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Abstract The increase of Electric Vehicle (EVs) adoptions has achieved a double 
harvest of environmental and economic benefits and brings an extra burden on the 
urban power grid. To this end, efforts have been made to optimize chargers’ location 
and power scheduling to mitigate the adverse impacts of increasing EVs. However, 
the long duration and high cost of chargers installation curbs further EVs adop-
tion, which also triggers less charging accessibility for urban EV travel. In practice, 
the low utilization rate of charging piles leads to high idle rates, which motivates 
charging aggregators to incorporate demand response (i.e., orderly charging in our 
context) into traditional charging services. In such a context, we attempt to uncover 
economic and environmental benefits created by orderly charging in the scenario of 
private charging piles for self-use. The results reference the operation management 
of personal chargers in the community and the orderly charging scheduling of EVs. 
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Introduction 

EVs with good environmental and economic benefits have been rapidly developed 
and utilized worldwide. Governments of various countries have formulated plans to 
develop new energy vehicles and introduced support and incentive policies on the 
supply side. On the demand side, residents gradually adopt EVs. The global sales 
and proportion of new energy vehicles are increasing yearly. 

However, as private EV ownership increases, so does the need for charging. The 
global EV sales bucked the trend against the backdrop of the new crown epidemic 
causing total car sales to fall by one-fifth in 2020, 43%, reaching over 3 million 
[1]. The charging conduct of EVs is random. This random and disordered charging 
method will affect the operation and maintenance of the power grid system to a certain 
extent. The report issued by the State Council pointed out that it is necessary to coor-
dinate the charging and discharging of new energy vehicles, and power dispatching 
needs. Then comprehensively use policies such as peak and valley electricity prices 
to achieve efficient interaction between EVs and grid energy [2]. 

Due to the lack of daily operation management of private charging piles, there is an 
imbalance between the supply and demand of personal charging piles. The possession 
rate of pure private EVs is only 55% [3], and the existing private charging piles are 
used less frequently, an idle rate of about 75% [4]. Therefore, it is essential to design 
a community personal charging pile operation model for the orderly charging of EVs. 
It can meet the needs of multiple stakeholders, such as community grids, charging 
service providers, and EV users. The orderly charging operation mode dynamically 
adjusts the time and place of charging demand based on the total load of the power 
grid and the unit’s operational data in different periods. It is capable of power grid 
peak shaving and valley filling. 

This paper aims to promote the orderly charging of EVs, balance supply and 
demand, and conduct research on EV charging demand scheduling. The specific 
contributions of this paper are summarized as follows. Firstly, we explore the impacts 
of Orderly charging service on two sides. For community grids, it can reduce load 
fluctuation and improve power grid operation safety. For users, it can decrease 
the charging cost and enhance the charging economy of users. Secondly, A multi-
objective optimization model is developed to solve the orderly scheduling problem 
of EVs. The goal of the model is to minimize grid load fluctuation and user charging 
costs. Furthermore, an efficient computation technique includes operational research 
theories and methods such as statistical modeling, nonlinear programming, multi-
objective optimization, and linear weighting, providing a reference for other scholars 
and related research on modeling and solving strategies. 

The remainder of this paper is organized as follows: Section “References” reviews  
the related literature on EV’s demand response strategies and orderly charging 
scheduling, Section “Problem Description and Formulation” prepares the data, 
Section “Orderly Charging Scheduling Model” explains the algorithm for solving 
this problem, and Sections “Numerical Study” and “Conclusions and Future Work” 
are the result and conclusion.
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References 

Our work contributes to strengthening the literature on sustainable operations management to 
improve the orderly charging scheduling of EVs. Therefore, two related literature streams are 
discussed: demand response strategies for EVs and orderly charge scheduling. 

Regarding the electricity price of EVs, Monfared et al. [5] proposed that an EV’s charging choice 
is made in reaction to information such as charging location, charging time, and charging price, 
i.e., modifying its charging behavior to promote charging satisfaction based on the charging 
information. At present, many scholars discuss the issue of EV charging scheduling below 
the time-of-use pricing mechanism. In the orderly charge scheduling problem, Choi et al. [6] 
raised that the pricing incentive model is frequently used to plan the charging requirements 
of EVs, and it comprises charging subsidies, time-of-use electricity prices, and real-time elec-
tricity prices. Lin et al. [7] optimized the schedule to shift energy demand from peak to valley. 
Gong et al. [8] used the price elasticity coefficient to create a demand-price response model 
for EV charging loads. Limmer and Rodemann [9] introduced a dynamic time-sharing pricing 
optimization framework that considers consumer choice uncertainty. 

Regarding EV charging scheduling, Daryabari et al. [10] put forward that an EV’s charging load is 
essentially a dispatchable and movable power demand; the charging power can be changed during 
the charging start and end periods. The economic benefits for many parties, such as the power 
grid and EV users, can be achieved by systematically managing EVs’ charging behavior. As for 
the orderly charging optimization model, the objectives usually include minimizing the power 
loss of the grid, the peak-to-valley difference, the charging cost of the user, and maximizing the 
security of the distribution network. Tao et al. [11] developed a model intending to minimize 
grid load fluctuations, maximize user charging capacity, and solved it using a linear weighting 
method. To describe grid pricing uncertainty, AhmadiNezamabad et al. [12] proposed an interval 
optimization method and solved a dual-objective model with ∈ constraints to obtain the Pareto 
solution. 

Different charging circumstances usually result in some contrasts in the charging characteristics 
of EVs, with community charging being the most common. Kapustin and Grushevenko [13] 
pointed out that when the community grid is connected to EVs on a large scale, the peak value 
of the EV charging load will overlap with the peak value of the conventional electricity load. 
Gong et al. [14] developed a genetic algorithm to solve a nonlinear programming model for the 
orderly charging of community EVs based on a dynamic peak pricing mechanism. 

In addition to considering a single subject objective, some studies also consider the interests of 
the grid, users, or aggregators. Wang et al. [15] developed an orderly charging and discharging 
model for EVs in urban residential areas to minimize total power load variance and lowering 
power grid costs. Nimalsiri et al. [16] built a quadratic programming model that considered user 
economics and distribution network security restrictions. 

Although there are numerous research results on the orderly charging scheduling of EVs, the optimal 
charging strategy is still worthy of further discussions, such as considering different application 
scenarios, the charging frequency of EVs, and the scheduling time. Therefore, this paper will 
fully consider the price incentive effect of time-of-use electricity prices and specifically study 
EVs’ orderly charging in community scenarios. 

Problem Description and Formulation 

There are two major problems in the operation and management of charging piles: 
the disordered charging mode seriously impacts the power grid; the other is that the 
low level of process and control leads to an imbalance between supply and demand.
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Therefore, we build the time-of-use electricity price mechanism for EV charging. 
The peak-valley electricity price difference is used to guide EVs to charge when 
the electricity consumption is low to stabilize the load fluctuation of the community 
power grid. 

Model Assumptions 

(1) We assume the start of charging is returning to the community that day, and 
the end is leaving the community the next day. According to the US national 
household travel survey (NHTS) on domestic cars in 2001, Taylor et al. [17] 
concluded that the home time of private EVs approximately satisfies the normal 
distribution. The EV charging start time is t , the expected value μs = 17.47, 
and the standard variance σs = 3.41. The probability density function when the 
EV starts to charge is: 

fs(t) = 
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. (20.1) 

Similarly, the end of charging time of the EV also conforms to the normal 
distribution, the expected value μe = 7.92, the standard variance σe = 3.24, 
and the probability density function is: 
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(20.2) 

EV charging power is related to mileage, battery capacity, and charging 
frequency. The user travel mileage conforms to the log-normal distribution [17]. 
The daily mileage of an EV is d, the expected daily mileage is μD , the standard 
variance is σD , and the probability density function is: 

fD(d) = 1 √
2πσDd 

exp
[
− (ln D−μd )

2 

2σ 2 d

]
. (20.3) 

(2) This article is based on the average mileage of 10,912 EVs in Beijing on 
weekdays in 2019. The expected value of its probability density function is 
μD = 2.77, and the standard variance is σD = 0.77. Assuming that the charging 
frequency is once a day, di represents the daily mileage of EV i , and Wi is the 
power consumption per 100 kms of the EV: 

Di = di Wi 
100 

(20.4)
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Table 20.1 The division results of the peak-to-valley period based on the K-means clustering 
algorithm 

Time Time-division (No EV, EV penetration rate 
20%) 

Time-division (EV penetration 30, 40% 

peak 17:00–22:00 15:00–22:00 

flat 8:00–16:00; 23:00–1:00 8:00–14:00; 23:00–1:00 

valley 1:00–7:00 1:00–7:00 

Table 20.2 Optimal 
time-of-use electricity price 
mechanism under different 
penetration rate 

Time Penetration—electricity price 

peak 20%–0.25 30%–0.25 40%–0.25 

flat 20%–0.5615 30%–0.6010 40%–0.6233 

valley 20%–0.7228 30%–0.7520 40%–0.7966 

(3) EV charging data from Monte Carlo simulations are applied in our case study. 
We assume a community of 400 households, each with one private car. This 
paper sets the EV penetration rate at 40% and lets both ω1 and ω2 be 0.5. For 
ease of calculation, we set Smin 

i to a constant value of 10%, at which point there 
are 26 EVs available for orderly charging. However, EV users have individual 
differences in the lower limit of acceptable SOC. 

(4) We believe that the community charging period can be divided into three 
segments. Then, we use the K-means clustering algorithm to divide the peak, 
flat and valley periods. The clustering results are shown in Table 20.1: 

We assume that the model adopts the time-of-use pricing mechanism. Through 
simulation, we obtained the optimal time-of-use electricity price mechanism in each 
period of the community under different EV penetration rates. The results are shown 
in Table 20.2: 

Parameter 

The notations applied in our model are listed in Table 20.3.

Orderly Charging Scheduling Model 

Model Formulation 

For the community power grid system, we want to minimize grid load variance for 
community grid systems. It is related to the charging power eit  of each EV, as shown
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Table 20.3 List of notations 

Indices and sets 

i ∈ I Set of EV with private piles in the community 

i ∈ Io Set of EV with orderly charging on the day 

i ∈ Id Set of EV with out-of-order charging on the day 

i ∈ Iu Set of EV not charging for the day 

t ∈ T Set of all time, t is the start time, Δt is the length of the period 

t ∈ Ti Set of time when the EV i connects to the charging pile,Ti = [ta i , td i ) 
Parameters 

emax Maximum charging power of the EV. Maximum output power of the charging pile 

Smax SOC upper limit 

Bi Battery capacity of the EV i 

Wi Electricity consumption per 100 km of the EV i 

Smin 
i SOC lower limit of the EV i 

Sexp i Expected SOC at the end of charge of the EV i 

Sini  i SOC status when leaving the community on the day of EV i 

t arr i Time to start charging of EV i 

t dep  i Time to end charging of EV i 

d1 i Estimated mileage of EV i on the day 

d2 i Estimated mileage of EV i on the following day 

Llimit Community transformer power limits 

zB t Conventional charging load of the community at time t 

zEVd t Charging load of the disorderly charging EV set at time t 

pt Electricity price at te t 

Intermediate variables 

zEVo t Charging load of orderly charging EV set at time t 

zt Total charging load in the community at time t 

z Average daily charging load in the community 

Decision variables 

ei t EV charging power of i at time t

in the formula (20.5): 

f1 = min 
e 

1 
T

∈

t∈T 
(zt (e) − z(e))2 (20.5) 

The grid load includes the regular electricity load of the community zB t , the disor-
dered charging zEVd 

t , and the ordered charging zEVo 
t , as shown in the formula (20.7), 

the daily average load z(e) is determined by e in (20.8):
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zEVo 
t (e) = ∈

i∈I 
ei t  , ∀t ∈ T (20.6) 

zt (e) = zB t + zEVd 
t + zEVo 

t (e), ∀t ∈ T (20.7) 

z(e) = 1 T
∈

t∈T 
zt (e), ∀t ∈ T (20.8) 

For EV users, we hope to transfer the charging time and power to the low electricity 
price. The objective function is to minimize the total charging cost of the user, such 
as formula (20.9): 

f2 = min 
e

∈

i∈I

∈

t∈Ti 
ei t  ptΔt (20.9) 

The charge EV return to the community is Sarr i = Sini  i − d
1 
i Wi 

100Bi 
, and charge capacity 

is
∈

t∈Ti ei tΔt 

Bi 
. Their sum should be greater than the expected EV charge and smaller 

than the upper limit of the state of charge of the EV, as shown in constraint (20.10). 
Constraint (20.11) denotes the community transformer power limits. The sum of the 
daily electricity and charging load is kept within the power limit of the community 
grid transformer Llimit . Constraint (20.12) indicates that the charging power should 
be greater than 0 and not exceed the upper limit. It is not charged if it equals 0. We 
assume that if the car owner does not return to the community, the charging power 
is 0, as shown in the formula (20.13): 

Sexp i ≤ Sarr i +
∈

t∈Ti ei tΔt 

Bi
≤ Smax, ∀i ∈ I (20.10) 

zt (e) ≤ Llimit  , ∀t ∈ T (20.11) 

0 ≤ eit  ≤ emax, ∀i ∈ I, ∀t ∈ Ti (20.12) 

eit  = 0, ∀i ∈ I, ∀t /∈ Ti (20.13) 

Therefore, the orderly charging scheduling model for community EVs is as 
follows: 

f1 = min 
e 

1 
T

∈

t∈T 
(zt (e) − z(e))2 

f2 = min 
e

∈

i∈I

∈

t∈Ti 
ei t  ptΔt 

s.t., (10) − (13).
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Solution Approach 

We solve the multi-objective optimization problem using a linear weighted summa-
tion method. First, normalize the two objective functions. Then, assign the weighting 
coefficients to the optimization objective (ω1 + ω2 = 1). The final single-objective 
minimization problem is obtained as (20.14): 

min f = ω1 
f1 

f max 
1 

+ ω2 
f2 

f max 
2 

(20.14) 

s.t., (10) − (13). 

Numerical Study 

Data Descriptions: Monte Carlo Simulation 

We use the Monte Carlo simulation method to simulate the total load curve of the 
community power grid under disordered charging. We use 20, 30, 40% penetration 
rates of EVs and 100% deployment rate at private charging piles for simulation. 
According to Eqs. (20.1), (20.2), and (20.3), the charging start time tarr i , end charging 
time tdep  i , and daily mileage di of the EV are randomly generated. At the same time, 
based on Eq. (20.4), the vehicle battery capacity Bi and the power consumption Wi 

per 100 km are randomly set to calculate the daily charging demand Di of the EV. 
In order to prevent the rapid aging of EV batteries, Han et al. (2020) proposed that 
the EV’s state of charge should not be less than 10% and exceed 95% of the rated 
capacity [18]. The acceptable lower limit of SOC Smin 

i is set to 10%, and the expected 
state of charge Sexp i of the EV after each charge is set to 95%. The SOC upper limit 
Smax for EVs is 100%. As it leaves the community, the daily EV state Sini  i will be 

randomly generated between
[
Sini  i + d

1 
i Wi 

100Bi 
, 95%

]
. 

After that, we delete unreasonable data records. In addition, the study in this 
chapter divides a day into 24 time periods T, and the time length Δt is taken as 1. 
The maximum output power emax of each charging pile is set to 7 kWh. According to 
Wang and Yang (2009), the maximum output power of the community distribution 
transformer Llimit  is set to 1020 kW, and the daily load zB t of the conventional 
electricity consumption in the community adopts the typical daily load data [19]. 
We generate community EV charging needs randomly and run 100 simulations. 
According to simulation results shown in Fig. 20.1, When EVs’ penetration rate 
increases, the peak-to-valley difference between grid load and the total load peak 
also increases.
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Fig. 20.1 The total load of the community grid under the disordered charging 

Orderly Charging Scheduling Policy Performance 

Observation 

The results showed that the total charging cost of EVs was reduced from 641.37¥ to 
364.67¥. The reason is that ordered charging achieves the peak-to-valley transfer. In 
Fig. 20.2, the charging time and the total charging power of EVs in disordered and 
ordered charging modes are shown. Based on this, we can conclude that the orderly 
charging strategy of EVs can reduce the charging costs of users. 

Fig. 20.2 Comparison of orderly charging and disorderly charging loads of EVs
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Fig. 20.3 Comparison of orderly charging and disorderly charging total loads of EVs 

Observation 

The community power grid’s total load is calculated, as shown in Fig. 20.3. According 
to the findings, the orderly charging strategy reduces the grid’s peak load by 12.65%, 
increases the valley load by 21.02%, reduces the peak-valley difference by 47.93%, 
and reduces the load variance 65.92% to the disordered charging mode of EVs. 
It is worth noting that, when compared to conventional energy load, the grid load’s 
peak-to-valley difference is decreased by 28.96%, and the load variation is reduced by 
49.54% once the orderly charging approach is adopted. It can be seen that the orderly 
charging mode of EVs can cut peaks and fill valleys, stabilizing load fluctuations. In 
addition, although the direct benefit to the grid is reduced, the peak load is reduced 
by 128.98 kW. The total benefit increases. We conclude that the orderly charging 
strategy of EVs can effectively realize the peak shaving and valley filling of the 
community power grid and improve the economic benefits of power grid operation. 

Influence of Objective Function Coefficients 

This section explores the influence of different objective weight coefficients on the 
results. We assign different weight coefficients to the two objective functions and plot 
the results in Fig. 20.4. It can be seen that with the increase of the weight coefficient 
ω1 for minimizing the power grid load variance, the power grid load variance shows a 
decreasing trend, the value range is between 7700–7750 kW2, and the user charging 
cost is increasing from 362¥ to 374¥. However, the overall degree of change in both 
is not significant.
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Fig. 20.4 Influence of different target weights on grid load variance and user charging cost 

When ω1 = 0, the grid load variance is not considered. It is observed that the grid load 
variance (7746.88 kW2) has been dramatically reduced compared with disordered 
charging (14091.12 kW2). In the same way, when ω1 = 1, the user charging cost is not 
considered, the user charging cost (373.43¥) is also significantly reduced compared 
with the disordered charging (641.37¥). 

Then, as ω1 increases from 0 to 0.1, the grid load variance decreases from 7746.88 to 
7185.06 kW2. Then, when the value of ω1 is in the range of 0.1–0.4, grid load variance 
and user charging cost variation are not apparent. When ω1 = 0.5, that is, when the 
weights of the two objective functions are the same, the grid load variance decreases 
to 7110.30 kW2, and the user charging cost increases to 364.67¥. Subsequently, when 
the value of ω1 changed from 0.8 to 0.9, the user charging cost increased the most, 
reaching 373.05¥. 

We conclude that a single-objective optimization model that only considers f1 
or uses f2 can reduce grid load variance and user charging costs. However, taking 
the two as the objective function and setting reasonable weight can better realize the 
trade-off between the power grid operation security and the user’s charging economy. 

Conclusions and Future Work 

As EVs grows, the demand for charging rises year after year. The random and disor-
derly EV charging mode will harm the grid system’s operation. Meanwhile, the
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lack of routine operation and management of private charging piles in the commu-
nity results in charging pile idleness and a supply–demand mismatch. Therefore, this 
paper addresses the above problems by proposing an orderly EV charging scheduling 
strategy based on relevant research. The specific research results of this paper are as 
follows: 

(1) In the design of the community’s private charging piles’ operation mode, this 
paper first uses the Monte Carlo simulation method to predict the disordered 
charging process of EVs and demonstrate the impact of disordered charging on 
the community power grid. Second, the K-means clustering algorithm separates 
the orderly charging period of EVs into peaks, flats, and valleys. Then the 
time-of-use pricing strategy is calculated for diverse EV penetration rates. 

(2) We develop a multi-objective nonlinear programming approach to reduce EV 
charging costs and grid load changes. Then, it is transformed into a single-
objective optimization model using a linear weighting method. The findings 
suggest that our orderly charging technique can reduce power grid load volatility 
and user charging costs. If the target weight is set reasonably, the trade-off 
between the safety of power grid operation and the economic demand for users’ 
charging can be better achieved. 

Furthermore, our method can also be applied to other electrically-powered indus-
trial operations. Many aspects of EV scheduling and robustness optimization require 
more exploration in the future: 

(1) The data source for the model provided in this paper is typical electricity grid 
load data from a single community. The community’s actual conventional power 
grid load statistics can be employed for further investigation. Moreover, the time-
of-use tariff strategy is usually implemented on a city basis. In the future, the 
research can be applied to a larger area. 

(2) This paper uses the linear weighting method to obtain relevant management 
inspiration when solving the multi-objective optimization model. In the future, 
when dealing with more realistic scenarios, we can try combining methods, 
constraint methods, and genetic algorithms. 
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