
Rooted Divergence-Preserving Branching
Bisimilarity is a Congruence: A Simpler Proof

David N. Jansen1,2(B) and Xinxin Liu1,2,3(B)

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{dnjansen,xinxin}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Southwest University, Chongqing, China

Abstract. Van Glabbeek, Luttik and Spanink proved in 2020 [3] that
rooted divergence-preserving branching bisimilarity is a congruence for
the process specification language consisting of inaction, action prefix,
choice, and recursion. In this article we show the same result by using
an alternative characterization of bisimulation, so that the heavy notion
of bisimulation up to can be spared and a shorter proof obtained.

Keywords: Branching bisimulation · Divergence preservation ·
Congruence

1 Introduction

Already in the first publication mentioned on his webpage [13], Vaandrager
included an extensive discussion of fairness in process algebra. He defines this
notion as “a certain option is not discarded infinitely often.” In particular, this
holds for probabilistic choice: if a discrete random experiment is started infinitely
often, almost surely every outcome is chosen. In the publication, this was used
to prove progress properties of a certain communication protocol where failures
occur with a (low but not further specified) probability. Vaandrager admitted that
“in reality certain choices are fair, other choices are unfair” (for example, non-
probabilistic choices) but decided to postpone the introduction of unfairness. In
this article, we are looking at one consequence of unfairness, namely divergence.

We are working on the basis of Milner’s CCS to describe and compare
behaviours of interacting processes [10]. We mainly consider the subset of finite-
state processes. They are composed from actions by action prefix, choice and
recursion. Full CCS also includes parallel composition and two operators sup-
porting the latter (restriction and relabelling). The recursion operator uses pro-
cess variables to describe a behaviour X satisfying X = E, where X may appear
in the process expression E again.

While CCS differs from ACP, the process algebra used by Vaandrager in sev-
eral publications including [13], we are confident that the superficial differences
are less important than the “close relationships between the various process alge-
bras” in terms of the “semantical reality” (using Vaandrager’s words from [5]).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 358–370, 2022.
https://doi.org/10.1007/978-3-031-15629-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_19&domain=pdf
http://orcid.org/0000-0002-6636-3301
https://doi.org/10.1007/978-3-031-15629-8_19

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 359

Often, processes are compared by means of bisimilarities, notions to find pro-
cesses that have equivalent behaviours. For process expressions considered in this
paper, bisimilarities can be defined in two ways: an algebraic definition defines
bisimilarity on expressions that do not contain free process variables first and
then extends to all expressions through substitutions; an operational definition
defines bisimilarity directly on all expressions, including process variables. Gen-
erally, the two definitions lead to the same relation, and we find both definitions
in the literature, depending on what is easier to use in the context.

In branching and weak bisimulation, it is agreed that internal activity
(denoted with the special action symbol τ in CCS) should be regarded as invis-
ible to the behaviour comparison; but what about divergent internal activity
τ.τ.τ . . .? Depending on the property that the process is required to satisfy, diver-
gence may be a relevant distinction or not: divergent behaviour—if we do not
assume fairness—may delay a required visible behaviour or termination indefi-
nitely.

Branching and weak bisimilarity differ slightly in how they treat internal
choice; we will concentrate on branching bisimilarity, like Vaandrager [6] did.
Branching and weak bisimilarity are not congruences for the CCS operators.
One normally corrects that by a rootedness condition: an initial invisible step
is inequivalent to doing nothing. The resulting relations are called branching
(behaviour) congruence and weak (behaviour) congruence, respectively. The
advantage is: it is much easier to reason about a congruence using an equational
axiomatisation. Several sound and complete axiomatisations for these congru-
ences (and their divergence-preserving variants) exist [2,7,8,11].

However, in order to do so, one needs to prove that this rootedness condi-
tion actually suffices to turn bisimilarity into a congruence. Milner [10] already
proved that rooted weak bisimilarity is a congruence using the algebraic defini-
tion of weak bisimilarity. Van Glabbeek [2] claims that the proof for branching
bisimilarity proceeds similarly. These proofs have to proceed in two steps, follow-
ing the algebraic definition: first, congruence is proven for all closed processes,
and then the proof is extended to the open processes. The divergence-preserv-
ing variants were proven congruences later: For rooted divergence-preserving
weak bisimilarity, a proof along these lines is found in [8]. A detailed proof that
rooted divergence-preserving branching bisimilarity is a congruence has recently
appeared as [3]. In all the proofs mentioned above, a general technique called
bisimulation up to was used, whose soundness often needs lengthy justification.

This contribution shows that using the operational definition of rooted diver-
gence-preserving branching bisimilarity, one can achieve a shorter proof without
resorting to bisimulation up to.

2 Finite-State CCS and Branching Bisimulation

Let V be an infinite set of variables, A an infinite set of visible actions, τ the in-
visible action or silent move (τ /∈ A). We write Aτ for A∪{τ}. The (finite-state
process) expressions are defined by the BNF grammar (for a ∈ Aτ and X ∈ V):

E ::= 0 | X | a.E | E + E | μX.E

360 D. N. Jansen and X. Liu

We denote the set of expressions with E . Informally, the expressions mean:

Inaction: 0 is not capable of any action.
Prefix: a.E first performs action a and afterwards behaves as E.
Non-deterministic Choice: E + F can behave either as E or as F .
Recursion: μX.E behaves as E, except that whenever X is reached in an exe-

cution, then it behaves as μX.E again.

We define the free variables of an expression as follows:

fv(0) = ∅ fv(X) = {X} fv(a.E) = fv(E)
fv(E + F) = fv(E) ∪ fv(F) fv(μX.E) = fv(E) \ {X}

A closed expression or process is an expression P ∈ E with fv(P) = ∅. The set
of all closed expressions is denoted P, and we use P to range over P.

We write E{F/X} for the expression obtained by capture-free substitution
of F for free occurrences of X in E. We write E ≡ F when E and F are
syntactically identical.

We define the semantics of expressions operationally by a transition relation
−→ and a binary relation � between expressions and variables.

Definition 1. The transition relation −→ ⊆ E × Aτ × E (written E
a−→ E′) is

the smallest relation that satisfies:

1. a.E
a−→ E.

2. If E
a−→ E′ then E + F

a−→ E′ and F + E
a−→ E′.

3. If E{μX.E/X} a−→ E′ then μX.E
a−→ E′.

We also write =⇒ for (τ−→)∗ (the transitive-reflexive closure of τ−→) and a=⇒
for =⇒ a−→=⇒.

The relation � ⊆ E×V (written E � X) is the smallest relation that satisfies:

1. X � X.
2. If E � X then E + F � X and F + E � X.
3. If E{μY.E/Y } � X then μY.E � X.

Lemma 2. Let E,F,H ∈ E, a ∈ Aτ , and X ∈ V. Then

1. If H � X and E
a−→ F then H{E/X} a−→ F .

2. If H
a−→ H ′, then H{E/X} a−→ H ′{E/X}.

3. If H{E/X} a−→ F , then either H � X and E
a−→ F , or there is H ′ such

that H
a−→ H ′ and F ≡ H ′{E/X}.

4. If H{E/X} � Y , then either H � X and E � Y , or H � Y .

Proof. This is Lemma 4 in [2], adapted to our notation. �	

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 361

Lemma 3. Let E,F ∈ E, a ∈ Aτ , and X,W ∈ V.

1. μX.E
a−→ F iff there is E′ ∈ E such that F ≡ E′{μX.E/X} and E

a−→ E′.
2. μX.E � W iff E � W and W
= X.

Proof. Claim 1 is Lemma 6 in [8]. The proof of Claim 2 is straightforward. �	
The following way to define bisimulation is modelled after [11].

Definition 4 (Operational Definition). A binary relation R ⊆ E × E is a
divergence-preserving branching bisimulation if R is symmetric and satisfies the
following conditions, for every 〈E,F 〉 ∈ R:

1. Simulation of Actions: Whenever E
a−→ E′, then either a = τ and there

exists F ′ such that F =⇒ F ′ and 〈E,F ′〉 ∈ R and 〈E′, F ′〉 ∈ R, or there exist
F ′, F ′′ such that F =⇒ F ′ a−→ F ′′ and 〈E,F ′〉 ∈ R and 〈E′, F ′′〉 ∈ R.

2. Simulation of Variables: Whenever E � X, then there exists F ′ such that
F =⇒ F ′ � X and 〈E,F ′〉 ∈ R.

3. Simulation of Divergence: Whenever E
τ−→ E1

τ−→ E2
τ−→ · · · is an

infinite τ -run from E, then there exist Ei on the τ -run and F ′ such that
F

τ=⇒ F ′ and 〈Ei, F
′〉 ∈ R.

Two expressions E,F ∈ E are divergence-preserving branching bisimilar (writ-
ten E ≈�

b F) if there exists a divergence-preserving branching bisimulation con-
taining the pair 〈E,F 〉.

Definition 2.1 of [3] defines divergence-preserving branching bisimulation for
closed expressions only and uses a different clause, denoted (D), instead of our
Clause 3 in Definition 4. The two clauses are equivalent for closed expressions
according to Proposition 3.1 in [4]. In other words, when applied to processes, De-
finition 4 results in the same divergence-preserving bisimilarity as Definition 2.1
in [3]. Finally, [4] also proves that ≈�

b is an equivalence relation, and that it is
the largest divergence-preserving branching bisimulation.

3 Congruence for Finite-State Processes

As mentioned earlier, branching bisimulation is not a congruence for the CCS
operators. In particular, a.0 ≈�

b τ.a.0 but a.0+b.0
≈�
b τ.a.0+b.0. One normally

corrects that by a rootedness condition: an initial invisible step is inequivalent
to doing nothing. The resulting relation is called a branching (behaviour) con-
gruence. The advantage is: it is much easier to reason about a congruence using
an equational axiomatisation.

Definition 5. Two process expressions E,F ∈ E are rooted divergence-preserv-
ing branching bisimilar or divergence-preserving branching congruent (written
E =�

b F) if they satisfy:

362 D. N. Jansen and X. Liu

1. Simulation of Actions: Whenever E
a−→ E′, then there exists F ′ such

that F
a−→ F ′ and E′ ≈�

b F ′; whenever F
a−→ F ′, then there exists E′ such

that E
a−→ E′ and E′ ≈�

b F ′.
2. Simulation of Variables: E � X if and only if F � X.

Lemma 6. Let E ∈ E, X ∈ V. Then μX.E =�
b E{μX.E/X}.

Proof. Immediately follows from the operational semantics of Definition 1. �	
Lemma 7. Let E0, E, F0, F be expressions, X and Y be variables. If E0 ≈�

b F0

and E =�
b F , then E0{μX.E/Y } ≈�

b F0{μX.F/Y }.
Proof. For the given E,F with E =�

b F , construct the binary relation S:

S = {〈G{μX.E/Z},H{μX.F/Z}〉 | G,H ∈ E , Z ∈ V, and G ≈�
b H}.

We show that S ∪ S−1 is a divergence-preserving branching bisimulation. When
this is done, since E0 ≈�

b F0, so 〈E0{μX.E/Y }, F0{μX.F/Y }〉 ∈ S, we obtain
E0{μX.E/Y } ≈�

b F0{μX.F/Y }.
It is obvious that S ∪ S−1 is symmetric. To show that S ∪ S−1 is a diver-

gence-preserving branching bisimulation, let 〈C,D〉 ∈ S∪S−1. We need to check
the conditions of Definition 4. If 〈C,D〉 ∈ S, then according to the construction
of S, there exist G ≈�

b H such that C ≡ G{μX.E/Z} and D ≡ H{μX.F/Z}.

1. Simulation of Actions.
Suppose that G{μX.E/Z} a−→ G′. We distinguish cases following Lemma 2,
Claim 3:
Case 1.1: G

a−→ G1 with G′ ≡ G1{μX.E/Z}.
We further distinguish cases on how H simulates transition G

a−→ G1:
Case 1.1.1: a = τ , there is H1 with H =⇒ H1 and G ≈�

b H1 ≈�
b G1.

Then H{μX.F/Z} =⇒ H1{μX.F/Z}, and by the definition S con-
tains the two pairs 〈G{μX.E/Z},H1{μX.F/Z}〉 and 〈G1{μX.E/Z},
H1{μX.F/Z}〉.

Case 1.1.2: There are H1,H2 with H =⇒ H1
a−→ H2 and G ≈�

b H1,
G1 ≈�

b H2.
Then H{μX.F/Z} =⇒ H1{μX.F/Z} a−→ H2{μX.F/Z}, and by the
definition S contains the two pairs 〈G{μX.E/Z},H1{μX.F/Z}〉 and
〈G1{μX.E/Z},H2{μX.F/Z}〉.

Case 1.2: G � Z and μX.E
a−→ G′.

According to Claim 1 of Lemma 3, there is E1 such that E
a−→ E1 and

G′ ≡ E1{μX.E/X}. Since E =�
b F , there exists F1 with F

a−→ F1 and
E1 ≈�

b F1, thus by Claim 2 of Lemma 2 F{μX.F/X} a−→ F1{μX.F/X}
and 〈E1{μX.E/X}, F1{μX.F/X}〉 ∈ S. On the other hand, since ≈�

b

is a divergence-preserving branching bisimulation, there is H1 such that
H =⇒ H1 � Z and G ≈�

b H1. Thus H{μX.F/Z} =⇒ H1{μX.F/Z} a−→
F1{μX.F/X} and 〈G{μX.E/X},H1{μX.F/X}〉 ∈ S.

In all cases, we have found a matching transition for G{μX.E/X} a−→ G′.

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 363

2. Simulation of Variables.
Suppose G{μX.E/Z} � W . Then according to Lemma 2, Claim 4, either
G � Z and μX.E � W , or G � W , and it is routine to show that in both cases
there is H1 with H{μX.F/Z} =⇒ H1{μX.F/Z} � W and 〈G{μX.E/Z},
H1{μX.F/Z}〉 ∈ S.

3. Simulation of Divergence.
Suppose G{μX.E/Z} ≡ G0

τ−→ G1
τ−→ G2

τ−→ · · · is an infinite τ -run from
G{μX.E/Z}. Then we distinguish cases by Lemma 2, Claim 3, according to
whether μX.E ever participates in this infinite τ -run.
Case 3.1: μX.E does not participate in the infinite τ-run.

Then there is an infinite τ -run G
τ−→ G′

1
τ−→ G′

2
τ−→ · · · such that

Gi ≡ G′
i{μX.E/Z} for i = 1, 2, Since ≈�

b is a divergence-preserving
branching bisimulation, with G ≈�

b H there must be H ′ and m such
that H

τ=⇒ H ′ and G′
m ≈�

b H ′, thus H{μX.F/Z} τ=⇒ H ′{μX.F/Z} and
〈G′

m{μX.E/Z},H ′{μX.F/Z}〉 ∈ S.
Case 3.2: μX.E does participate in the infinite τ-run.

Then we can find the smallest k such that Gi ≡ G′
i{μX.E/Z} for i =

0, . . . , k and G′
k � Z and μX.E

τ−→ Gk+1. By Claim 1 of Lemma 3 there
is E′ such that E

τ−→ E′ and Gk+1 ≡ E′{μX.E/X}. Then, since E =�
b F

there is F ′ such that F
τ−→ F ′ with E′ ≈�

b F ′. So F{μX.F/X} τ−→
F ′{μX.F/X} and 〈E′{μX.E/X}, F ′{μX.F/X}〉 ∈ S. On the other hand
we have G ≈�

b H, and for the τ -run from G to G′
k, there must be H1

such that H =⇒ H1 and G′
k ≈�

b H1. Since G′
k � Z there must be H ′

such that H1 =⇒ H ′ � Z and G′
k ≈�

b H ′. Thus we get H{μX.F/Z} =⇒
H ′{μX.F/Z} τ−→ F ′{μX.F/X}, and so we have found F ′{μX.F/X}
such that H{μX.F/X} τ=⇒ F ′{μX.F/X} and 〈Gk+1, F

′{μX.F/X}〉 ∈
S.

If 〈C,D〉 ∈ S−1, then 〈D,C〉 ∈ S, and according to the construction of S, there
exist G ≈�

b H such that D ≡ G{μX.E/Z} and C ≡ H{μX.F/Z}. We can reason
as above to show that 〈C,D〉 also satisfies the conditions of simulation of actions,
variables and divergence. This establishes that S∪S−1 is a divergence-preserving
branching bisimulation. �	

Note that in the proof (Case 3.2), we require congruence E =�
b F (and not

only E ≈�
b F) to ensure that if E0 has an infinite run involving μX.E, then F0

can take at least one τ -step using μX.F . This avoids the wrong conclusion from
τ.X ≈�

b X to μX.τ.X
?≈�
b μX.X.

With the preparation of Lemma 7, we are in the position to present our main
result, which is to provide a more direct proof of the congruence of =�

b .

Theorem 8. =�
b is a congruence on E, i.e. if E =�

b F then a.E =�
b a.F ,

E +D =�
b F +D, D +E =�

b D +F , and μX.E =�
b μX.F for arbitrary a ∈ Aτ ,

D ∈ E, and X ∈ V.

Proof. We assume E =�
b F and prove μX.E =�

b μX.F , all other constructions
are simple.

364 D. N. Jansen and X. Liu

Assume μX.E
a−→ E′. We need to prove that this transition can be simulated

by some strong transition μX.F
a−→ F ′. By Claim 1 of Lemma 3, there exists

E′′ such that E
a−→ E′′ and E′ ≡ E′′{μX.E/X}. Because E =�

b F , there
also exists F ′′ such that F

a−→ F ′′ and E′′ ≈�
b F ′′, and by Lemma 7 we then

get E′′{μX.E/X} ≈�
b F ′′{μX.F/X}. Therefore, μX.F

a−→ F ′′{μX.F/X} is
the transition simulating μX.E

a−→ E′. The converse statement (a transition
μX.F

a−→ F ′ can be simulated by μX.E) is proven analogously.
Clause 2 of Definition 5 is proven similarly, using Claim 2 of Lemma 3. �	
Now we have arrived at the conclusion that =�

b is a congruence. But since
we used an operational definition of =�

b , we need to argue that it is the same
relation discussed in [3]. We will make such an argument in the next section. In
the rest of this section we will prove some properties of ≈�

b and =�
b which will

be used to support the argument in the next section.

Lemma 9. Let E,F,G ∈ E be expressions, X be a variable. If E =�
b F , then

1. G{E/X} =�
b G{F/X};

2. E{G/X} =�
b F{G/X}.

Proof. G{E/X} =�
b G{F/X} is easily proved by routine induction on the struc-

ture of G, using Theorem 8.
To prove E{G/X} =�

b F{G/X}, we first prove the following fact: If K,H are
expressions such that K ≈�

b H, then K{G/X} ≈�
b H{G/X}. To see the fact,

let Y be a variable such that Y /∈ fv(G), by Lemma 6 μY.G =�
b G{μY.G/Y },

and G{μY.G/Y } ≡ G since Y does not occur freely in G. Then

K{G/X} =�
b K{μY.G/X} (Claim 1 above)

≈�
b H{μY.G/X} (Lemma 7)

=�
b H{G/X} (Claim 1 above)

With this fact, suppose E =�
b F , it is easy to prove that E{G/X} =�

b F{G/X}
by analysing the transitions from E{G/X} and F{G/X} using Lemma 2. �	

We define the sort (of visible actions) of a process expression as follows:

sort(0) = ∅ sort(E + F) = sort(E) ∪ sort(F)
sort(X) = ∅ sort(μX.E) = sort(E)

sort(τ.E) = sort(E) sort(a.E) = sort(E) ∪ {a} (if a
= τ)

We will write sort(E,F) for sort(E) ∪ sort(F).
The following lemma is formally very similar to Lemma 20 in [8], but as that

paper uses the algebraic definition and concerns (variants of) weak bisimulation,
we cannot copy their proof.

Lemma 10. Let E,F ∈ E be expressions, X be a variable, a be a visible action,
a /∈ sort(E,F). If E{a.0/X} =�

b F{a.0/X} then E =�
b F .

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 365

Proof. First we construct the following binary relation S:

S = {〈G,H〉 | G,H ∈ E , a /∈ sort(G,H), and G{a.0/X} ≈�
b H{a.0/X}}.

It is routine to show that S is a divergence-preserving branching bisimulation
(note that S is symmetric).

Now suppose E,F be expressions, X be a variable, a be a visible action,
a /∈ sort(E,F), and E{a.0/X} =�

b F{a.0/X}. To prove that E =�
b F , assume

E
b−→ E′. We need to show that this transition can be simulated by a strong

transition F
b−→ F ′. Note that by Claim 2 of Lemma 2, E

b−→ E′ implies
E{a.0/X} b−→ E′{a.0/X}, since E{a.0/X} =�

b F{a.0/X}, it follows that there
is F ′′ such that F{a.0/X} b−→ F ′′ and E′{a.0/X} ≈�

b F ′′, then by Claim 3
of Lemma 2 there exists F ′ such that F

b−→ F ′ and F ′′ ≡ F ′{a.0/X} (since
a /∈ sort(E,F), b cannot be a), so 〈E′, F ′〉 ∈ S, thus E′ ≈�

b F ′. Therefore,
F

a−→ F ′ is the transition simulating E
b−→ E′. Clause 2 of Definition 5 is

proven similarly, using Claim 4 of Lemma 2. �	
Theorem 11. Let E,F ∈ E be expressions, {X1, . . . , Xn} be a set of variables.
Then E =�

b F if and only if for arbitrary processes P1, . . . , Pn ∈ P it holds that
E{P1/X1, . . . , Pn/Xn} =�

b F{P1/X1, . . . , Pn/Xn}.
Proof. We prove the theorem by induction on n. If n = 0, then it holds vacuously.
Assume the claim holds for n, i.e. E′ =�

b F ′ if and only if for arbitrary processes
P1, . . . , Pn ∈ P we have E′{P1/X1, . . . , Pn/Xn} =�

b F ′{P1/X1, . . . , Pn/Xn}. We
prove that the claim holds for n + 1. For the only if direction, suppose E =�

b F
and P1, . . . , Pn+1 ∈ P, we will show

E{P1/X1, . . . , Pn+1/Xn+1} =�
b F{P1/X1, . . . , Pn+1/Xn+1}.

In this case, since E =�
b F , by Claim 2 of Lemma 9 E{Pn+1/Xn+1} =�

b

F{Pn+1/Xn+1}, then by the ind. hyp. E{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn} =�
b

F{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn}, so

E{P1/X1, . . . , Pn+1/Xn+1} ≡ E{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn}
=�

b F{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn} (IH)
≡ F{P1/X1, . . . , Pn+1/Xn+1}.

Hence the only if direction. For the if direction, we will prove E =�
b F under

the assumption that E{P1/X1, . . . , Pn+1/Xn+1} =�
b F{P1/X1, . . . , Pn+1/Xn+1}

for all P1, . . . , Pn+1 ∈ P. In this case, choose a /∈ sort(E,F), then for all
P1, . . . , Pn ∈ P we have

E{a.0/Xn+1}{P1/X1, . . . , Pn/Xn} ≡ E{P1/X1, . . . , Pn/Xn, a.0/Xn+1}
=�

b F{P1/X1, . . . , Pn/Xn, a.0/Xn+1}
≡ F{a.0/Xn+1}{P1/X1, . . . , Pn/Xn}.

Then by the induction hypothesis E{a.0/Xn+1} =�
b F{a.0/Xn+1}. Now by

Lemma 10 E =�
b F . �	

366 D. N. Jansen and X. Liu

4 Comparison with the Congruence Proof
for a Traditional Definition

Here, we compare our proof with the recent proof by Glabbeek, Luttik and
Spanink [3], who define divergence-preserving branching bisimulation on closed
process expressions only and extend it to open process expressions through sub-
stitutions. This more traditional approach is often used to prove that some rooted
bisimilarity is a congruence; it follows the basic idea of Milner [9,10]. He was
the first to use the so-called “up-to technique”: A relation R is called a weak
bisimulation up to ≈ if P R Q and P

a=⇒ P ′ imply that there exists some Q′

with Q
a=⇒ Q′ and P ′ ≈R≈ Q′. It can be shown that if R is a weak bisimulation

up to ≈ then ≈R≈ is a weak bisimulation.
The important step to prove that some behavioural congruence = is a con-

gruence under recursion, i.e. E = F implies μX.E = μX.F , is: one shows
that the symmetric closure of relation RE,F = {〈G{μX.E/X}, G{μX.F/X}〉 |
G ∈ E and fv(G) ⊆ {X}} is a bisimulation up to ≈ (or, sometimes, a slighty
stronger relation).

Glabbeek, in [2], stated that the proof of [10] can be adapted to (non-diver-
gence-preserving) branching bisimilarity. However, the case of divergence-pre-
serving branching bisimilarity was only handled by Glabbeek et al. [3] recently.
The latter paper used the bisimulation-up-to technique to prove that rooted di-
vergence-preserving branching bisimilarity is a congruence. They had to vary the
relation RE,F for the proof.

More in detail, rooted (divergence-preserving) weak or branching bisimilarity
is defined in [3,8,10] by applying Definition 5 only to closed process expressions.
for open process expressions, [3] sets:

Definition 12 (Algebraic Definition of Divergence-Preserving Branch-
ing Congruence). Given two expressions E,F ∈ E and a vector of variables
〈X1, . . . , Xn〉 that covers their free variables (i.e. fv(E) ∪ fv(F)⊆ {X1, . . . , Xn}),
E and F are algebraically rooted divergence-preserving branching bisimilar or
algebraically divergence-preserving branching congruent (written E =�

a F) if for
arbitrary processes P1, . . . , Pn ∈ P we have

E{P1/X1, . . . , Pn/Xn} =�
b F{P1/X1, . . . , Pn/Xn}.

The two definitions lead to the same relation on finite-state expressions, i.e.
for two expressions E,F it holds that E =�

a F if and only if E =�
b F . Here is a

direct proof using Theorem 11: Let E,F ∈ E and fv(E) ∪ fv(E) = {X1, . . . , Xn},
then E =�

a F iff (by Definition 12) for arbitrary processes P1, . . . , Pn ∈ P,
we have E{P1/X1, . . . , Pn/Xn} =�

b F{P1/X1, . . . , Pn/Xn} iff (by Theorem 11)
E =�

b F . Similar proofs are found e.g. in [2] as Propositions 21 and 3. Van
Glabbeek writes, however, “defining ≈�

b on open process expressions . . . does
not carry over to full CCS.”

Then, [3] introduces their variant of “bisimulation up to ≈�
b ”:

1 Proposition 2 in [2] claims more than we need. An error in another part of the proof
has been pointed out and corrected in [1].

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 367

Definition 13 ([3], Definition 3.10). The symmetric relation R on P is a
rooted divergence-preserving branching bisimulation up to ≈�

b if it satisfies the
conditions:

1. Root Condition: If P
a−→ P ′, then there exists Q′ such that Q

a−→ Q′ and
P ′ ≈�

bR≈�
b Q′.

2. Simulation of Actions: If P =⇒ P ′′ â−→ P ′, then there exist Q′′ and Q

such that Q =⇒ Q′′ â−→ Q′ and P ′′ ≈�
bR≈�

b Q′′ and P ′ ≈�
bR≈�

b Q′. (Here,
P ′′ â−→ P ′ means: either P ′′ a−→ P ′, or a = τ and P ′′ ≡ P ′.)

3. Simulation of Divergence: If there exists an infinite sequence of closed
process expressions (Pk)k∈ω such that P = P0 and Pk

τ−→ Pk+1 for all k ∈
ω, then there also exists an infinite sequence of closed process expressions
(Q�)�∈ω and a mapping σ : ω → ω such that Q = Q0 and Q�

τ−→ Q�+1 and
Pσ(�) ≈�

bR≈�
b Q� for all � ∈ ω.

While they define simulation of divergence differently, it can be shown that
this condition is equivalent to our usual condition (see the explanation after
Definition 4). Also note that ≈�

b is only used to relate closed expressions, where
there is no difference between an operational and an algebraic definition.

They then go on to prove that if R is a rooted divergence-preserving branch-
ing bisimulation up to ≈�

b then R ⊆ =�
b (note that all the relations are between

processes). Then comes the hardest part: they spend almost three pages to prove
that the relation RE,F is a rooted divergence-preserving branching bisimulation
up to ≈�

b if fv(E)∪ fv(F) ⊆ {X}. After that, they can use this property to prove
quickly that =�

a is indeed a congruence under μX. for all process expressions.
In comparison, our proof is much shorter. Still, the hard work of [3] is not

completely lost: we will see shortly that our method does not extend to fur-
ther CCS operators. The reason that we can achieve a shorter proof is that the
operational definition of bisimulation (Definition 4) allows us to discuss opera-
tional behaviour directly on expressions containing free variables, so that we can
construct the relation

S = {〈G{μX.E/Z},H{μX.F/Z}〉 | G,H ∈ E , Z ∈ V, and G ≈�
b H}

in the proof of Lemma 7 and prove S∪S−1 to be a divergence-preserving branch-
ing bisimulation, instead of constructing the less powerful (more strict)

RE,F = {〈G{μX.E/X}, G{μX.F/X}〉 | G ∈ E and fv(G) ⊆ {X}}
and then having to use the bisimulation-up-to technique. In this way we suc-
cessfully avoided the complication relating to this technique. It is interesting to
note the similarities and differences between the constructions of S and RE,F .
In fact, [3] already used a construction similar to S in the proof of Lemma 3.6,
which corresponds to Claim 2 of Lemma 9 of this paper. In other words, follow-
ing the idea of this paper, the proof of Lemma 3.6 in [3] can be generalized to
a proof that μX. preserves =�

a , thus avoiding the use of the bisimulation-up-to
technique altogether.

368 D. N. Jansen and X. Liu

5 Extending the Proof to Full CCS?

Thus far we did only look at finite-state CCS; however, there are operators for
parallelism as well. Full CCS has the following grammar:

E ::= 0 | X | a.E | E + E | μX.E | E|F | E\H | E[f]

where a ∈ Act := A ∪ A ∪ {τ}, X ∈ V as above, H ⊆ A, and f : A → Act . We
denote the set of process expressions in full CCS with Epar. Informally, the new
expressions mean:

Actions with Overline a: Actions a and a can synchronize in parallel processes.
We set a = a and τ = τ .

Parallel Composition: E|F interleaves the behaviours of E and F . Addition-
ally, if E

a−→ E′ and F
a−→ F ′ for some a ∈ A ∪ A, the parallel composition

has the behaviour E|F τ−→ E′|F ′. This models a synchronisation between
the processes.

Restriction: E\H can do all behaviours of E except the actions in H. This
operator is used to forbid E|F from taking certain steps without synchroni-
sation.

Relabelling: Whenever E can do action a or a, then E[f] can do action f(a)
or f(a), respectively, instead.

The transition relation, which is the first part of Definition 1, can easily be
extended to include these constructs:

Definition 14. The transition relation −→ ⊆ Epar ×Act × Epar (written E
a−→

E′) is the smallest relation that satisfies the clauses given in Definition 1 and:

1. If E
a−→ E′, then E|F a−→ E′|F and F |E a−→ F |E′.

2. If E
a−→ E′ and F

a−→ F ′ for some a ∈ A ∪ A, then E|F τ−→ E′|F ′.
3. If E

a−→ E′ and a, a
∈ H, then E\H
a−→ E′\H.

4. If E
a−→ E′, then E[f]

f(a)−→ E′[f]. If E
a−→ E′, then E[f]

f(a)−→ E′[f]. If
E

τ−→ E′, then E[f] τ−→ E′[f].

However, the relation �, which is the second part of Definition 1, does not
convey enough information to form the basis of a correct operational definition
of bisimulation. In particular, one would like to define X|X � X, but how can
this relation then distinguish expression X ∈ E from X|X ∈ Epar? Perhaps van
Glabbeek’s notation of [2,3] can help; they write E

X−→ 0 instead of our E � X,
and this notation could be extended to something like E|E X−→ E|0 X−→ 0|0. In
any case, this would also require extending Claim 3 of Lemma 2: The expression
E = a.X|X cannot do a τ step, but E{a.0/X} can. Similarly, E is not divergent,
but E{μZ.a.a.Z/X} is, even though neither E nor μZ.a.a.Z can do τ steps. The
proof of our central Lemma 7 would need a corresponding extension.

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 369

Even if that may be possible, other difficulties remain: van Glabbeek’s nota-
tion is not informative enough to describe a restriction like X\{a}|a.0 or a
relabelling like X[a �→ a]|X. We could not find an obvious extension of the
above proof method to full CCS. We are working on an extension [12], using the
bisimulation-up-to technique.

Weak bisimulation (not divergence-preserving) has been shown to be a con-
gruence for all operators except +, and rooted weak bisimulation is a congruence
for all operators [10]. However, these proofs use the bisimulation-up-to technique.

We assume that Robin Milner was aware of (some of) these difficulties and
therefore chose to switch between the two definitions and the two methods: in
1986 [9] he used what we called the algebraic definition to prove congruence for
full CCS, while his article [11] used the operational definition with the smaller
set of operators (to prove the completeness of his axiomatisation of rooted weak
bisimilarity). The remark of van Glabbeek, cited above on page 9, also suggests
that van Glabbeek was aware of the discrepancies. Perhaps the long-term goal
of proving the congruence property for all CCS operators motivated him and the
other authors of [3] to pursue the longer path.

References

1. Basten, T.: Branching bisimilarity is an equivalence indeed! Inf. Proc. Lett. 58(3),
141–147 (1996). https://doi.org/10.1016/0020-0190(96)00034-8

2. van Glabbeek, R.J.: A complete axiomatization for branching bisimulation con-
gruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokołowski, S. (eds.)
Mathematical Foundations of Computer Science 1993. LNCS, vol. 711, pp. 473–
484. Springer, Berlin (1993). https://doi.org/10.1007/3-540-57182-5_39

3. van Glabbeek, R., Luttik, B., Spaninks, L.: Rooted divergence-preserving branch-
ing bisimilarity is a congruence. Log. Meth. Comput. Sci. 16(3), 14:1–14:16 (2020).
https://doi.org/10.23638/LMCS-16(3:14)2020

4. van Glabbeek, R., Luttik, B., Trčka, N.: Branching bisimilarity with explicit diver-
gence. Fundam. Inform. 93(4), 371–392 (2009). https://doi.org/10.3233/FI-2009-
109

5. van Glabbeek, R., Vaandrager, F.: Modular specification of process algebras.
Theor. Comput. Sci. 113(2), 293–348 (1993). https://doi.org/10.1016/0304-
3975(93)90006-F

6. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation
and stuttering equivalence. In: Paterson, M.S. (ed.) Automata, Languages and
Programming. LNCS, vol. 443, pp. 626–638. Springer, New York (1990). https://
doi.org/10.1007/BFb0032063

7. Liu, X., Yu, T.: A complete axiomatisation for divergence preserving branching
congruence of finite-state behaviours. In: 2021 36th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 1–13. IEEE, [s.l.] (2021). https://
doi.org/10.1109/LICS52264.2021.9470647

8. Lohrey, M., D’Argenio, P.R., Hermanns, H.: Axiomatising divergence. Inf. Comput.
203(2), 115–144 (2005). https://doi.org/10.1016/j.ic.2005.05.007

9. Milner, R.: Lectures on a calculus for communicating systems. In: Broy, M. (ed.)
Control Flow and Data Flow: Concepts of Distributed Programming, pp. 205–228.
Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-82921-5_5

https://doi.org/10.1016/0020-0190(96)00034-8
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.23638/LMCS-16(3:14)2020
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.1016/0304-3975(93)90006-F
https://doi.org/10.1016/0304-3975(93)90006-F
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1109/LICS52264.2021.9470647
https://doi.org/10.1109/LICS52264.2021.9470647
https://doi.org/10.1016/j.ic.2005.05.007
https://doi.org/10.1007/978-3-642-82921-5_5

370 D. N. Jansen and X. Liu

10. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
11. Milner, R.: A complete axiomatisation for observational congruence of finite-state

behaviours. Inf. Comput. 81(2), 227–247 (1989). https://doi.org/10.1016/0890-
5401(89)90070-9

12. Sun, Q., Jansen, D.N., Liu, X., Zhang, W.: Divergence-preserving congruences for
CCS. Manuscript under submission (2022)

13. Vaandrager, F.W.: Verification of two communication protocols by means of pro-
cess algebra. Report CS-R6808, CWI, Amsterdam (1986). https://ir.cwi.nl/pub/
6298

https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1016/0890-5401(89)90070-9
https://ir.cwi.nl/pub/6298
https://ir.cwi.nl/pub/6298

	.26em plus .1em minus .1emRooted Divergence-Preserving Branching Bisimilarity is a Congruence: A Simpler Proof
	1 Introduction
	2 Finite-State CCS and Branching Bisimulation
	3 Congruence for Finite-State Processes
	4 Comparison with the Congruence Proof for a Traditional Definition
	5 Extending the Proof to Full CCS?
	References

