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Abstract. We present a unifying formalization of active automata learn-
ing algorithms in the MAT model, including a new, efficient, and sim-
ple technique for the analysis of counterexamples during learning: Lλ

is the first active automata learning algorithm that does not add sub-
strings of counterexamples to the underlying data structure for obser-
vations but instead performs black-box search and partition refinement.
We analyze the worst case complexity in terms of membership queries
and equivalence queries and evaluate the presented learning algorithm
on benchmark instances from the Automata Wiki, comparing its per-
formance against efficient implementations of some learning algorithms
from LearnLib.
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1 Introduction

Active automata learning has gained a lot of traction as a formal analysis method
for black-box models in the previous decade [19]. We provide a detailed account
of the first half of the decade in a dedicated survey paper [8]. The second half
of the decade saw extensions to new automata models, e.g. to symbolic au-
tomata [4] and one-timer automata [20], applications, e.g., in model checking
network protocols [5], and algorithmic advances, e.g., an SMT-based learning
algorithm [17]. We cannot do the development of the field adequate justice in a
couple of paragraphs, and hence will not even attempt to.

What has remained elusive for a long time is a simple and generic formaliza-
tion of active automata learning and a lower bound result. Frits Vaandrager and
coauthors have recently presented active automata learning in the framework of
apartness [21], providing a nice formalization of the long established intuition
that active automata learning is about distinguishing states.

We continue in this vein and show that it is sufficient to remember which
states to distinguish while disregarding the concrete evidence for their apartness:
In this paper on the occasion of Frits Vaandrager’s 60th birthday, we present a
unifying formalization of active automata learning algorithms in the MAT model
for finite state acceptors, Moore machines, and Mealy machines and develop a
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new, efficient, and simple technique for the analysis of counterexamples during
learning. The Lλ (λ for lazy) algorithm is—to the best of our knowledge—
the first active automata learning algorithm that does not add sub-strings of
counterexamples to the underlying data structure for observations but instead
performs black-box search and lazy partition refinement, based on information
extracted from a counterexample.

We establish the correctness of the presented framework in a series of straight-
forward lemmas. The presented proofs do not rely on concrete underlying data
structures, which will hopefully facilitate easy adaptation of the algorithmic
ideas to other (richer) classes of models. We analyze the worst case complexity
in terms of membership queries and equivalence queries and evaluate the pre-
sented learning algorithm on benchmark instances from the Automata Wiki1,
comparing its performance against efficient implementations of some learning
algorithms from LearnLib [11]. We still cannot provide a lower bound but we
certainly hope that the Lλ is one step on the way to such a bound.

Outline. The remainder of the paper is structured as follows. We present a
unifying view on regular languages, finite state acceptors, and Mealy machines
in the next section, before recapitulating the MAT learning model and existing
learning algorithms in Sect. 3. Our main contribution, the Lλ learning algo-
rithm, is presented in Sect. 4 and demonstrated in Sect. 5. Results of the
performance evaluation are discussed in Sect. 6.

2 Regular Languages and Automata

We start with a brief unifying recapitulation of different finite automata models.
For some fix finite alphabet Σ, we usually use a to denote a symbol from that
alphabet, and u, v, w for words in Σ∗. For empty word ε, let Σ+ = Σ∗ \ {ε}.
We use symbols like words in concatenation uv (or u · v for emphasis) where
uv = u1 · · · um · v1 · · · vn for u = u1 · · · um and v = v1 · · · vn. Finally, we use u[i,j]

for 1 ≤ i ≤ j ≤ |u| as a shorthand for the sub-word ui · · · uj of u.

Definition 1. A Deterministic Finite Automaton (DFA) is a tuple 〈Q, q0, Σ, δ〉
where Q is a finite nonempty set of states, q0 ∈ Q is the initial state, Σ is a
finite alphabet, and δ : Q × Σ → Q is the transition function.

We extend δ to words in the natural way by defining δ(q, ε) = q for the empty
word ε and δ(q, ua) = δ(δ(q, u), a) for u ∈ Σ∗ and a ∈ Σ.

We can generally distinguish automata that associate output or acceptance
with states (i.e., finite state acceptors and Moore machines) from those that
associate output with transitions (i.e., Mealy machines).

Definition 2. A Moore machine is a tuple 〈Q, q0, Σ,Ω, δ, λ〉 where 〈Q, q0, Σ, δ〉
is a DFA, Ω is a finite set of outputs, and λ : Q → Ω is the state output function.

1 Automata Wiki: ru.nl and [13].
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A Moore machine M = 〈Q, q0, Σ,Ω, δ, λ〉 maps words w ∈ Σ∗ to outputs o ∈ Ω
through the semantic function S∗

A : Σ∗ → Ω, which we define as S∗
M =def λ ◦ δ.

Definition 3. A finite state acceptor (FSA) is a tuple 〈Q, q0, Σ, δ, F 〉 defining
a Moore machine 〈Q, q0, Σ, {0, 1}, δ, λ〉 in which λ : Q → {0, 1} marks the set of
accepting states (λ(q) = 1 iff q ∈ F ).

An FSA F = 〈Q, q0, Σ, δ, λ〉 accepts a regular language LF ⊆ Σ∗: for w ∈ Σ∗

let w ∈ LF iff S∗
F (w) = 1, i.e., if δ(w) ∈ F .

Definition 4. A Mealy machine is a tuple 〈Q, q0, Σ,Ω, δ, λ〉 where 〈Q, q0, Σ, δ〉
is a DFA, Ω is a finite set of outputs, and λ : Q × Σ → Ω is the transition
output function.

A Mealy machine M = 〈Q, q0, Σ,Ω, δ, λ〉 maps words w ∈ Σ+ to outputs o ∈ Ω
through the semantic function S+

M : Σ+ → Ω, which we define as S+
M (ua) =def

λ(δ(u), a) for u ∈ Σ∗ and a ∈ Σ.

Residuals and Congruences. For some DFA A = 〈Q, q0, Σ, δ〉 and state q ∈
Q, the q-residual DFA A|q is the automaton 〈Q, q,Σ, δ〉, in which we make q
the initial state. The automaton A|q represents the behavior of A after reaching
state q.

The concept of residuals extends to regular languages and semantic functions:
For a Moore machine M = 〈Q, q0, Σ, {0, 1}, δ, λ〉 and some word u ∈ Σ∗, let
q = δ(u) and M |q with semantic function S∗

M |q. As S∗
M |q(w) = S∗

M (u · w) for
w ∈ Σ∗, we omit M |q and write u−1S∗

M for the residual semantic function of
S∗

M after u. We can then define a congruence relation ≡S on the set Σ∗ of words:
for words u, v ∈ Σ∗ let u ≡S v iff u−1S∗

M = v−1S∗
M . For regular languages, this

congruence is the well-known Nerode-relation [14]. For a Mealy machine M , we
can make an analogous construction using its semantic function S+

M and the set
of words Σ+ [18].

Canonical Automata. Congruence relations are the basis for constructing
canonical automata models. A semantic function S∗ can be represented as a
finite automaton if ≡S is of finite index. The canonical automaton for any such
S over some alphabet Σ is the automaton AS = 〈Q, q0, Σ, δ〉 with one state
in Q for every class of ≡S and q0 the state for ε. The transition function is
defined using the congruence as δ([u]S , a) = [ua]S for u ∈ Σ∗, a ∈ Σ, where
[u]S denotes the class of u in ≡S . For a semantic function S∗ : Σ∗ → Ω, the
canonical Moore machine MS (or FSA in the case of Ω = {0, 1}) is the au-
tomaton 〈Q, q0, Σ,Ω, δ, λ〉 with 〈Q, q0, Σ, δ〉 as above and λ([u]) =def S∗(u) for
u ∈ Σ∗. For a semantic function S+ : Σ∗ → Ω, the canonical Mealy ma-
chine MS is the automaton 〈Q, q0, Σ,Ω, δ, λ〉 with 〈Q, q0, Σ, δ〉 as above and
λ([u], a) =def S+(ua) for u ∈ Σ∗ and a ∈ Σ.

3 MAT Learning

Active automata learning [2] is concerned with the problem of inferring an au-
tomaton model for an unknown semantic function L over some alphabet Σ.
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Lλ

MQ: O(kn2 + n2log m)

IS: O(kn3 + n2m log m)

Kearns/Vazirani [12]
MQ: O(kn2 + n2m)

IS: O(kn2m + n2m2)

L∗ [2]
MQ: O(kn2m)

IS: O(kn2m2)

Rivest/Shapire [16],
Packs [7], L# [21]
MQ: O(kn2 + n log m)

IS: O(kn2m + nm log m)

Maler/Pnueli [15]
MQ: O(kn2m)

IS: O(kn2m2)

From
Observations

One Prefix
of CE

All Prefixes
of CE

From
Observations

One Suffix
of CE

All Suffixes
of CE

TTT [10]

Fig. 1. Active Automata Learning Algorithms. Cells (One Suffix of CE) and (One
Prefix of CE) contain more algorithms than shown. For (One Prefix of CE): complexities
pertain to Kearns/Vazirani not to cell. We compare number of membership queries
(MQ) and number of input symbols (IS).

MAT Model. Active learning is often formulated as a cooperative game be-
tween a learner and a teacher. The task of the learner is to learn a model of some
unknown semantic function L. The teacher assists the learner by answering two
kinds of queries:

Membership queries ask for the value of L for a single word w ∈ Σ∗. The
teacher answers these queries with L(w).

Equivalence queries ask if a candidate function, represented as a finite hy-
pothesis automaton H, is equal to L. If H is not equal to L, the teacher will
provide a counterexample: a word w for which H(w) 
= L(w).

The teacher in this model is called a minimally adequate teacher (MAT) and the
learning model is hence often referred to as MAT learning.

Dana Angluin originally presented the MAT learning model along with a
first learning algorithm [2]. With the MAT learning model, she introduced an
abstraction that enabled the separation of concerns (constructing stable prelim-
inary models and checking the correctness of these models). This enabled an
algorithmic pattern that allowed the formulation and optimization of learning
algorithms. The L∗ learning algorithm for regular languages and corresponding
sequence of lemmas showing the correctness of the algorithms have served as
a basis for learning algorithms inferring more complex classes of concepts, e.g.,
symbolic automata [4] and register automata [1,9]. The L∗ algorithms and all
other MAT learning algorithms that have been discovered subsequently mimic
the construction of canonic automata, using a finite set Sp ⊂ Σ∗ of short prefixes
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for representing classes of ≡S and a set V ⊂ Σ∗ (resp. V ⊂ Σ+ for Mealy ma-
chines) of suffixes for distinguishing classes of ≡L: for all u, u′ ∈ Σ∗ with u 
≡L u′

exists v ∈ Σ∗ (resp. v ∈ Σ+ for Mealy machines) with L(uv) 
= L(u′v). Mem-
bership queries and equivalence queries are used for finding new short prefixes
and distinguishing suffixes.

All known active learning algorithms fall into one of two classes, as is shown
in Fig. 1: The first class comprises algorithms that search for new short pre-
fixes and construct new suffixes incrementally through observable inconsistencies
between residual semantic functions of prefixes [2,12], relying on the following
observation.

Proposition 1 (New short prefix [2,12]). Every counterexample w has a
prefix w′ for which w′ ≡H u for some u ∈ Sp while w′a 
≡H ua for some a ∈ Σ,
proven by some v ∈ V for which L(w′av) 
= L(uav).

In algorithms of this class, the word w′ is used as a new short prefix and a av
will subsequently (while refining the current hypothesis) be constructed as a new
suffix, documenting w′ 
≡H u.

The second group of algorithms searches for new suffixes and identifies new
short prefixes through corresponding observable differences (so-called unclosed-
ness) [7,15,16,18,21].

Proposition 2 (New suffix [16]). A counterexample w has a suffix v that
distinguishes two words ua ≡H u′ with u, u′ ∈ Sp and a ∈ Σ through L(uav) 
=
L(u′v).

The suffix v of the counterexample is used as a new distinguishing suffix and ua
will subsequently become a new short prefix.

Algorithms in the first group produce a suffix-closed set of suffixes but are
prone to adding unnecessarily long prefixes of counterexamples as short prefixes.
Algorithms in the second group produce a prefix-closed set of short prefixes but
are generally vulnerable to using unnecessarily long distinguishing suffixes.

Both groups can be further sub-divided into algorithms that add one prefix
(or suffix) of a counterexample to the observations and ones that use all prefixes
and suffixes. As can be seen in Fig. 1, moving toward the left or to the top in
the groups, improves the worst-case number of membership queries and symbol
complexity of algorithms. We could further subdivide the left cell in the middle
row to distinguish by underlying data structure, which does not have an impact
on the worst case but in practice has a significant impact.

The TTT algorithm [10], though belonging to the second group, is the first
algorithm that produces a prefix-closed set of short prefixes and a suffix-closed
set of suffixes, albeit, at the expense of using long suffixes as preliminary distin-
guishing suffixes in cases where incremental construction of a new suffix is not
immediately possible.

The Lλ algorithm that we present in the next section extends upon ideas
from both classes of algorithms: it constructs a prefix-closed set of short prefixes
and a suffix-closed set of suffixes without any intermediate artifacts. It is thus
the first algorithm that belongs to the top left group in Fig. 1.
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begin
Sp ← Sp ∪ {w}
for wa ∈ ({w} · Σ) do

if B ∈ B and u ∈ Sp ∩ B with L(wa · v) = L(u · v) for all v ∈ VB then
B ← B ∪ {wa}

else
Let B̄ = {wa}
Let VB̄ s.t. for B ∈ B, u ∈ Sp ∩ B exists v ∈ VB̄ ∩ VB with
L(wa · v) �= L(u · v)

B ← B ∪ {B̄}
Expand(wa)

end

end

end

Procedure Expand(w).

4 The Lλ Algorithm

We present the Lλ learning algorithm in the unifying framework of semantic
functions and without using a concrete data structure. The idea of an abstract
data structure that unifies arguments for implementations based on observation
tables and for implementations based on discrimination trees is inspired by par-
tition refinement and was also used by Balcázar et al. [3] as a basis for their
unified overview of active automata learning algorithms for FSAs.

Abstract Data Structure. The learner maintains a prefix-closed set Sp ⊂ Σ∗

of words (so-called short prefixes) to represent equivalence classes of ≡S . In order
to mimic the definition of the transition function in the construction of the
canonic automaton, she will maintain a set U = Sp∪Sp ·Σ of prefixes that cover
transitions between equivalence classes. She also maintains a partitioning of U
into a pack of components B = {B0, B1, . . .}, i.e., such that U =def

⋃
B∈B(B),

ensuring that, every time she submits a hypothesis H to an equivalence query,
each component contains exactly one short prefix.

Two prefixes u, u′ ∈ U are equivalent w.r.t. B, denoted by u ≡B u′ iff they
are in the same component. For every component B, the learner maintains a set
VB of suffixes such that prefixes u, u′ ∈ B are not distinguished by VB , i.e., such
that S(uv) = S(u′v) for v ∈ VB. For u ∈ B and u 
≡B u′, on the other hand, the
set VB contains at least one suffix v for which S(uv) 
= S(u′v), distinguishing
[u] from [u′] in ≡S and the components of u and u′ in B. She initializes the
observation pack B with a single component Bε = {ε} and an empty set of
Sp = ∅. The initial set of suffixes V ε

B is initialized as {ε} when inferring Moore
machine models or finite state acceptors and as Σ when inferring Mealy machine
models—reflecting how residuals are defined for semantic functions L∗ and L+.

The learner performs the following two main operations, detailed in Proce-
dure Expand and Procedure Refine, on this data structure.



Active Automata Learning as Black-Box Search 327

begin
For o ∈ Ω let Bo = {w ∈ B | L(w · v) = o}
B ← (B \ B) ∪ {Bo �= ∅ | o ∈ Ω}
VBo = VB ∪ {v} for all new components and discard of VB

if Bo ∩ Sp = ∅ for a new component then
Expand(u) for some u ∈ Bo

end

end

Procedure Refine(B, v).

Expand. Similar to a search on the states of an automaton, the learner will
expand the set Sp of short prefixes with a word u from the set U \ Sp of
prefixes whenever she can prove that u belongs to an equivalence class of ≡S

which is not yet represented in Sp. The set U is extended accordingly and a
new set of suffixes is introduced in such a case.

Refine. Similar to partition refinement, the learner will refine a class B of B
whenever she finds that two short prefixes u′, u′′ ∈ B do not belong to
the same class of ≡S . This is the case if for some a ∈ Σ she has already
established that u′a 
≡B u′′a. The learner can then identify a suffix v that
distinguishes u′a from u′′a and she uses av to distinguish u′ from u′′.

Conjectures and Equivalence Queries. At certain points during learning,
the learner computes a conjecture H = 〈Q, q0, Σ,Ω, δH, λH〉 where

– Q contains a state qB for every class B of B,
– q0 = qBε is the initial state,
– δH(qB , a) = qB′ for Sp ∩ B = {u}, a ∈ Σ, and B′ � ua,
– Ω is the set of observed outputs, and

in the case of an unknown semantic function L∗, the output function is defined as
λH(qB) = L∗(u) for Sp∩B = {u}. In the case of an unknown semantic function
L+, the output function is defined as λH(qB , a) = L+(ua) for Sp∩B = {u} and
a ∈ Σ.2

Conjectured automata are well-defined as they are only constructed when
every component contains exactly one short prefix as we will show below and
since ε is an element (resp. Σ is a subset) of every set of suffixes. The conjecture
H is then submitted to an equivalence query. In case H equals L, the teacher
acknowledges this and learning ends with the correct model. Otherwise, the
learner receives a counterexample w for which L(w) 
= H(w).

Analyzing Counterexamples. Counterexamples are used to find prefixes in
the set U from equivalence classes of ≡S that are not represented in the set of
short prefixes yet. As long as the hypothesis is not equivalent to L, the set U

2 The Lλ algorithm may (where possible) use its underlying data structure for deter-
mining output values or resort to membership queries and a cache.
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begin
Bε = {ε}, B = {Bε}, VBε = {ε} (resp. VBε = ∅ for Mealy), and Sp = ∅
Expand(ε)
H ← Conjecture(Sp, B)
while find counterexample w ∈ Σ+ with H(w) �= L(w) do

C = {w}
while exists w ∈ C with H(w) �= L(w) do

// Analyze Counterexample
Let i s.t. w = w[1,i]av with H(ua · v) �= L(ua · v) for u ∈ As(w[1,i])

while H(u′ · v) = L(u′ · v) for all u′ ∈ As(w[1,i+1])
C ← C ∪ {uav, u′v}
Expand(ua)
// Lazy Refinement
for u, u′ ∈ Sp with u ≡B u′ but ua �≡B u′a for some a ∈ Σ
or L+(ua) �= L+(u′a) in the case of Mealy machines do

Let B 	 ua and v ∈ VB ∪ {ε} with L(ua · v) �= L(u′a · v)
Refine(B′, av) for B′ 	 u

end
H ← Conjecture(Sp, B)

end

end
Return H as final model

end

Algorithm 1: The abstract Lλ algorithm.

must contain a word ua ∈ B \ Sp such that for some suffix v ∈ Σ+ and a short
prefix u′ ∈ B ∩ Sp it holds that L(ua · v) 
= L(u′ · v). The algorithms find such
a ua by binary search on the counterexample and adds ua to the set of short
prefixes.

For longer v, adding ua to the short prefixes may not immediately lead
to an inconsistency with corresponding new suffix, and subsequent refinement.
Intuitively, more steps ahead may be required until the difference in behavior
becomes detectable with the current sets of distinguishing suffixes. In such cases,
multiple new short prefixes can be derived from a counterexample and one of
the two words uav and u′v is a guaranteed counterexamples until ua and u′ are
refined into two different components, as we will show.

The Learning Algorithm. The abstract Lλ algorithm is shown in Algorithm 1.
The algorithms starts by initializing the set of prefixes with ε, the access sequence
of the initial state. The set of suffixes is initialized to {ε} in the case of FSAs
or Moore machines, distinguishing states by their associated output, and to the
empty set in the case of Mealy machines. The observations are initialized by
expanding ε as the basis for an initial conjecture. Then the algorithm proceeds
by searching for counterexamples. As long as a counterexample w exists, the
algorithm initializes a set of candidate counterexamples with w and iterates the
following steps until exhausted. First, a new short prefix and two new candi-
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h0ε ∈ As(ε) h1 h2
. . . hk hl hm

w1 w2 wm−1 wm

As(w1)

As(w1 · w2) = As(u · w2) for u ∈ As(w1)

for
u′ ∈ As(w1 · · · wm−1)

H(u′wm) = L(u′wm)

Fig. 2. Replacing prefixes of a counterexamples with short prefixes. For semantic func-
tion L and hypothesis H it is guaranteed that for symbol wm of the counterexample
the conjecture is correct by the definition of the output function λ.

date counterexamples are generated from one of the candidate counterexamples.
Then, consistency of observations is checked. Inconsistent observations for two
short prefixes lead to a new suffix and refinement.

While the abstract Lλ algorithm can be presented without assuming details
about the underlying data structure, we have to specify special cases for inferring
Mealy machine models in two lines of the algorithm: when initializing the set of
suffixes, and when checking consistency. Since it is not guaranteed that a symbol
a ∈ Σ is in the set of suffixes, we have to add corresponding consistency checks.
On the other hand, this (to the best of our knowledge) manifests the first active
automata learning algorithm for Mealy machines that can use an observation
table as a data structure and does not add all alphabet symbols as suffixes to
the table.

Correctness and Complexity. We present technical details and arguments
for the correctness of the approach in the following two lemmas where we use
As(w) as a shorthand for the set B∩Sp of short prefixes in B ∈ B corresponding
to state qB = δH(w), reached by w in H.

Lemma 1. A counterexample w of length m has a prefix w1 . . . wi−1 with i < m
such that for some u ∈ As(w1 · · · wi) and it holds that

1. uwi+1 is not a short-prefix, i.e., uwi+1 
∈ Sp, and
2. uwi+1 should become a short-prefix since uwi+1 
≡S u′, as witnessed by

L(uwi+1 · wi+2 · · · wm) 
= L(u′ · wi+2 · · · wm), for all u′ ∈ As(u · wi+1).

Proof. The argument is almost identical to the one presented by Rivest and
Schapire in their proof of the existence of a distinguishing suffix in a counterex-
ample [16]. The idea of the argument is visualized in Fig. 2. We analyze de-
compositions w = w[1,i] · w[i+1,m] of the counterexample where w[i,j] = wi · · · wj

for 0 ≤ i ≤ j ≤ m and with w[0,0] = ε. Since w is a counterexample, it must hold
that

L(ε · w[1,m]) = L(w) 
= H(w) = L(u′ · w[m,m])

for all u′ ∈ As(w[1,m−1]). As a consequence, there must be some index 1 ≤ i < m
at which for some u ∈ As(w[0,i−1]) and all u′ ∈ As(w[0,i])

L(u · w[i,m]) 
= L(u′ · w[i+1,m]).
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The word uwi is obviously not a short-prefix but should be a short-prefix: the
stated inequality implies uwi 
≡L u′ since u · w[i,m] = uwi · wi+1 · · · wm and
u′w[i+1,m] = u′ · wi+1 · · · wm. ��
Lemma 2. Analyzing a counterexample leads to refinement and after the anal-
ysis every component has one short prefix.

Proof. We perform a case analysis. A counterexample w leads to new word ua
at index i and witnesses uav, u′v for u′ ∈ As(ua). Suffix v proves that ua is not
≡L-equivalent to any u′. We can distinguish two basic cases:

1) Immediate Refinement. Short prefix ua leads to immediate refinement.
There is one short prefix per component.

2) No Immediate Refinement. If no refinement happens, then H does not
change and w is still counterexample. Still, there is progress: w cannot be
split again at index i since ua was added to Sp. Moreover, we obtain witnesses
uav, u′v, one of which will be a counterexample until ua and u′ are refined
into different components.

As a consequence, we have one access sequence per component after processing
a counterexample. ��

After the lemmas we have proven, correctness of Lλ is trivial: Every coun-
terexample will lead to at least one new short prefix for which it can be proven
that it is not ≡L-equivalent to any existing short prefix. Hypothesis construction
guarantees that H(w) = L(w) for ua ∈ U , that |As(ua)| = 1, and (at least for
the final model) that for u′ ∈ As(ua) it holds that ua ≡L u′—this generalizes
to Σ∗ or Σ+ by induction.

As for query complexity and symbol complexity, for a target L with k input
symbols, n states in the canonic automaton for L, and counterexamples of length
m or shorter Lλ uses O(kn) prefixes and O(n) suffixes in the observations. The
algorithm performs a binary search on counterexamples, and during processing
of counterexamples, components may have more than one access sequence, re-
quiring O(n) tests per analyzed index of the counterexample in the worst case.
This yields the following theorem.

Theorem 1. Algorithm Lλ learns L∗ with O(kn2+n2log(m)) membership queries
and O(n) equivalence queries. ��

Since words in the observations are of length in O(n), we obtain the following
corollary on the symbol complexity of Lλ.

Corollary 1. The symbol complexity of Algorithm Lλ is O(kn3 + n2m log(m)).
��

Comparing the obtained worst-case complexities with the results displayed in
Fig. 1, relying on refinements can increase the queries for analyzing coun-
terexamples in cases when refinement does not occur immediately. While we
construct such a case in the next section, we were not able to observe delayed
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Fig. 3. Canonical FSA of target language.

refinement in any of the experiments on models of real systems reported in
Sect. 6. On the other hand, the symbol complexity associated with observations
used for constructing hypothesis automata does not depend on the length of
counterexamples for Lλ, which can be observed in experiments.

5 Demonstration

For the sake of simplicity, we assume an observation table as a data structure in
the presentation of this demonstration example.3 Rows of an observation table
are labeled with prefixes from U , columns are labeled with suffixes. We use a
single big set V that distinguishes all components pairwisely. The cell in row
u and column v holds the value of S(u · v). We demonstrate how the learning
algorithm infers the canonical FSA for a target language shown in Fig. 3.

The learning algorithm starts by expanding ε, adding it to the set of short
prefixes (depicted as the upper set of rows in the table) and adds prefixes a
and b. As S(a · ε) 
= S(ε · ε), prefix a becomes a short prefix as well and is
expanded by adding prefixes aa and ab. Now the observations become stable.
The corresponding observation table resulting hypothesis are shown in Fig. 4,
marked as Obs 1 and Hyp 1.

Now, letusassumethat thecounterexamplefindthecounterexample bbbabbaaa,
which is in the target language but not accepted by the hypothesis. The learner
discovers that she can split the counterexample as εb · bbabbaaa, which is still a
counterexample, but when she replaces prefix εb by its only access sequence a,
the word a · bbabbaaa is not a counterexample. Hence, she expands b and adds
words bbbabbaaa and abbabbaaa to the pool of potential counterexamples.

The expansion does not lead to a refinement. Another analysis of the coun-
terexample yields the split aa · aa, where short prefix a is one access sequence of
the prefix bbbabb of the counterexample. While aa · aa is still a counterexample,
none ob the words in {a, b} · {aa} are. Expanding aa (and the set of candidate
counterexamples) still does not lead to a refinement. The next analysis results
in the split aaa · a (aa now being one of the access sequences for the prefix
bbbabba) of the counterexample. Since none of the words in {a, b, aa} · {a} is a
3 A more efficient tree-based version of is used in the evaluation. Both variants are

implemented in LearnLib for reference.
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ε

ε 1
a 0

b 0
aa 0
ab 0

ε a a
a

a
a
a

ε 1 0 0 0
a 0 0 0 1
b 0 0 0 1
aa 0 0 1 1
aaa 0 1 1 1
aaaa 1 1 1 1

ba 0 0 1 1
bb 0 0 0 1
ab 0 0 0 1
aab 0 0 1 1
aaab 0 1 1 1
aaaaa 1 1 1 1
aaaab 1 1 1 1

ε a a
a

a
a
a

ba
a
a

bb
a
a
a

ε 1 0 0 0 1 1
a 0 0 0 1 1 1
b 0 0 0 1 1 0
aa 0 0 1 1 1 0
aaa 0 1 1 1 1 1
aab 0 0 0 1 0 1
aaaa 1 1 1 1 1 1

ba 0 0 1 1 1 0
bb 0 0 0 1 0 1
ab 0 0 0 1 1 1
aaba 0 0 1 1 1 0
aabb 1 0 0 0 1 1
aaab 0 1 1 1 1 1
aaaaa 1 1 1 1 1 1
aaaab 1 1 1 1 1 1

1 0
a, b

a

b

1 0 0 0 1

b b b a, b

a, b a a a

Obs 1: Obs 2: Obs 3:

Hyp 1:

Hyp 2:

Fig. 4. Observation table and hypothesis at time of first equivalence query (no. 1),
when bbbabbaaa is no longer a counterexample (no. 2), and final observation table
(no. 3).

counterexample, prefix aaa is expanded (along with the set of candidate coun-
terexamples), finally leading to a sequence of refinements, adding suffixes a, aa,
and aaa and generating components for aa, aaa and aaaa. The corresponding
observation table and hypothesis are shown as Obs 2 and Hyp 2 in Fig. 4.

At this point, the word bbbabbaaa stops being a counterexample but candi-
date word abbabbaaa has become a counterexample. Analyzing this new coun-
terexample, the learner splits it into aab · baaa, which is a counterexample (abba
has access sequence aa). For the next index aa · baaa is not a counterexample.
Expanding aab yields refinements, adding suffixes baaa and bbaaa, generating
the remaining components and resulting in observation table Obs 3, which is
equivalent to the canonical DFA.

We can observe the two particular features discussed in the previous sec-
tion. First: in a round of learning, all expansions eventually lead to refinements.
Second: when analyzing counterexamples, components may contain a growing
number of short prefixes until all refinements are performed.

6 Evaluation

We evaluate the performance of the presented algorithm in three series of ex-
periments on the benchmark set from the Automata Wiki [13]. We implemented
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four versions of the new algorithm in LearnLib, two based on an observation
table (for FSAs and for Mealy Machines), and two based on a discrimination
tree. We use the Mealy variants, denoted Lλ

DT and Lλ
Obs in our experiments

and compare these variants against Mealy variants of learning algorithms imple-
mented in LearnLib [11], namely TTT [10], Observation Packs [7], ADT [6],
Kearns/Vazirani [12], Rivest/Schapire [16], and L∗ [2].

In the first series of experiments, we evaluate all algorithms on the m106.dot
model from the Automata Wiki and vary the length of counterexamples, enabling
a basic comparison of algorithms of the different groups shown in Fig. 1. Coun-
terexamples are generated using a heuristic that tries to find counterexamples
of a certain length cannot be shortened trivially (i.e., such that prefixes of a
counterexample are not counterexamples).

In the second series, we compare the subset of the most efficient learning
algorithms (TTT, Observation Packs, and Lλ

DT ) on several benchmarks instances
from the Automata Wiki, namely:

learnresult new Rand 500 10 − 15 MC fix.dot (R500),

mosquitto two client will retain.dot (Mosq),

OpenSSH.dot (SSH),

TCP Windows8 Server.dot (TCP ),

m95.dot (M95).

As a third series of experiments, we reproduce the results presented by
Frits and his coauthors in their TACAS 2022 [21] paper and add the new Lλ

DT

learning algorithm to the analysis. We also replace Rivest and Schapire’s learning
algorithm by ObservationPacks to generate data on the effect of using adaptive
distinguishing sequences: The ADT algorithm, the first learning algorithm that
used adaptive distinguishing sequences [6], is algorithmically closest related to
ObservationPacks. This lets us compare the two pairs L#, L#

ADS and Observa-
tionPacks, ADT.

All experiments were computed on a 3, 2 GHz 6-Core Intel Core i7 Mac mini
(2018) with 32 GB of RAM. LearnLib is executed in a Java virtual machine
with 32 GB heap memory. We report averages and standard deviations from 10
executions of every experiment.

Figure 5 shows the results from the first series of experiments. We report
membership queries, equivalence queries, actual length of generated counterex-
amples, and number of input symbols used in membership queries.

The data shows that L∗ and the algorithm by Kearns and Vazirani are im-
pacted by the length of counterexamples with respect to membership queries
and input symbols. L∗ adds all prefixes of counterexamples to the observation
table. Kearns and Vazirani perform a linear forward search over a counterex-
ample. Moreover, we can observe that in relation to the other algorithms Lλ

DT ,
TTT, and ObservationPacks use virtually equally many membership queries and
input symbols (we take a closer look in the second series of experiments) and
that on this benchmark instance not adding all alphabet symbols to the set of
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Fig. 5. Membership queries, input symbols used in membership queries, equivalence
queries, and actual length of generated counterexamples for learning m106.dot from
the Automata Wiki with different learning algorithms and different counterexample
lengths. L∗ did not terminate successfully in most cases for a targeted counterexample
length of 400.

suffixes leads to a significant reduction in membership queries and symbols for
Lλ

Obs compared to Rivest and Schapire’s algorithm.
For equivalence queries we observe that in our limited experiments all algo-

rithms are invariant to the length of counterexamples. The L∗ algorithm that
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Fig. 6. Membership queries and input symbols for Lλ
DT , TTT , and ObservationPacks

on several systems from the Automata Wiki.

adds all prefixes of counterexamples to the observation table needs the fewest
number of equivalence queries, followed by Rivest and Schapire’s algorithm that
uses an observation table, too (and hence uses found distinguishing suffixes glob-
ally), and the Lλ

Obs algorithm, which uses an observation table but initializes the
set of suffixes as ∅, leading to more equivalence queries than the other two al-
gorithms require. Among the algorithms that are based on decision trees, the
algorithm of Kearns and Vazirani uses more equivalence than the other algo-
rithms consistently since it is the only algorithm that (in it’s original version)
will not analyze counterexamples exhaustively. The fact that ObservationPacks,
TTT, and Lλ

DT use virtually the same number of equivalence queries seems to
indicate that the additional witnesses used by Lλ

DT do not provide an advantage
on this benchmark instance.

The actual length of counterexamples shows that the target length rather
serves as an upper bound over the length of experiment—likely since it is
hard for our randomized implementation to find long counterexamples for early
(small) hypothesis models.

Figure 6 shows the results from the second series of experiments. We report
membership queries and number of input symbols used in membership queries
for Lλ

DT , TTT, and ObservationPacks on five benchmark instances from the
Automata Wiki for counterexamples of (targeted) length 100. ObservationPacks
and Lλ

DT use fewer membership queries than TTT, which exchanges long suf-
fixes during learning by shorter ones, resulting in additional queries (we observe
10% to 30% overhead compared to Lλ

DT ). ObservationPacks in many cases uses
significantly fewer membership queries than the other two algorithms. This can
be explained by the fact that in LearnLib, in contrast to our presentation here,
Mealy machines semantics is modeled as Σ+ �→ Ω+ making long suffixes more
likely to distinguish many prefixes. Considering the number of input symbols,
the ObservationPacks algorithm is influenced most by long counterexamples as
the algorithm uses suffixes of counterexamples directly. Lλ

DT and TTT use a
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Fig. 7. Input Symbols and resets for Lλ
DT , TTT, ObservationPacks, ADT, L#, and

L#
ADS on experiments from TACAS 2022 [21].

significantly smaller amount of input symbols on most examples, with a visible
edge for Lλ

DT which (in contrast to TTT) does not rely on intermediate suffixes.
Figure 7 shows the results from the third series of experiments.4 The Lλ

DT

narrowly but consistently outperforms the other learning algorithms that do not
use adaptive distinguishing sequences. As in the second series of experiments, the
ObservationPacks performs worst since it uses long suffixes of counterexamples
in the observations. The two learning algorithms that use adaptive distinguishing
sequences improve significantly upon the corresponding variants without adap-
tive distinguishing sequences (ADT vs. ObservationPacks and L#

ADS vs. L#),
yielding the question if similar improvements could be realized for TTT and
Lλ

DT . A detailed account of the integration of distinguishing sequences is beyond
the scope of this paper. We refer readers to [21] instead.

7 Conclusion

We have presented the abstract Lλ learning algorithm along with four imple-
mentations (for finite state acceptors and Mealy machines, as well as based on
an observation table, and based on a decision tree). The defining characteris-
tic of the Lλ algorithm is that no sub-strings of counterexamples are used in

4 Replicating results from a recent paper by Frits and coauthors [21], we count input
symbols and resets instead of inputs symbols in this series.
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the algorithm’s main data structure, resulting in new worst-case complexities
for membership queries and input symbols. We show that, though the obtained
worst-case complexities are slightly worse than the lowest existing worst-case
complexities, the algorithm seems to outperform existing learning algorithms in
practice.
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