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Abstract Parametric probability models, such as Beta-Geometric, are workhorse 
models for contractual customer churn prediction. Due to their simplicity, robust-
ness to missing and censored data, and managerially relevant statistics, those models 
are applied to different business sectors such as healthcare and finance. Nonethe-
less, the existent models tend to assume a stationary churn process or an iden-
tical distribution of latent churn rate. The Beta-Logistic model by Hubbard et al. 
(Survival prediction-algorithms, challenges and applications. PMLR, pp 22–39 [17]) 
allows for time-invariant covariates and captures non-identically distributed indi-
vidual churn. To further accommodate time-varying determinants of churn rate, we 
apply a Grassia(II)-Geometric (G2G) model by Fader and Hardie (Incorporating 
time-varying covariates in a simple mixture model for discrete-time duration data 
[9]). Grounded on the flexible model structure, we propose Bayesian estimation 
and inference of G2G and empirically assess its prediction performance. Using a 
workforce dataset from an electronic manufacturing service company, we show that 
G2G with greater flexibilities outperform extant models in terms of model fitness 
and employee churn prediction. Additionally, we identify major determinants of 
churn processes in manufacturing plants and generate cohort-wised survival curves. 
With built-in interpretability and posterior inference, our Bayesian G2G modeling 
approach can be useful for churn prediction in marketing and operations management. 
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Introduction 

Probability models for churn prediction in contractual settings, e.g., Beta-Geometric 
(BG) [8] and Beta-Weibull [13], have been used in customer retention across business 
sectors, e.g., online platforms [19], video/music streaming [17], and insurance [27]. 
The use of such models goes beyond churn prediction and extends to predicting time 
to purchase [14], patient revisit [20], conversion rate of online advertising [17], and 
customer-based valuation of business [5, 21]. The models are robust to incomplete 
information [7], able to leverage interval-censored and non-censored data [10], and 
provides managerially relevant statistics, e.g., residual lifetime, lifetime value, and 
their distributions [5, 6, 12]. Despite the proven efficacy, some criticize those models 
for being covariate-free and hence unable to fully capture group-level and individual-
level heterogeneity [22, 23]. Hubbard et al. [17] introduce the Beta-Logistic (BL) 
model—an extended BG with time-invariant covariates—and empirically improve 
churn prediction performance in streaming subscribers. While relaxing the restrictive 
assumption that all individuals share an identical distribution of latent churn rate, BL 
assumes the heterogeneous distributions to be time-invariant (stationary). That is, BL 
does not allow for time-varying covariates such as seasonality and tactical marketing 
activities that are common in many business sectors and result in nonstationary 
distributions of latent attrition/churn rate [1, 21, 26]. 

To fill the gap, Fader and Hardie [9] propose a Grassia(II)-Geometric (G2G) model 
with time-varying covariates, which captures heterogeneous and non-stationary 
latent churn process. Notwithstanding the theoretical flexibility, G2G’s efficacy has 
not been empirically examined, and it remains unclear whether G2G effectively 
improves the less generic BG (assuming a common churn rate distribution) and BL 
(assuming heterogeneous yet stationary churn rate distributions). We collaborate 
with a leading electronic manufacturing services (EMS) company and assess the 
G2G for predicting employee churn in its production plants. Due to high turnover 
rates, individual heterogeneities, and seasonal variations in employee churn risks 
(e.g., there are more competing offers in peak seasons), the focal EMS requires a 
flexible yet interpretable model for predicting churn proportion and remaining life-
time for labor planning and hiring in advance. Motivated by the conceptual similarity 
between customer and employee churn [24, 25], our analysis shows that stochastic 
churn modeling can be useful in not only consumer services but also workforce 
operations. 

The contribution of this paper is multi-facet. First, we apply Bayesian estimation 
to BL and G2G, going beyond prior studies’ focal interest in churn prediction and 
instill posterior inference in such models. Second, we empirically show that the 
more generic and flexible G2G significantly outperforms both BG and BL models. 
Third, we find that covariate-free BG precisely projects the global survival curves 
and job durations, whereas G2G effectively captures individual heterogeneity and 
satisfactorily projects local curves that BG cannot capture. Last, unlike some machine 
learning approaches that are short of rationales and difficult to obtain test statistics, the 
proposed Bayesian G2G is highly interpretable with readily available credible regions
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of model estimates, such that managers can gauge the significance of predictors and 
their impact on the metrics of managerial relevance. 

General Problem and Models 

Contractual Churn and Probability Modeling 

Per [11], the problem of churn modeling in general can be categorized into four 
quadrants by two dimensions: transaction opportunity (continuous/discrete) and rela-
tionship type (noncontractual/contractual). This paper focuses on contractual and 
discrete-time setting that matches the EMS operations, in which employees have an 
opportunity to decide on whether quitting from production plants at the end of each 
period. An employee is considered “survival” if he/she stays on-job in the beginning 
of the next period. Otherwise, he/she is considered “churn”. 

Throughout the paper, we use index i to represent individuals, and Ti ∈ Z+, 
Ci ∈ {0, 1}, and Xi ∈ Rd refer to one’s duration of survival subject to right-
censoring, censor indicator (“1” censored survival, “0” observed churn instance), 
and d-dimensional covariates. For notational brevity, we use D = {Ti , Ci , Xi }N 

i=1 to 
denote data with N individuals and {·} to represent all model parameters. Mathe-
matically, the objective of stochastic churn modeling is to optimize {·}, including the 
coefficients on covariate effects and distributional parameters, such that the overall 
likelihood function is maximized, 

P(D|·) = 

⎧ 
⎨ 

⎩

∏

i :Ci =0 

P(Ti |·) 
⎫ 
⎬ 

⎭ · 
⎧ 
⎨ 

⎩

∏

i :Ci =1 

S(Ti |·) 
⎫ 
⎬ 

⎭ (6.1) 

where the first part is the probability mass function P(T |·) for employee churned 
(Ci = 0) and the second part is the survival function S(T |·) for employee survival 
(Ci = 1). Given the estimated model parameters, one can easily apply the survival 
function S(Ti |·) to infer an individual’s discounted expected residual lifetime (DERL) 
[5]: 

DE RL(d|·, n) = 
∞∑

t=n 

S(t |·) 
S(n − 1|·) ·

(
1 

1 + d

)t−n 

(6.2) 

where n stands for the number of periods an individual has survived and d denotes a 
discount rate. The DERL can be adapted to predict an unseen individual’s expected 
lifetime (EL) by setting n = 1. That is,
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E L(d|·) = 
∞∑

t=1 

S(t |·) ·
(

1 

1 + d

)t−1 

(6.3) 

Probability Churn Models from Marketing 

Beta-Geometric (BG) 

Beta-Geometric (BG) is built on a simple idea assuming that at each period, an 
individual determines whether to stay active by flipping a two-sided coin with a latent 
attrition parameter θ (i.e., “head” one ends the contract, “tail” one renews it). The 
number of trials before showing up of the first head follows a geometric distribution, 
whereas the probability of attrition θ is heterogeneous across individuals and static 
over time. Assuming heterogeneous θ follows a beta distribution, the geometric churn 
process results in the BG model, i.e., 

P(Ti |θ ) = θ (1 − θ )Ti −1 , S(Ti |θ ) = (1 − θ )Ti , f (θ |α, β) = 
θ α−1(1 − θ )β−1 

B(α, β) 
(6.4) 

Integrating out the latent (θ ), the probability mass and survival functions can be 
re-written as: 

P(Ti |α, β) = 
B(α + 1, β  + Ti − 1) 

B(α, β) 
, S(Ti |α, β) = 

B(α, β + Ti ) 
B(α, β) 

(6.5) 

where α and β are model parameters to be estimated such that the overall likelihood 
P(D|·) is maximized. 

Beta-Logistic (BL) 

Unlike BG that assumes a stationary and common beta distribution of latent churn 
rate θ , BL extends BG by leveraging covariate information and results in stationary 
yet heterogeneous beta distributions. More specifically, BL makes μi (mean) and 
σ 2 i (variance) of the latent attrition rate θ functions of individual-specific and time-
invariant covariates (Xi =

[
xi,1, . . . ,  xi,d

]
), i.e., 

μi = log it
(
γμ,0 + γμ,1xi,1 + . . .  + γμ,d xi,d

)
, 

σ 2 i = exp
(
γσ,0 + γσ,1xi,1 + . . .  + γσ,d xi,d

)
(6.6)
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Our parameterization
(
μ, σ 2

)
differs from (α, β) in [17] for ease of interpretation. 

Technically, the formulas below allow one to transform
(
μi , σ  2 i

)
back into (αi , βi ), 

and compute the likelihood using P(Ti |αi , βi ) and S(Ti |αi , βi ). 

αi =
(
1 − μi 

σ 2 i 

− 
1 

μi

)

μ2 
i , βi = αi

(
1 

μi 
− 1

)

(6.7) 

Since the covariates in combination with the coefficients (
[
γμ,0, . . . , γμ,d

]
and[

γσ,0, . . . , γσ,d
]
) fully determine the parameters μi and σ 2 i of latent churn rate distri-

butions, the overall likelihood of BL is conditioned on the coefficients, which leaves 
them the only parameters to be optimized. 

Grassia(II)-Geometric (G2G) 

Previous studies have acknowledged that the parametric formulation of BG may fit 
data poorly sometimes owing to ignoring time-varying factors and duration depen-
dence, e.g., long-living individuals tend to live longer [8, 13]. For such contexts, we 
need to consider a geometric process with dynamic attrition/churn rate that is generic 
and flexible. That is, 

P
(
Ti |θi,1, . . . , θi,Ti

) = θi,Ti 

Ti −1∏

t=1

(
1 − θi,t

)
, S

(
Ti |θi,1, . . . , θi,Ti

) = 
Ti∏

t=1

(
1 − θi,t

)

(6.8) 

However, it is impractical to apply separate prior for each θi,t and integrate over 
all the priors. Alternatively, Fader and Hardie [9] propose a Grassia(II)-Geometric 
(G2G) model that replaces the Beta prior in BG with a Grassia(II) distribution. Their 
formulations based on the clog-log link and gamma heterogeneity are1 : 

θi,t = 1 − exp
(−ηφi,t

)
, P(η) ∼ Gamma(a, b) (6.9) 

where φi,t captures observable heterogeneity and subsumes effects of time-invariant 
and time-varying covariates over time. Let Xc 

i = [
xc 

i,1, . . . ,  xc 
i,d

]
be d-dimensional 

time-invariant covariates (with effect γ c) and Xv,t 
i = [

xv,t 
i,1 , . . . ,  xv,t 

i,d ′
]
be d’-

dimensional time-varying covariate at timing t (with effect γ v), φi,t brings together 
the stationary component (γ cxc) and non-stationary component (γ v xv,t ): 

φi,t = exp
(
γ c X c 

i + γ v Xv,t 
i

) = exp
(
γ c 
1 x

c 
i,1 + . . .  + γ c 

d x
c 
i,d + γ v 

1 x
v,t 
i,1 + . . .  + γ v 

d ′ xv,t 
i,d ′

)

(6.10)

1 a and b denote the shape and rate parameter of Gamma. 
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The above formulation breaks the limitation of stationarity and exclusively time-
invariant covariates in BL. Integrating P

(
Ti |θi,1, . . . , θi,Ti

)
and S

(
Ti |θi,1, . . . , θi,Ti

)

with respect to the latent η, we can derive churn rate (P(T |·)) and survival rate 
(S(T |·)), which constitute the likelihood function and are directly conditioned on 
Gamma parameters (a, b) and coefficients (γ c and γ v),2 

P(Ti |a, b, γ  ) =
{

b 

b + ∑Ti −1 
t=1 φi,t

}a 

−
{

b 

b + ∑Ti 
t=1 φi,t

}a 

, 

S(Ti |a, b, γ  ) =
{

b 

b + ∑Ti 
t=1 φi,t

}a 

(6.11) 

Empirical Methods and Data 

EMS Workforce Data 

Aimed at examining the model’s efficacy and eliciting insights potentially valuable 
to workforce management practice, we co-work with an anonymous EMS company, 
Alpha, who provides us with a dataset on 20,000 employees over 145 weeks. In the 
dataset, in addition to Ti (duration of survival) and Ci (censor status), each employee 
is characterized by 28 time-invariant covariates, including gender, age, hometown, 
onboard month, category of recruit/contract, mean salary bonus, ratios working on 
rest day and working on daytime, and mean working hour. In addition, 16 time-
varying covariates such as cumulative weeks of survival and season/month indicators 
for each period are included for capturing time dynamics in distributions of θi,t . In  
Table 6.1, we summarize and explain our operationalization of time-invariant (x1 to 
x28) and time-varying covariates (x29 to x44).

In Fig. 6.1, we show the distribution of employee’s on-job duration (with density 
rescaled). Employees onboarding in Year 1 (during weeks 1–52) are on the left 
panel, whereas employees onboarding in Year 2 (during weeks 53–104) are on the 
right panel. As can be seen, both distributions are right-skewed and have a majority 
of employees having duration less than 20 weeks. Moreover, both panels exhibit 
bimodal curves for duration between 0 and 10 weeks and multi-modals for duration 
longer than 20. The shape implies mixtures of heterogeneous employee cohorts, 
echoing the proposal of BL/G2G to bring in covariates to explicitly account for 
cross-sectional heterogeneity which covariate-free BG cannot capture.

2 It should be reminded particularly that the coefficient vector does not involve an intercept. 
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Table 6.1 Summary of covariates 

Covariate Definition Covariate Definition 

x1 Male 1 if male x23 C-Category (F) 1 if contract category 
= ‘full-time’ 

x2 Age (≤20) 1 if age  ≤ 20 x24 C-Category (D) 1 if contract category 
= ‘dispatch’ 

x3 Age (21–30) 1 if 20 < age  ≤ 30 x25 Salary bonus Mean salary bonus 

x4 Age (31–40) 1 if 30 < age  ≤ 40 x26 Rest day work Ratio working on rest 
day 

x5 Area (E) 1 if hometown = 
‘East’ 

x27 Shift ratio Ratio working on 
daytime 

x6 Area (N) 1 if hometown = 
‘North’ 

x28 Work hour Mean working hour 

x7 Area (NE) 1 if hometown = 
‘North-East’ 

x29 Cum. Survival Cumulative weeks of 
survival 

x8 Area (NW) 1 if hometown = 
‘North-West’ 

x30 Cum. Survival2 Squared term of Cum. 
Survival 

x9 Area (SC) 1 if hometown = 
‘South-Central’ 

x31 Is Spring 1 if next period is in  
Spring 

x10 Onboard (1) 1 if onboard 
month = ‘1’ 

x32 Is Summer 1 if next period is in  
Summer 

x11 Onboard (2) 1 if onboard 
month = ‘2’ 

x33 Is Autumn 1 if next period is in  
Autumn 

x12 Onboard (3) 1 if onboard 
month = ‘3’ 

x34 Is January 1 if next period is in  
January 

x13 Onboard (4) 1 if onboard 
month = ‘4’ 

x35 Is February 1 if next period is in  
February 

x14 Onboard (5) 1 if onboard 
month = ‘5’ 

x36 Is March 1 if next period is in  
March 

x15 Onboard (6) 1 if onboard 
month = ‘6’ 

x37 Is April 1 if next period is in  
April 

x16 Onboard (7) 1 if onboard 
month = ‘7’ 

x38 Is May 1 if next period is in  
May 

x17 Onboard (8) 1 if onboard 
month = ‘8’ 

x39 Is June 1 if next period is in  
June 

x18 Onboard (9) 1 if onboard 
month = ‘9’ 

x40 Is July 1 if next period is in  
July 

x19 Onboard (10) 1 if onboard 
month = ‘10’ 

x41 Is August 1 if next period is in  
August 

x20 Onboard (11) 1 if onboard 
month = ‘11’ 

x42 Is September 1 if next period is in  
September 

x21 R-Category (F) 1 if recruit 
category = 
‘full-time’ 

x43 Is October 1 if next period is in  
October

(continued)
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Table 6.1 (continued)

Covariate Definition Covariate Definition

x22 R-Category (D) 1 if recruit 
category = 
‘dispatch’ 

x44 Is November 1 if next period is in  
November

Fig. 6.1 Density plots of survival (on-job) duration 

Bayesian Estimation and Inference 

For BL and G2G with covariates, to construct the posterior distributions of covariate 
effects γ from Bayesian inference, we adopt Gibbs sampling—a Markov Chain 
Monte Carlo (MCMC) method for model calibration (see [4] for an extensive review). 
Based on a preliminary test on convergence and distribution of covariate effects, 
we adopt independent normal priors [15]3 with identical parameters. Specifically, 
we set N (0, 0.2) for G2G and N (0, 0.5) for BL. Based on the simulated posterior 
distributions, we estimate posterior modes (i.e., maximum a posterior, MAP) and the 
credible regions of covariate effects. Let N (·) be the normal density function, and 
define collection {·} = {

γ j , γ− j
}
, where γ j denotes the jth coefficient being updated 

and γ− j be all the other coefficients, the full conditional distribution P(γ j |γ− j , D) 
can be simply written as: 

P
(
γ j |γ− j , D

) ∝ P(D|·) × N
(
γ j

)
(6.12) 

We calibrate the models on 2000 randomly sampled employees who start their 
jobs in Year 1, whose survival (employment) durations are censored at week 52. 
For the models, we run 2000 MCMC iterations and discard the first 1000 draws

3 In the preliminary analysis, we found that improper prior such as uniform may lead to unstableness 
in optimization. 
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as burn-in samples. On the other hand, we select employees who join in Year 2 as 
test samples for the sake of assessing out-of-sample prediction performance. Survival 
durations for those in test set who survive after week 104 are censored. We apply log-
likelihood (LL), Bayesian Information Criterion (BIC), Akaike Information Criterion 
(AIC) to assess the models’ fitness, and use C-statistics [16] to evaluate the models’ 
performance on projecting hold-out employees’ job duration: 

C =
∑

i �= j

{
I (Ti > Tj ) · I (E Li > E L j )

} · I (C j = 0
)

∑
i �= j I (Ti > Tj ) · I

(
C j = 0

) (6.13) 

of which E L  denotes the expected lifetime assuming no discount (i.e., d = 0). 

Data Analysis 

We first assess the computational efficiency that is critical for model adoption and 
application. In Table 6.2, we report the CPU time it takes to calibrate the fore-
going models. We implement the code in R, and execute the programs on a platform 
with a Win10 operating system, an Intel i7-1165G7 processor, and a 16 GB RAM. 
Compared with the 2-parameter BG with gradient-based optimization, which takes 
35.67 s for calibration, MCMC-based BL (with 30 parameters) and G2G (with 44 
parameters) take 701.31 and 10,009.55 s (equivalently, 19.66 and 280.62 times of 
BG’s execution time). Not surprisingly, the most sophisticated G2G—with time-
varying and individual-specific latent churn rate—comes at higher computing cost. 
Nonetheless, given its unique flexibility in modelling heterogeneous and nonsta-
tionary churn distributions, we posit the estimation cost induced by generic formu-
lations is acceptable and affordable in modern computing. We then formally assess 
the performance gains of G2G. 

Table 6.3 reports the fitness and performance of the foregoing models (i.e., LL, 
AIC, BIC based on training samples as well as LL and C-index on hold-out samples). 
Taking BG as our benchmark, we find that modeling time-invariant covariates makes 
BL rather flexible and able to capture cohort-level stationary heterogeneity, leading to 
better fitness on in- and hold-out samples. G2G with time-invariant and time-varying 
covariates enhances performance further and outperforms BL. The improvement of 
G2G over BL is more salient than that of BL over BG, evidencing the non-trivial

Table 6.2 Computational cost 

# of parameters Method CPU time (s) Normalized time 

BG 2 Gradient 35.67 1 

BL 30 MCMC 701.31 19.66 

G2G 44 MCMC 10,009.55 280.62 
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Table 6.3 Performance evaluation 

Year 1: in-sample 
(N = 2000) 

Year 2: out-of-sample 
(N = 11,673) 

LL AIC BIC LL C-Statistic 

BG −6360.33 12,724.66 12,735.86 −34,875.05 0.500 

BL −5741.50 11,542.99 11,711.02 −33,179.62 0.826 

G2G −5031.14 10,150.28 10,396.72 −31,235.94 0.832 

value of accounting for time-varying covariates and nonstationary heterogeneity 
distributions of latent churn. 

As for projecting employees’ survival, BL and G2G achieve C-statistics of 0.826 
and 0.832, respectively. These are high values considering the high uncertainty of 
employee churn data and simplicity of the models’ parametric formulations [28]. 
Because the expected lifetimes that BG produces are not differentiable between indi-
viduals, leading to a C-statistic of 0.500, we apply the same protocol to train a survival 
forest [18]. The survival forest achieves a C-statistic of 0.835. This finding implies 
that simple parametric yet interpretable formulations do not necessarily undermine 
prediction accuracy. 

Given the significantly better model fitness and prediction performance of G2G, in 
Table 6.4, we report the MAP effect estimates and 90% credible regions of covariates 
[2]. For brevity, we report only the top-10 covariates based on their absolute effect 
size in descending order. 

As expected, Salary Bonus as a motivating factor outranks other covariates and 
reduces employee churn. The ratio working on daytime (Shift Ratio) tells if one often 
works on normal shift hours, thus reducing employee churn. Full-time (R-Category 
(F)) and dispatch job categories (R-Category (D)), compared to part-time job (the 
baseline category), are positions seeking regular and long-term workers. Therefore, 
employees who have full-time and dispatch jobs are less likely to churn. Negative

Table 6.4 Effect estimates 
and credible regions of G2G 
estimates 

Covariate Estimates (MAP) Credible region 

1 Salary bonus −3.995 (−4.24, −3.52) 

2 Work hour −2.526 (−2.64, −2.35) 

3 Rest day work −1.775 (−2.30, −1.41) 

4 Shift ratio −1.620 (−1.84, −1.37) 

5 R-category (F) −1.063 (−1.31, −0.70) 

6 R-category (D) −1.048 (−1.23, −0.83) 

7 Age (≤20) −0.806 (−0.95, −0.55) 

8 Age (21–30) −0.727 (−0.87, −0.55) 

9 Age (31–40) −0.607 (−0.77, −0.37) 

10 Is Summer −0.518 (−0.69, −0.36) 



6 Stochastic Churn Modeling with Dynamic Attribution … 67

relationship between age and churn rate (Age (≤20), Age  (21–30), Age (31–40)) 
makes sense in that physically fit younger workers are generally better suited for 
labor-intensive tasks. 

Some of the estimated effects are counterintuitive: (a) Why are employees having 
longer mean working hour (Work Hour) and having higher ratio working on rest day 
(Rest Day Work) less likely to churn? (b) Additionally, why is the latent churn rate 
of an employee lower, when the upcoming period is in Summer (Is Summer)? An 
unpublished interview by the authors’ colleague reveals that the majority of Alpha’s 
employees are job-hoppers that seek over-time working for extra bonus, thus making 
(a) reasonable. For (b), it reveals that salary level for the industry is lower during 
May to June, explaining why employees are unlikely to churn in Summer. 

The above discussion focuses specifically on the model fitness and the covariate 
effects. Below we examine if the estimated effects consistently reflect survival curve 
at aggregate-level. In Fig. 6.2, we project survival curves using the calibrated BG 
and G2G models. In addition to the global curve (on the left panel), we take Salary 
Bonus with the strongest effect as an illustrative example to divide the sample into 
two sub-groups. We project two local curves, i.e., one with bonus below-median (on 
the middle) and another with bonus above-median (on the right). 

For the full sample, except for a few shocks uncaptured, overall both BG and G2G 
fit the global curve fairly well (with mean discrepancy less than 4%). The result is 
surprising given the simplicity of BG as we introduced in Sect. 2.2.1. As for  the two  
groups, despite the larger discrepancy between data and model projections, G2G does 
a decent job at characterizing the two local curves. Arguably, BG will be useful and 
robust if a decision-maker is only interested in inferring the curve reflecting global 
survival rate. Nonetheless, the proposed Bayesian G2G will be a more effective and 
appropriate technique for one to predict the survival rate/remaining job duration of 
an individual or a specific cohort over time. 

To offer managers practical insights in workforce planning, we project survival 
curves for each individual employee, and by pairwise CORT dissimilarity [3] and 
hierarchical clustering we cluster the curves. In Fig. 6.3, we show the aggregated

Fig. 6.2 The survival curves 
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Fig. 6.3 Survival curves 
clustering 

Table 6.5 Averages of 
features in all clusters 

High-risk Medium-risk Low-risk 

Salary bonus 0.043 0.244 0.591 

Work hour 0.768 0.798 0.807 

Rest day work 0.440 0.474 0.469 

Shift ratio 0.289 0.526 0.512 

R-category (F) 0.110 0.185 0.282 

R-category (N)5 0.890 0.815 0.718 

Age (≤20) 0.100 0.129 0.148 

Age (21–30) 0.725 0.723 0.657 

Age (>30) 0.175 0.148 0.195

survival curves,4 and summarize their mean characteristics in Table 6.5. We identify 
three clusters: High-Risk, Medium-Risk, and Low-Risk. High-Risk has more of 20s 
and dispatch workers, who seldom work overtime and in irregular hour for extra 
bonus. Medium-Risk is younger, while having more full-time workers and extra 
working hours and bonus. The Low-Risk, while being the oldest and having fewer 
shifts on daytime and rest day, has the highest proportion of full-time workers and 
the most working hours and bonus. Clearly, the clusters are high in some drivers of 
survival tendencies but low in the others. For churn anticipation and retention, we 
suggest one to focus on the factors strictly increasing or decreasing survival risk (e.g., 
Salary Bonus), or to focus on the combination of drivers (e.g., high Salary Bonus 
and low Shift Ratio) for the sake of developing countermeasures against employee 
churn. 

4 For each of the clusters, we produce the aggregated survival curve by taking average over all 
member curves in the cluster. 
5 For ease of interpretation, we denote dispatch and part-time jobs by R-Category (N). 
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Conclusion 

Marketing modelers have invented a lasting stream of contractual churn models 
and exerted their influences over applications outside the realm of marketing in 
the past two decades. However, numerous models ignore time-varying covariates 
by assuming stationary and identical distributions of latent attrition. Such models 
are thus restrictive and not flexible enough for tenure duration predictions in many 
business sectors and problem settings. Fader and Hardie [9] propose G2G that offers 
a generic structure for incorporating time-varying covariates. Instilling Bayesian 
inference and estimation into G2G, this paper empirically assess the model’s efficacy 
and the value of time-varying covariates in predicting employee churn, which shares 
a great similarity with customer churn. 

Our analysis of workforce data from manufacturing plants shows that stochastic 
churn modeling from marketing can be useful for operations management. We find 
that G2G allowing for nonstationary heterogeneity distributions and time-varying 
covariates has the best performance in model fitness and survival rate projection. 
Furthermore, we identify the drivers of employee churn, including factors that are 
immediately comprehensible (e.g., upcoming seasonality, recruitment category, and 
age) and counterintuitive ones (mean working hour and working on rest day). When 
project survival curves globally and locally, the consistently decent performance 
of G2G suggests that managers can apply G2G to predict churn proportion and 
remaining lifetime for labor planning and hiring in practice. 

Notwithstanding the promising result, our modeling effort is not without limita-
tions and leaves several directions for continual explorations. First, we encourage 
subsequent studies to triangulate our findings using datasets from different firms and 
industries. Such efforts will enhance the validity of our Bayesian G2G modeling 
approach. Second, the fine-tuning of Gamma prior and the MCMC calibration of 
covariate effects is computationally intensive. Hence, computationally efficient opti-
mization method of G2G deserves more investigations. Third, in this paper, we 
assume homogeneous employee value and calibrate the models accordingly. Models 
aimed at delivering maximum workforce performance (e.g., working output and 
return-on-investment ratio) should take heterogeneous employee value into account. 
In sum, the probability models provide unique value on prediction and inference front, 
and G2G having more realistic assumptions is a promising framework in theory and 
practice of stochastic churn modeling. 
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