
Chapter 16
A Robust Optimisation Approach to
Synchromodal Container Transportation

I. Chiscop

Abstract This chapter addresses synchromodal planning at operational level from
the perspective of a logistics service provider and studies an optimisation prob-
lem with simultaneous vehicle routing and container-to-mode assignment, having
uncertain data. It is assumed that the release times of the containers belong to an
uncertainty interval, and no further statistical information is available. This problem
belongs to the fourth quadrant of Fig. 1.4. The container routing problem is mod-
elled as a mixed integer program with explicit time variables and lateness penalties.
A robust formulation is then proposed to eliminate the uncertain parameters from
the objective function and constraints. By solving the new model exactly, with
the aid of an optimisation solver, robust solutions are obtained corresponding to
transportation plans which remain feasible for any realisation of the release times
within the pre-specified uncertainty interval. In order to introduce some flexibility
in the transportation plan, the continuous time variables are modelled as affine
functions of the uncertain parameters. The resulting two-stage decision model is
tested for a small-sized instance in both situations, with high and low lateness
penalties.

Introduction

Synchromodal transportation can be studied from multiple perspectives. There
are several agents acting in the transportation network, each with their own
modes and terminals/warehouses but sharing the existing infrastructure. Although
synchromodality entails collaboration between all these parties, this is not always
the case. Therefore, it is necessary to understand how much information is actually
available and shared, and what kind of optimisation objectives are desired. The
information within the network is available globally or locally. If the information
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is locally available, it means that only the agents themselves know, for example,
where they are or what their status is at a certain time. If the information is global,
this information is also known to the network operator, to all other agents or
both. Furthermore, if all agents need to be individually optimised, the optimisation
objective is local. If the optimisation objective is global, the best option for the entire
network is the desired outcome.

The logistics service provider (LSP) whose activity is serving as a case study in
this chapter is interested in reducing its own overall costs but has certain knowledge
of the other agents in the network. This corresponds to a selfish approach to
synchromodality as described in Chap. 1 and illustrated in Fig. 1.2. Given these
facts, the following question arises: how can the logistics service provider optimally
plan his transportation activities in order to minimise the associated costs? By
investigating the characteristics of the problem further, we can develop this question
into a proper research inquiry. In the following subsection we give a description of
the practical setting behind the activity of the LSP and identify the optimisation
problem in their planning process based on the information that was made available
for us.

Use Case

Practical Setting

A logistics service provider is a company that uses its resources to offer and perform
transportation services of goods from origin to destination. The company usually
manages the goods being transported along the entire way and is responsible for
storage and handling. In our case, the LSP has a few inland terminals and one
warehouse. Moreover, it has a fleet of trucks and several kinds of chartered barges
for transporting containers between the deep-sea or inland terminals and different
customer warehouses in the hinterland. These barges may have different capacities.
For instance, the larger ones may transport up to 156 TEU in three layers.

The LSP receives transportation requests from customers on a daily basis. These
requests consist of one or more standardised containers to be picked up at a terminal
and then transported either to another terminal or to the customer’s warehouse.
The transport between terminals is usually carried out by barge and, when this is
not possible, by truck. The way in which these orders are handled within the LSP
administration can be visualised in Fig. 16.1.

When a transportation order is received by the LSP the amount of information
accompanying it may vary. In general, the destination and due date, namely the
latest time at which the containers should arrive at their destination, are always
specified. Moreover, the terminal from where these containers should be picked up,
the time at which they are available for pickup and the shipping company may be
indicated. However, this is not always the case. If the pickup location is known,
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Fig. 16.1 Administration of a transportation request at the LSP

then the planners of the LSP will make a call towards that particular terminal in
order to request a date and time-slot for the pickup. Depending on the working
volume and the number of vessels to handle, the terminal may either confirm the
proposed appointment, confirm the appointment on a different date, or not confirm
an appointment at all. It is worth mentioning that the last two scenarios occur quite
often in practice. Depending on the particular terminal, the time difference between
the requested time and the confirmed time, otherwise known as the planning delay,
can reach up to 10 days. After a response has been received from the terminal, then
the LSP planners need to evaluate the current positions and loads of the available
barges and decide which one will execute the pickup and when, and inform the
customer about this. This process is difficult and the resulting plan is often subjected
to change due to the uncertain elements in the network. The planner aims to schedule
the available barges in such a way that all containers are picked up on time, then
timely delivered to their destinations with a minimum amount of costs. These costs
emerge from the usage of transportation modes, stationing at the terminals before
the actual handling of containers and the eventual failure of meeting the due dates
at the customers.

Our goal is to make use of all the practical information available in order to
formulate an optimisation problem. Therefore, we need to further elaborate on what
kind of elements are influencing the planning and what information is available to a
planner at the moment that a decision must be made. To achieve this, we employ the
framework for synchromodal problems developed in Chap. 2, where is distinguished
between resources and demand elements. Intuitively, the resource elements refer
to the available transportation modes, namely barges or trucks, whilst the demand
elements consist of freight containers.1 The features of these elements may be:

• controllable: Since we are discussing a decision problem, at least one element of
the systemmust be in control. This can be, for instance, the allocation of demands
to resources.

• fixed: A fixed element does not change within the scope of the problem.

1 In this chapter the demand elements will always correspond to one container.
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• dynamic: A dynamic element might change over time or due to a change in the
state of the system (e.g., the amount of containers changes the travel time of a
barge), but this change is known or computable beforehand.

• stochastic: A stochastic element is not necessarily known beforehand. For
instance, it is not known when transportation orders will arrive, but the arrivals
occur according to a Poisson process.

• irrelevant: It might occur that for certain problems not all elements are taken into
consideration to model the system. Then these elements are irrelevant.

We will closely follow the classification in of Chap. 2 to describe all the elements
occurring in the planning process of the LSP. However, not all elements encountered
in the practical setting are encompassed by this framework.

Resource Elements

• Resource type: In this study, the LSP owns a fleet of barges of different known
capacities and a uniform fleet of trucks. One may distinguish here between owned
and subcontracted resources.

• Resource features: The resource capacities are fixed. The schedules of the barges
and trucks are not fixed. Therefore the resource origin and resource destination
are controllable elements. However, the resource departure time, resource travel
time and resource arrival time are not controllable. This is a consequence of the
delays which may occur either when receiving a confirmation from the terminal,
or at the terminal itself, when the handling time takes longer than expected
(this can happen due to a crane malfunction, for instance). We will classify
these elements outside the framework as uncertain, since there is no information
available concerning their distribution. Finally, we also have a resource price.
Here we can distinguish between the price for employing a certain resource
which is a fixed amount (per day, for instance) and the price for handling services
provided at the terminals. The latter depends on the load to be handled, which is
an uncertain element at the beginning of the planning period.

• Terminal Handling time: This refers to time required to handle different types of
modes at the terminal. It includes both the waiting time and the time allocated for
loading/unloading containers. This is also an uncertain element since there exist
incoming orders which do not specify the pickup time or locations. For instance,
it may be the case that a barge is waiting at a terminal to pick up some containers
which have not arrived there yet.

Demand Elements

• Demand type: The LSP under study can transport containers of different sizes, of
either 1 TEU or 2 TEU in load. Therefore, this element is fixed.

• Demand-to-Resource allocation: The assignment of containers to barges is
essentially a decision that a planners have to make. Therefore, it is a controlled
element.

• Demand features: The destination of a container, as well as its volume (in TEU)
and due date at the customer to whom it belongs, are fixed elements. The demand
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origin (pickup terminal of a container) and its release date (moment in time
at which it can be loaded on a barge) are uncertain elements. This uncertainty
emerges from the missing data in the transportation order, as customers simply
do not specify it.

• Demand Penalty: This term refers to costs that are incurred when the due date
at the destination for a container is not met. Since these costs are in general
customer-dependent, we can classify this element as dynamic.

The resource and demand elements described are the main input for creating a
schedule for the barges and trucks. However, the planning process does not only
rely on the information that is available but also rely on the moment at which this
information becomes available. At the beginning of the planning period, the planner
knows the exact locations of all the barges and trucks in the fleet, their capacity
and has a list of orders with specified destinations and due dates to be picked up
sometime in the next 9 days. Moreover, at every moment in time, a planner has an
estimation of the maximum and average delay of the deep-sea terminals (based on
historic data in the last 30 days). This is the initial amount of knowledge. As time
progresses, more information becomes available. That is, pickup locations along
with release times of containers are revealed, and terminals send confirmation for
appointment times. Moreover, new transportation orders may come in, which are
also required to be executed within the next 9 days. This information can become
available at any time so the planner must create a schedule that can handle real-time
switches.

Given this practical setting, one may formulate the decision making of the LSP
planners as an optimisation problem in which a routing of transportation modes and
an assignment of the containers to modes must be provided under uncertain data in
such a way that the total delay and costs are minimised.

Base Instance

In order to be able to develop a mathematical model and later on explore solution
methods, we consider the following simplified instance obtained by reducing the
size of the real-life problem and introducing some assumptions. The network
comprises the following elements:

• 2 customers denoted C1, C2: Their physical location is known and it is accessible
only by truck.

• 2 deep-sea terminals denoted T1, T2: Deep-sea vessel arrives here and unloads
the containers that belong to the two customers.

• 1 container terminal operated by the LSP denoted T : Barges leave from here and
go to the deep-sea terminals to pick up containers.

• 1 hinterland terminal operated by the LSP denoted D: It is the central terminal
of the LSP, closest in distance to any customer (Fig. 16.2).
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Fig. 16.2 Geographical display of the network

We notice here that there is one main difference between the container terminal and
the hinterland terminal of the LSP. The container terminal is the located in the port,
nearby deep-sea terminals. On the other hand, the hinterland terminal is situated
further away on the continent, in the proximity of customers. This is illustrated in
Fig. 16.2.

The LSP has the following resources:

• 3 barges: All with capacity of 20 units. Two of the barges at the terminal T

whilst the other one is situated at the central terminal D. There is a fixed cost per
kilometre2 travelled by a barge.

• unlimited trucks: All with capacity 1. There is a fixed cost per kilometre travelled
by a truck.

Suppose we are given two transportation orders with the following specifications:

1. Customer C1 asked the LSP to pick up 30 containers from T1. The terminal has
confirmed a time window for the pickup: [10, 11].3 These containers have an
uncertain release time. They will be simultaneously released sometime in the
interval [10, 11]. This order needs to arrive at the customer by time unit 20.

2. Customer C2 has 10 containers to be picked up from terminal T2. This terminal
has also confirmed a time window for the pickup: [15, 16]. All 10 containers are
already available. This order needs to arrive at the customer warehouse by time
unit 20.

When developing this base model we have made several assumptions. We discuss
them and their relation with the real practical setting below.

• The planning period starts at midnight or otherwise interpreted, at time step 0
and covers one full day, until time step 24, respectively.

2 We will elaborate on transportation costs of barges and trucks later in the chapter.
3 We will take a time unit as being 1 h. Therefore, regard this interval as the time between 10:00
and 11:00.
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• We assume fixed time windows at the deep-sea terminals. In practice we saw
that a terminal can either answer an appointment call or not. In this scenario,
we assume that we have confirmed appointment calls at the beginning of the
planning period.

• If a barge arrives either too early or too late at a deep-sea terminal, it can be
handled right away. So we assume that there is no waiting time involved.

• We assume that there is no handling time.
• Once it has been loaded, a barge may leave the deep-sea terminal right away.
• At any point in time, there are trucks available at every terminal, which can

transport the released containers to other locations.
• There is a waterway connecting the terminals. The customers’ warehouses can

only be reached by truck.
• The travel times in between any two locations of the barges and trucks are known.

Given this simple instance, we are interested in minimising the overall costs and
the total delay at the customers. In order to maintain a uniform objective, we can
associate costs with the delay in such a way that the final objective will represent
the costs overall. This simple instance will serve as a starting point in developing
a mathematical model that determines an assignment of containers to transport
modes, and also a specific routing of the containers. Whilst this base model is not
of any practical relevance, it will serve as a basic tool to understand, and later on, to
incorporate more complex features of the transport network.

After analysing the base instance, we understand that our choice for modelling
approaches is somewhat restricted by the lack of probabilistic knowledge. In this
case, we will study the container routing problem from a robust perspective. In
other words, since we cannot employ stochastic models, we will look at robust
optimisation techniques.

Deterministic Problem Formulation

In this chapter we present a mathematical model for the freight routing problem
described as our base instance. We will use Sharypova’s model [9] as the basis of
our research and further develop it to incorporate all aspects which are of interest in
the context of uncertain parameters in the transportation network. We describe all
the modifications brought to the original mixed integer linear program and elaborate
on a further extension of the model that can be used to incorporate multiple trips of
a vehicle to a certain location.
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Deterministic Model

Sharypova’s model [9] serves as a starting point in our problem formulation. This
model provides a transportation schedule of minimum cost which meets the strict
delivery deadlines at the destinations of commodities. Since our goal is to investigate
the impact of uncertainty on the transportation plan, it is reasonable to allow for
more flexibility in the network, namely replace the strict deadlines of commodities
by the so-called soft due times. This implies that a commodity may arrive later
than its due date at its destination, in which case a penalty cost is incurred. To
model this aspect, we introduce lateness decision variables Lm

i , describing how late
vehicle m is at location i. Clearly, these variables are only defined when location
i is a destination node for some commodity. Moreover, in our base instance we
assumed that a barge arriving at a deep-sea terminal must wait a certain amount of
time before it starts being loaded or unloaded. Thus, we will incorporate a terminal
specific parameter wi , representing the amount of time that a barge has to wait at
terminal i. Finally, the components of the objective function must be addressed. For
optimisation, the focus will be on time-related components. Generally speaking,
we are interested in minimising the utilisation of trucks. However, in practice it is
often the case that trucks and trails are rented by the hour and motivated by this,
we will aim for minimising the trucking hours. A trucking hour is 1 h in which a
truck has been utilised for transportation purposes. It is important to remark here
that the amount of trucks used overall or the time travelled by a truck without being
loaded are not important quantities in this setting. Moreover, we complete our multi-
objective function by incorporating the total lateness recorded in the planning. This
term quantifies by how much time container arrivals differ from their specified due
date. Weights are associated with each of the two objectives for scaling purposes.
These weights allow us to prioritise one objective over the other one, as in practice
one might often find that arriving an hour late at a location might be preferable to
renting a truck for another hour. A thorough discussion on these weights will follow
later. We will define the following here:

Sets:

V = set of locations

A = set of travelling arcs between locations

M = set of vehicles

K = set of commodities

Vm = set of locations that can be accessed with vehicle m
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Decision variables:

x
k,m
i,j = number of containers of commodity k ∈ K transported from location i ∈ V

to location j ∈ V by vehicle m ∈ M

ym
i,j =

⎧
⎨

⎩

1 if vehicle m ∈ M travels from location i ∈ V to location j ∈ V

0 otherwise

zm =
⎧
⎨

⎩

1 if vehicle m ∈ M is used in the transportation plan

0 otherwise

θ
m,l
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if a transshipment occurs between vehicle m ∈ M and vehicle l ∈ M at location

i ∈ Vm ∩ Vl

0 otherwise

τ
k,m
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if any container of commodity k ∈ K is loaded on vehicle m ∈ M at node

i ∈ {o(k), d(k)}
0 otherwise

Am
i = arrival time of vehicle m ∈ M at location i ∈ V

Dm
i = departure time of vehicle m ∈ M from location i ∈ V

Lm
i = lateness/arrival delay of vehicle m ∈ M at location i ∈ {d(k)|k ∈ K}

q
k,m,l
i = amount of containers of commodity k ∈ K moved from vehicle m ∈ M

to vehicle l ∈ M at location i ∈ Vm ∩ Vl

Parameters:

si = service time at node i ∈ V

dk
i = demand of commodity k ∈ K at node i ∈ V

wi = waiting time at terminal location i ∈ V

rk = release time of commodity k ∈ K at its origin

duek = due time of commodity k ∈ K at its final destination

tmi,j = travelling time of vehicle m ∈ M from node i ∈ V to node j ∈ V

cm = maximum capacity of vehicle m ∈ M

(o(k),d(k)) = origin-destination node pair of commodity k ∈ K

ω1,2 = weights of the objective functions
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Given the previous decision variables and parameters, the model for container
assignment and vehicle routing is 4:

min ω1
∑

k∈K

∑
m∈M

∑
(i,j)∈A tmi,j x

k,m
i,j + ω2

∑
m∈M

∑
i∈V Lm

i

s.t.
∑

(j)∈V +(i) ym
i,j − ∑

j∈V +(i) ym
j,i = 0 ∀m,∀i ∈ Vm (16.1)

∑
m∈M

∑
j∈V +(i) x

k,m
i,j −

∑
m∈M

∑
j∈V −(i) x

k,m
j,i = dk

i ∀i ∈ V, ∀k (16.2)

∑
k∈K x

k,m
i,j ≤ cmym

i,j ∀m,∀(i, j) ∈ A (16.3)

∑
k∈K q

k,m,l
i > 0 ⇐⇒ θ

m,l
i = 1 ∀m, l,∀i ∈ Vm ∩ Vl (16.4)

∑
æ∈V −(i) x

k,m
j,i = ∑

l∈K q
k,m,l
i ∀m, k,∀i ∈ Vm \ {d(k)} (16.5)

∑
æ∈V +(i) x

k,m
i,j = ∑

l∈K q
k,l,m
i ∀m, k,∀i ∈ Vm \ {o(k)} (16.6)

∑
l∈K q

k,m,l
i = 0 ∀m, k,∀i ∈ {o(k), d(k)} (16.7)

∑
j∈V +(i) x

k,m
i,j > 0 ⇐⇒ τ

k,m
i = 1 ∀m, k∀i ∈ {o(k)} (16.8)

∑
j∈V −(i) x

k,m
j,i > 0 ⇐⇒ τ

k,m
i = 1 ∀m, k,∀i ∈ {d(k)} (16.9)

θ
m,l
i = 1 ⇒ Dl

i − Am
i − si ≥ 0 ∀m, l,∀i ∈ Vm ∩ Vl (16.10)

ym
i,j = 1 ⇒ Dm

i + tmi,j − Am
j ≤ 0 ∀m,∀(i, j) ∈ A (16.11)

Dm
i ≥ Am

i + si ∀m,∀i ∈ Vm (16.12)

Dm
i ≥ rkτ

k,m
i ∀m, k,∀i ∈ {o(k)} (16.13)

τ
k,m
i = 1 ⇒ Lm

i ≥ Am
i − duek ∀m, k,∀i ∈ {d(k)} (16.14)

∑
j∈V +(i) ym

i,j ≤ zm ∀m,∀i ∈ Vm (16.15)

x
k,m
i,j ∈ N0 ∀m, k,∀(i, j) ∈ A (16.16)

q
k,m,l
i ∈ N0 ∀m, k, l,∀i ∈ Vm ∩ Vl (16.17)

Am
i ,Dm

i , Lm
i ≥ 0 ∀m,∀i ∈ Vm (16.18)

ym
i,j ∈ {0, 1} ∀m,∀(i, j) ∈ A (16.19)

θ
m,l
i ∈ {0, 1} ∀m, l,∀i ∈ Vm ∩ Vl (16.20)

4 In all cases where we say ∀m,∀l or ∀k we mean ∀m ∈ M,∀ l ∈ M and ∀ k ∈ K .
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τ
k,m
i ∈ {0, 1} ∀m, k,∀i ∈ {o(k), d(k)} (16.21)

zm ∈ {0, 1} ∀m (16.22)

We recall that the objective is the weighted sum of trucking hours and total
lateness. Constraints (16.1) ensure flow conservation at a location, while constraints
(16.2) account for the demand requirement at the origin and destination of every
commodity. Constraints 16.3 impose the capacity restriction of each vehicle.
Constraints (16.4)–(16.7) regulate the occurrence of transshipment of containers
from one vehicle to another depending on their current location. The inequalities
in (16.8)–(16.9) assure that every commodity leaves its origin and arrives at its
destination by means of some vehicle. The following four sets of inequalities
(16.10)–(16.13) validate the time-related variables. Constraints (16.14) are of par-
ticular importance, as they establish the definition of lateness variables. Inequalities
(16.15) provide the relation between used travel routes and the number of vehicles.
Finally, the remaining constraints define the range of each decision variable.

The mixed integer program presented above describes a transportation problem
which can be viewed as a complex extension of the capacitated vehicle routing
problem with time windows (abbreviated as CVRP-TW). Since VRP is known to
be NP-hard, we understand that there is no polynomial-time algorithm to solve
the freight routing problem. Therefore, we expect that solving this problem even
for small data instances with state-of-the-art optimisation solvers might require a
considerable computational effort.

Additional Remarks

The mixed integer program described in the previous section has many binary and
integer variables which makes it difficult to solve. Therefore, it is important to
ensure that the solution space is as restricted as possible. In order to do so, we
include the following strong forcing constraints:

x
k,m
i,j ≤ min{Dk,C

m}ym
i,j ∀(i, j) ∈ A,∀k ∈ K,∀m ∈ M,

where Dk is the demand of containers of commodity k, to be transported from their
origin location to their destination. These constraints can be derived as flow cover
inequalities and have been shown to be effective in improving the LP-relaxation
of multi-commodity network design problems [6]. Therefore, they are added to the
mixed integer program presented in the previous section.

A final remark concerns the modelling of trucks. Since a truck in general only
has the capacity to transport one or two containers, it was preferable to not model
them individually, as the size of the instance would have been too large. Instead, a
number of trucks with very large capacity (set to 3000 in our instances) was enabled
at every location. This number was set equal to the number of commodities to ensure
that there is enough transport capacity for timely deliveries.
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Robust Problem Formulation

In Chap. 4 we have presented a deterministic model for the freight routing problem
which gives optimal solutions if the input data is assumed to be fully correct.
However, in practice, this is almost never the case, as perturbations in data occur
due to estimation, prediction or implementation errors. This sort of uncertainty may
drastically affect the quality of the solution and it is not considered in deterministic
optimisation. Nevertheless, it can be handled by stochastic optimisation (SO) and
robust optimisation (RO). Stochastic programming is a commonly used method
which optimises the problem by making use of the parameters’ expected value. This
approach generates a number of scenarios that represent the possible realisations
of the stochastic parameters, assigns a probability to each of these scenarios and
finally, creates a model optimising over all scenarios. Stochastic programming
cannot be used when detailed statistical information is missing or when the number
of scenarios becomes too large, making the problem intractable. In Chap. 4, it was
shown that already for a small instance the freight routing problem with fixed
vehicle routes and stochastic travel times, the scenario tree becomes prohibitively
large. Although we will not investigate stochastic programming further, we refer
the interested reader to [5]. The robust optimisation framework, on the other hand,
is based on obtaining solutions which remain feasible for any realisation of the
parameters within a predefined uncertainty set. For this reason, we will explore
in this chapter how can the adjustable robust optimisation be used in order to
deal with the uncertainty in the release times of the containers. We present the
robust optimisation paradigm and explain how to formulate and solve the robust
counterpart. The robust mathematical formulation of the freight routing problem is
given at the end of this section.

Robust Optimisation Paradigm

Robust optimisation is an increasingly popular methodology to model mathematical
optimisation programswith uncertain data. Instead of assuming a known probability
distribution, the uncertain data is presumed to reside in a user-specified set of
realisations, called the uncertainty set. We consider a general formulation of an
uncertain linear optimisation problem:

min
x

{cT x : Ax ≤ b}, (P0)

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m. Suppose that the matrix A is uncertain

and it belongs to a bounded uncertainty set UA ⊂ R
m×n. In a similar fashion we

assume that right hand side vector b belongs to uncertainty set Ub ⊂ R
m, whilst

the objective coefficients c reside in the uncertainty set Uc ⊂ R
n. The setsUA,Ub

and Uc specify all possible realisations of the uncertain data and are collectively
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referred to as the uncertainty setU. The robust optimisation paradigm as described
by Ben-Tal et al. [2] relies on the following assumptions:

A.1 All decision variables x ∈ R
n represent here-and-now decisions: they should

be assigned specific numerical values as a result of solving the problem before
the actual data ‘reveals itself’.

A.2 The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the pre-specified uncertainty
set U.

A.3 All the constraints of the uncertain problem in case are ‘hard’: we cannot
tolerate violations of constraints when the data is in the uncertainty set U.

These assumptions indicate what are the relevant feasible solutions of the linear
uncertain problem P0. The first assumption A.1 asserts that the solution vector
should have fixed values or otherwise said, it should not contain any components to
which there has not been assigned a numerical value. By assumptions A.2 and A.3
this solution vector should satisfy all the constraints, regardless of the realisation of
the data in the uncertainty set U. Such a solution is called robust feasible [2]. Thus
we understand that robust optimisation is concerned with finding robust feasible
solutions for problems with a predefined uncertainty set.

The Robust Counterpart

We observe that the linear uncertain problem P0 exhibits uncertainty in all param-
eters. In fact, one can show that this problem can be re-formulated in such a way
that only the matrix A will contain uncertain entries. Firstly, the uncertainty in the
objective function can be removed by introducing an additional continuous decision
variable t ∈ R. Problem P0 is then equivalent to:

min
x,t

{t : cT x − t ≤ 0 ∀c ∈ Uc, Ax ≤ b ∀A ∈ UA,∀b ∈ Ub}.

Secondly, the uncertain components of vector b can be transferred to the matrix A

in the following way: vector b is added as a column of A and value xn+1 = −1 is
added as an extra component to the vector x. Then the problem P0 can be written
as:

min
x,t

{t : cT x − t ≤ 0 ∀c ∈ Uc, Ax ≤ 0 ∀A ∈ UA ∪ Ub}.

Given these two reformulations, we conclude that it is always safe to assume that
uncertain quantities occur only in the matrix of coefficients. This being said, we can
finally give a most general form of the uncertain linear problem as:

min
x

{cT x : Ax ≤ b ∀A ∈ U}. (P)
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The robust reformulation of problem P is referred to as the robust counterpart (RC)
problem [2] and we will present it as given in [10]. We assume that the coefficient
matrix A(ζ ) is an affine5 function of the uncertain parameter ζ :

min
x

{cT x : A(ζ )x ≤ b ∀ζ ∈ Z}, (RC)

where Z ⊂ R
p denotes the user defined uncertainty set. Recall that a solution x

is robust feasible if the constraints A(ζ )x ≤ b are satisfied for every value of ζ ∈
Z. As discussed in [2], the robust counterpart of an uncertain linear optimisation
problem with a certain objective is a ‘constraint-wise’ construction. In other words,
the original ith row constraint (Ax)i ≤ bi ⇔ aT

i x ≤ bi , (with ai being the ith row in
A) from the nominal problem is replaced by aT

i x ≤ bi ∀[ai; bi] ∈ Ui , whereUi is
the projection ofU on the space of data of ith constraint:Ui = {[ai; bi] : [A, b] ∈
U}. Therefore, we can address the uncertainty by a single constraint. For instance,
we extract one constraint from the robust counterpart problem RC modelled as an
affine expression in terms of ζ :

(ai + Pζ )T x ≤ bi ∀ζ ∈ Z, (16.23)

where ai ∈ R
n is interpreted as the nominal value of the data, P ∈ R

n×p and bi ∈ R.
The idea behind this process is to reformulate the robust counterpart constraint-
wise in such a way that it becomes computationally tractable. The expression in
(16.23) has infinitely many constraints due to the for all (∀) quantifier and it is thus
intractable in general. In [10] the authors provide a compact overview of the steps to
be followed in order to remove this quantifier.We will closely follow their approach.
Consider a polyhedral uncertainty set defined as:

Z = {ζ : Dζ + q ≥ 0}, (16.24)

where D ∈ R
m×p , ζ ∈ R

p and q ∈ R
n.

In a worst-case reformulation, when the realisation of the uncertain data yields
the largest objective value, one can re-write the nominal problem P as:

aT
i x + max

ζ
{(P T x)T ζ : Dζ + q ≥ 0} ≤ bi. (16.25)

By strong duality, the inner maximisation problem in the expression above can be
replaced by its dual. Therefore, expression (16.25) is equivalent to:

aT
i x + min

w
{qT w : DT w = −PT x, w ≥ 0} ≤ bi. (16.26)

5 A function f : A → B is affine if and only if the mapping x → f (x) − f (0) is linear.
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We see that in order to satisfy inequality (16.26), it suffices to find at least one w.
Hence, the final formulation of the RC is given by:

∃w : aT
i x + qT x ≤ bi, DT w = −PT x, w ≥ 0, (16.27)

which is an LP feasibility problem.
From everything that we have done so far, we conclude that solving the robust

counterpart of a general linear optimisation problemwith continuous variables and a
polyhedral uncertainty set reduces to finding a feasible solution to the linear problem
described in Eq. (16.27). Therefore, the robust counterpart of an uncertain linear
program (LP) with a polyhedral uncertainty set is in fact a computationally tractable
LP. Moreover, this property also holds for the so-called box uncertainty set of the
form:Z = {ζ : ‖ζ‖∞ ≤ 1}, since the robust counterpart in this case is simply given
by aT

i x+‖PT x‖1 ≤ bi [10]. For a thoroughmathematical discussion on tractability
properties of the robust counterpart for various uncertainty sets, the reader is referred
to the book of Ben-Tal et al. [2].

Adjustable Robust Optimisation

The robust optimisation formulation given earlier is static in the sense that the
numerical values of all decision variables must be determined before the uncertain
quantities reveal their true value. For this reason, the solutions obtained by solving
the robust counterpart are indeed robust feasible but sometimes very conservative:
they are only optimal for the worst-case realisations of the uncertain data. With this
static approach it may often be the case that the objective function of the solution
becomes unnecessarily high given the actual data realisations attained in practice.
This concept is also known as the price of robustness, described by Bertsimas and
Sim [4] as the trade-off between the optimal solution and robustness. In order
to achieve a reasonable price of robustness, the adjustable robust optimisation
framework has been proposed [3]. In this framework, assumption A.1 from the
robust optimisation paradigm is relaxed, meaning that we allow for some wait-and-
see decision variables. In other words, some decision variables can be adjusted at
a later point in time according to the realisation of the data. Most commonly, these
adjustable decisions are modelled as functions of the uncertain data. In view of this,
the adjustable robust counterpart (ARC) can be formulated as:

min
x,y(·){c

T x : A(ζ )x + By(ζ ) ≤ b} ∀ζ ∈ Z, (ARC)

where x ∈ R
n represents the first stage here-and-now decision vector that is made

before ζ ∈ R
p is realised, y ∈ R

k denotes the second-stage wait-and-see decision
vector that can be computed according to the realisation of ζ , and B ∈ R

n×k is a
given coefficient matrix. For the scope of this chapter it is sufficient to assume that
the matrix B does not contain any uncertain elements. In general, it is difficult to



278 I. Chiscop

optimise over functions, so a commonly used approach is to express the adjustable
decision variables as affine functions of the uncertain data, namely:

y(ζ ) = y0 + Qζ. (16.28)

In the expression above, y0 ∈ R
k and Q ∈ R

k×p are here-and-now decisions to be
optimised by the model in the first stage. Substituting the expression for y given
in Eq. (16.28) into the ARC we obtain the affinely adjustable robust counterpart
(AARC):

min
x,y0,Q

{cT x : A(ζ )x + By0 + BQζ ≤ b ∀ζ ∈ Z}. (AARC)

Since the AARC is linear in both the decision variables and the uncertain parameter,
it can be solved by following the same reformulation steps as in the previous section.
Therefore, the AARC has the same tractability as the original robust counterpart,
regardless of the uncertainty set chosen. Two important remarks are required here.
First of all, the AARC might contain many more decision variables than the RC
due to the size of matrix Q. Secondly, although the AARC will likely require more
computational effort, the solution thus obtained will be at least as good as the one
given by solving the RC.

Up to this point, we have presented both the static and the affinely adjustable
robust counterpart problems and showed that in the case of linear programs with
polyhedral or box uncertainty, both formulations are tractable. The fact that we
can provide adjustable robust feasible solutions, makes the robust optimisation
approach extremely appealing for further applying it to our freight routing problem.
Nevertheless, the model developed includes many binary and integer variables for
which the mathematical treatment is not directly applicable. Therefore, we will
further discuss how robust optimisation techniques can be used in the context of
mixed integer programs.

Robust Optimisation for Mixed Integer Programs

Amixed integer program is a mathematical programwhich contains both real valued
decision variables and variables restricted to take integer values. It is well known
that determining whether a feasible solution of a given mixed integer program with
rational coefficients exists is in the class of NP-complete problems [7]. As such, we
expect that a robust counterpart of a mixed integer linear program is also intractable.
Consider the general form of a mixed integer program:

min
x,y

{cT x + dT y : Ax + Gy ≤ p, x ∈ Z
n, y ∈ R

k}, (MIP)

where c ∈ Q
n and d ∈ Q

k are given cost vectors, A ∈ Q
l×n and G ∈ Q

l×k are
coefficients matrices and p ∈ Q

l . We assume that the matrix A is the only element
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affected by uncertainty. This assumption is motivated by our deterministic model in
Chap. 4, in which the uncertain release time is multiplied with a binary variable in
constraints (16.14). Thus we consider a model of the form:

min
x∈Zn,y∈Rk

{cT x + dT y : A(ζ )x + Gy ≤ p, ∀ζ ∈ Z}. (RC-MIP)

Since uncertainty was showed to appear constraint-wise in a general linear program,
we can once again model uncertainty affected constraints by an affine transforma-
tion of the uncertainty term ζ ∈ Z, namely every element of A can be written as
a summation between a linear combination of the components of vector ζ and a
constant:

A(ζ )T = [
a1(ζ ) a2(ζ ) . . . an(ζ )

] = [
a1 a2 . . . an

] + [
P1ζ P2ζ . . . Pnζ

]
.

(16.29)

The robust counterpart then contains constraints of the form:

min
x∈Zn,y∈Rk

{cT x + dT y : (ai + Pζ )T x + gT
i y ≤ pi, ∀i ∈ 1, . . . , l ∀ζ ∈ Z},

(16.30)

where ai ∈ Q
n is the nominal value, P ∈ R

n×p is the matrix with vectors
P1, P2, . . . , Pn ∈ R

p as columns, gT
i is a vector corresponding to the ith row

of matrix G and pi is the ith entry of vector p. Just as in the case of a general
linear program, we now wish to bring the RC-MIP problem into a reasonable form,
removing the ‘for all’ (∀) operator. The uncertainty set to be considered is the simple
box uncertainty:

Z = {‖ζ‖∞ ≤ 1}. (16.31)

This kind of uncertainty set is the most intuitive for the freight routing problem,
since the release time of a container is assumed to belong to a certain bounded
interval of time. Using the worst-case values of the uncertain parameter ζ , the robust
counterpart RC-MIP is re-formulated as:

min
x∈Zn,y∈Rk

{cT x + dT y : aT
i x + ‖PT x‖1 + gT

i y ≤ pi ∀i ∈ 1, . . . , l}.
(16.32)

We observe that expression (16.31) is a convex optimisation problem that can
be re-written as a linear mixed integer problem by introducing auxiliary decision
variables. The next step from here is to adjust the continuous variables which in our
freight routing model correspond to time-related decisions. We assume that they can
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be written as affine functions of the uncertainty as in expression (16.28). By doing
so, we obtain the following adjustable robust counterpart:

min
x∈Zn,y0∈Rk,Q∈Rk×p

{cT x + dT (y0 + Qζ) : A(ζ)x + G(y0 + Qζ) ≤ p, ∀ζ ∈ Z}.
(16.33)

In the case of box uncertainty, this can be formulated as a convex problem very
similar to (16.31):

min
x∈Zn,y0∈Rk,Q∈Rk×p

{cT x + dT (y0 + Qζ) : aT
i x + ‖P T x + QT gi‖1 + gT

i y0 ≤ pi}.
(16.34)

The final form of this mixed integer problem without uncertainty removed from the
objective and constraints is:

min
x∈Zn,y0∈Rk,Q∈Rk×p,t∈R

{t :cT x + dT y0 + ‖QT d‖1 − t ≤ 0,

aT
i x + ‖PT x + QT gi‖1 + gT

i y0 ≤ pi ∀i ∈ 1, . . . , l}.
(ARC-MIP)

Finding a solution to the ARC-MIP reduces to solving a mixed integer program
bigger in size than the original MIP. Nevertheless, it provides a suitable modelling
framework for the freight routing problem and a way to find static and adjustable
robust feasible solutions. Since the robust optimisation approach has been discussed
for both a general linear program and the mixed integer case, we are now ready to
present a robust model for the freight routing problem.

Robust Model

In the robust model the release times of the commodities are uncertain. We recall
that every container has a predefined earliest and latest pickup time from its terminal
of origin, and the moment at which it is actually released from the terminal
and available for loading on the vehicle is contained in this time window. In
mathematical terms we have:

rk ∈ [ek, lk] ∀k ∈ K,

where ek and lk mark the earliest and the latest pickup time, respectively. In practice,
these two quantities are made available in advance by the terminal where the pickup
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should occur. The release is known to take place sometime between these two
moments. This can be modelled as follows:

rk = 1

2
ek(1 − ζk) + 1

2
lk(1 + ζk) ∀k ∈ K,

where ζk ∈ [−1, 1] is the actual uncertain parameter based on which the release rk
can be computed. Therefore, just as in Sect. “Robust Optimisation for Mixed Integer
Programs”, the uncertainty set is the simple boxed uncertainty given by:

Z = {ζ ∈ R
k : ζk ∈ [−1, 1]}.

Based on this uncertainty set, we introduce an adjustable robust model which
contains two stages of decisions: the first stage variables that must be determined
before the value of the uncertain parameter becomes known, and second-stage
decision variables which can change their value according to the realisation of the
parameters. In our robust model, the first stage variables x

k,m
i,j , ym

i,j , z
m, θ

m,l
i , τ

k,m
i

and q
k,m,l
i concern the routing, the sequence of terminal visits, the assignment

and transshipment of containers. The second-stage decisions are the continuous
variable Dm

i ,Am
i and Lm

i which account for the explicit departure and arrival times
and are modelled as adjustable variables. The idea of adjusting time variables
to the uncertain parameters originates from Agra et al. [1], who give a robust
formulation for a maritime inventory routing problem with uncertain vessel sailing
times. Therefore, we define Dm

i (ζ ), Am
i (ζ ) and Lm

i (ζ ) as the arrival time, departure
time and lateness, respectively, when scenario ζ (a vector containing release times
of all commodities) has been revealed.

The first stage solution must ensure that, for each possible realisation of the
release times in the uncertainty set, the containers are transported from their origin
to their destination without missing any of their planned transshipment on the way.
In other words, these decisions should result in a robust plan that can be carried out
regardless of delayed releases of containers. In the original deterministic model, all
time-related constraints (16.10)–(16.14) become:

θ
m,l
i = 1 ⇒ Dl

i(ζ ) − Am
i (ζ ) − si ≥ 0 ∀m, l ∈ M,∀i ∈ Vm ∩ Vl,∀ζ ∈ Z

(16.35)

ym
i,j = 1 ⇒ Dm

i (ζ ) + tmi,j − Am
j (ζ ) ≤ 0 ∀m ∈ M,∀(i, j) ∈ A,∀ζ ∈ Z

(16.36)

Dm
i (ζ ) ≥ Am

i (ζ ) + si ∀m ∈ M,∀i ∈ Vm,∀ζ ∈ Z
(16.37)

Dm
i (ζ ) ≥ rkτ

k,m
i ∀k ∈ K,∀i ∈ {o(k)},∀m ∈ M,∀ζ ∈ Z

(16.38)

τ
k,m
i = 1 ⇒ Lm

i (ζ ) ≥ Am
i (ζ ) − duek ∀k ∈ K,∀i ∈ {d(k)},∀m ∈ M,∀ζ ∈ Z.

(16.39)
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As we have already discussed in the previous section, a common approach to
handle adjustable variables is to use affine decision rules. In this case, we can write
the arrival and departure times as affine functions of the uncertain release times:

Dm
i (ζ ) =Dm

i,0 +
∑

k∈K

Dm
i,kζk ∀i ∈ V,∀m ∈ M (16.40)

Am
i (ζ ) =Am

i,0 +
∑

k∈K

Am
i,kζk ∀i ∈ V,∀m ∈ M (16.41)

Lm
i (ζ ) =Lm

i,0 +
∑

k∈K

Lm
i,kζk ∀i ∈ {d(k) : k ∈ K},∀m ∈ M. (16.42)

The newly introduced variablesDm
i,0 ≥ 0,Dm

i,k ∈ R and so onmust be determined
in the first stage, together with the routing, assignment and transshipment decisions.
We are interested in robust feasible solutions that satisfy constraints (16.35)–(16.39)
for any realisation of the release time vector ζ ∈ Z. Such a solution must also satisfy
the following re-formulated constraints (m, l ∈ M, k ∈ K, ζ inZ):

θ
m,l
i = 1 ⇒ Dl

i,0 +
∑

k∈K

Dl
i,kζk ≥ si + Am

i,0 +
∑

k∈K

Am
i,kζk ∀m, l, ζ,∀i ∈ Vm ∩ Vl

(16.43)

ym
i,j = 1 ⇒ Dm

i,0 +
∑

k∈K

Dm
i,kζk + tmi,j ≤ Am

j,0 +
∑

k∈K

Am
j,kζk ∀m, ζ,∀(i, j ) ∈ A

(16.44)

Dm
i,0 +

∑

k∈K

Dm
i,kζk ≥ Am

i,0 +
∑

k∈K

Am
i,kζk + si ∀m, ζ,∀i ∈ Vm

(16.45)

Dm
i,0 +

∑

k∈K

Dm
i,kζk ≥ (1

2
ek(1 − ζk) + 1

2
lk(1 + ζk)

)
τ

k,m
i ∀k,m, ζ,∀i ∈ {o(k)}

(16.46)

τ
k,m
i = 1 ⇒ Lm

i,0 +
∑

k∈K

Lm
i,kζk ≥ Am

i,0 +
∑

k∈K

Am
i,kζk − duek ∀k,m, ζ,∀i ∈ {d(k)}.

(16.47)

As shown earlier, the uncertainty ζk can be removed from the constraints by
assuming a worst-case realisation of the data. For example, constraints (16.43) can
be written as follows:

θ
m,l
i = 1 ⇒ Dl

i,0 − si − Am
i,0 ≥

∑

k∈K

(Am
i,k − Dl

i,k)ζk ∀m, l ∈ M,∀i ∈ Vm ∩ Vl, ∀ζ ∈ Z.
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Since this inequality should hold for any realisation of ζk, we impose the
following constraint:

θ
m,l
i = 1 ⇒ Dl

i,0 − si − Am
i,0 ≥

∑

k∈K

|Am
i,k − Dl

i,k | ∀m, l ∈ M,∀i ∈ Vm ∩ Vl.

Moreover, we note that in the constraints above there is no uncertain parameter
anymore and all the decision variables are to be determined in the first stage.
Moreover, the absolute value can be removed from the expression by introducing
an additional decision variable α

i,k
m,l :

θ
m,l
i = 1 ⇒ Dl

i,0 − si − Am
i,0 ≥

∑

k∈K

α
i,k
m,l ∀m, l ∈ M,∀i ∈ Vm ∩ Vl

−α
i,k
m,l ≤ Am

i,k − Dl
i,k ≤ α

i,k
m,l ∀k ∈ K,∀m, l ∈ M,∀i ∈ Vm ∪ Vl.

One can reformulate constraints (16.44)–(16.47) in a similar fashion and obtain the
following inequalities:

ym
i,j = 1 ⇒ Dm

i,0 + tmi,j − Am
j,0 +

∑

k∈K

β
i,j
k,m ≤ 0 ∀m,∀(i, j) ∈ A

(16.48)

− β
i,j
k,m ≤ Dm

i,k − Am
j,k ≤ β

i,j
k,m ∀(i, j) ∈ A,∀k,m

Dm
i,0 − Am

i,0 − si ≥
∑

k∈K

γ i
k,m ∀m,∀i ∈ Vm

(16.49)

− γ i
k,m ≤ Am

i,k − Dm
i,k ≤ γ i

k,m ∀i ∈ Vm,∀k,m

Dm
i,0 ≥ δk0,m +

∑

k �=k0

εm
i,k ∀k0 ∈ K,∀i ∈ {o(k)},∀m

(16.50)

− δi
k0,m

≤ 1

2
(lk0 − ek0)τ

k,m
i − Dm

i,k0
≤ δi

k0,m
∀k0 ∈ K,∀i ∈ {o(k)},∀m

− εm
i,k ≤ Dm

i,k ≤ εm
i,k ∀k,m,∀i ∈ {o(k)}

τ
k,m
i = 1 ⇒ Lm

i,0 + duek − Am
i,0 ≥

∑

k∈K

ηi
k,m ∀k,m,∀i ∈ {d(k)}

(16.51)

− ηi
k,m ≤ Am

i,k − Lm
i,k ≤ ηi

k,m ∀k,m,∀i ∈ {d(k)}.

We observe that in the constraints above there is no uncertain parameter ζk

present anymore and all the decision variables are to be determined in the first stage.
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The adjustable robust counterpart of the deterministic model presented in Chap. 4 is
thus composed from constraints (16.1)–(16.9), (16.15)–(16.22)and (16.48)–(16.51).
The objective of the mixed integer program is modelled according to the method
described in the beginning of Sect. “The Robust Counterpart”, meaning that the
following expression is added to finalise the model:

max t where ω1

∑

k∈K

∑

m∈M

∑

(i,j)∈A

tmi,j x
k,m
i,j + ω2

∑

m∈M

∑

i∈V

(
Lm

i,0 +
∑

k∈K

μm
i,k

) ≤ t

− μm
i,k ≤ Lm

i,k ≤ μm
i,k, ∀k ∈ K,∀i ∈ {d(k)},∀m ∈ M.

(16.52)

Solving the robust model will determine all the routing, assignment and trans-
shipment variables. The value obtained for the objective value corresponds to the
worst-case realisation of the data. Nevertheless, using the adjustable time variables
in the second stage, when the data is revealed, we can improve the value of the
objective without re-solving the model. That is due to the fact that in the second
stage the lateness term in the objective can still be adjusted and reduced when the
realisation of the data is favourable.

Computational Results

In this section, we report on the solutions found for the deterministic and robust
formulations of the freight routing problem and compare them to past approaches.
We explain how the test instances were generated and show the results for the
deterministic model and the robust approach.

Instance Generation

In order to test the models that were given before, we generated multiple problem
instances. These were inspired from the work of Kishan Kalicharan [8], who has
designed a transport network of eight terminal locations based on GoogleMaps data.
Since some of these locations represented clustered terminals, the original instances
were modified to include only nodes which correspond to actual physical locations
in real life. For comparison purposes, the number of locations was kept the same.
The barge travel times on waterways were assumed to be fixed and their values were
approximated using online tools which compute sea distances based on the speed of
the vessel. In our transport infrastructure, we assume that some of the locations are
terminals, where containers can be transshipped, and some of them are customers,
serving as end-locations for the containers. There is also direct connection between
every pair of locations in our model. Furthermore, we assume that the service time
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is the same at every location. There is a set of commodities (bookings with one
or more containers) that need to be transported from the terminals to the customer
locations. As in [8], the demand value of each commodity is randomly chosen in the
interval [0, 125].

Barges and trucks are available for container transport. The capacity of barges is
assumed to be of 100 containers. These barges always start at a particular terminal
which in real-life interpretation in a hub-location.We assume that there is an infinite
amount of trucks of large capacity available at every location. To ensure that all
containers can be transported, the total capacity of all vehicles is always larger than
the total demand of all commodities [9]. Finally, the due dates and release times of
the containers are chosen in such a way that the difference between them is strictly
larger than the time required by barge to travel on the direct connection arc from the
origin of the containers to their destination.

To assess the computational difficulty of our models we create instances with 8
nodes, 6 and 12 barges, and 5, 10, 20 and 30 commodities. In total, we generate
10 instances which are tested for three different objective functions by varying
the values of the weights ω1 and ω2. We denote a problem instance by km,
where k the number of commodities and m the number of available barges. Both
the deterministic and the robust model were implemented in AIMMS Developer
version 4.53, a mathematical optimisation modelling tool, and solved with CPLEX
optimisation solver (Version 12.8, 32-bit). Numerical experiments were carried out
on a DELL Latitude E7240 laptop with an Intel(R) Core(TM) i5-4310U CPU 2.00
GHz 2.60 GHz processor and 8 GB RAM memory. This laptop is operational on a
64-bit operating system.

Results of Deterministic Model

In the freight routing problem we are interested in providing an assignment of
containers to vehicles whilst minimising the total number of trucking hours and
overall lateness. In order to get an idea of how the allowed lateness affects the
solution time of the freight routing problem, the deterministic model in Chap. 4
was tested for three different objective functions. These were obtained by varying
the weights w1 and w2. Since we have no knowledge of the real costs of trucking
activities in practice, we shall gradually increase the weight ω2 of lateness and keep
the first weight ω1 = 1. The following three objective functions are considered:

• Objective 1:
∑

k∈K

∑
m∈M

∑
(i,j)∈A tmi,j x

k,m
i,j + ∑

m∈M

∑
i∈V Lm

i

• Objective 2:
∑

k∈K

∑
m∈M

∑
(i,j)∈A tmi,j x

k,m
i,j + 0.1 · ∑

m∈M

∑
i∈V Lm

i

• Objective 3:
∑

k∈K

∑
m∈M

∑
(i,j)∈A tmi,j x

k,m
i,j + 1000 · ∑m∈M

∑
i∈V Lm

i

These values give us a reasonable way to assess which objective yields a solution
fast enough. Since these weights are chosen in a way that highly penalises lateness,
the results of our model should be comparable to those obtained when completely
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Table 16.1 Objective value, solution time (CPU seconds) and gaps between the lower and upper
bounds for the freight routing model with lateness allowed. * an upper bound of 3600s was set on
the running time of the solver

Data instance Obj. 1 Gap (%) Runtime (s) Obj. 2 Gap (%) Runtime (s) Obj. 3 Gap (%) Runtime (s)

k5m6 100 0 1.94 100 0 1.94 100 0 1.8

k10m6 149.5 0 22.56 149.5 0 22.92 149.5 0 72.53

k20m6 235.5 0 263 235.5 0 245.36 235.5 0 565.52

k30m6 na na 3600* na na 3600* na na 3600*

k5m12 100 0 2.06 100 0 3.52 100 0 2.22

k10m12 149.5 0 19.23 149.5 0 24.02 149.5 0 18.9

k20m12 235.5 0 303.47 235.5 0 380.89 235.5 0 178.36

k30m12 na na 3600* na na 3600* na na 3600*

Table 16.2 Objective value,
solution time (CPU seconds)
and gaps between the lower
and upper bounds for the
freight routing model with no
lateness allowed. * an upper
bound of 3600s was set on the
running time of the solver

Data instance Objective Gap (%) Runtime (s)

k5m6 100 0 4.84

k10m6 149.5 0 114.08

k20m6 na na 3600*

k30m6 na na 3600*

k5m12 100 0 30.38

k10m12 149.5 0 21.66

k20m12 235.5 0 319.8

k30m12 na na 3600*

removing lateness variables. Table 16.1 shows the solution and computation time for
each instance and each of the three objective functions that were chosen. The results
obtained for the original model with no lateness allowed are given in Table 16.2.

What immediately stands out from the results above is the computational
difficulty of the deterministic models for freight routing as for instances with thirty
commodities k30m6 and k30m12 the solver could not find a feasible solution within
1 h for any of the models considered. However, we see that the model incorporating
lateness performs better than the original version in terms of the computational time
required and the solution found. For example, instance k20m6 can be solved to
optimality for all the three objective functions considered in the case of allowed
lateness but not for the original model. This might be due to the fact that the
model including lateness is always feasible, and therefore, it is easier for the solver
to find an initial feasible solution than in the situation of hard due dates for the
commodities.

In general, we note that the computational time significantly increases for all
cases considered when the number of commodities increases. On the other hand,
the number of vehicles does not seem to drastically influence the computational
time of the instances that we have tested since there are no compelling differences
between instances with six or twelve barges. In particular, for the instance with
twenty commodities the solver found an optimal solution three times faster when
the number of available barges was doubled. This result confirms our expectation,
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as a larger fleet of barges offers more routing possibilities and requires less
transshipments of containers to trucks.

Regarding the two model formulations, with and without allowing for lateness,
we see that the results obtained are the same. This suggests that despite the penalties,
the overall lateness obtained if all containers were transported by barge on the main
leg of the trip is still much larger than the cost resulting from trucking everything.
This is fully due to the choice of values for the parameter ω2. One could indeed
assign lower numerical values to this weight to obtain solutions with late arrivals
of commodities. However, since lateness is used mostly for computational reasons
here, we will not look into those situations. In terms of the objective function used to
generate the results in Table 16.1, optimising the problem for Objective 3 is the most
computationally expensive at least in the case of the first three instances. However,
when the number of available barges is increased to twelve, the running time of
the solver for Objective 3 is much lower than for Objectives 1 and 2. One possible
explanation for this is the fact that the weight ω2 = 1000 adds a large contribution
to the cost solution and thus the solver begins by finding a very expensive feasible
solution and then reduces it by re-assigning the commodities over the available
barges. If more barges are enabled, then more capacity is available for re-assigning
and transporting containers by water instead.

Overall, the results in this section provide an important insight into the computa-
tional difficulty required by the deterministic model and help us set an expectation
on the numerical effort for the robust model. The largest instances that we could
solve, namely k20m6 and k20m12 that have been used are comparable to the
transportation activity of a real logistics service provider.

Results of Robust Model

In this section we focus on solving the robust model explained in Sect. “Robust
Model”, in which the release times of the commodities belong to a predefined
uncertainty set. As we already know, the robust mixed integer linear program will
determine the routing of vehicles and assignment and transshipment of containers
in the first stage, leaving the time variables to be determined in the second stage,
when the uncertain release times have been revealed. It is expected that the robust
solution is more conservative and thus, of higher cost, than the original deterministic
solution. Our goal is to investigate the difference between these solutions and assess
whether the ‘price of robustness’ is acceptable given the size of the instance, the
level of uncertainty and the practical implications. Moreover, we would like to
know what is the influence of the adjustable variables on the solution and objective
function when lateness has a high and low penalty.
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High Lateness Penalties

For our numerical test we will only consider an instance of manageable size,
namely instance k5m12 with Objective 3. This objective is chosen because it has
the highest lateness penalty and it has recorded the fastest computational time for
the deterministic case, a fact which can be noticed in the last column of Table 16.1.
Larger instances have not been considered due to two main reasons. Firstly, the
solver would require a very large amount of time to solve them. Secondly, the simple
k5m12 instance is already sufficiently diverse to allow us to study different features
of the solution. In view of comparison purposes, we assume that all containers have
an uncertain release date in an interval of fixed length. We consider six possible
interval lengths of 2, 4, 6, 8, 10, and 12 h, which encompass scenarios ranging from
small to extremely large delays. For clarification, an uncertainty interval of 2 h, for
instance, suggests that the release of a container can occur 1 h before or after its
nominal release value.

The solutions obtained by solving the robust model with different sizes for the
interval uncertainty are given in Table 16.3. Some remarks are in place concerning
the last two columns of this table. When using robust optimisation, it is important to
assess what is the ‘price of robustness’, namely what is the additional cost to be paid
when immunising the solution with respect to the uncertain parameters. In order to
do that, we have also considered the situation when the release times are already
available at the beginning of the planning and solved the deterministic problem for
two different realisations: the best case, in which every container is released at the
earliest opportunity (ζ = −1) and an ‘average’ case (ζ = 0), when the release
times occurs at the midpoint of the uncertainty interval. Then we calculated by how
much the robust cost increases from the deterministic solution for both cases, and
displayed those values in Table 16.3. As we expected, the cost of the robust solution
increases as the size of the interval of the release time is enlarged. Moreover, we
observe that there is a certain amount of delay that the planning can handle. Namely,
for instances with a release delay within 3 h, the solution attained is identical to
the one obtained by solving deterministic model with nominal release time values.

Table 16.3 Objective value of the robust model, gap between the current solution and the
best lower bound found so far, computation time (CPU seconds), percentage increase from the
deterministic objective for ζ = −1, and percentage increase from the deterministic objective for
ζ = 0. * an upper bound of 36,000s was set to the execution time of the solver

Data instance

k5m12

Increase best

case

Increase ‘average’

caseRobust solution Gap(%) Runtime(s)

2 h interval 100 0 198.63 0 % 0%

4 h interval 100 0 1854.22 0% 0%

6 h interval 100 0 379.25 0% 0%

8 h interval 1415 8.13 36,000* 1315% 8.84%

10 h interval 1465 11.26 36,000* 1365% 12.69%

12 h interval 1595.5 18.52 36,000* 1495.5% 22.73%
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Table 16.4 Transportation characteristics of the robust planning

Data instance k5m12 Number of commodities fully trucked Number of barges used

2 h interval 0 6

4 h interval 0 5

6 h interval 0 5

8 h interval 1 2

10 h interval 4 1

12 h interval 3 2

Table 16.5 Statistics concerning the number of time variables that are adjusted by the affine
rules. A random realisation ζ �= 0 was used for checking whether the time variables have
adjusted or not

Data instance
k5m12

Number of adjusted
time variables

Number of adjusted
arrivals

Number of adjusted
departures

2 h interval 7 3 4

4 h interval 0 0 0

6 h interval 3 1 2

8 h interval 0 0 0

10 h interval 0 0 0

12 h interval 10 5 5

Regarding the ‘price of robustness’, we see that for a data realisation at the midpoint
of the uncertainty set (not a favourable situation), the difference between the robust
solution and the best deterministic solution is at most 22.73% (corresponding to
a ±6 h margin for delay). The objective value for the robust solution alone is not
sufficiently insightful to assess how the transportation changes when the uncertainty
interval increases. To give a measure of this, we include the number of commodities
that are transported only by truck and the utilisation of barges in Table 16.4. It is
apparent from this table that when commodities are released with significant delay
(larger than 3h), it becomes impossible to transport them by barge. However, the
uncertainty intervals that we considered were still not sufficiently large to enforce a
transportation plan with no barge being utilised.

The numbers of adjusted time variables for every uncertainty interval are
highlighted in Table 16.5. From here, we can immediately notice that the affine
rules that were proposed indeed induce the adjusting of arrival and departure times.
However, it is striking that for uncertainty intervals of 4 h and 8 h, no adjustment
occurs. Another important observation from Table 16.5 is that, in the case when
adjustment occurs, it does not affect all time variables which were assigned a
numerical value in the solution.
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Fig. 16.3 Example of a transportation network with three nodes and two commodities

Low Lateness Penalties

When the lateness penalties are assigned sufficiently small numerical values, the
adjustable variables can directly influence the value of the objective function. In
order to illustrate this idea we have repeated the test from the previous section
using Objective 1 (having a lateness penalty of 0.1). However, due to the high
computational effort required by the solver, we were not able to record results in
a reasonable amount of time as to include them in this report. Nevertheless, we
will demonstrate the benefits of adjusting time variables using a simple example
which still incorporates all the transportation elements that were shown by the other
generated instances. Consider the transportation network in Fig. 16.3. We assume
that there are two containers to be released at Location 1 in the interval [8,10]. One
needs to arrive at Location 2 by time unit 14 whilst the other has the same due time
but it is destined for Location 3. It is assumed that there are sufficient barges and
trucks to carry out these transport requests.

For this particular instance, the worst-case solution given by the robust model
in Chap. 5 with Objective 1 has cost 1.2. This corresponds to the situation when
these containers are released at time unit 10. Both containers will be taken by barge
to Location 2, and from there one will be trucked to its final destination, where
it records a lateness of 2 h. However, if the release occurs at time unit 8, then
the adjusted cost will be of only 1 cost unit, since there is no lateness recorded
at Location 3 anymore.

This result also shows that unlike in the results shown in the previous section, in
this case it is possible to adjust the time variables along the routes which include a
transshipment. This is due to the fact that we have included in the model constraints
of the form

Am
i,k ≥ λ, ∀i ∈ V, k ∈ K,m ∈ M, (16.53)

where λ is some small scalar (chosen to be 1 in this example). These ensure in this
case that the affine coefficients of the adjustable arrival times will be non-zero. We
see that by including these constraints in the model, we can guarantee the adjustment
of all time variables.
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This example demonstrates that the affinely adjustable robust optimisation
framework can be used to obtain improved solutions for the freight routing problem
with a high tolerance for lateness. However, the choice for the lateness parameter as
well as for the scalar λ is instance-specific. Therefore, at this stage of the research,
it is difficult to make assertions about how the robust model can be used for any
general instance.

Discussion

In this section, we discuss the most important findings from the numerical experi-
ments and where necessary, providemore insight into the results obtained by closely
inspecting the solutions. The deterministic formulation of the freight routing can
be successfully solved exactly with the branch-and-bound method for instances as
large in size as those including twelve vehicles and twenty commodities. These
instances are comparable to what is encountered in practice. However, the relatively
large computational time required by the solver is likely due to two main factors,
namely the large amount of (binary) decision variables in the model as well the many
symmetries of the problem. Given the results in Table 16.1, we see that allowing for
lateness with high penalties yields a model which can be solved faster than the
original version with hard deadlines.

First of all, the computational results of the simple instance showed that we
can obtain robust feasible solutions for the container freight routing problem by
solving exactly the robust counterpart. These solutions correspond to transportation
plans that can be carried whenever the release time of a container falls within a
pre-specified interval. An increase in the size of this uncertainty interval induces
higher solution costs, since containers which have a short delivery span will not
be transported by barge. This results is fully confirmed by the data in Table 16.2.
However, we see that the price to be paid for the robustness of solutions is quite high.
As an example we consider the k5m12 case with an 8 h interval. When we assume
that the release times of the containers can deviate from their nominal value by 4
h, and they in fact are released on the earliest time possible, the transportation plan
obtained is 1315% more expensive than the plan that could have been achieved if
all data was known beforehand. If we assume a less favourable realisation, in which
half of the commodities are released at their nominal value, and the other half at the
latest time possible, the increase is only of 8.84%. Given the lack of information
on the real-life situation, therefore difficult to assess if the price of robustness is
acceptable when modelling highly uncertain releases for the containers. However,
we can state that in a practical instance in which one can infer from historic data that
parameters often attain ‘bad realisations’, the robust transport plan can be employed
in exchange for a reasonable cost increase.

The price of robustness can also be regarded from a slightly different perspective.
We consider a situation in which given some uncertainty intervals, one makes a
deterministic plan assuming a certain nominal value for the releases. If the actual



292 I. Chiscop

realisation of the parameters is worse than the nominal values, then the deterministic
solution is likely to be infeasible. This enforces re-planning of the current vehicles
and container assignment. Although there are many ways in which one can re-route,
the newly obtained transportation solution might have a higher cost than the robust
solution that could have prevailed over the delays.

We have applied the affinely adjustable robust optimisation framework in order
to allow the arrival and departure times of the vehicle to change according to the
realisation of the container release and induce some degree of flexibility in the
planning. Whilst the objective value of a solution remained unchanged, due to
very high lateness penalties, some vehicles might be able to arrive or depart earlier
at certain locations. Concerning the actual adjustment of variables, it was at first
surprising to notice the low proportion of time variables are affected by the changes
in data realisation. However, at a closer inspection of the container routes given by
the solutions we were able to find a possible explanation for this. We have found
that adjustment is only effective for arrival and departure times on a particular kind
of route. In other words, for direct routes, on which a commodity is shipped from
its origin location to their destination by means of a single vehicle, adjustment takes
place. Otherwise, if a switch of vehicle, transshipment or additional commodity
pickup occurs on the way, then only arrivals and departures that can be adjusted
are those at the beginning location of the route. When inspecting the solution, we
have found that the instances k5m12 with 4 h, 8 h and 10 h intervals, in which
no adjustment took place, indeed included no direct routes. Moreover, adjustment
seemed to be particularly successful for the case with the highest uncertainty
interval. Essentially, since all commodities are directly trucked from origin and
destination in this case, all the arrivals and departures are adjusted.

It is difficult to further explain why adjustment only affects direct routes, but
it might be related to the fact that the vehicle synchronisation and transshipment
constraints in the robust model force the affine coefficients of the adjustable
variables to take the value zero. This suggests that on non-direct routes it is
difficult to ensure adjustment with respect to all the decisions made on that route:
transshipment, vehicle switch, loading or unloading of commodities. Another factor
which may influence adjustment is the symmetry of solutions and the fact that the
same objective can be achieved by many different routes. For instance, there are
solutions in which a barge is assigned for every commodity, resulting in significantly
less transshipments, which have the same objective as a solution with a smaller
barge utilisation. Nevertheless, we were able to produce an example in which the
robust model with an additional sets of constraints gives a fully adjusted solution,
which is cheaper than the worst-case scenario, if the data assumes a favourable
realisation. Therefore, we have shown that the adjustment of variables can result in
a direct improvement of the objective function. For a generalisation of this result, a
sensitivity analysis of the instance parameters on the lateness term in the objective
is required.
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