+1)-

QBF Φk+1 = ∃S∀X1
−→
Qk−1.

∧m
j=1(sj → ϕj) as input. For an alternative—more

inline with the complexity results of Proposition 3—approach we can instead
consider the k-QBF Φk = ∀S∀X1

−→
Qk−1.

∧m
j=1(sj → ϕj). For any S∗ ⊂ ¬S =

{¬s | s ∈ S}, Φk [S∗] consists of the same formulas as Φk except for the ones
corresponding to S∗, which are essentially deactivated. Thus we may define for
a QBF Φ = ∀S

−→
Qk.ϕ that a core is a set S∗ ⊂ ¬S for which ∀S

−→
Qk.ϕ [(¬S) \ S∗]

is false, and that a correction set cs ⊂ ¬S makes ∀S
−→
Qk.ϕ [cs] true.

This leads to a dual IHS algorithm. First, check for the existence of a core by
a call to QBF-Solve(Φk, ∅). If the oracle reports true, exit. Else we obtain a coun-
terexample assignment to S, giving an upper bound as the number of variables
in S set to true. Similarly to SMUS-IHS, we obtain lower bounds by computing
minimum-cost hitting sets over collections of (now the dual notion of) correction
sets. A correction set is now extracted by calling QBF-Solve(Φk,¬(S \ hs)). A
true result implies that ¬(S \ hs) is a correction set which is then minimized
similarly as in SMUS-IHS. Further, some modern QBF oracles are able to pro-
vide a subset A′ ⊂ ¬(S \ hs) used to prove the absence of a counterexample.
Such A′ can directly be used as a correction set. Upper bounds on the size of
SMUSes are obtained via the oracle reporting false and providing a counterex-
ample assignment. Note that the dual algorithm can be applied for QBFs of
form ∃X1

−→
Qk−1

∧m
j=1 ϕj by giving ∀S∃X1

−→
Qk−1.

∧m
j=1(sj → ϕj) as input.

6 Empirical Evaluation

We implemented the SMUS-IHS algorithm; the implementation is available in
open source at https://bitbucket.org/coreo-group/qbf-smuser. Since no direct
competitors are available, we demonstrate the feasibility of the approach for
computing smallest explanations in abstract argumentation, as well as in the
more general context of extracting clausal SMUSes from QBF instances. We
use CPLEX as the minimum-cost hitting set problem IP solver. As choices for
the QBF solver, we consider DepQBF (version 6.0.3) [24] and RAReQS (ver-
sion 1.1) [18]. DepQBF is a search-based QDPLL solver with conflict-driven
clause learning and solution-driven cube learning, providing an incremental inter-
face for extracting assignments and unsatisfiable cores and solving under user-
provided assumption literals [22,23]. RAReQS is an expansion-based CEGAR
solver, iteratively SAT solving and refining a propositional abstraction. We mod-
ified RAReQS to extract unsatisfiable cores from the top-level SAT solver. We
consider the following variants of the SMUS-IHS algorithm.

https://bitbucket.org/coreo-group/qbf-smuser
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Fig. 3. Number of solved instances: strong explanations for credulous acceptance under
admissible (left) and stable (right).

– S (default): S as the QBF solver, extracting all MCSes at each itera-
tion, i.e., executing Extract-MCS until unsatisfiability, and calling MinCS in
Extract-MCS.

– S-1cs: S, extracting at most one MCS per invocation of Extract-MCS.
– S-noMin: S without correction set minimization.
– S-optHS: S, computing minimum-cost hitting sets at each iteration.

Experiments were run under per-instance 3600-s time and 16-GB memory limit
with Intel Xeon E5-2670 CPUs, 57-GB memory, RHEL 8.5 and GCC 8.5.0.

To obtain benchmarks for computing strong explanations in argumentation
frameworks, we extended the implementation from [27] to output the negations
of encodings described in Sect. 3 in QDIMACS format. The updated version is
available at https://bitbucket.org/andreasniskanen/selitae/. As input AFs, we
used the set of 326 AFs from ICCMA’19 (http://argumentationcompetition.
org/2019/). We consider three tasks: computing smallest strong explanations
for credulous acceptance under admissible and stable semantics and for skepti-
cal rejection under stable semantics. For each AF, a query argument was picked
uniformly at random from the set of credulously accepted arguments or skepti-
cally rejected arguments. This gave 324 AF-query pairs for admissible semantics
and 312 AF-query pairs for stable semantics (there were 2 AFs which have no
non-empty admissible extensions and 14 AFs without a stable extension).

The runtime results for computing smallest explanations for credulous accep-
tance under admissible and stable are summarized in Fig. 3. On credulous admis-
sible (left), RAReQS as the QBF solver yields clearly the best results: all algorith-
mic variants except for 1cs solve 324 instances under 1000 s. In contrast, using
DepQBF results in solving only 221 instances using the configuration 1cs. On
credulous stable (right), using RAReQS results in solving 150 instances for each

https://bitbucket.org/andreasniskanen/selitae/
http://argumentationcompetition.org/2019/
http://argumentationcompetition.org/2019/
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Fig. 4. Number of solved instances for different SMUS-IHS variants on 2-QBFs (left)
and 3-QBFs (right) using RAReQS as the QBF oracle.

SMUS-IHS variant except 1cs. DepQBF results in clearly better performance,
allowing for solving 200 instances using the default and optHS configurations.
Interestingly, correction set minimization is an important factor for runtime effi-
ciency when using DepQBF on these instances. The results for skeptical rejection
under stable are similar: using DepQBF results in better performance, but the
difference due to the choice of the QBF solver is not as drastic (with 181 solved
instances using DepQBF and 156 using RAReQS).

To demonstrate more general applicability of SMUS-IHS, we also consider
computing SMUSes of QBFs in CNF form, for the relatively small unsatisfiable
QBFLIB (http://www.qbflib.org/) benchmarks encoding reduction finding [19]
using RAReQS which has exhibited good performance for deciding satisfiability
in this domain. We discarded instances for which RAReQS on its own took more
than one second to decide unsatisfiability, leaving 719 2-QBF and 905 3-QBF
instances. For each instance, each clause C in the matrix ϕ was replaced by
sC → C, where sC is a fresh variable. Finally, the quantifier QS with S = {sC |
C ∈ ϕ} was appended as the outermost quantifier in the prefix either with Q = ∃
for the SMUS-IHS algorithm or with Q = ∀ for dual SMUS-IHS.

The results are shown in Fig. 4. For 2-QBF instances (left) we observe that the
dual algorithm outperforms other solver variants if several MCSes are extracted
at each iteration. The default configuration solves more instances than optHS-
dual which computes minimum-cost hitting sets. Disabling either minimization
(noMin-dual) or exhaustive MCS extraction (1cs-dual) leads to a noticeable
loss in performance. The non-dual variants are not as effective, which is in line
with the fact that their input is a 3-QBF. For 3-QBF instances (right) the default,
optHS and 1cs configurations clearly outperform all other configurations, with
slight performance improvements obtained by using non-optimal hitting sets
and exhaustive MCS extraction. Here the dual variants are less competitive;
their input is a 4-QBF, since the original 3-QBF has an ∃∀∃ prefix.

http://www.qbflib.org/
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7 Conclusions

We proposed an approach to computing smallest unsatisfiable subsets of quan-
tified Boolean formulas, and pinpointed the complexity of deciding if a k-QBF
(for arbitrary k) has a small unsatisfiable subset. While the approach is gener-
ally applicable to computing SMUSes of QBFs, we detailed an application in
computing smallest strong explanations for credulous acceptance and skeptical
rejection in abstract argumentation. Our implementation allows for computing
smallest strong explanations of standard ICCMA argumentation competition
benchmarks in practice. This suggests studying further applications of the app-
roach to other non-monotonic formalisms admitting QBF encodings. The exact
complexity of computing smallest strong explanations remains a further open
question.
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Abstract. Axiom pinpointing is the task of identifying the axiomatic
causes for a consequence to follow from an ontology. Different approaches
have been proposed in the literature for finding one or all the subset-
minimal subontologies that preserve a description logic consequence. We
propose an approach that leverages the capabilities of answer set pro-
gramming for transparent axiom pinpointing. We show how other asso-
ciated tasks can be modelled without much additional effort.

Keywords: Axiom-pinpointing · Non-standard reasoning · ASP

1 Introduction

Axiom pinpointing [16] is the task of identifying the axioms in an ontology that
are responsible for a consequence to follow. It has been extensively studied in
description logics (DLs) and, under different names, in other areas [11,13]. To-
date, the most successful approach to axiom pinpointing which does not rely on
repeated (black-box) calls to a reasoner is a reduction to MUS enumeration on
a propositional formula [1,17]. The main disadvantage of this approach is that
it requires, as a pre-processing step, the construction of a huge formula, which
makes the reasoning steps explicit. It is also limited to enumerating one or all
so-called justifications.

We propose a novel approach based on a translation to Answer Set Program-
ming (ASP) [7,12]. The approach is general, and can be applied to any ontology
language which allows a “modular” ASP representation in the sense that each
axiom is translatable to a set of rules. We instantiate it to deal with the simple
DL HL and the more expressive EL. In addition to finding one or all justifica-
tions, we show that justifications of minimal cardinality and the intersection of
all justifications can be easily computed through standard ASP constructs and
reasoning tasks.

This work was partially supported by MUR under PRIN project PINPOINT Prot.
2020FNEB27, CUP H23C22000280006 and H45E21000210001.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 315–321, 2022.
https://doi.org/10.1007/978-3-031-15707-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15707-3_24&domain=pdf
http://orcid.org/0000-0002-2693-5790
http://orcid.org/0000-0001-8218-3178
https://doi.org/10.1007/978-3-031-15707-3_24
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2 Preliminaries

We assume that the reader is familiar with the basic terminology and struc-
ture of answer set programming (ASP) [5,7]. Here, we recall the basic ideas of
description logics (DLs) [3], with a particular focus on the lightweight DL EL [2],
and of axiom pinpointing [15].

Description Logics. Description logics (DLs) are a family of knowledge repre-
sentation formalisms characterised by a clear syntax and a formal unambiguous
semantics based on first-order logic. The main building blocks of all DLs are
concepts (corresponding to unary predicates) and roles (binary predicates). The
knowledge of an application domain is encoded in an ontology, which restricts the
class of relevant interpretations of the terms, thus encoding relationships between
them. Among the many existing DLs, a prominent example is the lightweight
DL EL. EL has a very limited expressivity, but allows for efficient (standard)
reasoning tasks. For the scope of this paper, we use EL as a prototypical exam-
ple, following the fact that most work on axiom pinpointing has focused on this
logic as well. Other DLs are characterised by a different notion of concepts and
a larger class of axioms.

Definition 1 (EL). Let NC and NR be two disjoint sets of concept names and
role names, respectively. EL -concepts are built through the grammar rule

C ::= A | � | C � C | ∃r.C,

where A ∈ NC , r ∈ NR, and � is a distinguished top concept.
An interpretation is a pair I = (ΔI , ·I) where ΔI is a non-empty set called

the domain and ·I is the interpretation function which maps every A ∈ NC

to a set AI ⊆ ΔI and every r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . This
interpretation is extended to EL-concepts setting �I := ΔI , (C�D)I := CI∩DI ,
and (∃r.C)I := {δ | ∃η ∈ CI .(δ, η) ∈ rI}.
Ontologies are finite sets of general concept inclusions (GCIs), which specify the
relationships between concepts.

Definition 2 (ontology). A GCI is an expression of the form C � D where
C,D are two concepts. An ontology is a finite set of GCIs. The interpretation I
satisfies the GCI α iff CI ⊆ DI . It is a model of the ontology O iff it satisfies
all GCIs in O. We often call GCIs axioms.

The ontology O entails the GCI α (O |= α) iff every model of O satisfies α.
In this case we say that α is a consequence of O.

Although many reasoning tasks can be considered, along with an ample selection
of axioms in the ontologies, we focus on the problem of deciding whether α
is a consequence of an ontology. For simplicity, we will consider only atomic
subsumption relations A � B where A,B ∈ NC . It is well known that this
problem can be solved in polynomial time through a completion algorithm [2].
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In a nutshell, the algorithm runs in two phases. First, the original GCIs are
decomposed into a set of GCIs in normal form; that is, having only the shapes

A1 � B, A1 � A2 � B, A1 � ∃r.B, ∃r.A1 � B

where r ∈ NR and A,B ∈ NC ∪ {�}. These axioms are then combined through
completion rules to make consequences explicit (more details in Sect. 3). The
method is sound and complete for all atomic subsumptions over the concept
names appearing in the original ontology.

As an additional example of a logic, we consider the sublanguage HL of EL,
which uses only concept names and the conjunction (�) constructor. It can be
seen that HL is a syntactic variant of directed hypergraphs. Specifically, a GCI
A1 �· · ·�Am � B1 �· · ·�Bn represents a directed hypergraph connecting nodes
A1, . . . , Am with nodes B1, . . . , Bn, and the entailment problem is nothing more
than reachability in this hypergraph.

Axiom Pinpointing. Beyond standard reasoning, it is sometimes important
to understand which axioms are responsible for a consequence to follow from an
ontology. This goal is interpreted as the task of identifying justifications.

Definition 3. A justification for a consequence α w.r.t. the ontology O is a set
M ⊆ O such that (i) M |= α and (ii) for every N ⊂ M, N �|= α.

In words, a justification is a subset-minimal subontology that still entails the
consequence. Most work focuses on computing one or all justifications. While
the former problem remains polynomial in EL, the latter necessarily needs expo-
nential time, as the number of justifications may be exponential on the size
of the ontology. Despite some potential uses, which have been identified for non
standard reasoning [6], only very recently have specific algorithms for computing
the unions and intersection of justifications been developed [9,14]. To the best
of our knowledge, no previous work has considered computing the justifications
of minimal cardinality directly.

3 Reasoning Through Rules

Before presenting our approach to axiom pinpointing using ASP, we briefly
describe how to reduce reasoning in EL to ASP. The approach simulates the
completion algorithm sketched in Sect. 2 through a small set of rules, while the
ontology axioms (in normal form) are represented through facts.

Consider an ontology O in normal form, and let C(O) and R(O) be the
sets of concept names and role names appearing in O, respectively. For each
A ∈ C(O) we use a constant a, and for each r ∈ R(O) we use a constant r. We
identify the four shapes of normal form axioms via a predicate. Hence, s1(a,b)
stands for the GCI A � B and analogously for the expressions s2(a1,a2,b),
s3(a,r,b), and s4(r,a,b). For each axiom in normal form appearing in O,
we write the associated fact. As previously mentioned, the reasoning process is
simulated through rules. In the specific case of EL, these rules are shown in Fig. 1
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Fig. 1. The rules for EL reasoning (left) and the translation of HL GCIs (right).

(left). To decide whether the atomic subsumption A � B is a consequence of
the ontology, we need only ask the query s1(a,b). Since the original ontology
may not be in normal form, the facts obtained this way are the result of the
normalisation step over the original GCIs. In the case of HL, one can produce a
more direct reduction, which takes into account the hyperedges without the need
for normalisation or general derivation rules. We again represent each concept
name A through a constant a, and associate a new constant gi for each GCI in
O. Then the GCI A1 � · · · � Am � B1 � · · · � Bn is translated to the set of rules
in Fig. 1 (right). To decide whether A � B is a consequence, we add the fact a.
and verify the query b. The correctness of the approach follows from the results
in [8,15].

4 Axiom Pinpointing Through ASP

We present a general approach for solving axiom pinpointing tasks through an
ASP solver. The approach is applicable to any logic (including other DLs) with
a modular ASP encoding. Roughly, an encoding is modular if each axiom in O
translates to a set of rules, such that an ASP encoding ΠO of O is obtained by
the union of the encodings of its axioms, possibly together with some additional
rules (independent of the axioms in O) needed to simulate reasoning in ASP.

Definition 4. An encoding in ASP ΠO of the ontology O is modular iff (i) for
each α ∈ O there is an ASP program Πα, and (ii) there is a (possibly empty)
set of rules R such that ΠO =

⋃
α∈O Πα ∪ R

The encodings from Sect. 3 for EL and HL are both modular. In the former case,
R is exactly the set of rules in Fig. 1 (left), while in the latter R = ∅.

We now formulate the problem of computing justifications in ASP. First, we
apply an adornment step, which allows to identify and keep track of the rules of
a module corresponding to a given axiom.

Definition 5. Let P be an ASP program, and δ be an atom not occurring in
P . The δ-adornment for P is the program Δ(P ) = {rδ : r ∈ P}, where rδ is s.t.
head(rδ) = head(r), and body(rδ) = body(r) ∪ δ.

In words, the δ-adornment adds a new identifying atom δ to the body of each
rule of the program. This guarantees that the rules trigger only when δ is true.
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Definition 6. The adorned ASP encoding of the ontology O is the program

δ(ΠO) =
⋃

α∈O
Δα(Πα) ∪ R ∪ C

where for each α ∈ O, δα is a fresh atom not occurring in Π(O), and C is the
ASP program containing a choice rule {δα} for each α ∈ O.

In the case of EL, the adornment will change each fact (corresponding to a
GCI in normal form) si(...). into the rule si(...) :- xj, where xj is the
chosen constant for the original axiom αj . Importantly, this approach handles
the original axioms in the ontology, and not those already normalised as done
e.g. in [4].

We now describe an ASP program that can be used for axiom pinpointing.
Given the ontology O and consequence c, we identify the justifications for c
through the following property.

Proposition 1. Let O be an ontology, c an atom modelling a consequence of
O, and P the program P = δ(ΠO) ∪ {← not c}. M ⊆ O is a justification for
c iff there is an answer set A of P that is minimal w.r.t. {δα | α ∈ O} and
{δα | α ∈ M} ⊆ A.

Justifications that are cardinality minimal (and thus also subset minimal) can
be directly computed using an ASP program with weak constraints.

Proposition 2. Let O be an ontology, c an atom modelling a consequence of
O, and P the program P = δ(ΠO) ∪ {: − not c} ∪ {:∼ δα : α ∈ O}. M ⊆ O
is a justification for c iff there exists an optimal answer set A of P such that
{δα | α ∈ M} ⊆ A.

Before concluding, we note that the translation permits computing the intersec-
tion of all justifications, and consequences derived from it, through the appli-
cation of cautious reasoning [5]. In ASP, a cautious consequence is one that
holds in every answer set. Since the program P from Proposition 1 provides a
one-to-one correspondence between answer sets and sub-ontologies deriving a
consequence, cautious reasoning refers to reasoning over the intersection of all
those sub-ontologies, and in particular over the subset-minimal ones; that is,
over the justifications. Unfortunately, an analogous result does not exist for the
union of all justifications. Indeed, every axiom would be available for brave rea-
soning (consequences which hold in at least one answer set) [5] over the same
program P , but not all axioms belong to some justification.

5 Conclusions

We presented a general approach for axiom pinpointing based on a reduction to
ASP. As a proof of concept, we have shown how the reduction works for the light-
weight DL HL and the more expressive EL. The same approach works for any
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logic with a modular translation to ASP, for instance any DL with a consequence-
based reasoning algorithm [10,18] should enjoy such a translation. Compared
to existing approaches [1,17], ours is more general and does not require the
construction of a specific propositional formula encoding the reasoning task.

In future work we will extend the translation to ALC and more expressive
DLs, and test the efficiency of our method on ASP solvers. We will also study the
implementation of other axiom pinpointing services based on ASP constructs.
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Abstract. Logic programs (LPs) and argumentation frameworks (AFs) are two
declarative knowledge representation (KR) formalisms used for different reason-
ing tasks. The purpose of this study is interlinking two different reasoning com-
ponents. To this end, we introduce two frameworks: LPAF and AFLP. The for-
mer enables to use the result of argumentation in AF for reasoning in LP, while
the latter enables to use the result of reasoning in LP for arguing in AF. These
frameworks are extended to bidirectional frameworks in which AF and LP can
exchange information with each other. We also investigate their connection to
several general KR frameworks from the literature.

1 Introduction

A logic program (LP) represents declarative knowledge as a set of rules and realizes
commonsense reasoning as logical inference. An argumentation framework (AF), on
the other hand, represents arguments and an attack relation over them, and defines
acceptable arguments under various semantics. The two frameworks specify different
types of knowledge and realize different types of reasoning. In our daily life, however,
we often use two modes of reasoning interchangeably. For instance, consider a logic
program LP = {get vaccine ← safe∧ effective, ¬get vaccine ← not safe} which says
that we get a vaccine if it is safe and effective, and we do not get it if it is not safe. To see
whether a vaccine is safe and effective, we refer to an expert opinion. It is often the case,
however, that multiple experts have different opinions. In this case, we observe argu-
mentation among experts and take it into account to make a decision. In other words,
the truth value of safe is determined by an external argumentation framework such as
AF = ({s,d},{(s,d),(d,s)}) in its most condensed form where s represents safe and d
represents dangerous. A credulous reasoner will accept safe under the stable semantics,
while a skeptical reasoner will not accept it under the grounded semantics. A reasoner
determines acceptable arguments under chosen semantics and makes a decision using
his/her own LP. For another example, consider a debate on whether global warming is
occurring. Scientists and politicians make different claims based on evidence and scien-
tific knowledge. An argumentation framework is used for representing the debate, while
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arguments appearing in the argumentation graph are generated as results of reasoning
from the background knowledge of participants represented by LPs.

In these examples, we can encode reasoners’ private knowledge as LPs and argu-
mentation in the public space as AFs. It is natural to distinguish two different types of
knowledge and interlink them with each other. In the first example, an agent has a pri-
vate knowledge base that refers to opinions in a public argumentation framework. In the
second example, on the other hand, agents participating in a debate have their private
knowledge bases supporting their individual claims.

Logic programs and argumentation frameworks are mutually transformed with each
other. Dung [6] provides a transformation from LPs to AFs and shows that stable mod-
els [11] (resp. the well-founded model [16]) of a logic program correspond to stable
extensions (resp. the grounded extension) of a transformed argumentation framework.
He also introduces a converse transformation from AFs to LPs, and shows that the
semantic correspondences still hold. The results are extended to equivalences of LPs
and AFs under different semantics (e.g. [5]). Using such transformational approaches,
an LP and an AF can be combined and one could perform both argumentative rea-
soning and commonsense reasoning in a single framework. One of the limitations of
this approach is that in order to combine an LP and an AF into a single framework,
the two frameworks must have the corresponding semantics. For instance, suppose that
an agent has a knowledge base LP and refers to an AF . If the agent uses the stable
model semantics of LP, then to combine LP with AF using a transformation proposed
in [5,6] AF must use the stable extension semantics. Argumentation can have an inter-
nal structure in structured argumentation. In assumption based argumentation (ABA)
[7], for instance, an argument for a claim c is supported by a set of assumptions S if
c is deduced from S using a set of LP rules (S � c). A structured argumentation has a
knowledge base inside an argument and provides reasons that support particular claims.
An argument is represented as a tree and an attack relation is introduced between trees.
However, merging argumentation and knowledge bases into a single framework would
produce a huge argumentation structure that is complicated and hard to manage.

In this paper, we introduce new frameworks, called LPAF and AFLP, for interlink-
ing LPs and AFs. The LPAF uses the result of argumentation in AFs for reasoning
in LPs. In contrast, the AFLP uses the result of reasoning in LPs for arguing in AFs.
These frameworks are extended to bidirectional frameworks in which AFs and LPs can
exchange information with each other. We address applications of the proposed frame-
work and investigate connections to existing KR frameworks. The rest of this paper is
organized as follows. Section 2 reviews basic notions of logic programming and argu-
mentation frameworks. Section 3 introduces several frameworks for interlinking LPs
and AFs. Section 4 presents applications to several KR frameworks. Section 5 discusses
complexity issues and Sect. 6 summarizes the paper. Due to space limitation, proofs of
propositions are omitted in this paper. They are available in the longer version [15].

2 Preliminaries

We consider a language that contains a finite setL of propositional variables.
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Definition 1. A (disjunctive) logic program (LP) is a finite set of rules of the form:

p1 ∨·· ·∨ p� ← q1, . . . ,qm, not qm+1, . . . ,not qn (�,m,n ≥ 0)

where pi and q j are propositional variables in L and not is negation as failure (NAF).

The left-hand side of ← is the head and the right-hand side is the body. For each
rule r of the above form, head(r), body+(r), and body−(r) respectively denote the
sets of atoms {p1, . . . , p�}, {q1, . . . ,qm}, and {qm+1, . . . ,qn}, and body(r) = body+(r)∪
body−(r). A (disjunctive) fact is a rule r with body(r) = ∅. A fact is a non-disjunctive
fact if � = 1. An LP is a normal logic program if | head(r) |≤ 1 for any rule r in the
program. Given a logic program LP, put Head(LP) =

⋃
r∈LP head(r) and Body(LP) =

⋃
r∈LP body(r). Throughout the paper, a program means a propositional/ground logic

program and BLP is the set of ground atoms appearing in a program LP (called the
Herbrand base).

A program LP under the μ semantics is denoted by LPμ . The semantics of LPμ is
defined as the set M μ

LP ⊆ 2BLP (or simply M μ ) of μ models of LP. If a ground atom
p is included in every μ model of LP, we write LPμ |= p. LPμ is simply written as LP
if the semantics is clear in the context. A logic programming semantics μ is universal
if every LP has a μ model. The stable model semantics is not universal, while the well-
founded semantics of normal logic programs is universal.A logic program LP under the
stable model semantics (resp. well-founded semantics) is written as LPstb (resp. LPwf ).

Definition 2. An argumentation framework (AF) is a pair (A,R) where A ⊆ L is a
finite set of arguments and R ⊆ A×A is an attack relation.

For an AF (A,R), we say that an argument a attacks an argument b if (a,b) ∈ R. A set
S of arguments attacks an argument a iff there is an argument b ∈ S that attacks a; S is
conflict-free if there are no arguments a,b ∈ S such that a attacks b. S defends an argu-
ment a if S attacks every argument that attacks a. We write D(S) = {a | S defends a}.

The semantics of AF is defined as the set of designated extensions [6]. Given
AF = (A,R), a conflict-free set of arguments S⊆ A is a complete extension iff S=D(S);
a stable extension iff S attacks each argument in A \ S; a preferred extension iff S is a
maximal complete extension of AF (wrt ⊆); a grounded extension iff S is the mini-
mal complete extension of AF (wrt ⊆). An argumentation framework AF under the ω
semantics is denoted by AFω . The semantics of AFω is defined as the set E ω

AF (or simply
E ω ) of ω extensions of AF . We abbreviate the above four semantics of AF as AFcom,
AFstb, AFprf and AFgrd , respectively. AFω is simply written as AF if the semantics is
clear in the context. Among the four semantics, the following relations hold: for any
AF , E stb

AF ⊆ E prf
AF ⊆ E com

AF and E grd
AF ⊆ E com

AF . E stb
AF is possibly empty, while others are

not. In particular, E grd
AF is a singleton set. An argumentation semantics ω is universal

if every AF has an ω extension. The stable semantics is not universal, while the other
three semantics presented above are universal. 1

1 We assume readers familiarity with the stable model semantics [11], [14] and the well-founded
semantics [16]
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3 Linking LP and AF

3.1 From AF to LP

We first introduce a framework that can use the result of argumentation in AFs for
reasoning in LPs. In this subsection, we assume that Head(LP)∩A= ∅ for a program
LP and AF = (A,R), that is, no rule in a logic program has an argument in its head.

Definition 3. Given an LP and AF = (A,R), define LP+A = {r ∈ LP | body(r)∩ A �=
∅} and LP−A = {r ∈ LP | body(r)∩ A = ∅}. We say that each rule in LP+A (resp.
LP−A) refers to arguments (resp. is free from arguments). An argument a∈ A is referred
to in LP if a appears in LP. Define A |LP= {a ∈ A | a is referred to in LP}.

By definition, an LP is partitioned into LP= LP+A ∪LP−A.

Definition 4. Given an LP and AF = (A,R), a μ model of LP extended by A ⊆ 2A is a
μ model of LP∪{a ←| a ∈ E ∩A |LP} for some E ∈ A if A �= ∅; otherwise, it is a μ
model of LP−A.

Definition 5. A simple LPAF framework is a pair 〈LPμ , AFω 〉, where LPμ is a program
under the μ semantics and AFω is an argumentation framework under the ω semantics.

Definition 6. Let ϕ = 〈LPμ , AFω 〉 be a simple LPAF framework. Suppose that AF has
the set of ω extensions: E ω = {E1, . . . ,Ek} (k≥ 0). Then an LPAF model of ϕ is defined
as a μ model of LPμ extended by E ω . The set of LPAF models of ϕ is denoted by Mϕ .

By definition, an LPAF model is defined as a μ model of the program LP by intro-
ducing arguments that are referred to in LP and are acceptable under the ω semantics
of AF . If the AF part has no ω extension (E ω = ∅), on the other hand, AF provides
no justification for arguments referred to by LP. In this case, we do not take the conse-
quences that are derived using arguments in AF . Then an LPAF model is constructed
by rules that are free from arguments in AF .

Example 1. Consider ϕ1 = 〈LPstb, AFstb 〉 where LPstb = { p ← a, q ← not a} and
AFstb = ({a,b},{(a,b),(b,a)}). As AFstb has two stable extensions {a} and {b}, ϕ1

has two LPAF models {p,a} and {q}. On the other hand, if we use ω = grounded
then AFgrd has the single extension ∅. Then 〈LPstb, AFgrd 〉 has the single LPAF model
{q}.2 Next, consider ϕ2 = 〈LPstb, AFstb 〉 where LPstb = { p ← not a, q ← not p} and
AFstb = ({a,b},{(a,b),(a,a)}). As AFstb has no stable extension and the second rule in
LPstb is free from arguments, ϕ2 has the single LPAF model {q}. Note that if we keep
the first rule then a different conclusion p is obtained from LPstb. We do not consider
the conclusion justified because AFstb provides no information on whether the argument
a is acceptable or not.

Proposition 1. Let ϕ1 = 〈LPμ , AF1
ω1

〉 and ϕ2 = 〈LPμ , AF2
ω2

〉 be two LPAFs such that
E ω1
AF1 �= ∅. If E ω1

AF1 ⊆ E ω2
AF2 , then Mϕ1 ⊆ Mϕ2 .

2 Note that an AF extension represents whether an argument is accepted or not. If an argument
a is not in an extension E, a is not accepted in E. Then not a in LP becomes true by NAF.
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Proposition 1 implies the inclusion relations with the same AF under different
semantics: Mϕ1 ⊆ Mϕ2 holds for ϕ1 = 〈LPμ , AFpr f 〉 and ϕ2 = 〈LPμ , AFcom 〉; ϕ1 =
〈LPμ , AFstb 〉 and ϕ2 = 〈LPμ , AFpr f 〉; or ϕ1 = 〈LPμ , AFgrd 〉 and ϕ2 = 〈LPμ , AFcom 〉.

Two programs LP1
μ and LP2

μ are uniformly equivalent relative to A (denoted LP1
μ ≡A

u

LP2
μ ) if for any set of non-disjunctive facts F ⊆ A, the programs LP1

μ ∪F and LP2
μ ∪F

have the same set of μ models [10]. The equivalence of two simple LPAF frameworks
is then characterized as follows.

Proposition 2. Let ϕ1 = 〈LP1
μ , AFω 〉 and ϕ2 = 〈LP2

μ , AFω 〉 be two LPAFs such that
E ω �= ∅. Then, Mϕ1 =Mϕ2 if LP1

μ ≡A
u LP2

μ and A |LP1μ= A |LP2μ where AFω = (A,R).

A simple LPAF framework ϕ = 〈LPμ , AFω 〉 is consistent if ϕ has an LPAF model.
The consistency of ϕ depends on the chosen semantics μ . In particular, a simple LPAF
framework ϕ = 〈LPμ , AFω 〉 is consistent if μ is universal. ϕ = 〈LPμ , AFω 〉 may have
an LPAF model even ifM μ

LP = E ω
AF = ∅.

Example 2. Consider ϕ = 〈LPstb, AFstb 〉 where LPstb = { p ← not a, not p, q ←} and
AFstb = ({a}, {(a,a)}). Then M stb

LP = E stb
AF = ∅, but ϕ has the LPAF model {q}.

A simple LPAF consists of a single LP and an AF, which is generalized to a frame-
work that consists of multiple LPs and AFs.

Definition 7. A general LPAF framework is defined as a tuple 〈LP
m,AF

n 〉 where
LP

m = (LP1
μ1

, . . . ,LPm
μm
) and AF

n = (AF1
ω1

, . . . ,AFn
ωn
). Each LPi

μi
(1 ≤ i ≤ m) is a logic

program LPi under the μi semantics and each AF j
ω j (1 ≤ j ≤ n) is an argumentation

framework AF j under the ω j semantics.

A general LPAF framework is used in a situation where multiple agents have indi-
vidual LPs as their private knowledge bases and each agent possibly refers to the results
of argumentation of open AFs. The semantics of a general LPAF is defined as an exten-
sion of a simple LPAF framework.

Definition 8. Let ϕ = 〈LP
m,AF

n 〉 be a general LPAF framework. The LPAF state of
ϕ is defined as a tuple (Σ1, . . . ,Σm) where Σi = (Mi

1, . . . ,M
i
n) (1 ≤ i ≤ m) and Mi

j

(1 ≤ j ≤ n) is the set of LPAF models of 〈LPi
μi

,AF j
ω j 〉.

By definition, an LPAF state consists of a collection of LPAF models such that each
model is obtained by combining a program LPi

μi
and an argumentation framework AF j

ω j .

Example 3. Consider ϕ = 〈(LPstb, LPwf ), (AFstb, AFgrd)〉 where LPstb = LPwf = { p←
a, not q, q← a, not p} andAFstb =AFgrd =({a,b},{(a,b),(b,a)}). In this case, 〈LPstb,
AFstb〉 has three LPAF models: {p,a}, {q,a} and ∅; 〈LPstb, AFgrd 〉 has the single
LPAF model: ∅; 〈LPwf , AFstb 〉 has two LPAF models:3 {a} and ∅; 〈LPwf , AFgrd 〉
has the single LPAF model: ∅. Then ϕ has the LPAF state (Σ1,Σ2) where Σ1 =
({{p,a},{q,a},∅},{∅}) and Σ2 = ({{a},∅},{∅}).

3 We consider the well-founded model as the set of true atoms under the well-founded semantics.
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The above example shows that a general LPAF is used for comparing the results of
combination between LP and AF under different semantics. Given tuples (S1, . . . ,Sk)
and (T1, . . . ,T�) (k, � ≥ 1), define (S1, . . . ,Sk)⊕ (T1, . . . ,T�) = (S1, . . . ,Sk,T1, . . . ,T�).

Proposition 3. Let ϕ = 〈LP
m,AF

n 〉 be a general LPAF framework. Then the LPAF
state (Σ1, . . . ,Σm) of ϕ is obtained by (Σ1, . . . ,Σk)⊕ (Σk+1, . . . ,Σm) (1 ≤ k ≤ m− 1)
where (Σ1, . . . ,Σk) is the LPAF state of ϕ1 = 〈LP

k, AF
n 〉 and (Σk+1, . . . ,Σm) is the

LPAF state of ϕ2 = 〈LP
m
k+1, AF

n 〉 where LP
m
k+1 = (LPk+1

μk+1
, . . . ,LPm

μm
).

Proposition 3 presents that a general LPAF has the modularity property; ϕ is partitioned
into smaller ϕ1 and ϕ2, and the introduction of new LPs to ϕ is done incrementally.

3.2 From LP to AF

We next introduce a framework that can use the result of reasoning in LPs for arguing
in AFs. In this subsection, we assume that Body(LP)∩A = ∅ for a program LP and
AF = (A,R), that is, no rule in a logic program has an argument in its body.

Definition 9. Let AF = (A,R) and M ⊆ L . Then AF with support M is defined as
AFM = (A,R′) where R′ = R\{(x,a) | x ∈ A and a ∈ A∩M }.
By definition, AFM is an argumentation framework in which every tuple attacking a∈M
is removed from R. As a result, every argument included inM is accepted in AFM .

Definition 10. Let AF =(A,R) andM ⊆ 2BLP . An ω extension of AF supported byM
is an ω extension of AFM for some M ∈ M if M �= ∅; otherwise, it is an ω extension
of (A′,R′) where A′ = A\BLP and R′ = R∩ (A′ ×A′).

Definition 11. A simple AFLP framework is a pair 〈AFω , LPμ 〉 where AFω is an argu-
mentation framework under the ω semantics and LPμ is a program under μ semantics.

Definition 12. Let ψ = 〈AFω , LPμ 〉 be a simple AFLP framework andM μ ⊆ 2BLP be
the set of μ models of LP. An AFLP extension of ψ is defined as an ω extension of AFω
supported by M μ . Eψ denotes the set of AFLP extensions of ψ .

By definition, an AFLP extension is defined as an ω extension of AFM
ω that takes

into account support information in a μ model M of LP. If the LP part has no μ model
(M μ = ∅), on the other hand, LP provides no ground for arguments in A∩BLP. In
this case, we do not use those arguments that rely on LP. Then an AFLP extension is
constructed using arguments that do not appear in LP.

Example 4. Consider ψ1 = 〈AFstb, LPstb 〉 where AFstb = ({a,b},{(a,b),(b,a)}) and
LPstb = {a← p, p← not q, q← not p}. LPstb has two stable modelsM1 = {a, p} and
M2 = {q}, then AFM1

stb = ({a,b},{(a,b)}) and AFM2
stb = AFstb. Hence, ψ1 has two AFLP

extensions {a} and {b}. On the other hand, if we use ω = grounded, then 〈AFgrd , LPstb 〉
has two AFLP extensions {a} and∅. Next, consider ψ2 = 〈AFgrd , LPstb 〉where AFgrd =
({a,b,c},{(a,b),(b,c)}) and LPstb = {a ← p, p ← not p}. As LPstb has no stable
model, ψ2 has the AFLP extension {b} as the grounded extension of ({b,c},{(b,c)}).
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Proposition 4. Let ψ1 = 〈 AFω , LP1
μ1

〉 and ψ2 = 〈AFω , LP2
μ2

〉 be two AFLPs such that
M μ1

LP1
�= ∅. IfM μ1

LP1
⊆ M μ2

LP2
, then Eψ1 ⊆ Eψ2 .

Baumann [1] introduces equivalence relations of AFs with respect to deletion of
arguments and attacks. For two AF1

ω = (A1,R1) and AF2
ω = (A2,R2), AF1

ω and AF2
ω are

normal deletion equivalent (denoted by AF1
ω ≡nd AF2

ω ) if for any set A of arguments
(A′

1,R1 ∩ (A′
1 ×A′

1)) and (A′
2,R2 ∩ (A′

2 ×A′
2)) have the same set of ω extensions where

A′
1 = A1 \A and A′

2 = A2 \A. In contrast, AF1
ω and AF2

ω are local deletion equivalent
(denoted by AF1

ω ≡ld AF2
ω ) if for any set R of attacks (A1,R1 \R) and (A2,R2 \R) have

the same set of ω extensions. By definition, we have the next result.

Proposition 5. Let ψ1 = 〈AF1
ω , LPμ 〉 and ψ2 = 〈AF2

ω , LPμ 〉 be two AFLPs. Then,
Eψ1 = Eψ2 if (i)M

μ = ∅ and AF1
ω ≡nd AF2

ω ; or (ii)M
μ �= ∅ and AF1

ω ≡ld AF2
ω .

Baumann shows that AF1
ω ≡ld AF2

ω if and only if AF1
ω =AF2

ω for any ω = {com,stb,prf ,
grd}. In contrast, necessary or sufficient conditions for AF1

ω ≡nd AF2
ω are given by the

structure of argumentation graphs and they differ from the chosen semantics in general.
A simple AFLP framework ψ = 〈AFω , LPμ 〉 is consistent if ψ has an AFLP exten-

sion. By definition, a simple AFLP framework ψ = 〈AFω , LPμ 〉 is consistent if ω is
universal. A simple AFLP consists of a single AF and an LP, which is generalized to a
framework that consists of multiple AFs and LPs.

Definition 13. A general AFLP framework is defined as a tuple 〈AF
n,LP

m 〉 where
AF

n = (AF1
ω1

, . . . ,AFn
ωn
) and LP

m = (LP1
μ1

, . . . ,LPm
μm
). Each AF j

ω j (1 ≤ j ≤ n) is an
argumentation framework AF j under the ω j semantics and each LPi

μi
(1 ≤ i ≤ m) is a

logic program LPi under the μi semantics.

A general AFLP framework is used in a situation such that argumentative dialogues
consult LPs as information sources. The semantics of a general AFLP is defined as an
extension of a simple AFLP framework.

Definition 14. Let ψ = 〈AF
n,LP

m 〉 be a general AFLP framework. The AFLP state
of ψ is defined as a tuple (Γ1, . . . ,Γn) where Γj = (E j

1, . . . ,E
j
m) (1 ≤ j ≤ n) and E j

i

(1 ≤ i ≤ m) is the set of AFLP extensions of 〈AF j
ω j , LP

i
μi

〉.
By definition, an AFLP state consists of a collection of AFLP extensions such that

each extension is obtained by combining AF j
ω j and LPi

μi
.

Example 5. Consider ψ = 〈(AFgrd), (LP1
stb, LP

2
stb)〉 where AFgrd = ({a,b},{(a,b)}),

LP1
stb = {a ← p, p ←}, and LP2

stb = {b ← q, q ←}. Then, 〈AFgrd ,LP1
stb 〉 has the

AFLP extension {a}, while 〈AFgrd ,LP2
stb 〉 has the AFLP extension {a,b}. Then the

AFLP state of ψ is (Γ1) where Γ1 = ({{a}},{{a,b}}).
A general AFLP has the modularity property. The operation ⊕ is defined in Sect. 3.1.

Proposition 6. Let ψ = 〈AF
n,LP

m 〉 be a general AFLP framework. Then the AFLP
state (Γ1, . . . ,Γn) of ψ is obtained by (Γ1, . . . ,Γk)⊕ (Γk+1, . . . ,Γn) (1 ≤ k ≤ n−1) where
(Γ1, . . . ,Γk) is the AFLP state of ψ1 = 〈AF

k, LP
m 〉 and (Γk+1, . . . ,Γn) is the AFLP state

of ψ2 = 〈AF
n
k+1, LP

m 〉 where AF
n
k+1 = (AFk+1

ωk+1
, . . . ,AFn

ωn
).
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3.3 Bidirectional Framework

In Sects. 3.1 and 3.2 we provided frameworks in which given LPs and AFs one refers
the other in one direction. This subsection provides a framework such that LPs and AFs
interact with each other. Such a situation happens in social media, for instance, where
a person posts his/her opinion to an Internet forum, which arises public discussion on
the topic, then the person revises his/her belief by the result of discussion. In this sub-
section, we assume that any rule in LP could contain arguments in its head or body.

Definition 15. A simple bidirectional LPAF framework is defined as a pair
〈〈LPμ , AFω 〉〉 where LPμ is a logic program and AFω is an argumentation framework.

Definition 16. Let ζ = 〈〈LPμ , AFω 〉〉 be a simple bidirectional LPAF framework. Sup-
pose that a simple AFLP framework ψ = 〈AFω , LPμ 〉 has the set of AFLP extensions
Eψ . Then a BDLPAF model of ζ is defined as a μ model of LPμ extended by Eψ .

BDLPAF models reduce to LPAF models if Eψ coincides with E ω
AF . In the bidirectional

framework, an LP can refer to arguments in AF and AF can get a support from the LP.

Example 6. Consider ζ = 〈〈LPstb, AFstb 〉〉 where LPstb = {a ← not p, q ← c} and
AFstb = ({a,b,c},{(a,b),(b,a),(b,c)}). The simple AFLP framework 〈AFstb,LPstb 〉
has the AFLP extension E = {a,c}. So, the BDLPAF model of ζ becomes {a,c,q}.

Similarly, we can make a simple AFLP bidirectional.

Definition 17. A simple bidirectional AFLP framework is defined as a pair
〈〈AFω , LPμ 〉〉 where AFω is an argumentation framework and LPμ is a logic program.

Definition 18. Let η = 〈〈AFω , LPμ 〉〉 be a simple bidirectional AFLP framework. Sup-
pose that a simple LPAF framework ϕ = 〈LPμ , AFω 〉 has the set of LPAF models Mϕ .
Then a BDAFLP extension of η is defined as an ω extension of AFω supported by Mϕ .

Example 7. Consider η = 〈〈AFgrd , LPstb 〉〉 where AFgrd = ({a,b},{(a,b),(b,a)}) and
LPstb = { p ← a, q ← not a, b ← q}. The simple LPAF framework 〈LPstb,AFgrd 〉 has
the single LPAF model M = {b,q}. So, the BDAFLP extension of η becomes {b}.

Given AFω and LPμ , a series of BDLPAF models (or BDAFLP extensions) can
be built by repeatedly referring to each other. Starting with the AFLP extensions E0

ψ ,
the BDLPAF models M1

ϕ extended by E0
ψ are produced, then the BDAFLP extensions

E1
ψ supported by M1

ϕ are produced, which in turn produce the BDLPAF models M2
ϕ

extended by E1
ψ , and so on. Likewise, starting with the LPAF models M0

ϕ , the sets E
1
ψ ,

M1
ϕ , E

2
ψ , . . ., are produced. We write the sequences of BDLPAF models and BDAFLP

extensions as [M1
ϕ ,M2

ϕ , . . .] and [E1
ψ ,E2

ψ , . . .], respectively.

Proposition 7. Let [M1
ϕ ,M2

ϕ , . . .] and [E1
ψ ,E2

ψ , . . .] be sequences defined as above.

Then, Mi
ϕ =Mi+1

ϕ and E j
ψ = E j+1

ψ for some i, j ≥ 1.
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4 Applications

4.1 Deductive Argumentation

A structured argumentation is a framework such that there is an internal structure to an
argument. In structured argumentation, knowledge is represented using a formal lan-
guage and each argument is constructed from that knowledge. Given a logical language
L and a consequence relation � inL , a deductive argument [2] is a pair 〈F ,c〉 where
F is a set of formulas in L and c is a (ground) atom such that F � c. F is called
the support of the argument and c is the claim. A counterargument is an argument that
attacks another argument. It is defined in terms of logical contradiction between the
claim of a counterargument and the premises of the claim of an attacked argument.

An AFLP framework is captured as a kind of deductive arguments in the sense
that LP can support an argument a appearing in AF . There is an important difference,
however. In an AFLP, argumentative reasoning in AF and deductive reasoning in LP are
separated. The AF part is kept at the abstract level and the LP part represents reasons for
supporting particular arguments. As such, an AFLP provides a middle ground between
abstract argumentation and structured argumentation. Such a separation keeps the whole
structure compact and makes it easy to update AF or LP without changing the other part.
Thus, AFLP/LPAF supports an elaboration tolerant development of knowledge bases.
This allows us to characterize deductive argumentation in AFLP as follows.

Definition 19. Let ψ = 〈AF
n, LP

m 〉 be a general AFLP framework s.t. AFi
ωi
= (Ai,Ri)

(1 ≤ i ≤ n). (i) a ∈ Ai is supported in LPj
μ j for some 1 ≤ j ≤ m (written (LPj

μ j ,a)) if
LPj

μ j |= a; (ii) (LPj
μ j ,a) and (LPk

μk
,b) rebut each other if {(a,b), (b,a)} ⊆ Ri for some

i; (iii) (LPj
μ j ,a) undercuts (LP

k
μk

,b) if LPk
μk

∪{a} �|= b.

Example 8. ([2]) (a) There is an argument that the government should cut spending
because of a budget deficit. On the other hand, there is a counterargument that the
government should not cut spending because the economy is weak. These arguments
are respectively represented using deductive arguments as: A1 = 〈{deficit, deficit →
cut}, cut 〉 and A2= 〈{weak, weak→ ¬cut}, ¬cut 〉 where A1 and A2 rebut each other.
The situation is represented using the AFLP 〈(AFstb), (LP1

stb, LP
2
stb)〉 such that AFstb =

({cut,no-cut}, {(cut,no-cut), (no-cut,cut)}); LP1
stb = {cut ← deficit, deficit ←};

LP2
stb = {no-cut ← weak, weak ←}. Then (LP1

stb,cut) and (LP2
stb,no-cut) rebut each

other.
(b) There is an argument that the metro is an efficient (eff ) form of transport, so

one can use it. On the other hand, there is a counterargument that the metro is inef-
ficient (ineff ) because of a strike. These arguments are respectively represented using
deductive arguments as: A1 = 〈{eff , eff → use}, use〉 and A2 = 〈{strike, strike →
¬eff}, ¬eff 〉 where A2 undercuts A1. The situation is represented using an AFLP
〈(AFstb), (LP1

stb, LP
2
stb)〉 such that AFstb = ({eff , ineff}, {(eff , ineff ),(ineff ,eff )});

LP1
stb = {use ← eff , eff ← not ineff }; LP2

stb = { ineff ← strike, strike ←}. Then
(LP2

stb, ineff ) undercuts (LP
1
stb, use).
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4.2 Argument Aggregation

Argument aggregation or collective argumentation [3] considers a situation in which
multiple agents may have different arguments and/or opinions. The problems are then
what and how to aggregate arguments. In abstract argumentation, the problem is for-
mulated as follows. Given several AFs having different arguments and attacks, find
acceptable arguments among those AFs. In the argument-wise aggregation, individu-
ally supported arguments are aggregated by some voting mechanism.

Example 9. ([3]) Suppose three agents deciding which among three arguments a,
b, and c, are collectively acceptable. Each agent has a subjective evaluation of the
interaction among those arguments, leading to three different individual AFs: AF1 =
({a,b,c}, {(a,b),(b,c)}), AF2 = ({a,b,c}, {(a,b)}), and AF3 = ({a,b,c}, {(b,c)}).
Three AFs have the grounded extensions {a,c}, {a,c}, and {a,b}, respectively. By
majority voting, {a,c} is obtained as the collective extension.

In Example 9, however, how an agent performs a subjective evaluation is left as a black-
box. The situation is represented using a general AFLP ψ where ψ = 〈(AFgrd), (LP1

stb,
LP2

stb, LP
3
stb)〉 with AFgrd = ({a,b,c}, {(a,b),(b,c)}), LP1

stb = { p ← not q}, LP2
stb =

{c ← p, p ←}, and LP3
stb = {b ← not q}. Then (AFgrd ,LP1

stb) has the AFLP
extension {a,c}; (AFgrd ,LP2

stb) has the AFLP extension {a,c}; (AFgrd ,LP3
stb) has

the AFLP extension {a,b}. In this case, the AFLP state of ψ is (Γ ) with Γ =
({{a,c}}, {{a,c}}, {{a,b}}). As such, three agents evaluate the common AF based
on their private knowledge base, which results in three individual sets of extensions
in the AFLP state. Observe that in this case, the private knowledge of the agents are
related to p and q, and only the third agent is influenced by his private knowledge base
in drawing the conclusion.

When multiple agents argue on the common AF, argument-wise aggregation is char-
acterized using AFLP as follows. Suppose Γ = (T1, . . . ,Tk) (k ≥ 1) with Ti ⊆ 2A where
A is the set of arguments of AF. For any E ⊆ A, let FΓ (E) = h where h is the number
of occurrences of E in T1, . . . ,Tk. Define maxFΓ = {E | FΓ (E) is maximal}.
Definition 20. Let ψ = 〈AF

1, LP
m 〉 (m ≥ 1) be a general AFLP that consists of a

single AF and multiple LPs. When ψ has the AFLP state (Γ ) with Γ = (T1, . . . ,Tm), the
collective extension by majority voting is any extension in maxFΓ .

Applying it to the above example, maxFΓ = {{a,c}}. In Definition 20, if there is
E ⊆ A such that FΓ (E) = m, then E is included in every Ti (1 ≤ i ≤ m). In this case,
all agents agree on E.

4.3 Multi-context System

Multi-context system (MCS) has been introduced as a general formalism for integrat-
ing heterogeneous knowledge bases [4]. An MCSM = (C1, . . . ,Cn) consists of contexts
Ci = (Li,kbi,bri) (1 ≤ i ≤ n), where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a
knowledge base of Li, BSi is the set of possible belief sets, ACCi : KBi �→ 2BSi is a
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semantic function of Li, and bri is a set of Li-bridge rules of the form:

s ← (c1:p1), . . . ,(c j:p j), not (c j+1:p j+1), . . . , not (cm:pm)

where, for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n, pk is an element of some belief
set of Lck , and kbi ∪{s} ∈ KBi. Intuitively, a bridge rule allows us to add s to a context,
depending on the beliefs in the other contexts. Given a rule r of the above form, we
denote head(r) = s. The semantics of an MCS is described by the notion of belief states.
A belief state of an MCS M = (C1, . . . ,Cn) is a tuple S = (S1, . . . ,Sn) where Si ∈ BSi
(1 ≤ i ≤ n). Given a belief state S and a bridge rule r of the above form, r is applicable
in S if p� ∈ Sc� for each 1 ≤ � ≤ j and pk �∈ Sck for each j+ 1 ≤ k ≤ m. By app(B,S)
we denote the set of the bridge rules r ∈ B that are applicable in S. A belief state S ofM
is an equilibrium if Si ∈ ACCi(kbi ∪{head(r) | r ∈ app(bri,S)}) for any i (1 ≤ i ≤ n).

Given an LPAF ϕ = 〈LPμ , AFω 〉, the corresponding MCS of ϕ is defined by ϕmcs =
(C1,C2) whereC1 = (L1,LPμ ,br1) in which L1 is the logic of LP under the μ semantics
and br1 = {a ← (c2 : a) | a ∈ A |LP}; and C2 = (L2,AFω ,∅) where L2 is the logic of
AF under the ω semantics. Intuitively, the bridge rules transfer the acceptability of
arguments in AFω to LPμ .

Proposition 8. Let ϕ = 〈LPμ ,AFω 〉 be an LPAF framework and ϕmcs the correspond-
ing MCS of ϕ . If AFω is consistent then (S1,S2) is an equilibrium of ϕmcs iff S1 is an
LPAF model of ϕ and S2 is an ω extension of AFω .

Let ψ = 〈AFω , LPμ 〉 be an AFLP framework with AFω = (A,R). The corresponding
MCS of ψ is defined by ψmcs = (C1,C2) where C1 = (L1,AFω ,br1) in which L1 is
the logic of AF under the ω semantics, and br1 = {(y,x) ← (c2 : a) | ∃a∃x [a ∈ A∩
BLP and (x,a) ∈ R]} where y(�∈ A) is a new argument; C2 = (L2,LPμ ,∅) where L2
is the logic of LP under the μ semantics. As with LPAF, the bridge rules transfer the
acceptability of arguments from LPμ to AFω . We assume that new arguments and attacks
introduced by the bridge rules br1 are respectively added to the set of arguments and
attacks of AF .

Proposition 9. Let ψ = 〈AFω ,LPμ 〉 be an AFLP framework and ψmcs the correspond-
ing MCS of ψ . If LPμ is consistent then (S1,S2) is an equilibrium of ψmcs iff S1 \Y is an
AFLP extension of ψ and S2 is a μ model of LPμ , where Y is the set of new arguments
introduced by br1.

A general LPAF ϕ = 〈LPm, AFn 〉 can be viewed as a collection of MCS. Let
C j
i be the corresponding MCS of 〈LPi

μi
,AF j

ω j 〉. It is easy to see that by Proposi-

tion 8, (C1
i , . . . ,C

n
i ) can be used to characterize the i-th element Σi of the LPAF state

(Σ1, . . . ,Σm) of ϕ . A similar characterization of an AFLP state using MCS could be
derived by Proposition 9. A simple LPAF/AFLP is captured as an MCS with a restric-
tion of two systems (Propositions 8 and 9). However, ϕmcs (resp. ψmcs) is well-defined
only if its submodule AFω (resp. LPμ ) is consistent. This is because an MCS assumes
that each context is consistent. By contrast, LPAF/AFLP just neglects rules/arguments
relying on information that comes from inconsistent AF/LP. As such, LPAF/AFLP
shares a view similar to MCS while it is different from MCS in general.
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4.4 Constrained Argumentation Frameworks

Constrained argumentation frameworks (CAF) [13] could be viewed as another attempt
to extend AF with a logical component. A CAF is of the form 〈A,R,C 〉 where (A,R)
is an AF and C is a propositional formula over A. A set of arguments S satisfies C if
S∪ {¬a | a ∈ A \ S} |= C. For a semantics ω , an ω C-extension of 〈A,R,C 〉 is an ω
extension of (A,R) that satisfiesC, i.e., the constraintC is used to eliminate undesirable
extensions. Therefore, a CAF can be viewed as an LPAF (LPμ ,AFω) where AFω is the
original AF of the CAF and LPμ is used to verify the condition C.

Consider a CAF δ = 〈A,R,C 〉. For simplicity of the presentation, assume
that C is in DNF. For a ∈ A, let na be a unique new atom associated with
a, denoting that a is not acceptable. Let � be a special atom denoting true.
Define the logic program LP(C) as: LP(C) = {� ← l′1, . . . , l

′
n | a conjunct l1 ∧ ·· · ∧

ln is in C and l′i = a if li = a, and l′i = not a if li = ¬a}∪{na ← not a, ← a,na | a ∈
A}∪{← not �}. We can easily verify that a set of arguments S satisfies C iff S∪{na |
a ∈ A \ S}∪{�} is a stable model of LP(C). The next proposition highlights the flex-
ibility of LPAF in that it can also be used to express preferences among extensions
of AF.

Proposition 10. Let δ = 〈A,R,C 〉 be a CAF. Then, (LP(C)stb,AFω) has an LPAF
model M iff M \ ({na | a ∈ A}∪{�}) is an ω C-extension of δ .

5 Complexity

The complexity of LPAF/AFLP depends on the complexities of LP and AF. Let us con-
sider the model existence problem of simple LPAF frameworks, denoted by ExistsM ,
which is defined as: “given an LPAF framework ϕ , determine whether ϕ has an LPAF
model.” For a simple LPAF framework ϕ = 〈LPμ , AFω 〉, the existence of an LPAF
model of ϕ depends on μ and ω . For example, if μ = well-founded and ω = grounded
then ϕ has a unique LPAF model which can be computed in polynomial time (if LP
is a normal logic program); on the other hand, if μ = stable and ω = stable then the
existence of an LPAF model of ϕ is not guaranteed. Generally, the next result holds.

Proposition 11. Let ϕ = 〈LPμ , AFω 〉 be a simple LPAF framework such that μ is not
universal. Also, let Cμ and Cω be the complexity classes of LPμ and AFω in the poly-
nomial hierarchy, respectively, and max(Cμ ,Cω) the higher complexity class among
Cμ and Cω . Then the model existence problem of ϕ belongs to the complexity class
max(Cμ ,Cω).

Intuitively, the result follows from the observation that we can guess a pair (X ,Y )
and check whether Y is an ω extension of AFω and X is a μ model of LPμ ∪{a ←| a ∈
Y ∩A |LP}. A similar argument is done for a simple AFLP framework. As an example,
the existence of a stable model of a propositional disjunctive LP is in ΣP

2 [9] while
the existence of extensions in AF is generally in NP or trivial [8], then ExistsM for
LPAF/AFLP involving μ = stable is in ΣP

2 where ω is one of the semantics of AF
considered in this paper. Other semantics of AF (e.g. semi-stable, ideal, etc.) or LP (e.g.
supported, possible models, etc.) can be easily adapted.
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The model existence problem of simple LPAF/AFLP can be generalized to the state
existence problem of general LPAF/AFLP frameworks, and it can be shown that it is the
highest complexity class among all complexity classes involved in the general frame-
work. Similar arguments can be used to determine the complexity class of credulous or
skeptical reasoning in LPAF/AFLP. For example, the skeptical entailment in LPAF, i.e.,
checking whether an atom a belongs to every LPAF model of ϕ = 〈LPstb,AFω 〉 is in
ΠP

2 . We omit detailed discussion for space limitation.

6 Concluding Remarks

Several studies have attempted to integrate LP and AF–translating from one into the
other (e.g. [5,6]), or incorporating rule bases into an AF in the context of structured
argumentation (e.g. [2,7]). An approach taken in this paper is completely different from
those approaches. We do not merge LP and AF while interlinking two components in
different manners. LPAF and AFLP enable to combine different reasoning tasks while
keeping independence of each knowledge representation. Separation of two frameworks
also has an advantage of flexibility in dynamic environments, and several LPs and AFs
are freely combined in general LPAF/AFLP frameworks under arbitrary semantics. In
addition, it supports an elaboration tolerant use of various knowledge representation
frameworks. The potential of the proposed framework is shown by several applications
to existing KR frameworks. LPAF or AFLP is realized by linking solvers of LP and AF.

In the proposed framework, LP imports ω extensions from AF in LPAF, while
AF imports μ models from LP in AFLP. We can also consider frameworks such that
LP (resp. AF) imports skeptical/credulous consequences from AFω (resp. LPμ ). Such
frameworks are realized by importing the intersection/union of ω extensions of AF to
LP (or μ models of LP to AF). In this paper we considered extension based semantics
of AF. If we consider the labelling based semantics of AF, each argument has three
different justification states, in, out, or undecided. In this case, LPAF/AFLP is defined
in a similar manner by selecting a 3-valued semantics of logic programs. The current
framework can be further extended and applied in several ways. For instance, we can
extend it to allow a single LP/AF to refer to multiple AFs/LPs. If AFω is coupled with
a probabilistic logic program LPμ , an AFLP (AFω ,LPμ) could be used for comput-
ing probabilities of arguments in LPμ and realizing probabilistic argumentation in AFω
[12]. As such, the proposed framework has potential for rich applications in AI.
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Abstract. We propose a method for computing supported models of
normal logic programs in vector spaces using gradient information. First,
the program is translated into a definite program and embedded into a
matrix representing the program. We introduce a loss function based
on the implementation of the immediate consequence operator TP by
matrix-vector multiplication with a suitable thresholding function, and
we incorporate regularization terms into the loss function to avoid unde-
sirable results. The proposed thresholding operation is an almost every-
where differentiable alternative to the non-linear thresholding operation.
We report the results of several experiments where our method shows
promising performance when used with adaptive gradient update.

Keywords: Logic Programming · Supported Model Computation ·
Differentiable Logic Programming

1 Introduction

With the recent interest in neuro-symbolic approaches, performing logical infer-
ence with linear algebraic methods has been studied as an attractive alternative
to symbolic methods [2,9]. Prior implementations of neuro-symbolic systems pro-
vided interfaces for the symbolic reasoning engines to handle the outputs from
the neural networks as neural predicates [6,12]. However, more direct realization
of logic programming in continuous domain remains an open challenge.

Matrix representations of normal logic programs and a linear algebraic
method for computing the stable models were proposed by Sakama et al. [9].
Using an alternative matrix representation, Sato et al. computed supported mod-
els in vector spaces via 3-valued completion models of normal logic programs [11].
While the aforementioned methods would allow one to compute models under
non-monotonic semantics in vector spaces, they use non-differentiable operations
that do not use gradient-information. More recently, gradient-based search meth-
ods have been proposed for SAT [10], supported and stable model computation
[2]. Aspis et al.’s method uses a matrix representation of the program reduct,
the Newton’s method for root finding to find fixed points, and a parameterized
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sigmoid function for thresholding. Compared to symbolic local search methods
that flip one atom at a time [4], matrix- and gradient-based methods update all
assignments simultaneously in continuous domain, which may reduce the number
of restarts compared to discrete value search.

In the context of gradient-based search, many variations are possible for each
component. In this paper, we build upon previous works [2,10] by presenting an
alternative differentiable method for efficiently computing supported models of
normal logic programs in continuous vector spaces. Our main contributions are:

– Presenting an alternative method for embedding logic programs into matrices,
and designing an almost everywhere differentiable thresholding function.

– Introducing a loss function with regularization terms for computing supported
models, and integrating various gradient update strategies.

– Demonstrating with a help of systematic performance evaluation on a range of
programs, that by selecting appropriate components, it is possible to achieve
much higher performance and stability than the existing method.

The structure of this paper is as follows: Sect. 2 covers the necessary back-
ground and definitions. Section 3 presents a method for representing logic pro-
grams with matrices. Section 4 introduces the thresholding function, loss func-
tion, and the gradient-based search algorithm for supported models. Section 5
presents the results of experiments designed to test the ability of the algorithm.
Finally, Sect. 6 presents the conclusion.

2 Background

We consider a language L that contains a finite set of propositional variables
defined over a finite alphabet and the logical connectives ¬, ∧, ∨ and ←. The
Herbrand base, BP , is the set of all propositional variables in a logic program P .

A definite program is a set of rules of the form (1) or (2), where h and bi are
propositional variables (atoms) in L. We refer to (2) as an OR-rule, which is a
shorthand for m rules: h ← b1, h ← b2, . . . , h ← bm. For each rule r we define
head(r) = h and body(r) = {b1, . . . , bm}. A rule r is a fact if body(r) = ∅.

h ← b1 ∧ b2 ∧ · · · ∧ bm(m ≥ 0) (1)

h ← b1 ∨ b2 ∨ · · · ∨ bm(m ≥ 0) (2)

A normal program is a set of rules of the form (3) where h and bi are propo-
sitional variables in L.

h ← b1 ∧ b2 ∧ · · · ∧ bl ∧ ¬bl+1 ∧ ¬bl+2 ∧ · · · ∧ ¬bm(m ≥ l ≥ 0) (3)

We refer to the positive and negative occurrences of atoms in the body as
body+(r) = {b1, . . . , bl} and body−(r) = {bl+1, . . . , bm}, respectively. A normal
program is a definite program if body−(r) = ∅ for every rule r ∈ P .

An Herbrand interpretation I, of a normal program P is a subset of BP . A
model M of P is an interpretation of P where for every rule r ∈ P of the form
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(3), body+(r) ⊆ M and body−(r) ∩ M = ∅ imply h ∈ M . A program is called
consistent if it has a model. A supported model M is a model of P where for
every p ∈ M there exists a rule r ∈ P such that p = h, body+(r) ⊆ M and
body−(r) ∩ M = ∅ [1,7].

As we shall show later, in this paper we transform normal logic programs
into definite programs for searching supported models. Thus, we use the fol-
lowing definition of the immediate consequence operator TP . TP : 2BP → 2BP

is a function on Herbrand interpretations. For a definite program P , we have:
TP (I) = {h|h ← b1 ∧ · · · ∧ bm ∈ P and {b1, . . . , bm} ⊆ I}∪{h|h ← b1 ∨ · · · ∨ bm ∈
P and {b1, . . . , bm}∩I �= ∅}. It is known that a supported model M of a program
P is a fixed point of TP , i.e. TP (M) = M [7].

Definition 1 (Singly-Defined (SD) Program). A normal program P is an
SD-program if head(r1) �= head(r2) for any two rules r1 and r2 (r1 �= r2) in P.

Any normal program P can be converted into an SD-program P ′ in the
following manner. If there are more than one rule with the same head {h ←
body(r1), . . . , h ← body(rk)}, where k > 1, then replace them with a set of
new rules including an OR-rule of the form (2) {h ← b1 ∨ ... ∨ bk, b1 ←
body(r1), ..., bk ← body(rk)} containing new atoms {b1, ..., bk}. This is a stricter
condition than the multiple definitions condition (MD-condition) [9]: for any
two rules r1 and r2 in P , (i) head(r1) = head(r2) implies |body+(r1)| ≤ 1 and
|body+(r2)| ≤ 1, and (ii) body−(r1) ∩ body−(r2) �= ∅ implies |body+(r1)| ≤ 1 and
|body+(r2)| ≤ 1. All SD-programs satisfy the MD condition. We shall assume all
programs in this paper are SD-programs.

Given a normal program P , it is transformed into a definite program by
replacing the negated literals in rules of the form (3) and rewriting:

h ← b1 ∧ b2 ∧ · · · ∧ bl ∧ bl+1 ∧ bl+2 ∧ · · · ∧ bm(m ≥ l ≥ 0) (4)

where bi are new atoms associated with the negated bi. A collection of rules of the
form (4) is referred to as the positive form P+ where BP+ = BP ∪ {a | a ∈ BP }.
For transformed rules of the form (4), we refer to {b1, . . . , bl} as the positive
part and {bl+1, . . . , bm} as the negative part. After transformation, the program
should contain rules of the forms (1), (2), or (4). By an interpretation I+ of P+,
we mean any set of atoms I+ ⊆ BP+ that satisfies the condition for any atom
a ∈ BP+ , precisely one of either a or a belongs to I+.

3 Representing Logic Programs with Matrices

3.1 Relationship Between Positive Forms and Supported Models

Consider a program p ← ¬p, and its positive form p ← p. P+ is a definite
program, but it has no supported models in this case due to the restriction we
place on the interpretation: if p ∈ I+ then p �∈ I+ and vice versa. Then in this
case, the implication is that there are no fixed points of TP+ for P+ that satisfy
the condition p ∈ I+ iff p �∈ I+. On the other hand, when a model M of P exists,
we can show that the corresponding M+ is a model of P+.
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Proposition 1. Let P be a normal program, and let P+ be its positive form.
If M is a model of P , then M ′ = M ∪ {a | a ∈ BP+ \ M} is a model of P+.
Conversely, if M+ is a model of P+, then M+ ∩ BP is a model of P.

Proof. Follows from the definition of M ′ and M+. Consider M ′. Since a �∈ M ′

if a ∈ M ′ and vice versa, for each rule r ∈ P+, body(r) ⊆ M ′ implies head(r) =
a ∈ M ′. Thus, M ′ is a model of P+. Now consider M+. Let K = M+ ∩BP such
that a ∈ K if a ∈ M+. Given that M+ is a model of P+, for each rule r ∈ P ,
body+(r) ⊆ K and body−(r) ∩ K = ∅ implies head(r) = a ∈ K. Thus, K is a
model of P .

Proposition 2. Let M be a supported model of P , and put
M ′ = M ∪ {a | a ∈ BP+ \ M}. Then, TP+(M ′) = M .

Proof. Suppose a ∈ M . Since M is a supported model, there exists a rule r ∈ P
such that head(r) = a, body+(r) ⊆ M and body−(r) ∩ M = ∅. Correspond-
ingly, there exists a rule r′ ∈ P+ such that head(r′) = a, body+(r′) ⊆ M ′ and
body−(r′) ⊆ M ′. That is, a ∈ TP+(M ′). Hence, M ⊆ TP+(M ′).

Conversely, suppose a ∈ TP+(M ′). Then, there exists a rule r′ ∈ P+ such that
head(r′) = a and body(r′) ⊆ M ′. Since M ′ is a model of P+ by Proposition 1,
body(r′) ⊆ M ′ implies head(r′) = a ∈ M ′. Because a is a positive literal, a ∈ M
holds. Hence, TP+(M ′) ⊆ M . Therefore, M = TP+(M ′).

Proposition 3. Let M+ be an interpretation of P+. If TP+(M+) = M+ ∩ BP

holds, then M = M+ ∩ BP is a supported model of P .

Proof. Suppose TP+(M+) = M+ ∩ BP . Because M+ ∩ BP recovers the positive
literals from M+, for each a ∈ (M+ ∩ BP ), there exists a rule r ∈ P such that
head(r) = a, body+(r) ⊆ (M+ ∩ BP ) and body−(r) ∩ (M+ ∩ BP ) = ∅. Thus,
M = M+ ∩ BP is a supported model of P .

3.2 Matrix Encoding of Logic Programs

In subsequent sections we shall use the following notations: matrices and vectors
are represented as bold upper-case, M, and lower-case letters,v, respectively.
A 1-vector with length N is represented by 1N . The indices of the entries of
matrices and vectors appear in the subscript, for example, Mij refers to the
element at i-th row and j-th column of a matrix M and vi refers to the i-th
element of a column vector v. Let Mi: and M:j denote the i-th row slice and
j-th column slice of M, respectively. We denote the horizontal concatenation
of matrices M1 and M2 as [M1 M2], and denote the vertical concatenation of
column vectors v1 and v2 as [v1;v2].

Let P be a normal program with size |BP | = N , P+ its positive form and
BP+ the Herbrand base of P+. Then we have |BP+ | = 2N since for every b ∈ BP

we add its negated version b. We encode atoms appearing in the bodies of the
rules ∈ P+ into a binary program matrix Q ∈ Z

N×2N .
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Definition 2 (Program Matrix). Let P be a normal program with |BP | = N
and P+ its positive form with |BP+ | = 2N . Then P+ is represented by a matrix
Q ∈ Z

N×2N such that for each element Qij(1 ≤ i ≤ N, 1 ≤ j ≤ 2N) in Q,

– Qij = 1 if atom aj ∈ BP+(1 ≤ j ≤ 2N) appears in the body of the rule
ri(1 ≤ i ≤ N);

– Qij = 0, otherwise.

The i-th row of Q corresponds to the atom ai appearing in the head of the
rule ri, and the j-th column corresponds to the atom aj(1 ≤ j ≤ 2N) appearing
in the body of the rules ri(1 ≤ i ≤ N). Atoms that do not appear in the head
of any of the rules in P+ are encoded as zero-only row vectors in Q.

This definition is different from the previous works [2,9], in that we do not
explicitly include � and ⊥ in the program matrix, and we do not use fractional
values to encode long rules. In fact, our encoding method is similar to that of
[11], except that we do not use (2N × 2N) space for the program matrix since
we do not encode rules with b ∈ BP+ in the head.

Definition 3 (Interpretation Vector). Let P be a definite program and
BP = {a1, . . . , aN}. Then an interpretation I ⊆ BP is represented by a vec-
tor v = (v1, . . . ,vN )ᵀ ∈ Z

N where each element vi (1 ≤ i ≤ N) represents the
truth value of the proposition ai such that vi = 1 if ai ∈ I, otherwise vi = 0. We
assume propositional variables share the common index such that vi corresponds
to ai, and we write var(vi) = ai.

Recall that the positive form P+ of a normal program is a definite program,
and all negated literals in the body are replaced by new atoms, e.g. in (4) ¬bl+1

is replaced by bl+1. We now extend the definition of interpretation vectors to
include relations between the positive and negative occurrences of atoms, to
maintain whenever we have b1 ∈ I, bl+1 �∈ I and vice versa.

Definition 4 (Companion Vector). Let BP
P+ ⊆ BP+ denote the positive part

of P , BN
P+ ⊆ BP+ denote the negative part of P , with size |BP

P+ | = |BN
P+ | = N .

Let vP ∈ Z
N be a vector representing truth assignments for ai ∈ BP

P+ such that
vP
i = 1 if ai ∈ I and vP

i = 0 otherwise. Define a companion vector w ∈ Z
2N

representing an interpretation I+ ⊆ BP+ as follows: w = [vP ;1N − vP ].

4 Gradient Descent for Computing Supported Models

4.1 Computing the TP Operator in Vector Spaces

Sakama et al. [9] showed that the TP operator can be computed in vector spaces
using θ-thresholding. Here we modify θ-thresholding to accommodate our pro-
gram encoding method as well as the differentiability requirement.

In previous works [8,9], the information about the nature of the rules was
also stored in the program matrix Q alongside the atom occurrences; conjunctive
rules with |body(ri)| > 1 had fractional values Qij = 1/|body(ri)| and disjunctive
bodies had integer values Qij = 1. Instead, we only store the atom occurrence
in Q, and keep supplementary information in the parameter vector t.
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Definition 5 (Parameter Vector t). A set of parameters to the θ-thresholding
is a column vector t ∈ Z

N such that for each element ti(1 ≤ i ≤ N) in t,

– ti = |body(ri)| if the rule ri ∈ P+ is a conjunctive rule, e.g. (1), (4);
– ti = 1 if the rule ri ∈ P+ is a disjunctive rule e.g. (2);
– ti = 0, otherwise.

Definition 6 (Parameterized θ-thresholding). Let w ∈ Z
2N be a compan-

ion vector representing I+ ⊆ BP+ . Given a parameter vector t ∈ Z
N , a program

matrix Q ∈ Z
N×2N , and a vector y = Qw where y ∈ Z

N , we apply the thresh-
olding function element-wise as follows:

θt(yi) =

{
min(max(0,yi − (ti − 1)), 1) (ti ≥ 1)
0 (ti < 1)

(5)

This thresholding function resembles hardtanh which is an activation func-
tion developed for use in natural language processing [3]. In the original hardtanh
function, the range of the linear region is [−1, 1], but here we define the lin-
ear region between [ti − 1, ti]. This function is almost everywhere differentiable
except at yi = ti − 1 and yi = ti. The special case ti < 1 in Eq. (5) corresponds
to the case ti = 0 where the head does not appear in the program P+ and is
assumed to be false.

Intuitively, for the head of a conjunctive rule to be true it is sufficient to
check whether all literals in the body hold; otherwise the rule evaluates to false.
Similarly, for a disjunctive rule, it is sufficient to check whether at least one of
the literals in the body holds for the head to hold.

Proposition 4 (Thresholded TP Operator). Let P+ be the positive form
of a normal program P and Q ∈ Z

N×2N its matrix representation. Suppose
that IP ⊆ BP

P+ is the positive part of an interpretation of P+, and let v be its
corresponding vector, i.e., vi = 1 iff ai ∈ IP and vi = 0 otherwise, for i =
1, ..., N . Let w ∈ Z

2N be the companion vector to v. Then z = [u; 1 − u] ∈ Z
2N

is the vector representing J = TP (I) satisfying the condition (a ∈ J iff a �∈ J),
iff u = θt(Qw).

Proof. Consider u = θt(Qw). For u = (u1, . . . ,uN )ᵀ, by the definition of the
thresholding function, uk = 1 (1 ≤ k ≤ N) iff u′

k ≥ tk in u′ = Qw. Take a row
slice Qk:, then u′

k = Qk:w = Qk1w1 + · · · + Qk2Nw2N , and uk = 1 iff u′
k ≥ tk.

Both Qk: and w are 0-1 vectors, then it follows that there are at least tk elements
where Qkj = wj = 1 (1 ≤ j ≤ 2N). The first N elements of w represent ai ∈
IP ⊆ BP

P+ if wi = 1, and if ai ∈ IP then ai �∈ IN ⊆ BN
P+ which is maintained

through the definition of the companion vector w. 1) For a conjunctive rule
ak ← a1 ∧ · · · ∧ am (1 ≤ m ≤ 2N), {a1, . . . , a2N} ∈ I implies ak ∈ TP (I). 2)
For an OR-rule ak ← a1 ∨ · · · ∨ am (1 ≤ m ≤ 2N), {a1, . . . , a2N} ⊆ I implies
ak ∈ TP (I). am ∈ I is represented by zm = 1 (1 ≤ m ≤ 2N). Then by putting
J = {var(zm)|zm = 1}, J = TP (I) holds.

Consider J = TP (I). For v = (v1, . . . ,vN )ᵀ representing IP ⊆ BP
P+ , w =

(v1, . . . ,vN , 1 − v1, . . . , 1 − vN )ᵀ is a vector representing I ⊆ BP+ if we set
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I = {var(wi)|wi = 1}. u′ = Qw is a vector such that u′
k ≥ tk (1 ≤ k ≤ N) iff

var(u′
k) ∈ TP (I). Define u = (u1, . . . ,uN )ᵀ such that uk = 1 (1 ≤ k ≤ N) iff

u′
k ≥ tk in Qw, and uk = 0 otherwise. Define an interpretation J ⊆ BP+ such

that it can be partitioned into subsets of positive and negative occurrences of
atoms (JP ∪ JN ) = J ⊆ BP+ . Since only positive atoms occur in the head, u
represents a positive subset of interpretation JP ⊆ J ⊆ BP+ by setting JP =
{var(ui)|ui = 1} (1 ≤ i ≤ N). If ai ∈ TP (I) then ui = 1, and ai �∈ TP (I) is
represented by 1 −ui = 0. Conversely, if ai �∈ TP (I) then ui = 0, and 1 −ui = 1
represents ai ∈ TP (I). Thus 1 − u represents JN ⊆ J ⊆ BP+ . z = [u; 1 − u] is
then a vector representing JP ∪ JN = J if we set J = {var(zm)|zm = 1} (1 ≤
m ≤ 2N). Thus z = [u; 1 − u] represents J = TP (I) if u = θt(Qw).

Example 1. Consider the following program:

p ← q

q ← p ∧ r

r ← ¬p (6)

This program has one supported (stable) model: {r}. We have BP = {p, q, r},
BP+ = {p, q, r, p, q, r}, the matrix representation Q and parameter vector t are:

Q =

⎛
⎝

p q r p q r

p 0 1 0 0 0 0
q 1 0 1 0 0 0
r 0 0 0 1 0 0

⎞
⎠ t =

⎛
⎝p 1

q 2
r 1

⎞
⎠ (7)

Suppose an assignment v{r} = (0 0 1)ᵀ is given. The companion vector w is:

w = [v{r};13 − v{r}] =
(
0 0 1 1 1 0

)ᵀ (8)

Compute the matrix multiplication product Qw and apply the thresholding:

u = θt(Qw) = θt(
(
0 1 1

)ᵀ) =
(
0 0 1

)ᵀ = v{r} (9)

Let z be a companion vector to u, i.e. z = [u; 1 − u], then we have

z =
(
0 0 1 1 1 0

)ᵀ (10)

Define J = {var(zm)|zm = 1}, then we have J = {r, p, q}, and J ∩ BP = {r}.

Proposition 5 (Supported Model Computation with Thresholded TP )
Let v ∈ Z

N be a 0-1 vector representing a subset of interpretation IP ⊆
I ⊆ BP+ , and z = [v;1N − v] be its companion vector representing I ⊆ BP+

satisfying (a ∈ I iff a �∈ I). Given a program matrix Q representing a program
P+ and a thresholding function θt parameterized by a vector t, the fixed points
of P+ are represented by 0-1 binary vectors zFP = [vFP ;1N − vFP ] ∈ Z

2N

where vFP = θt(QzFP ). Then zFP are vectors representing models M+ of P+

satisfying (a ∈ M+ iff a �∈ M+) iff θt(QzFP ) = vFP . When such 0-1 binary
vector zFP exists, M+ ∩ BP = M is a supported model of P .
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Proof. Let I ⊆ BP+ be a model of P+, represented by zFP . Consider two cases
(i) TP (I) = I and (ii) vFP = θt(QzFP ). In both cases, by Propositions 2, 3 and
4, if a supported model of P exists, the results hold.

4.2 Loss Function for Computing Supported Models

By the fixed point definition of supported models, a supported model M satisfies
vMP

= θt(Q[vMP

;1N − vMP

]). We now use this definition to design a loss
function which can be minimized using gradient descent. Gradient descent is a
method for minimizing an objective function by updating the parameters in the
opposite direction of the gradient with respect to the parameters. The size of
the update is determined by the gradient and the step size α.

We define a vector f ∈ Z
N which stores information about occurrences of

facts in the program P+. This vector will be used later during the minimization
step to ensure that facts are not forgotten.

Definition 7 (Fact Vector f). The set of facts in the program P+ is repre-
sented by a column vector f ∈ Z

N , such that for each element fi(1 ≤ i ≤ N),

– fi = 1 if the rule ri is a fact: a ←
– fi = 0 otherwise.

Definition 8 (Loss Function). Given a program matrix Q, a candidate vector
x, thresholding function θt, and constants λ1 and λ2, define the loss function as
follows:

L(x) =
1
2

(
‖θt(Q[x;1N −x])−x‖2F+λ1‖x�(x−1N )‖2F+λ2‖f−(x�f)‖2F

)
(11)

where ‖x‖F denotes the Frobenius norm and � denotes the element-wise product.

The first term is derived directly from the fixed point definition of supported
models, and should be 0 if x is a supported model of P+. The second term, which
resembles a regularization term often used in the machine learning literature, is
added to penalize candidate vectors x that contain fractional values, and is 0 if
and only if x is a 0-1 vector. The third term will be 0 if and only if the facts are
preserved, and will be positive non-zero if any part of the assignment is lost, i.e.
by assigning 0 (false) to a fact where fi = 1.

We introduce submatrices of Q, Qp ∈ Z
N×N and Qn ∈ Z

N×N that cor-
respond to the positive bodies and negative bodies of the matrix, respectively,
such that Q = [Qp Qn] (horizontal concatenation of submatrices).

Definition 9 (Gradient of the Loss Function). The gradient of the loss
function with respect to x is given by:

∂L(x)
∂x

=
(

(Qp − Qn)T · θt(Qzx) � ∂θt(Qzx)
∂x

)
− θt(Qzx − x)

+ λ1(x � (1N − x) � (1N − 2x)) + λ2(x � f − f) (12)
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where zx ∈ R
2N = [x;1N − x] and

∂θt(wi)
∂xi

=

{
1 if (ti ≥ 1) and (ti − 1) ≤ wi ≤ ti
0 otherwise

(13)

We can update x iteratively using, for example, gradient descent or quasi-
Newton’s method, to reduce the loss to zero. Here we show an example of update
rule for gradient descent. Let α be the step size, then the gradient descent update
rule is given by:

xnew ← x − α
∂L(x)

∂x
(14)

Using this update rule we can design an algorithm to find supported models, as
shown in Algorithm 1. Moreover, this formulation allows us to use other gradient
update methods like Newton update [10] or more advanced optimizers like Adam
[5], as we show later in the experiment section.

The convergence characteristics of the gradient descent algorithm are well-
known. Assuming at least one 0-1 vector representing a supported model exists
for Q, all we require for Algorithm 1 to converge to the supported model is that
the initial vector x to be in the region surrounding the supported model where
the slope points towards the model. When there are multiple supported models,
we expect the algorithm to converge to different models depending on the choice
of initial vector. However, it is often not known apriori which particular values
or regions of x lead to which models. Thus, we implement a uniform initialization
strategy, where the initial values are drawn from the uniform distribution U(0, 1).

Depending on the program, an optimal 0-1 vector interpretation may not
exist, so we limit the number of iterations to max iter before assuming non-
convergence. With gradient descent, it is often time-consuming to reduce the loss
function completely to zero. We therefore implement a “peeking at a solution”
heuristic, similar to the one presented in [10], where while updating x we round
x to a 0-1 vector to see whether the resulting xr is a solution (Lines 6–8). The
output is sensitive to the choice of initial vector x, and a poor choice may result
in non-convergence to optimal solutions. We alleviate this dependency on the
initial vector by introducing the max retry parameter and changing the initial
vector on each try. This algorithm declares failure to find any supported models
(returns FALSE, Line 12) when both max retry and max iter are exhausted.

5 Experiments

All experiments in this section were performed on a desktop machine with the
following specifications: Python 3.7, Intel Core i9-9900K and 64 GB RAM.

5.1 N -negative Loops

Aspis et al. [2] encode the program reduct into a matrix and employ the New-
ton’s method for root finding to find fixed points of the program. Their matrix
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Algorithm 1. Gradient descent search of supported models
Input: Program matrix Q, thresholding parameter t, max retry ≥ 1, max iter ≥ 1,

ε > 0, step size α > 0, λ1 > 0, λ2 > 0
Output: Supported model x or FALSE
1: for n try ← 1 to max retry do
2: x ← vector sampled from U(0, 1)
3: for n iter ← 1 to max iter do
4: xr ← round(x) � Rounding heuristic
5: loss ← L(xr) � Loss function, see Definition (8)
6: if (loss ≤ ε) then
7: x ← xr

8: return x
9: else

10: gradient ← ∂L(x)
∂x

� Gradient, see Definition (9)
11: x ← x − α· gradient � Gradient update

12: return FALSE

encoding assumes the MD condition, whereas ours assumes the SD condition.
The gradient is calculated by the Jacobian matrix, and the thresholding oper-
ator is a parameterized sigmoid. They present two types of sampling methods
for setting the initial vector; uniform sampling, similarly to our method, where
the values are sampled uniformly from [0, 1], and semantic sampling1, where the
values are sampled uniformly from

[
0, γ⊥] ∪ [

γ�, 1
]
.

Firstly, we consider the “N -negative loops” programs, which involves pro-
grams in the following form: for 1 ≤ i ≤ N ,

pi ← not qi

qi ← not pi
(15)

For our algorithm, we use the following parameters: max iter = 103, ε = 10−4,
λ1 = λ2 = 1, α = 10−1. For comparison, we also implemented Aspis et al.’s
algorithm, and we used the following settings: max iter = 103, ε = 10−4. Both
algorithms were allowed to restart from a new random vector up to 100 times,
in case the iteration fails to find a model. We generated programs of the form
(15) with N up to 100, applied the algorithms on each program 10 times, then
measured the rate of success of converging to supported models and the number
of restarts attempted by the algorithms (Fig. 1).

From Fig. 1a, one can observe that our method, except for the Newton update
at around N = 98, could find the correct supported models regardless of the
gradient update method. The gradient descent and Adam updates can solve this
task with the least number of restarts, and in fact, they found the models on
their first attempts (Fig. 1b). On the other hand, we see a gradual increase in
the number of restarts required for the Newton update method, and the MD
method requires more than 100 restarts past N = 40 to solve.
1 γ⊥ is an upper bound on false values that variables can take, and γ� is a lower

bound on true values. γ = n
n+1 where n is the length of the longest positive part in

the rules, and τ was estimated as described [2].
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Fig. 1. N -negative loops. SD: Ours, MD: see Aspis et al. [2].

The design of the loss function (Sect. 4.2) also contributes to the high success
rate of our method. The second term results in the loss function having non-zero
values at local minima where the interpretation vector is non-binary, and drives
the optimizers away from local minima. The root finding method described in
[2] without this penalty term is prone to the presence of local minima, as shown
by the low success rates.

5.2 Choose 1 Out of N

Secondly, we consider the “choose 1 out of N” task, where the task is to choose
exactly 1 out of N options. The programs in this class have the following form:

p1 ← not p2, not p3, ..., not pN

p2 ← not p1, not p3, ..., not pN

...
pN ← not p1, not p2, ..., not pN−1

(16)

We generated programs for N between 2 and 14, and applied the algorithms
using the same parameters as the “N -negative loops” task, and repeated the
process for 10 times for each N .

In contrast to the previous case, the Newton update turned out to be the
most stable, followed closely by Adam and gradient descent (Fig. 2). Moreover,
for gradient descent, we observe a steeper increase in the number of restarts
past N = 10 compared to Adam (Fig. 2b). This suggests that adaptive gradient
methods may be better suited for more complex programs.

5.3 Random Programs

We generated random programs by changing (a) number of atoms [10, 50, 100] (b)
number of rules, as a multiplier on the number of atoms [1, 1.2, 1.4, ..., 2, 2.5, 3]
and (c) % chance of literals in the body being negative [0, 10, 30, ..., 90], and
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Fig. 2. Choose 1 out of N . SD: Ours, MD: see Aspis et al. [2].

generated 10 instances for each set of parameters (1,440 instances). Compared
to previous works that focused on phase transition programs [13], these generated
programs cover a wider range of body length and ratio of negated literals in the
body. During the evaluation, it became apparent that running the MD methods
on programs containing long rules with negation was very time-consuming. Thus,
we created a second set of randomly generated programs, where the number of
atoms was restricted to [10, 15] (960 instances). We applied the algorithms once
to each of the instances with max try = 10 and max iter = 100, and recorded
success when the algorithm declared convergence.

Fig. 3. Randomly generated programs. SD: Ours, MD: see Aspis et al. [2].

In Fig. 3, the dashed lines indicate the ‘perfect score’, which is achievable if
the algorithm could find the model successfully on the first try for all instances.
Thus, the closer an algorithm is to this point, the more efficient it is in finding
the correct models. Overall, we see that the Newton update performs the best,
followed by Adam. On smaller datasets, we found that gradient descent was less
efficient than the MD method in terms of number of restarts; however, we may
be able to improve the result by simply increasing the step size.
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6 Conclusion

We presented a new efficient method for the differentiable computation of sup-
ported models in vector spaces. The experimental results suggest that our
method, when used with adaptive gradient update methods, can find supported
models efficiently starting from a random vector. Currently, our method does
not support the reduct representation, and we leave differentiable stable model
computation for future work. Further research may also explore integration of
this method with deep neural networks.
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Abstract. Using answer set programming in real-world applications
requires that the answer set program is correct and adequately represents
knowledge. In this paper, we present strategies to resolve unintended con-
tradictory statements resulting from modelling gaps and other flaws by
modifying the program without manipulating the actual conflicting rules
(inconsistency-causing rules with complementary head literals). We show
how latent conflicts can be detected to prevent further conflicts during
the resolution process or after subsequent modifications in the future.
The presented approach is another step towards a general framework
where professional experts who are not necessarily familiar with ASP
can repair existing answer set programs and independently resolve con-
flicts resulting from contradictory statements in an informative way. In
such a framework, conflict resolution strategies allow for generating pos-
sible solutions that consist of informative extensions and modifications
of the program. In interaction with the professional expert, these solu-
tion options can then be used to obtain the solution that represents the
underlying knowledge best.

Keywords: Answer Set Programming · Conflicts · Consistency ·
Contradictions · Interactive Conflict Resolution

1 Introduction

In order to use answer set programming in real-world applications, the utilized
answer set programs must be modelled correctly and represent professionally
adequate knowledge. Especially in large programs, unintended contradictory
statements due to modelling gaps and other flaws are hard to detect, and repair-
ing a knowledge base can require both a professional expert and a technical
expert. Approaches as in [1,2] rewrite an updated program using the causal rejec-
tion principle [2] such that in case of contradictory derivations, newer knowledge
is preferred. These approaches, however, are actually “workarounds” that change
the program in an automated fashion and do not guarantee that the underlying
cause of the inconsistency is eliminated. In practice, such a solution may not
always be desirable, e. g. when inconsistencies hint at outdated information or
modelling flaws. Instead, one may wish to resolve the actual conflicting state-
ments in the program. In [10], it is shown how rules directly involved in a conflict
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can be modified to achieve a consistent program. In this paper, we extend this
approach by showing how conflicts can be resolved by modifying rules other than
the conflicting ones in case the conflicting rules themselves are thought to be ade-
quate. For that, we first outline the general relations between a conflict rule and
the rest of the program. Based on these results, we exemplarily showcase two
different strategies that utilize the different rule dependencies to prevent conflict-
ing rules from being simultaneously satisfiable. In place of exploiting technical
devices like causal rejection, the presented strategies, as in [10], produce infor-
mative solution options from which a professional expert can then choose the
most suitable one, where informative means that modifications of rules make use
of the given program language. Another aspect we cover is latent conflicts. We
show that even consistent programs can contain contradictory knowledge that
“hides” behind consistent answer sets due to the nature of answer set seman-
tics that chooses only consistent answer sets, ignoring the inconsistent fixpoints.
Accordingly, such latent conflicts should also be resolved in the process to achieve
robust consistency. This way, it is guaranteed that every implemented modifi-
cation to establish consistency conclusively leads to a program that adequately
reflects professional knowledge.

After presenting the necessary theoretical preliminaries in Sect. 2, we intro-
duce the notion of latent conflicts and causality-based conflict resolution in
Sect. 3 that allows us to resolve conflicts without manipulating the conflicting
rules themselves. In Sect. 4, we examine the general conditions for conflicting
rules to become simultaneously derivable. Using these results and the defini-
tions of the prior section, we present two exemplary strategies that follow the
causality-based conflict resolution approach. After presenting a brief overview
over related work in Sect. 5, the paper concludes with Sect. 6, giving a short
summary and discussion of open issues and further work.

2 Preliminaries

In this paper, we look at non-disjunctive extended logic programs (ELPs) [6].
An ELP is a finite set of rules over a set A of propositional atoms. A (classical)
literal L is either an atom A (positive literal) or a negated atom ¬A (negative
literal). For a literal L, the strongly complementary literal L is ¬A if L = A and
A otherwise. A default-negated literal L, called default literal, is written as ∼L.
A set S of literals is consistent iff S does not contain strongly complementary
literals. A rule r is of the form L0 ←L1, . . . , Lm,∼Lm+1, . . . ,∼Ln., with literals
L0, . . . , Ln and 0 ≤ m ≤ n. The literal L0 is the head of r, denoted by H(r), and
{L1, . . . Lm,∼Lm+1, . . .∼Ln} is the body of r, denoted by B(r). Furthermore,
{L1, . . . , Lm} is denoted by B+(r) and {Lm+1, . . . , Ln} by B−(r). A rule r with
B(r) = ∅ is called a fact, and r is called a constraint if it has an empty head.
An extended logic program (ELP) P is a set of rules.

Given a set S of literals, we say S satisfies L iff L ∈ S, and S satisfies ∼L iff
L /∈ S. S satisfies a rule body B(r) iff for all L ∈ B+(r), S satisfies L, and for
all L ∈ B−(r), S satisfies ∼L. S satisfies a rule r iff S satisfies H(r) whenever S
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satisfies B(r). In case r is a constraint, S satisfies r iff S does not satisfy B(r). A
rule body B(r) is satisfiable if there exists a set S of literals such that S satisfies
B(r). Given a set R of rules, S satisfies R if S satisfies all r ∈ R simultaneously.
S is a pre-model of P if S satisfies P. A pre-model S of P is a model of P if S is
consistent. A rule r is active under S iff S satisfies B(r). The set of all rules in
P that are active under S is denoted by actS(P). Given a literal L, H L denotes
the set of rules in P with the rule head L, i. e. H L = {r ∈ P | H(r) = L}. Given
two rules r, r′ ∈ P, r is supported (resp. opposed) by r′ iff there exists a literal
L ∈ B+(r) (resp. L ∈ B−(r)) such that L = H(r′). Then, r′ is a supporting
(resp. opposing) rule of r.

In the following, we extend the basic idea of answer sets to inconsistent sets
of literals. Given an ELP P without default negation, the pre-answer set of P
is a set S of literals such that S satisfies P and S is ⊆-minimal. In general, an
answer set of an ELP P is determined by its reduct. The reduct PS of a program
P relative to a set S of literals is defined by

PS = {H(r)←B+(r). | r ∈ P, B−(r) ∩ S = ∅}.

A set S of literals is a pre-answer set of P if it is the pre-answer set of PS [6].
A pre-answer set S is a (classical) answer set of P if S is consistent, otherwise,
we call S a pseudo answer set. The set of all pseudo answer sets of a program P
is denoted by AS⊥(P), the set of all (classical) answer set by AS(P), and the set
of all pre-answer sets AS⊥(P) ∪ AS(P) by ASpre(P). Note that AS(P) aligns
with the set of answer sets under usual definitions, e. g. [6].

For every literal of a pre-answer set S, there must exist a rule r ∈ P with
H(r) = L s. t. r ∈ actS(P). This is in complete analogue to answer sets [4].

Example 1. Let P1 be the ELP of our running example in this paper:

r1: drugA← condW . r2: drugA← sympT .

r3: treatmZ ← drugC ,∼drugD . r4: treatmZ ← sympQ ,∼drugD ,∼sympR.

r5: condW ← sympU . r6: drugC ← ∼drugD ,∼sympR.

r7: drugD ← ∼drugC . r8: sympQ . r9: sympT . r10: sympU .

P1 models a knowledge base regarding the conditions for prescribing a drug A
and a treatment Z, as well as the conditions when they must not be prescribed.
For example, r3 represents the condition that treatment Z may only be recom-
mended if the patient is already taking drug C and drug D is not known to be
applied, while r4 says that patients must not be treated with Z if they currently
show symptom Q, drug D is not known to be applied, and symptom R does not
seem to be developed.

P1 has the pre-answer sets S1 = {condW , drugA, drugA, drugD , sympQ ,
sympT , sympU } and S2 = {condW , drugA, drugA, drugC , sympQ , sympT ,
sympU , treatmZ , treatmZ}. Both answer sets are pseudo answer sets as they
contain complementary literals. 	
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To formalize modification operations on programs, we introduce suitable modi-
fication operations:

Definition 1 (Rule Modification Operation). Let P be an ELP with a rule
r ∈ P and X a set of literals and default literals where either X ⊆ B(r) or
X ∩B(r) = ∅. We define the rule modification operation rmod(r,X) as follows:

rmod(r,X) =

{
H(r)←B(r)\X if X ⊆ B(r)
H(r)←B(r) ∪ X if X ∩ B(r) = ∅

In the following, a program modification operation P � r� is either the addition
of a new rule r� to P, i. e. P ∪ {r�} or the replacement of a rule r ∈ P by
a modification r� = rmod(r,X) of r, i. e. P\{r} ∪ {r�}. We express a set of
modifications that shall be applied to P by simply listing the new rules and rule
modifications, i. e. R� = {r�

1 , . . . , r
�
n} denotes a set of modification elements,

where r�
i (1 ≤ i ≤ n) is either a new rule for P or a modification rmod(r,X)

with r ∈ P and a set of (default) literals X. Given a set R� = {r�
1 , . . . , r

�
n} of rule

modifications and new rules for P, the consecutive application of each element
onto P is denoted by P � R�, i. e. P � R� = (((P � r�

1 ) � r�
2 ) � . . . � r�

n).

Example 2 (Example 1 contd.). Suppose studies have shown that condition
W always presents with a symptom V . The addition of a literal sympV to r5
can then be written as rmod(r5, {sympV }), resulting in a rule r�

5 : condW ←
sympU , sympV . Replacing r5 in P1 by r�

5 can then be expressed by P1 �
rmod(r5, {sympV }). 	


3 Causality-Based Conflict Resolution

In this section, we introduce the notion of derivable conflicts and outline a
method named causality-based conflict resolution that can be used to describe
how to modify an inconsistent program to achieve consistency. During the res-
olution process, for every derivable conflict, a set of modifications is applied to
P. Every set of changes leads to the resolution of the respective conflict where
the modifications are built from elements of the underlying language of P.

3.1 Conflicts and Inconsistency

In this paper, we show strategies to resolve inconsistencies that are caused by
rules with complementary head literals by constructing informative program
modifications. To that end, we first specify the type of inconsistency that our
strategies aim to resolve.

Definition 2 (Consistency, Contradictory Program). An ELP P is called
consistent iff AS(P) �= ∅. P is contradictory iff AS(P) = ∅ and AS⊥(P) �= ∅.
This paper solely deals with programs that are inconsistent due to contradictions.

Example 3 (Example 1 contd.). Program P1 is inconsistent as the two existing
pre-answer sets are pseudo answer sets. 	
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Definition 3 (Conflicting Rules, Conflict (cf. [10])). Two rules r1, r2 in
an ELP P are conflicting if H(r1) and H(r2) are strongly complementary and
there exists a consistent set S of literals such that B(r1) and B(r2) are satisfied
by S. A conflict is a set C = {r1, r2} of rules such that r1 and r2 are conflicting.
We denote the set of all conflicts {r1, r2} in an ELP P by Conflicts(P).

A program that contains conflicts is not necessarily inconsistent. A conflict
{r1, r2} in P is only a potential cause of inconsistency whenever the body liter-
als of both B(r1) and B(r2) can be simultaneously derived in P. The program’s
pseudo answer sets can be used to determine whether the body literals of con-
flicting rules are derivable and which rules are causing inconsistency.

Definition 4 (Derivably Conflicting Rules). Given an ELP P over A, a
conflict {r1, r2} ∈ Conflicts(P) is derivable1 in P iff there exists a pseudo answer
set S ∈ AS⊥(P) s. t. r1 and r2 are active under S. Otherwise, a conflict is
nonderivable. The set of all derivable conflicts in P is denoted by Conflictsdv (P).

However, a conflict is only (co-)responsible for inconsistency if the conflict is
derivable. Thus, a program is consistent if it does not possess derivable conflicts.

Proposition 1. Let P be an ELP with Conflicts(P) �= ∅. P is consistent if
every conflict in Conflicts(P) is nonderivable, i. e. Conflictsdv (P) = ∅.
Proof. Let P be an ELP with Conflicts(P) �= ∅ and Conflictsdv (P) = ∅. Suppose
P is inconsistent. Then there exists a pseudo answer set S ∈ AS⊥(P), which in
turn implies that there exist two conflicting rules r1 and r2 that are active under
S. By definition, {r1, r2} is a derivable conflict which contradicts our initial
assumption that Conflictsdv (P) = ∅. 	

Example 4 (Example 1 contd.). P1 has two conflicts C1 = {r1, r2} and C2 =
{r3, r4}. Its answer sets show that both conflicts are derivable since the com-
plementary literals in the answer sets can only originate from the rules in C1

and C2. Answer set S1 shows that to achieve a consistent program, it suffices
to make either drugA or drugA nonderivable as r1 and r2 are the only con-
flicting rules that are active under S1. Let P4 be P1 where the body of r5
is extended by a literal sympV , i. e. P4 = P1 � rmod(r5, {sympV }). P4 now
has the pre-answer sets S4,1 = {drugA, drugD , sympQ , sympT , sympU }, and
S4,2 = {drugA, drugC , sympQ , sympT , sympU , treatmZ , treatmZ}. Since S4,1 is
not a pseudo answer set, P4 is consistent. 	

Example 4 depicts the relationship between derivable conflicts and consistency.

Depending on the actual program modifications, further inconsistency-
causing conflicts, so called latent conflicts, can be revealed. These conflicts should
therefore be handled correspondingly to ensure that after resolving all conflicts,
the program is indeed consistent.
1 Note that literals are classified as derivable once they appear in a pre-answer set and
not only in a (classical) answer set.
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Definition 5 (Latent Conflict). Let P be an ELP with a conflict C. C is a
latent conflict if C is a derivable conflict and AS(P) �= ∅.
Example 5 (Example 4 contd.). In P4, conflict C2 = {r3, r4} is a latent conflict
as its rules are active under S4,2 but not in the (consistent) answer S4,1. Suppose
that it was prescribed that in order to take drug D, the patient also has to show
symptom V . Thus, program P4 has to be modified to a program P5 by adding
the literal sympV to the body of r7, i. e. P5 = P4 � rmod(r7, {sympV }). P5 is
now inconsistent as its only pre-answer set is the pseudo answer set S4,2 from
Example 4 in which the rules of C2 are active. 	


Given the goal of solely “repairing” an inconsistent knowledge base, modi-
fying the corresponding inconsistent program until one gets at least one answer
set seems appropriate (see Example 4). Considering Example 5, one can easily
imagine that in the process of resolving conflicts, other previously latent conflicts
can become effective, meaning they can cause inconsistency.

3.2 Conflict Resolution

In this paper, we want to present strategies to explicitly “resolve” all derivable
conflicts (which include latent conflicts) in a knowledge base in an informative
way, that is, every change made to obtain a consistent program is based on
the underlying language. Therefore, each such strategy modifies the program so
that every (derivable) conflict becomes nonderivable, which as a consequence
also ensures the resolution of latent conflicts. We now outline, given a derivable
conflict C in an ELP P, how one can modify P to a program P� such that C
becomes nonderivable in P� without manipulating the conflicting rules them-
selves. We call this approach causality-based conflict resolution. There, in each
step, a conflict is resolved by applying suitable program modifications to P. The
resolution process results in a modified program P� that is free of derivable
conflicts and thereby consistent.

Definition 6 (Causality-Based Conflict Resolution Step and Process).
Let P be an ELP with Conflictsdv (P) �= ∅. Given a conflict C = {r1, r2} ∈
Conflictsdv (P), a causality-based conflict resolution step in P w.r.t. C is the
modification of P to P� such that r1 and r2 are not derivably conflicting in P�. A
causality-based conflict resolution process w.r.t. P is a sequence 〈P0,P1, . . . ,Pn〉
where P0 = P and for each Pi,Pi+1(0 ≤ i < n), Pi+1 is the result of a causality-
based conflict resolution step in Pi, and Pn contains no derivable conflicts, i. e.
Conflictsdv (Pn) = ∅.

The following example illustrates a causality-based resolution process con-
sisting of a single conflict resolution step.

Example 6 (Example 5 contd.). Let P6 be the following program that extends
P5 from Example 5 by the following two additional rules:

r11 : drugC ← sympT ,∼drugD . r12 : drugC ← sympQ , sympR.
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Here, conflict C2 = {r3, r4} is the only derivable conflict, hence a single conflict
resolution step suffices. One possible set of modifications is R� = {r�

6 , r
�
11} with

r�
6 = rmod(r6, {∼sympT}) and r�

11 = rmod(r11, {sympV }). Program P6 � R�

has the unique answer set {drugA, sympQ , sympT , sympU , treatmZ}. 	

Ergo, in each conflict resolution step, a derivable conflict becomes nonderiv-

able after applying a suitable set of modifications to the program. We now present
two concrete strategies to build suitable program modifications for a conflict.

4 Strategies for Conflict Resolution

After describing the general properties that have to be satisfied in order for two
rules to be not simultaneously satisfiable, we present two explicit strategies to
resolve derivable conflicts. While in [10], the conflicting rules themselves are mod-
ified during a conflict resolution step, the demonstrated strategies yield conflict-
preventing sets that do not involve the conflicting rules by using causality-based
conflict resolution. As in [10], the inconsistent program is modified using infor-
mative extensions, i. e. the modifications are based on the underlying language
rather than inventing technical workarounds. The following section presents some
technical considerations and results that will prove useful for the strategies.

4.1 General Satisfaction Interdependencies

We propose strategies for manipulating P to a consistent program P� such that
AS⊥(P�) = ∅ where for every conflict C = {r1, r2} in P� and S ∈ ASpre(P�),
it holds that if S satisfies B(r1), then S does not satisfy B(r2). In other words,
whenever r1 is active under a pre-answer set, r2 cannot become active.

Proposition 2. Let P be an ELP with Conflicts(P) �= ∅. P is consistent if
there exists at least one pre-answer set S in P such that for every conflict C =
{r1, r2} ∈ Conflicts(P), the following holds:

S satisfies B(r1) =⇒ S does not satisfy B(r2) (1)

Proof. Let S be a pre-answer set such that (1) holds for all conflicts C = {r1, r2}
in Conflicts(P). Assume S is inconsistent. Then there exists at least one conflict
C ∈ Conflicts(P) such that S satisfies both B(r1) and B(r2), which contradicts
the initial specification of S. Thus, every pre-answer set of P where (1) holds for
every conflict in Conflicts(P) is an answer set. 	


Regarding the non-satisfiability of a body, we derive the following assertion:

Proposition 3. Given a pre-answer set S of an ELP P and a rule r ∈ P, the
following holds (where sat. stands for satisfies/satisfy):

S not sat. B(r) iff ∃L ∈ B−(r) s.t. L ∈ S or

∃L ∈ B+(r) s.t. L /∈ S,
(2)

iff ∃r′ ∈ H L, L ∈ B−(r) s.t. S sat. B(r′) or

∀r′ ∈ H L, L ∈ B+(r) s.t. S not sat. B(r′).
(3)
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Proof. Let S be a pre-answer set for an ELP P and r ∈ P a rule in P. Equa-
tion (2) follows directly from the definition of the satisfaction of rule bodies in
Sect. 2. Equation (3) can be shown by using the properties of pre-answer sets:
Since pre-answer sets are defined as minimal sets of literals that satisfy all rules
in a program, each contained literal has to be derived by at least one rule whose
body is satisfied and therefore adds its head literal to the pre-answer set. If there
is at least one rule r′ ∈ H L such that L ∈ B−(r) and S satisfies B(r′), the head
literal H(r′) = L has to be contained in S. Therefore, (2) is fulfilled, and B(r)
is not satisfied by S. Analogously, if for every rule r′ ∈ H L with L ∈ B+(r),
S does not satisfy B(r′), L cannot be contained in S due to the minimality of
pre-answer sets. Again, (2) demands that B(r) is not satisfied by S. 	


The interdependencies illustrated in Proposition 3 can be used to define dif-
ferent strategies to modify a program such that a conflict rule becomes nonderiv-
able without changing the conflicting rules. Basically, (3) demands that any set
of literals that satisfies B(r2) for a conflict C = {r1, r2} should satisfy an oppos-
ing rule of r1 or that there exists a positive body literal L ∈ B+(r1) such that
every supporting rule of r1 w.r.t. to L is not satisfied by S. Proposition 3 also
illustrates the recursive nature of (non-)satisfiability of rules in logic programs,
as the second case in (3) implies (2) with r replaced by each r′.

The proposed strategies focus on manipulating the answer sets in such a way
that the conflicting rules can still be active if the other conflicting rule is not
active under an answer set. The proposed strategies can therefore be seen as a
switch that prevents a conflicting rule from becoming active whenever the other
conflict rule is active under an answer set. Thereby, the approach in Sect. 4.2
exploits the rule dependencies of negative body literals while the alternative
strategy in Sect. 4.3 exploits the rule dependencies of positive body literals.

4.2 Blocking Rules Using Opposing Rules

Our first approach to prevent the derivability of conflicting rules are so-called
blocking rules. A blocking rule adds a specific literal to each pseudo answer
set in which one of the conflicting rules is active. In particular, this specific
literal is part of the negative body of the other conflicting rule, which therefore
gets “blocked”. Thus, no pre-answer set can contain the complementary (head)
literals of the conflicting rules at the same time. As a blocking rule exploits the
negative body literals of a conflicting rule, this approach is only applicable for
conflicts of the form C = {r1, r2} with B−(r1)\B−(r2) �= ∅.

Definition 7 (Blocking Rule). Let P be an ELP with a conflict C = {r1, r2}
for which B−(r1)\B−(r2) �= ∅ holds. Then, a blocking rule r� for C is a rule

r�: E ←B(r2).,where E ∈ B−(r1)\B−(r2).

Definition 7 demands that the bodies of r� and r2 are identical. As the goal is
to assure that r� becomes active under a set of literals whenever r2 is active, it
would suffice that B(r�) ⊆ B(r2) holds. This, however, can lead to unwanted
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side effects as r� can become active in cases where r2 is not, which then again
could lead to additional (latent) conflicts.

Proposition 4. Let P be an ELP with a derivable conflict C = {r1, r2} and r� a
blocking rule for C. Then, it holds that C becomes nonderivable in P�r� = P∪r�,
i. e. for every pre-answer set S ∈ ASpre(P � r�), r1, r2 /∈ actS(P � r�) is true.

Proof. Let C = {r1, r2} be a derivable conflict in P s. t. B−(r1)\B−(r2) �= ∅ and
r� a blocking rule for C which is meant to block r1, i. e. H(r�) ∈ B−(r1)\B−(r2)
and B(r�) = B(r2). If C was derivable in P� = P � r�, there would have to exist
a pseudo answer set S ∈ AS⊥(P�) with r1, r2 ∈ actS(P�). As r2 ∈ actS(P�)
is assumed, r� ∈ actS(P�) holds (due to B(r�) = B(r2)). Thus, H(r�) ∈ S is
true. But, as H(r�) ∈ B−(r1), r1 cannot be active under S, which contradicts
the assumption of r1 and r2 being simultaneously active under S. Thus, there
cannot be any pseudo answer set S ∈ AS⊥(P�) under which r1 and r2 are active.
As due to the definition of answer sets, r1 and r2 can also not be active under
any answer set of AS(P�), C is nonderivable in all pre-answer sets of P�. 	

Example 7 (Example 6 contd.). To make the conflict C2 = {r3, r4} in P6 non-
derivable, the blocking rule r�

13: sympR ← drugC ,∼drugD . can be constructed
according to Proposition 4. The head literal of r�

13 is referring to the negative
body literal sympR ∈ B−(r4)\B−(r3). Because the body of the blocking rule
r�
13 equals the body of r3, r�

13 is guaranteed to be active whenever r3 is active.
The blocking rule r�

13 leads to C2 being nonderivable in the program P6 � r�
13

(Proposition 4). Note that no blocking rule can be constructed for r3 because
B−(r3)\B−(r4) = ∅. 	


Example 7 implies that there can exist multiple possible solutions for a single
conflict. In a corresponding framework, the professional expert has the possibility
to interactively determine the most suitable solution for each conflict. This step
is also reflected in Algorithm 1, where the complete strategy is summarized.

Algorithm 1: Blocking rules using opposing rules
Input: Program P, Conflict C = {r1, r2} ∈ Conflictsdv (P)
Output: Modified program P� with C �∈ Conflictsdv (P�) or ∅

1 Initialize R� := ∅;
2 foreach E ∈ B−(r1)\B−(r2) do
3 R� := R� ∪ {E ←B(r2).};
4 foreach E ∈ B−(r2)\B−(r1) do
5 R� := R� ∪ {E ←B(r1).};
6 if R� = ∅ then return ∅; /* no resolution found */

7 R� := ChooseSuggestion(R�) ; /* expert chooses suitable R� ∈ R� */

8 return P � R�;
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4.3 Relevant Rule Modification

Instead of adding new rules such as the blocking rules presented in Proposition 4,
which represent new opposing rules for conflicting rules, another possibility to
resolve conflicts would be to modify the existing supporting rules of conflicting
rules. We use the notion of rule modification as presented in [10], but instead of
modifying the conflicting rules directly, we focus on the rules that are primarily
responsible for the bodies of the conflicting rules to be true in the pseudo answer
sets of P. Within the rules H L w.r.t. a literal L ∈ B+(r) of a rule r ∈ P, we
can distinguish between rules that are relevant for the conflict resolution, i. e.
rules that can potentially be simultaneously active with both conflicting rules
and irrelevant rules, which cannot become simultaneously active with at least
one conflicting rule.

Definition 8 (Relevant Rule). Let P be an ELP with a conflict C = {r1, r2}
and H L with L ∈ B+(r1)∪B+(r2). A rule r′ ∈ H L is relevant for the conflict res-
olution of C if there exists a consistent set of literals S with r1, r2, r

′ ∈ actS(P).
Otherwise, r′ is irrelevant for the resolution of C.

Example 8 (Example 6 contd.). In P6, r12 is not relevant for the resolution of
C2 = {r3, r4}. As B+(r4) ∪ B+(r12) = {sympQ , sympQ , sympR} contains com-
plementary literals and B−(r4)∩B+(r12) �= ∅ (as well as B−(r3)∩B+(r12) �= ∅),
the three rules cannot be satisfied simultaneously by a consistent set of literals.
Therefore, r12 cannot be responsible for the derivation of drugC when the con-
flicting rules are simultaneously satisfied in a pseudo answer set. 	


The following definition extends the modification used in [10] and guarantees
that at least one body literal of a conflicting rule is not satisfied if the other con-
flicting rule is active under a pre-answer set, i. e. every relevant rule of the body
literal is modified in a way so that it becomes irrelevant for conflict resolution.
The application of this method is illustrated in the ensuing example.

Definition 9 (Relevant rule modification). Let C = {r1, r2} be a conflict
in an ELP P s. t. B+(r1)\B+(r2) �= ∅ holds. Furthermore, suppose an arbitrary
literal L ∈ B+(r1)\B+(r2) and a rule r′ ∈ H L. Then, Pot(Mr′) = {M | M ⊆
Mr′} with Mr′ = B(r2)\B(r′) implies the powerset of possible modifications for
r′. For each Mr′ ∈ Pot(Mr′) and M̃r′ = {∼a | a ∈ Mr′}, each rule modification
r� of r′ of the form rmod(r′, M̃r′) defines a relevant rule modification of r′, i. e.

r�: H(r′)←B(r′), M̃r′ .

Example 9 (Example 6 contd.). If conflict C2 in P6 should be resolved in such a
way that r4 is preferred over r3, we can manipulate the relevant rules of literals
in B+(r3)\B+(r4). As drugC is the only literal in B+(r3)\B+(r4), the rules
H drugC = {r6, r11, r12} have to be considered. As shown in Example 8, rule
r12 is not relevant for the resolution of C2, so that only r6 and r11 have to be
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modified. According to Definition 9, the following relevant rule modifications can
be constructed for r6 and r11:

r�
6 : drugC ← ∼drugD ,∼sympR,∼sympQ .

r�
11,1: drugC ← sympT ,∼drugD ,∼sympQ .

r�
11,2: drugC ← sympR, sympT ,∼drugD .

r�
11,3: drugC ← sympR, sympT ,∼drugD ,∼sympQ . 	


Since we require every rule in P to be satisfiable, any set Mr′ is also satisfi-
able. Furthermore, by definition, Mr′ has no common literal with B(r′). Thus,
for any set M̃r′ , it holds that B(r′) ∪ M̃r′ is also satisfiable.

Proposition 5. Let P be an ELP with a derivable conflict C = {r1, r2}
and B+(r1)\B+(r2) �= ∅. After applying relevant rule modifications R� =
{r�

1 , . . . , r
�
n} for all relevant rules r′

1, . . . , r
′
n of a set H L with L ∈ B+(r1)\B+(r2)

as defined in Definition 9, C becomes nonderivable in the resulting program
P� = P � R� = ((P � rmod(r′

1, M̃r′
1
)) � . . . � rmod(r′

n, M̃r′
n
)).

Proof. Let P be an ELP with a conflict C = {r1, r2} and B+(r1)\B+(r2) �= ∅
as well as L ∈ B+(r1)\B+(r2). Furthermore, let P� be a program that results
from relevant rule modifications of every relevant rule for C. The proof of this
proposition is done by contradiction: If C would still be derivable in P�, there
would have to be at least one pseudo answer set S ∈ AS⊥(P�) with r1, r2 ∈
actS(P�). Then, by the definition of active rules, S satisfies both B+(r1) and
B+(r2) and L in particular since L ∈ B+(r1)\B+(r2). Consequently, there has
to be at least one rule ri ∈ actS(P�) with H(ri) = L, which is, by definition,
also included in H L. If this rule is not relevant for the conflict resolution, ri was
not modified but could not be active under S in the first place as we already
assume r1, r2 ∈ actS(P�). If ri is relevant, it was transformed to a modified rule
r�
i as shown in Definition 9. Then B+(r�

i )∩B−(r2) �= ∅ or B−(r�
i )∩B+(r2) �= ∅

holds. In either case, r�
i cannot be active under S (i. e. r�

i �∈ actS(P�)). This
contradicts the assumption r�

i ∈ actS(P�). As there cannot be any active rule
ri ∈ H L under S, S does not satisfy B+(r1), hence C has to be nonderivable in
P�. 	


Algorithm 2 summarizes the relevant rule modification strategy. The appli-
cation of this strategy is illustrated in Example 10.

Example 10 (Example 9 contd.). By extending the bodies of all relevant rules of
H drugC with ∼sympQ , sympR, or both, all rules in H drugC are now irrelevant
for the conflict resolution of C2, and it is ensured that drugC cannot be derived
in any answer set in which r4 is active. Therefore, r3 and r4 cannot become
active simultaneously in any answer set. As each combination of modifications,
viz. R�

1 = {r�
6 , r

�
11,1}, R�

2 = {r�
6 , r

�
11,2}, and R�

3 = {r�
6 , r

�
11,3}, constitute a possible

way to resolve C2, P6 �R�
1 , P6 �R�

2 and P6 �R�
3 describe three different resolution

possibilities for C2 that use relevant rule modifications. 	




Towards Causality-Based Conflict Resolution in Answer Set Programs 361

Algorithm 2: Relevant rule modification
Input: Program P, Conflict C = {r1, r2} ∈ Conflictsdv (P)
Output: Modified program P� with C �∈ Conflictsdv (P�) or ∅

1 Initialize R� := ∅; X := (B+(r1)\B+(r2)) ∪ (B+(r2)\B+(r1));
2 foreach L ∈ X do
3 Y := ∅;
4 foreach relevant rule r′

i ∈ HL do

5 Yi := all possible modifications rmod(r′
i, ˜Mr′

i
);

6 Y := Y ∪ Yi;

7 R� := R� ∪ {{r�
1 , . . . , r

�
|Y|} | r�

i ∈ Yi, 1 ≤ i ≤ |Y|}
8 if R� = ∅ then return ∅ ; /* no resolution found */

9 R� := ChooseSuggestion(R�) ; /* expert chooses suitable R� ∈ R� */

10 return P � R�;

5 Related Work

The presented approach is related to methods developed and investigated in
the area of ASP debugging. Essentially, debugging approaches as in [5,8] aim to
modify knowledge bases of any (not necessarily inconsistent) logic programs in
order to remedy a mismatch between the actual semantics of the program and
the semantics intended by the modeller. In general, the ability to identify errors
in a given program and compute suggestions crucially depends on information
by the expert that is given on top of the original program. Alternatively, with
the approaches in [3,7], the expert can analyze the program step by step in order
to detect error causes. Our approach, however, focuses on a specific subclass of
erronous programs where the original program is by itself sufficient to identify
the problem and generate suitable solution suggestions. Once possible solutions
are available, both the presented method as well as debugging approaches like
those based on the meta-programming technique [5] can be used to successively
obtain the most suitable solution in interaction with the user.

6 Conclusion and Future Work

We have shown how consistency in an inconsistent program can be achieved with-
out modifying the de facto conflicting rules to improve the usability of answer
set programs in practice. The presented causality-based resolution approach is
obligatory if the conflicting rules themselves must not be altered. By examining
the dependencies between rules, we have shown how the satisfaction of conflict-
ing rules can be prevented. For that, we defined two strategies which can be
used to generate informative solutions for a professional expert. The expert can
choose the most suitable solution for each conflict to achieve consistency. We
have also introduced the notion of latent conflicts that can cause inconsistency
either during the conflict resolution process or after subsequent modifications.
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The recursive nature of rule dependencies allows for the application of the
strategies not only to supporting rules of the conflicting rules, but also to their
supporting rules (transitive conflict resolution). That leads to even more possi-
bilities to repair a program, such that even small programs can lead to a vast
amount of possible solutions for a professional expert to scan through. It is
therefore critical that a framework as proposed in [9,10] incorporates different
workflows and procedures to efficiently find the most fitting solution for each
conflict. Such workflows imply suitable interactions with the professional expert
to gather relevant background information with the goal to reduce the amount
of solutions which in turn can reduce the overall complexity of such conflict
resolution approaches.

In future work, we want to extend the presented approach to cover transitive
conflict resolution using established methods from argumentation theory. More-
over, we want to develop methods to resolve multiple conflicts simultaneously.
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Abstract. In this paper, we present a system, called xASP, for generating expla-
nations that explain why an atom belongs to (or does not belong to) an answer
set of a given program. The system can generate all possible explanations for a
query without the need to simplify the program before computing explanations,
i.e., it works with non-ground programs. These properties distinguish xASP from
existing systems such as xClingo, DiscASP, exp(ASPc), and s(CASP), which
also generate explanations for queries to logic programs under the answer set
semantics but simplify and ground the programs (the three systems xClingo,
DiscASP, exp(ASPc)) or do not always generate all possible explanations (the
system s(CASP)). In addition, the output of xASP is insensitive to syntactic vari-
ations such as the order conditions and the order of rules, which is also different
from the output of s(CASP).

Keywords: Explainable AI · Logic Programming · Answer Set Programming

1 Introduction

Recent interest in explainable artificial intelligence provided the impulse for the devel-
opment of several systems capable of generating explanations for queries posed to
a logic program under the answer set semantics such as xClingo [2], DiscASP [4],
exp(ASPc) [7], and s(CASP) [1]. These systems can be characterized by three dimen-
sions: (i) the strategy for computing the explanation (grounding vs. non-grounding), (ii)
the types of queries that can be posed to the system (true atoms and false atoms), and
(iii) the representation of the answers. Among these systems, only s(CASP) does not
ground the program before computing the answers; both s(CASP) and exp(ASPc) gen-
erate explanations for atoms in an answer set (true atoms) and atoms not in an answer
set (false atoms); while xClingo is not applicable to false atoms; and DiscASP cur-
rently only works for propositional answer set programs. s(CASP) generates a partial
answer set supporting a query while others generate a full justification, represented by
an explanation graph, given an answer set.
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Grounding a program before computing an explanation comes at some costs. One
of the most significant problems is that the grounding simplification techniques applied
by answer set solvers tend to remove various pieces of information, resulting in expla-
nations that are no longer faithful to the original program, or unable to even provide an
explanation. This is illustrated in the next example.

Example 1 (Limitation of Current Approaches). Let P be a program:

d :− b(X), a(X). b(1). a(4).

This program has a unique answer set {a(1), b(4)}. d is false in this answer set. Suppose
that we are interested in the question “why is d false?”

Among the four systems mentioned earlier, only s(CASP) is able to provide an
explanation for this query. For other systems, no explanation for a false atom is pro-
vided, either by design or by the simplification process. exp(ASPc) does not return an
explanation graph for d because d is eliminated by the solver during the grounding
phase.

In the above example, s(CASP) generates the following justification1

not d :- not b(Var0 | {Var0 \= 1}), b(1), not a(1).

This says that there is an answer set containing b(1), that does not contain a(1) and
does not contain any other atom of the form b(x) such that x �= 1.

When we switch the position of b(X) and a(X) in the first rule, we receive a dif-
ferent justification:

not d :- not a(Var0 | {Var0 \= 4}), a(4), not b(4).

The above example highlights the shortcomings of existing systems. For s(CASP),
even though both answers are correct, it is not ideal that a slight semantics-preserving
change in the input results in a different justification.

In this work, we describe xASP, a system capable of computing the explanation
graphs of a ground atom a w.r.t. an answer set A of a non-ground program P . By work-
ing directly with programs including variables, xASP generates explanation graphs that
are faithful to the program, thus distinguishing itself from xClingo, DiscASP, and
exp(ASPc), which simplify the program before computing an explanation. Different
from s(CASP), it generates all full explanation graphs for an atom given an answer set
and its behavior is not affected by semantics-preserving changes in the program. To
work with programs including variables, xASP uses the given atom and answer set to
dynamically identify relevant ground rules for the construction of the answers. Again,
the main purpose of xASP is to help respond to the need for explainable AI. However,
by presenting the applicable rules, facts, and assumptions used in the derivation of a
given atom, xASP could be useful for debugging as well. For example, if an atom a is
supposed to be false in all answer sets of a program P but appears in some answer set
A, the explanation graph of a could be useful in figuring out which rule must not be
applicable, etc.

1 p(V | V �= v) represents the set of all atoms of the form p(x) except for the atom p(v).
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2 The xASP System

xASP generates explanation graphs under the stable model semantics [3]. It deals with
normal logic programs, which are collections of rules of the form h ← b where h is
an atom and b = p1, . . . , pm, not n1, . . . , not ns, pi and nj are atoms, and not is
the default negation operator. For a rule r, r+ and r− denote the set of positive atoms
{p1, . . . , pm} and the set of negative atoms {n1, . . . , ns}, respectively. xASP utilizes
the notions of supported set and derivation path [7,8] and the concept of explanation
graph [5] which are illustrated using the program P1 consisting of the following rules:

(r1) m :− l(X), not d, not h(X).
(r2) d :− b(X), a(X). (r3) h(X) :− k(X), p.
(r4) b(1). (r5) a(4). (r6) l(1). (r7) k(6).

Given the answer set A1 = {l(1),m, a(4), b(1), k(6)}, the explanation graphs of m
are shown in Fig. 1. Both indicate that m is true in A1 because of the existence of the
rule r1 and the following dependencies:

– m depends positively on l(1), which is a fact;
– m depends negatively on h(1), which is false, because there is only one instance

of the rule r3 with the head h(1). In that instance, h(1) depends positively on k(1)
(left) or p (right) and both are false because there is no rule for deriving them;

– m depends negatively on d, which is false. That is because there are two instances
of rule r2 supporting the derivation of d, but none of them is applicable in the given
answer set. In fact, both a(1) and b(4) are false because there are no rules for deriv-
ing them.

Fig. 1. Explanation graph of m

In general, for a node x in
an explanation graph G, if x
is an atom a then the set of
nodes directly connected to a—
the nodes y such that (a, y, )
is an edge in G—represents the
body of a rule whose head is x
and whose body is satisfied by
A. If x is ∼ a for some atom
a, then the set of nodes directly
connected to ∼ a represents a
set of atoms whose truth values
in A are such to make each rule
whose head is a unsatisfied by A. In other words, the direct connections with a node
represent the support [7] for the node being in (or not in) the answer set under consid-
eration.

The three types of links connecting a node x (corresponding to an atom a) to a node
y (for an atom b) in explanation graphs are as follows:

– + (represented by a solid link) demonstrates that the truth value of a depends
positively on the truth value of b w.r.t. A. If node y is � ( True), atom a is a fact.
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Fig. 2. The overview of xASP system

– − (represented by a dashed link) demonstrates that the truth value of a depends
negatively on the truth value of b w.r.t. A. If node y is ⊥ (False), it means that atom
a is always false. Note that in our prior system exp(ASPc), this link does not exist
because the atoms, that are always false, have been simplified during the grounding
process of clingo.

– ◦ (represented by a dotted link) is used in the case in which node y is assume,
which means that atom a is assumed to be false (see in examples in [5,7]).

2.1 Overview of xASP

Figure 2 shows the overview of xASP. The large two boxes represent the two main
phases of xASP, grounding as-needed and computing a minimal assumption set. The
grey boxes are implemented via exp(ASPc).
Grounding as-needed: xASP computes the set of ground rules that are necessary for the
construction of explanation graphs of a and the set of derivation paths of a given A. It
starts by identifying the rules related to a, e.g., rules whose head is a or an atom that a
depends on. Afterwards, these rules are grounded, taking into consideration the given
answer set. Finally, the derivation paths of a and its dependencies are obtained via the
computation of supported sets which is the focus of this paper (Sect. 2.2).
Computing a minimal assumption set: xASP computes ETA, the set of derivation paths
of all atoms in the tentative assumption set TA and a minimal assumption set U of A.
It then utilizes exp(ASPc) [7] to construct explanation graphs for a.

2.2 Computing Derivation Paths of a

This section presents a key algorithm for computing Ea, an associative array whose
keys are a or atoms that a depends on, directly or indirectly, as defined via the depen-
dency graph [6]. Ea.keys() denotes the set of keys in Ea. For each x ∈ Ea.keys(),
Ea[x] is the value associated with x in Ea and contains the supported sets of x [7].

Given two atoms a = p(t1, t2, .., tn) and b = q(t′1, t
′
2, .., t

′
m), we write pu(a, b) to

denote that a and b have the same predicates (p = q) and arities (n = m), i.e., a and b
are possibly unifiable.
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Algorithm 1: PartialGrounding(a, P,A)
Input: a-a ground atom; P -program; A-an answer set
Output: Ea - set of derivation paths of a and a’s dependencies

1 Let Ea[a] = [] if a ∈ A or let Ea[∼a] = [] if a /∈ A
2 Let Ha={(h, r+, r−) | r = h ← b ∈ P ∧ pu(a, h)}
3 for (h, r+, r−) ∈ Ha do
4 if ∃!θ such that θ be the unifier of {a, h} then
5 L = {p | p ∈ r+ ∧ pθ is not ground}
6 for θ′ ∈ ω(L, A) do
7 θ′ ← θ′ ◦ θ // Composition of substitutions
8 D ← {dθ′ | d ∈ r+}, N ← {nθ′ | n ∈ r−}
9 if a ∈ A then

10 T ← {D ∪ {∼n | n ∈ N} | D ⊆ A, N ∩ A = ∅ }
11 Append T to Ea[a]

12 else
13 T ← {{d} | d ∈ A ∩ N} ∪ {{∼n} | n ∈ D \ A}
14 Ea[∼a] ← [X ∪ L | X ∈ Ea[∼a], L ∈ T ]

15 Ea[∼a] ← [{⊥}] | �(h, r+, r−) ∈ Ha such that a is unifiable with h
16 PartialGrounding(c, P, A) where either c ∈ C or ∼c ∈ C, C ∈ Ea[a] ∪ Ea[∼a]
17 return Ea

Fig. 3. Explanation graph of d

Algorithm 1 takes a grounded atom a and an answer set
A of program P as inputs and computes Ea for the con-
struction of the explanation graph for a ∈ A (true atom)
or a �∈ A (false atom). Ea is initialized with the empty
array (line 1). Only rules in Ha whose head could be uni-
fied with a are involved in the partial grounding process
(lines 2-14). For each (h, r+, r−) ∈ Ha, the grounding
process starts with a unifier θ of a and h (line 4). L is
the set of positive atoms that are not grounded after sub-
stituting with θ. pθ denotes that variables in atom p are
substituted by elements in θ. Due to the restriction that
variables occurring in negative atoms must appear in pos-
itive atoms, ground substitutions of atoms in r+ are ground substitutions for the nega-
tive atoms in r−. We define ω(L,A) as the set of potential substitutions for variables
in L given A, in which each element θ′ of ω(L,A) is a set of substitutions of the form
v/t such that for some x ∈ L and xθ′ ∈ A, and {v | v/t ∈ θ′} = V where V is the
set of variables in L. Note that θ′ must be composed to a valid substitution for vari-
ables in L, e.g., it must not specify two different values for a variable (called conflict
in the variable). In addition, some atoms in L cannot be unified with any atoms in A
and hence are false w.r.t. A. Therefore, those atoms are not grounded (see Sect. 2.3). If
L = ∅, ω(L,A) is empty. After obtaining substitutions, the positive and negative atoms
are grounded via θ′ (line 7) and supported sets of a are computed which depend on the
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truth value of a in A (lines 6-14). Note that, in line 10, if D = ∅ and N = ∅, then
T = {�}, denoting that atom a is a fact. Observe that if there are no rules whose head
can be unified with a, then the atom is false (no rule in P supports a). As such, Ea[∼ a]
is set to [{⊥}], i.e. atom a is false in P (line 15). Unlike exp(ASPc), Algorithm 1 is
recursively called only on atoms in supported set of a (line 16).

Example 2. Let us reconsider program P1 and compute the derivation paths for m.
Given a ground atom m, there is only rule r1 whose head is unifiable with m where
θ = ∅. θ is not a ground substitution for positive atoms in r1. Thus, answer set A1 is
utilized to obtain a unifier {X/1} to substitute for atoms in the body of r1, resulting in
Em[m] = {l(1),∼ d,∼ h(1)}. Algorithm 1 is called recursively on atoms l(1), d and
h(1).

– Em[l(1)] = [{�}] because of rule r6.
– Similar to m, unifier θ = ∅ for atom d is not a ground substitution for positive atoms
in r2. However, given A1, we can conclude that there are two possible substitutions,
{X/1} and {X/4}, for r2. We have Em[∼d] = [{∼a(1),∼ b(4)}]. Algorithm 1 is
then called for atoms a(1) and b(4).

• Although the head of rule r5 has the same predicate and arity as a(1), a(1)
and a(4) are not unifiable. Thus, Em[∼ a(1)] = [{⊥}]. Similar to a(1), Em[∼
b(4)] = [{⊥}].

– Similaly, we have Em[∼ h(1)] = [{∼ k(1)}, {∼ p}], Em[∼ k(1)] = [{⊥}] and
Em[∼p] = [{⊥}].

2.3 Illustrations

Fig. 4. Explanation graph of m

Figure 3 shows the explanation graph for d in the case of
Example 1. Unlike s(CASP), in xASP the explanation for
d being false is that all possible ground rules whose head
is d have an unsatisfied body, in this case because a(1)
and b(4) are false.

Consider another program P ′ containing the rules:

(r1)m :− not q. (r2)q :− d(X).
(r3)d(X) :− a(X), l. (r4)a(1).

An explanation graph of m w.r.t. P ′ and answer set
A′ = {m,a(1)} is shown in Fig. 4. It contains non-
ground atom d(X) because no atoms formed by d/1 occur
in A′.

3 Conclusion

We presented xASP, a system for computing explanation graphs of true and false atoms
w.r.t. an answer set of a program. xASP does not simplify the program before finding the
explanations, thus providing faithful explanations for the truth value of the given atom.
This is important to form a correct understanding of programs. Future work includes
testing xASP on realistic debugging tasks and supporting the full language of clingo.
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Abstract. Answer Set Programming with Quantifiers ASP(Q) is a
recent extension of Answer Set Programming (ASP) that allows one
to model problems from the entire polynomial hierarchy. Earlier work
focused on demonstrating modeling capabilities of ASP(Q). In this paper,
we propose a modular ASP(Q) solver that translates a quantified ASP
program together with a given data instance into a Quantified Boolean
Formula (QBF) to be solved by any QBF solver. We evaluate the perfor-
mance of our solver on several instances and with different back-end QBF
solvers, demonstrating the efficacy of ASP(Q) as a tool for rapid mod-
eling and solving of complex combinatorial problems. The benchmark
problems we use include two new ones, Argumentation Coherence and
Para-coherent ASP, for which we develop elegant ASP(Q) encodings.

Keywords: Answer Set Programming · Quantifiers · QBF

1 Introduction

Answer Set Programming (ASP) [7,20] is a logic programming formalism for
modeling and solving search and optimization problems. It is especially effective
in modeling and solving search and optimization variants of decision problems in
the class NP (the first level of the polynomial hierarchy) [19]. The success of ASP
is due to two factors. First, problems in NP (and their search and optimization
variants) can be expressed as compact and well-structured programs by following
a simple programming methodology known as generate-define-test [22]. Second,
solvers such as clasp [18], and wasp [1], were shown to be effective in processing
programs for industrial-grade problems [11,16].

Modeling problems beyond the class NP with ASP is possible when one uses
the full language of ASP that allows for disjunctions in the head of rules. In the
full ASP language one can express problems whose decision variants are in the
class ΣP

2 [10]. However, modeling problems beyond NP with ASP is complicated.
The generate-define-test approach is insufficient, and commonly used techniques
such as saturation [10,15] are hardly intuitive as they often introduce rules that
have no direct relation to constraints of the problem being modeled.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 373–386, 2022.
https://doi.org/10.1007/978-3-031-15707-3_29
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These shortcomings of ASP motivated recent research on extending ASP
with quantifiers over answer sets of programs. In particular, following the way
in which Quantified Boolean formulas (QBFs) add quantifiers over sets of inter-
pretations to the language of propositional logic, we introduced the language
ASP with Quantifiers or ASP(Q), for short [4]. The language expands ASP with
quantifiers over answer sets of ASP programs; its elements are called quanti-
fied programs. We showed that ASP(Q) (just as QBFs) can express all deci-
sion problems forming the polynomial hierarchy [4]; we also presented quantified
programs for four problems: QBF evaluation (spans the polynomial hierarchy),
Minmax Clique (ΠP

2 -complete), Pebbling Number (ΠP
2 -complete) and Vapnik-

Chervonenkis Dimension (ΣP
3 -complete).

These results notwithstanding, the ultimate adoption of ASP(Q) as a knowl-
edge representation formalism depends on the availability of effective solvers for
quantified programs. In this paper, we address this issue.
Contribution. Our primary contribution is the first ASP(Q) solver. It translates
a quantified program together with a given data instance into a QBF. This QBF
can be solved by any of the available QBF solvers. We study the performance of
the solver on the QBF evaluation and the Minmax Clique problems [4], and on
two additional problems, Argumentation Coherence (ΠP

2 -complete) and Para-
coherent ASP under the semi-stable semantics (ΣP

2 -complete), for which we
show elegant encodings further showing the modeling efficiency of ASP(Q).
Related Work. To the best of our knowledge, this paper presents the first solver
implementing the ASP (Q) language. Hence, no other ASP(Q) solvers are avail-
able for direct comparisons. However, some earlier works in the literature can
be related to ASP(Q). The most closely-related formalisms are stable-unstable
semantics [6] and quantified answer set semantics (QASP) [17]. For an exhaus-
tive comparison of ASP(Q) with alternative formalisms we refer the reader to
[4,14,17]. From the perspective of implementations, our approach builds on QBF
solvers as existing ASP solvers build on SAT. Similarly to our approach, the
quantified answer set semantics [23] was implemented by a translation to QBF
and SAT-based ASP solving tools [17]. However, the differences in the semantics
of quantifiers give rise to different encodings in QBF for the two formalisms.
Translations from QASP to ASP(Q) and back were proposed by [17] but they
have not been implemented. The stable-unstable semantics was implemented
in a proof of concept prototype [6] and recently implemented via rewriting in
ASP [21] that can only handle problems at the second level of the PH.

2 Answer Set Programming with Quantifiers

We assume familiarity with basic concepts of ASP and, in particular, ASP with
variables extended with aggregates. For an answer set program P , we write HP

for the Herbrand base of P and AS (P ) for the collection of answer sets of P .
An ASP with Quantifiers (ASP(Q)) program Π is an expression of the form:

�1P1 �2P2 · · · �nPn : C, (1)
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Fig. 1. System architecture

where, for each i = 1, . . . , n, �i ∈ {∃st,∀st}, Pi is an ASP program, and C is
a stratified normal ASP program. An ASP(Q) program Π of the form (1) is
existential (universal, respectively) if �1 = ∃st (= ∀st, respectively).

Given a logic program P , an interpretation I over the Herbrand base BP of
P , and an ASP(Q) program Π of the form (1), we denote by fixP (I) the set of
facts and constraints {a | a ∈ I} ∪ {← a | a ∈ BP \ I}, and by ΠP,I the ASP(Q)
program of the form (1), where P1 is replaced by P1 ∪ fixP (I), that is,

ΠP,I = �1(P1 ∪ fixP (I)) �2P2 · · · �nPn : C.

Coherence of ASP(Q) programs is defined by induction as follows:

– ∃stP : C is coherent, if there exists M ∈ AS(P ) such that C ∪ fixP (M) is
coherent;

– ∀stP : C is coherent, if for every M ∈ AS(P ), C ∪ fixP (M) is coherent;
– ∃stP Π is coherent, if there exists M ∈ AS(P ) such that ΠP,M is coherent;
– ∀stP Π is coherent, if for every M ∈ AS(P ), ΠP,M is coherent.

“Unwinding” the definition for a quantified program

Π = ∃stP1∀stP2 · · · ∃stPn−1∀stPn : C

yields that Π is coherent if there exists an answer set M1 of P ′
1 such that for

each answer set M2 of P ′
2 there is an answer set M3 of P ′

3, . . . , there is an answer
set Mn−1 of P ′

n−1 such that for each answer set Mn of P ′
n, there is an answer

set of C ∪ fixP ′
n
(Mn), where P ′

1 = P1, and P ′
i = Pi ∪ fixP ′

i−1
(Mi−1), if i ≥ 2.

For an ASP(Q) program Π of the form (1) such that �1 = ∃st, M ∈ AS(P1)
is a quantified answer set of Π, if (�2P2 · · · �nPn : C)P1,M is coherent. We
denote by QAS(Π) the set of all quantified answer sets of Π.

3 The ASP(Q) Solver

System Description. The architecture of the system is shown in Fig. 1. The
input program Π is taken by the QBF Encoder module. It produces a QBF
formula Φ(Π) such that Φ(Π) is true iff Π is coherent. The QBF Φ(Π) is then
processed by the QBF Solving back-end that determines whether Φ(Π) is true.
The Output Interpreter presents to the user the output in a standardized format.
The modules are discussed in detail below.
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Input. The input quantified program consists of several ASP programs in the
ASPCore 2 format [8] that are separated from each other by markers %@exists,
%@forall, and %@constraint. The markers explain whether the program that
follows is a constraint or, otherwise, how it is quantified. For example, the pro-
gram ∃stP1 ∀stP2 : C, where P1 contains the rule a|b, P2 the rule c|d and C is
the constraint ← a, c is written in the input syntax in Fig. 1 the Input box.

QBF Encoder. The module translates the input program Π of the form (1)
into a QBF formula Φ(Π). This process is driven by a Director submodule that
analyzes the program structure to identify the quantifiers and the subprograms
P1, ..., Pn, and C. The subprograms Pi, i = 1, . . . , n, are augmented with choice
rules for ground atoms involving predicates occurring in earlier subprograms. In
this way, ground atoms fixed by answer sets of earlier programs can be combined
with the current program, implementing the use of the fix mapping described
in the formal definition of the semantics. Each subprogram is then instantiated
by the Grounder submodule that computes its propositional counterpart and
converts it into a propositional formula in Conjunctive Normal Form (CNF)
by LP2SAT module. The resulting CNF formulas are assembled together into
a QBF Φ(Π) that is true precisely when Π is coherent. During this process
the Director collects information that allows it to combine outputs of internal
procedures. This information is also used by the Output Interpreter to print the
results, in particular, an answer set of Π when available. We now provide a more
formal account of the QBF Encoder.

For an ASP program P , we denote by G(P ) its grounding, by pred(P ) the
set of predicates occurring in P , and by at(P, p) the set of ground atoms built
on predicate p from P . Given two programs P and P ′, we denote by Int(P, P ′)
the set pred(P ) ∩ pred(P ′). Given a set of propositional atoms A, we denote
by ch(A) the program {{a}|a ∈ A} made of choice rules over atoms in A. For
two programs P and P ′, the choice interface program CH (P, P ′) is defined as
ch(

⋃
p∈Int(P,P ′) at(G(P ), p)). For a propositional formula Φ, var(Φ) denotes the

variables occurring in Φ.
Given an input quantified program Π of the form (1), the intermediate

groundings Gi of its sub-programs, and the QBF Φ(P ) encoding Π are:

Gi =

⎧
⎨

⎩

G(P1) i = 1
G(Pi ∪ CH (Pi−1, Pi)) i ∈ [2..n]
G(C ∪ CH (Pn, C)) i = n + 1

Φ(Π) = �1 · · · �n+1

(
n+1∧

i=1

(φi ↔ CNF (Gi))

)

∧ φc,

where CNF (P ) is a CNF formula encoding the ground program P (produced
by LP2SAT ); φ1, . . . , φn+1 are fresh propositional variables; �i = ∃xi if either
�i = ∃st or i = n + 1, and �i = ∀xi otherwise, xi = var(φi ↔ CNF (Gi)) for
i = 1, · · · , n + 1, and φc is the formula

φc = φ′
1 �1 (φ′

2 �2 (· · · φ′
n �n (φn+1) · · · ))
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where �i = ∨ if �i = ∀st, and �i = ∧ otherwise, and φ′
i = ¬φi if �i = ∀st,

and φ′
i = φi otherwise. Intuitively, there is a direct correspondence between the

quantifiers in Π and Φ(Π); moreover, each subprogram of Π (i.e., P1, · · · , Pn, C)
is grounded taking care of the interface with preceding subprograms (i.e., of
propositional atoms in common) and converted into an equivalent CNF formula;
finally, the formula φc is built to constrain the variable assignments correspond-
ing to the stable models of each subprogram so that they behave as required by
the semantics of ASP(Q).

Theorem 1. Let Π be a quantified program. Then Φ(Π) is true iff Π is coher-
ent.

Note that Φ(Π) is not in the normal form, thus the QBF Encoder outputs it
in the QCIR format developed for such formulas.

QBF Solving Back-End. The QBF formula produced by the QBF Encoder is
processed by a QBF solver of choice. To facilitate a broader range of applicable
solvers and to improve solver performance, the Pre-processor submodule uses
tools that convert the formula Φ(Π) to a format compatible with the solver (e.g.,
converting from QCIR to QDIMACS) or simplify a formula (e.g., eliminating
some variables and quantifiers).

Output Interpreter. The output of the QBF back-end is parsed and printed by the
Output Interpreter. When Π starts with an existential quantifier, and the QBF
back-end is designed to provide a satisfying assignment to the corresponding
existentially quantified variables, there is an option to print out the correspond-
ing quantified answer set.

Additional Details. qasp is modular. That is, it might be configured with
alternative grounders, ASP-to-SAT translators, and QBF solving pipelines. In
current configuration, qasp is distributed as a jar package embedding all the
internal components that are executed as external processes. It is made of ≥ 2k
lines of Java code, compliant with Java 8 (or higher), requires Python 3, and
runs under Linux.

4 Modeling Hard Problems with ASP(Q)

In this section, we present quantified programs encoding the Argumentation
Coherence problem and the Semi-stable Semantics problem, the latter concerned
with paracoherence in ASP. Both problems belong to the second level of the
polynomial hierarchy.

Argumentation Coherence. Argumentation frameworks (AFs) of [12] form a
powerful abstraction for several types of argumentation. To recall, an AF F is a
directed graph (Ar, att), where Ar is a finite set of arguments, and att ⊆ Ar×Ar
is a set of attacks : if (a, b) ∈ att then we say that a attacks b. For a set A ⊆ Ar
of arguments, we denote by A+ the set of all arguments in Ar attacked by an
argument in A, i.e. A+ = {b ∈ Ar | (a, b) ∈ att, and a ∈ A}. We say that
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Fig. 2. Argumentation Coherence in ASP(Q).

A is conflict-free if for each a, b ∈ A, (a, b) �∈ att. Further, A is admissible if
A is conflict-free and if for every a ∈ A and every b ∈ Ar with (b, a) ∈ att,
there is c ∈ A such that (c, b) ∈ att (a is defended by A in F ). The stable
and preferred semantics of argumentation frameworks play a prominent role in
abstract argumentation. We define A to be a stable extension if A+ = Ar\A (i.e.,
A is conflict-free, and for each a ∈ Ar \ A, there is b ∈ A, such that (b, a) ∈ att).
We define A to be a preferred extension if A is a maximal admissible set (w.r.t.
set-inclusion). Given an AF F , we denote by stb(F ) and pref (F ) the sets of all
stable and preferred extensions of F , respectively.

The Argumentation Coherence (AC) problem consists of deciding whether for
a given AF F , stb(F ) = pref (F ). The problem is known to be ΠP

2 -complete [13].
Since every stable extension is preferred, the AC problem is equivalent to check-
ing that for each admissible and non-stable extension A of F , there exists an
admissible extension A′ of F , such that A ⊂ A′ (proper inclusion), thus showing
that such sets A are not preferred extensions. This simple characterization leads
to an encoding of an AF F = (Ar, att) by an ASP(Q) program ΠF of the form
∀stP1∃stP2 : C. In ΠF , the program P1 is given by the set of facts and rules in
Fig. 2(a). The first two lines encode the input AF, using a unary predicate arg
and a binary predicate att . The third line is a choice rule modeling a guess of
a subset of the arguments, that are selected into the predicate inS . The fourth
and fifth lines encode admissibility. The fourth rule states that attackedByS (Y )
must hold whenever an argument Y is attacked by an argument X from the
selected set; the fifth rule (the constraint) ensures every element in the selected
set is defended by the selected set. The next constraint ensures the selected set
is conflict-free. Finally, the last two rules guarantee that the selected set is not
stable. Indeed, the last but one rule derives an atom unstb whenever the selected
set is not stable, and the last rule forces unstb to be derived. In other words,
answer sets of P1 correspond to admissible extensions of F that are not stable.

The program P2 is reported in Fig. 2(b). Note that program P2 is very similar
to program P1. It uses the predicate inA (instead of inS ) to collect a guessed
admissible extension. Thus, an answer set of P2 corresponds to an admissible
extension of F . Finally, the program C is reported in Fig. 2(c). Program C
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ensures that a set S is a proper subset of A, therefore, not a preferred exten-
sion. It follows that ΠF is coherent if and only if for every answer set S of
P1 (an admissible extension that is not stable), there is an answer set A of P2

(an admissible extension) such that A is a proper superset of S, thus showing
that no admissible extension that is not stable is preferred or, in other words,
demonstrating that for the given AF F , stb(F ) = pref (F ). More formally:

Theorem 2. Let F = (Ar, att) be an AF. Then, stb(F ) = pref (F ) iff the
ASP (Q) program ΠF is coherent.

Paracoherent ASP—Semi-stable Semantics. Paracoherent ASP is con-
cerned with assigning a meaningful semantics to answer set programs that have
no answer sets due to negative cycles [3]. One of the earliest proposed paracoher-
ent semantics for ASP is the semantics of semi-stable models (the SST semantics)
[24]. As required for every paracoherent semantics for ASP, the SST semantics
coincides with the answer-set semantics, whenever a program has answer sets,
and has paracoherent models, whenever the program has a classical model.

The SST semantics can be defined in terms of a certain epistemic transfor-
mation of ASP programs [2]. First, for every atom a in P , we introduce a fresh
“gap” atom gap(a). Then, for each rule r ∈ P , we construct a rule r′ by adding
to the body of r the literal not gap(c), for every literal not c occurring in the
body of r. The externally supported program of P , or P s, in symbols, is the
program obtained from all rules r′, where r ∈ P , and all choice rules {gap(c)},
for all new gap atoms gap(c).

It is known that if P has a classical model, then P s has an answer set. Given
a set A of atoms of P s, we set gap(A) = {gap(a)|gap(a) ∈ A}. We now define A
to be an SST model of P if A is an answer set of P s such that for every other
answer set A′ of P s, gap(A′) �⊂ gap(A). In other words, an SST model of P is
an answer set of P s that is minimal with respect to gap atoms.

The Paracoherent ASP problem is the functional problem to compute an SST
model of a given answer set program P . If P is head-cycle-free, the Paracoherent
ASP problem is in FΣp

2 [2]. We consider the problem under this restriction and,
for a head-cycle-free program P , we construct program ΠP = ∃stP1∀stP2 : C
whose quantified answer sets correspond to SST models of P .

To this end, we define P1 = P s and P2 = P ′s, where P ′ is obtained from
P by replacing each atom p occurring in P with a fresh atom p′. Finally, the
program C is as follows:

noSubsetGap ← gap(X), not gap′(X).
noSupersetGap ← not gap(X), gap′(X).

← noSubsetGap, not noSupersetGap.

Consider an answer set A1 of P1 and any answer set A2 of P2 extended with
the facts from A1. The first rule of C infers atom noSubsetGap whenever some
atom X is in the gap of A1 but not in the gap of A2. This means that gap(A1) �⊆
gap(A2). Similarly, the second rule infers atom noSupersetGap whenever some
atom X is in the gap of A2 but not in the gap of A1. This means that gap(A1) �⊇



380 G. Amendola et al.

gap(A2). Whenever noSupersetGap is not inferred, then each atom in the gap of
A2 is also in the gap of A1, i.e., gap(A2) ⊆ gap(A1). Finally, the last constraint
says that that it is impossible that gap(A1) �⊆ gap(A2) (noSubsetGap is true)
and gap(A2) ⊆ gap(A1) (noSupersetGap is false). So, it means that it is not
possible that gap(A2) ⊂ gap(A1). Therefore, ΠP is coherent if and only if there
exists an answer set, say A1, of P1 (i.e., an answer set of P s) such that for
each answer set, say A2, of P2 (i.e., another answer set of P ′s), gap(A2) is not
strictly contained into gap(A1). Hence, gap(A1) is subset minimal and A1 is a
semi-stable model of P . This leads to the following formal result.

Theorem 3. Let P be an ASP program. Then, A is a semi-stable model of P
iff A is a quantified answer set of ΠP .

5 Experiments

In the experiments we aim to: (i) assess the performance of the system on well-
known hard benchmarks, also providing as reference dedicated state-of-the-art
solvers; (ii) show the system can compute in reasonable time solutions to several
problems modeled in ASP(Q); (iii) compare on the paracoherence problem our
approach (modeling in ASP(Q) and solving with our tool) with the approach
based on direct ASP modeling using saturation; (iv) analyze the impact of the
QBF encoder and different back-ends on QBF solving.

Experimental Setup. We consider four problems: Quantified Boolean Formulas
(QBF); Argumentation Coherence (AC); Minmax Clique (MMC); Paracoherent
ASP (PAR). The QBF evaluation is a natural choice when studying tools for
solving hard problems in the PH. The problem has been studied extensively
and many instances for assessing the performance of QBF solvers are available
in QBF competition archives or can be randomly generated [5]. For our study,
we randomly selected 993 hard instances from QBF Lib (https://www.qbflib.
org/) and generated 2049 instances using the random generator by Amendola et
al. [5]. (generator setting: 32 instances per sample with 72 universal variables 36
existential variables, number of clauses per sample varying from 72 to 192 with a
step of 4, and number of components set to both 1 and 2). The instances from the
QBF competitions allowed us to assess our tool on a well-known benchmark set
containing instances of real-world problems form the PH; the random instances
allowed us to assess the system on both easy and hard instances. QBF instances
have been encoded in ASP(Q) using the encoding by Amendola et al. [4]. This
benchmark contributes to goals (i) and (iv) of the study.

Argumentation Coherence (AC) was discussed earlier in the paper. To the
best of our knowledge there are no dedicated solvers for this problem. This bench-
mark contributes to goal (ii). We consider all 326 instances of the argumentation
competition ICCMA 2019 (http://argumentationcompetition.org/2019).

The Minmax Clique (MMC) problem [9] is a well-studied Πp
2 -complete prob-

lem. An ASP(Q) encoding was proposed by Amendola et al. [4]. Evaluating our

https://www.qbflib.org/
https://www.qbflib.org/
http://argumentationcompetition.org/2019
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solver on this problem supports goal (ii). The instances we considered are the 45
graphs used in the ASP Competitions [19] for the graph coloring benchmark.

The Paracoherent ASP problem (PAR) consists of computing the semi-stable
models of ASP programs [24]. We presented a ASP(Q) encoding of the problem
in the previous section. A direct ASP encoding using saturation was proposed by
Amendola et al. [2]. We compare the performance of qasp run on our ASP(Q)
encoding with that of wasp [1] run on the saturation-based direct ASP encoding.
This supports the objective (iii) of our study. We consider the instances from
the ASP competition used in earlier work [2]; we also generate a new set of
random instances modeling 3-SAT formulas around the phase transition. Again,
the random set contains both easy and hard instances of the problem (generator
setting: 20 instances per sample with 300 variables, clauses varying from 850 to
1850, so that the ratio of clauses to variables is around the threshold of 4.25).

Compared Methods. We consider four variants of our system qasp:

– qasp RQS : The pre-processor calls qcir-conv.py to transform QCIR to GQ,
then the RareQS QBF solver is called.

– qasp DEPS The pre-processor calls qcir-conv.py and fmla to convert the for-
mula from QCIR to QDIMACS. The resulting formula is then further simpli-
fied by bloqqer, then the QBF solver DepQBF is called.

– qasp QBS : No pre-processor; QBF solver is Quabs.

To meet goals (i) and (iii) of our experiment, we run the back-end QBF
solvers on original QDIMACS instances, and wasp ASP solver on ASP inputs:

– RAReQS: the input in QDIMACS format is converted in GQ using qcir-
conv.py and then Quabs is called.

– DepQBF: the input in QDIMACS format is pre-processed by bloqqer and
then fed in input to DepQBF.

– QuAbS: the input in QDIMACS format is converted in QCIR using qcir-
conv.py and then Quabs is called.

– wasp: the combination of gringo with WASP [1] for PAR benchmark in the
same setting as that used by Amendola et al. [2].

All solvers were run in their default configurations. In a preliminary exper-
iment (with few instances per each domain) we run several (up to 11) variants
of the back-ends, where we considered different combinations of QCIR to QDI-
MACS/GQ converters and pre-processors, and selected the best combination
for each considered QBF solver. We stress that we did not aim at comparing
back-end solver performance, instead our goals were to demonstrate the feasi-
bility and efficacy of our implementation and to get insights into the impact of
selecting different back-ends. Any advancement in QBF solving techniques can
be capitalized on to yield improvements in our system.

Experiment Setup. Experiments were run on a system with 2.30 GHz Intel
Xeon(R) E7-8880 v4 CPUs and 512 GB of RAM with GNU/Linux Debian
4.9.272-2 (2021-07-19) x86 64, kernel 4.9.0-16-amd64 #1 SMP. Execution time
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Table 1. QBF benchmark: Sided with
ad hoc solvers.

Table 2. AC and MMC Benchmarks.

and memory were limited to 1200 s (of CPU time, i.e., user+system) and 12 GB,
respectively. Each system was limited run in a single core. A package containing
qasp is available online at www.mat.unical.it/ricca/downloads/qasp-0.1.2.jar.

5.1 Results

QBF. The results obtained running the three variants of our qasp on QBF
instances are summarized in Table 1. We report there the number of solved
instances within the timeout (#sol), the number of timeouts (TO) and the num-
ber of memory outs (MO). In this benchmark qasp DEPS seems to be the best
variant, followed by qasp QBS and qasp DEPS , respectively. We also report
there the results obtained by running the back-end QBF solvers on the original
instances in the QDIMACS format. The QBF solvers can solve more instances
than the corresponding variant of qasp. Although we tried to keep the com-
parison as fair as possible, there are some obvious technical reasons that make
this result expected. First, the original instances in the QDIMACS format are
smaller in size, since they are encoded in the numeric format, whereas ASP(Q)
instances are human-readable and, thus, more verbose and slower to read. Sec-
ond, ASP(Q) instances are first encoded in QCIR and have to be transformed
in a different format (for RAReQS and DepQBF). Pre-processing causes the
formula to be heavily rearranged and often “inflated” with extra variables and
clauses w.r.t the original QDIMACS instance. This causes all the qasp versions
to be interrupted more often than QBF counterparts because they exceed the
memory limit. Especially on QBF competition instances, which are larger in size,
this has more impact. Nonetheless, the difference in performance (varying from
about 5% to 20%) remains acceptable, and the best qasp version (qasp DEPS )
compares very well with QuAbS and RAReQS.

AC and MMC. AC and Minmax Clique are benchmarks assessing our implemen-
tation on hard problems. In both cases, a rather intuitive encoding in ASP(Q)
was provided, and we are not aware of the existence of any specialized systems.
The results obtained running the three variants of our qasp on AC and MMC
are summarized in Table 2. It reports the number of solved instances within the
timeout (%sol), the number of timeouts (TO) and the number of memory outs
(MO) in both benchmarks. We observe that qasp RQS is the best performing
variant in AC, solving 177 instances of the ICCMA Competition, which is more

www.mat.unical.it/ricca/downloads/qasp-0.1.2.jar
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Table 3. PAR Benchmark: comparison
with saturation.

Table 4. Encoding performance.

than one half of the entire set. Concerning MMC, the best performing variant
is qasp QBS , solving all the 45 instances available. These results confirm that
qasp is effective as a tool for modeling and solving hard problems.

PAR. This benchmark was considered to compare ASP(Q) with an alterna-
tive solution based on a plain ASP encoding exploiting saturation. The results
obtained running the three variants of our qasp and wasp (on plain ASP) are
summarized in Table 3. The table reports the number of solved instances within
the timeout (%sol), the number of timeouts (TO) and the number of memory
outs (MO) in both benchmarks. First of all we observe that qasp RQS is the
only implementation that is able to solve one of the very-hard instances form the
ASP competition. The rewriting in QBF are indeed very large and often cause
memory outs in all qasp variants. wasp evaluating a saturation-based encoding
timed out in all the instances. ASP competition instances are very hard to draw
a conclusion, but on random benchmarks the picture becomes more clear. qasp
RQS confirms to be very effective on PAR Random benchmark solving all the 441
instances in the set, whereas wasp could solve only 166. We can thus conclude
that ASP(Q) can be a better option problems in the second level of the PH than
ASP with saturation. Indeed, the ASP(Q) encoding are more intuitive and the
qasp is more effective.

Impact of Main Modules. From the results we have obtained it is clear that
the back-end used for solving has an impact on qasp performance. On the one
hand, different back-end solvers perform better on different benchmarks, and
this is just another confirmation of the “no free lunch” theorem. On the other
hand, it is interesting to analyze the impact of the QBF Encoder module to
better understand the behavior of the qasp. In Table 4 we report for all consid-
ered benchmarks: the number of successfully-encoded instances within the time-
out (%sol), the average execution time (avg(T)), standard deviation (σ2(T)) on
successfully-encoded instances, the number of timeouts (TO), and the number
of memory outs (MO), as well as an indicative measure of the average impact of
the QBF encoding phase on successfully-encoded instances (Imp.). The impact
is computed as the ratio of the the average encoding time divided by average
execution time of the best qasp variant, and is expressed in percentage. This
measure is rough, but helps identifying the benchmarks in which the encoding
phase had more impact. This is the case of both QBF competition instances and
ASP competition instances for the PAR experiment. In these cases the encoding
took a considerable amount of resources, causing 27 memory outs in QBF com-
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petition instances. However, for most instances this was not the case and the
system spent most of the time in the back-end solver phase. Finally, note that
there is a high variability on encoding times (compare variance with average),
this means that in the same benchmark set some instances are easily encoded,
whereas some others (the larger in size) require more time. On the positive
side, we observe there are many cases in which the QBF encoding has negligible
impact (cf., PAR Random), and the performance is acceptable in most cases, cf.
AC, QBF Random, and MMC.

Final Remark. We do not provide empirical comparisons with related formalisms
mentioned in the introduction (e.g., stable-unstable or QASP). First, our goal is
not to show that ASP(Q) is the best option for solving problems in the PH (it is
unlikely any formalism or solver can be uniformly best). Rather, we aim to show
that the language and the tool presented here provide both convenient modeling
capability and promising performance. Second, our set of benchmarks contains
problems for which there are no declarative implementations in the literature.
Third, although it is straightforward to compare our system with QBF solvers on
their benchmarks, the converse is not obvious. For example, devising an effective
encoding of PAR in QBF is tougher than developing a QBF-based ASP solver;
it would require to overcome many nontrivial issues: grounding, recursive defini-
tions, stability checking and gap minimization. This argument alone showcases
the benefits of ASP(Q) solving. Fourth, there are no tools to translate efficiently
between the formalisms discussed above. Finally, a comparison with tools spe-
cialized for the second level would not be fair, since our tool is more general.
In a nutshell, devising a fair comparison among heterogeneous languages and
tools (ASP, ASP(Q), QASP, QBF, QCSP, etc.) on common benchmarks is a
challenging task that is outside the scope of this work.

6 Conclusion

Modeling and solving problems on the polynomial hierarchy is needed in many
areas of AI, especially for knowledge representation and reasoning. The ASP(Q)
was proposed by [4] as a convenient formalism for that task, as it lifts ASP mod-
eling capabilities to all the PH. This paper provides a modular implementation
of ASP(Q) called qasp, that is based on an encoding in QBF, and resorts to
effective solvers for QBFs. qasp is a fundamental contribution for the ultimate
adoption of ASP(Q) as a concrete tool for knowledge representation and rea-
soning. We have evaluated the performance of the solver on several benchmark
problems. The benchmarks include first ASP(Q) encodings of two new problems,
the argumentation coherence and the semi-stable model computation, offering
further evidence of modeling effectiveness of ASP(Q). The experimental study
confirms that qasp is a viable solver for tackling hard problems in the PH.

For the future work, we plan to further extend the application of ASP(Q) to
model hard AI problems, and improve the efficiency of the QBF encoder.
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Abstract. Abstract argumentation and Dung’s framework are popu-
lar for modeling and evaluating arguments in artificial intelligence. We
consider various counting problems in abstract argumentation under
practical aspects. We revisit algorithms and establish a framework that
employs dynamic programming on tree decompositions for counting
extensions of abstract argumentation frameworks under admissible, sta-
ble, and complete semantics. We provide an empirical evaluation and
investigate conditions under which our approach is useful.

1 Introduction

Abstract argumentation (Dung’s framework) is a concept for modeling and eval-
uating arguments in AI and reasoning [3,8,24]. For finding so-called extensions
to abstract argumentation frameworks (AFs), a variety of solvers are available
and frequently evaluated in competitions, e.g., ASPARTIX, ConArg, μ-toksia,
and PYGLAF. Lately, interest in counting increased due to a variety of appli-
cations in probabilistic reasoning, reasoning about uncertainty, and verification.
For example, abstract argumentation allows to establish cognitive computational
models for human reasoning for which counting enables quantitative reason-
ing [7]. The recent 2021 ICCMA competition also asked for counting [22] despite
being #P-hard. In propositional model counting, a system called DPDB [18]
allows to effectively implement counting algorithms that exploit low primal
treewidth of the input and proved competitive regardless of theoretical worst-
case limitations. In fact, various problems in abstract argumentation can also be
solved efficiently using dynamic programming on tree decompositions if the input
has low treewidth[10]. Here, we consider various counting problems in abstract
argumentation under practical aspects. Our main contributions are as follows.

1. We revisit theoretical algorithms and formulate abstract argumentation prob-
lems in relational algebra, which form the basis for our solver A-DPDB1.

1 System and supplement are available on github:gorczyca/dp on dbs and Zenodo.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 387–400, 2022.
https://doi.org/10.1007/978-3-031-15707-3_30
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c a, b, dh1
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Fig. 1. An AF with the given attack relation (left) and a TD of the framework (right).

2. We establish a dedicated counting solver for counting extensions of AFs under
admissible, stable, and complete semantics.

3. We provide an empirical evaluation and illustrate that A-DPDB works fine if
combined with existing solvers.

2 Preliminaries

For a function f that maps from a set S to a set D, we let dom(f) := S be the
domain of f . An argumentation framework [8] is a pair F = 〈A,R〉 where A is
a set of arguments and R ⊆ A × A is an attack relation, representing attacks
among arguments. We write a � b to denote an attack (a, b) ∈ R. In addition,
for S ⊆ A, we denote S � a if there exists b ∈ S such that b � a; and a � S
if a � b, respectively. Further, for S′ ⊆ A, we write S � S′ if S � b′ for
some b′ ∈ S′. Let F = 〈A,R〉 be an AF. A set S ⊆ A is conflict-free (in F ) if
there are no a, b ∈ S, such that a � b. An argument a is defended by S in F if
for each b ∈ A with b � a there exists a c ∈ S such that c � b. The semantics
of our main interest are: (i) S is admissible if it is conflict-free in F and each
a ∈ S is defended by S in F . (ii) S is stable if it is conflict-free in F and for
each a ∈ A \ S, there exists a b ∈ S, such that b � a. (iii) S is complete if it is
admissible in F and each a ∈ A that is defended by S in F is contained in S.

Example 1. Consider the AF from Fig. 1. We observe that {a, c} and {b, d}
are admissible, stable, and complete sets. Further, ∅ is complete (admissible). �

Tree Decompositions and Treewidth. We assume that the reader is familiar with
basic graph terminology. We define the tree decomposition, TD for short, of
a graph G as a pair T = (T, χ), where T is a rooted tree and χ a function
that assigns to each node t ∈ V (T ) a set χ(t) ⊆ V (G), called bag, such that
(i) V (G) =

⋃
t∈V (T ) χ(t), (ii) E(G) ⊆ {{u, v} | t ∈ V (T ), {u, v} ⊆ χ(t)}, and

(iii) for each r, s, t ∈ V (T ), such that s is a node in the path from r to t, we
have χ(r) ∩ χ(t) ⊆ χ(s). We let width(T ) := maxt∈V (T )|χ(t)| − 1 and define the
treewidth tw(G) of G as the minimum width(T ) over every TD T of G.

Example 2. Consider the AF from Example 1. We can construct a TD illus-
trated in Fig. 1. Since the largest bag is of size 3, the TD has width 2. �

To simplify case distinctions in the algorithms for sake of presentation, we assume
nice TDs as given below. Our implementation does neither make an assumption
on TDs being nice nor converts TDs into nice TDs. For a node t ∈ V (T ), type(t)
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is defined as follows: leaf t has no children and χ(t) = ∅; join if t has children
t

′
and t

′′
with t

′ �= t
′′

and χ(t) = χ(t
′
) = χ(t

′′
); intr (“introduce”) if t has a

single child t′, χ(t
′
) ⊆ χ(t) and |χ(t)| = |χ(t

′
)| + 1; and forget (“forget”) if t has

a single child t
′
, χ(t

′
) ⊇ χ(t) and |χ(t

′
)| = |χ(t)| + 1. A tree decomposition is

nice if for every node t ∈ V (T ), type(t) ∈ {leaf, join, intr, forget}. It is folklore,
that a nice TD can be computed from a given TD T in linear time without
increasing the width, assuming the width of T is fixed. Let T = (T, χ) be a
tree decomposition of an AF F and let t ∈ T . For a subtree of T that is rooted
in t we define X≥t as the union of all bags within this subtree. Moreover, X>t

denotes X≥t \ χ(t). We also have the sub-framework in t, denoted by F |χ(t) or
Ft, consists of all arguments x ∈ χ(t) and the attack relations (x1, x2) where
x1 ∈ χ(t), x2 ∈ χ(t) and (x1, x2) ∈ R [10].

Relational Algebra. Our algorithms operate on sets of records, which can simply
be seen as tables. It is well-known that operations on tables can consisely be
described by relational algebra [6] forming the basis of SQL (Structured Query
Language) [25]. We briefly recall basic definitions. A column a is of a certain
finite domain dom(a). Then, a row r over set col(r) of columns is a set of pairs of
the form (a, v) with a ∈ col(r), v ∈ dom(a) such that for each a ∈ col(r), there is
exactly one v ∈ dom(a) with (a, v) ∈ r. To access the value v of an attribute a in a
row r, we sometimes write r.a, which returns the unique value v with (a, v) ∈ r.
A table τ is a finite set of rows r over set col(τ) := col(r) of columns, using
domain dom(τ) :=

⋃
a∈col(τ) dom(a). We define renaming of τ, given a set A of

columns and a bijective mapping m : col(τ) → A with dom(a) = dom(m(a))
for a ∈ col(τ), by ρm(τ) := {(m(a), v) | (a, v) ∈ τ}. In SQL, renaming can be
achieved via the AS keyword. Selection of rows in τ according to a given equality
formula ϕ over term variables col(τ) is defined by σϕ(τ) := {r | r ∈ τ, ϕ is
satisfied under the induced assignment r}. We abbreviate for binary v ∈ col(τ)
with dom(v) = {0, 1}, v=1 by v and v=0 by ¬v. Selection in SQL is specified
using keyword WHERE. Given a relation τ ′ with col(τ ′)∩col(τ) = ∅. Then, we refer
to the cross-join by τ × τ ′ := {r ∪ r′ | r ∈ τ, r′ ∈ τ ′}. Further, a θ-join according
to ϕ corresponds to τ 	�ϕ τ ′ := σϕ(τ × τ ′). In SQL a θ-join can be achieved
by specifying the two tables (cross-join) and the selection ϕ by means of WHERE.
Assume a set A ⊆ col(τ) of columns. Then, we let table τ projected to A be given
by ΠA(τ) := {rA | r ∈ τ}, where rA := {(a, v) | (a, v) ∈ r, a ∈ A}. This can be
lifted to extended projection Π̇A,S , additionally given a set S of expressions of
the form a ← f , such that a ∈ col(τ)\A, f is an arithmetic function that takes a
row r ∈ τ, and there is at most one such expression for each a ∈ col(τ) \ A in S.
Formally, we define Π̇A,S(τ) := {rA ∪ rS | r ∈ τ} with rS := {(a, f(r)) | a ∈
col(r), (a ← f) ∈ S}. SQL allows to specify projection directly after the keyword
SELECT. Later, we use aggregation by grouping AG(a←g), where a ∈ col(τ)\A and
a so-called aggregate function g : 2τ → dom(a), which intuitively takes a table of
(grouped) rows. Therefore, we let AG(a←g)(τ) := {r∪{(a, g(τ[r]))} | r ∈ ΠA(τ)},
where τ[r] := {r′ | r′ ∈ τ, r ⊆ r′}. Therefore, we use for a set S of integers the
function g = SUM for summing up values in S. SQL uses projection (SELECT) to
specify A and the function g, distinguished via the keyword GROUP BY.
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Dynamic Programming on TDs. A solver based on dynamic programming (DP)
evaluates a given input instance I in parts along a given TD of a graph rep-
resentation G of the input. Therefore, the TD is traversed bottom up, i.e., in
post-order. For each node t of the TD, the intermediate results are stored in
a set τt of records, table for short. The tables are obtained by a local algo-
rithm, which depends on the graph representation. The algorithm stores results
of problem parts of I in τt, while considering only tables τt′ for child nodes t′

of t. Various solvers that use dynamic programming have been implemented in
the past for SAT, ASP, or ELP. Tools that allow for meta techniques using ASP
for the description of the DP algorithm including various semantics for abstract
argumentation exist. However, these tools are not competitive and do not sup-
port counting problems. DPDB [18] is a tool that utilizes database management
systems (DBMS) to efficiently perform table manipulation operations needed
during DP, which otherwise need tedious manual implementation. Its successor
NestHDB [21] uses abstractions and a different graph representation.

3 Utilizing Treewidth for AFs

First, we revisit existing DP algorithms for counting extensions of AFs under
stable and admissible semantics [10]. From there, we formulate different cases
of the DP algorithm in relational algebra and extend it to counting. Later, we
illustrate that we can instantiate these relational algebras as SQL queries, which
are however created dynamically. In a way, our algorithms present a concise gen-
erator for SQL queries. Above, we already described the main idea on traversing
a TD and constructing tables. Below, we only provide the table algorithms that
are executed in each step during the traversal depending on the semantics.

Stable Semantics. We start with the algorithm for stable semantics, which is less
elaborate than the other semantics and hence easier to understand. We follow
standard definitions [8].We start from describing “local solutions”. An extension
of an argumentation framework is a set S ⊆ A, which satisfies the conditions
for stable semantics. When traversing the TD, the algorithm constructs par-
tial extensions to the input framework according to the vertices that occur in
the bag currently considered. Formally, we are interested in B-restricted stable
sets. Therefore, assume that an argumentation framework F = 〈A,R〉 and the
set B ⊆ A of arguments are given. A set S ⊆ A is a B-restricted stable set for
F , if S is conflict-free in F and S attacks all a ∈ B \S. Then, a partial extension
can simply be that a vertex is known not to be in the set (in), not in the set
(def) due to being defeated by the set, or potentially not in the set (out). More
formally, a (stable) coloring at t for an X>t-restricted stable set S is a mapping
C : χ(t) → {in,def, out} such that (i) C(a) = in if a ∈ S; (ii) C(a) = def if
S � a; and (iii) C(a) = out if S �� a and a �∈ S. Next, we briefly describe the
table algorithm. In order to concisely present and to restrict the number of case
distinctions, we assume that the algorithm runs along a nice TD. In practice,
we need to interleave the cases to obtain competitive runtime behavior. Other-
wise, unnecessary copying operations would make the implementation practically
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Listing 1: Table algorithm S(t, χ(t), Ft, 〈τ1, . . . , τ�〉) for stable semantics on TDs.

In: Node t, bag χ(t), AF Ft, sequence 〈τ1, . . . , τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := {〈∅, 1〉}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := {〈J � {b �→ def | b ∈ Jout, J in � b}, c〉 | 〈I, c〉 ∈ τ1,

J ∈ {I+
a�→in, I+

a�→out}, J in 	� J in}
4 else if type(t) = forget, and a 	∈ χ(t) is removed then
5 τt := {〈I−

a , Σ〈J,c〉∈τ1:I
−
a =J−

a ,a/∈Joutc〉 | 〈I, ·〉 ∈ τ1, a /∈ Iout}
6 else if type(t) = join then

7 τt := {〈I1 � {b �→ def | b ∈ Idef
2 }, c1 · c2〉 | 〈I1, c1〉 ∈ τ1, 〈I2, c2〉 ∈ τ2, I

in
1 =I in

2 }
S−

s :=S \ {s �→ in, s �→ def, s �→ out}, Sl :={s | S(s) = l}, S+
s :=S ∪ {s},

S � D :=
⋃

s∈dom(S)\dom(D){s �→ S(s)} ∪ D.

infeasible. Table algorithm S, as presented in Listing 1, details all cases needed
for the stable semantics. Parts of tuples that talk about extensions are illustrated
red and counters in green. Each table τt consist of rows of the form 〈I, c〉, where
I is a coloring at t and c is an integer forming a counter storing the number
of extensions. Leaf node t consist of an empty mapping (coloring) and counter
1. For an introduce node t with introduced variable a ∈ χ(t), we extend each
coloring I of the child table to a coloring J that additionally includes a in its
domain. Therefore, we guess colors for a and keep only well-defined colorings
that are obtained after ensuring conflict-freeness and setting arguments to def
accordingly. When forgetting an atom a at node t, the colorings of child tables
are projected to χ(t) and counters summed up of colorings that are the same
after projection. However, it is important to not consider colorings, where a is
set to out in order to compute X>t-restricted stable sets. For join nodes, we
update def colorings (behaves like a logical “or”) and multiply the counters of
extensions that are colored “in” and coincide in terms of arguments.

Listing 2 naturally introduces the algorithm for stable semantics using rela-
tional algebra instead of set theory. For each node t, tables τt are pictured as
relations, where τt distinguishes for each argument x ∈ χ(t) unique attributes x
and dx, also just called columns, with additional attributes depending on the
problem at hand. So these two columns a and da are of type BOOLEAN for every
argument a ∈ χ(t), where for columns (a, da) we have that (0, 0) represents out,
(0, 1) represents def, and (1,−) represents in where “–” refers to not setting
the value at all. For leaf nodes t, we create a fresh empty table τt, cf., Line 1.
When an argument a is introduced, we perform a Cartesian product with the
previously computed table and guess for argument a whether it is in the exten-
sion or not. We ensure only well-defined colorings, i.e., conflict-freeness and we
potentially update color def for all bag arguments. Further, for nodes t with
type(t) = forget, we ensure that the removed argument is not colored out, we
project out the removed argument, and perform grouping in order to maintain
the counter, since several rows of τ1 might have the exact same coloring after
projection in τt. For a join node t, we use extended projection and θ-joins, where
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Listing 2: Table algorithm S(t, χ(t), Ft, 〈τ1, . . . , τ�〉) for stable semantics.

In: Node t, bag χ(t), framework Ft = (At, Rt), sequence 〈τ1, . . . , τ�〉 of child
tables. Out: Table τt.

1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then

3 τt :=Π̇χ(t),
⋃

b∈χ(t)
{db←db∨(¬b∧[

∨

(c,b)∈Rt

c])}(τ1�� ∧

(b,c)∈Rt

¬b∨¬c {{(a, 1), (da, 0)}, {(a, 0), (da, 0)}})

4 else if type(t) = forget, and a 	∈ χ(t) is removed then
5 τt := {b,db|b∈χ(t)}G

cnt←SUM(cnt)
(Πcol(τ1)\{a,da}(σa∨¬da(τ1)))

6 else if type(t) = join then

7 τt := Π̇χ(t),
⋃

b∈χ(t)
{cnt←cnt·cnt′,db←db∨d′

b
}(τ1 ��∧

b∈χ(t)
b=b′ ρ⋃

x∈col(τ2)
{x �→x′}τ2)

we join on the coloring agreeing on those arguments in the extension, update
defeated colors, and multiply the corresponding counters, accordingly.

Example 3 illustrates a resulting SQL query at an introduce node of the TD,
where we interleave cases and drop the requirement on nice TDs.

Example 3. Consider the TD from Example 2 at node h1, which is both an
introduce and forget node. Following Listing 2 for stable semantics, we obtain
the SQL query below.
1 SELECT a, b, d, d_a , d_b , d_d ,

2 sum(cnt) AS cnt

3 FROM (WITH introduce AS

4 (SELECT true val UNION SELECT false)

5 SELECT i_a.val AS a, i_b.val AS b,

6 i_d.val AS d, d AS d_a ,

7 a AS d_b , false AS d_d , 1 AS cnt

8 FROM introduce i_a , /* introduce a,b,d*/

9 introduce i_b , introduce i_d) AS cand

10 WHERE (a OR d_a) AND /* forget a*/

11 (NOT a OR NOT b) AND /*conflict -free*/

12 (NOT d OR NOT a)

13 GROUP BY a, b, d, d_a , d_b , d_d

�

Admissible Semantics. In the following subsection, we extend the algorithm
presented above. We present colorings for the admissible semantics following
earlier work [10]. Given an argumentation framework 〈A,R〉 and a set B ⊆
A of arguments. A set S ⊆ A is a B-restricted admissible set for F , if S is
conflict-free in F and S defends itself in F against all a ∈ B. Based on this
definition, we construct colorings that locally satisfy certain conditions allowing
to extend them to a coloring of the entire framework, which in turn can then
be used to construct an admissible set of arguments. To this end, assume for an
argumentation framework F a TD T = (T, χ) and a node t of T . Formally, an
(admissible) coloring at t for an X>t-restricted admissible set S is a mapping
C : χ(t) → {in,def, out, att} such that for each a ∈ χ(t): (i) C(a) = in if
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Listing 3: Table algorithm A(t, χ(t), Ft, 〈τ1, . . . , τ�〉) for admissible semantics.

In: Node t, bag χ(t), framework Ft = (At, Rt), sequence 〈τ1, . . . , τ�〉 of child
tables. Out: Table τt.

1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then

3 τt := Π̇χ(t),
⋃

b∈χ(t)
{db←dft(db,b)}(τ1 �� ∧

(b,c)∈Rt

¬b∨¬c {{(a, 1), (da, 0)}, {(a, 0), (da, 0)}})

4 else if type(t) = forget, and a 	∈ χ(t) is removed then
5 τt := {b,db|b∈χ(t)}G

cnt←SUM(cnt)
(Πcol(τ1)\{a,da}(σa∨da=1(τ1)))

6 else if type(t) = join then

7 τt := Π̇χ(t),
⋃

b∈χ(t)
{cnt←cnt·cnt′,db←jn(db,d′

b
)}(τ1��∧

b∈χ(t)
b=b′ ρ⋃

x∈col(τ2)
{x �→x′}τ2)

Let jn(d, e) :=2 if d=2 or e=2; else 1 if d=1 or e=1; else 0, and dft(d, b) :=jn(d, 2 if
(

∨

(c,b)∈Rt

c); else 1 if (
∨

(b,c)∈Rt

c); else 0).

a ∈ S; (ii) C(a) = def if S � a; (iii) C(a) = att if S �� a and a � S; and
(iv) C(a) = out if S �� a and a �� S.

The algorithm to compute the admissible semantics extends the algorithm
for stable semantics, as presented above. Intuitively, those arguments colored att
need to become def eventually in order to obtain A-restricted admissible sets. In
our implementation, we represent the range for the colorings in a database table
with a BOOLEAN column a and a SMALLINT column da for every argument a ∈ χ(t).
Then, (0, 0) represents out, (0, 1) represents att, (0, 2) represents def, and (1,−)
represents in. Alternatively, one can also exploit the NULL value in SQL, which
reduces preallocated memory for the da columns as we can use the more compact
data type BOOLEAN instead of SMALLINT. There, we have (0, NULL) represents out,
(0, 0) represents att, (0, 1) represents def, and (1,−) represents in (as before).

The following example illustrates a query that we obtain at node h1 of our
running example similar to the used definition in relational algebra of Listing 2.

Example 4. Consider the TD and introduce/forget node h1 of our running
Example 2. We construct a query for admissible extensions as follows.
1 SELECT a, b, d, d_a , d_b , d_d , sum(cnt) AS cnt

2 FROM (WITH introduce AS

3 (SELECT true val UNION SELECT false)

4 SELECT i_a.val AS a, i_b.val AS b, i_d.val AS d,

5 CASE WHEN i_d.val THEN 2/* coloring */

6 WHEN i_b.val THEN 1 ELSE 0 END AS d_a ,

7 CASE WHEN i_a.val THEN 2 ELSE 0 END AS d_b ,

8 CASE WHEN i_a.val THEN 1 ELSE 0 END AS d_d , 1 AS cnt

9 FROM introduce i_a , /* introduce a,b,d*/

10 introduce i_b , introduce i_d) AS cand

11 WHERE (a OR d_a = 1) AND /* forget a*/

12 (NOT a OR NOT b) AND /*conflict -free*/

13 (NOT d OR NOT a)

14 GROUP BY a, b, d, d_a , d_b , d_d

�
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(a) Distribution of heuristically com-
puted widths. The x-axis lists intervals
into which the heuristically computed
width of a TD falls (K). The y-axis
states the number (N) of instances.

(b) Runtime of various solvers for ad-
missible semantics. The x-axis depicts
the runtime sorted in ascending order
for each solver individually and the y-
axis refers to the number of instances.

Fig. 2. Illustration of results on ICCMA competitions ’17, ’19, and ’21. Distribution of
upper bounds on treewidth (left) and runtime results for admissible semantics (right).

Complete Semantics. Subsequently, we turn our attention to complete semantics.
We provide definitions for colorings that can be used to construct solutions by
dynamic programming and when its satisfying all conditions for the complete
semantics [5]. Given an AF F = 〈A,R〉 and a set B ⊆ A of arguments. A
labeling L = 〈Lin,Ldef ,Lout〉 where Lin,Ldef ,Lout ⊆ A for F is a B-restricted
complete labeling for F if Lin is conflict-free, Lin �� Lout, Lout �� Lin, and for
each a ∈ B we have (i) a ∈ Lin if and only if {b | (b, a) ∈ R} ⊆ Ldef ; (ii) a ∈ Ldef

if and only if Lin � a; (iii) a ∈ Lout if and only if Lin �� a and Lout � a.
Let T = (T, χ) be a TD of F and t be a node of T . A (complete) coloring at t
is a function Ct : χ(t) → {in,def,defp, out, outp} such that for each a ∈ χ(t):
(i) C(a) = in if a ∈ Lin; (ii) C(a) = def if a ∈ Ldef and Lin � a; (iii) C(a) = defp
if a ∈ Ldef and Lin �� a; (iv) C(a) = out if a ∈ Lout, Lin �� a, a �� Lin, and
Lout � a; and (iv) C(a) = outp if a ∈ Lout, Lin �� a, a �� Lin, and Lout �� a.

Intuitively, colors defp and outp are used to mark candidates for def and out.
For such candidates, required properties need to be “proven” eventually. We
further extended the algorithm of Listing 3 and implemented the handling of
complete colorings. In our implementation, we represent the values for colorings
in an SQL database table with a SMALLINT column a and a BOOLEAN column pa

for the “provability of the color of a”, as follows: (0, 1) represents out, (0, 0)
represents outp, (1,−) stands for in, (2, 1) represents def, and (2, 0) states defp.

4 Preliminary Empirical Evaluation

In order to draw conclusions concerning the efficiency of our approach, we con-
ducted a series of experiments. Design of Experiment: We draw a small
experiment to study the following questions: (Q1.1) What are upper bounds
on the treewidth for common instances in abstract argumentation? (Q1.2) Are
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there instances on which we can expect that solvers exploiting treewidth perform
well? (Q2.1) Does the parameterized algorithm perform well on instances of low
treewidth? (Q2.2) Is there a certain characteristic on the instances where our
solver performs better than others? (Q2.3) Is the system competitive on its own
with other solvers or can it be useful in a solving portfolio? Instances: We con-
sidered sets of instances from the International Competitions on Computational
Models of Argumentation ICCMA’17, ’19, and ’21. Since the hard instances of
the 2019 competition are partially contained in the ICCMA’21 set, we omit the
2019 instances. In the following, we refer by ’19 to the hard instances of the 2019
competition contained in the ’21 competition and by ’21 to the new instances
of the ’21 competition. The instances originate from various domains. Details
can be found online [22]. Constructing TDs: To construct TDs, we use the
decomposer that heuristically outputs tree decompositions. The outputted TDs
are correct, but are not necessarily of smallest width, i.e., the width of the result-
ing TD can be larger than the treewidth. Note that computing the treewidth is
itself an NP-complete problem. We do not require a tree decomposition of small-
est width. Larger width w increases the runtime of our implementation, since the
runtime is in 2w. There is no effect on correctness with respect to the problem
statement from taking decompositions of larger width. In practice, we favor a
fast heuristic, namely, htd, over decomposers such as Flow-Cutter or TCS-Meiji
that provide slightly smaller width, but require longer running times.

Treewidth Classification of the Instances. Towards answering (Q1.1) and (Q1.2),
we investigate whether the considered instances are relevant and solvable for
an approach where the runtime already theoretically depends on the width of
the heuristically computed TDs. In Fig. 2a, we present the distribution of upper
bounds on the treewidth in intervals of the considered instances by competition.
Decompositions of smaller width can be primarily found in the ’17 instances.
Recall that our parameterized algorithms have single or double exponential run-
time bounds in the treewidth [10]. Hence, we immediately see that the ’19 and
’21 instances are theoretically out of reach for A-DPDB. For the ’19 and ’21
instances, we are currently unable to state a detailed picture as high width
might also originate in unreliable heuristics. It is well-known that certain heuris-
tics cannot provide a small width on very large instances even if a much smaller
width is possible. Still there is a notable number of instances in the 2017 compe-
tition, which seem within reach answering Questions (Q1.1) and (Q1.2). Quite
a number of instances have width beyond 100. There, we have no hope to solve
them by a treewidth-based approach without preprocessing or using abstractions
instead of the primal graph. Still, quite a number of instances have relatively
small treewidth and the instances of high treewidth mostly originate in random
generators.

Performance Comparison and Solvers. In order to address a performance anal-
ysis of A-DPDB itself and in comparison to other argumentation solvers, we run
a more detailed experiment. Counts are represented with arbitrary precision
for all solvers. For comparison, we evaluate leading solvers of the ICCMA’21
competition. Namely, μ-toksia [23], aspartix [9], and pyglaf [1]. The solvers
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μ-toksia, aspartix, pyglaf performed well during ICCMA’17, ’19, and ’21.
In addition, we can employ state-of-the-art propositional model counters such
as the model counting competition 2021 winner SharpSAT-td or d4 on encod-
ings of the argumentation semantics of interest. Therefore, we can use the ASP
encoding from aspartix2 directly by lp2normal and lp2sat, which translates
the ground ASP instance into a SAT formula. There is only a minimal overhead
between a direct CNF encoding and an ASP encoding translated into CNF in
case of the relevant encodings. In more detail, most ASP encodings here are
tight and therefore do not need additional constraints to handle cyclic depen-
dencies of the resulting programs as one might fear from translations into CNF.
SharpSAT-td employs TDs of small width, but only as in a process to speed up
its internal selection heuristic, which is in stark contrast to our approach that
provides strict theoretical guarantees. SharpSAT-td implements dedicated pre-
processing techniques for model counting from which a translation profits. To
our knowledge dedicated preprocessing for argumentation is missing. In addi-
tion, SharpSAT-td uses FlowCutter as heuristic. Both techniques make the solver
incomparable to ours. We did not consider NestHDB as the translation to SAT is
not treewidth-aware. All solvers including A-DPDB support complete and stable
semantics. Admissible semantics is not always available to the user even though
implemented, e.g., μ-toksia. We refrained from modifying the solver.
Enhancing Existing Solvers. From the results above on our instance classification
with respect to treewidth and our theoretical knowledge about the implemented
parameterized algorithm, we must expect clear practical limitations of A-DPDB.
Still, it might solve instances that existing techniques cannot solve. Therefore,
we also consider A-DPDB together with other solvers, which is usually referred to
as portfolio solver. However, classical solving portfolios are oftentimes detected
based on machine-learning techniques that train for specific instances. Our set-
ting is different, we can simply enhance an existing solver by using DP if a
heuristically computed decomposition is below 19. We obtained this threshold
experimentally from simple considerations on memory consumption. Our new
solvers named A-DPDB+X consist of X ∈ {aspartix, μ-toksia, pyglaf}.
Hardware, Measure, and Restrictions. All solvers ran on a cluster consisting of 12
nodes equipped with two Intel Xeon E-2650 v4 CPUs running at 2.2 GHz. We
follow standard guidelines for empirical evaluations [20] and measure runtime
using perf. Details on the hardware will be made available in the supplemental
material. We mainly compare wall clock time and follow the setup of the Inter-
national Competition on Computational Models of Argumentation (ICCMA).
Run times larger than 600 s count as timeout and main memory (RAM) was
restricted to 64 GB. In contrast to dedicated counting competitions the run-
time in the setup of the ICCMA competition is much smaller, which is also far
more resource friendly. Solvers were executed sequentially without any parallel
execution of other runs, i.e., we jobs run exclusively on one machine.

2 μ-toksia does not have encodings readily accessible as it is tightly coupled to a SAT
solver. This would require extraction from source code or implementing it ourselves.
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Table 1. Overview on solved instances (left) as well as observed counts (right).

solver adm. complete stable

aspartix 236 362 469

... /d42 347 406 483

... /sharpSAT-td2 368 410 487

dpdb 96 100 113

...+aspartix 311 379 475

...+μ-toksia21 95 367 468

...+pyglaf 300 372 478

μ-toksia21 – 299 446

pyglaf 221 336 463

sharpSAT-td 284 350 387

vbest 371 411 505

(a) Number of solved instances of various

solvers. “–” indicates that the solver does

not support the semantics. Bold entries

indicate the best result, italic entries refer to

the best result among non-portfolio solvers.
2 selects solvers also based on treewidth.

adm. complete stable

median 2.9 0.5 0.0

mean 11.6 8.3 3.8

max 512.6 487.7 498.2

aspartix 7.9 8.3 8.7

dpdb 154.6 119.9 75.0

mu toksia21 – 5.1 5.2

pyglaf 6.1 6.5 5.8

sharpSAT-td 512.6 487.7 498.2

(b) Observed counts. The lower part states

the maximum count observed for the

respective solver. Counts are stated in log10
format, meaning that 2.9 represents a count

of about 0.794 · 103 whereas 516.6

represents about 3.98107 · 10516.

Experimental Results. Table 1a lists the number of solved instances for vari-
ous solvers, considered semantics, and over ’17, ’19, ’21 competition instances.
In addition, Fig. 2b visualizes the runtime behavior of various solvers for the
admissible semantics. Table 1b illustrates the observed counts on the instances
in terms of average and median of the computed count per semantics as well
as the maximum count of an instance solved by solver. Notably, A-DPDB solved
instances for which the decomposer constructed a TD of up to width 19 for com-
plete, 35 for admissible, and 50 for stable semantics. For stable, few instances
were solved where the heuristic computed TDs of width 99 containing few bags.

Discussion. When taking a more detailed look into the results, we observe that
aspartix, μ-toksia, and pyglaf mostly solve instances that have a small num-
ber of solutions and perform overall quite well when the count is fairly low. This
is not surprising, since each of the three solvers works by enumerating exten-
sions, which can be quite expensive in practice. For all semantics, A-DPDB alone
solves the least instances, but is perfectly suitable for enhancing existing solvers
A-DPDB+aspartix and A-DPDB+pyglaf, respectively, solve the most instances.
The solvers d4 and sharpSAT-td can easily be used to solve abstract argumen-
tation instances for various semantics. In fact, we see a reasonable performance
on instances even if counts are larger. For admissible semantics, sharpSAT-td
solves more instances than aspartix and A-DPDB, but much less instances than
our system A-DPDB+aspartix. More precisely, A-DPDB+aspartix solves ≈24%
instances more than aspartix and ≈10% more than sharpSAT-td. When con-
sidering a virtual configuration that takes the best result of sharpSAT-td and
aspartix (sharpSAT-td/aspartix), we obtain the best result. It solves 22%
and 35% more instances than sharpSAT-td and aspartix alone. Note this com-
bination is a virtual best configuration, not a solving portfolio. For complete,
we see an improvement of about 4%, 8%, and 21% more solved instances over
aspartix, sharpSAT-td, and μ-toksia, respectively. d4 and μ-toksia solve a
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similar number of instances, however the former solves also instances that have
high counts. For stable, we observe only 2% improvement of the portfolio, but
it solves 30% more instances than d4 and 21% more than sharpSAT-td.

Summary. In summary, A-DPDB alone has a very limited performance. The behav-
ior was quite well expected from the results in the first part of our experimental
evaluation. We expect this behavior, since DP profits significantly from pre-
processing, which has to our knowledge not been investigated for argumenta-
tion. Our results show that estimating treewidth can provide useful insights into
constructing a solving portfolio – regardless of the used solvers. In contrast to
machine learning-based heuristics, which are commonly used in the automated
reasoning community, we can statically decide which “subsolver” we take with-
out a training phase on a subset of the existing instances. We expect that tightly
coupling a #SAT solver into an argumentation solver would be successful.

5 Conclusion and Future Work

We present a practical approach to counting in abstract argumentation. Count-
ing allows to take quantitative aspects of extensions into account. This enables
us to quantify on extensions and comprehend also semantics that are sometimes
considered problematic, e.g., admissible sets. Beyond, it facilitates reasoning
stronger than brave and skeptical decisions [4,13,14,19]. We can ask for the rela-
tionship between total possible extensions and observed extensions (plausibility),
which also forms the basis for probabilistic tasks. Our implementation A-DPDB
is based on dynamic programming on TDs showing competitive behavior in a
system that combines existing solvers with A-DPDB. While existing solvers can be
used to count solutions by enumeration, we provide an approach that works by
a compact representation and systematically splitting the search space. We also
illustrate translating argumentation problems into propositional model counting
showing notable performance. Since these solvers also implement dedicated sim-
plification techniques for propositional counting, it opens the question whether
argumentation semantics can benefit from argumentation specific preprocessing.

We expect that our work opens a variety of further directions. First, A-DPDB
forms the basis for using more general graph representations (NestHDB), which
showed notable performance gains in the propositional case also over established
model counters [21]. In principle, DP works for problems on any level of the PH.
While theoretical lower-bounds (under the exponential-time-hypothesis) suggest
high runtime (depending on the level of the hierarchy) [12,15], parameters that
combine treewidth with other approaches might be fruitful, e.g., [11]. Besides,
counting might help to improve the reliability of existing systems [2,17]. From
the performance of propositional model counters, which also include preprocess-
ing, we expect notable speed up for argumentation specific preprocessing. Even
though we executed A-DPDB sequentially, parallel execution is possible in princi-
ple, which could improve on larger instances of low treewidth [16].
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Abstract. We present the ASP-based visualization tool clingraph,
which aims at visualizing ASP by means of ASP itself. This idea traces
back to the aspviz tool and clingraph redevelops and extends it in the
context of modern ASP systems. More precisely, clingraph takes graph
specifications in terms of ASP facts and hands them over to the graph
visualization system graphviz. The use of ASP provides a great interface
between logic programs and/or answer sets and their visualization. Also,
clingraph offers a Python API that extends this ease of interfacing to
clingo’s API, and in turn to connect and monitor various aspects of the
solving process.

1 Introduction

With the advance of Answer Set Programming (ASP; [7]) into more and more
complex application domains, also the need for inspecting problems as well as
their solution increases significantly. The intrinsic difficulty lies in the fact that
ASP constitutes a general problem solving paradigm, whereas the wide spectrum
of applications rather calls for customized presentations.

We address this by taking up the basic idea of aspviz [3], to visualize ASP
by means of ASP itself, and extend it in the context of modern ASP systems.
The resulting system is called clingraph (v1.0.0).1,2 The common idea is to
specify a visualization in terms of a logic program that defines special atoms
capturing graphic elements. This allows us to customize the presentation of
an application domain by means of ASP, and thus to easily connect with the
problem specification and its solutions.

The visualization in clingraph rests upon graph structures that are passed on
to the graph layout system graphviz .3 To this end, clingraph takes—in its basic
setting—a set of facts over predicates graph/1, node/1, edge/1, and attr/4 as
input, and produces an output visualizing the induced graph structure.

As a simple example, consider the graph coloring problem in Listing 1.1.

1 https://github.com/potassco/clingraph.
2 https://clingraph.readthedocs.io.
3 https://graphviz.org.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 401–414, 2022.
https://doi.org/10.1007/978-3-031-15707-3_31
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1 node (1..6).

2 edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).

3 edge(2,6). edge(3,4). edge(3,5). edge(5,6).

4 color(red; green; blue).

6 { assign(N, C) : color(C) } = 1 :- node(N).

7 :- edge(N, M), assign(N, C), assign(M, C).

9 #show node /1.

10 #show edge((N,M)) : edge(N, M).

11 #show attr(graph nodes, default, style, filled ).

12 #show attr(node, N, color, C) : assign(N, C).

Listing 1.1. Graph coloring instance, encoding and display (color.lp)

The actual problem instance and encoding are given in Lines 1–4 and 6–7,
respectively. However, of particular interest are Lines 9–12 that use #show direc-
tives to translate the resulting graph colorings into clingraph’s input format.
While Line 9 and 10 account for the underlying graph, the two remaining lines
comprise instructions to graphviz. Line 11 fixes the layout of graph nodes. More
interestingly, Line 12 translates the obtained graph coloring to layout instruc-
tions for graphviz. Our omission of an atom over graph/1 groups all entities
under a default graph labeled default (which can be changed via an option;
similarly, graphs are taken to be undirected unless changed by option --type).

Launching clingo so that only the resulting stable model is obtained as a set
of facts allows us to visualize the result via clingraph:

clingo --outf=0 -V0 --out -atomf =%s. color.lp | head -n1 | \

clingraph --out=render --format=png

The used options suppress clingo output and transform atoms into facts;
the intermediate UNIX command extracts the line comprising the stable model.
Note that one can also use a solver other than clingo to generate the stable
model in the expected form. The final call to clingraph produces a file in PNG
format, shown in Fig. 1.

Fig. 1. Visualization of the (first) stable model of the logic program in Listing 1.1

Clearly, the above proceeding only reflects the very basic functionality of
clingraph. We elaborate upon its extended functionality in the next section and
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present some illustrative cases studies in Sect. 3. We summarize our approach
and relate it to others’ in Sect. 5.

2 Clingraph

In its most basic setting, clingraph can be regarded as a front-end to graphviz
that relies on the fact format sketched above. In fact, the full-fledged version
of the fact format allows for specifying multiple graphs as well as subgraphs.
The former is done by supplying several instances of predicate graph/1 whose
only argument provides an identifier for regrouping all elements belonging to
the graph at hand. To that effect, there are also binary versions of predicates
node and edge, whose second argument refers to the encompassing graph. For
example, the following facts describe n graphs, each with one edge connecting
two nodes.

1 id(1..n).

2 graph(g(X)) :- id(X).

3 node(n((a;b), X),g(X)) :- id(X).

4 edge((n(a,X),n(b,X)),g(X)) :- id(X).

Multiple graphs are of particular interest when visualizing dynamic domains,
as in planning, where each graph may represent a state of the world. We illustrate
this in Sect. 3 and show how the solution to a planning problem can be turned
into an animation.

Subgraphs4 are specified by the binary version of graph/2, whose second
argument indicates the super-ordinate graph. For instance, replacing Line 2
above by the following two rules makes g(X) a subgraph of g(X+1) for X=1..n-1.

graph(g(X)) :- id(X), not id(X+1).
graph(g(X),g(X+1)) :- id(X), id(X+1).

Clingraph allows for selecting designated graphs by supplying their identifier
to option --select-graph; several ones are selected by repeating the option
with the respective identifiers on the command line.

As mentioned, the quaternary predicate attr/4 describes properties of graph
elements; this includes all attributes of graphviz. The first argument fixes the
type of the element, namely, graph, node, and edge, along with keywords
graph nodes and graph edges to refer to all nodes and edges of a graph. The
second argument gives the identifier of the element, and the last two provide the
name and value of the graphviz attribute. Some attributes, mainly labels, are
often constructed by concatenating multiple values. We simplify this by treating
attribute values as a list of strings and by providing the option of using a tuple
as the attribute name. Then, the first argument of the tuple is the name of the
attribute and the second is the position in the list in which the value of attr/4
is placed (see e.g., Line 37 to 40 in Table 1). We give further examples in Sect. 3
and refer to the documentation for details.

4 Subgraphs correspond to clusters in graphviz.
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In order to avoid name clashes, clingraph offers the option --prefix
to change all graph-oriented predicates by prepending a common prefix.
For instance, --prefix=’viz-’ changes the dedicated predicate names to
viz-graph, viz-node, viz-edge, and viz-attr while maintaining their arities.

The more interesting use-cases emerge by using visualization encodings.
While in our introductory example, the latter was mimicked by #show state-
ments, in general, a visualization encoding can be an arbitrary logic program
producing atoms over the four graph-oriented predicates. Obviously, when it
comes to visualization, a given problem encoding can then be supplemented with
a dedicated visualization encoding, whose output is then visualized by clingraph
as shown in the introductory section.

In practice, however, it turns out that this joint approach often results in a
significant deceleration of the solving process. Rather, it is often advantageous
to resort to a sequential approach, in which the stable models of the problem
encoding are passed to a visualization encoding. This use-case is supported by
clingraph with extra functionality when using the ASP system clingo. More
precisely, this functionality relies upon the clingo feature to combine the output
of a run, possibly comprising various stable models, in a single json object.5 To
this end, clingraph offers the option --select-model to select one or multiple
stable models from the json object. Multiple models are selected by repeating
the option with the respective number.

To illustrate this, let us replace Line 1 above by
{ id(1..n) } = 1.

to produce n stable models with one graph each, rather than a single model
with n graphs as above. The handover of all stable models of the resulting logic
program in multiple.lp to clingraph can then be done by the following com-
mand:

clingo --outf=2 -c n=10 0 multiple.lp | \

clingraph --out=tex --select -model =0 --select -model =9

The option --outf=2 instructs clingo to produce a single json object as out-
put. We request all 10 stable models via ‘-c n=10 0’. Then, clingraph produces
a LATEX file depicting the graphs described in the first and tenth stable model.

In the quite frequent case that the stable models are produced exclusively
by the problem encoding, an explicit visualization encoding can be supplied via
option --viz-encoding to make clingraph internally produce the graphic rep-
resentation from the given stable models employing the clingo API. To ease the
development of visualization encodings, clingraph also provides a set of external
Python functions (see Sect. 3 for an example).

Just like clingraph’s input, also its output may consist of one or several graph
representations. The specific representation is controlled by option --out that
can take the following values:

– facts produces the facts obtained after preprocessing (default)
– dot produces graph representations in the language DOT
5 https://www.json.org.

https://www.json.org
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– render generates images with the rendering method of graphviz
– animate generates a GIF after rendering
– tex produces a LATEX file

The default option facts allows us to inspect the processed input to clingraph in
fact format. This involves the elimination of atoms irrelevant to clingraph as well
as the normalization of the graph representation (e.g., turning unary predicates
node and edge into binary ones, etc.). Options dot and tex result in text-based
descriptions of graphs in the languages DOT and LATEX. These formats allows
for further post-processing and editing upon document integration. The LATEX
file is produced with dot2tex.6 Arguments to dot2tex can be passed through
clingraph via --tex-param. At long last, the options render and animate syn-
thesize images for the graphs at hand. While the former aims at generating one
image per graph, the latter allows us to combine several graphs in an animation.
The format of a rendered graph is determined by option --format; it defaults
to PDF and alternative formats include PNG and SVG. Animation results in a
GIF file. It is supported by options --fps to fix number of frames per second
and --sort to fix the order of the graphs’ images in the resulting animation.
The latter provides a handful of alternatives to describe the order in terms of
the graph identifiers.

Also, it is worth mentioning that clingraph’s option --engine allows us to
choose among the eight layout engines of graphviz ;7 it defaults to dot which is
optimized for drawing directed graphs.

Last but not least, clingraph also offers an application programming interface
(API) for Python. Besides graphviz, it heavily relies on clorm,8 a Python library
providing an Object Relational Mapping (ORM) interface to clingo. Accordingly,
the major components of clingraph’s API are its Factbase class, providing func-
tionality for manipulating sets of facts via clorm, and the Graphviz package,
gathering functionality for interfacing to graphviz. We refer the interested reader
to the API documentation for further details.9 In conjunction with clingo, the
API can be used for visualizing the solving process. Two natural interfaces for
this are provided by the on model callback of clingo’s solve method as well
clingo’s Propagator class. For example, the former would allow for visualizing
the intermediate stable models obtained when converging to an optimal model
during optimization. The latter provides an even more fine-grained approach
that allows for monitoring the search process by visualizing partial assignments.

3 Case Studies

As a first example, consider the encoding of the Queens puzzle in Listing 1.2.10

The idea is to place n queens on an n × n chessboard so that no two queens
6 https://dot2tex.readthedocs.io.
7 http://www.graphviz.org/docs/layouts.
8 https://github.com/potassco/clorm.
9 https://clingraph.readthedocs.io/en/latest/clingraph/api.html.

10 https://github.com/potassco/clingraph/tree/master/examples/queens.

https://dot2tex.readthedocs.io
http://www.graphviz.org/docs/layouts
https://github.com/potassco/clorm
https://clingraph.readthedocs.io/en/latest/clingraph/api.html
https://github.com/potassco/clingraph/tree/master/examples/queens
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attack one another. A solution is captured by atoms over predicate queen/2.
The one comprised in the first stable model of queens.lp for n=5 is depicted in
Fig. 2. First of all, we note that the actual graph is laid out as a 5 × 5 grid of
white and gray squares. Each atom queen(x,y) is then represented by putting
the symbol Q on the square with coordinate (x, y). All other squares are simply
labeled with their actual coordinate.

1 1 { queen(I,1..n) } 1 :- I = 1..n.

2 1 { queen (1.. n,J) } 1 :- J = 1..n.

3 :- 2 { queen(D-J,J) }, D = 2..2*n.

4 :- 2 { queen(D+J,J) }, D = 1-n..n-1.

6 cell (1.. n,1..n).

Listing 1.2. Queens puzzle (queens.lp)

Fig. 2. Visualization of (first) stable model of the logic program in Listing 1.2

The visualization encoding producing the chessboard in Fig. 2 is given in
Listing 1.3; it is used to generate the PDF in Fig. 2 in the following way.

clingo queens.lp -c n=5 --outf=2 | \

clingraph --viz -encoding=viz.lp --out=render --engine=neato

To better understand the visualization encoding, it is important to realize
that we use neato as layout engine, since it is well-suited for dealing with coor-
dinates.

Let us now have a closer look at the encoding in Listing 1.3. Interestingly,
our graph consists of nodes only; no edges are provided. This is because nodes
are explicitly positioned and no edges are needed to connect them. More pre-
cisely, one node is introduced in Line 1 for each cell of the chessboard.11 The
remainder of the encoding is concerned with the layout and positioning of each
individual node, as reflected by the first and second argument of all remaining

11 Strictly speaking, the definition of predicate cell/2 belongs to the visualization
encoding. Nonetheless, we add it to the problem encoding since the dimension of the
board, viz. n, is unavailable in the visualization encoding. This is a drawback of the
sequential approach: information must be shared via the stable models.
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1 node((X,Y)) :- cell(X,Y).

3 attr(node,(X,Y),width,1) :- cell(X,Y).

4 attr(node,(X,Y),shape,square) :- cell(X,Y).

5 attr(node,(X,Y),style,filled) :- cell(X,Y).

6 attr(node,(X,Y),fillcolor,gray) :- cell(X,Y),(X+Y)\2 = 0.

7 attr(node,(X,Y),fillcolor,white ) :- cell(X,Y),(X+Y)\2 != 0.

8 attr(node,(X,Y),fontsize,"50") :- queen(X,Y).

9 attr(node,(X,Y),label,"Q") :- queen(X,Y).

10 attr(node,(X,Y),pos,@pos(X,Y)) :- cell(X,Y).

Listing 1.3. Visualization encoding for Queens puzzle (viz.lp)

atoms over attr/4. This is done in a straightforward way in Lines 3 to 5 to fix
the width, shape, and style of each node. Line 7 and 6 care about the alter-
nating coloration of nodes, depending on whether the sum of their coordinates
is even or odd. The next two lines deal with cells occupied by queens. Unlike
the previous rules that only refer to the problem instance, here the derived
attributes depend on the obtained solution. That is, for each atom queen(x,y),
Line 8 fixes the fontsize of the label Q attributed to node (x,y) in Line 9.
Whenever no label is given to a node, its name is used instead, as witnessed
by Fig. 2. Finally, Line 10 handles the positioning of nodes. In neato, positions
are formatted by two comma-separated numbers and entered in a node’s pos
attribute. If an exclamation mark ‘!’ is given as a suffix, the node is also pinned
down. The necessary transformation from pairs of terms is implemented by the
external Python function pos(x,y) provided by clingraph. This function turns
a node identifier (x,y) into a string of form "x,y!". For each node, the result
is then inserted as the fourth argument of predicate attr/4 in Line 10.

As a second example, let us look at a dynamic problem whose solutions can
be visualized in terms of animations. To this end, we have chosen a robotic intra-
logistics scenario from the asprilo framework [4]. This scenario amounts to an
extended multi-agent path finding problem having robots transport shelves to
picking stations and back somewhere. The goal is to satisfy a batch of orders
by transporting shelves covering all requested products to the picking station.
For brevity, we do not reproduce the actual problem encoding here12 and rather
restrict our attention to the input to the visualization encoding. The input con-
sists of action and fluent atoms accounting for a solution and how it progresses
the problem scenario over time, namely,

– move(robot(r),(dx,dy),t) 13 and
– position(o,(x,y),t) for o among robot(r), shelf(s), and station(p).

A move atom indicates that a robot r moves in the cardinal direction (dx,dy)
at time step t (for dx, dy ∈ {−1, 0, 1} such that |dx +dy| = 1). A position atom
12 https://github.com/potassco/asprilo-encodings.
13 We refrain from visualizing pickup and putdown actions, and rather represent them

implicitly.

https://github.com/potassco/asprilo-encodings


408 S. Hahn et al.

tells us that object o is at position (x,y) at time step t. All atoms sharing a
common time step capture a state induced by the resulting plan.

The idea of the visualization encoding is now to depict a sequence of such
states by combining the visualizations of individual states in an animation. Each
state is represented by a graph that lays out the grid structure of a warehouse.
We use consecutive time steps to identify and to order these graphs. This results
in an atom graph(t) for each time step t. Similarly, we identify nodes with their
coordinate along with a time stamp. This is necessary because nodes require a
unique identifier across all (sub)graphs. As well, we use edges indexed by time
steps to trace (the last) movements.

– node(((x,y),t),t)
– edge((((x′,y′),t),((x′ + dx,y′ + dy),t)),t)

The first atom expresses that node ((x,y),t) belongs to graph t. Similarly, the
second one tells us that the edge from node ((x′,y′),t) to node ((x′ + dx,y′ +
dy),t) belongs to graph t. It is induced by an action move(robot(r),(dx,dy),t)
and its precondition position(robot(r),(x′,y′),t − 1).

Having settled the representation of graphs along with their nodes and edges,
the rest of the visualization encoding mainly deals with setting their attributes.
To see this, consider Table 1, giving excerpts of the actual visualization encoding
(using line numbers in the full encoding; lines in between have been dropped for
brevity).14 The definition of graphs, nodes, and edges is given in Line 19, Line 27,

Table 1. Selected lines from the visualization encoding for an asprilo scenario
(viz-asprilo.lp)

14 https://github.com/potassco/clingraph/tree/master/examples/asprilo.

https://github.com/potassco/clingraph/tree/master/examples/asprilo
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and Line 30–31. Let us discuss the remaining lines of interest of viz-asprilo.lp
by inspecting some features of a visualization, produced as follows.

clingo asprilo.lp instance.lp -c horizon =19 --outf=2 | \

clingraph --viz -encoding=viz -asprilo.lp --engine=neato | \

--out=animate --sort=asc -int | \

--select -model=0 --type=digraph

The initial call to clingo takes the problem encoding and instance and yields
a plan of length 19, executed on a 7×7 grid with three robots, three shelves, and
one picking station. The individual 20 images underlying the resulting animation
are given in Fig. 3. At the beginning, robots are represented by solid blue circles,
shelves by solid orange squares, and the only picking station by a solid green
circle. This layout changes in the course of the plan.
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Fig. 3. Individual graph representations making up an animated plan. (Color figure
online)

Let us explain how this works by focusing on unoccupied nodes and robots;
shelves and picking stations are treated analogously. An unoccupied position p at
a time step t is captured by free(p,t) in Line 10. Similarly, occo(p,t,robot(r))
tells us that robot r is the only object on position p at a time step t. This is thus
neither derivable when a robot is under a shelf, carrying one, or at a picking
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station. With this in mind, we see that Line 43 and 49 depict a position as a
circle on a white node (plus omitted details) whenever the position is free. And
analogously, Line 46, 55, and 56 represent solitary robots by solid blue circles.
Once a robot shares a position with a shelf or picking station, the graphical
representation changes (and instead the robot adopts the one of the shelf or
picking station).

Moreover, a robot’s label changes whenever it is under a shelf or carries one.
This is handled in Line 37 to 40. Whenever a robot with identifier i is on a node,
the label’s node starts with “R” followed by “i”, as indicated by the number
following label in Line 37 to 38. Once the robots carries a shelf, it shares its
position, and the label is extended with “S” and the shelf’s identifier.

Up to now, all case studies take answer sets as input for visualization. For
the next example, however, we visualize partial assignments appearing during
the search process of clingo. Specifically, we discuss a visualization of the solving
process of a Sudoku puzzle. To this end, we rely on clingo’s capacity of integrating
user-defined propagators15 into the solving process and use clingraph’s API for
streamlining the declarative visualization of partial assignments.

In clingraph’s repository, we provide a generic propagator16 that can be used
directly to monitor solving or as a template to create a domain-specific propa-
gator. The main functionality of the propagator is to compile and prepare par-
tial assignments appearing during various stages of the search process as reified
atoms, which are passed to a visualization encoding. These stages account for
times when clingo reaches a fixpoint during unit propagation; decides on a lit-
eral; or faces a conflict and is about to backtrack. In each situation, clingo calls
the corresponding propagator function propagate, decide or undo, respectively,
and makes the partial assignment accessible to them. Hence, these functions are
suitable for preparing the reified atoms of the partial assignment at the time of
the call. Such facts are of the form true(a), false(a) and undefined(a)
for each atom a if it is assigned to true, false or neither in the current par-
tial assignment, respectively. Additionally, in each stage we generate the fact
step type(t,i) where t is either propagate, decide or undo, and i is a nat-

ural number identifying the solving step. Such facts are required not only to
designate the type of the current stage, but also to order the visualization of
each generated partial assignment. This ordering allows us to represent clingo’s
solving process by combining individual graphs as an animation.

For each solving stage, we process the reified atoms of the active partial
assignment with the problem domain’s visualization encoding to form an input
for clingraph. This gets stored in a Factbase object of clingraph’s API. Once
clingo’s solving is done, we process all Factbase objects accumulated in the
propagator using clingraph to generate individual graphs for each of the par-
tial assignments. Finally, we combine these graphs to generate an animation of
clingo’s solving process. Unlike the previous example, we rely on clingraph’s API
functions (e.g., compute graphs and save gif) to carry out these tasks.

15 https://potassco.org/clingo/python-api/current.
16 https://github.com/potassco/clingraph/tree/master/examples/propagator.

https://potassco.org/clingo/python-api/current
https://github.com/potassco/clingraph/tree/master/examples/propagator
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To illustrate the process described above, we use the Sudoku puzzle from
clingraph’s examples folder. In this encoding, we use predicate sudoku(x,y,v)
to represent a cell with coordinates (x,y) in a 9× 9 grid with an assigned digit v
from 1 to 9. A cell can have an initial value defined in the instance by predicate
initial(x,y,v) or it can be empty if no such predicate appears. Then, the
problem encoding and instance are handed to clingo’s solving process which is
observed by our propagator. Partial assignments accumulated by the propagator
are passed to the visualization encoding, which is only partially shown in Table 2
due to space constraints. Additionally, Fig. 4 depicts the resulting animation’s
key frames visualizing the partial assignments reached during solving.

Table 2. Selected lines from the encoding visualizing Sudoku solving
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Fig. 4. Visualizations of stages of solving a Sudoku puzzle. (Color figure online)

Let us now examine how the frames from Fig. 4 are constructed. Each cell
with an initial value is visualized by filling the cells with the corresponding digit
as label and using a relatively larger font size. For each node of an empty cell, we
construct an HTML-like label (supported by graphviz ) as a 3 × 3 table allowing
a slot for each digit from 1 to 9. Our aim is to visualize digits that can possibly
appear in such a cell in this tabular form. Moreover, HTML-like labels allow
us to use rich visual elements like borders and background colors. The rule in
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Lines 47–50 from Table 2 fires whenever clingo reasons during propagation that
an initially empty cell (captured by the body literal not true(initial(X,Y, )))
must be filled with a specific digit ( true(sudoku(X,Y,V))). In Line 50, a par-
tial label L representing an HTML table cell is constructed by concatenating
the constituent strings using the concat external function provided by clin-
graph. Border lines and variations in the background color are controlled by the
opacity and border predicates (Line 49)—which are defined based on reified
change facts of the partial assignment—to highlight the differences from the

last assignment. Such a rule is exemplified in top leftmost graph by the cells with
border lines and a dark green background. Note that the same cells in the next
graph to the right still contain the same number but with no borders and a light
green background, which designates that clingo filled them in an earlier propa-
gation step. Additionally, clingo may be undecided on an empty cell’s value at a
particular solving stage. For instance, the top leftmost graph shows that either
2, 5 or 8 can be placed in the first cell. The rule in Lines 52–55 is responsible
for visualizing these undecided digits with yellow background, where the body
literal undefined(sudoku(X,Y,V)) states that sudoku(X,Y,V) is neither true
nor false. Auxiliary predicate table pos helps to place the constituent HTML
tag in the right place of the HTML table label via the label tuple.

Ultimately, our animation allows us to analyze different aspects of the solv-
ing process of the Sudoku. For instance, the first graph illustrates that during
the initial propagation clingo already fills many cells with digits (those having
digits with borders and green background) and constrains the remaining empty
cells that only possible digits are shown (those having digits with yellow back-
ground). This can be an indicator of how simple the Sudoku instance is. We can
also visualize whenever the propagation during solving reaches a fixpoint, and
clingo may decide on a truth value of an undefined atom to continue search.
For instance, the second graph in the first row of Fig. 4 shows such a decision
point in red where clingo selects the atom sudoku(4,2,5) to be false. Finally,
when we reach the last graph (bottom rightmost) passing through various stages
of solving in order, we get an answer set representing a solution of the puzzle
instance.

The interested reader is referred for further details on these examples and
many others to clingraph’s distribution.17

4 Related Work

Many aspects of clingraph are inspired by previous systems described in the
literature. The basic goal—to visualize answer sets by mapping special atoms to
graphic elements—traces back to aspviz [3], a command-line application written
in Java using the Standard Widget Toolkit (SWT) for rendering. It is capable of
rendering two-dimensional graphics with absolute coordinates but does neither
allow relative positioning nor graph structures. These features were introduced
by kara [5], a plugin written for the SeaLion IDE. The alternative of using
17 https://github.com/potassco/clingraph/tree/master/examples.

https://github.com/potassco/clingraph/tree/master/examples
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graphviz as a backend was first mentioned by the authors of aspviz, and followed
up with a rather basic implementation in lonsdaleite18. Another visualizer for
answer sets is idpdraw19, although it seems to be discontinued.

The idea of visualizing the solving process was first explored for the nomore
system [1] which uses a graph-oriented computational model. For dlv, there
exists a graphical tool for developing and testing logic programs [8] as well as a
visual tracer [2]. In the realms of clingo, visualizing the solving process has been
explored using a tweaked version of clasp [6].

Our system not only integrates ideas from the literature and makes them
available for modern ASP systems, but also has some features that have—to
the best of our knowledge—never been implemented before. There is a powerful
API which makes it easy to include clingraph in custom projects, a multitude of
different output formats including LATEX and animated GIF, and the capacity
of integrating a propagator for visualizing the solving process of clingo.

5 Discussion

Clingraph provides essentially an ASP-based front-end to the graph visualization
software graphviz. In doing so, it takes up the early approach of aspviz [3] and
extends it in the context of modern ASP technology. The advantage of clingraph
is that one does not have to resort to foreign programming languages for visual-
ization but rather remains within the realm of ASP. This provides users with an
easy interface among logic programs and/or answer sets and their visualization.
Moreover, clingraph offers a Python API that extends this ease of interfacing to
clingo’s API, and in turn to connect and monitor various aspects of the solving
process. The fact-based interface of clingraph makes it readily applicable to any
ASP system. For more advanced features, like json output and API functional-
ity, clingraph depends on clingo. Clingraph is open source software and freely
available at https://github.com/potassco/clingraph.
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Abstract. Answer set programming (ASP) has long been used for mod-
eling and solving hard search problems. Experience shows that the per-
formance of ASP tools on different ASP encodings of the same problem
may vary greatly from instance to instance and it is rarely the case that
one encoding outperforms all others. We describe a system and its imple-
mentation that given a set of encodings and a training set of instances,
builds performance models for the encodings, predicts the execution time
of these encodings on new instances, and uses these predictions to select
an encoding for solving.

Keywords: answer set programming · encoding selection · machine
learning

1 Introduction

Answer set programming (ASP) is a declarative programming paradigm designed
primarily for solving decision problems in NP (in particular, problems that are NP-
complete), and their search and optimization variants [2,4]. In ASP, an answer-set
program (AS program) encoding a problem at hand is separate from the data. The
latter is represented as a set of facts and forms a special AS program referred to
as an instance. To solve the problem for a particular data instance, one combines
the problem encoding with the instance into a single AS program. That program is
then processed by answer set programming tools, typically a grounder and a solver
such as, for instance, grounder gringo [6] and solver clasp [7].

As in other programming systems, a problem specification can be encoded in
several ways in ASP. Often, this gives rise to numerous equivalent AS programs
encoding the same problem. Extensive experience with ASP accumulated in the
past two decades suggests that different AS programs for a given problem may
differ significantly in their performance. Namely, it is rarely the case that the
same encoding performs best (under a selected grounder-solver tool) across all
data instances to the problem.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 415–428, 2022.
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This suggests that the availability of multiple encodings can be turned into
an asset that might improve the efficiency of ASP.

Efforts were made to understand how the performance of ASP tools depends
on ways AS programs encode the constraints of the problem. Automated encod-
ing rewriting tools [1] were proposed based on tree decomposition techniques
on the level of a grounder, some with Machine Learning models [18] to guide
the rewriting directions that grounders may follow to produce smaller ground-
ing. Researchers also explored the possibility of exploiting multiple solving algo-
rithms, both outside of ASP and in ASP. Portfolio solving and algorithm selec-
tion [5,10,15,19] emerged from these efforts. The idea that we propose and
explore here is to extend the scope of these approaches by taking advantage of
multiple equivalent encodings for a problem, not necessarily arranged to min-
imize the size of the ground program. Specifically, we present a system that
supports what we name encoding portfolio or encoding selection (in the last
section, we also briefly discuss encoding scheduling). We call this encoding selec-
tion platform an esp. The esp system exploits collections of equivalent ASP
encodings for a problem supplied by the user and can also generate additional
encodings by applying simple rewritings to the encodings supplied. Thus, we
provide programmers with a tool that automates systematic navigation through
available encodings for the problem targeting performance improvements.

The remainder of the paper is organized as follows. Section 2 describes the
architecture of the esp, Sect. 3 presents a case study to illustrate how it works,
and Sect. 4 concludes with a discussion of future work. Throughout the paper,
we list insights and conclusions we arrived at while developing and using esp.
They offer practical tips on utilizing the esp by ASP practitioners. In our dis-
cussion, we use the hamiltonian cycle (HC) problem to illustrate functions of
the components of the esp and their operation.

2 The Encoding Selection Platform esp

Figure 1 shows the architecture and processes involved in the esp encoding selec-
tion platform. The word Input in the flowchart indicates input data and param-
eters to be supplied by the user. In particular, the user provides encodings for a
problem to be solved, instances of this problem, and problem specific features,
if available. Components shown inside boxes denote processes implemented with
the esp. These include encoding rewriting, performance data collection, encod-
ing candidate generation, feature extraction, machine learning modeling, per-
instance encoding selection, and solving. Other annotations point at outcomes
of different processes or tools utilized by the system. The esp uses such tools
as encoding rewriting system AAgg [3] and feature generator claspre [5](claspre
is a sub-component of portfolio answer set solver claspfolio; it is available as a
stand alone tool at https://potassco.org/labs/claspre/).

The esp, a description of the system requirements, and instructions on how
to use it are available at http://www.cs.uky.edu/ASPEncodingOptimization/
esp/. Although the platform consists of several components, each part can be
executed separately. Thus, users can upload encodings and instances and run all
the processes, or only run some selected ones.

https://potassco.org/labs/claspre/
http://www.cs.uky.edu/ASPEncodingOptimization/esp/
http://www.cs.uky.edu/ASPEncodingOptimization/esp/
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Fig. 1. A flowchart to the encoding selection platform

The esp exploits the availability of multiple encodings of a problem to assist
the user in obtaining performance improvements of ASP-based solutions to the
problem. Improved performance means an increased number of instances solved
for an application and decreased time spent on these instances. The platform
is general purpose and can be applied to arbitrary problems solved by ASP.
However, any specific use of the esp tool assumes a concrete problem at hand.
In what follows we often use the letter P to refer to that problem.

2.1 Encoding Rewriting

Encodings. The esp expects a user to supply at least one AS program for a
given problem P . However, in most cases, the user will provide several encodings
for the problem. The supplied encodings are rewritten by the encoding rewriting
tool available in esp. The extended set of encodings is the basis for further
processing that aims to select a subset of “promising” encodings to be used
when solving new instances of problem P . We comment on how performance
data guides the selection process implemented in esp later in the paper.

To show examples of possible input encodings that the user might supply to
the esp, we consider a well-known Hamiltonian cycle problem. The first encoding
for the HC problem follows

1 { hpath(X,Y) : link(X,Y) } =1:-node(X).

2 { hpath(X,Y) : link(X,Y) } =1:-node(Y).

3 reach(X) :- hpath(1,X).

4 reach(Y) :- reach(X),hpath(X,Y).

5 :- not reach(X),node(X).
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Rules 1 and 2 model the requirement that the number of selected edges leaving
and entering each node is exactly one. Rules 3 and 4 define the concept of
reachability from node 1. Constraint 5 guarantees that every node is reachable
from node 1 by means of selected edges only. Another (but equivalent) encoding
can be obtained by replacing rule 3 in the encoding above with rule reach(1).

Encoding Rewriting Tools. The current version of the esp employs a non-
ground program rewriting tool AAgg. It is used to generate additional encodings
from those provided by the user. The original version of this system, developed by
Dingess and Truszczynski [3], produced rewritings by reformulating applicable
rules by means of cardinality aggregates. The version integrated into the platform
also supports rewritings that eliminate cardinality constraints. In the future, we
will incorporate in the esp other rewriting tools, such as Projector [12] and
Lpopt [1], and provide an interface for users to incorporate their own tools.

2.2 Performance Data Collection

Instances. Benchmark instances must be provided by the user. They are used
to extract data on the performance of a solver on each of the selected encodings,
to support feature extraction, and to form the training set used by machine
learning tools to build encoding performance models. When a solver finds a
solution to an instance in a short amount of time no matter what encoding is
used, or when the solver times out no matter what encoding is used, the instance
offers no insights that could inform encoding selection. Only instances that are
not too easy and not too hard are meaningful. We call such instances reasonably
hard.

More specifically, reasonably hard instances are determined by the time Te

specifying when the execution time is long enough not to view an instance as
easy, and the time Tmax specifying the cutoff time. At present, the user inputs
only the cutoff time Tmax; the system then sets Te = Tmax/7. How to select the
initial value of Tmax depends on the available computing resources, as well as
the time budget for solving incoming instances of the problem at hand.

Once a user provides the esp with the initial set of instances, and the
parameter Tmax, and the extended set of encodings is produced by rewriting,
the esp computes the performance data while automatically adjusting cutoff
time Tmax two times, each time doubling it, if too many time-outs occur. The
esp continues with the next step when the collected performance data sug-
gests that the current instance set contains a sufficient proportion of reason-
ably hard instances. More specifically, the platform selects randomly a subset of
min(max(20,min(size/10, 100)), size) instances to test the hardness (here size
denotes the size of the entire input set of instances, which is expected to be
greater than 500). All encodings are then run with each selected instance. An
instance is easy when all encodings solve it within time Te. An instance is too
hard when it is not solved by any encoding within the cutoff time Tmax. All other
instances are reasonably hard. If at least 30% of instances in the selected subset
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Table 1. Runtime of valid structured dataset for the HC problem

Instance id ham1 ham2 ham3 ham4 ham5 ham6

insttri200 33 1 114.96 0.61 200.00 12.52 2.89 2.14

insttri200 41 2 15.22 49.10 200.00 200.00 0.65 0.49

insttri200 49 1 13.22 0.16 200.00 0.23 200.00 0.62

insttri200 57 1 47.86 200.00 0.45 7.85 200.00 200.00

insttri200 57 2 41.98 200.00 59.55 53.86 0.24 1.08

insttri200 65 2 15.61 1.02 200.00 26.42 45.46 25.65

insttri200 71 10 1.22 200.00 139.17 14.84 200.00 200.00

insttri200 81 8 200.00 38.08 200.00 32.40 200.00 200.00

insttri200 91 5 200.00 74.90 116.11 1.45 40.20 200.00

insttri200 131 10 8.31 132.25 2.85 22.46 42.22 58.86

are reasonably hard, the entire input data set is valid. If not and also no more
than 30% of instances time out on each encoding, the esp exits and declares
the original input instance set “too easy.” Otherwise, the selected subset is “too
hard” and the system increases Tmax by doubling it (and adjusting Te accord-
ingly). After doubling, the esp again runs all encodings with all instances. If,
with the new values for Tmax and Te, the number of reasonably hard instances
becomes 30% or more, the esp stops and declares the original input instance
set as valid. Otherwise, the esp doubles Tmax one more time and repeats. The
possible outcomes are then: “too easy”, “too hard,” and valid. In the first two
cases, the user is informed and asked to adjust Tmax and the hardness of the
input instances accordingly. In the last case, the esp checks if there are at least
500 reasonably hard instances in the entire input set. If not, the esp exits and
returns to the user the numbers of instances in the set that are easy, hard and
reasonably hard, and requests that the user updates the input instance set. (The
first phase of the process aims to save time, if the input instance set is too hard,
with a high probability the esp will return this decision without having to pro-
cess the entire data set.)

We now provide insights into the instance generation/selection process by
focusing on the HC domain. Table 1 shows performance data collected by running
the gringo/clasp tools with six encodings of the HC problem on several instances
of that problem, that is, directed graphs. All graphs are generated randomly from
a certain space or model of graphs. Graphs in the model used in this example are
built by removing directed edges from triangle grid graphs. Nodes of those graphs
are arranged in layers, the first layer has one node, the next two nodes, and so
on. The external nodes form a triangle; each internal node is connected by two-
directional edges with two neighboring nodes in its own layer, two neighboring
nodes in the layer above and two more in the layer below. Such graphs have
Hamiltonian cycles. Graphs in our example are subgraphs of a 19-layer triangle
grid with 190 nodes. When the number of removed edges is small, the graphs
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have Hamiltonian cycles with a probability close to 1. As the number of removed
edges grows, we reach the point (known as the phase transition [20]), when this
probability drops quickly and becomes close to 0. The phase transition region
contains graphs with and without a Hamiltonian cycle with, roughly, the same
probability. Moreover, the solving time becomes significant.

Table 1 shows a selection of instances that are reasonably hard (we took
Tmax = 200 s as the cutoff, and set Te = Tmax/7 = 28.57 s). Building a set of
reasonably hard instances (with respect to Te and Tmax) may still yield a data set
that is relatively easy (when execution times, while greater than Te do not come
close to the cutoff time). An additional requirement one might want to impose
on a “good” set of instances is that each encoding must time out on at least some
instances in the set. This is the case for the set of instances in Table 1. In addition
to a consideration of hardness, a valid instance set must evince complementary
performance from the selected encodings. That is, no encoding must be uniformly
better than others, in fact, each encoding must have its area of strength where
it performs better than others. This is the case of the set of instances in Table 1.
For example, on the instances insttri200 33 1 and insttri200 57 1 the ham 2
and ham 3 exhibit “opposite” performance: ham 2 is the winner on the first
instance while ham 3 is the winner on the second one. We can observe that each
instance has its own best encoding and the order of per-instance best encodings
in the table are 2, 6, 2, 3, 5, 2, 1, 4, 4, 3. In particular, each encoding is the
winner on at least one instance. If a dominant encoding exists (performs best
on all instances), encoding selection in such case is meaningless. The esp will
inform the user about it.

Building meaningful sets of reasonably hard instances is difficult. They can
be derived from the instances submitted to the past ASP competitions [8,9] in
the NP category, or can be obtained by building random models of instances
(as in our running example above) and finding the right settings for the model’s
parameters. Incorporating some structure in the model (as in the running exam-
ple) offers a better chance for meaningful instances as purely random instances
without any structure are often quite easy. Finally we note that to support
encoding selection a large data set with at least 500 instances is needed.

The concept of an oracle helps evaluate the potential for performance
improvements by encoding selection. An oracle is a non-deterministic algorithm
that always selects the best encoding to run with a given instance. Typically,
oracle’s performance is much better than the performance of any individual
encoding. This is the case for the data set in Table 1. Thus, the task of selecting
correct encodings on a per-instance basis becomes meaningful.

Cutoff Time Penalization. Performance data represents the effectiveness of
different encodings under a chosen ASP solving tool. It is obtained by process-
ing all encodings with all instances, using a selected solver (such as the gringo
grounder and the clasp solver in some selected configuration). Each individual
run should be limited to the selected cutoff time, since some encodings com-
bined with some instances may take a large amount of time before terminating.
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To assess the quality of an encoding, one must account for timeouts. When an
instance reaches timeout, the esp considers the number of encodings reaching
timeout for the instance, and a penalized runtime is given. The esp uses an
approach we call PARX, which takes for the runtime of a timeout instance the
cutoff time multiplied by X, where X is the number of encodings that time out
on this instance. For example, when this method is used, for the instances in
Table 1, the penalized runtime for insttri200 33 1 is 200.00 for ham3, and for
insttri200 41 2 is 400.00 for both ham3 and ham4.

2.3 Encoding Candidate Selection and Feature Extraction

In this stage of the process, the esp analyzes the performance data obtained
for the extended set of encodings. The system selects a subset of the extended
encoding set that consists of encodings that are most effective and that together
demonstrate run-time diversity. At least two and no more than six encodings
are selected.

To estimate the effectiveness of the encoding, we assign it a score. The score
is affected by the percentage of the solved instances, the number of instances for
which the encoding provided the fastest solution, and the average running time
on all solved instances.

The selected encodings are organized into groups. Specifically, we consider as
a group the entire set of selected encodings, if only two or three encodings were
selected. Otherwise, the set of selected encodings has i encodings, where i = 4, 5
or 6, and we consider the group of three top-scoring encodings (the scoring is
discussed in an earlier section), four top-scoring encodings etc., for the total of
i− 3 groups (two groups if i = 4, three groups if i = 5 and four groups if i = 6).

To support machine learning of performance prediction models for the
selected encodings, we identify instances of problem P with their feature vec-
tors. In other words, each instance-encoding pair is mapped into an abstraction
captured by a number of properties/features that hold for this pair. Our sys-
tem relies on two sets of features. First, it exploits features that can be defined
based on the generic structure of the propositional program obtained by ground-
ing a given instance-encoding pair. To this end, we take advantage of the system
claspre [5]. Second, the platform uses domain specific features related to problem
P supplied by the user.

Claspre Features. Claspre is a system designed to extract features of ground
ASP programs. The extracted features fall into two groups: static and dynamic.
Static ones contain features about atoms, rules, and constraints. For instance,
they include such program properties as the number of rules, unary rules, choice
rules, normal rules, weight rules, negative body rules, binary rules, ternary rules,
etc. In total, claspre computes 38 static features. To extract dynamic features
for a ground program, claspre runs clasp on it for some short amount of time.
Clasp returns the information about the solving process. This information is
then turned into (dynamic) features of the program. The esp uses these features
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for the instance-encoding pair that defined the program processed by claspre.
These features are based on information collected after each restart performed
by clasp, with the number of restarts being a parameter of the process. Allowing
for more restarts result in features that are usually more accurate to represent
a problem, but the process requires extra runtime. Overall, claspre computes 25
dynamic features per each restart and the platform uses features for two restarts.
However, extremely easy instances have no claspre features since they are solved
during the feature extraction process, and no much information can be collected
for them.

Domain Features. Claspre features are oblivious to the nature of given prob-
lem P represented by the specific instance-encoding pair. Domain features rel-
evant to the nature of P , expressed by properties of an instance to P often
provide additional useful characteristics of the instance (note that these fea-
tures are independent of properties of a particular encoding). For example, if
instances for problem P are graphs, possible features may include the number of
nodes in a graph, the number of edges, the minimum and maximum degrees, as
well as measures reflecting connectivity and reachability properties. Availability
of domain features often improves the performance of the platform. The esp
framework provides an interface for the user to supply domain features for their
problems at hand. Obviously, the ultimate selection of such features as input
to the platform depends on the problem being solved. Indeed, different features
may be relevant to, say, problems of graph colorability and Hamiltonian Cycle.
In the HC problem, the existence of long paths plays a role, and several features
related to this property may be derived from running the depth-first search on
the instance. Sample domain specific features for the HC problem [17] follow

– numOfNodes: the number of nodes in a graph;
– avgOutDegree: the average of outdegree of nodes;
– depthDfs1stBackJump: run depth-first search from node 1, return the depth

of the first backjump, where the algorithm discovers no new nodes;
– depthBacktoRoot: run depth-first search from node 1, return the depth of a

node that has a back edge to node 1;
– minDepthBfs: run breadth-first search from node 1, return the depth of the

first node that has no outward edges to new nodes.

We used these features in our running example of the case study of the use of
the esp for tuning performance within the HC domain.

The output of this phase is a table whose rows correspond to instance-
encoding pairs and contain the values of all its features.

2.4 Machine Learning Modeling and Solving

The goal of machine learning techniques within this project is to build encod-
ing performance predictors based on performance data and features explained
above. Once these predictors are constructed for a problem P at hand, they can
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be used to select the most promising encoding for processing an input instance
of P . To build machine learning models, one can use regression or classifica-
tion approaches. The former predicts each encoding’s performance expressed as
the running time, and then selects the most promising one by comparing the
predicted performance. The latter method builds a multi-class machine learning
model and directly selects the most promising encoding from a collection of can-
didate encodings. Our earlier experimental analysis (outside of the scope of this
paper) indicates that regression approaches work better than classification. As
a result, at present the esp supports the construction of regression models only.

The set of selected encodings (at least two and at most six arranged into
one to four groups, as discussed in Sect. 2.3) is the basis for machine learning
algorithms currently used by the esp. The esp performs learning for each of the
group based on instance features and instance performance data restricted to
encodings in the group. Supervised ML techniques that we use here are trained
on 〈instance features, instance performance〉 pairs for each encoding in the group.
Once a model is trained it yields a mapping from instance features to the esti-
mated performance of a targeted encoding. The esp builds runtime prediction
models for each encoding and selects the encoding with the minimum predicted
runtime. We now explain the detailed design below.

Features Selection. Claspre features are collected for instance-encoding pairs.
The features representing an instance consist of the features of that instance
when paired with all encodings in the group being considered (88 features for
each instance-encoding pair possible within the group) and the domain specific
features of the instance. This is a large number of features that may cause the
poor computational performance of machine learning algorithms. To address
this issue, the esp reduces the number of features by further processing. For
claspre features, the esp first performs feature selection inside features related
to one encoding. All subsets (from 40% to 70%) of features are selected for each
encoding based on standard deviation reduction [11]. These subsets of selected
features are trained and validated on different data splits from the whole dataset,
and validation results are compared. The subset with the lowest average mean
squared error is selected as the selected features for the instance-encoding pair.
When the validation results for all encodings within the group are compared, the
best subset is selected as the claspre features of the group.A subset of domain
specific features is selected separately and then combined with selected claspre
features to form the final set of features.

Hyper-parameters Tuning. At present, the esp supports three well-known
machine learning algorithms: k-Nearest Neighbors (kNN), Decision Tree (for
the review of these two methods see, for instance [21]), and Random For-
est [13]. In each case, the performance of the algorithm depends on the choice of
hyper-parameters (for instance, the number k of nearest neighbors to consider
for the kNN method). Hyper-parameters tuning is an important step within
training process of machine learning. We implemented the grid-search method



424 L. Liu et al.

for hyper-parameter searching in the esp and combined it with the 10-fold
cross-validation (for the description of k-fold cross validation method see, for
instance, [16]) to improve the generalization of the obtained model.

Assessment of Learned Models. The result of the learning (for each group)
is the collection of performance models obtained by applying each of the machine
learning methods implemented in the esp. These models are compared by evalu-
ating their performance on the 5-fold cross validation approach. For each round,
the platform trains models on the training set, predicts the runtime of the cor-
responding encoding for instances on the validation set, and selects the most
promising encoding on a per-instance basis. Average solving percentage (pri-
mary criteria) and average solved time (secondary criteria, for the case of a tie)
for multiply runs are compared for all learned models of all groups, and the best
model among them is selected as the solution of the esp.

Per-instance Encoding Selection and Solving. Once the platform com-
putes and selects the model based on the performance of cross-validation results,
it will use this model to solve problems provided as new instances. That is, given
a new instance, it will apply the encoding selected by the model computed and
selected in the machine learning phase. Specifically, the platform extracts fea-
tures of the instance that are relevant to (are used by) the model, applies the
model to select the encoding (the one with the lowest estimated run time is
selected), and applies the solver to the instance combined with the selected
encoding.

3 Experimental Analysis

We tested the performance of the esp using the Hamiltonian Cycle problem. We
now describe the experimental setup and results.

Experimental Setup. All our experiments were performed on a computer with
Intel(R) Core(TM) i7-7700 CPU and 16 GB Memory, running on Linux 5.4.0-
91-generic x86 64. The input to the platform consists of six HC encodings and
one thousand structured graph instances. The instance set consists of graphs
from four different structures used in our previous work on the HC problem [17].
The cutoff time is initially set to 200 CPU seconds. The system decided that the
original cutoff time was appropriate and the cutoff time was not increased.

Each encoding was run on all instances and runtime was recorded. All
instances were grounded with gringo version 5.2.2 and solved by clasp version
3.3.3 with default configurations. Only solving time was counted as runtime,
while grounding time was not counted. It took ten days to collect the perfor-
mance data for all six encodings. Six encodings are ranked according to their
performance. They give rise to four encoding groups (top three, top four, top
five and top six). For all the instances, claspre features are extracted and graph
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Table 2. Performance of individual encoding, oracle, system solution, and other solu-
tions

solving% avg solved t

Individual performance

ham1 61.93 34.09

ham2 74.83 54.31

ham3 74.19 55.37

ham4 58.06 35.63

ham5 78.70 71.35

ham6 68.38 45.80

Oracle performance

Oracle 95.48 21.64

system solution

RFgroup3 88.38 40.81

solving% avg solved t

Other solutions

DTgroup4 85.16 39.14

RFgroup4 87.09 40.80

kNNgroup4 80.00 40.88

DTgroup3 87.09 36.84

KNNgroup3 80.00 41.68

DTgroup2 73.54 57.74

RFgroup2 78.06 60.81

KNNgroup2 77.41 52.54

DTgroup1 78.06 61.74

RFgroup1 79.35 56.72

KNNgroup1 76.77 57.11

specific features are provided. Out of 1000 originally provided graph instances,
the esp platform determined 775 to be reasonably hard.

The data set is split into the training and the validation set (80% of instances)
and the test set (20% of instances). The former is used by the esp to build models
and select the best one. The test set is used in the experiments to evaluate the
performance of the platform.

Experimental Results. The test results are shown in Table 2. Instances from
the test set (in other words, instances that esp has never seen before) are used
to compile this table. The assessment of the kind is part of the platform.

The first part of the left table shows the performance of individual encod-
ings: solving percentage (solving%) and average solved runtime (avg solved t)
are reported. The solving percentage records the percentage of instances each
encoding can solve, and the average solved time counts the average runtime
for solving these instances. The average solved runtime does not accounts for
unsolved instances, because different penalty methods may result in different
average overall runtime. The second part reports the oracle performance, which
selects the best encoding for each instance, representing the upper bound on what
is possible with the encoding selection method. The third part shows the result
for the method selected by the esp. The right part shows the performance of
other solutions (intermediate performance models), which are obtained by the
system, but not selected as the best solution by esp. The individual performance
shows that the best individual encoding ham5 can solve 78.70% of all instances.
Thus, we can use the performance of this encoding as the baseline performance.
Even though ham5 solves the most instances, it does not have the lowest aver-
age solved running time. In fact, it has the largest average solved runtime. The
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encoding ham1 is the fastest in terms of average solved runtime, but it only solves
61.93% of instances. The oracle results point at the fact that there is a huge per-
formance gain by selecting the best encoding for each instance. It solves 95.48%
of instances, with an average solving time of 21.64. Compared with ham5, the
success percentage of the always-select-best oracle is 16.78% points higher. Over-
all, the table shows the encodings in the test set have complementary strengths.
Each of them can solve a certain fraction of instances, but when combined, they
can solve much more.

The system solution with the best cross validation result is RFgroup3, the
random forest model based encoding selection from encoding group 3, which
consists of top five encoding candidates. When tested on the test set, it solves
88.38% of instances, 9.68% points more than the best individual encoding ham5,
and is also the best solution among all models. This confirms that the platform
is able to generate solutions that improve the performance of ASP. The results
also show all other solutions generated using the platform almost overperform
the individual best. For example, these machine learning based solutions built
for group 4 and group 3, which consists of six and five encoding candidates
respectively, all contribute better results than ham5. Solutions built for group
2 and group 1 are worse since they are based only on top four and top three
encoding candidates. We also observe the group 3, which consists of five encoding
candidates, provides better results for corresponding models than other groups.

4 Conclusion and Future Work

In this article, we described the system esp that can automatically improve
the performance of ASP through encoding rewriting and selection. Many of the
processes involved can run separately. This means that one can skip over some
parts of the overall process if the necessary inputs for later steps were already
computed before. We view the platform as a valuable tool for the ASP practi-
tioners geared to assist them with performance analysis and encoding selection
tasks in a systematic and principled manner. This paper is meant to assist them
in understanding its inner components. Our experiments show that for the HC
problem the esp selects encodings and builds performance prediction models
that lead to improvements in ASP solving. Despite this success, the esp requires
more insights into fine-tune machine learning methods for selecting encodings
and building accurate performance predicting models. Indeed, our experiments
with other problems are mixed. In some cases (for instance, the graceful graph
labeling1), the esp performs comparably with the best individual encodings (but
not better yet), in some other cases (graph coloring) it performs worse.

Our future work will aim to address the present shortcomings. First, we
will expand the encoding rewriting module, where we plan to incorporate addi-
tional encoding rewriting tools, to increase the runtime diversity of the encod-
ings the system generates. Further, we plan to develop techniques combining
encoding selection with an earlier work on solver selection. In particular, we
1 https://en.wikipedia.org/wiki/Graceful labeling.

https://en.wikipedia.org/wiki/Graceful_labeling
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will study learning models to estimate for a given instance the performance of
a pair (clasp configuration, problem encoding). Second, we will incorporate into
the esp techniques constructing schedule [14] based solutions. In this approach,
several encodings are selected to be processed by ASP tools in a certain order
and for the total time equal to the cutoff limit, with each encoding receiving a
certain share of the time budget.

Acknowledgments. The authors acknowledge the support of the NSF grant IIS
1707371.
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Abstract. While certification has been successful in the context of sat-
isfiablity solving, with most state-of-the-art solvers now able to provide
proofs of unsatisfiability, in maximum satisfiability, such techniques are
not yet widespread. In this paper, we present QMaxSATpb, an extension
of QMaxSAT that can produce proofs of optimality in the VeriPB proof
format, which itself builds on the well-known cutting planes proof sys-
tem. Our experiments demonstrate that proof logging is possible without
much overhead.

Keywords: Boolean satisfiability · maximum satisfiability ·
optimization · certification · proofs

1 Introduction

As the area of combinatorial search and optimization matures, we observe a
strong increase in applications, as well as in highly optimized solving technology.
Since some of these applications involve high-value and life-affecting decision-
making processes (e.g., verifying software that drives our transportation infras-
tructure [44], or matching donors and recipients for Kidney transplants [34]), it
is of utmost importance that the answers produced by the solvers be completely
reliable. Unfortunately, the reality is different: the constant need for more effi-
cient and advanced algorithms forms an excellent breeding ground for bugs,
resulting in numerous reports of solvers outputting faulty answers [1,9,11,20].

There are multiple ways to deal with this issue. One possibility is to formally
verify correctness of the solvers. While there have lately been promising advances
in this direction (e.g., [18]), formally verifying advanced reasoning methods used
in modern-day solvers turns out to be challenging. Another approach is certifi-
cation or proof logging. The idea here is that a solver should not just produce
an answer, but also an efficiently verifiable certificate or proof showing that the
answer is correct [2,38]. This certificate can then subsequently be verified by
an independent tool (often referred to as a verifier or proof checker) of much
lesser complexity. In Boolean satisfiability (SAT) [36], this approach has been
successfully applied, with numerous proof formats and verifiers, including even
some formally verified verifiers [6,13,14,26–28,43]. Moreover, for several years, it
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has been a requirement of the (main track of the) SAT competition that solvers
provide certificates of their answers.

In the domain of Maximum Satisfiabilty (MaxSAT), the optimization variant
of SAT, certification has not yet had its breakthrough moment. A couple of proof
systems and tools have been developed to certify MaxSAT solutions [8,33,39,40].
However, none of them can truly be called a general-purpose proof system for
MaxSAT, either because they are built to certify only specific MaxSAT algo-
rithms, or because of a limited expressivity, such as for instance a lack of support
for rules introducing new variables, which is common in several pre- and inpro-
cessing techniques. For this reason, we expect that richer proof systems will be
needed to handle the full range of MaxSAT solving techniques.

One promising proof format to fill this gap is VeriPB [17,22,24,25], a proof
format for pseudo-Boolean satisfiability, that was recently extended to pseudo-
Boolean optimization [7], which generalizes MaxSAT. VeriPB builds on top of
the cutting planes proof system [12], and extends it with a generalization of the
Resolution Asymmetric Tautology (RAT) rule that lies at the basis of the most
successful proof formats for SAT. VeriPB naturally facilitates proof logging for
advanced techniques such as XOR and cardinality reasoning [25] and symmetry
breaking [7] that have been largely out of reach of other proof formats for SAT.

In this paper, we present QMaxSATpb, an extension of the MaxSAT solver
QMaxSAT with capabilities to output proofs in the VeriPB format. In brief,
QMaxSAT works as follows. First, the input CNF is augmented by a totalizer
circuit [5]. The purpose of this circuit is to count the number of falsified clauses.
Next, it iteratively calls MiniSAT [16], asking for a solution in which strictly
more clauses are satisfied, until no better solution can be found. The biggest
challenge to obtain VeriPB-compatible proofs, was to deduce a native pseudo-
Boolean encoding of the variables involved in the totalizer circuit. Once that
is in place, the rest of the algorithm can easily be forced to output VeriPB-
compatible proofs. In fact, since the VeriPB format generalizes the DRAT proof
system, which is the most common proof system for SAT, the MiniSAT oracle
could be replaced by any SAT solver that supports DRAT proofs (which in
practice means, most state-of-the-art SAT solvers).

We experimentally validate our solver on benchmarks from MaxSAT chal-
lenges. Our experiments show that proof logging is generally possible with min-
imal overhead. While most proofs can be verified by VeriPB, we do notice that
verification still takes more time than solving, and we did find some cases where
VeriPB can not verify a proof within reasonable limits, thereby suggesting that
the proofs generated by our new tool form an interesting new testing ground for
efficiency improvements to the proof verifier.

The rest of this paper is structured as follows. In Sect. 2 we introduce the
necessary preliminaries. Section 3 describes how we extended QMaxSAT with
proof logging and Sect. 4 contains our experiments. We conclude in Sect. 5.
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2 Preliminaries

Propositional Logic. As usual, a Boolean variable x ranges over the Boolean
values 0 (false) and 1 (true). A literal is a variable x or its negation x. A
clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. A formula (in Conjunctive
Normal Form – CNF) is a conjunction of clauses. The empty clause is denoted
⊥. An assignment α is a partial function from the set of variables to 0 or 1;
it is extended to literals by α(x) = 1 − α(x). The assignment α satisfies a
clause C if it assigns at least one of C’s literals to 1; it satisfies a formula F ,
if it satisfies all the clauses of F . In that case, we also call α a model of F .
A formula F is satisfiable if it has a model, and unsatisfiable otherwise. The
Boolean Satisfiability problem (SAT) consists of deciding whether a formula F
is satisfiable. A partial MaxSAT-instance1 is a tuple (F, S) with F the hard
clauses and S the soft clauses. The Maximum Boolean Satisfiability problem
(MaxSAT) consists of finding an assignment that satisfies all clauses of F and
as many clauses of S as possible. Without loss of generality, we can assume that
S = {x1, . . . , xn}; this can always be enforced by introducing so-called relaxation
variables.

QMaxSAT. QMaxSAT [32] is an iterative partial MaxSAT solver. Such solvers
work by repeated calls to a SAT oracle, each time requesting a better solution
than the best one found so far. To express the constraint that the next solution
should be better than the previous one (i.e., that fewer literals in S should be
falsified), QMaxSAT uses an encoding of cardinality constraints in propositional
logic, namely the totalizer circuit encoding [5]. We will review the full encoding
in Sect. 3, but in order to understand the algorithm what matters is that, with
S = {x1, . . . , xn}, it introduces new variables (among those new variables are
the “counting” variables v1, . . . , vn) and introduces a formula G over the original
and the new variables such that: each model α of F can uniquely be extended
to a model α′ of F ∪ G; moreover, α′ is such that α′(vj) is true if and only if at
least j of the relaxation variables xi are true.

After adding this encoding, QMaxSAT searches for a model of F ∪ G (using
an oracle call to a SAT solver). If a model α is found, the clauses vj are added
for all j ≥ UB , with UB (the “upper bound”) equal to the number of xi that
is true in α. These added clauses express that strictly fewer of the relaxation
variables xi are true (and hence, strictly more soft constraints are satisfied),
and a new model is sought. This process repeats until no more solutions can be
found. Pseudocode of the QMaxSAT algorithm can be found in Algorithm 1.

The VeriPB Proof System. We now review the rules of the VeriPB proof system
we use for certification of QMaxSAT; we refer the reader to Bogaerts et al. [7]
for an exposition of the full proof system. A pseudo-Boolean (PB) constraint C
is a linear inequality of the form

∑
i aili ≥ A where ai and A are integers, li are

1 Since QMaxSATpb is based on QMaxSAT version 0.1 [31], which does not sup-
port weights, we do not discuss weighted (partial) MaxSAT here. Later versions of
QMaxSAT do support weights, using other encodings of PB constraints in CNF.
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Algorithm 1: QMaxSAT
1 input: a set of hard clauses F , a set of soft clauses S = {x1, . . . , xn}, a

SAT-solver Solver
2 α ← Solver.solve(F )
3 if α = ‘UNSAT’ then
4 return ‘UNSAT’
5 G, Y ← generateTotalizerClauses(R) /* with G the totalizer clauses and

v1, . . . vn ∈ Y the output variables meaning that at least i
variables xi are satisfied. */

6 F ← F ∪ G
7 while true
8 UB ← #{i | α(xi) = 1}
9 F ← F ∪ {vj | j � UB}

10 α ← Solver.solve(F )
11 if α = ‘UNSAT’ then
12 return UB

literals. We call
∑

i aili a linear term; the value of this term in a total assignment
α is

∑
i aiα(li). The constraint C is true in α if

∑
i aiα(li) ≥ A. Without loss of

generality it can be assumed that PB constraints are normalized : that all literals
li are over distinct variables and the coefficients ai and A are non-negative. The
negation of C is a PB constraint as well, namely C =

∑
i −aili ≥ −A + 1.

A PB formula or theory is a conjunction of PB constraints. Clearly, a clause
l1 ∨ · · · ∨ lk is equivalent to the PB constraint l1 + · · · + lk ≥ 1. Hence, SAT
formulas (in CNF) are special cases of PB formulas. An instance of a pseudo-
Boolean optimization problem is a tuple (F, f) with F a PB formula and f a
linear term to be minimized, referred to as the objective function. A solution for
(F, f) is a model of F , for which there does not exist another model of F with a
smaller objective function value. A partial MaxSAT problem (F, S) can also be
seen as a pseudo-Boolean optimization problem (F,

∑
s∈S s).2

For an instance (F, f), the VeriPB proof system keeps track of a proof con-
figuration (C, v∗) with C a set of constraints (initialized as F ) and v∗ an integer
or ∞ representing the best value for f found so far (initialized as ∞). It allows
updating this configuration (C, v∗) using the cutting planes proof system [12]:

Literal Axioms: For any literal, we can add li ≥ 0 to C.
Linear Combination: Given two PB constraints C1 and C2 in C, we can add

a linear combination of C1 and C2 to C.
Division: Given the normalized PB constraint

∑
i aili ≥ A in C and an integer

c, we can add the constraint
∑

i�ai/c�li ≥ �A/c� to C.
Saturation: Given the normalized PB constraint

∑
i aili ≥ A in C, we can add∑

i bili ≥ A with bi = min(ai, A) for each i, to C.

Additionally, VeriPB allows for rules for dealing with optimization statements:
2 Here, we use the fact that we can assume that S = {x1, . . . , xn}, but our proof

logging and verification also work with an arbitrary set of soft clauses.
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Objective Bound Update: Given a model α of F , we can update v∗ to α(f).
Objective Improvement: We can always add the constraint f < v∗ to C.

The first of these rules updates the objective value, given a solution; the second
represents that once a solution is found, we search for strictly better solutions.
VeriPB also has a rule for deleting constraints (in a way that guarantees that no
better-than-optimal values can be found). Finally, VeriPB allows deriving non-
implied constraints with a generalization of the RAT rule (which is common in
proof systems for SAT). This rule makes use of a substitution, which maps every
variable to 0, 1, or a literal. Applying a substitution ρ on a constraint C results
in the constraint C�ρ obtained from C by replacing each x by ρ(x).

Redundance-based strengthening: In case C ∧ C 
 f�ρ ≤ f ∧ (C ∪ C)�ρ, we
can add C to C.

Intuitively, this rule can be used to show that ρ, when applied to assignments
instead of formulas, maps any solution of C that does not satisfy C to a solution
of C that does satisfy C and that has an objective value that is at least as good.
Importantly, in many cases, it is not required to show precisely why a constraint
can be derived, but the verifier can figure it out itself (by means of so-called
reverse unit propagation [26]).

In case the proof system ends in a state (C, v∗), with ⊥ ∈ C, we know that v∗

is the value of the optimal solution of (F, f). If v∗ = ∞, then F is unsatisfiable.

3 QMaxSATpb

We now explain how we extended QMaxSAT with proof logging capabilities,
resulting in QMaxSATpb. The overall idea is that whenever the upper bound is
updated (Line 8 in Algorithm 1), we have a model of F and can use the bound
update rule to update v∗ accordingly. In the rest of the algorithm, we make
sure that every clause that is added, can be derived in the VeriPB proof system.
There are three different places where new clauses are derived:

– Clauses derived by the SAT solver (Lines 2 and 10).
– Clauses representing the totalizer encoding (Line 5).
– Clauses for strengthening the theory to match the new upper bound (Line 9).

We will discuss them in this order. All the clauses derived by the SAT
solver used by QMaxSAT (which is MiniSAT), are in fact reverse unit propa-
gation (RUP) clauses, meaning that they are implied by the cutting planes proof
system. VeriPB can check itself that they are indeed implied; simply claiming
they are RUP suffices to yield a valid proof. It is important to note here that our
approach does not hinge on all clauses being RUP. If the solver is replaced by any
other modern SAT solver with proof logging capabilities, only minor syntactic
modifications are needed to make it VeriPB-compatible. Indeed, as mentioned
before, redundance-based strengthening generalizes the well-known RAT rule,
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and moreover, VeriPB can additionally handle symmetry breaking, cardinality
reasoning and XOR reasoning [7,25].

Let us now turn our attention to proofs for the totalizer encoding. First, we
observe that cardinality definitions can easily be derived by redundance-based
strengthening.

Proposition 1. Let (C, v∗) be a proof configuration, X a set of variables, j ≤
|X| + 1 an integer and vX

j a variable not occurring in C. The following two
constraints can be derived by redundance-based-strengthening:

PX
1,j :=

∑

x∈X

x + (|X| − j + 1) · vX
j ≥ |X| − j + 1

PX
2,j :=

∑

x∈X

x + j · vX
j ≥ j

The first of these constraints expresses that vX
j is true if at least j of the variables

in X are true. The second expresses that vX
j is false if it is not the case that at

least j of the variables in X are true.

Proof. The variable vX
j is a fresh variable; the constraints enforce it to be true

if and only if
∑

x∈X x ≥ j. Gocht and Nordström [25] have shown how these
defining constraints can be derived using redundance-based strengthening.3 We
include a full proof here to make the paper self-contained. To prove that a
constraint PX

i,j can be derived by redundance-based strengthening, we need to
show that a substitution ρ exists such that C ∧ PX

i,j 
 f�ρ ≤ f ∧ (C ∪ PX
i,j)�ρ.

We start by proving this for PX
1,j . Let ρ1 be the substitution that maps vX

j to
1 (and every other variable to itself). Since vX

j is not used in C nor f , C clearly
entails f�ρ ≤ f ∧ C�ρ1 . Since ρ1 maps vX

j to 1, (C ∪ PX
i,j)�ρ is trivially true.

We now have to prove that we can derive PX
2,j from C ∪ PX

1,j , since PX
1,j was

derived before PX
2,j . Let ρ2 be the substitution that maps vX

j to 0. Since ρ2 does
not change C nor f and since PX

2,j�ρ2 is trivially satisfied, it suffices to show that
PX
1,j ∧ PX

2,j 
 PX
1,j�ρ. Now, whenever PX

2,j holds, it must be that vX
j is true and

∑
x∈X x < j and therefore

∑
x∈X x ≥ |X|−j+1. I.e., PX

1,j must then be satisfied
independently of vX

j and hence also PX
1,j�ρ is entailed. �

Now, the totalizer encoding does not consist of the constraints PX
i,j above but

of clauses encoding the same information. We will show that these clauses can
be derived by cutting planes derivations from the PB constraints PX

i,j . As such,
the way we implemented proof logging in QMaxSATpb consists of first deriving
the constraints in PB form, and subsequently extracting the clauses used in the
totalizer encoding. Also when adding the strengthening constraints below, will
we make use of the PB encoding of these variables.

3 There, this rule was called substitution redundancy.
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Definition 1 (Totalizer encoding [5]). Let X be a set of variables and T a
binary tree of which the leaves are the variables in X. For every node η of T , let
vars(η) denote the leaves of T that are descendants of η. For each internal node
η, the totalizer encoding introduces variables v

vars(η)
j with 0 ≤ j ≤ |vars(n)| + 1

with intended meaning that v
vars(η)
j holds if at least j variables of vars(η) are

true. For each leaf node x, we write vx
0 = 1, vx

1 = x, and vx
2 = 1. For each

internal node η with children η1 and η2, the encoding consists of the clauses

Cη
1 (α, β, σ) = vEl

α ∨ vEk

β ∨ vEj
σ (1)

Cη
2 (α, β, σ) = vEl

α+1 ∨ vEk

β+1 ∨ v
Ej

σ+1 (2)

for all combinations of 0 ≤ α ≤ |vars(η1)|, 0 ≤ β ≤ |vars(η2)|, 0 ≤ σ ≤
|vars(η)|, with α + β = σ.

This encoding can be simplified by replacing vη
0 by 1 and vη

|η|+1 by 0 for each
η. QMaxSATpb adds such a totalizer encoding for the set of relaxation variables
R := {x | x ∈ S}. The next theorem shows that it can indeed be derived in the
cutting planes proof system.

Theorem 1. Let X be a set of variables and T a binary tree of which the leaves
are the variables in X. Let η be an internal node of T with children η1 and η2.
The totalizer encoding clauses Cη

1 (α, β, σ) and Cη
2 (α, β, σ) can be derived by a

cutting planes derivation from the PB constraints

P η
i,j ∪ P η1

i,j ∪ P η2
i,j

Proof. Let η be an internal node with children η1 and η2 and define X1 =
vars(η1) and X2 = vars(η2). Assume α+β = σ with 0 ≤ α ≤ |X1|, 0 ≤ β ≤ |X2|,
0 ≤ σ ≤ |X|.

Summation of PX1
2,α, PX2

2,β and PX
1,σ results in:

(
∑

xi∈X1

xi

)

+ αvX1
α +

⎛

⎝
∑

xj∈X2

xj

⎞

⎠ + βvX2
β +

(
∑

x∈X

x

)

+ (|X| − σ + 1)vX
σ

≥ α + β + |X| − σ + 1

We can rewrite the left hand side because X1 ∩ X2 = ∅ and X1 ∪ X2 = X. The
right hand side can be rewritten because α + β − σ = 0. This results in:

(
∑

x∈X

x

)

+

(
∑

x∈X

x

)

+ αvX1
α + βvX2

β + (|X| − σ + 1)vX
σ ≥ |X| + 1

Because of the opposite signs, the first two terms simplify to |X|; after a satu-
ration step, this results in:

vX1
α + vX2

β + vX
σ ≥ 1
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This is exactly Cη
1 (α, β, σ) from the totalizer encoding.

A similar pattern is followed in the proof for the Cη
2 (α, β, σ) constraints.

First, summation of PX
2,σ+1, PX1

1,α+1 and PX2
1,β+1 gives:

(
∑

x∈X

x

)

+ (σ + 1)vX
σ+1 +

(
∑

xi∈X1

xi

)

+ (|X1| − α)vX1
α+1

+

⎛

⎝
∑

xj∈X2

xj

⎞

⎠ + (|X2| − β)vX2
β+1 ≥ σ + 1 + |X1| − α + |X2| − β

Because X1 ∩X2 = ∅ and X1 ∪X2 = X, the left hand side can be rewritten. The
right hand side can be rewritten because |X1| + |X2| = |X| and σ − α − β = 0.
This results in:

∑

x∈X

x +
∑

x∈X

x + (σ + 1)vX
σ+1 + (|X1| − α)vX1

α+1 + (|X2| − β)vX2
β+1 ≥ 1 + |X|

Because of the opposite signs in the first two terms, this is equivalent to:

(σ + 1)vX
σ+1 + (|X1| − α)vX1

α+1 + (|X2| − β)vX2
β+1 ≥ 1

After a saturation step, this becomes equivalent to the Cη
2 (α, β, σ) constraints

from the totalizer encoding. �
The next theorem shows that the unit clauses to constrain the next solutions

to better ones can be derived in the VeriPB proof system as well.

Theorem 2. Let (C, v∗) be a proof configuration and Y = {vR
1 , ...vR

|R|} be the
set of counting variables on the set R := {x | x ∈ S}. For any j ≥ v∗, the unit
clause vR

j can be derived if C contains the pseudo-Boolean constraint PR
2,j.

Proof. Let n ≥ v∗. Because of the Objective Improvement rule, VeriPB can
derive the constraint:

∑

xi∈R

xi ≥ |R| − v∗ + 1

Summation with PR
2,j results in:

(
∑

xi∈R

xi

)

+

(
∑

xi∈R

xi

)

+ nvS
j ≥ |R| − v∗ + 1 + n

Because of the opposite signs of the first two terms, they can be dropped, result-
ing in:

nvS
j ≥ n − v∗ + 1

Division by n − v∗ + 1 followed by a saturation step results in:

vS
j ≥ 1

These are exactly the unit clauses added by QMaxSAT. �
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Therefore, given an upper bound UB , QMaxSAT can derive the constraints
vY

j for all j ≥ UB and call MiniSAT to find a better solution.

4 Implementation and Experiments

In order to test our work, we extend QMaxSAT (version 0.1 [31]) with proof
logging as described above. The extensions amount to the following:

– All learned clauses are written to the proof file using VeriPB’s RUP notation.
– All performed clause deletions (internally in the SAT solver) are written to

the proof file.
– Each time a new objective value is found, it is written to the proof file using

VeriPB’s objective bound update notation.
– Before QMaxSAT builds its totalizer circuit, redundance-based strengthening

is used to derive a pseudo-Boolean encoding of the cardinality constraints.
– The original procedure for generating the totalizer encoding now also writes

the cutting planes derivations for these clauses to the proof file.
– The unit clauses that constrain the objective function and their cutting planes

derivations are written to the proof file as well.

The QMaxSAT patch as well as the source code and all necessary scripts to run
the experiments, are available on GitHub [41,42].

We experimentally validate QMaxSATpb using benchmarks from the 2021
MaxSAT evaluation [10]. All benchmarks were ran on the VUB Hydra cluster.
Each solver call was assigned a single core on a 20-core INTEL Xeon Gold 6148
(skylake) processor with a time limit of 60 min and a memory limit of 32 GB,
matching the resource limits used in the evaluation. Preliminary tests suggested
that verification using VeriPB (commit 0e61617) requires substantially more
memory and time than solving. For this reason, we assigned veripb 600 min of
computation time and 64 GB of memory.

For all instances that QMaxSAT could solve within the set limits, we plot
the time taken to solve the instance using QMaxSAT and using QMaxSATpb in
Fig. 1. We observe that for the majority of the instances, the overhead induced by
proof logging is negligible. In fact, there are only four instances that QMaxSATpb
could not solve within the limits when QMaxSAT could.

When comparing the time needed to solve instances and the time needed to
verify the produced proofs (see Fig. 2), we notice that VeriPB typically needs
more time to validate a proof than QMaxSATpb needs to solve the corresponding
instance. Moreover, VeriPB could not verify 10.2% of the solved instances within
the time limits and 2.4% within the memory limits. This suggests that VeriPB
might benefit from performance and memory optimisation.
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Fig. 1. Performance overhead induced by proof logging: for each instance, this plot
contains a comparison between the time needed to solve it with and without proof
logging.
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Fig. 2. Performance of proof verification: for each instance the time needed to solve
the instance with proof logging enabled is compared to the time needed to verify the
produced proof.

5 Conclusion

In this paper, we presented QMaxSATpb, an extension to QMaxSAT with proofs
of optimality of the computed solutions. To verify solutions we used the VeriPB
proof system, which is based on the cutting planes proof system. We exper-
imentally validated our approach and found that proof logging itself requires
minimal overhead. Furthermore, we find that while verification can generally
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happen in reasonable time, for some instances with relatively large proofs, the
verifier struggles to finish in time.

Together with ongoing research on certified translations of pseudo-Boolean
constraints into CNF clauses [21], this work takes an important step towards cer-
tification of state-of-the-art MaxSAT solvers. Indeed, one important contribution
of our paper is to show very precisely how totalizer encodings can be added in a
certified way such that the semantics of each newly introduced variable is explic-
itly expressed as a pseudo-Boolean formula. Such totalizer encodings lie at the
heart of so-called core-guided MaxSAT algorithms (e.g., [4,29,30,37]). In future
work we want to extend this class of solvers with proof-logging capabilities as
well.

While our paper focusses on SAT and MaxSAT, the VeriPB proof system has
also been used to provide proof logging for certifying solvers in richer domains
[23]. We believe it can also play an important role for the field of answer set
programming [35], where all modern solvers [3,15,19] support pseudo-Boolean
constraints, and are based on search and optimization algorithms that are similar
to those from SAT and MaxSAT.
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Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 488–498. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-80223-3 33

41. Vandesande, D., De Wulf, W., Bogaerts, B.: QMaxSATpb: a certified MaxSAT
solver. https://github.com/wulfdewolf/CertifiedMaxSAT. Accessed June 2022

https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.1007/978-3-642-38574-2_24
https://sites.google.com/site/qmaxsat/
https://sites.google.com/site/qmaxsat/
https://doi.org/10.3233/SAT190091
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-030-80223-3_33
https://github.com/wulfdewolf/CertifiedMaxSAT


442 D. Vandesande et al.

42. Vandesande, D., De Wulf, W., Bogaerts, B.: QMaxSATpb: a certified MaxSAT
solver: patches & benchmarks. https://github.com/wulfdewolf/CertifiedMaxSAT
benchmarks. Accessed June 2022

43. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

44. Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability,
pp. 533–568 (2009)

https://github.com/wulfdewolf/CertifiedMaxSAT_benchmarks
https://github.com/wulfdewolf/CertifiedMaxSAT_benchmarks
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31


Applications



Knowledge-Based Support for Adhesive
Selection

Simon Vandevelde1,2,3(B) , Jeroen Jordens4 , Bart Van Doninck4 ,
Maarten Witters4 , and Joost Vennekens1,2,3

1 Department of Computer Science, KU Leuven, De Nayer Campus,
J.-P. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium

{s.vandevelde,joost.vennekens}@kuleuven.be
2 Leuven.AI – KU Leuven institute for AI, 3000 Leuven, Belgium

3 Flanders Make – DTAI-FET, Leuven, Belgium
4 Flanders Make, Oude Diestersebaan 133, 3920 Lommel, Belgium

{jeroen.jordens,bart.vandoninck,maarten.witters}@flandersmake.be

Abstract. This work presents a real-life application developed to assist
adhesive experts in the selection of suitable adhesives. As the popularity
of adhesive joints in industry increases, so does the need for tools to
support the selection process. While such tools already exist, they are
either too limited in scope, or offer too little flexibility in use. In this work,
we first extract experts’ knowledge about this domain and formalize it in
a Knowledge Base (KB). The IDP-Z3 reasoning system can then be used
to derive the necessary functionality from this KB. Together with a user-
friendly interactive interface, this creates an easy-to-use tool capable of
assisting the adhesive experts. The experts are positive about the tool,
stating that it will help save time and find more suitable adhesives.

1 Introduction

The Flanders Make Joining & Materials Lab (FM JML) is specialized in adhesive
bonding. They support companies in selecting the most appropriate adhesive
for their specific use case, by accounting for characteristics such as strength,
temperature resistances, adhesive durability, and more. As this selection process
requires much expert knowledge, it is performed manually by one of the adhesive
experts that work at FM. It is a time-consuming and labor intensive task, due
to the high number of available adhesives on the market, each with extensive
data sheets. Currently, the experts do not make use of any supporting tools to
help them perform the selection, because the current generation of tools does
not meet their requirements.

This paper describes our work on a logic-based tool which supports the
experts in the selection process. It is structured as follows. We start by describ-
ing the process of selecting an adhesive and the state-of-the-art tools in Sect. 2,
and elaborate on the logical system used in this work in Sect. 3. Next, we present
our Adhesive Selector Tool in Sect. 4, where we discuss the process of Knowledge
Acquisition, how the system handles unknown parameter values, and how the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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experts interface with the knowledge. We share the results of our three-fold vali-
dation in Sect. 5, and describe our lessons learned in Sect. 6. Finally, we conclude
in Sect. 7 and discuss further work.

2 Adhesive Selection and Current Tools

As there is no universally applicable adhesive, the selection of an adhesive is
an important process. There are many factors on which the choice of an adhe-
sive depends: structural requirements such as bonding strength and maximum
elongation, environmental factors such as temperature and humidity, economic
factors, and more. Due to the complexity of the problem, there is quite a poten-
tial for tools that support this selection process. Yet, in [8] the author concludes
that “there is a severe shortage of selection software, which is perplexing espe-
cially when the task of adhesive selection is so important”.

Currently, when tasked with a use case, the experts work in two steps. First,
they start out by trying to derive necessary requirements, such as defining the
temperature ranges or calculating values for parameters like minimum strength.
Based on this list of requirements, they perform the selection. This selection
consists of manually looking through various data sheets, keeping track of which
adhesives are suitable. In the second step, these adhesives are put to the test
by performing real-life experiments in FM’s lab, to ensure suitability. However,
this testing step is costly and time-consuming, so it is important that the initial
selection is as precise as possible. While there are tools available for this process,
the FM experts do not use them because they are either too simplistic, or not
sufficiently flexible.

The most straightforward selection tools are websites offering simple inter-
faces1 [16]. Based on a series of questions, they provide neutral advise to support
selection. However, they still require the expert to look up and process the infor-
mation themselves.

There are also a number of expert systems to be found in the literature
[9–13,15,17]. Here, domain knowledge is captured and formalized in the form of
rules, which can be used for adhesive selection by forward chaining and often also
for generating explanations by backward chaining. However, these systems have a
number of downsides: they are low in both interpretability and maintainability
by the expert, often not all required knowledge can be expressed, and they
generally only contain a low number of adhesives or substrates. Finally, these
systems typically only allow forward/backward chaining, which is not enough to
provide all the functionality the experts need. For instance, a situation might
arise in which an adhesive is already pre-defined (e.g., left-over from a previous
gluing operation), and the selection of a second substrate is required. While
this selection requires the same knowledge, the expert tools are not capable of
performing this operation.

1 such as www.adhesivestoolkit.com and www.adhesives.org.

www.adhesivestoolkit.com
www.adhesives.org
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3 Knowledge Base Paradigm

The core idea in the Knowledge Base Paradigm (KBP) [5] is to represent knowl-
edge in a purely declarative way, independently of how it is to be applied. Knowl-
edge is stored in a Knowledge Base (KB) to which different inference tasks can
be applied. This approach stimulates knowledge reuse, as multiple inference tasks
can be used to solve multiple problems with the same knowledge.

3.1 IDP

The IDP (Imperative Declarative Programming) system [4] is an implementa-
tion of the KBP. The knowledge in the KB is represented in a rich extension of
First Order Logic (FOL), called FO(·)2. It extends FOL with types, aggregates,
inductive definitions and more. FO(·) is an expressive and flexible knowledge rep-
resentation language, capable of modeling complex domains. The knowledge in
a KB is structured in three kinds of blocks: vocabularies, structures and theories.

A vocabulary specifies a set of symbols. A symbol is either a type, predicate,
or a function. A type represents a range of values, e.g., an enumeration list of
adhesives called adhesiveType or the domain of real numbers R. A predicate
symbol either expresses a boolean or a relation on one or more types, such
as BondSealing() or Available(adhesiveType). A function symbol represents a
function from the Cartesian product T1 × . . .×Tn of a number of types to a type
Tn+1. For example, the function BondStrength(adhesiveType) → R maps each
adhesive on its bond strength.

A structure is a (partial) interpretation of a specific vocabulary. A full inter-
pretation contains the concrete values for each symbol of the vocabulary, whereas
a partial interpretation only contains values for some of them.

A theory contains a set of logical formulae in FO(·).
By itself, the KB cannot be executed: it is merely a “bag of knowledge’,

which contains no information on how it should be used. The latest version of
the IDP system, IDP-Z33 [3], supports many different inference tasks to apply
this knowledge. We will briefly go over the relevant inferences for this work:
propagation, model expansion, optimization and explanation. Given a
partial interpretation I for the vocabulary of a theory T , propagation derives
the consequences of I according to T , resulting in a more precise partial inter-
pretation I ′. Model expansion extends a partial structure I to a complete
interpretation I that satisfies the KB theory T (I |= T ). Optimization is sim-
ilar to model expansion, but looks for the model with the lowest/highest value
for a given term. Finally, explanation will, given a structure I which does not
satisfy the theory T (I �|= T ), find a minimal subset of the interpretations in I
which together explain why I does not satisfy the theory.

2 also written as FO-dot.
3 www.IDP-Z3.be.

www.IDP-Z3.be
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3.2 Interactive Consultant

The Interactive Consultant [2] is a generic interface for IDP-Z3, which aims at
facilitating interaction between a user and the system. It is a generic interface,
in the sense that it is capable of generating a view for any syntactically correct
KB. In short, each symbol of the KB is represented using a symbol tile, allowing
users to set or inspect that symbol’s value. Each time a value is assigned, IDP’s
propagation is performed, after which the interface is updated: symbols for which
the value was propagated are updated accordingly, and for the other symbols
the values that are no longer possible are removed. In this way, a user is guided
towards a correct solution: it is not possible to enter a value that would make
the partial structure represented by the current state of the GUI inconsistent
with the theory.

At any point in time the user can ask for an explanation of a system-derived
value, e.g., when the user does not understand it or questions the outcome. The
system will then respond with the relevant laws and user-made assignments that
lead to the derived value. In this way, the tool becomes more explainable, leading
to more trust in the system.

The Interactive Consultant interface has already successfully been used in
multiple applications in the past, e.g. [1,6].

4 Adhesive Selector Tool

This section outlines the creation and usage of the tool, and the main challenges
that were faced in that process.

4.1 Knowledge Acquisition

The creation of the knowledge base is an important element in the development
process of knowledge-based tools. It requires performing knowledge acquisition,
which is traditionally the most difficult step, as the knowledge about the problem
domain needs to be extracted from the domain expert to be formalized by the
knowledge engineer. While knowledge acquisition comes in many shapes and
forms, we applied the Knowledge Articulation method [7]. The central principle
of this method is to formalize knowledge in a common notation for both domain
expert and knowledge engineer, so that both sides actively participate in the
formalization process.

We started by organizing three knowledge articulation workshops, each last-
ing between three and four hours. Each of these workshops was held with a
group of domain experts. While typically a single domain expert would suffice
for knowledge extraction, having a group present can help as an initial form
of knowledge validation, as the experts discuss their personal way of working
amongst themselves, before coming to a consensus. For the common notation
we used Constraint Decision Model and Notation (cDMN) [18], an extension of
the Decision Model and Notation (DMN) standard [14]. DMN is a user-friendly,
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intuitive notation for (simple) decision logic. cDMN aims to increase the expres-
siveness of the notation (e.g., by adding constraints) while maintaining this user-
friendliness.

The first workshop consisted of identifying all relevant adhesive selection
parameters and using them to create an initial structure of the knowledge in
the form of DMN’s Decision Requirement Diagram (DRD). This DRD is meant
to give an overview of a decision model, by showing the connections between
input variables (ovals) and decisions/calculations (rectangles). Figure 1 shows
a fragment of the DRD constructed during the first workshop. It is structured
in a bottom-to-top way, similar to how the experts would reason: they start by
calculating the thermal expansions, and then work their way up to the calculation
of the maximum stress.

Fig. 1. Snippet of created DRD.

During the subsequent workshops, the rest of the model was fleshed out. This
consists of the decision tables and the constraint tables. An example of such a
decision table can be found in Fig. 2a. In such a table, the inputs (in green, left)
define the outputs (in light blue, right). Each row represents a decision rule,
which fires if the values of the input variables match the values listed in the
row. If a row fires, the value of the output is set accordingly. E.g., if Support =
fixed , then the MinElongation is calculated as deltaLength/BondThickness . The
(U)nique hit policy of this table, indicated in the top left, means that the different
rows must be mutually exclusive.
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Fig. 2. Example cDMN tables

Figure 2b shows a constraint table (denoted by the E* in the top-left corner).
In such a table, the output specifies a constraint that must hold if the input is
satisfied. In other words, this table states that if the bond strength is known,
then Max Stress should be higher than a minimum value.

After these three initial workshops, the cDMN model was converted into an
FO(·) KB using the cDMN conversion tool4. Since then, multiple one-on-one
workshops were held between the knowledge engineer and the primary domain
expert to further finish the KB. Among others things, this included adding a
list of adhesives, substrates, and their relevant parameter values, and further
fine-tuning the knowledge. In total, the current version of the KB contains infor-
mation on 55 adhesives and 31 substrates. For the adhesives, the KB contains
21 adhesive parameters to reason on, such as temperature resistances, strength
and maximum elongation. Similarly, it contains 11 parameters for the substrates,
such as their water absorption and their solvent resistance. These parameters are
a mix of discrete and continuous: in total, 15 are continuous, and 17 are discrete.

4.2 Unknown Adhesive Parameters

One of the main challenges in the formalization of the KB was handling unknown
adhesive data. Indeed, often an adhesive’s data sheet does not list all of its
properties. This raises the question of how the tool should deal with this: should
the adhesive be excluded, or should it simply ignore the constraints that mention
unknown properties? Together with the experts we agreed on a third approach,
in which we first look at the adhesive’s family. Each adhesive belongs to one
of 18 families, for which often some indicative parameter values are known.
Whenever an adhesive’s parameter is unknown, we use its family’s value as an
approximation. If the family’s value is also unknown, then the constraint is
ignored. This best corresponds to how the experts typically work.

4 www.cdmn.be.

www.cdmn.be
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This way of reasoning is formalized in the KB. For example, the constraint
that an adhesive should have a minimum required bonding strength is written
as follows:

∀p ∈ param : Known(p) ⇔(KnownAdh(p)
∨ KnownFam(p))

KnownAdh(strength) ⇒ BondStr =StrAdh(Adh).
¬KnownAdh(strength) ⇒ BondStr =StrFam(Adh).

Known(strength) ⇒ BondStr ≥MinBondStr .
with StrAdh and StrFam representing respectively the specific adhesive’s and its
family’s bonding strength. This approach is used for all 21 adhesive parameters.

4.3 Interface

A crucial requirement of this application is that the adhesive experts are able
to interactively explore the search space. To this end, our tool integrates the
Interactive Consultant to facilitate interaction with the KB. This interface makes
use of several functionalities of the IDP system to make interactive exploration
possible: the “propagation” inference algorithm is used to show the consequences
of each choice, the “explain” inference is used to help the user understand why
certain propagations were made, the “optimize” inference is used to compute
the best adhesive that matches all of the choices made so far.

Usage of the interface consists of filling in symbol tiles, each representing a
different symbol of the KB, and having the interface compute the consequences.
For example, Fig. 3a shows a segment of the interface in which a user set a
minimum bond strength of 12 MPa as a requirement. The interface also shows
the number of adhesives that remain feasible: after setting the earlier constraint,
that drops from 55 to 12, as shown in Fig. 3b. If the user does not understand
why a certain consequence was propagated, they can ask the system for an
explanation, as demonstrated in Fig. 3c.

Besides generating a list of all the adhesives that meet certain requirements,
the tool can also find the optimal adhesive according to a criterion, such as
lowest price or highest strength.

5 Validation

We have performed three types of validation for this tool: a benchmark to mea-
sure the efficiency, a survey to measure the opinion of the adhesive experts and
a discussion with the Flanders Make AI project lead.

Benchmark. In an initial benchmark, an adhesive expert was tasked with finding
a suitable adhesive for an industrial use case which the company received. In
total, it took the expert about three hours to find such an adhesive, after delving
through multiple data sheets. We then used our tool for the same use case, and
were able to find the exact same adhesive within three minutes. Interestingly,
the reasoning of the tool closely mimicked that of the expert: for example, they
both excluded specific families for the same reasons.
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Fig. 3. Screenshots of the interface.

Survey. After a demonstration of the tool to four adhesive experts, we asked
them to fill out a survey to better gauge their opinion. Their answers can be
summarized as follows.

– The experts find the tool most useful for finding a list of initial adhesives to
start performance testing with.

– The tool will be most useful for the newer, less knowledgeable members of
the lab.

– However, it is also useful for senior experts as they can discover adhesives
which they have not yet used before.

The main critique of the tool given by the experts is that more adhesives should
be added, to make the selection more complete.

Project Lead Discussion. As part of a discussion with Flanders Make’s project
lead, who oversees multiple AI-related projects, they outlined their perception
of our tool. They see many advantages. Firstly, as there is not much data avail-
able on adhesive selection, and data generation is quite expensive, building a tool
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based on the knowledge they already have is very interesting. Secondly, by “stor-
ing” the expert knowledge formally in a KB they can retain this information,
even when experts leave the company. Thirdly, having a formal representation
also makes the selection process more uniform across different experts, who typ-
ically use different heuristics or rules-of-thumb. Lastly, they indicated that there
is trust in the system, because the knowledge it contains is tangible. This makes
it more likely that the experts will agree with the outcome of the tool.

The project lead also expressed that there is potential to maintain and extend
this tool themselves, which would be a significant advantage compared to their
other AI systems. However, we currently have not yet focused on this aspect.

6 Lessons Learned

Typically, knowledge acquisition is a time-consuming and difficult process. We
have found that the use of DMN as a common notation can help facilitate this
process. By keeping the experts in the loop with an understandable knowledge
representation, they can actively participate in the formalization. This way of
working is less error-prone, as it functions as a preliminary validation of the
knowledge.

After our three initial workshops, we mainly held one-on-one meetings with
one of the experts to add information on the adhesives, and to further fine-tune
the knowledge. This resulted in a tight feedback loop, which turned out to be
a key element in our formalization. Indeed, thanks to thorough examinations
of the tool by the expert, we were able to discover additional bugs in our KB.
Here, the Interactive Consultant was of paramount importance: each time the
KB was modified, the expert could immediately play around with it using the
generic interface. In this way, the knowledge validation of the tool could happen
directly after the modifications, allowing for a swifter detection of any errors.

Having knowledge in a declarative format, independent of how it will be
used, has multiple advantages. To begin with, it allows using the knowledge for
multiple purposes, even when this initially might not seem useful. Furthermore,
it increases the experts’ trust in the system, as it reasons on the same knowledge
as they do, and is interpretable.

The main advantage of using IDP-Z3 does not lie in any one of its inference
algorithms, but rather in the fact that it allows all of these functionalities that
are required for interactive exploration of the search space to be performed by
applying different inference algorithms to a single knowledge-base. Indeed, some
of the inference tasks supported by IDP-Z3 are widely supported by other tools
(e.g., model expansion), while others are unique to IDP-Z3 as far as we know
(at least for a language such as FO(·)).

7 Conclusions and Future Work

This paper presents the Adhesive Selector, a tool to support adhesive selection
using a knowledge-based approach. The Knowledge Base was constructed by
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performing several workshops and one-on-one meetings, using a combination of
DMN and cDMN. Our current iteration of the tool contains sufficient knowledge
to assist an expert in finding an initial list of adhesives. Compared to the state-
of-the-art, it is declarative, more explainable, and more extensive. The KB is
also not limited to just adhesive selection, but can also be used to perform other
related tasks.

In future work, we plan on converting the entire FO(·) KB into cDMN, and
evaluating its readability and maintainability from the perspective of the domain
experts. Besides this, we intend to test the tool using more real-life use cases, to
quantify the gain in efficiency. Additionally, we are also collaborating with an
external research group to develop an AI-based tool capable of extracting adhe-
sive information from data sheets, to efficiently add more adhesives to our KB.
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Abstract. Payroll management is a critical business task that is subject
to a large number of rules, which vary widely between companies, sectors
and countries. Moreover, the rules are often complex and change regu-
larly. Therefore, payroll management systems must be flexible in design.
In this paper, we suggest an approach based on a flexible Answer Set
Programming model, and an easy-to-read tabular representation based
on the DMN standard. It allows HR consultants to represent complex
rules without the need for a software engineer, and to ultimately design
payroll systems for diverging scenarios. We show how the multi-shot
solving capabilities of the clingo ASP system can be used to reach the
performance that is necessary to handle real-world instances.

Keywords: ASP · Payroll management · Decision modelling

1 Introduction

Payroll management is a critical business task that concerns the administration
and management of staff financial reports, such as wages, salaries, deductions
and bonuses. Manual preparation of staff’s salaries is often error prone and
time consuming due to the large number of relevant rules. Automated payroll
management systems are therefore being used to speed up the process. The
set of applicable rules can vary widely based on the sector and the country in
which the company operates, and on company-specific agreements that have been
made. Correctly implementing and maintaining a payroll system can thus be a
challenging exercise [3]. Based on talks with the company ProTime, a market
leader in the area of time registration, we have identified the following three key
challenges for such a system.

1. When deploying the system for a new company or updating it for an existing
customer, HR consultants are typically employed to figure out the rules that
apply. If they need to communicate all their knowledge to software engineers
before it can be entered into the system, this introduces a lot of overhead,
delays and the risk of communication errors. Therefore, the HR consultants
should be able to configure as much of the system as possible without the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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help of a software engineer. Due to the complexity of the rules, a simple con-
figuration file does not suffice and a more elaborate knowledge representation
language is needed. Providing such a language that is both powerful enough
and easy to use for HR consultants is an important challenge.

2. There are essentially no restrictions on the kinds of rules that the HR consul-
tants may encounter. It is therefore not possible to cover all the expressivity
that the HR consultants might need up-front. Therefore, the language in
which they write down the rules must not only be easy to use for them, but it
should also be possible to easily extend it with new language features, without
invalidating models that have been built earlier.

3. Finally, despite the required flexibility, the solution should still be computa-
tionally efficient. In particular, a single employee shift should be handled in
< 1s. This is very challenging, as shifts may run over several days and it is
necessary to determine the employee’s wage at each point in time. Moreover,
it is impossible to know up-front at which points in time the pay rate will
change, because this can be determined by the rules in a complex way.

In this paper, we propose an approach based on a combination of multi-shot
Answer Set Programming and decision tables to tackle these challenges. Through-
out the paper, we use the following real-life example to illustrate our approach:

An employee receives a normal wage of 20 eper hour and an overtime
premium of 20% for any work done after 8 hours of working. The employee
should also receive a night premium of 25% for any work done at night or
any work done in the evening that continues into the night, provided that
more time was spent in the night than in the evening. Employees are also
allowed to take a break, but breaks are only paid as (official) rest breaks
after their shift has started for one hour.

2 Proposed Approach

We first outline our general approach to tackling the three challenges described
in the introduction, before discussing each component of our solution in more
detail. To tackle the first challenge, we base ourselves on the Event Calculus [12].
An EC model consists of a general theory of how properties evolve through time,
complemented by a concrete list of a actions and fluents. We provide a generic
implementation of a suitable variant of the EC, and the HR consultants can then
represent the rules for a specific company by defining a concrete set of actions
and fluents. To allow this to be done in an easy way, we make use of decision
tables, as specified in the Decision Model and Notation (DMN) standard [11],
to define the actions and fluents. To provide the necessary expressive power,
we extend this notation using a simple temporal logic and an interval logic.
To cope with the second challenge, we define the semantics of the language
that is provided to the HR consultants by means of a declarative Answer Set
Program [6]. Known for its flexibility and elaboration tolerance, ASP allows us
to implement this language in such a way that new language features can easily
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be added when necessary, with minimal running risk of introducing bugs in the
existing models. Due to space limitations, we refer to [2] for an introduction to
ASP. One downside of using the expressive declarative ASP formalism is that
the third challenge, i.e., that of computational efficiency, may be hard to meet.
Indeed, as we show below, the normal ground-and-solve approach of ASP solvers
falls far short of the required performance. To address this issue, we make use
of the multi-shot solving capabilities [5] of the ASP solver clingo [4]. Here, the
user defines a number of parameterised ASP programs and writes an imperative
program, e.g. in Python, to manipulate these program. We now discuss the
different components of our approach in more detail.

Event Calculus. Different variants have been proposed over the years; in this
study, we made an implementation based on the Functional Event Calculus
(FEC) [10]. The FEC extends the EC with non-boolean fluents. Recent work
[7–9] formulated different versions of the Event Calculus in ASP. These imple-
mentations are both fast and expressive in comparison to previous SAT- or
Prolog-based encodings. We implement the FEC axioms in ASP in the same way
as [9] and use the clingo system recommended in [7]. Recently, the goal-directed
ASP system s(CASP) [13] was also used to implement the event calculus for-
malism and reason about events without grounding the whole ASP program [1].
However, since the task we try to solve explicitly requires us to consider the state
of the employee at each timepoint, we would not benefit from such an approach.

DMN Decision Tables. The specific part then defines which fluents and actions
there actually are, and how each interval should be interpreted (e.g., as unpaid
time, overtime, ...). To enable the HR consultants to construct and maintain this
specification, we use the Decision Model and Notation (DMN) standard [11]. An
important component of DMN are its decision tables which we use here to repre-
sent the payroll rules. As a result, HR experts can understand the logic behind the
payroll system and take on most of the work of maintaining it.

Temporal Logic. Some of the domain knowledge that the consultants need
to express concerns temporal properties. For instance, overtime starts after an
employee has been working for 8 h. We represent such knowledge using the fol-
lowing simple linear time logic:

– An atomic temporal formula is of the form f = v, with f a fluent and v a
value from the domain of f ;

– If φ and ψ are temporal formulas, then so are φ ∧ ψ and ¬φ;
– If φ is a temporal formula and n ∈ N, then [≥ n]φ is a temporal formula,

which intuitively represents that φ has been true for at least n time points.

Given a time line T = (I0, I1, . . .) and a time point i ≥ 0, we define that a
temporal formula φ holds in (T, i), denoted as (T, i) |= φ, as follows:

– For an atomic temporal formula, (T, i) |= f = v if f Ii = v,
– For a conjunction φ ∧ ψ, (T, i) |= φ ∧ ψ if (T, i) |= φ and (T, i) |= ψ
– For a negation ¬φ, (T, i) |= ¬φ if (T, i) �|= φ
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– For [≥ n]φ, (T, i) |= [≥ n]φ if i ≥ n and for all i − n ≤ j ≤ i , (T, j) |= φ.

We also introduce an abbreviation [= n]φ for the formula [≥ n]φ ∧ ¬[≥ n + 1]φ.
As we will show in Sect. 3, this temporal logic is easily defined in ASP.

Interval Logic. The wage of an employee is not defined in terms of individual
timepoints but in terms of intervals. The consultants can define which fluents
are considered relevant for the wage of an employee. Within an interval, all the
relevant fluents keep their value, i.e., the boundaries of the interval are timepoints
at which the value of a relevant fluent changes. We consider half-open intervals
[i,j) where i is the timepoint at which the value of a relevant fluent changes and
j is the next such timepoint. An interval property describes a characteristic of
an interval. It is either a relevant fluent f , or an aggregate function like length.
We denote the value of an interval property p in an interval [i, j) as p[i,j). Given
a time line T = (I0, I1, . . .), we define this value in the following way:

– For a relevant fluent f , f [i,j) = f Ii , that is the value of fluent f at the start
of the interval. Because f is relevant, this is also the value that f has in all
following Ik for k ∈ [i, j).

– For the aggregate function length, length[i,j) = j − i.

Alongside interval properties, we also define interval terms. An interval term
is an expression that refers to a specific interval. The atomic interval term this
refers to the current interval. For an interval term t, next(t) refers to the next
interval, and prev(t) to the previous one. Given a sequence of intervals S =
(I0, I1, . . .), we define this(S,i) = Ii and for every interval term t with t(S,i) = Ij ,
we define next(t)(S,i) = Ij+1 and prev(t)(S,i) = Ij−1.

An interval value is then of the form [t]p and refers to the value of the interval
property p for the interval that is indicated by the interval term t. We define
this value as [t]p = pt(S,i)

. We define an atomic interval formula as vθw where v
and w are two interval values and θ a comparison operator. Finally, we combine
these atomic interval formulas with the standard boolean operators, as usual.

3 Single-Shot Implementation

First we present an implementation for use by a standard single-shot solver.
Afterwards we show how a more efficient implementation can be developed that
uses the multi shot solving capabilities of clingo.

Functional Event Calculus.(based on [9]) The timeline consists of a number
of discrete timepoints 0..n, represented by the time(T) predicate. Each timepoint
corresponds to a certain duration in clock-on-the-wall time. For the moment, we
consider timepoints that are 10 min long. The ts(Days, Hours, Minutes, Stamp)
predicate links a duration expressed in real-world Days, Hours and Minutes
to the corresponding timepoint Stamp.
day ( 0 . . 1 ) . hour ( 0 . . 2 3 ) . minute ( 0 . . 5 9 ) .
t s (Days , Hours , Minutes , Stamp):−day (Days ) , hour (Hours ) ,

minute (Minutes ) , Stamp = (Days∗24+Hours)∗6+Minutes /10 .
time (T):−day (Days ) , hour (Hours ) , minute (Minutes ) , t s (Days , Hours , Minutes ,T) .
maxTime(M):−M = #max{T: time (T) } .
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The situation of the employee at a certain time point is described by a com-
plete set of fluents. Fluents have a domain of possible values. An example is
the boolean fluent present, which indicates whether the employee is currently
clocked in. At each point in time, a fluent has a certain value, as represented
by the predicate value(F,V,T). At timepoint 0, the fluent’s value is specified
by the initially(F,V) predicate. The cause(F,V,T) predicate represents that at
timepoint T there is a cause for the value of F to change to V , which leads to
the current value of F being terminated at T +1 and the value V being initiated.
value (F ,V,0) : − f l u e n t (F) , i n i t i a l l y (F , Val ) , domain (F ,V) .
va lue (F ,V,T+1):− f l u e n t (F) , time (T+1) , value (F ,V,T) , not terminated (F ,V,T) .
va lue (F , Val ,T+1):− f l u e n t (F) , time (T+1) , i n i t i a t e d (F , Val ,T) .
i n i t i a t e d (F ,V,T):− f l u e n t (F) , cause (F ,V,T) , va lue (F ,V2 ,T) ,V2 != V.
terminated (F ,V,T):− f l u e n t (F) , va lue (F ,V,T) , cause (F ,V2 ,T) ,V2 != V.

The only reason for a fluent to change is because an action changes it. In general,
the effect of an action may depend on the state of the world at the time the action
occurs. However, for the moment, we will consider only actions that have the
fixed effect of causing a Fluent to take on a specific Value, as represented by the
causes(Action,Fluent,Value) predicate. For now, we define 2 types of actions. A
user action is an action that is performed by the user in an intentional way
(i.e., the employee). A wall-time action happens at specific clock-on-the-wall
time. Both wall-time actions and user actions thus happen at a given absolute
time, represented by the userDoes(A,T) and actionTime(A,T) predicates.
ac t i on (A):− userAct ion (A) .
ac t i on (A):− wal l t imeAct ion (A) .
happens (A,T):− userAct ion (A) , userDoes (A,T) , time (T) .
happens (A,T):− wal l t imeAct ion (A) , actionTime (A, T) , time (T) .
cause (F , Val ,T):− ac t i on (A) , happens (A,T) , causes (A,F , Val ,T) , time (T) .

With these concepts, we now represent the case-specific knowledge in an easy-to-
read tabular representation. The case-specific knowledge for our running example
is shown in Fig. 1. Each table enumerates a single predicate, e.g., the first table
corresponds to the initially(F, V ) predicate, etc.

Fig. 1. Case-specific representation of a basic scenario
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Conditional Effects. The effect of an action may depend on the current state
of the world. We describe such a conditional effect with a ccauses(Action, Fluent,
Value, Condition) predicate.
causes (Act , Fl , Val ,T):− ccauses (Act , Fl , Val , Cond ) , ho lds (Cond ,T) .

Conditions are formatted in the temporal logic of Sect. 2. In the tables we use a
slightly more user-friendly syntax, writing e.g., f1 = v1 ∧ [= n]f2 = v2 as f1 =
v1 and f2 = v2 since n. In our ASP implementation, we represent each such
condition as a set of facts. For instance, the above condition cond1 is represented
as follows:
and ( cond1 , 2 ) . sub ( cond1 , 0 , v ( f1 , v1 ) ) . sub ( cond1 , 1 , s i n c e ( f2 , v2 , n ) ) .

Here the and(C,N) predicate denotes that condition C is a conjunction of N
sub-conditions, each represented by a sub(C, I, SC) fact, with 0 ≤ I < N .

The holds(Cond, T ) predicate specifies whether a condition Cond holds at
a certain timepoint T . For Cond = v(F, V ), we just check whether Fluent F
has Value V . Cond = since(F, V,D), representing whether a fluent F has had a
value V for D timepoints, is defined by two rules. The first rule states that the
initiation of V for F at T −1 marks timepoint T as the start of a period in which
F has value V . The recursive rule extends such a period with one timepoint if
F still has value V at T . Finally, if Cond is a conjunction, we check whether the
number conjuncts that hold at T matches its total number of conjuncts N .
holds (v (F ,V) ,T):− value (F ,V,T) .
ho lds ( s i n c e (F ,V, 0 ) ,T):− time (T) , i n i t i a t e d (F ,V,T−1).
ho lds ( s i n c e (F ,V,D+1) ,T):− time (T) , value (F ,V,T) , ho lds ( s i n c e (F ,V,D) ,T−1).
ho lds (C,T):−and (C,N) , time (T) , #count{ I : sub (C, I , Sub ) , ho lds (Sub ,T)}=N.

We can now represent scenarios where these conditional effects come into play
in the tabular representation. In the first table of Fig. 2, we specify that a shift
starts if an employee clocks in when the workday has already started or when
the day starts and the employee is already clocked in.

Fig. 2. Case-specific representation of conditional effects and triggered actions

Automatically Triggered Actions. An action can also be automatically trig-
gered if a certain temporal condition is fulfilled. To specify that an employee’s
break is paid as an (official) rest break after their shift has started for one hour,
we specify an action makeRestBreakPossible, which causes fluent restbreakPossi-
ble to be true. Such actions are not performed by the user, but happen automat-
ically after a certain fluent F has had a certain value V for a specific duration
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D, as represented by an after(F,V,D,A) predicate. Figure 2 represents triggered
action makeRestBreakPossible in our tabular form.
ac t i on (A):− t r i gg e r edAct i on (A) .
happens (A,T):− holds ( s i n c e (F , Val , Dur ) ,T) , a f t e r (F , Val , Dur ,A) , time (T) .

Defined Fluents. To avoid repeated use of complex fluent formulas, we intro-
duce defined fluents. The value of a defined fluent is completely determined by
the values of the other fluents. Therefore, they provide no additional information
about the state of the world; they simply make it easier to track its properties.
The value of a defined fluent is defined by a set of rule(F, V,C) facts: if the
condition C holds, the defined fluent F has the value V . To cover the case that
no rules are applicable, each defined fluent must have a default value.
value (F , Val ,T):− de f ined (F) , time (T) , r u l e (F , Val , Cond ) , ho lds (Cond ,T) .
va lue (F , Val ,T):− de f ined (F) , time (T) , d e f au l t (F , Val ) , not appl iedRule (F ,T) .
appl iedRule ( Fluent ,T):− r u l e ( Fluent , Val , Cond ) , ho lds (Cond ,T) .

For example, to indicate whether an employee is working, we introduce the
defined fluent atWork = true if and only if the inertial fluents present and
shiftStarted are true. Figure 3 represents this in our tabular representation.

Fig. 3. Case-specific representation of defined and count fluents

Count Fluents. An employee receives a bonus for any overtime done after they
have already worked eight hours. This can be modelled with a third type of
fluents, the count fluents. Each count fluent CF is defined by a rule of the form
countRule(CF,Cond), that specifies that this fluent counts the timepoints at
which the condition Cond holds.
value (CF,0 ,0) : − countFluent (CF) .
va lue (CF, S+1,T):− countFluent (CF) , value (CF, S ,T−1) , countRule (CF,Cond ) ,

ho lds (Cond ,T) .
va lue (CF, S ,T):− countFluent (CF) , value (CF, S ,T−1) , countRule (CF,Cond ) ,

not ho lds (Cond ,T) .

In Fig. 3, we define the count fluent workedHours, which, at each timepoint,
keeps track of how long the fluent atWork has been true up to that point.

Count fluents can also trigger actions. The predicate when(CF, V alue,A)
states that if count fluent CF reaches a certain V alue, an action A is triggered.
To make sure that an action is not triggered multiple times if the desired value
is maintained for multiple timepoints, we state that the value of the count fluent
in the previous timepoint should be smaller than the desired value.
happens (A,T):−when(CF,V,A) , value (CF,V,T) , value (CF,V1 ,T−1) , V > V1 .
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For example, the overtime bonus is applied by triggering an action cumulPremi-
umAction after eight hours of work. Figure 4, adds this triggered action and its
effect to the existing tables for triggered actions and effects (Figs. 2 and 1). Note
that conditions specifying that a fluent F has had a value V for a duration D
are translated in ASP as an after(F, V,D,A) predicate and those that specify
value V for a count fluent CF are translated as a when(CF, V,A) predicate.

Fig. 4. Extended case-specific representation of triggered actions and effects

Reasoning About Intervals. Up to now we have only reasoned about individ-
ual timepoints. To calculate the total wage of employees we consider intervals.
As described in Sect. 2, within intervals all of the “relevant” fluents keep their
value. By restricting attention to only the relevant fluents, we avoid creating
too many small intervals. A relevant fluent is annotated by the relevant(Fluent)
predicate. We denote the relevant fluents by introducing a new column in the
inertial and defined fluent table (Figs. 1 and 3), as can be seen in Fig. 5.

Fig. 5. Case-specific representation of relevant fluents

The boundaries of intervals are those timepoints at which the value of at
least one relevant variables changes.
boundary (T):− r e l e van t (Var ) , changes (Var ,T) .
changes (Var ,T):− time (T) , time (T−1) , va lue (Var , Old ,T−1) ,

va lue (Var ,New,T) , Old != New.

To define the intervals, we assign an id to each boundary. The intervals will be
of the form [B(i), B(i + 1)), where B(i) denotes the boundary with id i. The
stretchesTo(Id,T) predicate denotes that interval Id includes timepoint T . We
model this with two rules. The first one states that if the interval includes the
previous timepoint T − 1 and timepoint T is not a boundary then the interval
includes T as well. Boundaries themselves are included in a time interval that
they start. Timepoint T is thus a boundary of time interval I + 1 if timepoint
T − 1 is included in the previous interval I and T is a boundary. A boundary
thus denotes the start of an interval (intervalFrom(Id,From) predicate) and the
end of the previous interval (intervalTo(Id,To) predicate).
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boundary ( 0 , 0 ) .
intervalFrom ( Id , From):−boundary ( Id , From ) .
in te rva lTo ( Id ,To):− id ( Id ) , boundary ( Id+1,To ) .
boundary ( I+1,T):− id ( I +1) , id ( I ) , boundary (T) , s t r e tchesTo ( I ,T−1).
s t r e tchesTo ( I ,T):− id ( I ) , s t r e tchesTo ( I ,T−1) , not boundary (T) .
s t r e tchesTo ( I ,T):−boundary ( I ,T) .

In principle, there could be as many interval as there are timepoints. Typically,
there will be far fewer. To speed up the program, we assume an upper bound of
at most 20 intervals. We include that the final interval id should not be used. If
this ever happens, the upper bound should be increased. Next, as described in
the interval logic of Sect. 2, we define interval terms, such as prev(this).
id ( 0 . . 2 0 ) .
enoughIds :− f r e e I d ( I ) .
f r e e I d ( I ):− id ( I ) , maxId (M) , I > M.
maxId (M):− id (M) , M = #max{ I : usedId ( I )} .
usedId ( I ):− id ( I ) , boundary ( I ,T) .
:−not enoughIds .
r e f e r sTo ( th i s , Id , Id ):− id ( Id ) .
r e f e r sTo ( prev ( I ) , J−1, Id ):− id ( Id ) , id ( J ) , r e f e r sTo ( I , J , Id ) .
r e f e r sTo ( next ( I ) , J+1, Id ):− id ( Id ) , id ( J ) , r e f e r sTo ( I , J , Id ) .

To clearly track the characteristics of the interval and avoid repeated use of com-
plex interval formulas, we introduce defined interval properties. The value of
a defined property is specified by a set of intRule(P,V,C) facts. If the condition
C holds in the current interval, the defined property P has the value V . These
conditions are formatted in the interval logic of Sect. 2. The intHolds(Cond,Id)
predicate specifies when a condition for an interval holds. To check whether a
condition holds, we define the value of the properties described in the inter-
val logic of Sect. 2. A valueOfProp(P,V,Id) predicate denotes that an interval
property P has value V in interval Id. If P is a relevant fluent, this is simply
the case if this fluent has that value. If P = length, its value is the length of
interval Id. The value of an interval atom [IntTerm]P , which we denote in ASP
as at(IntTerm,P ), is the value of a property P in the interval that IntTerm
refers to. We define when two such atom values are equal, when one atom value
is smaller than another and when an atom value has a certain value from its
domain. Finally, a conjunction C holds in an interval, if all N of its conjuncts,
specified by the iand(C,N) predicate, hold.
valueOfProp (F ,V, Id ):− r e l e van t (F) , va lue (F ,V,T) , id ( Id ) , intervalFrom ( Id ,T) .
valueOfProp ( length , Value , Id ):− id ( Id ) , l ength ( Id , Value ) .
l ength ( Id ,L):− intervalFrom ( Id , From) , in te rva lTo ( Id , To) , L = To − From .
valueOfAtom ( at ( IntTerm , Prop ) , Val , Id ):− r e f e r sTo ( IntTerm , Int , Id ) ,

valueOfProp (Prop , Val , Int ) .
intHolds ( equa l s (A1 ,A2) , Id ):−valueOfAtom (A1 ,V, Id ) , valueOfAtom (A2 ,V, Id ) .
intHolds ( hasValue (Atom,V) , Id ):−valueOfAtom (Atom,V, Id ) .
intHolds ( l e s s (A1 ,A2) , Id ):−valueOfAtom (A1 ,V1 , Id ) , valueOfAtom (A2 ,V2 , Id ) ,

V1 < V2 .
intHolds (C, Id ):− iand (C,N) , id ( Id ) ,#count{ I : i sub (C, I , S ) , intHolds (S , Id)}=N.
def inedProp (Prop ,V, Id ):− id ( Id ) , intRule (Prop ,V, Cond ) , intHolds (Cond , Id ) .

In Fig. 6, to specify the wage in a certain interval, we introduce some defined
properties. The normalwage property is 20 euros if an employee is working, and
0 if they are not. They receive a nightpremium of 20% for any interval in the
night or in the day if the interval precedes an interval in the night, provided that
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the night interval is larger. Finally the employee receives an cumulPremium of
25%. Note that compared to the interval logic of 2 we omit the interval term
this in our tables to improve readability.

Fig. 6. Case-specific representation of relevant fluents and output

Calculating the Total Wage. In general, our goal is to compute a single wage
as a sum

∑
interval i totalWage(i) with the totalWage property determining the

hourly wage in each interval. We translate this to an ASP sum as follows:
totalWage (S):−S=#sum{T: def inedProp ( totalWage ,W, I ) , l ength ( I , L) ,T=W∗L/60} .

In total, an HR consultant thus only needs 10 tables to specify the specific rules.
A concrete scenario can be represented as the single user action table.

4 Multi-shot Implementation

In the previous section, we presented a model for use by a standard single-shot
ASP solving. This model may produce large groundings, which form a bottle-
neck for realistic instances. Indeed, to handle a scenario of two days with an
accuracy of one minute, for instance, we need 60 × 48 timepoints. Because the
grounding size is quadratic in the number of timepoints, this is problematic. In
this section, we show how we can use multi-shot solving to drastically reduce
the grounding size, by restricting attention to only those timepoints at which
the state of the world actually changes. We refer to these timepoints as change-
points. Our multi-shot model is purely an optimised version of the single-shot
model: functionally, it is still the same, and it still allows the HR consultant to
represent his knowledge in the same user-friendly way. It consists of 3 parts: a
static part, a dynamic part, and an interval part.

Static Code. The static part of the code contains the non-temporal information,
which consists of rules that contain no predicates with a timepoint argument.
For example, in the last code listing of the Functional Event Calculus paragraph
in Sect. 3, the first two lines, which state that user actions and walltime actions
are two kinds of actions, are included in the static part, while the last two rules,
which define at which timepoints such actions actually happen, does not. We
collect the static code in a subprogram #static(), that takes no parameters.

Dynamic Code. The dynamic program defines the current state of the world
in term of the previous state. It therefore takes two changepoints as parameters.
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The program first asserts that the current changepoint cp is a new timepoint,
which follows the previous changepoint pp. In addition to this, the dynamic
program also contains all rules that include predicates that take a timepoint as
argument. These rules typically define the value of some dynamic predicate at
T + 1 in terms of the values of dynamic predicates at timepoint T . Such rules
now undergo a minor syntactic change, where we replace all such terms T +1 by
the parameter cp of the program and the terms T by its parameter pp. In effect,
this change is what allow to “skip ahead” to the next changepoint, instead of
having to go through each timepoint individually. This necessitates a number of
other small changes in the code, which we will not describe in detail.

Multi-shot Solving Algorithm. Algorithm 1 shows how the static and
dynamic program can be used to implement the desired behavior, by means
of clingo’s multi-shot solving. This algorithm uses the following notations: For a
program P (x1, . . . xn) with parameters xi and constants c1, . . . , cn, we denote by
AnswerSet(P (c1, .., cn)) the unique answer set of P (c1, . . . , cn). For a predicate
P , we denote by PX the set of all tuples �c such that P (�c) ∈ X. On line 1, the
static program Pstatic, is solved. Its answer set provides the upper-bound max
of the timeline and the list upfrontPoints of all changepoints that are already
known up-front, i.e., all the time points at which wall-time actions or user actions
happen. We also include the greatest time point max in this list, to ensure ter-
mination of the while-loop (line 6). In each iteration, this loop instantiates the
dynamic program Pdynamic for the next changepoint. The if -test (line 8) distin-
guishes two cases: either the next changepoint comes from the list upfrontPoints,
or else it corresponds to a triggered action. The next timepoints at which such a
triggered action occurs is not known up-front, but is computed in each iteration
of this loop by the function searchNext. The searchNext algorithm (Algorithm
2) considers both actions that are triggered by a fluent maintaining its value for
a certain time, represented by the after -predicate (line 3), and those triggered
by a count fluent reaching a certain value, represented by the when-predicate
(line 8). The result of the algorithm is the smallest timepoint next > current at
which such an action happens (or ∞ if no such timepoint exists). Once the main
while-loop of Algorithm 1 ends, the program Pdynamic has been grounded for
all changepoints. The predicate boundary now identifies all the timepoints that
delineate an interval. The for -loop in line 16 the introduces an identifier i for
each such interval [bi, bi+1). Finally, these intervals are then passed to the pro-
gram #intervals, which gathers all of the rules concerning intervals, unchanged
from our single-shot implementation.
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Algorithm 1. Solve algorithm
1: X = AnswerSet(Pstatic())

2: max = the unique t such that (t) ∈ maxTimeX

3: current = 0
4: upfrontPoints = sorted list of all t where t = max or ∃a : (a, t) ∈ happensX

5: i = 0 � i is the counter for action points list
6: while current < max do
7: triggered = searchNext(current,X)
8: if triggered < upfrontPoints[i] then
9: next = triggered

10: else
11: next = upfrontPoints[i]
12: i += 1

13: X = AnswerSet(Pdynamic(current, next) ∪ X)
14: current = next
15: (b1, . . . , bn) = sorted list of all t such that (t) ∈ boundaryX

16: for i in 1, . . . , n − 1 do
17: X = X ∪ {intervalFrom(i, bi), intervalTo(i, bi+1)}
18: X = AnswerSet(Pintervals() ∪ X)

Algorithm 2. searchNext algorithm

1: procedure searchNext(current,X)
2: next = ∞
3: for (f, v, d, a) in afterX do

4: if ∃t′ = the unique t′′ such that (f, v, t′′, current) ∈ sameSinceX then
5: possible = t′ + d
6: if current < possible < next then
7: next = possible

8: for (cf, cv, a) in whenX do

9: cond = the unique c such that (cf, c) ∈ countRuleX

10: if (cond, current) ∈ holdsX then

11: cv′ = the unique cv′′ such that (cf, cv′′, current) ∈ valueX

12: possible = current + (cv − cv′)
13: if current < possible < next then
14: next = possible

15: return next

5 Experimental Results and Discussion

As discussed before, the grounding size of the single-shot implementation is
quadratic in the number of timepoints. Consequently, the number of timepoints
has a large effect on the computational performance of this approach. Figure 7
shows how the duration of a single timepoint affects the computation time for
a two-day scenario, the minimum for a realistic scenario. The company we col-
laborated with would like a single scenario to be handled in under a second of
computation time. At the same time, a granularity in which a single time point
is more than five minutes in length is unacceptable for them. The left-hand side
of Fig. 7 therefore clearly shows that the single-shot implementation is feasible.

The multi-shot approach drastically reduces the impact of the total number
of timepoints on the computation time. Indeed, the main parameter is now the
number of changepoints, which means that the run-time is mainly determined
by the scenario that needs to be handled, rather than by the granularity of the
timepoints. The right-hand side of Fig. 7 shows how the computation time of our
multi-shot implementation depends on the number of changepoints. In a realistic
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two-day scenario, the number of changepoints is typically around twenty, so here
the performance is acceptable. Note also that even for sixty changepoints, the
run-time remains well under that of the single-shot implementation for all but
the coarsest granularities of times. We also implemented scenarios stretching
over a week using our multi-shot implementation. Although there is a small
increase in run-time compared to a two-day scenario with the same number
of changepoints (probably due to the grounding size of the static part of the
code), we can still conclude that the run-time indeed depends on the number of
changepoints instead of the total number of timepoints. In both graphs, Fig. 7
shows the average computation time per scenario over 5 runs on an Intel i5-8265U
CPU. A repository containing all used scenarios is available online1.

In order to use the system in practice, the continuous timeline needs to be
split up into a number of independent scenarios. Typically this can be done by
a single rule, e.g. in our example the end of a scenario coincides with the end of
the shift of an employee, happening when they are absent for more than 4 h.

Fig. 7. Computation time of single-shot and multi-shot implementation

6 Conclusion

In this paper, we have presented an approach for payroll management. We iden-
tified three key challenges for a payroll management system. HR consultants
should be able to configure as much of the system as possible and the language
in which they write down the rules must not only be easy to use for them,
but it should also be possible to easily extend it with new language features.
Finally, despite the required flexibility, the solution should still be computation-
ally efficient. To tackle these challenges, we have split up the model in a generic
event-calculus-based ASP program, and a decision-table-based model of the spe-
cific rules that apply in one particular set of circumstances. When used with a
standard single-shot ASP solver, the computational performance does not meet
the computational requirements, due to the large number of timepoints that

1 https://gitlab.com/EAVISE/bca/asp-for-flexible-payroll-management.

https://gitlab.com/EAVISE/bca/asp-for-flexible-payroll-management
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must be considered. We also present a multi-shot approach that eliminates this
dependency on the absolute number of timepoints, by only considering those
timepoints at which the state of the world actually changes. This multi-shot
approach does reach the required performance.
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Abstract. Analyzing the propagation of faults is part of the prelimi-
nary safety assessment for complex safety-critical systems. A recent work
proposes an smt-based approach to deal with propagation of faults in
presence of circular dependencies. The set of all the fault configurations
that cause the violation of a property, also referred to as the set of min-
imal cut sets, is computed by means of repeated calls to the smt solver,
hence enumerating all minimal models of an smt formula. Circularity
is dealt with by imposing a strict temporal order, using the theory of
difference logic.

In this paper, we explore the use of Answer-Set Programming to tackle
the same problem. We propose two encodings, leveraging the notion of
stable model. The first approach deals with cycles in the encoding, while
the second relies on asp Modulo Acyclicity (aspma).

We experimentally evaluate the three approaches on a comprehensive
set of benchmarks. The first asp-based encoding significantly outper-
forms the smt-based approach; the aspma-based encoding, on the other
hand, does not yield the expected performance gains.

Keywords: Fault propagation · SMT · ASP modulo acyclicity ·
Minimal models

1 Introduction

Analyzing the propagation of faults is an important step of the preliminary
safety assessment for complex safety-critical systems. When a physical compo-
nent fails, its faults can propagate to the other components and compromise their
behaviour. Fault propagation is often mitigated by adopting suitable architec-
tures based on redundancy and voting. In order to analyze such architectures,
the challenge is to compute the set of all minimal cut sets (mcs), i.e., minimal
fault configurations that can compromise a given function under investigation.
Since the behavior of the systems in question is usually monotone, i.e., adding
more faults does not fix the compromised function, the minimal cut sets are
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sufficient to succinctly represent the set of all cut sets, which might be exponen-
tially larger. From the set of all minimal cut sets it is thus possible to extract
important artifacts such as fault trees and reliability measures (e.g., overall sys-
tem failure probability). For this reason, the main focus of this paper is on the
task of enumerating all minimal cut sets of the given system.

mcs enumeration is particularly challenging when dealing with cyclic depen-
dencies. Consider, for example, the case of an electrically-controlled hydraulic
system. Its fault may compromise power generation; on the other hand, the
failure of power generation may compromise the hydraulic operation. This cir-
cularity makes it difficult to model fault propagation in form of simple logical
implications because self-supporting, unjustified models arise. A recent work [4]
shows how the inherent sequential nature of the problem can be reduced to an
approach based on Satisfiability Modulo Theories (smt). The set of minimal cut
sets is computed by means of repeated calls to the smt solver, hence enumerating
all minimal models of an smt formula. The key idea in dealing with circularity
is to impose a strict temporal ordering on the propagation of events, using the
theory of difference logic. The results presented in [3] and in [4] show that the
smt approach is able to deal with realistically-sized redundancy architectures.

In this paper, we explore an alternative approach to minimal cut set enu-
meration, based on the use of Answer-Set Programming (asp). The intuition is
to leverage the fact that in asp clauses are interpreted as (directed) rules rather
than implications, thus limiting the search based on the notion of stable model.

We propose two approaches. The first one is a direct encoding into asp. It
deals with cycles in the encoding by requiring that the failure of a component
must be justified either by a local fault or by the justified failure of neighbor-
ing components (or their combination). Default negation is used to model the
justifications of the propagation.

The second encoding relies on the idea of asp Modulo Acyclicity (aspma) [2],
where models can be required to be acyclic with directives to an extended solver.
Acyclicity is then enforced at run-time by means of a dedicated, graph-based
data-structure preventing circular dependencies. Although not all asp solvers
deal with a built-in “modulo acyclicity” feature, we expected that this could
lead to additional performance boost.

We carried out an extensive experimental evaluation, on all Boolean (real-
world and random scalable) fault propagation benchmarks from [4] and [3]. The
benchmark suite includes both acyclic and cyclic problems. We contrasted the
smt approach with the asp and aspma approaches proposed in this paper. On
acyclic benchmarks, the asp encodings demonstrate better scalability than the
smt-based cut set enumeration. On the cyclic benchmarks, the asp encoding
dominates over the smt-based encoding. Quite surprisingly, the aspma encod-
ing does not scale as well, and it is outperformed, especially on the hardest
benchmarks, both by the asp-based and smt-based encodings.

The paper is structured as follows. Section 2 presents the logical preliminar-
ies. Section 3 describes fault propagation graphs and the smt-based encoding.
Section 4 presents the asp-based and aspma-based encodings. Section 5 discusses
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the issue of minimality. Section 6 presents the experimental evaluation. Section 7
draws conclusions and outlines directions for future works.

2 Preliminaries

2.1 Logic and Notation

We assume that the reader is familiar with standard first-order logic and the
basic ideas of Satisfiability Modulo Theories (smt), as presented, e.g., in [1].
We use the standard notions of interpretation, theory, assignment, model, and
satisfiability.

Given a quantifier-free formula ϕ(B,R) in real arithmetic defined over a set of
Boolean variables B and of real variables R, a model of ϕ is an assignment μ that
maps each b ∈ B to a truth value μ(b) ∈ B (� for true and ⊥ for false) and each
x ∈ R to a real number μ(x) ∈ R, such that ϕ evaluates to true on μ. We denote
this with μ |= ϕ. If ϕ is a formula and μ is an assignment that maps each variable
of ϕ to a value of the corresponding sort, [[ϕ]]μ denotes the result of the evaluation
of ϕ under this assignment. If B′ ⊆ B is a subset of the Boolean variables of ϕ,
μ is called its minimal model with respect to B′ if μ is a model of ϕ and there is
no model μ′ |= ϕ such that {b ∈ B′ | μ′(b) = �} � {b ∈ B′ | μ(b) = �}.

2.2 Answer Set Programming

This subsection briefly introduces the syntax and semantics of disjunctive
Answer-Set Programs and asp modulo acyclicity, based on [8] and [2], respec-
tively.

Rules. A disjunctive rule r is an expression of the form

p1 ∨ . . . ∨ pl ← pl+1, . . . , pm,∼pm+1, . . . ,∼pn,

where 0 ≤ l ≤ m ≤ n and p1, . . . , pn are propositional atoms.
The head of r is defined as hd(r) = {p1, . . . pl} and the body of
r is defined as bd(r) = {pl+1, . . . , pm,∼pm+1, . . . ,∼pn}. For any set
L = {pl+1, . . . , pm,∼pm+1, . . . ,∼pn}, let L+ = {pl+1, . . . , pm} and L− =
{pm+1, . . . , pn}. A rule r is said to be applicable with respect to a set of propo-
sitional atoms X if the set X contains all the positive atoms from bd(r) and no
negative atoms from bd(r), i.e., bd(r)+ ⊆ X and bd(r)− ∩ X = ∅. The rule r is
said to be satisfied with respect to X if its body implies its head, i.e., the rule is
not applicable or hd(r)∩X �= ∅. The rules with bd(r) = ∅ are called facts and are
written as p1 ∨ . . .∨ pl. The rules with hd(r) = ∅ are called integrity constraints,
are written as ← pl+1, . . . , pm,∼pm+1, . . . ,∼pn, and are satisfied only if they are
not applicable, i.e., if at least one of the atoms in the body is not satisfied.
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Answer Set Programs. A disjunctive answer set program P is a set of rules. A
set of atoms that occur in the program P is denoted as At(P ). A set of atoms
X is called a model of P if all rules r ∈ P are satisfied with respect to X. The
reduct of P with respect to the set of atoms X is defined as PX = {hd(r) ←
bd(r)+ | r ∈ P, bd(r)− ∩ X = ∅}. A model X of P is called an answer set of P
or a stable model of P if X is a minimal model of PX , i.e., there is no Y � X
such that Y is a model of PX .

ASP modulo acyclicity. An acyclicity extension of a program P is a pair (V, e)
where V is a set of nodes and e : At(P ) → V × V is a partial function that
assigns edges between vertices of V to atoms of P . A program together with its
acyclicity extension is called an acyclicity program.

A set of atoms X is called a stable model of the acyclicity program P subject
to the acyclicity extension (V, e) if X is a stable model of P and the graph
(V, {e(p) | p ∈ X}) induced by the set of atoms X is acyclic.

3 Fault Propagation Graphs

In this section we briefly introduce the formalism of (symbolic) fault propagation
graphs (fpgs). Intuitively, fpgs describe how failures of some components of
a given system can cause the failure of other components of the system. In an
explicit graph representation, nodes correspond to components, and edges model
their dependencies, with the meaning that an edge from c1 to c2 states that the
failure of c1 can cause the failure (propagation) of c2. Here, we adopt a symbolic
representation, in which components are modeled as Boolean variables (where
⊥ means “not failed” and � means “failed”), and the failure dependencies are
encoded as formulae canFail(c), which describe the conditions that may cause a
failure of c. The basic concepts are formalized in the following definitions, which
are simplified definitions from [3] and [4]. The original paper [4] also defines
fpgs with multiple failure modes with arbitrary orderings. We do not treat
these features here to simplify the presentation, but we note that the approach
of this paper can be extended to accommodate them in the same way as in [4].

Definition 1 (Fault propagation graph [3]). A (symbolic) fault propagation
graph ( fpg) is a pair (C, canFail), where C is a finite set of system components
and canFail is a function that assigns to each component c a Boolean formula
canFail(c) over the set of variables C.

We assume that all the canFail(c) formulas are positive, i.e., they can contain
only conjunctions, disjunctions, and variables. Moreover, without loss of gener-
ality, we assume that all the canFail(c) formulas are in disjunctive normal form,
i.e., they are of the form

∨
D∈F

∧
d∈D d for some set F of cubes of dependencies.

Definition 2 (Trace of FPG [3]). Let G be an fpg (C, canFail). A state of
G is a function from C to B. A trace of G is a (potentially infinite) sequence of
states π = π0π1 . . . such that all i > 0 and c ∈ C satisfy (i) πi(c) = πi−1(c) or
(ii) πi−1(c) = ⊥ and πi(c) = [[canFail(c)]]πi−1 .
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Example 1 ( [3]). Consider a system with components control on ground (g),
hydraulic control (h), and electric control (e) such that g can fail if both h
and e have failed, h can fail if e has failed, and e can fail if h has failed. This
system can be modeled by a fault propagation graph ({g,h,e}, canFail), where
canFail(g) = h ∧ e, canFail(h) = e, and canFail(e) = h.

One of the traces of this system is {g �→ ⊥,h �→ �,e �→ ⊥}{g �→ ⊥,h �→
�,e �→ �}{g �→ �,h �→ �,e �→ �}, where h is failed initially, which causes
failure of e in the second step, and the failures of h and e together cause a
failure of g in the third step.

Definition 3 (Cut set [3]). Let G be an fpg G = (C, canFail) and ϕ a positive
Boolean formula, called top level event. The assignment cs : C → B is called a
cut set of G for ϕ if there is a trace π of G that starts in the state cs and there
is some k ≥ 0 such that πk |= ϕ. A cut set cs is called minimal if there is no
other cut set cs ′ such that {c ∈ C | cs ′(c) = �} � {c ∈ C | cs(c) = �}.

Without loss of generality, we assume in the rest of the paper that the top
level event ϕ consists only of one variable, i.e., ϕ = c for some c ∈ C. For brevity,
when talking about cut sets, we often mention only the components that are set
to � by the cut set.

Example 2 ([3]). The minimal cut sets of the fpg from Example 1 for the top
level event ϕ = g are {g}, {h}, and {e}. These three cut sets are witnessed by
the following traces:

1. {g �→ �,h �→ ⊥,e �→ ⊥},
2. {g �→ ⊥,h �→ �,e �→ ⊥}{g �→ ⊥,h �→ �,e �→ �}{g �→ �,h �→ �,e �→ �},
3. {g �→ ⊥,h �→ ⊥,e �→ �}{g �→ ⊥,h �→ �,e �→ �}{g �→ �,h �→ �,e �→ �}.

Note that the fpg has also other cut sets, such as {g,e}, {h,e}, and {g,h,e},
which are not minimal.

3.1 SMT-Based Encoding of Fault Propagation

In our previous work [4], we have shown that mcs enumeration of cyclic fpgs can
be reduced to enumeration of projected minimal models of a certain smt formula
over the difference logic fragment of linear real arithmetic. The arithmetic is
used to enforce causality ordering between the propagated failures, which would
otherwise cause spurious self-supported propagations.

In particular, for each fpg G = (C, canFail), the paper defines a formula
that contains two Boolean variables Ic and Fc and one real variable oc for each
component c. The variables have the following intuitive meaning: Ic denotes that
the component c is failed in the initial state, Fc denotes that the component c
is failed at some point during the propagation, and oc is a so called time stamp
variable, which intuitively denotes the time when the component c failed.

These variables are then used to construct a formula ϕprop , which describes
fault propagations. The formula contains the following constraints for each c ∈ C
with canFail(c) =

∨
D∈F

∧
d∈D d:
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– Ic → Fc, i.e., if the component is failed initially, it is failed at some point
during the propagation,

– Fc → (Ic ∨ ∨
D∈F

∧
d∈D(Fd ∧ od < oc)), i.e., if component c fails at some

point during the propagation, it is failed either initially or as a result of a
propagation from its failed dependencies that failed before c.

Insisting that a failure of a variable can be caused only by failures that occurred
before it is a crucial point to preserve causality and prohibit self-supporting
cyclic propagations where a component causes its own failure.

4 Encoding in Disjunctive ASP

In this section we present our novel encodings of fault propagation in asp. In
the rest of the section, let G = (C, canFail) be a fixed fpg and ctle ∈ C a top
level event.

4.1 Encoding Propagations

The encoding uses the following variables for each component c ∈ C with
canFail(c) =

∨
D∈F

∧
d∈D d and F = {D1, . . . , Dn}:

– fail(c), which will denote that πi(c) = � for some i ≥ 0,
– fail local(c), which will denote that π0(c) = �, i.e., the component c is

initially failed,
– fail ext(c), which will denote that π0(c) �= � and πi(c) = � for some i > 0,

i.e., the component c is failed as a result of fault propagation.
– fail dep(c, j) for each 1 ≤ j ≤ n, which will denote that πi |= ∧

d∈Dj
d for

some i ≥ 0, i.e., the conditions of a propagated failure of c are satisfied thanks
to the j-th disjunct of canFail(c).

Using these variables, we construct an answer set program that contains the fact

fail(ctle) (1)

and the following rules for each component c ∈ C:

fail local(c) ∨ fail ext(c) ← fail(c), (2)
fail dep(c, 1) ∨ . . . ∨ fail dep(c, n) ← fail ext(c), (3)
fail(d) ← fail dep(c, j) for each 1 ≤ j ≤ n, d ∈ Dj . (4)

The rules have the following meaning: (1) states that the tle must be satisfied;
(2) that if a component is failed, it has to be failed either initially or as a result of
a propagation; (3) that if a component is failed as a result of a propagation, one
of the disjuncts in canFail(c) must be satisfied; and (4) that if the j-th disjunct
of canFail(c) is satisfied, all the components that it depends on must be failed.

However, similarly to a naive smt encoding, this encoding allows spurious
propagations in presence of cycles. Given the fpg from Example 1, the encoding
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has a stable model {fail(c), fail ext(c), fail dep(c, 1) | c ∈ {g,h,e}}, where
none of the components is failed initially, yet all are failed in the end. This model
does not correspond to any real fault propagation and relies on the impossible
propagation where h fails because of e, which in turn fails because of h. We now
show two possible extensions of the encoding that solve this problem.

4.2 Enforcing Causality by ASP

To solve the problem with self-supporting circular propagations, we introduce
new variables that will encode that a failure is justified, i.e., it is supported by
sufficient initial faults. Intuitively, a failure of component c is justified if it is
due to an initial fault of component c. Moreover, a failure of component c is
justified if it is due to a propagation from a dependency Dj (the j-th disjunct
of canFail(c)) such that all d ∈ Dj are in turn failed and justified.

Therefore, we introduce the following additional variables for each component
c ∈ C with canFail(c) =

∨
D∈F

∧
d∈D d and F = {D1, . . . , Dn}:

– justified(c), which will denote that the failure of c is justified,
– justified dep(c, j) for each 1 ≤ j ≤ n, which will denote that the failure of

c is justified by the j-th disjunct of canFail(c).

We then define the program Pasp as a union of the rules from the previous
subsection and the additional causality rules:

← fail(c),∼justified(c) (5)
justified(c) ← fail local(c) (6)
justified(c) ← justified dep(c, j), fail dep(c, j) for all 1 ≤ j ≤ n (7)
← fail dep(c, j),∼justified dep(c, j) for all 1 ≤ j ≤ n (8)
justified dep(c, j) ← justified(d1), . . . , justified(dm) where di ∈ Dj (9)

The rules have the following intuitive meaning: (5) states that it is not possible
that the component c is failed without a justification for the failure; (6) that
the local failure is enough to justify the failure of the component; (7) that if
the j-th disjunct is justified and satisfied, the failure of c is justified; (8) that it
is not possible that the j-th disjunct of the component c is satisfied without a
justification; and (9) that if all dependencies of the j-th disjunct are justified,
the j-th disjunct itself is justified.

Observe how we use integrity constraints and default negation to impose that
failed components/dependencies must be justified. This prohibits the spurious
cyclic propagations and gives the following correctness result:

Theorem 1. Let X ⊆ At(Pasp) be a set of atoms. If X is a stable model of
Pasp then {c ∈ C | fail local(c) ∈ X} is a cut set of G for ctle . Conversely,
if {c ∈ C | fail local(c) ∈ X} is a minimal cut set of G then X is a stable
model of Pasp.

Note that due to the stable model semantics, the program Pasp does not represent
all cut sets of G, because some non-minimal cut sets are prohibited. Nevertheless,
it represents all minimal cut sets, in which we are mainly interested.
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4.3 Enforcing Causality by ASP Modulo Acyclicity

In this subsection, we present a second encoding of fault propagation. In contrast
to the encoding from the previous subsection, which uses justification rules to
break self-supporting cyclic propagations, this encoding relies on asp modulo
acyclicity. This makes the encoding simpler, easier to implement, and might offer
better performance due to dedicated implementation of acyclicity propagation
in asp solvers. On the other hand, it restricts the set of usable asp solvers as
not all asp solvers support acyclicity constraints.

The encoding uses the variables fail(c), fail local(c), fail ext(c), and
fail dep(c, j) with the same intuitive meaning as in the previous encoding.
Moreover, for every pair of components c, d ∈ C it uses a variable caused by(c, d)
with the intuitive meaning that the failure of c was directly caused by the failure
(initial or propagated) of d.

Using these variables, we construct the program Paspma that contains rule
(1), for each component c ∈ C contains the rules (2),(3),(4), and for each c ∈ C,
1 ≤ j ≤ n and d ∈ Dj also the rule caused by(c, d) ← fail dep(c, j). The
rules state that if the j-th disjunct of canFail(c) is satisfied, the failure of c is
caused by failures of all the components in the disjunct. We then define the
acyclicity extension (C, e), where e(caused by(c, d)) = (c, d) and e is undefined
for the remaining variables. This ensures that there are no causal cycles among
the propagated failures and therefore no component can cause its own failure.
As a result, an analogue of Theorem 1 holds also for Paspma .

5 Minimality of the Cut Sets

As was shown in the previous section, both the introduced asp encodings contain
stable models for all mcss of the given fpg. Although the stable-model semantics
is able to rule out some non-minimal cut sets thanks to the condition that
the model X must be a minimal model of PX , the programs still admit some
stable models that correspond to non-minimal cut sets. This can be seen in the
following example. Note that the fpg in question is acyclic, and therefore there
is no need of encoding the causality constraints.

Example 3. Consider an fpg (C, canFail) with C = {c1, c2, c3} and canFail(c1) =
c2 ∧ c3, canFail(c2) = c3, canFail(c3) = ⊥ with the top level event c1. The asp
encodings from the previous section produce the following program P :

fail(c1).
fail_local(c1) ∨ fail_ext(c1) ← fail(c1).
fail_local(c2) ∨ fail_ext(c2) ← fail(c2).
fail_local(c3) ∨ fail_ext(c3) ← fail(c3).
fail_dep(c1, 1) ← fail_ext(c1).
fail_dep(c2, 1) ← fail_ext(c2).
← fail_ext(c3).
fail(c2) ← fail_dep(c1, 1).

fail(c3) ← fail_dep(c1, 1).

fail(c3) ← fail_dep(c2, 1).
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This program has a stable model M = {fail(c1), fail(c2), fail(c3),
fail ext(c1), fail local(c2), fail local(c3), fail dep(c1, 1)}, which corre-
sponds to a non-minimal cut set {c2, c3}. The reason for this is that in
order to obtain a model for the minimal cut set {c3}, the model M would
have to be extended with fail ext(c2) and fail dep(c2, 1) before removing
fail local(c2). ��

Non-minimal cut sets arise because the minimality of the cut set is defined
with respect to the local faults, while the minimality of the model is defined
with respect to all atoms, which also include the atoms used for propagation.
Fortunately, asp solvers offer optimization facilities for enumerating stable mod-
els that are minimal according to a given criterion. In particular, it is possible
to enumerate minimal stable models with respect to a given subset of atoms,
either by using subset preference [5] or modified branching heuristics [9]. Our
preliminary experiments shown that the latter option provides vastly superior
performance. Moreover, as each minimal cut set is identified only by values of
atoms FailLocal = {fail local(c) | c ∈ C}, it is sufficient to enumerate the
minimal models w.r.t FailLocal , projected to the set of atoms FailLocal .1

Note that the enumeration of minimal models is more expensive. It prevents
the solver to perform enumeration based only on backtracking: it either forces
the solver to minimize each model and possibly enumerate a single minimal
model multiple times, or it forces the solver to remember all already enumer-
ated models, which can increase the space complexity of the search. However,
the technique based on branching heuristics is also successfully used for mcs
enumeration in the original smt-based approach.

6 Experimental Evaluation

6.1 Implementation and Setup

We implemented the encodings proposed in Sect. 4 in a simple Python script. In
the following experiments, these two encodings are denoted as asp and aspma.
To enumerate their minimal stable models, we have used the state-of-the-art asp
solver Clingo [7] in version 5.5.1, which supports both asp modulo acyclicity and
also Boolean model minimization by modified branching heuristics.

For comparison, we used the smt-based mcs enumerator SMT-PGFDS [4],
which is implemented as a Python tool that produces the smt encoding of the
fpg and uses the smt solver MathSAT 5 [6] to enumerate its minimal models.
In the experiments below, the approach is denoted as smt.

We used several families of fpg benchmarks, which are described in §6.2. We
ran all the experiments on a cluster of 13 nodes with Intel Xeon CPU E5520 @
2.27GHz cpus. We used a 30 min timeout and 8 GiB of ram. All the measured
times are wall-times. Additional data for the experiments are available from
https://es-static.fbk.eu/people/griggio/papers/lpnmr2022.html.
1 This can be achieved, e.g., by adding a directive #show fail local/1. and calling
clingo --project --heuristic=Domain --dom-mod=5,16 --enum-mod=domRec 0.

https://es-static.fbk.eu/people/griggio/papers/lpnmr2022.html
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6.2 Benchmarks

We compared the three encodings (asp, aspma, smt) on various fpg benchmarks
from the literature. We do not restrict the evaluation only to cyclic fpgs, where
the three encodings differ, but also use benchmarks without cycles, which do not
require the causality constraints and can thus be encoded in a purely Boolean
way. This allows us to compare the performance of the underlying solvers (i.e.,
Clingo, MathSAT 5) for purely Boolean search.

Acyclic. We used acyclic benchmarks that result from encoding acyclic redun-
dancy architectures extended by triple modular redundancy (tmr) with vot-
ers [3]. In particular, these benchmarks consist of families linear, rectangular,
and redarch-random-acycl. The linear benchmark family consists of linear-
shaped architectures of sizes between 1 and 200, extended by one to three voters;
each architecture of size n corresponds to a fpg with 3n + (#voters · n) compo-
nents. Similarly, rectangular benchmarks come from encoding of rectangular-
shaped redundancy architectures of sizes between 1 and 200 and one to
three voters and yield fpgs with 6n + 2 · (#voters · n) components. Family
redarch-random-acycl consists of fpg encodings of randomly generated acyclic
tmr architectures.

Cyclic. As cyclic benchmarks, we first used the benchmark family cav21, which
is an extension of a benchmark set used to evaluate the performance of the smt-
based fpg analysis. It is generated exactly the same way as in the original
paper [4] and consists of randomly generated fpgs of size between 500 and 1500,
which have similar distribution of degrees as our proprietary industrial systems.

Second, we also use cyclic benchmarks that result from encoding cyclic redun-
dancy architectures [3]. In particular, these benchmarks consist of three fami-
lies: ladder, radiator, and redarch-random-cycl. Ladder-shaped benchmarks
come from architectures of size between 1 and 200 and radiator-shaped bench-
marks come from architectures of size between 1 and 50. Both these architecture
shapes of size n yield an fpg with 6n+2 ·(#voters ·n) components. However, the
redundancy architectures differ in the shape of the dependency graph; whereas
ladder benchmarks contain a linear number of cycles, radiator benchmarks
contain an exponential number of cycles. Finally, redarch-random-cycl family
consists of fpg encodings of randomly generated cyclic tmr architectures.

6.3 Results

This subsection presents mcs enumeration times for the compared encodings on
the benchmarks. Note that all plots show times on a logarithmic scale.

Acyclic. The mcs enumeration times for the smt and asp encodings for linear
and rectangular benchmarks are shown in Fig. 1a. The plot does not show
the runtimes of aspma encoding, because for benchmarks without cycles, it is
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Fig. 1. Scatter plots of solving time on acyclic benchmarks.

Fig. 2. Scatter plots of solving time on cav21 cyclic benchmarks.

identical to asp. For the simple benchmarks, asp-based enumeration performs
slightly better, but the difference vanishes with the increasing hardness of the
benchmarks, i.e., going to rectangular structure or adding voters.

The comparison of mcs enumeration times of smt and asp encodings for
redarch-random-acycl benchmarks is shown in Fig. 1b. For fpgs coming from
random redundancy architectures, asp provides 2 to 3-times better performance.

Cyclic. The comparison of mcs enumeration times of all three encodings for
cav21 benchmarks is shown in Fig. 2. The asp-based breaking of self-supporting
propagation cycles is beneficial in comparison to the previously proposed smt-
based encoding; for some benchmarks, the asp-based techniques provide 10-times
and even better performance. The performance of aspma is significantly worse
than the purely asp-based one on a non-trivial number of the benchmarks.

Figures 3 and 4 show the performance of the three approaches on the ladder
and radiator benchmarks. On the ladder-shaped benchmarks, the asp-based
approach provides substantial speedup with respect to the smt-based approach.
Interestingly, the aspma approach performs worse than the purely asp-based
approach and even comparable to the smt-based one for the more complicated
systems with more voters.
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Fig. 3. Solving time on ladder-shaped cyclic benchmarks. Divided according to the
number of voters per one reference module.

Fig. 4. Solving time on radiator-shaped cyclic benchmarks. Divided according to the
number of voters per one reference module.

The situation is more interesting on radiator benchmarks, which are sub-
stantially harder as they contain a larger number of cycles. While the smt-based
approach provides a better performance for architectures with two voters, the
asp-based approach provides a better performance for even harder architectures
with three voters. Nevertheless, the benchmarks with two and three voters are
difficult for all of the approaches and pose a good target for future research.

Fig. 5. Scatter plots of solving time on redarch-random-cycl cyclic benchmarks.

Finally, Fig. 5 compares the three approaches on the family of benchmarks
redarch-random-cycl. The purely asp-based encoding provides significantly
better performance both than smt and aspma. The difference can be even in
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several orders of magnitude. Nevertheless, there are a few benchmarks where
the smt-based encoding provides better performance.

In total, the approach based on asp, which we introduced in this paper,
provides better performance for most of the benchmarks used; the difference is
sometimes even in several orders of magnitude. Interestingly, the approach based
on aspma, which uses a dedicated acyclicity solver, does not bring a significant
benefit in comparison to the previously introduced solver based on smt and is
mostly inferior to our purely asp-based encoding.

7 Conclusions and Future Work

We investigated the effectiveness of Answer Set Programming in the analysis of
fault propagation with cyclic dependencies, an important problem in the design
of critical systems. We propose two asp approaches: in the first one, acyclicity
is enforced by means of encoding constraints, while in the second we rely on asp
modulo acyclicity. The experimental evaluation shows that the asp encoding has
significant advantages over the state-of-the-art smt encoding. We also see that,
quite surprisingly, asp modulo acyclicity does not yield the expected results.

In the future we will investigate in detail why the asp-based encoding is
superior to the smt-based one and whether the observation can be leveraged
to improve performance of smt solvers. We will also investigate precise compu-
tational complexity of decision problems related to fault propagation analysis.
Finally, we will explore extensions of the asp approach to deal with fault prop-
agation under timing constrains, partial observability, and with dynamic fault
degradation structures with recovery.
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Abstract. Comparative Case Analysis is an analytical process used to
detect serial offending. It focuses on identifying distinctive behaviour
that an offender displays consistently when committing their crimes. In
practice, crime analysts consider the context in which each behaviour
occurs to determine its distinctiveness, which subsequently impacts on
their determination of whether crimes are committed by the same person
or not. Existing algorithms do not currently consider context in this way
when generating linkage predictions.

This paper presents the first learning-based approach aimed at iden-
tifying contexts within which behaviour may be considered more dis-
tinctive. We show how this problem can be modelled as that of learning
preferences (in answer set programming) from examples of ordered pairs
of contexts in which a behaviour was observed. In this setting, a con-
text is preferred to another context if the behaviour is rarer in the first
context. We make novel use of odds ratios to determine which examples
are used for learning. Our approach has been applied to a real dataset of
serious sexual offences provided by the UK National Crime Agency. The
approach provides (i) a systematic methodology for selecting examples
from which to learn preferences; (ii) novel insights for practitioners into
the contexts under which an exhibited behaviour is more rare.

Keywords: Crime Linkage · Answer Set Programming · Inductive
Logic Programming

1 Introduction

Comparative case analysis (CCA) is an analytical process that involves search-
ing for offences that share distinctive behavioural similarities [28]. It is used
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to detect serial offending of many kinds (e.g. serial sex offending, serial bur-
glary, serial robbery) and it can also be used to attribute crimes to an identified
offender. The latter tends to occur where an offender has been identified for one
or more crimes and further unsolved crimes are attributed to them through this
analytical process [8,12]. Importantly, CCA focuses on the behaviour that an
offender displays when committing their crimes to make predictions that the
same individual is responsible for two or more crimes.

In practice, to identify crimes linked to a particular offence, crime analysts
consider which of the behaviour an offender exhibits at the crime scene is distinc-
tive (and hence particularly characteristic behaviour of that offender) and use
this information to search their databases for crimes sharing similar behaviours
[5]. The underlying principle is the behaviour of one offender must be distin-
guishable from other offenders’ in order for crimes to be attributed accurately
to an offender [2]. The distinctiveness of a behaviour depends on the context
[5,8,27]. For example, wearing gloves in summer is a more distinctive feature
(owing to the offender’s forensic awareness) than exhibiting the same behaviour
in the winter, where it is more common due to the cold weather. Hence, it is
important to understand when and why a behaviour is distinctive for effective
CCA.

Little research has considered the relative distinctiveness of behaviours seen
in sexual offences. Some studies have calculated the base rates (frequencies) for
individual crime scene behaviours and reported these in papers of descriptive
analyses of sexual offender behaviour (e.g. [24,26]). However, none to date have
considered the relative rarity of a behaviour, given the context in which it is
expressed. Understanding the context under which a behaviour observed is more
rare than another can provide a means for including or excluding offences as a
potentially linked series based on the distinctiveness of observed behaviour.

This work focuses on an important task for supporting CCA in practice:
comparative rarity analysis. Given two offence descriptions we aim to learn to
predict whether a given behaviour is rarer in one than in the other. This cor-
responds to learning a ranking over the set of offence descriptions, where one
offence description is ranked lower than another if the behaviour is rarer in the
first. To learn this ranking, we use Inductive Logic Programming (ILP) [19].

The Learning from Answer Sets family of systems [14–16] are aimed at learn-
ing Answer Set Programs (ASP) [4]. ASP can model orderings using weak con-
straints, which induce an ordering over the answer sets of a program. Although
weak constraints are usually used to capture preference orderings, they can also
capture the rarity orderings learn in this paper. To learn weak constraints, we
need pairwise examples of which answer sets should be ranked lower than oth-
ers. In our case, we need to generate examples of pairs of offence descriptions
such that a given behaviour is rarer in the first than in the second. In practice,
the datasets of past offences are likely to be partial (e.g., due to lack of witness
recall) or noisy (e.g., as a result of inconsistency in some offender’s behavior).
This means it is necessary to consider whether the evidence we have for each
example pair is statistically significant and hence can be used to infer some
general patterns about the contexts in which a behaviour is deemed rarer.
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This paper introduces a novel approach to decide this, based on odds ratios
and Fisher’s Exact test. This approach also allows us to generate weights for the
examples, which can be given to the ILP system as a measure of the confidence in
each example. Of the two main Learning from Answer Set systems, ILASP [15]
is capable of learning weak constraints, whereas FastLAS [14] is not. On the
other hand, FastLAS is much more scalable than ILASP w.r.t. the size of the
search space. Therefore, due to the size of the domain in this paper, we extended
FastLAS to enable it to learn weak constraints.

Our approach is applied to a unique dataset provided for the purpose of this
research by the UK National Crime Agency describing serious sexual offences
committed by strangers in the UK. Through our evaluation, we demonstrate
that our approach is able to learn to accurately predict the ranking. One of
the hyper-parameters is the p-value threshold used to determine whether an
example is statistically significant. For lower thresholds, fewer examples are given
to the learner, but as these examples are less likely to be noisy, our evaluation
shows that the learner achieves a higher precision. Thus, our approach provides
a systematic way of handling noise in such probability ranking tasks. The main
contributions of the paper are: (i) an interdisciplinary approach that combines
ILP, statistical analysis and forensic psychology; (ii) a novel application to a real
dataset; (iii) a general technique for noise-tolerant probability ranking.

2 Comparative Case Analysis

Over the last two decades, a growing body of research has developed and tested
algorithmic approaches to CCA, with a range of methodological approaches.
One key difference in methodological approaches is whether researchers are using
algorithms to distinguish between linked and unlinked pairs (e.g. see [3], for a
review of such studies) or whether they are using them to assign a given crime
to a particular series, e.g. [23]. These correspond to different CCA scenarios.
The first methodological approach attempts to develop algorithms that help to
determine whether two offences were committed by the same person (linked
pairs) or not (unlinked pairs). The second methodological approach attempts
to develop algorithms that can help to predict to which series/offender a single
crime is most likely to belong.

In both methodological scenarios, a range of algorithmic techniques have
been tested, including, but not limited to, discriminant function analysis, logis-
tic regression, Bayesian-based algorithms and classification trees. In the liter-
ature analysing criminal behaviour, context (a.k.a. a situation) is defined as a
collection of situational factors that trigger behaviour through the activation of
mental representation-behaviour pathways (see [28]’s interpretation of Mischel
and Shoda’s Cognitive Affective Personality System [18]). A situational factor
can be external to the offender (e.g. a witness arriving on the scene, the degree
of lighting) or internal (e.g. consumption of alcohol by the offender, mood). It
also includes the victim’s behaviour - in psychological theories, the partner’s
behaviour creates part of the situation [18]. Hence examples of context in a
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crime may be “the crime scene is poorly lit”, or “close to a public thorough-
fare with potential for witnesses“, or even “the victim is heavily intoxicated and
subdued”.

A general limitation of the linkage literature is the way in which the various
algorithms have been applied. While these algorithms have utilised contextual
variables in the past, they have not utilised these variables in a way that accounts
for the interaction between context and behaviour. That is, contextual factors
change/impact on the behaviour demonstrated by an offender (e.g. victim resis-
tance impacts on the likelihood of an offender being physically violent during
an offence). These inter-dependencies have not been incorporated in previous
algorithmic approaches to CCA developed by researchers.

An exception to this is the work presented in [27] where the authors investi-
gated whether context could impact on offender behaviour and whether greater
behavioural consistency was seen for serial sex offenders in offences which were
characterised as being more situationally similar. The approach, however, only
considered victim behaviour as a situational factor, yet we know that situational
influence extends far beyond victim behaviour. In addition, while it investigated
if(victim behaviour)-then(offender behaviour) contingencies, it only considered
the victim behaviour immediately preceding an offender behaviour, and due
to the small sample size, it only investigated the three most common victim
behaviours as situational factors. In contrast, our work aims to learn which con-
texts to prioritise for offender behaviour to be considered distinctive.

In summary, contextual factors have a significant impact on offender
behaviour and should be factored into the crime linkage decision-making process
[6]. Despite this, existing algorithmic approaches do not yet recognise or account
for the importance of context in crime linkage. This work attempts to provide
a first step towards filling this important gap in the literature. The approach
presented in the rest of this paper aims to solve an important problem, which
can be used to support CCA; specifically, we present an approach that learns
to rank contexts by the distinctiveness of a given behaviour. These rankings are
encoded as sets of weak constraints in ASP.

3 Background

Answer Set Programming. Given any atoms h, b1, . . . , bn, c1, . . . , cm, a normal
rule is h : - b1, . . . , bn, not c1, . . . , not cm. The head (resp. body) of a rule R
is denoted head(R) (resp. body(R)). In this paper, we assume an ASP pro-
gram to be a set of normal rules. Given a program P and an interpretation
I ⊆ HBP , the reduct P I is constructed from the grounding of P by removing
rules whose bodies contain the negation of an atom in I and removing nega-
tive literals from the remaining rules. A set of ground atoms I is an answer
set of P iff it is the minimal model of P I . The set of all answer sets of P is
denoted AS(P ). In addition to normal rules, modern ASP solvers support weak
constraints, which can be used to create an ordering over AS(P ). A weak con-
straint is of the form :∼ b1, . . . , bn, not c1, . . . , not cm.[w@l, t1, . . . , tk] where
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b1, . . . , bn, c1, . . . , cm are atoms, w and l are terms specifying the weight and
the level, and t1, . . . , tk are terms. A weak constraint W is safe if every vari-
able in W occurs in at least one positive literal in the body of W . At each
priority level l, the aim is to discard any answer set which does not min-
imise the sum of the weights of the ground weak constraints (with level l)
whose bodies are true. The higher levels are minimised first. Terms specify
which ground weak constraints should be considered unique. For any program
P and A ∈ AS(P ), weak(P,A) is the set of tuples (w, l, t1, . . . , tk) for which
there is some :∼ b1, . . . , bn, not c1, . . . , not cm.[w@l, t1, . . . , tk] in the ground-
ing of P such that A satisfies b1, . . . , bn, not c1, . . . , not cm. For each level l,
P l
A =

∑
(w,l,t1,...,tk)∈weak(P,A) w. For A1, A2 ∈ AS(P ), A1 dominates A2 (written

A1 �P A2) iff ∃l such that P l
A1

< P l
A2

and ∀m > l, Pm
A1

= Pm
A2

. An answer set
A∈AS(P ) is optimal if it is not dominated by any A2∈AS(P ).

Learning from Ordered Answer Sets. In this paper, we aim to learn to rank con-
texts by their distinctiveness. While weak constraints in ASP are usually used
to represent preference orderings, they can in principle be used to represent
an arbitrary ranking. In this work, we aim to learn a set of weak constraints1

representing a ranking over contexts (by distinctiveness of a given behaviour).
To the best of our knowledge, the Learning from Ordered Answer Sets (LOAS)
framework [16] is the only current ILP framework designed to learn ASP pro-
grams that include weak constraints. The full LOAS setting is more expressive
than is necessary for this paper. To avoid burdening the reader with unneces-
sary background material, we now present a simplified version of the framework.
Examples in this setting are weighted orderings of the form 〈C1, C2, pen〉, where
C1 and C2 are sets of normal rules (usually sets of facts) and pen is either ∞ or
a positive integer representing the penalty that must be paid if the example is
not covered. An infinite penalty represents that the example must be covered.

Many ILP systems (e.g. [15,25]) use mode declarations as a form of lan-
guage bias to specify hypothesis spaces. A mode bias is defined as a tuple
M = 〈Mo,MW ,ML〉, where Mo is a set of mode declarations, W ⊆ Z and L is a
set of positive integers. For simplicity of presentation, we only use propositional
mode declarations (i.e. Mo is a set of propositional literals) in this paper, but
our implementation supports first-order mode declarations in the style of Fast-
LAS [14] and learning first-order rules. Given a mode bias M = 〈Mo,MW ,ML〉,
a weak constraint :∼ body.[w@l, terms] is in the search space SM iff body ⊆ Mo,
terms is the set of variables that occur in body, w ∈ MW and l ∈ ML.

The following definition formalises the simplified setting used in this paper.
For the full LOAS approach supported by ILASP, we refer the reader to [13].

Definition 1. A Simplified Learning from Ordered Answer Sets task is a tuple
T = 〈B,M,Ob〉 where B is an ASP program, M is a mode bias and Ob is a
finite set of simplified ordering examples. For any hypothesis H ⊆ SM :

1 We learn these weak constraints using a modified version of the FastLAS [14] system,
called FastLOAS.
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– For any o = 〈C1, C2, pen〉 ∈ Ob, H covers o iff there is a pair of answer sets
A1 and A2 of B ∪ C1 and B ∪ C2 (respectively), such that A1 �H A2.

– The score of H, Slen(H,T ) is the number of literals in H, written |H|, plus
the penalty of each example in Ob which is not covered by H.

– H is an optimal solution of T iff Slen(H,T ) is finite and there is no H ′ ⊆ SM

s.t. Slen(H ′, T ) < Slen(H,T ).

Odds Ratios and Fisher’s Exact Test The odds of an event is a measure of how
likely that event is to occur, and can be defined as p

1−p , where p is the probability
of the event occurring. The odds ratio can be used to measure the association
between two events; if we have two events e1 and e2, we can observe the number
of times the two events occur separately and together, leading to a contingency
table, such as the one below.

e1 ¬e1

e2 c1 c2
¬e2 c3 c4

The odds ratio is defined as c1×c4
c2×c3

, which is the odds of e1 given e2 over
the odds of e1 given ¬e2 (or equivalently, the odds of e2 given e1 over the odds
of e2 given ¬e1). An odds ratio of 1 would indicate that the two events are
independent (i.e. there is no association between them). An odds ratio of less
than (resp. greater than) 1 indicates that the odds of e1 are lower (resp. higher) if
e2 is observed. Fisher’s Exact test is designed to test the statistical significance
of such a statement. The two-tailed Fisher test yields a p-value used to test
whether the null hypothesis “there is no association between e1 and e2” can be
rejected. One-tailed Fisher tests can be used to assess whether we can reject the
null hypotheses “the odds ratio is less than or equal to 1” and “the odds ratio
is greater than or equal to 1”. We use Fisher(<, [[c1, c2], [c3, c4]]) to denote the
p-value yielded by applying a one-sided Fisher test on the above contingency
table with a null hypothesis that the odds ratio is greater or equal to one. If this
p-value is below a given threshold, we can claim that there is enough evidence to
reject the null hypothesis and state that the odds of e1 is lower if e2 is observed.

4 Domain

We focus our application of comparative rarity analysis on serial sexual offences.
Sexual offending imposes a significant human and economic impact on society.
The overall costs to the UK society for all sexual offending per year is £12.2bn
[9]. With public confidence in the criminal justice response to rape is at an all-
time low (e.g. [10]), it is of paramount importance to provide decision-support
mechanisms that can help tackle the adverse effects of sexual offending, including
on health, education and employment [29].
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Dataset. The dataset used in this paper was taken from the Violent Crime
Linkage Analysis System (ViCLAS), which is a database management sys-
tem, used by the Serious Crime Analysis Section (SCAS) of the UK’s National
Crime Agency. The system is designed to hold information about sexual offences
(victim, scene, vehicle, weapon, and other variables specific to the actual
offence) with which analysts can search for potential behavioural links between
offences [11,22]. The dataset we obtained contains details of 1482 single-offender,
single-victim sexual offences that occurred in the UK between 1966 and 2013.
The dataset contains 493 series of an average length of 3.1. To focus our analysis
(and avoid temporal dependencies within lengthy offences), we consider a subset
of 817 offences, each of which occurred in a single location. The ViCLAS vari-
ables deemed most relevant to the project were selected for inclusion, and were
provided to the researchers as binary codes, with 1 indicating that an attribute
was observed, and 0 indicating it was not observed or recorded.

Behavioural and Situational Factors. To support reasoning about context, we
split the attributes into behavioural factors exhibited by the offender and situa-
tional factors, which describe the context in which the offence took place. The
dataset does not make any explicit distinction between situational factors and
behavioural factors. To this end, we pre-processed the data in two steps. In the
first, our aim was to identify all situational factors in the dataset. We conducted
an extensive review of the forensic psychology and criminology literature (2,372
articles were screened), ran two focus groups with analysts in the SCAS unit, and
re-analysed 11 existing transcripts of interviews that were conducted by some
of the authors with SCAS analysts [5]. This resulted in a list of 28 situational
factors. The second step aimed at reducing the dimensionality of the dataset,
owing to the large number of behavioural factors in the dataset. A review of liter-
ature allowed us to propose various themes for offender and victim behaviours in
sexual assaults. The behavioural themes are the following: Aggressive, Criminal,
Sexual, Approach and Verbal Themes. From these higher-level themes, we group
selections of ViCLAS variables and create new behavioural features. In a similar
way to the mapping of situational factors, some granularity was removed from
the ViCLAS data. The resulting mapping was reviewed by experts in forensic
and behavioural psychology, as well as analysts in SCAS. This resulted in 33
behavioural factors such as the types of sex acts committed and the precautions
taken by the offender to avoid detection. We are not able to share the mappings
developed as they are governed a by confidentiality agreement with the Agency.

After pre-processing, examples are of the form 〈B,C〉, where B is a set of
behaviours that occurred and C is the context in which the offence took place (i.e.
a subset of the situational factors). A single context can occur multiple times in
the dataset with a different set of behaviours. For our analysis, we consider each
behavioural variable b in isolation, since we are concerned with ranking the rarity
of individual behaviour, independent of the occurrence of others. Therefore, for
each behaviour b, we consider examples of the form 〈C, t, f〉, where C is a context
and t (resp. f) is the number of examples 〈B,C〉 in which b ∈ B (resp. b �∈ B).
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5 Probability Ranking

In this section, we describe a general approach to learn to rank contexts by the
probability of a given observation. The aim of this work is to learn a set of weak
constraints W which yields a ranking �W over contexts such that C1 �W C2

implies that the probability of observing a behaviour in C1 is lower than the
probability of observing the same behaviour in C2. We assume for each context
C, the probability of observing the behaviour B in the context C is modelled
by an independent Bernoulli distribution, with parameter pC . We are, therefore,
aiming to learn a ranking such that C1 �W C2 if and only if pC1 < pC2 . To do
so, we count the number of times a behaviour is present/absent in each context.

Definition 2. A probability ranking task is of the form 〈M,E〉, where M is
a mode bias and E is a set of examples of the form 〈C, t, f〉 s.t. C ⊆ Mo,
t, f ∈ N and no C occurs more than once. A hypothesis H ⊆ SM covers a pair
〈〈C1, t1, f1〉, 〈C2, t2, f2〉〉 ∈ E ×E if either: (i) t1

t1+f1
< t2

t2+f2
and C1 �H C2; (ii)

t1
t1+f1

> t2
t2+f2

and C2 �H C1; or (iii) t1
t1+f1

= t2
t2+f2

, C1 ��H C2 and C2 ��H C1.

Example 1. For the purpose of illustration, we consider the very small mode
bias: Mo =

{
outdoors, daylight, darkness

}
, Mw = {1,−1}, Ml = {1, . . . , 3}

(the mode biases in the evaluation section are significantly larger). Con-
sider the two examples e1 = 〈C1 = {outdoors, darkness}, 4, 1〉 and e2 =
〈C2 = {outdoors, daylight}, 1, 7〉, for the behaviour violence unprovoked.
This example represents that “unprovoked violence” was present in 4 of the cases
where the context C1 applies and absent in 1. For C2 “unprovoked violence” is
present and absent in 1 and 7 cases (respectively). As 4

4+1 > 1
1+7 , for the pair

of examples 〈e1, e2〉 to be covered by a hypothesis H, it must be the case that
{outdoors, daylight} �H {outdoors, darkness}. Given the mode bias above,
there are many H’s satisfying this condition; for example, {:∼ daylight.[−1@1]}
or {:∼ outdoors, darkness.[1@1]}, which mean that “unprovoked violence” is
rarer in daylight and more common outdoors in darkness.

5.1 Using Fisher’s Exact Test to Decide Example Significance

Although it may be technically possible to find a set of weak constraints that
will cover all examples, this is often impractical (it depends on having enough
distinct priority levels) and it may not be desirable – the observed fraction for
an example t

t+f may not reflect the true probability, meaning that some of the
orderings are essentially noisy examples. In this section, we describe a method
to find a set of pairs of examples 〈〈C1, t1, f1〉, 〈C2, t2, f2〉〉 for which the evidence
that the probability of observing the behaviour in the context of C1 is lower than
the probability of observing the behaviour in the context of C2 is statistically
significant. By selecting those pairs for which there is statistically significant
evidence, we eliminate the pairs that are most likely to be noisy.

Our method for determining statistical significance relies on Fisher’s Exact
test and the odds ratio. First, note that the probability of observing a behaviour
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monotonically increases with the odds of observing a behaviour b, meaning that
an equivalent task would be to rank the contexts by the odds of observing the
behaviours. Hence, the (observed) probability of b is lower in the context of C1

than in the context of C2 iff t1
f1

< t2
f2

, which is the case iff t1×f2
t2×f1

< 1. This is
equivalent to checking that the odds ratio of b and C1, given C1 ∨ C2,2 is less
than 1. Hence, we can establish the statistical significance of the statement “the
probability of b is lower in the context of C1 than in the context of C2” by
checking the statistical significance of the odds ratio being strictly lower than 1.
This can be checked using a one-sided Fisher test with the null hypothesis that
the odds ratio is greater of equal to 1.

Definition 3. Given examples 〈C1, t1, f1〉 and 〈C2, t2, f2〉, the p-value of C1 <
C2 is the p-value Fisher(<, [[t1, f1], [t2, f2]]). Given a p-value threshold α ∈ (0, 1],
C1 < C2 is statistically significant if the p-value of C1 < C2 is less than α.

Example 2. Consider the pair of examples from Example 1. In order to test
whether the ordering C1 < C2 is statistically significant w.r.t. α = 0.1, we must
check that the p-value Fisher(<, [[4, 1], [1, 7]]) is less than 0.1. In this case, the
p-value is 0.99, so the ordering is not statistically significant. If we check the
converse order (C2 < C1), the p-value is 0.03, meaning that the ordering is
statistically significant. Hence, we can reject the null hypothesis and assert that
the probability of observing b in the context of C2 is lower than the probability
of observing b in the context of C2.

Weighting Examples by p-Values. Even when we use Fisher’s Exact test to
select those orderings which are statistically significant, it may not be possible
to cover all the examples, given a particular search space (e.g. owing to the
inconsistent nature of offending behaviour). One approach in ILP (e.g. [14,17])
is to give each example a weight and minimise the total weight of uncovered
examples. In this paper, we define the weight of the ordering C1 < C2, written
w(C1, C2), to be 100/max({0.001, p}), where p is the p-value of C1 < C2. The
motivation is that this function gives higher weight to those orderings that are
more statistically significant. Note that the max function is used to put an upper
bound on the weight of the examples (of 100000), as tiny p-values can otherwise
lead to weights that are larger than the maximum allowed by the ILP system.

Example 3. Again, reconsider the pair of examples from Example 1. Example 2
demonstrated that the evidence for C1 < C2 is not statistically significant. On
the other hand, the ordering C2 < C1 is statistically significant (at threshold
α = 0.1) with a p-value of ∼ 0.03. In this case, the weight is equal to 100

0.03 = 3139.

5.2 Encoding a Probability Ranking Task as a LOAS Task

Now that we have defined the subset of orderings that are statistically significant,
and the weight of such orderings, the search for an optimal solution to the task
2 As C1 and C2 are mutually exclusive, if we consider only the cases where C1 ∨ C2,

then ¬C1 holds iff C2 holds.
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(i.e. one which minimises the weight of all uncovered statistically significant
orderings plus the number of literals in the learned weak constraints) can be
encoded as a simplified LOAS task. This is captured by the following definition.

Definition 4. Let T = 〈M,E〉 be a probability ranking task and α be a threshold.
The simplified LOAS encoding of T is 〈∅, SM , O〉, where O = {〈Ci, Cj , w(Ci, Cj)〉 |
〈Ci, ti, fi〉, 〈Cj , tj , fj〉 ∈ E,Fisher(<, [[ti, fi], [tj , fj ]]) < α}.

6 Evaluation

In this section, we present the result of running our probability ranking approach
with various parameters. Our initial experiments showed that for many of the
learning tasks we were solving, ILASP was unable to provide a solution in a
reasonable time, due to the size of the hypothesis space. The reason for this is
that the first step of ILASP’s algorithm is always to compute the hypothesis
space in full.3 In recent years the FastLAS systems [14] have been developed to
solve restricted versions of ILASP’s learning task without the need to compute
the full hypothesis space. Until now, FastLAS has not been able to learn weak
constraints. As part of this work, we extended the FastLAS system to enable
it to solve the simplified LOAS tasks introduced in Definition 1,4 yielding a
new system – FastLOAS. While this extension was not particularly complicated,
describing it would require recalling the inner-workings of the FastLAS algorithm
and explaining how each of the steps was tweaked. As the focus of this paper is
on our new probability ranking approach and its application to CCA using the
ViCLAS dataset, the description of FastLOAS is out of scope. For full details
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Fig. 1. (a) and (b) show how the performance of the approach varies with the maximum
priority level (i.e. the maximum number of weak constraints that can be learned; (c)
and (d) show how the performance varies with the p-value threshold α.

3 Note that this is not the solution space; it is the set of all rules that can appear in
a hypothesis. The solution space is the power set of the hypothesis space.

4 This extension is restricted to the case where for each context C, B ∪ C has a single
answer set, but is otherwise as general as Definition 1, and can solve tasks including
first order ASP and negation as failure.
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of FastLOAS, including the source code and some example tasks, please see
https://spike-imperial.github.io/FastLAS/fastloas.html.

We divided the 817 cases into a training set of 408 examples (50% of the
dataset) and a test set consisting of the remaining 409 examples (again, 50% of
the dataset). In each experiment, FastLOAS was run on the training set and the
learned hypothesis was then evaluated on the test set. In each case, we evaluated
the learned hypothesis by measuring the proportion of statistically significant
ordered pairs in the test set (using the same p-value threshold as in training)
that are correctly/incorrectly ordered by the learned hypothesis. Note that in
some cases, none of the learned weak constraints apply to either of the pair of
contexts being analysed, meaning that no ordering is given.

Varying the Language Bias. One of the main factors in the performance of an
ILP system is the set of mode declarations it is given (i.e. the language bias).
A language bias that is too restrictive may result in poor performance, as the
best performing solutions are not in the search space; on the other hand, a
language bias that is too general can result in the learner being able to overfit
the data (although this can be somewhat ameliorated by using an appropriate
scoring function), and can also result in the computation time being significantly
longer. We experimented by varying the maximum priority level allowed (i.e. the
maximum number of weak constraints that could appear in a hypothesis) and by
running experiments both allowing and not allowing negation as failure (NAF).
The results in Figs. 1(a) and (b) show that the performance with NAF are better
than those without. This is because some concepts in the search space with
NAF are not available in the search space without NAF. Notably, increasing the
maximum number of weak constraints has a mixed effect, both with and without
NAF. The overall accuracy stays fairly constant in both cases, but the precision
decreases and the recall increases. The reason for this is that hypotheses with
more weak constraints will cover more orderings, resulting in more true positives
(increasing the recall), but also in more false positives (decreasing the precision).

Varying the p-Value Threshold. To measure the statistical significance of an
example pair, we use a p-value threshold. Raising the p-value threshold will mean
a larger number of examples, but will also mean that the amount of noise in the
dataset may increase (as there is a greater chance that mislabelled examples are
added). Figure 1 (c) shows result of using different values for α, and evaluating
on the test set generated using the same α. This experiment is important because
it shows how accurately the learner can learn to predict comparative rarity at a
given p-value threshold. It is also important to compare the results of training
with different α’s and evaluating on the same test set. Figure 1(d) shows the
results of training with different α’s and evaluating on the test set generated
using α = 0.05. In both cases, the precision is higher with a lower α, while
the recall increases as α increases. The increase in recall can be explained by
the larger number of examples. The drop in precision can be explained by the
increased amount of noise. Interestingly, the precision rises slightly after α = 0.05
in Fig. 1, which indicates that the number of extra examples has more of an effect

https://spike-imperial.github.io/FastLAS/fastloas.html
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than the increased noise – note also that the weight of these examples is inversely
proportional to their p-value, meaning that the extra examples are only likely
to have an effect if a large number of them show a clear pattern.

7 Related Work

The general notion of learning an ordering is an instance of preference learning
called learning to rank [7]. Relatively little work has been conducted on Induc-
tive Logic Programming methods for preference learning, with the exception of
the ILASP systems [15,16] and the work in [20], which used the Aleph system to
learn rankings. In [13], ILASP was shown to outperform [20] in terms of predic-
tive accuracy. Compared to ILASP, the FastLOAS system used in this paper is
limited in that it can only learn weak constraints; whereas ILASP is capable of
learning general programs including weak constraints, but also including other
constructs, such as normal rules, choice rules and disjunctive rules. Furthermore,
it only supports what ILASP calls brave ordering examples in which the pair of
examples have to be covered by at least one pair of answer sets; whereas, ILASP
also supports cautious ordering examples. On the other hand, unlike FastLOAS,
ILASP generates every weak constraint that is compatible with the mode dec-
larations, meaning that it does not scale w.r.t. the size of the search space, so is
not capable of handling the domain in this paper.

As the notion that we are ranking – rarity – in linked to the probability
of observing a behaviour in a given context, our approach is also related to
Probabilistic Inductive Logic Programming (PILP) methods, which aim to learn
probabilistic theories (e.g. [1,21]). The key difference between our approach and
PILP methods is that we do not aim to learn probabilities directly. Instead, we
are essentially learning a “less likely than” relation (captured by a set of weak
constraints). Given this, the search space of possible solutions is significantly
smaller than if we had tried to encode the same problem as a PILP task.

8 Conclusion

This paper has demonstrated that it is possible to learn to rank contexts by the
rarity of a behaviour. In particular, we have shown that the FastLOAS ILP sys-
tem is capable of learning weak constraints that can accurately rank an unseen
set of contexts by the situational factors present/absent in those contexts. Due
to the limitations of the dataset we have, the learned constraints are ground,
and each condition is either satisfied entirely, or not satisfied at all. The Fast-
LOAS/ILASP systems do not have such restrictions, so in future work it would
be interesting to investigate datasets that allow first order weak constraints to be
learned. Such datasets would also enable the FastLOAS system to learn concepts
such as minimising or maximising a particular quantity. Our approach is not lim-
ited to the domain in this paper, but instead provides a general noise-tolerant
method for ranking the likelihood of an event across contexts.
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Abstract. Declarative business process discovery aims at identifying
sets of constraints, from a given formal language, that characterise a
workflow by using pre-recorded activity logs. Since the provided logs rep-
resent a fraction of all the consistent evolution of a process, and the fact
that many sets of constraints covering those examples can be selected,
empirical criteria should be employed to identify the “best” candidates.
In our work we frame the process discovery as an optimisation prob-
lem, where we want to identify optimal sets of constraints according to
preference criteria. Declarative constraints for processes are usually char-
acterised via temporal logics, so different solutions can be semantically
equivalent. For this reason, it is difficult to use an arbitrary finite domain
constraints solvers for the optimisation. The use of Answer Set Program-
ming enables the combination of deduction rules within the optimisation
algorithm, in order to take into account not only the user preferences
but also the implicit semantics of the formal language. In this paper we
show how we encoded the process discovery problem using the ASPrin
framework for qualitative and quantitative optimisation in ASP, and the
results of our experiments.

Keywords: Preferences · Answer set programming · Optimisation ·
Process mining · Process discovery · Declarative process models

1 Introduction

Process discovery is one of the most investigated process mining techniques [13].
It deals with the automatic learning of a process model from a given set of logged
traces, each one representing the digital footprint of a specific execution of the
process. Our work develops in the context of binary process discovery, in which
the model-extraction is seen as a two-class supervised task (see [2,7,8,11]), where
log traces are partitioned into two sets according to some business or domain-
related criteria (the so-called positive and negative – i.e., undesired – traces).
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The target of the learning process is a model that discriminates one set from the
other.

Process discovery algorithms are also classified according to the language
they employ to represent the output model: procedural and declarative. Tech-
niques of the first kind envisage the process model as a synthetic description
of all possible sequences of actions that the process accepts from an initial to
an ending state. In declarative discovery—the focus of this work—models are
sets of constraints, characterised by a declarative, logic-based semantics. Both
approaches have their strengths and weaknesses depending on the characteristics
of the considered process. Procedural techniques may generate hard to under-
stand “spaghetti”-like models, and in these cases declarative-based approaches
might be preferable [5]. A problem that remains unsolved in process discovery,
is the need to select, among all possible discovered models, the ones that best fit
the expectations of the user. This problem is manifesting in techniques that rely
only on one set of traces (the positive); where the risk is to generate overfitting
models. Therefore, mechanisms are introduced to “select” specific behaviours;
e.g., the frequency of a certain element (e.g., an activity or a path), or the pres-
ence of certain modelling patterns. In spite of the possibility of exploiting the
negative information, binary discovery techniques are also affected by the same
problem. As recently shown in [11], perfect binary miners (able to discover mod-
els that accept all positive examples and none of the negative examples) do not
necessarily exist; many suboptimal models can be identified by the discovery
process, leading to the issue of identifying criteria for preferring one model. In
most of the techniques in literature, the criteria are built in the discovery process,
leaving small room for dedicated user-driven preferences. In [2] we introduced
a novel algorithm that splits the discovery process in two stages: first, the set
of all candidate constraints are identified, and then the selection of the model
is framed as an optimisation problem selecting one (or more) subsets according
to given preferences. Its implementation (NegDis) is available in [12]. In this
short paper we focus on the optimisation stage, showing how we used Answer
Set Programming Optimisation to encode and solve the second stage.

2 Declarative Process Discovery

The discovery approach we introduce in this paper is based on Declare, a
language for describing declarative process models first introduced in [10]. A
Declare model consists of a set of constraints on a finite set of (atomic) activities.
Constraints are ground instantiation from a given set of abstract parametrised
patterns (templates); where parameters are substituted with activities. Tem-
plates have a graphical representation and their semantics can be formalised
using different logics, the main one being linear temporal logic (LTL) over finite
traces, making them verifiable and executable. The major benefit of using tem-
plates – e.g., instead of LTL – is that analysts do not have to be aware of the
underlying logic-based formalisation to understand the models. Table 1 sum-
maries some common Declare templates. The reader can refer to [10] for a full
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description of the language. It is important to emphasise that Declare is a family
of languages defined by a set of templates.

Table 1. Example of Declare templates

Template Explanation

existence(A) A occurs at least once

init(A) A is the first to occur

response(A,B) If A occurs, then B occurs after A

alternate response(A,B) Each time A occurs, then B occurs afterwards, before A recurs

precedence(A,B) B occurs only if preceded by A

co existence(A,B) If B occurs, then A occurs, and vice versa

not succession(A,B) A never occurs before B

Given a finite set of Declare templates D and a finite set of activities A, we
indicate with D[A] all possible groundings of templates in D w.r.t. A, i.e., all the
constraints that can be built using activities from A. Traces—i.e., finite sequences
of activities from A—can be understood as (logical) models for constraints, and
we say that M ⊆ D[A] accepts a trace t iff, for each constraint c ∈ M , t |= c
w.r.t. its semantics [10]. The semantics of Declare introduces a natural notion
of generality between process models; i.e. a model M is more general than M ′

(M ′ � M) if the latter accepts all the traces accepted by M . In [3], templates are
organised into a subsumption hierarchy, and this relation (between constraints) is
used as a preference for guiding the discovery process. We generalise this notion
by introducing the deductive closure operator based on a given set R of (correct)
deduction rules,1 as a function clR : P(D[A]) → P(D[A]) that associates any
set M ∈ D[A] with all the constraints that can be logically derived from M by
applying one or more deduction rules in R. For brevity, in the rest of the paper
we will omit the set R, and we will simply write cl(M) to indicate the deductive
closure of M . The complete set deduction rules that we considered, including
those introduced in [3], is available in the source code [12].2 All the rules we
analysed in the literature can be encoded as Normal Logic Program rules (more
on this in Sect. 3).

Although NegDis takes as input the set of templates and deduction rules, for
the sake of simplicity, in the rest of the paper we assume that they are fixed and
input consists on the sets of positive and negative examples (denoted by L+ and
L−). Candidate solutions for the discovery task are any set of constraints S ⊆
D[A] s.t. (i) ∀t ∈ L+ we have t |= S; (ii) S maximizes the set {t ∈ L− | t �|= S}.

In the first stage of the algorithm, NegDis builds a function (sheriffs) that
associates each trace in L− with the set of constraints, chosen from those accept-
ing all traces in L+, that reject it:

sheriffs(t) = {c ∈ D[A] | t �|= c ∧ ∀t′ ∈ L+.t′ |= c} (1)
1 Identifying whether there is a complete set of rules for a specific set of templates is

an open problem outside the scope of this work.
2 The file declare rules.txt in the data directory.
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Note that, due to the fact that not all the pairs of negative and positive sets of
traces can be perfectly separated using Declare [11], there can be traces t in L−

for which sheriffs(t) is empty, meaning that those traces cannot be excluded by
any model that guarantees the acceptance of all the positive ones. The actual
implementation of the first stage is outside the scope of this paper and the reader
is referred to [2]. Based on sheriffs, the space of all solutions can be defined as

Z = {M ⊆
⋃

t∈L−
sheriffs(t) | ∀t ∈ L− t �|= M ∨ sheriffs(t) = ∅} (2)

That is, the subsets of the set of all constraints in sheriffs(t) that reject all the
negative traces (excluding those that cannot be rejected, i.e., sheriffs(t) = ∅). In
the next section we show how we use an ASP optimisation system to order Z
and select the “best” process models.

3 ASP Encoding and Evaluation

For our experiments we used the Clingo system [6] because it supports func-
tion terms, and an advanced optimisation frontend (ASPrin [1]), enabling the
declarative specification of preferences. The encoding of the optimisation stage
in ASP follows the common Guess/Check/Optimise (GCO) ASP paradigm [9]:
the guessing part selects subsets of

⋃
t∈L− sheriffs(t) using a choice rule [6], the

checking part selects only (ASP) models that “reject” the negative traces, while
the optimisation part depends on selected preferences.

The sheriffs input is encoded as a binary predicate choice/2 where the first
argument is a trace ID (an integer) and the second a constraint that “rejects” the
trace. The “output” predicate, identifying the selected constraints, is the unary
predicate selected/1.3 We decided to encode constraints as function terms in
order to avoid the ad-hoc handling of the number of template parameters (e.g.,
terms like decl(init,a)), so the fact that the constraint init(a) rejects the third
trace is encoded by the fact choice(3,decl(init,a)).

The guessing part is composed by a single choice rule
{ selected(C) : choice( ,C) }.

The checking part must take into account not only the selected constraints, but
also their closure, since it affects the optimisation preferences. To this end we
introduced a derived/1 predicate, and the checking is encoded as

derived(C) :− selected(C).
rejected(T) :− choice(T,C), derived(C).
:− choice(T, ), not rejected(T).

The guessing and checking parts above enables the generation of all models
corresponding to the sets in Z (Eq. 2). Deduction rules are encoded using the
derived/1 predicate; e.g., the rule init(A) → precedence(A,B) is encoded as

3 In the actual code the predicate names are slightly different to avoid potential clashes
with names used by ASPrin, and they can be parametrised.
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derived(decl(precedence,X,Y)) :− derived(decl(init,X)), action(Y).

Assuming a finite number of activities, Declare deduction rules studied in lit-
erature can be encoded as full tuple-generating dependencies [4]. Therefore, for
any subset of

⋃
t∈L− sheriffs(t), the extension of derived/1 is unique. More-

over, since each constraint in sheriffs accepts all traces in L+, any subset of⋃
t∈L− sheriffs(t) is consistent.

Enumerating all models is too expensive, and doesn’t provide any guide to
select the most suitable (from the user point of view). For the optimisation
part we started experimenting with cardinality preferences over the deductive
closure and selection; which can be simply implemented via Clingo minimisation
statements (grounding macros for weak constraints [6]):

#minimize{1@2,C: derived(C)}.
#minimize{1@1,C: selected(C)}.

Specifying more elaborate preferences require complex encodings and ASP tech-
niques, which are difficult to manage and error-prone to non ASP experts. To
simplify the specification we exploit the ASPrin Clingo frontend [1], which pro-
vides a general framework for optimising qualitative and quantitative preferences
in ASP. For example, “subset” optimality can be encoded using

#preference(p1,subset){ derived(C) : constraint(C) }.
#preference(p2,less(cardinality)){ selected(C) : choice( , C) }.
#preference(p10,lexico){ 1::∗∗p2; 2::∗∗p1 }.
#optimize(p10).

which prefers models with a (subset) smaller closure, and (cardinality) smaller
selected in case of ties. The built-in directives of ASPrin can be used to specify
also preferences of specific properties of the models; e.g., to prefer models with
specific templates:

not nice model :− selected(C), template name(C,not succession).
nice model :− not not nice model.
#preference(p1,aso){ nice model >> not nice model }.
#preference(p2,subset){ derived(C) : constraint(C) }.
#preference(p10,lexico){ 1::∗∗p2; 2::∗∗p1 }.
#optimize(p10).

Table 2. Running time

Dataset
sheriffs input CPU time (sec)
size avg sheriffs subset card

synta 25600 32.2491 113.06 15.085 11.559
syntb 10240 9.40303 97.47 1.377 1.201
cervcompl 102 10.402 0.33 0.065 0.045
sepsismean 9 2.44444 1.04 0.039 0.035
sepsismedian 141 24.0851 1.05 0.2 0.087
bpic12mean 70 8.84286 31 0.096 0.066
bpic12median 2394 9.15748 37.63 359.164 43.846

The encoding has been eval-
uated in the context of the dis-
covery process using both syn-
thetic and real datasets. For the
description of the datasets and
details on the results the reader
is referred to [2]. In this paper
we focus on the optimisation
stage, considering the size and
structure of the sheriffs input:
the number of traces and the
average number of “rejecting”
constraints per trace. Table 2
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shows the optimisation time, for the “subset” and “cardinality” criteria above,
compared to the time spent to calculate the sheriffs input. By considering the
whole discovery problem, in most of the datasets, the runtime of the optimisa-
tion is an order of magnitude smaller than the first stage, and it seems to be
correlated with the size of the minimal (process) model discovered.

4 Conclusions

In this paper we demonstrate the use of ASP optimisation to encode preferences
in complex domains where the optimisation criteria cannot be fixed beforehand;
e.g., in our case process models can be preferred because of the presence of
some patterns which are domain dependent. The flexibility of a rule-based sys-
tem enables the handling of complex interactions between the components of
a solution and its optimisation. In our domain, because of the need to take
into account the deductive dependency between Declare constraints, we cannot
use traditional finite domain solvers. Our empirical evaluation shows that the
Clingo solver can efficiently handle the optimisation stage for the preferences
we selected. We plan to investigate whether the system can be pushed further
with more complex preferences; e.g., interaction between different templates or
activities.
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Abstract. In the last decades, Deep Learning (DL)-based approaches
have been fruitfully employed in many tasks, such as providing valuable
support to computer-aided diagnosis and medicine. However, DL-based
approaches are known to suffer from some limitations; for instance, they
lack of proper means for providing clear explanations and interpreta-
tions of the results, or explicitly including available knowledge to drive
decisions. In this work, we present DeduDeep, the prototypical imple-
mentation of a framework explicitly conceived with the aim of tackling
such limitations by making use of deductive declarative formalisms. In
particular, the framework aims at enabling the declarative encoding of
explicit knowledge, and, by relying on the use of Answer Set Program-
ming (ASP), taking advantage of it for driving decisions taken by neu-
ral networks and refining the output. The framework has been tested
using different artificial neural networks tailored to semantic segmenta-
tion tasks over Laryngeal Endoscopic Images and Freiburg Sitting People
Images.

Keywords: Answer Set Programming · Knowledge Representation
and Reasoning · Non-monotonic reasoning · Deep Learning · Semantic
Segmentation · Inductive-deductive coupling

1 Introduction

In the field of Artificial Intelligence (AI), Deep Learning (DL)-based approaches
have been successfully employed in several application domains, for example,
in performing an automatic diagnosis [2] or in analyzing medical images [5].
However, despite their clear advantages, these approaches suffer from some lim-
itations; for instance, there are no satisfactory standard means for (i) providing
a proper explanation and interpretation of the decisions taken by the network to
produce a specif output, or (ii) explicitly including available pieces of knowledge
in order to “steer” decisions made by the network.

In this work, we present DeduDeep, the prototype of a training system imple-
menting a framework designed to steer neural networks decisions and refine
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the predicted output via the integration of the deductive declarative formalism
Answer Set Programming (ASP) [1,4,6]. The design of DeduDeep relies on the
seminal work appeared in [3]; even if explainability is not expressly tackled yet,
it aims at contributing on the road towards an integration between inductive and
deductive approaches to Artificial Intelligence. While some proposals have been
presented in the state-of-the-art for “guiding” ASP via ML/DL techniques, the
one herein presented is among the less common proposals for doing the opposite:
a combination of DL and ASP that makes use of the latter for fine-tuning loss
functions and post-processing phases. Such framework has been very recently
proposed in [3] and it was tested using different artificial neural networks (i.e.,
DeepLab-v3, SegNet, U-Net) to perform semantic segmentation over Laryngeal
Endoscopic Images [7].

The DeduDeep framework is conceived for easing the design of ad-hoc appli-
cation in practice; for this reason, a platform has been designed for supporting
the user in selecting proper tuning parameters, managing the knowledge base,
including explicit additional knowledge in the model. We point out that, at
present, the platform has been used for our experimental activities aimed at
assessing the framework, but it will be released in the near future. Indeed, we
present here a new experimental campaign, based on the Freiburg Sitting People
dataset [8].

The remainder of the paper is structured as follows. In Sect. 2 we describe our
approach; then, we report about a careful experimental activity that is discussed
in Sect. 3; finally, we draw our conclusions in Sect. 4.

2 DeduDeep: Proposed Approach

The herein proposed framework relies on the use of ASP for supporting DL-based
approaches in the task of semantic segmentation. Specifically, we design a stan-
dard methodology to construct a proper rule-based model that represents prior
knowledge and network prediction into ASP rules, and to convert the output of
ASP computation into values “understandable” by the network.

As shown in Fig. 1, our framework is designed to:

– Drive the network’s learning and penalize misclassification. We quantify a
penalty value using an ASP-based model that compares the network’s pre-
diction to ground truth segmentation, prior knowledge and rational insight of
evident truths. The penalty value, which expresses “how wrong” the classi-
fication is, takes part in defining the loss function. Specifically, we introduce
the penalty value in the last 250 epochs of the training to refine the network
decisions. For more details we refer the reader to [3].

– Improve the quality of the results. We define an ASP-based post-processing
to remove noise (i.e., small “islands” of misclassified pixels) and wrong pre-
dicted classes (i.e., classes which do not comply with available prior knowl-
edge). More precisely, we first translate the network’s prediction into logical
rules and then define an ASP-based model to identify pixels that need to
be removed; eventually, we rely on such model to re-assign misclassified pix-
els/elements to the “more frequent” class in the neighborhood [3].
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Fig. 1. Workflow of the current DeduDeep architecture. The knowledge bases are build
from input raw images and used to support the training of the networks via the loss
function. At each epoch, the prediction is converted into logical rules that are incorpo-
rated in the ASP-based model, and it is then refined by the post-processing phase.

ASP-Based Post Processing. The post-processing phase is designed to
improve the quality of the prediction by (i) cleaning the image from noise (e.g.,
small sets of pixels that, under a certain size, can be considered as wrongly
detected areas) (ii) removing objects that do not comply with prior knowledge
or do not respect evident truth. This greatly varies depending on the specific
application, and must be carefully encoded. In the herein reported scenario,
we can think about medical knowledge and find that it somehow contains con-
straints. For instance, it is not possible that a specific class is detected in some
sequence or image; furthermore, examples of evident truths include: it is not
possible that the class head is detected close to the class foot or, it is not possi-
ble that there are two elements belonging to left foot class and no elements for
right foot class – roughly speaking, a person can’t have two left feet.

These pixels/objects are afterwards colored by either (i) selecting the most
frequent color (i.e., class) in the neighborhood (see [3] for further details), or
(ii) by replacing them with the logically correct classes. To take one example, if
there are two objects of the left foot class and no one of the right foot class, then
the rightmost object is changed into an element of the right foot class. Hence,
fixed an image and a class, we recognize if there are two or more objects of the
class by counting in how many different positions the object is predicted. The
latter is expressed via the following rule:

twins(ID ,CL) : − position predicted(ID ,CL, , ),
#count{X ,Y : position predicted(ID ,CL,X ,Y ) >= 2.

where the predicate position predicted represents the position (X,Y ) in which
the element class CL is predicted in an image ID (see [3] for further details),
while the predicate twins identifies all the classes that appear at least two times
in a given image. Then, we use additional ad-hoc rules to identify the object
that has been supposedly misidentified, and hence should be “changed”. In the
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following, we show an example in which two distinct objects of the class left foot
have been identified, and the rightmost one is changed into an element of the
right foot class:

change twins(ID , leftFoot , rightFoot , down, rigth) : −twins(ID , leftFoot),
position predicted(ID , leftFoot , down, rigth),
position predicted(ID , leftFoot , down, left).

where the predicate change twins is used to denote that the class left foot pre-
dicted on the down right part of the image has to be changed with the class right
foot.

3 Results and Discussion

A first experimental campaign for assessing the viability of our approach has been
reported in [3]; we refer the reader to the cited work for some insights about
settings and fine-tuning description. With respect to that campaign, besides
making use of the herein presented prototype, we also tested the approach on
the Freiburg Sitting People dataset with the aim of segmenting different parts
of human body (e.g., head, arms, legs).

It is worth noting that these first prototypical implementations of the app-
roach look to require a relevant effort in terms of computational time; neverthe-
less, the main purpose of the proposal and the overlying DeduDeep system showed
promising results.

In order to assess the viability of our approach we compared the results
obtained using (i) cross-entropy (CE ) as loss function, (ii) a combination of CE
and a penalty value derived via ASP-based model, and (iii) ASP-based post-
processing phase. In general, including the ASP-based penalty in the loss func-
tion and, especially, performing post-processing phase involve an improvement
in the Intersection-over-Union (IoU) mean value (e.g., DeepLab-v3 (ii) 0.755
and (iii) 0.768). Further details about experiments performed on the Laryngeal
Endoscopic images are provided in [3].

As already introduced, in the present work we additionally tested DeduDeep

on the Freiburg Sitting People dataset [8], on the task of performing human part
segmentation. As previously described in Sect. 2, we automatically extracted evi-
dent truths from the dataset by considering the neighborhood of the objects and
their logical proximity. The results obtained so far over this dataset show slight,
but systematic improvements. Figure 2 shows an example of results achieved
using DeepLab-v3 network which obtained the best results using both datasets.
As illustrated in Fig. 2, ASP-based post-processing is able to remove small island
of noise and re-assign the class of the objects that do not comply with evident
truth, resulting in a relevant improvement. Indeed, in Fig. 2(c) we can see that
the network identified left foot class both on right and left side of the image
and no right foot class was predicted, similarly for the lower left leg class. Our
approach is able to identify the error and correct the misclassification as shown
in Fig. 2(d).
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Fig. 2. Example of results obtained by DeepLab-v3. From left to right: raw image (a),
ground truth segmentation (b), results achieved without post-processing (c), and the
results of post-processing (d).

4 Conclusions

We presented a novel prototypical system called DeduDeep, designed to help at
combining inductive and deductive approaches for tackling AI tasks. In partic-
ular, we take advantage of the potential coming from the declarative nature of
ASP to steer approaches based on Deep Learning and to improve the quality of
results via a proper post-processing phase. To this aim, we defined a loss function
by combining the cross-entropy loss function and a penalty value, derived from
the ASP-based model, that indicates the number of objects wrongly identified
by the network.

The first experiments we performed in order to assess the viability of the
approach and the robustness of the prototype allow to draw some considerations.
First of all, it is worth noting that the approach is best suited for domains where
some sort of explicit knowledge is available or obtainable somehow, so that it
can be modeled in terms of ASP; furthermore, as far as the current design and
implementation are concerned, the introduction of the ASP-driven tasks requires
a relevant effort in terms of computational costs. Nevertheless, DeduDeep achieved
promising results, proving to be able to improve the quality of the results and
that there is significant room for further improvements; more importantly, it
proved that the approach is viable and has some interesting potential in tackling
the limitations of DL-based approach, thus contributing at the journey towards
a more human-centered and more explainable AI.

It is worth noting that the approach herein presented can be in principle
adapted to any scenario where some sort of explicit knowledge is available. Nat-
urally, such knowledge vary over different domains, and new knowledge bases
must be defined on a problem basis; here, the expressive and declarative mod-
elling capabilities of ASP are of great use. Hence, the resulting framework is
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very flexible, and paves the way to more tight integrations between inductive
and deductive formalisms.

As future work is concerned, we plan to work on the prototype in order to
release it, to focus on better “tailoring” the ASP-based programs, to evaluate our
approach in different domains and DL task, and to include the rule-based loss
function at the beginning of the training to analyze the effects on the quality of
the results. Also, we plan to release an interactive web-based platform to show
the knowledge base model, add explicit additional rules and choose the most
suitable parameters for training the neural network. This platform will be able
to help users in performing the experiments, interacting with the knowledge base
and showing the results.
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e Innovazione” 2014–2020, CUP: H25F21001230004, and PRIN “Declarative Reasoning
over Streams”, CUP: H24I17000080001.
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