
Nils Jansen
Mariëlle Stoelinga
Petra van den Bos (Eds.)

A Journey from Process Algebra
via Timed Automata
to Model Learning

Fe
st

sc
hr

ift
LN

CS
 1

35
60

Essays Dedicated to Frits Vaandrager
on the Occasion of His 60th Birthday

Input 1

Input 2

Output 1

Output 2

What’s going on
inside this black box?

Lecture Notes in Computer Science 13560

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Nils Jansen • Mariëlle Stoelinga •

Petra van den Bos (Eds.)

A Journey from Process Algebra
via Timed Automata
to Model Learning
Essays Dedicated to Frits Vaandrager
on the Occasion of His 60th Birthday

123

Editors
Nils Jansen
Radboud University Nijmegen
Nijmegen, The Netherlands

Mariëlle Stoelinga
University of Twente
Enschede, The Netherlands

Petra van den Bos
University of Twente
Enschede, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-15628-1 ISBN 978-3-031-15629-8 (eBook)
https://doi.org/10.1007/978-3-031-15629-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1318-8973
https://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-15629-8

Frits Vaandrager

Preface

We are happy to present this Festschrift, written for the occasion of the 60th birthday of
Frits Vaandrager.

We all know Frits as a highly passionate researcher: He can immerse himself in a
new idea and then forget everything around him. During his career, Frits focused on
several scientific passions:

– In the early days, as a PhD student of Jan Bergstra at the Centre for Mathematics
and Computer Science in Amsterdam, Frits worked in the area of process algebras.
Together with his office mate Rob van Glabbeek and colleague Jan Friso Groote
they hammered down several fundamental papers on concurrency theory and
operational semantics.

– After his PhD, he flew to MIT, working as a postdoc with Nancy Lynch on his
second passion: I/O automata.

– After a short stay in France, he returned to the Netherlands, first working in
Amsterdam. Finally, he became a professor in Nijmegen, working on model
checking of timed automata, contributing to the famous model checker Uppaal.

– Then, a bit more than a decade ago, Frits switched to the area of model learning,
being one of the area’s founding fathers.

We are sure that his scientific journey does not end here—Frits is always open to
research collaboration in his own research fields and sometimes takes a step somewhere
else: most astoundingly, he has a publication on polymers. Further, his passion does not
only lead to theoretical results. Frits also has stunning success with industrial appli-
cations, applying model learning to the TCP protocol and Dutch biometric passports,
model checking the very complex machines at ASML’s wafer steppers, the data paths
of industrial printers at Canon, and many more.

The Festschrift contains contributions of (former) colleagues, PhD students, and
researchers Frits collaborated with. The papers exemplify the rainbow of Frits’ research
interests and show the great appreciation Frits receives in the scientific community.

As part of our work on the volume, we organized a review process that involved a
program committee consisting of all contributing authors.

We thank Frits for inspiring all of us and congratulate him on his 60th birthday!

July 2022 Nils Jansen
Mariëlle Stoelinga
Petra van den Bos

Organization

Program Committee

Luca Aceto Reykjavik University, Iceland
Elli Anastasiadi National Technical University of Athens, Greece
Christel Baier TU Dresden, Germany
Henk Barendregt Radboud University, The Netherlands
Twan Basten TU Eindhoven, The Netherlands
Jan Bergstra University of Amsterdam, The Netherlands
Benedikt Bollig LMF, ENS Paris-Saclay, CNRS, France
Valentina Castiglioni Reykjavik University, Iceland
Vincenzo Ciancia Consiglio Nazionale delle Ricerche, Italy
Rance Cleaveland University of Maryland, USA
Carlos Diego Nascimento

Damasceno
Radboud University, The Netherlands

Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Erik De Vink TU Eindhoven, The Netherlands
Luca Di Stefano University of Gothenburg, Sweden
Clemens Dubslaff TU Dresden, Germany
Ansgar Fehnker Macquarie University, Australia
Tiago Ferreira University College London, UK
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Markus Frohme TU Dortmund University, Germany
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Florian Funke TU Dresden, Germany
Hubert Garavel Inria, France
Herman Geuvers Radboud University, The Netherlands
Jan Friso Groote TU Eindhoven, The Netherlands
Jozef Hooman TNO-ESI and Radboud University, The Netherlands
Falk Howar TU Dortmund, Germany
Marieke Huisman University of Twente, The Netherlands
Omar Inverso University of Southampton, UK
David N. Jansen Chinese Academy of Sciences, China
Nils Jansen Radboud University, The Netherlands
Simon Jantsch TU Dresden, Germany
Sebastian Junges Radboud University, The Netherlands
Ivan Kurtev Capgemini Engineering and TU Eindhoven,

The Netherlands
Frédéric Lang CONVECS, Inria Grenoble - Rhône-Alpes, France
Diego Latella ISTI-CNR, Italy
Martin Leucker University of Luebeck, Germany

Xinxin Liu Chinese Academy of Sciences, China
Nancy Lynch Massachusetts Institute of Technology, USA
Mieke Massink CNR-ISTI, Italy
Joshua Moerman RWTH Aachen University, Germany
Jakob Piribauer TU Dresden, Germany
Jurriaan Rot Radboud University, The Netherlands
Alexandra Silva University College London, UK
Marielle Stoelinga University of Twente, The Netherlands
Daniel Strüber Chalmers University of Technology, Sweden,

and Radboud University, The Netherlands
Jan Tretmans TNO-ESI and Radboud University, The Netherlands
Serenella Valiani IMT School for Advanced Studies Lucca, Italy
Petra van den Bos University of Twente, The Netherlands
Rob van Glabbeek University of New South Wales, Australia
Tim Willemse TU Eindhoven, The Netherlands
Hans Zantema TU Eindhoven, The Netherlands
Robin Ziemek TU Dresden, Germany

x Organization

Contents

Non-finite Axiomatisability Results via Reductions: CSP Parallel
Composition and CCS Restriction . 1

Luca Aceto, Elli Anastasiadi, Valentina Castiglioni,
and Anna Ingólfsdóttir

Operational Causality – Necessarily Sufficient and Sufficiently Necessary . . . 27
Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch,
Jakob Piribauer, and Robin Ziemek

Axiomatizing Consciousness with Applications . 46
Henk Barendregt and Antonino Raffone

Symmetric Transrationals: The Data Type and the Algorithmic Degree
of its Equational Theory. 63

Jan A. Bergstra and John V. Tucker

A Survey of Model Learning Techniques for Recurrent Neural Networks. . . . 81
Benedikt Bollig, Martin Leucker, and Daniel Neider

Back-and-Forth in Space: On Logics and Bisimilarity in Closure Spaces 98
Vincenzo Ciancia, Diego Latella, Mieke Massink, and Erik P. de Vink

Better Automata Through Process Algebra . 116
Rance Cleaveland

Family-Based Fingerprint Analysis: A Position Paper 137
Carlos Diego N. Damasceno and Daniel Strüber

What’s in School? – Topic Maps for Secondary School
Computer Science . 151

Ansgar Fehnker

Tree-Based Adaptive Model Learning . 164
Tiago Ferreira, Gerco van Heerdt, and Alexandra Silva

From Languages to Behaviors and Back . 180
Markus Frohme and Bernhard Steffen

The Quest for an Adequate Semantic Basis of Dense-Time Metric
Temporal Logic . 201

Martin Fränzle

Equivalence Checking 40 Years After: A Review of Bisimulation Tools 213
Hubert Garavel and Frédéric Lang

Apartness and Distinguishing Formulas in Hennessy-Milner Logic 266
Herman Geuvers

Playing WORDLE with UPPAALSTRATEGO . 283
Peter G. Jensen, Kim G. Larsen, and Marius Mikučionis

Using the Parallel ATerm Library for Parallel Model Checking and State
Space Generation . 306

Jan Friso Groote, Kevin H. J. Jilissen, Maurice Laveaux,
P. H. M. van Spaendonck, and Tim A. C. Willemse

Active Automata Learning as Black-Box Search and Lazy Partition
Refinement. 321

Falk Howar and Bernhard Steffen

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 339
Bart Jacobs

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence:
A Simpler Proof . 358

David N. Jansen and Xinxin Liu

Learning Language Intersections . 371
Sebastian Junges and Jurriaan Rot

Runtime Verification of Compound Components with ComMA 382
Ivan Kurtev and Jozef Hooman

A Basic Compositional Model for Spiking Neural Networks. 403
Nancy Lynch and Cameron Musco

State Identification and Verification with Satisfaction 450
Joshua Moerman and Thorsten Wißmann

A Note on the Message Complexity of Cidon’s Distributed Depth-First
Search Algorithm . 467

Saidgani Musaev and Wan Fokkink

Minesweeper is Difficult Indeed!: Technology Scaling for Minesweeper
Circuits . 472

Alex Thieme and Twan Basten

Goodbye ioco . 491
Jan Tretmans and Ramon Janssen

xii Contents

Process Algebras and Flocks of Birds . 512
Rocco De Nicola, Luca Di Stefano, Omar Inverso, and Serenella Valiani

The Integration of Testing and Program Verification: A Position Paper 524
Petra van den Bos and Marieke Huisman

Discovering Directly-Follows Complete Petri Nets from Event Data 539
Wil M. P. van der Aalst

Fair Must Testing for I/O Automata . 559
Rob van Glabbeek

Passive Automata Learning: DFAs and NFAs. 575
Hans Zantema

Author Index . 581

Contents xiii

Non-finite Axiomatisability Results
via Reductions: CSP Parallel Composition

and CCS Restriction

Luca Aceto1,2(B) , Elli Anastasiadi1 , Valentina Castiglioni1 ,
and Anna Ingólfsdóttir1

1 ICE-TCS, Department of Computer Science, Reykjavik University, Reykjavik, Iceland
luca@ru.is

2 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. This paper studies the existence of finite, ground-complete axiomati-
sations of CSP-like parallel composition operators, and the restriction operator
from CCS, modulo bisimilarity. More specifically, we build on Moller’s result
to the effect that bisimilarity does not have a finite, ground-complete equational
axiomatisation over a minimal fragment of CCS, and we use a reduction tech-
nique by Aceto et al. to lift it to various extensions of BCCSP with CSP-like
parallel operators, and to the recursion and relabelling free fragment of CCS.

1 Introduction

Some of Frits Vaandrager’s early seminal contributions were firmly rooted in the the-
ory and applications of process algebras and their semantics. Having been brought
up in the tradition of Bergstra and Klop’s Algebra of Communicating Processes
(ACP) [14,16,17], Frits Vaandrager studied semantic models of algebraic process
description languages [25,26], equational axiomatisations of process equivalences [15]
and their application in verification (see, for instance, [24,39]). Moreover, together with
Aceto and Bloom, in [3] he initiated the study of methods for generating finite, ground-
complete, equational axiomatisations of bisimilarity [32,36] from operational specifi-
cations given in the GSOS format [18]. The techniques proposed in [3] can be used to
synthesise auxiliary operators, such as Bergstra and Klop’s left- and communication-
merge operators, that make finite axiomatisations possible and paved the way to sev-
eral further studies in the literature—see, for instance, the developments presented
in [10,21,27,31].

The use of auxiliary operators to obtain finite, equational, ground-complete axioma-
tisations of bisimilarity, even for very inexpressive process algebras, was justified by
Moller in [33–35], where he showed that bisimilarity has no finite axiomatisation

This work has been partially supported by the project “Open Problems in the Equational Logic of
Processes” (OPEL) of the Icelandic Research Fund (grant No. 196050-051). E. Anastasiadi has
been supported by the project “Runtime and Equational Verification Of Concurrent Programs”
(REVOCOP) of the Reykjavik University Research Fund (grant No. 222021-051). V. Castiglioni
has been supported by the project “Programs in the wild: Uncertainties, adaptabiLiTy and veRi-
ficatiON” (ULTRON) of the Icelandic Research Fund (grant No. 228376-051).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 1–26, 2022.
https://doi.org/10.1007/978-3-031-15629-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_1&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0001-7526-9256
http://orcid.org/0000-0002-8112-6523
http://orcid.org/0000-0001-8362-3075
https://doi.org/10.1007/978-3-031-15629-8_1

2 L. Aceto et al.

over minimal fragments of Milner’s Calculus of Communicating Systems (CCS) [32]
and Bergstra and Klop’s ACP. (Henceforth, we will consider the recursion, rela-
belling and restriction free fragment of CCS, which, for simplicity, we still denote as
CCS.) Moller’s above-mentioned, path-breaking, negative results have been followed
by a wealth of research on non-finitely-based fragments of process algebras—see, for
instance, [1,2,4–8,12,20].

Our Contribution. In this paper, we celebrate Frits Vaandrager’s early contributions
to the study of algebraic process description languages by answering the two questions
that Rob van Glabbeek1 asked the first author after his invited talk at LICS 20212:

Would Moller’s non-finite axiomatisability result for CCS remain true if we
replaced CCS parallel composition with the parallel operators from Hoare’s
Communicating Sequential Processes (CSP) [29]? And what if we added the
restriction operator to CCS instead?

Our first contributions concern the existence of finite, ground-complete axiomatisa-
tions of bisimilarity over process algebras that extend the language BCCSP [22,28,32]
with parallel operators from CSP. (BCCSP is a common fragment of Milner’s CCS and
Hoare’s CSP suitable for describing finite process behaviour.)

For each set of actions A, the CSP parallel operator |A behaves like interleaving
parallel composition for all actions that are not contained in A, but requires transitions
of its operands that are labelled with some action a ∈ A to synchronise. The result
of such a synchronisation is an a-labelled transition of the composite parallel process,
which can itself synchronise further with a-labelled steps from its environment. There-
fore, unlike CCS parallel composition that is based on hand-shaking communication,
the parallel operators from CSP support multi-way synchronisation and span the whole
spectrum from pure interleaving parallel composition (the operator |∅) to synchronous
composition (the operator |Act, where Act is the whole collection of actions that pro-
cesses may perform).

We start our investigations by considering the languages BCCSPp
A , which extend

BCCSP with the parallel operator |A for some subset A of the whole set of actions
Act, and BCCSPp

τ , which contains the parallel operator |A for each A ⊆ Act, and
the τ -prefixing operator for a distinguished action τ �∈ Act. We show that Moller’s
non-finite axiomatisability result for bisimilarity still holds over BCCSPp

A , when A is
a strict subset of Act, and BCCSPp

τ . On the other hand, bisimilarity affords a finite,
ground-complete axiomatisation over BCCSPp

Act.
The proofs of the above-mentioned negative results for BCCSPp

A , when A is a strict
subset of Act, and BCCSPp

τ employ a reduction-based technique proposed in [11] for
showing new, non-finite axiomatisability results over process algebras from already-
established ones. In our setting, such reductions are translations from terms in the lan-
guages BCCSPp

A (A ⊂ Act) and BCCSPp
τ to those in the fragment of CCS studied by

Moller that
1 Rob van Glabbeek was one of Frits Vaandrager’s early collaborators and fellow doctoral stu-

dent at CWI.
2 See https://www.youtube.com/watch?v=2PxM3f0QWDM for a recording of that talk.

https://www.youtube.com/watch?v=2PxM3f0QWDM

Non-finite Axiomatisability Results via Reductions 3

– preserve sound equations and equational provability over the source language, and
– reflect an infinite family of equations responsible for the non-finite axiomatisability

of the target language.

No reduction from BCCSPp
Act to CCS satisfying the former property modulo bisim-

ilarity reflects Moller’s family of equations witnessing his negative result over CCS.
Therefore, the reduction technique cannot be applied to BCCSPp

Act. Indeed, we present
a finite, ground-complete axiomatisation of bisimilarity over BCCSPp

Act.
We also show that, if we consider the language BCCSPp, namely BCCSP with a

parallel operator |A for each A ⊆ Act, then no reduction that is structural, i.e. that does
not introduce new variables and it is defined compositionally over terms, can reflect
Moller’s family of equations. However, we conjecture that bisimilarity does not admit
a finite, ground-complete axiomatisation over BCCSPp.

For our final contribution, we consider the language CCSr, namely CCS enriched
with restriction operators of the form ·\R. Informally, R ⊆ Act is a set of actions
that are restricted, meaning that the execution of a-labelled transitions (and of their
“complementary actions”) is prevented in t\R for all a ∈ R. By exploiting the reduction
technique described above, we show that Moller’s negative result can be lifted to CCSr,
giving thus that bisimilarity admits no finite, ground-complete axiomatisation over CCS
with restriction.

Our contributions can then be summarised as follows:

1. We consider BCCSPp
A , i.e., BCCSP enriched with one CSP-style parallel composi-

tion operator |A, with A ⊂ Act, and we show that, over that language, bisimilarity
admits no finite, ground-complete axiomatisation (Theorem 4).

2. We consider BCCSPp, i.e., BCCSP enriched with all CSP-style parallel composition
operators |A, and we show that there is no structural reduction from BCCSPp to CCS
that can reflect the family of equations used by Moller to prove the negative result
for bisimilarity over CCS (Theorem 5).

3. We consider BCCSPp
τ , i.e., BCCSPp enriched with the τ -prefixing, and we show that

this algebra admits no finite, ground-complete axiomatisation modulo bisimilarity
(Theorem 6).

4. We consider BCCSPp
Act, i.e., BCCSP enriched with the CSP-style parallel compo-

sition operator |Act, and we present a finite, ground-complete axiomatisation for it,
modulo bisimilarity (Theorem 7).

5. We consider CCSr, i.e., CCS with the restriction operator, and we show that bisimi-
larity has no finite, ground-complete axiomatisation over it (Theorem 8).

Organisation of Contents. In Sect. 2 we review basic notions on process semantics,
behavioural equivalences, and equational logic. We also briefly recap Moller’s negative
result for bisimilarity over CCS. In Sect. 3 we give a bird’s-eye view of the reduction
technique from [11]. In Sect. 4, we present the lifting of Moller’s negative result to
BCCSPp

A (for A ⊂ Act) and BCCSPp
τ , we study the case of BCCSPp, and then we

discuss the collapse of the negative result in the case of BCCSPp
Act. In Sect. 5, we use

the reduction technique to prove the non-finite axiomatisability result for CCSr. We
conclude by discussing some directions for future work in Sect. 6.

4 L. Aceto et al.

2 Preliminaries

In this section we present some background notions on process algebras and equational
logic. To make our contribution self-contained, we also briefly recap Moller’s work on
the nonexistence of finite axiomatisations modulo bisimilarity over the recursion, rela-
belling, and restriction free fragment of CCS (henceforth simply referred to as CCS).

Labelled Transition Systems and Bisimilarity. As semantic model for the algebraic
process description languages that we will study, we consider classic Labelled Transi-
tion Systems [30].

Definition 1 (Labelled Transition System). A labelled transition system (LTS) is a
triple (P,Act,−→), where P is a set of processes (or states), Act is a set of actions (or
labels), and −→ ⊆ P × Act × P is a (labelled) transition relation.

In what follows, we assume that the set of actions Act is finite and non-empty. We
let p, q, . . . range over P , and a, b, . . . over Act. Moreover, as usual, we use p

a−→ p′

in lieu of (p, a, p′) ∈ −→. For each p ∈ P and a ∈ Act, we write p
a−→ if p

a−→ p′ holds
for some p′, and p

a−→� otherwise. For a sequence of actions ρ = a1 · · · an (n ≥ 0), and
processes p, p′, we write p

ρ−→ p′ if and only if there exists a sequence of transitions
p = p0

a1−−→ p1
a2−−→ · · · an−−→ pn = p′. If p

ρ−→ p′ holds for some process p′, then ρ
is a trace of p. All the LTSs we will consider in this paper are finite and loop-free. The
depth of a process p in such an LTS, denoted by depth(p), is then defined as the length
of a longest trace of p.

Behavioural equivalences have been introduced as a tool to establish whether the
behaviours of two processes are indistinguishable for their observers. In the literature
we can find several notions of behavioural equivalence based on the observations that
an external observer can make on a process. In this paper we consider the classic notion
of bisimilarity [32, Chapter 4, Definition 1].

Definition 2 (Bisimilarity). Let (P,Act,−→) be a LTS. A binary symmetric relation
R ⊆ P × P is a bisimulation if, and only if, whenever (p, q) ∈ R and p

a−→ p′ then
there exists a process q′ such that q

a−→ q′ and (p′, q′) ∈ R . We say that p and q are
bisimilar if there is a bisimulation relation R such that (p, q) ∈ R .

The union of all the bisimulation relations is called bisimilarity, and denoted by ∼.

It is well known that ∼ is an equivalence relation over P , and it is the largest bisim-
ulation relation [32, Chapter 4, Proposition 2].

Remark 1. Bisimilarity preserves the depth of processes, i.e., whenever p ∼ q, then
depth(p) = depth(q).

The Language BCCSP. In this paper we will consider several algebraic process
description languages, each characterised by the presence of a particular operator, or
sets of operators. As all those languages are extensions of BCCSP [28], consisting of
the basic operators from CCS [32] and CSP [29], in this section we use that language

Non-finite Axiomatisability Results via Reductions 5

Table 1. The SOS rules for BCCSP operators (a ∈ Act).

(act)
a.t

a−→ t
(lSum) t

a−→ t′

t + u
a−→ t′ (rSum) u

a−→ u′

t + u
a−→ u′

to introduce some general notions and notations on term algebras that will be useful
throughout the remainder of the paper.

BCCSP terms are defined by the following grammar:

t ::= 0 | x | a.t | t + t, (BCCSP)

where x is drawn from a countably infinite set of variables Var, a is an action from Act,
a.(·) is the prefixing operator, defined for each a ∈ Act, and ·+· is the nondeterministic
choice operator. We shall use the meta-variables t, u, . . . to range over process terms,
and write var(t) for the collection of variables occurring in the term t. The size of a
term t, denoted by size(t), is the number of operator symbols in t. A term is closed
if it does not contain any variables. Closed terms, or processes, will be denoted by
p, q, In particular, we denote the set of all BCCSP terms by T(BCCSP), and the
set of closed BCCSP terms (or BCCSP processes) by P(BCCSP). This notation can be
directly extended to all the languages that we will consider. Moreover, we omit trailing
0’s from terms and we use a summation

∑k
i=1 ti to denote the term t = t1 + · · · + tk,

where the empty sum represents 0. Henceforth, for each action a ∈ Act and natural
number m ≥ 0, we let a0 denote 0 and am+1 denote a.(am).

We use the Structural Operational Semantics (SOS) framework [37] to equip pro-
cesses with an operational semantics. The SOS rules (also called inference rules, or
deduction rules) for the BCCSP operators given above are reported in Table 1. A
(closed) substitution σ is a mapping from process variables to (closed) terms. Sub-
stitutions are extended from variables to terms, transitions, and rules in the usual way.
Note that σ(t) is closed, if so is σ. The inference rules in Table 1 allow us to derive valid
transitions between closed BCCSP terms. The operational semantics for BCCSP is then
modelled by the LTS whose processes are the closed terms in P(BCCSP), and whose
labelled transitions are those that are provable from the SOS rules. The same approach
will be applied to all the extensions of BCCSP that we will consider. The SOS rules of
each language will be presented in the respective sections.

We call an equivalence relation a congruence over a language if it is compositional
with respect to the operators of the language, i.e., the replacement of a component
with an equivalent one does not affect the overall behaviour. Formally, the congruence
property for bisimilarity over BCCSP, and its extensions, consists in verifying whether,
given any n-ary operator f ,

f(p1, . . . , pn) ∼ f(q1, . . . , qn) whenever pi ∼ qi for all i = 1, . . . , n.

Since all the operators considered in this paper are defined by inference rules in the de
Simone format [38], by [23, Theorem 4] we have that bisimilarity is a congruence over
BCCSP and over all the languages that we will study.

6 L. Aceto et al.

Table 2. Rules of equational logic (f is any n-ary operator in L).

t ≈ t
t1 ≈ t2, t2 ≈ t3

t1 ≈ t3
t ≈ t′

t′ ≈ t

σ(t) ≈ σ(t′)
t ≈ t′ ∈ E

t1 ≈ t′
1, . . . , tn ≈ t′

n

f(t1, . . . , tn) ≈ f(t′
1, . . . , t

′
n)

Table 3. Finite equational basis for BCCSP modulo bisimilarity.

(A1) x ≈ x + x

(A2) x + y ≈ y + x

(A3) (x + y) + z ≈ x + (y + z)

(A4) x + 0 ≈ x

Equational Logic. An equational axiomatisation (or axiom system) over a language L
is a collection E of equations t ≈ u, which are referred to as axioms, over the terms
in L. We write E
 t ≈ u if the equation t ≈ u is derivable from the axioms in
E using the rules of equational logic, presented in Table 2, that express, respectively,
reflexivity, symmetry, transitivity, substitution, and closure under L contexts. Without
loss of generality, we assume that substitution can be used only when (t ≈ u) ∈ E. In
this case, σ(t) ≈ σ(u) is called a substitution instance of an axiom in E.

We are interested in equations that are valid modulo some congruence relation R
over the closed terms in the language L. An equation t ≈ u is sound modulo R , written
t Ru, when σ(t)Rσ(u) for all closed substitutions σ. An axiomatisation E is sound
modulo R over L if for all terms t, u in T(L), we have that whenever E
 t ≈ u, then
t Ru. E is (ground-)complete modulo R if t Ru implies E
 t ≈ u, for all (closed)
L terms t and u. A congruence R is said to be finitely based if there exists a finite
axiomatisation E that is sound and complete modulo R .

A classic question is whether an algebra modulo the chosen notion of behavioural
congruence (in this work, bisimilarity) affords a finite equational axiomatisation. For
example, as shown by Hennessy and Milner in [28], the equations in Table 3 are a
finite axiomatisation of bisimilarity over BCCSP. We denote by E0 the axiom system
consisting of the equations in Table 3. Later on, we will extend this set of axioms to
present our positive result for BCCSPp

Act.

Moller’s Result over CCS. In his thesis [33], Moller gave a celebrated non-finite
axiomatisability result in the field of process algebra, namely:

Theorem 1. Bisimilarity admits no finite, ground-complete axiomatisation over CCS.

Specifically, Moller considered the language CCSa with interleaving parallel com-
position, defined over Act = {a} by the following syntax:

t ::= 0 | x | a.t | t + t | t ‖ t (CCSa)

Non-finite Axiomatisability Results via Reductions 7

Table 4. The SOS rules for CCSa interleaving parallel composition.

(lPar) t
a−→ t′

t ‖ u
a−→ t′ ‖ u

(rPar) u
a−→ u′

t ‖ u
a−→ t ‖ u′

where x ∈ Var, and ‖ denotes the interleaving parallel composition operator. The SOS
rules for CCSa operators are given by the rules in Table 1, plus the rules for the inter-
leaving parallel operator presented in Table 4.

In detail, for his result, Moller applied the following proof strategy, later referred to
as the proof-theoretic approach to negative results [9]. He considered the infinite family
of equations Φ with

Φ = {ϕn | n ≥ 0}

ϕn : a ‖ (
n∑

i=1

ai) ≈ a.(
n∑

i=1

ai) + (
n+1∑

i=2

ai) (n ≥ 0)

and he proved that whenever n is larger than the size of any term occurring in the
equations in a finite, sound axiom system E, then equation ϕn cannot be derived from
E. Hence, Theorem 1 specialised to the following result, which will play a fundamental
role in the technical development of our contributions:

Theorem 2 (Moller’s negative result [33, Theorem 5.2.12]). No finite axiom system
that is sound modulo bisimilarity over CCSa can prove the whole family of equations Φ.
Thus no finite, ground-complete axiom system can exist for CCSa modulo bisimilarity.

3 The Proof Strategy: Reduction Mappings

The non-finite axiomatisability results that we will present in this paper are all obtained
by means of a proof technique, proposed in [11], that allows for transferring this kind
of negative results across process languages. Even though we only apply that technique
out-of-the-box towards establishing new results, we decided to give, in this section, an
overview of the terminology and results presented in [11], to improve the readability of
our paper. As our studies are focused on the axiomatisability of bisimilarity, we consider
only this behavioural congruence in the presentation below.

We consider two processes description languages defined over the same set of vari-
ables: Lneg and Lnew. Lneg is known to be non-finitely axiomatisable modulo bisim-
ilarity, whereas Lnew is the language for which we want to prove this negative result.
The aim of the proof technique proposed in [11] is to establish whether it is possible
to lift the known result for Lneg to Lnew. This approach is based on a variation of the
classic idea of reduction mappings that, in this setting, are translations from T(Lnew)
to T(Lneg) that preserve soundness and provability.

Given a translation mapping ·̂ : T(Lnew) → T(Lneg) and a collection E of equa-
tions over Lnew terms, we let Ê = {t̂ ≈ û | t ≈ u ∈ E}. The notion of reduction is
then formalised as follows:

8 L. Aceto et al.

Definition 3 (Reduction). A mapping ·̂ : T(Lnew) → T(Lneg) is a reduction from
T(Lnew) to T(Lneg), when for all t, u ∈ T(Lnew):

1. t ∼ u =⇒ t̂ ∼ û, i.e., ·̂ preserves sound equations, and
2. E
 t ≈ u =⇒ Ê
 t̂ ≈ û, for each axiom system E over Lnew, i.e., ·̂ preserves

provability.

Interestingly, in [11, Theorem 2] it is proved that if a mapping is structural, then it
automatically satisfies Definition 3.2. Hence, the notion of structural mapping will be
crucial in the development of our results, as it allows for a significant simplification of
the technical proofs.

Definition 4 (Structural mapping). A mapping ·̂ : T(Lnew) → T(Lneg) is structural
if:

– It is the identity function over variables, i.e., x̂ = x for each variable x.
– It does not introduce new variables, i.e., the set of variables occurring in the

term ̂f(x1, . . . , xn) is included in {x1, . . . , xn}, for each operator f in Lnew and
sequence of distinct variables x1, . . . , xn.

– It is defined compositionally, i.e. ̂f(t1, . . . , tn) = ̂f(x1, . . . , xn)[t̂1/x1, . . . , t̂n/xn]
for each operator f in Lnew, sequence of distinct variables x1, . . . , xn and sequence
of terms t1, . . . , tn. (Here [t̂1/x1, . . . , t̂n/xn] stands for the substitution mapping
each variable xi to t̂i (1 ≤ i ≤ n), and acting like the identity function on all the
other variables.)

Given a substitution σ : Var → T(Lnew), we let σ̂ : Var → T(Lneg) denote the

substitution that maps each variable x to σ̂(x).

Proposition 1. Assume that ·̂ : T(Lnew) → T(Lneg) is a structural mapping. Then

– σ̂(t) = σ̂(t̂), for each term t ∈ T(Lnew), and for each substitution σ : Var →
T(Lnew).

– The mapping satisfies Definition 3.2.

Assume now that we have an infinite collection E of equations that are sound mod-
ulo bisimilarity, but that are not derivable from any finite, sound axiom system over
Lneg. The idea in [11] is then that if a structural mapping ·̂ is a reduction from T(Lnew)
to T(Lneg) that contains all the equations in E in its range, then the “malicious” col-
lection of equations that map to those in E cannot be derivable from any finite, sound
axiom system over Lnew. In fact, if those derivations were possible, then the equational
properties of ·̂ would allow us to write derivations (obtained via the translations of the
equational proofs) of the equations in E from a finite, sound axiom system over Lneg.
As this contradicts the established negative result over Lneg, the non-finite axiomatis-
ability result over Lnew follows.

The intuitions above are formalised in the following definition and theorem.

Definition 5 (E-reflection). Let E be a collection of equations over Lneg. A reduction
·̂ is E-reflecting, when for each t ≈ u ∈ E, there are terms t′, u′ ∈ T(Lnew) such
that the equation t′ ≈ u′ is sound modulo ∼, t̂′ = t and û′ = u. A reduction is ground
E-reflecting, if the conditions above are satisfied over closed equations.

Non-finite Axiomatisability Results via Reductions 9

Theorem 3 (The lifting theorem). Assume that there is a collection of (closed) equa-
tions E over Lneg that is sound modulo ∼ and that is not derivable from any finite
sound axiom system over Lneg. If there exists a (ground) E-reflecting reduction from
Lnew to Lneg, then there is no sound and (ground-)complete finite axiom system for ∼
over Lnew.

We remark that the notion of (ground) E-reflecting reduction requires that only the
equations in E are reflected. This means that to establish the negative result over Lneg

it is enough to identify a particular family of equations that is reflected, disregarding the
effects of the reduction on other sound equations. For our purposes, it will be enough
to consider the family of equations Φ used by Moller to prove Theorem 2. Hence, our
target language will always be CCSa, for some action a, and we will use the lifting
technique presented in this section to prove negative results for the languages BCCSPp

A

(Sect. 4.2), BCCSPp
τ (Sect. 4.3), and CCSr (Sect. 5).

4 Axiomatisability Results for CSP Parallel Composition

In this section we investigate the existence of finite, ground-complete axiomatisations
of bisimilarity over the process description languages BCCSPp

A (for all A ⊂ Act),
BCCSPp

Act, BCCSPp and BCCSPp
τ . In detail, we apply the reduction technique pre-

sented in Sect. 3 to lift Moller’s negative result to BCCSPp
A , for each A ⊂ Act, and

to BCCSPp
τ (Theorem 4 and Theorem 6, respectively). In between, we show that the

reduction technique cannot be applied to BCCSPp (Theorem 5). Conversely, we estab-
lish a positive result for BCCSPp

Act, providing a finite, ground-complete axiomatisation
for bisimilarity over this language (Theorem 7).

4.1 The Languages BCCSPp
A , BCCSPp

Act, BCCSP
p and BCCSPp

τ

The languages that we consider in this section are obtained by extending BCCSP with
instances of the CSP-like parallel composition operator |A, where A ⊆ Act is the set
of actions that must be performed synchronously by the parallel components. For this
reason, we shall henceforth refer to A in |A as to the synchronisation set. The operator
then behaves like interleaving parallel composition on the complement of A.

In detail, the languages are defined by the following grammar

t ::= 0 | x | a.t | t + t | t |A t,

with x ∈ Var and a ∈ Act, and they differ in the choice of the synchronisation set(s)
A ⊆ Act as follows:

BCCSPp
A The parallel operator |A is defined only over the fixed set A ⊂ Act (notice

that the inclusion is strict).
BCCSPp

Act The only synchronisation set is the entire set of actions Act.
BCCSPp There are no restrictions on the choice of synchronisation sets, i.e. the sig-

nature of the language contains the operator |A for all A ⊆ Act.

10 L. Aceto et al.

Table 5. SOS rules for the parallel operator |A, A ⊆ Act.

(lParA) t
a−→ t′

t |A u
a−→ t′ |A u

a �∈ A (rParA) u
a−→ u′

t |A u
a−→ t |A u′ a �∈ A

(syncA)
t

a−→ t′, u
a−→ u′

t |A u
a−→ t′ |A u′ a ∈ A

BCCSPp
τ This is like BCCSPp with the additional property that the prefixing operator

is of the form μ.t, with μ ∈ Act ∪ {τ} for a special action label τ �∈ Act (see
Sect. 4.3 for further details).

The SOS rules for the CSP-like parallel composition operator |A are given in
Table 5. The operational semantics of each of the above-mentioned languages is then
given by the rules in Table 1 and those in Table 5, in which A is instantiated according
to the considered language.

Let L ∈ {BCCSPp
A , BCCSPp

Act, BCCSPp, BCCSPp
τ }. Since in the technical results to

follow we will need to distinguish between transitions over L processes and transitions
over CCSa processes, to avoid possible confusion we will denote the transition relation
over P(L) induced by the rules in Tables 1 and 5 by −→p. Similarly, we can properly
instantiate the definition of bisimilarity over L processes:

Definition 6 (Bisimilarity overBCCSPp
A ,BCCSPp

Act,BCCSPp andBCCSPp
τ).

Let L be any of BCCSPp
A ,BCCSPp

Act,BCCSP
p,BCCSPp

τ . Bisimulation relations over L
processes are defined by applying Definition 2 to the LTS (P(L),Act,−→p) induced by
the SOS rules in Tables 1 and 5. We use the symbol ∼p to denote bisimilarity over L
processes.

It is worth noticing that, as briefly outlined above, when the parallel components t, u
in t |A u contain only actions that are not in A, then the semantics of |A coincides with
the semantics of CCS interleaving parallel composition. On the other hand, when t and
u contain only actions in A, then |A behaves like “synchronous” parallel composition.
The following example highlights these observations.

Example 1. Let A ⊆ Act and b ∈ A. It is not difficult to see that

b |A
n∑

i=1

bi ∼p b (n ≥ 1)

and therefore

b |A
n∑

i=1

bi ∼p b |A
m∑

j=1

bj (n,m ≥ 1).

In particular, we have that the axiom

b.x |A (b.y + z) ≈ (b.x |A b.y) + (b.x |A z) if b ∈ A

is sound modulo ∼p over the languages considered in this section.

Non-finite Axiomatisability Results via Reductions 11

Conversely, if we pick an action a �∈ A, then we have

a |A
n∑

i=1

ai ∼p a.
n∑

i=1

ai +
n∑

j=1

aj+1 (n ≥ 0)

and thus

a |A
n∑

i=1

ai �∼p a |A
m∑

j=1

aj (n �= m).

�
Notice that, for a �∈ A, if we let

ϕn
A : a |A

n∑

i=1

ai ≈ a.
n∑

i=1

ai +
n∑

j=1

aj+1 (n ≥ 0), (1)

then the family of equations ΦA = {ϕn
A | n ∈ N} can be thought of as the counter-

part in BCCSPp
A of the family Φ used by Moller to prove Theorem 2. As we will see,

this correspondence will be instrumental in applying the reduction technique to those
languages.

4.2 The Negative Result for BCCSPp
A

We start our investigations with BCCSPp
A , for a given set A ⊂ Act. In particular, by

applying the proof methodology discussed in Sect. 3, we prove that:

Theorem 4. BCCSPp
A does not have a finite, ground-complete axiomatisation modulo

bisimilarity.

Our first step consists in defining a mapping allowing us to rewrite BCCSPp
A terms

into CCSa terms. As the target language is built over a specific action, it is natural to
have a definition of our mapping that is parametric in that action. Hence, choose an
action a ∈ Act \ A. Notice that the requirement that the inclusion A ⊂ Act be strict
guarantees that such an action a exists.

Definition 7 (The mapping pA
a). The mapping pA

a : T(BCCSPp
A) → T(CCSa) is

defined inductively over the structure of terms as follows:

pA
a (0) = 0 pA

a (x) = x pA
a (t + u) = pA

a (t) + pA
a (u)

pA
a (b.t) =

{
a.pA

a (t) if b = a,

0 otherwise.
pA

a (t |A u) = pA
a (t) ‖ pA

a (u).

By Definition 7, for each t ∈ T(BCCSPp
A), the only action occurring in pA

a (t) is a.
In order to lift the negative result in Theorem 2 to BCCSPp

A , we need to prove that
the proposed mapping pA

a is a ground Φ-reflecting reduction. Let us first focus on show-
ing that pA

a is a reduction, i.e., we need to show that it satisfies the two constraints in
Definition 3.

12 L. Aceto et al.

Remark 2. For simplicity, we shall sometimes extend the mapping notation from terms
to equations. For instance, if e : t ≈ u is an equation over BCCSPp

A terms, we shall
write pA

a (e) to denote the equation over CCSa terms pA
a (t) ≈ pA

a (u).

The following lemma is immediate from Definition 7.

Lemma 1. The mapping pA
a is structural.

Hence, in light of Proposition 1, the mapping pA
a satisfies Definition 3.2. Our order

of business will now be to show that pA
a preserves sound equations.

Lemma 2. For all p ∈ P(BCCSPp
A) and q ∈ P(CCSa), if pA

a (p)
a−→ q, then there

exists a BCCSPp
A process p′ such that p

a−→p p′ and pA
a (p

′) = q.

Proof. We proceed by structural induction over p.

– Case p = 0. This is vacuous, since pA
a (p) has no outgoing transition.

– Case p = b.p0. By Definition 7 and the assumption that pA
a (p)

a−→ q, we have that
b = a �∈ A and pA

a (p0) = q. As p
a−→p p0, the claim follows.

– Case p = p1 |A p2. By Definition 7, we have that pA
a (p) = pA

a (p1) ‖ pA
a (p2). More-

over, by the proviso of the lemma, pA
a (p1) ‖ pA

a (p2)
a−→ q, for some CCSa process

q. This follows by an application of either rule (lPar) or rule (rPar) from Table 4. We
can assume, without loss of generality, that rule (lPar) was applied. (The case of an
application of rule (rPar) follows from a similar reasoning.) Hence pA

a (p1)
a−→ q′ for

some CCSa process q′ such that q′ ‖ pA
a (p2) = q. By the induction hypothesis, we

obtain that p1
a−→p p′

1 for some p′
1 ∈ P(BCCSPp

A) such that pA
a (p

′
1) = q′. Hence, as

p1
a−→p p′

1 and a �∈ A, we can apply rule (lParA) from Table 5 and obtain that p =
p1 |A p2

a−→p p′
1 |A p2. Since pA

a (p
′
1 |A p2) = pA

a (p
′
1) ‖ pA

a (p2) = q′ ‖ pA
a (p2) = q,

the claim follows.
– Case p = p1 + p2. This case is similar to the case of parallel composition discussed

above. The only difference is that rules (lSum) and (rSum) from Table 1 are applied
in place of rules (lParA) and (rParA), respectively. ��

Lemma 3. For all p, p′ ∈ P(BCCSPp
A), if p a−→p p′ then pA

a (p)
a−→ pA

a (p
′).

Proof. We proceed by induction on the size of the proof for the transition p
a−→p p′.

We distinguish three cases, according to the last inference rule from Tables 1 and 5 that
is applied in the proof. (Notice that the analysis of symmetric rules is omitted.) We
remark that since a �∈ A, rule (syncA) cannot be applied as the last rule in the proof for
p

a−→p p′.

– Rule (act). In this case, we have that p = a.p′ and p
a−→p p′. By Definition 7, we

have that pA
a (a.p′) = a.pA

a (p
′), and, thus, we can apply rule (act) and obtain that

pA
a (p) = pA

a (a.p′) = a.pA
a (p

′) a−→ pA
a (p

′). Hence the claim follows in this case.
– Rule (lSum). In this case, we have that p = p0 + p1, p0

a−→p p′, and pA
a (p) =

pA
a (p0) + pA

a (p1). By the inductive hypothesis we get that pA
a (p0)

a−→ pA
a (p

′). By
applying now rule (lSum), we conclude that pA

a (p) = pA
a (p0) + pA

a (p1)
a−→ pA

a (p
′).

Non-finite Axiomatisability Results via Reductions 13

– Rule (lParA). In this case, as a �∈ A, we have that p = p0 |A p1, p0
a−→p p′

0

for some p′
0 ∈ P(BCCSPp

A), and p′ = p′
0 |A p1. By induction, we obtain that

pA
a (p0)

a−→ pA
a (p

′
0). Hence, by applying rule (lPar) from Table 4 to pA

a (p), we get
that pA

a (p) = pA
a (p0) ‖ pA

a (p1)
a−→ pA

a (p
′
0) ‖ pA

a (p1) = pA
a (p

′
0 |A p1) = pA

a (p
′). ��

We can now proceed to prove that pA
a satisfies Definition 3.1 as well. Moreover, we

show that it is also ground Φ-reflecting.

Proposition 2. The mapping pA
a satisfies the following properties:

1. For all t, u ∈ T(BCCSPp
A), if t ∼p u then pA

a (t) ∼ pA
a (u).

2. The mapping pA
a is ground Φ-reflecting.

Proof. We prove the two items separately.

1. First, observe that for every (closed) term t in CCSa there is a (closed) term tp,Aa in
BCCSPp

A such that pA
a (t

p,A
a) = t. The term t

p,A
a is defined as follows:

0p,A
a = 0 xp,A

a = x (a.t)p,Aa = a.tp,Aa

(t + u)p,Aa = tp,Aa + up,A
a (t ‖ u)p,Aa = tp,Aa |A up,A

a .

Given a CCSa substitution σ, we define σp,A
a to be the BCCSPp

A substitution given
by σp,A

a (x) = (σ(x))p,Aa . By Proposition 1 and since the mapping pA
a is structural

(Lemma 1), we have that

pA
a (σ

p,A
a (t)) = pA

a (σ
p,A
a)(pA

a (t)) = σ(pA
a (t)),

for all t ∈ T(BCCSPp
A).

To prove the claim, it is then enough to show that the following relation

R = {(σ(pA
a (t)), σ(p

A
a (u))) | t ∼p u and σ : Var → P(CCSa)}

is a bisimulation relation over CCSa processes.
Notice, first of all, that since ∼p is symmetric, then so is R . Assume now that
σ(pA

a (t))Rσ(pA
a (u)), where t, u ∈ T(BCCSPp

A) and σ is a closed CCSa substitu-
tion. By the definition of R , we have that t ∼p u. Assume now that σ(pA

a (t))
a−→ q

for some q ∈ P(CCSa). By the observation above, this means that pA
a (σ

p,A
a (t)) a−→

q. By Lemma 2, we get that σp,A
a (t) a−→p p′ for some p′ ∈ P(BCCSPp

A) such
that pA

a (p
′) = q. As t ∼p u implies that σp,A

a (t) ∼p σp,A
a (u), we have that

σp,A
a (u) a−→p p′′, for some p′′ ∈ P(BCCSPp

A) such that p′ ∼p p′′. Addition-
ally, by Lemma 3 we have that σ(pA

a (u)) = pA
a (σ

p,A
a (u)) a−→ pA

a (p
′′). We can

then conclude by noticing that, since p′ ∼p p′′, by definition of R it holds that
q = pA

a (p
′)R pA

a (p
′′), i.e., R is a bisimulation relation over CCSa processes.

2. In order to show that pA
a is ground Φ-reflecting, it is enough to argue that the family

ΦA consisting of the closed equations ϕn
A defined in Eq. 1 is mapped exactly onto

Φ. Since a �∈ A we have that pA
a simply replaces all the occurrences of |A in each

equation ϕn
A with ‖. Hence, we have that pA

a (ϕ
n
A) = ϕn, for each n ≥ 0. ��

From Lemma 1 and Proposition 2, we can infer that pA
a is a well-defined reduc-

tion as in Definition 3, and it is also ground Φ-reflecting. Theorem 4 then follows by
Theorem 2 and Theorem 3.

14 L. Aceto et al.

4.3 The Case of BCCSPp and the Negative Result for BCCSPp
τ

Given the negative result over BCCSPp
A , it is natural to wonder what happens when we

extend that language to BCCSPp, namely BCCSP enriched with an operator |A , for
each A ⊆ Act.

One might expect that bisimilarity does not have a finite, ground-complete axioma-
tisation over BCCSPp and indeed we conjecture that such a results holds. However, the
reduction method cannot be applied to prove such a claim. Specifically, consider the
language BCCSPp over Act = {a}. We can prove the following result:

Theorem 5. There is no structural reduction from BCCSPp to CCSa that is ground
Φ-reflecting.

Proof. To simplify notation, let us use |a in place of |{a}.
Assume that ·̂ is a structural reduction from BCCSPp to CCSa. Our aim is to prove

that ·̂ is not ground Φ-reflecting.
To this end, we start by recalling that, since ·̂ is structural (Definition 4), then:

ât = âx[t̂/x], for each t ∈ T(BCCSPp) (2)

t̂1 � t2 = x̂1 � x2[t̂1/x1, t̂2/x2], for each t1, t2 ∈ T(BCCSPp) (3)

and binary operator � ∈ {+, |∅, |a}.

Moreover, as ·̂ preserves sound equations (Definition 3), we have that:

âx |a 0 ∼ 0̂ ∼ 0̂ |a ax; (4)

̂an |a an ∼ ân, for all n ≥ 0; (5)

0̂+ 0 ∼ 0̂; (6)

0̂ |∅ 0 ∼ 0̂. (7)

Assume now that
x̂1|ax2 = t (8)

for some t ∈ T(CCSa) with var(t) ⊆ {x1, x2} (as ·̂ is structural).
We can distinguish two cases, according to whether t is a closed term or not. In both

cases, we shall show that ·̂ is not ground Φ-reflecting.

– CASE 1: t IS A CLOSED CCSa TERM. In this case, for each n ≥ 0, we have that

t ∼ ân ∼ 0. (9)

Indeed,

ân ∼ ̂an |a an (by 5)

∼ t[ân/x1, ân/x2] (by 3 and 8)

∼ t[0̂/x1, 0̂/x2] (since t is closed)

∼ 0̂ (by 3 and 5 with n = 0).

We now claim that

Non-finite Axiomatisability Results via Reductions 15

Claim 1: For each p ∈ P(BCCSPp), it holds that p̂ ∼ 0̂.

Before proving Claim 1 above, we observe that by using it we can immediately show
that the mapping ·̂ is not ground Φ-reflecting. Indeed, since

a ‖ a �∼ a ‖ (a + a2),

by Claim 1 there cannot be two processes p, q ∈ P(BCCSPp) such that p̂ = a ‖ a and
q̂ = a ‖ (a + a2). Let us now prove Claim 1.

Proof of Claim 1: We proceed by induction on the structure of process p.

• The case p = 0 is trivial.
• Case p = aq. We have

p̂ = âx[q̂/x] (by 2)

∼ âx[0̂/x] (by induction and ∼ is a congruence)

∼ â0 (by 2)

∼ 0̂ (by 9).

• Case p = p1 � p2 for some binary operator � ∈ {+, |∅, |a}. In this case,

p̂ = x̂1 � x2[p̂1/x1, p̂2/x2] (by 3)

∼ x̂1 � x2[0̂/x1, 0̂/x2] (by induction and ∼ is a congruence)

∼ 0̂ � 0 (by 3)

∼ 0̂ (by 5−7 according to the form of �).

This concludes the Proof of Claim 1.

The proof of Case 1 is now complete.

– CASE 2: t IS AN OPEN CCSa TERM. Assume, without loss of generality, that t
contains at least an occurrence of x1. (The cases of x2 ∈ var(t) and x1, x2 ∈ var(t)
can be treated in a similar fashion and are therefore omitted.) Firstly, we observe
that for each p ∈ P(BCCSPp)

0̂ ∼ âp |a 0 (by 4)

= t[âp/x1, 0̂/x2] (by 3 and 8).

Moreover, we recall that for every u ∈ CCSa and y ∈ Var, it holds that when-
ever y ∈ var(u) then depth(σ(y)) ≤ depth(σ(u)) for every closed substitution σ.
Hence, since t ∈ T(CCSa) and x1 ∈ var(t), we have that

depth(âp) ≤ depth(âp |a 0) = depth(0̂). (10)

We claim that

16 L. Aceto et al.

Claim 2: For each n ≥ 0 and processes p1, . . . , pn ∈ P(BCCSPp), it holds that

depth(
∑̂n

i=1 api) ≤ depth(0̂).

Proof of Claim 2: We proceed by induction on n ≥ 0.

• The case n = 0 is trivial.
• For the inductive step, we have that:

depth(
n̂+1∑

i=1

api)

= depth(
̂n∑

i=1

api + apn+1)

= depth(x̂1 + x2[
n̂∑

i=1

api/x1, âpn+1/x2]) (by 3)

≤ depth(x̂1 + x2[0̂/x1, 0̂/x2]) (by induction and 10)

= depth(0̂+ 0) (by 3)

= depth(0̂) (by 6 and Remark 1).

This concludes the Proof of Claim 2.

Claim 3: For each p ∈ P(BCCSPp) it holds that depth(p̂) ≤ (̂0).

Proof of Claim 3: First of all, we notice that each BCCSPp process can be rewritten
into head normal form up to bisimilarity. This means that, given any p ∈ P(BCCSPp),
we have that p ∼ ∑n

i=1 api for some n ≥ 0 and p1, . . . , pn ∈ P(BCCSPp).
Since ·̂ preserves sound equations, we have

p̂ ∼
n̂∑

i=1

api.

Hence, by Claim 2 above, it follows that

depth(p̂) = depth(
n̂∑

i=1

api) ≤ depth(0̂). (11)

This concludes the Proof of Claim 3.
We can now proceed to show that ·̂ is not ground Φ-reflecting. Let k = depth(0̂).

We have that equation ϕk ∈ Φ is of the form:

a ‖ (
k∑

i=1

ai) ≈ a.(
k∑

i=1

ai) +
k+1∑

i=2

ai.

In particular, the depth of a ‖ (
∑k

i=1 ai) is k + 1. Therefore, by 11, there is no p ∈
P(BCCSPp) such that p̂ = a ‖ (

∑k
i=1 ai).

The proof of Case 2 is now concluded.

Non-finite Axiomatisability Results via Reductions 17

This completes the proof of the Theorem 5. ��
Although we proved Theorem 5 in the simplified setting of Act = {a}, it is not

difficult to see that the proof can be extended to the general case {a} ⊂ Act in a
straightforward manner.

Since the reduction method cannot be applied, one might show the non-existence
of a finite, ground-complete axiomatisation of bisimilarity over BCCSPp by adapting
the strategy employed by Moller in his proof of Theorem 2. However, since that proof
would require several pages of technical results, we leave it as an avenue for future
research, and we deal with the presence of all the operators |A in a simplified setting.

The basic idea behind the reduction defined for BCCSPp
A is that we can always

identify an action a ∈ Act \ A such that the parallel operator |A always allows for
interleaving of a-moves of its arguments. Clearly, if we add an operator |A for each
A ⊆ Act to the language, it is no longer possible to identify such an action. There
is, however, a special action that is not used to build syntactically CSP terms, but it is
however necessary to express their semantics: the silent action τ �∈ Act. CSP terms are
defined over Act, which means that the language does not offer a τ -prefixing operator;
however, in order to properly define the operational semantics of the internal choice
operator, the set of action labels in the LTS is Act ∪ {τ}. In particular, as explained in
[19], the operational semantics of the parallel operators always allow for the interleav-
ing of τ -moves of their arguments.

Hence, we now consider BCCSPp
τ , i.e., the extension of BCCSPp that includes the

τ -prefixing operator, and we prove the following result:

Theorem 6. BCCSPp
τ modulo bisimilarity does not afford a finite, ground-complete

axiomatisation.

To this end, we apply the same proof technique that we used in Sect. 4.2 for
BCCSPp

A . The reduction mapping for BCCSPp
τ is almost identical to the mapping pA

a

defined for BCCSPp
A , the only difference being that now we consider the language CCSτ

as target language, i.e., CCSa with a = τ .

Remark 3. Theorem 2 remains true over CCSτ . In fact, as we are considering strong
bisimilarity, there is no difference between τ and any other observable action a ∈ Act.
Specifically, if we let Φτ be the family of equations in Φ in which each occurrence of
a is replaced by τ , then we can repeat Moller’s arguments in a step-by-step fashion
to obtain that no finite axiom system, that is sound modulo bisimilarity, can prove the
whole family of equations Φτ .

Definition 8 (The mapping pτ). The mapping pτ : T(BCCSPp
τ) → T(CCSτ) is

defined inductively over the structure of BCCSPp
τ terms as follows:

pτ (0) = 0 pτ (x) = x pτ (t + u) = pτ (t) + pτ (u)

pτ (μ.t) =

{
τ.pτ (t) if μ = τ,

0 otherwise;
pτ (t |A u) = pτ (t) ‖ pτ (u).

18 L. Aceto et al.

Intuitively, we use the mapping pτ to eliminate any action b �= τ from terms, so
that a process pτ (p |A q) can perform a transition pτ (p |A q) τ−→ p′, for some CCSa

process p′, if and only if b = τ . (Recall that, by construction τ �∈ A for each A ⊆ Act.)
First, we note that this mapping is a structural mapping.

Lemma 4. The mapping pτ is structural.

We now state the corresponding results over BCCSPp
τ to Lemma 2 and Lemma 3.

Lemma 5. For all p ∈ P(BCCSPp
τ) and q ∈ P(CCSτ), if pτ (p)

τ−→ q, then there exists
a BCCSPp

τ process p′, such that p
τ−→p p′ and pτ (p′) = q.

Proof. The proof is by structural induction over p. We omit it since it is similar to that
of Lemma 2. ��
Lemma 6. For all p, p′ ∈ P(BCCSPp

τ), if p
τ−→p p′ then pτ (p)

τ−→ pτ (p′).

Proof. The proof proceeds by induction over the size of the proof for p
τ−→p p′. It is

analogous to the proof of Lemma 3, and it is therefore omitted. ��
The following result, which extends Proposition 2 to BCCSPp

τ , allows us to prove
that pτ is a well-defined reduction mapping that is also ground Φτ -reflecting.

Proposition 3. The following properties hold for the mapping pτ :

1. For all t, u ∈ T(BCCSPp
τ), if t ∼p u, then pτ (t) ∼ pτ (u).

2. The mapping pτ is ground Φτ -reflecting.

Proof. 1. We start by observing that for every (closed) term t in CCSτ there is a
(closed) term t

p
τ in BCCSPp

τ such that pτ (t
p
τ) = t. The term t

p
τ is defined as fol-

lows:

0p
τ = 0 xp

τ = x (τ.t)pτ = τ.tpτ

(t + u)pτ = tpτ + up
τ (t ‖ u)pτ = tpτ |∅ up

τ .

Then, given a CCSτ substitution σ, we define the BCCSPp
τ substitution σp

τ by
σp

τ (x) = (σ(x))pτ . By Lemma 4 and Proposition 1, we have that pτ (σ
p
τ (t)) =

pτ (σ
p
τ)(pτ (t)) = σ(pτ (t)) for all t ∈ T(BCCSPp

τ).
The proof of this statement then proceeds as that of the corresponding statement in
Proposition 2, and it is therefore omitted.

2. Consider the family of equations Φτ,∅ = {ϕn
τ,∅ | n ∈ N}, where the closed equa-

tions ϕn
τ,∅ are defined as in Eq. 1, using the set ∅ as synchronisation set, and replacing

each occurrence of a with τ . It is straightforward to prove that pτ (ϕn
τ,∅) = ϕτ,n for

each n ∈ N. Hence, pτ is ground Φτ -reflecting. ��
Theorem 6 is then obtained as a direct consequence of Lemma 4, Proposition 3,

Theorem 3, and Theorem 2.

Non-finite Axiomatisability Results via Reductions 19

Table 6. Additional axioms for BCCSPp
Act.

(P1) x |Act y ≈ y |Act x

(P2) (x + y) |Act z ≈ (x |Act z) + (y |Act z)

(P3) (x |Act 0) ≈ 0

(P4) (a.x |Act a.y) ≈ a.(x |Act y), for each a ∈ Act

(P5) (a.x |Act b.y) ≈ 0, for b �= a, and a, b ∈ Act.

4.4 The Case of BCCSPp
Act

We now argue that the requirement that the inclusion A ⊂ Act be strict, used in
Sect. 4.2, is indeed necessary for Theorem 4 to hold. We also notice that a simi-
lar requirement is not explicitly expressed for the validity of Theorem 6, proved in
Sect. 4.3, because having |A defined for all A ⊆ Act automatically guaranteed the
existence of at least one synchronisation set A such that a �∈ A for some action a ∈ Act,
namely the synchronisation set A = ∅. Moreover, as discussed in Example 1, given a
synchronisation set A, the requirement a �∈ A is crucial to guarantee the soundness
modulo bisimilarity of equation ϕn

A, for any n ∈ N (see Eq. 1).
In this section, we handle the border case of the language BCCSPp

Act, which includes
only the parallel operator |Act, and we show that for this special case a positive result
holds: we provide a finite, ground-complete axiomatisation of bisimilarity over this lan-
guage. Let us consider the axiom system Ep = E0 ∪ {P1, P2, P3, P4, P5}, where E0

consists of the axioms in Table 3, and axioms P1–P5 are reported in Table 6. Notice that
the axiom schemata P4 and P5 generate only finitely many axioms. More precisely, P4
generates |Act| axioms, and P5 generates |Act| × (|Act| − 1) axioms. We will now
prove the following result:

Theorem 7. Ep is a finite, ground-complete axiomatisation of BCCSP
p
Act modulo bisim-

ilarity.

The idea behind the proof of Theorem 7 is that the axioms in Table 6 allow us
to eliminate all occurrences of the parallel operator |Act from BCCSPp

Act processes.
Hence, every BCCSPp

Act process can be proven equal to a BCCSP process using Ep. The
ground-completeness of Ep then follows from that of E0 proven in [28]. To that end, we
first show:

Lemma 7. For all closed BCCSP terms p and q, there exists a closed BCCSP term r
such that Ep
 p |Act q ≈ r.

Proof. The proof is by induction on size(p |Act q). First of all we notice that, given any
closed BCCSP term p, we can assume, without loss of generality, that p =

∑
i∈I aipi

for some finite index set I , actions ai ∈ Act, and closed BCCSP terms pi, for i ∈ I . In
fact, in case p is not already in this shape, then by applying axioms A2 and A4 in Table 3
we can remove superfluous occurrences of 0 summands. In particular, we remark that
this transformation does not increase the number of operator symbols occurring in p.

20 L. Aceto et al.

Thus we proceed under the assumption that

p =
∑

i∈I

ai.pi and q =
∑

j∈J

bi.qj .

We proceed by a case analysis on the cardinality of the sets of indexes I and J .

– If either I = ∅ or J = ∅, then p = 0 or q = 0. In light of P1, without loss of
generality, we can assume that q = 0 and we have that p |Act q = p |Act 0. Thus by
applying axiom P3, we get Ep
 p |Act q ≈ 0 and we are done.

– If both I and J are singletons, then we have that p = a.p′ and q = b.q′, for some
a, b ∈ Act and BCCSP processes p′ and q′.
If a = b, then we use axiom P4 to get Ep
 a.p′ |Act a.q′ ≈ a.(p′ |Act q′). Since
the size of p′ |Act q′ is smaller than that of p |Act q, by the induction hypothesis,
there exists a BCCSP process r′ such that Ep
 p′ |Act q′ ≈ r′. Thus we have
Ep
 a.p′ |Act a.q′ ≈ a.r′, which is a BCCSP process.
In the case that a �= b, then we can use axiom P5, to infer Ep
 a.p′ |Act b.q′ ≈ 0
and we are done.

– We can now assume, without loss of generality, that |I| > 1 and |J | ≥ 1. This means
that we can express p as the summation of two summands of smaller size that are
different from 0, i.e. p = p1 + p2, for some BCCSP processes p1 and p2. Then, we
use axiom P2 to get Ep
 (p1 + p2) |Act q ≈ (p1 |Act q) + (p2 |Act q). Since
both p1 |Act q and p2 |Act q have size less than that of p |Act q, by the induction
hypothesis, we have that there exist BCCSP processes r′ and r′′ such that Ep

p1 |Act q ≈ r′ and Ep
 p2 |Act q ≈ r′′. We thus have that Ep
 p |Act q ≈ r′ + r′′,
which is a BCCSP process, and we are done. ��
The above lemma is the key step in the elimination of |Act from closed terms.

Namely:

Proposition 4. For every closed BCCSPp
Act process p there exists a closed BCCSP pro-

cess q such that Ep
 p ≈ q.

Proof. The proof is straightforward by structural induction on p and using Lemma 7 in
the case that p is of the form p1 |Act p2, for some BCCSPp

Act processes p1, p2. ��
The ground-completeness of Ep over BCCSPp

Act follows from Proposition 4 and the
ground-completeness of E0 over BCCSP [28].

5 The Case of Restriction

In this section we apply the reduction technique described in Sect. 3 to show that
bisimilarity does not have a finite, ground-complete equational axiomatisation over
the recursion and relabelling free fragment of CCS. In detail, we assume a finite
set of action names Act, and we let Act denote the set of action co-names, i.e.,
Act = {a | a ∈ Act}. As usual, we postulate that a = a and a �= a for all a ∈ Act.

Non-finite Axiomatisability Results via Reductions 21

Table 7. The SOS rules for CCSr operators (μ ∈ Actτ , α ∈ Act ∪ Act).

(r1) t
μ−→ t′

t | u
μ−→ t′ | u

(r2) u
μ−→ u′

t | u
μ−→ t | u′ (r3) t

α−→ t′ u
α−→ u′

t | u
τ−→ t′ | u′

(r4) t
α−→ t′

t\L
α−→ t′\R

α, α �∈ R (r5) t
τ−→ t′

t\L
τ−→ t′\R

Then, we let Actτ = Act ∪ Act ∪ {τ}, where τ �∈ Act ∪ Act. Henceforth, we let
μ, ν, . . . range over actions in Actτ , α, β, . . . range over actions in Act ∪ Act, and
a, b, . . . range over actions in Act.

We denote by CCSr the recursion and relabelling free fragment of CCS with the
full merge operator (denoted by |) generated by the following grammar:

t ::= 0 | x | μ.t | t + t | t | t | t\R (CCSr)

where x ∈ Var, μ ∈ Actτ and R ⊆ Act ∪ Act.
Following [32], the action symbol τ will result from the synchronised occurrence

of the complementary actions α and α, as described by the inference rules in Table 7.
We recall that the restriction operator t\R prevents t (and its derivatives) from

performing any α-transition, for all α ∈ R.
The operational semantics of CCSr is obtained by adding the inference rules for the

full merge and the restriction operator given in Table 7 to the rules for BCCSP operators
given in Table 1. In the technical results that follow, we will need to distinguish between
transitions over CCSr processes, and transitions over CCSa processes. Hence, to avoid
possible confusion and favour thus readability, we adopt the same strategy we used in
Sect. 4, and use special symbols to distinguish them: we denote the transition relation
induced by the rules in Tables 1 and 7 by −→r, and bisimilarity over P(CCSr) by ∼r.

Definition 9 (Bisimulation overCCSr). Bisimulation relations over CCSr processes
are defined by applying Definition 2 to the LTS (P(CCSr),Actτ ,−→r) induced by the
SOS rules in Table 7. We use the symbol ∼r to denote bisimilarity over CCS

r processes.

5.1 The Negative Result

Our main goal in this section is to prove the following theorem:

Theorem 8. Bisimilarity has no finite, ground-complete axiomatisation over CCSr.

To this end, as already done in Sects. 4.2 and 4.3, we exploit the reduction technique
from [11] and Moller’s non-finite axiomatisability result from CCSa (Theorem 2). In
detail:

– We select a particular action a ∈ Act.
– We consider the language CCSa and the instantiation of the equations ϕn in the

family Φ over processes defined using only that action.

22 L. Aceto et al.

– We provide a translation mapping from CCSr to CCSa, denoted by ra, whose def-
inition will be parametric in the chosen action a, that will allow us to eliminate all
CCSr terms in which the execution of a is restricted, while ensuring the possibility
to perform any a-transition that is unrestricted.

It will be then enough to show that the mapping ra is structural, it preserves the sound-
ness of equations from CCSr to CCSa, and it is ground Φ-reflecting, to obtain the valid-
ity of the lifting of the negative result in Theorem 2 to CCSr, proving thus Theorem 8.

5.2 The Reduction

Choose an action a from the action set Act. Then we define a mapping ra : T(CCSr) →
T(CCSa) allowing us to rewrite any CCSr term into a CCSa term.

Definition 10 (The mapping ra). The mapping ra : T(CCSr) → T(CCSa) is defined
inductively as follows:

ra(0) = 0 ra(t + u) = ra(t) + ra(u)
ra(x) = x ra(t | u) = ra(t) ‖ ra(u)

ra(μ.t) =

{
a.ra(t) if μ = a

0 otherwise
ra(t\R) =

{
ra(t) if a, a �∈ R

0 otherwise.

Notice that a is the only action that may possibly occur in ra(t), for each t ∈
T(CCSr).

We now proceed to show that the mapping ra is a well-defined reduction, according
to Definition 3. As a first step, we notice that ra is structural by definition.

Lemma 8. The mapping ra is structural.

We now proceed to prove two technical lemmas, that will be useful to prove that ra

is a reduction.

Lemma 9. For all p ∈ P(CCSr), and q ∈ P(CCSa), if ra(p)
a−→ q, then there exists

some p′ ∈ P(CCSr) such that p
a−→r p′ and ra(p′) = q.

Proof. The proof proceeds by structural induction over the P(CCSr) process p. As
for prefixing, nondeterministic choice, and parallel composition the proof is analogous
to that of the corresponding steps in Lemma 2, we limit ourselves to present only the
inductive step related to the restriction operator.

Let p = p1\R. We can distinguish two cases, according to whether a ∈ R or a ∈ R,
or not (see Definition 10):

– Assume that a ∈ R or a ∈ R. Then ra(p) = 0, and this case becomes vacuous as
ra(p)

a−→� .
– Assume now that a, a �∈ R. Then ra(p) = ra(p1) and ra(p1)

a−→ q. By induction
over p1, there is some p′

1 ∈ P(CCSr) such that p1
a−→r p′

1 and ra(p′
1) = q. Since

a, a �∈ R, by an application of rule (r4) from Table 7 we obtain that p
a−→r p′

1\R.
Finally, by Definition 10, since a, a �∈ R it follows that ra(p′

1\R) = ra(p′
1) = q as

required. ��

Non-finite Axiomatisability Results via Reductions 23

Lemma 10. For all p, p′ ∈ P(CCSr), if p a−→r p′, then ra(p)
a−→ ra(p′).

Proof. The proof proceeds by induction over the size of the proof for the transition
p

a−→r p′. Also in this case, given the similarities with the proofs of the corresponding
cases in Lemma 3, we limit ourselves to analyse only the case in which the last inference
rule from Table 7 that is applied in the proof for p

a−→r p′ is rule (r4), i.e., the rule for
restriction. (In particular, we remark that since a �= τ , rules (r3) and (r5) cannot be
applied as the last rules in the proof for p

a−→r p′.)
Let (r4) be the last rule applied in the proof. In this case, p = p1\R, p1

a−→r p′
1,

and p′ = p′
1\R. In particular, the application of rule (r4) guarantees that a, a �∈ R,

so that ra(p) = ra(p1), by Definition 10. By induction we obtain that ra(p1)
a−→

ra(p′
1). Clearly, this directly gives ra(p)

a−→ ra(p′
1). Since, moreover, a, a �∈ R, by

Definition 10 we also get that ra(p′) = ra(p′
1\R) = ra(p′

1). We can then conclude
that ra(p)

a−→ ra(p′). ��
We now have all the ingredients necessary to prove that the mapping ra is a well-

defined ground Φ-reflecting reduction.

Proposition 5. The mapping ra satisfies the following properties:

1. For each t, u ∈ T(CCSr), t ∼r u implies ra(t) ∼ ra(u).
2. The mapping ra is ground Φ-reflecting.

Proof. We prove the two statements separately.

1. First of all, for each t ∈ T(CCSa) we define tra ∈ T(CCSr) as follows:

0r
a = 0 xr

a = a (a.t)ra = a.tra

(t + u)ra = tra + ur
a (t ‖ u)ra = tra | ur

a.

It is then immediate to check that for each t ∈ T(CCSa) we have that ra(tra) = t.
Then, given any CCSa substitution σ, we define σr

a as the CCSr substitution such
that σr

a(x) = (σ(x))ra. The claim then follows by applying the same reasoning used
in the proof of Proposition 2.

2. Consider the family of equations Φr defined as follows:

ϕn
r : a |

n∑

i=1

ai ≈ a.

n∑

i=1

ai +
n∑

j=1

aj+1 (n ≥ 0)

Φr = {ϕn
r | n ≥ 0}.

It is straightforward to prove that ra(ϕn
r) = ϕn for each n ∈ N, and thus that ra is

ground Φ-reflecting. ��
Theorem 8 is then a immediate consequence of Lemma 8, Proposition 5, Theorem 3,

and Theorem 2.

24 L. Aceto et al.

6 Concluding Remarks

In this paper, we have exploited the reduction technique from [11], for the lifting of neg-
ative results across process algebras, to prove the non-finite axiomatisability of various
extensions of BCCSP modulo bisimilarity. In detail, we have proved that bisimilarity
does not admit a finite, ground-complete axiomatisation 1. over BCCSPp

A , i.e., BCCSP
enriched with a CSP-like parallel operator |A, with A ⊂ Act, 2. over BCCSPp

τ , i.e.,
BCCSP enriched with τ -prefixing, τ �∈ Act, and CSP-like parallel operators with any
possible synchronisation set, and 3. over CCSr, i.e., the recursion and relabelling free
fragment of CCS. Interestingly, among all these negative results, we found a positive
one: if we consider only the CSP-like parallel operator |Act, forcing all the actions in
the parallel components to be synchronised, then a finite, ground-complete axiomatisa-
tion of bisimilarity over BCCSPp

Act exists. Moreover, we have proved that the reduction
technique from [11] cannot be applied in the case of BCCSPp, i.e., BCCSP enriched
with all parallel operators |A for A ⊆ Act.

As a natural step for future work, we will provide a direct proof of the fact that
bisimilarity does not admit a finite, ground-complete axiomatisation over BCCSPp.

Moreover, we plan to investigate how far the lifting technique of [11] can be pushed.
In particular, we are interested in studying whether (some variations of) it can be used
to lift known results for strong behavioural equivalences to their weak counterparts or
to potentially extend results over weak behavioural congruences (such as Theorem 10
presented in [1]) to new settings.

Another possible direction for future work, would be to focus on full recursion free
CCS. Aceto, Ingólfsdóttir, Luttik and van Tilburg gave an equational axiomatisation
of bisimilarity over recursion-free CCS with interleaving parallel composition and the
left-merge operator in [13]. That result crucially depends on the fact that restriction
and relabelling distribute over interleaving parallel composition. On the other hand,
neither restriction nor relabelling distribute over parallel composition in the presence
of synchronisation. Obtaining a complete axiomatisation of full recursion free CCS
modulo bisimilarity, with restriction, relabelling and parallel composition that allows
for synchronisation is a natural, and very challenging, avenue for future research.

Acknowledgements. The first author thanks Frits Vaandrager for the joint work they did about
thirty years ago and Rob van Glabbeek for asking the questions that led to the research presented
in this article.

We thank the reviewers for their valuable comments on our paper. In particular, we are very
grateful to the reviewer who spotted a technical error in the original manuscript.

References

1. Aceto, L., Anastasiadi, E., Castiglioni, V., Ingólfsdóttir, A., Luttik, B.: In search of lost time:
axiomatising parallel composition in process algebras. In: Proceedings of LICS 2021, pp.
1–14. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470526

2. Aceto, L., Anastasiadi, E., Castiglioni, V., Ingólfsdóttir, A., Luttik, B., Pedersen, M.R.: On
the axiomatisability of priority III: priority strikes again. Theor. Comput. Sci. 837, 223–246
(2020). https://doi.org/10.1016/j.tcs.2020.07.044

https://doi.org/10.1109/LICS52264.2021.9470526
https://doi.org/10.1016/j.tcs.2020.07.044

Non-finite Axiomatisability Results via Reductions 25

3. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Inf. Comput.
111(1), 1–52 (1994). https://doi.org/10.1006/inco.1994.1040

4. Aceto, L., Castiglioni, V., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: Are two binary operators
necessary to finitely axiomatise parallel composition? In: Proceedings of CSL 2021. LIPIcs,
vol. 183, pp. 8:1–8:17 (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.8

5. Aceto, L., Castiglioni, V., Ingólfsdóttir, A., Luttik, B., Pedersen, M.R.: On the axiomatisabil-
ity of parallel composition: a journey in the spectrum. In: Proceedings of CONCUR 2020.
LIPIcs, vol. 171, pp. 18:1–18:22 (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.18

6. Aceto, L., Fokkink, W., van Glabbeek, R.J., Ingólfsdóttir, A.: Nested semantics over finite
trees are equationally hard. Inf. Comput. 191(2), 203–232 (2004). https://doi.org/10.1016/j.
ic.2004.02.001

7. Aceto, L., Fokkink, W., Ingólfsdóttir, A.: A menagerie of non finitely based process seman-
tics over BPA* - from ready simulation to completed traces. Math. Struct. Comput. Sci. 8(3),
193–230 (1998). http://journals.cambridge.org/action/displayAbstract?aid=44743

8. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: CCS with Hennessy’s merge has no
finite-equational axiomatization. Theor. Comput. Sci. 330(3), 377–405 (2005). https://doi.
org/10.1016/j.tcs.2004.10.003

9. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in process alge-
bra: results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,
de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol.
3838, pp. 338–367. Springer, Heidelberg (2005). https://doi.org/10.1007/11601548 18

10. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: A finite equational base for CCS with
left merge and communication merge. ACM Trans. Comput. Log. 10(1), 6:1–6:26 (2009).
https://doi.org/10.1145/1459010.1459016

11. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.R.: Lifting non-finite axiomatizability
results to extensions of process algebras. Acta Inf. 47(3), 147–177 (2010). https://doi.org/10.
1007/s00236-010-0114-7

12. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Nain, S.: Bisimilarity is not finitely based over
BPA with interrupt. Theor. Comput. Sci. 366(1–2), 60–81 (2006). https://doi.org/10.1016/j.
tcs.2006.07.003

13. Aceto, L., Ingólfsdóttir, A., Luttik, B., van Tilburg, P.: Finite equational bases for fragments
of CCS with restriction and relabelling. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L.
(eds.) TCS 2008. IIFIP, vol. 273, pp. 317–332. Springer, Boston, MA (2008). https://doi.org/
10.1007/978-0-387-09680-3 22

14. Baeten, J.C.M., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communi-
cating Processes. Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press (2009). https://doi.org/10.1017/CBO9781139195003

15. Baeten, J.C.M., Vaandrager, F.W.: An algebra for process creation. Acta Informatica 29(4),
303–334 (1992). https://doi.org/10.1007/BF01178776

16. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control
60(1–3), 109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-X

17. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theor.
Comput. Sci. 37, 77–121 (1985). https://doi.org/10.1016/0304-3975(85)90088-X

18. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268
(1995). https://doi.org/10.1145/200836.200876

19. Brookes, S.D., Roscoe, A.W., Walker, D.J.: An operational semantics for CSP. Report, Uni-
versity of Oxford (1986)

20. Chen, T., Fokkink, W., van Glabbeek, R.J.: On the axiomatizability of impossible futures.
Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/LMCS-11(3:17)2015

https://doi.org/10.1006/inco.1994.1040
https://doi.org/10.4230/LIPIcs.CSL.2021.8
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.1016/j.ic.2004.02.001
https://doi.org/10.1016/j.ic.2004.02.001
http://journals.cambridge.org/action/displayAbstract?aid=44743
https://doi.org/10.1016/j.tcs.2004.10.003
https://doi.org/10.1016/j.tcs.2004.10.003
https://doi.org/10.1007/11601548_18
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1007/s00236-010-0114-7
https://doi.org/10.1007/s00236-010-0114-7
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1007/BF01178776
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1145/200836.200876
https://doi.org/10.2168/LMCS-11(3:17)2015

26 L. Aceto et al.

21. Fokkink, W.J., Luttik, S.P.: An ω-complete equational specification of interleaving. In: Mon-
tanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 61

22. Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M., Klop, J.W.
(eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0039066

23. van Glabbeek, R.J.: Full abstraction in structural operational semantics (extended abstract).
In: Proceedings of AMAST 1993, pp. 75–82. Workshops in Computing (1993)

24. van Glabbeek, R., Vaandrager, F.: Modular specifications in process algebra. In: Wirsing,
M., Bergstra, J.A. (eds.) Algebraic Methods 1987. LNCS, vol. 394, pp. 465–506. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0015049

25. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of concurrency.
In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp.
224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17945-3 13

26. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a congru-
ence. Inf. Comput. 100(2), 202–260 (1992). https://doi.org/10.1016/0890-5401(92)90013-6

27. Groote, J.F., de Vink, E.P.: An axiomatization of strong distribution bisimulation for a lan-
guage with a parallel operator and probabilistic choice. In: ter Beek, M.H., Fantechi, A., Sem-
ini, L. (eds.) From Software Engineering to Formal Methods and Tools, and Back. LNCS,
vol. 11865, pp. 449–463. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-
5 26

28. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM
32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

29. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
30. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384

(1976). https://doi.org/10.1145/360248.360251
31. Middelburg, C.A.: Probabilistic process algebra and strategic interleaving. Sci. Ann. Com-

put. Sci. 30(2), 205–243 (2020). https://doi.org/10.7561/SACS.2020.2.205
32. Milner, R.: Communication and Concurrency. PHI Series in Computer Science. Prentice Hall

(1989)
33. Moller, F.: Axioms for Concurrency. Ph.D. thesis, Department of Computer Science, Univer-

sity of Edinburgh, July 1989. https://era.ed.ac.uk/bitstream/handle/1842/11182/Moller1989.
pdf, report CST-59-89. Also published as ECS-LFCS-89-84

34. Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990). https://doi.
org/10.1007/BFb0032072

35. Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In: Proceedings
of LICS 1990, pp. 142–153 (1990). https://doi.org/10.1109/LICS.1990.113741

36. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS
1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://doi.org/10.1007/
BFb0017309

37. Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19, Com-
puter Science Department, Aarhus University (1981)

38. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comput. Sci. 37,
245–267 (1985). https://doi.org/10.1016/0304-3975(85)90093-3

39. Vaandrager, F.W.: Algebraic techniques for concurrency and their application. Ph.D. thesis,
University of Amsterdam, February 1990

https://doi.org/10.1007/3-540-45022-X_61
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/BFb0015049
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1007/978-3-030-30985-5_26
https://doi.org/10.1007/978-3-030-30985-5_26
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/360248.360251
https://doi.org/10.7561/SACS.2020.2.205
https://era.ed.ac.uk/bitstream/handle/1842/11182/Moller1989.pdf
https://era.ed.ac.uk/bitstream/handle/1842/11182/Moller1989.pdf
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/0304-3975(85)90093-3

Operational Causality – Necessarily
Sufficient and Sufficiently Necessary

Christel Baier(B), Clemens Dubslaff(B), Florian Funke(B), Simon Jantsch(B),
Jakob Piribauer(B), and Robin Ziemek(B)

Technische Universität Dresden, Dresden, Germany
{christel.baier,clemens.dubslaff,florian.funke,simon.jantsch,

jakob.piribauer,robin.ziemek}@tu-dresden.de

Abstract. Necessity and sufficiency are well-established notions in logic
and causality analysis, but have barely received attention in the formal
methods community. In this paper, we present temporal logic character-
izations of necessary and sufficient causes in terms of state sets in oper-
ational system models. We introduce degrees of necessity and sufficiency
as quality measures for sufficient and necessary causes, respectively, along
with a versatile weight-based approach to find “good causes”. The result-
ing optimization problems of finding optimal causes are shown to be
solvable in polynomial time.

1 Introduction

The classical model-checking task is to verify whether a given formal system sat-
isfies a property usually expressed in some temporal logic [19,66]. Much effort
has been devoted to enriching classical yes/no answers of model checkers with
useful diagnostic information. If the system does not meet the prescribed condi-
tion, many model checkers produce counterexample traces [21] that can further
be investigated in order to localize precisely where the error lies or how far the
trace is from satisfying the formula [8,35–37,69,73]. However, realistic system
models can usually produce errors for a variety of reasons so that more diverse
analysis techniques are required. In the case of a positive model-checking result,
coverage estimation aims at determining which parts of the system are essential
to ensure satisfaction [16–18,45], and vacuity detection analyzes whether it is
due to some unintended, trivial behavior [12,54,65].

In this paper we tackle the explication of the behavior of transition systems
through novel notions of cause–effect relationships. Both cause and effect are
represented as subsets of the state space of the transition system, and formulas
in linear temporal logic (LTL, [64]) are used to express the principles of necessity

The authors are supported by the DFG through the Collaborative Research Center
TRR 248 (CPEC, project ID 389792660, https://perspicuous-computing.science), the
Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s
Excellence Strategy) and the Research Training Groups QuantLA (GRK 1763) and
RoSI (GRK 1907).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 27–45, 2022.
https://doi.org/10.1007/978-3-031-15629-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_2&domain=pdf
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-031-15629-8_2

28 C. Baier et al.

and sufficiency in causal reasoning. A necessary cause is a state set that neces-
sarily needs to be passed before reaching the effect set. A sufficient cause is a
state set where every extension of a path reaching that set eventually sees an
effect state. Therefore, necessary and sufficient causes provide orthogonal views
on causality in operational systems. To estimate the explanatory power of such
causes and determine “good causes”, we exploit counterbalances on these orthog-
onal views: We determine necessary causes with maximal degree of sufficiency
and sufficient causes with maximal degree of necessity. In order to admit use-case
specific quality criteria for necessary causes, a rather general weight-based app-
roach is finally presented. Weight-minimal necessary causes in this framework
can be computed in polynomial time via a reduction to a min-cut problem in
weighted graphs.

Despite being loosely inspired by philosophical theories of causation, the
theory put forth in this paper concentrates on formal operational system mod-
els and does not transcend the borders of computer science. There have been
philosophical attempts to understand causality in terms of necessity and suf-
ficiency [31,59,60,71]. Perhaps most elaborate in this direction is the INUS
condition (“insufficient but necessary part of a condition which is itself unnec-
essary but sufficient”) [59] that is closely related to the NESS test (necessary
element of sufficient subset) from jurisprudence [42,72]. Our contributions are
in some sense also orthogonal to Halpern and Pearl’s actual causality, the per-
haps most influential instance of causality in the computer science community
[39–41]. Halpern and Pearl express causal dependencies in structural equation
models [29,30,38,63] and employ the counterfactuality principle that has a rich
history in philosophical theories of causal reasoning [46,47,58]. Counterfactual-
ity proclaims to consider alternative worlds in which the cause has not occurred
and then check whether the effect still happened. To what extend necessity, suffi-
ciency, counterfactuality, and conditionality etc. relate to each other and emerge
to meaningful notions of causality is a matter of ongoing debate.

Related Work. Notions of causality inspired by Halpern and Pearl’s actual
causes have been employed in the verification landscape to analyze counterex-
ample traces for temporal logic specifications in transition systems [11], LTL
model checking [10,13,52,57], concurrent interacting programs [23], and timed
systems [53]. To deal with the limited expressive power of propositional struc-
tural equation models, Hopkins and Pearl [44] introduced a notion of actual
causality defined in the framework of the situation calculus [68]. This line of
work has recently been picked up again [9,48]. Causal reasoning in component-
based systems [32–34] and causality-based notions on responsibility [14] have
also been considered in the model-checking community [15,26,61].

Rather than defining cause–effect relationships within a system, there are
also approaches to use causal reasoning as a basis for verification algorithms
on transition systems [55,56] and two-player reachability games [2]. From a
conceptual viewpoint, the latter article defines necessary and sufficient subgoals

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 29

in the same spirit as our formalization of necessary and sufficient causes (which,
nevertheless, serve a different purpose there).

Recently, notions of causality have been considered in the realm of stochas-
tic operational systems. Based on the probability-raising principle [67], Klein-
berg and Mishra [49–51] presented an approach towards causal inference in time
series modeled as Markov chains. This has recently sparked novel probabilistic
causality notions [4,5], including notions of precision and recall that are closely
connected to our notion of degrees of sufficiency and necessity [5]. Probabilistic
causation has also been expressed in terms of hyperproperties [1,25].

Finally, the survey article [3] exhibits how the notion of causality entered and
influenced the verification landscape over the course of the past two decades.

2 Preliminaries

In the sequel, we briefly present our notation regarding transition systems,
Markov chains, and linear temporal logic (LTL). For more details, see standard
textbooks on systems modeling and verification [6].

A transition system T is a tuple (S,R, I) comprising a finite set of states
S, a transition relation R ⊆ S × S, and a set of initial states I ⊆ S. A state
that does not have any outgoing transition is called terminal. A path π in T is a
sequence of states s0s1 . . . such that s0 ∈ I and (si, si+1) ∈ R for all appropriate
i and where π is either infinite or ends in a terminal state. A state s ∈ S is
called reachable if there is a path that contains s. We assume that all states in
a transition system are reachable.

A Markov chain M is a tuple (S,P, ι) comprising a finite set of states
S, a transition probability function P : S × S → [0, 1] where we require∑

s′∈S P(s, s′) ∈ {0, 1} for all s ∈ S, and an initial state distribution ι : S → [0, 1]
satisfying

∑
s∈S ι(s) = 1. We say that a state s is terminal if

∑
s′∈S P(s, s′) = 0.

A path π in M is a state sequence s0s1 . . . such that ι(s0) > 0 and P(si, si+1) > 0
for all appropriate i, and π is either infinite or ends in a terminal state. The
σ-algebra of the probability space over sets of paths of M is generated by
cylinder sets Cyl(π̂) comprising all path extensions of path prefixes π̂. The
probability measure PrM on paths of M is induced by PrM

(
Cyl(s0 . . . sn)

)
=

ι(s0) ·P(s0, s1) · . . . ·P(sn−1, sn) [6, Chapter 10]. We write Prs for the probability
measure that arises for M with ι(s) = 1.

A formula in linear temporal logic (LTL) over a set AP of atomic propositions
is formed according to the following grammar

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | ©ϕ | ϕ U ϕ

where a ∈ AP. In this paper, we consider LTL over sets of states as atomic
propositions with the intended meaning that the atomic proposition A holds in a
state s iff s ∈ A. We use the standard syntactic derivations ϕ∨ψ ≡ ¬(¬ϕ∧¬ψ),
ϕ → ψ ≡ ¬ϕ ∨ ψ, ♦ϕ ≡ true U ϕ (“eventually”), �ϕ ≡ ¬♦¬ϕ (“always”),
ϕ W ψ ≡ �ϕ ∨ ϕ U ψ (“weak until”) and ϕ R ψ ≡ ¬(¬ϕ U ¬ψ) (“release”).

30 C. Baier et al.

The semantics of LTL over sequences of atomic proposition sets is defined
the standard way (see, e.g., [6]). For example, a path π = s0s1 . . . satisfies ϕRψ,
denoted by π |= ϕ R ψ, iff there is a position k ∈ N such that sisi+1 . . . satisfies
ψ for i ≤ k and sksk+1 . . . satisfies ϕ. A transition system T is said to satisfy
an LTL formula ϕ, denoted by T |= ϕ, if all paths π of T satisfy ϕ. We write
T , s |= ϕ in case T satisfies ϕ under the assumption that I = {s} is the only
initial state of T . The set of states satisfying a formula ϕ in T is denoted by
SatT (ϕ) = {s ∈ S | T , s |= ϕ}, or simply Sat(ϕ) if T is clear from the context.

3 Necessary and Sufficient Causes

In this section, we define two notions of causes in transition systems, namely
necessary and sufficient causes. Both notions lead to a binary relation on events,
stating that an event is a cause for an effect event. Here, we focus on reachability
events as causes and effects, such that they can be represented by sets of states.
Our focus is motivated by the fact that numerous properties can be expressed by
reachability properties on transition systems obtained by well-known automata-
theoretic transformations [22,24,43,70].

3.1 Necessary Causes

Informally spoken, an event C is considered to be a necessary cause of an event
E whenever the presence of E necessarily implies the prior occurrence of C. The
presence of C, on the other hand, does not necessarily imply that E will occur.
This idea can be expressed formally using LTL formulas over state sets:

Definition 1 (Necessary cause). Let T = (S,R, I) be a transition system
and let C,E ⊆ S be sets of states. We say that C is a necessary cause for E,
denoted by C ≺nec E, if E is non-empty and

T |= C R ¬E (≡ �¬E ∨
(
¬E U (¬E ∧ C)

)
).

The formula C R¬E is fulfilled whenever E is not reached before reaching C. In
particular, there needs to be at least one transition between reaching C and E.

Note that if the set E consists only of terminal states, i.e., states without any
outgoing transitions, and C and E are disjoint, then C is a necessary cause of E
iff T |= ♦E → ♦C. The set I of initial states is a trivial necessary cause for any
effect E ⊆ S if its intersection with the effect states E is empty. For any effect
E not containing an initial state, it is thus clear that necessary causes always
exist. Saying that the set of initial states is a necessary cause, however, does of
course not carry much explanatory information.

Example 1. Consider the transition system T depicted in Fig. 1. We are inter-
ested in necessary causes for the effect E = {e}. Any set containing the initial
state s0 is trivially a necessary cause. More interesting are necessary causes that
do not contain s0. There are two such causes containing two states: C1 = {a1, b}

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 31

s0

a1

b

a2 e

f

Fig. 1. The transition system T for Example 1.

and C2 = {a2, b}. C1 occurs at least as early as C2 on all paths. Nevertheless,
C1 ≺nec C2 does not hold since we required causes to occur strictly before their
effects: when entering state b the events to reach C1 and C2 occur simultaneously.

In order to compare simultaneously occurring causes for the same effect, we
introduce a second type of ‘necessary cause’-relation between sets of states that
we call necessary quasi-cause in the following definition. For a quasi-cause, we
do not require that to occur strictly before its effect.

Definition 2 (Necessary quasi-cause). Let T = (S,R, I) be a transition sys-
tem and let C,E ⊆ S be sets of states. We say that C is a necessary quasi-cause
for E, denoted by C �q

nec E, if E is non-empty and

T |= ¬E W C (≡ �¬E ∨ (¬E U C)).

For a quasi-cause, we only require non-strict temporal priority. Hence, on
any path reaching an effect E, it is sufficient if the quasi-cause C is reached
simultaneously with E. Returning to Example 1, we therefore have C1 �q

nec C2

even though C1 ≺nec C2 does not hold. As indicated by the name quasi-cause,
we do not claim that this notion itself constitutes a meaningful cause–effect
relationship. For example, any effect set provides a quasi-cause for itself. The
notion is useful, however, when comparing different causes for the same effect.

We now establish first fundamental properties of the relations ≺nec and �q
nec:

Lemma 1. Let T = (S,R, I) be a transition system. Then:

(1) The relation ≺nec is a strict partial order (irreflexive, asymmetric, and tran-
sitive) on the powerset of the state space S of T .

(2) The relation �q
nec is a preorder (reflexive and transitive) on the powerset of

the state space S of T .
(3) For all C,E ⊆ S, we have that C ≺nec E implies C �q

nec E.
(4) For all C1, C2, E ⊆ S, if C1 �q

nec C2 and C2 ≺nec E, then C1 ≺nec E.
(5) For all C,E1, E2 ⊆ S, if C ≺nec E1 and E1 �q

nec E2, then C ≺nec E2.

Proof. Ad (1): ≺nec is irreflexive since C R ¬C does not hold on paths that
reach C (recall that ¬C still has to hold when C releases the requirement of
¬C to hold) and every state of T is assumed to be reachable in T . Similarly

32 C. Baier et al.

asymmetry of ≺nec is clear as any path π with π |= C R ¬E cannot satisfy
E R ¬C. For transitivity, assume that A ≺nec B and B ≺nec C for three sets A,
B, and C of states of T . To show T |= AR¬C, let π = s0s1s2 . . . be a path in T .
If π |= �¬C, we have π |= AR¬C. So, suppose that π |= ♦C. Let si be the first
state in π that is in C. As T |= B R ¬C, there is a position j < i with sj ∈ B.
Analogously, there is k < j such that sk ∈ A. So, π |= AR¬C. We conclude that
≺nec is transitive.

Ad (2): As for any set of states A the formula ¬AWA is a tautology, reflexivity
of �q

nec is clear. Transitivity is shown analogously to the proof of transitivity
above, where the strict inequalities on the positions i, j, and k are replaced by
non-strict ones.

Ad (3): This is a direct consequence of C R ¬E ≡ �¬E ∨
(
¬E U (¬E ∧ C)

)

entailing ¬E W C ≡ �¬E ∨ (¬E U C).
Ad (4) and (5): The proofs are again analogous to the proof of transitivity

above, where this time one of the strict inequalities between positions is replaced
by a non-strict one. �

These definitions and basic properties of the two relations will help us to find
“good causes” later on. There is no gold standard what precisely constitutes
a good necessary cause. One common approach also within other notions of
causality is to only consider minimal representatives as causes [26,39], i.e., events
where removing some part leads to loosing the property of being a cause. In our
setting, necessary causes may contain redundant states that do not affect the
causal relationships to potential effect sets and could be removed towards more
concise causes. To provide an intuition, consider again the transition system T
depicted in Fig. 1. The necessary cause C3 = {a1, a2, b} contains the redundant
state a2. This state can only be reached if the set C3 is visited already before
in state a1. As only the first visit to the set is relevant in the relations ≺nec

and �q
nec, the fact that a2 belongs to C3 does not play a role at all for causal

relationships. To remove such redundant states, we define the following pruning
of sets of states.

Definition 3 (Pruning of state sets). Let T = (S,R, I) be a transition sys-
tem and let A ⊆ S be a set of states. We define the pruning �A� of A by

�A� = { a ∈ A | there is a path π in T with π |= ¬A U a }.

Recall that paths always start in an initial state of the transition system. The
pruning �A� includes precisely those states in A that are reachable without
previously seeing A. It satisfies the following properties related to the necessary
(quasi-)cause relations defined above.

Lemma 2. Let T = (S,R, I) be a transition system.

(1) For all A ⊆ S, we have A �q
nec �A� and �A� �q

nec A.
(2) For A,B ⊆ S, we have that A �q

nec B and B �q
nec A implies �A� = �B�.

(3) For all C,E ⊆ S with C ≺nec E, we have C ≺nec �E�.

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 33

Proof. Ad (1): First, we will show T |= (¬A) W �A� which is equivalent to
T |= ♦A → (¬A)U�A�. Let π = s0s1 . . . be a path in T that satisfies ♦A and let
i ∈ N be the first position such that si ∈ A. Then, by definition of �A�, we have
si ∈ �A�. This shows π |= (¬A) U �A�. In the other direction, T |= (¬�A�) W A
holds because �A� ⊆ A.

Ad (2): Assume A �q
nec B and B �q

nec A and suppose towards a contradiction
that �A� �= �B�. Assume w.l.o.g. that there is an a ∈ �A�\�B�. By the definition
of �A�, there is a path π = s0 s1 . . . sn . . . with s0 ∈ I and sn = a such that si �∈ A
for all i < n. As A �q

nec B, it follows that also si �∈ B for all i < n. Since a �∈ �B�,
also a �∈ B since otherwise the path π would witness that a also belongs to �B�.
Thus, π �|= (¬A) W B and hence B ��q

nec A, which yields a contradiction.
Ad (3): The claim follows from E �q

nec �E� by (1) and Lemma 1(5). �

The preorder �q
nec induces an equivalence relation defined by

A ∼ B iff A �q
nec B and B �q

nec A.

Statements (1) and (2) of Lemma 2 tell us that in each of these equivalence
classes, there is exactly one pruned set. Choosing the respective pruned set
as representative for each equivalence class, we obtain that �q

nec is a partial
order (reflexive, transitive, and anti-symmetric) on the set of pruned subsets
of S. In the light of Lemma 1 and Lemma 2(3), we can conclude that for sets
C1, C2, E1, E2 ⊆ S with C1 ∼ C2 and E1 ∼ E2, we have

C1 ≺nec E1 iff C2 ≺nec E2.

In words, ≺nec is well-defined on the equivalence classes induced by �q
nec and it

is therefore reasonable to restrict ourselves to the canonical representatives for
necessary causes in terms of pruned sets.

3.2 Sufficient Causes

Intuitively, a sufficient cause C for an event E means that the presence of C nec-
essarily implies the subsequent occurrence of E. This intuition can be formalized
using LTL formulas over state sets:

Definition 4 (Sufficient cause). Let T = (S,R, I) be a transition system. A
non-empty set C ⊆ S is a sufficient cause for E ⊆ S if

T |= �
(
C → ©♦E

)
.

The formula basically states that whenever we see a state c ∈ C we will
also see E at some point in the future. Note that if E comprises terminal states
only and C and E are disjoint, the above characterization of sufficient causes is
equivalent to ♦C → ♦E.

Example 2. Consider the transition system depicted in Fig. 2, modeling a coffee
machine that has a defect and sometimes only produces hot water instead of

34 C. Baier et al.

idle

working coffeehot water

get coffeeget hot water

coin

ττ

Fig. 2. A defect coffee machine that sometimes produces hot water

Fig. 3. A refined transition system for the defect coffee machine

delicious coffee. We consider the effect E = {coffee}. Within this model, there
are no sufficient causes for E since it is unclear how the non-deterministic choice
in the working state is resolved. However, both C1 = {working} and C2 = {idle}
are necessary causes for E.

Suppose now that we have additional knowledge about the defect and can
refine the transition system model towards the one in Fig. 3. Here, we assume
that a person with strong desire of getting more insights about the defect, let
us call him Frits, figured out a trick: when using two coins instead of one, the
defect does not occur and the machine always delivers coffee. For the effect
E = {coffee}, we then still have C1 = {working} and C2 = {idle} as necessary
causes. In this model, C1 is additionally a sufficient cause since all paths that
visit C1 will visit E afterwards eventually.

In analogy to necessary causes, we can observe sufficient causes are transitive:

Lemma 3 (Transitivity of sufficient causes.). Let T = (S,R, I) be a tran-
sition system and C,W,E ⊆ S. If C is a sufficient cause for W and W is a
sufficient cause for E, then C is a sufficient cause for E.

Proof. Assume that C is a sufficient cause for W, which in turn is a sufficient
cause for E. Let π = s0 s1 . . . be a path in T . Then, since T |= �(C → ©♦W)
we have for each i ∈ N with si ∈ C that there is j > i with sj ∈ W . Likewise, by
T |= �(W → ©♦E) for each j ∈ N with sj ∈ W there is k > j with sk ∈ E. We

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 35

conclude that π |= �(C → ©♦E) for all paths π in T . Hence, C is a sufficient
cause for E. �

Since all states in a transition system T are assumed to be reachable, a set
C is a sufficient cause for E in T iff the sufficiency condition holds for all states
included in C. That is, for all a ∈ C the formula �(a → ©♦E) holds in T .
Equivalently, a set C ⊆ S is a sufficient cause for E iff ∅ �= C ⊆ SatT

(
©♦E

)
.

Therefore, existence of a sufficient cause can be checked in polynomial time with
standard model-checking algorithms [6,20].

The satisfaction set of ©♦E is consequently the inclusion-maximal sufficient
cause for the effect E in T . This set, however, might be very large and does
not necessarily point to “good causes” for the effect. To this end, we define
the canonical sufficient cause as CE

c = �SatT
(
©♦E

)
�, i.e., the set of all states

in SatT
(
©♦E

)
that are either initial or are reachable from some initial state

by visiting only non-sufficient states. The name “canonical” sufficient cause is
justified by the following observation:

Proposition 1. Let T and E be as above. The canonical sufficient cause CE
c is

the unique pruned and �q
nec-least sufficient cause for E.

Proof. By Lemma 1(1), we know that CE
c �q

nec SatT
(
©♦E

)
, and therefore also

CE
c �q

nec C for all C ⊆ SatT
(
©♦E

)
by the definition of �q

nec. But the sufficient
causes of E are exactly the non-empty subsets of SatT

(
©♦E

)
. Thus, the canon-

ical sufficient cause CE
c is a �q

nec-least sufficient cause. By Lemma 2, we know
that there is only one pruned cause in the equivalence class (induced by �q

nec)
of �q

nec-least sufficient causes, rendering CE
c unique. �

While Proposition 1 already shows that CE
c is a distinguished sufficient cause,

we will see later on that it is also optimal with respect to other criteria, namely
the degree of necessity introduced in the next section.

4 Finding Good Causes

We have seen that causes may differ in their information they provide and their
ability to concisely explain reasons for the effect. For example, the set of initial
states is a necessary cause for any effect E that does not contain an initial state.
In this section, we introduce different ways to quantify the quality of a cause
and show how to find optimal causes with respect to the introduced quality
measures.

4.1 Degrees of Sufficiency and Necessity

The notions of sufficiency and necessity defined in the previous section are qual-
itative: either a set satisfies the corresponding criterion, or it does not. However,
one can think of situations where a set C is almost sufficient or necessary, e.g.,
that a very large part of the executions which see the effect set E are preceded

36 C. Baier et al.

by C in the case of necessity. To quantify how close a set is a necessary cause for
an effect (resp. a sufficient cause), we define degrees of necessity (resp. degree of
sufficiency). Here, we rely on the probability measure on paths that we obtain
by equipping the outgoing transitions from each state with a uniform probability
distribution. In particular, we are interested in the trade-off between sufficiency
and necessity and aim toward sufficient causes with a high degree of necessity,
and vice versa.

For the remainder of this section, let us fix a transition system T = (S,R, I)
and a non-empty effect set E ⊆ S. Then we can construct the Markov chain
MT ,E = (S,P, ι) as follows. For each transition (s, s′) ∈ R with s �∈ E, we have
P(s, s′) = 1/|Post(s)|, where Post(s) denotes the set of direct successors of s. For
all s, s′ ∈ S where (s, s′) �∈ R or s ∈ E, we set P(s, s′) = 0, i.e., all effect states
are terminal in MT ,E . Further, we set ι(s) = 1/|I| for all s ∈ I. In the following,
we denote by Pr the probability measure PrMT ,E

on measurable sets of paths
of MT ,E .

The degree of sufficiency of a non-empty candidate cause C ⊆ S\E intuitively
provides a measure how many of the paths that see C will also see E. It is defined
as a conditional probability in the following way:

suff-deg(C,E) = Pr(♦E | ♦C) =
Pr(♦E ∧ ♦C)

Pr(♦C)

With a similar reasoning, the degree of necessity of C is defined as:

nec-deg(C,E) = Pr(♦C | ♦E) =
Pr(♦E ∧ ♦C)

Pr(♦E)

Note that these degrees can be computed in polynomial time by standard tech-
niques for computing conditional probabilities on Markov chains [7].

If C is a sufficient cause as defined above, then its degree of sufficiency clearly
is 1. The analogous statement holds for necessary causes, but the reverse direc-
tions do not hold in general. Since multiple sufficient causes may exist, it makes
sense to look for those with maximal degree of necessity. In case C is a sufficient
cause, the above expression for nec-deg(C,E) simplifies to

nec-deg(C,E) =
Pr(♦C)
Pr(♦E)

(∗)

as the formula ♦C → ♦E holds in MT ,E with E comprising terminal states only
by construction. Analogously, if C is a necessary cause we have

suff-deg(C,E) =
Pr(♦E)
Pr(♦C)

(∗∗)

The above definitions raise the question of how to find a sufficient cause with
maximal degree of necessity, or, a necessary cause with maximal degree of suf-
ficiency. Observe that causes that are sufficient and necessary may not exist in
general. The following lemma connects the degrees of necessity and sufficiency
to the necessary quasi-cause relation �q

nec.

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 37

Lemma 4. Let C1, C2 ⊆ S be two necessary causes for E, i.e., C1 ≺nec E and
C2 ≺nec E. Then, C1 �q

nec C2 implies that suff-deg(C1, E) ≤ suff-deg(C2, E).
Let D1,D2 ⊆ S be two sufficient causes for E. Then, D1 �q

nec D2 implies
that nec-deg(D1, E) ≥ nec-deg(D2, E).

Proof. For any sets A1, A2 ⊆ S with A1 �q
nec A2, we have that T |= ♦A2 → ♦A1.

So, Pr(♦A1) ≥ Pr(♦A2). Applied to the necessary causes C1 and C2, we conclude
the claim due to equation (∗∗). For the sufficient causes D1 and D2, the claim
follows analogously using equation (∗). �

Sufficient Causes with Maximal Degree of Necessity. The story of how
to find a sufficient cause with maximal degree of necessity is quickly told: By
Lemma 4, we know that �q

nec-least sufficient causes have maximal degree of
necessity. In Proposition 1, we have seen that the canonical sufficient cause
CE

c = �SatT
(
©♦E

)
�, is a �q

nec-least sufficient cause. We conclude:

Proposition 2. Let T = (S,R, I) a transition system and E ⊆ S. The canon-
ical sufficient cause CE

c has maximal degree of necessity among all sufficient
causes for E.

Necessary Causes with Maximal Degree of Sufficiency. While sufficient
causes are always non-empty subsets of an LTL satisfaction set, this is not
the case for necessary causes. Indeed, the set of all states S is always a nec-
essary cause for any effect that is disjoint from the initial states but not all
state sets have to be a necessary cause. Following the definition of a canon-
ical sufficient cause suggests considering the pruned maximal necessary cause
as a candidate. However, in the case above, I = �S�, which does not attain
the maximal degree of sufficiency among all necessary causes (on the con-
trary, it achieves the minimal degree of sufficiency). A necessary cause with
maximal degree of sufficiency is the direct-predecessor cause: It is denoted by
CE

dp = {s ∈ S | there is e ∈ E such that (s, e) ∈ R} and comprises all those
states that have at least one transition to E.

Proposition 3. Let T = (S,R, I) a transition system and E ⊆ S\I. The direct-
predecessor cause CE

dp is a necessary cause that achieves the maximal degree of
sufficiency among all necessary causes for E.

Proof. Clearly, CE
dp is a necessary cause by definition, since for all paths π in T

that visit E we clearly have π |= ¬E U (¬E ∧ CE
dp) (recall that E ∩ I = ∅). We

show that Pr(♦CE
dp) ≤ Pr(♦C) for every necessary cause C ⊆ S by proving

{π | π |= ♦CE
dp} ⊆ {π | π |= ♦C}.

Let π = s0s1 . . . be a path in T with π |= ♦CE
dp and let i ∈ N be the smallest

position such that si ∈ CE
dp. Then clearly sj �∈ E for all j ≤ i and there is a path

π′ = s0s1 . . . sis
′
i+1 . . . where s′

i+1 ∈ E and thus, π′ |= ¬E U (¬E ∧ C) as C is a
necessary cause. But then there is k ≤ i with sk ∈ C and thus π |= ♦C. �

38 C. Baier et al.

The motivation for pruned necessary causes is also applicable to direct-
predecessor causes, asking for the “earliest” necessary cause C that has the
same degree of sufficiency as CE

dp. To this end, we consider the set of states
CE

♦ dp = {s ∈ S | Prs(♦CE
dp) = 1}, which is a necessary cause due to CE

dp ⊆ CE
♦ dp.

By Lemma 1, its pruned set is also a necessary cause, i.e. �CE
♦ dp� ≺nec E. In

MT ,E we have Pr(♦�CE
♦ dp�) ≤ Pr(♦CE

♦ dp) = Pr(♦CE
dp). On the other hand,

�CE
♦ dp� �q

nec CE
♦ dp (again by Lemma 1) implies Pr(♦CE

dp) ≤ Pr(♦�CE
♦ dp�).

Therefore, we have Pr(♦CE
dp) = Pr(♦�CE

♦ dp�) and hence the degrees of suffi-
ciency of CE

dp and �CE
♦ dp� are the same.

Moreover, �CE
♦ dp� is a necessary quasi-cause for all necessary causes of E

that achieve the same degree of sufficiency:

Proposition 4. Let T = (S,R, I) a transition system and E ⊆ S \ I. For all
necessary causes C of E that satisfy suff-deg(C,E) = suff-deg(CE

dp, E) we have
�CE

♦ dp� �q
nec C.

Proof. It suffices to show C ⊆ CE
♦ dp. Since C is a necessary cause for E, we can

apply the same argumentation as in the proof of Proposition 3, showing that

{π | π |= ♦(C ∧ ♦CE
dp)} = {π | π |= ♦CE

dp} ⊆ {π | π |= ♦C}.

Due to suff-deg(C,E) = suff-deg(CE
dp, E), we have Pr(♦C) = Pr(♦CE

dp) and
thus, {π | π |= ♦(C ∧ ♦CE

dp)} = {π | π |= ♦C}. Now fix some arbitrary s ∈ C.
Then, every path that visits s has to visit CE

dp eventually afterwards. Thus,
Prs(♦CE

dp) = 1, which is equivalent to s ∈ CE
♦ dp, leading to C ⊆ CE

♦ dp. �

This leads to a �q
nec-least necessary cause �CE

♦ dp� with maximal degree of
sufficiency that can be computed in polynomial time by standard methods.

4.2 Weight-Minimal Necessary Causes

The previous section showed how to determine necessary causes with maximal
degree of sufficiency and �q

nec-least ones among them. We now describe a different
technique to find optimal necessary causes with respect to a generic optimization
criterion, employing a natural connection to minimal cuts from flow networks.

Let T = (S,R, I) be a transition system and A,B ⊆ S be two sets of states.
We call X ⊆ S \B an AB-separator if every finite path through T that starts in
A and ends in B sees a vertex in X. The following observation follows directly
from the definition of necessary causes.

Proposition 5. The necessary causes for E which do not intersect E in T are
exactly the IE-separators of T .

Let us augment T by a weight function w : S → Q≥0. The weight of a set X ⊆ S
is defined to be w(X) =

∑
v∈X w(v). In the presence of such a weight function,

it makes sense to ask for weight-minimal AB-separators in T , for some given

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 39

A,B ⊆ S. Via a polynomial reduction to the problem of computing minimal
cuts, we get the following result.1

Proposition 6. Weight-minimal AB-separators can be computed in polynomial
time.

Proof. We reduce the problem of computing minimal AB-separators to the prob-
lem of computing a weight-minimal s-t-cut. An s-t-cut of T = (S,R, I) is a par-
tition S1, S2 of S such that s ∈ S1, t ∈ S2. Let w : R → Q be a weight function
on the edges of T . The bridging edges of an s-t-cut S1, S2 are defined to be
br(S1, S2) = R ∩ (S1 × S2), and its weight is

∑
(u,v)∈br(S1,S2)

w(u, v). Weight-
minimal cuts can be computed in polynomial time [62].

We show how to reduce the problem of computing weight-minimal AB-
separators to the problem of computing weight-minimal cuts. Let T = (S,R, I),
w, A,B ⊆ S be an instance of the weight-minimal AB-separator problem. We
may assume that A ∩ B = ∅ and that B is a singleton set {b}. If A ∩ B �= ∅,
then there are no AB-separators by definition. If B is not singleton, we can first
collapse all states in B into a single state b, and let B = {b}. This transformation
preserves AB-separators and their weights.

Now we transform the transition system T as follows. Define T ′ = (S ∪ S′ ∪
{a}, R′, I), where S′ = {s′ | s ∈ S}, and with edges

v → v′ for all v ∈ S (1)
v′ → u for all (v, u) ∈ R (2)
a → v for all v ∈ A (3)

Consider the weight function w′ : R′ → Q≥0 defined by w′(v, v′) = w(v) for all
v ∈ S \ B and w′(x, y) = w(S) + 1 for all other edges (x, y) of T ′. Note that
these transformations are all possible in polynomial time.

Each AB-separator X in T induces an a-b-cut in T ′ as follows. Take S1 to
be the union of X and the states of T ′ reachable from a without seeing X. As
X is an AB-separator in T , the partition (S1, (S ∪ S′) \ S1) forms an a-b-cut in
T ′. Furthermore, as the outgoing edges of S1 are exactly {(u, u′) | u ∈ X}, the
weight of this cut is w(X).

Conversely, every a-b-cut (S1, S2) in T ′ satisfying br(S1, S2) ⊆ {(u, u′) |
u ∈ S \ B} induces the AB-separator X = {u ∈ S | (u, u′) ∈ br(S1, S2)}
with the same weight. Finally, any a-b-cut (S1, S2) in T ′ which does not satisfy
br(S1, S2) ⊆ {(u, u′) | u ∈ S \ B} cannot be weight-minimal, as it has larger
weight than any cut with this property. The a-b-cut induced by the set A ∪ {a}
has this property, and hence such an a-b-cut exists (this uses our assumption
A ∩ B = ∅). Hence, a weight-minimal a-b-cut in T ′ induces a weight-minimal
AB-separator in T . �

1 The problem of finding balanced vertex separators, as studied by Feige et al. [27,28],
is NP-complete and differs from the one we study in that it requires that the vertex
separator partitions the graph into approximately equally sized components.

40 C. Baier et al.

Fig. 4. Transition system T1 from
Example 3

Fig. 5. Transition system T2 from
Example 4

This gives us a tool to compute weight-optimal necessary causes in polyno-
mial time. In the following, we consider two natural choices for weight functions
which lead to different notions of optimality for necessary causes.

State-Minimal Necessary Causes. Let T = (S,R, I) be a transition system as
above and E ⊆ S a set of states. Consider the weight function w : S → Q≥0

where w(s) = 1 for all s ∈ S. Then, a weight-minimal necessary cause with
respect to w is a necessary cause C such that |C| is minimal among all necessary
causes. By the above observations, such a cause can be computed in polynomial
time.

If |I| = 1, then I itself is always a state-minimal necessary cause, which ren-
ders the optimization problem trivial. However, I has the worst possible degree
of sufficiency among all necessary causes due to Pr(♦I) = 1 in the corresponding
Markov chain MT ,E . The following paragraph considers a weight function that
aims to achieve a trade-off between the size of a necessary cause and its degree
of sufficiency.

A Trade-Off Between Size and Degree of Sufficiency. Consider the weight func-
tion w defined by w(v) = Pr(♦v), again with respect the probability measure in
the Markov chain MT ,E . A weight-minimal necessary cause with respect to this
weight function is a necessary cause X minimizing

w(X) =
∑

v∈X

Pr(♦v). (†)

Recall that the degree of sufficiency of X is given by suff-deg(X,E) = Pr(♦E)
Pr(♦X) if

X is a necessary cause. We have w(X) ≥ Pr(♦X), and therefore minimizing the
weight encourages necessary causes with high degree of sufficiency. At the same
time, the number of states corresponds to the number of summands in w(X),
and hence few states are also encouraged.

Example 3. Consider the transition system T1 from Fig. 4, where I = {i1, i2}
are the initial states and consider E = {e} as the effect. Then both C = {c}
and D = {d} are necessary causes of minimal size |C| = |D| = 1, as removing
these states would separate I and E. This means that under the state-counting
weight function, both C and D are weight-minimal necessary causes. However,

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 41

D has a higher degree of sufficiency and would thus be optimal for both size
and degree of sufficiency. Specifically, we have Pr(♦C) = 1 and Pr(♦D) = 1/2.
Hence, suff-deg(C,E) = Pr(♦E) = 1/4, and suff-deg(D,E) = 1/2. Under the
weight function defined in (†), only D is optimal, since w(C) = Pr(♦C) = 1 and
w(D) = Pr(♦D) = 1/2.

Example 4. Consider the transition system T2 from Fig. 5, with initial states
I = {c} and the effect E = {e}. Then I and D = {d1, d2} are the only inclusion-
minimal necessary causes. According to the weight function defined in (†) we
have w(I) = 1 and w(D) = 5

2(n+2) . For n = 0 we have w(D) = 5/4 > 1 = w(I)
and thus, I would be trade-off optimal. On the other hand, for n > 0 we have
w(D) < 1 = w(I), which turns D into the trade-off optimal necessary cause.
Intuitively, increasing n makes I less sufficient, as it increases the set of paths
that start in c but never reach E.

5 Conclusion

We have formalized well-known notions of necessity and sufficiency in the context
of transition systems using temporal logic formulas over state sets that stand for
causes and effects. Based on these formalizations, we addressed several trade-
offs between necessity and sufficiency and presented three optimality criteria that
differ in their properties with respect to conciseness and explainability: the degree
of necessity, the degree of sufficiency, and through state weights. Causes that
maximize the former two were explicitly characterized, and a polynomial-time
algorithm for the computation of weight-optimal causes was described relying
on known algorithms to determine minimal cuts in flow networks. Which notion
of causality is appropriate to identify the reason for an effect, e.g., such that the
imaginary person Frits from Example 2 can fix the broken coffee machine, highly
depends on the considered system and it might be required to consider all our
notions of causality to draw a conclusion.

In practice, also state sets with high degree of necessity and sufficiency might
be interesting to consider also when they are neither sufficient nor necessary
causes. In this direction it is promising to investigate trade-off values between
the two degrees such as the f-score from statistics, as done for probability-raising
causes in MDPs [5]. In future work we also plan to examine relaxations of the
cause conditions studied here, following the more articulate INUS condition [59]
or the NESS test [42,72].

References

1. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic
hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024,
pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 2

2. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 42

https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42

42 C. Baier et al.

3. Baier, C., et al.: From verification to causality-based explications. In: Bansal, N.,
Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2021). Leibniz International Proceedings in
Informatics (LIPIcs), Dagstuhl, Germany, vol. 198, pp. 1:1–1:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021)

4. Baier, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Probabilistic causes in
Markov chains. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971, pp.
205–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5 14

5. Baier, C., Funke, F., Piribauer, J., Ziemek, R.: On probability-raising causality
in Markov decision processes. In: Bouyer, P., Schröder, L. (eds.) FoSSaCS 2022.
LNCS, vol. 13242, pp. 40–60. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-99253-8 3

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

7. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-
ities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 43

8. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. SIGPLAN Not. 38(1), 97–105 (2003)

9. Batusov, V., Soutchanski, M.: Situation calculus semantics for actual causality. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, April
2018

10. Beer, A., Heidinger, S., Kühne, U., Leitner-Fischer, F., Leue, S.: Symbolic causality
checking using bounded model checking. In: Fischer, B., Geldenhuys, J. (eds.) SPIN
2015. LNCS, vol. 9232, pp. 203–221. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23404-5 14

11. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)

12. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 28

13. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general LTL-definable proper-
ties. In: Proceedings of the 3rd Workshop on Formal Reasoning About Causation,
Responsibility, and Explanations in Science and Technology (CREST), pp. 1–15
(2018)

14. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. J. Artif. Int. Res. 22(1), 93–115 (2004)

15. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a
specification? ACM Trans. Comput. Logic 9(3), 1–26 (2008)

16. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach
to coverage in model checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 66–78. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44585-4 7

17. Chockler, H., Kupferman, O., Vardi, M.: Coverage metrics for formal verification.
Int. J. Softw. Tools Technol. Transf. (STTT) 8(4–5), 373–386 (2006)

18. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for temporal logic
model checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 528–542. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-
9 36

https://doi.org/10.1007/978-3-030-88885-5_14
https://doi.org/10.1007/978-3-030-99253-8_3
https://doi.org/10.1007/978-3-030-99253-8_3
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1007/3-540-63166-6_28
https://doi.org/10.1007/3-540-44585-4_7
https://doi.org/10.1007/3-540-44585-4_7
https://doi.org/10.1007/3-540-45319-9_36
https://doi.org/10.1007/3-540-45319-9_36

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 43

19. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking. LNCS, vol. 5000, pp. 196–215. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 12

20. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8, 244–263 (1986)

21. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proceedings of the
32nd Annual ACM/IEEE Design Automation Conference (DAC), New York, NY,
USA, pp. 427–432. ACM (1995)

22. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

23. Datta, A., Garg, D., Kaynar, D., Sharma, D., Sinha, A.: Program actions as actual
causes: a building block for accountability. In: Proceedings of the 28th IEEE Com-
puter Security Foundations Symposium (CSF), pp. 261–275 (2015)

24. Alfaro, L.: Temporal logics for the specification of performance and reliability.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023457

25. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov
decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 27

26. Dubslaff, C., Weis, K., Baier, C., Apel, S.: Causality in configurable software sys-
tems. In: Proceedings of the 44th International Conference on Software Engineering
(ICSE) (2022)

27. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for min-
imum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008)

28. Feige, U., Mahdian, M.: Finding small balanced separators. In: Kleinberg, J.M.
(ed.) Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, 21–23 May 2006, pp. 375–384. ACM (2006)

29. Galles, D., Pearl, J.: Axioms of causal relevance. Artif. Intell. 97(1–2), 9–43 (1997)
30. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals.

Found. Sci. 3, 151–182 (1998)
31. Gomes, G.: Are necessary and sufficient conditions converse relations? Australas.

J. Philos. 87(3), 375–387 (2009)
32. Gössler, G., Le Métayer, D.: A general trace-based framework of logical causality.

In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 11

33. Gössler, G., Le Métayer, D.: A general framework for blaming in component-based
systems. Sci. Comput. Program. 113, 223–235 (2015)

34. Gössler, G., Stefani, J.-B.: Causality analysis and fault ascription in component-
based systems. Theoret. Comput. Sci. 837, 158–180 (2020)

35. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 8

36. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transfer 8(3), 229–247 (2006)

37. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1007/BFb0023457
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-319-07602-7_11
https://doi.org/10.1007/978-3-540-24730-2_8
https://doi.org/10.1007/3-540-44829-2_8

44 C. Baier et al.

38. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12(1), 317–337
(2000)

39. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Pro-
ceedings of the 24th International Joint Conference on AI (IJCAI), pp. 3022–3033.
AAAI Press (2015)

40. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

41. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005)

42. Hart, H.L.A., Honoré, A.M.: Causation in the Law. Oxford University Press,
Oxford (1959)

43. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program.
ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

44. Hopkins, M., Pearl, J.: Causality and counterfactuals in the situation calculus. J.
Log. Comput. 17(5), 939–953 (2007)

45. Hoskote, Y., Kam, T., Ho, P.-H., Zhao, X.: Coverage estimation for symbolic model
checking. In: Proceedings of the 36th Annual ACM/IEEE Design Automation Con-
ference (DAC), pp. 300–305 (1999)

46. Hume, D.: A Treatise of Human Nature. John Noon (1739)
47. Hume, D.: An Enquiry Concerning Human Understanding. London (1748)
48. Khan, S.M., Soutchanski, M.: Necessary and sufficient conditions for actual root

causes. In: 24th European Conference on Artificial Intelligence (ECAI 2020),
Including 10th Conference on Prestigious Applications of Artificial Intelligence
(PAIS 2020), pp. 800–808 (2020)

49. Kleinberg, S.: A logic for causal inference in time series with discrete and contin-
uous variables. In: Proceedings of the 22nd International Joint Conference on AI
(IJCAI), pp. 943–950 (2011)

50. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proceedings
of the 25th Conference on Uncertainty in AI (UAI), pp. 303–312 (2009)

51. Kleinberg, S., Mishra, B.: The temporal logic of token causes. In: Proceedings of
the 12th International Conference on Principles of Knowledge Representation and
Reasoning (KR) (2010)

52. Kölbl, M., Leue, S.: An efficient algorithm for computing causal trace sets in causal-
ity checking. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 171–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-31784-3 10

53. Kölbl, M., Leue, S., Schmid, R.: Dynamic causes for the violation of timed reacha-
bility properties. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol.
12288, pp. 127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57628-8 8

54. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 82–98. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 8

55. Kupriyanov, A., Finkbeiner, B.: Causality-based verification of multi-threaded
programs. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol.
8052, pp. 257–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40184-8 19

56. Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 814–830. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 54

https://doi.org/10.1007/978-3-030-31784-3_10
https://doi.org/10.1007/978-3-030-31784-3_10
https://doi.org/10.1007/978-3-030-57628-8_8
https://doi.org/10.1007/978-3-030-57628-8_8
https://doi.org/10.1007/3-540-48153-2_8
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-319-08867-9_54

Operational Causality – Necessarily Sufficient and Sufficiently Necessary 45

57. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 16

58. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1973)
59. Mackie, J.L.: Causes and conditions. Am. Philos. Q. 2(4), 245–264 (1965)
60. Mackie, J.L.: The Cement of the Universe: A Study of Causation. Clarendon Press,

Oxford (1974)
61. Mascle, C., Baier, C., Funke, F., Jantsch, S., Kiefer, S.: Responsibility and veri-

fication: importance value in temporal logics. In: 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pp. 1–14 (2021)

62. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Hoboken (1982)

63. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995)
64. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual

Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)
65. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E.,

Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0 39

66. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7 22

67. Reichenbach, H.: The Direction of Time. University of California Press, Berkeley
and Los Angeles (1956)

68. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

69. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Pro-
ceedings of the 18th IEEE International Conference on Automated Software Engi-
neering (ASE), pp. 30–39 (2003)

70. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Proceedings of the 26th Annual Symposium on Foundations of Com-
puter Science, SFCS 1985, pp. 327–338. IEEE Computer Society (1985)

71. Wertheimer, R.: Conditions. J. Philos. 65(12), 355–364 (1968)
72. Wright, R.W.: Causation in tort law. Calif. Law Rev. 73(6), 1735–1828 (1985)
73. Zeller, A.: Isolating cause-effect chains from computer programs. In: Proceedings

of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering
(FSE), New York, NY, USA, pp. 1–10. ACM (2002)

https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/3-540-45657-0_39
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22

Axiomatizing Consciousness
with Applications

Henk Barendregt1(B) and Antonino Raffone2

1 Faculty of Science, Radboud University, Nijmegen, The Netherlands
henk.barendregt@ru.nl

2 Department of Psychology, Sapienza University of Rome, Rome, Italy

antonino.raffone@uniroma1.it

Abstract. Consciousness will be introduced axiomatically, inspired by
classical Buddhist insight meditation and psychology, computer science,
and cognitive neuroscience, as belonging to agents that observe and act,
in the form of a stream of configurations that is compound, discrete, and
probabilistic-computable.

Within the axiomatic context the notions of self, concentration, mind-
fulness, and various forms of suffering can be defined. As an application
of this setup, it will be shown how a combined development of concentra-
tion and mindfulness can attenuate and eventually eradicate some major
forms of suffering.

The main message of this paper is that advanced mindfulness consists
of knowledge of the state an agent finds itself in and can be used to
defuse mental/behavioral scenarios. From the computer science point of
view it is trivial that being in the position to access and modify state
is powerful and enables a greater flexibility. This paper is an attempt to
bridge the gap between computer science and cognitive psychology. The
other explanatory gap of the hard problem (How do physics and con-
sciousness relate?) is not discussed in this paper, but is quite possibly an
extension of it.

1 Towards Consciousness

Studying phenomena in the ‘external world’ by making conceptual models has
led to physics. Its success gives the impression that also the human mind could
be studied similarly, answering questions like “How does consciousness (experi-
ence) arise?” There is, however, a persistent ‘explanatory gap’ between models
of the universe and ‘first-person’ awareness. This gap is called the ‘hard problem’
[12]. Whatever model of consciousness is proposed, the question “And where is
awareness in all of this?” cannot be bypassed [8]. Not only is the consciousness
problem hard to solve, it even seems impossible to properly state it1.

In contrast to the third person description of consciousness, the phenomeno-
logical approach employs a first person perspective, in which the experience of
consciousness comes prior to anything else. In this view, matter and the whole

1 Personal communication by Bill Phillips.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 46–62, 2022.
https://doi.org/10.1007/978-3-031-15629-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_3

Axiomatizing Consciousness with Applications 47

universe derive from consciousness as a construction of the world with predic-
tive value. But then another problem pops up: “Why does the external world
gives the impression to be stable?” [22]. In this paper the hard consciousness
problem will not be discussed as such. See [30,35] for recent discussions. We
position ourselves among the phenomenologists: there is the experience of phe-
nomena that can be studied phenomenologically. In this way consciousness will
be described as an objective personal phenomenon, not from the brain side, but
from the other side of the explanatory gap: direct experience. The description
will be called objective, since it is claimed that the description is universally
valid, and personal, since it takes place in the mind of a given person.

The difficulty of defining what consciousness is will be dealt with by the
methodology of the axiomatic method [2]. In a given setting there are primitive
(undefined) objects (also called concepts, as the objects are mental) and axioms
about these that are taken to be valid. In this way, following [19], the axioms
form an implicit definition2 of the primitive objects. In the next sections a set-
ting and axiomatization of consciousness will be proposed using the notions object
(input), state, and action (output) of consciousness3. The details are inspired by
Buddhist psychology, the Abhidhamma [1], and Abhidharma4, translated into the
language of science: cognitive neuroscience, mathematical logic and computabil-
ity. Intended is an axiomatization of those aspects of consciousness that are shared
by adult humans in possession of their ordinary faculties. The axiomatization will
not touch the hard problem, but aims at describing certain aspects of conscious-
ness to arrive at some applications in the domain of computability, learning and
deconditioning, and the cause and eradication of existential suffering.

2 In planar geometry one has as setting that there are points and lines, and that there
is a relation “point P lies on line l”, in notation P |l. In this setting an example of an
axiom is

For distinct points P,Q there is exactly one line l such that both P |l and Q|l.
What actually is a point and a line doesn’t matter, as long as the axioms are valid for
these. Since the axioms do not always fully determine the objects, one better speaks
about an ‘implicit specification’ of the primitive concepts.

3 This paper is a continuation of [4]. Another axiomatic approach to consciousness is
Integrated Information Theory (IIT) [31]. That theory also contains the triples object-
state-action (using different terminology). The model IIT diverges from ours, want-
ing to propose a solution to the hard problem of consciousness. Although [8] argues
convincingly that this is impossible, IIT is an interesting further analysis of the mech-
anisms needed for consciousness. Our axiomatization focuses on several applications,
mentioned in the abstract and detailed below. Further comparison between IIT and
our model is beyond the scope of this paper.

4 See [34] for a thorough description of discreteness of phenomenological time in Bud-
dhism.

48 H. Barendregt and A. Raffone

2 Consciousness as Discrete, Probabilistic-Computable
Actor

Change

Science doesn’t know what is consciousness. But we know. Consciousness consists
of phenomena, called configurations and are members of a space C, that change
in time. We write ct for the configuration at time t ∈ T, to be thought of as
‘what is perceived at moment t’. Time is not to be seen as a given from the
outside, but as a construct from the phenomena themselves. Time has passed
from t to t′ if there is a change from ct to ct′ and there is memory part of ct
within ct′ . This is called the primordial intuition of time, [9].

The changing configurations create the stream of consciousness, which is a
function c : T → C that assigns to a moment t in time the configuration ct:

c(t) = ct, with t ∈ T. (2.1)

Actors in a World

The stream of consciousness c may seem like a dynamical system that changes
in time, in which a future state is determined by the state at present. Examples
of such systems are the following. 1. A single planet orbiting a star. 2. Conway’s
Game of Life. But (the stream of) consciousness is not a dynamical system. The
consciousness is embedded in an environment, the world. These two mutually
influence each other. Thus consciousness may be better compared to one planet
among other ones in the gravitational field of a star and the (other) planets. For
example the orbit of Uranus could not be explained by the laws of mechanics
w.r.t the sun alone: it had an aberration that led to the hypothetical existence
of a further planet. In this way the planet Neptune was discovered. The math-
ematics involved is becoming complex: the three body problem (c.q. predicting
the movements of Uranus and Neptune with respect to the sun) has chaotic
solutions.

An agent A living in a world W consists of the following. Both A and W
consists of changing configurations; those of A are denoted by c, c′, c′′, c0, c1, . . .
and similarly those of W by variations of the letter w. Agent A in configuration
c enacts with the world W in configuration w. This enacting is denoted by c|w,
thereby changing both configurations5. The resulting combined stream of the
agent A thrown in the world W will be denoted as (c,w) so that for t ∈ T one
has

(c,w)(t) = (ct, wt). (2.2)

5 Dynamical systems are a special case, having a world that doesn’t change (e.g.
Conway’s game of Life). On the other hand an agent and its world can be considered
as a pair, forming a single dynamical system. The choice is pragmatic.

Axiomatizing Consciousness with Applications 49

Discreteness of Time

We postulate that the stream of consciousness is temporally discrete. This view
can be related to Buddhist texts, in which it is asserted that the continuum
of awareness is characterized by successive moments, or pulses of cognition, [1]
and [34]. Also it stems from psychophysical investigations and neural models of
consciousness: [15] suggested that conscious cognition is temporally discrete and
parsed into sensory sampling intervals or ‘perceptual frames’, estimated to be
about 70–100 ms in average duration. More recently, this time range has been
interpreted as an attentional object-based sampling rate for visual motion, [28]
and [33].

This means that T is not modeled by the set R of real numbers, but by

Z = {. . . ,−2,−1, 0, 1, 2, . . .}
the set of integers. So

T = Z. (2.3)

Now an agent A in world W develops by a repeated interaction c|w = (c′, w′),
as follows:

c′

��

c′′

��
. . . c|w

���������

���
��

��
�

c′|w′

���������

���
��

��
�

c′′|w′′ . . . ,

w′

��

w′′

��

(2.4)

creating streams c : c → c′ → c′′ → . . . and w : w → w′ → w′′ → . . . of configu-
rations and states of the world. The w could be called the trace or footprint
of the agent in the world. The transitions from the interacting c and w to c′

and w′ take place in discrete time, that imaginatively could be called strobo-
scopic. This creates phenomenological time. We have chosen T = Z and not
T = N = {0, 1, 2, . . .} to make time without beginning. The reader may like to
make another choice.

In [36] it is explained that discreteness of the stream of consciousness neatly
answers the question of von Neumann how it is possible that the human mind,
being based on a biological substrate with its inherent imprecision, is capable to
arrive at the precision that is available in e.g. mathematics. This is similar to a
digital CD that represents sound with less noise than an analogue record.

Stream of Consciousness is Probabilistic-Computable

The stream of consciousness proceeds in mutual dependency with the stream of
the world. The progression is determined by repeatedly applying the operation
c|w. In this way one obtains a new pair of configurations (c′, w′) that are being

50 H. Barendregt and A. Raffone

subject to their interaction c′|w′, et cetera. We assign the task of obtaining the
next c′ or w′ to the agent A and its world W ; so we have

A(c, w) = c′;
W (c, w) = w′.

(2.5)

That is c|w = (A(c, w),W (c, w)). The functions A,W with

A : A × W → A, W : A × W → W (2.6)

are postulated to be probabilistic-computable6. The non-determinism causing
probabilistic-computability comes from the following. 1. There are neural nets
in the brain of an animal/human agent that act adequately but not with 100%
precision; 2. What happens in the world depends on other agents and on quantum
fluctuations.

As motivation for the axiom of probabilistic-computability of the stream of
consciousness one can refer to: functioning of neurons, see [25]. The Buddhist
view, and corresponding meditation experience, that everything has a cause
(dependent origination) also motivates this axiom. The axiom also is consistent
with the Turing Thesis [32] that states that human computability is exactly
machine computability.

Summarizing. Consciousness is described as a probabilistic-computable
agent, where the non-determinism is caused by the imprecision of the agent
and the unknown aspects of the world. Nevertheless, because the actions are
digitized, great precision is possible.

3 Compound Consciousness

Input, state, action

Acting in a world is made efficient by sensors, channels for input (i), and actua-
tors, for action (a). Behaviorism took as position that humans could be described
by the set of pairs (i, a) (in short ia), also called ‘stimulus and reaction’. In this
line of thinking one could write
6 A multivariate function f : Dk → D is called probabilistic-computable if for some

computable function g : Dk+1 → D one has

f(d) = g(s(d),d),

where s : Dk → D is some stochastic function. A prime example of a probabilistic-
computable agent is a particular goose in the well-known child’s Game of Goose,
whose actions depend on non-deterministic factors, like the throwing of a pair of
dice and the stack of cards that determine special actions. Viable animal agents
in our biological world, depending on a probabilistic-computable function f , are
usually good in performing actions, maximizing the chance that f(d) is in some set
of suitable outcomes, [17].

Axiomatizing Consciousness with Applications 51

c(t) = ct = itat, with t ∈ Z (3.1)

This, however, is a limited view, as a person doesn’t always behave in the same
way if being subject to the same input. Therefore next to i and a one needs an
(internal) ‘state’ s to describe the agent. This ‘mind-state’ s can be considered
as ‘the tendency to act in a certain way’. This results in postulating that for the
configurations c of an agent A one has c = isa, so that the stream of consciousness
c can be considered to consist of three streams7.

c = . . . → i−1s−1a−1
︸ ︷︷ ︸

c−1

→ i0s0a0
︸ ︷︷ ︸

c0

→ i1s1a1
︸ ︷︷ ︸

c1

→ . . . =

⎧

⎨

⎩

. . . , i−1, i0, i1, . . .

. . . , s−1, s0, s1. . . .

. . . , a−1, a0, a1, . . .
(3.2)

Feeling tone: reward system

For humans (and other species) it is useful to make a further division. 1. Writing
s = sfsc, where sf is the feeling tone and sc is the rest of the state of con-
sciousness. The sf is an element of {−−,−, 0,+,++} and indicates whether the
present configuration is felt as very unpleasant, unpleasant, neutral, pleasant,
very pleasant. It is the reward-punishment for humans and other species; nature
makes certain things pleasant, like eating and making children, in order to make
Homo Sapiens thrive.

Cognition: memory, language, mental programs

Another subdivision, notably for humans, is to add a group im for ‘cognition’8,
consisting of concepts and images and split i as follows: i = ibim. The objects
of ib consist of input from the physical senses, hence the superscript ‘b’ refering
to ‘body’. The objects of im consist of mental images, concepts, and intentions
to act. Except for pathological cases, humans can distinguish these respectively
from actual input ib and from actual execution of an intended act a.

The elements of the streams in c = ibimsfsca are acting in an associative
way. The sound of a bell (ib) preceding a meal for a dog that triggers saliva,
after a couple of times is enough to trigger the saliva without a meal. In general
associations between elements of the isa may trigger occurrences of other objects
possibly in another stream. The group im has a rich potential of elements that
can be triggered by an event coming in through ib, and causing in its turn the
right reaction in a.

For this to work well there is cued recall. After a particular object o1 in say
ib is presented several times and followed by another object o2, the presentation

7 This is how the transitions in a Turing Machine can be seen. The Read/Write device
(R/W-head) is positioned on a cell and reads i. Then depending on this and on the
state s an action is performed: either moving the R/W-head, or writing a symbol on
the cell where the R/W-head is positioned, or changing the inner state.

8 Traditionally this is called the group of ‘perception’.

52 H. Barendregt and A. Raffone

of just o1 may trigger the memory of o2. In a small brain cued recall has lim-
ited reliability (the recalled o2 may not be correct) and capacity (only a limited
numbers of pairs (o1, o2) may be stored. This limitation can be increased con-
siderably, [10], at the cost of brain tissue and energy consumption. In this way
language and mental programs can be developed.

Another integrative model of human cognition and emotion was proposed by
[7], in terms of an interacting cognitive subsystems (ICS) model of the organiza-
tion and function of the resources underlying human cognition, see also [6]. This
model provides a conceptual framework for understanding normal and dysfunc-
tional cognitive/affective relationships and their modification. ICS includes nine
interacting cognitive subsystems, which individually handle a specific type of
information. Information arrives in a subsystem, is copied into an image record
and is transformed for use in another subsystem. The subsystems differ in their
inputs and outputs, as they each specialise in storing and processing a qualita-
tively different form of mental representation. ICS stresses that mental activity
occurs in multiple domains in parallel. This model emphasizes the importance, of
schematic, synthetic level of processing that integrates both propositional mean-
ing and direct sensory contributions as part of the total cognitive configuration
producing emotion. ICS also includes a body state subsystem.

The five groups

Taken together one obtains the five groups, aka aggregates/skandhas:

c = ibim
︸︷︷︸

i

sfsc
︸︷︷︸

s

a, (3.3)

so that the stream of consciousness has five substreams. The new substreams

sf = . . . → sf−1 → sf0 → sf1 → . . .
im = . . . → im−1 → im0 → im1 → . . .

(3.4)

are the stream of feeling tones and that of mental activities, like thinking or
imagining. These two streams often are being hypertrophied (in the sense of
getting much attention) in human existence, notably reinforcing each other.

Finer details of consciousness

A triple ct = itstat (or more accurately a quintuple ct = ibti
m
t sft s

c
tat) is called a

ceta (aka citta or mind-moment). A state can be approximately seen as a large
array of values (parameters). Think of a possible state of the weather, e.g. a

Axiomatizing Consciousness with Applications 53

local snowstorm. Relevant for that state are the temperature, humidity, wind,
and more at the different relevant local positions. In Buddhist psychology, the
Abhidhamma, the mind-state s is seen as such an array of many so called mental
factors, called cetasikas. As feeling tone sf is such an important factor, that is
always present, it is singled out in the five groups. Other mental factors, that
however are not always present, are aversion, desire on the unwholesome side,
and mindfulness, to be introduced below, and compassion on the wholesome
side.

4 Self

The following second part of this paper will apply the given model of conscious-
ness to understanding mechanisms of human sufferng that are possible to relin-
quish.

That an agent in the world proceeds with a probabilistic-computable stream
of consciousness may be expressed by saying that it is ‘impersonal’. It just follows
the laws of nature, depending on the configuration of A and the state of the
world. Another way of expressing this is by saying that A is self-less. It proceeds
without independent existence, just like like a glider crawls diagonally over the
field of Conway’s Game of Life, [13] and [23], or like a wave towards the shore,
that seems to proceed from a pebble thrown into the middle of a pool. In the
latter case water only moves up and down, not sideways, as becomes clear when
placing a ping-pong ball in the water.

Nevertheless within the life-stream of the agent it can happen that a self is
being formed. It is a dynamical process consisting of a collection of behavioral
strategies that protect and take care of the individual. For humans a self-pattern
integrates as a dynamic whole or ‘Gestalt’ a very heterogeneous set of processes:
bodily, experiential, affective, behavioral, cognitive, narratival, social, worldly
and normative processes, [18]. This self needs some balance: fine tuning of the
different sub-strategies.

Healthy Attachments

When homo sapiens considered as agent grows up, it learns as a baby first the
following: relating a and i, so that some control over the environment can be
obtained. Shortly after in the development of a child, as each i is coupled with
sf , the actions will be directed towards avoiding input with unpleasant sf .

With the capacities so far: acting towards pleasant input in an intelligent
way, learned from the social environment, agent A develops strategies that are
good for A, for itself. If this happens in the right way, one has developed a
healthy self through healthy attachments.

Selfing

If one doesn’t have enough empathy, the capacity to imagine the state of others
in a given situation, the notion of self may become too central and becomes

54 H. Barendregt and A. Raffone

counter-productive. If one mentions too often ‘I, me, mine’, and acts accordingly,
then one will be avoided by people in one’s environment.

Wrong View

The self that has been described as a dynamical process is used so often, that it
gets reified as a thing. In the same way as the wave is seen as an object that moves
towards the shore, the self is perceived as an entity with independent existence.
This is called ‘Wrong View’. In the first place this causes fear of death. But
many more problems will result, as Wrong View creates the idea that one needs
to defend self. Also it leads to the unwholesome habit of selfing.

5 Mindfulness: Mechanism and Application to ER

Mechanism of Mindfulness

In the given model of consciousness one can define mindfulness. In this way one
primitive term can be eliminated.

Mindfulness at ct+1 is a mental factor that has (part of) the previous ceta
ct as object. If ct = isa, then the next ceta being mindful means that it is
ct+1 = (‘isa’)s′a′. One speaks of the ‘right’ mindfulness if s′ contains friendli-
ness.

Mindfulness can help emotional regulation (ER). Suppose ct = i(+ s)a is
a ceta in which the mind-state contains the cetasika (mental factor) of angriness.
The presence of this unwholesome factor makes it probable that the action a is
unwholesome, increasing the chance of suffering at some or more future con-
sciousness moments. Being mindful of the angriness at the next ceta can be seen
as ct+1 = (i+ ‘ ’)sa′. The transition

i(+ s)a →−� (i+ ‘ ’)s′a′
(5.1)

is said to be the transformation of being angry, possibly with unwholesome
act a, to seeing angriness, with an equanimous mental state s′ and wholesome
act a′.

Application of mindfulness: purification. Mindfulness training consists of
exercising the transition (5.1) so that mindfulness becomes easy to apply. To
increase the effect of mindfulness in the direction of ER one may train it so that
it becomes strong and sharp. Strong means that it is being applied during a
longer time period; sharp means that it is being applied with a high frequency.

Axiomatizing Consciousness with Applications 55

Mindfulness as Liberating Factor

A strong and sharp form of mindfulness is useful for removing counterproductive
mind-states. When mindfulness has been sufficiently developed, so that it pos-
sesses a high resolution and can be maintained for an extended period, eventually
it will show that consciousness is

compound, fluctuating, impersonal, (5.2)

and therefore a cause of suffering. In the Buddhist tradition, [11], one mentions
the three fundamental characteristics of existence (and thereby of conscious-
ness):

non permanence, suffering, non self. (5.3)

Experiencing this causes further ‘insights’: feelings of (irrational) fear, delusions
of seeing (non existing) danger and (utter) disgust/nausea, often experienced in
quick succession. These form an impressive cross-section of psychiatric condi-
tions. From the Buddhist point of view these are caused by attachment to self.
Provided there is ‘wisdom’ (understanding that the experience is real), this leads
to a balanced and flexible form of being, described in Sect. 7.

6 Suffering

One can distinguish three essentially different forms of suffering and distress.

1. Distress:
avoiding pain

2. Distress: stable, rigidly
avoiding change

3. Chaos & Lack:
existential fear ‘no escape’

The three diagrams represent stylistically the dynamic character of three
forms of suffering.

6.1 Suffering as Pain

The most basic form of suffering comes in the form of feeling-tone sf having a
negative value. Things are unpleasant or even very much so. The agent tries to
avoid this by changing position or the situation and becomes restless, repeatedly
running away from unpleasant feeling. The shape of this attractor is constantly
changing, but keeps some of its patterns.

56 H. Barendregt and A. Raffone

6.2 Suffering as Change

Holding tightly onto some object of craving, resisting change. The shape of this
attractor from a distance looks stable, even rigid. The strategies constituting
the self have as goal to minimize pain and maximize pleasure. If one has some
success in this, then one likes to keep the life style one lives. For that reason
change is felt as a threat and is felt as cause of suffering. Next to this there is
also a mechanism of trying to hold onto one’s lifestyle, even if it is not conductive
to decreasing suffering in the form of pain. This will be explained in the next
subsection. Both the drive to accomplish what one wants and to cover up what
one fears lead to rigidity.

6.3 Suffering from Lack

The fact that consciousness is progressing as a stream that is compound, fluc-
tuating as a stroboscope, and impersonal, is a serious blow to self, when there
is the Wrong View of it being permanent and substantial (having independent
existence). One falls apart, not succeeding to hold a stable image of the world
(derealization) or ourselves (depersonalization). Various kinds of defense mech-
anisms create a ‘cover-up’ that hides this fundamental fact. Rigidly holding on
to unwholesome habits happens if one fears that the cover-up is taken away.
This explains the second reason why change may be experienced as suffering,
mentioned in the previous subsection: one is forced to hold on to unwholesome
habits.

If, on the other hand, one doesn’t succeed in maintaining the cover-up, then
outright existential fear appears. This fear is not related to objects, like a wild
animal, that appear in the world. It is related to the failure of basic mechanism
of consciousness. It therefore is difficult to understand by friends that would like
to provide help, but are unfamiliar to the experience of the three fundamental
characteristics.

(Un)wholesome Actions

An action is (un)wholesome if it (increases) decreases the chance of later occur-
ring states with negative sf (that are painful). A mindstate is (un)wholesome
if it leads to (un)wholesome acts. While hedonist acts are intended to lead to
immediate pleasure, wholesome acts are intended to lead to sustainably avoiding
suffering.

7 Release: ↓Suffering and ↑Freedom

To increase resilience against stress and make it sustainable one needs to release
existential suffering. For this the insight meditation tradition [11] has created
the triple training :

behavior �−→ concentration �−→ wisdom. (7.1)

Axiomatizing Consciousness with Applications 57

The development of behavior, also called discipline or ethics, is towards having
respect for oneself, others, and the world. This prevents necessary actions in the
future and simplifies life. For example if one doesn’t steal one will not risk to
come into contact with the police and be charged for theft. This helps enabling to
develop a lifestyle apt to build concentration, i.e. being able to restrict attention
to fewer objects. Details how to do this are beyond the scope of this paper, but
can be found in many meditation manuals, e.g. [26]. Then, finally, it becomes
possible to obtain insight into the functioning of our body-mind system so that
unwholesome mental loops (vicious circles) can be defused and avoided.

An important aspect of the training of behavior and concentration is that
also mental activity im, which is both an action and an input, decreases.

It is not the case that one first fully develops ethical behavior, then concen-
tration, and only then insight arises. With some discipline in behavior, some
concentration may be developed, and then some wisdom arises. With that wis-
dom one is motivated to increase discipline, so that concentration and wisdom
can be developed further. This then leads to an upward spiral.

Discipline means that one follows a mental program, a plan. Concentration
means that one is able to keep one’s attention to a desired object, the meditation
object, for example the physical sensations of the movements related to breath-
ing. This is practiced by taking a meditation object with as aim to keep it as
long as possible in focus. Each time when attention has drifted somewhere else,
often without even noticing this, as soon as one is aware of this, one gently brings
attention back to the chosen object. When this is done continuously, eventually
concentration grows and the period to remain focused on the meditation object
increases considerably.

With enough discipline and concentration one is able to restrict the i and a
such that they are approximately constant and become i0 and a0. Then a usual
stream of consciousness like

. . . → isa → i′a′s′ → i′′a′′s′′ → . . . (7.2)

becomes
. . . → i0sa0 → i0s

′a0 → i0s
′′a0 → . . . (7.3)

with the input and action fixed to i0, a0, respectively. This means that the only
change is happening in the stream of mind-states

. . . → s → s′ → s′′ → . . . (7.4)

Being for some longer time in this scenario is restful. But certain tendencies
remain present. After stopping meditation, going back to sensory and mental
input one returns to the usual scenario (7.2). Nevertheless having felt the quiet-
ness of (7.3) is already refreshing, wholesome, and increasing one’s resilience.

But it is possible to develop something better: sustainable resilience. Not
counting mental or sensory input, it can be assumed that there are only a limited
number of mind-states. Therefore the stream of mind-states will enter a loop:

s → s′ → s′′ → . . . s(k) → s (7.5)

58 H. Barendregt and A. Raffone

If one is fully aware of this loop, or at least of a subloop jumping now and then
a few positions, then habituation occurs and consciousness occurs without an
object arises where even i0 disappears. This is called nibbana/nirvana. It causes
a powerful reset, enabling the stream of consciousness to escape from the quasi-
attractor in which it was caught for a long time. Wrong View becomes Right
View, that was already intuitively clear during the insight of Lack, but it was
not yet accepted.

The transitions (7.2) �−→ (7.3) �−→ (7.5) can be intuitively depicted as fol-
lows:

→ freedom!

a. ego (cover-up) b. concentration c. release

a. Holding on to a repeated scenario, giving some stability at the cost of rigidity.
b. Using concentration that keeps input and actions constant, simplifying the
scenario depicted in a. During sleep the scenario also may become simpler, but
then usually one is not mindful so that one cannot go to the next stage of
liberation. c. When scenario b is followed fully mindfully, only possible after the
simplification, then one realzes that one is in a loop, makes a reset, and exits
the pseudo-attractor.

8 Freedom Paradox

There is a remarkable pseudo paradox. Being fully aware of the loop (7.5) one
intuitively understands what is called ‘Dependent origination’. Basically this
states that the stream of consciousness (7.5), but then also (7.2), is subject
to a probabilistic-computable process. This is liberating, as one is no longer
obliged to pretend one has an essential say in the propagation of our stream of
consciousness. No longer pretending frees us from rigidity fixated on the self-
image we held on to for a long time. Therefore there is the freedom paradox:

We become free by realizing that we are fully determined. (8.1)

To understand this, we may compare homo sapiens to a goat that is attached
by a rope around its neck to a pole in the grass. Consequently the animal can
graze only in a circle around the pole. The goat learns from someone, or invents
it autodidactically, that to become free one should gnaw on the rope. When the
goat has succeeded to break the rope, it is free to walk away from the farm where

Axiomatizing Consciousness with Applications 59

it is being held, walk into the fields, forests, and mountains to find other goats
for playing and mating. Thereby the goat follows its way of being conditioned.
It even can go back to the farm. In this simile the rope for homo sapiens consists
of the image one has of oneself, including our desires and fears. One is attached
to this self-image, in order not to feel the fundamental Lack [24] of self, of
substantial independent being. Freedom consists of having ‘algorithms’ that are
pretty good in calculating in an intelligent and compassionate way what is our
best surviving strategy. This way our actions are based on a flow and no longer
on ideas that create our narrative being. Another way of stating the freedom
paradox is the following9.

There is freedom, but it is not ours. (8.2)

A similar statement, in a literary style, is in [27].
I am a psychological and historical structure. Along with existence, I received a
way of existing, or a style. All of my actions and thoughts are related to this
structure, and even a philosopher’s thought is merely a way of making explicit
his hold upon the world, which is all he is. And yet, I am free, not in spite of or
beneath these motivations, but rather by their means. For that meaningful life,
that particular signification of nature and history that I am, does not restrict my
access to the world; it is rather my means of communication with it.

Merleau-Ponty: Phenomenology of perception

9 Layers of Consciousness

Using our physical senses and possibly also the mental sense through which the
im arrive), is overwhelming. Therefore the human mind has a mechanism of
attention that makes a selection. This can be modeled by allowing each i to be
a large set of values, together with a (chosen) subset F ⊆ i of values to which
attention is being paid. In the same way action a can be seen as a large set of
possible actions to which one needs to apply attention as subset G ⊆ a, to select
the intended actions.

Forms of Consciousness

One can ride over a well-known bridge in town without realizing that one does
this. Arrived in the other part of town suddenly one realizes ‘We are here, so I

9 Formulation by Karin Videc, personal communication.

60 H. Barendregt and A. Raffone

must have crossed the bridge.’ Consciousness is sometimes described as proto-
consciousness plus knowing. As the example shows, this knowing part is not
always there. In the theory presented so far this can be modeled as having
a (series of) mind-moment(s) including the mental factor of mindfulness that
enables input not via the physical senses, but more directly from the information
of the previous mind-moment.

One may even differentiate further. Pre-consciousness of an object i0 may be
described as a (({i};F), s, a) in which i0 is among the i, but is not attended to,
i.e. not in F . Proto consciousness of an object i0 is such that F focuses on at
least i0. And as stated, full consciousness arises when i0 is also observed in the
next mind-moment by mindfulness.

(full) consciousness = proto-consciousness + knowing
proto-consciousness = pre-consciousness + attention (9.1)

See [20] and [14] where these distinctions have been made, using slightly different
terminology.

Layers of Agents

Conscious agents A,B can be combined by diverting the actions of A towards
the input of B and vice versa the actions of B towards the input of A. This has
been done in an attractive way by [21] and [16]. By also considering the physical
base as agent interaction, as is done in quantum physics, these authors and also
[29] coin the interesting possibility that the explanatory gap of the body-mind
problem may be bridged.

10 Conclusion

Consciousness is
compound, fluctuating, impersonal. (10.1)

Experiencing this has strong psychological implications. This may explain on the
one hand part of the psychiatric phenomena: fear (panic attacks and phobias10),
delusion (paranoia), disenchantment (depression). On the other hand that it is
possible to develop the mind in impressive ways. Through combined phenomeno-
logical and neurophysiological investigations this may eventually give full insight
into the objective nature of consciousness, its ailments and possibilities.

10 It also has been described in [5, Ch. XIII] that phobias appear after one has had
experience of non-permanence and non-self. In that Chapter phobias are described
as repersonalization after a depersonalization. In [3] this idea is generalized to the
so-called ‘cover-up’ model.

Axiomatizing Consciousness with Applications 61

References

1. Anuruddha, A.: A comprehensive manual of Abhidhamma (Abhidhammattha San-
gaha). In: Bodhi, B., Rewata-Dhamma, U. (eds.) Buddhist Publication Society,
Kandy (±1200/1993), translation by Mahathera Nārada

2. Aristotle: Organon: Posterior Analytics. Web Edition, University of Adelaide.
https://ebooks.adelaide.edu.au/a/aristotle/a8poa/ (±350BC/1928), translation
by GRG Mure of the Greek original

3. Barendregt, H.P.: Mysticism and beyond. Eastern Buddhist XXIX, 262–287 (1996).
http://ftp.science.ru.nl/CSI/CompMath.Found/bp2.pdf. Attachments are ways to
cover-up emptiness

4. Barendregt, H.P., Raffone, A.: Conscious cognition as a discrete, deterministic,
and universal Turing machine process. In: Cooper, S., van Leeuwen, J. (eds.) Alan
Turing, His Work and Impact, pp. 92–97. Elsevier, Amsterdam (2013)

5. Barendregt, J.T.: De Zielenmarkt, over psychotherapie in alle ernst. Boom (1982).
English translation. www.cs.ru.nl/henk/JTBarendregtFobias.pdf

6. Barnard, P.J.: Interacting cognitive subsystems: modeling working memory phe-
nomena within a multiprocessor architecture. In: Shah, A.M.P. (ed.) Models of
Working Memory: Mechanisms of Active Maintenance and Executive Control, pp.
298–339. Cambridge University Press (1999)

7. Barnard, P.J., Teasdale, J.D.: Interacting cognitive subsystems: a systemic app-
roach to cognitive-affective interaction and change. Cogn. Emot. 5(1), 1–39 (1991)

8. Bitbol, M.: Is consciousness primary? NeuroQuantology, pp. 53–71 (2008)
9. Brouwer, L.E.J.: Historical background, principles and methods of intuitionism. S.

Afr. J. Sci. 49 (1952)
10. de Bruijn, N.G.: A mathematical model for biological memory and consciousness.

In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics, vol.
28, pp. 9–23. Kluwer Academic Publishers, Dordrecht (2003). https://doi.org/10.
1007/978-94-017-0253-9 1

11. Buddhaghosa, B.: The Path of Purification: Visuddhimagga. Buddhist Publi-
cation Society, Pariyatti Publishing (±400 AD/1999), pali original appeared
around 400 AD. Translator: Bhikkhu Ñānamoli. www.urbandharma.org/pdf1/
PathofPurification2011.pdf

12. Chalmers, D.J.: Facing up to the problem of consciousness. J. Conscious. Stud. 2,
200–219 (1995)

13. Conway, J., et al.: The game of life. Sci. Am. 223(4), 4 (1970)
14. Dehaene, S., Changeux, J.P., Naccache, L., Sackur, J., Sergent, C.: Conscious,

preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci.
10(5), 204–211 (2006)

15. Efron, R.: Effect of stimulus duration on perceptual onset and offset latencies. Per-
cept. Psychophysics 8(4), 231–234 (1970). https://doi.org/10.3758/BF03210211

16. Fields, C., Hoffman, D.D., Singh, M., Prakash, C.: Conscious agent networks: for-
mal analysis and application to cognition. Cogn. Syst. Res. 47(6), 186–213 (2018)

17. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci.
11, 127–138 (2010). https://doi.org/10.1038/nrn2787

18. Gallagher, S.: A pattern theory of self. Front. Hum. Neurosci. 7, 443 (2013)
19. Hilbert, D.: Mathematical problems. Bull. (New Series) Am. Math. Soc. 37(4),

407–436 (2000), reprint of Bull. Amer. Math. Soc. 8, 437–479 (1902)
20. Hobson, A.: REM sleep and dreaming: towards a theory of protoconsciousness.

Nat. Rev. Neurosci. 10(11), 803–862 (2009)

https://ebooks.adelaide.edu.au/a/aristotle/a8poa/
http://ftp.science.ru.nl/CSI/CompMath.Found/bp2.pdf.
www.cs.ru.nl/ henk/JTBarendregtFobias.pdf
https://doi.org/10.1007/978-94-017-0253-9_1
https://doi.org/10.1007/978-94-017-0253-9_1
www.urbandharma.org/pdf1/PathofPurification2011.pdf
www.urbandharma.org/pdf1/PathofPurification2011.pdf
https://doi.org/10.3758/BF03210211
https://doi.org/10.1038/nrn2787

62 H. Barendregt and A. Raffone

21. Hoffman, D.D., Prakash, C.: Objects of consciousness. Front. Psychol. 5, 577
(2014). https://doi.org/10.3389/fpsyg.2014.00577

22. Hut, P., Shepard, R.N.: Turning the hard problem upside-down and sideways. J.
Conscious. Stud. 3(4), 313–329 (1996)

23. Izhikevich, E.M., Conway, J.H., Seth, A.: Game of life. Scholarpedia 10(6), 1816
(2015)

24. Loy, D.: Lack and Transcendence: The Problem of Death and Life in Psychotherapy,
Existentialism, and Buddhism. Humanities Press, London (1996)

25. Maaß, W., Markram, H.: On the computational power of circuits of spiking neu-
rons. J. Comput. Syst. Sci. 69(4), 593–616 (2004)

26. Mahasi, S.: Manual of Insight. Wisdom Books, Kerala (2016)
27. Merleau-Ponty, M.: Phenomenology of Perception. Routledge, England

(1945/2013)
28. Pascual-Marqui, R.D., Michel, C.M., Lehmann, D.: Segmentation of brain electrical

activity into microstates: model estimation and validation. IEEE Trans. Bio-Med.
Eng. 42, 658–665 (1995)

29. Rovelli, C.: Helgoland. Taylor & Francis, Oxfordshire (2021)
30. Slors, M., de Bruijn, L., Strijbos, D.: Philosophy of Mind, Brain and Behaviour.

Boom (2015)
31. Tononi, G.: Integrated information theory of consciousness: an updated account.

Arch. Ital. Biol. 150, 290–326 (2012)
32. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proc. Lond. Math. Soc. 2(42), 230–265 (1937)
33. VanRullen, R., Reddy, L., Koch, C.: The continuous wagon wheel illusion is associ-

ated with changes in electroencephalogram power at ∼ 13 Hz. J. Neurosci. 26(2),
502–507 (2006)

34. Von Rospatt, A.: The Buddhist Doctrine of Momentariness a Survey of the Origins
and Early Phase of this Doctrine up to Vasubandhu. F. Steiner, Stuttgart (1995)

35. Weisberg, J.: Consciousness. Polity (2014). The Hard Problem of Consciousness,
Internet Encyclopedia of Philosophy. www.iep.utm.edu/hard-con/#SH3a

36. Zylberberg, A., Dehaene, S., Roelfsema, P.R., Sigman, M.: The human Turing
machine: a neural framework for mental programs. Trends Cogn. Sci. 15(7), 293–
300 (2011)

https://doi.org/10.3389/fpsyg.2014.00577
www.iep.utm.edu/hard-con/#SH3a

Symmetric Transrationals: The Data
Type and the Algorithmic Degree of its

Equational Theory

Jan A. Bergstra1(B) and John V. Tucker2

1 Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH
Amsterdam, The Netherlands

j.a.bergstra@uva.nl
2 Department of Computer Science, Swansea University, Bay Campus, Fabian Way,

Swansea SA1 8EN, UK

j.v.tucker@swansea.ac.uk

Abstract. We introduce and investigate an arithmetical data type
designed for computation with rational numbers. Called the symmet-
ric transrationals, this data type comes about as a more algebraically
symmetric modification of the arithmetical data type of transrational
numbers [9], which was inspired by the transreals of Anderson et.al. [1].
We also define a bounded version of the symmetric transrationals thereby
modelling some further key semantic properties of floating point arith-
metic. We prove that the bounded symmetric transrationals constitute
a data type. Next, we consider the equational theory and prove that
deciding the validity of equations over the symmetric transrationals is
1-1 algorithmically equivalent with deciding unsolvability of Diophan-
tine equations over the rational numbers, which is a longstanding open
problem. The algorithmic degree of the bounded case remains open.

Keywords: rational numbers · data types · computer arithmetic ·
common meadows · transrationals · diophantine problem ·
floating-point

1 Introduction

Whilst the design of many computing systems depends upon the real numbers,
the deployment depends upon computer arithmetics, which are data types con-
tained within the rational numbers. Starting with [8], we have been developing
a theory of arithmetical data types based on rational numbers. Classical math-
ematics has viewed the rationals as a field, i.e., a commutative ring in which
each non-zero element has a unique multiplicative inverse, equipped with the
constants 0, 1 and operations x + y, −x, and x · y. However, with these opera-
tors the rationals do not qualify as a data type, for the field is not a minimal
algebra, i.e., not every element of the algebra can be constructed by applying

To Frits Vaandrager on the occasion of his 60th Birthday.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 63–80, 2022.
https://doi.org/10.1007/978-3-031-15629-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_4

64 J. A. Bergstra and J. V. Tucker

the operations to its constants. For minimality, we need to add inverse x−1 or
division x ÷ y, which are not total operators on 0; such an algebra with inverse
or division is called a meadow [8]. For computation, we must turn one of these
into a total function; there are several semantic options, each of which has its
own motivation and significant implications for the algebra of the rationals.

The Data Type. Using the theory of abstract data types, we present new algebraic
models of the rational numbers motivated by common floating point conventions.
The data type implements these three features:

(i) having total operations only;
(ii) accommodating overflows and underflows; and
(iii) computations are sensitive when values come close to 0.

The new data type is one of a number of adaptations of the rationals that address
totality (i), but is novel in the semantic matters of (ii) and (iii).

We begin the development of the model by enlarging the rational numbers
with an ‘absorptive element’ ⊥ that is used to totalise partial operations; by
absorbtive we mean that if ⊥ is an argument of an operator then the result is
also ⊥. In particular, 0−1 = ⊥. This design decision has been studied in some
detail through a general algebraic theory of common meadows, as introduced
in [5,6].

Secondly, we further enlarge the common meadow with flags for signed infini-
ties ∞,−∞ and signed infinitesimals ι,−ι to model sensitivities close to 0. This
done, we also introduce upper and lower bounds p,−p to model overflow and
underflow. These two new data types of rational numbers we call the symmetric
transrationals and the bounded symmetric transrationals, respectively.

Our new models, and the terminology ‘transrational’, owes much to the tran-
sreal model of computer arithmetic proposed in [1,13]. The transreals use the
infinities so that 1/0 and −1/0 behave as infinite elements ∞ and −∞, respec-
tively. Whilst they assume that ∞−1 = (−∞)−1 = 0, they also feature an
asymmetry as follows:

(∞−1)−1 = ∞ while (−∞−1)−1 = ∞ �= −∞.

We analysed the (non-symmetric) transrationals as an abstract data type in [9].
In addition to our use of common meadows to tackle totality, 1/0 = ⊥, our

new model of symmetric transrational numbers restores symmetry by adopting

(∞−1)−1 = ∞ and (−∞−1)−1 = −∞
and the infinitesimals

∞−1 = ι and ι−1 = ∞.

The five new elements ⊥,∞,−∞, ι,−ι we call peripheral numbers; they have
a profound effect on all the operations as familiar equations fail and need to be
replaced – e.g., most obviously, 0 · x �= 0 because 0 · ⊥ = ⊥.

Our notations are as follows. The rationals Q are built in various ways from
the integers Z, which are built from the naturals N . We assume that N ⊆ Z

Symmetric Transrationals 65

and that Z is embedded in Q; as this dependency matters, we write QZ for a set
of rationals. As data types these sets have algebraic structures and we use the
symbols N, Z and Q when some operations are placed on the sets of numbers,
N , Z and Q. Thus, the first stage of the model building was to create the
common meadow, which we denote QZ,⊥. In the second stage, the data type of
symmetric transrationals was obtained from QZ,⊥, which we denote QZ,±∞,±ι,⊥.
The bounded symmetric transrationals we denote Q

p
Z,±∞,±ι,⊥. In Theorem 3 we

prove that bounded transrationals actually constitute a data type, i.e., a minimal
algebra; this result is quite tricky compared with the ease of minimality for QZ,⊥
and QZ,±∞,±ι,⊥.

Equational theories. Abstract data type theory uses equations to axiomatise the
operations of data types. The equational theory of a data type is the set of all
equations valid in the data type. An important algorithmic problem, connected
to the power of the axioms and completeness of equational reasoning, is to decide
whether or not any given equation is valid. Earlier, in [11], we showed:

Proposition 1. The equational theory of the common meadow QZ,⊥ has the
same 1-1 algorithmic degree as the complement of solvability of Diophantine
equations over QZ .

Now enlargements are an expansion (i.e., adding new operations on the
domain) of an extension (i.e., adding new data to the domain), but they cannot
be relied upon to preserve desirable properties. Yet, with quite some effort, we
extend Proposition 1 to the symmetric transrationals. Combining Proposition 7
and Theorem 4 below, we have:

Theorem 1. The equational theory of the symmetric transrationals QZ,±∞,±ι,⊥
has the same 1-1 algorithmic degree as the complement of solvability of Diophan-
tine equations over QZ .

The Diophantine Problem for the rationals QZ is a difficult long-standing
open problem, in contrast with the algorithmic unsolvability of the Diophantine
Problem for the naturals, established by Matiyasevich in 1972. Both Propo-
sition 1 and Theorem 1 are somehow theoretically significant for developing
arithmetical data types based on rational numbers.

We leave open the question whether or not the validity of equations in
bounded symmetric transrationals is 1-1 reducible to the complement of Dio-
phantine solvability over QZ .

Contents. In Sect. 2, we recall some working methods for abstract data types. In
Sect. 3, we add the peripheral numbers to an ordered field and define the symmet-
ric transfield and bounded symmetric transfield. Applying these constructions
to the rationals yields our symmetric transrationals and bounded symmetric
transrationals and we prove that bounded symmetric transrationals are minimal
in Sect. 4. In Sect. 5, we tackle the algorithmic degree of the equational theory.
In Sect. 6, we reflect on the model’s connection to floating point and a role in
reasoning about analogue-digital systems.

66 J. A. Bergstra and J. V. Tucker

This paper is dedicated to Frits Vaandrager whose work covers a wide range
of system design formalisms, including process algebras, hybrid systems, and
timed automata. Although this paper is independent of these themes, we study
data types which we hope to be relevant when contemplating abstract versions of
floating point arithmetic and reasoning about systems involving analogue data.

2 Basic Theory of Abstract Data Types

For abstract data types we mention [15] for motivation, and [14] for technical
information. The theory of abstract data types starts from four basic concepts as
follows. An implementation of a data type is modelled by a many-sorted algebra
A of signature Σ; our algebras will be single-sorted and have a non-empty carrier.
A signature Σ is an interface to some (model of an) implementation of the data
type, and the constants and operations declared in Σ provide the only means of
access for the programmer to the data. This means that the data in an algebra
A should be constructible from its constants and operations, technically: A Σ-
algebra A is Σ-minimal if it is generated by the constants and operations of
its signature Σ. Axiomatisations of the operations in a signature define a whole
range of implementations. Implementations are equivalent if, and only if, their
algebraic models are isomorphic.

Definition 1. A data type is a minimal algebra. An abstract data type is an
isomorphism class of a data type.

The properties of interest to abstract data types are isomorphism invariants
– typical examples are properties that are definable by first order formulae and
forms of computability. This means that if a property is true of any data type A,
and is an isomorphism invariant, then the property will be true of its abstract
data type.

We will use an informal notation for data types and signatures. For instance,
(V | c1, . . . , ck, f1, . . . , fl) denotes a data type with domain V and constants c1,
...,ck from V , and functions f1,..,fk, where it is assumed that arities for the
functions on V are known from the context. Similarly, for signatures, we use
names instead of sets, constants and functions. Given a data type A, and a
valuation σ for variables in a term t over its signature, (A, σ |= t) denotes the
result of evaluating t in A using the values of the variables in σ.

2.1 Expansions, Extensions, and Enlargements

Algebras can be expanded by adding new constants and operations to their
signature. Algebras can be extended by adding new elements to their domain.
Combining expansions and extensions comprises what we call enlargements of
an algebra. Thus, we will be enlarging the rationals with inverse and peripheral
numbers. These notions carry over from data types to abstract data types.

Adding and taking away data and operations from an algebra, such as periph-
eral numbers and inverse, is not straightforward.

Symmetric Transrationals 67

Proposition 2. There exists a single sorted computable algebra B and a restric-
tion A of B to a smaller signature such that the domain of A is not a computable
subset of the domain of B.

Proof. Let N be a set of natural numbers and let V ⊆ N be a computably enu-
merable non-computable splinter generated from 0 by means of a computable
function f :N → N [26]. So V = {fk(0) | k ∈ N}. Let B be the algebra
(N | 0, 1,+, f) with signature Σ = (nat | 0, 1,+, F). Now, let A be the restric-
tion of B to the signature Σ′ containing only 0 and F , obtained by forgetting 1
and + and taking the minimal subalgebra w.r.t. Σ. Thus, A = (V | 0, f) whose
domain V is not a computable subset of the domain of B. �	
Proposition 3. There is an enlargement B of the algebra A = (N | 0, S, P)
such that every finite equational specification of A fails to hold in B.

Proof. A is well known as the naturals with constant 0 and successor function
(named S) and predecessor function (here named P , while also known as monus,
written ·−), for which an equational specification is: Σ = (nat | 0, S, P), {P (0) =
0, P (S(x)) = x}). Let T (c, S, P) be the term algebra over Σ with 0 replaced by
c; we can assume that A ∩ T (c, S, P) = ∅. Now, by taking the union of both
domains as well as the union of both structures we obtain a joint enlargement of
both structures, say B = A ⊕ T (c, S, P). In this algebra no non-trivial equation
can hold because no such equations are valid in T (c, S, P). It follows that no
equational specification of the data type A can be given with equations that are
valid in B. �	
The finiteness condition is essential because there is always an infinite ground
term specification which will be satisfied in each enlargement. Proposition 3 is
an extreme example where enlargement leads to a reduction of the collection
of valid equations. Similarly, the addition of peripheral numbers to rationals
reduces the set of valid equations. Whether removing all non-trivial equations,
as in Proposition 3, can be achieved by means of an enlargement with finitely
many new elements we do not know:

Problem 1. For which data types A is there an enlargement which consists of an
expansion of an extension by finitely many elements, B of A with the property
that only trivial equations over the signature of A are valid in B.

3 The Symmetric Transfields

3.1 Algebra of Peripheral Numbers and their Equational
Specification

Consider the data type P 5
±∞,±ι,⊥(0) with 6 elements, one ordinary number 0 and

five peripheral numbers ⊥,∞,−∞, ι,−ι. Let ΣP be a signature for the algebra
with four constants 0,∞, ι and ⊥, and four operations +, ·,−,−1.

As a finite structure, the operators can be defined by the finite set EP of
equations in Table 1. In fact, omitting the proof, we have:

68 J. A. Bergstra and J. V. Tucker

Theorem 2. The equational specification (ΣP , EP) is an initial algebra specifi-
cation for the algebra of peripheral numbers P 5

±∞,±ι,⊥(0).

Table 1. (ΣP , EP): An initial algebra equational specification of the peripheral num-
bers.

x + y = y + x (1)
x · y = y · x (2)

−(−x) = x (3)
(−x) + (−y) = −(x + y) (4)

(−x) · y = −(x · y) (5)

(−x)−1 = −(x−1) (6)
−⊥ = ⊥ (7)

x + ⊥ = ⊥ (8)
x · ⊥ = ⊥ (9)

⊥−1 = ⊥ (10)
−0 = 0 (11)

x + 0 = x (12)

0−1 = ⊥ (13)
0 · 0 = 0 (14)

0 · ∞ = ⊥ (15)
0 · ι = 0 (16)

∞ + ∞ = ∞ (17)
∞ + (−∞) = ⊥ (18)

∞ + ι = ∞ (19)
∞ + (−ι) = ∞ (20)

∞ · ∞ = ∞ (21)
∞ · ι = ⊥ (22)

∞−1 = ι (23)
ι + ι = ι (24)

ι + (−ι) = ⊥ (25)
ι · ι = ι (26)

ι−1 = ∞ (27)

3.2 Making a Symmetric Transfield

Proposition 4. Let F< be an ordered field such that F ∩ P 5
±∞,±ι,⊥(0) = {0}.

Then F and P 5
±∞,±ι,⊥(0) have a common enlargement F±∞,±ι,⊥ with domain

F ∪ {∞,−∞, ι,−ι,⊥}.
Proof. Both data types can be combined while some values of functions must
still be defined. To begin with: a−1 for nonzero a ∈ F is defined as the unique
b ∈ F with a · b = 1; for other arguments to inverse the value in P 5

±∞,±ι,⊥(0)
applies. For both addition and multiplication 5 new arguments have to be taken
into account: ∞,−∞, ι,−ι and ⊥. Both functions are extended in such a manner
that ⊥ is absorptive (e.g., a+⊥ = ⊥ etc.). For nonzero positive a ∈ F : a+∞ =
∞, a + (−∞) = −∞, a + ι = a, a + (−ι) = a, a · ∞ = ∞, a · (−∞) = −∞, a · ι =
ι, a·(−ι) = −ι. For nonzero negative a ∈ F : a+∞ = ∞, a+(−∞) = −∞, a+ι =
a, a + (−ι) = a, a · ∞ = −∞, a · (−∞) = ∞, a · ι = −ι, a · (−ι) = ι. All other
values for the addition and multiplication of peripherals are determined such as
to make both operations commutative. �	

Symmetric Transrationals 69

Definition 2. The algebra F±∞,±ι,⊥ is called the symmetric transfield of the
ordered field F<. Let Σstr be the signature of symmetric transfields.

F±∞,±ι,⊥ is a so-called joint amalgamation of F< and P 5
±∞,±ι,⊥(0).

3.3 Making a Bounded Symmetric Transfield

Again, let F< be an ordered field. The idea of creating a bounded symmetric
transfield for F< is roughly this. We choose some positive p ∈ F , with p > 1
and build a new algebraic structure F p

±∞,±ι,⊥ using surgery on F±∞,±ι,⊥. The
carrier set is the subset of F±∞,±ι,⊥ consisting of

F p = (−p,−1/p) ∪ (1/p, p) ∪ {0,⊥, ι,−ι,∞,−∞}.

and its operations are either restrictions or adaptations of the operations of
F±∞,±ι,⊥. Thus, the signature of bounded symmetric transfields is also Σstr .

The constants of the bounded transfield are the constants of F±∞,±ι,⊥. Note
the carrier F p contains all these constants; in particular, because p > 1, 1 ∈
(1/p, p). But the bound p is not a constant as it is not in F p.

The unary operations minus and inverse are simply the restrictions of the
corresponding functions in F±∞,±ι,⊥ to F p ⊆ F±∞,±ι,⊥.

However, the addition and multiplication operations are not restrictions
because of the over and underflows and calculations: addition is interpreted by
+p and multiplication is interpreted by ·p in F p

±∞,±ι,⊥. These functions are
defined as follows. Given x, y ∈ F p,

– if x + y ∈ F p then x +p y = x + y,
– if x · y ∈ F p then x ·p y = x · y
– if x + y ∈ [−∞,−p] then x +p y = −∞,
– if x + y ∈ [−1/p, 0) then x +p y = −ι,
– if x + y ∈ (0, 1/p] then x +p y = ι,
– if x + y ∈ [p,∞] then x +p y = ∞,
– if x · y ∈ [−∞,−p] then x ·p, y = −∞,
– if x · y ∈ [−1/p, 0) then x ·p y = −ι,
– if x · y ∈ (0, 1/p] then x ·p y = ι,
– if x · y ∈ [p,∞] then x ·p y = ∞.

Definition 3. The algebra F p
±∞,±ι,⊥ is called the bounded symmetric trans-

field of the ordered field F<. Let Σstr be the signature of bounded symmetric
transfields.

F p
±∞,±ι,⊥ is an infinite algebra because in an ordered field with p > 0 the

interval (1/p, p) is infinite.

70 J. A. Bergstra and J. V. Tucker

4 Rationals and Transrationals

4.1 Transrationals and Bounded Transrationals

We will now specialise the general constructions above to the case of rational
numbers. First, we construct a non-minimal algebra QZ of rationals with domain
SFPZ = {(n,m) : n,m ∈ Z,m > 0, and gcd(n,m) = 1}. SFPZ stands for
simplified fracpairs. For information on fracpairs we refer to [7].

The additive identity is uniquely defined by (0, 1) and the multiplica-
tive unit is (1, 1). We define the operations in stages starting with addition:
(n,m) + (p, q) = (a, b) where a = np+mq

gcd(np+mq,mq) and b = mq
gcd(np+mq,mq) . Sec-

ondly, we define multiplication: (n,m).(p, q) = (a, b) where a = np
gcd(np,mq) and

b = mq
gcd(np,mq) Thirdly, we define additive inverse: −(n,m) = (−n,m),

Now: QZ = (SFPZ | (0, 1), (1, 1),+,−, ·). QZ is not a data type because it is
not minimal. In order to turn QZ into a data type, an additional operator must
be included in the signature and interpreted in SFPZ . The common meadow
QZ,⊥ provides an enlargement of QZ which qualifies as a data type.

The field QZ has a natural ordering and the construction of a transfield for
QZ can be applied, leading to QZ,±∞,±ι,⊥, a data type of transrationals and to
Q

p
Z,±∞,±ι,⊥, a data type of p bounded transrationals.

4.2 Minimality of the Bounded Transrationals

The two abstract data types of common meadows of rationals QZ,⊥ and sym-
metric transrationals QZ,±∞,±ι,⊥ are easily shown to be minimal and hence data
types. To see this, one notices that the rational numbers are generated from 1,
as in [8], while the new constants allow to express the 5 peripheral elements.

Similarly, Qp
Z,±∞,±ι,⊥ is a Σstr -minimal algebra and a data type, although

this is not immediately obvious.

Proposition 5. For 1 < p ≤ 2: Qp
Z,±∞,±ι,⊥ is Σstr -non-minimal.

Proof. Q
p
Z,±∞,±ι,⊥ is infinite but its minimal subalgebra has 8 elements only,

the 6 elements of P 5
±∞,±ι,⊥(0) plus {1,−1}. It is immediate that this set of 8

elements is closed under +p and ·p , as well as under the unary operators. �	
Theorem 3. Let p ∈ N, with p > 2, then Q

p
Z,±∞,±ι,⊥ is Σstr -minimal.

Proof. We write Q
p = Q

p
Z,±∞,±ι,⊥ and we will further assume that N is the set

of decimal naturals, i.e., Nd = {0, 1, 2, ..., 9, 10, 11, ...}. Moreover, we will assume
that rationals are the non-⊥ elements of QZ,⊥, and that for naturals n and
m > 0, n/m denotes the value of (QZ,⊥ |= n · (m)−1) ∈ QZ,⊥. All functions and
constants of Σstf as well as +p and ·p are interpreted as functions on and
constants in QZ,⊥.

First, notice that 1 +p 1 = 2 because 2 < p. It follows that (Qp |= (1 +
1)−1) = 1/2, and, as 1 + 1/2 = 3/2 < p also (Qp |= 1 + (1 + 1)−1) = 3/2. Let
t1 ≡ 1 + (1 + 1)−1, and for natural n ≥ 1, tn+1 ≡ (1 + 1) + (−(t−1

n)). We will
first show by induction (assertion � for use below) that:

Symmetric Transrationals 71

for natural n ≥ 1: QZ,⊥ |= tn = 1 + (n + 1)−1 (�)

For the base case n = 1 this is immediate.
For the induction step: QZ,⊥ |= tn+1 = (1+1)+(−t−1

n) =IH (1+1)+(−(1+
(n+1)−1)−1) = (1+1)+(−((n+2) ·(n+1)−1)−1) = (1+1)+(−((n+2)−1 ·(n+
1))) = (1+1)+(−((n+1)·(n+2)−1)) = ((1+1)·(n+2)+(−(n+1)))·(n+2)−1 =
(n + 3) · (n + 2)−1. Thus, (QZ,⊥ |= tn+1) = (n + 3)/(n + 2).

With induction on n, we will show that for n ≥ 1:

(Qp |= tn) = (QZ,⊥ |= tn) = (n + 2)/(n + 1).

The base case n = 1 has been established already. For the induction step: (Qp |=
tn+1) = (Qp |= (1 + 1) + (−(t−1

n))) = (1 +p 1) +p (−((QZ,⊥ |= tn)−1)) =
(1 +p 1) +p (−((n + 2)/(n + 1))−1))) = (1 +p 1) +p (−((n + 1)/(n + 2))).

Now, 0 < (n + 1)/(n + 2) < 1 so that (1 +p 1) +p (−((n + 1)/(n + 2))) < 2
and so that (1 +p 1) +p (−((n + 1)/(n + 2))) ∈ (1/p, p) whence (Qp |= tn+1) =
(QZ,⊥ |= tn+1) =� (n + 3)/(n + 2).

The proof is now completed with the following Lemma. �	
Lemma 1. For each rational number q ∈ (1, p) (with p > 2) there is a term tq
such that (QP |= tq) = q.

Proof. It suffices to find tq for q ∈ (1, p); as for the case q ∈ (1/p, 1) we may
choose tq = (t1/q)−1. Assume that q = 1 + m/n with positive naturals m and n,
and n ≥ 2. With induction on k we prove that for k ≥ 1 with 1 + k/n < p there
is a term rn

k such that (Qp |= rn
k) = 1 + k/n.

For k = 1 the result has been obtained above: rn
1 ≡ tn−1 will work.

For the induction step, we assume (Qp |= rn
k) = 1 + k/n. Now (Qp |= (rn

k +
(−2−1)) + (rn

k + (−2−1))) = ((1 + k/n) +p (−1/2) +p ((1 + 1/n) +(−1/2)) =
(1/2 + k/n) + (1/2 + 1/n) = 1 + k + 1/n. �	

According to the standard theory [23], it is easy to check the following:

Proposition 6. Symmetric transrationals and bounded symmetric transra-
tionals are computable algebras.

5 One-One Degree of Equations in Symmetric
Transrationals

5.1 The Diophantine Problem for the Rationals

First, note that a classical polynomial p(x1, . . . , xn) with rational or integer coef-
ficients can be understood as an expression over the signature of a commnutative
ring with 1, and as a division-free expression over the signature Σm of a meadow.

A Diophantine equation is an equation of the form

p(x1, . . . , xn) = 0

72 J. A. Bergstra and J. V. Tucker

with p an integer polynomial.
The question whether or not p(x1, . . . , xn) = 0 has a solution in the rationals

Q is clearly computably enumerable: all Diophantine equations that have a ratio-
nal solution can be effectively enumerated. However, the algorithmic decidability
of solvability of Diophantine equations over Q is a long standing open problem,
originating in Hilbert’s 10th Problem of 1900. Hilbert’s 10th Problem asked for
an algorithm to decide if there are solutions to Diophantine equations in the
natural numbers. After many years, in 1972, this was shown to be algorithmi-
cally undecidable by Matiyasevich – see [18]. Expectations are that the problem
for rationals is undecidable, too. For an easy introduction to the Diophantine
problem for rationals see [21].

5.2 Equational Theories

We will first show that solvability of Diophantine equations in Q is computably
one-one reducible to determining validity of equations over the symmetric tran-
srationals. This means that if the corresponding equational theory is decidable
then the Diophantine problem for Q is solved!

Proposition 7. Unsolvability of Diophantine equations over QZ is 1-1 reducible
to the validity of equations over QZ,±∞,±ι,⊥.

Proof. Let there be given a Diophantine equation p = 0 with p a polynomial,
i.e., a term over the signature of commutative rings. Then it is easy to see that:
QZ |= p �= 0 (i.e., p = 0 has no solution in QZ) if, and only if,

QZ,±∞,±ι,⊥ |= p

p
= 1 + (p + (−p))

�	
To simplify work in QZ,±∞,±ι,⊥, we will make use of a dedicated quantifier

∀+x, defined by:
∀+x.φ ≡def ∀x ∈ QZ(x > 0 → φ).

We will write QZ,±∞,±ι,⊥ |=+ φ in order to express that all variables in φ are
universally quantified with ∀+ rather than with ∀.1

Proposition 8. There is a uniform transformation η which assigns to each
equation t = r over QZ,±∞,±ι,⊥ a conjunction of equations ηt=r such that:

QZ,±∞,±ι,⊥ |= t = r if, and only if, QZ,±∞,±ι,⊥ |=+ ηt=r.

1 We notice that an alternative presentation of the proof may use, in addition, the
quantifier ∀−x.φ ≡def ∀x ∈ QZ(x < 0 → φ). The advantage of using the second
quantifier for the proof is very limited, while the bookkeeping of variables will become
more involved, and for that reason it will not be used.

Symmetric Transrationals 73

Proof. We need to work with conjunctions of equations where the first m vari-
ables are quantified by way of |=+ and the remaining variables are quantified
with a quantifier over all elements of the structure. We assume that variables
come from a set Vvar. Let x1, . . . , xn be the variables free in φ and assume that
variable xm has to be dealt with.

The universal quantification over xm can be replaced by a quantification over
positive rationals as follows:
QZ,±∞,±ι,⊥ |= ∀xm.φ(xm) ⇐⇒
QZ,±∞,±ι,⊥ |= φ(0) ∧ φ(ι) ∧ φ(−ι) ∧ φ(∞) ∧ φ(−∞) ∧ φ(⊥) ∧ ∀+xm.φ(xm) ∧
∀+xm.φ(−xm) ⇐⇒
QZ,±∞,±ι,⊥ |=+ φ(0) ∧ φ(ι) ∧ φ(−ι) ∧ φ(∞) ∧ φ(−∞) ∧ φ(⊥) ∧ φ(xm) ∧ φ(−xm).

This transformation is applied successively for all variables. We notice that
a combinatorial explosion in size may occur where the blow up is exponential in
the number of variables of an equation. �	
Proposition 9. The validity of conjunctions of conditional equations over QZ

w.r.t. |=+ is 1-1 reducible to the unsolvability of Diophantine equations over QZ .

Proof. We write θ ≡ ∧k
i=1 θi ≡ ∧k

i=1(Φi → ti = ri) with Φi =
∧ki

h=1 ui,h = vi,h.
In view of p = q ⇐⇒ p − q = 0 it may be assumed that the righthand side of
each equation occurring in θ is 0.

Next, we notice that (
∧k

h=1 uh = 0) → t = 0 is equivalent in QZ (w.r.t. |=
as well as w.r.t. |=+) to (

∑k
h=1 u2

h) = 0 → t = 0. Hence it may be assumed that
the various Φi consist of a single equation only. So θ has now been rewritten,
keeping the semantics w.r.t. |=+ unchanged, in the form

θ ≡
k∧

i=1

(ui = 0 → vi = 0).

Now, consider the conditional equation p = 0 → q = 0 with free variables
x1, . . . , xn. For i ∈ [1, n], let yi

1, . . . , y
i
4, zi

1, . . . , z
i
4, ui

1, . . . , u
i
4, vi

1, . . . , v
i
4 be vari-

ables not occurring in p and q, and, more generally, not in θ. Then we notice
that

QZ |=+ p = 0 → q = 0

if, and only if, the Diophantine equation Hp,q = 0 has no solution, with
Hp,q ≡

n∑

i=1

(xi ·(1+
4∑

j=1

(yi
j)

2)−(1+
4∑

j=1

(zi
j)

2))+p2+(q2 ·(1+
4∑

j=1

(uj)2)−(1+
4∑

j=1

(vj)2))2

To see this, one may notice that a counter example to p = 0 → q = 0 involves
positive rational values for the xi together with p = 0 and q �= 0 (i.e., q2 > 0).
Now, a rational number z is positive if, and only if, there are positive naturals
zd and zn such that z · zd − zn = 0. This idea is applied 4 times in the expression

74 J. A. Bergstra and J. V. Tucker

Hp,q using the fact that 1 plus the sum of four squares expresses all positive
naturals.

Finally, QZ |=+ θ if, and only if, for all i ∈ [1, k], Q |=+ ui = 0 → vi = 0 if,
and only if, all Diophantine equations Hui,vi

= 0 are unsolvable if, and only if,
the Diophantine equation

∏n
i=1 Hui,vi

= 0 is unsolvable over QZ . �	
Theorem 4. Validity of equations over QZ,±∞,±ι,⊥ is 1-1 reducible to unsolv-
ability of Diophantine equations over QZ .

Proof. We consider open formulae of the following form

θ ≡
k∧

i=1

θi ≡
k∧

i=1

(Φi → ti = ri)

where the Φi are conjunctions of equations over the signature of fields (commu-
tative rings) and assume that satisfaction requires universal quantification over
positive rational values, i.e., we will focus on QZ,±∞,±ι,⊥ |=+ θ. These open
formulae are called formulae of the form CCeqURc (conjunctions of conditional
equations with conditions over the signature of unital rings).

Given an equation t = r for which we intend to assess QZ,±∞,±ι,⊥ |= t = r
via a reduction to another problem, upon expanding all of its quantifiers as
suggested in the manner of Proposition 8, a formula φt=r of the form CCeqURc
is obtained:

QZ,±∞,±ι,⊥ |= t = r ⇐⇒ QZ,±∞,±ι,⊥ |=+ φt=r

with φt=r ≡ ∧k
i=1(Φi → ti = ri), and where the Φi are all identical to true

and the equations ti = ri result from t = r by substituting values from the
peripheral algebra for various variables in t = r. The latter transformation may
create an exponential blow-up in size in terms of the number of variables in the
equation. We write |s| for the size of a term s as determined by the total number
of constants, variables and function symbols in s.

We let V1,2 be the following set of expressions:

V1,2 = {0, 1,−1,⊥, ι,−ι,∞,−∞} ∪ {x,−x | x ∈ Vvar}.

V1,2 contains the terms with norm 1 and norm 2 with the exception of −0 and
−⊥ both of which can be simplfied.

We introduce the following norm |φ| for a CCeqURc-formula φ:

|
k∧

i=1

(Φi → ti = ri)| = (l|t|+|r|, . . . , l2)

with ln, for n ∈ [1, |t| + |r|] equal to the number of indices i ∈ [1, k] with the
property that |ti| + |ri| = n. We will identify norm lk+1, . . . l2 with 0, lk+1, . . . l2.
We notice that under this assumption norms can be added pointwise and that

Symmetric Transrationals 75

for CCeqURc-formulae θ1 and θ2, θ1 ∧ θ2 is a CCeqURc formula such that:
|θ1 ∧ θ2| = |θ1| + |θ2|.

CCeqURc-formulae with lowest norms have l2 > 0, and ln = 0 for n > 2.
If any of the si or ti for i ∈ [1, k] contains a subterm of the form −(−s)), say
ti ≡ C[−(−s)] replacing that subterm by s thereby changing θi ≡ Φi → ti = ri

to Φi → C[s] = ri, the result is logically equivalent over QZ,±∞,±ι,⊥ and leads
to a lower norm: |Φi → ti = ri| > |Φi → C[s] = ri| which extents to a lower
norm for the modified CCeqURc-formula having θi as a conjunct.

We will next outline a transformation step ρ which transforms each
CCeqURc-formula θ ≡ ∧k

i=1 θi with θi ≡ Φi → ti = ri for which for some
j ∈ [1, k] either tj or rj has norm above 2 to a formula ρ(θ), such that ρ(θ)
is equivalent to θ over QZ,±∞,±ι,⊥ w.r.t. |=+, and such that |ρ(θ)| < |θ|. More
specifically ρ(θ) ≡ ∧k

i=1 θi
′ where θj

′ = θj for j �= i, where j is chosen, and θj
′

is obtained, as follows.
The value j ∈ N used in the above description of ρ is chosen as a minimal

value such that at least one of tj or rj contains a subterm outside V1,2. Write
tj ≡ C[t] with t a smallest subterm outside V1,2, if tj contains such a subterm;
otherwise, write rj ≡ C[t]. Both cases are dealt with similarly, and we will focus
on the case that t can be written as tj ≡ C[t] with t a term outside V1,2 of which,
by consequence of the choice of the context C[−], all subterms are elements of
V1,2.

As all of the subterms of t are in V1,2 we may distinguish for t the following
cases, with r, r′ ∈ V1,2: (i) t ≡ −r, (ii) t ≡ r−1, (iii) t = r + r′, and (iv) t ≡ r · r′.

In each case we will find a CCeqURc-formula θj
′ such that QZ,±∞,±ι,⊥ |=+

θi
′ ⇐⇒ θj and such that |θj

′| < |θj |. In consequence: QZ,±∞,±ι,⊥ |=+ ρ(θ) ⇐⇒
θ and |ρ(θ)| < |θ|.

Case (i): Because t �∈ V1,2, and r ∈ V1,2, the following cases can be ruled
out (making use also of the fact that subterms of the form −(−s) have been
removed): r ≡ 1, r ≡ −1, r ≡ ι, r ≡ −ι, r ≡ ∞, r ≡ −∞, r ≡ x, r ≡ −∞ so that
the cases r ≡ 0, r ≡ ⊥ remain. In the case that r ≡ 0 θj

′ ≡ Φj → C[0] = rj

is equivalent to θj ≡ Φi → C[−0] = ri, in view of −0 = 0, while |θj
′| = |Φj →

C[0] = rj | < |Φi → C[−0] = ri| = |θj | so that |θ| < |θ′|. In case r ≡ ⊥,
θj

′ ≡ Φi → C[⊥] = rj can be chosen in view of −⊥ = ⊥.
Case (ii) t ≡ r−1. We first consider cases r ≡ 0, 1,−1, ι,−ι,∞,−∞,⊥.

Replacing t by t′ as follows produces a formula with the same semantics but
with a lower |−| size: t′ ≡ ⊥, 1,−1,∞,−∞, ι,−ι,⊥ respectively. The cases x,−x
require the introduction of an additional condition. Let y be a variable with is
not free in θ, θj

′ ≡ Φi → C[x−1] = rj can be chosen as: Φi∧x·y = 1 → C[y] = rj .
In case r ≡ −x one may choose θj

′ ≡ Φi ∧ x · y = 1 → C[−y] = rj .
Case (iii) t ≡ r + r′. We have to deal with cases r ≡

0, 1,−1, ι,−ι,∞,−∞,⊥, x, −x and r ≡ 0, 1,−1, ι,−ι,∞,−∞,⊥, y,−y (where
x and y may be the same variable). The treatment of various cases is somewhat
ad hoc. After each step, it must be checked if any subterm of the form −(−s)
has been introduced, and if so that subterm must be simplified before applying
the next step in the manner that was outlined above.

76 J. A. Bergstra and J. V. Tucker

If r ≡ 0 then t may be replaced by r′, and if r′ ≡ 0 then t may be replaced
by r, so that all cases involving a 0 are done. In both cases a simplification w.r.t.
| − | results. If either r or r′ is identical to ⊥, t can be replaced by ⊥. If r ≡ ∞
then: if r′ ≡ ∞, t can be replaced by ∞, if r′ ≡ −∞, t can be replaced by ⊥ and
in all other cases t can be replaced by ∞. If r ≡ −∞ then: if r′ ≡ −∞, t can be
replaced by −∞, if r′ ≡ ∞, t can be replaced by ⊥ and in all other cases t can be
replaced by −∞. Making use of the symmetry of + all cases involving ∞ or −∞
are dealt with in this manner. Next let r ≡ ι, the cases that must be considered
for r′ are r′ ≡ 1,−1, ι,−ι, x,−x. The following replacements t′ for t work for
these cases respectively: 1,−1, ι,⊥, x,−x. The cases that r ≡ −ι is dealt with
similarly and so are the cases r′ ≡ ι and r′ ≡ −ι. We are left with all cases
with r and r′ in 1,−1, x,−x (where r and r′ may be different variables). Let
r ≡ 1, then if r′ ≡ −1 one may replace t by t′ ≡ 0. The other the cases require
more care: chose variable y outside the free variables of θ. Now if r′ ≡ 1 let
θj

′ ≡ Φj ∧ y = 1 + 1 → C[y] = rj , if r′ ≡ x let θj
′ ≡ Φj ∧ y = 1 + x → C[y] = rj ,

and if r′ ≡ −x let θj
′ ≡ Φj ∧ y = 1 + (−x) → C[y] = rj . The cases r ≡ −1,

r′ ≡ 1, r′ ≡ −1 are dealt with similarly.
Next, let r ≡ x, now four cases can be distinguished: r′ ≡ x,−x, z,−z with z

a variable different from x. In case r′ ≡ −x, t can be replaced by t′ ≡ 0. In case
r′ ≡ x choose y a variable outside θ and take θj

′ ≡ Φj ∧ y = x + x → C[y] = rj .
In case r′ ≡ z, z a variable different from x and y. As it is impossible to predict
the sign of x + z, conditions are used to distinguish the three cases for that sign
by taking θj

′ ≡

(Φi ∧ y = x + z → C[y] = rj) ∧ (Φi ∧ 0 = x + z → C[0] = rj)∧
(Φi ∧ −y = x + z → C[−y] = rj).

To see that |θj
′| < |θj |, notice that the three conjuncts of θj

′ each have the
highest non-zero value of the size | − | at a lower position than θj so that the
sum of these sizes is lexicographically lower than |θj |. The case r ≡ −x is dealt
with similarly.

Having dealt with all four cases for t the definition of the transformation ρ
is completed. Given that | − | imposes a well-founded relation on terms and so
that infinite descending chains do not exist, the above considerations allow us to
conclude that after repeatedly performing the transformation ρ every CCeqURc-
formula θ can be uniformly (i.e., in a computable manner) transformed into an
equivalent formula θ� where both sides of the various equations are terms in
V1,2.

Now θ� can be simplified further: for each conclusion tj = rj with tj and rj

both closed the equation tj = rj is either true in QZ,±∞,±ι,⊥ in which case said
equation can be replaced by 0 = 0; or it is false in which case it can be replaced
by 0 = 1. In other cases if one side amounts to x or to −x and the other side is in
ι,−ι,∞,−∞,⊥ then the equation cannot hold for any value of x and therefore
it can be replaced by 0 = 1. By repeatedly using the latter simplification step

Symmetric Transrationals 77

a CCeqURc-formula is found which involves no peripheral constants, i.e., it is a
conjunction of conditional equations over the signature of unital rings.

Next, we show that for CCeqURc-formulae θ not involving peripheral con-
stants, satisfaction w.r.t. |=+, i.e., QZ |=+ θ, is 1-1 reducible to the complement
of Diophantine solvability over a ring of rationals. This observation immediately
follows from Proposition 9 and the fact that θ is a conjunction of conditional
equations over QZ thereby completing the proof of Theorem 4. �	

6 Concluding Remarks

One aim of our series of papers on data types of rational numbers is a theory of
abstract data types for numerical computation. There is no shortage of semantic
problems yet to be tackled and many arose in the early days of computing [25].

6.1 Background on the Rationals and Their Enlargements

A first logical account of the “problem of division by zero” can be found in [24],
where adopting 1/0 = 0 is suggested as a plausible solution; see also [2]. A finite
equational initial algebra specification of the rationals was accomplished in [8]
by taking option 1/0 = 0. Upon defining 0−1 = 0, inverse becomes an involution
and by enriching Q in this manner a so-called involutive meadow is obtained. We
refer to [4] for the notion of an involutive meadow. Earlier, meadows, with a focus
on first order axiomatisations, had been studied under the name of pseudofields
in [19].

As an alternative for involutive meadows, common meadows with the external
option 1/0 = ⊥ were first developed in [5,7]. The option 1/0 = ∞ (unsigned)
leads to the wheel of rational numbers (see [12,22]) for which a finite equational
initial algebra specification is developed in [10]. One option with two signed
infinities leads to the transrationals, for which a finite equational initial algebra
specification is developed in [9]. A survey of options for division by zero is [3].

6.2 Practical Computer Arithmetics

Consider the key semantic features of computer arithmetics as they are handled
in floating point arithmetic. Viewed as a data type, a floating point arithmetic is
an algebra on a finite subset of the rational numbers. Its actual design strives for
an approximation of rational number arithmetic that is “best possible” according
to certain working criteria, and can be implemented in computer hardware. It
involves semantic enhancements such as the following:

1. Every number must be represented in a bit pattern of fixed length.
2. Except for zero 0, each number is coded by a pair containing a decimal number

1 ≤ d ≤ 10 of fixed length l and a power e ∈ [−k, k] of 10. A finite set of
rationals can be represented in this way.

3. Arithmetical operations on rational numbers may need rounding.

78 J. A. Bergstra and J. V. Tucker

4. Partial arithmetical operations are avoided by using the special values ∞
(infinity) and −∞ (minus infinity) to represent 1

0 and −1
0 , respectively, and

an error value NaN to represent 0
0 ,

5. Partial operations may lead to exceptions and interrupts that are modelled
by special signalling error values (viz. signalling sNaN).

6. Due to the presence of error values there is no total ordering of the domain
of floating point arithmetic.

7. In some models of floating point arithmetic 1
∞ = 0 and 1

−∞ = −0 with −0
different from 0.

The arithmetical data type of transrationals adapts the data type of rational
numbers by including ∞ and −∞ and a single quiet NaN, which is here called
⊥2. It sets 1

∞ = 1
−∞ = 0. Seen from the point of view of the rationals, the

transrationals are a semantic model of some key features to be found in floating
point arithmetic, though possessing an unfortunate asymmetry for infinities.

Symmetric transrationals deviate from the conventions of floating point arith-
metic concerning division by zero. The idea is that positive infinity can arise only
from a positive overflow, and that the positive infinitesimal arises from a positive
underflow, as well as from division by positive zero - infinity. This phenomenon is
present in the bounded symmetric transrationals. Notice the peripheral elements
have separated the issue of 0−1 from overflows and underflows.

What of the finiteness of floating point? The construction of the transrational
models arise from a general construction on an ordered field. This means that the
constructions fail to apply to finite fields, which do not have orderings. Obtaining
finite structures for symmetric transrationals requires working with a finite but
ordered set of numbers, which is what happens in floating point arithmetic.
The transition to a finite set of numbers is decomposable in two steps that can
be made in either order: (i) imposing a bound on the size of numbers, and (ii)
imposing a bound on the relative precision of numbers while taking the view that
each number serves as an approximation of its close neighbours as rationals. We
have investigated the result of taking size bounds into account only.

6.3 Hybrid Systems

Mathematical models of analogue-digital systems, including hybrid automata of
various kinds, combine the methods of the calculus on real and complex num-
ber continua with algorithmic methods on discrete data types. In this area Frits
Vaandrager has been active for many years (see, e.g., [16,17]). However, in appli-
cations, idealised or actual, the analogue data is the result of making measure-
ments, which is the business of data types of rational numbers. Calibrations in
terms of units and subunits are the raison d’être of the rational numbers, a fact
known to ancient Greek mathematics. Thus, computations with hybrid systems,
neither in theory nor practice, take place on data types with real numbers. The

2 Anderson denotes this by Φ and calls it nullity, thereby emphasising that its role
may be more significant than simply representing an error.

Symmetric Transrationals 79

analogue data types are computer arithmetics, which by their nature are com-
posed of rational numbers. Thus, theoretically, data types of rational numbers
can faithfully represent the analogue data, drawn from the working environment
of the system.

Our studies of various total data types of rational numbers has relevance to
foundational thinking about hybrid computational systems. The study of hybrid
systems that is most advanced – especially in matters of modelling, specification
and verification – are based on automata of different forms [20]. It is a matter
for further research to explore what data types of rationals might offer theories
of hybrid automata. However, the fundamental role of the calculus in modelling
physical systems prioritises floating point arithmetics, being the orthodox com-
puter arithmetics for numerical methods in science and engineering. In the case
of data types of rationals akin to floating point we propose the symmetric tran-
srationals as a semantical model.

References

1. Anderson, J.A., Völker, N., Adams, A.A.: Perspecx Machine VIII, axioms of tran-
sreal arithmetic. In: Latecki, J., Mount, D.M., Wu, A.Y. (eds.) Proceeding SPIE
6499. Vision Geometry XV, p. 649902, (2007). https://www.spiedigitallibrary.
org/conference-proceedings-of-spie/6499/1/Perspex-Machine-VIII-axioms-of-
transreal-arithmetic/10.1117/12.698153.short?SSO=1

2. Anderson, J.A., Bergstra, J.A.: Review of Suppes 1957 proposals for division by
zero. Transmathematica (2021). https://doi.org/10.36285/tm.53

3. Bergstra, J.A.: Division by zero, a survey of options. Transmathematica (2019).
https://doi.org/10.36285/tm.v0i0.17

4. Bergstra, J.A., Middelburg, C.A.: Division by zero in non-involutive meadows. J.
Appl. Logic 13(1), 1–12 (2015). https://doi.org/10.1016/j.jal.2014.10.001

5. Bergstra, J.A., Ponse, A.: Division by zero in common meadows. In: De Nicola, R.,
Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 46–61.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6 6

6. Bergstra, J.A., Ponse, A.: Division by zero in common meadows. Improved version
of [5] (2021). https://arxiv.org/abs/1406.6878v4

7. Bergstra, J.A., Ponse, A.: Fracpairs and fractions over a reduced commutative ring.
Indigationes Math. 27(2016), 727–748 (2016). https://doi.org/10.1016/j.indag.
2016.01.007

8. Bergstra, J.A., Tucker, J.A.: The rational numbers as an abstract data type. J.
ACM, 54(2) (2007), Article 7. https://doi.org/10.1145/1219092.1219095

9. Bergstra, J.A., Tucker., J.V.: The transrational numbers as an abstract data type.
Transmathematica (2020). https://doi.org/10.36285/tm.47

10. Bergstra, J.A., Tucker, J.V.: The wheel of rational numbers as an abstract data
type. In: Roggenbach, M. (ed.) WADT 2020. LNCS, vol. 12669, pp. 13–30. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-73785-6 2

11. Bergstra, J.A., Tucker., J.V.: Eager equality for rational number arithmetic. Sub-
mitted for publication (2021)

12. Carlström, J.: Wheels-On division by zero. Math. Struct. Comput. Sci. 14(1), 143–
184 (2004). https://doi.org/10.1017/S0960129503004110

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6499/1/Perspex-Machine-VIII-axioms-of-transreal-arithmetic/10.1117/12.698153.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6499/1/Perspex-Machine-VIII-axioms-of-transreal-arithmetic/10.1117/12.698153.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6499/1/Perspex-Machine-VIII-axioms-of-transreal-arithmetic/10.1117/12.698153.short?SSO=1
https://doi.org/10.36285/tm.53
https://doi.org/10.36285/tm.v0i0.17
https://doi.org/10.1016/j.jal.2014.10.001
https://doi.org/10.1007/978-3-319-15545-6_6
https://arxiv.org/abs/1406.6878v4
https://doi.org/10.1016/j.indag.2016.01.007
https://doi.org/10.1016/j.indag.2016.01.007
https://doi.org/10.1145/1219092.1219095
https://doi.org/10.36285/tm.47
https://doi.org/10.1007/978-3-030-73785-6_2
https://doi.org/10.1017/S0960129503004110

80 J. A. Bergstra and J. V. Tucker

13. dos Reis, T.S., Gomide, W., Anderson, J.A.: Construction of the transreal numbers
and algebraic transfields. IAENG Int. J. Appl. Math. 46(1), 11–23 (2016). http://
www.iaeng.org/IJAM/issues v46/issue 1/IJAM 46 1 03.pdf

14. Ehrich, H.-D., Wolf, M., Loeckx, J.: Specification of Abstract Data Types, Vieweg
Teubner (1997)

15. Goguen, J.A.: Memories of ADJ. Bulletin of the EATCS no. 36, October (1989).
https://cseweb.ucsd.edu/goguen/pubs/other.html

16. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed
I/O Automata. 2nd edn. Morgan Claypool 2010 (2010). https://doi.org/10.2200/
S00310ED1V01Y201011DCT005

17. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185(1),
105–157 (2003). https://doi.org/10.1016/S0890-5401(03)00067-1

18. Manin, Y.: A Course in Mathematical Logic. Springer (1977). 2nd edn 2010
19. Ono, H.: Equational theories and universal theories of fields. J. Math. Soc. Jpn.

35(2), 289–306 (1983). https://doi.org/10.2969/jmsj/03520289
20. Platzer, A.: Logical Analysis of Hybrid Systems. Springer (2010). https://doi.org/

10.1007/978-3-642-14509-4
21. Poonen, B.: Undecidability in number theory. Not. AMS, 55(3), 344–350 (2008).

https://www.ams.org/notices/200803/tx080300344p.pdf
22. Setzer, A.: Wheels (Draft) (1997). http://www.cs.swan.ac.uk/csetzer/articles/

wheel.pdf
23. Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Abramsky, S., Gab-

bay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science. Volume IV:
Semantic Modelling, Oxford University Press, pp. 357–526 (1995)

24. Suppes, P.: Introduction to Logic. Van Nostrand Reinhold (1957)
25. Tucker, J.V.: Unfinished Business: abstract data types and computer arithmetic.

BCS FACS FACTS, The Newsletter of the Formal Aspects of Computing Science
(FACS) Specialist Group, issue 2022–1, February 2022, pp. 60–68 (2022). https://
www.bcs.org/media/8289/facs-jan22.pdf

26. Ullian, J.S.: Splinters of recursive functions. J. Symbolic Logic 25(1), 33–38 (1960).
https://doi.org/10.2307/2964335

http://www.iaeng.org/IJAM/issues_v46/issue_1/IJAM_46_1_03.pdf
http://www.iaeng.org/IJAM/issues_v46/issue_1/IJAM_46_1_03.pdf
https://cseweb.ucsd.edu/goguen/pubs/other.html
https://doi.org/10.2200/S00310ED1V01Y201011DCT005
https://doi.org/10.2200/S00310ED1V01Y201011DCT005
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.2969/jmsj/03520289
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://www.ams.org/notices/200803/tx080300344p.pdf
http://www.cs.swan.ac.uk/csetzer/articles/wheel.pdf
http://www.cs.swan.ac.uk/csetzer/articles/wheel.pdf
https://www.bcs.org/media/8289/facs-jan22.pdf
https://www.bcs.org/media/8289/facs-jan22.pdf
https://doi.org/10.2307/2964335

A Survey of Model Learning Techniques
for Recurrent Neural Networks

Benedikt Bollig1 , Martin Leucker2 , and Daniel Neider3(B)

1 Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
2 Institute for Software Engineering and Programming Languages,

Universität zu Lübeck, Lübeck, Germany
3 Safety and Explainability of Learning Systems Group,

Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

daniel.neider@uni-oldenburg.de

Abstract. Ensuring the correctness and reliability of deep neural net-
works is a challenge. Suitable formal analysis and verification techniques
have yet to be developed. One promising approach towards this goal is
model learning, which seeks to derive surrogate models of the underlying
neural network in a model class that permits sophisticated analysis and
verification techniques. This paper surveys several existing model learn-
ing approaches that infer finite-state automata and context-free gram-
mars from Recurrent Neural Networks, an essential class of deep neural
networks for sequential data. Most of these methods rely on Angluin’s
approach for learning finite automata but implement different ways of
checking the equivalence of a learned model with the neural network.
Our paper presents these distinct techniques in a unified language and
discusses their strengths and weaknesses. Furthermore, we survey model
learning techniques that follow a novel trend in explainable artificial
intelligence and learn models in the form of formal grammars.

Keywords: Model learning · Recurrent Neural Networks · Automata
learning

1 Introduction

Rather than programming manually, it seems charming to simply provide exam-
ples of the intended input-output behavior of a given function and derive the
function’s implementation using algorithmic means. That is the promise of
machine learning, in which often some form of classification problem is addressed
by adjusting the parameters of a (deep) neural network until it fits the sample
set appropriately.

While machine learning has shown to provide excellent solutions in many
cases, it is not surprising that this approach also has deficiencies. Starting

This work was partly supported by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) grant number 434592664.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 81–97, 2022.
https://doi.org/10.1007/978-3-031-15629-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_5&domain=pdf
http://orcid.org/0000-0003-0985-6115
http://orcid.org/0000-0002-3696-9222
http://orcid.org/0000-0001-9276-6342
https://doi.org/10.1007/978-3-031-15629-8_5

82 B. Bollig et al.

with the question to which extent the examples are characteristic, it is unclear
whether the learning algorithm considers the characteristic aspects of the exam-
ples, whether the resulting system really realizes or closely approximates the
intended function, or whether it meets privacy requirements, to name but a
few challenges. As such, sophisticated analysis and verification techniques for
the learned artifacts seem extremely important to make sure that the resulting
system meets its intended goals.

In the area of formal methods (see Garavel, ter Beek, and van de Pol [10]
for a recent survey), a vast number of analysis and verification methods have
been developed to analyze systems, often given as programs. As such, it seems
promising to apply these methods also for the analysis of deep neural networks.
To this end, two general approaches seem possible. First, one could adapt the
procedures developed in the area of formal methods to analyze the artifacts
encountered in machine learning directly. Second, one may translate the artifacts
found in machine learning (e.g., deep neural networks) into formal models that
are well-studied in program verification. In other words, the actual object of
study is translated into a so-called surrogate model that mimics relevant aspects
of the underlying system and is easier to analyze or may be used for explaining
some of its aspects.

This paper gives a short overview of several techniques following the latter
of the two approaches above. More precisely, we consider Recurrent Neural Net-
works (RNNs), an essential subclass of deep neural networks for classification
and regression of sequential data, and survey a recent trend in the literature that
employs model learning techniques [30]. The core insight is that RNNs can be
seen as deep neural networks with a notion of state, which may be approximated
by finite automata. This view permits using the wealth of existing verification
and analysis techniques for automata (e.g., model checking) to reason about
RNNs.1

In Sect. 2, we precisely define the object of study (i.e., recurrent neural net-
works) and introduce basic notation from automata theory. Then, Sect. 3 surveys
three state-of-the-art model learning approaches for inferring finite-state abstrac-
tions of a given RNN. All three approaches build on Angluin’s L∗ automata-
learning algorithm but differ in how they check whether a learned automaton
is equivalent to the RNN—or at least an approximation thereof that is good
enough. While Mayr and Yovine [23,24] use ideas underlying Valiant’s Probably
Approximately Correct (PAC) learning [31] to this end (Sect. 3.1), Khmelnit-
sky et al. [18] rely on an approach based on Hoeffding’s inequality bound [15]
(Sect. 3.2), which is also used in statistical model checking [19]. The third app-
roach by Weiss, Goldberg, and Yahav [32] (Sect. 3.3), on the other hand, does
not use probabilistic sampling but instead proposes an abstraction refinement
technique to perform the equivalence check.

1 We refer to the comprehensive overview article by Frits Vaandrager [30] for a gentle
introduction to the field of automata-based model learning, which highlights the
milestones until the state-of-the art and identifies the challenges faced today.

A Survey of Model Learning Techniques for Recurrent Neural Networks 83

Recurrent neural networks have also often been employed for language recog-
nition and other language processing tasks. Since (controlled) natural languages
often have a context-free nature, context-free grammars seem to be a more suit-
able object of study than finite automata. Hence, we sketch an approach in
Sect. 4 that infers a context-free grammar as a surrogate model instead of a
finite automaton. This approach follows a current trend in explainable artifi-
cial intelligence, where formal grammars are used to explain how the underlying
RNN processes language artifacts.

2 Recurrent Neural Networks as Language Acceptors

The term Recurrent Neural Network (RNN) is an umbrella term for a vari-
ety of artificial neural networks that process sequential data. In contrast to
feed-forward networks, RNNs are designed to process sequential data of varying
lengths, which is essential in domains such as natural language processing and
time-series prediction.

Following the recent literature on model learning for RNNs [5,18,22–24,32],
we make two assumptions throughout this paper:

1. We assume that the inputs to an RNN are sequences over a fixed, finite set of
symbols (e.g., letters). Such inputs are typically vectors in a one-hot encoding,
but we abstract from these kinds of implementation details and instead view
data series as words over a finite alphabet.

2. We consider settings where an RNN is used as a binary (or a one-vs-all)
classifier.

A popular example for such a setting is sentiment analysis [21], where the task
is to classify whether a text, such as a product review, expresses a positive or
negative opinion.

To make the setting above mathematically precise, let us first introduce the
required notation. An alphabet Σ is a nonempty finite set, whose elements are
called letters. A (finite) word w over Σ is a sequence a1 . . . an of letters ai ∈ Σ
for i ∈ {1, . . . , n}. The length of a word w = a1 . . . an is defined as |w| = n. The
unique word of length 0 is called the empty word and denoted by λ. We let Σ∗

refer to the set of all words over Σ and call a sub-set L ⊆ Σ∗ a language (over
Σ). The complement of a language L ⊆ Σ∗ is L = {w ∈ Σ∗ | w �∈ L}. For two
languages L1, L2 ⊆ Σ∗, we let L1\L2 = L1 ∩L2. The symmetric difference of L1

and L2 is defined as L1 ⊕ L2 = (L1\L2) ∪ (L2\L1).
We are now ready to define RNNs, which we view in this paper as language

acceptors (i.e., computational devices that “accept” or “reject” words). There are
several popular architectures to implement RNNs in practice, such as (simple)
Elman RNNs, long short-term memory (LSTM) [14], and GRUs [7]. However,
we abstract away from the actual implementation details and view RNNs as
abstract computational devices, as defined next.

Definition 1. A recurrent neural network (RNN) is a tuple R = (�, f, h0, g)
where � ∈ N is the dimension of the state space R

�, h0 ∈ R
� is the initial state,

84 B. Bollig et al.

f : R� × Σ → R
� is the transition function describing the effect of applying an

input letter in a given source state, and g : R� → {0, 1} is a function that defines
whether a state is accepting or rejecting (indicated by 1 and 0, respectively).

The language of an RNN R = (�, f, h0, g) is defined as

L(R) = {w ∈ Σ∗ | g(f(h0, w)) = 1},

where we extend the transition function f to words in the usual way: f(h, λ) = h
and f(h, ua) = f(f(h, u), a). In other words, a word w is contained in L(R) if
and only if, starting from h0, the state that the RNN reaches by successively
applying f to the letters of w is accepting.

Model learning for RNNs now seeks to extract a finite-state representation
from a given RNN, typically in the form of a deterministic finite automaton.
Formally, a deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is a finite, nonempty set of states, Σ is the input alphabet, δ : Q×Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. We assume familiarity with basic automata theory and just mention that
the language L(A) of A is defined as the set of words from Σ∗ that δ guides into
a final state when starting in q0. A language L ⊆ Σ∗ is called regular if there
exists a DFA A with L(A) = L.

The expressive power of RNNs depends on the exact architecture and gener-
ally goes beyond regular languages. Hence, we can—in general—not expect to be
able to extract a DFA that accepts the same language as a given RNN. Instead,
we can only hope that our DFA approximates its language. The following section
surveys various recent approaches that can learn such approximate DFAs.

3 Model Learning for Recurrent Neural Networks

The key idea underlying the majority of model learning approaches for RNNs is
to use Angluin’s L∗ algorithm [3]. We do not detail the algorithm here but only
define its interfaces and sketch its working principles.2

Given a (regular) language L ⊆ Σ∗, Anlguin’s algorithm seeks to learn a
DFA accepting L by interacting with an information source, often called the
teacher. The algorithm can ask two different types of queries: membership and
equivalence queries.

– On a membership query (MQ), the learning algorithm proposes a word w ∈ Σ∗

and wants to know whether w ∈ L. The teacher answers either “yes” (if
w ∈ L) or “no” (if w /∈ L).

2 Various improvements have been proposed over the years, such as Rivest and
Shapire’s algorithm [28] and Kearns and Vazirani’s algorithm [17]. However, all of
these operate within Angluin’s minimally adequate teacher framework [3] and can
seamlessly be swapped if desired. Hence, for the sake of a more straightforward expo-
sition, this paper focuses on Angluin’s L∗ algorithm as a prototypical example. The
reader may substitute L∗ with any other learning algorithm that operates in the
minimal adequate teacher framework.

A Survey of Model Learning Techniques for Recurrent Neural Networks 85

– On an equivalence query, the learning algorithm proposes a DFA A and wants
to know whether L(A) = L. The teacher answers either “yes” (if L(A) = L)
or returns a so-called counterexample w ∈ L(A) ⊕ L (if L(A) �= L).

Figure 1 shows an outline of Angluin’s L∗ algorithm. The algorithm asks
membership queries until it has collected sufficient information to construct a
hypothesis DFA A. It then proposes A on an equivalence query. If A passes
the test and the teacher returns “yes”, the learning process stops, and A is
returned. Otherwise, Angluin’s algorithm uses the counterexample and poten-
tially further membership queries to refine the current hypothesis. The process
of asking membership and equivalence queries then continues until the teacher
replies with “yes”. If the target language L is regular, Angluin’s algorithm guar-
antees to learn the minimal DFA accepting L in polynomial time (in the size of
the minimal DFA and the length of the longest counterexample).

Fig. 1. Overview of Angluin’s L∗ algorithm

In the context of model learning for an RNN R, the target language for
Angluin’s algorithm is L(R). It is not hard to verify that membership queries
can be answered straightforwardly by passing the input words through the net-
work, which can be parallelized and efficiently performed on a GPU. Note that
answering membership questions is also possible if the RNN is a black box and
only offers input-output access.

Equivalence queries, on the other hand, are much more complex. In a black-
box setting, one does not have access to the network’s internals and, thus,
can only interact with the network through a finite number of input-output
queries. However, even if an RNN is given (as a white box), reasoning about it is
often computationally intractable due to the enormous size of today’s networks.
Hence, most approaches in the literature approximate equivalence queries. In
the remainder, we survey three such techniques.

3.1 Answering Equivalence Queries Probably Approximately
Correct

Mayr and Yovine [23,24] proposed a simple yet effective way to approximate
equivalence queries, which relies on Valiant’s paradigm of Probably Approxi-

86 B. Bollig et al.

mately Correct (PAC) learning [31] and has first been applied to automata learn-
ing by Angluin [3]. Instead of reasoning about an RNN symbolically, the core
idea is to replace an equivalence query with a series of membership queries with
randomly sampled words. If the number of membership queries is large enough,
we can guarantee with high confidence that the learned DFA makes only minor
errors. Note that this approach is particularly suited for black-box settings, when
only input-output queries to the RNN are possible.

To make the above idea mathematically precise, let us fix a probability dis-
tribution D over Σ∗ such that

∑
w∈Σ∗ PD(w) = 1. This distribution allows us

to determine the probability

PD(A ⊕ R) :=
∑

w∈L(A)⊕L(R)

PD(w)

that the languages of a DFA A and an RNN R differ. If this quantity is smaller
than a user-provided error parameter ε ∈ (0, 1) (i.e., PD(A ⊕ R) < ε), we say
that A is ε-approximately correct (and drop ε if it is clear from the context). In
this case, the probability of a randomly chosen input revealing that A and R
differ is less than ε.

The actual probability distribution D over Σ∗ is not essential for the correct-
ness of Mayr and Yovine’s approach but influences the learned DFA, of course.
A common approach to defining such a distribution is to fix (i) a probability
pa ∈ [0, 1] for each a ∈ Σ such that

∑
a∈Σ pa = 1 and (ii) a “termination”

probability pt ∈ (0, 1]. Together, these probabilities define a distribution D over
Σ∗ that is given by

PD(a1 . . . an) :=

(
n∏

i=1

pai

)

· (1 − pt)n · pt.

Note that the expected length of a randomly drawn word is then 1/pt − 1 with a
variance of (1−pt)/p2

t .
Fixing a confidence parameter γ ∈ (0, 1), Mayr and Yovine now replace an

equivalence query with a set of random tests large enough to conclude that A is
ε-approximately correct with confidence at least 1−γ. Apart from the parameters
ε and γ, the size of this test suite also depends on the number of approximate
equivalence queries that have been made so far. To make the i-th equivalence
query, where i ≥ 1, one requires a test suite of size

ri :=
⌈

1
ε
(i · ln 2 − ln γ)

⌉

.

Once ri words have been drawn according to D, a membership query is posed
with each of them. Then, the result is compared to the hypothesis DFA A. If
one of the membership queries shows a difference between the target language
and A, the corresponding word is returned as a counterexample. Otherwise, the
teacher returns “yes” and the learning stops.

A Survey of Model Learning Techniques for Recurrent Neural Networks 87

Clearly, the exact version of Angluin’s algorithm either returns a DFA eventu-
ally or repeats forever (the latter happens if L(R) is not regular). If the learning
algorithm returns a DFA A, say after m ≥ 1 equivalence queries, then Angluin’s
results [3] imply that A is ε-approximately correct with probability at least
1 − γ. To prove that this is true, we observe that the probability of A not being
ε-approximately correct (i.e., PD(A ⊕ R) ≥ ε) if all test inputs have passed all
of the m equivalence queries is at most

m∑

i=1

(1 − ε)ri ≤
m∑

i=1

e−εri ≤
m∑

i=1

2−iγ ≤ γ.

Thus, A is indeed ε-approximately correct with probability of at least 1 − γ. It
is also worth noting that this approach is guaranteed to terminate if L(R) is
regular.

To cope with RNNs whose language is not regular, Mayr and Yovine impose
two bounds on the teacher: the maximum number k ≥ 1 of equivalence queries
and the maximum length b ≥ 0 of random words. Once one of those two bounds
is reached, the learning process stops, and the most recent hypothesis DFA is
returned.

If the learning terminates prematurely, one can no longer hope that A has
the desired (ε, γ)-guarantee. However, one can still derive statistical information.
To make this precise, let us assume that the learning stopped after i ≥ 1 equiv-
alence queries and the test suite still contained k > 0 counterexamples (i.e., k
membership queries revealed a difference between A and R). Then, Mayr and
Yovine show that one can still accept the hypothesis that A is ε-approximately
correct with confidence γ′ >

(
ri

k

)
e−ε(ri−k). Similarly, one can accept the hypoth-

esis that A is ε′-approximately correct with probability at least 1 − γ for every
ε′ > 1

ri−k

(
ln

(
ri

k

) − ln γ
)
, provided ri − k �= 0. However, Mayr and Yovine have

observed that both ε′ and γ′ can be larger than 1 in practice and, hence, carry
no meaning in such cases.

3.2 Equivalence Queries Inspired by Statistical Model Checking

Khmelnitsky et al. [18] propose a method that is similar to the one by Mayr
and Yovine but takes its inspiration from statistical model checking (SMC) [19].
Instead of increasing the number of random tests with each equivalence query,
Khmelnitsky et al. fix it to

r :=

⌈
log 2

γ

2ε2

⌉

.

By applying Hoeffding’s inequality bound [15], one then obtains that the prob-
ability of a DFA being ε-approximately correct if it passes such an equivalence
query is at least 1 − γ.

Figure 2 compares the number of membership queries per equivalence query
of Mayr and Yovine’s approach as well as Khmelnitsky et al.’s approach for
ε = γ = 0.1, ε = γ = 0.05, and ε = γ = 0.01. In all three cases, Mayr and

88 B. Bollig et al.

Yovine’s number of membership queries per equivalence query is initially lower
but grows with the number of equivalence queries asked. Since Khmelnitsky
et al.’s approach always asks the same constant number of membership queries,
Mayr and Yovine’s approach eventually asks more per equivalence query, and this
difference grows over time. This observation indicates that Khmelnitsky et al.’s
approach is preferable if the language of an RNN is expected to be complex and,
hence, Angluin’s algorithms has to ask a large number of equivalence queries.

Fig. 2. Comparison of the number of membership queries (MQ) per equivalence
query (EQ) of Mayr and Yovine’s approach [23] and Khmelnitsky et al.’s approach [18]

While this approach and the one of Sect. 3.1 work in principle, both have
drawbacks in practice. On the one hand, the size of the test suite may be huge,
and finding a counterexample or proving equivalence might take a substantial
time (cf. Fig. 2). On the other hand, the chosen random distribution also has to
take the RNN into account because the statistical guarantee is meaningless if
this is not the case. Due to these problems, it has been reported that random
sampling does often not work well in practice [18,32].

To mitigate this severe practical limitation, Weiss, Goldberg, and Yahav [32]
have proposed an abstraction refinement approach, which we describe in the
next section. However, before we do so, let us briefly sketch how Khmelnitsky et
al. address this issue.

Khmelnitsky et al.’s precise setting is not a mere extraction of a DFA from
an RNN but the verification of the RNN. More precisely, given an RNN R and a
formal specification in the form of a language S ⊆ Σ∗, the task is to prove that
L(R) ⊆ S. The language S can be given as a DFA or in any other form that
compiles into one (e.g., temporal logics, such as Linear Temporal Logic (LTL) [27]
or the IEEE Property Specification Language (PSL) [9]).

The core idea of Khmelnitsky et al. is to use Angluin’s algorithm to learn a
DFA A as a surrogate model of R and then perform model checking on A. This
process is sketched in Fig. 3 and modifies the teacher as follows.

A Survey of Model Learning Techniques for Recurrent Neural Networks 89

Fig. 3. Property directed verification of RNNs as proposed by Khmelnitsky et al. [18]

As in Angluin’s classical setting, membership queries are answered by passing
the input straightforwardly through the RNN and reporting the outcome. How-
ever, equivalence queries with a hypothesis DFA A are answered in a so-called
property-directed manner. More specifically, Khmelnitsky et al.’s algorithm first
checks L(A) ⊆ S and then proceeds depending on the outcome of this test:

– If a word w ∈ L(A)\S is found (i.e., L(A) �⊆ S), the algorithm checks whether
w ∈ L(R) holds using a membership query. If this is the case, an input vio-
lating the property S was detected, and the algorithm returns that the RNN
violates the property. If w /∈ L(R), then w is returned as a counterexample
to Angluin’s algorithm, witnessing that the surrogate model A and the RNN
R differ (i.e., w ∈ L(A)\L(R)).

– If L(A) ⊆ S, then the teacher performs an approximate equivalence query
using membership queries as described above with the exception that it checks
L(R) ⊆ L(A) instead of L(R) = L(A). If a counterexample w ∈ L(R) \L(A)
is found, it is returned as a counterexample to Angluin’s algorithm. If all
tests pass, on the other hand, the teacher returns “yes” and the learning
stops. In the latter case, the RNN is ε-approximately correct with respect to
the property S with confidence at least 1 − γ.

As Khmelnitsky et al. show, this property-directed approach empirically per-
forms better than a purely statistical test. In the following section, we survey
another method that replaces the statistical test with symbolic reasoning.

3.3 An Abstraction Refinement Approach to Equivalence Queries

While random sampling is an established way to answer equivalence queries,
experiments show that it often fails to detect differences between a given hypoth-

90 B. Bollig et al.

esis DFA and an RNN [18,32]. This observation has prompted Weiss, Goldberg,
and Yahav [32] to propose an abstraction refinement approach, which we sketch
in this section.

The core idea of this approach is to maintain (and refine) a finite abstraction
of an RNN R = (�, f, h0, g) in the form of a so-called partitioning function
p : R� → {1, . . . , k}, which partitions the (uncountable) state set of R into k ∈
N\{0} abstract states. Inspired by earlier work of Omlin and Giles [26], each
such partitioning function is constructed in a way such that it can be translated
into a DFA AR,p, whose states correspond to the k partitions induced by p. This
DFA approximates the behavior of R and is used to answer equivalence queries.

Given a hypothesis DFA A, Weiss, Goldberg, and Yahav’s equivalence query
now searches for a word w ∈ L(A) ⊕ L(AR,p), witnessing a difference between
the hypothesis DFA A and the abstraction AR,p. This search is performed using
a parallel, synchronized, depth-first traversal of both DFAs. For reasons of effi-
ciency, the DFA AR,p is never constructed explicitly but only computed on the
fly.

If a word w ∈ L(A) ⊕ L(AR,p) is found, the algorithm checks the actual
behavior of R on w using a membership query (i.e., it checks whether w ∈ L(R))
and proceeds as follows:

– If A and R disagree on w (i.e., w ∈ L(A) ⇔ w /∈ L(R)), then A is incorrect
and w is returned as a counterexample.

– If A and R agree on w (i.e., w ∈ L(A) ⇔ w ∈ L(R)), then the partitioning
function p is refined (as sketched shortly). This refinement is necessary to
account for the fact that p is too coarse, causing AR,p to classify w incorrectly.
Once p has been refined, the parallel depth-first search begins anew.

Note that refining p causes the abstraction AR,p gradually to converge to a
state-based representation of the RNN R.

Let us now turn to the description of the refinement step, which initializes p
to p(h) = 1 for h ∈ R

� before the first equivalence query. To understand which
partition of p has to be refined, we must carefully analyze the synchronized
depth-first search. Recall that the refinement step is triggered once a word w ∈
L(A)⊕L(AR,p) with w ∈ L(A) ⇔ w ∈ L(R) is found (see above). As illustrated
in Fig. 4, Weiss, Goldberg, and Yahav show that this situation arises when the
search has identified two words u1, u2 ∈ Σ∗ such that

– u1 and u2 lead to the same state q in abstraction DFA AR,p; and
– u1, u2 lead to two distinct states q1 �= q2 in the hypothesis DFA A.

Since Angluin’s algorithm always constructs hypothesis DFAs that are minimal
for the language it has learned so far, q1 and q2 cannot be equivalent, and there
must exist a separating word v ∈ Σ∗ such that u1v ∈ L(A) ⇔ u2v /∈ L(A).
However, u1v ∈ L(AR,p) ⇔ u2v ∈ L(AR,p) since u1 and u2 lead to the same
state q in AR,p.

In the situation of Fig. 4, the synchronized search performs two membership
queries with u1v and u2v. However, we already know that A and R agree on

A Survey of Model Learning Techniques for Recurrent Neural Networks 91

both u1v and u2v—otherwise, one of them would have been returned as a coun-
terexample, avoiding the refinement step. Hence, the DFA AR,p is incorrect, and
we obtain w = uiv for the unique i ∈ {1, 2} with uiv ∈ L(A) ⊕ L(AR,p).

Fig. 4. Illustration of the situation arising when refining the partintioning function p

Let h1 = f(h0, u1) ∈ R
� and h2 = f(h0, u2) ∈ R

� now be the states of R
reached after reading u1 and u2, respectively. Since u1 and u2 lead to the same
state in AR,p, we know that p(u1) = p(u2). However, as shown in Fig. 4, this
is incorrect, and the partition p(u1) = p(u2) needs to be split because it is too
coarse (causing the state q in AR,p to be refined). To this end, Weiss, Goldberg,
and Yahav use a Support Vector Machine (SVM) classifier [6] with a radial basis
function kernel. The choice of SVM is motivated by their maximum-margin
property, meaning that they seek to find a decision boundary that maximizes
the margin between h1 and h2.

Since RNNs are more expressive than regular languages, the refinement step
can be necessary an infinite number of times, causing the hypothesis DFA A and
the abstraction DFA AR,p to grow indefinitely. To counter this problem, Weiss,
Goldberg, and Yahav place a time or size limit on the interaction between the
learner and teacher, after which the teacher replies “yes” and the last hypoth-
esis DFA A is returned. The authors observe empirically that these DFAs still
generalize well to their respective networks [32].

Finally, it is worth pointing out that Weiss, Goldberg, and Yahav have gener-
alized the work presented in this section to a probabilistic setting under noise, in
which they propose a modification of Angluin’s L∗ algorithm for learning prob-
abilistic DFAs [34]. In addition, there exist several other approaches to extract
finite-state machines from recurrent neural networks [4,16,25]. While these works
present many vital insights into the topic, we skip an in-depth discussion here.
Instead, let us now turn to model learning techniques that follow a novel trend
in explainable artificial intelligence and learn models in the form of formal gram-
mars.

4 Explainability Beyond Regular Languages

As Weiss et al. [33] point out, RNNs can simulate several types of counters or
stacks. The high expressive power of RNNs and their applicability in natural
language processing motivate extensions of the inference techniques described

92 B. Bollig et al.

above beyond the class of regular languages. Since explainability becomes more
critical the more expressive the models are, it is worth representing the languages
of RNNs with human-readable grammars.

Grammatical inference for context-free languages (CFLs), which are repre-
sented by grammars or pushdown automata, has a long tradition. Though it is
widely considered an open problem, the literature provides several approaches
to learning restricted CFLs (see de la Higuera [12,13] for an overview). In this
section, we sketch a seamless generalization of Angluin’s algorithm for visibly
pushdown languages (VPLs), which has recently been proposed by Barbot et
al. [5]. As the name suggests, VPLs are defined through the notion of visibly
pushdown automata, though they turn out to have several equivalent character-
izations. Examples include Monadic Second-Order Logic or specific context-free
grammars [2] (we come back to this point shortly). VPLs reside strictly between
regular languages and deterministic CFLs. They enjoy a close link with regular
tree languages, making them just as robust.

The key feature of VPLs is that the given input alphabet Σ is partitioned
into push, pop, and internal letters, which determines—once and for all—the
effect on the pushdown stack: (i) along with a push letter, depending only on
the current state, one stack symbol is pushed onto the stack; (ii) consuming a
pop letter allows one to read, and will remove, the topmost stack symbol; and
(iii) internal letters are read without touching the stack. Moreover, modifying
the stack without consuming a letter is prohibited (i.e., λ-transitions are not
allowed). A typical VPL is {anbn | n ∈ N} with a being a push and b a pop
symbol. By contrast, the CFL {anban | n ∈ N}, no matter what partitioning, is
not a VPL (we leave it to the reader to verify this).

It is not hard to see that, over such an alphabet Σ, there are close connections
between words and trees. This is illustrated in Fig. 5, where a and b are push
letters, a and b are pop letters, and c is an internal letter. First, a word w ∈ Σ∗

determines a unique nesting structure that associates with every push position
at most one pop position and vice versa (see Fig. 5a).3 Second, omitting some
of the direct-successor edges of the word reveals a tree tree(w) over a suitable
ranked alphabet, such as the one shown in Fig. 5b.

The set tree(L) = {tree(w) | w ∈ L} of trees associated with a VPL L turns
out to be a regular tree language. Therefore, a unique minimal deterministic
bottom-up tree automaton exists for this language, which is the model that
Barbot et al.’s algorithm infers. More precisely, Barbot et al. build on the tree-
automata learning algorithm by Drewes and Högberg [8], an extension of L∗ to
finite ranked trees. Note that this detour via tree-automata is necessary because
visibly pushdown automata do not have a minimal canonical representation [1].
The learned tree automaton for tree(L) can then be translated into a grammar,
or a pushdown automaton, for L.

As the target device is a tree automaton representing the tree representation
tree(L) of the unknown word language L ⊆ Σ∗, a membership query is asked in

3 For the sake of convenience, Barbot et al. [5] restrict their focus to well-formed words
as this entails a bijection between push and pop positions.

A Survey of Model Learning Techniques for Recurrent Neural Networks 93

Fig. 5. A nested word (left) and its tree encoding (right)

terms of a tree t. However, the teacher still expects words and word languages
as queries. Accordingly, we implement the following main changes to the general
learning setup of Fig. 1 (on Page 5):

– The target language being of the form tree(L), queries for trees that are not
of the form tree(w) with w ∈ Σ∗ can directly be answered negatively.

– For a membership query of the form tree(w) with w ∈ Σ∗, it is actually this
unique w that is sent to the teacher. The learner applies the outcome of the
query to tree(w) and refines its data structure accordingly.

– A hypothesis tree automaton is transformed into a model representing the
encoded visibly pushdown language. In particular, an equivalence query can
be asked in terms of a visibly pushdown automaton or visibly pushdown gram-
mar. It practical cases, however, it may also be possible to directly compare
the tree automata hypothesis to the given black-box system.

When restricting to well-formed words, a visibly pushdown grammar gener-
ates a matching pair of push and pop letters (i.e., in one rule). For example,
consider the context-free grammar

S → αAβ A → αAβ | AA | λ

with α = 〈abcd and β = wxyz〉, where A is a non-terminal symbol, 〈, a, b, c, d
are push letters, and w, x, y, z, 〉 are pop letters. This grammar generates a VPL
L that is equivalent to the visibly pushdown grammar given in Fig. 6. It is worth
pointing out that the grammar in Fig. 6 was automatically inferred by Barbot
et al.’s algorithm [5] from an RNN trained on sample words for L.

As in the case of finite automata, a significant challenge remains the equiv-
alence query, which has to check whether a hypothesis approximates the RNN
good enough. Barbot et al. [5] complement the statistical approach described
in Sect. 3 with an A∗-based search [11] to find counterexample words that the
RNN accepts but that are currently not contained in the hypothesis language.
The underlying idea is to explore the prefix tree Σ∗ while giving preference to

94 B. Bollig et al.

Fig. 6. A visibly pushdown grammar with start symbol A1

words that the RNN gives a higher score.4 Though being a heuristic, Barbot et
al. report that this approach was effective in their experiments.

Finally, it is worth pointing out that other techniques to extract gram-
mars from RNNs exist as well. For instance, using the notion of pattern rule
sets (PRSs), Yellin and Weiss [36] have devised an algorithm to extract gram-
mars from RNNs for a subclass of context-free languages that is orthogonal to
VPLs.

5 Conclusion

Model learning has become a valuable tool for establishing the correctness of
systems, especially when a system is highly complex or only accessible as a
black box. This paper has focussed on recurrent neural networks (RNNs), an
important class of artificial neural networks for sequential data, and surveyed
various model learning techniques for this class. Most of these techniques share
the idea of using Angluin’s L∗ algorithm to learn a finite-state model from an
RNN, but they differ on their specific implementation of the equivalence queries.
Furthermore, we have surveyed a learning technique that follows a novel trend
in explainable artificial intelligence and learns models in the form of formal
grammars.

While model learning promises an effective way to prove artificial intelligence
correct, it is often not clear what the term “correctness” actually means in this
context: the popularity of machine learning stems from the fact that no formal
specification exists, which renders traditional verification seemingly inappropri-
ate [20]. Thus, future work on verifying artificial intelligence cannot just focus
on the algorithmic aspects of verifying intelligent systems but must also explore
novel ways to specify their correctness formally [29,35].

References

1. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 89

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

4 Here, we assume that the acceptance function g : R� → {0, 1} of the given RNN is
obtained as the composition of a function score : R� → R and a threshold function
thr : R → {0, 1} such that, for a given threshold τ ∈ R, we have thr(x) = 1 iff x ≥ τ .

https://doi.org/10.1007/11523468_89
https://doi.org/10.1145/1516512.1516518

A Survey of Model Learning Techniques for Recurrent Neural Networks 95

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

4. Ayache, S., Eyraud, R., Goudian, N.: Explaining black boxes on sequential data
using weighted automata. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Pro-
ceedings of the 14th International Conference on Grammatical Inference, ICGI
2018, Wroc�law, Poland, 5–7 September 2018. Proceedings of Machine Learning
Research, vol. 93, pp. 81–103. PMLR (2018). http://proceedings.mlr.press/v93/
ayache19a.html

5. Barbot, B., Bollig, B., Finkel, A., Haddad, S., Khmelnitsky, I., Leucker, M., Nei-
der, D., Roy, R., Ye, L.: Extracting context-free grammars from recurrent neural
networks using tree-automata learning and a* search. In: Chandlee, J., Eyraud, R.,
Heinz, J., Jardine, A., van Zaanen, M. (eds.) Proceedings of the Fifteenth Inter-
national Conference on Grammatical Inference. Proceedings of Machine Learning
Research, vol. 153, pp. 113–129. PMLR, 23–27 August 2021. https://proceedings.
mlr.press/v153/barbot21a.html

6. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin clas-
sifiers. In: Haussler, D. (ed.) Proceedings of the Fifth Annual ACM Conference on
Computational Learning Theory, COLT 1992, Pittsburgh, PA, USA, 27–29 July
1992, pp. 144–152. ACM (1992). https://doi.org/10.1145/130385.130401

7. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.)
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, 25–29 October 2014, Doha, Qatar, A Meeting of SIG-
DAT, a Special Interest Group of the ACL, pp. 1724–1734. ACL (2014). https://
doi.org/10.3115/v1/d14-1179

8. Drewes, F., Högberg, J.: Query learning of regular tree languages: How to avoid
dead states. Theory Comput. Syst. 40(2), 163–185 (2007). https://doi.org/10.
1007/s00224-005-1233-3

9. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated
Circuits and Systems. Springer, Heidelberg (2006). https://doi.org/10.1007/978-
0-387-36123-9

10. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 1

11. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968).
https://doi.org/10.1109/TSSC.1968.300136

12. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nit. 38(9), 1332–1348 (2005). https://doi.org/10.1016/j.patcog.2005.01.003

13. de la Higuera, C.: Grammatical Inference. Cambridge University Press, Cambridge
(2010). https://doi.org/10.1017/CBO9781139194655

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

15. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963). https://doi.org/10.2307/2282952

16. Jacobsson, H.: Rule extraction from recurrent neural networks: A taxonomy
and review. Neural Comput. 17(6), 1223–1263 (2005). https://doi.org/10.1162/
0899766053630350

17. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994). https://doi.org/10.7551/mitpress/3897.001.0001

https://doi.org/10.1016/0890-5401(87)90052-6
http://proceedings.mlr.press/v93/ayache19a.html
http://proceedings.mlr.press/v93/ayache19a.html
https://proceedings.mlr.press/v153/barbot21a.html
https://proceedings.mlr.press/v153/barbot21a.html
https://doi.org/10.1145/130385.130401
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1007/s00224-005-1233-3
https://doi.org/10.1007/s00224-005-1233-3
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.patcog.2005.01.003
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.2307/2282952
https://doi.org/10.1162/0899766053630350
https://doi.org/10.1162/0899766053630350
https://doi.org/10.7551/mitpress/3897.001.0001

96 B. Bollig et al.

18. Khmelnitsky, I., et al.: Property-directed verification and robustness certification
of recurrent neural networks. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 364–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-88885-5 24

19. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

20. Leucker, M.: Formal verification of neural networks? In: Carvalho, G., Stolz, V.
(eds.) SBMF 2020. LNCS, vol. 12475, pp. 3–7. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-63882-5 1

21. Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau,
F.J. (eds.) Handbook of Natural Language Processing, 2nd edn., pp. 627–666.
Chapman and Hall/CRC (2010). http://www.crcnetbase.com/doi/abs/10.1201/
9781420085938-c26

22. Mayr, F., Visca, R., Yovine, S.: On-the-fly black-box probably approximately cor-
rect checking of recurrent neural networks. In: Holzinger, A., Kieseberg, P., Tjoa,
A.M., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279, pp. 343–363. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57321-8 19

23. Mayr, F., Yovine, S.: Regular inference on artificial neural networks. In: Holzinger,
A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol.
11015, pp. 350–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99740-7 25

24. Mayr, F., Yovine, S., Visca, R.: Property checking with interpretable error charac-
terization for recurrent neural networks. Mach. Learn. Knowl. Extr. 3(1), 205–227
(2021). https://doi.org/10.3390/make3010010

25. Okudono, T., Waga, M., Sekiyama, T., Hasuo, I.: Weighted automata extraction
from recurrent neural networks via regression on state spaces. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, 7–12 February 2020, pp. 5306–5314. AAAI Press (2020).
https://ojs.aaai.org/index.php/AAAI/article/view/5977

26. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neu-
ral networks. Neural Netw. 9(1), 41–52 (1996). https://doi.org/10.1016/0893-
6080(95)00086-0

27. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

28. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

29. Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 20–34. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 2

30. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://
doi.org/10.1145/2967606

31. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984).
https://doi.org/10.1145/1968.1972

https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-030-63882-5_1
https://doi.org/10.1007/978-3-030-63882-5_1
http://www.crcnetbase.com/doi/abs/10.1201/9781420085938-c26
http://www.crcnetbase.com/doi/abs/10.1201/9781420085938-c26
https://doi.org/10.1007/978-3-030-57321-8_19
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.3390/make3010010
https://ojs.aaai.org/index.php/AAAI/article/view/5977
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-030-01090-4_2
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/1968.1972

A Survey of Model Learning Techniques for Recurrent Neural Networks 97

32. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: Dy, J.G., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 5244–5253. PMLR (2018). http://proceedings.mlr.
press/v80/weiss18a.html

33. Weiss, G., Goldberg, Y., Yahav, E.: On the practical computational power of finite
precision RNNs for language recognition. In: Gurevych, I., Miyao, Y. (eds.) Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2018, Melbourne, Australia, 15–20 July 2018, Volume 2: Short Papers,
pp. 740–745. Association for Computational Linguistics (2018). https://doi.org/
10.18653/v1/P18-2117

34. Weiss, G., Goldberg, Y., Yahav, E.: Learning deterministic weighted automata
with queries and counterexamples. In: Wallach, H.M., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC,
Canada, pp. 8558–8569 (2019). https://proceedings.neurips.cc/paper/2019/hash/
d3f93e7766e8e1b7ef66dfdd9a8be93b-Abstract.html

35. Xie, X., Kersting, K., Neider, D.: Neuro-symbolic verification of deep neural net-
works. In: Proceedings of the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI 2022. ijcai.org (2022, to appear). https://doi.org/10.48550/
arXiv.2203.00938

36. Yellin, D.M., Weiss, G.: Synthesizing context-free grammars from recurrent neural
networks. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651, pp.
351–369. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 19

http://proceedings.mlr.press/v80/weiss18a.html
http://proceedings.mlr.press/v80/weiss18a.html
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://proceedings.neurips.cc/paper/2019/hash/d3f93e7766e8e1b7ef66dfdd9a8be93b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d3f93e7766e8e1b7ef66dfdd9a8be93b-Abstract.html
https://doi.org/10.48550/arXiv.2203.00938
https://doi.org/10.48550/arXiv.2203.00938
https://doi.org/10.1007/978-3-030-72016-2_19

Back-and-Forth in Space: On Logics
and Bisimilarity in Closure Spaces

Vincenzo Ciancia1 , Diego Latella1(B) , Mieke Massink1 ,
and Erik P. de Vink2

1 CNR-ISTI, Pisa, Italy
{V.Ciancia,D.Latella,M.Massink}@cnr.it

2 Eindhoven University of Technology, Eindhoven, The Netherlands
evink@win.tue.nl

Abstract. We adapt the standard notion of bisimilarity for topological
models to closure models and refine it for quasi-discrete closure models.
We also define an additional, weaker notion of bisimilarity that is based
on paths in space and expresses a form of conditional reachability in a
way that is reminiscent of Stuttering Equivalence on transition systems.
For each bisimilarity we provide a characterisation with respect to a
suitable spatial logic.

Keywords: Closure Spaces · Topological Spaces · Spatial Logics ·
Spatial Bisimilarities · Stuttering Equivalence

1 Introduction

The use of modal logics for the description of properties of topological spaces—
where a point in space satisfies formula � Φ whenever it belongs to the topological
closure of the set [[Φ]] of the points satisfying formula Φ—has a well established
tradition, dating back to the fourties, and has given rise to the research area of
Spatial Logics (see e.g. [5]). More recently, the class of underlying models of space
have been extended to include, for instance, closure spaces, a generalisation of
topological spaces (see e.g. [20]). The relevant logics have been extended accord-
ingly. The approach has been enriched with algorithms for spatial (and spatio-
temporal) logic model checking [13,14] and associated tools [4,11,12,23,24], and
has been applied in various domains, such as bike-sharing [17], Turing pat-
terns [30], medical image analysis [2–4,10]. An example of the latter is shown
in Fig. 1, where the segmentation of a nevus (Fig. 1a) and a segmentation of a
cross-section of brain grey matter (Fig. 1b) are presented. The original manual
segmentation of both the nevus [29] and the grey matter [1] is shown in blue,
while that resulting using spatial model checking is shown in cyan for the nevus

Research partially supported by the MIUR Project PRIN 2017FTXR7S “IT-
MaTTerS”. The authors are listed in alphabetical order; they contributed to this work
equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 98–115, 2022.
https://doi.org/10.1007/978-3-031-15629-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_6&domain=pdf
http://orcid.org/0000-0003-1314-0574
http://orcid.org/0000-0002-3257-9059
http://orcid.org/0000-0001-5089-002X
http://orcid.org/0000-0001-9514-2260
https://doi.org/10.1007/978-3-031-15629-8_6

Back-and-Forth in Space 99

and in red for grey matter. As the figures show, the manual segmentation of
the nevus and that obtained using spatial model-checking have a very good cor-
respondence; those of the grey matter coincide almost completely, so that very
little blue is visible.

Notions of spatial bisimilarity have been proposed as well, and their potential
for model minimisation plays an important role in the context of model-checking
optimisation. Consequently, a key question, when reasoning about modal logics
and their models, is the relationship between logical equivalences and notions of
bisimilarity on their models.

Fig. 1. Segmentation of (a) nevus and (b) grey matter in the brain.

In this paper we study three different notions of bisimilarity for closure mod-
els, i.e. models based on closure spaces. The first one is closure model bisimilarity
(CM-bisimilarity for short). This bisimilarity is an adaptation for closure mod-
els of classical topo-bisimilarity for topological models [5]. The former uses the
interior operator where topo-bisimilarity uses open sets. Actually, due to mono-
tonicity of the interior operator, CM-bisimilarity is an instantiation to closure
models of monotonic bisimulation on neighbourhood models [6,25,27].

We provide a logical characterisation of CM-bisimilarity, using Infinitary
Modal Logic, a modal logic with infinite conjunction [8].

We show that, for quasi-discrete closure models, i.e. closure models where
every point has a minimal neighbourhood, CM-bisimilarity gets a considerably
simpler definition—based on the the closure operator instead of the interior
operator—that is reminiscent of the definition of bisimilarity for transition sys-
tems. The advantage of the direct use of the closure operator, which is the
foundational operator of closure spaces, is given by its intuitive interpretation in
quasi-discrete closure models that makes several proofs simpler. We then present
a refinement of CM-bisimilarity, specialised for quasi-discrete closure models.
In quasi-discrete closure spaces, the closure of a set of points—and so also its
interior—can be expressed using an underlying binary relation; this gives rise to
both a direct closure and interior of a set, and a converse closure and interior,
the latter being obtained using the inverse of the binary relation. This, in turn,
induces a refined notion of bisimilarity, CM-bisimilarity with converse, CMC-
bisimilarity, which is shown to be strictly stronger than CM-bisimilarity. We

100 V. Ciancia et al.

also present a closure-based definition for CMC-bisimilarity [15]. Interestingly,
the latter resembles Strong Back-and-Forth bisimilarity proposed by De Nicola,
Montanari and Vaandrager in [19].

We extend the Infinitary Modal Logic with the converse of its unary modal
operator and show that the resulting logic characterises CMC-bisimilarity.

CM-bisimilarity, and CMC-bisimilarity, play an important role as they are
the closure model counterpart of classical topo-bisimilarity. On the other hand,
they turn out to be too strong, when considering intuitive relations on space,
such as scaling or reachability, that may be useful when dealing with models
representing images1. Consider, for instance, the image of a maze in Fig. 2a,
where walls are represented in black and the exit area is shown in light grey
(the floor is represented in white). A typical question one would ask is whether,
starting from a given point (i.e. pixel)—for instance one of those shown in dark
grey in the picture—one can reach the exit area, at the border of the image.

Fig. 2. A maze (a) and its path- and CoPa-minimal models ((b) and (c))

Essentially, we are interested in those paths in the picture, rooted at dark grey
points, leading to light grey points passing only through white points. In [18] we
introduced path-bisimilarity; it requires that, in order for two points to be equiv-
alent, for every path rooted in one point there must be a path rooted in the other
point and the end-points of the two paths must be bisimilar. Path-bisimilarity
is too weak; nothing whatsoever is required about the internal structure of the
relevant paths. For instance, Fig. 2b shows the minimal model for the image of
the maze shown in Fig. 2a according to path-bisimilarity. We see that all dark
grey points are equivalent and so are all white points. In other words, we are
unable to distinguish those dark grey (white) points from which one can reach
an exit from those from which one cannot. So, we look for reachability of bisimi-
lar points by means of paths over the underlying space. Such reachability is not
unconditional; we want the relevant paths to share some common structure. For
that purpose, we resort to a notion of “compatibility” between relevant paths
1 Images can be modeled as quasi-discrete closure spaces where the underlying relation

is a pixel/voxel adjacency relation; see [2–4,10] for details.

Back-and-Forth in Space 101

that essentially requires each of them to be composed by a sequence of non-
empty “zones”, with the total number of zones in each of the paths being the
same, while the length of each zone being arbitrary; each element of one path in
a given zone is required to be related by the bisimulation to all the elements in
the corresponding zone in the other path. This idea of compatibility gives rise
to the third notion of bisimulation we present in this paper, namely Compatible
Path bisimulation, CoPa-bisimulation. We show that, for quasi-discrete closure
models, CoPa-bisimulation is strictly weaker than CMC-bisimilarity2. Figure 2c
shows the minimal model for the image of the maze shown in Fig. 2 according to
CoPa-bisimilarity. We see that, in this model, dark grey points from which one
can reach light grey ones passing only by white points are distinguished from
those from which one cannot. Similarly, white points through which an exit can
be reached from a dark grey point are distinguished both from those that can’t
be reached from dark grey points and from those through which no light grey
point can be reached.

We provide a logical characterisation of CoPa-bisimularity too. The notion
of CoPa-bisimulation is reminiscent of that of the Equivalence with respect to
Stuttering for transition systems [9,22], although in a different context and with
different definitions as well as different underlying notions. The latter, in fact, is
defined via a convergent sequence of relations and makes use of a different notion
of path than the one of CS used in this paper. Finally, stuttering equivalence
is focussed on CTL/CTL∗, which implies a flow of time with single past (i.e.
trees), which is not the case for structures representing space.

The paper is organised as follows: after having settled the context and offered
some preliminary notions and definitions in Sect. 2, in Sect. 3 we present CM-
bisimilarity. Section 4 deals with CMC-bisimularity. Section 5 addresses CoPa-
bisimilarity. We conclude the paper with Sect. 6.

2 Preliminaries

In this paper, given a set X, P(X) denotes the powerset of X; for Y ⊆ X we
use Y to denote X \ Y , i.e. the complement of Y . For a function f : X → Y
and A ⊆ X, we let f(A) be defined as {f(a) | a ∈ A}. We briefly recall several
definitions and results on closure spaces, most of which are taken from [20].

Definition 1 (Closure Space – CS). A closure space, CS for short, is a
pair (X, C) where X is a non-empty set (of points) and C : P(X) → P(X) is
a function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪ A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X. •
The structures defined by Definition 1 are often known as Čech Closure
Spaces [33] and provide a convenient common framework for the study of several
different kinds of spatial models, both discrete and continuous [31]. In particular,
topological spaces coincide with the sub-class of CSs that satisfy the idempotence
axiom C(C(A) = C(A).
2 CoPa-bisimilarity is stronger than path-bisimilarity (see [18] for details).

102 V. Ciancia et al.

The interior operator is the dual of closure: I(A) = C(A). It holds that
I(X) = X, I(A) ⊆ A, and I(A1 ∩ A2) = I(A1) ∩ I(A2). A neighbourhood of a
point x ∈ X is any set A ⊆ X such that x ∈ I(A). A minimal neighbourhood of
a point x is a neighbourhood A of x such that A ⊆ A′ for every other neighbour-
hood A′ of x. We recall that the closure operator, and consequently the interior
operator, is monotonic: if A1 ⊆ A2 then C(A1) ⊆ C(A2) and I(A1) ⊆ I(A2).
We have occasion to use the following property of closure spaces3:

Lemma 1. Let (X, C) be a CS. For x ∈ X, A ⊆ X, it holds that x ∈ C(A) iff
U ∩ A �= ∅ for each neighbourhood U of x. 	

Definition 2 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that any of the two following equivalent conditions holds:
(i) each x ∈ X has a minimal neighbourhood; or (ii) for each A ⊆ X it holds
that C(A) =

⋃
x∈A C({x}). •

Given a relation R ⊆ X × X, define the function CR : P(X) → P(X) as follows:
for all A ⊆ X, CR(A) = A ∪ {x ∈ X | a ∈ A exists s.t. (a, x) ∈ R}. It is easy to
see that, for any R, CR satisfies all the axioms of Definition 1 and so (X, CR) is
a CS. The following theorem is a standard result in the theory of CSs [20]:

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X × X such that C = CR. 	

The above theorem implies that graphs coincide with QdCSs. We prefer to
treat graphs as QdCSs since in this way we can formulate key definitions at the
level of closure spaces and so we can have, in general, a uniform treatment for
graphs and other kinds of models for space (e.g. topological spaces) [31]. Note
furthermore that if X is finite, any closure space (X, C) is quasi-discrete.

In the sequel, whenever a CS (X, C) is quasi-discrete, we use �C to denote CR,
and, consequently, (X, �C) to denote the closure space, abstracting from the spec-
ification of R, when the latter is not necessary. Moreover, we let �C denote CR−1 .
Finally, we use the simplified notation �C(x) for �C({x}) and similarly for �C(x).
An example of the difference between �C and �C is shown in Fig. 3.

Regarding the interior operator I, the notations �I and �I are defined in the
obvious way: �I(A) = �C(A) and �I(A) = �C(A).

In the context of the present paper, paths over closure spaces play an impor-
tant role. Therefore, we give a formal definition of paths based on continuous
functions below.

Definition 3 (Continuous function). Function f : X1 → X2 is a continuous
function from (X1, C1) to (X2, C2) if and only if for all sets A ⊆ X1 we have
f(C1(A)) ⊆ C2(f(A)). •

3 See also [33] Corollary 14.B.7.

Back-and-Forth in Space 103

Fig. 3. In white: (a) a set of points A, (b) �C(A), and (c) �C(A).

Definition 4 (Index space). An index space is a connected 4 CS (I, C)
equipped with a total order � ⊆ I × I with a bottom element 0. We often write
ι1 < ι2 whenever ι1 � ι2 and ι1 �= ι2, (ι1, ι2) for {ι | ι1 < ι < ι2}, [ι1, ι2) for
{ι | ι1 ≤ ι < ι2}, and (ι1, ι2] for {ι | ι1 < ι ≤ ι2}. •
Definition 5 (Path). A path in CS (X, C) is a continuous function from an
index space J = (I, CJ) to (X, C). A path π is bounded if there exists � ∈ I
such that π(ι) = π(�) for all ι such that � � ι; we call the minimal such � the
length of π, written len(π). •
Particularly relevant in the present paper are quasi-discrete paths, i.e. paths
having (N, Csucc) as index space, where N is the set of natural numbers and succ
is the successor relation succ = {(m,n) |n = m + 1}.

The following lemmas state some useful properties of closure and interior
operators as well as of paths.

Lemma 2. For all QdCSs (X, �C), A,A1, A2 ⊆ X,x1, x2 ∈ X, and π : N → X
the following holds:

1. x1 ∈ �C({x2}) if and only if x2 ∈ �C({x1});
2. �C(A) = {x |x ∈ Xand exists a ∈ A such that a ∈ �C({x})};
3. π is a path over X if and only if for all j �= 0 the following holds:

π(j) ∈ �C(π(j − 1)) and π(j − 1) ∈ �C(π(j)). 	

Lemma 3. Let (X, �C) be a QdCS. Then �C(x) ⊆ A iff x ∈ �I(A) and �C(x) ⊆ A

iff x ∈ �I(A), for all x ∈ X and A ⊆ X. 	

In the sequel we will assume a set AP of atomic proposition letters is given and
we introduce the notion of closure model.

Definition 6 (Closure model – CM). A closure model, CM for short, is
a tuple M = (X, C,V), with (X, C) a CS, and V : AP → P(X) the (atomic
proposition) valuation function, assigning to each p ∈ AP the set of points where
p holds. •

4 Given CS (X, C), A ⊆ X is connected if it is not the union of two non-empty
separated sets. Two subsets A1, A2 ⊆ X are called separated if A1 ∩ C(A2) = ∅ =
C(A1) ∩ A2. CS (X, C) is connected if X is connected.

104 V. Ciancia et al.

All the definitions given above for CSs apply to CMs as well; thus, a quasi-
discrete closure model (QdCM for short) is a CM M = (X, �C,V) where (X, �C) is
a QdCS. For a closure model M = (X, C,V) we often write x ∈ M when x ∈ X.
Similarly, we speak of paths in M meaning paths in (X, C). For x ∈ M, we let
BPathsFJ,M(x) denote the set of all bounded paths π in M with indices in J ,
such that π(0) = x (paths rooted in x); similarly BPathsTJ,M(x) denotes the set
of all bounded paths π in M with indices in J , such that π(len(π)) = x (paths
ending in x). We refrain from writing the subscripts J,M when not necessary.

In the sequel, for a logic L, a formula Φ ∈ L, and a model M = (X, C,V)
we let [[Φ]]ML denote the set {x ∈ X |M, x |=L Φ} of all the points in M that
satisfy Φ, where |=L is the satisfaction relation for L. For the sake of readability,
we refrain from writing the subscript L when this does not cause confusion.

3 Bisimilarity for Closure Models

In this section, we introduce the first notion of bisimilarity that we consider,
namely CM-bisimilarity, for which we also provide a logical characterisation.

3.1 CM-bisimilarity

Definition 7. Given a CM M = (X, C,V), a symmetric relation B ⊆ X × X
is a CM-bisimulation for M if, whenever (x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all S1 ⊆ X such that x1 ∈ I(S1) exists S2 ⊆ X such that x2 ∈ I(S2) and

for all s2 ∈ S2 exists s1 ∈ S1 such that (s1, s2) ∈ B.

Two points x1, x2 ∈ X are called CM-bisimilar in M if (x1, x2) ∈ B for some
CM-bisimulation B for M. Notation, x1 �M

CM x2. •
The above notion is the natural adaptation for CMs of the notion of topo-
bisimulation for topological models [5]. In such models the underlying set is
equiped with a topology, i.e. a special case of a CS. For a topological model
M = (X, τ,V) with τ a topology on X the requirements for a relation B ⊆ X×X
to be a topo-bisimulation are similar to those in Definition 7; see [5] for details.

3.2 Logical Characterisation of CM-bisimilarity

Next, we show that CM-bisimilarity is characterised by an infinitary version of
Modal Logic, IML for short, where the classical modal operator � is interpreted
as closure and is denoted by N—for “near”. We first recall the definition of
IML [15], i.e. Modal Logic with infinite conjunction.

Definition 8. The abstract language of IML is defined as follows:

Φ ::= p | ¬Φ |
∧

i∈I

Φi | NΦ

Back-and-Forth in Space 105

where p ranges over AP and I ranges over a collection of index sets.
The satisfaction relation for all CMs M, points x ∈ M, and IML formulas Φ

is recursively defined on the structure of Φ as follows:

M, x |=IML p ⇔ x ∈ V(p);
M, x |=IML ¬Φ ⇔ M, x |=IML Φ does not hold;
M, x |=IML

∧
i∈I Φi ⇔ M, x |=IML Φi for all i ∈ I;

M, x |=IML NΦ ⇔ x ∈ C([[Φ]]M). •
Below we define IML-equivalence, i.e. the equivalence induced by IML.

Definition 9. Given CM M = (X, C,V), the equivalence relation M
IML ⊆ X×X

is defined as: x1 M
IML x2 if and only if for all IML formulas Φ the following holds:

M, x1 |=IML Φ if and only if M, x2 |=IML Φ. •
It holds that IML-equivalence M

IML includes CM-bisimilarity.

Lemma 4. For all points x1, x2 in a CM M, if x1 �M
CM x2 then x1 M

IML x2. 	

The converse of the lemma follows from Lemma 5 below.

Lemma 5. For a CM M, it holds that M
IML is a CM-bisimulation for M. 	

From this lemma we immediately obtain that x1 M
IML x2 implies x1 �M

CM x2, for
all points x1, x2 in a CM M. Summarizing, we get the following result.

Theorem 2. For every CM M it holds that IML-equivalence M
IML coincides with

CM-bisimilarity �M
CM . 	

4 CMC-bisimilarity for QdCMs

Definition 7 defines CM-bisimilarity in terms of the interior operator I. In the
case of QdCMs, an alternative formulation, exploiting the symmetric nature of
the operators in such spaces, can be given that uses the closure operator explicitly
and directly, as we will see below.

Definition 10. Given a QdCM M = (X, �C,V), a symmetric relation B ⊆ X ×
X is a CM-bisimulation for M if, whenever (x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all x′

1 such that x1 ∈ �C(x′
1) exists x′

2 with x2 ∈ �C(x′
2) and (x′

1, x
′
2) ∈ B. •

The above definition is justified by the next lemma.

Lemma 6. Let M = (X, �C,V) be a QdCM and B ⊆ X × X a relation. It holds
that B is a CM-bisimulation according to Definition 7 if and only if B is a
CM-bisimulation according to Definition 10. 	

As noted above, when dealing with QdCMs, we can exploit the symmetric nature
of the operators in such spaces. Recall in fact that, whenever M is quasi-discrete,
there are actually two interior functions, namely �I(S) and �I(S). It is then nat-
ural to exploit both functions for the definition of a notion of CM-bisimilarity
specifically designed for QdCMs, namely CMC-bisimilarity, presented below.

106 V. Ciancia et al.

4.1 CMC-bisimilarity for QdCMs

Definition 11. Given QdCM M = (X, �C,V), a symmetric relation B ⊆ X ×X
is a CMC-bisimulation for M if, whenever (x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all S1 ⊆ X such that x1 ∈ �I(S1) exists S2 ⊆ X such that x2 ∈ �I(S2) and

for all s2 ∈ S2, exists s1 ∈ S1 with (s1, s2) ∈ B;
3. for all S1 ⊆ X such that x1 ∈ �I(S1) exists S2 ⊆ X such that x2 ∈ �I(S2) and

for all s2 ∈ S2, exists s1 ∈ S1 with (s1, s2) ∈ B.

Two points x1, x2 ∈ X are called CMC-bisimilar in M, if (x1, x2) ∈ B for some
CMC-bisimulation B for M. Notation, x1 �M

CMC x2. •
For a QdCM M, as for CM-bisimilarity, we have that CMC-bisimilarity �CMC

on M is a CMC-bisimulation itself, viz. the largest CMC-bisimulation for M,
thus including each CMC-bisimulation for M. Also for CMC-bisimilarity, a for-
mulation directly in terms of closures is possible.

Definition 12. Given a QdCM M = (X, �C,V), a symmetric relation B ⊆ X ×
X is a CMC-bisimulation for M if, whenever (x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for all x′

1 ∈ �C(x1) exists x′
2 ∈ �C(x2) such that (x′

1, x
′
2) ∈ B;

3. for all x′
1 ∈ �C(x1) exists x′

2 ∈ �C(x2) such that (x′
1, x

′
2) ∈ B. •

The next lemma shows the interchangability of Definitions 11 and 12.

Lemma 7. Let M = (X, �C,V) be a QdCM and B ⊆ X × X a relation. It holds
that B is a CMC-bisimulation according to Definition 11 if and only if B is a
CMC-bisimulation according to Definition 12. 	

Remark 1. Note the correspondence of criterium (3) of Definition 12 and cri-
terium (2) of Definition 10. Recall that in the context of QdCMs we have that
x1 ∈ C(x′

1) if and only if x1 ∈ �C(x′
1) if and only if x′

1 ∈ �C(x1)—see Lemma 2(1).

Definition 12 was proposed originally in [15], in a slightly different form, and
resembles (strong) Back-and-Forth bisimulation of [19], in particular for the
presence of condition (3). Should we have deleted that condition, thus mak-
ing our definition more similar to classical strong bisimulation for transition
systems, we would have to consider points v12 and v22 of Fig. 4a bisimilar where
X = {v11, v12, v21, v22}, �C(v11) = {v11, v12}, �C(v12) = {v12}, �C(v21) = {v21, v22},
�C(v22) = {v22}, V(w) = {v11},V(b) = {v21}, and V(g) = {v12, v22}, for the
atomic propositions g, b, and w.

We instead want to consider them as not being bisimilar because they are in
the closure of points that are not bisimilar, namely v11 and v21. For instance,
v21 might represent a poisoned physical location (whereas v11 is not poisoned)
and so v22 should not be considered equivalent to v12 because the former can be
reached (by poison aerosol) from the poisoned location while the latter cannot.
The following proposition follows directly from the relevant definitions, keeping
in mind that for QdCSs the interior operator I coincides with the operator �I.

Back-and-Forth in Space 107

Fig. 4. v12 and v22 are not bisimilar (a); u11 �CM u21 but u11 ��CMC u21 (b).

Proposition 1. For x1, x2 in QdCM M, if x1 �M
CMC x2, then x1 �M

CM x2. 	

As can be expected, the converse of the proposition does not hold. A counter
example to Proposition 1 is shown in Fig. 4b.

Here, X = {u11, u12, u13, u21, u22}, C(u11) = {u11, u12}, C(u12) = {u12, u13},
C(u13) = {u13}, C(u21) = {u21, u22}, C(u22) = {u22}, and V(g) = {u11, u21},
V(b) = {u12, u13, u22}, and V(w) = {u13}, for the atomic propositions g, b,
and w.

It is easy to see, using Definition 10, that the symmetric closure of relation
B = {(u11, u21), (u12, u22)} is a CM-bisimulation. Thus, we have u11 �CM u21.
Note, the checking of the various requirements does not involve the point u13

at all. However, there is no CMC-bisimulation containing the pair (u11, u21). In
fact, any such relation would have to satisfy condition (2) of Definition 12. Since
u12 ∈ �C(u11) we would have (u12, u21) ∈ B or (u12, u22) ∈ B. Since u13 ∈ �C(u12),
similarly, we would have that (u13, u21) ∈ B or (u13, u22) ∈ B, because �C(u21) =
{u21, u22} and �C(u22) = {u22}. However, u13 ∈ V(w) and neither u21 ∈ V(w),
nor u22 ∈ V(w), violating requirement (1) of Definition 12, if (u13, u21) ∈ B or
(u13, u22) ∈ B.

4.2 Logical Characterisation of CMC-bisimilarity

In order to provide a logical characterisation of CMC-bisimilarity, we extend
IML with a “converse” of its modal operator. The result is the Infinitary Modal
Logic with Converse (IMLC), a logic with the two modalities �N and �N expressing
proximity. For example, with reference to the QdCM shown in Fig. 5a—where
points and atomic propositions are shown as grey-scale coloured squares and the
underlying relation is orthodiagonal adjacency5—Figure 5b shows in black the
points satisfying �Nblack in the model shown in Fig. 5a.

Definition 13. The abstract language of IML is defined as follows:

Φ ::= p | ¬Φ |
∧

i∈I

Φi | �N Φ | �N Φ.

where p ranges over AP and I ranges over a collection of index sets.
5 In orthodiagonal adjacency, two squares are related if they share a face or a vertex.

108 V. Ciancia et al.

Fig. 5. A model (a). In black the points satisfying �Nblack (b), and those satisfying
�ζblack[white] (c)

The satisfaction relation for all QdCMs M, points x ∈ M, and IMLC formu-
las Φ is defined recursively on the structure of Φ as follows:

M, x |=IMLC p ⇔ x ∈ V(p);
M, x |=IMLC ¬Φ ⇔ M, x |=IMLC Φ does not hold;
M, x |=IMLC

∧
i∈I Φi ⇔ M, x |=IMLC Φi for all i ∈ I;

M, x |=IMLC
�N Φ ⇔ x ∈ �C([[Φ]]M);

M, x |=IMLC
�N Φ ⇔ x ∈ �C([[Φ]]M). •

IMLC-equivalence is defined in the usual way:

Definition 14. Given QdCM M = (X, �C,V), the equivalence relation M
IMLC ⊆

X × X is defined as: x1 M
IMLC x2 if and only if for all IMLC formulas Φ the

following holds: M, x1 |=IMLC Φ if and only if M, x2 |=IMLC Φ. •
Next we derive two lemmas which are used to prove that CMC-bisimilarity and
IMLC-equivalence coincide.

Lemma 8. For x1, x2 in QdCM M, if x1 �M
CMC x2 then x1 M

IMLC x2. 	

For what concerns the other direction, i.e. going from IMLC-equivalence to CMC-
bisimilarity, we have the following result.

Lemma 9. For a QdCM M, M
IMLC is a CMC-bisimulation for M. 	

With the two lemmas above in place, we can establish the correspondence of
CMC-bisimilarity and IMLC-equivalence.

Theorem 3. For a QdCM M it holds that M
IMLC coincides with �M

CMC. 	

Remark 2. In previous work of Ciancia et al., versions of the Spatial Logic for
Closure Spaces, SLCS, have been defined that are based on the surrounded opera-
tor S and/or the reachability operator ρ (see e.g. [4,14,15,18]). A point x satisfies
Φ1 S Φ2 if it lays in an area whose points satisfy Φ1, and that is delimited (i.e., sur-
rounded) by points that satisfy Φ2; x satisfies ρΦ1[Φ2] if there is a path rooted in

Back-and-Forth in Space 109

x that can reach a point satisfying Φ1 and whose internal points—if any—satisfy
Φ2. In [4], it has been shown that S can be derived from the logical operator ρ;
more specifically, Φ1 S Φ2 is equivalent to Φ1∧¬ρ(¬(Φ1∨Φ2))[¬Φ2]. Furthermore,
for QdCM, ρ gives rise to two symmetric operators, namely �ρ—coinciding with
ρ—and �ρ—meaning that x can be reached from a point satisfying Φ1, via a path
whose internal points satisfy Φ2. It is easy to see that, for such spaces, �N Φ (�N Φ)
is equivalent to �ρ Φ[false] (�ρ Φ[false]) and that �ρ Φ1[Φ2] (�ρ Φ1[Φ2]) is equivalent
to a suitable combination of (possibly infinite) disjunctions and nested �N (�N);
the interested reader is referred to [16]. Thus, on QdCMs, IMLC and ISLCS—the
infinitary version of SLCS [18]—share the same expressive power.

5 CoPa-Bisimilarity for QdCM

CM-bisimilarity, and its refinement CMC-bisimilarity, are a fundamental start-
ing point for the study of spatial bisimulations due to their strong links to
topo-bisimulation. On the other hand, they are rather fine-grained relations for
reasoning about general properties of space. For instance, with reference to the
model of Fig. 6a, where all black points satisfy only atomic proposition b while
the grey ones satisfy only g, the point at the center of the model is not CMC-
bisimilar to any other black point. This is because CMC-bisimilarity is based on
the fact that points reachable “in one step” are taken into consideration, as it is
clear also from Definition 12. This, in turn, gives bisimilarity a sort of “counting”
power, that goes against the idea that, for instance, all black points in the model
could be considered spatially equivalent. In fact, they are black and can reach
black or grey points. Furthermore, they could be considered equivalent to the
black point of a smaller model consisting of just one black and one grey point
mutually connected—that would in fact be minimal.

Fig. 6. A model (a); zones in paths (b).

In order to relax such “counting” capability of bisimilarity, one could think
of considering paths instead of single “steps”; and in fact in [18] we introduced
such a bisimilarity, called path-bisimilarity. The latter requires that, in order for
two points to be equivalent, for every bounded path rooted in one point there
must be a bounded path rooted in the other point and the end-points of the two
paths must be bisimilar.

110 V. Ciancia et al.

Fig. 7. x11 �CoPa x21 but x11 ��CMC x21.

As we have briefly discussed in Sect. 1, however, path-bisimilarity is too weak.
A deeper insight into the structure of paths is desirable as well as some, relatively
high-level, requirements over them. For that purpose we resort to a notion of
“compatibility” between relevant paths that essentially requires each of them
be composed of a non-empty sequence of non-empty, adjacent “zones”. More
precisely, both paths under consideration in a transfer condition should share
the same structure, as follows (see Fig. 6b):

– both paths are composed by a sequence of (non-empty) “zones”;
– the number of zones should be the same in both paths, but
– the length of “corresponding” zones can be different, as well as the length of

the two paths;
– each point in one zone of a path should be related by the bisimulation to

every point in the corresponding zone of the other path.

This notion of compatibility gives rise to Compatible Path bisimulation, CoPa-
bisimulation, defined below.

5.1 CoPa-bisimilarity

Definition 15. Given CM M = (X, C,V) and index space J = (I, CJ), a
symmetric relation B ⊆ X × X is a CoPa-bisimulation for M if, whenever
(x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for all π1 ∈ BPathsFJ ,M(x1) such that (π1(i1), x2) ∈ B for all i1∈ [0, len(π1))

there is π2 ∈ BPathsFJ ,M(x2) such that the following holds: (x1, π2(i2)) ∈ B
for all i2 ∈ [0, len(π2)), and (π1(len(π1)), π2(len(π2))) ∈ B;

3. for all π1 ∈ BPathsTJ ,M(x1) such that (π1(i1), x2) ∈ B for all i1∈(0, len(π1)]
there is π2 ∈ BPathsTJ ,M(x2) such that the following holds: (x1, π2(i2)) ∈ B
for all i2 ∈ (0, len(π2)], and (π1(0), π2(0)) ∈ B.

Two points x1, x2 ∈ X are called CoPa-bisimilar in M (x1, x2) ∈ B for some
CoPa-bisimulation B for M. Notation, x1 �M

CoPa x2. •
CoPa-bisimilarity is strictly weaker than CMC-bisimilarity, as shown below:

Proposition 2. For x1, x2 in QdCM M, if x1 �M
CMC x2, then x1 �M

CoPa x2. 	

The converse of Proposition 2 does not hold; with reference to Fig. 7, with

V(b) = {x11, x21, x22} and V(g) = {x12, x23}, it is easy to see that the symmetric
closure of B = {(x11, x21), (x11, x22), (x12, x23)} is a CoPa-bisimulation, and so
x11 �CoPa x21 but x11 ��CMC x21 since x12 ∈ V(g) and �C(x21) ∩ V(b) = ∅.

Back-and-Forth in Space 111

5.2 Logical Characterisation of CoPa-bisimilarity

In order to provide a logical characterisation of CoPa-bisimilarity, we replace the
proximity modalities �N and �N of IMLC by the conditional reachability modalities
�ζ and �ζ. Again with reference to the QdCM shown in Fig. 5a, Fig. 5c shows in
black the points satisfying �ζ black[white], i.e. those white points from which a
black point can be reached via a white path. We thus introduce the Infinitary
Compatible Reachability Logic (ICRL).

Definition 16. The abstract language of ICRL is defined as follows:

Φ ::= p | ¬Φ |
∧

i∈I

Φi | �ζ Φ1[Φ2] | �ζ Φ1[Φ2].

where p ranges over AP and I ranges over a collection of index sets.
The satisfaction relation for all CMs M, points x ∈ M, and ICRL formulas Φ

is defined recursively on the structure of Φ as follows:

M, x |=ICRL p ⇔ x ∈ V(p);
M, x |=ICRL ¬Φ ⇔ M, x |=ICRL Φ does not hold;
M, x |=ICRL

∧
i∈I Φi ⇔ M, x |=IRL Φi for all i ∈ I;

M, x |=ICRL
�ζ Φ1[Φ2] ⇔ path π and index � exist such that π(0) = x,

π(�) |=ICRL Φ1, and π(j) |=ICRL Φ2 for j ∈ [0, �)
M, x |=ICRL

�ζ Φ1[Φ2] ⇔ path π and index � exist such that π(�) = x,
π(0) |=ICRL Φ1, and π(j) |=ICRL Φ2 for j ∈ (0, �]. •

Remark 3. With reference to Remark 2, we note that, clearly, �ζ can be derived
from �ρ, namely: �ζ Φ1[Φ2] ≡ Φ1 ∨ (Φ2 ∧ �ρ Φ1[Φ2]) and similarly for �ζ Φ1[Φ2].

Also for ICRL we introduce the equivalence induced on M:

Definition 17. Given CM M = (X, C,V), the equivalence relation M
ICRL ⊆ X×

X is defined as: x1 M
ICRL x2 if and only if for all ICRL formulas Φ, the following

holds: M, x1 |=ICRL Φ if and only if M, x2 |=ICRL Φ. •
Lemma 10. For x1, x2 in QdCM M,if x1 �M

CoPa x2 then x1 M
ICRL x2. 	

The converse of Lemma 10 is given below.

Lemma 11. For QdCM M, M
ICRL is a CoPa-bisimulation for M. 	

The correspondence between ICRL-equivalence and CoPa-bisimilarity is thus
established by the following therorem.

Theorem 4. For every QdCM M it holds that ICRL-equivalence M
ICRL coincides

with CoPa-bisimilarity �M
CoPa. 	

112 V. Ciancia et al.

6 Conclusions

In this paper we have studied three main bisimilarities for closure spaces, namely
CM-bisimilarity, its specialisation for QdCMs, CMC-bisimilarity, and CoPa-
bisimilarity.

CM-bisimilarity is a generalisation for CMs of classical topo-bisimilarity for
topological spaces. We can take into consideration the fact that, in QdCMs, there
is a notion of “direction” given by the binary relation underlying the closure
operator. This can be exploited in order to get an equivalence—namely CMC-
bisimilarity—that, for QdCMs, refines CM-bisimilarity. Interestingly, the latter
resembles Strong Back-and-Forth bisimilarity proposed by De Nicola, Montanari
and Vaandrager in [19].

Both CM-bisimilarity and CMC-bisimilarity turn out to be too strong
for expressing interesting properties of spaces. Therefore, we introduce CoPa-
bisimilarity, that expresses a notion of path “compatibility” resembling the con-
cept of stuttering equivalence for transition systems [9]. For each notion of bisim-
ilarity we also provide an infinitary modal logic that characterises it. Obviously,
for finite closure spaces, finitary versions of the logics are sufficient.

Note that, in the context of space, and in particular when dealing with notions
of directionality (e.g. one way roads, public area gates), it is essential to be able
to distinguish between the concept of “reaching” and that of “being reached”.
A formula like �ζ (rescue − area∧¬(�ζ danger − area)[true])[safe − corridor]
expresses the fact that, via a safe corridor, a rescue area can be reached that
cannot be reached from a dangerous area. This kind of situations have no obvious
conterpart in the temporal domain, where there can be more than one future, like
in the case of branching time logics, but there is typically only one, fixed past,
i.e. the one that occurred6. The “back-and-forth” nature of CMC-bisimilarity
and CoPa-bisimilarity, conceptually inherited from Back-and-Forth bisimilarity
of [19], allows for such distinction in a natural way.

In this paper we did not address the problem of space minimisation explicitly.
In [15] we have presented a minimisation algorithm for �CMC

7. We plan to inves-
tigate the applicability of the results presented in [21] for stuttering equivalence
to minimisation modulo CoPa-bisimilarity.

Most of the results we have shown in this paper concern QdCMs. The investi-
gation of their extension to continuous or general closure spaces is an interesting
line of research. In [7] Ciancia et al. started this by approaching continuous mul-
tidimentional space using polyhedra and their representation as so-called sim-
plicial complexes for which a model checking procedure and related tool have
been developed. A similar approach is presented in [28], although the underlying
model is based on an adjacency relation and the usage of simplicial complexes
therein is aimed more at representing objects and higher-order relations between
them than at the identification of properties of points / regions of volume meshes
in a particular kind of topological model.

6 There are a few exception to this interpretation of past-tense operators, e.g. [26,32].
7 The implementation is available at https://github.com/vincenzoml/MiniLogicA.

https://github.com/vincenzoml/MiniLogicA

Back-and-Forth in Space 113

References

1. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital
brain phantoms for creation of validation image data bases. IEEE Trans. Med.
Imaging 25(11), 1410–1416 (2006). https://doi.org/10.1109/TMI.2006.883453

2. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N.,
Semini, L. (eds.) 9th IEEE/ACM International Conference on Formal Methods
in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, 17–21 May 2021,
pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

3. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5 7

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16

5. Benthem, J.v., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., Benthem, J.v. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer (2007). https://doi.org/10.1007/978-1-4020-5587-4 5

6. Benthem, J.V., Bezhanishvili, N., Enqvist, S., Yu, J.: Instantial neighbour-
hood logic. Rev. Symb. Log. 10(1), 116–144 (2017). https://doi.org/10.1017/
S1755020316000447

7. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink,
M.: Geometric model checking of continuous space. CoRR abs/2105.06194 (2021).
arxiv.org/abs/2105.06194

8. Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.): Handbook of
Modal Logic, Studies in Logic and Practical Reasoning, vol. 3. North-Holland
(2007).https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-
reasoning/vol/3/suppl/C

9. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures
in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988). https://
doi.org/10.1016/0304-3975(88)90098-9

10. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spa-
tial logics and model checking for medical imaging. Int. J. Softw. Tools Technol.
Transfer 22(2), 195–217 (2019). https://doi.org/10.1007/s10009-019-00511-9

11. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Int.
J. Softw. Tools Technol. Transfer 20(3), 289–311 (2018). https://doi.org/10.1007/
s10009-018-0483-8

12. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

https://doi.org/10.1109/TMI.2006.883453
https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/978-3-030-30985-5_7
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-1-4020-5587-4_5
https://doi.org/10.1017/S1755020316000447
https://doi.org/10.1017/S1755020316000447
http://arxiv.org/2105.06194
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18

114 V. Ciancia et al.

14. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Log. Meth. Comput. Sci. 12(4) (2016). https://doi.org/10.2168/
LMCS-12(4:2)2016

15. Ciancia, V., Latella, D., Massink, M., de Vink, E.: Towards spatial bisim-
ilarity for closure models: logical and coalgebraic characterisations (2020).
arxiv.org/pdf/2005.05578pdf

16. Ciancia, V., Latella, D., Massink, M., de Vink, E.: On the expressing power of
ISLCS and IMLC (2022). unpublished manuscript

17. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

18. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilari-
ties for closure spaces - preliminary version. CoRR abs/2105.06690 (2021).
arxiv.org/abs/2105.06690

19. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039058

20. Galton, A.: A generalized topological view of motion in discrete space. Theor. Com-
put. Sci. 305(1–3), 111–134 (2003). https://doi.org/10.1016/S0304-3975(02)00701-
6

21. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlog n) algorithm
for computing stuttering equivalence and branching bisimulation. ACM Trans.
Comput. Log. 18(2), 13:1–13:34 (2017). https://doi.org/10.1145/3060140

22. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

23. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM 52(3), 97–105 (2009). https://doi.org/10.1145/1467247.1467271

24. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Girard, A.,
Sankaranarayanan, S. (eds.) Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16
April 2015, pp. 189–198. ACM (2015). https://doi.org/10.1145/2728606.2728633

25. Hansen, H.: Monotonic modal logics. Master’s thesis, University of Amsterdam,
ILLC (2003)

26. Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. J. Log. Lang. Inf.
6(4), 403–425 (1997). https://doi.org/10.1023/A:1008223921944

27. Linker, S., Papacchini, F., Sevegnani, M.: Analysing spatial properties on neigh-
bourhood spaces. In: Esparza, J., Král’, D. (eds.) 45th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2020, August 24–28,
2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 66:1–66:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.MFCS.
2020.66

28. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR
abs/2105.08708 (2021). arxiv.org/abs/2105.08708

29. Marchetti, M.A., et al.: Results of the 2016 international skin imaging collaboration
international symposium on biomedical imaging challenge: Comparison of the accu-
racy of computer algorithms to dermatologists for the diagnosis of melanoma from

https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.2168/LMCS-12(4:2)2016
http://arxiv.org/2005.05578pdf
https://doi.org/10.1007/978-3-319-47166-2_46
http://arxiv.org/2105.06690
https://doi.org/10.1007/BFb0039058
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1145/3060140
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1145/1467247.1467271
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1023/A:1008223921944
https://doi.org/10.4230/LIPIcs.MFCS.2020.66
https://doi.org/10.4230/LIPIcs.MFCS.2020.66
http://arxiv.org/2105.08708

Back-and-Forth in Space 115

dermoscopic images. J. Am. Acad. Dermatol. 78(2), 270-277.e1 (2018). https://
doi.org/10.1016/j.jaad.2017.08.016

30. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods
Comput. Sci. 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:2)2018

31. Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, M., Pratt-Hartmann,
I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer
(2007). https://doi.org/10.1007/978-1-4020-5587-4 12

32. Stirling, C.: Modal and temporal logics. In: Abramsky, S., Gabbay, D., Maibaum,
T. (eds.) Handbook of logic in computer science, chap. V, p. 477?563. Oxford
University Press (1993)

33. Čech, E.: Topological spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp.
233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience
Publishers, John Wiley & Sons, Prague/London-New York-Sydney (1966), Revised
edition by Zdeněk Froĺıc and Miroslav Katětov. Scientific editor, Vlastimil Pták.
Editor of the English translation, Charles O. Junge. MR0211373

https://doi.org/10.1016/j.jaad.2017.08.016
https://doi.org/10.1016/j.jaad.2017.08.016
https://doi.org/10.23638/LMCS-14(4:2)2018
https://doi.org/10.1007/978-1-4020-5587-4_12

Better Automata Through Process
Algebra

Rance Cleaveland(B)

Department of Computer Science, University of Maryland,
College Park, MD 20742, USA

rance@cs.umd.edu

Abstract. This paper shows how the use of Structural Operational
Semantics (SOS) in the style popularized by the process-algebra com-
munity can lead to a succinct and pedagogically satisfying construction
for building finite automata from regular expressions. Techniques for
converting regular expressions into finite automata have been known for
decades, and form the basis for the proofs of one direction of Kleene’s
Theorem. The purpose of the construction documented in this paper
is, on the one hand, to show students how small automata can be con-
structed, without the need for empty transitions, and on the other hand to
show how the construction method admits closure proofs of regular lan-
guages with respect to many operators beyond the standard ones used
in regular expressions. These results point to an additional benefit of
the process-algebraic approach: besides providing fundamental insights
into the nature of concurrent computation, it also can shed new light on
long-standing, well-known constructions in automata theory.

Keywords: Process algebra · Finite automata · Regular expressions ·
Operational semantics

1 Introduction

It is an honor to write this paper in celebration of Frits Vaandrager on the
occasion of the publication of his Festschrift. It is safe to say that Frits and I came
of age, research-wise, at the same time and in a very similar intellectual milieu. In
1987, after finishing my PhD at Cornell University on using the Nuprl theorem
prover [7] to reason about Milner’s Calculus of Communicating Systems [16],
I spent two years as a postdoctoral research scientist in Matthew Hennessy’s
group at the University of Sussex in the UK. Coming from North America, I was
largely self-educated in process algebra but intoxicated by the subject and highly
desirous of deepening my background in, and making research contributions
to, the field. It was during this time that I became aware of two “superstar”
Dutch PhD students that people in the UK process-algebra were talking excitedly

Research supported by US Office of Naval Research Grant N000141712622.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 116–136, 2022.
https://doi.org/10.1007/978-3-031-15629-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_7&domain=pdf
http://orcid.org/0000-0002-4952-5380
https://doi.org/10.1007/978-3-031-15629-8_7

Better Automata Through Process Algebra 117

about. One was Rob van Glabbeek; the other was Frits! I read several of Frits’
papers during this time and was struck by the depth, and also clarity, of their
insights, especially given that Frits was still a PhD student. I was particularly
enamored of two papers from that time: “Petri net models for algebraic theories
of concurrency” [22], by Rob and Frits, and “Structured operational semantics
and bisimulation as a congruence” [11], by Frits and Jan Friso Groote (himself
a PhD student at the time). The former was pivotal in unifying different models
of concurrency, and represented an entry point for me into non-process-algebraic
theories of concurrency; the latter was a tour de force on congruence properties
for a whole family of process operators based on the form of the operational rules
used to define their behavior. I was transfixed by this result then, and remain
so to this day; it also spawned a number of fruitful follow-on papers and was
highly influential in my own work, performed with Steve Sims, on the Process
Algebra Compiler [6].

Frits and I have never worked together, and starting in the late 1990s our
interests, while still inspired by process algebra, diverged somewhat. I retain a
deep affection, however, for process algebra; the field has remained an inspiration
throughout my career. Frits, along with other members of the so-called “Dutch
School” of concurrency, had a quite significant influence on my development as
a researcher, and I remain a great admirer of their work to this day.

In this paper I wish to pay an homage of sorts to the process-algebra commu-
nity in general and to Frits in particular by elaborating on a particular process-
algebraic construction that I have used in teaching automata theory over the
years. In particular, I will show how, using ideas from process algebra, one can
derive a method for constructing finite automata from regular expressions. I
believe this method has certain advantages from a pedagogical point of view to
the traditional construction, usually attributed to Ken Thompson [21], found in
textbooks such as [13,20]. The construction I present has been present in the
folklore for years; indeed, I have lecture notes that are more than 25 years old
describing it. However, to the best of my knowledge the construction has never
been published, and hence remains inaccessible outside the process-algebraic
community; thus, another purpose of this paper is to document the construction
and its properties so that others may know about it. I also briefly situate the
work in the setting of another, highly optimized technique [3] used in practice for
converting regular expressions to finite automata. The message I hope to convey
is that in addition to contributing foundational understanding to notions of con-
current computation, process algebra can also cast new light on well-understood
automaton constructions as well, and that early luminaries in the field process
algebra, including Frits Vaandrager, are doubly deserving of the accolades they
receive from the research community.

2 Languages, Regular Expressions and Automata

This section reviews the definitions and notation used later in this paper for
formal languages, regular expressions and finite automata.

118 R. Cleaveland

2.1 Alphabets and Languages

At their most foundational level digital computers are devices for computing
with symbols. Alphabets and languages formalize this intuition mathematically.

Definition 1 (Alphabet, word).

1. An alphabet is a finite non-empty set Σ of symbols.
2. A word over alphabet Σ is a finite sequence a1 . . . ak of elements from Σ. We

say that k is the length of w in this case. If k = 0 we say w is empty; we
write ε for the (unique) empty word over Σ. Note that every a ∈ Σ is also a
(length-one) word over Σ. We use Σ∗ for the set of all words over Σ.

3. If w1 = a1 . . . ak and w2 = b1 . . . bn are words over Σ then the concatenation,
w1 ·w2, of w1 and w2 is the word a1 . . . akb1 . . . bn. Note that w · ε = ε ·w = w
for any word w. We often omit · and write w1w2 for w1 · w2.

4. A language L over alphabet Σ is a subset of Σ∗. The set of all languages
over Σ is the set of all subsets of Σ∗, and is written 2Σ∗

following standard
mathematical conventions.

Since languages over Σ∗ are sets, general set-theoretic operations, including
∪ (union), ∩ (intersection) and − (set difference) may be applied to them. Other,
language-specific operations may also be defined.

Definition 2 (Language concatenation, Kleene closure). Let Σ be an
alphabet.

1. Let L1, L2 ⊆ Σ∗ be languages over Σ. Then the concentation, L1 · L2, of L1

and L2 is defined as follows.

L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}
Note that L · ∅ = ∅ · L = ∅ and L · {ε} = {ε} · L = L for any language L.

2. Let L ⊆ Σ∗ be a language over Σ. Then the Kleene closure, L∗, of L is
defined inductively as follows.
– ε ∈ L∗

– If w1 ∈ L and w2 ∈ L∗ then w1 · w2 ∈ L∗.

2.2 Regular Expressions

Regular expressions provide a notation for defining certain languages.

Definition 3 (Regular expressions). Let Σ be an alphabet. Then the set,
R(Σ), of regular expressions over Σ is defined inductively as follows.

– ∅ ∈ R(Σ).
– ε ∈ R(Σ).
– If a ∈ Σ then a ∈ R(Σ).
– If r1 ∈ R(Σ) and r2 ∈ R(Σ) then r1 + r2 ∈ R(Σ) and r1 · r2 ∈ R(Σ).
– If r ∈ R(Σ) then r∗ ∈ R(Σ).

Better Automata Through Process Algebra 119

It should be noted that R(Σ) is a set of expressions; the occurrences of
∅, ε,+, · and ∗ are symbols that do not innately possess any meaning, but must
instead be given a semantics. This is done by interpreting regular expressions
mathematically as languages. The formal definition takes the form of a function,
L ∈ R(Σ) → 2Σ∗

assigning a language L(r) ⊆ Σ∗ to regular expression r.

Definition 4 (Language of a regular expression, regular language). Let
Σ be an alphabet, and r ∈ R(Σ) a regular expression over Σ. Then the language,
L(r) ⊆ Σ∗, associated with r is defined inductively as follows.

L(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ if r = ∅
{ε} if r = ε
{a} if r = a and a ∈ Σ
L(r1) ∪ L(r2) if r = r1 + r2
L(r1) · L(r2) if r = r1 · r2
(L(r′))∗ if r = (r′)∗

A language L ⊆ Σ∗ is regular if and only if there is a regular expression r ∈
R(Σ) such that L(r) = L.

2.3 Finite Automata

Traditional accounts of finite automata typically introduce three variations of the
notion: deterministic (DFA), nondeterministic (NFA), and nondeterministic with
ε-transitions (NFA-ε). I will do the same, although I will do so in a somewhat
different order than is typical.

Definition 5 (Nondeterministic Finite Automaton (NFA)). A nondeter-
ministic finite automata (NFA) is a tuple (Q,Σ, δ, qI , F), where:

– Q is a finite non-empty set of states;
– Σ is an alphabet;
– δ ⊆ Q × Σ × Q is the transition relation;
– qI ∈ Q is the initial state; and
– F ⊆ Q is the set of accepting, or final, states.

This definition of NFA differs slightly from e.g. [13] in that δ is given as
relation rather than function in Q × Σ → 2Q. The next definition explains how
NFAs process words for acceptance or rejection, thereby associating a language
L(M) with any NFA M .

Definition 6 (Language of a NFA). Let M = (Q,Σ, δ, qI , F) be a NFA.

1. Let q ∈ Q be a state of M and w ∈ Σ∗ be a word over Σ. Then M accepts w
from q if and only if one of the following holds.
– w = ε and q ∈ F ; or
– w = aw′ some a ∈ Σ and w′ ∈ Σ∗, and there exists (q, a, q′) ∈ δ such

that M accepts w′ from q′.

120 R. Cleaveland

2. The language, L(M), accepted by M is defined as follows.

L(M) = {w ∈ Σ∗ | M accepts w from qI}

Deterministic Finite Automata (DFAs) constitute a subclass of NFAs whose
transition relation is deterministic, in a precisely defined sense.

Definition 7 (Deterministic Finite Automaton (DFA)). An NFA M =
(Q,Σ, δ, qI , F) is a deterministic finite automaton (DFA) if and only if δ satisfies
the following: for every q ∈ Q and a ∈ Σ, there exists exactly one q′ such that
(q, a, q′) ∈ δ.

Since DFAs are NFAs the definition of L in Definition 6 is directly applicable
to them as well. NFAs with ε-transitions are now defined as follows.

Definition 8 (NFA with ε-Transitions (NFA-ε)). A nondeterministic
automaton with ε-transitions (NFA-ε) is a tuple (Q,Σ, δ, qI , F), where:

– Q,Σ, qI and F are as in the definition of NFA (Definition 5); and
– δ ⊆ Q × (Σ ∪ {ε}) × Q is the transition relation.

An NFA-ε is like an NFA except that some transitions can be labeled with the
empty string ε rather than a symbol from Σ. The intuition is that a transition of
form (q, ε, q′) can occur without consuming any symbol as an input. Formalizing
this intuition, and defining L(M) for NFA-ε, may be done as follows.

Definition 9 (Language of a NFA-ε). Let M = (Q,Σ, δ, qI , F) be a NFA-ε.

1. Let q ∈ Q and w ∈ Σ∗. Then M accepts w from q if and only if one of the
following holds.
– w = ε and q′ ∈ F ; or
– w = aw′ for some a ∈ Σ and w′ ∈ Σ∗ and there exists q′ ∈ Q such that

(q, a, q′) ∈ δ and M accepts w′ from q′; or
– there exists q′ ∈ Q such that (q, ε, q′) ∈ δ and M accepts w from q′.

2. The language, L(M), accepted by M is defined as follows.

L(M) = {w ∈ Σ∗ | M accepts w from qI}

Defining the language of a NFA-ε requires redefining the notion of word
acceptance from state q in order to accommodate the difference between ε-
transitions and those labeled by alphabet symbols.

The three types of automata have differences in form, but equivalent expres-
sive power. It should first be noted that, just as every DFA is a NFA, every
NFA is also a NFA-ε, namely, a NFA-ε with no ε-transitions. Thus, every lan-
guage accepted by some DFA is also accepted by some NFA, and every language
accepted by some NFA is accepted by some NFA-ε. The next theorem establishes
the converses of these implications.

Better Automata Through Process Algebra 121

Theorem 1 (Equivalence of DFAs, NFAs and NFA-εs).

1. Let M be a NFA. Then there is a DFA D(M) such that L(D(M)) = L(M).
2. Let M be a NFA-ε. Then there is a NFA N(M) such that L(N(M)) = L(M).

Proof. The proof of Case 1 involves the well-known subset construction, whereby
each subset of states in M is associated with a single state in D(M). The proof
of Case 2 typically relies on defining the ε-closure of a set of states, namely,
the set of states reachable from the given set via a sequence of zero or more
ε-transitions. This notion is used to define the transition relation N(M) as well
as its set of accepting states. The details are standard and are omitted. �	

3 Kleene’s Theorem

Given the definitions in the previous section it is now possible to state Kleene’s
Theorem succinctly.

Theorem 2 (Kleene’s Theorem). Let Σ be an alphabet. Then L ⊆ Σ∗ is
regular if and only if there is a DFA M such that L(M) = L.

The proof of this theorem is usually split into two pieces. The first involves
showing that for any regular expression r, there is a finite automaton M (DFA,
NFA or NFA-ε) such that L(M) = L(r). Theorem 1 then ensures that the
resulting finite automaton, if it is not already a DFA, can be converted into one
in a language-preserving manner. The second shows how to convert a DFA M
into a regular expression r so that L(r) = L(M); there are several algorithms
for this in the literature, including one based on dynamic programming due to
Kleene [15] and equation-solving methods based on Arden’s Lemma [1].

From a practical standpoint, the conversion of regular expressions to finite
automata is the more important of these two pieces, since regular expressions are
textual and are used consequently as the basis for string search and processing.
For this reason, I believe that teaching this construction is especially key in
automata-theory classes, and this where my complaint with the approaches in
traditional automata-theory texts originates.

To understand the source of my dissatisfaction, let us review the construction
presented in [13], which explains how to convert regular expression r into NFA-ε
Mr in such a way that L(r) = L(Mr). The method is based on the construction
due to Ken Thompson [21] and produces NFA-ε Mr with the following properties.

– The initial state qI has no incoming transitions: that is, there exists no
(q, α, qI) ∈ δ for any α ∈ Σ ∪ {ε}.

– There is a single accepting state qF , and qF has no outgoing transitions: that
is, F = {qF }, and there exists no (qF , α, q′) ∈ δ for any α ∈ Σ ∪ {ε}.

The approach proceeds inductively on the structure of r. For example, if r =
(r′)∗, then assume that Mr′ = (Q,Σ, δ, qI , {qF }) meeting the above constraints

122 R. Cleaveland

has been constructed from r′. Then Mr is built as follows. First, let q′
I
∈ Q and

q′
F
∈ Q be new states. Then Mr = (Q ∪ {q′

I , q
′
F }, Σ, δ′, {q′

F }), where

δ′ = δ ∪ {(q′
I , ε, qI), (q′

I , ε, q
′
F), (qF , ε, qI), (qF , ε, q′

F)}.

It can be shown that Mr satisfies the requisite properties and that L(Mr) =
L(r) = (L(r′))∗.

Mathematically, the construction of Mr is wholly satisfactory: it has the
required properties and can be defined straightforwardly. The proof of correct-
ness is a bit complicated, owing to the definition of L(M) when M is an NFA-ε
and thus has ε-transitions, but it does acquaint students with definitions via
structural induction on regular expressions. That said, there are a couple of
drawbacks to teaching the construction. On the one hand, it does require the
introduction of the notion of NFA-ε, which is more complex that that of NFA.
If ε-transitions were used for other purposes in the course, this might not be
problematic. However, in my years teaching automata theory NFA-εs were only
used as a basis for defining the construction of automata from regular languages.
On the other hand, the accretion of the introduction of new states at each state
in the construction makes it difficult to test students on their understanding of
the construction in an exam setting. Specifically, even for relatively small regular
expressions the literal application of the construction yields automata with too
many states and transitions to be doable during the typical one-hour midterm
exam for which US students would be tested on the material.

In practice the Berry-Sethi procedure is used to construct DFAs from regular
expressions, so one might imagine using that algorithm in an automata-theory
class. The procedure is subtle and elegant, but it relies on concepts, such as
Brzozowski derivatives [4], that I would view as too specialized for an under-
graduate course on automata theory. The resulting automata can also become
large relative to the regular expression from which they are constructed, due to
the implicit determinization of the constructed automata. Consequently, I would
not be in favor of covering them in an undergraduate classroom setting. Instead,
in the next section I give a technique, based on operational semantics in process
algebra, for construction NFAs from regular expressions. The resulting NFAs are
small enough for students to construct during exams, and the construction has
other properties, including the capacity for introducing other operations that
preserve regularity, that are pedagogically useful.

4 NFAs via Structural Operational Semantics

This section describes an approach based on Structural Operational Semantics
(SOS) [18,19] for constructing NFAs from regular expressions. Specifically, I
will define an operational semantics for regular expressions on the basis of the
structure of regular expressions, and use the semantics to construct the requisite
NFAs. The construction requires no ε-transitions and yields automata with at
most one more state than the size of the regular expression from which they are
derived.

Better Automata Through Process Algebra 123

Following the conventions in the other parts of this paper I give the SOS rules
in natural language, as a collection of if-then statements, and not via inference
rules. I use this approach in the classroom to avoid having to introduce notations
for inference rules. The appendix contains the more traditional SOS presentation.

4.1 An Operational Semantics for Regular Expressions

In what follows fix alphabet Σ. The basis for the operational semantics of regular
expressions consists of a relation, −→ ⊆ R(Σ) × Σ × R(Σ), and a predicate√ ⊆ R(Σ). In what follows I will write r

a−→ r′ and r
√

in lieu of (r, a, r′) ∈ −→
and r ∈ √

. The intuitions are as follows.

1. r
√

is intended to hold if and only if ε ∈ L(r). This is used in defining accepting
states of the constructed automata.

2. r
a−→ r′ is intended to reflect the following about L(r): one way to build a

word in L(r) is to start with a ∈ Σ and then finish it with a word from L(r′).

Using these relations, I then show how to build a NFA from r whose states
are regular expressions, whose transitions are given by −→, and whose final states
are defined using

√
. We first define

√
.

Definition 10 (Definition of
√
). Predicate r

√
is defined inductively on the

structure of r ∈ R(Σ) as follows.

– If r = ε then r
√
.

– If r = (r′)∗ for some r′ ∈ R(Σ) then r
√
.

– If r = r1 + r2 for some r1, r2 ∈ R(Σ), and either r1
√

or r2
√
, then r

√
.

– If r = r1 · r2 for some r1, r2 ∈ R(Σ), and r1
√

and r2
√
, then r

√
.

From the definition, one can see it is not the case that ∅√
or a

√
, for any

a ∈ Σ, while ε
√

is true and r∗√ always holds, regardless of r. This accords with
the definition of L(r); ε
∈ L(∅) = ∅, and ε
∈ L(a) = {a}, while ε ∈ L(ε) = {ε}
and ε ∈ L(r∗) = (L(r))∗ for any regular expression r. The other cases in the
definition reflect the fact that ε ∈ L(r1 + r2) can only hold if ε ∈ L(r1) or
ε ∈ L(r2), since + is interpreted as set union, and that ε ∈ L(r1 · r2) can only be
true if ε ∈ L(r1) and ε ∈ L(r2), since regular-expression operator · is interpreted
as language concatenation. Table 1 gives examples of when

√
does and does not

hold for different regular expressions.
We also use structural induction to define −→.

Definition 11 (Definition of −→). Relation r
a−→ r′, where r, r′ ∈ R(Σ) and

a ∈ Σ, is defined inductively on r.

– If r = a and a ∈ Σ then r
a−→ ε.

– If r = r1 + r2 and r1
a−→ r′

1 then r
a−→ r′

1.
– If r = r1 + r2 and r2

a−→ r′
2 then r

a−→ r′
2.

– If r = r1 · r2 and r1
a−→ r′

1 then r
a−→ r′

1 · r2.

124 R. Cleaveland

Table 1. Examples of r
√

.

r r
√

? Reason

ε · a∗ Yes ε
√

and a∗√

a + b No Neither a
√

nor b
√

hold

01 + (1 + 01)∗ Yes (1 + 01)∗√

01(1 + 01)∗ No 01
√

does not hold

– If r = r1 · r2, r1
√

and r2
a−→ r′

2 then r
a−→ r′

2.
– If r = (r′)∗ and r′ a−→ r′′ then r

a−→ r′′ · (r′)∗.

The definition of this relation is somewhat complex, but the idea that it is
aiming to capture is relatively simple: r

a−→ r′ should hod if one can build words
in L(r) by taking the a labeling −→ and appending a word from L(r′). So we
have the rule a

a−→ ε for a ∈ Σ, while the rules for + follow from the fact
that L(r1 + r2) = L(r1) ∪ L(r2). The cases for r1 · r2 in essence state that
aw ∈ L(r1 · r2) can hold either if there is a way of splitting w into w1 and w2

such that aw1 is in the language of r1 and w2 is in the language of r2, or if ε is
in the language of r1 and aw is in the language of r2. Finally, the rule for (r′)∗

essentially permits “looping”. As examples, we have the following.

a + b
a−→ ε by the rules for a and + .

(abb + a)∗ a−→ εbb(abb + a)∗ by the rules for a, ·,+, and ∗.

In this latter example, note that applying the definition literally requires the
inclusion of the ε in εbb(abb+a)∗. This is because the case for a says that a

a−→ ε,
meaning that abb

a−→ εbb, etc.
The following lemmas about

√
and −→ formally establish the intuitive prop-

erties that they should have.

Lemma 1. Let r ∈ R(Σ) be a regular expression. Then r
√

if and only if ε ∈
L(r).

Proof. The proof proceeds by structural induction on r. Most cases are left to
the reader; we only consider the r = r1 · r2 case here. The induction hypothesis
states that r1

√
if and only if ε ∈ L(r1) and r2

√
if and only if ε ∈ L(r2). We

now reason as follows.

r
√

iff r1
√

and r2
√

Def. of
√

iff ε ∈ L(r1) and ε ∈ L(r2) Induction hypothesis
iff ε ∈ (L(r1)) · (L(r2)) Def. of · for languages, ε · ε = ε
iff ε ∈ L(r1 · r2) Def. of L(r1 · r2)
iff ε ∈ L(r) r = r1 · r2

�	

Better Automata Through Process Algebra 125

Before stating and proving the desired result about −→ we first establish the
following technical lemma about non-empty words in the Kleene closure, L∗, of
language L.

Lemma 2. Let Σ be an alphabet, with a ∈ Σ, w ∈ Σ∗, and L ⊆ Σ∗. Then
a ·w ∈ L∗ if and only if there exist w1, w2 ∈ Σ∗ such that w = w1 ·w2, a ·w1 ∈ L
and w2 ∈ L∗.

Proof. Fix alphabet Σ, a ∈ Σ,w ∈ Σ∗ and L ⊆ Σ∗. We must prove both the
“if” and “only if” directions. For the “if” direction, assume that there exist w1

and w2 such that w = w1 · w2, a · w1 ∈ L and w2 ∈ L∗. We must show that
a ·w ∈ L∗. From the definition of L∗ it immediately follows that a ·w1 ·w2 ∈ L∗,
and as w = w1 · w2, we have that a · w ∈ L∗.

For the “only if” direction, we prove the following equivalent statement: for
all w′ ∈ L∗, if w′ = a · w then there exist w1 and w2 such that w = w1 · w2,
a · w1 ∈ L, and w2 ∈ L∗. The proof proceeds by induction on the definition
of L∗. In the base case w′ = ε; as a · w
= ε the implication to be proven is
vacuously true. Now assume that w′ = w′

1 · w′
2 for some w′

1 ∈ L and w′
2 ∈ L∗;

the induction hypothesis asserts that the result holds for w′
2. Now assume that

w′ = a · w. There are two cases to consider. In the first, w′
1 = ε; in this case

w′ = w′
2 = a · w, and the induction hypothesis delivers the desired result. In the

second case, w′
1
= ε; this means that w′

1 = a · w′′
1 for some w′′

1 . Take w1 = w′′
1

and w2 = w′
2. We immediately have that a · w1 = w′

1 ∈ L and w2 = w′
2 ∈ L∗. �	

In the above lemma, a ·w is a non-empty word; the lemma in effect says that
when non-empty word a ·w is in the Kleene closure, L∗, of language L then there
must be a non-empty word a · w1 in L that is a prefix of a · w. (In the lemma w2

consists of the remainder of a · w that is not in a · w1.) We can now state and
prove the following key property of −→.

Lemma 3. Let r ∈ R(Σ), a ∈ Σ, and w ∈ Σ∗. Then a · w ∈ L(r) if and only if
there is an r′ ∈ R(Σ) such that r

a−→ r′ and w ∈ L(r′).

Proof. The proof proceeds by structural induction on r. We only consider the
case r = s∗, where s ∈ R(Σ), in detail; the others are left to the reader. The
induction hypothesis asserts that for all a ∈ Σ and w ∈ Σ∗, a · w ∈ L(s) if and
only if there is an s′ such that s

a−→ s′ and w ∈ L(s′). Now fix a ∈ Σ and w ∈ Σ∗.
We reason as follows.

a · w ∈ L(r)
iff a · w ∈ L(s∗) r = s∗

iff a · w ∈ (L(s))∗ Def. of L(s∗)
iff a · w = a · w1 · w2 some a · w1 ∈ L(s), w2 ∈ (L(s))∗ Lemma 2 (L = L(s))
iff s

a−→ s′ some s′ with w1 ∈ L(s′), w2 ∈ (L(s))∗ Induction hypothesis
iff s∗ a−→ s′ · s∗ with w1 ∈ L(s′), w2 ∈ (L(s))∗ Def. of −→
iff s∗ a−→ s′ · s∗ with w1 · w2 ∈ L(s′) · (L(s))∗ Def. of · for languages
iff s∗ a−→ s′ · s∗ with w1 · w2 ∈ L(s′ · s∗) Def. of L(s′ · s∗)

126 R. Cleaveland

Since r = s∗ and w = w1w2, if we take r′ = s′ · r we have demonstrated an
r′ such that r

a−→ r′ and w ∈ L(r′), thereby completing the proof of this case. �	

4.2 Building Automata Using
√

and −→
That

√
and −→ may be used to build NFAs derives from how they may be used

to determine whether a word is in the language of a regular expression. Consider
the following sequence of transitions starting from regular expression (abb+a)∗.

(abb + a)∗ a−→ bb(abb + a)∗ b−→ b(abb + a)∗ b−→ (abb + a)∗ a−→ (abb + a)∗

Using Lemma 3 four times, we can conclude that if w ∈ L((abb + a)∗), then
abba · w ∈ L((abb + a)∗) also. In addition, since (abb + a)∗√, it follows from
Lemma 1 that ε ∈ L((abb + a)∗). As abba · ε = abba, we know that abba ∈
L((abb + a)∗).

More generally, if there is a sequence of transitions r0
a1−→ r1 · · · an−−→ rn and

rn
√

, then it follows that a1 . . . an ∈ L(r0), and vice versa. This observation
suggests the following strategy for building a NFA from a regular expression r.

1. Let the states be all possible regular expressions that can be reached by some
sequence of transitions from r.

2. Take r to be the start state.
3. Let the transitions be given by −→.
4. Let the accepting states be those regular expressions r′ reachable from r for

which r′√ holds.

Of course, this construction is only valid if the set of all possible regular expres-
sions mentioned in Step 1 is finite, since NFAs are required to have a finite
number of states. In fact, a stronger result can be proved. Define the size, |r|, of
regular expression r as follows.

Definition 12 (Size of a regular expression). The size, |r|, of r ∈ R(Σ) is
defined inductively as follows.

|r| =

⎧
⎪⎨

⎪⎩

1 if r = ε, r = ∅, or r = a for some a ∈ Σ

|r′| + 1 if r = (r′)∗

|r1| + |r2| + 1 if r = r1 + r2 or r = r1 · r2

Intuitively, |r| counts the number of regular-expression operators in r. The reach-
ability set of regular expression r can now be defined in the usual manner.

Definition 13. Let r ∈ R(Σ) be a regular expression. Then the set RS(r) ⊆
R(Σ) of regular expressions reachable from r is defined recursively as follows.

– r ∈ RS(r).
– If r1 ∈ RS(r) and r1

a−→ r2 for some a ∈ Σ, then r2 ∈ RS(r).

Better Automata Through Process Algebra 127

As an example, note that |(abb + a)∗| = 8 and that (In this example we have
retained the leading instances of ε obtained by applying the operational seman-
tics. This is why both (abb+a)∗ and ε(abb+a)∗ are in RS((abb+a)∗), even though
they are semantically equivalent. One could employ algebraic simplifiers during
the construction of RS to eliminate these redundant expressions, although we
do not explore this point further in this paper.)

RS((abb + a)∗) = {(abb + a)∗, εbb(abb + a)∗, εb(abb + a)∗, ε(abb + a)∗}.

The following theorem establishes a tight connection between |r| and |RS(r)|,
where |RS(r)| is the number of elements in RS(r).

Theorem 3. Let r ∈ R(Σ) be a regular expression. Then |RS(r)| ≤ |r| + 1.

Proof. The proof proceeds by structural induction on r. There are six cases to
consider.

r = ∅. In this case RS(r) = {∅}, and |RS(r)| = 1 = |r| < |r| + 1.
r = ε. In this case RS(r) = {ε}, and |RS(r)| = 1 = |r| < |r| + 1.
r = a for some a ∈ Σ. In this case RS(r) = {a, ε}, and |RS(r)| = 2 = |r| + 1.
r = r1 + r2. In this case, RS(r) ⊆ RS(r1) ∪ RS(r2), and induction hypothesis

guarantees that |RS(r1)| ≤ |r1| + 1 and RS(r2) ≤ |r2| + 1. It follows that

|RS(r)| ≤ |RS(r1)| + |RS(r2)| ≤ |r1| + |r2| + 2 = |r| + 1.

r = r1 · r2. In this case it can be shown that RS(r) ⊆ {r′
1 · r2 | r′

1 ∈ RS(r1)} ∪
RS(r2). Since |{r′

1 · r2 | r′
1 ∈ RS(r1)}| = |RS(r1)|, similar reasoning as in the

+ case applies.
r = (r′)∗. In this case we have that RS(r) ⊆ {r} ∪ {r′′ · r | r′′ ∈ RS(r′)}. Thus

|RS(r)| ≤ |RS(r′)| + 1 ≤ |r′| + 2 = |r| + 1.

�	
This result shows not only that the NFA construction sketched above yields

a finite number of states for given r, but also that this set of states is no larger
than |r| + 1. We can now formally define the construction of NFA Mr from
regular expression r as follows.

Definition 14. Let r ∈ R(Σ) be a regular expression. Then Mr =
(Q,Σ, qI , δ, A) is the NFA defined as follows.

– Q = RS(r).
– qI = r.
– δ = {(r1, a, r2) | r1

a−→ r2}.
– F = {r′ ∈ Q | r′√}.

The next theorem establishes the desired correspondence between the lan-
guages of r and Mr.

Theorem 4. Let r ∈ R(Σ) be a regular expression. The L(r) = L(Mr).

Proof. Relies on the fact that Lemmas 1 and 3 guarantee that w = a1 . . . an ∈
L(r) if and only if there is a regular expression r′ such that r

a1−→ · · · an−−→ r′

and r′√.

128 R. Cleaveland

4.3 Computing Mr

This section gives a routine for computing Mr in an “on-the-fly” manner. In
particular, it intertwines the computation of the reachability set from regular
expression r with the construction of the transition relation and the set of accept-
ing states. It relies on the computation of the so-called outgoing transitions of
r; these are defined as follows.

Definition 15. Let r ∈ R(Σ) be a regular expression. Then the set of outgoing
transitions from r is defined as the set {(a, r′) | r

a−→ r′}.
The outgoing transitions from r consists of pairs (a, r′) that, when combined
with r, constitute a valid transition r

a−→ r′. Figure 1 defines a recursive function,
out, for computing the outgoing transitions of r. The routine uses the structure
of r and the definition of −→ to guide its computation. For regular expressions of
the form ∅, ε and a ∈ Σ, the definition of −→ in Definition 11 immediately gives
all the transitions. For regular expressions built using +, · and ∗, one must first
recursively compute the outgoing transitions of the subexpressions of r and then
combine the results appropriately, based on the cases given in the Definition 11.

out(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if r = ∅ or r = ε

{(a, ε)} if r = a ∈ Σ

out(r1) ∪ out(r2) if r = r1 + r2

{(a, r′
1 · r2) | (a, r′

1) ∈ out(r1)}
∪ {(a, r′

2) | (a, r′
2) ∈ out(r2) ∧ r1

√} if r = r1 · r2

{(a, r′′ · (r′)∗) | (a, r′
1) ∈ out(r1)} if r = (r′)∗

Fig. 1. Calculating the outgoing transitions of regular expressions.

The next lemma states that out(r) correctly computes the outgoing transi-
tions of r.

Lemma 4. Let r ∈ R(Σ) be a regular expression, and let out(r) be as defined
in Fig. 1. Then out(r) = {(a, r′) | r

a−→ r′}.
Proof. By structural induction on r. The details are left to the reader.

Algorithm 1 contains pseudo-code for computing Mr. It maintains four sets.

– Q, a set of states computed so far for Mr.
– F , a set that contains the accepting states so far for Mr.
– δ, a set that contains the transition relation so far Mr.
– W , the work set, a subset of Q containing states that have not yet had their

outgoing transitions computed or acceptance status determined.

Better Automata Through Process Algebra 129

Algorithm 1: Algorithm for computing NFA Mr from regular expression
r
1 Algorithm NFA(r)

Input : Regular rexpression r ∈ R(Σ)
Output: NFA Mr = (Q, Σ, qI , δ, F)

2 Q := {r} // State set

3 qI := r // Start state

4 W := {r} // Work set

5 δ := ∅ // Transition relation

6 F := ∅ // Accepting states

7 while W �= ∅ do
8 choose r′ ∈ W
9 W := W − {r′}

10 if r′√ then
11 F := F ∪ {r′} // r′ is an accepting state

12 T = out(r′) // Outgoing transitions of r′

13 δ := δ ∪ {r′, a, r′′) | (a, r′′) ∈ T} // Update transition relation

14 foreach (a, r′′) ∈ T do
15 if r′′ �∈ Q then
16 Q := Q ∪ {r′′} // r′′ is a new state

17 W := W ∪ {r′′}
18

19 end

20 end
21 return Mr = (Q, Σ, δ, qI , F)

The procedure begins by adding its input r to both Q and W . It then repeatedly
removes a state from W , determines if it should be added to F , computes its
outgoing transitions and updates δ appropriately, and finally adds the target
states in the outgoing transition set to both Q and W if they are not yet in Q
(meaning they have not yet been encountered in the construction of Mr). The
algorithm terminates when W is empty.

Figure 2 gives the NFA resulting from applying the procedure to (abb + a)∗.
Figure 3, by way of contrast, shows the result of applying the routine in [13] to
produce a NFA-ε from the same regular expression.

5 Discussion

The title of this paper is “Better Automata through Process Algebra,” and I
want to revisit it in order to explain in what respects I regard the method
presented here as producing “better automata.” Earlier I identified the following
motivations that prompted me to incorporate this approach in my classroom
instruction.

– I wanted to produce NFAs rather than NFA-εs. In large part this was due to
my desire not cover the notion of NFA-ε. The only place this material is used

130 R. Cleaveland

Fig. 2. NFA(r) for r = (abb + a)∗.

in typical automata-theory textbooks is as a vehicle for converting regular
expressions into finite automata. By giving a construction that avoids the use
of ε-transitions, I could avoid covering NFA-εs and devote the newly freed
lecture time to other topics. Of course, this is only possible if the NFA-based
construction does not require more time to describe than the introduction of
NFA-ε and the NFA-ε construction.

– I wanted to be able to confirm that students understood how automata can
be constructed from regular expressions, and thus the construction I gave
them needed to be one that they could apply manually during an exam.
The classical construction found in [13,20] and other books fails this test, in
my opinion; while the inductive definitions are mathematically pleasing, they
yield automata with too many states for students to be expected to apply
them in a time-constrained setting.

– Related to the preceding point, I wanted a technique that students could
imagine being implemented and used in the numerous applications to which
regular expressions are applied. In such a setting, fewer states is better than
more states, all things considered.

This paper has attempted to argue these points by giving a construc-
tion in Definition 14 for constructing NFAs directly from regular expressions.

Better Automata Through Process Algebra 131

ε ε

a

ε

b

ε

b

a

ε

ε

ε

ε

ε

ε

Fig. 3. NFA-ε for (abb + a)∗.

132 R. Cleaveland

Theorem 3 establishes that the number of states in these NFAs is at most one
larger than the size of the regular expression from which the NFAs are gener-
ated; this provides guidance in preparing exam questions, as the size of the NFAs
students can be asked to generate are tightly bounded by the size of the reg-
ular expression given in the exam. Finally, Algorithm 1 gives a “close-to-code”
account of the construction that hints at its implementability. (Indeed, several
years ago a couple of students that I presented this material to independently
implemented the algorithm.)

Beyond the points mentioned above, I think this approach has two other
useful characteristics. The first is that it provides a basis for defining other
operators over regular expressions and proving that the class of regular languages
is closed with result to these operations. The ingredients for introducing such a
new operator and proving closure of regular languages with respect to it can be
summarized as follows.

1. Extend the definition of L(r) given in Definition 4 to give a language-theoretic
semantics for the operator.

2. Extend the definitions of
√

and −→ in Definitions 10 and 11 to give an oper-
ational semantics for the operator.

3. Extend the proofs of Lemmas 1 and 3 to establish connections between the
language semantics and the operational semantics.

4. Prove that expressions extended with the new operator yield finite sets of
reachable expressions.

All of these steps involve adding new cases to the existing definitions and lemmas,
and altering Theorem 3 in the case of the last point. (Note that in general, the
bound on |RS(r)| will change depending on the semantics of the new operator.)
Once these are done, Algorithm 1, with the definition of out in Fig. 1 suitably
modified to account the new operator, can be used as a basis for constructing
NFAs from these extended classes of regular languages. I have used parts of this
approach to ask students to prove that synchronous product and interleaving
operators can be shown to preserve language regularity. Other operators from
process algebra are also candidates for these kinds of questions.

The second feature of the approach in this paper that I believe recommends
it is that the NFA construction is “on-the-fly”; the construction of a automaton
from a regular expression does not require the a priori construction of automata
from subexpressions, meaning that the actual production of the automaton can
be intertwined with other operations, such as the checking of whether a word
belongs to the regular expression’s language. One does not need to wait the con-
struction of the full automaton, in other words, before putting it to use. This
style of building automata from expressions is a hallmark of process-algebra-
inspired tools such as CADP [9], the Concurrency Workbench [5] and mCRL2 [8],
which use this basic strategy in combination with various optimizations to gen-
erate labeled transition systems (automata without designated accepting states)
encoding the behavior of systems.

Criticisms that I have heard of this approach center around two issues. The
first is that the construction of NFA Mr from regular expression r does not use

Better Automata Through Process Algebra 133

structural induction on r, unlike the classical constructions in e.g. [13,20,21],
and this removes an opportunity for the students to be exposed to structural
induction. This is indeed the case; in fact, the on-the-fly construction is really a
co-inductive construction rather than an inductive one, although I do not make
this point to my students. However, the concepts that Mr is built on, namely√

and −→, are defined inductively, and the results proven about them require
substantial use of induction, so students still receive substantial instruction in
inductive constructions and proof techniques. The other complaint is that the
notion of r

a−→ r′ is “hard to understand.” It is indeed the case that equip-
ping regular expressions with an operational semantics is far removed from the
language-theoretic semantics typically given to these expressions. That said, I
would argue that the operational semantics considered here in fact exposes the
essence of the relationship between regular expressions and finite automata: this
semantics enables regular expressions to be executed, and in a way that can be
captured via automata. In this respect the disconnect between my favored app-
roach and the traditional one reflects the traditional dichotomy between deno-
tational and operational semantics.

The Berry-Sethi algorithm [3] is widely used in practice and produces DFAs
rather than NFAs. This feature enables their technique to accommodate com-
plementation, an operation with respect to which regular languages are closed
but which fits uneasily with NFAs, so one may wonder about using this routine
in automata-theory classes. From a pedagogical perspective, however, the algo-
rithm suffers somewhat as the number of states in a DFA can be exponentially
larger than that size of the regular expression from which it is derived. A similar
criticism can be made of other techniques that rely on Brzozowsky derivatives [4],
which also produce DFAs. There are interesting connections between our oper-
ational semantics and these derivatives, but we exploit nondeterminacy to keep
the sizes of the resulting finite automata small.

I close this section by remarking on work done in the process-algebra commu-
nity on so-called regular behaviors. In this area researchers study various syntac-
tic presentations of systems, often inspired by regular expressions, with respect to
equivalences based on bisimulation rather than language equivalence. Milner [17]
presented a theory of recursive expressions with an algebra of operators and gave
a complete axiomatization of bisimulation equivalence for these expressions. He
conjectured that his axiomatization was also complete for regular expressions and
bisimulation; this has remained open until very recently [10]. Baeten, Corradini
and Grabmayer [2] studied the question of which finite automata are bisim-
ulation equivalent to regular expressions and showed that the set of so-called
well-behaved finite behaviors exactly describe this class.

6 Conclusions and Directions for Future Work

In this paper I have presented an alternative approach for converting regular
expressions into finite automata. The method relies on defining an operational
semantics for regular expressions, and as such draws inspiration from the work on

134 R. Cleaveland

process algebra undertaken by leaders in that field, including Frits Vaandrager.
In contrast with classical techniques, the construction here does not require
transitions labeled by the empty word ε, and it yields automata whose state
sets are proportional in size to the regular expressions they come from. The
procedure can also be implemented in an on-the-fly manner, meaning that the
production of the automaton can be intertwined with other analysis procedures.

Other algorithms studied in process algebra also have pedagogical promise,
in my opinion. One method, the Kanellakis-Smolka algorithm for computing
bisimulation equivalence [14], is a case in point. Partition-refinement algorithms
for computing language equivalence of deterministic automata have been in exis-
tence for decades, but the details underpinning them are subtle and difficult to
present in an undergraduate automata-theory class, where instructional time
is at a premium. While not as efficient asymptotically as the best procedures,
the simplicity of the K-S technique recommends it, in my opinion, both for
equivalence checking and state-machine minimization. Simulation-checking algo-
rithms [12] can also be used as a basis for checking language containment among
finite automata; these are interesting because they do not require determiniza-
tion of both automata being compared, in general.

A SOS Rules for
√

and −→
Inference rules are given in the form

premises
conclusion

with − denoting an empty list of premises. Here are the rules for
√

.

−
ε
√ −

r∗√
r1

√

(r1 + r2)
√ r2

√

(r1 + r2)
√ r1

√
r2

√

(r1 · r2)
√

Next are the rules for −→.

−
a

a−→ ε

r1
a−→ r′

1

r1 + r2
a−→ r′

1

r2
a−→ r′

2

r1 + r2
a−→ r′

2

r1
a−→ r′

1

r1 · r2
a−→ r′

1 · r2

r1
√

r2
a−→ r′

2

r1 · r2
a−→ r′

2

r
a−→ r′

r∗ a−→ r′ · (r∗)

Better Automata Through Process Algebra 135

References

1. Arden, D.N.: Delayed-logic and finite-state machines. In: 2nd Annual Symposium
on Switching Circuit Theory and Logical Design, pp. 133–151. IEEE (1961)

2. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular
expressions under bisimulation. J. ACM 54(2), 6-es (2007)

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor.
Comput. Sci. 48, 117–126 (1986)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-

based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. (TOPLAS) 15(1), 36–72 (1993)

6. Cleaveland, R., Sims, S.T.: Generic tools for verifying concurrent systems. Sci.
Comput. Program. 42(1), 39–47 (2002). Special Issue on Engineering Automation
for Computer Based Systems

7. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs (1986)

8. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

9. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer 15(2), 89–107 (2013)

10. Grabmayer, C.: Milner’s proof system for regular expressions modulo bisimilarity
is complete. In: Symposium on Logic in Computer Science (2022, to appear)

11. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation
as a congruence. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.)
ICALP 1989. LNCS, vol. 372, pp. 423–438. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0035774

12. Rauch Henzinger, M., Henzinger, T.A., Kopke, P.W.: Computing simulations on
finite and infinite graphs. In: Proceedings of IEEE 36th Annual Foundations of
Computer Science, pp. 453–462. IEEE (1995)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman (2006)

14. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

15. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41. Princeton University Press (1956)

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

17. Milner, R.: A complete inference system for a class of regular behaviours. J. Com-
put. Syst. Sci. 28(3), 439–466 (1984)

18. Plotkin, G.D.: A structural approach to operational semantics. Technical report,
Aarhus University, Denmark (1981)

19. Plotkin, G.D.: The origins of structural operational semantics. J. Logic Algebraic
Program. 60, 3–15 (2004)

https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/BFb0035774
https://doi.org/10.1007/BFb0035774
https://doi.org/10.1007/3-540-10235-3

136 R. Cleaveland

20. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning,
Boston (2013)

21. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

22. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of con-
currency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987.
LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-17945-3 13

https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-17945-3_13

Family-Based Fingerprint Analysis:
A Position Paper

Carlos Diego N. Damasceno1(B) and Daniel Strüber1,2

1 Radboud University, Nijmegen, The Netherlands
d.damasceno@cs.ru.nl

2 Chalmers University of Technology, Gothenburg, Sweden
danstru@chalmers.se

Abstract. Thousands of vulnerabilities are reported on a monthly basis
to security repositories, such as the National Vulnerability Database.
Among these vulnerabilities, software misconfiguration is one of the top
10 security risks for web applications. With this large influx of vul-
nerability reports, software fingerprinting has become a highly desired
capability to discover distinctive and efficient signatures and recognize
reportedly vulnerable software implementations. Due to the exponen-
tial worst-case complexity of fingerprint matching, designing more effi-
cient methods for fingerprinting becomes highly desirable, especially for
variability-intensive systems where optional features add another expo-
nential factor to its analysis. This position paper presents our vision of
a framework that lifts model learning and family-based analysis princi-
ples to software fingerprinting. In this framework, we propose unifying
databases of signatures into a featured finite state machine and using
presence conditions to specify whether and in which circumstances a
given input-output trace is observed. We believe feature-based signatures
can aid performance improvements by reducing the size of fingerprints
under analysis.

Keywords: Model Learning · Variability Management · Family-Based
Analysis · Software Fingerprinting

1 Introduction

Automatically recognizing vulnerable black-box components is a critical require-
ment in security analysis, especially considering the fact that modern systems
typically include components borrowed from free and open-source projects.
Besides, with the large influx of versions released over time and vulnerabilities
reported in security data sources, such as the National Vulnerability Database
(NVD) [25], engineers should dedicate a special attention to the efficiency and
the scalability of techniques for automated software analysis. Providing such a
capability can dramatically reduce engineer’s workload and greatly increase the
efficiency as well as the accuracy of security analysis. One of such techniques is
software fingerprinting [33].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 137–150, 2022.
https://doi.org/10.1007/978-3-031-15629-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_8&domain=pdf
http://orcid.org/0000-0001-8492-7484
http://orcid.org/0000-0002-5969-3521
https://doi.org/10.1007/978-3-031-15629-8_8

138 C. D. N. Damasceno and D. Strüber

Software fingerprinting aims to produce a distinctive and efficient signature
from syntactic, semantic, or structural characteristics of a system under test
(SUT). It is an important technique with many security applications, ranging
from malware detection, digital forensics, copyright infringement, to vulnerabil-
ity analysis [3]. To produce a signature that is both expressive and identifiable,
fingerprint discovery and matching can be pursued using different techniques
and representation models [3], such as text-based models (e.g., code instruction
or strings), structural models (e.g., call graphs or control/data-flow graphs), and
behavioral-based models (e.g., execution traces and finite state machines). When
source code is unavailable, model learning [4,38] and testing [8] techniques may
be used as means to capture the behavioral signatures of an SUT in terms of
states and transitions of a finite state machine.

Model learning has emerged as an effective bug-finding technique for black-
box hardware and software components [38]. In active model learning [4], a
learning algorithm interacts with an SUT to construct and validate a hypothesis
H about the “language” of its external behavior. In general, this hypothesis is
expressed as a Mealy finite state machine (FSM) that, once established, can be
deployed as a behavioral signature to recognize an SUT. Model learning has been
reported effective in building models of different network protocols, including
TCP [16], TLS [20,31], Bluetooth [29], and MQTT [34]. In this work, we focus on
fingerprinting techniques based upon model learning and model-baseed testing
techniques.

Once a group of fingerprints is produced for a set of SUTs, two naive
approaches may take place to identify whether an unidentified SUT matches
with any of the signatures in a group of fingerprints [20]: (a) re-run model learn-
ing over the unidentified SUT and compare the resulting hypothesis to all known
signatures; (b) perform conformance testing [8] for each model to see which one
matches. While both methods can be effective, they are resource and time inten-
sive and hence, inefficient for large groups of candidate fingerprints. As a matter
of fact, active group fingerprinting has an exponential worst-case complexity
for the number of fingerprints in a database of signatures [33]. Therefore, find-
ing more efficient ways to perform fingerprint group matching becomes highly
desirable.

Fingerprinting is especially challenging in variability-intensive systems, in
which particular system variants can be generated by switching features on or
off. Optional features lead a combinatorial explosion of the overall set of possible
system variants and hence, significant challenges for software analyses [14]. A
recent survey indicates that software security of variability-intensive systems
is an under-studied topic [22]. To the best of our knowledge, fingerprinting in
particular has not been addressed in this context. To date, Shu et al. [33] and
Janssen [20] are the most prominent studies exploring model learning [7] and
conformance testing [23] in fingerprint group matching. Nevertheless, further
investigations are still needed to evaluate the efficiency and scalability of their
approaches in large fingerprint databases [20], as expected in variability-intensive

Family-Based Fingerprint Analysis 139

systems. In this paper, we envision optimizing fingerprinting techniques towards
variability-intensive and evolving systems.

In our vision, we propose principles from variability-aware software analy-
sis [37] as means to achieve an efficient framework for family-based fingerprint
discovery and matching. The term family-based [37] refers to an analysis that is
performed at the level of the whole product line, instead of individual products,
thus allowing to efficiently derive statements about all products. In our proposed
framework, we aim at combining groups of behavioral signatures into a family
model, e.g., featured finite state machine [18], and use presence conditions to
specify whether (and in which circumstances) a given input-output (IO) trace
can be observed.

In combination with SAT/SMT solvers and state-based model comparison
algorithms [12,40], this family-based representation can pave the way for efficient
fingerprint discovery and matching techniques where the size of the fingerprints
under analysis can be reduced in orders of magnitude. It would also contribute
to addressing the general lack of family-based analyses in the field: Kenner et
al.’s survey [22] mentions a single previous family-based security analysis [27].

This position paper is organized as follows: In Sect. 2, we introduce software
fingerprinting, with an emphasis in active model learning [38]. In Sect. 3, we
draw our vision of family-based fingerprint analysis upon the concept of family-
based analysis [37] and testing [18]. We close this article, in Sect. 4, with our
final remarks about this framework for family-based fingerprint analysis.

2 Software Fingerprinting

Software fingerprinting aims at discovering a distinctive and efficient signature of
syntactic, semantic, or structural characteristics of a SUT and matching uniden-
tified SUTs against one or more fingerprints in a database. It is a fundamental
approach with various applications in software security, including malware detec-
tion, software infringement, vulnerability analysis, and digital forensics [3]. To
construct signatures that are both expressive and identifiable, fingerprint discov-
ery and matching can be addressed using different kinds of techniques. In this
work, we focus on active model learning [4] as a means to achieve fingerprint
discovery and matching [20,33].

2.1 Model Learning

Active model learning [4] has been proven effective in fingerprinting behav-
ioral signatures from black-box software implementations [15,20,31,33]. For an
overview on model learning, we refer the interested reader to Frits Vaandrager’s
cover article1 of the Communications of the ACM Volume 60 [38]. Active model
learning is often described in terms of the Minimally Adequate Teacher (MAT)
framework [4] shown in Fig. 1.
1 In fact, we would like to thank for this well-crafted introduction that sparked our

interest to the topic and led to the initial ideas of the first author’s doctoral thesis.

140 C. D. N. Damasceno and D. Strüber

Teacher

CTT

Learning Algorithm

All pass / Failed test Yes / Counterexample

Perform tests Equivalence Query (EQ)

Outputs Query Output

Reset + inputs Membership Query (MQ)

Observation Table

E

S

S · I

SUT

R
eset +

 inputs

O
utputs Formulates

MW P

Fig. 1. The MAT framework (adapted from [38])

In the MAT framework, a learning algorithm is used to interact with a black-
box system and construct a hypothesis H about the “language” of a system’s
external behavior. To construct H, the learning algorithm poses membership
queries (MQ) formed by prefixes and suffixes to respectively access and distinguish
states in the SUT. Traditionally, these input sequences are maintained in an
observation table that guides the formulation of a hypothesis H of the SUT
behavior as a finite state machine (FSM) [8].

Once a hypothesis is formulated, equivalence queries (EQ) are used to check
whether H fits in the SUT behavior, otherwise it replies a counterexample that
exposes any differences. EQs are typically derived using conformance testing tech-
niques [8]. To handle more complex behavior, learning algorithms can also enrich
hypotheses with time intervals [1,35] and data guards [33]. Whenever a hypoth-
esis is consistent with an SUT, it can be deployed as a fingerprint [3,20,38].

2.2 A Methodology and Taxonomy for Formal Fingerprint Analysis

Software fingerprinting has been the focus of previous research from multiple
angles [3]. A formal methodology for fingerprinting problems is introduced by
Shu et al. [33]. They introduce the Parameterized Extended Finite State Machine
(PEFSM) model as an extension of the FSM formalism that incorporates state
variables, guards, and parameterized IO symbols to represent behavioral sig-
natures of network protocols. Using the PEFSM model, the authors discuss a
taxonomy of network fingerprinting problems where these are distinguished by
their type (active or passive experiments), and goal (matching or discovery). A
summary of the taxonomy for fingerprinting problems is shown in Table 1.

In active fingerprinting, security analysts are able to pose queries to an
unidentified SUT whenever they want. In contrast, in passive experiments, fin-
gerprint analysis is limited to a finite set of IO traces as source of information.
While active experiments are known to be more effective for providing freedom
to query as much as wanted, passive experiments have the advantage that the

Family-Based Fingerprint Analysis 141

Table 1. Taxonomy of fingerprinting problems (adapted from [33])

Fingerprinting Experiment type
problem Active Passive

Single matching Conformance testing Passive testing
Group matching Online matching separation Concurrent passive testing

Discovery with spec. Model enumeration and separation Back-tracking based testing
Discovery without spec. Model learning No efficient solution

SUT stays completely unaware that it is under analysis. The process of building
a fingerprint signature for an SUT is named fingerprint discovery.

In fingerprint discovery [33], the goal is to systematically build a distinctive
and efficient fingerprint for a SUT. This can be performed by retrieving as much
information as possible with the guidance of a pre-existing specification. Oth-
erwise, if no specification is available, model learning [38] can be still applied
to build behavioral signatures. Once a database of signatures is established, the
task of fingerprint matching can take place.

Typically, the goal of fingerprint matching is to determine whether the behav-
ior of an unidentified SUT matches a single fingerprint signature. However, in
cases where there are multiple signatures, it may be interesting to consider
matching the SUT against a set of fingerprints of different versions of an imple-
mentation [33].

Active group fingerprinting has been reported to require an exponential
worst-case execution time defined by the number of fingerprints in a group [33].
Therefore, it is highly desirable to have group matching approaches that are
more efficient than checking fingerprints one by one.

Example 1. (Running example of fingerprint analysis) In Fig. 2, we depict three
alternative versions of an FSM describing the behavior of characters in a game
platform, namely v1, v2, v3.

In the first version v1, we have a character that stays in constant movement,
once it starts walking. In version v2, the character can toggle its moving mode.
And, in version v3, the character skills are extended with another feature to
temporary pause its movement. To distinguish versions v1 and v2, we have the
input sequence start · end.

Limitations and Related Work. The algorithms for fingerprint match-
ing introduced by Shu et al. [33] have been specifically designed for PEF-
SMs. Hence, they cannot be directly applied to other notations, such as Mealy
machines [38,39] and timed automata [1,35]; that have more consolidated and
ongoing research. To fill this gap, Janssen [20] introduced two novel methods for
group fingerprinting matching in his Master’s dissertation, under the supervision
of prof. Frits Vaandrager.

In this work, Janssen [20] explores state-of-the-art conformance testing tech-
niques [7] in active fingerprint group matching. Despite the empirical evidences

142 C. D. N. Damasceno and D. Strüber

end/0

 start/1

 start/0
end/0

(v1)
end/0

 start/1
 end/1

 start/0
(v2)

end/0
pause/0

 end/1
 start/1

 start/0

 pause/1
 pause/1

 start/0
end/0

(v3)

Fig. 2. Family of product FSMs

using an extensive list of TLS implementations, the author points out that fur-
ther research is still needed to evaluate the efficiency and scalability of their
fingerprint matching methods when models are added over time [20]. This limi-
tation becomes particularly interesting if we consider the large number of release
versions that can emerge over time and the influx of vulnerability reports avail-
able in security databases. For instance, at the moment this manuscript was
produced, the GitHub repository of the OpenSSL project [26] has 338 release
versions and more than 31 thousand commits and, the NVD has more than 300
vulnerabilities associated with the keyword “openssl ”. This reinforces the need
for designing fingerprinting techniques able to efficiently handle large sets of
signatures.

3 Family-Based Fingerprint Analysis

As previously discussed, the efficiency of fingerprinting heavily depends on the
number of fingerprints under analysis. In fact, the size of a candidate group of
fingerprints is an exponential factor in the worst-case complexity of fingerprint
group matching [33]. In variability-intensive systems, this factor may become
more noticeable because the number of valid products is up-to exponential in
the number of features [37]. Thus, to minimize costs and effort, while maximizing
the effectiveness, we propose looking at fingerprint discovery and matching from
a feature-oriented perspective [21].

Feature modeling allows software engineers to design and manage families of
similar, yet customized products by enabling or disabling features. A feature is
any prominent or distinctive user-visible behavior or characteristic of a software
system [21]. Features are typically managed in association with other assets,
including feature models [21], source code [5], and test models [18].

In fingerprinting, the notion of features may be used to capture variability
in IO interfaces, optional build parameters, or even release version identifiers.

Family-Based Fingerprint Analysis 143

However, when fingerprinting variability-intensive, evolving software systems,
it becomes essential to represent behavioral signatures in a way that is suc-
cinct [9,17] and aid the design and implementation of variability-aware analysis
strategies [37]. To pursue performance improvements, there is a research direc-
tion dedicated to raise variability-awareness in software analysis by lifting mod-
eling languages and analysis strategies to the so called family-based level [37].

3.1 Family-Based Modeling and Analysis

In family-based analysis, domain artifacts, such as feature models [21], are
exploited to efficiently reason about product variants and feature combinations.
To make it feasible, software modeling and analysis principles are extended to
become aware of variability knowledge and avoid redundant computations across
multiple products; an issue that typically occurs when standard software analysis
is applied in an exhaustive, product-based fashion [37].

Product-based analysis techniques are known to be effective but infeasible
because of the potentially exponential number of valid implementations; or, in
the best case, inefficient, due to redundant computations over assets shared
among multiple products [37].

Family-based analysis operates on a unified representation of a family of
product-specific representations, namely the family model. A Featured Finite
State Machine (FFSM) [18] is one example of variability-aware modeling nota-
tion proposed to express families of FSMs as a unified artifact. In FFSMs, states
and transitions are annotated with presence conditions described as proposi-
tional logic formulae defined over the set of features. These FSM fragments are
called conditional transition [18] as they occur only when the feature constraints
involved in a concerned state or transition are satisfied.

Using SAT solvers, family models are amenable to automated derivation of
product-specific models [17], family-based model checking [9], and configurable
test case generation [18], where redundant analysis over shared states/transitions
are mitigated. Thus, the cost of family-based analysis becomes determined by
the feature size and amount of feature sharing, instead of the number of valid
products [37].

To guide the creation and maintenance of family models, recent studies have
proposed the application of model comparison algorithms, such as LTS_diff [40]
and FFSM_diff [12], to match and merge product-specific FSMs. These
approaches can provide efficient means to find differences between models [40]
and produce succinct FFSM representations from families of FSMs [11,12].

Motivated by these benefits, we introduce our vision of how family-based
learning [11,12] and testing [9,18] principles could be lifted to behavior-based
fingerprint analysis. These notions should aid an efficient framework for family-
based fingerprint analysis where a group of behavioral signatures are handled,
matched and merged as a family model, rather than a group of individual sig-
natures.

144 C. D. N. Damasceno and D. Strüber

Example 2. (Running example of behavioral variability models) In Fig. 3, we
depict a family-based representation for the set of alternative product FSMs
shown in the previous example.

Fig. 3. Example of family model expressed as a FFSM

3.2 A Framework for Family-Based Fingerprint Analysis

In this paper, we propose the development of a framework for family-based
fingerprint analysis. We suggest principles from model learning [11,12] and test-
ing [9,18] as means to kick-off the automated creation and maintenance of family-
based signatures from a set of SUT binaries. In Fig. 4, we depict this framework,
which, inspired by [32,33], we divided in two stages: (a) Fingerprint discovery,
where a family signature is generated by learning, matching, and merging SUT-
specific signatures; and (b) Fingerprint Matching, where the family signature is
employed as a configuration query oracle to answer if or under which circum-
stances a given IO trace has been observed.

Fig. 4. A framework for family-based fingerprint analysis

Family-Based Fingerprint Analysis 145

Family Fingerprint Discovery. When fingerprinting a set of SUT binaries
that are akin, it is reasonable to assume that they share behavioral commonal-
ities due to similar requirements or even reused components. Hence, we believe
adaptive model learning [19] is a variant that can aid in reducing the costs
required for fingerprint discovery. In adaptive learning, pre-existing models are
used to derive MQs to steer learning algorithms to states maintained after updates,
and potentially speed up the model learning process for systems evolving over
time [10] and in space [36]. Hence, we believe these benefits may also hold in
fingerprint discovery.

Once a group of signatures is obtained, fingerprint matching may be per-
formed in its standard way. However, as the cost for fingerprint group matching
may increase exponentially to the number of alternative versions and the size of
its candidate signatures, we suggest a model merging step to combine a set of
behavioral signatures into a unified FFSM representation [18]. To support this
step, we find that state-based model comparison algorithms (e.g., LTS_diff [40],
FFSM_diff [12]) can provide efficient means to construct a family signature.
Merging assumptions can be used to preset state pairs matching [40] and aid the
creation of a more succinct representation [12] for groups of fingerprints. This
concept of family signature provides the basis for a key entity in family-based
fingerprinting experiments, namely the configuration query oracle (CQ).

Our idea for a CQ is an abstract entity able to report if or under which cir-
cumstances (e.g., feature combinations, versions) a given IO trace has been previ-
ously observed. We believe that CQs can also be repurposed to recommend con-
figurable test cases for distinguishing SUT versions from their observed outputs
or satisfiable presence conditions. Thus, family-based signatures are amenable
to be deployed in both passive and active fingerprint experiments for discovery
and matching.

Family Fingerprint Matching. Once a family signature is created,
variability-aware, model-based testing concepts can enable an efficient finger-
print matching. Particularly, we see that family-based testing principles, such as
configurable test suites [18], could be repurposed as queries to check whether a
particular IO trace has been previously observed. If so, the presence conditions
assigned to the conditional transitions traversed by an IO trace can be used to
constraint the configuration space of a family of SUT binaries, e.g., “the follow-
ing presence conditions must hold because the IO traces matches with this list
of conditional state/transition”. To automate the task of fingerprint matching,
SAT/SMT solvers can be used to reply what (or even how many) configurations
can potentially match to a given SUT behavior, as EQs do.

Example 3. (Example of fingerprint matching) In Fig. 5, we illustrate an example
of configurable test cases derived from the FFSM in Fig. 3.

From this configurable test case, we can find that the trace start/1 · end/1
implies the constraint (v1|v2|v3) ∧ (¬v1|v2|v3) and, from it, we can discard a
match between the SUT and version v1. Also, we can find that this same input is
able to distinguish versions v1 and v2. In this case, if the trace start/1 · end/0

146 C. D. N. Damasceno and D. Strüber

Fig. 5. Example of configurable test case for fingerprint matching

is observed, then the constraint (v1|v2|v3) ∧ (v1|¬v2|¬v3) is derived and hence,
a match to v1 is found.

3.3 Practical and Theoretical Implications

In this section, we outline a few implications of this framework on software anal-
ysis. These include (a) Combining passive and active fingerprinting experiments,
(b) Family-based fingerprinting in model learning, and (c) Fingerprint Analysis
in the Open-World.

Hybrid Fingerprinting Experiments. When fingerprinting, traces from pas-
sive experiments can be incorporated in fingerprint matching to constraint
the configuration space of family-based fingerprints. Then, presence conditions
derived from these IO traces can be used to steer fingerprint analysis to parts
of the signature to reduce the uncertainty of what configuration is inside some
unidentified SUT. Similar concepts have been used in adaptive learning to speed
up update learning and should also aid performance improvements.

Family Signatures in Active Model Learning. Family-based fingerprints
may also support active model learning, particularly by providing EQs based
on multiple merged hypotheses. Typically, equivalence queries are approximated
via conformance testing techniques applied over a single hypothesis [4]. However,
some learning techniques may construct hypothesis non-deterministically [39]
and hence, potentially lead to “hypotheses mutants”. Aichernig et al. [2] has
shown that EQs can be efficiently generated using mutation analysis over hypoth-
esis. We believe these results may also hold when combined with family models.
In fact, a similar idea has been already investigated by Devroey et al. [13] within
the context of family model-based testing where behavioral variability models
have been deployed to optimize the generation, configuration and execution of
mutants. Nevertheless, there are still no studies deploying family model-based
testing in active learning.

Towards Fingerprinting Highly-Configurable Systems. As our long term
vision, we aim at making our approach suitable for highly-configurable systems,
where it is infeasible to enumerate all variants or the complete SUT behavior.

Family-Based Fingerprint Analysis 147

Hence, fingerprinting must rely on samples of traces. Currently, if the SUT does
not have an exact match with any signature, Shu et al. [33] recommends applying
model learning [4] to the SUT. However, in highly-configurable systems, exhaus-
tive learning becomes impractical due to the potentially exponential number of
valid configurations. Thus, it becomes interesting to inform whether an uninde-
tified trace has an inexact match with patterns associated to a particular con-
figuration or parameter. To address this, we believe that other variability-aware
representations, e.g., composition-based models [6] or control-flow graphs [30],
and analysis techniques, e.g., statistical classification or clustering [28], may be
more suitable to capture fingerprints as small behavioral or structural patterns,
rather than an exact annotative-based model [9,17] of the SUT behavior.

4 Final Remarks

This paper discusses a generic framework for lifting fingerprint analysis to
the family-based level. We suggest that state-based model comparison algo-
rithms [40] can aid the creation of concise FFSM representations [11,12] from a
set of fingerprints and enable efficient fingerprint analysis. We envision there are
a plenty of real-world artifacts and alternative analysis and modeling approaches
that could be used to start exploring and expanding this problem. Many artifacts
are available in the Automata Wiki [24]. We believe this repository constitutes
a great opportunity to future investigations in this novel topic which we call
family-based fingerprinting analysis.

References

1. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6_1

2. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation test-
ing. J. Autom. Reason. 63(4), 1103–1134 (2018). https://doi.org/10.1007/s10817-
018-9486-0

3. Alrabaee, S., Debbabi, M., Wang, L.: A survey of binary code fingerprinting
approaches: taxonomy, methodologies, and features. ACM Comput. Surv. 55(1),
1–41 (2022). https://doi.org/10.1145/3486860

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

5. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Prod-
uct Lines. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37521-7

6. Benduhn, F., Thüm, T., Lochau, M., Leich, T., Saake, G.: A survey on model-
ing techniques for formal behavioral verification of software product lines. In: Pro-
ceedings of the Ninth International Workshop on Variability Modelling of Software-
intensive Systems, pp. 80:80–80:87. VaMoS 2015. ACM, New York (2015). https://
doi.org/10.1145/2701319.2701332, event-place: Hildesheim, Germany

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1145/3486860
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/2701319.2701332
https://doi.org/10.1145/2701319.2701332

148 C. D. N. Damasceno and D. Strüber

7. van den Bos, P., Vaandrager, F.: State identification for labeled transition systems
with inputs and outputs. Sci. Comput. Program. 209, 102678 (2021). https://doi.
org/10.1016/j.scico.2021.102678

8. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

9. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013). https://doi.org/10.1109/TSE.2012.86

10. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning to reuse: adap-
tive model learning for evolving systems. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.)
IFM 2019. LNCS, vol. 11918, pp. 138–156. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34968-4_8

11. Damasceno, C.D.N., Mousavi, M.R., Simao, A.: Learning from difference: an auto-
mated approach for learning family models from software product lines [research].
In: Proceedings of the 23rd International Systems and Software Product Line Con-
ference - Volume A. SPLC 2019. ACM, New York (2019). https://doi.org/10.1145/
3336294.3336307

12. Damasceno, C.D.N., Mousavi, M.R., Simao, A.S.: Learning by sampling: learning
behavioral family models from software product lines. Empir. Softw. Eng. 26(1),
1–46 (2021). https://doi.org/10.1007/s10664-020-09912-w

13. Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P.Y., Heymans, P.:
Featured model-based mutation analysis. In: Proceedings of the 38th International
Conference on Software Engineering, pp. 655–666. ICSE 2016, New York (2016).
https://doi.org/10.1145/2884781.2884821

14. Elmaghbub, A., Hamdaoui, B.: LoRa device fingerprinting in the wild: disclosing
RF Data-driven fingerprint sensitivity to deployment variability. IEEE Access 9,
142893–142909 (2021). https://doi.org/10.1109/ACCESS.2021.3121606

15. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K.,
Somorovsky, J.: Analysis of DTLS implementations using protocol state fuzzing.
In: 29th USENIX Security Symposium (USENIX Security 20), pp. 2523–
2540. USENIX Association, August 2020. https://www.usenix.org/conference/
usenixsecurity20/presentation/fiterau-brostean

16. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6_25

17. Fragal, V.H., Simao, A., Mousavi, M.R.: Validated test models for software product
lines: featured finite state machines. In: Kouchnarenko, O., Khosravi, R. (eds.) For-
mal Aspects of Component Software: 13th International Conference, FACS 2016.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4_13

18. Fragal, V.H., Simao, A., Mousavi, M.R., Turker, U.C.: Extending HSI test gen-
eration method for software product lines. Comput. J. (2018). https://doi.org/10.
1093/comjnl/bxy046

19. Huistra, D., Meijer, J., van de Pol, J.: Adaptive learning for learn-based regression
testing. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 162–
177. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2_11

20. Janssen, E.: Fingerprinting TLS implementations using model learning. Master’s
thesis, Radboud Universit, Nijmegen, March 2021

https://doi.org/10.1016/j.scico.2021.102678
https://doi.org/10.1016/j.scico.2021.102678
https://doi.org/10.1007/b137241
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1145/3336294.3336307
https://doi.org/10.1145/3336294.3336307
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ACCESS.2021.3121606
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-57666-4_13
https://doi.org/10.1093/comjnl/bxy046
https://doi.org/10.1093/comjnl/bxy046
https://doi.org/10.1007/978-3-030-00244-2_11

Family-Based Fingerprint Analysis 149

21. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

22. Kenner, A., May, R., Krüger, J., Saake, G., Leich, T.: Safety, security, and config-
urable software systems: a systematic mapping study. In: Proceedings of the 25th
ACM International Systems and Software Product Line Conference - Volume A.
New York, September 2021. https://doi.org/10.1145/3461001.3471147

23. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996). https://doi.org/10.1109/5.533956

24. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9_23

25. NVD: The National Vulnerability Database (2022). https://nvd.nist.gov/
26. OpenSSL Foundation Inc: OpenSSL Releases on Github (2022). https://github.

com/openssl/openssl/releases
27. Peldszus, S., Strüber, D., Jürjens, J.: Model-based security analysis of feature-

oriented software product lines. In: Proceedings of the 17th ACM SIGPLAN Inter-
national Conference on Generative Programming: Concepts and Experiences, pp.
93–106 (2018). https://doi.org/10.1145/3278122.3278126

28. Pereira, J.A., Acher, M., Martin, H., Jézéquel, J.M., Botterweck, G., Ventresque,
A.: Learning software configuration spaces: a systematic literature review. J. Syst.
Softw. 182, 111044 (2021). https://doi.org/10.1016/j.jss.2021.111044

29. Pferscher, A., Aichernig, B.K.: Fingerprinting Bluetooth low energy devices via
active automata learning. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM
2021. LNCS, vol. 13047, pp. 524–542. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90870-6_28

30. Rhein, A.V., Liebig, J., Janker, A., Kästner, C., Apel, S.: Variability-aware static
analysis at scale: an empirical study. ACM Trans. Softw. Eng. Methodol. 27(4),
1–33 (2018). https://doi.org/10.1145/3280986

31. Ruiter, J.: A tale of the OpenSSL state machine: a large-scale black-box analysis.
In: Brumley, B.B., Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 169–184.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8_11

32. Shirani, P., Wang, L., Debbabi, M.: BinShape: scalable and robust binary library
function identification using function shape. In: Polychronakis, M., Meier, M. (eds.)
DIMVA 2017. LNCS, vol. 10327, pp. 301–324. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60876-1_14

33. Shu, G., Lee, D.: A formal methodology for network protocol fingerprinting. IEEE
Trans. Parallel Distrib. Syst. 22(11), 1813–1825 (2011). https://doi.org/10.1109/
TPDS.2011.26

34. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), March 2017. https://doi.org/10.1109/
ICST.2017.32

35. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019.
LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29662-9_13

https://doi.org/10.1145/3461001.3471147
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://nvd.nist.gov/
https://github.com/openssl/openssl/releases
https://github.com/openssl/openssl/releases
https://doi.org/10.1145/3278122.3278126
https://doi.org/10.1016/j.jss.2021.111044
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1145/3280986
https://doi.org/10.1007/978-3-319-47560-8_11
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1109/TPDS.2011.26
https://doi.org/10.1109/TPDS.2011.26
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13

150 C. D. N. Damasceno and D. Strüber

36. Tavassoli, S., Damasceno, C.D.N., Khosravi, R., Mousavi, M.R.: Adaptive behav-
ioral model learning for software product lines. In: Proceedings of the 26th Inter-
national Systems and Software Product Line Conference, SPLC 2022 (2022)

37. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 1–45
(2014). https://doi.org/10.1145/2580950

38. Vaandrager, F.: Model learning. Commun. ACM 60(2) (2017). https://doi.org/10.
1145/2967606

39. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Proceedings of the 28th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), January 2022. http://arxiv.org/abs/2107.05419

40. Walkinshaw, N., Bogdanov, K.: Automated comparison of state-based software
models in terms of their language and structure. ACM Trans. Softw. Eng.
Methodol. 22(2), 1–37 (2013). https://doi.org/10.1145/2430545.2430549

https://doi.org/10.1145/2580950
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
http://arxiv.org/abs/2107.05419
https://doi.org/10.1145/2430545.2430549

What’s in School? – Topic Maps
for Secondary School Computer Science

Ansgar Fehnker(B)

Macquarie University, Sydney, Australia
ansgar.fehnker@mq.edu.au

Abstract. Computer science education in secondary schools has trans-
formed in the last decade, both in content and status. Whereas, initially
the subject focused mostly on digital skills – if it was taught at all – dif-
ferent institutions and countries have adopted teaching and examination
plans that introduce computer science as a science.

Even before the adoption of computer science as a regular subject in
schools, individual researchers and academics created content to be used
in schools. One such example is the model checking unit developed by
Vaandrager et al. in the 2000s. While these activities are not aimed to
give a complete view of computer science, they can serve as a proxy to
determine which topics researchers consider important and suitable for
secondary school.

This paper will focus on secondary school computer science in the UK,
the Netherlands, and the state North Rhine-Westphalia in Germany. It
will map the content of examination or teaching plans to a common
classification by the scientific community – the ACM subject classifica-
tion. The comparison reveals choices made by the different countries. We
furthermore compare it to one of the first model checking units for sec-
ondary school, developed by Vaandrager et al., which is still being used
today.

Keywords: Computer science education · Computing education
programs · Model curricula

1 Introduction

While computer science established itself as a separate subject at universities
from the 1980s onwards – either in its own right or in the context of other fields
such as bioinformatics – computer science in schools was treated differently.
The UK Royal Society observed in their 2012 report Shut-down or restart? that
despite individual instances of imaginative and inspiring teaching, many pupils
learned not much more than basic digital literacy skills such as the use of a word
processor [12]. A committee of the Royal Dutch Academy of Sciences observed
in 2012 that after an initial push in the 1990s for computer science in secondary
school, it withered away, due to understaffing and lack of curriculum develop-
ment [10]. The committee observed that most primary school pupils in 2012
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 151–163, 2022.
https://doi.org/10.1007/978-3-031-15629-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_9

152 A. Fehnker

could use computing technology at a level that just 10 years was taught in
secondary school. They criticised henceforth secondary school computer science
education, which did not aim at more than teaching the use of devices or build-
ing a web page. The German Gesellschaft für Informatik (GI) warned in 2015
in the 3rd Dagstuhl Declaration not to confuse computer science education with
the training of computer usage [14]. Interestingly, the call to treat computer sci-
ence in school as more than the training of computer usage was already a core
recommendation in the 1st Dagstuhl Declaration from 1992 [5].

In the second decade of this century, new curricula were developed, combined
with efforts to improve the status of computer science as a subject. Computer
science became a mandatory subject in secondary school in the UK from age
10 to 16, and the UK Department of Education published the first guidelines
for GCSE and A-level computer science in 2014 [18]. In 2013 the German GI
was tasked with developing a joint computer science standard for the different
German states [1]. North-Rhine Westfalia, the German state adjacent to the
Netherlands, implemented a new curriculum in 2014 [11]. In 2016 the Stichting
Leerplanontwikkeling (SLO) proposed a new curriculum [4], which became the
new curriculum that came into effect in 2019 [3,16]. While there have been
comparable efforts in other countries, this paper focuses on these three.

The official recognition of computer science as a regular subject in schools
was preceded by individual researchers and academics who created content to
be used in schools. One such example is the model checking material developed
by Vaandrager et al. [19]. While these activities are often insular and not aimed
to give a complete picture, they serve as a proxy to determine which topics are
considered important and suitable for secondary school by researchers from the
field. This is relevant since an aim of teaching computer science is should be
“exposure to Computer Science as a rigorous academic discipline” [12].

This paper examines which topics from the field of computer science are cov-
ered by the new computer science curricula. It maps topics that are mentioned
in the curricula, teaching or examination plan to the 2012 ACM Computing
Classification System [2]. This classification provides an ontology of concepts
and categories that reflect the state of the computing discipline. The choice to
use the ACM Computing Classification – a tool made for and by the computing
community – instead of a tool by the educational community, such as model cur-
ricula, is intentional. It separates the topic areas that appear in the curriculum,
from educational considerations, such as complexity, specificity and cognitive
domain. This paper looks at the senior years of secondary school, which prepare
pupils for a study at a university.

This mapping exercise identifies topics that are relevant across different coun-
tries, as well as differences. It helps to answer the question of whether topics that
are prominent in one curriculum, are equally important in the others. The paper
will also derive a topic map for a specific learning activity. This is not done
to check for compliance with the curriculum – in this case, the learning activ-
ity precedes either of the curricula considered in this paper – but to assess to
what extent content developed by an active research group fits in with current
curricula, and whether it can inform its further development.

What’s in School? – Topic Maps for Secondary School Computer Science 153

2 Computer Science Learning and Teaching Standards

The core teaching plan for the senior years of secondary school in North Rhine-
Westphalia (NRW) was published in 2014 by the state minister of education [11].
NRW borders the Netherlands, has a similar population size in a slightly smaller
area, and includes the Ruhr area. The core teaching plan provides a framework
for the Gymnasiale Oberstufe, which leads to the Abitur, which is comparable to
the A-level exam in the UK, or the vwo exam in the Netherlands.

The NRW teaching plan states explicitly that it aims to concentrate on funda-
mental and timeless computer science ideas, concepts, and methods. The teach-
ing plan distinguishes between competence areas and topic areas. Competence
areas are reasoning, modelling, implementation, presentation and interpretation,
as well as communication and cooperation. The top-level topic areas are data and
structure, algorithms, formal languages and automata, information systems, and
computer science, humans and society. This paper focuses on the topic areas.

The core teaching plan of NRW precedes the report of the Gesellschaft für
Informatik (GI) from 2015. This report was produced at the request of the
joint federal conference of education ministers. Setting education standards is a
responsibility of the individual German states, but the joint federal conference
can set agreed standards. The GI recommendation distinguishes between compe-
tencies and topics, like the NRW core teaching plan does, with some adjustments
to the specific competency and topic areas. The 2014 NRW core teaching plan
met the criteria of the GI recommendation, as it is still in effect today.

In 2014 the UK department of education (DoE) published a guideline on
GCE AS and A level subject content for computer science [18]. The guideline
became effective in 2015. An explicitly stated objective was that pupils develop
an understanding of fundamental principles and concepts of computer science.
The subject content was divided between knowledge and understanding, which
includes the understanding of programming, data structures, networks and algo-
rithms, and skills, which includes problem-solving, designing, testing and debug-
ging, and applying relevant mathematics.

The guideline by DoE does not provide a detailed teaching plan. It leaves
room for different accreditation providers to develop their own. Schools in Eng-
land can be accredited by several accreditation providers. This paper will the
consider the 2021 Cambridge Assessment International Examination (CAIE)
syllabus for AS& A-Level computer science [6]. CAIE is targeting international
schools inside and outside of the UK, that want to offer a degree that is equiva-
lent to the UK AS or A-level.

The syllabus defines four sections: computational thinking and problem-
solving, fundamental problem-solving and programming skills, advanced theory
and further problem-solving and programming skills. Each of these sections is
then further refined. Whereas the DoE guideline gives too little detail for com-
parison of the covered topics, the CAIE syllabus refines it for some topics down
to specific examples that can be expected in class.

The Minister of Education in the Netherlands appointed a committee that
presented 2016 an advisory report on a future computer science exam pro-

154 A. Fehnker

gram [4]. The advice uses a concept-context approach that separates between
concept, and the context in which the concept is applied. This is a similar app-
roach to the one taken in both the NRW teaching plan and the CAIE syllabus.
This advisory report formed the basis for a new curriculum which came into
effect in 2019 [16].

The curriculum is divided into a core curriculum and elective themes. The
core curriculum covers 6 domains: skills, foundations, information, programming,
architecture and interaction. The elective themes define 12 different domains, of
which a vwo pupil has to choose four. All students that take the computer science
subject have to cover the core curriculum.

The curriculum tries to strike a balance between giving guidance as well
as the freedom to schools when implementing the curriculum [3]. This places
it between the general guidelines of the UK DoE, and the more specific NRW
and CAIE curriculum. For the topic mapping, we include in addition example
specifications that are provided by Stichting Leerplanontwikkeling (SLO) [17].
They provide additional information on the core topics, such that the comparison
with the CAIE and NRW curricula can be made at a more equal level of detail.

3 Topic Maps

This paper presents topics maps for three educational standards. These maps
are using the ACM computing classification system (CCS) as the baseline. It
provides a hierarchy of 2113 categories and concepts, with 13 top-level cate-
gories and 84 level-two categories, up to 6 levels deep. The concept of mutual
exclusion, for example, has been categorised as follows: Software and its engi-
neering > Software organisation and properties > Contextual software domains
> Operating systems > Process management > Mutual exclusion.

Figure 1 show the distribution of concept up to the level-two categories, which
will be used in this paper. The most prominent top-level category is Information
systems, followed by Computing Methodologies. The latter owes its prominent
position because of Machine Learning and Artificial Intelligence. The distribu-
tion reflects how different research disciplines evolved over time, and cannot be
used as such as a guide for which topics should be taught in school. It illustrates,
however, that the educational standards make a biased choice from the topics in
computer science, as neither of these topics is the most prominent topic in any
of the three curricula, as the remainder will show.

When an educational standard mentions an identifiable topic it is mapped to
a corresponding concept in the CCS. The CAIE for example states that a candi-
date should be able to “show understanding of how data for a bit-mapped image
is encoded”. This would be mapped to “Graphics file formats”. The mapping
considers only the topic and ignores for example that the verb “understanding”
points to a certain cognitive domain in Bloom’s taxonomy. The mapping uses
concepts from level 2 or above in CCS; level 1 topics would give too little gran-
ularity. It is not always possible to map a topic to the CCS; there is for example
no appropriate category for the topic of binary numbers. The CCS also does not
mention audio or sound, while the CAIE syllabus does.

What’s in School? – Topic Maps for Secondary School Computer Science 155

Fig. 1. Distribution of the first 2 levels in the ACM computing classification system.

For the NRW core teaching plan 71 different topics were identified. Figure 2
shows a breakdown of the first 2 levels of these topics. It is apparent that Soft-
ware and its engineering is the most prominent category, followed by Theory of
Computation and Networks. The most prominent sub-category Notations and
tools includes sub-topics related to syntax, semantics, compilers, interpreters
and parsers, but also topics such as polymorphism, classes and objects, mod-
ules/packages, Unified Modeling Language (UML) and Object oriented frame-
works. Even topics that are associated with competence modelling are often
related to modelling of object-oriented systems. Imperative programming, or
any other language paradigm, is not mentioned once.

Within the CAIE syllabus 99 different topics were identified. As in the NRW
teaching plan Software and its engineering is the most prominent category, as
depicted in Fig. 3. However, Networks and Security and Privacy are more promi-
nent, compared to the NRW plan. The same holds for the topic Hardware which
is all but absent from the NRW plan. It mentions hardware only in relation to
other topics such as networks. The topic Theory of Computation plays in contrast
a less prominent role in the CAIE syllabus compared to the NRW curriculum.

The largest sub-category of Software and its engineering is Notations and
tools. It contains topics related to parsing and compilation, like the NRW plan,
but also topics such as imperative languages, declarative languages, and topics
related to object-oriented programming. Object-oriented programming is men-
tioned throughout the syllabus but is always accompanied by mentions of other
programming paradigms. The CAIE syllabus distinguishes itself also by men-

156 A. Fehnker

tioning specific topics in the area of Security and Privacy, such as asymmetric
public-key encryption, intrusion detection, and firewalls.

The mapping exercise identified 81 different topics in the Dutch SLO exami-
nation guidelines. The breakdown in Fig. 4 shows that even though it is this still
the largest category, Software and its engineering is more on an equal footing
with Theory of Computation. The topic Computation Methodologies also fea-
tures prominently in the SLO guidelines, while it ranks among the least featured
topics in the other two curricula.

Within Software and its engineering area, Notations and tools is not largest
sub-category, but comparable with Creation and management, and Organization
and properties. The former includes topics related to the software design pro-
cess, the latter topics to functional and extra-functional properties. The term
object-oriented programming is not mentioned once in the SLO guideline. Not
even in the elective theme Programming Paradigms, which only refers to “alter-
native paradigms”. The only paradigm mentioned explicitly in the guideline is
Imperative Programming. This is in sharp contrast to the NRW teaching plan,
where object-oriented programming is the norm.

The lack of specificity concerning language paradigms seems to be related
to the explicit aim of the SLO guideline to give a fair amount of freedom. The
example specification provided by SLO, for example, states several times, that
certain topics are not mandatory, something neither of the other curricula does.
For example, when it discusses database query languages, it explicitly states that
the language does not have to be SQL. The CAIE syllabus, in contrast, expects
pupils to understand that SQL is the industry standard, with no qualification.

The SLO guidelines are also characterised by the fact that it covers more level
1 and level 2 topic areas than the CAIE or the NRW curricula. It is broader and
less focused. This is largely due to the fact that it includes 12 elective themes.
Students are only expected to select four themes, which means that they will
not be exposed to the entire range of topics depicted in Fig. 4.

The comparison of the three curricula shows that certain topics have very
different statuses in different curricula. The topic Theory of Computation plays a
prominent role in the NRW and SLO curricula but is less prominent in the CAIE
curriculum. Computing methodology plays a large role in the SLO curriculum,
compared to the CAIE and NRW counterparts. The same holds for Networks
and Hardware, which are fairly relevant in the CAIE syllabus, but almost absent
from the NRW curriculum. But even within a topic area, the choice for sub-
topics can diverge, as the question of language paradigms in the area Software
and its engineering demonstrates.

This paper maps the different topics covered by the curricula, but it is beyond
the scope to analyse the causes or effects of those choices. The next section, will,
however, analyse a specific learning activity, which gives some indication of how
research by individual research groups can influence covered topic areas.

What’s in School? – Topic Maps for Secondary School Computer Science 157

Fig. 2. Topic map for the NRW core teaching plan.

Fig. 3. Topic map for CAIE syllabus AS & A level.

158 A. Fehnker

Fig. 4. Topic map for SLO examination guideline.

Fig. 5. Topic map for the Informatica-Actief model checking unit.

4 Model Checking Unit

Vaandrager et al. presented 2009 a model checking unit that was developed for a
collaborative project between secondary schools and universities. The aim of that

What’s in School? – Topic Maps for Secondary School Computer Science 159

project was to review and revisit the content covered by ICT education, which
covered at that time, as previously mentioned, mainly digital skills. Vaandrager
et al. remarked that ICT education at that time failed to impart a sense of the
fascinating fundamental questions that drive computer science research [19].

The unit used Uppaal to introduce students to a number of topics: mutual
exclusion, data races, concurrency, leader election, and correctness. The unit
covered a dozen examples that the pupils were asked to understand and solve,
starting from models of automatic teller machines, train gate controllers, job-
shop scheduling, and logic puzzles such as the goat-wolf-cabbage problem, to
mutual exclusion protocols and leader election protocols such as Peterson algo-
rithm. They observed that pupils were surprisingly capable to understand the
problems, develop genuine solutions, and had a good grasp of correctness after
completion of the unit [19].

This unit has been offered initially in the 2000s to pupils at about 30 schools
in the Arnhem-Nijmegen region. The content has been adopted by Informatica-
Actief [15], a content provider for computer science in vwo education. While it
has been curated by editors of Informatica-Actief, the original content and setup
are still intact as an integrated learning activity. It contributes to the elective
theme automata, with as prerequisite familiarity with the core topic foundations,
as defined in the 2019 SLO curriculum.

The topic mapping is based on the current 2022 version of the learning
resource, as it is offered by Informatica-Actief. The activity distinguishes between
an introductory section, which introduces Uppaal at the hand of custom-made
examples and exercises, and an advanced section which considers protocols and
algorithms from literature. For vwo pupils, it is recommended to complete both
sections, and the topic map will be based on the entire learning activity.

The mapping was created similarly to the topic mapping for the curricula.
Identifiable topics are mapped to the CCS, whether they were mentioned as part
of the motivation, explicitly introduced as concepts or mentioned in the examples
and exercises. For example, the learning activity names distributed algorithms
explicitly in the introduction, introduces the concept later and gives examples
and exercises illustrating the topic. This would be mapped to the CCS topic
Distributed algorithms. The activity also discusses the importance of correctness
in light of failing hardware, which is mapped to the hardware topic Robustness.
The topic is not further expanded in the remainder of the resource. Both would
be mapped to a single topic, even though they are covered differently. It is not
the aim of the mapping to measure the frequency of a topic. However, once a
topic is expanded on, like Distributed algorithms, it will usually be the case that
other, related topics are touched upon, which will then appear in the topic map.

Figure 5 shows the topic map for the model checking learning activity. It
is based on 37 different topics that are touched upon by the resource. This is
surprisingly many, given that the resource itself slots it into only one elective
theme of the curriculum, namely automata.

The most prominent topic area is Software and its engineering, just like it is
in the curricula. However, the emphasis is different. The programming-related

160 A. Fehnker

sub-category Notations and tools is mostly absent, while the topic area Orga-
nization and properties dominates. This contains the 11 sub-topics Operating
systems, Scheduling, Deadlocks, Mutual exclusion, Process synchronization, Cor-
rectness, Synchronization, Formal methods, Model checking, Software reliability,
and Software safety. All but Operating systems are recognisable as topics that
were relevant at that time in Prof. Vaandrager’s research group.

The two other topic areas that feature heavily in the learning resource are
Theory of Computation, and Computing Methodologies. If we compare the topic
map to the maps for the curricula, it becomes apparent that it resembles the SLO
guidelines more than the CAIE or NRW curricula. The three most prominent
topics of the model checking learning activity, feature also prominently in the
SLO guideline. The NRW does not emphasize Computing Methodologies, while
the CAIE curriculum emphasises neither Computing Methodologies nor Theory
of Computation.

5 Discussion and Conclusion
Outcomes. This paper presents topic maps as a way to compare computer science
curricula for secondary school. These maps are based on the ACM Computing
Classification System, a hierarchy of concepts and categories used to categorise
computer science research. The comparison shows a few commonalities, most
notably that Software and its engineering is the most prominent topic area in
all three curricula.

As interesting are the differences. Some topic areas feature prominently in
one curriculum, but not in others. Even within the same topics area, differences
can be significant, as was observed with the very different treatment of language
paradigms. A particular question that arises from this comparison is whether
the narrow focus in the NRW curriculum on object-oriented programming is
justified, or whether avoiding guidance in this area, as it is done in the SLO
guidelines is more appropriate. Even though the SLO guidelines and the NRW
have a somewhat different purposes, in NRW it can be assumed that pupils will
be exposed to object-oriented programming, maybe at the expense of exposing
them to something else.

Although the topic maps have a limited scope, these observations can serve
to inform the discussion of whether the curricula expose the pupils adequately to
the field of computer science. It can help to identify topics that are overlooked,
or too narrow, or whether the curriculum matches the profile and expectations
of the tertiary institutions that want to recruit the pupils. Does the fact that
none of the curricula has a prominent place for Machine Learning and Artificial
Intelligence means that these topics are underrepresented, or does it mean that
other topics are more relevant to achieving the aims of the curricula, such as the
CAIE aim “to develop computational thinking”?

Even though this paper considered only one learning activity, it showed that
a single activity can cover many topics, even if the activity is focused on one
type of activity – in this case, the use of a model checker – and slotted into one
theme within the curriculum – in this case automata. These activities can even

What’s in School? – Topic Maps for Secondary School Computer Science 161

be used to extend the scope set by the curricula. For example, one of the central
topics of the model checking activity is concurrency; a topic that only the NRW
curriculum mentions explicitly.

Limitations. There are some limitations to this study. The first limitation arises
from the use of a subject classification, instead of a model curriculum as a
baseline for the map. A model curriculum is presented by the ACM and IEEE
report on Computing Curricula 2020 which defines a list of 84 competencies for
undergrad computer science [7]. The reason not to use such a model curriculum
is that competencies defined in such a curriculum combine topic areas with skills
and verbs that indicate a given cognitive domain in Bloom’s taxonomy. To be
useful for a topic mapping, the topics would first have to be extracted from these
competencies, and the topics would still have been selected by educators, rather
than the scientific community. The CSS offers an established hierarchy with 2113
topics that cover computer science, without mixing in educational concerns. A
drawback, as well as a strength, is that these maps do not tell how prominent a
topic will be in the classroom, or how well a pupil will master them. They only
tell whether a topic is present.

Another limitation is that this paper compares educational standards that
do not have the same purpose or institutional statute. The NRW teaching plan
is set and developed by the state ministry of education. The Dutch Ministry of
Education has tasked an external organisation, the SLO, to develop a framework
for computing science examination. One is standard, the other a guideline, for the
entire state or country. The situation in the UK is somewhat different, again, with
a national curriculum that provides only general guidance. The accreditation
providers use that freedom to develop a curriculum that is more specific and
focused, while schools can then select an accreditation provider.

Outlook. This paper compared the topic map of three curricula and one learning
activity. Selection of topics and whether they match expectations is only one
problem that secondary school computer science faces. As a comparatively new
subject computer science has to compete with other subjects. The Gesellschaft
für Informatik, for example, recommended in 2015 that computer science should
be treated equally to other science subjects [14]. However, it is still the case that
in NRW computer science does not count toward the minimum requirements for
STEM subjects [13]. Pupils can choose computer science in addition, but not
instead of another science subject, which in practice discourages uptake.

As a subject that is still fairly new as a regular subject, and with significant
changes to its curriculum, as discussed in this paper, schools also struggle to find
qualified teachers [8,9]. There have been initiatives to train existing teachers or
to attract professionals from ICT fields, but these efforts have been proven to be
insufficient to meet demand. Related to this is a lack of diversity, both among
teachers, but maybe even more concerning in the classroom. Selecting better
topics will not be sufficient to address this problem.

Finally, teachers are still looking for quality content to meet the requirement
set by the different curricula. This may be an opportunity for the research com-

162 A. Fehnker

munity to contribute and even have a chance to promote topics that are near
to their heart, similarly to what was achieved with the model checking unit by
Vaandrager et al.

Acknowledgement. Special thanks to Paul Bergervoet, editor of Informatica-Actief,
for giving me access to the most current version of the model checking learning activity.

References

1. Arbeitskreis Bildungsstandards SII: Bildungsstandards Informatik für die
Sekundarstufe II. Gesellschaft für Informatik (GI) e. V. (2016). https://
informatikstandards.de/

2. Association for Computer Machinery: ACM Computing Classification System
(2012). https://dl.acm.org/ccs

3. Barendsen, E., Grgurina, N., Tolboom, J.: A new informatics curriculum for sec-
ondary education in The Netherlands. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016.
LNCS, vol. 9973, pp. 105–117. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46747-4_9

4. Barendsen, E., Tolboom, J.: Advies examenprogramma informatica havo/vwo.
Stichting Leerplanontwikkeling (SLO), Enschede (2016). https://www.slo.nl/
publicaties/@4491/advies-0/

5. Buse, D., et al.: Dagstuhler Empfehlung zur Aufnahme des Fachs Informatik in
den Pflichtbereich der Sekundarstufe II (1992). http://www.informatikdidaktik.
de/HyFISCH/Informieren/politik/DagstuhlerEmpfehlung1992.htm

6. Cambridge Assessment International Education: Cambridge International AS &
A Level Computer Science 9608. Cambridge Assessment International Education
(2021). https://www.cambridgeinternational.org/programmes-and-qualifications/
cambridge-international-as-and-a-level-computer-science-9608/

7. Clear, A., Parrish, A.: Computing curricula 2020 - paradigms for global comput-
ing education. ACM and IEEE (2020). https://www.acm.org/education/curricula-
recommendations

8. Fowler, B., Vegas, E.: How England Implemented its Computer Science Edu-
cation Program. Center for Universal Education at The Brookings Institu-
tion (2021). https://www.brookings.edu/research/how-england-implemented-its-
computer-science-education-program/

9. Grgurina, N., Tolboom, J., Barendsen, E.: The second decade of informatics in
Dutch secondary education. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018.
LNCS, vol. 11169, pp. 271–282. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02750-6_21

10. KNAW-Commissie Informatica: Digitale Geletterdheid In Het Voortgezet Onder-
wijs. Koninklijke Nederlandse Akademie van Wetenschappen (2012). https://www.
knaw.nl/nl/actueel/publicaties/digitale-geletterdheid-in-het-voortgezet-onderwijs

11. Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen:
Kernlehrplan für die Sekundarstufe II Gymnasium/Gesamtschule in Nordrhein-
Westfalen. https://www.schulentwicklung.nrw.de/lehrplaene/lehrplannavigator-s-
ii/gymnasiale-oberstufe/

12. Royal society: shut down or restart? the way forward for computing in UK schools.
R. Acad. Eng. (2012). https://royalsociety.org/topics-policy/projects/computing-
in-schools/report/

https://informatikstandards.de/
https://informatikstandards.de/
https://dl.acm.org/ccs
https://doi.org/10.1007/978-3-319-46747-4_9
https://doi.org/10.1007/978-3-319-46747-4_9
https://www.slo.nl/publicaties/@4491/advies-0/
https://www.slo.nl/publicaties/@4491/advies-0/
http://www.informatikdidaktik.de/HyFISCH/Informieren/politik/DagstuhlerEmpfehlung1992.htm
http://www.informatikdidaktik.de/HyFISCH/Informieren/politik/DagstuhlerEmpfehlung1992.htm
https://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-international-as-and-a-level-computer-science-9608/
https://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-international-as-and-a-level-computer-science-9608/
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://www.brookings.edu/research/how-england-implemented-its-computer-science-education-program/
https://www.brookings.edu/research/how-england-implemented-its-computer-science-education-program/
https://doi.org/10.1007/978-3-030-02750-6_21
https://doi.org/10.1007/978-3-030-02750-6_21
https://www.knaw.nl/nl/actueel/publicaties/digitale-geletterdheid-in-het-voortgezet-onderwijs
https://www.knaw.nl/nl/actueel/publicaties/digitale-geletterdheid-in-het-voortgezet-onderwijs
https://www.schulentwicklung.nrw.de/lehrplaene/lehrplannavigator-s-ii/gymnasiale-oberstufe/
https://www.schulentwicklung.nrw.de/lehrplaene/lehrplannavigator-s-ii/gymnasiale-oberstufe/
https://royalsociety.org/topics-policy/projects/computing-in-schools/report/
https://royalsociety.org/topics-policy/projects/computing-in-schools/report/

What’s in School? – Topic Maps for Secondary School Computer Science 163

13. Schwarz, R., Hellmig, L., Friedrich, S.: Informatikunterricht in Deutschland – eine
Übersicht. Informatik Spektrum 44(2), 95–103 (2021). https://doi.org/10.1007/
s00287-021-01349-9

14. Schöning, J., Gemulla, R., Martens, W., Schulte, C.: 3. Dagstuhl-Erklärung
zur Informatischen Bildung in der Schule 2015 der Gesellschaft für Informatik
e.V. (GI). Gesellschaft für Informatik e.V (2015). http://www.gi.de/fileadmin/
redaktion/Download/GI-Dagstuhl-Erklaerung2015.pdf

15. Stichting Informatica-Actief: Informatica-Actief - Informatica lesmateriaal voor
HAVO en VWO (2022). https://www.informatica-actief.nl

16. Tolboom, J.: Examenprogramma informatica havo/vwo. Stichting Leer-
planontwikkeling (SLO) (2019). https://www.slo.nl/handreikingen/havo-vwo/
handreiking-se-info-hv/examenprogramma/

17. Tolboom, J.: Handreiking SE Informatica - Het examenprogramma (2020). https://
www.slo.nl/handreikingen/havo-vwo/handreiking-se-info-hv/examenprogramma/

18. UK Department for Education: GCE AS and A level subject content for computer
science (2014). https://www.gov.uk/government/publications/gce-as-and-a-level-
for-computer-science

19. Vaandrager, F., Jansen, D., Koopmans, E.: Een Module over Model Checking voor
het VWO. In: Vodegel, F., Loots, M. (eds.) Proceedings NIOC 2009: Flexibel,
adaptief, herbruikbaar. Utrecht : Hogeschool Utrecht (2009). http://hdl.handle.
net/2066/75596

https://doi.org/10.1007/s00287-021-01349-9
https://doi.org/10.1007/s00287-021-01349-9
http://www.gi.de/fileadmin/redaktion/Download/GI-Dagstuhl-Erklaerung2015.pdf
http://www.gi.de/fileadmin/redaktion/Download/GI-Dagstuhl-Erklaerung2015.pdf
https://www.informatica-actief.nl
https://www.slo.nl/handreikingen/havo-vwo/handreiking-se-info-hv/examenprogramma/
https://www.slo.nl/handreikingen/havo-vwo/handreiking-se-info-hv/examenprogramma/
https://www.slo.nl/handreikingen/havo-vwo/handreiking-se-info-hv/examenprogramma/
https://www.slo.nl/handreikingen/havo-vwo/handreiking-se-info-hv/examenprogramma/
https://www.gov.uk/government/publications/gce-as-and-a-level-for-computer-science
https://www.gov.uk/government/publications/gce-as-and-a-level-for-computer-science
http://hdl.handle.net/2066/75596
http://hdl.handle.net/2066/75596

Tree-Based Adaptive Model Learning

Tiago Ferreira1(B) , Gerco van Heerdt1 , and Alexandra Silva1,2

1 University College London, London, UK
{t.ferreira,gerco.heerdt}@ucl.ac.uk

2 Cornell University, Ithaca, USA
alexandra.silva@cornell.edu

A lot of the work the authors did in the last years on learning can be rooted
back to learning from Frits. Gerco and Alexandra spent a few years in Nijmegen
where Frits’ enthusiasm for Angluin’s algorithm infected them and made them
want to keep learning. Later on, Tiago first learned about automata watching
Frits’ model learning video for CACM. On this landmark birthday, we thank
Frits for his inspiration and wish him many happy returns!.

Abstract. We extend the Kearns–Vazirani learning algorithm to be able
to handle systems that change over time. We present a new learning
algorithm that can reuse and update previously learned behavior, imple-
ment it in the LearnLib library, and evaluate it on large examples, to
which we make small adjustments between two runs of the algorithm. In
these experiments our algorithm significantly outperforms both the clas-
sic Kearns–Vazirani learning algorithm and the current state-of-the-art
adaptive algorithm.

1 Introduction

Formal methods have a long tradition and have had much success in critical
applications, e.g. in the medical, space, and hardware industries. The last decade
saw a rise in the use of formal methods in the software industry, with dedicated
large teams in many companies, notably AWS and Facebook. This has caused a
shift in focus to develop techniques that are helpful towards catching the most
bugs as quickly as possible instead of performing complete verification [2].

The use of models to analyze system specifications, often pre-production,
is common in certain domains, but requires expert knowledge to design the
model and, throughout the system’s life, update it. Motivated by the difficul-
ties of building models, an automated technique called model learning [15] has
been developed and used in the analysis of a range of (black-box system) imple-
mentations. One particularly successful application is that of network protocol
implementations, e.g. TCP [6], SSH [7], and QUIC [5].

Classic active model learning algorithms like L� [1], Kearns–Vazirani [13], and
TTT [10] exist for a number of automata types (deterministic, input-output,

Full implementation and experiment results available at https://github.com/UCL-
PPLV/learnlib.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 164–179, 2022.
https://doi.org/10.1007/978-3-031-15629-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_10&domain=pdf
http://orcid.org/0000-0002-6942-0228
http://orcid.org/0000-0003-0669-6865
http://orcid.org/0000-0001-5014-9784
https://github.com/UCL-PPLV/learnlib
https://github.com/UCL-PPLV/learnlib
https://doi.org/10.1007/978-3-031-15629-8_10

Tree-Based Adaptive Model Learning 165

weighted, register) and have enabled analysis of numerous systems by providing
faithful models to be used in model checking. However, these algorithms suffer
from a common issue: systems often change faster than we can learn their mod-
els, as there is an inherent assumption that the learning process is running from
scratch every time. As such, keeping a model up-to-date becomes quite chal-
lenging, often needing manual intervention from an expert. This does however
introduce the chance of producing a model that is not actually correct, while
being an extremely laborious task for any moderately sized complex system.

In this paper, we present an incremental model learning algorithm that can
cope with evolving systems more effectively, and does not have to restart the
learning process when a change occurs, providing a gain in efficiency when learn-
ing systems that undergo changes at known moments in time.

The work in the present paper can be seen as advancing the state of the art
in adaptive automata learning [3,4,8,9,16]. Whereas previous work adapted the
L� algorithm to reuse part of a data structure from a previous run, our adap-
tive algorithm is the first to use the more efficient Kearns–Vazirani algorithm.
Although we focus on developing an algorithm for deterministic finite automata
(DFAs), the techniques we developed can be transferred to other automata mod-
els. We expect this work and subsequent developments on adaptive learning will
bring us closer to meet the specific needs of employing formal methods in fast
moving environments commonly seen in the industry, and in large evolving sys-
tems.

The paper is organized as follows. After preliminary material on automata
and learning (Sect. 2), in Sect. 3 we introduce and prove correctness of our incre-
mental learning algorithm for DFAs, which targets evolving systems whose muta-
tion points are known during learning. In Sect. 4 we benchmark and evaluate
the efficiency of the algorithm, and we demonstrate its effectiveness in learning
evolving systems. We conclude in Sect. 5 with a discussion of further directions
on adaptive automata learning.

2 Preliminaries

Throughout this paper we will make use of standard notation from automata
and learning theory. We define some of this notation below for the sake of clarity.

We fix a finite alphabet A and write A∗ for the set of finite words over this
alphabet. The empty word is ε and concatenation is written either by juxtapo-
sition or with the operator ·. Given a word w ∈ A∗ we write |w| for its length,
and w[i], 0 ≤ i ≤ |w|, for the prefix of w of length i. A language over A∗ is a set
of strings such that L ⊆ A∗. We sometimes refer to the characteristic function
A∗ → 2 = {�,⊥} of L also by L (L(w) = � if w ∈ L and L(w) = ⊥ if w /∈ L).

The formal models generated by our algorithm are deterministic finite
automata (DFAs). These are 4-tuples A = 〈Q, q0, δ, F 〉 where Q is a finite
set of states, q0 ∈ Q is the initial state, δ : Q × A → Q is a transition func-
tion, and F ⊆ Q is a set of final states. We define the usual reachability map
reachA : A∗ → Q by reachA(ε) = q0 and reachA(ua) = δ(reachA(u), a). The lan-
guage accepted by A is LA = {u ∈ A∗ | reachA(u) ∈ F}. We write A� for the

166 T. Ferreira et al.

minimal DFA accepting all of A∗ and A⊥ for the minimal DFA accepting the
empty language ∅.

Our learner makes use of two types of oracles: membership and equivalence
oracles. A membership oracle mq : A∗ → 2 is able to answer whether a given
input word is accepted in the target system; an equivalence oracle takes a DFA
A and responds with eq(A) ∈ A∗ ∪{null}, which represents either that the DFA
is correct (null) or a word w such that LA(w) �= mq(w).

2.1 Learning with a Classification Tree

When designing a learning algorithm, one of the key aspects to consider is how
we store the information we acquire over time. Learning then becomes a mat-
ter of being able to extend this structure with as little queries as possible, and
transforming the data into a hypothesis automaton. The learning algorithm we
introduce later, similarly to the classic Kearns–Vazirani algorithm, uses classifi-
cation trees as its base data structure. Formally, the set of classification trees is
given by the following grammar:

CT ::= Node A∗ CT CT | Leaf A∗

Here, a node contains a classifier e ∈ A∗, and ⊥-child and �-child subtrees, and
a leaf contains a single access sequence s ∈ A∗. The child subtrees are named
this way because of how the classifier e distinguishes access sequences s⊥ and
s� present in the respective subtrees: mq(s⊥ · e) = ⊥ and mq(s� · e) = �. In
particular, this holds for every pair of leaves and their lowest common ancestor
node, the root node of the smallest subtree containing both leaves.

The classification tree is then able to classify every word w ∈ A∗ into a specific
leaf of the tree, depending on how the target accepts or rejects w concatenated
with specific classifiers e in the tree. This is done through sifting (Subroutine
1), where, starting from the root of the tree with classifier e, we pose the query
mq(w · e) and, depending on the result, proceed to the ⊥-child or the �-child
of the node, from which we continue sifting, until we reach a leaf. The access
sequence s of that leaf will then be deemed equivalent to w.

Subroutine 1: sift returns the leaf in a classification tree equivalent to
a provided word w.r.t. the equivalence induced by the tree.
Data: Classification tree tree, membership oracle mq, word w.
Result: Equivalent leaf l in tree.

1 n ← tree;
2 while n = Node e left right do
3 n ← mq(w · e) ? right : left ;
4 return n;

The leaves of a classification tree represent the discovered states of the
hypothesis, and sifting a word down the tree gives us the state this word should
reach in the hypothesis. As such, one can easily retrieve the transitions of the

Tree-Based Adaptive Model Learning 167

hypothesis from the tree by, for each leaf with access sequence s sifting each
extended word s · a to obtain the destination of the transition with symbol
a ∈ A from s. The initial state is simply the state we find by sifting the empty
word ε, and the accepting states are the leaves in the �-child subtree of the root
node, which will have classifier ε. This logic is used by buildHyp (Subroutine 2)
to extract the DFA represented by a classification tree.

Subroutine 2: buildHyp extracts a hypothesis DFA from a classification
tree in the Classic KV algorithm.
Data: Classification tree tree
Result: Updated H w.r.t the current tree tree.

1 qo ← sift(tree,mq, ε); Q ← {q0}; F ← ∅;
2 for l ∈ leaves(tree) do
3 Q ← Q ∪ {l};
4 if l ∈ leaves(child(tree, �)) then
5 F ← F ∪ {l};

6 for l ∈ Q do
7 for a ∈ Σ do
8 δ(l, a) ← sift(tree,mq, label(l) · a);

9 return 〈Σ, Q, q0, F, δ〉;

With a hypothesis extracted from the classification tree, we can now pass
this to an equivalence oracle to determine if the hypothesis is correct. If not, we
will receive a counterexample word that we can use to improve the classification
tree. The algorithm does this by understanding that, given that every hypothesis
classifies the empty string ε correctly, and by definition the current hypothesis
classifies the counterexample c incorrectly, there must be a prefix of c for which
the classification first diverges. In terms of states, this then means that we are
taking a transition into a state that is accepting in the hypothesis, and rejecting
in the target, or vice-versa. This is fixed by realising that the state we take this
transition from then must actually be two different states. The algorithm then
uses this logic in updateTree (Subroutine 3) to split the state into two at the
tree level, turning a leaf into a node with two leaves, one representing the new
state discovered by the counterexample.

Subroutine 3: updateTree with a provided counterexample.
Data: Classification tree tree, counterexample c ∈ A∗.
Result: Updated tree taking into account c.

1 for i ∈ [0 · · · length(c) − 1] do
2 si ← sift(tree,mq, c[i]); ŝi ← reachH(c[i]);
3 if si �= ŝi then
4 e ← ci · LCA(tree, si, ŝi);
5 tree ← split(tree, si−1, c[i − 1], e,mq(c[i − 1] · e));
6 return tree;

168 T. Ferreira et al.

We provide the classic Kearns–Vazirani algorithm in Algorithm 4. This algo-
rithm uses the buildHyp routine explained above to build a DFA from a classi-
fication tree, as well as updateTree (Subroutine 3) to extend the classification
tree on receipt of a counterexample from an equivalence oracle.

Algorithm 4: Classic Kearns–Vazirani Algorithm
Data: Alphabet A, membership oracle mq and equiv. oracle eq for language L.
Result: The learned DFA H accepting L.

1 init ← mq(ε); H ← init ? A� : A⊥; s ← eq(H);
2 if s �= null then
3 tree ← init ? Node ε (Leaf s) (Leaf ε) : Node ε (Leaf ε) (Leaf s) ;
4 H ← buildHyp(tree);
5 cex ← eq(H);
6 while cex �= null do
7 tree ← updateTree(tree, cex);
8 H ← buildHyp(tree);
9 cex ← eq(H);

10 return H;

3 Learning Evolving Systems Incrementally

We now develop a learning algorithm that is able to learn updates to a previous
model without having to discard all behavior learned so far, and is also able to
detect and remove behavior that no longer holds.

Classic algorithms are partially able to do this with equivalence oracles—
they correct the current hypothesis based on a counterexample. Adaptive model
learners are able to do this with the answers of both membership and equiv-
alence oracles, even if the answer conflicts previous ones. Thus, they can deal
with languages that mutate over time, adapting to changes by either trimming
outdated behavior or distinguishing new behavior.

Our adaptive learning algorithm is targeted at systems with discrete changes,
such as version controlled systems. Specifically, the system evolves at discrete
known points, such as every version, forming a stream of target systems. Our
incremental learning algorithm for DFAs, presented in Algorithm 6, is based on
Kearns–Vazirani. As a first crucial difference, the incremental algorithm uses a
previous learned model as its starting point. As such, it cannot just acquire new
information; it also needs to be able to trim outdated behavior. This is done by
minimizeTree (Subroutine 5), which prunes an initial tree by removing all leaves
that are no longer represented by their reported access sequence. It achieves this
by sifting every access sequence down the tree, removing leaves whose access
sequences do not sift back into themselves.

This guarantees not only that the leaves left in our tree are correct in a
correct automaton for this language, but that every leaf in the tree is unique
w.r.t. the Myhill–Nerode congruence. If a pair of leaves were equivalent, then

Tree-Based Adaptive Model Learning 169

Subroutine 5: minimizeTree trims the tree from redundant leaves.
Data: Classification tree tree, membership oracle mq.
Result: A minimized classification tree.

1 for l ∈ leaves(tree) do
2 s ← sift(tree,mq, label(l));
3 if s �= l then
4 tree ← removeLeaf(tree, l);

5 return tree;

Algorithm 6: Incremental Algorithm
Data: Fixed alphabet A, optional previous classification tree tree, membership

oracle mq and equivalence oracle eq w.r.t the language L.
Result: The learned DFA H equivalent to the language L.

1 init ← mq(ε); H ← init ? A� : A⊥; s ← eq(H);
2 if s �= null then
3 if tree = null then
4 tree ← init ? Node ε (Leaf s) (Leaf ε) : Node ε (Leaf ε) (Leaf s);
5 else
6 tree ← minimizeTree(tree,mq);
7 H ← buildHyp(tree);
8 cex ← eq(H);
9 while cex �= null do

10 tree ← updateTree(tree, cex);
11 H ← buildHyp(tree);
12 cex ← eq(H);

13 return H;

both their access sequences would sift into only one of the nodes, leaving a leaf
whose access sequence does not sift back into itself, and causing it to be removed.

While here we only present the relevant changes made to the classic Kearns–
Vazirani algorithm to be able to adapt to changing behavior, we include the full
algorithm with all its subroutines in Appendix A.

3.1 Correctness and Termination

As the algorithm only terminates with a hypothesis that is correct according
to an equivalence query, correctness follows from termination. Termination of
the original Kearns–Vazirani algorithm relies on the following key property: for
every subtree of the form Node e left right , each leaf s ∈ A∗ of left satisfies
se �∈ L and every leaf s ∈ A∗ of right satisfies se ∈ L. We note that this property
also holds in our incremental algorithm as soon as we enter the main loop, as
minimizeTree removes any leaf violating it.

When a counterexample cex is found, the procedure is the same as for the
original Kearns–Vazirani algorithm, and can only be applied a finite number
of times: By the property shown above every pair of leaves corresponds to a

170 T. Ferreira et al.

pair of distinct equivalence classes of the Myhill–Nerode congruence for L, and
therefore the leaves in the tree cannot exceed the number of equivalence classes.
Furthermore, every counterexample of length at least 2 leads to an increase of
the number of leaves (via updateTree, which preserves the above invariant).

4 Experiments

We evaluate the efficiency of our new learning algorithm by running experiments
over random targets with different types of features. While we would like to
evaluate it over a standard set of benchmarks [14], these currently only cover
single target automata, and so are not fit for adaptive learners designed to learn
automata that are linked due to small evolutions in their behavior. We designed
two scenarios to benchmark this incremental algorithm. The first scenario takes
an initial automaton and applies a series of random mutations: it randomly adds
a state, removes a state, diverts a transition, and flips the acceptance of a state.
Our second scenario simulates the common occurrence of adding a feature to an
existing system. We do this by introducing a small feature automaton of 3 states
to an original base automaton by diverting 3 random transitions into the start
state of the feature automaton.

We perform these benchmarks on different automata of increasing number
of states, while maintaining the number of mutations applied to them, and the
size of the feature automaton. This way, we create different ratios of change, and
simulate applying fixes, or adding features to different systems.

We call the first and second targets t0 and t1, respectively. For our adap-
tive learning algorithm, the target evolving system starts as t0 and mutates to
t1 after 10000 queries. For the classic Kearns–Vazirani algorithm, as it cannot
learn evolving systems at all, we have to run the algorithm twice, first targeting
t0, then from scratch targeting t1. To ensure repeatable results, each bench-
mark in question has been run 300 times, each with fresh random inputs of the
same parameters, and averaged. The graphs below represent the average run of
both benchmarks, using that both have very similar results. Separate graphs per
benchmark can be found in Appendix B.

We start by running the benchmark on the classic Kearns–Vazirani algorithm
to set a baseline. These results can be seen in Fig. 1. The progress of each instance
here is measured according to the following definition.

Definition 1. Given α ∈ [0, 1], a stream (ti)i∈N of target automata, and a
stream (hi)i∈N of hypothesis automata,1 the progress is the stream (pi)i∈N, with
pi ∈ [0, 1] for all i ∈ N, given by

pi =
∑

u∈A∗,Lti
(u)=Lhi

(u)

(1 − α) ·
(

α

|A|
)|u|

.

1 Finite streams may be turned into infinite ones by repeating the last element.

Tree-Based Adaptive Model Learning 171

0 0.5 1 1.5 2
·104

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

pr
og

re
ss

(α
=

0.
99

9)

|Q| = 10
|Q| = 20
|Q| = 40
|Q| = 80

Fig. 1. Average progress graph of the
classic Kearns–Vazirani algorithm.

0 0.5 1 1.5 2
·104

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

pr
og

re
ss

(α
=

0.
99

9)

|Q| = 10
|Q| = 20
|Q| = 40
|Q| = 80

Fig. 2. Average progress graph of the
incremental algorithm.

As the learning curves show, the linear process of the classic algorithm for
t1 is very similar to the one for t0. The two halves of the lines may not have
the exact same gradients due to the targets being different, but we can see they
follow a similar pattern, and more importantly, converge to 1.0 using a similar
number of queries. This is because no knowledge is reused, and all states, even
persisting ones, will have to be relearned.

We perform the same benchmark on the incremental algorithm: see results
in Fig. 2. The incremental algorithm has a t0 run very similar to the classic
algorithm, due to the lack of previous knowledge. However, the t1 segment is
already very different. We immediately see that it does not start from such a
low similarity value as the run of the classic algorithm. This is because while
the classic algorithm always starts from a one state automaton, our incremental
algorithm starts from the previous hypothesis, with outdated states pruned.

We can also see that it is not always the case that this line ascends imme-
diately at the mutation point. This is because, as we are not starting from a
widely dissimilar automaton, the equivalence oracle actually requires a number
of queries to find a counterexample. This can be optimized by using more efficient
equivalence oracles, but for the sake of simplicity and comparison all algorithms
use the same random word search algorithm for equivalence testing.

These learning progress graph representations are great at demonstrating
the overall behavior and approach of the learning algorithm, but we now want
to evaluate whether this algorithm does indeed provide a benefit over learning
systems classically, or with the current state-of-the-art adaptive algorithms, in
terms of the number of queries it takes them to fully learn mutated targets. As
such, we have computed and averaged the number of queries it takes to reach
the final hypothesis while learning the t1 on each run. We present the results
as two ratios relative to the incremental algorithm: one comparing the classic
Kearns–Vazirani algorithm, and another comparing the current state-of-the-art
adaptive algorithm, Partial Dynamic L� [4]. We plot these in Fig. 3, and show
how the ratio changes with the size of the state space of t0.

172 T. Ferreira et al.

0 20 40 60 80 100 120 140 160

0.4

0.6

0.8

1

1.2

State Space (|Q|)

A
ve
ra
ge

R
at
io

Baseline
Mutation (Classic)
Mutation (Adaptive)
Feature-Add (Classic)
Feature-Add (Adaptive)

Fig. 3. Ratio of number of queries needed to learn the automata.

In this representation, a value of 1.0 would indicate that the incremental algo-
rithm requires as many queries as the algorithm in comparison. Any value below
indicates a benefit in running the incremental algorithm over such algorithm,
and vice versa (the lower the ratio, the better the incremental algorithm).

As we can see, the incremental algorithm consistently outperforms
all other algorithms in all benchmarks, even with small targets where a rel-
atively big portion of the system has changed. When compared to the adaptive
algorithm from the literature, we can see the incremental algorithm still consis-
tently outperforms in terms of queries, with a tendency to plateau between a
0.75 and 0.7 ratio—a reduction by 25–30% in the number of queries.

5 Conclusion

We introduced a new state-of-the-art algorithm for adaptive learning which pro-
vides, to our knowledge, the most efficient adaptive learner to date, allowing us
to learn systems that were before too big or evolved too quickly to be learned
classically. We evaluated the fitness of this algorithm through a set of realistic
experiments, demonstrating their benefit over classic and existing adaptive learn-
ers. Adaptive learning could provide a cooperative relationship between active
and passive learning, due to its flexibility towards information that changes over
time and becomes available at different stages. We want to explore this in future
work, as well as developing a formal framework of adaptive learning, where
other algorithms can be easily adapted, e.g. efficient classic algorithms such as
TTT [11]. Finally, although our incremental algorithm allows us to learn systems
that evolve at known points, this would not work in a true black-box scenario,
where we cannot know if or when the system changes. In the future we would
like to then develop a continuous learning algorithm for such evolving systems.

Related Work. Our algorithm contributes to the field of adaptive learning
first introduced in [8], where information learned in previous models was used as

Tree-Based Adaptive Model Learning 173

guidance for which states to check first, instead of blindly looking for new ones.
This was done by slightly modifying the L� algorithm to start from a previous set
of access sequences. Chaki et al. [3] use a similar algorithm in combination with
assume-guarantee reasoning [12] to provide a framework where model checking is
used to find counterexamples in the model, and thus make progress in learning.
Their algorithm, Dynamic L�, reuses not only the starting prefix/suffix sets,
but also their computed values. However, these must still be validated on the
new target. Finally, Damasceno et al. [4] introduce Partial Dynamic L�, which
improves Dynamic L� by analysing the start prefix/suffix sets to trim them where
possible, reducing the amount of information that needs to be validated.

These previous algorithms, however, suffer from using an observation table
as their data structure, which increases the amount of redundant data to be
acquired. As the tables grow, these redundancies significantly increase the num-
ber of queries that need to be asked.

A Omitted Incremental Subroutines

Subroutine A.1: child returns the (⊥/�)-child of a provided tree node.
Data: Tree node p, b ∈ 2
Result: b-child of p.

1 if p = Node e left right then
2 return b ? right : left ;
3 return null ;

.Subroutine A.2: children returns the children of a provided tree node.
Data: Tree node p.
Result: Set of children of p.

1 C ← ∅;
2 if child(p, ⊥) �= null then
3 C ← C ∪ {child(p, ⊥)};
4 if child(p, �) �= null then
5 C ← C ∪ {child(p, �)};
6 return C;

174 T. Ferreira et al.

Subroutine A.3: setChild updates a child of a given inner node in a
classification tree.
Data: Classification tree tree, parent node p, child outcome b, new child n.
Result: Updated classification tree tree where n is the b-child of p.

1 if tree = Node e left right then
2 if tree = p then
3 if b then
4 return Node e left n;
5 else
6 return Node e n right ;

7 return Node e setChild(left , p, b, n) setChild(right , p, b, n);

8 return tree;

Subroutine A.4: nodes returns the set of all nodes in a given tree.
Data: Classification tree tree.
Result: Set of nodes in tree.

1 if tree = Leaf s then
2 return {tree};
3 return tree ∪ nodes(child(tree, ⊥)) ∪ nodes(child(tree, �));

Subroutine A.5: leaves returns the set of leaves in a given tree.
Data: Classification tree tree.
Result: Set of leaves in tree.

1 if tree = Leaf s then
2 return {tree};
3 return leaves(child(tree, ⊥)) ∪ leaves(child(tree, �));

Subroutine A.6: label returns the label of a given node, be it a classifier
or an access sequence.
Data: Node n.
Result: Label ∈ A∗.

1 if n = Leaf s then
2 return s;
3 if n = Node e left right then
4 return e;

Tree-Based Adaptive Model Learning 175

Subroutine A.7: setLabel replaces the label in a specific leaf.
Data: Classification tree tree, leaf l, new label w.
Result: Updated classification tree tree with new label w in l.

1 if tree = l then
2 return Leaf w;
3 if tree = Node e left right then
4 return Node e setLabel(left , l, w) setLabel(right , l, w);
5 return tree;

Subroutine A.8: outcome returns whether a provided node n is a ⊥-child
or a �-child, or neither.
Data: Classification tree tree, provided node n
Result: ⊥, � or null if the node does not have a parent in tree

1 if n = tree then
2 return null ;
3 return child(parent(tree, n), �) = n;

Subroutine A.9: parent returns the parent of a provided node in the
classification tree.
Data: Classification tree tree, child leaf l.
Result: Parent node p.

1 q ← Queue(tree);
2 while |q| �= 0 do
3 p ← pop(q);
4 if l ∈ children(p) then
5 return p;
6 for c ∈ children(p) do
7 q ← push(q, c);

8 return null ;

Subroutine A.10: removeLeaf
Data: Classification tree tree, leaf l ∈ leaves(tree) to be removed.
Result: A valid classification tree tree with l removed.

1 node ← parent(tree, l);
2 sibling ← child(node, ¬outcome(tree, l));
3 return setChild(tree, parent(tree,node), outcome(tree,node), sibling);

Subroutine A.11: LCA returns the lowest common ancestor node of two
provided leaves in a classification tree.
Data: Classification tree tree, first leaf la, second leaf lb.
Result: LCA node n in the classification tree tree.

1 n ← la;
2 while lb �∈ leaves(n) do
3 n ← parent(tree, n);
4 return n;

176 T. Ferreira et al.

Subroutine A.12: split splits a leaf in the tree into a node with 2 child
leaves, one of them a new leaf introduced to the tree.
Data: Classification tree tree, current leaf l being split, label w ∈ A∗ for the

new leaf, classifier e ∈ A∗ for the new node, b ∈ 2 indicating whether the
new leaf is a �-child.

Result: Updated classification tree tree.
1 node ← b ? Node e l (Leaf w) : Node e (Leaf w) l;
2 return setChild(tree, parent(tree, l), outcome(tree, l),node);

B Additional Experiment Graphs

B.1 Mutation Benchmark

(See Figs. 4 and 5)

0 0.5 1 1.5 2
·104

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

pr
og

re
ss

(α
=

0.
99

9)

|Q| = 10
|Q| = 20
|Q| = 40
|Q| = 80

Fig. 4. Average progress graph of the classic Kearns–Vazirani algorithm.

Tree-Based Adaptive Model Learning 177

0 0.5 1 1.5 2
·104

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

pr
og

re
ss

(α
=

0.
99

9)

|Q| = 10
|Q| = 20
|Q| = 40
|Q| = 80

Fig. 5. Average progress graph of the incremental algorithm.

B.2 Feature-Add Benchmark

(See Figs. 6 and 7)

0 0.5 1 1.5 2
·104

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

pr
og

re
ss

(α
=

0.
99

9)

|Q| = 10
|Q| = 20
|Q| = 40
|Q| = 80

Fig. 6. Average progress graph of the classic Kearns–Vazirani algorithm.

178 T. Ferreira et al.

0 0.5 1 1.5 2
·104

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

pr
og

re
ss

(α
=

0.
99

9)

|Q| = 10
|Q| = 20
|Q| = 40
|Q| = 80

Fig. 7. Average progress graph of the incremental algorithm.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75, 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

2. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value stor-
age node in Amazon S3. In: SIGOPS, pp. 836–850. ACM (2021). https://doi.org/
10.1145/3477132.3483540

3. Chaki, S., Clarke, E.M., Sharygina, N., Sinha, N.: Verification of evolving software
via component substitutability analysis. Formal Methods Syst. Des. 32(3), 235–266
(2008). https://doi.org/10.1007/s10703-008-0053-x

4. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning to reuse: adap-
tive model learning for evolving systems. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.)
IFM 2019. LNCS, vol. 11918, pp. 138–156. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34968-4 8

5. Ferreira, T., Brewton, H., D’Antoni, L., Silva, A.: Prognosis: closed-box analysis
of network protocol implementations. In: SIGCOMM, pp. 762–774. ACM (2021).
https://doi.org/10.1145/3452296.3472938

6. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

7. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: SPIN, pp.
142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

8. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0 25

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1007/s10703-008-0053-x
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/3-540-46002-0_25

Tree-Based Adaptive Model Learning 179

9. Huistra, D., Meijer, J., van de Pol, J.: Adaptive learning for learn-based regression
testing. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 162–
177. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 11

10. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

11. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

12. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5, 596–619 (1983). https://doi.org/10.
1145/69575.69577

13. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning The-
ory. MIT Press, Cambridge (1994). https://mitpress.mit.edu/books/introduction-
computational-learning-theory

14. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9 23

15. Vaandrager, F.W.: Model learning. Commun. ACM 60, 86–95 (2017). https://doi.
org/10.1145/2967606

16. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: CBSE, pp. 111–120. ACM (2013). https://doi.org/10.1145/
2465449.2465469

https://doi.org/10.1007/978-3-030-00244-2_11
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1145/2465449.2465469

From Languages to Behaviors and Back

Markus Frohme(B) and Bernhard Steffen

Chair of Programming Systems, Faculty of Computer Science,
TU Dortmund University, Dortmund, Germany
{markus.frohme,steffen}@cs.tu-dortmund.de

Abstract. We present two formalisms for describing behaviors of pro-
cedural systems, i.e., systems that consist of multiple procedures that
can mutually call each other. Systems of procedural transition systems
(SPTSs) provide a fine-grained formalism for the step-wise semantics of
reactive systems whereas the equally expressive systems of behavioral
automata (SBAs) provide a language-based characterization that can be
used by active automata learning (AAL). Based on the concepts of our
previous work on systems of procedural automata (SPAs), we present
an AAL algorithm for SBAs and provide an open-source implementa-
tion of the algorithm that is publicly available for experimentation. In
a synthetic benchmark evaluation, we show that our approach of learn-
ing behaviors can even out-perform our previous approaches for holistic
system models.

Keywords: context-free languages · procedural systems · behavior ·
active automata learning · instrumentation

1 Introduction

In the last decades, active automata learning (AAL), originally intended to infer
(regular) languages via querying, has been developed as a valuable means to
infer models of software systems based on observations, i.e., via testing, or to
support model-based testing without requiring any a priori model [14,21,24].
Already 20 years ago it has been observed that languages describing behav-
iors of software systems are by their nature prefix-closed. This observation
and its practical impact has been refined by considering Mealy machines with
output-deterministic behavior which can today be seen as the de facto standard
when modeling reactive software systems [5,16]. An orthogonal development con-
cerned generalization beyond regular systems, e.g., by considering infinite data
domains [3,15,18,26] or introducing recursion [7,11,17]. Frits Vaandrager’s work
on such generalizations is characterized by its emphasis on mappers [1,2,4,9]:
Dealing with realistic systems such as the telephony systems in [13] clearly
requires a mapping between the abstract symbols known to the learner and the
concrete system observations. Frits elaborated on the mapper concept in a way
that allows one to reduce, e.g., the learning of register automata to a problem
that can be solved via regular automata learning. In fact, the work presented in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 180–200, 2022.
https://doi.org/10.1007/978-3-031-15629-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_11

From Languages to Behaviors and Back 181

this paper is based on a similar reduction: Context-free systems are learned via
orchestrated learning of regular automata over an extended alphabet [11].

In this paper we reconsider the impact of prefix-closure in particular under
the perspective of procedural systems. Our previous work [11] introduces sys-
tems of procedural automata (SPAs) which describe instrumented, context-free
languages via a set of independent procedures (represented by DFAs) that can
mutually call each other. By nature, context-free languages enforce a notion of
termination, or “empty stack” semantics, to describe valid words of the language.

In contrast, behavior often describes the step-wise actions that a system can
perform. Formally, it is often represented via labeled transitions systems (LTSs),
in which valid behavior is represented via transitions between nodes and invalid
behavior is represented via the absence of transitions. While LTSs may support
the notion of termination, e.g., via deadlock states, it is not mandatory. In the
light of procedural systems, the step from regular to procedural behaviors can
be regarded as a step from finite LTSs to sets of mutually recursive LTSs. In
particular, with procedural behaviors, one is able to express concepts such as
non-terminating procedures, which is not possible with the classic language-
based interpretation.

For formalizing the notion of procedural behavior, we introduce the concept
of systems of procedural transition systems (SPTSs) and present the notion of
systems of behavioral automata (SBAs) to relate this concept to prefixes of SPA
languages. We sketch an AAL algorithm for inferring SBAs and provide an open-
source implementation1 of this algorithm for public experimentation.

A particular interesting property of procedural behaviors (or equivalently,
prefix-closed SPA languages) is that they supersede classic SPA languages. This
leads to the idea of reduction which describes the process of removing all non-
terminating behavior from a system model. Using reduction, we can simulate an
SPA learner by inferring the behavior of a system first (via SBA inference) and
then removing all non-terminating executions. In a set of synthetic benchmarks,
we show that SBA-based learning has the potential to out-perform classic SPA
learning and therefore, besides its semantic advantages, provide an even more
efficient approach to the classic language-based learning process.

Outlook. In Sect. 2 we introduce preliminary concepts and notations for describ-
ing (regular) behavior and how it can be represented in the context of AAL.
Section 3 lifts these concepts to the level of procedural systems. In Sect. 4 we
present an AAL algorithm for inferring models described in Sect. 3. Sections 5
and 6 elaborate some qualitative properties of our approach and evaluate a set
of benchmarks in order to explore some quantitative properties of behavioral
systems in comparison to our previous work. Section 7 discusses related work
and Sect. 8 summarizes the paper and discusses future research.

1 https://github.com/LearnLib/learnlib-sba.

https://github.com/LearnLib/learnlib-sba

182 M. Frohme and B. Steffen

2 Preliminaries for Behavioral Systems

We introduce some general concepts and notation for describing the behavior
of systems and present some background information about technical aspects of
current technologies used in this paper.

2.1 A Semantic Point of View

For the foundation of behavioral systems we use the commonly known formalism
of labeled transition systems.

Definition 1 (Labeled transition system (LTS)). A labeled transition
system is a tuple LTS = 〈S, I,→, s0〉, where

– S denotes the (non-empty) set of states,
– I denotes the (non-empty) set of input labels,
– →⊆ (S × I × S) denotes the transition relation and
– s0 ∈ S denotes the initial state.

In this paper, we restrict ourselves to input-deterministic systems, i.e.,
∀s1 ∈ S, i ∈ I : |{(s1, i, s2) ∈→| s2 ∈ S}| ≤ 1.

Let w = i1 · . . . · in ∈ I∗ denote a sequence of input labels, |w| = n denote
the length of a sequence, and w[j] = ij denote the j-th element of a sequence for
j ∈ {1, . . . , n}. We define the paths of an LTS L as the concatenation of labels
of all possible sequences of transitions of L, i.e.,

P (L) = {w ∈ I∗ | (si−1, w[i], si) ∈→,∀i ∈ {1, . . . , |w|}, si−1, si ∈ S}.

In an input-deterministic LTS, each “run” of a system starts at a designated
initial state. For a given state and input label, there exists at most a single
successor state which allows us to deterministically progress through the LTS
when processing (input) actions. If at some point there does not exist a cor-
respondingly labeled transition, we have encountered an unsupported behavior
and the “execution” of the system stops. Therefore, the paths of a labeled transi-
tion system directly describe the valid behavior of the system and the step-wise
semantics allow one to directly model and query the validity of each individual
interaction. This allows LTSs to provide an intuitive formalism for modeling the
behavior of a software or hardware system.

With respect to learning behavioral systems, we assume that the systems
we are going to investigate throughout this paper provide a similar step-wise
mechanism for interacting with them.

2.2 A Technical Point of View

A popular field of research that deals with learning behaviors of (black-box)
software and hardware systems is active automata learning (AAL). In AAL,
system behavior is described by formal languages where words (sequences of

From Languages to Behaviors and Back 183

input symbols) represent sequences of valid interactions with the system. The
“language” of a system then describes the set of all valid interactions with the
system. AAL often follows the MAT framework [8] which describes an iterative
process where a learner initially poses membership queries (MQs) in order to
explore the behavior of the system under learning (SUL), e.g., a software or
hardware application. After the learner has constructed a tentative hypothesis
from its observations, an equivalence query (EQ) is posed in order to validate the
hypothesis. The answer to an EQ either indicates that the hypothesis conforms to
the SUL or yields a counterexample (a sequence of input symbols) that exposes
different behaviors of the hypothesis and the SUL, and is used to refine the
hypothesis in a subsequent round of exploration. For a practical introduction
see, e.g., [25].

In the following, we especially focus on DFA-based AAL.

Definition 2 (Deterministic finite acceptor (DFA)). A deterministic
finite acceptor is a tuple A = 〈Q, I, δ, q0, QF 〉, where

– Q denotes the finite, non-empty set of states,
– I denotes the finite, non-empty set of inputs,
– δ : Q × I → Q denotes the (total) transition function,
– q0 ∈ Q denotes the initial state and
– QF ⊆ Q denotes the set of accepting states.

Let u ∈ I(v ∈ I∗) denote a symbol of (word over) I and let ε denote the empty
word. We generalize the transition function to words over I as follows:

δ(q, ε) = q

δ(q, u · v) = δ(δ(q, u), v)

We define the language of a DFA A as the set of words that reach accepting
states, i.e.,

L(A) = {w ∈ I∗ | δ(q0, w) ∈ QF }.

DFAs inherently describe system behavior holistically: given an input word,
the verdict whether a word is accepted by the DFA is chosen after processing all
input symbols of the word. In general, even accepted words may at some point
traverse non-accepting states.

In order to align paths of LTSs with the languages of DFAs, we specifically
look at prefix-closed languages, i.e., languages such that for every word w of a
language, each prefix of w is also a member of the concerned language. This
property allows us to establish a direct relation between paths of an (input-
deterministic) LTS and words of a formal language. In fact, we can even directly
translate between (finite-state) LTSs and DFAs that describe the same behavior.
Given a finite LTS, the corresponding prefix-closed DFA is structurally similar to
the LTS in the sense that every state of an LTS corresponds to an accepting state
of the DFA and every transition defines the function value of the DFA’s transi-
tion function. The fact that LTSs may represent partial behavior via undefined

184 M. Frohme and B. Steffen

transitions can be easily compensated for by the DFA by adding a rejecting sink
state that collects all transitions that are undefined in the LTS representation.
Given that every (total) prefix-closed DFA necessarily contains such a sink as
well, it is easy to see how the reverse translation can be implemented.

With prefix-closed languages, we are able to adequately represent the step-
wise semantics of LTSs via formal languages. This enables us to use AAL-based
techniques in order to infer behaviors of (LTS-based) systems in the following.

3 Systems of Procedural Transition Systems

We continue to lift the basic concepts of Sect. 2 to procedural systems and re-
iterate some of the concepts of [11].

3.1 A Semantic Point of View

For modeling procedural systems, we use the well-known “copy-rule” semantics
of context-free grammars: The global system consists of individual behavioral
components (i.e., non-terminals or procedures) that can mutually call each other.
The global system starts with an initial (or “main”) procedure and may perform
some local actions. Whenever a call to a procedure is encountered, execution is
delegated to that procedure until termination where the execution returns to the
call-site.

In order to make these systems learnable, we introduce an instrumentation
that makes calls to and returns from procedures explicitly visible. To better dis-
tinguish between the roles of labels that signal entering and exiting procedures,
let us introduce the notion of an SPA alphabet.

Definition 3 (SPA alphabet). An SPA alphabet Σ = Σcall 	 Σint 	 {r} is
the disjoint union of three finite sets, where Σcall denotes the call alphabet, Σint

denotes the internal alphabet and r denotes the return symbol.

Given the specific roles of input labels, we can refine our previous notion for
behavioral systems specifically for incorporating the semantics of procedures.

Definition 4 (Procedural transition system (PTS)). Let Σ be an SPA
alphabet and c ∈ Σcall denote a procedure. A procedural transition system for
procedure c is a finite labeled transition system LTSc

B = 〈Sc, Σ,→c, sc
0〉 (cf. Def-

inition 1) such that

(s1, r, s2) ∈→c⇒ (s2, a, s3) /∈→c

for all s1, s2, s3 ∈ Sc, a ∈ Σ, i.e., return transitions are dead-ends.

The specific restriction to the transition relation accounts for the fact that
upon returning from a procedure, no more actions should be possible as the pro-
cedure represented by the PTS has terminated. We can then describe a procedu-
ral system via an aggregation of individual PTSs for the involved procedures. To
give an intuition for the structure of systems of procedural transition systems,
Fig. 1 shows an exemplary system describing palindromes.

From Languages to Behaviors and Back 185

LTSF
B

a

b

G

F

F

a

b

R

R

R

R

LTSG
B

c

F

G c

R

R

R

Fig. 1. A system of procedural transition systems over the SPA alphabet
Σ = {F, G} � {a, b, c} � {R} using two procedures for modeling palindromes over a,
b, c.

Definition 5 (System of procedural transition systems (SPTS)). Let Σ
be an SPA alphabet with Σcall = {c1, . . . , cq}. A system of procedural transition
systems SPTSB over Σ is given by the tuple of procedural transition systems
(LTSc1

B , . . . , LTS
cq
B) such that for each call symbol there exists a corresponding

procedural transition system. We write c0 ∈ Σcall to denote the initial procedure
of SPTSB, i.e., one of the existing q procedures that is invoked first.

SPTSs induce (potentially infinite-state) LTSs. Starting with the main pro-
cedure, each path of a PTS describes a procedural (sub-) path of a composed
SPTS path. Whenever a PTS p traverses a call symbol-labeled transition, we
switch to the initial state of the called procedure and return to the successor in
p upon termination of the called procedure, which is indicated by an r-labeled
transition.

In order to formally define the semantics of SPTSs, let us first introduce the
notion of a stack in order to keep track of the correct return-successors in the
induced LTS.

Definition 6 (SPTS stack domain/configuration). Let Σ be an SPA alpha-
bet and SPTSB be an SPTS over Σ. We define ΓSPTS = N 	 {⊥} as the stack
domain with N =

⋃
c∈Σcall

Sc as the set of all states and ⊥ as the unique
bottom-of-stack symbol. We use • to denote the stacking of elements of ΓSPTS

where writing elements left-to-right displays the stack top-to-bottom and we write
ST (ΓSPTS) to denote the set of all possible stack configurations.

Definition 7 (SPTS-induced LTS). Let Σ be an SPA alphabet and SPTSB
be an SPTS over Σ. The SPTSB-induced LTS is an infinite-state LTS
LTSSPTSB = 〈S, I,→, s0〉 such that

– S ⊆ {init} 	 (N × ST (Γ)) with N =
⋃

c∈Σcall
Sc,

– I = Σ,
– →=→init 	 →call 	 →int 	 →ret where

• →init= {(init, c0, (sc0
0 ,⊥))}

• →call=
{((sc

1, σ), i, (s
i
0, s

c
2 • σ)) | (sc

1, i, s
c
2) ∈→c, i ∈ Σcall, σ ∈ ST (ΓSPTS)}

186 M. Frohme and B. Steffen

• →int= {((sc
1, σ), i, (s

c
2, σ)) | (sc

1, i, s
c
2) ∈→c, i ∈ Σint, σ ∈ ST (ΓSPTS)}

• →ret= {((sc
1, s

c′

2 • σ), r, (sc′

2 , σ)) | (sc
1, r, s

c
3) ∈→c, σ ∈ ST (ΓSPTS)}

– s0 = init

To give some examples, the set of paths of the SPTS-induced LTS of Fig. 1
includes paths such as F · a · F · b and F · G · c · R · R. It is easy to see that
Definition 7 yields a valid LTS and therefore allows us to describe the behavior
of a procedural system.

3.2 A Technical Point of View

As discussed in Sect. 2.2, the characteristics of (finite, input-deterministic) LTS-
based behavior can be equivalently described by (regular) prefix-closed lan-
guages. As SPTSs consists of individual (finite, input-deterministic) PTSs, we
can define a language-equivalent formalism to SPTSs in order to establish a
notion compatible with AAL.

For the language-based interpretation, we will often switch between a local,
in-procedure interpretation of words, and a global, system-wide interpretation.
In order to better differentiate between the two contexts of words, we use ̂
to denote the procedural context and add (remove) this markup token when
switching between the two contexts. Note that this token is only used for reasons
of clarity and does not change or transform the actual input symbols.

We continue to introduce the language-based formalisms for representing
behavior.

Definition 8 (Behavioral automaton (BA)). Let Σ be an SPA alphabet
and c ∈ Σcall denote a procedure. A behavioral automaton for procedure c is a
prefix-closed DFA P c

B over Σ̂ (cf. Definition 2).

Definition 9 (System of behavioral automata (SBA)). Let Σ be an SPA
alphabet with Σcall = {c1, . . . , cq}. A system of behavioral automata SB over Σ
is given by the tuple of behavioral automata (P c1

B , . . . , P
cq
B) such that for each call

symbol there exists a corresponding behavioral automaton. The initial procedure
of SB is denoted as c0 ∈ Σcall.

We use structural operational semantics (SOS) [23] to formally define the
language of SBAs. We write

guard

(s1, σ1)
o−→ (s2, σ2)

for some states s1, s2 and some control components σ1, σ2 to denote that this
transformation (if applicable) emits a symbol o. We generalize this notation to
sequences by writing

(s1, σ1)
w−→∗(s2, σ2)

to denote that there exists a sequence of individual (applicable) transformations
starting in configuration (s1, σ1) and ending in configuration (s2, σ2), whose
concatenation of symbols yields w.

From Languages to Behaviors and Back 187

To formally define the semantics of SBAs by means of SOS rules, we first
define a stack to model the control components of the SOS rules and then define
the language of an SBA.

Definition 10 (SBA stack domain/configuration). Let Σ be an SPA alpha-
bet. We define ΓSBA = Σ̂∗ 	 {⊥} as the stack domain with ⊥ as the unique
bottom-of-stack symbol. We use • to denote the stacking of elements of ΓSBA

where writing elements left-to-right displays the stack top-to-bottom and we write
ST (ΓSBA) to denote the set of all possible stack configurations.

Definition 11 (Language of an SBA). Let Σ be an SPA alphabet and SB be
an SBA over Σ. Using tuples from Σ̂∗×ST (Γ) to denote a system configuration,
we define three kinds of SOS transformation rules:

1. call-rules:
ŵ ∈ L(P c

B)

(ĉ · v̂, σ) c−→ (ŵ, v̂ • σ)

for all ĉ ∈ Σ̂call, v̂, ŵ ∈ Σ̂∗, σ ∈ ST (ΓSBA).
2. int-rules: −

(̂i · v̂, σ) i−→ (v̂, σ)

for all î ∈ Σ̂int, v̂ ∈ Σ̂∗, σ ∈ ST (ΓSBA).
3. ret-rules: −

(r̂, v̂ • σ) r−→ (v̂, σ)

for all v̂ ∈ Σ̂∗, σ ∈ ST (ΓSBA).

The language of an SBA SB is then defined as

L(SB) = {w ∈ Σ∗ | ∃σ ∈ ST (ΓSBA) : (ĉ0,⊥) w−→∗(ε, σ)}.

From Definitions 7 and 11 one can see how both formalisms incorporate the
identical “copy-rule” semantics when expanding call symbols. Given the (finite)
LTS-to-DFA translation discussed in Sect. 2.2, one can easily construct an SBA
that yields a formal language describing the behavior of an SPTS. As a result, by
developing an AAL algorithm for SBAs, we can provide a learning mechanism
for procedural behavioral systems described by SPTSs.

In order to formulate a learning algorithm in Sect. 4, let us first introduce
some essential properties of SBAs. Similar to the (non-prefix-closed) formalism
of SPAs [11], the core idea will be to decompose the learning process of SBAs
into a simultaneous inference of individual BAs. Therefore, let us re-iterate some
formal definitions of [11].

Let w = w1 · . . . · wn ∈ Σ∗. We write w[i, j] to denote the sub-sequence of w
starting at the symbol at position i and ending at position j (inclusive). We write
w[i,] (w[, j]) to denote the suffix starting at position i (prefix up to and including

188 M. Frohme and B. Steffen

position j). For any i > j, w[i, j] denotes the empty word ε. We call a word
well-matched if every call symbol is at one point followed by a matching return
symbol and there exist no unmatched call or return symbols. We call a word
return-matched if every return symbol is at one point preceded by a matching
call symbol. Note that in return-matched words, there may exist unmatched call
symbols. We use WM(Σ) to denote the set of well-matched words over Σ and
RM(Σ) to denote the set of return-matched words over Σ.

In order to determine the matching return-index of a call symbol, we use the
maximum well-matched suffix function.

Definition 12 (Maximum well-matched suffix function). Let Σ be an
SPA alphabet and w ∈ Σ+ non-empty. We define the maximum well-matched
suffix function ρw : N → N as

ρw(x) = max{i ∈ N | w[x, i] ∈ WM(Σ)}
Note that if there exists no well-matched suffix of w[x,], e.g., if w[x] = r,

ρw(x) will return x − 1 as w[x, x − 1] = ε ∈ WM(Σ).
For decomposing words of an SBA into runs of its involved BAs, we focus on

the instances of procedural invocations and use a projection function to abstract
from nested procedural invocations.

Definition 13 (Instances set). Let Σ be an SPA alphabet and w ∈ Σ∗. We
define the instances set Instw ⊆ Σcall × N as

Instw = {(c, i) | w[i] = c ∈ Σcall}
Definition 14 (Alpha projection). Let Σ be an SPA alphabet. The alpha
projection α : WM (Σ) → (Σ̂call 	 Σ̂int)∗ is defined as

α(ε) = ε

α(u · v) =

{
û · α(v) if u ∈ Σint

û · α(v[ρv(1) + 1,]) if u ∈ Σcall

for all u ∈ (Σcall 	 Σint), v ∈ Σ∗.

With the above definitions, we can characterize the membership property of
an SBA word equivalently via the membership property of the involved BAs.

Theorem 1 (Behavioral localization theorem). Let Σ be an SPA alphabet
and SB be an SBA over Σ. Let w ∈ RM(Σ) be a non-empty, return-matched
word starting with c0. Then we have

w ∈ L(SB) ⇔ ∀(c, i) ∈ Instw : α(u) · v̂ ∈ L(P c
B)

where u = w[i + 1, j], j = ρw(i + 1) and v̂ =

{
ε if j = |w|
ŵ[j + 1] otherwise

From Languages to Behaviors and Back 189

F a F b G c R b

(c, i) u v

ĉ · r̂ ∈ L(PG
B)

(c, i) u v = ε

̂b · ̂G ·̂b ∈ L(PF
B)

(c, i) u v

â · ̂F ∈ L(PF
B)

Fig. 2. Decomposition of the exemplary word F · a · F · b · G · c · R · b generated by the
SBA of Fig. 1.

Proof. (Sketch) This equivalence is based on the fact that for every emitted
call symbol c of an SBA, there needs to exist a corresponding word ŵ ∈ L(P c

B).
One can verify this property for each call symbol by checking the membership
of the projected, procedural trace in the language of the respective behavioral
automata. Since procedural actions (return symbols, un-matched call symbols)
are also decided by behavioral automata, we need to extend the trace-to-be-
checked by this very action (v̂ in the equivalence). ��

The main difference between the localization theorem of regular SPAs [11]
and its behavioral version (Theorem 1) concerns the well-matchedness of regular
SPA words. For well-matched words, every call symbol is at one point followed
by a mandatory matching return symbol. As a result, we can restrict ourselves
to only verify the projection of inner well-matched sub-sequences. For SBAs,
the decision to return from a procedure is decided by the individual behavioral
automata, and SBAs in general allow for un-matched call symbols (cf. Definition
11). Therefore, we encounter three different situations in which the behavioral
automata need to verify

1. an additional call symbol (if the called procedure does not return),
2. an additional return symbol (if the current procedure returns) or
3. no symbol (if the current procedure stops mid-execution).

Figure 2 visualizes these three cases for an exemplary run of the SBA of Fig. 1.

4 Learning Systems of Procedural Transition Systems

This section presents an algorithmic approach to learning behaviors of procedural
systems. Our approach is based on the discussions in Sect. 3 that SPTSs can

190 M. Frohme and B. Steffen

be equivalently described via SBAs. Instead of inferring SPTSs directly, we use
techniques from AAL to infer equivalent SBAs. In case a formalism with native
LTS-based semantics is required, one can easily transform the resulting SBAs
into SPTSs again.

Intuitively, our SBA learning algorithm operates similar to our SPA learning
algorithm presented in [11]: Theorem 1 allows us to decompose the language of
the global SBA into the languages of its involved BAs. Therefore, in order to infer
an SBA, we can equivalently infer each of the local languages of the concerned
BAs. Since BAs are regular (prefix-closed) automata, we can use existing AAL
algorithms for regular systems for this task. The main task of the SBA learner
then concerns the management of the respective procedural learners of the BAs.

4.1 A Semantic Point of View

Compared to our learning algorithm for SPAs [11], the prefix-closure of systems
affects the inference process in numerous ways. In the following paragraphs we
discuss two aspects that simplify the inference process and two aspects that
require additional handling compared to classic SPA inference.

Simplifications. The first simplification is concerned with the analysis of coun-
terexamples. Identifying a mis-behaving procedure in a counterexample for reg-
ular SPAs involves an intricate analysis process that requires specific properties
on the current SPA hypothesis (ts-conformance) and potentially results in addi-
tional membership queries being posed. For SBAs, reduced counterexamples,
i.e., counterexamples that expose an in-equivalence at the last symbol, allow
one to directly find the violating procedure by simply determining the execution
context of the last counterexample symbol. This can be done by simply travers-
ing the counterexample back-to-front and searching for the first unmatched call
symbol. This analysis requires no additional queries both in the case of pos-
itive or negative counterexamples. Especially for behavioral systems, one can
easily construct reduced counterexamples because both the SBA hypothesis (via
a prefix-closed language) and the (potentially LTS-based) SUL allow for direct
step-wise feedback to detect mismatches as they occur. In monitor-based envi-
ronments (e.g., in live-long learning setups [12]), this is even the natural way of
detecting counterexamples.

The second simplification is concerned with the query expansion process. In
order to explore the individual procedures, the DFA learners pose membership
queries to the global system. For SPAs, this requires the procedural learners (or
rather the membership oracles of the procedural learners) to embed queries in a
context of access sequence and return sequence which ensure that the query of the
procedural learner correctly enters and returns from the concerned procedure in
the global system. Since the languages of SBAs are prefix-closed, one only needs
a procedure’s access sequence in order to guarantee observing the correct local
behavior. Skipping return sequences during query expansion not only simplifies
the translation but also improves the (symbol) query performance of the learner
(cf. Sect. 6).

From Languages to Behaviors and Back 191

a

b

F

F

a

b

R

R

R

R

a

b

F

F

a

b

R

R

R

R

G ?

?

Fig. 3. A (PTS-based) hypothesis for LTSF
B of Fig. 1 without any procedural G-

transitions (left) and after incorporating the information of a positive counterexample
F · G (right).

Adjustments. The first adjustment is related to the fact that behavioral
automata are defined over the complete SPA alphabet, including the return
symbol. When using learners for regular DFAs, this means that membership
oracles of the procedural learners may pose queries that contain additional sym-
bols after a return symbol. This essentially breaks out of the scope of a procedure
(cf. Definition 11) and the observed behavior is generally non-deterministic as
the response to the query depends on the access sequence used for embedding
the local query. In order to tackle this issue and ensure that return transitions
are dead-ends (cf. Definition 4), one can simply answer all procedural queries
with “false” if their input sequence contains any symbols beyond the first occur-
rence of the return symbol. Additionally, the DFA hypotheses may violate this
property after a refinement step. One can solve this issue by simply analyzing
the procedural hypotheses for any accepted r-continuations after each refinement
step and constructing a corresponding counterexamples if necessary. Note that in
both situations (r-continuations in queries and hypotheses) no additional mem-
bership queries are necessary due to the prefix-closed properties of the concerned
languages. Therefore, these adjustments come at zero (query) costs.

The second adjustment concerns the ability to incorporate information
from counterexamples. For SPAs, positive counterexamples are well-matched,
accepted words of the SUL and therefore yield truthful access sequences, ter-
minating sequences and return sequences for each involved procedure. This
allows us to structure the SPA inference process in an alphabet-incremental
way: By initially rejecting words that contain “unknown” procedures, we enforce
that counterexamples which contain these procedures are always positive. From
these counterexamples, we can extract the necessary sequences, start new learner
instances for the respective procedures, and add call symbols to the active learn-
ing alphabet of existing learner instances in order to incorporate the information
from the counterexample.

For SBAs, this situation is different. Consider the situation depicted in Fig. 3.
The left-hand side of Fig. 3 depicts a (PTS transformed) hypothesis of procedure
F which resembles the corresponding procedure from Fig. 1 without the call

192 M. Frohme and B. Steffen

symbol G. The SBA learner now receives the positive counterexample F · G,
i.e., procedure F should be able to perform a successful invocation of procedure
G. However, we cannot simply add the call symbol Ĝ to the procedural learner
of F , because we have no information about a possible terminating sequence
of G. When the procedural learner of F wants to explore behavior beyond the
invocation of G, e.g., to determine its successor transitions, we cannot construct
(global) queries that truthfully answer these procedural queries. However, at the
same time, we need to incorporate the information of a successful invocation of
G in order to correctly process the counterexample.

Semantically, such counterexamples introduce a “divergent” state, i.e., a state
that represents actual system behavior but has unknown future behavior. The
future behavior is unknown, because currently there is no evidence whether the
invoked procedure does terminate, i.e., there exist successor states, or does not
terminate, i.e., there exist no successor states. Both situations are equally pos-
sible. To resolve the divergence, it requires either an additional counterexample
that continues beyond the procedural invocation, i.e., a counterexample that pro-
vides a terminating sequence for G, or the termination of the learning process
which indicates that the procedure in fact does not terminate. In the following
section, we propose a way to tackle this issue using alphabet extension.

4.2 A Technical Point of View

Divergent states are a problem in the context of AAL, because they may either
represent (potentially temporary) sink states or coincide with existing states of
the hypothesis. This may result in non-monotonic learning processes, i.e., states
of the hypothesis may later have to be merged again, which can cause issues with
termination and correctness properties of AAL algorithms. We tackle this issue
by introducing two versions of call symbols: terminating and non-terminating
ones. Similar to the concept of abstract alphabet refinement [15], this allows us
to support multiple semantics for a single (abstract) call symbol throughout the
learning process. In the following, we use Σ̂call to denote the set of terminating
call symbols and Σ̂′

call to denote the set of non-terminating call symbols.
Throughout the learning process of a procedure c we maintain a mapping

M c : Σcall → (Σ̂call 	 Σ̂′
call) that associates for each call symbol a representative

that is used in the procedural hypothesis. When encountering a counterexample
like in Fig. 3, we first add the non-terminating version of a call symbol to the
procedural learning process. In case of Fig. 3, we would use Ĝ′.

Procedural queries that end with non-terminating call symbols such as Ĝ′ can
still be expanded to global queries using the call symbol G. Due to the prefix-
closure of behavioral systems, these (expanded) queries can also be answered
truthfully. If the procedural learner poses a query that contains symbols beyond
a non-terminating call symbol, the procedural membership oracle simply short-
circuits these queries and answers them with “false” without actually delegating
the query to the global system. This heuristic results in the divergent states
materializing as accepting states that lead into a sink, irrespective of whether
the corresponding call may eventually terminate.

From Languages to Behaviors and Back 193

Now, if the procedural learner receives a counterexample that provides an
actual terminating sequence for a procedure, e.g., F · G · c · R in the context
of Fig. 3, we add the terminating version of call symbol Ĝ to the procedural
learner and update the mapping G �→ Ĝ. For terminating call symbols, the pro-
cedural membership oracles can properly expand the procedural queries and the
answers to these queries represent definitive behavior. Since the learning process
is monotonic with regard to alphabet extension, introducing a new alphabet sym-
bol does not cause any problems with potential state merges. On a procedural
level, this approach results in behavioral automata being defined over the alpha-
bet Σ̂ 	 Σ̂′

call. However, due to our mapping, we can easily provide an interface
based on Σ alone which essentially “filters” out irrelevant transitions depending
on whether we have found a terminating sequence or not. Furthermore, note
that in case of counterexamples that directly introduce a terminating sequence,
e.g., directly receiving F · G · c · R instead of F · G, we can directly add Ĝ to the
learning alphabet and skip Ĝ′.

5 On Behaviors and Reductions to Well-Matched
Languages

Having presented the intuitive and technical aspects of learning behaviors of
procedural systems in the form of SBAs, we want to discuss in this section the
impact of prefix-closure and its meaning for the model and inference process.
Specifically, we want to contrast our prefix-closed approach to “classic” well-
matched approaches such as SPAs [11].

SPAs have a direct correspondence to context-free grammars by modeling
the production rules of non-terminals via procedural automata and defining the
SPA language according to the well-known copy-rule semantics. In essence, the
language of an SPA covers all derivations of the represented grammar. Necessary
for the learnability of SPAs is an instrumentation that makes the start and end of
a production rule visible. When implemented with a stack, SPAs enforce “empty-
stack” semantics: For truthfully answering the membership question, a word
must be well-matched, i.e., for every call symbol there must exist a matching
return symbol.

While for certain applications domains, such as DTD learning [10], this prop-
erty is natural, it can often times pose problems when integrating software sys-
tems or hardware systems in the learning process. Imagine a system that encoun-
ters erroneous behavior while running, e.g., an exception being thrown. In order
to feed this information to an SPA learner, one would need to complete this erro-
neous run to an empty stack while making sure that the completion does not
hide the actual observed error. In contrast to that, an SBA-based environment
would allow one to directly construct a valid counterexample at the moment the
error occurred.

The crux of this discrepancy is the question of which sensor is used to probe
the system. An SPA sensor asks the question “What action is returnable in the
system?” whereas an SBA sensor asks the question “What action is possible in
the system right now?”. Here, the prefix-closure of SBAs allow for a much more

194 M. Frohme and B. Steffen

natural system exploration by breaking the connection between call symbols and
return symbols forced by SPAs. Ultimately, this even allows for modeling non-
terminating procedures, which is not possible with empty-stack semantics. SBAs
enable a much more fine-grained representation of the system which is crucial
when dealing with behavior.

These two views do not have to be mutually exclusive. For example, one can
easily transform a behavioral automaton into a procedural automaton used by
SPAs by

1. marking every state as rejecting,
2. marking every state with a (previously) accepting r-successor as accepting,
3. removing every r-transition.

On a global language level, this reduction corresponds to intersecting the SBA-
language with the language of well-matched words, which exactly yields all SPA-
languages. This allows one to simulate an SPA learner using an SBA-based kind
of interaction which may be more convenient for system integration.

This alternate approach to SPA learning also impacts the learning process
itself: SPA hypotheses are usually smaller because procedural automata ignore
system states that cannot successfully return and consider fewer input symbols
(cf. Sect. 4.2). This can potentially result in fewer queries necessary for infer-
ring SPA models. However, since SPAs mandate empty-stack semantics, every
expanded query requires appending a terminating sequence. For very nested
systems, these sequences may become very long and therefore lower the symbol
performance of the SPA learner. When using SBA semantics, this kind of expan-
sion is not necessary. Section 6 shows that the savings of skipping the appended
return sequences can outweigh the increased number of hypothesis states and
overall boost the (symbol) query performance.

6 Evaluation

After discussing the qualitative aspects of SBAs, we want to investigate in this
section the quantitative properties of SBAs—especially in comparison to SPAs
in the context of active automata learning. Therefore, we conducted a series of
benchmarks that evaluate the query and symbol performance of our SBA learner
and present the results in the following. The benchmarks are available at https://
github.com/LearnLib/learnlib-sba for reproducibility.

6.1 Benchmark Setup

For a single benchmark run, we first constructed a random SBA (see below)
to use it as a SUL. We then instantiated the SBA learner with a specific reg-
ular learner for its procedures and ran the learning loop (cf. Sect. 2.2) using
a separating word-based equivalence oracle for constructing counterexamples
(see below). For the comparison with the SPAs-based formalism, we used the
generated SBA and reduced it as described in Sect. 5. The reduced SBA was

https://github.com/LearnLib/learnlib-sba
https://github.com/LearnLib/learnlib-sba

From Languages to Behaviors and Back 195

then learned by the algorithm of [11] using the same procedural learner and
counterexample generation technique.

Throughout the learning process, we counted for both approaches the number
of membership queries as well as the cumulated number of symbols of these
queries. In total, we ran 25 experiments and present in Sect. 6.2 the averaged
results.

Random SBAs. For creating a random SBA, we first constructed an SPA
alphabet of 5 call symbols, 10 internal symbols and the single return symbol.
We considered two types of SBA systems.

Complete SBAs, i.e., SBAs where the transition function is totally defined,
were constructed as follows:
1. For each call symbol c ∈ Σcall, we generated a behavioral automaton P c

B
that initially consisted of n − 2 accepting states.

2. For each transition (s, i) ∈ {1, . . . , n − 2} × (Σ̂call 	 Σ̂int) we selected a
random successor from {1, . . . , n − 2} via a uniform distribution.

3. For each state s, we used a coin-flip to decide whether s should have an
outgoing r-transition to a designated accepting “return” successor. This
adds an additional accepting state to the behavioral automaton.

4. We made the behavioral automaton total by adding a rejecting sink state
and letting every so-far undefined transition lead into this sink.

The complete SBA is then constructed by aggregating the individually gen-
erated random behavioral automata.

Partial SBAs, i.e., SBAs where the transition function is partially defined, were
constructed identical to the “complete” case with the only difference being
that step 2 introduces an additional coin-flip to decide whether a transition
(s, i) should be undefined. If the coin-flip decided “yes”, this transition would
then lead into the rejecting sink by step 4.

For the parameter n we chose values from {10, 25, 50, 100} which results in total
SBA sizes of 50, 125, 250 and 500 states, respectively.

Learner. For the procedural learner we used the TTT algorithm by Isberner et
al. [19]. While the SBA learner can be parameterized with arbitrary learners for
regular languages, we have observed similar results to our other research [11,12]
in which the TTT algorithm yielded the best results. Therefore, we focus our
analysis on the data of this setup.

Counterexamples. For generating counterexamples during the learning pro-
cess, we sequentially compared the behavioral automata of the generated SBA
with the current hypothesis model and checked whether there existed a separat-
ing word [22]. If such a word existed, we expanded the procedural counterexample
to a valid SBA trace using previously computed, shortest access sequences and
terminating sequences. While this construction of counterexample is not neces-
sarily realistic, it allows us to emphasize the impact of SBAs as a structure, as
there is no query overhead introduced by complex counterexample analysis.

196 M. Frohme and B. Steffen

6.2 Results

The results are shown in Fig. 4. In Fig. 4a we can see that for complete systems
the SBA-based approach performs worse than the SPA-based approach regard-
ing query performance. This was to be expected, because complete systems are
“hard” systems in the context of SBAs: A lot of accepting states are intercon-
nected, so there exist a lot of possible paths that eventually reach an accepting
state via the return symbol. Here, the answers to “What is possible in the sys-
tem?” and “What is returnable in the system?” hugely overlap. As a result, the
SPA-based interpretation is more efficient because it can directly encode this
information via the acceptance criterion of procedural automata. Compared to
the SBA-based system, the reduced number of states and input symbols allows
SPAs to out-perform the behavioral interpretation. However, regarding symbol
performance, Fig. 4b shows the impact of the simplified query expansion. Despite
the increased number of membership queries, the cumulated number of symbols
of these queries is significantly lower than for the SPA-based interpretation.

For partial systems, we can see that the SBA-based approach significantly
outperforms the SPA-based approach both query- and symbol-wise (cf. Figs. 4c
and 4d). Here, the generated systems under learning contain more (procedural)
paths that are executable but do not return. As a result, the SBA learner can
exploit the prefix-closure of these systems and skip further exploration/queries
when encountering such states. In contrast, the SPA-based learner needs to con-
tinue exploring beyond these states because in the holistic system interpretation,
rejecting states may at some point still reach accepting states again. Conse-
quently, the gap in symbol performance speaks even more in favor of the SBA
formalism.

We argue that the quantitative benchmark results speak in favor of our newly
developed formalism of SBAs. SBAs allow for a much more natural way to inter-
act with SULs, which increases the applicability of AAL in practice, and they
are capable of capturing behavioral properties that SPAs can not (cf. Sect. 5).
These semantic improvements come at a (if any) moderate price which allow
the SBA approach to remain competitive compared to the existing SPA app-
roach. Even better, there also exist situations where this more intricate sensor
for system behavior is able to improve learning performance as it allows to skip
unnecessary exploration steps.

To get a better overview of which system structure impacts the learning
process in which way, further analysis in future work is required. However, for
the time being, the collected results give a promising impression for the potential
of the SBA formalism.

7 Related Work

Our original work on SPAs [11] is related to the work on visibly push-down
languages (VPLs) and visibly push-down automata (VPAs) by Alur et al. [6,7].
Similar to SPA languages and SBA languages, they utilize special symbols (call

From Languages to Behaviors and Back 197

Fig. 4. Benchmark results

198 M. Frohme and B. Steffen

symbols and return symbols) that determine the stack operations of the under-
lying automaton structure.

Apart from well-matched and return-matched (prefix-closed) languages,
VPAs in general even support call-matched languages, i.e., languages in which
there exist words with un-matched call symbols. This makes VPAs strictly more
expressive than SPAs/SBAs. However, the two AAL algorithms known to the
authors [17,20] for inferring VPLs/VPAs only consider inferring well-matched
systems. Therefore, the presented approach offers a novel contribution in the
field of AAL. Furthermore, we have seen in [11,12] that SPAs can outperform
VPAs by multiple orders of magnitude, which makes SPAs highly preferable for
practical AAL. While this remains to be shown for SBAs and return-matched
VPAs, we believe that similar results can be shown based on the results of our
benchmarks in Sect. 6.

8 Outlook and Future Work

In this paper, we have presented systems of procedural transitions systems
(SPTSs) that allows one to capture the behavior of instrumented, procedural sys-
tems. Using the equally expressive formalism of systems of behavioral automata
(SBAs) we have presented a publicly available2 AAL algorithm for inferring these
behaviors from procedural black-box systems on the basis of testing.

As a validation technique for reactive systems, SBA learning is much more
adequate than SPA learning, as it directly reflects the stepwise evolution of an
execution. Moreover, states of reactive systems can typically be distinguished by
their (immediate) interaction potential, meaning that their transition relations
are partially defined. Our synthetic benchmark has shown that SBA learning sig-
nificantly out-performs SPA-based learners for partially defined systems. Thus,
SBA learning improves both the conceptual adequacy of the learned models for
system validation and the corresponding learning performance.

The difference between SBAs and SPAs concerns states from which no return
transition is reachable. Removing these states of an SBA directly provides the
corresponding SPA. Thus, SBA-based learning can also be considered as an opti-
mization of SPA learning for systems with partially defined transition relations.

As mentioned in Sect. 1, the notion of behaviors has—among others—been
refined to capture input-output dialogs on the basis of Mealy machines. A natural
extension for behaviors of procedural systems is given by a similar kind of (input-
output-based) dialogs of procedural systems. We are currently working on a
corresponding generalization covering systems of procedural Mealy machines.

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.W.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9_11

2 https://github.com/LearnLib/learnlib-sba.

https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://github.com/LearnLib/learnlib-sba

From Languages to Behaviors and Back 199

2. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9_4

3. Aarts, F., Howar, F., Kuppens, H., Vaandrager, F.W.: Algorithms for inferring
register automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol.
8802, pp. 202–219. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45234-9_15

4. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F.W., Verwer, S.: Learning and
testing the bounded retransmission protocol. In: Heinz, J., de la Higuera, C., Oates,
T. (eds.) Proceedings of the Eleventh International Conference on Grammatical
Inference, ICGI 2012, University of Maryland, College Park, USA, 5–8 September
2012. JMLR Proceedings, vol. 21, pp. 4–18. JMLR.org (2012). http://proceedings.
mlr.press/v21/aarts12a.html

5. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4_6

6. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468_89

7. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, pp. 202–211. ACM (2004)

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

9. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.W.: Learning fragments of the
TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS,
vol. 8718, pp. 78–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10702-8_6

10. Frohme, M., Steffen, B.: Active mining of document type definitions. In: Howar,
F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 147–161. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00244-2_10

11. Frohme, M., Steffen, B.: Compositional learning of mutually recursive procedural
systems. Int. J. Softw. Tools Technol. Transf. 23(4), 521–543 (2021). https://doi.
org/10.1007/s10009-021-00634-y

12. Frohme, M., Steffen, B.: Never-stop context-free learning. In: Olderog, E.-R., Stef-
fen, B., Yi, W. (eds.) Model Checking, Synthesis, and Learning. LNCS, vol. 13030,
pp. 164–185. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91384-
7_9

13. Hagerer, A., Hungar, H., Margaria, T., Niese, O., Steffen, B., Ide, H.-D.: Demon-
stration of an operational procedure for the model-based testing of CTI systems.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 336–339.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5_25

14. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.D.: Efficient
regression testing of CTI-systems: testing a complex call-center solution. Ann. Rev.
Commun. Int. Eng. Consort. (IEC) 55, 1033–1040 (2001)

15. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18275-4_19

https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-662-45234-9_15
http://proceedings.mlr.press/v21/aarts12a.html
http://proceedings.mlr.press/v21/aarts12a.html
https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/11523468_89
https://doi.org/10.1007/978-3-319-10702-8_6
https://doi.org/10.1007/978-3-319-10702-8_6
https://doi.org/10.1007/978-3-030-00244-2_10
https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/3-540-45923-5_25
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19

200 M. Frohme and B. Steffen

16. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_31

17. Isberner, M.: Foundations of active automata learning: an algorithmic perspective.
Ph.D. thesis, Technical University Dortmund, Germany (2015). http://hdl.handle.
net/2003/34282

18. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 1–34 (2013). https://doi.org/10.1007/s10994-
013-5419-7

19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3_26

20. Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, learning, and confor-
mance testing of boolean programs. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidelberg (2006). https://doi.org/
10.1007/11817949_14

21. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learning with on-
the-fly direct hypothesis construction. In: Hähnle, R., Knoop, J., Margaria, T.,
Schreiner, D., Steffen, B. (eds.) ISoLA 2011. CCIS, pp. 248–260. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34781-8_19

22. Moore, E.F.: Gedanken-experiments on sequential machines. Ann. Math. Stud. 34,
129–153 (1956)

23. Plotkin, G.D.: A structural approach to operational semantics. Technical report,
University of Aarhus (1981). dAIMI FN-19

24. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Transf. (STTT) 11(4), 307–324 (2009).
https://doi.org/10.1007/s10009-009-0120-7

25. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4_8

26. Vaandrager, F.W.: Active learning of extended finite state machines. In: Nielsen,
B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 5–7. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34691-0_2

https://doi.org/10.1007/978-3-540-45069-6_31
http://hdl.handle.net/2003/34282
http://hdl.handle.net/2003/34282
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/11817949_14
https://doi.org/10.1007/11817949_14
https://doi.org/10.1007/978-3-642-34781-8_19
https://doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-34691-0_2

The Quest for an Adequate Semantic
Basis of Dense-Time Metric Temporal

Logic

Martin Fränzle(B)

Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany

martin.fraenzle@uol.de

Abstract. The notoriously hard decidability problems of dense-time
metric temporal logic have historically motivated investigations into
means of removing extraneous expressiveness from these logics, both by
confining their syntax such that certain constraints (e.g., punctuality) are
no longer expressible and by confining the model class, i.e. the traces or
trajectories they are interpreted about, in physically justifiable ways (e.g.,
bounding the number of state changes possible within a given time frame).
In this note, we compare various of the latter semantic restrictions adopted
in the formal methods community to the established notion of band lim-
itation underlying digital signal processing. Exploiting the formal bridge
between signals and timed traces or trajectories mediated by signal-based
temporal logic, like Signal Temporal Logic [8], we base our investigation
on exposing characteristic formulae that are able to distinguish between
the various semantic models. The idea here is that indistinguishable pairs
of restrictions, i.e. pair that do not feature a distinguishing formula in the
temporal logic of interest, can be considered equivalent. Unfortunately,
the results show that already simple fragments of signal-based metric-time
temporal logic can distinguish the constraints on models hitherto sug-
gested in the domain of metric temporal logic and band limitation, spark-
ing a quest for additional investigations into an adequate semantic basis
of dense-time metric temporal logic.

Keywords: Metric-time temporal logic · Variability constraints ·
Signals · Band limitation

1 Introduction

Dense-time metric variants of linear-time temporal logic, like Metric Interval Tem-
poral Logic [2] or the Duration Calculus [3], pose notoriously hard decidability
problems when interpreted over continuous time. Various means have been sug-
gested to recover decidability, among them disallowing punctuality in specifica-
tions [1] as well as restricting the temporal dynamics and thus the set of traces

This research has received funding from Deutsche Forschungsgemeinschaft under grant
No. DFG FR 2715/5-1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 201–212, 2022.
https://doi.org/10.1007/978-3-031-15629-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_12&domain=pdf
http://orcid.org/0000-0002-9138-8340
https://doi.org/10.1007/978-3-031-15629-8_12

202 M. Fränzle

or discrete-state signal trajectories the logic is interpreted upon [6,7,13,14]. The
latter line of work builds on various notions of finitely bounded variability of
timed traces or trajectories, like k-bounded variability (or k-variability for short)
restricting (discrete-state) trajectory variability to at most k state changes within
every unit interval of time, and has been motivated by considerations about con-
current programs as well as by the observation that actual embedded control sys-
tems are subject to band limitation in their inputs as well as outputs.

It does, however, seem that the exact relation between semantic restrictions
on discrete-state abstractions, like confining temporal variability to be k-variable,
and band-limitation of the continuous signals underlying these abstractions has
never really been explored: while k-variability resembles band-limitation, it is not
identical to the latter, as the conditions apply to different types of signals, namely
discrete-state vs. continuous-state trajectories. Intuitively, the expected relation
between the two types of trajectories is clear: the discrete-state trajectory is
meant to be the image of the underlying continuous-time signal under obser-
vation through (idealized, delay- and inertia-free) threshold sensors, a notion
made explicit in the semantics of Signal Temporal Logic [5]. But whether the
set of discrete-state trajectories originating from observing band-limited signals
of a certain bandwidth via a threshold sensor actually coincides to k-variability
for a certain k (obviously dependent on the bandwidth) has not been explored
hitherto. Such a coincidence would, however, constitute a necessary condition
for giving (un-)decidability results of temporal logic fragments a precise physical
interpretation, given that in- and outputs of embedded systems actually are (or
at least ought be in a well-designed sampled system) band-limited.

In this note, we explore that problem by providing Duration Calculus (DC) [3]
with a direct interpretation over continuous signals akin to STL [5]. This allows us
to investigate the impact of various restrictions on signal dynamics on formula sat-
isfaction. Such restrictions can either be imposed on the continuous signals (e.g.,
requiring Lipshitz continuity or band limitation) or indirectly enforced by impos-
ing them to the discrete-state traces of such continuous signals w.r.t. state pred-
icates (typical restrictions would then be finite variability or k-variability). This
provides us with a basis for comparing such restrictions and exposing characteris-
tic formulae that are able to distinguish between the various restrictions and, for
parameterized notions like k-variability, their parameter values. The idea here is
that indistinguishable pairs of restrictions, i.e. pair that do not feature a distin-
guishing formula in the temporal logic of interest, can be considered equivalent.
The aforementioned intuitive correspondence between k-variability and band lim-
itation would then imply non-existence of a distinguishing formula (for appropri-
ate pairs (b, k) of band limit b and variability bound k). Unfortunately, the results
show that already by a simple fragment of Duration Calculus featuring moderate
expressiveness, the constraints on models hitherto suggested and band limitation
are mutually distinguishable, sparking a quest for additional investigations into
an adequate semantic basis of dense-time metric temporal logic.

The underlying mathematics applies equally well to any other metric-time
temporal logic, like Metric Interval Temporal Logic [2] or Signal Temporal Logic
[5], such that the particular constructions could easily be transferred. We chose
to exemplify them on Duration Calculus as DC has been the issue of a scientific

The Quest for an Adequate Semantic Basis of Dense-Time 203

debate with Frits Vandraager back in my early career, with which Frits had
enormous impact not only on my PhD thesis [6] and its analysis of DC over
models featuring different forms of constrained variability, but far and beyond
also on shaping my view of the domain of formal modeling and verification of
embedded and hybrid control that I’ve since been working in. I am very grateful
for that support.

2 Signal Duration Calculus

For the sake of our discussion, we introduce a version of Duration Calculus
(DC) whose atomic predicates refer to values of real-valued continuous-time
signals akin to Signal Temporal Logic (STL) [5]. In fact, this logic that we will
subsequently call Signal Duration Calculus (SDC) provides the very same lifting
of DC [3,4] to real-valued signals that STL [5] represents w.r.t. Metric Interval
Temporal Logic (MITL) [2].

The syntax of the fragment of DC we consider is the {�p�, � ∼ c} fragment
defined as follows:

Definition 1 (Syntax of SDC). Formulae φ of Signal Duration Calculus are
defined by the Backus-Naur form

φ ::= �p� | � ∼ c | ¬φ | φ ∨ φ | φ�φ

p ::= g ∼ c | ¬p | p ∨ p

g := cx | cx + g

∼ ::=< |=
c ::∈ Q

x ::∈ Var

where Var is a predefined set of signal names. We demand that c ≥ 0 in � ∼ c;
the symbol � denotes the length of the current observation interval. The operator
�, pronounced “chop”, is the only modality of Duration Calculus; it splits the
current observation interval into two adjacent subintervals on which the left and
right, respectively, argument subformula have to hold. Figure 1 explains these
operators by example.

The tautology �, the antinomy ⊥, other comparison operators than < and
≤, further Boolean connectives like ∧ or ⇒, and further modalities ♦φ or �φ
can be defined: for example, g = c ≡ g ≤ c ∧ ¬g < c, φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ,
� ≡ φ ∨ ¬φ with arbitrary φ, ♦φ ≡ ��φ��, and �φ ≡ ¬♦φ. Particularly
useful is the leadsto operator φ � �p� ≡ ¬♦(φ��¬p�).
Note that the above definition confines state expressions g to be linear com-
binations of signals, in contrast to the standard definition [8] for STL, which
permits more general state expressions. The reason for adopting this restriction
is that we will later on consider band-limited signals, which are closed under
linear combination, yet not under non-linear operators.

The semantics of SDC builds on the notion of a trajectory and an observation
interval, as shown in Fig. 1:

204 M. Fränzle

Fig. 1. SDC is interpreted over pairs of trajectories (depicted in green) and observation
intervals (depicted underneath the t axis). A formula � < c is satisfied iff the length
of the current observation interval is less than c; � > c respectively is satisfied if
the duration of the observation interval exceeds c. A formula �p� is satisfied iff state
predicate p hold throughout the current observation interval (except perhaps its two
endpoints). φ�ψ is satisfied iff the current observation interval can be partitioned into
two subintervals of which the left satisfies φ and the right satisfies ψ. (Color figure
online)

Definition 2 (Semantics of SDC). A state valuation σ is a mapping of
signal names x ∈ Var to real values, i.e., a function σ : Var → R. The set of all
state valuations is denoted by Σ. A (continuous time) trajectory traj : R → Σ is
a mapping from time instants, where time is identified with the real numbers R,
to state valuations.

An observation interval is a nonempty closed interval [b, e] = {x ∈ R | a ≤
x ≤ b} with b ≤ e over the reals.

Satisfaction of an SDC formula φ by a (discrete-time) trajectory traj over an
observation interval[b, e], denoted as traj , [b, e] |= φ, is defined recursively as1

traj , [b, e] |= �p� iff b < eand[[p]](traj (m)) holds for allm ∈]b, e[,
traj , [b, e] |= � < c iff e − b < c
traj , [b, e] |= � ≤ c iff e − b ≤ c
traj , [b, e] |= ¬φ iff traj , [b, e] �|= φ,
traj , [b, e] |= φ ∨ ψ iff traj , [b, e] |= φ or traj , [b, e] |= ψ,
traj , [b, e] |= φ�ψ iff there is m ∈ [b, e] s.t. traj , [b,m] |= ψ and traj , [m, e] |= φ.

1 The original version of DC derived the �·� operator from the accumulated duration
operator by defining �p� ≡ ∫

p = � ∧ � > 0 such that traj , [b, e] |= �p� iff b < e
and [[p]](traj (m)) holds for almost all m ∈]b, e[. All formal results in this note are,
however, insensitive to this detail.

The Quest for an Adequate Semantic Basis of Dense-Time 205

Here, [[p]](σ) denotes the natural interpretation of the state predicate p over state
valuation σ.

Following the standard definition, an SDC formula φ is satisfied by a trajec-
tory traj , denoted traj |= φ, iff traj , [0, e] |= φ for all e ≥ 0. We say that an SDC
formula φ is satisfiable iff there exists some trajectory traj that satisfies φ.

Satisfiability of an SDC formula φ obviously hinges on the shape of signals
and thus the set of trajectories we admit. We consequently define different classes
of trajectories that we will base our subsequent investigations on:

Definition 3. The following classes of trajectories are characterized by different
constraints on signal dynamics (also illustrated in Fig. 2).

1. A trajectory traj is called c-value-bounded, for c ∈ R>0, iff ∀t ∈ R : ∀v ∈
Var : |traj (t)(v)| ≤ c, i.e. iff it never takes values outside [−c, c]. The set of
all c-value-bounded trajectories is denoted by Traj≤c.

2. A trajectory traj is called l-Lipshitz, for l ∈ R>0, iff the signal sv : R → R

given by sv(t) = traj (t)(v) is Lipshitz-continuous with Lipshitz constant l for
each v ∈ Var, i.e. iff ∀t, t′ ∈ R : ∀v ∈ Var : |traj (t)(v)− traj (t′)(v)| ≤ l|t− t′|.
The set of all l-Lipshitz trajectories is denoted by TrajLip,l.

3. A trajectory traj is called b-bandlimited, for b ∈ R≥0, iff the signal sv : R → R

given by sv(t) = traj (t)(v) is band-limited with band limit b for each v ∈ Var.
The set of all b-bandlimited trajectories is denoted by Traj band,b.

4. A trajectory traj is called finitely variable w.r.t. a set of state predicates P
iff for each state predicate p ∈ P , the evaluation [[p]](traj (t)) features finitely
many changes in truth value over any finite time interval [b, e] that t ranges
over. That is, any such time interval [b, e] can be partitioned into finitely
many adjacent intervals [b1, e1], . . . , [bn, en] with b1 = b ∧ en = e ∧ ∀j ∈
{1, n − 1} : ej = bj+1 such that ∀j ∈ {1, n} : ∀t, t′ ∈ [bj , ej] : [[p]](traj (t)) =
[[p]](traj (t′)), i.e. p has constant truth value over each [bi, ei]. The set of all
finitely variable trajectories (w.r.t. P) is denoted by Traj fv,P . We will drop the
index P whenever it is understood, i.e., identical to the set of state predicates
occurring in a formula under investigation.

5. A trajectory traj is called k-variable w.r.t. a set of state predicates P , for
k ∈ N>0, iff for each state predicate p ∈ P , the evaluation [[p]](traj (t)) features
at most k changes in truth value over any unit time interval [b, b+1], b ∈ R

2.
That is, any such time interval [b, b + 1] can be partitioned into k adjacent
intervals [b1, e1], . . . , [bk, ek] with b1 = b∧ek = b+1∧∀j ∈ {1, k−1} : ej = bj+1

such that ∀j ∈ {1, k} : ∀t, t′ ∈ [bj , ej] : [[p]](traj (t)) = [[p]](traj (t′)). The set
of all k-variable trajectories (w.r.t. P) is denoted by Traj k,P . Again, we will
drop the index P whenever it is understood.

Intersections of these classes can reasonably be built and are non-empty in gen-
eral. For example, Traj≤c ∩ Traj band,b denotes the set of trajectories that are
bounded in both values and spectral frequencies, with the respective bounds c and
2 Note that we constrain the number of truth-value changes per state predicate, not

across all state predicates.

206 M. Fränzle

Fig. 2. Illustration of the trajectory classes: The red trajectory is 1.5-value-bounded,
while all others are not. All but the exponential cyan trajectory, which is unbounded
in value, are c-value-bounded for any c ≥ 2. The green trajectory is l-Lipshitz for any
l ≥ π

3
and the magenta trajectory is l-Lipshitz for any l ≥ 1

2
, while all other trajectories

are not Lipshitz. The green trajectory is the only band-limited trajectory in the set,
being b-bandlimited for any b ≥ 1

6
. All trajectories depicted are finitely variable w.r.t.

any set of predicates on x. All but the blue trajectory are 1-variable w.r.t. the singleton
set {x > 1} of state predicates. The blue trajectory is 3-variable w.r.t. {x > 1} and it is
1-variable w.r.t. {x > 0.1, x ≤ 1.5, x ≥ 2}. Given an arbitrary set P of state predicates
over x, the red, cyan, and magenta trajectories are 1-variable, the green is 2-variable,
and the blue is 3-variable w.r.t. P . (Color figure online)

b. Note that this particular combination actually defines a proper subset of the
Lipshitz-continuous trajectories.

Note that the notions of finite variability and of k-variability have extensively
been investigated for metric real-time temporal logic over continuous time, with
finite variability constituting the standard model [1–4] and k-variability (tra-
ditionally called k-boundedness, a term that we avoid here to avoid confusion
with k-value-boundedness) providing additional decidability results [7,14]. Con-
finement to Lipshitz-continuous trajectories has been studied in connection with
monitoring algorithms for Signal Temporal Logic [5,8], there providing means of
guaranteed interpolation between sampling points. Band-limited signals in turn
are the workhorses of digital signal processing [11] as well as of linear dynamic
system theory.

Given the close relation between these fields, all of which provide formal
descriptions of and underlying theories for embedded real-time computing,
understanding the exact relation between their underlying model or trajectory
classes is of utmost importance. Ideally, they would simply coincide. However,
from Fig. 2 it becomes obvious that the trajectory classes defined in Definition 3
denote different sets of mathematical functions over time. Nevertheless, the var-
ious trajectory classes could constitute corresponding pairs (or viable abstrac-

The Quest for an Adequate Semantic Basis of Dense-Time 207

tions of one another) in that they induce the same notion of satisfiability (or
that satisfiability by one implies satisfiability by the other, resp.) on pertinent
metric-time signal-based temporal logics like STL or SDC. This hope as histori-
cally been expressed concerning band-limitation and k-variability in particular.

In the following, we will show however that all these classes introduce subtly
different notions of satisfiability and that in particular, the fundamental notion
of band-limitation underlying all digital signal processing is not covered by any of
the others, i.e., by none of the standard notions of variability employed through-
out the theory of metric real-time temporal logic.

3 Formulae Differentiating Signal Classes

In order to rigorously show that satisfiability varies across the above trajectory
classes and that no two of them coincide, we will state a set of formulae that
differentiate between the different trajectory classes: each of the aforementioned
classes will be uniquely characterized by rendering a particular subset of these
formulae satisfiable. In fact, these characteristic formulae, as given in the sub-
sequent Lemmata 1 to 4, will together even permit to determine the pertinent
parameters of the parameterized model classes from Definition 3 up to the closest
rational.

Lemma 1. The SDC formula φ1 defined as � = 0∨�x > 0�∨(�x > 0���x = 0�)
is unsatisfiable by band-limited signals, no matter how the band limit is. How-
ever, it is satisfiable by finitely variable trajectories, c-value-bounded trajectories
(irrespective of the bound c > 0), l-Lipshitz trajectories (for arbitrary l > 0),
and k-variable trajectories (for arbitrary k ∈ N>0).

Proof. φ1 defines a signal that is non-zero initially and for a finite duration,
then continues being zero ad infinitum. That finitely variable, c-value bounded,
l-Lipshitz, and k-variable trajectories of this type exist, is obvious, providing the
positive satisfiability results.

However, no band-limited signal exists that is non-zero initially for a finite
duration, then constantly zero. The reason is that finite support of a signal in
the time domain and finite bandwidth in the frequency domain are mutually
exclusive (except for the constant signal 0, which does not satisfy the formula)
due to the uncertainty principle of signals processing. ��
Lemma 2. The SDC formula φ2(n, a) given, for n ∈ N>0 and a ∈ Q>0, as

(
0 < � ≤ 1

n
⇒ �x = a�

)

∧
(

�x = a��� =
1
n

� �x = 0�
)

∧
(

�x = 0��� =
1
n

� �x = a�
)

,

208 M. Fränzle

where φ � �p� abbreviates ¬ (��φ��¬p���), defines a symmetric square-wave
signal of pulse width 1

n and pulse height m. φ2(n, a) consequently is satisfiable
by finitely variable as well as over k-variable trajectories, for any k ≥ n, yet
neither satisfiable by a < n-variable model nor by any Lipshitz-continuous or
band-limited trajectories, irrespective of the particular Lipshitz constant or the
band limit. It is satisfiable by a c-value-bounded trajectory iff c ≥ a.

Proof. Satisfiability of φ2(n, a) by finitely variable and by appropriately k-
variable as well as by c-bounded models is obvious, as is unsatisfiability by
overconstrained < n-variable and < m-value-bounded models. Unsatisfiability
by Lipshitz-continuous models is obvious, as the square-wave signal defined by
φ2 is discontinuous. Unsatisfiability by band-limited trajectories is implied by
their continuity as well as by Gibb’s phenomenon. ��
Lemma 3. The SDC formula φ3(n, a) defined as, for any n ∈ N>0 and any
a ∈ Q>0, (

0 < � ≤ 1
n

⇒ �x = a�
)

∧
(

�x = a��� =
1
2n

� �0 < x < a�
)

∧
(

�x = a���0 < x < a��� =
1
2n

� �x = 0�
)

∧
(

�x = 0��� =
1
2n

� �0 < x < a�
)

∧
(

�x = a���0 < x < a��� =
1
2n

� �x = a�
)

is satisfiable by finitely variable and by ≥ 2n-variable trajectories as well as
by l-Lipshitz-continuous trajectories with Lipshitz constant l ≥ 2n and by ≥ 1-
value-bounded trajectories. It is unsatisfiable by any band-limited trajectory, no
matter what the band limit is, as well as by < 2n-variable, < 1-value-bounded,
and < 2n-Lipshitz trajectories.

Proof. Formula φ3(n, a) defines a signal that holds constant value a at each time
point t ∈ ⋃

k∈N
]2kn, 2kn + 1

2n [and value 0 at each time point t ∈ ⋃
k∈N

]2kn +
1
n , 2kn + 3

2n [. In between, the signal may take arbitrary values between 0 and
a. The respective satisfiability and unsatisfiability results follow immediately
for the cases of finitely variable, k-variable, c-bounded, and l-Lipshitz models.
Unsatisfiability by any band-limited signal is implied by a variant of Gibb’s
phenomenon: a band-limited signal cannot become constant without overshoot,
unless it is constant throughout or becomes only asymptotically constant. ��

The Quest for an Adequate Semantic Basis of Dense-Time 209

Table 1. Satisfiability of the characteristic formulae φ1 to φ4 over different model
classes. • denotes satisfiability by the model class irrespective of the value of the
parameter defining the model class. − denotes unsatisfiability irrespective of partic-
ular parameter values. Entries stating inequalities on parameters denote conditions
on the parameters of the respective model class that are necessary and sufficient for
satisfiability.

Formula Constraint on dynamics / Trajectory class from Definition 3

c-value bounded l-Lipshitz b-bandlimited finitely variable k-variable

Traj≤c TrajLip, l Traj band, b Traj fv Traj k

φ1 • • − • •
φ2(n, a) c ≥ a − − • k ≥ n

φ3(n, a) c ≥ a l ≥ 2an − • k ≥ 2n

φ4(a) • • b ≥ (2a)−1 • k ≥ a−1

Lemma 4. The SDC formula φ4(a) defined as, for a ∈ Q>0,
(
0 < � <

a

⇒�x > 0�
)

∧ (�x > 0��� = a � �x < 0�)
∧ (�x < 0��� = a � �x > 0�)

is satisfiable by a band-limited trajectory iff the band limit is at least 1
2a . Likewise,

it is satisfiable by a k-variable model iff k ≥ 1
a . For finitely variable, l-Lipshitz,

and c-value-bounded trajectories, φ4 is satisfiable irrespective of the particular
constants.

Proof. φ4 defines a signal that has periodic a zero crossing every a time units.
Generating such requires a model that is > 1

a -variable or a > 1
2a -band-limited

model. As no constraints are given concerning the magnitude of the signal val-
ues between zero crossings, satisfiability is independent from value-bounding or
Lipshitz bounds. ��

Altogether, these satisfiability results show that any two of the model classes
defined in Definition 3 can be distinguished by characteristic SDC formulae, as
becomes evident from Table 1 summarizing the above Lemmata. In fact, we can
even identify the particular parametrization of the model classes:

Theorem 1. For any pair of model classes from the set (a) finitely variable, (b)
k-variable, (c) k′-variable with k′ �= k, (d) c-value bounded, (e) c′-value-bounded
with c′ �= c, (f) l-Lipshitz, (g) l′-Lipshitz wirh l′ �= l, (h) b-bandlimited, and (i)
b′-bandlimited with b′ �= b, there is an SDC formula that distinguishes the two
classes in that it is satisfiable exactly one one of the two classes.

Proof. Follows immediately from Lemmata 1 to 4 and the fact that the rational
numbers are dense in the reals. ��

210 M. Fränzle

Corollary 1. SDC can distinguish the standard model of band-limited signals
generally underlying the theory of digital signal processing from any of the models
traditionally investigated in the area of metric-time temporal logic.

In particular, k-variable traces and band-limited trajectories induce differ-
ences in formula satisfiability such that k-variability does not constitute an ade-
quate abstraction of band limitation.

The expectation that the semantic notion of k-variability would coincide,
in the sense of providing a reasonable abstraction, with the physically justified
notion of band limitation consequently is unjust. This is a negative result that
ought spark fresh investigations into which model classes provide a reasonable
semantic basis for metric-time temporal logic and the (un-)decidability results
they imply. Unfortunately, the latter is not really understood for band-limited
signals and may likely relate to fragments of arithmetic whose decidability is
unknown due to a connection to Shanuel’s conjecture [9], given the harmonic
functions involved.

4 Conclusion

The past decades have seen an impressive broadening of the scope of formal
methods in computer science: from correctness of sequential programs over con-
current programs, reactive and embedded systems to cyber-physical systems
and systems of cyber-physical systems. Each of the advances has challenged
the semantic foundations, exposing effects that could not be represented in the
previous semantic models, yet were instrumental to the well-behavior of the
mutually next class of systems. Input-output relations and pre-post-conditions
reflecting these, as examples of pertinent models for sequential programs, could
not cover concurrency and reactive behaviour, calling for a.o. qualitative-time
temporal logic. Embedded systems called for relating to physical time and bore
timed automata and metric-time temporal logic. Cyber-physical systems, finally,
have to relate to physical systems, demanding a advance to (networks of) hybrid
automata and signal-based temporal logic. Each of these progressions has built
on the previous theories and tried to, as far as possible, provide conservative
extensions, thereby inheriting properties of the previous formalization. Some of
this inheritance has been deliberate, other accidental.

The latter implies a need for regularly checking the tacit assumptions under-
lying our semantic models. Within this note, we have pursued this w.r.t. the
variability assumptions underlying the traces or trajectories employed as seman-
tic basis of dense-time metric temporal logic, checking for consistency with the
recent signal-based view induced by cyber-physical systems. Exposing distin-
guishing characteristic formulae, we have been able to show that even simple frag-
ments of signal-based dense-time metric temporal logic can distinguish between
the band-limited signals generally employed as a model in digital signal pro-
cessing and any of the models suggested as semantic basis of dense-time metric
temporal logic. This result points at an urgent need to investigate reasonable, in

The Quest for an Adequate Semantic Basis of Dense-Time 211

the sense of physically plausible, semantic bases for metric-time temporal logic
and the (un-)decidability results they imply.

To the latter end, we plan to in future work exploit band limitation together
with the Nyquist-Shannon sampling theorem for band-limited signals [10,12]
and the corresponding exact reconstruction results for rigorously deriving an
exact sampled-data semantics of SDC. An expected offspring would be exact
monitoring algorithms for continuous-time DC based on discrete sequences of
samples.

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. In:
Logrippo, L. (ed.) Proceedings of The Tenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, Montreal, Quebec, Canada, 19–21 August 1991,
pp. 139–152. ACM (1991). https://doi.org/10.1145/112600.112613

2. Alur, R., Henzinger, T.A.: A really temporal logic. In: 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October–1 November 1989, pp. 164–169. IEEE Computer Society (1989).
https://doi.org/10.1109/SFCS.1989.63473

3. Chaochen, Z., Hansen, M.R.: Duration calculus-a formal approach to real-time sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series, Springer
(2004). https://doi.org/10.1007/978-3-662-06784-0

4. Chaochen, Z., Hoare, C., Ravn, A.P.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991). https://doi.org/10.1016/0020-0190(91)90122-X, https://
www.sciencedirect.com/science/article/pii/002001909190122X

5. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed
Systems - 8th International Conference, FORMATS 2010, Klosterneuburg, Austria,
8–10 September 2010. Proceedings. Lecture Notes in Computer Science, vol. 6246,
pp. 92–106. Springer (2010). https://doi.org/10.1007/978-3-642-15297-9 9

6. Fränzle, M.: Controller design from temporal logic: undecidability need not matter.
Ph.D. thesis, University of Kiel (1997). https://d-nb.info/951730746

7. Fränzle, M.: Model-checking dense-time duration calculus. Formal Aspects Com-
put. 16(2), 121–139 (2004). https://doi.org/10.1007/s00165-004-0032-y

8. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Joint International Conferences on Formal
Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
22–24 September 2004, Proceedings. Lecture Notes in Computer Science, vol. 3253,
pp. 152–166. Springer (2004). https://doi.org/10.1007/978-3-540-30206-3 12

9. Marker, D.: Model theory and exponentiation. Not. AMS 43(7), 753–759 (1996)
10. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst.

Electr. Eng. 47(2), 617–644 (1928)
11. Orfanidis, S.J.: Introduction to Signal Processing. College Division, Prentice Hall,

Upper Saddle River, NJ 07458 (1995)
12. Shannon, C.E.: Communication in the presence of noise. In: Proceeding IRE, vol.

37, no. (1) (1949)

https://doi.org/10.1145/112600.112613
https://doi.org/10.1109/SFCS.1989.63473
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1016/0020-0190(91)90122-X
https://www.sciencedirect.com/science/article/pii/002001909190122X
https://www.sciencedirect.com/science/article/pii/002001909190122X
https://doi.org/10.1007/978-3-642-15297-9_9
https://d-nb.info/951730746
https://doi.org/10.1007/s00165-004-0032-y
https://doi.org/10.1007/978-3-540-30206-3_12

212 M. Fränzle

13. Wilke, T.: Automaten und Logiken zur Beschreibung zeitabhängiger Systeme.
Ph.D. thesis, University of Kiel, Germany (1994). https://d-nb.info/942315308

14. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.P., Vytopil, J. (eds.) Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, Third International Symposium
Organized Jointly with the Working Group Provably Correct Systems - ProCoS,
Lübeck, Germany, 19–23 September, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 863, pp. 694–715. Springer (1994). https://doi.org/10.1007/3-540-58468-
4 191

https://d-nb.info/942315308
https://doi.org/10.1007/3-540-58468-4_191
https://doi.org/10.1007/3-540-58468-4_191

Equivalence Checking 40 Years After:
A Review of Bisimulation Tools

Hubert Garavel(B) and Frédéric Lang(B)

Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{hubert.garavel,frederic.lang}@inria.fr

Abstract. Equivalence checking is a formal verification approach that
consists in proving that two programs or models are related modulo
some equivalence relation, or that one is included in the other mod-
ulo some preorder relation. In the case of concurrent systems, which are
often represented using labelled transition systems, the relations used for
equivalence checking are bisimulations and their simulation preorders. In
the case of probabilistic or stochastic systems, which are usually repre-
sented using Markov chains, the relations used for equivalence checking
are lumpability, probabilistic and stochastic equivalences, and their asso-
ciated preorders. The present article provides a synthetic overview of 40
years of research in the design of algorithms and software tools for equiv-
alence checking.

1 Introduction

The present article was written in honor of Frits Vaandrager and included in a
collective Festschrift book offered to him at the occasion of his 60th birthday.

Frits Vaandrager has published an impressive list of papers addressing very
diverse topics in formal methods and concurrency theory, among which: oper-
ational semantics and SOS rules, process algebra, Petri nets, input-output
automata, timed automata and real-time models, probabilistic automata, hybrid
input-output automata and hybrid systems, action-based and state-based tem-
poral logics, testing theory, automata learning, as well as formal modelling and
verification of many industrial protocols. Among such a wealth of contributions,
we have chosen to focus on bisimulations and equivalence checking, a topic that
Frits Vaandrager contributed to advance significantly.

In formal methods, one never proves that a system (or a program) is cor-
rect in itself, but only that it is correct with respect to its specifications. Thus,
formal verification does not consist in checking one artefact, but in compar-
ing two artefacts one against the other, i.e., a system against its specifications
that express desirable, expected properties. Depending on the formalism used
for specifications, two cases need to be distinguished:

– If the system and its specifications are expressed in two different formalisms,
one needs to prove that the system satisfies its specifications. A major app-
roach is model checking [97], in which specifications are expressed in some
temporal logic.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 213–265, 2022.
https://doi.org/10.1007/978-3-031-15629-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_13

214 H. Garavel and F. Lang

– If the system and its specifications are expressed in the same formalism,
one needs to prove that the system is equivalent to its specifications or, in a
weaker form, that the system contains or is included in its specifications. Such
verification approaches are usually referred to as equivalence checking and,
more often than not, the system is a much more complex artefact than its
specifications, in which many low-level implementation details are abstracted
away.

The present article presents a brief history of equivalence checking in the context
of concurrent systems—leaving aside the widespread application of equivalence
checking in the hardware-design industry to make sure that logic-synthesis tools
preserve the intended behaviour of circuits.

The foundations of equivalence checking for concurrent systems have been
laid in the 1970s. On the practical side, the protocol-engineering community
developed verification techniques based on the systematic exploration of all
reachable states of a concurrent system [378,397]. On the theoretical side, it
became clear that the semantics of concurrent systems could be adequately
represented using state-transition models, such as LTSs (Labelled Transition
Systems) [274] or Kripke structures [287]—although alternative models, such as
Petri nets, would also coexist.

Finding the right equivalence relation to compare two state-transition models
describing two concurrent systems was a non-trivial problem, as the two main
equivalence relations known at that time were not appropriate: on the one hand,
graph isomorphism was too strong, requiring both models to be strictly iden-
tical modulo permutations, whereas both models often have different levels of
abstraction; on the other hand, language equivalence was too weak, only check-
ing that the sets of traces of both models are the same, thus failing to make
distinctions such as a.(b + c) vs (a.b) + (a.c), which are essential as far as the
semantics of concurrent systems is considered.

To address this problem, behavioural equivalences have been introduced.
These are equivalence relations situated between graph isomorphism and lan-
guage equivalence: they are coarser than the former and finer than the latter.
Important examples of behavioural equivalence are strong equivalence and obser-
vational equivalence [345] (the latter being also called weak equivalence). A major
breakthrough was made with the concept of bisimulation [362], which provides a
conceptual framework for these equivalences—see [20] for an insightful account
of these foundational steps of concurrency theory. In a nutshell, bisimulation
identifies all states having the same future, i.e., all states from which one can
execute the same (possibly infinite) trees of actions.

There exist many behavioural relations; an overview of them can be found
in [190]. Each equivalence relation comes with its associated preorder. Therefore,
equivalence checking consists in verifying that two systems are related modulo
some equivalence relation, or that one system is included in the other modulo
some preorder relation. Fortunately, not all of these relations are needed in prac-
tice: our experience shows that most real-life case studies can be addressed using
only a handful of well-chosen relations.

Equivalence Checking 40 Years After 215

In the case of probabilistic and stochastic systems, which are usually repre-
sented using Markov chains or models derived from Markov chains, bisimulation
coincides with the concept of lumpability [275] and, thus, serves as a basis for
the definition of probabilistic and stochastic equivalences on Markov chains.

The present article provides a retrospective account of 40 years of research
in equivalence-checking techniques for concurrent systems. Compared to prior
surveys on bisimulations [20,190], we focus here on the design of algorithms and
software tools for the implementation of bisimulations on finite-state systems,
leaving aside all aspects related to theorem proving—see [370] for a survey on
bisimulation as a proof method. The article is organized chronologically: Sects. 2–
5 present the main achievements done during the 1980s, 1990s, 2000s, and 2010s
decades, respectively, and Sect. 6 gives a few concluding remarks.

2 Retrospective of the 1980s

2.1 Bisimulation Tools Based on Term Rewriting

The book of Robin Milner on CCS [345] and the seminal article of David Park
providing a co-inductive definition of bisimulation [362], together with subse-
quent publications [346,347], laid the theoretical foundations for a deep research
area, in which bisimulations are closely associated to process calculi. The defi-
nition of process calculi using either structural operational semantics [367–369]
or algebraic semantics [27] initially led to consider term rewrite engines and
theorem provers as natural approaches for implementing process calculi and
bisimulations.

Among such early attempts, CIRCAL [342] was a tool that used algebraic
laws to perform proofs of equivalence between two process-calculus programs.

ECRINS [320] was a tool for manipulating process calculi, the operators of
which were defined using conditional rewrite rules. A semi-decision algorithm
for strong bisimulation was implemented in ECRINS, and the tool was able to
prove strong bisimulation automatically between CCS-like programs, without
process recursion but with free process variables. Another use of ECRINS was
to prove the correctness of semantic translation from one process calculus to
another [134,135].

BIP (Bisimulation Prover) [84] was a verification tool for protocol specifi-
cations written in the ECCS language. This tool used an enhanced version of
Sanderson’s algorithm for bisimulation [383]; this enhanced version removes one
limitation of Sanderson’s by accepting the presence of nondeterminism and τ -
transitions, i.e., internal (or silent, or non-observable) actions of an LTS.

CRLAB [121,124] was a tool that used term rewriting to compare processes
written in CCS or basic LOTOS (i.e., the subset of LOTOS [259] without value
passing) modulo observational equivalence.

2.2 Algorithms for Bisimulations on Finite-State Systems

However, alternative approaches to term rewriting quickly emerged. In these
approaches, each program is first translated into a finite-state LTS, which is

216 H. Garavel and F. Lang

only possible if the program does not have an infinite number of states (e.g.,
does not handle unbounded data types nor infinitely many concurrent processes)
and if the number of states is small enough to fit into the memory of available
computers (i.e., does not face the well-known state explosion problem, which is
a limiting factor for the verification of complex programs).

Assuming that an LTS has been successfully generated, one then executes
a different, bisimulation-specific algorithm to minimize this LTS according to a
chosen bisimulation (e.g., strong, observational, etc.); given that bisimulations
are equivalence relations, such a minimal LTS always exists and is unique modulo
a renaming of states. The same minimization algorithm can also be reused for
equivalence checking purpose, i.e., to compare whether two LTSs are bisimilar or
not: this is done by applying a minimization algorithm on the disjoint union of
both LTSs and checking whether initial states are in the same equivalence class.

In a nutshell, these alternative approaches give up the generality of term
rewriting (which can handle infinite-state programs but, in practice, is quite
limited in the size of programs that can be handled) to adopt a less general
approach (which only handles finite-state programs, but of a greater complexity
that exceeds the capabilities of human reasoning). Finite-state approaches also
have the advantage of being fully automated, meaning that bisimulation can be
decided without human intervention.

In the 1980s, two key algorithms for computing bisimulation on finite LTSs
have been proposed. In two articles [267,268] that recently received the 2021
Dijkstra Prize, Paris Kanellakis and Scott Smolka proposed an algorithm for
checking the equivalence of CCS processes. Their algorithm performs relational
coarsest partitioning (also known as coarsest partition refinement): initially, all
states are in the same set, which is progressively partitioned to separate states
having different futures. The time and space complexities of their algorithm are
O(mn) and O(m + n), respectively, where m is the number of transitions and n
the number of states1.

In a subsequent article [360], Robert Paige and Robert Tarjan proposed a
more efficient algorithm for the same problem. Their algorithm only addresses
strong bisimulation. Its time and space complexities are O(m log n) and O(m +
n), respectively.

2.3 Early Bisimulation Tools

The Kanellakis-Smolka and Paige-Tarjan algorithms aroused great interest and
triggered the development of numerous software tools.

SCAN [353] was probably the first implementation of bisimulations. This tool
could reduce and compare, with respect to strong or observational equivalence,
networks of finite automata composed together using parallel operators and fil-
tering (a combination of hiding and relabeling to abstract away the internal
behaviour of composed automata).

1 We use the same definitions of m and n throughout this article.

Equivalence Checking 40 Years After 217

AUTO [66,67,321,390,410–412] was a tool for the analysis and manipulation
of finite LTSs, which could be either specified using the MEIJE process calculus
[17] or described graphically using the AUTOGRAPH editor and composed in
parallel and connected together using synchronisation ports and communication
wires. AUTO offered primitives to minimize an LTS modulo strong bisimulation,
observational bisimulation, or trace language equivalence, to determinize an LTS,
to compute the transitive closure of τ -transitions, and to eliminate τ -loops and
single τ -transitions. It could also check the equivalence of two LTSs for strong
or observational bisimulation.

VENUS [350,393] was a tool for minimizing and comparing CCS processes
modulo strong or observational bisimulations. It also supported operations ded-
icated to τ -transitions, such as the elimination of τ -chains and τ -circuits.

TAV [53,54,194] was a tool that could check strong or observational equiva-
lence between two CCS processes, and also check whether a CCS process satisfied
a temporal-logic formula expressed in the Hennessy-Milner logic extended with
recursion. A distinctive feature of TAV was the possibility to provide an expla-
nation given as a Hennessy-Milner logic formula computed using a backtracking
algorithm [245]. Another algorithm for providing a temporal-logical formula that
differentiates two LTSs that are not strongly bisimilar was proposed in [98].

SQUIGGLES [49,50] was a tool that extended the Paige-Tarjan algorithm
to compare LTSs or programs written in basic LOTOS with respect to strong
equivalence, observational equivalence, or testing equivalence.

WINSTON [326] was a tool that could compare networks of finite-state
processes using strong and observational equivalences implemented with the
Kanellakis-Smolka algorithm.

ALDEBARAN [147–150] was a tool for minimizing and comparing LTSs
according to strong bisimulation, observational equivalence, acceptance model
equivalence, or safety equivalence; it could also display the equivalence class
of each state of the LTS. Contrary to most other tools written in func-
tional/declarative languages such as Lisp, Prolog, etc., ALDEBARAN was writ-
ten in C and implemented an adaptation of the Paige-Tarjan algorithm. The
simple file format used by ALDEBARAN for storing LTSs became popular and
has been known since as the AUT format2.

The ACP Bisimulation Tool [436] was a tool to compare programs written
in the ACPτ process calculus [28] modulo a weak relation called bisimulation
with τ -abstraction. It computed a transitive closure of τ -transitions, followed by
a relational coarsest partition algorithm.

PIPN [19] was a tool that could minimize, according to observational equiva-
lence or trace equivalence, the labelled reachability graphs generated from Petri
nets. PIPN was part of ESTIM [385], a simulation and verification tool for com-
municating state machines specified in the ESTELLE language [258].

CWB (Concurrency Workbench) [104,105] was an integrated tool for ver-
ifying networks of finite-state processes described in CCS, then converted to
a state-transition model called transition graphs. Three kinds of analyses were

2 https://cadp.inria.fr/man/aut.html.

https://cadp.inria.fr/man/aut.html

218 H. Garavel and F. Lang

supported by CWB: model checking (evaluation of temporal-logic formulas writ-
ten in the propositional mu-calculus), equivalence checking (comparison of two
transition graphs modulo C-bisimulation, a generic relation from which strong
equivalence, observational equivalence, must equivalence, and testing failures
equivalence can be derived), and preorder checking (comparison of two transi-
tion graphs modulo C-preorder, from which bisimulation divergence preorder,
may preorder, must preorder, and testing preorders can be obtained). Equiv-
alence checking was based on the Kanellakis-Smolka algorithm, while preorder
checking was done using an ad hoc, less efficient algorithm. An early application
of CWB to the analysis of mutual exclusion algorithms can be found in [418].

Most of the aforementioned tools performed at least two different tasks:
(i) generate the LTSs corresponding to concurrent systems described either as
networks of automata composed in parallel, or as process-calculi specifications;
and (ii) minimize and/or compare these LTSs modulo various equivalence or
preorder relations. Both tasks are subject to antagonistic implementation con-
straints: task (i) must store in memory the concrete contents of each state of
the LTS being generated, while the transitions of the LTS can just be written
to disk; conversely, task (ii) must store in memory all the transitions, and can
ignore the concrete contents of states, which can just be treated like abstract
numbers. It is thus difficult for the same tool to be optimally efficient in both
tasks. One solution is to have separate tools, dedicated either to task (i) or to
task (ii).

The first instance of a specialized tool for task (i) was CÆSAR [170,184],
a tool for translating value-passing LOTOS specifications into LTSs encoded
in the various file formats accepted by ALDEBARAN, AUTO, CWB, PIPN,
SCAN, SQUIGGLES, etc. A distinctive feature of ALDEBARAN, CÆSAR, and
their companion tools later integrated in the CADP toolbox [152] was to be
plain, ordinary Unix commands that could be directly invoked from the shell
with appropriate command-line options, and that communicated via files con-
taining LTSs. Such an architectural design was a major departure from other
bisimulation tools, most of which were built around custom command-line inter-
preters (with ad hoc primitives for, e.g., loading, generating, minimizing, and
saving LTSs). It has been progressively adopted by other tools during the next
decades.

3 Retrospective of the 1990s

3.1 New Algorithms for Bisimulations

The 1990s have been a very active decade, in which new equivalences, preorders,
and algorithms have been invented and implemented in tools.

Testing equivalences [120], introduced in the 1980s, define that two models
(typically a high-level specification and a lower-level implementation) are equiv-
alent iff an observer interacting with them cannot distinguish one from the other
by means of testing. Although these equivalences are weaker (i.e., less discrim-
inative) than bisimulations, Cleaveland and Hennessy gave an algorithm [101]

Equivalence Checking 40 Years After 219

based on a characterization of these relations in terms of bisimulation. This
algorithm was implemented in CWB.

Safety equivalence [56], named so because it preserves safety properties, is
the equivalence relation obtained by the logical conjunction of two τ∗.a pre-
orders [156] that abstract away τ -transitions. Algorithms for minimizing and
comparing LTSs modulo safety equivalence were implemented in ALDEBARAN.

Branching bisimulation [191,192] was introduced by van Glabbeek and Weij-
land after observing that Milner’s observational equivalence does not fully
respect the branching structure of LTSs. To compute branching bisimulation,
which is slightly stronger than observational equivalence, Groote and Vaandrager
proposed an algorithm [206,207] for relational coarsest partitioning with stutter-
ing. A key idea of the algorithm is the possibility to compress each strongly
connected component of states connected by τ -transitions into a single state
beforehand, using existing linear-time algorithms. This algorithm has a worst-
case time complexity O(mn) and a space complexity O(m+n). Thus, branching
bisimulation can be implemented more efficiently than observational equivalence,
which has progressively been superseded by branching equivalence, except in the
CCS community where observational equivalence remained popular, probably by
fidelity to the foundations set by Milner. The Groote-Vaandrager algorithm was
implemented in an efficient prototype named Branching Tool, as well as in other
tools, among which ALDEBARAN and AUTO.

Groote and Vaandrager also proposed a format of Plotkin-style structural
operational semantics rules [208] that guarantees, among other properties, that
strong bisimulation is a congruence on the states of any transition system
described using this format.

It was shown [371] that, for all equivalences between strong bisimulation and
trace equivalences (i.e., almost all equivalences of practical interest), checking
equivalence of two networks of LTSs is PSPACE-hard because, in the general
case, one cannot avoid computing the product state space of each network.

De Nicola and Vaandrager investigated the logical characterization of branch-
ing bisimulation, and exhibited three logics such that two LTSs are branching
bisimilar iff they exactly satisfy the same formulas of these logics [125,126].

There have been other attempts at computing bisimulations using model
checkers, such as MEC [12] (later integrated in ALTARICA [13]) and SPIN [141,
142]. For instance, MEC did not implement dedicated algorithms for equivalence
checking, but could define bisimulation as a concise formula in fix-point logic [11,
199], thus enabling bisimulation to be verified as a particular case of model
checking.

3.2 Algorithms for On-the-Fly Verification

While the mainstream approach, so far, consisted in first generating LTSs before
minimizing them or checking their equivalence, novel on-the-fly approaches
emerged, where an LTS is reduced (i.e., partially minimized) while being gener-
ated, or where equivalence between two LTSs is checked while these LTSs are
generated. Such approaches, which had already been experimented successfully

220 H. Garavel and F. Lang

for model checking, may avoid storing the entire set of states and/or transitions,
especially when one does not need to fully explore both LTSs to decide that they
are not equivalent.

An on-the-fly algorithm for equivalence checking was first proposed by Fer-
nandez and Mounier [154,351]. Their algorithm was not based on partition
refinement, which requires to compute the sets of states beforehand, but instead
explored the states of the synchronous product of the LTSs under comparison,
until a verdict can be given. Various adaptations of their algorithm to com-
pute strong, branching, observational, and τ∗.a bisimulations, as well as safety
equivalence and the corresponding preorders, have been implemented in ALDE-
BARAN [155]. A variant of their algorithm was later proposed, which does not
store all states of the synchronous product, but only enough states so that the
verification terminates [264].

A similar approach for on-the-fly equivalence checking modulo strong and
observational bisimulations was implemented in the LOLA tool [354].

Lee and Yannakakis proposed another on-the-fly algorithm [306] for mini-
mizing an LTS modulo strong bisimulation while this LTS is being generated.

A generic architecture, named OPEN/CÆSAR [172], was proposed for devel-
oping on-the-fly verification tools rationally. This architecture achieves a clear
separation between, on the one hand, an LTS that is generated on-the-fly (e.g.,
from a process-calculus specification or a network of communicating automata)
and, on the other hand, a verification algorithm that explores this LTS guided
by a specific goal or property to be proven. One of the first applications of
OPEN/CÆSAR was REDUCTOR [172], a tool that reduced LTSs on the fly
modulo τ∗.a equivalence.

Partial-order reductions are techniques for reducing the size of the state
space, by exploiting the independence of transitions to avoid unnecessary inter-
leavings. Such techniques, provided they preserve a behavioural relation of inter-
est, may be particularly useful when doing minimization or equivalence checking
on the fly. Partial-order reductions were first studied in the context of linear-time
semantics, then in the context of branching-time semantics to check branching
bisimulation [186,408], strong bisimulation (between two LTSs having the same
independent transitions) [249], and failures refinement [420].

3.3 Algorithms for Symbolic Verification

New algorithms were proposed, based on a symbolic representation of the system
under verification in the form of a BDD (Binary Decision Diagram) [75].

An approach was proposed, in which CCS processes are translated to BDDs,
thus allowing bisimulations (encoded as temporal logic formulas) to be computed
on such a symbolic representation [140].

Bouali and De Simone proposed a symbolic algorithm [65] dedicated to the
minimization of networks of LTSs according to strong bisimulation, as well as
variants for observational and branching bisimulations.

Equivalence Checking 40 Years After 221

Another symbolic algorithm [311] was proposed for comparing CCS processes
modulo observational bisimulation, and compared, on a few benchmarks, to the
equivalence-checking algorithm implemented in CWB.

Fisler and Vardi [159–161] implemented, using BDDs, three minimization
algorithms in the setting of finite transition systems, the states of which are
labelled with atomic propositions. Their experimental results indicate that BDDs
are not a silver bullet for bisimulation minimization: the number of BDD nodes
needed to compute the bisimulation relation grows quickly, outweighing the
potential benefits of minimizing the global state space before performing sym-
bolic model checking.

3.4 Algorithms for Compositional Verification

Given a concurrent system, e.g., a network of LTSs, compositional verification
consists in generating a reduced (or even minimized) LTS for this system, mod-
ulo some behavioural relation of interest [147,326,379,398,399,407,428]. If this
relation is a congruence for the operators of the network (typically, parallel com-
position and label hiding), which is the case of most bisimulations, then the
generation can be done incrementally, by alternating operator applications and
reductions of the intermediate LTSs.

However, while doing so, state explosion may happen in intermediate LTSs,
due to the existence of transitions that are fireable locally, but not globally,
as they could not meet the synchronization constraints in the entire network.
Graf, Steffen, and Lüttgen proposed an approach to solve this problem, based
on interface specifications (represented as LTSs) that cut off globally unfire-
able transitions [197,198]. This approach was extended by Krimm and Mounier,
and implemented in PROJECTOR [286], an on-the-fly tool developed using the
OPEN/CÆSAR architecture.

A related approach, called compositional reachability [92], performs com-
positional reduction modulo observational equivalence while verifying a prop-
erty represented as an LTS. This approach was implemented in the TRACTA
tool [92], which also supported a variant [91] of Graf-Steffen-Lüttgen interface
specifications.

A comprehensive survey on compositional verification, from the 1990s to the
present, can be found in [181].

3.5 Enhanced Bisimulation Tools

Most bisimulation tools developed in the 1980s quickly became unavailable, due
to lack of software maintenance at a time where processors, operating systems,
and programming languages were rapidly evolving. There was, however, the
notable exception of three tools (namely, ALDEBARAN, AUTO, and CWB),
the development of which steadily progressed during the 1990s.

ALDEBARAN [156], so far mainly based on the Paige-Tarjan algorithm,
was enhanced in four directions: counterexample generation algorithms, imple-
mentation of the Groote-Vaandrager algorithm for branching bisimulation, novel

222 H. Garavel and F. Lang

on-the-fly equivalence-checking algorithms [156,351], and symbolic verification
algorithms based on BDDs [153,276,277]. ALDEBARAN was a key component
of the CADP verification toolbox [71,151,152,171,174], which gathered a grow-
ing number of closely interconnected tools. Its synergy with CADP brought
ALDEBARAN at least three benefits: the existence of an efficient LTS genera-
tor, the aforementioned compiler CÆSAR for LOTOS; the availability of BCG
(Binary Coded Graphs), a compact file format3 for storing large LTSs; and the
integration within EUCALYPTUS, a graphical user interface that simplified the
invocation of ALDEBARAN with command-line options.

ALDEBARAN, together with companion tools of CADP, has been used in
numerous case studies4 by scientists of many universities worldwide. Among
the case studies involving equivalence checking, one can mention, in chronolog-
ical order: a car overtaking protocol [143], dynamically changing communica-
tion structures [167], an ATM switch [158], a plain ordinary telephone service
(starting from an existing specification [145]), a framework for groupware devel-
opment [278], a trusted third-party protocol between video-on-demand service
providers and customers [185,304], a railway signalling system [165], a bounded
retransmission protocol [329,330] (starting from an existing specification [204]),
the TCP Internet transport protocol [386], feature interactions in telephony sys-
tems [284], several variants of distributed leader election algorithms for unidirec-
tional ring networks [183], a bus arbiter of a multiprocessor architecture [86], the
link layer protocol of the IEEE-1394 serial bus [388], a departure clearance proto-
col for air traffic [260], testing of a distributed leader election algorithm [404,405],
a flow-control protocol for a high-speed network [227], patterns for software
architecture styles [221], an invoicing system [387,389], a protocol for road traf-
fic control [421,422], asynchronous circuits [431–433], a reliable data-transfer
service [318], an abstraction-display-controller model for user interfaces [327],
a distributed cluster file system [364,365], an ISO high-speed transport proto-
col [25], highly reliable and reusable CORBA applications [285], a leader elec-
tion protocol for home audio/video networks [374], synchronous hardware [218–
220], a protocol for deploying intelligent telecommunication services [14–16], a
handshake authentication protocol [305], a datalink system for air traffic con-
trol [380–382], a radio protocol for mobile telecommunications [315], a protection
system against cloning of cellular phones [355,356], and hardware/software code-
sign [22,427]. Such an impressive list clearly indicates that formal verification
should not be restricted to model checking only, and that equivalence checking
and bisimulations also have a major role to play.

The evolution of AUTO and its associated graphical editor AUTOGRAPH
also continued in the 1990s [323,324,376,377]. Companion tools were developed,
among which: MAUTO, which extended AUTO to a large family of process cal-
culi; FCTOOL [58], which implemented efficient partitioning algorithms (derived
from the Groote-Vaandrager algorithm) for strong, branching, and observational
bisimulations; and the FC2TOOLS set [61–64], which gathered a collection of

3 https://cadp.inria.fr/man/bcg.html.
4 http://cadp.inria.fr/case-studies.

https://cadp.inria.fr/man/bcg.html
http://cadp.inria.fr/case-studies

Equivalence Checking 40 Years After 223

tools offering both explicit and implicit (i.e., BDD-based) bisimulation algo-
rithms, and designed around FC2, a dedicated file format for LTSs and networks
of LTSs.

A few case studies were done using these tools, e.g., a bus instrumentation
protocol specified in LOTOS [18], a sliding window protocol specified in LOTOS
[322], a lift controller specified in ESTEREL [212], and a secure datagram pro-
tocol specified in LOTOS [193].

CWB also pursued its evolution during the 1990s. The performance of its LTS
minimization algorithm was assessed in [144], the introduction of priorities was
presented in [265], and an overall presentation of CWB can be found in [106].
Contrary to ALDEBARAN and AUTO, the development of which remained
centralized in Grenoble and Sophia-Antipolis, respectively, CWB adopted a
more decentralized approach: the original software was maintained in Edin-
burgh [348,394]5 in collaboration with other universities (e.g., Sussex), while
a new branch emerged in the United States under the successive names of Con-
currency Factory [100,102], NCSU Concurrency Workbench [108], Concurrency
Workbench of North Carolina [107,109], and Concurrency Workbench of the
New Century [103,110].

Besides the use of CWB by Swedish telecom companies to analyze parts of
the GSM and ISDN protocols, other case studies used the equivalence-checking
features of CWB, e.g., alternating bit protocol with lossy buffers [99], instruction
pipelining and parallel memory models for the SPARC architecture [288], for-
malization in LOTOS of the GKS computer-graphics standard [373], and access
monitoring for information flow security [162].

3.6 New Bisimulation Tools

Besides enhancements brought to already existing bisimulation tools, many new
tools were developed during the 1990s.

PisaTool [254,257] used term rewriting to compare CCS processes for strong,
observational, or branching equivalences. Instead of relying on interleaving
semantics, this tool took into account some aspects of true concurrency by intro-
ducing a parametric representation of finite-state systems and bisimulations.

SEVERO [83] was both an equivalence checker and a model checker for the
ACTL temporal logic [122], applicable to finite-state processes that were con-
verted to BDDs and reduced modulo observational equivalence using a symbolic
minimization algorithm.

ARA (Advanced Reachability Analysis) [409] was a tool for minimization and
equivalence checking of basic LOTOS processes modulo CFFD equivalence [406],
a relation weaker than observational equivalence. ARA supported compositional
LTS construction and partial-order reductions. It was used, e.g., to verify a
small protocol for client-server communication [280] and, using compositional
verification and in combination with CADP, a reliable data-transfer service [318].

5 See also [395] and [396] for a reflection on the development of verification tools.

224 H. Garavel and F. Lang

CCSTOOL2 [372] was a modular tool performing various computations on
finite-state CCS descriptions, including minimization for strong and observa-
tional bisimulations.

JACK (Just Another Concurrency Kit) [60] was an integrated environment,
with a graphical user interface, gathering verification tools designed around the
FC2 file format. JACK supported model checking of ACTL logic formulas, as well
as equivalence checking using CRLAB (term rewriting) and AUTO (algorithms
for finite-state models). The equivalence-checking features of JACK have been
used to verify hardware components [123], a railway interlocking system [30,31],
and, in combination with CADP, an abstraction-display-controller model for user
interfaces [327].

YAPV [36] was a research tool based on true concurrency, instead of inter-
leaving semantics. It used a variant of the Kanellakis-Smolka algorithm to check
bisimulation between processes.

BIDMIN [223] was a minimization tool written in Ada. It supported strong
bisimulation, as well as variants of observational and branching bisimulations
(e.g., rooted, divergence-preserving, etc.), these variants differing only in the
definition of the initial partition of the LTS state set.

FDR2 [375] was a verification tool for the CSP process calculus [74]. It imple-
mented strong bisimulation, as well as failures and failures/divergences equiva-
lences, which were preferred to observational or branching bisimulation for check-
ing equivalence and refinement (i.e., preorder inclusion) of CSP processes. FDR2
was used to formally verify STATEMATE statecharts [169].

ARC [361] was another formal verification tool for CSP, which had similar
equivalence checking features as FDR2, but in which LTSs were represented
symbolically using ordered BDDs.

XEVE [59] was a verification environment for ESTEREL specifications, which
used the Bouali-De Simone algorithm to perform symbolic minimization modulo
strong bisimulation.

ObjectGeode, an industrial environment for simulating and verifying SDL
programs, was equipped with on-the-fly equivalence checking capabilities by a
connection to CADP [279].

Getting an accurate panorama of bisimulation tools by reading publications
is uneasy, as related work was not always cited properly. Fortunately, a few
benchmarks and surveys exist, e.g., a gentle introduction [146] to the princi-
ples of bisimulation tools, followed by an overview of ALDEBARAN, AUTO,
CWB, PVE, TAV, etc.; a comparative evaluation [283] of bisimulation techniques
in ALDEBARAN, AUTO, CWB, TAV, WINSTON, etc.; an overview [319] of
tools available in the early 1990s, among which ALDEBARAN, AUTO, CWB,
ECRINS, FCTOOL, MAUTO, MEC, TAV, etc.; a study [222] of the respective
performances of ALDEBARAN, BIDMIN, CWB, and FCTOOL/HOGGAR; and
a survey [255,256] of tools for the analysis of distributed systems specified using
process calculi.

Equivalence Checking 40 Years After 225

3.7 Bisimulation Tools for Timed and Hybrid Systems

There has been a variety of tools for modelling and analyzing real-time systems.
First attempts used a discrete-time model, in which a special “tick” action rep-
resented the elapsing of one time unit. Since this approach did not scale to
realistic systems, requiring too many transitions to model long delays, dense-
time models supported by methods from continuous mathematics were progres-
sively adopted, either as timed extensions of process calculi [118,200,307,308]
or as timed automata [6], i.e., automata extended with real-valued clock vari-
ables. Tools for the analysis of timed systems often involved the generation of
an untimed finite-state abstraction of the state space (e.g., a region graph [5]),
that takes time constraints into account.

The first minimization algorithms for timed automata [3,4] generated a min-
imized region graph on the fly, by extending a prior algorithm [57] that directly
generates a minimal LTS for strong bisimulation (rather than first generating an
LTS that is minimized later).

VERSA [93,95,96] was a tool for the analysis of discrete-time systems with
prioritized resources and events, described in a timed process calculus called
ACSR (Algebra of Communicating Shared Resources). Besides checking equiv-
alences by means of term rewriting, VERSA automatically translated ACSR
processes with bounded delays to LTSs, and compared these (finite-state) LTSs
modulo strong bisimulation and τ∗.a equivalence using the Kanellakis-Smolka
algorithm. XVERSA [94] was an extension of VERSA with a graphical user
interface.

TPWB (Timing and Probability Workbench) [166] was a tool for analyzing
finite-state, discrete-time systems described in TPCCS [213,214], an extension
of CCS with time and probabilities. It used an adaptation of the Kanellakis-
Smolka algorithm with lumping of probabilities to perform minimization and
equivalence checking on finite-state systems modulo strong bisimulation.

EPSILON [85,195,196] was an extension of TAV for analyzing dense-time
systems described in TMS (Timed Modal Specifications), a formalism for timed
networks inspired by TCCS [429] (a variant of CCS with a delay operator)
extended with “may” and “must” modalities. EPSILON implemented equiva-
lence and preorder checking for strong and observational bisimulations, as well
as time-abstracted versions of these relations that gave finite representations of
these networks. When the check was negative, EPSILON could generate, like
TAV, a distinguishing formula in timed Hennessy-Milner logic. EPSILON was
used to analyze a steam generator [289,290].

KRONOS [69,70,119,402,434] was a tool for minimization, equivalence check-
ing, and preorder checking of timed automata. It used a time-abstracting bisim-
ulation and linear constraints on the clocks of the timed automaton to gener-
ate an untimed abstraction of the state space. The resulting LTS could be mini-
mized and checked using ALDEBARAN. KRONOS was used in many case stud-
ies, and also as a back-end [243] for the verification of systems described in ET-
LOTOS [307,308], a timed extension of LOTOS. Later, Extended KRONOS (or
OPEN/KRONOS) [401] enhanced KRONOS with a richer input language and on-
the-fly verification capabilities based upon the OPEN/CÆSAR architecture.

226 H. Garavel and F. Lang

TREAT (Timed Reachability Analysis Tool) [269] was a tool for timed
automata. To fight the state explosion problem, TREAT generated untimed
abstractions that preserved two behavioural relations named history equivalence
and transition bisimulation.

RT-MEC [81], a component of PEP (Programming Environment based on
Petri nets), was a tool for the analysis of systems modelled as Petri nets with
dense time. It implemented equivalence checking modulo strong bisimulation and
timed bisimulation, using partial-order reductions and on-the-fly techniques to
generate a reduced region graph.

Hybrid automata are infinite-state models to describe digital programs inter-
acting with an analog environment. Although hybrid automata encompass timed
automata, there have been few tools implementing bisimulations on hybrid
automata. A notable exception was HYTECH [225,226], which used bisimu-
lations to reduce hybrid systems to finite LTSs. When such a reduction was
possible, the hybrid automaton could be model checked.

A performance comparison between EPSILON, KRONOS, HYTECH, and
the UPPAAL tool [24] (which does not use the concept of bisimulations) can be
found in [301].

3.8 Bisimulation Tools for Probabilistic and Stochastic Systems

The advent of process calculi in the 1980s gave a new impulse to the study of
Markovian models. In order to finely describe both the functional and perfor-
mance aspects of concurrent systems, process calculi have been extended in var-
ious ways with non-functional concepts, such as probabilities and random dura-
tions, e.g., [238,247]. At a lower abstraction level, extended models have been
proposed, combining LTSs, to model functional aspects, and DTMCs (Discrete-
Time Markov Chains) or CTMCs (Continuous-Time Markov Chains), to model
performance aspects.

To analyze such models, in addition to traditional techniques (steady-state
and transient analyses, simulation, etc.) and novel quantitative model-checking
approaches, various bisimulations have also been defined, such as probabilistic
bisimulations [48,246,250,302,303,316,391] and Markovian/stochastic bisimula-
tions [76,231,238,239]. These equivalences combine the concepts of bisimulation
for the LTSs and of lumpability for the Markov chain aspects.

At first, such bisimulations were used for algebraic proofs of equivalence
and performance calculations on simple models. But dedicated algorithms were
progressively designed, e.g., [21], and implemented in already existing or novel
software tools.

TIPPtool [237,281] was a tool for creating and analyzing concurrent systems
described in the TIPP language, a stochastic process calculus based on LOTOS.
Initiated in 1992, TIPPtool has been progressively extended with many features
for functional and performance analyses. Bisimulations on LTSs and Markovian
models played a major role in TIPPtool, especially for applying compositional
minimization techniques [229,230,232,244] in order to contain state explosion.

Equivalence Checking 40 Years After 227

Strong and observational bisimulations were implemented using the Kanellakis-
Smolka algorithm, but an export to CADP’s AUT format was also available;
the Baier algorithm was used for Markovian bisimulations; symbolic algorithms
based on BDDs were also developed for this purpose [240,241]. Various systems
have been analyzed using TIPPtool, e.g., an alternating bit protocol [236], a com-
munication protocol [163], a plain-old telephone system (tackled using TIPPtool
in combination with CADP) [234], and an hospital communication system [230].

TwoTowers [34,35] was a tool for the functional and performance analysis
of systems modelled in EMPA, a stochastic timed process calculus. TwoTow-
ers combined two existing tools: the aforementioned Concurrency Workbench
of North Carolina (for model checking, equivalence checking, and preorder
checking) and MarCA (for steady-state and transient performance analysis);
it also supported the strong extended Markovian reward bisimulation [33]. The
equivalence-checking capabilities of TwoTowers have been used to analyze a ran-
domized distributed algorithm for the dining philosophers problem [35] and a
token ring protocol [32].

The APNN (Abstract Petri Net Notation) toolbox [23,77,78] was a set of
tools for the functional and quantitative analysis of discrete-event dynamic sys-
tems. It offered many features, such as model checking, numerical analysis of
Markov chains, and simulation, but also supported various kinds of bisimula-
tions used to reduce, by means of compositional minimization techniques, the
size of the generated state spaces.

3.9 Bisimulation Tools for Mobile Systems

Mobile process calculi, such as the π-calculus [343,344], enable the description
of concurrent systems with potentially infinite state spaces, due to the dynamic
creation of agents and communication channels. For such systems, verification
approaches based on finite-state systems are hardly applicable, especially if they
require an exhaustive exploration of the state space before verification can take
place. For such problems, formal proofs (which are outside the scope of this
survey) are the approach of choice [370]. Nevertheless, there have been attempts
at developing automated equivalence-checking tools based on bisimulation theory
for analyzing such systems.

MWB (Mobility Workbench) [413,414,416] was a tool for checking whether
two π-calculus programs are equivalent with respect to open bisimulation [384].
MWB was based upon an on-the-fly algorithm (inspired from the Fernandez-
Mounier approach) in which LTSs where generated on demand. MWB was later
extended with an algorithm for checking symbolic hyperequivalence [363] for the
fusion calculus [415, Chapter 7].

The π-environment [157] was a tool for checking (strong or observational)
early and late bisimulations on finite-state processes specified in the π-calculus.
This tool did not work on the fly, but relied on the aforementioned AUTO and
JACK tools.

228 H. Garavel and F. Lang

One can also mention algorithms for checking symbolic (strong or obser-
vational) bisimulations between value-passing LTSs extended with variables,
inputs, and assignments [224,253,309,312,313]. These algorithms have been
transposed to compute bisimulations for the π-calculus [310,314], but do not
seem to have been implemented.

4 Retrospective of the 2000s

4.1 New Algorithm for Strong Bisimulation

A new fast bisimulation algorithm [137,138] for strong bisimulation was pro-
posed, which extends the Paige-Tarjan algorithm with a notion of state rank
defined as the maximum distance to a sink state (if any), not counting transi-
tions which are internal to strongly connected components. Fast bisimulation is
more efficient than the Paige-Tarjan algorithm on LTSs containing sink states,
especially acyclic LTSs. It was implemented in the COPS checker [366] for secu-
rity properties. A symbolic version of this algorithm was implemented using
BDDs [136].

A survey on the complexity of some of the behavioural equivalences presented
in [190], considering their application to finite- and infinite-state models, can be
found in [349].

4.2 New Bisimulation Tools

In the 2000s, a new generation of bisimulation tools appeared, which progres-
sively superseded the tools developed during the previous decades.

BCG MIN [176] used the Kanellakis-Smolka and the Groote-Vaandrager
algorithms to minimize LTSs modulo strong and branching bisimulations.
BCG MIN was released as a component of the CADP toolbox and used BCG as
a native file format to represent LTSs compactly. Since BCG MIN was globally
more efficient than ALDEBARAN and could handle larger graphs, the original
ALDEBARAN tool was replaced in 2005 by a backward-compatible shell script
invoking BCG MIN and other tools of CADP [178].

The μCRL toolset [38,39] used partition-refinement algorithms to perform
equivalence checking and minimization of LTSs modulo strong and branching
bisimulations. It generated LTSs in the AUT and BCG formats of CADP, and
implemented the OPEN/CÆSAR interface, so that most tools of CADP could
be used on μCRL specifications. It was succeeded by the mCRL2 toolset [203],
which also supports equivalence checking based on bisimulations.

TVT (Tampere Verification Tool) [417], which succeeded the ARA tool,
implemented strong bisimulation and CFFD equivalence.

CHISIGMA [55] was a tool environment that could minimize, modulo strong
and branching bisimulations, LTSs generated from specifications written in the
process language χσ.

ABC [72] checked the equivalence of π-calculus processes modulo open bisim-
ulation.

Equivalence Checking 40 Years After 229

TAPAS [82], which was developed for teaching purpose, implemented com-
parison and minimization of LTSs modulo strong, observational, and branching
bisimulations.

LTSA (Labelled Transition System Analyser) [325] performed minimization
modulo observational equivalence of LTSs generated from FSP (Finite-State
Processes) specifications.

4.3 Bisimulation Tools Using On-the-Fly Verification

Significant advances in on-the-fly reduction and on-the-fly equivalence checking
of LTSs have been made during the 2000s.

A key tool of CADP for on-the-fly verification is EXP.OPEN, which explores
the state space of networks of LTSs composed together using synchronization vec-
tors or parallel composition operators borrowed to various process calculi (CCS,
CSP, LOTOS, LNT, or μCRL), as well as hiding, renaming, cutting, or prior-
ity operators. EXP.OPEN was enhanced with on-the-fly partial-order reductions
that preserve strong, branching, or stochastic branching bisimulations [295].

The ARCATS tool [89,90] implemented a different approach to on-the-fly
reduction: it incrementally generated an LTS reduced for branching bisimu-
lation, by alternating steps of partial LTS generation and steps of branching
minimization of the partial LTS already generated.

A generic library, named CÆSAR SOLVE [334], was developed, as part of
CADP, for solving BESs (Boolean Equation Systems) [7,332]. BESs are effective
models in which both model-checking and equivalence-checking problems can
be conveniently encoded. Given a BES, the CÆSAR SOLVE library explores
an LTS on the fly, using the features provided by OPEN/CÆSAR, in order to
compute the truth value of certain BES variables.

To reduce an LTS partially, during its generation, one can apply the notion of
τ -confluence [205], a form of partial-order reduction that analyzes τ -transitions
and preserves branching bisimulation. Based on this idea, an algorithm was pro-
posed [45] and implemented in the μCRL toolset, with the help of an automated
theorem prover to identify τ -confluent transitions.

This idea was also implemented in CADP by enhancing the aforementioned
REDUCTOR tool that performed τ∗.a reduction. The new version of REDUC-
TOR [333] supports many other reductions, among which τ -confluence, τ -closure
(transitive reflexive closure over τ -transitions), τ -compression (collapsing of
strongly connected components made of τ -transitions), safety reduction, etc.
It uses OPEN/CÆSAR and CÆSAR SOLVE to detect τ -confluent transitions
on the fly.

The definition of τ -confluence was later generalized to visible actions [297],
so as to enable better reductions in a compositional-verification setting.

CADP was also enriched with another tool, named BISIMULATOR [26,336,
337], which checks whether two LTSs are equivalent modulo strong, branch-
ing, observational, or τ∗.a bisimulations, as well as safety equivalence. The
comparison is expressed in terms of a BES, which is resolved on the fly
using CÆSAR SOLVE, one of the two LTSs being explored on demand using

230 H. Garavel and F. Lang

OPEN/CÆSAR. This general approach based on BESs subsumes the dedicated
Fernandez-Mounier algorithms for checking bisimulations on the fly. BISIMU-
LATOR, REDUCTOR, and BCG MIN have been used in many case studies,
e.g., the verification of a plant unit for drilling of metal products [335].

Conversely, BESs (which can be seen as a particular form of LTSs) can be
minimized using strong bisimulation and an extension of strong bisimulation
called idempotence-identifying bisimulation [273]. Such minimization preserves
the truth values and, if applied before solving the original BESs, may speed up
the resolution.

Equivalence checking of infinite-state models can be expressed in terms of
PBESs (Parameterized Boolean Equation Systems) [332], an extension of BESs
designed for model checking value-passing temporal-logic formulas [331]. This
problem was addressed in [88] for branching and observational bisimulations. In
this approach, the comparison of two models (represented using linear process
equations) is encoded as a PBES, which is generated automatically, but whose
resolution cannot be fully automated and may thus require human intervention.

4.4 Bisimulation Tools Based on Compositional Verification

Compositional verification makes intensive use of bisimulations and requires dif-
ferent tools for, e.g., generating, minimizing, and composing LTSs in parallel.

To ease compositional verification, CADP was enriched with SVL [175,294],
which is both a scripting language and a compiler. SVL enables verification sce-
narios to be specified simply and executed efficiently, and thus offers an alterna-
tive to graphical user interfaces when dealing with complex, repetitive tasks. The
SVL language has operators to generate, compose in parallel, minimize, and com-
pare LTSs modulo various equivalence relations; LTSs can be either given in low-
level formats (AUT, BCG, etc.) or specified using high-level languages (LOTOS,
LNT [182], etc.); other operators support compositional-verification strategies
and abstractions based on (handwritten or automatically generated [296]) inter-
face specifications. The SVL compiler translates SVL scripts into shell scripts
that invoke the appropriate CADP tools (BCG MIN, EXP.OPEN, PROJEC-
TOR, etc.), relieving users from taking care of command-line options and aux-
iliary files. SVL was used in several case studies [111,338,403].

4.5 Bisimulation Tools Based on Parallel/Distributed Computing

Blom and Orzan proposed both sequential and parallel/distributed algorithms
for minimizing LTSs modulo strong bisimulation [40,42–44] and branching bisim-
ulation [41] (later improved in [46]). These algorithms, which are gathered
in [358], are based on partition refinement and the novel concept of signatures
(two states having different signatures cannot be bisimilar).

Although their sequential algorithms have worst-case time complexity
O(mn2), which is higher than the best algorithms for strong and branching
bisimulations, they exhibit more opportunities for parallelization.

Equivalence Checking 40 Years After 231

Indeed, their parallel algorithms, which distribute an LTS across several
machines, exhibit a linear speed-up, meaning that the time taken by these algo-
rithms linearly decreases when the number of machines increases. A policy based
on abstract interpretation for distributing the LTS across machines was proposed
in [359].

4.6 Bisimulation Tools Based on Symbolic Verification

The SIGREF tool [426] implemented several equivalence relations (including
strong, branching, observational, and orthogonal [29] bisimulations, as well as
safety equivalence) using sequential algorithms combining Blom-Orzan signa-
tures with a BDD representation of the LTS. Several papers were published,
detailing an algorithm for branching bisimulation [424], optimization techniques
for BDD-based bisimulation computation [425], and an efficient algorithm for
Markov chains [423].

4.7 Bisimulation Tools for Timed Systems

Research on timed bisimulations, which was very active in the 1990s, has seem-
ingly slowed down during the 2000s. This is most likely related to the decline of
research on timed process calculi, progressively replaced by simpler models based
on timed automata. As a consequence, timed bisimulations and timed modal μ-
calculus have been replaced by more elementary analyses, such as reachability
and safety properties computed on networks of timed automata. In this respect,
the good performance of UPPAAL may have favored this evolution (see the
related discussion in [430]). However, one can mention two advances in timed
bisimulations during the 2000s.

A new bisimulation-based faster-than preorder [317] was proposed to com-
pare asynchronous processes with respect to their worst-case timing behaviour.

A new equivalence-checking algorithm for timed branching bisimulation of
communicating timed automata was designed and implemented in the RED
tool [419], improving over prior algorithms for timed branching bisimulation.

4.8 Bisimulation Tools for Probabilistic and Stochastic Systems

The aforementioned BCG MIN tool was designed to handle, not only LTSs, but
also extended models combining normal transitions (labelled with an action),
probabilistic transitions (whose label is a probability), and/or stochastic tran-
sitions (whose label is the rate parameter of an exponential distribution gov-
erning a random delay). Such models encompass DTMCs, which contain only
probabilistic transitions, CTMCs, which contain only stochastic transitions,
IMCs (Interactive Markov Chains) [73,228,235], which contain both normal and
stochastic transitions, and IPCs (Interactive Probabilistic Chains) [112,114],
which contain both normal and probabilistic transitions. BCG MIN can min-
imize such models for various equivalences that combine strong or branching

232 H. Garavel and F. Lang

bisimulation with lumpability and, in the stochastic case, maximal progress.
BCG MIN, together with other tools for steady-state and transient analysis
[233], has made CADP the actual successor of the TIPPtool [173] and has been
used in several performance studies.

Version 4.0 of TwoTowers [2] implemented equivalence checking, for strong
and observational Markovian equivalences, of architectural specifications written
in a language named Æmilia. This tool was used to assess the securing strategy
implemented in a trusted device for security architectures [1].

The PEPA workbench [187] was extended to support PEPA nets [188], a
formalism that describes mobile agent systems using Petri nets in which mobile
program code (expressed using the stochastic process calculus PEPA) moves
across the places of the net. This workbench implemented net bisimulation [189],
an equivalence relation for minimizing marking graphs of PEPA nets, and was
used in many case studies.

Bisimulation algorithms for minimizing DTMCs and CTMCs have been pro-
posed [128,129]. These algorithms, which are based on symbolic representations
and Blom-Orzan signatures, have been implemented in the SIGREF tool [423].
Independently, it has been evidenced that minimizing a DTMC or CTMC before
analysis improves performance [271].

Symmetry reductions that preserve strong probabilistic bisimulation have
been proposed [292], which may generate DTMCs, CTMCs, and MDPs (Markov
Decision Processes) by several orders of magnitude smaller. These reductions
have been implemented, using BDDs, in the PRISM model checker [293].

Finally, a minimization algorithm for observational bisimulation of acyclic
IMCs with inputs and outputs was proposed, with an application to the analysis
of DFTs (Dynamic Fault Trees) [116].

5 Retrospective of the 2010s

5.1 New Bisimulation Tools

The BCG MIN tool of CADP was entirely rewritten in 2010. The new ver-
sion 2.0 [179,180] relies on the sequential Blom-Orzan algorithms for strong and
branching bisimulations. Despite the worst-case time complexity O(mn2) of the
Blom-Orzan algorithms is higher than the worst-case time complexity O(mn)
of the Groote-Vaandrager and Kanellakis-Smolka algorithms implemented in
BCG MIN 1.0, the new version of BCG MIN is statistically faster, which seems
to indicate that the worst cases for signature-based algorithms rarely occur in
practice (crafted worst-case examples are given in [201, Section 8]).

BCG CMP6 uses the same algorithms as BCG MIN 2.0 to check the equiv-
alence of two LTSs modulo strong, branching, divergence-preserving branching,
and observational bisimulations. When both LTSs are not equivalent, it gener-
ates an LTS explaining where and why bisimulation does not hold.

6 http://cadp.inria.fr/man/bcg cmp.html.

http://cadp.inria.fr/man/bcg_cmp.html

Equivalence Checking 40 Years After 233

LTSMIN [47,270] is a comprehensive model-checking tool set, which also
implements strong and branching bisimulations using the distributed Blom-Orzan
algorithms. LTSMIN is used as a backend by, e.g., the mCRL2 toolset [115].

The aforementioned FDR2 toolset for analyzing CSP processes was extended
with new features [10], among which minimization algorithms [68] for strong,
observational, and delay bisimulations to reduce state spaces before verification.

RELTS [340,341] and T-BEG [282] are tools that implement strong bisim-
ulation in terms of game theory. Another tool [79] defines various simulation
relations in terms of an antagonistic two-player game. Also, game-theoretic def-
initions of branching and divergence-preserving branching bisimulations have
been given in [168].

Educational motivation was behind the development of tools such as CAAL
(Concurrency Workbench, Aalborg Edition) [9], which implements various
strong or observational, timed or untimed, equivalences and preorders, and
PSEUCO [37], which supports strong bisimulation. These tools exhibit fancy
Web interfaces that help teaching concurrency theory in university courses.

One can also mention SMART [352], which implements strong and observa-
tional bisimulations using multiway decision diagrams, GREASE [164], which
checks strong and observational bisimulations on-the-fly using syntactic crite-
ria to try finding a counter-example as soon as possible, and an implementa-
tion of branching bisimulation dedicated to the reduction of BIP (Behaviour-
Interaction-Priority) models [357].

5.2 Bisimulation Tools for Probabilistic and Stochastic Systems

Foundations were laid for strong and observational bisimulations and preorders
on Markov automata, a combination of probabilistic automata and IMCs [139].

The aforementioned minimization tool BCG MIN 2.0 was equipped with
probabilistic and stochastic bisimulations [113]. For these relations (as well as
for strong and branching bisimulations on LTSs), BCG MIN 2.0 was found to
use less memory and to be faster than BCG MIN 1.0 [180]. Support for the same
probabilistic and stochastic bisimulations was added in BCG CMP too.

MRMC (Markov Reward Model Checker) [272,435] is a tool for verifying
properties (expressed as CSL or PCTL temporal-logic formulas with their reward
extensions) on probabilistic models. To alleviate state explosion, MRMC may
minimize these models modulo strong bisimulation.

Polynomial algorithms for probabilistic observational bisimulation on proba-
bilistic automata [216,242] and alternating probabilistic bisimulation on interval
MDPs [217] were proposed and implemented. The latter relation was shown to
be compositional [215].

An algorithm [127] for directly generating a DTMC minimized modulo prob-
abilistic bisimulation from a probabilistic program described by guarded com-
mands was proposed and implemented in the PRISM model checker using the
SMT solver Z3. Another approach for generating, using PRISM, a DTMC from
an RTL (Register Transfer Level) description and minimizing it, using SIGREF,
modulo probabilistic bisimulation can be found in [87].

234 H. Garavel and F. Lang

An approach was proposed [392] to accelerate the model checking of PCTL
formulas on probabilistic automata, by iteratively refining an abstraction of a
probabilistic automaton, using incrementally computed bisimulations and with-
out resorting to any kind of counterexample analysis.

A fast algorithm for strong probabilistic bisimulation [209] was proposed and
implemented in the mCRL2 toolset [80].

Another fast algorithm [263] was given to minimize, modulo branching bisim-
ulation, DTMCs with labelled states.

Probabilistic bisimulation was also applied to infinite-state parameterized
systems, i.e., systems with an arbitrary number of processes [248]. The approach
was experimented in a prototype tool that was not made public.

5.3 Bisimulation Tools for Mobile Systems

Two new tools for analyzing extensions of the π-calculus were released during
the 2010s.

PWB (Psi-Calculus Workbench) [51,52] was a generic tool for analyzing
mobile processes by means of symbolic simulation and equivalence checking mod-
ulo symbolic (strong or observational) bisimulations [266].

SPEC [400] was an equivalence-checking tool for open bisimulation on secu-
rity protocols specified in the spi-calculus.

5.4 Bisimulation Tools Based on Parallel/Distributed Computing

There have been commendable efforts to parallelize mainstream partition-
refinement algorithms for minimizing LTSs modulo strong bisimulation. A par-
allel version of the Paige-Tarjan algorithm, in combination with Blom-Orzan sig-
natures, was proposed in [291], and a parallel version of the Kanellakis-Smolka
algorithm is given in [328].

Combinations of symbolic techniques and parallel algorithms have also been
explored in the second half of the 2010s. SIGREFMC [130,133] was a bisimu-
lation tool providing the same functionalities as SIGREF, but based on SYL-
VAN [131,132], a parallel implementation of BDDs on multi-core architectures.

While SIGREFMC encoded bisimulations as partitions of the state space, in
the lineage of partition-refinement algorithms, a different approach was investi-
gated in [251,252], where strong bisimulation was encoded directly as a relation,
like in the Bouali-De Simone algorithm.

5.5 Bisimulation Tools Based on Compositional Verification

A new approach, called smart reduction [117], was proposed for the compo-
sitional minimization of networks of LTSs. Smart reduction analyzes the syn-
chronizations between concurrent processes to infer a suitable order in which
processes are composed and minimized. Such a heuristic, which tries to avoid
state explosion by keeping the size of intermediate LTSs as small as possible,
was implemented in the SVL scripting language of CADP [177].

Equivalence Checking 40 Years After 235

A new family of equivalence relations, named sharp bisimulations [300],
which combine strong bisimulation and divergence-preserving branching bisim-
ulation [339], was defined. Sharp bisimulations provide effective reductions while
preserving given temporal-logic formulas [299]. They have been implemented in
the BCG MIN and BCG CMP tools of CADP, with user-friendly support in SVL.

Smart reduction and sharp bisimulations play a major role in mod-
ern approaches to compositional verification. Together with recent develop-
ments [298] around the idea of partial model checking [8], they enabled scientists
from Grenoble and Pisa to solve nearly all the parallel problems of the RERS7

verification challenge in 20198 and 20209.

5.6 Recent Results for Strong and Branching Bisimulations

An asymptotic lower bound Ω((m+n) log n) on the time complexity of partition
refinement algorithms was established [202].

A new (successively revised, improved, and simplified) minimization algo-
rithm for branching bisimulation was proposed [201,210,211,261,262]. Its worst-
case time complexity O(m log n) is lower than that of the Groote-Vaandrager
algorithm, which has been the best-known algorithm since the early 1990s, and
equal to that of the Paige-Tarjan algorithm, which is still the reference algo-
rithm for strong bisimulation. This new algorithm has been implemented in the
mCRL2 toolset.

6 Conclusion

Although model checking and equivalence checking have been discovered nearly
at the same time in the early 1980s, model checking is now widespread in
academia and industry, whereas equivalence checking plays a more discrete role.
It nevertheless found numerous applications in the verification of communication
protocols, hardware circuits, distributed systems, security systems, web services,
etc. Actually, compared to model checking, equivalence checking presents several
advantages:

– It is conceptually simpler, as it does not require learning another language
(i.e., temporal logics) to express the properties under verification.

– It enables visual checking, an easy form of verification done by abstracting
away certain observable actions of the system (i.e., by renaming them to τ -
transitions), minimizing the resulting state space modulo some weak bisimu-
lation, and visually inspecting the minimized state space if it is small enough.

– It may increase the effectiveness of model checking, as compositional state-
space verification techniques based upon, e.g., congruence properties, smart
reductions, and sharp bisimulations, are often capable of generating large
state spaces that could not be explored otherwise.

7 http://rers-challenge.org.
8 http://cadp.inria.fr/news12.html.
9 http://cadp.inria.fr/news13.html#section-3.

http://rers-challenge.org
http://cadp.inria.fr/news12.html
http://cadp.inria.fr/news13.html#section-3

236 H. Garavel and F. Lang

For these reasons, we believe that equivalence checking should play a growing
role in the future, in close combination with model checking. This could resolve
the longstanding dilemma between state-based models (in which information is
attached to states, as in Kripke structures) and action-based models (in which
information is attached to transitions, as in LTSs and Markov chains) by giving
an advantage to the latter models. Model checking is equally applicable to both
action- and state-based models (although with slightly different temporal logics
[122]), but most bisimulation tools have been designed to operate on action-
based models, which suggests that the latter models are more suitable where
model checking and equivalence checking are to be used together.

During the last forty years, the development of algorithms and tools for
checking bisimulations on finite- or infinite-state systems has steadily progressed.
These essential achievements have been spanning over several decades, which is
no surprise, keeping in mind how theoretically involved are these algorithms and
how technically involved are these tools subject to severe performance require-
ments. A remarkable example of such long-lasting research and commitment is
the Groote-Vaandrager algorithm for branching bisimulation [207], which has
been gradually refined to lower its complexity [262].

It is worth noticing that most of the bisimulation tools developed for equiv-
alence checking are no longer available today. Quite often, publications are the
only remaining indication that such tools have existed; in some cases (e.g., for the
promising BIDMIN tool), formal publications are even lacking. A counterexam-
ple is the CADP toolbox, the bisimulation tools of which have been, over several
decades, constantly enhanced or replaced by better, backward-compatible tools.

Software tools get obsolete due to incompatible evolutions of programming
languages and operating systems, but they also get abandoned when their
authors leave academia or move from one university to another; this suggests
that overemphasis on professional mobility may hamper long-term development
of perennial software tools.

Finally, the development of bisimulation tools has probably suffered from
additional factors, among which: (i) the lack of standard file formats agreed
upon by the community, beyond the rather inefficient AUT format; (ii) the lack
of benchmark examples, with the notable exception of VLTS10, which plays the
role of a de-facto test suite; and (iii) the lack of yearly software competitions
dedicated to equivalence checking. We hope that the present survey will draw
the attention to the past achievements and future promises of this research field.

Acknowledgements. We are grateful to Rance Cleaveland, Rocco De Nicola, Jan
Friso Groote, Laurent Mounier, Elie Najm, and the anonymous referees for their valu-
able comments about this article. We also would like to thank the DBLP and Google
Scholar teams, whose long-term undertaking made it possible to tackle such a compre-
hensive study.

10 https://cadp.inria.fr/resources/vlts.

https://cadp.inria.fr/resources/vlts

Equivalence Checking 40 Years After 237

References

1. Aldini, A., Bernardo, M.: An integrated view of security analysis and performance
evaluation: trading QoS with covert channel bandwidth. In: Heisel, M., Ligges-
meyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp. 283–296.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30138-7 24

2. Aldini, A., Bernardo, M.: TwoTowers 4.0: towards the integration of security anal-
ysis and performance evaluation. In: 1st International Conference on Quantitative
Evaluation of Systems (QEST 2004), Enschede, The Netherlands, pp. 336–337.
IEEE Computer Society, September 2004

3. Alur, R., Courcoubetis, C., Dill, D.L., Halbwachs, N., Wong-Toi, H.: An imple-
mentation of three algorithms for timing verification based on automata empti-
ness. In: Proceedings of the Real-Time Systems Symposium, Phoenix, Arizona,
USA, December 1992, pp. 157–166. IEEE Computer Society (1992)

4. Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D., Wong-Toi, H.: Minimiza-
tion of timed transition systems. In: Cleaveland, W.R. (ed.) CONCUR 1992.
LNCS, vol. 630, pp. 340–354. Springer, Heidelberg (1992). https://doi.org/10.
1007/BFb0084802

5. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

6. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

7. Andersen, H.R.: Model checking and Boolean graphs. Theor. Comput. Sci. 126(1),
3–30 (1994)

8. Andersen, H.R.: Partial model checking. In: Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science LICS (San Diego, California, USA),
pp. 398–407. IEEE Computer Society Press, June 1995

9. Andersen, J.R., et al.: CAAL: Concurrency Workbench, Aalborg edition. In:
Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399,
pp. 573–582. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-
9 33

10. Armstrong, P., et al.: Recent developments in FDR. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 699–704. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 52

11. Arnold, A.: Verification and comparison of transition systems. In: Gaudel, M.-
C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 121–135. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56610-4 60

12. Arnold, A., Bégay, D., Crubillé, P.: Construction and Analysis of Transition Sys-
tems with MEC. AMAST Series in Computing, vol. 3. World Scientific (1994)

13. Arnold, A., Point, G., Griffault, A., Rauzy, A.: The AltaRica formalism for
describing concurrent systems. Fundam. Informaticae 40(2–3), 109–124 (1999)

14. Arts, T., van Langevelde, I.: Verifying a Smart Design of TCAP: A Synergetic
Experience. Research Report SEN-R9910, CWI (1999)

15. Arts, T., van Langevelde, I.: How μCRL supported a smart redesign of a real-life
protocol. In: Gnesi, S., Latella, D. (eds.) Proceedings of the 4th International
ERCIM Workshop on Formal Methods for Industrial Critical Systems (Trento,
Italy), pp. 31–53. ERCIM, CNR, July 1999

16. Arts, T., van Langevelde, I.: Correct performance of transaction capabilities. In:
Valmari, A., Yakovlev, A. (eds.) Proceedings of the 2nd International Conference

https://doi.org/10.1007/978-3-540-30138-7_24
https://doi.org/10.1007/BFb0084802
https://doi.org/10.1007/BFb0084802
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/978-3-319-25150-9_33
https://doi.org/10.1007/978-3-319-25150-9_33
https://doi.org/10.1007/978-3-642-31424-7_52
https://doi.org/10.1007/3-540-56610-4_60

238 H. Garavel and F. Lang

on Application of Concurrency to System Design (ICACSD 2001), Newcastle upon
Tyne, UK, pp. 35–42. IEEE Computer Society, June 2001

17. Austry, D., Boudol, G.: Algèbre de Processus et Synchronisation. Theor. Comput.
Sci. 30, 91–131 (1984)

18. Azema, P., Drira, K., Vernadat, F.: A bus instrumentation protocol specified
in LOTOS. In: Quemada, J., Manas, J., Vázquez, E. (eds.) Proceedings of the
3rd International Conference on Formal Description Techniques FORTE 1990
(Madrid, Spain). North-Holland, November 1990

19. Azéma, P., Vernadat, F., Lloret, J.-C.: Requirement analysis for communication
protocols. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 286–293. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8 24

20. Baeten, J.C.M., Sangiorgi, D.: Concurrency theory: a historical perspective on
coinduction and process calculi. In: Siekmann, J.H. (ed.) Computational Logic,
Handbook of the History of Logic, vol. 9, pp. 399–442. Elsevier (2014)

21. Baier, C.: Polynomial time algorithms for testing probabilistic bisimulation and
simulation. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
50–61. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 57

22. Baray, F., Wodey, P.: Verification in the codesign process by means of LOTOS
based model-checking. In: Gnesi, S., Schieferdecker, I., Rennoch, A. (eds.) Pro-
ceedings of the 5th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2000), Berlin, Germany, pp. 87–108. GMD Report 91,
Berlin, April 2000

23. Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative
analysis of DEDS. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) TOOLS 1998.
LNCS, vol. 1469, pp. 356–359. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-68061-6 32

24. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

25. Benslimane, A., Abouaissa, A.: XTP specification and validation with LOTOS.
In: Proceedings of the Western MultiConference WMC 1998, Communication
Networks and Distributed Systems Modeling and Simulation CNDS 1998 (San
Diego, California, USA). Society for Computer Simulation International, January
1998

26. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: BISIMULATOR: a
modular tool for on-the-fly equivalence checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31980-1 42

27. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Comput. 60(1–3), 109–137 (1984)

28. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theor. Comput. Sci. 37, 77–121 (1985)

29. Bergstra, J.A., Ponse, A., van der Zwaag, M.: Branching time and orthogonal
bisimulation equivalence. Theor. Comput. Sci. 309(1–3), 313–355 (2003)

30. Bernardeschi, C., Fantechi, A., Gnesi, S.: An industrial application for the JACK
environment. J. Syst. Softw. 39(3), 249–264 (1997)

31. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Romano, D.:
A formal verification environment for railway signaling system design. Formal
Methods Syst. Des. 12(2), 139–161 (1998)

https://doi.org/10.1007/3-540-52148-8_24
https://doi.org/10.1007/3-540-61474-5_57
https://doi.org/10.1007/3-540-68061-6_32
https://doi.org/10.1007/3-540-68061-6_32
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-31980-1_42

Equivalence Checking 40 Years After 239

32. Bernardo, M., Bravetti, M.: Functional and performance modeling and analysis of
token ring using EMPA. In: Degano, P., Vaccaro, U., Pirillo, G. (eds.) Proceedings
of the 6th Italian Conference on Theoretical Computer Science (1998)

33. Bernardo, M.: An algebra-based method to associate rewards with EMPA terms.
In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS,
vol. 1256, pp. 358–368. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-63165-8 192

34. Bernardo, M.: Implementing symbolic models for value passing in TwoTowers.
In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS,
vol. 1786, pp. 370–373. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46429-8 34

35. Bernardo, M., Cleaveland, R., Sims, S., Stewart, W.: TwoTowers: a tool integrat-
ing functional and performance analysis of concurrent systems. In: Budkowski,
S., Cavalli, A.R., Najm, E. (eds.) Formal Description Techniques and Protocol
Specification, Testing and Verification, FORTE XI/PSTV XVIII 1998, IFIP TC6
WG6.1 Joint International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols (FORTE XI) and Protocol Spec-
ification, Testing and Verification (PSTV XVIII), Paris, France. IFIP Conference
Proceedings, vol. 135, pp. 457–467. Kluwer, November 1998

36. Bianchi, A., Coluccini, S., Degano, P., Priami, C.: An efficient verifier of truly
concurrent properties. In: Malyshkin, V. (ed.) PaCT 1995. LNCS, vol. 964, pp.
36–50. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60222-4 95

37. Biewer, S., Freiberger, F., Held, P.L., Hermanns, H.: Teaching academic concur-
rency to amazing students. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A.,
Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol.
10460, pp. 170–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63121-9 9

38. Blom, S., Fokkink, W., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.:
μCRL: a toolset for analysing algebraic specifications. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44585-4 23

39. Blom, S., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.: New devel-
opments around the mCRL tool set. Electron. Notes Theor. Comput. Sci. 80,
284–288 (2003)

40. Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of
state spaces. Electron. Notes Theor. Comput. Sci. 68(4), 523–538 (2002)

41. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
Electron. Notes Theor. Comput. Sci. 89(1), 99–113 (2003)

42. Blom, S., Orzan, S.: Distributed state space minimization. Electron. Notes Theor.
Comput. Sci. 80, 109–123 (2003)

43. Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of
state spaces. Softw. Tools Technol. Transfer 7(1), 74–86 (2005)

44. Blom, S., Orzan, S.: Distributed state space minimization. Softw. Tools Technol.
Transfer 7(3), 280–291 (2005)

45. Blom, S., van de Pol, J.: State space reduction by proving confluence. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 50

46. Blom, S., van de Pol, J.: Distributed branching bisimulation minimization by
inductive signatures. In: Brim, L., van de Pol, J. (eds.) Proceedings 8th Inter-
national Workshop on Parallel and Distributed Methods in Verification (PDMC
2009), Eindhoven, The Netherlands. EPTCS, vol. 14, pp. 32–46, November 2009

https://doi.org/10.1007/3-540-63165-8_192
https://doi.org/10.1007/3-540-63165-8_192
https://doi.org/10.1007/3-540-46429-8_34
https://doi.org/10.1007/3-540-46429-8_34
https://doi.org/10.1007/3-540-60222-4_95
https://doi.org/10.1007/978-3-319-63121-9_9
https://doi.org/10.1007/978-3-319-63121-9_9
https://doi.org/10.1007/3-540-44585-4_23
https://doi.org/10.1007/3-540-45657-0_50

240 H. Garavel and F. Lang

47. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reacha-
bility. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
354–359. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 31

48. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled
Markov processes. In: Proceedings of the 12th Annual IEEE Symposium on Logic
in Computer Science, Warsaw, Poland, pp. 149–158. IEEE Computer Society,
June 1997

49. Bolognesi, T., Caneve, M.: SQUIGGLES: a tool for the analysis of LOTOS speci-
fications. In: Turner, K.J. (ed.) Proceedings of the 1st International Conference on
Formal Description Techniques (FORTE 1988), Stirling, Scotland, pp. 201–216.
North-Holland, September 1988

50. Bolognesi, T., Caneve, M.: Equivalence verification: theory, algorithms, and a tool.
In: van Eijk, P., Vissers, C.A., Diaz, M. (eds.) The Formal Description Technique
LOTOS, pp. 303–326. North-Holland (1989)

51. Borgström, J., Gutkovas, R., Rodhe, I., Victor, B.: A parametric tool for applied
process calculi. In: Carmona, J., Lazarescu, M.T., Pietkiewicz-Koutny, M. (eds.)
13th International Conference on Application of Concurrency to System Design,
ACSD 2013, Barcelona, Spain, pp. 180–185. IEEE Computer Society, July 2013

52. Borgström, J., Gutkovas, R., Rodhe, I., Victor, B.: The psi-calculi workbench:
a generic tool for applied process calculi. ACM Trans. Embed. Comput. Syst.
14(1), 9:1–9:25 (2015)

53. Børjesson, A., Larsen, K.G., Skou, A.: Generality in design and compositional
verification using TAV. In: Diaz, M., Groz, R. (eds.) Proceedings of the IFIP
TC6/WG6.1 5th International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols (FORTE 1992), Perros-
Guirec, France, 13–16 October 1992. IFIP Transactions, vol. C-10, pp. 449–464.
North-Holland, September 1992

54. Børjesson, A., Larsen, K.G., Skou, A.: Generality in design and compositional
verification using TAV. Formal Methods Syst. Des. 6(3), 239–258 (1995)

55. Bos, V.: ChiSigma Manual (2002). ResearchGate
56. Bouajjani, A., Fernandez, J.C., Graf, S., Rodriguez, C., Sifakis, J.: Safety for

branching time semantics. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.)
ICALP 1991. LNCS, vol. 510, pp. 76–92. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54233-7 126

57. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023733

58. Bouali, A.: Weak and Branching Bisimulation in FcTool. Research Report 1575,
INRIA (1992)

59. Bouali, A.: XEVE: An ESTEREL Verification Environment (Version v1 3). Tech-
nical Report 214, INRIA (1997)

60. Bouali, A., Gnesi, S., Larosa, S.: The Integration Project for the JACK Environ-
ment. Research Report CS-R9443, CWI (1994)

61. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The FC2TOOLS set. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 441–445. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 98

62. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The FC2TOOLS set. In: Wirs-
ing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 595–598. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0014350

https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/3-540-54233-7_126
https://doi.org/10.1007/3-540-54233-7_126
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/3-540-61474-5_98
https://doi.org/10.1007/BFb0014350

Equivalence Checking 40 Years After 241

63. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The FC2TOOLS set (tool
demonstration). In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol.
1055, p. 396. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-
1 57

64. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The FCTOOLS User Manual
(Version 1.0). Technical Report RT-0191, INRIA, June 1996

65. Bouali, A., de Simone, R.: Symbolic bisimulation minimisation. In: von
Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 96–108.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9 9

66. Boudol, G., Roy, V., de Simone, R., Vergamini, D.: Process calculi, from theory
to practice: verification tools. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp.
1–10. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8 1

67. Boudol, G., de Simone, R., Vergamini, D.: Experiment with AUTO and AUTO-
GRAPH on a simple case of sliding window protocol. Research Report 870, INRIA
(1988)

68. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak
and other bisimulations. Formal Aspects Comput. 28(3), 381–407 (2016)

69. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: KRONOS: a
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028779

70. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: KRO-
NOS: a model-checking tool for real-time systems. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 298–302. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055357

71. Bozga, M., Fernandez, J.C., Kerbrat, A., Mounier, L.: Protocol verification with
the ALDEBARAN toolset. Int. J. Softw. Tools Technol. Transf. 1(1–2), 166–184
(1997)

72. Briais, S.: ABC User’s Guide (2005). http://sbriais.free.fr/tools/abc/abc ug.ps
73. Brinksma, E., Hermanns, H.: Process algebra and Markov chains. In: Brinksma,

E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000. LNCS, vol. 2090, pp.
183–231. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44667-2 5

74. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequen-
tial processes. J. ACM 31(3), 560–599 (1984)

75. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35(8) (1986)

76. Buchholz, P.: Equivalence relations for stochastic automata networks. In: Stew-
art, W.J. (ed.) Computation with Markov Chains: Proceedings of the 2nd Inter-
national Workshop on the Numerical Solution of Markov Chains, pp. 197–216.
Kluwer (1995)

77. Buchholz, P., Kemper, P.: A toolbox for the analysis of discrete event dynamic
systems. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
483–486. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 41

78. Buchholz, P., Kemper, P.: Modular state level analysis of distributed systems
techniques and tool support. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS,
vol. 1579, pp. 420–434. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-49059-0 29

79. Bulychev, P.E.: Game-theoretic simulation checking tool. Program. Comput.
Softw. 37(4), 200–209 (2011)

https://doi.org/10.1007/3-540-61042-1_57
https://doi.org/10.1007/3-540-61042-1_57
https://doi.org/10.1007/3-540-56496-9_9
https://doi.org/10.1007/3-540-52148-8_1
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1007/BFb0055357
http://sbriais.free.fr/tools/abc/abc_ug.ps
https://doi.org/10.1007/3-540-44667-2_5
https://doi.org/10.1007/3-540-48683-6_41
https://doi.org/10.1007/3-540-49059-0_29
https://doi.org/10.1007/3-540-49059-0_29

242 H. Garavel and F. Lang

80. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

81. Bystrov, A.V., Virbitskaite, I.B.: Implementing model checking and equivalence
checking for time petri nets by the RT-MEC tool. In: Malyshkin, V. (ed.) PaCT
1999. LNCS, vol. 1662, pp. 194–199. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48387-X 20

82. Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: a tool for the analysis
of process algebras. Trans. Petri Nets Other Model. Concurr. 1, 54–70 (2008)

83. Camurati, P., Corno, F., Prinetto, P.: An efficient tool for system-level verification
of behaviors and temporal properties. In: Proceedings of the European Design
Automation Conference (EURO-DAC 1993), Hamburg, Germany, pp. 124–129.
IEEE Computer Society, September 1993

84. Carchiolo, V., Faro, A.: A tool for the automated verification of ECCS specifica-
tions of OSI protocols. In: Varaiya, P., Kurzhanski, A.B. (eds.) Discrete Event Sys-
tems: Models and Applications. LNCIS, pp. 57–68. Springer, Heidelberg (1987).
https://doi.org/10.1007/BFb0042304

85. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed Modal Specification - Theory
and Tools. Research Report RS-97-11, BRICS (1997)

86. Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and
verification of the PowerScale bus arbitration protocol: an industrial experiment
with LOTOS. In: Gotzhein, R., Bredereke, J. (eds.) Proceedings of the IFIP Joint
International Conference on Formal Description Techniques for Distributed Sys-
tems and Communication Protocols, and Protocol Specification, Testing, and Ver-
ification (FORTE/PSTV 1996), Kaiserslautern, Germany, pp. 435–450. Chapman
& Hall, October 1996. Full version available as INRIA Research Report RR-2958

87. Chen, L., Ebrahimi, M., Tahoori, M.B.: Quantitative evaluation of register vul-
nerabilities in RTL control paths. In: Natale, G.D. (ed.) Proceedings of the 19th
IEEE European Test Symposium (ETS 2014), Paderborn, Germany, pp. 1–2.
IEEE, May 2014

88. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking
for infinite systems using parameterized Boolean equation systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 9

89. Cheng, Y.P., Cheng, Y.R., Wang, H.Y.: ARCATS: a scalable compositional anal-
ysis tool suite. In: Haddad, H. (ed.) Proceedings of the 2006 ACM Symposium
on Applied Computing (SAC 2006), Dijon, France, pp. 1852–1853. ACM, April
2006

90. Cheng, Y.-P., Wang, H.-Y., Cheng, Y.-R.: On-the-fly branching bisimulation min-
imization for compositional analysis. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA
2006. LNCS, vol. 4094, pp. 219–229. Springer, Heidelberg (2006). https://doi.
org/10.1007/11812128 21

91. Cheung, S.C., Kramer, J.: Enhancing compositional reachability analysis with
context constraints. In: Proceedings of the 1st ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (Los Angeles, CA, USA), pp.
115–125. ACM Press, December 1993

92. Cheung, S.C., Giannakopoulou, D., Kramer, J.: Verification of liveness properties
using compositional reachability analysis. In: Jazayeri, M., Schauer, H. (eds.)
ESEC/SIGSOFT FSE 1997. LNCS, vol. 1301, pp. 227–243. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63531-9 17

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-48387-X_20
https://doi.org/10.1007/3-540-48387-X_20
https://doi.org/10.1007/BFb0042304
https://doi.org/10.1007/978-3-540-74407-8_9
https://doi.org/10.1007/11812128_21
https://doi.org/10.1007/11812128_21
https://doi.org/10.1007/3-540-63531-9_17

Equivalence Checking 40 Years After 243

93. Clarke, D.: VERSA: Verification, Execution and Rewrite System for ASCR. Tech-
nical Report MS-CIS-95-34, University of Pennsylvania (1995)

94. Clarke, D., Ben-Abdallah, H., Lee, I., Xie, H.-L., Sokolsky, O.: XVERSA: an inte-
grated graphical and textual toolset for the specification and analysis of resource-
bound real-time systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 402–405. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61474-5 89

95. Clarke, D., Lee, I.: VERSA: a tool for analyzing resource-bound real-time systems.
J. Comput. Softw. Eng. 3(2) (1995)

96. Clarke, D., Lee, I., Xie, H.L.: VERSA: A Tool for the Specification and Analysis of
Resource-Bound Real-Time Systems. Technical Report MS-CIS-93-77, University
of Pennsylvania (1993)

97. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

98. Cleaveland, R.: On automatically explaining bisimulation inequivalence. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 364–372.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023750

99. Cleaveland, R.: Analyzing concurrent systems using the Concurrency Workbench.
In: Lauer, P.E. (ed.) Functional Programming, Concurrency, Simulation and
Automated Reasoning. LNCS, vol. 693, pp. 129–144. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-56883-2 8

100. Cleaveland, R., Gada, J.N., Lewis, P.M., Smolka, S.A., Sokolsky, O., Zhang, S.:
The Concurrency Factory - practical tools for specification, simulation, verifi-
cation, and implementation of concurrent systems. In: Blelloch, G.E., Chandy,
K.M., Jagannathan, S. (eds.) Proceedings of the DIMACS Workshop on Spec-
ification of Parallel Algorithms, Princeton, New Jersey, USA. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 18, pp. 75–89.
DIMACS/AMS, May 1994

101. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 11–23. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 2

102. Cleaveland, R., Lewis, P.M., Smolka, S.A., Sokolsky, O.: The Concurrency Fac-
tory: a development environment for concurrent systems. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 398–401. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61474-5 88

103. Cleaveland, R., Li, T., Sims, S.: The Concurrency Workbench of the New Century
(Version 1.2) - User’s Manual, July 2000. State University of New York at Stony
Brook

104. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for
finite state systems. In: Brinksma, E., Scollo, G., Vissers, C.A. (eds.) Proceedings
of the 9th International Symposium on Protocol Specification, Testing and Ver-
ification (PSTV 1989), Enschede, The Netherlands, pp. 287–302. North-Holland
(1989)

105. Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench. In: Sifakis,
J. (ed.) CAV 1989. LNCS, vol. 407, pp. 24–37. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-52148-8 3

106. Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

107. Cleaveland, R., Sims, S.: The Concurrency Workbench of North Carolina User’s
manual (version 1.0) (1996)

https://doi.org/10.1007/3-540-61474-5_89
https://doi.org/10.1007/3-540-61474-5_89
https://doi.org/10.1007/BFb0023750
https://doi.org/10.1007/3-540-56883-2_8
https://doi.org/10.1007/3-540-52148-8_2
https://doi.org/10.1007/3-540-61474-5_88
https://doi.org/10.1007/3-540-52148-8_3

244 H. Garavel and F. Lang

108. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61474-5 87

109. Cleaveland, R., Sims, S.: Generic tools for verifying concurrent systems. In: Pro-
ceedings of the 1998 ARO/ONR/NSF/DARPA Monterey Workshop on Engineer-
ing Automation for Computer Based Systems, pp. 38–46 (1999)

110. Cleaveland, R., Sims, S.: Generic tools for verifying concurrent systems. Sci. Com-
put. Program. 42(1), 39–47 (2002)

111. Cornejo, M.A., Garavel, H., Mateescu, R., de Palma, N.: Specification and ver-
ification of a dynamic reconfiguration protocol for agent-based applications. In:
Laurentowski, A., Kosinski, J., Mossurska, Z., Ruchala, R. (eds.) Proceedings of
the 3rd IFIP WG 6.1 International Working Conference on Distributed Appli-
cations and Interoperable Systems (DAIS 2001), Krakow, Poland, pp. 229–242.
Kluwer Academic Publishers, September 2001. Full version available as INRIA
Research Report RR-4222

112. Coste, N.: Vers la prédiction de performance de modèles compositionnels dans les
architectures GALS. Ph.D. thesis, Université de Grenoble, June 2010

113. Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten
years of performance evaluation for concurrent systems using CADP. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 128–142. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 18

114. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance pre-
diction of compositional models in industrial GALS designs. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 18

115. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

116. Crouzen, P., Hermanns, H., Zhang, L.: On the minimisation of acyclic models.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
295–309. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 25

117. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19811-3 9

118. Davies, J.W., Schneider, S.A.: A brief history of timed CSP. Theor. Comput. Sci.
138(2), 243–271 (1995)

119. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R.,
Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020947

120. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theor. Com-
put. Sci. 34, 83–133 (1984)

121. De Nicola, R., Inverardi, P., Nesi, M.: Equational reasoning about LOTOS specifi-
cations: a rewriting approach. In: Proceedings of the 6th International Workshop
on Software Specification and Design, pp. 148–155 (1991)

122. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

123. De Nicola, R., Fantechi, A., Gnesi, S., Larosa, S., Ristori, G.: Verifying hardware
components with JACK. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995.

https://doi.org/10.1007/3-540-61474-5_87
https://doi.org/10.1007/978-3-642-16561-0_18
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-540-85361-9_25
https://doi.org/10.1007/978-3-540-85361-9_25
https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/BFb0020947
https://doi.org/10.1007/3-540-53479-2_17

Equivalence Checking 40 Years After 245

LNCS, vol. 987, pp. 246–260. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60385-9 15

124. De Nicola, R., Inverardi, P., Nesi, M.: Using the axiomatic presentation of
behavioural equivalences for manipulating CCS specifications. In: Sifakis, J. (ed.)
CAV 1989. LNCS, vol. 407, pp. 54–67. Springer, Heidelberg (1990). https://doi.
org/10.1007/3-540-52148-8 5

125. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation
(extended abstract). In: Proceedings of the 4th Annual Symposium on Logic
in Computer Science (LICS 1989), Pacific Grove, California, USA, pp. 118–129.
IEEE Computer Society (1990)

126. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

127. Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation
of Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35873-9 5

128. Derisavi, S.: A symbolic algorithm for optimal Markov chain lumping. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 139–154. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 13

129. Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lump-
ing. In: Proceedings of the 4th International Conference on the Quantitative Eval-
uation of Systems (QEST 2007), Edinburgh, Scotland, UK, pp. 141–150. IEEE
Computer Society, September 2007

130. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 332–348.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 19

131. van Dijk, T., van de Pol, J.: SYLVAN: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017)

132. van Dijk, T., van de Pol, J.: Multi-core decision diagrams. In: Hamadi, Y., Sais, L.
(eds.) Handbook of Parallel Constraint Reasoning, pp. 509–545. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63516-3 13

133. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. Int.
J. Softw. Tools Technol. Transf. 20(2), 157–177 (2018)

134. Doumenc, G., Madelaine, E.: Une traduction de PLOTOS en MEIJE. Research
Report RR-0938, INRIA (1988)

135. Doumenc, G., Madelaine, E., De Simone, R.: Proving Process Calculi Translations
in ECRINS: The pureLOTOS -> MEIJE Example. Research Report RR-1192,
INRIA (1990)

136. Dovier, A., Gentilini, R., Piazza, C., Policriti, A.: Rank-based symbolic bisimu-
lation (and model checking). Electron. Notes Theor. Comput. Sci. 67, 166–183
(2002)

137. Dovier, A., Piazza, C., Policriti, A.: A fast bisimulation algorithm. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 79–90. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 8

138. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisim-
ulation equivalence. Theor. Comput. Sci. 311(1–3), 221–256 (2004)

139. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15375-4 3

https://doi.org/10.1007/3-540-60385-9_15
https://doi.org/10.1007/3-540-60385-9_15
https://doi.org/10.1007/3-540-52148-8_5
https://doi.org/10.1007/3-540-52148-8_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-540-71209-1_13
https://doi.org/10.1007/978-3-662-49674-9_19
https://doi.org/10.1007/978-3-319-63516-3_13
https://doi.org/10.1007/3-540-44585-4_8
https://doi.org/10.1007/978-3-642-15375-4_3
https://doi.org/10.1007/978-3-642-15375-4_3

246 H. Garavel and F. Lang

140. Enders, R., Filkorn, T., Taubner, D.: Generating BDDs for symbolic model check-
ing in CCS. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp.
203–213. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55179-4 20

141. Erdogmus, H.: Verifying semantic relations in SPIN. In: Proceedings of the 1st
SPIN Workshop (Montréal, Québec) (1995)

142. Erdogmus, H., de B. Johnston, R., Cleary, C.: Formal verification based on rela-
tion checking in SPIN: a case study. In: Proceedings of the 1st Workshop on
Formal Methods in Software Practice (San Diego, California, USA) (1995)

143. Ernberg, P., Fredlund, L., Jonsson, B.: Specification and Validation of a Sim-
ple Overtaking Protocol using LOTOS. T 90006, Swedish Institute of Computer
Science, Kista, Sweden, October 1990

144. Ernberg, P., Fredlund, L.A.: Identifying Some Bottlenecks of the Concurrency
Workbench. Research Report T90/9002, SICS (1990)

145. Ernberg, P., Hovander, T., Monfort, F.: Specification and implementation of an
ISDN telephone system using LOTOS. In: Diaz, M., Groz, R. (eds.) Proceedings of
the IFIP TC6/WG6.1 5th International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Protocols (FORTE 1992),
Perros-Guirec, France. IFIP Transactions, vol. C-10, pp. 171–186. North-Holland,
October 1992

146. Estenfeld, K., Schneider, H.A., Taubner, D., Tidén, E.: Computer aided veri-
fication of parallel processes. In: Pfitzmann, A., Raubold, E. (eds.) VIS 1991,
vol. 271, pp. 208–226. Springer, Heidelberg (1991). https://doi.org/10.1007/978-
3-642-76562-9 13

147. Fernandez, J.C.: ALDEBARAN: Un système de vérification par réduction de
processus communicants. Ph.D. thesis, Université Joseph Fourier (Grenoble), May
1988

148. Fernandez, J.C.: ALDEBARAN: A Tool for Verification of Communicating Pro-
cesses. Rapport SPECTRE C14, Laboratoire de Génie Informatique - Institut
IMAG, Grenoble, September 1989

149. Fernandez, J.C.: ALDEBARAN: User’s Manual. Laboratoire de Génie Informa-
tique – Institut IMAG, Grenoble, January 1989

150. Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation
equivalence. Sci. Comput. Program. 13(2–3), 219–236 (1990)

151. Fernandez, J.-C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu,
M.: CADP (CÆSAR/ALDEBARAN Development Package): a protocol valida-
tion and verification toolbox. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 437–440. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-61474-5 97

152. Fernandez, J.C., Garavel, H., Mounier, L., Rasse, A., Rodŕıguez, C., Sifakis, J.: A
toolbox for the verification of LOTOS programs. In: Clarke, L.A. (ed.) Proceed-
ings of the 14th International Conference on Software Engineering (ICSE 2014),
Melbourne, Australia, pp. 246–259. ACM, May 1992

153. Fernandez, J.C., Kerbrat, A., Mounier, L.: Symbolic equivalence checking. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 85–96. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-56922-7 8

154. Fernandez, J.C., Mounier, L.: Verifying bisimulations “On the Fly”. In: Quemada,
J., Manas, J., Vázquez, E. (eds.) Proceedings of the 3rd International Conference
on Formal Description Techniques (FORTE 1990), Madrid, Spain. North-Holland,
November 1990

155. Fernandez, J.C., Mounier, L.: A tool set for deciding behavioral equivalences. In:
Proceedings of CONCUR 1991, Amsterdam, The Netherlands, August 1991

https://doi.org/10.1007/3-540-55179-4_20
https://doi.org/10.1007/978-3-642-76562-9_13
https://doi.org/10.1007/978-3-642-76562-9_13
https://doi.org/10.1007/3-540-61474-5_97
https://doi.org/10.1007/3-540-61474-5_97
https://doi.org/10.1007/3-540-56922-7_8

Equivalence Checking 40 Years After 247

156. Fernandez, J.-C., Mounier, L.: “On the fly” verification of behavioural equiva-
lences and preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575,
pp. 181–191. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55179-
4 18

157. Ferrari, G., Modoni, G., Quaglia, P.: Towards a semantic-based verification envi-
ronment for the π-calculus. In: De Santis, A. (ed.) Proceedings of the 5th Italian
Conference on Theoretical Computer Science (1995)

158. Février, A., Najm, E., Prost, N., Robles, F.: Verifying an ATM switch with For-
mal Methods (1994). http://cadp.inria.fr/ftp/publications/others/Fevrier-Najm-
Prost-Robles-94.pdf

159. Fisler, K., Vardi, M.Y.: Bisimulation minimization in an automata-theoretic ver-
ification framework. In: Gopalakrishnan, G., Windley, P. (eds.) FMCAD 1998.
LNCS, vol. 1522, pp. 115–132. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-49519-3 9

160. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. In: Pierre, L., Kropf,
T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 338–342. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48153-2 29

161. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking.
Formal Methods Syst. Des. 21(1), 39–78 (2002)

162. Focardi, R., Gorrieri, R.: The compositional security checker: a tool for the ver-
ification of information flow security properties. IEEE Trans. Softw. Eng. 23(9),
550–571 (1997)

163. Franceschinis, G., Ribaudo, M.: Symmetric and behavioural aggregation in a sim-
ple protocol example. In: Proceedings of the 6th International Workshop on Pro-
cess Algebra and Performance Modelling (PAPM 1998), Nice, France (1998)

164. Francesco, N.D., Lettieri, G., Santone, A., Vaglini, G.: GreASE: a tool for efficient
“Nonequivalence” checking. ACM Trans. Softw. Eng. Methodol. 23(3), 24:1–24:26
(2014)

165. Fredlund, L., Orava, F.: An experiment in formalizing and analysing railyard
configurations. In: Brezočnik, Z., Kapus, T. (eds.) Proceedings of COST 247
International Workshop on Applied Formal Methods in System Design (Mari-
bor, Slovenia), pp. 51–60. University of Maribor, Slovenia, June 1996

166. Fredlund, L.A.: The Timing and Probability Workbench: A tool for Analysing
Timed Processes (1994). CiteSeer

167. Fredlund, L.A., Orava, F.: Modelling dynamic communication structures in
LOTOS. In: Parker, K.R., Rose, G.A. (eds.) Proceedings of the IFIP TC6/WG6.1
4th International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE 1991), Sydney, Australia. IFIP
Transactions, vol. C-2, pp. 185–200. North-Holland, November 1991

168. de Frutos Escrig, D., Keiren, J.J.A., Willemse, T.A.C.: Branching bisimulation
games. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 142–
157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 10

169. Fuhrmann, K., Hiemer, J.: Formal verification of statemate-statecharts. In:
Berghammer, R., Lakhnech, Y. (eds.) Tool Support for System Specification,
Development and Verification. ACS, pp. 92–107. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-3-7091-6355-9 7

170. Garavel, H.: Compilation et vérification de programmes LOTOS. Ph.D. thesis,
Université Joseph Fourier (Grenoble), November 1989

171. Garavel, H.: An overview of the Eucalyptus toolbox. In: Brezočnik, Z., Kapus, T.
(eds.) Proceedings of the COST 247 International Workshop on Applied Formal

https://doi.org/10.1007/3-540-55179-4_18
https://doi.org/10.1007/3-540-55179-4_18
http://cadp.inria.fr/ftp/publications/others/Fevrier-Najm-Prost-Robles-94.pdf
http://cadp.inria.fr/ftp/publications/others/Fevrier-Najm-Prost-Robles-94.pdf
https://doi.org/10.1007/3-540-49519-3_9
https://doi.org/10.1007/3-540-49519-3_9
https://doi.org/10.1007/3-540-48153-2_29
https://doi.org/10.1007/978-3-319-39570-8_10
https://doi.org/10.1007/978-3-7091-6355-9_7

248 H. Garavel and F. Lang

Methods in System Design (Maribor, Slovenia), pp. 76–88. University of Maribor,
Slovenia, June 1996

172. Garavel, H.: OPEN/CÆSAR: an open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054165

173. Garavel, H., Hermanns, H.: On combining functional verification and performance
evaluation using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002.
LNCS, vol. 2391, pp. 410–429. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45614-7 23 Full version available as INRIA Research Report 4492

174. Garavel, H., Jorgensen, M., Mateescu, R., Pecheur, C., Sighireanu, M., Vivien, B.:
CADP’97 - status, applications and perspectives. In: Lovrek, I. (ed.) Proceedings
of the 2nd COST 247 International Workshop on Applied Formal Methods in
System Design (Zagreb, Croatia), June 1997

175. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification. In:
Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of the 21st IFIP WG 6.1
International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2001), Cheju Island, Korea, pp. 377–392. Kluwer Academic
Publishers, August 2001. Full version available as INRIA Research Report RR-
4223

176. Garavel, H., Lang, F., Mateescu, R.: An Overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter 4, 13–24
(Aug 2002), also available as INRIA Technical Report RT-0254, December 2001

177. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)

178. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: a toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73368-3 18

179. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the con-
struction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 33

180. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer (STTT) 15(2), 89–107 (2013)

181. Garavel, H., Lang, F., Mounier, L.: Compositional verification in action. In:
Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 189–210.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 13

182. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

183. Garavel, H., Mounier, L.: Specification and verification of various distributed
leader election algorithms for unidirectional ring networks. Sci. Comput. Program.
29(1–2), 171–197 (1997). Special issue on Industrially Relevant Applications of
Formal Analysis Techniques. Full version available as INRIA Research Report
RR-2986

184. Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications. In:
Logrippo, L., Probert, R.L., Ural, H. (eds.) Proceedings of the 10th IFIP Inter-
national Symposium on Protocol Specification, Testing and Verification (PSTV
1990), Ottawa, Canada, pp. 379–394. North-Holland, June 1990

https://doi.org/10.1007/BFb0054165
https://doi.org/10.1007/3-540-45614-7_23
https://doi.org/10.1007/3-540-45614-7_23
https://doi.org/10.1007/978-3-540-73368-3_18
https://doi.org/10.1007/978-3-642-19835-9_33
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-319-68270-9_1

Equivalence Checking 40 Years After 249

185. Germeau, F., Leduc, G.: Model-based design and verification of security protocols
using LOTOS. In: Orman, H., Meadows, C. (eds.) Proceedings of the DIMACS
Workshop on Design and Formal Verification of Security Protocols (Rutgers Uni-
versity, New Jersey, USA), September 1997

186. Gerth, R., Kuiper, R., Peled, D.A., Penczek, W.: A partial order approach to
branching time logic model checking. Inf. Comput. 150(2), 132–152 (1999)

187. Gilmore, S., Hillston, J.: The PEPA workbench: a tool to support a process
algebra-based approach to performance modelling. In: Haring, G., Kotsis, G.
(eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58021-2 20

188. Gilmore, S., Hillston, J., Kloul, L.: PEPA nets. In: Calzarossa, M.C., Gelenbe,
E. (eds.) MASCOTS 2003. LNCS, vol. 2965, pp. 311–335. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24663-3 15

189. Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: PEPA nets: a structured perfor-
mance modelling formalism. Perform. Eval. 54(2), 79–104 (2003)

190. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99.
North-Holland/Elsevier (2001)

191. van Glabbeek, R.J., Weijland, W.P.: Branching-time and abstraction in bisim-
ulation semantics (extended abstract). CS R8911, Centrum voor Wiskunde en
Informatica, Amsterdam (1989). Also in Proceedings of IFIP 11th World Com-
puter Congress, San Francisco (1989)

192. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996)

193. Gnesi, S., Madelaine, E., Ristori, G.: An exercise in protocol verification, pp.
255–279. Kluwer (1995)

194. Godskesen, J.C., Larsen, K.G., Zeeberg, M.: TAV (tools for automatic verifi-
cation). In: Sifakis, J. (ed.) Proceedings of the 1st International Workshop on
Automatic Verification Methods for Finite State Systems (CAV 1989), Grenoble,
France, June 1989. Article present only in the participants proceedings, not in
the LNCS 407 post-proceedings volume

195. Godskesen, J.C., Larsen, K.G.: User’s Manual for Epsilon (Draft), available from
CiteSeer

196. Godskesen, J.C., Larsen, K.G., Skou, A.: Automatic verification of real-time sys-
tems using Epsilon. In: Vuong, S.T., Chanson, S.T. (eds.) Protocol Specification,
Testing and Verification XIV, Proceedings of the 14th IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification, Vancouver, BC,
Canada. IFIP Conference Proceedings, vol. 1, pp. 323–330. Chapman & Hall
(1994)

197. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023732

198. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimization of finite state sys-
tems using interface specifications. Formal Aspects Comput. 8(5), 607–616 (1996)

199. Griffault, A., Vincent, A.: The Mec 5 model-checker. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 488–491. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27813-9 43

200. Groote, J.: The Syntax and Semantics of Timed μCRL. Technical Report SEN-
R9709, CWI, Amsterdam, The Netherlands, June 1997

https://doi.org/10.1007/3-540-58021-2_20
https://doi.org/10.1007/978-3-540-24663-3_15
https://doi.org/10.1007/BFb0023732
https://doi.org/10.1007/978-3-540-27813-9_43

250 H. Garavel and F. Lang

201. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for computing stuttering equivalence and branching bisimulation. ACM Trans.
Comput. Log. 18(2), 13:1–13:34 (2017)

202. Groote, J.F., Martens, J., de Vink, E.P.: Bisimulation by partitioning is Ω((m +
n) log n). In: Haddad, S., Varacca, D. (eds.) 32nd International Conference on
Concurrency Theory (CONCUR 2021), Virtual Conference. LIPIcs, vol. 203, pp.
31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, August 2021

203. Groote, J.F., Mathijssen, A., van Weerdenburg, M., Usenko, Y.S.: From μCRL
to mCRL2: motivation and outline. Electron. Notes Theor. Comput. Sci. 162,
191–196 (2006)

204. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for large data
packets. In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp.
536–550. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014338

205. Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theor. Comput.
Sci. 170(1–2), 47–81 (1996)

206. Groote, J., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. CS-R 9001, Centrum voor Wiskunde en Informatica,
Amsterdam, January 1990

207. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation
and stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

208. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimula-
tion as a congruence. Inf. Comput. 100(2), 202–260 (1992)

209. Groote, J.F., Verduzco, J.R., de Vink, E.P.: An efficient algorithm to determine
probabilistic bisimulation. Algorithms 11(9), 131 (2018)

210. Groote, J.F., Wijs, A.: An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 607–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 40

211. Groote, J.F., Wijs, A.: An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. CoRR abs/1601.01478 (2016)

212. Halbwachs, N.: Using Auto for Esterel program verification. In: Halbwachs, N.
(ed.) Synchronous Programming of Reactive Systems, vol. 215, pp. 149–155.
Springer, Boston (1993). https://doi.org/10.1007/978-1-4757-2231-4 10

213. Hansson, H.A.: Time and probability in formal design of distributed systems.
Ph.d. thesis, University Uppsala, Sweden (1991)

214. Hansson, H.A.: Time and Probability in Formal Design of Distributed Systems.
Elsevier (1994)

215. Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski,
P.: Compositional bisimulation minimization for interval Markov decision pro-
cesses. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2016. LNCS, vol. 9618, pp. 114–126. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30000-9 9

216. Hashemi, V., Hermanns, H., Turrini, A.: On the efficiency of deciding probabilistic
automata weak bisimulation. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
66 (2013)

217. Hashemi, V., Turrini, A., Hahn, E.M., Hermanns, H., Elbassioni, K.: Polynomial-
time alternating probabilistic bisimulation for interval MDPs. In: Larsen, K.G.,
Sokolsky, O., Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606, pp. 25–41. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69483-2 2

https://doi.org/10.1007/BFb0014338
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-1-4757-2231-4_10
https://doi.org/10.1007/978-3-319-30000-9_9
https://doi.org/10.1007/978-3-319-30000-9_9
https://doi.org/10.1007/978-3-319-69483-2_2

Equivalence Checking 40 Years After 251

218. He, J., Turner, K.J.: Modelling and Verifying Synchronous Circuits in DILL.
Technical Report CSM-152, Department of Computing Science and Mathematics,
University of Stirling (1999)

219. He, J., Turner, K.J.: Protocol-inspired hardware testing. In: Csopaki, G., Dibuz,
S., Tarnay, K. (eds.) Proceedings of the IFIP 12th International Workshop on
Testing of Communicating Systems (IWTCS 1999), Budapest, Hungary, pp. 131–
147. Kluwer Academic, September 1999

220. He, J., Turner, K.J.: Specification and verification of synchronous hardware using
LOTOS. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Proceedings of the IFIP Joint
International Conference on Formal Description Techniques for Distributed Sys-
tems and Communication Protocols and Protocol Specification, Testing, and Ver-
ification (FORTE/PSTV 1999), Beijing, China, pp. 295–312. Kluwer Academic
Publishers, October 1999

221. Heisel, M., Lévy, N.: Using LOTOS patterns to characterize architectural styles.
In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 818–832.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0030643

222. Hellgren, V.: Performance Evaluation of Four Verification Tools: ALDEBARAN,
BIDMIN, Concurrency Workbench and HOGGAR. Technical report, University
of Helsinki, Department of Computer Science, p. 4, August 1995

223. Hellgren, V.: User’s Manual: BIDMIN Version 1.2. Technical report, University
of Helsinki, Department of Computer Science, p. 10, August 1995

224. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

225. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: 36th Annual Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 453–462. IEEE
Computer Society (1995)

226. Henzinger, T.A.: Hybrid automata with finite bisimulations. In: Fülöp, Z., Gécseg,
F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60084-1 85

227. Herbert, M.: Evaluation de performances et spécification formelle sur un réseau de
stations haut débit. Master’s thesis, Institut National des Télécommunications,
Laboratoire pour les hautes performances en calcul (Lyon, France), December
1997

228. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45804-2

229. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Composi-
tional performance modelling with the TIPPtool. In: Puigjaner, R., Savino, N.N.,
Serra, B. (eds.) TOOLS 1998. LNCS, vol. 1469, pp. 51–62. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-68061-6 5

230. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Composi-
tional performance modelling with the TIPPtool. Perform. Eval. 39(1–4), 5–35
(2000)

231. Hermanns, H., Herzog, U., Mertsiotakis, V.: Stochastic process algebras as a tool
for performance and dependability modelling. In: Proceedings of the 1995 Interna-
tional Computer Performance and Dependability Symposium, pp. 102–111. IEEE
(1995)

232. Hermanns, H., Herzog, U., Mertsiotakis, V.: Stochastic process algebras - between
LOTOS and Markov chains. Comput. Netw. 30(9–10), 901–924 (1998)

https://doi.org/10.1007/BFb0030643
https://doi.org/10.1007/3-540-60084-1_85
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-68061-6_5

252 H. Garavel and F. Lang

233. Hermanns, H., Joubert, C.: A set of performance and dependability analysis com-
ponents for CADP. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol.
2619, pp. 425–430. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36577-X 30

234. Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation
for a plain-old telephone system. Sci. Comput. Program. 36, 97–127 (2000)

235. Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17071-3 16

236. Hermanns, H., Mertsiotakis, V., Rettelbach, M.: Performance analysis of dis-
tributed systems using TIPP—a case study. In: Proceedings of the 10th U.K. Per-
formance Engineering Workshop for Computer and Telecommunication Systems,
Edinburgh, Scotland, United Kingdom. Edinburgh University Press, September
1994

237. Hermanns, H., Mertsiotakis, V., Siegle, M.: TIPPtool: compositional specification
and analysis of Markovian performance models. In: Halbwachs, N., Peled, D. (eds.)
CAV 1999. LNCS, vol. 1633, pp. 487–490. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48683-6 42

238. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for
MTIPP. In: Herzog, U., Rettelbach, M. (eds.) Proceedings of the 2nd Workshop on
Process Algebras and Performance Modelling (PAPM 1994), Erlangen, Germany.
Lecture Notes in Computer Science, vol. 1601, pp. 71–88. University of Erlangen-
Nürnberg, Germany, July 1994

239. Hermanns, H., Rettelbach, M., Weiss, T.: Formal characterisation of immedi-
ate actions in SPA with nondeterministic branching. Comput. J. 38(7), 530–541
(1995)

240. Hermanns, H., Siegle, M.: Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS,
vol. 1601, pp. 244–264. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48778-6 15

241. Hermanns, H., Siegle, M.: Symbolic minimisation of stochastic process alge-
bra models. In: Spies, K., Schätz, B. (eds.) Formale Beschreibungstechniken für
verteilte Systeme, 9. GI/ITG-Fachgespräch, München, Juni 1999, pp. 73–82. Her-
bert Utz Verlag (1999)

242. Hermanns, H., Turrini, A.: Deciding probabilistic automata weak bisimulation in
polynomial time. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2012, Hyderabad, India, 15–17 December 2012. LIPIcs,
vol. 18, pp. 435–447. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

243. Hernalsteen, C.: A timed automaton model for ET-LOTOS verification. In:
Togashi, A., Mizuno, T., Shiratori, N., Higashino, T. (eds.) Formal Descrip-
tion Techniques and Protocol Specification, Testing and Verification, FORTE
X/PSTV XVII 1997, IFIP TC6 WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols
(FORTE X) and Protocol Specification, Testing and Verification (PSTV XVII),
Osaka, Japan, 18–21 November 1997. IFIP Conference Proceedings, vol. 107, pp.
193–204. Chapman & Hall (1997)

244. Herzog, U., Mertsiotakis, V.: Stochastic process algebras applied to failure mod-
elling. In: Herzog, U., Rettelbach, M. (eds.) Proceedings of the 2nd Workshop

https://doi.org/10.1007/3-540-36577-X_30
https://doi.org/10.1007/3-540-36577-X_30
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/3-540-48683-6_42
https://doi.org/10.1007/3-540-48683-6_42
https://doi.org/10.1007/3-540-48778-6_15
https://doi.org/10.1007/3-540-48778-6_15

Equivalence Checking 40 Years After 253

on Process Algebras and Performance Modelling, Regensberg, Germany. Arbeits-
berichte des IMMD, Universität Erlangen-Nürnberg, Germany, July 1994

245. Hillerström, M.: Verification of CCS-processes. Master’s thesis, Computer Science
Department, Aalborg University (1987)

246. Hillston, J.: A compositional approach to performance modelling. Ph.D. thesis,
University of Edinburgh, December 1994

247. Hillston, J., Hermanns, Herzog, U., Mertsiotakis, V., Rettelbach, M.: Stochastic
Process Algebras: Integrating Qualitative and Quantitative Modelling. Technical
report, IMMD VII, University of Erlangen-Nürnberg, Germany (1994)

248. Hong, C.-D., Lin, A.W., Majumdar, R., Rümmer, P.: Probabilistic bisimulation
for parameterized systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 455–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 27

249. Huhn, M., Niebert, P., Wehrheim, H.: Partial order reductions for bisimula-
tion checking. In: Arvind, V., Ramanujam, R. (eds.) FSTTCS 1998. LNCS, vol.
1530, pp. 271–282. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-
540-49382-2 26

250. Huth, M., Kwiatkowska, M.: On Probabilistic Model Checking (1996). CiteSeer
251. Huybers, R.: A parallel relation-based algorithm for symbolic bisimulation mini-

mization. Ph.D. thesis, Leiden University (2018)
252. Huybers, R., Laarman, A.: A parallel relation-based algorithm for symbolic bisim-

ulation minimization. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol.
11388, pp. 535–554. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11245-5 25

253. Ingólfsdóttir, A., Lin, H.: A symbolic approach to value-passing processes. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp.
427–478. North-Holland/Elsevier (2001)

254. Inverardi, P., Priami, C., Yankelevich, D.: Verification of concurrent systems in
SML. In: Proceedings of ACM SIGPLAN Workshop on ML and its Applications,
pp. 169–174 (1992)

255. Inverardi, P., Priami, C.: Evaluation of tools for the analysis of communicating
systems. Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 45, 158–185 (1991)

256. Inverardi, P., Priami, C.: Automatic verification of distributed systems: the pro-
cess algebra approach. Formal Methods Syst. Des. 8(1), 7–38 (1996)

257. Inverardi, P., Priami, C., Yankelevich, D.: Automatizing parametric reasoning on
distributed concurrent systems. Formal Aspects Comput. 6(6), 676–695 (1994).
https://doi.org/10.1007/BF03259392

258. ISO/IEC: ESTELLE - A Formal Description Technique Based on an Extended
State Transition Model. International Standard 9074, International Organization
for Standardization - Information Processing Systems - Open Systems Intercon-
nection, Geneva, September 1988

259. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization - Information Processing Systems - Open Sys-
tems Interconnection, Geneva, September 1989

260. de Jacquier, A., Massart, T., Hernalsteen, C.: Vérification et correction d’un pro-
tocole de contrôle aérien. Technical report 363, Université Libre de Bruxelles, May
1997

261. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: A simpler O(m log n)
algorithm for branching bisimilarity on labelled transition systems. CoRR
abs/1909.10824 (2019)

https://doi.org/10.1007/978-3-030-25540-4_27
https://doi.org/10.1007/978-3-030-25540-4_27
https://doi.org/10.1007/978-3-540-49382-2_26
https://doi.org/10.1007/978-3-540-49382-2_26
https://doi.org/10.1007/978-3-030-11245-5_25
https://doi.org/10.1007/978-3-030-11245-5_25
https://doi.org/10.1007/BF03259392

254 H. Garavel and F. Lang

262. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. In: Biere, A., Parker, D.
(eds.) TACAS 2020. LNCS, vol. 12079, pp. 3–20. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45237-7 1

263. Jansen, D.N., Groote, J.F., Timmers, F., Yang, P.: A near-linear-time algorithm
for weak bisimilarity on Markov chains. In: Konnov, I., Kovács, L. (eds.) 31st
International Conference on Concurrency Theory, CONCUR 2020, Vienna, Aus-
tria, 1–4 September 2020 (Virtual Conference). LIPIcs, vol. 171, pp. 8:1–8:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

264. Jard, C., Jéron, T., Fernandez, J.C., Mounier, L.: On-the-Fly Verification of Finite
Transition Systems. Research Report 1861, INRIA (1993)

265. Jensen, C.T.: The Concurrency Workbench with priorities. In: Larsen, K.G., Skou,
A. (eds.) CAV 1991. LNCS, vol. 575, pp. 147–157. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55179-4 15

266. Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations
for psi-calculi. J. Log. Algebraic Methods Program. 81(3), 162–180 (2012)

267. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

268. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.) Pro-
ceedings of the 2nd Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Montreal, Quebec, Canada, pp. 228–240. ACM, August
1983

269. Kang, I., Lee, I., Kim, Y.S.: A state minimization technique for timed automata.
In: Proceedings of International Workshop on Verification of Infinite State Sys-
tems INFINITY 1996 (1996)

270. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

271. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 9

272. Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

273. Keiren, J.J.A., Willemse, T.A.C.: Bisimulation minimisations for Boolean equa-
tion systems. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol.
6405, pp. 102–116. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19237-1 12

274. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7),
371–384 (1976)

275. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Undergraduate Texts in Math-
ematic, Springer, Heidelberg (1976)

276. Kerbrat, A.: Méthodes symboliques pour la vérification de processus communi-
cants: Etude et mise en œuvre. Ph.D. thesis, Université Joseph Fourier (Grenoble),
November 1994

277. Kerbrat, A.: Reachable state space analysis of LOTOS programs. In: Hogrefe,
D., Leue, S. (eds.) Proceedings of the 7th International Conference on Formal

https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/3-540-55179-4_15
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-642-19237-1_12
https://doi.org/10.1007/978-3-642-19237-1_12

Equivalence Checking 40 Years After 255

Description Techniques for Distributed Systems and Communication Protocols
FORTE 1994 (Bern, Switzerland), October 1994

278. Kerbrat, A., Ben Atallah, S.: Formal specification of a framework for groupware
development. In: FORTE 1995. IAICT, pp. 303–310. Springer, Boston (1996).
https://doi.org/10.1007/978-0-387-34945-9 22

279. Kerbrat, A., Rodriguez, C., Lejeune, Y.: Interconnecting the ObjectGEODE and
CÆSAR/ALDEBARAN toolsets. In: Cavalli, A., Sarma, A. (eds.) Proceedings of
the 8th SDL Forum (Evry, France), September 1997

280. Kervinen, A., Valmari, A., Järnström, R.: Debugging a real-life protocol with
CFFD-based verification tools. In: Gnesi, S., Ultes-Nitsche, U. (eds.) Proceedings
of the 6th International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2001), Paris, France, pp. 13–27. Université Paris 7 - LIAFA and
INRIA Rhône-Alpes, July 2001

281. Klehmet, U., Mertsiotakis, V.: TIPPtool: Timed Processes and Performability
Evaluation (User’s Guide-Version 2.3) (1998). CiteSeer

282. König, B., Mika-Michalski, C., Schröder, L.: User Manual T-Beg: A Tool for
Behavioural Equivalence Games (2002). http://www.ti.inf.uni-due.de/fileadmin/
public/tools/tbeg/manual.pdf

283. Korver, H.P.: The Current State of Bisimulation Tools. P 9101, Centrum voor
Wiskunde en Informatica, Amsterdam, January 1991

284. Korver, H.: Detecting feature interactions with Cæsar/Aldebaran. Sci. Comput.
Program. 29(1–2), 259–278 (1997). Special issue on Industrially Relevant Appli-
cations of Formal Analysis Techniques

285. Krämer, B.J., Völker, N., Lichtenecker, R., Kötter, H.: Deriving CORBA appli-
cations from formal specifications. J. Syst. Integr. 8(2), 143–158 (1998)

286. Krimm, J.-P., Mounier, L.: Compositional state space generation from LOTOS
programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035392 Extended ver-
sion with proofs available as Research Report VERIMAG RR97-01

287. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica
16, 83–94 (1963)

288. Krishnan, P.: A case study in specifying and testing architectural features. Micro-
process. Microsyst. 18(3), 123–130 (1994)

289. Kristensen, C., Andersen, J., Skou, A.: Specification and automated verification of
real-time behaviour: a case study. In: Proceedings of the 3rd IFAC/IFIP Workshop
on Algorithms and Architectures for Real-Time Control (AARTC 1995), Ostend,
Belgium (1995)

290. Kristensen, C., Andersen, J., Skou, A.: Specification and automated verification
of real-time behaviour: a case study. Annu. Rev. Control. 20, 55–70 (1996)

291. Kulakowski, K.: Concurrent bisimulation algorithm. CoRR abs/1311.7635 (2013)
292. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic

model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 23

293. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

294. Lang, F.: Compositional verification using SVL scripts. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 465–469. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0 33

https://doi.org/10.1007/978-0-387-34945-9_22
http://www.ti.inf.uni-due.de/fileadmin/public/tools/tbeg/manual.pdf
http://www.ti.inf.uni-due.de/fileadmin/public/tools/tbeg/manual.pdf
https://doi.org/10.1007/BFb0035392
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-46002-0_33

256 H. Garavel and F. Lang

295. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J. (eds.)
IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). https://doi.
org/10.1007/11589976 6 Full version available as INRIA Research Report RR-
5673

296. Lang, F.: Refined interfaces for compositional verification. In: Najm, E., Pradat-
Peyre, J.-F., Viguié Donzeau-Gouge, V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 159–174. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116 13
Full version available as INRIA Research Report RR-5996

297. Lang, F., Mateescu, R.: Partial order reductions using compositional confluence
detection. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
157–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-
3 11

298. Lang, F., Mateescu, R.: Partial model checking using networks of labelled transi-
tion systems and Boolean equation systems. Logical Methods Comput. Sci. 9(4),
1–32 (2013)

299. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent
systems by combining bisimulations. In: ter Beek, M.H., McIver, A., Oliveira,
J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 196–213. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30942-8 13

300. Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with temporal
logics combining weak and strong modalities. In: Biere, A., Parker, D. (eds.)
TACAS 2020. LNCS, vol. 12079, pp. 57–76. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45237-7 4

301. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60249-6 41

302. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: Confer-
ence Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11–13 January 1989, pp. 344–352. ACM Press
(1989)

303. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

304. Leduc, G., Bonaventure, O., Koerner, E., Léonard, L., Pecheur, C., Zanetti, D.:
Specification and verification of a TTP protocol for the conditional access to ser-
vices. In: Proceedings of the 12th Jacques Cartier Workshop on “Formal Methods
and their Applications: Telecommunications, VLSI and Real-Time Computerized
Control System”, Montréal, Canada, October 1996

305. Leduc, G.: Verification of two versions of the challenge handshake authentication
protocol (CHAP). Ann. Telecommun. 55(1–2), 18–30 (2000)

306. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended
abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, 4–6 May 1992, pp. 264–274. ACM (1992)

307. Léonard, L., Leduc, G.: An introduction to ET-LOTOS for the description of
time-sensitive systems. Comput. Netw. ISDN Syst. 29(3), 271–292 (1997)

308. Léonard, L., Leduc, G.: A formal definition of time in LOTOS. Formal Aspects
Comput. 10(3), 248–266 (1998). https://doi.org/10.1007/s001650050015

309. Li, Z., Chen, H.: Computing strong/weak bisimulation equivalences and observa-
tion congruence for value-passing processes. In: Cleaveland, W.R. (ed.) TACAS

https://doi.org/10.1007/11589976_6
https://doi.org/10.1007/11589976_6
https://doi.org/10.1007/11888116_13
https://doi.org/10.1007/978-3-642-05089-3_11
https://doi.org/10.1007/978-3-642-05089-3_11
https://doi.org/10.1007/978-3-030-30942-8_13
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/3-540-60249-6_41
https://doi.org/10.1007/s001650050015

Equivalence Checking 40 Years After 257

1999. LNCS, vol. 1579, pp. 300–314. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-49059-0 21

310. Li, Z., Chen, H., Wang, B.: Symbolic transition graph and its early bisimulation
checking algorithms for the π-calculus. Sci. China Ser. E: Technol. Sci. 42(4),
342–353 (1999)

311. Lichtenecker, R., Gotthardt, K., Zalewski, J.: Automated verifications of commu-
nication protocols using CCS and BDDs. In: Rolim, J. (ed.) IPPS 1998. LNCS,
vol. 1388, pp. 1057–1066. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-64359-1 771

312. Lin, H.: A verification tool for value-passing processes. In: Danthine, A.A.S.,
Leduc, G., Wolper, P. (eds.) Proceedings of the IFIP TC6/WG6.1 13th Inter-
national Symposium on Protocol Specification, Testing and Verification (PSTV
1993), Liège, Belgium. IFIP Transactions, vol. C-16, pp. 79–92. North-Holland,
May 1993

313. Lin, H.: Symbolic transition graph with assignment. In: Montanari, U., Sas-
sone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61604-7 47

314. Lin, H.: Computing bisimulations for finite-control pi-calculus. J. Comput. Sci.
Technol. 15(1), 1–9 (2000)

315. Logrippo, L., Andriantsiferana, L., Ghribi, B.: Prototyping and formal require-
ment validation of GPRS: a mobile data packet radio service for GSM. In: Wein-
stock, C.B., Rushby, J. (eds.) Proceedings of the 7th IFIP International Working
Conference on Dependable Computing for Critical Applications (DCCA-7), San
Jose, CA, USA, January 1999

316. López, N., Núñez, M.: An overview of probabilistic process algebras and their
equivalences. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle,
M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 89–123. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4 3

317. Lüttgen, G., Vogler, W.: Bisimulation on speed: worst-case efficiency. Inf. Comput.
191(2), 105–144 (2004)

318. Luukkainen, M., Ahtiainen, A.: Compositional verification of large SDL systems.
In: Proceedings of the 1st Workshop of the SDL Forum Society on SDL and MSC
(SAM 1998), Berlin, Germany, June 1998

319. Madelaine, E.: Verification tools from the CONCUR project. EATCS Bull. 47,
110–120 (1992)

320. Madelaine, E., Simone, R.: ECRINS: un laboratoire de preuve pour les calculs de
processus. Rapport de recherche 672, INRIA, May 1987

321. Madelaine, E., Vergamini, D.: AUTO: a verification tool for distributed systems
using reduction of finite automata networks. In: Vuong, S.T. (ed.) Proceedings
of the 2nd IFIP International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE’89), Vancouver, BC,
Canada, pp. 61–66. North-Holland, December 1989

322. Madelaine, E., Vergamini, D.: Specification and verification of a sliding window
protocol in LOTOS. In: Parker, K.R., Rose, G.A. (eds.) Formal Description Tech-
niques, IV, Proceedings of the IFIP TC6/WG6.1 4th International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols (FORTE 1991), Sydney, Australia. IFIP Transactions, vol. C-2, pp.
495–510. North-Holland, November 1991

323. Madelaine, E., Vergamini, D.: Tool demonstration: tools for process algebras. In:
Parker, K.R., Rose, G.A. (eds.) Formal Description Techniques, IV, Proceedings of

https://doi.org/10.1007/3-540-49059-0_21
https://doi.org/10.1007/3-540-49059-0_21
https://doi.org/10.1007/3-540-64359-1_771
https://doi.org/10.1007/3-540-64359-1_771
https://doi.org/10.1007/3-540-61604-7_47
https://doi.org/10.1007/978-3-540-24611-4_3

258 H. Garavel and F. Lang

the IFIP TC6/WG6.1 4th International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Protocols (FORTE 1991),
Sydney, Australia. IFIP Transactions, vol. C-2, pp. 463–466. North-Holland,
November 1991

324. Madelaine, E., Vergamini, D.: Verification of communicating processes by means
of automata reduction and abstraction. In: Finkel, A., Jantzen, M. (eds.) STACS
1992. LNCS, vol. 577, pp. 613–614. Springer, Heidelberg (1992). https://doi.org/
10.1007/3-540-55210-3 221

325. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley,
Hoboken (1999)

326. Malhotra, J., Smolka, S.A., Giacalone, A., Shapiro, R.: A tool for hierarchical
design and simulation of concurrent systems. In: Proceedings of the BCS-FACS
Workshop on Specification and Verification of Concurrent Systems, Stirling, Scot-
land, UK, pp. 140–152. British Computer Society, July 1988

327. Markopoulos, P., Rowson, J., Johnson, P.: Dialogue modelling in the framework of
an interactor model. In: Bodart, F., Vanderdonckt, J. (eds.) Proceedings of the 3rd
International Workshop on Design, Specification, and Verification of Interactive
Systems DSV-IS 1996 (Namur, Belgium). University of Namur, June 1996

328. Martens, J., Groote, J.F., van den Haak, L., Hijma, P., Wijs, A.: A linear parallel
algorithm to compute bisimulation and relational coarsest partitions. In: Salaün,
G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 115–133. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90636-8 7

329. Mateescu, R.: Formal description and analysis of a bounded retransmission proto-
col. In: Brezočnik, Z., Kapus, T. (eds.) Proceedings of the COST 247 International
Workshop on Applied Formal Methods in System Design (Maribor, Slovenia),
pp. 98–113. University of Maribor, Slovenia, June 1996. Also available as INRIA
Research Report RR-2965

330. Mateescu, R.: Vérification de systèmes répartis: l’exemple du protocole BRP.
Technique et Science Informatiques 16(6), 725–751 (1997)

331. Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-
calculus. In: Bossi, A., Cortesi, A., Levi, F. (eds.) Proceedings of the 2nd Inter-
national Workshop on Verification, Model Checking and Abstract Interpretation
(VMCAI 1998), Pisa, Italy. University Ca’ Foscari of Venice, September 1998

332. Mateescu, R.: Vérification des propriétés temporelles des programmes parallèles.
Ph.D. thesis, Institut National Polytechnique de Grenoble, April 1998

333. Mateescu, R.: On-the-fly state space reductions for weak equivalences. In: Mar-
garia, T., Massink, M. (eds.) Proceedings of the 10th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2005), Lisbon, Portugal,
pp. 80–89. ERCIM, ACM Computer Society Press, September 2005

334. Mateescu, R.: CAESAR SOLVE: a generic library for on-the-fly resolution of
alternation-free Boolean equation systems. Int. J. Softw. Tools Technol. Transfer
(STTT) 8(1), 37–56 (2006). Full version available as INRIA Research Report
RR-5948, July 2006

335. Mateescu, R.: Specification and analysis of asynchronous systems using CADP.
In: Merz, S., Navet, N. (eds.) Modeling and Verification of Real-Time Systems
- Formalisms and Software Tools, chap. 5, pp. 141–170. ISTE Publishing/Wiley
(2008)

336. Mateescu, R., Oudot, E.: Bisimulator 2.0: an on-the-fly equivalence checker based
on Boolean equation systems. In: Proceedings of the 6th ACM-IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2008),
Anaheim, CA, USA, pp. 73–74. IEEE Computer Society Press, June 2008

https://doi.org/10.1007/3-540-55210-3_221
https://doi.org/10.1007/3-540-55210-3_221
https://doi.org/10.1007/978-3-030-90636-8_7

Equivalence Checking 40 Years After 259

337. Mateescu, R., Oudot, E.: Improved on-the-fly equivalence checking using Boolean
equation systems. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 196–213. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85114-1 15 Full version available as INRIA Research Report RR-
6777

338. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89652-4 10

339. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

340. Mehta, M., Guha, S.: ReLTS 1.0 User Manual (2014). http://airbornemihir.
github.io/lts reltool/manual.pdf

341. Mehta, M., Guha, S., Arun-Kumar, S.: ReLTS: A Tool for Checking General-
ized Behavioural Relations over LTSs (2014). http://airbornemihir.github.io/lts
reltool/NFM.pdf

342. Milne, G.J.: CIRCAL and the representation of communication, concurrency, and
time. ACM Trans. Progr. Lang. Syst. 7(2), 270–298 (1985)

343. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I. Inf. Comput.
100(1), 1–40 (1992)

344. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes II. Inf. Comput.
100(1), 41–77 (1992)

345. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980). https://doi.org/10.1007/3-540-10235-3

346. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267–
310 (1983)

347. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
348. Moller, F.: The Edinburgh Concurrency Workbench (Version 6.1). User manual,

Laboratory for the Foundations of Computer Science, University of Edinburgh
(1992)

349. Moller, F., Smolka, S.A., Srba, J.: On the computational complexity of bisimula-
tion. Redux. Inf. Comput. 194(2), 129–143 (2004)

350. Montes, A.S.: VENUS: un outil d’aide à la vérification des systèmes communi-
cants. Ph.D. thesis, Institut National Polytechnique de Grenoble, January 1987

351. Mounier, L.: Méthodes de vérification de spécifications comportementales: étude
et mise en œuvre. Ph.D. thesis, Université Joseph Fourier (Grenoble), January
1992

352. Mumme, M., Ciardo, G.: An efficient fully symbolic bisimulation algorithm for
non-deterministic systems. Int. J. Found. Comput. Sci. 24(2), 263–282 (2013)

353. Najm, E., Budkowski, S., Gilot, T., Lumbroso, L.: General presentation of SCAN -
a distributed systems modelling and validation tool. In: Diaz, M. (ed.) Proceedings
of the 5th IFIP International Workshop on Protocol Specification, Testing, and
Verification (PSTV 1985), Moissac, France, pp. 103–118. North-Holland, June
1985

354. Nistal, M.L., Quemada, J., Iglesias, M.J.F.: Direct verification of bisimulations.
In: Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX: The-
ory, application and tools, IFIP TC6 WG6.1 International Conference on Formal
Description Techniques IX/Protocol Specification, Testing and Verification XVI,
Kaiserslautern, Germany, 8–11 October 1996. IFIP Conference Proceedings, vol.
69, pp. 349–363. Chapman & Hall (1996)

https://doi.org/10.1007/978-3-540-85114-1_15
https://doi.org/10.1007/978-3-540-85114-1_15
https://doi.org/10.1007/978-3-540-89652-4_10
http://airbornemihir.github.io/lts_reltool/manual.pdf
http://airbornemihir.github.io/lts_reltool/manual.pdf
http://airbornemihir.github.io/lts_reltool/NFM.pdf
http://airbornemihir.github.io/lts_reltool/NFM.pdf
https://doi.org/10.1007/3-540-10235-3

260 H. Garavel and F. Lang

355. Notare, M.S.M.A., da Silva Cruz, F.A., Riso, B.G., Westphall, C.B.: Wireless com-
munications: security management against cloned cellular phones. In: Proceedings
of the IEEE Wireless Communications and Networking Conference WCNC 1999
(New Orleans, LA, USA), pp. 1412–1416. IEEE, September 1999

356. Notare, M., Boukerche, A., Cruz, F., Riso, B., Westphall, C.: Security manage-
ment against cloning mobile phones. In: Seamless Interconnection for Univer-
sal Services, Global Telecommunications Conference, GLOBECOM 1999 (Cat.
No.99CH37042), vol. 3, pp. 1969–1973 (1999)

357. Noureddine, M., Jaber, M., Bliudze, S., Zaraket, F.A.: Reduction and abstraction
techniques for BIP. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol.
8997, pp. 288–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15317-9 18

358. Orzan, S.: On distributed verification and verified distribution. Ph.D. thesis, Vrije
Universiteit Amsterdam (2004)

359. Orzan, S., van de Pol, J., Espada, M.V.: A state space distribution policy based
on abstract interpretation. Electron. Notes Theor. Comput. Sci. 128(3), 35–45
(2005)

360. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

361. Parashkevov, A.N., Yantchev, J.: ARC - a verification tool for concurrent systems.
In: Proceedings of the 3rd Australasian Parallel and Real-Time Conference (1996)

362. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

363. Parrow, J., Victor, B.: The fusion calculus: expressiveness and symmetry in mobile
processes. In: 13th Annual IEEE Symposium on Logic in Computer Science, Indi-
anapolis, Indiana, USA, 21–24 June 1998, pp. 176–185. IEEE Computer Society
(1998)

364. Pecheur, C.: Advanced Modelling and Verification Techniques Applied to a Clus-
ter File System. Research Report RR-3416, INRIA, Grenoble, May 1998

365. Pecheur, C.: Advanced modelling and verification techniques applied to a cluster
file system. In: Hall, R.J., Tyugu, E. (eds.) Proceedings of the 14th IEEE Interna-
tional Conference on Automated Software Engineering (ASE 1999), Cocoa Beach,
Florida, USA. IEEE Computer Society, October 1999. Extended version available
as INRIA Research Report RR-3416

366. Piazza, C., Pivato, E., Rossi, S.: CoPS – checker of persistent security. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 144–152. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 11

367. Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, Denmark
(1981)

368. Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic
Program. 60–61, 17–139 (2004)

369. Plotkin, G.D.: The origins of structural operational semantics. J. Logic Algebraic
Program. 60–61, 3–15 (2004)

370. Pous, D., Sangiorgi, D.: Bisimulation and coinduction enhancements: a historical
perspective. Formal Aspects of Comput. 31(6), 733–749 (2019)

371. Rabinovich, A.: Checking equivalences between concurrent systems of finite agents
(extended abstract). In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 696–
707. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9 115

https://doi.org/10.1007/978-3-319-15317-9_18
https://doi.org/10.1007/978-3-319-15317-9_18
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-540-24730-2_11
https://doi.org/10.1007/3-540-55719-9_115

Equivalence Checking 40 Years After 261

372. van Rangelrooij, A., Voeten, J.P.M.: CCSTOOL2: An Expansion, Minimization
and Verification Tool for Finite State CCS Descriptions. Research Report 94-E-
284, Eindhoven University of Technology (1994)

373. Reade, C.: Process algebra in the specification of graphics standards. Comput.
Standards Interfaces 17, 277–290 (1995)

374. Romijn, J.: Analysing industrial protocols with formal methods. Ph.D. thesis,
University of Twente, The Netherlands, September 1999

375. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1998)
376. Roy, V., de Simone, R.: Auto/Autograph. In: Kurshan, R.P., Clarke, E.M. (eds.)

Proceedings of the 2nd Workshop on Computer-Aided Verification (Rutgers, New
Jersey, USA). DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 3, pp. 477–491. AMS-ACM, June 1990

377. Roy, V., de Simone, R.: Auto/Autograph. Formal Methods Syst. Des. 1(2/3),
239–249 (1992)

378. Rudin, H., West, C.H., Zafiropulo, P.: Automated protocol validation: one chain
of development. Comput. Netw. 2, 373–380 (1978)

379. Sabnani, K.K., Lapone, A.M., Ümit Uyar, M.: An algorithmic procedure for check-
ing safety properties of protocols. IEEE Trans. Commun. 37(9), 940–948 (1989)

380. Sage, M., Johnson, C.W.: A declarative prototyping environment for the devel-
opment of multi-user safety-critical systems. In: Proceedings of the 17th Inter-
national System Safety Conference (ISSC 1999), Orlando, Florida, USA. System
Safety Society, August 1999

381. Sage, M., Johnson, C.W.: Formally verified rapid prototyping for air traffic con-
trol. In: Proceedings of the 3rd Workshop on Human Error, Safety and Systems
Development, Liege, Belgium (1999)

382. Sage, M., Johnson, C.W.: Formally verified rapid prototyping for air traffic con-
trol. Reliab. Eng. Syst. Saf. 75(2), 121–132 (2002)

383. Sanderson, M.T.: Proof Techniques for CCS. Internal Report CST-19-82, Univer-
sity of Edinburgh (1982)

384. Sangiorgi, D.: A theory of bisimulation for the π-calculus. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 127–142. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 10

385. Saqui-Sannes, P., Courtiat, J.P.: From the simulation to the verification of
ESTELLE∗ specifications. In: Vuong, S.T. (ed.) Proceedings of the 2nd Inter-
national Conference on Formal Description Techniques FORTE 1989 (Vancouver
B.C., Canada). North-Holland, December 1989

386. Schieferdecker, I.: Abruptly-terminated connections in TCP - a verification exam-
ple. In: Brezočnik, Z., Kapus, T. (eds.) Proceedings of the COST 247 International
Workshop on Applied Formal Methods in System Design, Maribor, Slovenia, pp.
136–145. University of Maribor, Slovenia, June 1996

387. Sighireanu, M.: Model-checking validation of the LOTOS descriptions of the
invoicing case study. In: Habrias, H. (ed.) Proceedings of the International Work-
shop on Comparing System Specification Techniques (Nantes, France), March
1998

388. Sighireanu, M., Mateescu, R.: Validation of the link layer protocol of the IEEE-
1394 serial bus (“FireWire”): an experiment with E-LOTOS. In: Lovrek, I. (ed.)
Proceedings of the 2nd COST 247 International Workshop on Applied Formal
Methods in System Design (Zagreb, Croatia), June 1997. Full version available
as INRIA Research Report RR-3172

https://doi.org/10.1007/3-540-57208-2_10
https://doi.org/10.1007/3-540-57208-2_10

262 H. Garavel and F. Lang

389. Sighireanu, M., Turner, K.: Requirement Capture, Formal Description and Ver-
ification of an Invoicing System. Research Report RR-3575, INRIA, Grenoble,
December 1998

390. de Simone, R., Vergamini, D.: Aboard AUTO. Technical Report 111, INRIA
(1989)

391. Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel com-
position and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen,
J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp.
1–43. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4 1

392. Song, L., Zhang, L., Hermanns, H., Godskesen, J.C.: Incremental bisimulation
abstraction refinement. ACM Trans. Embed. Comput. Syst. 13(4s), 142:1–142:23
(2014)

393. Soriano, A.: Prototype de Venus: Un Outil d’Aide à la Vérification de Systèmes
Communicants. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp.
401–402. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0035867

394. Stevens, P.: The Edinburgh Concurrency Workbench (Version 7.1). User manual,
Laboratory for the Foundations of Computer Science, University of Edinburgh
(1997)

395. Stevens, P.: A verification tool developer’s Vade Mecum. Int. J. Softw. Tools
Technol. Transfer (STTT) 2(2), 89–94 (1998)

396. Stevens, P.: Some issues in the software engineering of verification tools. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 435–438. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 30

397. Sunshine, C.A.: Survey of protocol definition and verification techniques. Comput.
Netw. 2(4–5), 346–350 (1978)

398. Tai, K.C., Koppol, P.V.: An incremental approach to reachability analysis of
distributed programs. In: Proceedings of the 7th International Workshop on Soft-
ware Specification and Design, Los Angeles, CA, USA, pp. 141–150. IEEE Press,
Piscataway, December 1993

399. Tai, K.C., Koppol, P.V.: Hierarchy-based incremental reachability analysis of com-
munication protocols. In: Proceedings of the IEEE International Conference on
Network Protocols, San Francisco, CA, USA, pp. 318–325. IEEE Press, Piscat-
away, October 1993

400. Tiu, A., Nguyen, N., Horne, R.: SPEC: an equivalence checker for security proto-
cols. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 87–95. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47958-3 5

401. Tripakis, S.: Extended KRONOS/CADP Tool: Minimization, On-the-Fly Ver-
ification and Compositionality. Technical Report T226, VERIMAG, Grenoble,
France, April 1999

402. Tripakis, S., Yovine, S.: Analysis of timed systems based on time-abstracting
bisimulations. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 232–243. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-
5 72

403. Tronel, F., Lang, F., Garavel, H.: Compositional verification using CADP of the
ScalAgent deployment protocol for software components. In: Najm, E., Nest-
mann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 244–260.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39958-2 17 Full
version available as INRIA Research Report RR-5012

404. Ulrich, A.: A description model to support test suite derivation for concurrent
systems. In: Zitterbart, M. (ed.) KiVS 1997, pp. 151–166. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-60729-5 11

https://doi.org/10.1007/978-3-540-24611-4_1
https://doi.org/10.1007/BFb0035867
https://doi.org/10.1007/3-540-49059-0_30
https://doi.org/10.1007/978-3-319-47958-3_5
https://doi.org/10.1007/3-540-61474-5_72
https://doi.org/10.1007/3-540-61474-5_72
https://doi.org/10.1007/978-3-540-39958-2_17
https://doi.org/10.1007/978-3-642-60729-5_11

Equivalence Checking 40 Years After 263

405. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In:
Higashino, T., Togashi, A. (eds.) Proceedings of the IFIP Joint International
Conference on Formal Description Techniques and Protocol Specification, Test-
ing, and Verification (FORTE/PSTV 1997), Ozaka, Japan. Chapman & Hall,
November 1997

406. Valmari, A., Tienari, M.: An improved failure equivalence for finite-state sys-
tems with a reduction algorithm. In: Jonsson, B., Parrow, J., Pehrson, B. (eds.)
Proceedings of the 11th IFIP International Workshop on Protocol Specification,
Testing and Verification (Stockholm, Sweden). North-Holland, June 1991

407. Valmari, A.: Compositional state space generation. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 427–457. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 54

408. Valmari, A.: Stubborn set methods for process algebras. In: Peled, D.A., Pratt,
V.R., Holzmann, G.J. (eds.) Proceedings of the DIMACS Workshop on Partial
Order Methods in Verification, Princeton, New Jersey, USA. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 29, pp. 213–231.
DIMACS/AMS, July 1996

409. Valmari, A., Kemppainen, J., Clegg, M., Levanto, M.: Putting advanced reachabil-
ity analysis techniques together: The “ARA” tool. In: Woodcock, J.C.P., Larsen,
P.G. (eds.) FME 1993. LNCS, vol. 670, pp. 597–616. Springer, Heidelberg (1993).
https://doi.org/10.1007/BFb0024669

410. Vergamini, D.: Verification by Means of Observational Equivalence on Automata.
Research Report 0501, INRIA (1986)

411. Vergamini, D.: Vérification de réseaux d’automates finis par équivalences obser-
vationnelles: le système AUTO. Ph.D. thesis, Université de Nice (1987)

412. Vergamini, D.: Verification of distributed systems: an experiment. In: Pin, J.E.
(ed.) LITP 1988. LNCS, vol. 386, pp. 249–259. Springer, Heidelberg (1989).
https://doi.org/10.1007/BFb0013124

413. Victor, B.: A verification tool for the polyadic π-calculus. Licentiate thesis,
Department of Computer Systems, Uppsala University, Sweden, May 1994. Avail-
able as report DoCS 94/50

414. Victor, B.: The Mobility Workbench User’s Guide, Polyadic version 3.122 (1995)
415. Victor, B.: The fusion calculus: expressiveness and symmetry in mobile processes.

Ph.D. thesis, Department of Computer Systems, Uppsala University, Sweden,
June 1998. Available as report DoCS 98/98

416. Victor, B., Moller, F.: The Mobility Workbench—a tool for the π-calculus. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 73

417. Virtanen, H., Hansen, H., Valmari, A., Nieminen, J., Erkkilä, T.: Tampere verifi-
cation tool. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
153–157. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 12

418. Walker, D.: Automated Analysis of Mutual Exclusion Algorithms using CCS.
Research Report ECS-LFCS-89-91, Laboratory for Foundations of Computer Sci-
ence, Department of Computer Science, University of Edinburg (1989)

419. Wang, F.: Symbolic branching bisimulation-checking of dense-time systems in
an environment. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol.
5469, pp. 485–489. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00602-9 40

https://doi.org/10.1007/3-540-56689-9_54
https://doi.org/10.1007/3-540-56689-9_54
https://doi.org/10.1007/BFb0024669
https://doi.org/10.1007/BFb0013124
https://doi.org/10.1007/3-540-58179-0_73
https://doi.org/10.1007/978-3-540-24730-2_12
https://doi.org/10.1007/978-3-540-24730-2_12
https://doi.org/10.1007/978-3-642-00602-9_40
https://doi.org/10.1007/978-3-642-00602-9_40

264 H. Garavel and F. Lang

420. Wehrheim, H.: Partial order reductions for failures refinement. In: Castellani, I.,
Victor, B. (eds.) 6th International Workshop on Expressiveness in Concurrency
(EXPRESS 1999), Eindhoven, The Netherlands. Electronic Notes in Theoretical
Computer Science, vol. 27, pp. 71–84. Elsevier, August 1999

421. Willemse, T., Tretmans, J., Klomp, A.: A case study in formal methods: spec-
ification and validation of the OM/RR protocol. In: Gnesi, S., Schieferdecker,
I., Rennoch, A. (eds.) Proceedings of the 5th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS 2000), Berlin, Germany, pp.
331–344. GMD Report 91, Berlin, April 2000

422. Willemse, T.A.: The specification and validation of the OM/RR-protocol. Mas-
ter’s thesis, Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands, June 1998

423. Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with
dynamic balancing of time and space. In: Proceedings of the 5th International
Conference on the Quantitative Evaluation of Systems (QEST 2008), Saint-Malo,
France, pp. 65–74. IEEE Computer Society, September 2008

424. Wimmer, R., Herbstritt, M., Becker, B.: Minimization of large state spaces using
symbolic branching bisimulation. In: Reorda, M.S., et al. (eds.) Proceedings of the
9th IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS 2006), Prague, Czech Republic, pp. 9–14. IEEE Computer Society, April
2006

425. Wimmer, R., Herbstritt, M., Becker, B.: Optimization techniques for BDD-based
bisimulation computation. In: Zhou, H., Macii, E., Yan, Z., Massoud, Y. (eds.)
Proceedings of the 17th ACM Great Lakes Symposium on VLSI, Stresa, Lago
Maggiore, pp. 405–410. ACM, March 2007

426. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref –
a symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006.
LNCS, vol. 4218, pp. 477–492. Springer, Heidelberg (2006). https://doi.org/10.
1007/11901914 35

427. Wodey, P., Baray, F.: Linking codesign and verification by means of E-LOTOS
FDT. In: Józwiak, L. (ed.) Proceedings of the Euromicro Workshop on Digital
System Design: Architectures, Methods and Tools (Milano, Italy). IEEE, Septem-
ber 1999

428. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra.
In: Proceedings of the ACM SIGSOFT Symposium on Testing, Analysis, and
Verification (SIGSOFT 1991), Victoria, British Columbia, Canada, pp. 49–59.
ACM Press, October 1991

429. Wang, Y.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0039080

430. Yi, W.: A Tool Environment for the Development of Embedded Systems (1999)
431. Yoeli, M.: Modulo-3 Transition Counter: A Case Study in LOTOS-Based Verifi-

cation. Technical Report TR CS0950, Technion, Computer Science Department,
Haifa, Israel, February 1998

432. Yoeli, M.: Examples of LOTOS-Based Verification of Asynchronous Circuits.
Technical Report TR CS-2001-08, Technion, Computer Science Department,
Haifa, Israel, February 2001

433. Yoeli, M., Ginzburg, A.: LOTOS/CADP-Based Verification of Asynchronous Cir-
cuits. Technical Report TR CS-2001-09, Technion, Computer Science Depart-
ment, Haifa, Israel, March 2001

https://doi.org/10.1007/11901914_35
https://doi.org/10.1007/11901914_35
https://doi.org/10.1007/BFb0039080

Equivalence Checking 40 Years After 265

434. Yovine, S.: KRONOS: a verification tool for real-time systems. Int. J. Softw. Tools
Technol. Transfer (STTT) 1(1/2), 123–133 (1997)

435. Zapreev, I., Jansen, C.: MRMC Test Suite - Version 1.4.1 (2009). http://www.
mrmc-tool.org/downloads/MRMC/Specs/TS Manual 1.4.1.pdf

436. Zuidweg, H.: Verification by abstraction and bisimulation. In: Sifakis, J. (ed.)
CAV 1989. LNCS, vol. 407, pp. 105–116. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52148-8 10

http://www.mrmc-tool.org/downloads/MRMC/Specs/TS_Manual_1.4.1.pdf
http://www.mrmc-tool.org/downloads/MRMC/Specs/TS_Manual_1.4.1.pdf
https://doi.org/10.1007/3-540-52148-8_10
https://doi.org/10.1007/3-540-52148-8_10

Apartness and Distinguishing Formulas
in Hennessy-Milner Logic

Herman Geuvers1,2(B)

1 ICIS, Radboud University Nijmegen, Nijmegen, The Netherlands
herman@cs.ru.nl

2 Faculty of Mathematics and Computer Science, Technical University Eindhoven,

Eindhoven, The Netherlands

Abstract. For Labelled Transition Systems, an important question is
when two states in such a system are bisimilar. Here we study the dual, in
the sense of logical opposite, of bisimilarity, known as “apartness”. This
gives a positive way of distinguishing two states (stating that they are
not bisimilar). In [3] we have studied apartness (and bisimilarity) in gen-
eral co-algebraic terms. As opposed to bisimilarity, which is co-inductive,
apartness is an inductive notion and we have given and studied proof
systems for deriving that two states are apart. In the present paper we
continue the study of apartness in the light of Hennessy-Milner theo-
rems that establish an equivalence between bisimulation and validity of
(modal) formulas: two states are bisimilar if and only if they satisfy the
same set of formulas. Using the apartness view, this can be dualized: two
states are apart if and only there is a formula that distinguishes them.
We work this out for three situations: bisimulation for labelled transi-
tion systems (LTSs), weak bisimulation for LTSs with silent (τ) steps
and branching bisimulation for LTSs with silent (τ) steps. We study the
equivalences with the well-known variants of Hennessy-Milner logic and
show how an apartness proof gives rise to a distinguishing formula.

1 Introduction

The standard way of looking at equality of states in a Labeled Transition Systems
(LTS) is indistinguishability, which is captured via the notion of bisimulation.
States are observed through “destructors”, which in an LTS are the transition-
steps. A bisimulation is a relation that satisfies the “transfer principle”: if two
states are related, and we take a transition-step, then we get two new related
states. Two states are bisimilar if and only if they are observationally indistin-
guishable, i.e. there is a bisimulation that relates them. The coinduction principle
states that two states that are bisimilar (have the same observations) are equal.

In previous work [3], we have described apartness as the dual of bisimula-
tion for systems that are defined as co-algebras. Categorically, bisimulation is
described in the category of relations Rel, and apartness in the “fibred opposite”
of Rel. Here, we take a more pedestrian approach and use apartness to provide
a new look on some concrete known results about various forms of bisimula-
tion. The basic idea is that two states are apart in case they are observationally
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 266–282, 2022.
https://doi.org/10.1007/978-3-031-15629-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_14

Apartness and Distinguishing Formulas 267

distinguishable: there is a sequence of observations that can be made on one state
but not on the other. Apartness is a positive notion: two states are apart if there
is a positive way to distinguish them, and being apart is the negation of being
bisimilar. Bisimilarity is co-inductive: it is the union of all bisimulation relations
and therefore the largest bisimulation relation (and a final co-algebra). Apart-
ness is inductive: it is the intersection of all apartness relations and therefore the
smallest apartness relation (and an initial algebra). As apartness is inductive,
there is a proof system with derivation rules to derive that two states are apart.

In the present paper, we study the proof systems for deriving apartness
for some concrete cases. First we look into well-known non-deterministic LTSs,
where we have transitions of the form q →a q′, with q, q′ states and a a label.
The non-determinism means that from a state q there are multiple a-transitions
possible (or none). The apartness we get here is the dual, in the sense of the log-
ical opposite, of standard bisimulation. Then we add silent (τ) steps, which we
study modulo weak bisimulation (giving rise to its dual ‘weak apartness’) and
modulo branching bisimulation (giving rise to its dual ‘branching apartness’).
For each case, we give the deduction rules for deriving that two states are apart.

To argue that apartness is a fruitful way of looking at distinguishability, we
establish for each of these cases a Hennessy-Milner connection with a modal logic.
This is a very well-known connection between bisimulation and logic [2,6] that
we now re-establish via apartness. In bisimulation terms, the Hennessy-Milner
Theorem says that two states are bisimilar if and only if the same modal formulas
hold in these states, where of course the notion of bisimulation and the logic for
formulas depends on the type of systems under study. In terms of apartness, the
Hennessy-Milner Theorem gets a more “positive flavor” saying that two states
are apart if and only if there is a modal formula that distinguishes them (i.e.
that holds in one state, but not in the other). So, from a proof of the apartness
of two states q and p, we can derive a formula ϕ such that ϕ holds for q and ¬ϕ
holds for p: the formula ϕ gives a positive ‘witness’, an explanation, for the fact
that q and p are distinguishable. We illustrate this with some examples.

As a matter of fact, the present paper can be seen as an “apartness footnote”
[3] to the original papers by Hennessy and Milner [6], De Nicola and Vaandrager
[2] and Van Glabbeek and Weijland [4], where bisimulation has been studied in
various forms for various systems with motivating examples, and its properties
have been established, also in terms of modal logic.

Special Thanks

We dedicate this article to Frits Vaandrager on the occasion of his 60th birthday.
I have known Frits for a long time as a very respectable researcher and colleague
at Radboud University. We have met for the first time at the LiCS conference
of 1992 at Santa Cruz, but that was only a very brief encounter. It is nice to
see that much of Frits’ earlier work, on branching bisimulation for LTSs, I have
recently started appreciating much more after looking at the “apartness view”
of co-algebraically defined systems. It is even nicer to see that this apartness
view has been inspiring for Frits and others to study algorithms for automata
learning [10]. Thanks Frits for all the nice co-operations!

268 H. Geuvers

2 Bisimulation and Apartness for LTSs

We start from labeled transition systems over a set of actions A, and study the
well-known notion of bisimulation and the (less well-known) notion of apartness
for these systems.

Definition 1. Let A be a fixed set of actions. A labelled transition system over
A or LTS over A, is a pair (S,→) where S is a set of states and → ⊆ S ×A×S.
For (q, a, p) ∈→, we write q →a p and we call the LTS image finite in case the
set {p | q →a p} is finite for each q, a. On an LTS we define the notions of
bisimulation and apartness

1. A relation R ⊆ S × S is a bisimulation if it is symmetric and it satisfies the
following transfer property

q1 →a q2 R(q1, p1)
(↔)∃p2(p1 →a p2 ∧ R(q2, p2))

Two states q, p ∈ S are bisimilar, notation q ↔ p, is defined by

q ↔ p := ∃R ⊆ S × S (R is a bisimulation and R(q, p)).

2. A relation Q ⊆ S × S is an apartness if it is symmetric and satisfies the
following rule

q1 →a q2 ∀p2 ∈ S(p1 →a p2 =⇒ Q(q2, p2))
(in#)

Q(q1, p1)

Two states q, p ∈ S are apart, notation q # p, is defined by

q # p := ∀Q ⊆ S × S (if Q is an apartness, then Q(q, p)).

As an immediate consequence of the definition, q # p if and only if (q, p)
is in the intersection of all apartness relations, and # is the smallest apartness
relation. It is standard that in an LTS, two states are bisimilar if and only if
they are not apart, so we have

q ↔ p ⇐⇒ ¬(q # p).

Also, apartness is an inductive notion, and so we can equivalently define q
and p to be apart, q # p, if this can be derived using the deduction rules in
Fig. reffig.aptrules. So, we can use the rules that define what an apartness rela-
tion is as the deduction rules for a proof system to derive q # p.

It should be noted that in case the LTS is image-finite, the rule above can
also be written with a finite set of hypotheses:

q1 →a q2
∧

{p2∈S|p1→ap2}
q2 # p2

(in#)
q1 # p1

Before moving to formulas that distinguish states, we first give an example
to see what a proof of apartness looks like concretely.

Apartness and Distinguishing Formulas 269

q1 →a q2 ∀p2 ∈ S(p1 →a p2 =⇒ q2 # p2)
(in#)

q1 # p1

p # q
(symm)

q # p

Fig. 1. The deduction system for deriving q # p

Example 1. We consider the LTS with actions {a, b, c} and states and transitions
as indicated in the figure.

q

q′

q1 q2

a

b c

p

p1 p2

p3 p4

a a

b c

It is well-known that q and p are not bismilar. They can be shown to be
apart using the following derivation

q →a q′

q′ →c q2 �
q′ # p1

q′ →b q1 �
q′ # p2

∀p′(p →a p′ =⇒ q′ # p′)

q # p

Note that the apartness q′ # p1 holds because q′ →c q2 and there is no c-
transition from p1, expressed by the check-mark. So the universal quantification
∀p′′(p1 →c p′′ =⇒ . . .) is empty, and therefore holds. These are the “base cases”
of the inductive definition of apartness: where we can do some transition from q
but not from p, and therefore q # p.

2.1 Hennessy-Milner Logic for Bisimulation

We now introduce the well-known modal logic that captures bisimulation logi-
cally and we prove the well-known Hennessy-Milner theorem using apartness.

Definition 2. Given a set of actions A, we define the Hennessy-Milner logic
for A, HMLA by the following set of formulas ϕ, where a ∈ A.

ϕ ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ.

Let (S,→) be an LTS over A. For q ∈ S and ϕ a formula of HMLA, we define
the notion ϕ holds in state q, notation q |= ϕ, as follows, by induction on ϕ.

270 H. Geuvers

– q |= � always holds.
– q |= ¬ϕ if q �|= ϕ.
– q |= ϕ1 ∧ ϕ2 if q |= ϕ1 and q |= ϕ2.
– q |= 〈a〉ϕ if there is a q′ such that q →a q′ and q′ |= ϕ.

For (S,→) an LTS over A, q, p ∈ S, and ϕ ∈ HMLA, we say that ϕ distinguishes
q, p if q |= ϕ and p |= ¬ϕ.

The well-known Hennessy-Milner theorem [2,6] states that q ↔ p if and only
if ∀ϕ(q |= ϕ ⇔ p |= ϕ). We prove the apartness analogon of this, where we
compute a distinguishing formula from an apartness proof.

Proposition 1. Given an image-finite LTS (S,→) over A, and q, p ∈ S, we
have

q # p ⇐⇒ ∃ϕ(q |= ϕ ∧ p |= ¬ϕ).

Proof. (⇒) by induction on the proof of q # p.

– If the last applied rule is symm, then by IH we have ϕ that distinguishes p, q,
and therefore ¬ϕ distinguishes q, p.

– If the last applied rule is (in#), then we have

q →a q′ ∧

{p′∈S|p→ap′}
q′ # p′

(in#)
q # p

where the conjunction is over a finite set of formulas, say {p′ ∈ S | p →a

p′} = {p1, . . . , pn}. By IH we have ϕi (1 ≤ i ≤ n) such that ϕi distinguishes
q′, pi. Now we take ϕ := 〈a〉∧

1≤i≤n ϕi and we have
1. q |= ϕ: q →a q′ with q′ |= ϕi for every i, so q |= 〈a〉∧

1≤i≤n ϕi.
2. p |= ¬ϕ: for each p′ with p →a p′ there is an i with p′ |= ¬ϕi, and

therefore p′ |= ¬∧
1≤i≤n ϕi. So p |= ¬〈a〉∧

1≤i≤n ϕi.

(⇐) by induction on ϕ, where q |= ϕ and p |= ¬ϕ.

– ϕ = � cannot occur, because p |= ¬� never holds.
– ϕ = ¬ψ. Then p |= ψ and q |= ¬ψ, so by induction we have a derivation of

p # q. By rule (symm) we have a derivation of q # p.
– ϕ = ϕ1 ∧ ϕ2. Then q |= ϕ1 and q |= ϕ2, and also p |= ¬ϕ1 or p |= ¬ϕ2. In

case p |= ¬ϕ1 we have, by induction, a derivation of q # p, and similarly in
case p |= ¬ϕ2, so we are done.

– ϕ = 〈a〉ψ. We know q |= 〈a〉ψ, so let q′ be such that q →a q′ and q′ |= ψ.
Also p |= ¬〈a〉ψ, so for all p′ with p →a p′ we have p′ |= ¬ψ. By induction
hypothesis we have derivations of q′ # p′ for all p′ with p →a p′, so we have
the following derivation of q # p, using rule (in#)

q →a q′ ∀p′ ∈ S(p →a p′ =⇒ q′ # p′)
(in#)

q # p

��

Apartness and Distinguishing Formulas 271

It is well-known ([6]) that image finiteness is needed for Proposition 1 to
hold. This can also be observed from the proof of (⇒), where the image finite-
ness guarantees that the generated distinguishing formula contains finitely many
conjunctions. So the implication (⇒) only holds for image finite systems, while
the implication (⇐) holds in general.

Example 2. We continue Example 1 by giving the formula that distinguishes
states q and p. It can be derived from the derivation of q # p, by following the
steps in the proof of Proposition 1. The distinguishing formula is

ϕ := 〈a〉(〈c〉� ∧ 〈b〉�),

which can be read as saying: “we can do an a-step such that after that we can
do both a b-step and a c-step”.

Example 3. As another example we show how we can use apartness for non-
deterministic finite automata, which have also been discussed in [3]. In this
example we use a special step, a c-transition (ending up in state qf) to mimic
that a state is final.

q0 q1 q2

q3 qf

a, b

b

a, b

a, b

a
a, b

c

c

q3 →a q0

[q0 →a q1]

q1 →c qf

[] �
∀q′(q0 →c q′ =⇒ qf # q′)

q1 # q0

q0 # q1

∀q′(q0 →a q′ =⇒ q0 # q′)

q3 # q0

It can be shown that q3 # q0 by the derivation given above. In the derivation,
we indicate between [. . .] all possible transitions that we need to prove a universal
hypothesis of the form ∀q′(. . . → q′ =⇒ . . .). Note that q0 →a q1 is the only a-
step from q0. The check-mark denotes the empty side-hypothesis that vacuously
holds, as there is no c-step possible from q0. The distinguishing formula computed
from this derivation is 〈a〉¬〈c〉�, saying that from q3 one can do an a-step to a
state where one cannot do a c-step, while for q0 this is not the case.

272 H. Geuvers

3 Weak Bisimulation and Apartness for LTSs

We now add silent steps, or τ -steps to labeled transition systems and we study
the (well-known) notion of weak bisimulation and the (less well-known) notion
of weak apartness for LTSs with τ .

Definition 3. Let A be a fixed set of basic actions. We denote by Aτ := A∪{τ}
the set of all actions, which includes the silent action τ . We let α (and β, γ, . . .)
range over Aτ and a (and b, c, . . .) range over A. A labelled transition system
with τ -steps over A or LTSτ , is a pair (S,→) where S is a set of states and
→⊂ S × Aτ × S. For (q, α, p) ∈→, we write q →α p.

We will be interested in the transitive reflexive closure of →τ , which we denote
by �τ . We call the LTSτ image finite in case the set {q′ | ∃q1, q2(q �τ q1 →α

q2 �τ q′} is finite for each q, α.

On an LTSτ , we define the notions of weak bisimulation [2,6] and weak apart-
ness. The first is well-known and the second is its dual and has been discussed
in [3].

Definition 4. Let (S,→) be an LTSτ over A.

1. A relation R ⊆ S × S is a weak bisimulation if it is symmetric and the
following two rules hold for R.

q →τ q′ R(q, p)
(biswτ)∃p′(p �τ p′ ∧ R(q′, p′))

q →a q′ R(q, p)
(bisw)∃p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ ∧ R(q′, p′′′))

States q, p are weakly bismilar, notation q ↔w p, if there exists a weak bisim-
ulation relation R such that R(q, p).

2. A relation Q ⊆ S × S is a weak apartness in case Q is symmetric and the
following rules hold for Q.

q →τ q′ ∀p′(p �τ p′ =⇒ Q(q′, p′))
(inwτ)

Q(q, p)

q →a q′ ∀p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ =⇒ Q(q′, p′′′))
(inw)

Q(q, p)

The states q and p are weakly apart, notation q #
w

p, if for all weak apartness
relations Q, we have Q(q, p).

Again, as an immediate consequence of the definition, q #
w

p if and only if
(q, p) is in the intersection of all weak apartness relations, and #

w
is the smallest

weak apartness relation.

Apartness and Distinguishing Formulas 273

Just as in LTSs, for LTSτ s we also have that two states are weakly bisimilar
if and only if they are not weakly apart, so we have

q ↔w p ⇔ ¬(q #
w

p).

Weak apartness is an inductive notion, and so also in this case, we have a
derivation system for proving q #

w
p, using the three deduction rules of Fig. 2.

q →τ q′ ∀p′(p �τ p′ =⇒ q′ #
w
p′)

(inwτ)
q #

w
p

q →a q′ ∀p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ =⇒ q′ #
w
p′′′)

(inw)
q #

w
p

p #
w
q
(symm)

q #
w
p

Fig. 2. The deduction system for deriving q #
w

p

In case the LTSτ is image-finite, the rules above can be written with a finite
set of hypotheses:

q →τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(inwτ)
q #

w
p

q →a q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(inw)
q #

w
p

3.1 Hennessy-Milner Logic for Weak Bisimulation

We now introduce the well-known modal logic that captures weak bisimulation
logically and we prove the well-known Hennessy-Milner theorem [2] using weak
apartness.

Definition 5. We adapt the formulas of the logic of Definition 2 by just adding
τ in the modality, so we have, given a set of actions A, the formulas of HMLτA

given by the following set, where α ∈ Aτ .

ϕ ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈α〉ϕ.

Let (S,→) be an LTSτ over A. For q ∈ S and ϕ a formula of HMLτA, we define
the notion ϕ holds in state q, notation q |=w ϕ, as follows, by induction on ϕ.

274 H. Geuvers

– q |=w � always holds.
– q |=w ¬ϕ if q �|=w ϕ.
– q |=w ϕ1 ∧ ϕ2 if q |=w ϕ1 and q |=w ϕ2.
– q |=w 〈a〉ϕ if ∃q1, q2, q3(q �τ q1 →a q2 �τ q3 ∧ q3 |=w ϕ).
– q |=w 〈τ〉ϕ if ∃q′(q �τ q′ ∧ q′ |=w ϕ).

For q, p ∈ S, and ϕ ∈ HMLτA, we say that ϕ distinguishes q, p if q |=w ϕ and
p |=w ¬ϕ.

Again, the well-known Hennessy-Milner theorem states that q ↔w p if and
only if ∀ϕ ∈ HMLτA(q |=w ϕ ⇔ p |=w ϕ). We prove the apartness analogon of
this, where we compute a distinguishing formula from an apartness proof. For
this it is useful to adapt the derivation rules for #

w
a bit. This adaptation is

borrowed from the “bisimulation side”, where it is easily shown to be equivalent.
The rules (biswτ) and (bisw) for weak bisimulation can easily seen to be

equivalent to the following ones, where we replace a one-step transition by a
multiple step transition. (The equivalence is standard, e.g. from [2].)

q �τ q′ R(q, p)
(bis′

wτ)∃p′(p �τ p′ ∧ R(q′, p′))

q �τ q1 →a q2 �τ q′ R(q, p)
(bis′

w)∃p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ ∧ R(q′, p′′′))

Therefore, by duality, taking the logical opposite, we also have the following
equivalent set of rules for weak apartness.

Lemma 1. Weak apartness, as defined in Definition 4 can equivalently be cap-
tured using the following derivation rules (where we use the set notation, as
that’s the one we will be using later, when we restrict to image-finite systems).

q �τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(in′
wτ)

q #
w

p

q �τ q1 →a q2 �τ q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(in′
w)

q #
w

p

p #
w

q
(symm)

q #
w

p

Proposition 2. Given (S,→), an image-finite LTSτ over A, and q, p ∈ S, we
have

q # p ⇐⇒ ∃ϕ ∈ HMLτA(q |=w ϕ ∧ p |=w ¬ϕ).

Apartness and Distinguishing Formulas 275

Proof. (⇒) by induction on the proof of q # p.

– If the last applied rule is symm, then by IH we have ϕ that distinguishes p, q,
and therefore ¬ϕ distinguishes q, p.

– If the last applied rule is (in′
wτ), we have

q �τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(in′
wτ)

q #
w

p

Say {p′ | p �τ p′} = {p1, . . . , pn}. By induction hypothesis we have
ϕ1, . . . , ϕn with q′ |=w ϕi and pi |=w ¬ϕi for all i (1 ≤ i ≤ n). Now take
ϕ := 〈τ〉(ϕ1 ∧ . . . ∧ ϕn). Then q |=w ϕ and p |=w ¬ϕ.

– If the last applied rule is (in′
w), we have

q �τ q1 →a q2 �τ q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(in′
w)

q #
w

p

Say {p′′′ | ∃p′, p′′(p �τ p′ →a p′′ �τ p′′′)} = {p1, . . . , pn}. By induction
hypothesis we have ϕ1, . . . , ϕn with q′ |=w ϕi and pi |=w ¬ϕi for all i (1 ≤
i ≤ n). Now take ϕ := 〈a〉(ϕ1 ∧ . . . ∧ ϕn). Then q |=w ϕ and p |=w ¬ϕ.

(⇐) by induction on ϕ, where q |=w ϕ and p |=w ¬ϕ.

– The case ϕ = �, ϕ = ¬ψ and ϕ = ϕ1 ∧ ϕ2 are exactly the same as in the
proof of Proposition 1.

– ϕ = 〈τ〉ψ. We know q |=w 〈τ〉ψ, so let q′ be such that q �τ q′ and q′ |=w ψ.
Also p |=w ¬〈a〉ψ, so for all p′ with p �τ p′ we have p′ |=w ¬ψ. By induction
hypothesis we have derivations of q′ # p′ for all p′ for which p �τ p′, so we
have the following derivation of q # p, using rule (in′

wτ)

q �τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(in′
wτ)

q #
w

p

– ϕ = 〈a〉ψ. We know q |=w 〈a〉ψ, so let q1, q2, q3 be such that q �τ q1 →a

q2 �τ q3 and q3 |=w ψ. Also p |=w ¬〈a〉ψ, so for all p1, p2, p3 with p �τ p1 →a

p2 �τ p3 we have p3 |=w ¬ψ. By induction hypothesis we have derivations
of q′ # p3 for all p3 ∈ {p′′′ | ∃p′, p′′(p �τ p′ →a p′′ �τ p′′′)}, so we have the
following derivation of q # p, using rule (in′

w)

q �τ q1 →a q2 �τ q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(in′
w)

q #
w

p

��

276 H. Geuvers

4 Branching Bisimulation and Apartness for LTSs

We now study the notions of branching bisimulation and branching apartness on
Labelled Transition Systems with τ -steps. So the systems we consider are still
the LTSτ systems of Definition 3, but now with a different notion of equivalence,
branching bisimulation, that takes the branching structure due to the τ -steps into
account. It is well-known that weak bisimulation is really weaker than branching
bisimulation (if s ↔b t, then s ↔w t, but in general not the other way around)
and similarly, weak apartness is really stronger than branching apartness (if
s #

w
t, then s #

b
t, but in general not the other way around).

On an LTSτ , we define the notions of branching bisimulation [2,4] and
branching apartness. The first is well-known and the second is its dual and
has been discussed in [3].

Definition 6. Given (S,→), an LTSτ over A (see Definition 3), a relation R ⊆
S × S is a branching bisimulation relation if the following rules hold for R.

q →τ q′ R(q, p)
(bisbτ)

R(q′, p) ∨ ∃p′, p′′(p �τ p′ →τ p′′ ∧ R(q, p′) ∧ R(q′, p′′))

q →a q′ R(q, p)
(bisb)∃p′, p′′(p �τ p′ →a p′′ ∧ R(q, p′) ∧ R(q′, p′′))

R(q, p)
(symm)

R(p, q)

The states q, p are branching bisimilar, notation q ↔b p if and only if there
exists a branching bisimulation relation R such that R(q, p).

We say that Q ⊆ S × S is a branching apartness in case the following rules
hold for Q.

q →τ q′ Q(q′, p) ∀p′, p′′(p �τ p′ →τ p′′ =⇒ Q(q, p′) ∨ Q(q′, p′′))
(inbτ)

Q(q, p)

q →a q′ ∀p′, p′′(p �τ p′ →a p′′ =⇒ Q(q, p′) ∨ Q(q′, p′′))
(inb)

Q(q, p)

Q(p, q)
(symm)

Q(q, p)

The states q and p are branching apart, notation q #
b

p, if for all branching
apartness relations Q, we have Q(q, p).

Again, as an immediate consequence of the definition, q #
b

p if and only if
(q, p) is in the intersection of all branching apartness relations, and #

b
is the

smallest branching apartness relation.

Apartness and Distinguishing Formulas 277

Just as for weak bisimulation and weak apartness we also have that two states
are branching bisimilar if and only if they are not branching apart, so we have

q ↔b p ⇐⇒ ¬(q #
b

p).

Being branching apart is the smallest branching apartness relation, so is an
inductive definition that we can define using a derivation system. We can capture
q #

b
p using the derivation rules of Fig. 3, where we use a conjunction because in

the following we will be studying branching apartness for image-finite systems.

q →τ q′ q′ #
b
p

∧

{p,p′′|p�τ p′→τ p′′}
q #

b
p′ ∨ q′ #

b
p′′

(inbτ)
q #

b
p

q →a q′ ∧

{p′,p′′|p�τ p′→ap′′}
q #

b
p′ ∨ q′ #

b
p′′

(inb)
q #

b
p

p #
b
q
(symm)

q #
b
p

Fig. 3. The deduction system for deriving q #
b

p

4.1 Hennessy-Milner Logic for Branching Bisimulation

We now introduce the modal logic that captures branching bisimulation. The
logic is an adaptation of the logic HMLτA with an “until” operator instead of a
simple unary modality. We also state the well-known Hennessy-Milner theorem
using apartness:

q #
b

p ⇐⇒ ∃ϕ(q |=b ϕ ∧ p |=b ¬ϕ),

of which we only prove the (⇒) case, which produces a distinguishing formula
from an apartness proof. We will illustrate this with some examples.

Of course the (⇐) implication above also holds, and it can be proven by
contra-position, by proving q ↔b p =⇒ ∀ϕ(q |=b ϕ =⇒ p |=b ϕ), a proof of
which can be found e.g. in [2]. It would be nice to prove it directly, by induction
on ϕ, similar to the proofs of Propositions 1 and 2, but that turns out to be
difficult, and we have not yet been able to establish a direct proof.

Definition 7. We define HMLτbA by the following set of formulas, given a set
of actions A (where α ∈ Aτ):

ϕ ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1〈α〉ϕ2.

278 H. Geuvers

Let (S,→) be an LTSτ over A. For q ∈ S and ϕ a formula of HMLτbA, we
define the notion ϕ holds in state q, notation q |=b ϕ, as follows, by induction
on ϕ.

– q |=b � always holds.
– q |=b ¬ϕ if q �|= ϕ.
– q |=b ϕ1 ∧ ϕ2 if q |= ϕ1 and q |= ϕ2.
– q |=b ϕ〈a〉ψ if there are states q1, . . . , qn, qn+1 such that

q = q1 →τ . . . →τ qn →a qn+1 ∧ ∀i(1 ≤ i ≤ n) qi |= ϕ ∧ qn+1 |= ψ.
– q |=b ϕ〈τ〉ψ if q |= ψ or there are states q1, . . . , qn, qn+1 such that

q = q1 →τ . . . →τ qn →τ qn+1 ∧ ∀i(1 ≤ i ≤ n) qi |= ϕ ∧ qn+1 |= ψ.

For q, p ∈ S, and ϕ ∈ HMLτbA, we say that ϕ distinguishes q, p if q |=b ϕ and
p |=b ¬ϕ.

Again, the well-known Hennessy-Milner theorem states that q ↔b p if and
only if ∀ϕ ∈ HMLτbA(q |=b ϕ ⇔ p |=b ϕ). We state the apartness analogon of
this, where we compute a distinguishing formula from an apartness proof.

Proposition 3. Given (S,→), an image-finite LTSτ over A, and q, p ∈ S, we
have

q #
b

p ⇐⇒ ∃ϕ ∈ HMLτbA(q |=b ϕ ∧ p |=b ¬ϕ).

Proof. The Proposition is of course a corollary of the bisimulation version, which
is just the contra-positive, and which is proved, e.g. in [2]. We only prove (⇒)
by induction on the proof of q #

b
p.

– If the last applied rule is symm, then by IH we have ϕ that distinguishes p, q,
and therefore ¬ϕ distinguishes q, p.

– If the last applied rule is (inb), then we have

q →a q′ ∧

{p′,p′′|p�τ p′→ap′′}
q #

b
p′ ∨ q′ #

b
p′′

(inb)
q #

b
p

where the conjunction is over a finite set of formulas, say that {(p′, p′′) |
p �τ p′ →a p′′} = {(p1, r1) . . . , (pm, rm)}, so the pairs (pj , rj) are the states
for which we have p �τ pj →a rj . By IH we have for each j (1 ≤ j ≤ m) a
ϕj such that ϕj distinguishes q and pj (q |=b ϕj , pj |=b ¬ϕj), or a ψj such
that ψj distinguishes q′ and rj (q′ |=b ψj , rj |=b ¬ψj). Now we take

Φ :=
∧

1≤j≤m

ϕj ,

Ψ :=
∧

1≤j≤m

ψj ,

ϕ := Φ〈a〉Ψ.

Apartness and Distinguishing Formulas 279

We have
1. q |=b ϕ: For q →a q′ we have q |= Φ and q′ |=b Ψ .
2. p |=b ¬ϕ: let p1, . . . , pn, pn+1 be such that p = p1 →τ . . . →τ pn →a pn+1.

We know by induction hypothesis that for some j, pn |=b ¬ϕj (and then
pn |=b ¬Φ) or pn+1 |=b ¬ψj (and then pn+1 |=b ¬Ψ). So ∃i ≤ n(pi |=b ¬Φ)
or pn+1 |=b ¬Ψ , which what we needed to prove.

– If the last applied rule is (inbτ), then we have

q →τ q′ q′ #
b

p
∧

{p,p′′|p�τ p′→τ p′′}
q #

b
p′ ∨ q′ #

b
p′′

(inbτ)
q #

b
p

where the conjunction is over a finite set of formulas, say that {(p′, p′′) | p �τ

p′ →τ p′′} = {(p1, r1) . . . , (pm, rm)}, so the pairs (pj , rj) are the states for
which we have p �τ pj →τ rj . By IH we have a ϕ0 for which q′ |=b ϕ0 and
p |=b ¬ϕ0. Also by IH we have for each j (1 ≤ j ≤ m) a ϕj such that q |=b ϕj

and pj |=b ¬ϕj , or a ψj such that q′ |=b ψj and rj |=b ¬ψj . Now we take

Φ :=
∧

1≤j≤m

ϕj ,

Ψ := ϕ0 ∧
∧

1≤j≤m

ψj ,

ϕ := Φ〈τ〉Ψ.

We have
1. q |=b ϕ: For q →τ q′ we have q |= Φ and q′ |=b Ψ .
2. p |=b ¬ϕ: p |=b ¬Ψ (by p |=b ¬ϕ0) and for p1, . . . , pn, pn+1 with p = p1 →τ

. . . →τ pn →a pn+1 we know by induction hypothesis that for some j:
pn |=b ¬ϕj (and then pn |=b ¬Φ) or pn+1 |=b ¬ψj (and then pn+1 |=b ¬Ψ).
So ∃i ≤ n(pi |=b ¬Φ) or pn+1 |=b ¬Ψ , which what we needed to prove. ��

4.2 Examples

We now give some examples of how to compute a distinguishing formula from
an apartness proof.

Example 4. The first example is a well-known LTSτ with two states that are
not branching bisimilar and we give the proof of their branching apartness and
compute the distinguishing formula from that proof.

s

s1

s4

s3
s2

τ d
c

c

r

r1

r3

r2

τ

d

c

280 H. Geuvers

We give a derivation of s #
b

r, where we indicate between [. . .] all possible
transitions that we need to prove a hypothesis for (just one in the case of the
c-step; none in the case of the d-step).

s →c s2

[r →τ r1 →c r3]

s →d s3

[] �

∀r′, r′′(r1 �τ r′ →d r′′ =⇒ s #
b

r′ ∨ s3 #
b

r′′)

s #
b

r1

s #
b

r1 ∨ s2 #
b

r3

∀r′, r′′(r �τ r′ →c r′′ =⇒ s #
b

r′ ∨ s2 #
b

r′′)

s #
b

r

The distinguishing formula that we compute from this derivation, following the
proof of Proposition 3 is

(�〈d〉�)〈c〉�,

which holds in state s and expresses that there is a τ -path to a state where a
c-step is possible, and in all states along that τ -path, a d-step is possible.

Example 5. We have the LTS given below, for which we have q0 #
b

p0, which
we prove and then compute the distinguishing formula.

q0

q1

q2

q3 q4

d

d

ce c

d

c

p0

p1

p2

p3

d

τ

ce d c

A derivation of q0 #
b

p0 is the following, where for space reasons, we singled
out the sub-derivation of q0 #

b
p2, which we call Σ. Again, we indicate between

[. . .] all possible transitions that we need to prove a hypothesis for.

q0 →d q2

[p0 →d p1]

p1 →e p0

p1 #
b

q2

q2 #
b

p1

q0 #
b

p0 ∨ q2 #
b

p1 [p0 �τ p2 →d p3]

Σ

q0 #
b

p2 ∨ q2 #
b

p3

∀p′, p′′(p0 �τ p′ →d p′′ =⇒ q0 #
b

p′ ∨ q2 #
b

p′′)

q0 #
b

p0

And here is the sub-derivation Σ of q0 #
b

p2:

Σ :=
q0 →d q1

[p2 �τ p2 →d p3]

q1 →e q0

q1 #
b

p3

q0 #
b

p2 ∨ q1 #
b

p3

∀p′, p′′(p2 �τ p′ →d p′′ =⇒ q0 #
b

p′ ∨ q1 #
b

p′′)

q0 #
b

p2

Apartness and Distinguishing Formulas 281

The distinguishing formula that we compute from Σ is �〈d〉 (�〈e〉�). The
distinguishing formula for q0 #

b
p0 is

Φ := (�〈d〉 (�〈e〉�)) 〈d〉 ¬(�〈e〉�)

We have q0 |=b Φ and p0 |=b ¬Φ.

Example 6. We can also use the proof system for #
b

to establish that q ↔b p.
Here is a simple example to illustrate this.

q

q′

a a p

a

If q #
b

p, then there is a shortest derivation of q #
b

p, and we notice that
it doesn’t exist. Therefore we can conclude that ¬q #

b
p and so q ↔b p. In our

search for a derivation of q #
b

p we have to keep track of goals that we have
already encountered; the search would proceed as follows:

q →a q′

q′ →a q

fail

q′ #
b

p ∨ q #
b

p

q′ #
b

p

q #
b

p ∨ q′ #
b

p

q #
b

p

4.3 Related and Further Work

Of course, the concept of observations is well-known and tightly related to bisim-
ulation. Korver [8] presents an algorithm that, if two states are not branching
bisimilar, produces a formula in Hennessy-Milner [6] logic with until operator
that distinguishes the two states. This work implicitly uses the notion of apart-
ness without singling out its proof rules. Another work is Chow [1] on testing
equivalence of states in finite state machines and more recent work is by Smet-
sers et al. [9], where an efficient algorithm is presented for finding a minimal
separating sequence for a pair of in-equivalent states in a finite state machine.
It would be interesting to see whether this work, and the idea of finding such a
separating sequence, can be formulated in terms of apartness, and if the algo-
rithms can be improved using that approach. In general it would be interesting to
understand the various efficient algorithms for checking branching bisimulation
[5,7] in terms of apartness. A first concrete application of apartness for studying
systems has been made by Vaandrager and colleagues [10] in the development
of a new automata learning algorithm.

For the meta-theoretic study of bisimulation, it sometimes pays off to go to
the “dual view” of apartness, for one because apartness is an inductive notion, so

282 H. Geuvers

we have an induction principle. There are examples of that in [3]. Also, sometime,
the apartness view just gives a different, fresh, angle on bisimulation which
might be fruitful. We have also seen examples where the bisimulation view works
much better than the apartness view, e.g. in the proof of the reverse implication
of Proposition 3, which we have not been able to establish directly (without
first going from the apartness-view to the bisimulation-view). It is interesting to
understand why this is the case.

Finally, we believe that apartness and the proof system for apartness may
provide useful in studying more quantitative or qualitative notions of distin-
guishability: how “different” are two states and in which points do they differ?
The latter is already established by the Hennessy-Milner formula, but one can
also think of this in a more “directed sense”, by studying a notion of “directed
apartness” (as a dual to simulation?) and witnesses establishing that states are
not simulated by others.

References

1. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

2. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

3. Geuvers, H., Jacobs, B.: Relating apartness and bisimulation. Logical Meth. Com-
put. Sci. 17(3) (2021)

4. Van Glabbeek, R., Weijland, P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43, 613–618 (1996)

5. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

6. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

7. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. In: TACAS 2020. LNCS,
vol. 12079, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7 1

8. Korver, H.: Computing distinguishing formulas for branching bisimulation. In:
Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 13–23. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55179-4 3

9. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all
pairs of states. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 14

10. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems, pp. 223–243,
Cham. Springer International Publishing (2022). https://doi.org/10.1007/978-3-
030-99524-9 12

https://doi.org/10.1007/BFb0032063
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/3-540-55179-4_3
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12

Playing Wordle with Uppaal Stratego

Peter G. Jensen, Kim G. Larsen, and Marius Mikučionis(B)

Computer Science, Aalborg University, Aalborg, Denmark
{pgj,kgl,marius}@cs.aau.dk

Abstract. In this paper we model and solve the popular game Wordle
using Uppaal Stratego. We model three different game-modes in terms
of POMDPs, with more than 12,000 controllable actions. These consti-
tute by far the largest models ever presented to Uppaal Stratego. Our
experimental evaluation is encouraging: e.g. in the hard game-mode the
partitioning-refinement learning method of Uppaal Stratego reduces
the expected number of guesses from a baseline of 7.67 to 4.40 using 1
million training episodes. To better understand the convergence proper-
ties of our learning method we also study reduced versions of Wordle.

1 Introduction

Frits Vaandrager has for many years been one of the most faithful Uppaal
users. Having in 1994 verified the tolerance on clock accuracy of the Philips
Audio protocol using linear hybrid automata [6], Frits became aware of the new
tool Uppaal (first release in 1995) and sent his Master thesis student David
Griffioen to Aalborg in order to apply Uppaal to the automatic verification
of an extended version with two senders and bus collision [5]. Since then Frits
Vaandrager has been using Uppaal in several applications:

– In 2006 [11] Frits and co-authors used Uppaal to model and analyze formally
model parts of Zeroconf, a protocol for dynamic configuration of IPv4 link-
local addresses that has been defined in RFC 3927 of the IETF.

– Also in 2006 [28] Frits and co-authors modelled and analysed the biphase
mark protocol – a convention for representing both a string of bits and clock
edges in square waves. Uppaal was used to derive maximal tolerances on
clock rates, for different instances of the protocol, and to support the general
parametric verification carried out using the proof assistant PVS.

– For a case-study of a wafer scanner from the semiconductor industry Frits
and co-authors used Uppaal in combination with the symbolic model checker
SMV to compute (1) a simple yet optimal deadlock avoidance policy, and (2)
an infinite schedule that optimizes throughput [14].

– Within the European project QUASIMODO Frits and co-authors [26] devel-
oped a detailed timed automata model of the clock synchronization algorithm
being used in a wireless sensor network under development by the Dutch com-
pany Chess. Using Uppaal Frits discovered that in certain cases a static, fully
synchronized network may eventually become unsynchronized if the current
algorithm is used, even in a setting with infinitesimal clock drifts.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 283–305, 2022.
https://doi.org/10.1007/978-3-031-15629-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_15

284 P. G. Jensen et al.

– Using Uppaal in combination with colored Petri nets Frits and co-authors
modelled a challenging industrial case involving an existing state-of-the-art
image processing pipeline within professional digital document printers [17,
18]. The modelling effort was used to derive schedules for multiple concurrent
jobs in the presence of limited resources (CPUs, memory, USB bandwidth,
..).

Besides applying Uppaal, Frits Vaandrager has also been actively involved in
development of the tool over the years. Here we mention:

– In 2003, Frits contributed to a prototype extension of Uppaal with symme-
try reduction [13]. For several examples the prototype demonstrated drastic
reduction both in computation time and memory usage.

– Around 2000 Frits was coordinator of the European project AMETIST, with
participation of several Dutch, French, German and Danish partners. Dur-
ing the project a strong request was made by the involved participants from
control theory (more specifically by Professor Sebastian Engel from Dort-
mund): in addition to constraints and optimization with respect time they
were even more interested in optimization with respect to energy. This lead
to the extension of priced timed automata, and very quickly highly efficient
implementation in Uppaal CORA [3].

– In 2000 Frits, with Thomas Hune and Gerd Behrmann from Aalborg, devel-
oped, implemented and evaluated the a distributed verification engine for
timed automata [4].

– In 2001, Frits, with Thomas Hune, Judi Romijn and Marielle Stoelinga, devel-
oped an extension of Uppaal capable of synthesizing linear constraints for
the correctness of parametric timed automata [16].

Moreover, Frits has been using Uppaal in his teaching. Here we mention:

– with Roelof Hamberg, Frits Vaandrager have used the Uppaal model checker
in an introductory course on operating systems for first-year computer sci-
ence students at the Radboud University Nijmegen. Using Uppaal, their
students have found mistakes in purported solutions to concurrency-control
problems presented by Allen Downey in his popular textbook The Little Book
of Semaphores [9].

– The unpublished note by Frits “A first Introduction to Uppaal” [27] has for
several years been part of the material used in first lectures on Uppaal at
Aalborg University. The note also shows that Frits has an affinity to games
– in particular the note introduces the puzzle of “Gossiping Girls”, which is
regularly used as a mini-project exercise.

Since the early days of Uppaal, considerable effort is now invested in the
development of the branch Uppaal Stratego, which uses combination of sym-
bolic and machine learning techniques for generating safe and near-optimal
strategies from Timed or even Hybrid Markov Decision processes. In this paper,
we celebrate Frits Vaandrager’s 60’th birthday by describing how the extremely

Playing Wordle with Uppaal Stratego 285

popular game Wordle may be modelled and solved using Uppaal Stratego.
We hope that he will find enjoyment in this and become as an enthusiastic user
of Uppaal Stratego as he has been of Uppaal.

The outline of the paper is as follows: in Sect. 2 we give a brief descrip-
tion of Wordle. In Sect. 3 we give a short presentation of Uppaal Strat-
ego and its partition-based Q-learning method based on the well-known Monty
Hall Problem. We also present an extended 4-door version of this problem illus-
trating the need for memory-full strategies. In Sect. 4 we model three different
game-modes of Wordle, including the so-called hard mode. As POMDPs the
models are orders of magnitude larger than any other model previously pre-
sented to Uppaal Stratego. The models have more than 12,000 controllable
actions – i.e. all the 5-letter English words – to be selected based on obser-
vation of a knowledge memorizing data-structure. Finally in Sect. 5 we apply
Uppaal Stratego as a solver for Wordle, while studying the impact of (com-
bination of) game-mode(s), training budget and the impact of our partitioning-
refinement technique. Our results are encouraging: e.g. for the hard game-mode
Uppaal Stratego reduces the expected number of guesses from a baseline
of 7.671 to 4.40 after 1 million training episodes. For the largely unrestricted
permissive game-mode, Uppaal Stratego also makes a significant reduction
from 14.33 expected guesses to 10.55. This is still far away from the maximum
6 guesses allowed in Wordle, so a substantial increase of the training bud-
get is required. To better understand the convergence of our Uppaal Strat-
ego encodings we also consider reduced version of Wordle. E.g. reduction by
a factor of 128 makes all game-modes converge to an average of 2.21 guesses
with the permissive mode starting from a baseline of 12.78 guesses. In all the
experiments the use of our partition-refinement based Q-learning method clearly
demonstrates its advantage over a traditional, fully explicit Q-learning approach.

2 Wordle

Wordle is a web-based word game created and developed by Welsh software
engineer Josh Wardle, and owned and published by The New York Times Com-
pany since 2022 [29]. The game has gained a large amount of popularity after
Wardle added the ability for players to copy their daily results as emoji squares
around December 2021, which were widely shared on Twitter. Many clones and
variations of the game were also created, as were versions in languages besides
English.

In Wordle a Player has six attempts to guess a five-letter word selected
by an Opponent. After each guess the Opponent will provide, with feedback in
the form of colored tiles indicating when letters match or occupy the correct
position.

1 i.e. when choosing legal words uniformly random.

286 P. G. Jensen et al.

Fig. 1. Wordle screenshot.

More precisely, as illustrated in Fig. 1 after
each guess, the letters which are not in the word
are highlighted in grey, the letters which are in
the word, but are in the wrong place are high-
lighted in yellow, and the letters which are in the
correct spot in the word are highlighted green.
If a guess contains repeated letters, but there is
only one instance of that letter in the word, the
second instance of the letter is marked grey.

Now the guess/feedback-interaction between
the Player and the Opponent may be viewed as
a decision tree, e.g. Fig. 2 is part of the decision
tree in the setting of just 7 words. In the figure
only a single guess is shown at each node, but the
full decision tree contains all (up to) 7 choices
along with their respective sub-trees.

More formally, Wordle is a game between the Opponent and the Player. In
one setting, the Opponent is antagonistic and will non-deterministically select
one of the 12,972 legal 5-letter English words in order to maximize the minimum
number of guesses required by the Player. In the second setting – to be pursued
in this paper – the Opponent uses a probability distribution to select the 5-
letter word to be guessed. Here the objective of the Player is to find a strategy
that will minimize the expected number of guesses needed to reveal the selected
word. In both cases, the word selected by the Opponent is obviously not visible
to the Player. In the probabilistic case the game at hand is thus formally a
POMDP (Partially observable Markov decision process). In the following we
shall demonstrate how the POMPD of Wordle may be easily expressed using
the rich modelling formalism of Uppaal Stratego, and subsequently used for
learning and analysis of a (near-) optimal strategy for the Player.

Guess:
serve
serve

aside
asideGuess:outdoGuess:

outdofuton
futonGuess:

futon outdo
forge

aside serve siege
siege

forge
forgeGuess: Guess: Guess:

forgeforge siege siege

househouse house

aside forge futon house
outdo serve siege

Guess: house

Ya = Ya =Ya =Ya =

Ya = Ya = Ya =

a = a = a =

a =

a =

a =a =

X =

Fig. 2. (Partial) Decision Tree for Wordle (with 7 words).

Playing Wordle with Uppaal Stratego 287

Research Related to Wordle. Internet and popular press is buzzing with
many speculations about the best opening guesses2,3,4 and algorithms to mini-
mize maximum and average number of guesses5,6. However the bad news is that
Wordle has been shown to be NP-hard [24] and NP-complete [25] and therefore
require a lot of resources to compute absolute optimal solutions.

Reinforcement learning has been applied to find optimal human strategy
using maximum correct letter probabilities [2]. They implement the game in
Python and explore various score functions to come up with optimal 1-, 2-, 3-,
4-, 5-guess sequences out of 2,315 curated words to help the human to play more
efficiently.

The game has been implemented in Matlab toolbox and has been applied to
evaluate the probability of winning when employing 6 strategies including active
learning with hard mode and knowledge [7].

3 Uppaal Stratego

Uppaal Stratego [8] is the newest branch of the Uppaal Tool Suite using
symbolic model checking and reinforcement learning to obtain safe and (near-
optimal) strategies for Markov Decision Processes (MDP). The MPDs consid-
ered are infinite state, being based on either timed automata [1] (Timed MDPs)
or hybrid automata [15] (Continuous-Space MDPs). Using symbolic techniques
from model checking – and abstracting a given MDP M into a two-player timed
game – a most permissive strategy σS for a given safety objective S is syn-
thesized. Now, applying various versions of reinforcement learning [19], (still
safe) sub-strategies σO optimizing a given optimization criteria O are obtained.
Finally, Uppaal Stratego may provide obtained strategies in terms of explain-
able decision trees, and furthermore supports synthesis of strategies taking par-
tial observability into account, so-called POMDPS. So far Uppaal Stratego
has been applied successfully within a number of application domains including
heating systems [21], adaptive cruise control [23], maneuvers of train in railway
stations [22], swarm robotics [22], storm-water detention ponds [12], and traffic
control [10].

Monty Hall Problem and Strategies. To illustrate the use of Uppaal
Stratego for learning optimal strategies of POMDPs we consider a variant
of the well-known Monty Hall Problem. Here a host (“Monty”) provides a player
with three doors, one containing a valuable prize and the other two containing
a “gag”, valueless prize. The contestant is offered a choice of one of the doors
without knowledge of the content behind them. “Monty”, who knows which door

2 https://www.3blue1brown.com/lessons/wordle2.
3 https://jonathanolson.net/experiments/optimal-wordle-solutions.
4 http://sonorouschocolate.com/notes/index.php/The_best_strategies_for_Wordle.
5 https://www.poirrier.ca/notes/wordle-optimal/.
6 https://github.com/TylerGlaiel/wordlebot.

https://www.3blue1brown.com/lessons/wordle2
https://jonathanolson.net/experiments/optimal-wordle-solutions
http://sonorouschocolate.com/notes/index.php/The_best_strategies_for_Wordle
https://www.poirrier.ca/notes/wordle-optimal/
https://github.com/TylerGlaiel/wordlebot

288 P. G. Jensen et al.

Fig. 3. Uppaal Stratego model for the original 3-door Monty Hall Problem.

has the prize, opens a door that the player did not select that has a gag prize,
and then offers the player the option to switch from their choice to the other
remaining unopened door. The probability problem arises from asking if the
player should switch to the unrevealed door.

In Fig. 3 an MDP model of the original Monty Hall Problem in
Uppaal Stratego is given. The MDP has 6 locations, with the choices of the
host indicated by dashed edges and the choices by the player indicated by full
edges. In Start the host (uniformly) randomly selects the door behind which the
car is placed. In Pick1 the player makes the initial choice of a door. In Reveal
the host reveals opens a door not selected by the player and without the car.
Now in Pick2 the player makes the final choice of a door which, which in End
will determine the value of win. The objective is to now to find a strategy sp of
the player that will maximize the expected value of win when reaching Hall.G.
Clearly the strategy will not be allowed to observe the value of the variable car,
effectively making the model a POMDP.

In Uppaal Stratego synthesis of optimal strategies under partial observ-
ability is specified using optimization queries of the following form:

strategy Name = minE(Cost) [Bound]
{ ExprList1 } -> { ExprList2 } : <> Goal

where:

Name is the name associated with the strategy, which can be later used to refer
to the strategy when saving it to a file or examining its properties in other
SMC queries.

minE(Cost) asks the tool to minimize the expected cost defined by Cost expres-
sion. One can replace this entry with maxE(Gain) to maximize the expected
gain defined by Gain expression.

Bound defines a length of a stochastic simulation run, which can be described
in terms of number of discrete transitions, absolute time or a limit on some
variable in general.

Goal is a state predicate defining the goal state, which also terminates the
stochastic simulation run and marks it as “winning”.

ExprList1 and ExprList2 are comma-separated expressions over the locations
and variables defining the parts of the system state to be observed by the
strategy.

Playing Wordle with Uppaal Stratego 289

Now, Uppaal Stratego uses the Q-learning algorithm from [19] to learn an
approximator for the function Q∗, that for any value (E1, E2) of the expression-
lists ExprList1 and ExprList2 and for any decision action a returns the minimal
expected cost Q∗(E1, E2)(a) of reaching the Goal from (E1, E2) by choosing a.
More precisely, for each decision action a and value E1 of ExprList1 the algo-
rithm maintains a cost-function approximator of λE2.Q∗(E1, E2)(a) mapping
values E2 of ExprList2 to the expected cost Q∗(E1, E2)(a). This approximator
itself is maintained by a partition refinement method. Experience has indicated
that it is preferable that the set of ExprList1 values are discrete and relatively
small (e.g. integer expressions, Boolean predicates over variables, distinct float-
ing point values), where even a small change in value requires a different cost
function altogether. In contrast, the set of ExprList2 values can be large, repre-
sented by integers, clocks and floating point expressions, whenever small changes
in value have small effects on cost. We shall later see the effect of placing expres-
sions to be observed in either ExprList1 or ExprList2 in our experience with
learning strategies for Wordle.

Now returning to the Monty Hall Problem we pose the following query in
Uppaal Stratego:

strategy sp = maxE(win) [<=1]
{ Hall.location, pick, reveal } -> {}: <> Hall.G

The set-annotation Hall.location, pick, reveal restricts the strategy of the
player to only depend on the locations of Hall and the values of pick and reveal.
In particular, the value of the variable of car is not observable. Now, the value
of the learned strategy sp is obtained by the following query:

E[<=1;1000] (max:win) under sp

returning 0.641± 0.029783 as a 95% confidence interval after 1000 runs. Further
examination of the strategy reveals that in sp the player always opt for switching
from the initial choice to the remaining unopened door.

A part of the computed strategy is seen in Listing 1.1. In the observed vector
(3,3,1), corresponding to being in Pick2 having pick=3 and reveal=1, we can
see that action 2 has the highest computed Q-value of 0.7044. Here 2 denotes
the action to switch and 0.7044 is an estimator of the expected win-ratio under
the strategy. Conversely we can see that Uppaal Stratego has learned that
picking 1 after 1 was revealed by the host comes with zero reward.

4-Door Monty Hall Problem & Memory-Full Strategies. In general opti-
mal strategies for POMDPs require memory. This was not required in the sim-
ple POMDP of the Monty Hall Problem. To address the need for memory-full
strategies and see how this can be handled in Uppaal Stratego we consider in
Fig. 4(a) an extended version of the Monty Hall Problem now with 4 doors, and
an extra exchange between the host and the player. In all the moves of the player
(full edges), the player may pick any of the four doors. The door selected in the

290 P. G. Jensen et al.

Listing 1.1. A snippet of the computed strategy for the 3-door Monty Hall Problem
when in the observed state (Pick2, pick=3, reveal=1). Action indexes have been re-
indexed for readability.

1 {...,"regressors":
2 "(3,3,1)": {...,"regressor": {
3 "3" : 0.3690...,
4 "2" : 0.7044...,
5 "1" : 0}, ...
6 }
7 }

final pick Pick3 is the final choice of the player. As for the host, the first door
revealed in Reveal1 is (as in the 3-door version) a randomly chosen door with no
car and different from the first door selected by the player. In the second round,
the door revealed by the host in Reveal2 is randomly chosen among the doors
with no car, and different from the second pick of the player, and different from
the first door reveal by the host. Now the learning query of Uppaal Stratego

strategy sp4 = maxE(win) [<=1]
{ Hall.location, pick, reveal } -> {}: <> Hall.G

gives a strategy sp4 with expected winning probability 66%. Examining the
learned strategy it is found (perhaps not surprisingly) that the final picked door
must be different from the second door picked as well as different from the last
door revealed by the host.

However in the above strategy sp4 is memoryless. In particular, in the last
round the player is not allowed to take into account knowledge from the first
round, e.g. what was the first door picked and the first door revealed. To allow
for the strategy of the player to take information from all the past moves into
account, Fig. 4(b) presents an extended model with round-numbered versions of
the variables pick and reveal having been added. Clearly a principle that may
be added to all acyclic POMDPs. Now the learning query:

Fig. 4. Models for 4-door Monty Hall Problem: without memory and with.

Playing Wordle with Uppaal Stratego 291

strategy sp4h = maxE(win) [<=1] {
Hall.location, pick1, reveal1, pick2, reveal2

} -> {}: <> Hall.G

will learn a strategy for the player that may depend on the value of pick and
reveal from all rounds, but of course still not the position of the car. Now
the query E[<=1;1000] (max:win) under sp4h returns 0.744 ± 0.0270956 as a
95% confidence interval for the expected probability of winning under sp4h, a
significant improvement compared to sp4 that did not use memory. Finally, the
probability estimation query:

Pr[<=1](<> Hall.G
&& !(pick3==pick2) && !(pick3==pick1)
&& (pick2==pick1) && !(pick3==reveal1)
&& !(pick3==reveal2) && !(pick2==reveal1)) under sp4h

returns ≈1, revealing interesting information about the strategy sp4h, e.g. that
the door picked in the first and second round of the player should be the same,
and that the door picked in the final round should be different from that.

We leave it to the interested reader (including Frits Vaandrager) to further
investigate optimal strategies of N -door generalizations of the Monty Hall Prob-
lem using Uppaal Stratego.

4 Wordle in Uppaal Stratego

Fig. 5. Uppaal Stratego model of Wor-
dle where a global clock guesses (not
shown) keeps track of the total elapsed time,
effectively measuring the number of guesses.

Figure 5 shows the Uppaal Strat-
ego model of the POMDP for the
Wordle puzzle, where the Player
repeatedly makes (controllable) deci-
sions against a stochastic Opponent.
The model follows the flow of the
normal Wordle game – although
with several book-keeping steps of
the Player allowing us to experi-
ment with different game-modes such
as the Wordle hard-mode. Each
word in the dictionary of valid words
receives an index ranging from 0
to 12,972, captured by the constant
NWORDS, of which the first 2,315 words
can appear as solutions, captured
by the constant CURATED. For con-
venience, Wordle is extended to a
timed-game in which each guess takes
exactly one time-unit (tracked by the
clock t) allowing us to track the total progression of time using the clock guesses
which is never reset. Here is the general flow of the game:

292 P. G. Jensen et al.

In Initialize location the Opponent must select a word from the curated
solution-set by picking a word-index 0 and CURATED, this is done by the
sample_solution() function. Meanwhile the init_player() function initial-
izes the book-keeping memory of the player.

In Guess the Player may select the next guess s : wordid_t, with wordid_t
defined as int[0,NWORDS], that is valid with the current game-mode (checked
by mode_filter(s)), like hard-mode which limits the guesses according to the
specified game mode (e.g. hard-mode). The call to make_guess(s) effectively
stores the guess of the player. Notice that this is the only location where the
Player has decision (denoted by solid edges) whereas all other edges are under
the control of the Opponent.

Check forces the Opponent to either validate that the guess is correct (checked
by solved()) or that the guess was incorrect (not solved()), in which case
a response is computed (make_response()). Notice that the invariant t<=1
forces the opponent to reside in Check for at most 1 time unit, while the
guards on the outgoing edges (t==1) enforces delay of exactly one time unit
per guess.

Goal is the final location, denoting that the word proposed initially by the Oppo-
nent was found by the Player.

Respond allows for the Player to update the internal book-keeping memory.

The objective of the game is to reach Goal with the minimum expected value
of the guesses clock.

While the sample_solution(), init_player(), make_guess(s) and
solved() functions are straight forward, in that they simply copy, check and
clear arrays, the make_response(), update_memory() and mode_filter(s) are
of a more complex nature. We will explain the latter two in the following subsec-
tions as they are tied with the specific game mode employed. Let us first explain
the make_response() in Listing 1.2.

At first glance, the response computation seems straight forward: respond
GREEN on correctly placed letters, YELLOW if the letter appears in a different posi-
tion, and GRAY otherwise. However, the actual feedback computation of Wordle
is more subtle due to potential duplicate letters. For example, the word hello
contains two ‘l’s. If the solution word is afoul (with a single ‘l’ present), then
only a single letter ‘l’ is marked YELLOW and another ‘l’ is GRAY. Thus the
response is computed in three passes: 1) to determine the number of occurrences
of the different letters in the solution, 2) to mark GREEN responses (and deduct
spent occurrences), and 3) to mark an adequate amount of characters as YELLOW.

With the main game flow in place, we can now discuss various game modes.

Game-Modes and Memory. We experiment with three different game modes,
that is, limitations for the Player guesses implemented by the mode_filter(s)
guard in accordance with the (condensed) history of the guesses and responses:

1. Hard mode, where any prior hints of yellow and green must be respected in
subsequent guesses,

Playing Wordle with Uppaal Stratego 293

Listing 1.2. Computes response (hint) based on guess and solution.

1 void make_response() {
2 int[0,NPOS] counts[letter_t];
3 // mark correct positions and count unmarked letters:
4 for (p : pos_t)
5 if (guess[p] == solution[p])
6 response[p] = GREEN;
7 else {
8 response[p] = GRAY;
9 ++counts[solution[p]];

10 }
11 // mark out of place letters:
12 for (p : pos_t) {
13 if (response[p] != GREEN) {
14 if (counts[guess[p]] > 0) {
15 response[p] = YELLOW;
16 --counts[guess[p]];
17 }
18 }
19 }
20 }

2. Conservative mode, where any prior hints of gray (i.e. non-existence of letter
in the solution) must be respected s.t. any subsequent guess is delimited from
using such letters, and

3. Permissive mode, where any new guess must change the internal knowledge
structure.

The model uses a notion of memory to enforce the rules of the game mode
which generic across all three modes and is represented by the following two
data structures:

1. knowledge: an integer array of |pos_t|×|letter_t| size (i.e. 5×26) taking the
value MAYBE (default) for “no knowledge”, SURELY_NOT for GRAY hints (implying
the letter can not be present at the given position) and SURELY for GREEN hints
(implying that the letter must be present at the position), and

2. counts: an integer array of |letter_t| size (0-initialized) to keep track of
the maximal number of occurrences for each letter observed in a single word
(e.g. getting YELLOW and GREEN hint on the l’s of hello would set the 12th

position to 2).

Listing 1.3 shows update_memory() procedure to update the memory accord-
ing to the rules above and the chosen STRATEGY_TYPE: conservative strategy
(value STRATEGY_PERMISSIVE) or the permissive or combined strategy (values
STRATEGY_PERMISSIVE and STRATEGY_CONS_PERM respectively).

294 P. G. Jensen et al.

Listing 1.3. The memory update function.
1 void update_memory() {
2 update_count();
3 update_hints();
4 if (STRATEGY_TYPE == STRATEGY_CONSERVATIVE)
5 update_conservative();
6 if (STRATEGY_TYPE == STRATEGY_PERMISSIVE ||
7 STRATEGY_TYPE == STRATEGY_CONS_PERM)
8 update_permissive();
9 if (HARDMODE)

10 update_hard();
11 }
12

13 void update_count() {
14 int local_counts[letter_t];
15 for (p : pos_t)
16 if (response[p] != GRAY)
17 local_counts[guess[p]] += 1;
18 for (c : letter_t)
19 counts[c] = max(counts[c], local_counts[c]);
20 }
21

22 void update_conservative() {
23 for (p : pos_t) {
24 if (response[p] == GREEN) {
25 for (l : letter_t)
26 knowledge[p][l] = SURELY_NOT;
27 knowledge[p][guess[p]] = SURELY;
28 } else if (response[p] == YELLOW) {
29 knowledge[p][guess[p]] = SURELY_NOT;
30 } else if (response[p] == GRAY) {
31 if (counts[guess[p]] == 0) { // absent
32 for (q : pos_t)
33 knowledge[q][guess[p]] = SURELY_NOT;
34 } else {
35 knowledge[p][guess[p]] = SURELY_NOT;
36 if (forall(q : pos_t)
37 guess[q] != guess[p] ||
38 response[q] != YELLOW)
39 { // all are correctly placed
40 for (q : pos_t)
41 if (guess[q] != guess[p] ||
42 response[q] != GREEN)
43 knowledge[q][guess[p]] = SURELY_NOT;
44 }
45 }
46 }
47 }
48 }
49

50 void update_permissive() {
51 update_conservative();

Playing Wordle with Uppaal Stratego 295

52 check_sums();
53 }
54

55 void check_sums() {
56 int letter_sum;
57 letter_t letter;
58 int local_counts[letter_t];
59 bool changed = true;
60 while (changed) {
61 changed = false;
62 local_counts = counts;
63 // check if only one unknown letter left
64 for (p : pos_t) {
65 letter_sum = 0;
66 for (l : letter_t)
67 if (knowledge[p][l] != SURELY_NOT) {
68 letter = l;
69 letter_sum += 1;
70 }
71 // new information?
72 if (letter_sum = 1 &&
73 knowledge[p][letter] != SURELY) {
74 knowledge[p][letter] = SURELY;
75 changed = true;
76 }
77 if (letter_sum == 1)
78 --local_counts[letter];
79 }
80 if ((sum(l : letter_t) counts[l]) == NPOS)
81 // remove all inconsistent with the 5 known letters
82 for (p : pos_t)
83 for (l : letter_t)
84 if (knowledge[p][l] != SURELY &&
85 counts[l] == 0)
86 knowledge[p][l] = SURELY_NOT;
87 }
88 }

Let us discuss the functions in order:

update_count() updates the count-array by first computing the sum of occur-
rences of letters in the guessed word for which the feedback was either green
or yellow. In the end, this is aggregated into the count array by keeping only
the largest value; the target word will not change during a single execution.

update_conservative() has three cases for each letter/response position:
1. if the response is GREEN, update the row corresponding to the position

to SURELY_NOT and then mark the correct GREEN letter with the value
SURELY,

2. if the response is YELLOW, update the single position/letter entry to the
value SURELY_NOT, and

296 P. G. Jensen et al.

3. if the response is GRAY, either the target word contains no such letter
(first sub-case) and we can update across the knowledge rows with the
value SURELY_NOT. Alternatively we check whether, in the current guess,
all other occurrences of the letter are correctly placed – in which case we
can achieve a similar effect, and otherwise we limit ourselves to updating
the single cell of the position/letter in the knowledge to SURELY_NOT.

update_permissive() calls first the update_conservative() function and then
attempts to deduce even more values via a call to check_sums().

check_sums() checks, if at a given position, only a single letter is possible, and
then updates the knowledge array accordingly. If all 5 letters are known (but
their positions not), the function will furthermore remove all non-valid letters
from the knowledge array by marking them with the SURELY_NOT value.

We can now introduce the action-filtering code behind the different modes
in Listing 1.4.

Listing 1.4. Game-mode filtering of actions.

1 bool mode_filter(wordid_t solution) {
2 if(HARDMODE && !hard[solution]) return false;
3 if (STRATEGY_TYPE == STRATEGY_CONSERVATIVE)
4 return conservative_strategy(solution);
5 else if (STRATEGY_TYPE == STRATEGY_PERMISSIVE)
6 return permissive_strategy(solution);
7 else if(STRATEGY_TYPE == STRATEGY_CONS_PERM)
8 return combined_strategy(solution);
9 else return true;

10 }
11

12 bool is_hard(wordid_t solution) {
13 int local_counts[letter_t];
14 bool ok_green;
15 bool used_hints;
16 ok_green = forall(p : pos_t)
17 knowledge[p][words[solution][p]] == SURELY ||
18 (not exists(l : letter_t)
19 knowledge[p][l] == SURELY);
20 local_counts = counts;
21 for(p : pos_t) --local_counts[words[solution][p]];
22 used_hints = forall(p : pos_t) local_counts[p] <= 0;
23 return ok_green && used_hints;
24 }
25

26 bool conservative_strategy(wordid_t solution) {
27 return not exists(p : pos_t)

knowledge[p][words[solution][p]] == SURELY_NOT;
28 }
29

Playing Wordle with Uppaal Stratego 297

30 bool permissive_strategy(wordid_t solution) {
31 if (forall(p : pos_t)
32 knowledge[p][words[solution][p]] == SURELY)
33 return true;
34 // anything that feasibly improves the knowledge is allowed
35 return exists(p : pos_t)
36 knowledge[p][words[solution][p]] == MAYBE;
37 }
38

39 bool combined_strategy(wordid_t solution) {
40 if (forall(p : pos_t)
41 knowledge[p][words[solution][p]] == SURELY)
42 return true;
43 // anything that feasibly improves the knowledge is allowed
44 // also must not use characters shown to be useless
45 return exists(p : pos_t)
46 knowledge[p][words[solution][p]] == MAYBE &&
47 forall(p : pos_t)
48 knowledge[p][words[solution][p]] != SURELY_NOT;
49 }

The mode_filter(s) function checks if the word with index s is valid guess based
on the game mode – HARDMODE or particular STRATEGY_TYPE, which effectively
filters the actions of the Player based on the different heuristics described.

Hard mode checks firstly that if GREEN hint was ever given, then the proposed
word must contain the said letter in the said position. Secondly we validate that
the sum of occurrences of letters matches with YELLOW and GREEN hints given
prior.

Conservative mode is instead concerned with GRAY (absence) hints and strictly
disallows any word where GRAY hint has been given. This generalizes to disal-
lowing any word where the value of the knowledge for any letter of the word is
SURELY_NOT (must be absent).

Permissive mode instead attempts to be as liberal as possible, but ensuring the
progress. The mode disallows any word (except for the solution-word), which
will not yield an update to the knowledge-array. This is done by requiring at
least the presence of a single MAYBE in the knowledge vector, for a letter/position-
combination of the proposed word.

Furthermore, we conjecture the following:

– the projection state of Wordle on the POMDP with the observable state of
the knowledge and counts arrays is sufficient to compute optimal strategies,
and

– the optimal solution to the permissive game mode is also optimal in the
original Wordle.

298 P. G. Jensen et al.

Here optimality should be understood as the expected number of guesses,
assuming that the Opponent uses a uniform random choice to select the solution
word.

Partial Observable Wordle. Similar to the Monty Hall Problem presented
in Sect. 3, we employ partial observability to correctly capture the nature of
Wordle. To follow our conjecture, we assume that it is sufficient for the strategy
to depend on the knowledge and count arrays as observable entities. We thus
construct the following query to synthesize near-optimal strategies:

strategy S = minE(guesses) [<=MAXG] {
Play.counts[0], ..., Play.counts[25],
Play.knowledge[0][0], ..., Play.knowledge[0][25],
...
Play.knowledge[4][0], ..., Play.knowledge[4][25]

} -> {}: <> Play.Goal

Here MAXG is a sufficiently high bound on time, i.e., the number of guesses
within which the game is expected to be completed. For all practical purposes
and the proposed game modes, a value of 100 suffices, as witnessed in the exper-
iments (See Fig. 8).

However, 6 × 26 memory variables can take three different values ({0, 1, 2}
for counts, SURELY_NOT, MAYBE and SURELY for the knowledge), the hypothetical
number of combinations is astronomically high and cannot be visited exhaus-
tively. Therefore we also experiment with the partition refinement technique
of Uppaal Stratego to automatically deduce a sufficient partitioning of the
state-space. This is reflected in the following query:

strategy S = minE(guesses) [<=MAXG] {
Play.counts[0], ..., Play.counts[25]

} -> {
Play.knowledge[0][0], ..., Play.knowledge[0][25],
...
Play.knowledge[4][0], ..., Play.knowledge[4][25]

}: <> Play.Goal

Here we retain that each unique assignment to counts must lead to a different
partition, i.e. a pre-partitioning of the observed state-space, while assignment to
the knowledge-array can be aggregated at will of the learning-algorithm.

Informally, the learning algorithms can chose to lump together different
assignments of the knowledge array, but must consider assignments of counts
as being radically different.

The choice of placement of these observable variables is not arbitrary. The
expected actual assignments to the counts array is expected to be small, and on
the other hand, different assignments to this array is expected to have very dif-
ferent optimal strategies; i.e. best next word. On the other hand, the knowledge
array is expected to have a huge domain of possible assignments where minor

Playing Wordle with Uppaal Stratego 299

differences in assignment will have little effect on the optimal next word. Again
we refer the reader to the work of M. Jaeger et al. [19] for the details of the
partition refinement procedure.

5 Evaluation

We experiment with using Uppaal Stratego as a solver for the POMDP
induced by the encoding of the Wordle game presented in the previous section
and we study the impact of:

1. increasing the training budget,
2. the different game modes, and
3. the partition-refinement technique of Uppaal Stratego (denoted PT).

As the game modes presented in Sect. 4 can be combined, we experiment not
only with the individual game-modes but also combinations. In particular we
consider as basis CONS, the conservative mode, PERM, the permissive mode,
COMB the combined mode of CONS and PERM. These three game-modes are
then further combined with the hard-mode (denoted HM). For each of such a
combination we denote by the baseline the random strategy under the given
game mode. That is, in a given state, the strategy picks uniformly among all
actions (words) allowed by the game mode. We refrain from experimenting with
HM directly as experiments demonstrated a low probability of winning the game
under the baseline strategy within a reasonable number of guesses.

All experiments are conducted on dis-homogeneous hardware and we thus
refrain from commenting explicitly on running-times. We note that 1000 sim-
ulations on an Intel i7-1165G7 takes roughly 90 s, and that training times can
be extrapolated to within a factor of two from this measure. Furthermore, to
reduce the simulation time, we have modeled various caching techniques and
in addition utilize the external C-library linking to offload the updates of the
knowledge and count arrays.

Models, strategies, and an interactive tool for using the produced strategies
in a game of Wordle is available in a repeatability package [20].

Evaluation: We experiment with the learning-algorithms in Uppaal Stratego
over the 6 different strategy profiles and for each profile use either the explicit
observation vectors or the partition-refinement technique (PT). Specifically we
here also study the impact of increasing the training budget and we configure
Uppaal Stratego to utilize the full learning-budget and restrict the tool to
only evaluate the quality of the strategy when the learning budget is exhausted.
To evaluate the quality of a strategy S, we execute the query:

E[#<=MAXS;23150](max:guesses) under S

Notice that this evaluation allows for each word in the selected set of curated
word set to be picked (on average) 10 times. Each experimental configuration is

300 P. G. Jensen et al.

repeated 5 times and we report the best solution found for each configuration.
We conduct three series of experiments; one with the full word-set of Wordle
and one where it is reduced by a factor of 64 and 128 denoted as Wordle/64 and
Wordle/128 respectively. Let us first study the reduced versions of Wordle.

Wordle/{64,128}: In Fig. 6a we see the gradual improvement in performance
of the learning algorithm of Uppaal Stratego when playing the Wordle/128
game (reduced by a factor 128). We observe that all methods converge to
strategies delivering on average 2.21 guesses. In the case of COMB-HM (black,
dashed), the reduction from the baseline of 2.95 is modest while the game mode
PERM (red, solid) has the largest improvement, having a baseline of 12.78
guesses. We can observe that the larger search-space of the permissive game
mode (red) has a negative impact on the needed budget for convergence and
without the game mode providing any benefit compared to the more restric-
tive game modes. In general all the tested configurations have converged with a
budget of 4.096 million episodes.

We observe similar tendencies in Wordle/64 (Fig. 6b) with all modes con-
verging on a performance of 2.27 guesses, however with the permissive game
(red lines) modes not reaching a plateau and thus still with potential to improve
beyond this limit. The PERM game mode (red, solid) here enjoys a drop from
a baseline of 13.49 to 2.38 but also under the COMB-HM game mode the result
is improved from a baseline of 3.94 to 2.27. Furthermore we see the partition
refinement algorithm (annotated by x in the plot) generally appears to improve
on the rate of learning initially, but is eventually, after enough episodes, over-
taken by an explicit representation of the states (annotated by box in the plot).
This indicates that the learning algorithm initially can exploit grouping large
sets of states together under the same sub-strategy, and thus accumulate more
information for this aggregate sub-strategy per episode. However, with enough
samples, the partition-refinement scheme is overtaken when this same aggrega-
tion needs to be sub-partitioned, at which point the explicit representation has
been trained sufficiently. Comparing Fig. 6a and Fig. 6b we can see that at least
a 16 times larger training set is needed (24) for the learning methods to reach
a plateau, indicating a radical growth in the total search space. Studying both
plots we can also observe that an exponential increase in the learning budget
(x-axis is in log2) leads to a less than linear improvement in the performance
(y-axis is in log10). We hypothesize that this is due to the large action and sam-
ple space combined with the dampening of the updates of the Q-values when
applying Q-learning.

Full Wordle: As witnessed by Fig. 7a, Uppaal Stratego is challenged more
by the full version of Wordle, however the tool still manages to produce a
strategy yielding 4.01 guesses on average under the COMB-HM (black, dashed).
This is a significant improvement compared to the 4.8 guesses on average when
comparing to playing in the same game mode but using the baseline strategy.
Given the astronomically large search space of Wordle, having more than 20
million configurations after the first guess (2, 315 possible “words of the day”
times 12, 972 possible initial guesses), finding an optimal solution is not expected.

Playing Wordle with Uppaal Stratego 301

Fig. 6. Improvement of training using Uppaal Stratego under different observability
patterns and different strategies for the Wordle model reduced by a factor of 128 (left)
or 64 (right). The y-axis is given in log10 and the x-axis in log2. The 0-point on the
x-axis represents the baseline (a training budget of 0 episodes).

Similar to the reduced Wordle games the PERM game mode (red) enjoys
large improvements, dropping from a baseline of 7.67 guesses on average to 4.40
under hard-mode (red, dashed) and from 14.33 to 10.55 without hard-mode
(red, solid) when using partitioning (PT). Comparing Fig. 7a and Fig. 7b where
y-axis interval of [4, 5] is in focus, it becomes apparent that a plateau has not
yet been reached. We can observe that the best performing game modes slowly
improve, in an oscillating fashion, hinting that additional training episodes can
lead to improved strategies. Contrary to what was observed in the Wordle/128
and Wordle/64 experiments, the explicit memory representation (annotated by
squares) achieve little to no improvement when the number of training episodes
is increased, although they still manage to outperform the random strategy.
We can also see that the hard-mode (dashed lines) has a much higher impact.
Comparing the PERM-HM-PT (red, dashed) with PERM-PT (red, solid) under
the partition refinement (x annotated), we observe that the PERM-HM-PT has
a significantly lower starting-point and also achieves radical improvements from
1.024 to 2.048 million episodes. It remains to be seen whether the PERM-PT
exhibits the same behavior as the experiments have yet to complete at the time
of writing.

In Fig. 8 we can see that the different game-modes presented are effected
vastly differently by training in terms of reduction in the expected number of
guesses. Using the permissive game-mode yields a performance improvement
from 14.33 guesses on average to 7.67 when hard mode is enabled as well. Playing
according to the conservative mode leads to 5.93 guesses on average (4.87 under
hard-mode) while the combined game-mode lands on average of 5.69 guesses
(4.88 under hard-mode) (Table 1).

302 P. G. Jensen et al.

Fig. 7. Improvement of training using Uppaal Stratego under different observability
patterns and different strategies for the full Wordle game. The y-axis is given in log10
and the x-axis in log2. The 0-point on the x-axis represents the baseline (a training
budget of 0 episodes).

Table 1. Quality of the best obtained strategy for full Wordle using partitioning
(PT) or explicit memory representation in different modes. The Baseline row indicate
the performance under a random strategy.

Game Mode CONS CONS-HM PERM PERM-HM COMB COMB-HM

Baseline 5.93 4.87 14.33 7.67 5.69 4.88
Explicit 5.76 4.64 13.60 7.30 5.44 4.69
PT 4.24 4.01 10.55 4.40 4.19 4.07

Fig. 8. Comparison of random plays under the permissive (red), conservative (green)
and combined (black) strategies. The dashed lines indicate hard-mode enabled where
solid lines indicate normal mode. (Color figure online)

Playing Wordle with Uppaal Stratego 303

6 Conclusion

In this paper we have modelled and solved the popular game Wordle using
the tool Uppaal Stratego constituting by orders of magnitude the largest
POMDP ever presented to the tool. The experimental evaluation are encour-
aging: our partitioning-refinement Q-learning method reduces significantly the
expected number of guesses, e.g. from 7.67 to 4.40 guesses for the hard game-
mode. In all our experiments, the partitioning-refinement method performs bet-
ter than traditional, explicit Q-learning. Future research include learning directly
from the feedback-history rather than from observation of the manually main-
tained knowledge and count data structures.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Anderson, B.J., Meyer, J.G.: Finding the optimal human strategy for wordle using
maximum correct letter probabilities and reinforcement learning (2022)

3. Behrmann, G., et al.: Minimum-cost reachability for priced time automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-
2_15

4. Behrmann, G., Hune, T., Vaandrager, F.: Distributing timed model checking—
how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167_19

5. Bengtsson, J., et al.: Verification of an audio protocol with bus collision using
Uppaal. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
244–256. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_73

6. Bosscher, D., Polak, I., Vaandrager, F.: Verification of an audio control protocol.
In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS,
vol. 863, pp. 170–192. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58468-4_165

7. Brown, K.A.: MODEL, GUESS, CHECK: wordle as a primer on active learning
for materials research. NPJ Comput. Mater. 8(97), 1–3 (2022)

8. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_16

9. Downey, A.B.: The Little Book of Semaphores, 2nd edn. The Ins and Outs of
Concurrency Control and Common Mistakes. Createspace (2009)

10. Eriksen, A., et al.: UPPAAL stratego for intelligent traffic lights. In: 12th ITS
European Congress. ERTICO - ITS Europe, 2017. 12th ITS European Congress:
ITS Beyond Borders, 19–22 June 2017 (2017)

11. Gebremichael, B., Vaandrager, F.W., Zhang, M.: Analysis of the Zeroconf protocol
using UPPAAL. In: Min, S.L., Yi, W. (eds.) Proceedings of the 6th ACM & IEEE
International Conference on Embedded Software, EMSOFT 2006, Seoul, Korea,
22–25 October 2006, pp. 242–251. ACM (2006)

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/10722167_19
https://doi.org/10.1007/10722167_19
https://doi.org/10.1007/3-540-61474-5_73
https://doi.org/10.1007/3-540-58468-4_165
https://doi.org/10.1007/3-540-58468-4_165
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16

304 P. G. Jensen et al.

12. Goorden, M.A., Larsen, K.G., Nielsen, J.E., Nielsen, T.D., Rasmussen, M.R., Srba,
J.: Learning safe and optimal control strategies for storm water detention ponds.
In: Jungers, R.M., Ozay, N., Abate, A. (eds.) 7th IFAC Conference on Analysis and
Design of Hybrid Systems, ADHS 2021. IFAC-PapersOnLine, Brussels, Belgium,
7–9 July 2021, vol. 54, pp. 13–18. Elsevier (2021)

13. Hendriks, M., Behrmann, G., Larsen, K., Niebert, P., Vaandrager, F.: Adding sym-
metry reduction to Uppaal. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003.
LNCS, vol. 2791, pp. 46–59. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-40903-8_5

14. Hendriks, M., van den Nieuwelaar, B., Vaandrager, F.W.: Model checker aided
design of a controller for a wafer scanner. Int. J. Softw. Tools Technol. Transf.
8(6), 633–647 (2006)

15. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, 27–30 July 1996, pp. 278–292. IEEE Computer Society (1996)

16. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 189–203. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45319-9_14

17. Igna, G., et al.: Formal modeling and scheduling of datapaths of digital document
printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
170–187. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-
5_13

18. Igna, G., Vaandrager, F.: Verification of printer datapaths using timed automata.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 412–423.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0_38

19. Jaeger, M., Jensen, P.G., Guldstrand Larsen, K., Legay, A., Sedwards, S.,
Taankvist, J.H.: Teaching stratego to play ball: optimal synthesis for continuous
space MDPs. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 81–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3_5

20. Jensen, P.G., Larsen, K.G., Mikucionis, M.: Artefact for “Playing Wordle with
Uppaal Stratego”, June 2022. https://doi.org/10.5281/zenodo.6703959

21. Jensen, P.G., Larsen, K.G., Srba, J.: Real-time strategy synthesis for timed-arc
Petri net games via discretization. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016.
LNCS, vol. 9641, pp. 129–146. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32582-8_9

22. Karra, S.L., Larsen, K.G., Lorber, F., Srba, J.: Safe and time-optimal control
for railway games. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.)
RSSRail 2019. LNCS, vol. 11495, pp. 106–122. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-18744-6_7

23. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6_17

24. Lokshtanov, D., Subercaseaux, B.: Wordle is NP-hard (2022)
25. Rosenbaum, W.: Finding a winning strategy for wordle is NP-complete (2022)
26. Schuts, M., Zhu, F., Heidarian, F., Vaandrager, F.W.: Modelling clock synchroniza-

tion in the chess gMAC WSN protocol. In: Andova, S., et al. (eds.) Proceedings
First Workshop on Quantitative Formal Methods: Theory and Applications, QFM

https://doi.org/10.1007/978-3-540-40903-8_5
https://doi.org/10.1007/978-3-540-40903-8_5
https://doi.org/10.1007/3-540-45319-9_14
https://doi.org/10.1007/3-540-45319-9_14
https://doi.org/10.1007/978-3-540-85778-5_13
https://doi.org/10.1007/978-3-540-85778-5_13
https://doi.org/10.1007/978-3-642-16561-0_38
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.5281/zenodo.6703959
https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.1007/978-3-030-18744-6_7
https://doi.org/10.1007/978-3-030-18744-6_7
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17

Playing Wordle with Uppaal Stratego 305

2009, EPTCS. Eindhoven, The Netherlands, 3rd November 2009, vol. 13, pp. 41–54
(2009)

27. Vaandrager, F.: A first introduction to Uppaal. Deliverable no.: D5. 12 Title of
Deliverable: Industrial Handbook, vol. 18 (2011)

28. Vaandrager, F.W., de Groot, A.: Analysis of a biphase mark protocol with Uppaal
and PVS. Formal Aspects Comput. 18(4), 433–458 (2006)

29. Wikipedia. Wordle – Wikipedia, the free encyclopedia (2022). http://en.wikipedia.
org/w/index.php?title=Wordle&oldid=1093753215. Accessed 19 June 2022

http://en.wikipedia.org/w/index.php?title=Wordle&oldid=1093753215
http://en.wikipedia.org/w/index.php?title=Wordle&oldid=1093753215

Using the Parallel ATerm Library
for Parallel Model Checking and State

Space Generation

Jan Friso Groote(B) , Kevin H. J. Jilissen , Maurice Laveaux ,
P. H. M. van Spaendonck , and Tim A. C. Willemse

Department of Mathematics and Computer Science, Eindhoven University
of Technology, Eindhoven, The Netherlands

{J.F.Groote,M.Laveaux,P.H.M.v.Spaendonck,T.A.C.Willemse}@tue.nl,
K.H.J.Jilissen@student.tue.nl

Abstract. Process algebras are used to study the behaviour of paral-
lel systems. The mCRL2 toolset has been designed to analyse process
algebraic models of such systems. Given that almost any contemporary
desktop computer has multiple processors on board it seems natural that
a toolset to analyse parallel behaviour now also employs parallelism.

This paper gives a compact account of the recently developed parallel
term library [13]; terms are used to represent almost any main concept
in the mCRL2 toolset. It subsequently reports on how the library is used
to make parallel implementations of the generation of state spaces and
the instantiation of Parameterised Boolean Equation Systems (PBES).
We show that a gain of an order of magnitude is possible using parallel
processing on contemporary hardware.

Keywords: The mCRL2 toolset · A parallel ATerm library · Parallel
state space generation · Parallel model checking

1 Introduction

A long time ago, Frits Vaandrager1 was part of the European SPECS project.
The goal of the project was to make tools for various specification languages. The
‘brilliant’ idea was that instead of making n tools for m languages, which requires
m × n effort, it is far better to make an intermediate Common Representation
Language (CRL). Then it is only needed to translate the m languages to CRL,
and make n different tools for CRL. This would simplify matters a lot, as only
n + m effort would be required.

Some of the specification languages in existence were LOTOS [1], Chill [37],
SDL [36] and PSF [31], but the framework should be generic enough to “support
1 Henri Korver, Wan Fokkink and Jan Friso Groote participated also.

Partially supported by the projects 612.001.751 (NWO, AVVA) and 00795160 (TTW,
MASCOT).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 306–320, 2022.
https://doi.org/10.1007/978-3-031-15629-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_16&domain=pdf
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0002-4697-2011
http://orcid.org/0000-0001-8732-7580
http://orcid.org/0000-0002-9536-1524
http://orcid.org/0000-0003-3049-7962
https://doi.org/10.1007/978-3-031-15629-8_16

Using the Parallel ATerm Library for Parallel Model Checking 307

any software specification language to be invented”. The process specification
constructs and data types of these languages were very different, and as the
language CRL had to support them all, CRL became a draconic beast for which
the members of SPECS still carefully tried to define a full formal semantics.
But when the project went on, formulating the semantics became harder and
harder. Moreover, it became obvious that writing tools to support this Hydra was
an impossible task, making CRL unsuitable for the higher goals of the SPECS
project.

Taking the SPECS project very seriously, the conclusion was inevitable that
this was the wrong way to go. Hence, it was decided to define μCRL, a very
concise micro Common Specification Language. This language consisted of pro-
cess algebraic behavioural specifications and equational data types [16]. Later it
was succeeded by mCRL2 [14,15]. The essential differences between μCRL and
mCRL2 in the datatypes are that the latter made a distinction between construc-
tors and functions, allowed conditional equations, and added predefined data
types including functions, sets and bags. For processes the conditional operator
(μCRL: p � c � q) was replaced (mCRL2: c→p�q), multi-actions were introduced
as first class citizen allowing to replace the global communication function γ by
an operator ΓC . Also the semantics of time was changed, not to allow multi-
ple consecutive actions to take place at the same time. Later probabilities were
added to mCRL2.

In the early days, analysis of process specifications was performed by hand,
based on the axioms of process algebra and the equations of the data specifi-
cation [15,17]. But manual analysis for realistic systems is not doable as these
systems quickly become too sizeable. The software of the KidCom, a gaming
device targeted at girls, with a touchscreen and infrared communication was
modelled extensively [9]. The models stretched over dozens of pages, and clearly
tool support is essential to be able to check properties and get some confidence
in models of this size. Actually, by model based testing of KidCom software, it
was detected that the models contained unintended and unexpected deadlocks.
This was the direct reason to start with the μCRL/mCRL2 toolset.

The toolset initially focussed on generating a state space and reduce it mod-
ulo various process equivalences, and check simple properties such as deadlock
freedom or the presence or absence of certain actions. But it was realised that
this was not enough as there is a desire to verify more complex properties on
behaviour. This led to the development of the modal μ-calculus with time and
data. The question of whether a modal formula holds for a process is translated
to a Parameterised Boolean Equation System (PBES) [19–21,30]. Solving the
PBES answers this question.

There were several attempts to make the toolset parallel. Most notably, Jaco
van de Pol c.s., worked on distributed solutions to generate and reduce state
spaces on multiple computers [2,3]. The primary motivation was that the limit
of 4GByte imposed by 32-bits machines was circumvented and larger state spaces
could be generated using multiple computers.

The core of the toolset is the ATerm library [4] which provides functionality to
manipulate terms. Processes, data expressions, equations, states, modal formulas

308 J. F. Groote et al.

and PBESs are all stored as terms in memory. Virtually any operation in the
toolset consists of inspecting, creating and destroying terms. Therefore, a natural
approach to make the toolset parallel, is to make the ATerm library parallel.
There were a few attempts [10,11,22] to design the algorithmic ingredients where
intriguing wait free algorithms were developed. But the overhead of the necessary
parallel programming constructs, generally nullified the benefits of a few extra
processors, stopping any attempt to make the whole toolset parallel dead in its
tracks.

Still, giving the development of cramping more processors in a single com-
puter, and with increased hardware and software support for parallelism, it was
decided to try once again to make the ATerm library parallel. But the approach
differed from earlier attempts in the sense that no generic wait free algorithms
were developed, but a dedicated minimal protocol was developed that optimally
uses the hardware structure of modern computers [13]. This protocol is the
busy-forbidden mutual exclusion protocol that allows for shared- and exclusive
mutual access, and that is optimal if exclusive mutual access is rarely required.
The parallel ATerm library is built on top of this algorithm.

It is noteworthy that we designed the busy-forbidden protocol and the par-
allel ATerm library first in mCRL2 and proved their correctness using model
checking for finite parallel instances. This was very effective in the sense that we
neither spent time on endless debugging of faulty protocols, nor spent the, often
discouragingly large, effort in manually proving the correctness.

This paper sketches how with the availability of the parallel ATerm library
we managed to generate state spaces and verify modal formulas via PBESs in
parallel in a rather straightforward manner obtaining very substantial gains in
the time required to perform these tasks. As most data structures used for veri-
fication purposes in the toolset are naturally formulated as terms, the potential
for further parallelisation is tantamount.

2 ATerm Library

The ATerm library was developed by Paul Klint c.s. [4] to provide easy manip-
ulation of basic term data structures. This library was originally intended for
language workbenches to build translators between various languages. A pro-
gram in a language would essentially be represented as a term.

The original term format is quite unwieldy. We are using a more concise
variant:

Definition 2.1. Given an arbitrary set F of function symbols. A term is either
a 64-bit number n, or given terms t1, . . . , tn, a function symbol f applied to these
terms, denoted as f(t1, . . . , tn), or a list of these terms, denoted by [t1, . . . , tn].

Terms are stored in memory in a shared way. For function symbols f and
g, the term f(g, g) only contains one occurrence of g in memory. This has the
advantage that to determine whether two terms t and t′ are equal, it only needs
to be determined that t and t′ are stored at the same address in memory.

Using the Parallel ATerm Library for Parallel Model Checking 309

The operations on terms are the following:

– Inspect a term. If a term is a number, get this number. If a term has the
shape f(t1, . . . , tn), retrieve the function symbol or one of its arguments, and
if a term is a list, obtain its head or tail.

– Create a term. Given a value, a function symbol and/or sub-terms, create a
term of the shape n, f(t1, . . . , tn) or [t1, . . . , tn]. Due to maximal sharing only
a new term is created in memory, if this term was not already in existence.

– Compare terms. Check whether two terms are equal.
– Copy and move terms. Terms can be copied and moved to other memory

locations. Note that this means that only references to terms are copied and
moved. The terms themselves remain static in memory.

With the new term library the above operations can be carried out fully in par-
allel in one single term repository in which all terms that are in use are stored.
Terms that are not in use anymore, are garbage collected. For this term pro-
tection sets are used, as in the initial ATerm library. Each location in memory
where a term can be stored must be protected explicitly by putting this location
in a protection set. In languages such as C++ that use constructors and destruc-
tors this does not lead to any programming overhead. An alternative approach
is to protect terms using reference counting. Although this is widely used for
sequential ATerm libraries, this does not scale well in a parallel context.

When garbage collection is being carried out, it is not possible to create or
move terms. For this we use the busy-forbidden protocol [13], which is a mutual
exclusion protocol which allows for shared and exclusive access, in exactly the
same way as in a reader-writer lock. Garbage collection requires exclusive access
to the ATerm data structures, while creating, moving and copying requires shared
access. The busy-forbidden protocol is designed such that it is very efficient
to access the shared section and it is computationally expensive to access the
exclusive section. This is exactly what we need, as garbage collection occurs
rarely.

Inspecting and comparing terms can be performed without restriction, which
is a very nice feature of the ATerm structure. We want to stress that the new
term library has exactly the same interface as the sequential one, meaning that
all existing sequential software can use it without any extra effort.

The busy-forbidden protocol and the parallel ATerm library have been devel-
oped by first making models in mCRL2. These were model checked against the
desired mutual exclusion and liveness properties. We found no correctness issues
when implementing, making this way of working very effective and efficient,
indeed. This cannot be said about performance, which required a substantial
knowledge of modern processor and compiler technology, as well as some fid-
dling around, to get it within acceptable bounds.

3 State Space Generation

Generating a state space from a specification takes two steps. First an mCRL2
specification is transformed to a linear process specification [38]. In essence this

310 J. F. Groote et al.

boils down to eliminating parallel behaviour and transforming the processes to
a simple list of condition-action-effect triples.

Definition 3.1. A linear process equation is a process of the following form
[15]:

P (d) =
∑

i∈I

∑

ei:Ei

ci(d, ei) → ai(fi(d, ei))·P (gi(d, ei)).

The state of the process is represented by d, which in general consists of a
sequence of typed data variables. The set I is a finite index set, indicating that
for each i ∈ I there is a condition-action-effect triple, often referred to as a
summand. For each summand i and all values ei from a data domain Ei if
condition ci(d, ei) holds, then action ai(f(d, ei)) can be executed ending in the
state characterised by gi(d, ei). As a transition this can typically be written as

d
ai(fi(d,ei))−−−−−−−→ gi(d, ei).

A simple example of a linear process is a Boolean queue of size N that can
read and deliver Booleans.

P (q:List(B)) =
∑

b:B(#q < N) → read(b)·P (b�q) +
(q �≈ []) → deliver(rhead(q))·P (rtail(q)).

It has two summands, so the index set I has size 2. In the first summand the
condition is #q < N , asserting that list q is of length less than N . In the second
summand the sum operator is trivial and therefore left out.

The data types that are used in a specification are defined using conditional
equations. Term rewriters are used to evaluate or simplify a data expression, i.e.,
for a rewriter R and a term t the normal form of t is denoted as R(t). There are
several rewriters of which the most important are the just in time interpreting
rewriter (jitty) and the just in time compiling rewriter (jittyc). Just in time com-
pilation is a depth first rewriting strategy where rewriting of terms is postponed
as long as possible [35]. For instance in an expression if (ccond , ethen , eelse) the
condition is evaluated first, and the then- and else-part are only rewritten if they
are needed.

Generating a state space in parallel follows the straightforward description
in Algorithm 1. The algorithm explores the state space of a linear process P
with initial state einit and rewriter R. Note that each state is just a sequence of
data expressions, or more precisely a balanced tree of data expressions. These
balanced trees are ATerms, which are maximally shared, leading to a very small
memory footprint to store the states.

There are two main data structures globally accessible by all threads. The
set discovered contains all states that have been detected by the algorithm. The
set todo contains those states in discovered of which the outgoing transitions
have not yet been explored. As it stands, only one thread can have access to the
sets discovered and todo at any time, and therefore they are surrounded with a
mutex variable, with lock and unlock operations.

Using the Parallel ATerm Library for Parallel Model Checking 311

(a) Intel i7; 4 processors; jitty

1 2 3 4
0

500

1,000

1,500

2,000

(b) Xeon 6136; 48 processors; jitty

0 8 16 24 32 40 48
0

500

1,000

1,500

2,000

(c) Intel i7; 4 processors; jittyc

1 2 3 4
0

200

400

(d) Xeon 6136; 48 processors; jittyc

0 8 16 24 32 40 48
0

200

400

Fig. 1. State space generation for the IEEE 1394 firewire protocol with 10 data ele-
ments. The x-axis shows the number of threads. The y-axis shows the required wall
clock time in seconds. At the left one Intel i7 and at the right Xeon 6136 processors are
used. The upper diagrams use the interpreting jitty rewriter. The lower use the compil-
ing jittyc rewriter without the compile time. The straight line shows the performance
of sequential state space generation.

With the basis data structures in place, any desired number of threads can
be started to explore the state space. Each thread has its own rewriter Rp to
evaluate conditions and data expressions. But note that all rewriters operate
on the common ATerm term repository. Every newly created data expression is
stored exactly once in this repository.

Each thread p obtains a non explored state (i.e., sequence/tree of data expres-
sions) ep from the set todo and then uses the linear process P and the rewriter
Rp to calculate nextp containing all states reachable from ep. Note that the lin-
ear process P is also an ATerm, shared among all threads. Calculating nextp is
relatively time consuming and can be done by all threads in parallel. The new
transitions are reported, either to be inspected or stored, and the found states
are put in discovered and todo.

312 J. F. Groote et al.

Algorithm 1. GenerateStateSpace(P, einit , R)
init := R(einit)
discovered := {init}
todo := {init}
for all threads p do

create a rewriter Rp := R per thread
while not all other threads are asleep do

lock global data structures
while todo �= ∅ do

choose ep ∈ todo
todo := todo \ {ep}
unlock global data structures
nextp = {〈ai(Rp(fi(ep, ei)), Rp(gi(ep, ei)))〉 |
i ∈ I, ei : Ei Rp(ci(ep, ei)) = true}
for all 〈a, e′〉 ∈ nextp : ReportTransition(ep

a−→ e′)
lock global data structures
todo := todo ∪ ({e′ | 〈a, e′〉 ∈ nextp} \ discovered)
discovered := discovered ∪ {e′ | 〈a, e′〉 ∈ nextp}

end while
unlock global data structures
sleep shortly

end while
end for

The threads continue exploring until they find the set todo empty. In that
case they sleep for a short time, and recheck todo to find out whether states
became available in the mean time. If the state space exploration is done, this
means all processes will soon be sleeping. If more work needs to be done, the
sleeping threads will quickly rejoin the exploration fray.

The parallel state space exploration works remarkably well. We show exper-
iments on an iMac (27 in., 2017, 4.2Ghz Quad-Core Intel i7 7700K, clang 13)
and a multicore machine with 48 processors (Intel(R) Xeon(R) Gold 6136 CPU
@ 3.00GH, clang 10).

We observed that the nature of the explored process is very relevant for
the obtained performance. When there are only a few easy conditions in the
linear process, calculating nextp is relatively easy, and accessing the global data
structures becomes more of a bottleneck, hampering parallel progress. However,
we typically see the behaviour as depicted in Fig. 1, showing that more threads
lead to shorter state space generation time.

For the experiment we use the IEEE 1394 firewire protocol [28] with 10 data
elements, having 7.2M states and 16M transitions. For comparison, we also show
the time for sequential state space generation as a horizontal line, which uses
the same algorithm where the use of parallel safe guarding mechanisms such as
mutexes and the busy-forbidden protocol is switched off. We want to stress that
for the generation of this benchmark we do not use any optimisation features
available within the mCRL2 toolset, such as caching data or optimising the

Using the Parallel ATerm Library for Parallel Model Checking 313

structure of the linear process, which by itself can have a huge impact on the
exploration time and even the size of the state space. The reason is that including
optimisations in the benchmarks gives a less clear picture of what we are precisely
measuring. For the exploration of large state spaces, one should of course use
the tools with all effective optimisations and employ multiple processors.

Figure 1 clearly shows that having more processors available is beneficial, and
in many cases doubling the number of processors reduces generation time almost
by half. The compiling jittyc rewriter is much faster than jitty rewriter. The
relatively poorer parallel speedup when using the jittyc rewriter is most likely
due to increased contention in sequentially accessing the data structures todo
and discovered , which is a natural candidate to be investigated and improved
next.

4 Model Checking via Boolean Equation Systems

Most specifications give rise to state spaces that are too large and complex to
assess their correctness by means of simulation or a visual inspection. Instead,
the correctness of a specification can be established using model checking, a
technique that automatically and exhaustively scrutinises the state space and
assesses whether or not desired functional requirements of the specification hold
true. Such requirements are typically given as expressions of some temporal
logic; in mCRL2, the first-order modal μ-calculus [20] is used as a requirement
language.

In mCRL2, the model checking problem is converted to the problem of solving
a Parameterised Boolean Equation System (PBES) [21]. A PBES is obtained by
combining a linear process specification and a temporal formula into a single
system of fixed point equations; for details we refer to [15,20,34]. Formally, a
PBES is a system of fixed point equations of the following form:

(σ1X1(d1:D1) = φ1) . . . (σnXn(dn:Dn) = φn).

The left-hand side of each equation has a fixed point sign σi ∈ {μ, ν}, a unique
predicate variable Xi, and a (possibly empty) vector of data parameters di of
type Di; the length of this vector indicates the arity of the predicate variable.
Each right-hand side is a formula built from the usual first-order language con-
structs and predicate variable instantiations: predicate variables with expressions
as arguments. We only consider right-hand side formulae in which each predicate
variable instantiation occurs under an even number of negations, and all predi-
cate variable instantiations refer to predicate variables occurring at the left-hand
side of some equation in the PBES. Moreover, we assume that all (non-predicate)
variables that occur in the right-hand side of an equation are those that occur
in the data parameter list at the left-hand side of the equation or are bound in
a quantifier.

A PBES is said to be a Boolean Equation System (BES) exactly if the pred-
icate variables occurring at the left-hand side of an equation have arity 0, and

314 J. F. Groote et al.

all right-hand side formulae consist only of conjunctions, disjunctions, constants
true and false, and (0-arity) predicate variables.

Consider the following requirement for the linear process modelling the finite
queue of Sect. 3, asserting that invariantly, every Boolean value b that is added
to the queue is inevitably delivered:

νY. ([true]Y ∧ ∀b:B.[read(b)]μZ. ([¬deliver(b)]Z ∧ 〈true〉true)).
Note that this requirement holds true, simply because once the queue is full,
the only option is to deliver the values stored in the queue. The PBES that is
obtained by translating the linear process modelling the finite queue and the
above requirement is as follows:

(νȲ (q:List(B)) = (∀b:B. (#q < N) ⇒ Ȳ (b�q))
∧ (q �≈ [] ⇒ Ȳ (rtail(q)))
∧ (∀b:B. (#q < N) ⇒ Z̄(b�q, b))),

(μZ̄(q:List(B), b:B) = (∀b′:B. (#q < N) ⇒ Z̄(b′�q, b))
∧ ((q �≈ [] ∧ b �≈ rhead(q)) ⇒ Z̄(rtail(q), b)))
∧ (#q < N ∨ q �= []).

The linear process X(q) satisfies the above requirement if and only if the solution
to Ȳ (q) is true.

Solving a PBES, and thereby the encoded model checking problem, can be
done in many ways, but a straightforward one proceeds in two steps: (1) extract-
ing a (representation of a) BES from the PBES, and (2) solving the resulting
BES. The first step is analogous to exploring a state space from a linear process
specification, see [8,34]; for the second step, a variety of algorithms are avail-
able, ranging from Gauß elimination [29] and proof systems [26] to translating
it to the problem of parity game solving using one of the many algorithms for
this problem [5,12,23,40]. Other techniques for solving a PBES include sym-
bolic approximations [20], SMT solving fragments [25,32], quotienting [33] and
pattern matching [21]; these techniques do not require extracting a BES from a
PBES.

We use the example PBES to illustrate the extraction of a BES from a PBES.
Assume, for the sake of argument, that N > 0 and that we are interested in the
truth value of Ȳ ([]). Filling in the value [] for parameter q in the right-hand
side formula associated with the equation of Ȳ , and subsequently rewriting the
resulting expression, yields the following Boolean equation for Ȳ ([]):

νȲ ([]) = Ȳ ([false]) ∧ Ȳ ([true]) ∧ Z̄([false], false) ∧ Z̄([true], true)

This means that the truth value of Ȳ ([]) depends on the truth values of Ȳ ([false]),
Ȳ ([true]), Z̄([false], false) and Z̄([true], true). In order to compute the truth
value of Ȳ ([]), the extraction procedure must therefore also compute the Boolean
equations for Ȳ ([false]), Ȳ ([true]), and so on, until all dependencies have been
computed.

We represent the Boolean equations extracted from a PBES as a structure
graph [24]. See Fig. 2 for the fragment of the structure graph representing the

Using the Parallel ATerm Library for Parallel Model Checking 315

equation above. Apart from the dependencies between the predicate variables
(and their arguments), these graphs also record whether a given (sub)formula is
conjunctive or disjunctive (by annotating vertices with � or �, respectively).
Moreover, whether equations are least or greatest fixed point equations is
recorded by annotating vertices with a number encoding the alternation depth
of the associated equation. This information suffices to recreate the essence of a
Boolean equation system from a structure graph.

Ȳ ([])
0
�

Ȳ ([true])
0
� Z̄([false], false)

1
�Ȳ ([false])

0
� Z̄([true], true)

1
�

Fig. 2. Example of part of a structure graph representing a Boolean equation resulting
from an instantiation of a PBES.

In some cases, on-the-fly solving the BES while it is being extracted from a
PBES can significantly speed-up the entire process by preventing the exploration
of many unnecessary equations [27]. When the solution is not as expected (for
instance, a requirement which was expected to hold true of a system turns out
not to hold), a counterexample can be extracted using a proof graph [7] of the
PBES, see [39]. A counterexample, and, dually, a witness, is a subgraph of the
linear process specification that allows for reconstructing the solution to the
original PBES. This notion of counterexample is based on [6].

The algorithm for extracting (a structure graph representation of) a BES
from a PBES is, as the above example suggests, essentially the same as the algo-
rithm of Sect. 3 for extracting a transition system from a linear process specifi-
cation. The main difference is that in this setting, the “successor states” are the
instantiated predicate variables occurring in a formula ϕ which are extracted
from ϕ using the function occ(ϕ).

Parallelism can be used in a similar way to speed up the entire process, see
Algorithm 2. This algorithm takes a PBES E as input, along with a designated
predicate variable Xinit and argument einit which we assume to be a closed
expression, and a data rewriter R. For ease of notation, we assume that each
equation in E is of the form (σiXi(di:Di) = ϕi). As in Algorithm 1 we use the
subscript p to stress that certain variables are local for the thread p.

To illustrate the performance gains of Algorithm 2, we show the performance
of our implementation on the problem of deadlock detection in the IEEE 1394
firewire protocol we also considered in the previous section. Absence of deadlock
is expressed in the first-order modal μ-calculus by the formula νX.([true]X ∧
〈true〉true). Extracting the BES from the PBES is the most time-consuming
part in solving the PBES that encodes this problem. As can be seen, parallelism
speeds-up the entire process significantly, see Fig. 3.

316 J. F. Groote et al.

(a) Intel i7; 4 processors; jitty

1 2 3 4
0

1,000

2,000

3,000

4,000

(b) Xeon 6136; 48 processors; jitty

0 8 16 24 32 40 48
0

1,000

2,000

3,000

4,000

(c) Intel i7; 4 processors; jittyc

1 2 3 4
0

500

1,000

1,500

2,000

(d) Xeon 6136; 48 processors; jittyc

0 8 16 24 32 40 48
0

500

1,000

1,500

2,000

Fig. 3. Solving a deadlock freedom formula on the IEEE 1394 firewire protocol with
10 data elements. The x-axis shows the number of threads. The y-axis shows the
required wall clock time in seconds. At the left the Intel i7 and at the right Xeon 6136
processors are used. The upper diagrams use the interpreting jitty rewriter. The lower
uses the compiling jittyc rewriter without the compile time. The straight line shows
the performance of sequential formula solving.

But we also observe that especially when using the compiling jittyc rewriter,
performance deteriorates when the number of of threads exceeds 16. With so
many PBES equations being processed in parallel, the bottleneck becomes to
maintain the data structures todo and discovered , which are accessed in a mutual
exclusive way. Especially, when a thread is halted when passing a lock, it tends
to use a lot of additional computational time, for instance to reload its data back
in the cache when it can continue processing.

Using the Parallel ATerm Library for Parallel Model Checking 317

Algorithm 2. InstantiateGraph(E , Xinit(einit), R)
init := R(Xinit(einit))
todo := {init}
discovered := {init}
create an empty structure graph G
for all threads p do

create a rewriter Rp := R per thread
while not all other threads are asleep do

lock global data structures
while todo �= ∅ do

choose Xk(ep) ∈ todo
todo := todo \ {Xk(ep)}
unlock global data structures
ψp := Rp(ϕk[dk := ep])
lock global data structures
integrate equation σkXk(ep) = ψp in structure graph G
todo := todo ∪ (occ(ψp) \ discovered)
discovered := discovered ∪ occ(ψp)

end while
unlock global data structures
sleep shortly

end while
end for
solve BES represented by G

5 Conclusion

We saw that the availability of a parallel ATerm library makes it possible to
implement the parallel generation of state spaces and the parallel instantiation
of Parameterised Boolean Equation Systems in a pretty straightforward way. But
the parallel term library is so versatile that it can easily be used to make parallel
implementations of other structures such as binary decision diagrams. These
are widely used, for instance in our symbolic state space generation tools [27].
Other potential application are parallel confluence checking [18] or the parallel
elimination of constant parameters in linear processes and PBESs, both of which
can be quite time consuming operations.

References

1. ISO 8807:1989. Information processing systems - Open Systems Interconnection
- LOTOS - A formal description technique based on the temporal ordering of
observational behaviour (1989). ISO/IECJTC1/SC7

2. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state space generation. Electron. Notes Theor. Comput. Sci. 198(1), 17–32 (2008)

318 J. F. Groote et al.

3. Blom, S., van de Pol, J.: Distributed branching bisimulation minimization by induc-
tive signatures. In: Brim, L., van de Pol, J. (eds.) Proceedings 8th International
Workshop on Parallel and Distributed Methods in verifiCation, PDMC 2009, Eind-
hoven, The Netherlands, 4th November 2009, volume 14 of EPTCS, pp. 32–46
(2009)

4. van den Brand, M.G., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Softw. Pract. Experience 30(3), 259–291 (2000)

5. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC, pp. 252–263. ACM (2017)

6. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised Boolean
equation systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 470–484. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40184-8 33

7. Cranen, S., Luttik, B., Willemse, T.A.: Evidence for fixpoint logic. In: CSL, Volume
41 of LIPIcs, pp. 78–93 (2015). Schloss Dagstuhl - Leibniz-Zentrum für Informatik

8. van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised
Boolean equation systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H.
(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 440–454. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85762-4 30

9. Engel, A.J.P.M., Feijs, L.M.G., Groote, J.F., van de Pol, J.C., Springintveld, J.:
Specification, design and simulation of services and protocols for a PDA using the
infra red medium. Technical report RWB-510-re-95012, Information and Software
Technology, Philips research. confidential (1995)

10. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with open
addressing. Distrib. Comput. 18(1), 21–42 (2005). https://doi.org/10.1007/s00446-
004-0115-2

11. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free parallel and concurrent garbage
collection by mark&sweep. Sci. Comput. Program. 64(3), 341–374 (2007)

12. Gazda, M., Willemse, T.A.: Zielonka’s recursive algorithm: dull, weak and solitaire
games and tighter bounds. In: GandALF, Volume 119 of EPTCS, pp. 7–20 (2013)

13. Groote, J.F., Laveaux, M., van Spaendonck, P.H.M.: A thread-safe term library.
arXiv preprint arXiv:2111.02706 (2021)

14. Groote, J.F., Mathijssen, A., Van Weerdenburg, M., Usenko, Y.: From μCRL to
mCRL2: motivation and outline. Electron. Notes Theor. Comput. Sci. 162, 191–
196 (2006)

15. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

16. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. Technical report
CS-R9076, CWI, Amsterdam (1990)

17. Groote, J.F., Ponse, A.: Proof theory for μCRL: a language for processes with data.
In: Andrews, D.J., Groote, J.F., Middelburg, C.A. (eds.) Semantics of Specification
Languages (SoSL). WC, pp. 232–251. Springer, London (1994). https://doi.org/10.
1007/978-1-4471-3229-5 13

18. Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theor. Comput.
Sci. 170(1–2), 47–81 (1996)

19. Groote, J.F., Willemse, T.A.C.: A checker for modal formulae for processes with
data. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2003. LNCS, vol. 3188, pp. 223–239. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30101-1 10

https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-540-85762-4_30
https://doi.org/10.1007/s00446-004-0115-2
https://doi.org/10.1007/s00446-004-0115-2
http://arxiv.org/abs/2111.02706
https://doi.org/10.1007/978-1-4471-3229-5_13
https://doi.org/10.1007/978-1-4471-3229-5_13
https://doi.org/10.1007/978-3-540-30101-1_10
https://doi.org/10.1007/978-3-540-30101-1_10

Using the Parallel ATerm Library for Parallel Model Checking 319

20. Groote, J.F., Willemse, T.A.: Model-checking processes with data. Sci. Comput.
Program. 56(3), 251–273 (2005)

21. Groote, J.F., Willemse, T.A.: Parameterised Boolean equation systems. Theor.
Comput. Sci. 343(3), 332–369 (2005)

22. Hesselink, W.H., Groote, J.F.: Wait-free concurrent memory management by create
and read until deletion (carud). Distrib. Comput. 14(1), 31–39 (2001). https://doi.
org/10.1007/PL00008924

23. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3 24

24. Keiren, J.J., Reniers, M.A., Willemse, T.A.: Structural analysis of Boolean equa-
tion systems. ACM Trans. Comput. Logic (TOCL) 13(1), 1–35 (2012)

25. Koolen, R.P.J., Willemse, T.A.C., Zantema, H.: Using SMT for solving fragments
of parameterised Boolean equation systems. In: Finkbeiner, B., Pu, G., Zhang, L.
(eds.) ATVA 2015. LNCS, vol. 9364, pp. 14–30. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24953-7 3

26. Larsen, K.G.: Efficient local correctness checking. In: von Bochmann, G., Probst,
D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 30–43. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-56496-9 4

27. Laveaux, M., Wesselink, W., Willemse, T.A.C.: On-the-fly solving for symbolic
parity games. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. Lecture Notes in
Computer Science, vol. 13244, pp. 137–155. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99527-0 8

28. Luttik., B.: Description and formal specification of the link layer of P1394. In:
International Workshop on Applied Formal Methods in System Design, pp. 43–56
(1997)

29. Mader, A.: Verification of modal properties using Boolean equation systems. Ph.D.
thesis, Technical University Munich (1997)

30. Mateescu, R.: Vérification des propriétés temporelles des programmes parallèles.
Ph.D thesis, Institut National Polytechnique de Grenoble (1998)

31. Mauw, S., Veltink, G.: A process specification formalism. Fundamenta Informaticae
13, 85–139 (1990)

32. Nagae, Y., Sakai, M.: Reduced dependency spaces for existential parameterised
Boolean equation systems (2018). arXiv preprint arXiv:1802.06496

33. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving parameterised boolean equation
systems with infinite data through quotienting. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 216–236. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7 11

34. Ploeger, B., Wesselink, J.W., Willemse, T.A.: Verification of reactive systems via
instantiation of parameterised Boolean equation systems. Inf. Comput. 209(4),
637–663 (2011)

35. Pol, J.: JITty: a rewriter with strategy annotations. In: Tison, S. (ed.) RTA 2002.
LNCS, vol. 2378, pp. 367–370. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45610-4 26

36. Rockström, A., Saracco, R.: SDL-CCITT specification and description language.
IEEE Trans. Commun. 30(6), 1310–1318 (1982)

37. ITU-T Telecommunication standardisation sector of ITU. CHILL - The ITU-T
programming language. ITU-T recommendation Z.200. Technical report, Interna-
tional Telecommunication Union (1999)

https://doi.org/10.1007/PL00008924
https://doi.org/10.1007/PL00008924
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1007/978-3-319-24953-7_3
https://doi.org/10.1007/978-3-319-24953-7_3
https://doi.org/10.1007/3-540-56496-9_4
https://doi.org/10.1007/978-3-030-99527-0_8
https://doi.org/10.1007/978-3-030-99527-0_8
http://arxiv.org/abs/1802.06496
https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1007/3-540-45610-4_26
https://doi.org/10.1007/3-540-45610-4_26

320 J. F. Groote et al.

38. Usenko, Y.: Linearisation in μCRL. Ph. D thesis, Eindhoven University of Tech-
nology (2002)

39. Wesselink, W., Willemse, T.A.C.: Evidence extraction from parameterised Boolean
equation systems. In ARQNL@IJCAR, volume 2095 of CEUR Workshop Proceed-
ings, pp. 86–100. CEUR-WS.org (2018)

40. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

Active Automata Learning as
Black-Box Search and Lazy Partition Refinement

Falk Howar(B) and Bernhard Steffen

TU Dortmund University, Dortmund, Germany
{falk.howar,bernhard.steffen}@tu-dortmund.de

Abstract. We present a unifying formalization of active automata learn-
ing algorithms in the MAT model, including a new, efficient, and sim-
ple technique for the analysis of counterexamples during learning: Lλ

is the first active automata learning algorithm that does not add sub-
strings of counterexamples to the underlying data structure for obser-
vations but instead performs black-box search and partition refinement.
We analyze the worst case complexity in terms of membership queries
and equivalence queries and evaluate the presented learning algorithm
on benchmark instances from the Automata Wiki, comparing its per-
formance against efficient implementations of some learning algorithms
from LearnLib.

Keywords: Model Learning · Active Automata Learning · Minimally Adequate
Teacher

1 Introduction

Active automata learning has gained a lot of traction as a formal analysis method
for black-box models in the previous decade [19]. We provide a detailed account
of the first half of the decade in a dedicated survey paper [8]. The second half
of the decade saw extensions to new automata models, e.g. to symbolic au-
tomata [4] and one-timer automata [20], applications, e.g., in model checking
network protocols [5], and algorithmic advances, e.g., an SMT-based learning
algorithm [17]. We cannot do the development of the field adequate justice in a
couple of paragraphs, and hence will not even attempt to.

What has remained elusive for a long time is a simple and generic formaliza-
tion of active automata learning and a lower bound result. Frits Vaandrager and
coauthors have recently presented active automata learning in the framework of
apartness [21], providing a nice formalization of the long established intuition
that active automata learning is about distinguishing states.

We continue in this vein and show that it is sufficient to remember which
states to distinguish while disregarding the concrete evidence for their apartness:
In this paper on the occasion of Frits Vaandrager’s 60th birthday, we present a
unifying formalization of active automata learning algorithms in the MAT model
for finite state acceptors, Moore machines, and Mealy machines and develop a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 321–338, 2022.
https://doi.org/10.1007/978-3-031-15629-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_17

322 F. Howar and B. Steffen

new, efficient, and simple technique for the analysis of counterexamples during
learning. The Lλ (λ for lazy) algorithm is—to the best of our knowledge—
the first active automata learning algorithm that does not add sub-strings of
counterexamples to the underlying data structure for observations but instead
performs black-box search and lazy partition refinement, based on information
extracted from a counterexample.

We establish the correctness of the presented framework in a series of straight-
forward lemmas. The presented proofs do not rely on concrete underlying data
structures, which will hopefully facilitate easy adaptation of the algorithmic
ideas to other (richer) classes of models. We analyze the worst case complexity
in terms of membership queries and equivalence queries and evaluate the pre-
sented learning algorithm on benchmark instances from the Automata Wiki1,
comparing its performance against efficient implementations of some learning
algorithms from LearnLib [11]. We still cannot provide a lower bound but we
certainly hope that the Lλ is one step on the way to such a bound.

Outline. The remainder of the paper is structured as follows. We present a
unifying view on regular languages, finite state acceptors, and Mealy machines
in the next section, before recapitulating the MAT learning model and existing
learning algorithms in Sect. 3. Our main contribution, the Lλ learning algo-
rithm, is presented in Sect. 4 and demonstrated in Sect. 5. Results of the
performance evaluation are discussed in Sect. 6.

2 Regular Languages and Automata

We start with a brief unifying recapitulation of different finite automata models.
For some fix finite alphabet Σ, we usually use a to denote a symbol from that
alphabet, and u, v, w for words in Σ∗. For empty word ε, let Σ+ = Σ∗ \ {ε}.
We use symbols like words in concatenation uv (or u · v for emphasis) where
uv = u1 · · · um · v1 · · · vn for u = u1 · · · um and v = v1 · · · vn. Finally, we use u[i,j]

for 1 ≤ i ≤ j ≤ |u| as a shorthand for the sub-word ui · · · uj of u.

Definition 1. A Deterministic Finite Automaton (DFA) is a tuple 〈Q, q0, Σ, δ〉
where Q is a finite nonempty set of states, q0 ∈ Q is the initial state, Σ is a
finite alphabet, and δ : Q × Σ → Q is the transition function.

We extend δ to words in the natural way by defining δ(q, ε) = q for the empty
word ε and δ(q, ua) = δ(δ(q, u), a) for u ∈ Σ∗ and a ∈ Σ.

We can generally distinguish automata that associate output or acceptance
with states (i.e., finite state acceptors and Moore machines) from those that
associate output with transitions (i.e., Mealy machines).

Definition 2. A Moore machine is a tuple 〈Q, q0, Σ,Ω, δ, λ〉 where 〈Q, q0, Σ, δ〉
is a DFA, Ω is a finite set of outputs, and λ : Q → Ω is the state output function.

1 Automata Wiki: ru.nl and [13].

Active Automata Learning as Black-Box Search 323

A Moore machine M = 〈Q, q0, Σ,Ω, δ, λ〉 maps words w ∈ Σ∗ to outputs o ∈ Ω
through the semantic function S∗

A : Σ∗ → Ω, which we define as S∗
M =def λ ◦ δ.

Definition 3. A finite state acceptor (FSA) is a tuple 〈Q, q0, Σ, δ, F 〉 defining
a Moore machine 〈Q, q0, Σ, {0, 1}, δ, λ〉 in which λ : Q → {0, 1} marks the set of
accepting states (λ(q) = 1 iff q ∈ F).

An FSA F = 〈Q, q0, Σ, δ, λ〉 accepts a regular language LF ⊆ Σ∗: for w ∈ Σ∗

let w ∈ LF iff S∗
F (w) = 1, i.e., if δ(w) ∈ F .

Definition 4. A Mealy machine is a tuple 〈Q, q0, Σ,Ω, δ, λ〉 where 〈Q, q0, Σ, δ〉
is a DFA, Ω is a finite set of outputs, and λ : Q × Σ → Ω is the transition
output function.

A Mealy machine M = 〈Q, q0, Σ,Ω, δ, λ〉 maps words w ∈ Σ+ to outputs o ∈ Ω
through the semantic function S+

M : Σ+ → Ω, which we define as S+
M (ua) =def

λ(δ(u), a) for u ∈ Σ∗ and a ∈ Σ.

Residuals and Congruences. For some DFA A = 〈Q, q0, Σ, δ〉 and state q ∈
Q, the q-residual DFA A|q is the automaton 〈Q, q,Σ, δ〉, in which we make q
the initial state. The automaton A|q represents the behavior of A after reaching
state q.

The concept of residuals extends to regular languages and semantic functions:
For a Moore machine M = 〈Q, q0, Σ, {0, 1}, δ, λ〉 and some word u ∈ Σ∗, let
q = δ(u) and M |q with semantic function S∗

M |q. As S∗
M |q(w) = S∗

M (u · w) for
w ∈ Σ∗, we omit M |q and write u−1S∗

M for the residual semantic function of
S∗

M after u. We can then define a congruence relation ≡S on the set Σ∗ of words:
for words u, v ∈ Σ∗ let u ≡S v iff u−1S∗

M = v−1S∗
M . For regular languages, this

congruence is the well-known Nerode-relation [14]. For a Mealy machine M , we
can make an analogous construction using its semantic function S+

M and the set
of words Σ+ [18].

Canonical Automata. Congruence relations are the basis for constructing
canonical automata models. A semantic function S∗ can be represented as a
finite automaton if ≡S is of finite index. The canonical automaton for any such
S over some alphabet Σ is the automaton AS = 〈Q, q0, Σ, δ〉 with one state
in Q for every class of ≡S and q0 the state for ε. The transition function is
defined using the congruence as δ([u]S , a) = [ua]S for u ∈ Σ∗, a ∈ Σ, where
[u]S denotes the class of u in ≡S . For a semantic function S∗ : Σ∗ → Ω, the
canonical Moore machine MS (or FSA in the case of Ω = {0, 1}) is the au-
tomaton 〈Q, q0, Σ,Ω, δ, λ〉 with 〈Q, q0, Σ, δ〉 as above and λ([u]) =def S∗(u) for
u ∈ Σ∗. For a semantic function S+ : Σ∗ → Ω, the canonical Mealy ma-
chine MS is the automaton 〈Q, q0, Σ,Ω, δ, λ〉 with 〈Q, q0, Σ, δ〉 as above and
λ([u], a) =def S+(ua) for u ∈ Σ∗ and a ∈ Σ.

3 MAT Learning

Active automata learning [2] is concerned with the problem of inferring an au-
tomaton model for an unknown semantic function L over some alphabet Σ.

324 F. Howar and B. Steffen

Lλ

MQ: O(kn2 + n2log m)

IS: O(kn3 + n2m log m)

Kearns/Vazirani [12]
MQ: O(kn2 + n2m)

IS: O(kn2m + n2m2)

L∗ [2]
MQ: O(kn2m)

IS: O(kn2m2)

Rivest/Shapire [16],
Packs [7], L# [21]
MQ: O(kn2 + n log m)

IS: O(kn2m + nm log m)

Maler/Pnueli [15]
MQ: O(kn2m)

IS: O(kn2m2)

From
Observations

One Prefix
of CE

All Prefixes
of CE

From
Observations

One Suffix
of CE

All Suffixes
of CE

TTT [10]

Fig. 1. Active Automata Learning Algorithms. Cells (One Suffix of CE) and (One
Prefix of CE) contain more algorithms than shown. For (One Prefix of CE): complexities
pertain to Kearns/Vazirani not to cell. We compare number of membership queries
(MQ) and number of input symbols (IS).

MAT Model. Active learning is often formulated as a cooperative game be-
tween a learner and a teacher. The task of the learner is to learn a model of some
unknown semantic function L. The teacher assists the learner by answering two
kinds of queries:

Membership queries ask for the value of L for a single word w ∈ Σ∗. The
teacher answers these queries with L(w).

Equivalence queries ask if a candidate function, represented as a finite hy-
pothesis automaton H, is equal to L. If H is not equal to L, the teacher will
provide a counterexample: a word w for which H(w)
= L(w).

The teacher in this model is called a minimally adequate teacher (MAT) and the
learning model is hence often referred to as MAT learning.

Dana Angluin originally presented the MAT learning model along with a
first learning algorithm [2]. With the MAT learning model, she introduced an
abstraction that enabled the separation of concerns (constructing stable prelim-
inary models and checking the correctness of these models). This enabled an
algorithmic pattern that allowed the formulation and optimization of learning
algorithms. The L∗ learning algorithm for regular languages and corresponding
sequence of lemmas showing the correctness of the algorithms have served as
a basis for learning algorithms inferring more complex classes of concepts, e.g.,
symbolic automata [4] and register automata [1,9]. The L∗ algorithms and all
other MAT learning algorithms that have been discovered subsequently mimic
the construction of canonic automata, using a finite set Sp ⊂ Σ∗ of short prefixes

Active Automata Learning as Black-Box Search 325

for representing classes of ≡S and a set V ⊂ Σ∗ (resp. V ⊂ Σ+ for Mealy ma-
chines) of suffixes for distinguishing classes of ≡L: for all u, u′ ∈ Σ∗ with u
≡L u′

exists v ∈ Σ∗ (resp. v ∈ Σ+ for Mealy machines) with L(uv)
= L(u′v). Mem-
bership queries and equivalence queries are used for finding new short prefixes
and distinguishing suffixes.

All known active learning algorithms fall into one of two classes, as is shown
in Fig. 1: The first class comprises algorithms that search for new short pre-
fixes and construct new suffixes incrementally through observable inconsistencies
between residual semantic functions of prefixes [2,12], relying on the following
observation.

Proposition 1 (New short prefix [2,12]). Every counterexample w has a
prefix w′ for which w′ ≡H u for some u ∈ Sp while w′a
≡H ua for some a ∈ Σ,
proven by some v ∈ V for which L(w′av)
= L(uav).

In algorithms of this class, the word w′ is used as a new short prefix and a av
will subsequently (while refining the current hypothesis) be constructed as a new
suffix, documenting w′
≡H u.

The second group of algorithms searches for new suffixes and identifies new
short prefixes through corresponding observable differences (so-called unclosed-
ness) [7,15,16,18,21].

Proposition 2 (New suffix [16]). A counterexample w has a suffix v that
distinguishes two words ua ≡H u′ with u, u′ ∈ Sp and a ∈ Σ through L(uav)
=
L(u′v).

The suffix v of the counterexample is used as a new distinguishing suffix and ua
will subsequently become a new short prefix.

Algorithms in the first group produce a suffix-closed set of suffixes but are
prone to adding unnecessarily long prefixes of counterexamples as short prefixes.
Algorithms in the second group produce a prefix-closed set of short prefixes but
are generally vulnerable to using unnecessarily long distinguishing suffixes.

Both groups can be further sub-divided into algorithms that add one prefix
(or suffix) of a counterexample to the observations and ones that use all prefixes
and suffixes. As can be seen in Fig. 1, moving toward the left or to the top in
the groups, improves the worst-case number of membership queries and symbol
complexity of algorithms. We could further subdivide the left cell in the middle
row to distinguish by underlying data structure, which does not have an impact
on the worst case but in practice has a significant impact.

The TTT algorithm [10], though belonging to the second group, is the first
algorithm that produces a prefix-closed set of short prefixes and a suffix-closed
set of suffixes, albeit, at the expense of using long suffixes as preliminary distin-
guishing suffixes in cases where incremental construction of a new suffix is not
immediately possible.

The Lλ algorithm that we present in the next section extends upon ideas
from both classes of algorithms: it constructs a prefix-closed set of short prefixes
and a suffix-closed set of suffixes without any intermediate artifacts. It is thus
the first algorithm that belongs to the top left group in Fig. 1.

326 F. Howar and B. Steffen

begin
Sp ← Sp ∪ {w}
for wa ∈ ({w} · Σ) do

if B ∈ B and u ∈ Sp ∩ B with L(wa · v) = L(u · v) for all v ∈ VB then
B ← B ∪ {wa}

else
Let B̄ = {wa}
Let VB̄ s.t. for B ∈ B, u ∈ Sp ∩ B exists v ∈ VB̄ ∩ VB with
L(wa · v) �= L(u · v)

B ← B ∪ {B̄}
Expand(wa)

end

end

end

Procedure Expand(w).

4 The Lλ Algorithm

We present the Lλ learning algorithm in the unifying framework of semantic
functions and without using a concrete data structure. The idea of an abstract
data structure that unifies arguments for implementations based on observation
tables and for implementations based on discrimination trees is inspired by par-
tition refinement and was also used by Balcázar et al. [3] as a basis for their
unified overview of active automata learning algorithms for FSAs.

Abstract Data Structure. The learner maintains a prefix-closed set Sp ⊂ Σ∗

of words (so-called short prefixes) to represent equivalence classes of ≡S . In order
to mimic the definition of the transition function in the construction of the
canonic automaton, she will maintain a set U = Sp∪Sp ·Σ of prefixes that cover
transitions between equivalence classes. She also maintains a partitioning of U
into a pack of components B = {B0, B1, . . .}, i.e., such that U =def

⋃
B∈B(B),

ensuring that, every time she submits a hypothesis H to an equivalence query,
each component contains exactly one short prefix.

Two prefixes u, u′ ∈ U are equivalent w.r.t. B, denoted by u ≡B u′ iff they
are in the same component. For every component B, the learner maintains a set
VB of suffixes such that prefixes u, u′ ∈ B are not distinguished by VB , i.e., such
that S(uv) = S(u′v) for v ∈ VB. For u ∈ B and u
≡B u′, on the other hand, the
set VB contains at least one suffix v for which S(uv)
= S(u′v), distinguishing
[u] from [u′] in ≡S and the components of u and u′ in B. She initializes the
observation pack B with a single component Bε = {ε} and an empty set of
Sp = ∅. The initial set of suffixes V ε

B is initialized as {ε} when inferring Moore
machine models or finite state acceptors and as Σ when inferring Mealy machine
models—reflecting how residuals are defined for semantic functions L∗ and L+.

The learner performs the following two main operations, detailed in Proce-
dure Expand and Procedure Refine, on this data structure.

Active Automata Learning as Black-Box Search 327

begin
For o ∈ Ω let Bo = {w ∈ B | L(w · v) = o}
B ← (B \ B) ∪ {Bo �= ∅ | o ∈ Ω}
VBo = VB ∪ {v} for all new components and discard of VB

if Bo ∩ Sp = ∅ for a new component then
Expand(u) for some u ∈ Bo

end

end

Procedure Refine(B, v).

Expand. Similar to a search on the states of an automaton, the learner will
expand the set Sp of short prefixes with a word u from the set U \ Sp of
prefixes whenever she can prove that u belongs to an equivalence class of ≡S

which is not yet represented in Sp. The set U is extended accordingly and a
new set of suffixes is introduced in such a case.

Refine. Similar to partition refinement, the learner will refine a class B of B
whenever she finds that two short prefixes u′, u′′ ∈ B do not belong to
the same class of ≡S . This is the case if for some a ∈ Σ she has already
established that u′a
≡B u′′a. The learner can then identify a suffix v that
distinguishes u′a from u′′a and she uses av to distinguish u′ from u′′.

Conjectures and Equivalence Queries. At certain points during learning,
the learner computes a conjecture H = 〈Q, q0, Σ,Ω, δH, λH〉 where

– Q contains a state qB for every class B of B,
– q0 = qBε is the initial state,
– δH(qB , a) = qB′ for Sp ∩ B = {u}, a ∈ Σ, and B′ � ua,
– Ω is the set of observed outputs, and

in the case of an unknown semantic function L∗, the output function is defined as
λH(qB) = L∗(u) for Sp∩B = {u}. In the case of an unknown semantic function
L+, the output function is defined as λH(qB , a) = L+(ua) for Sp∩B = {u} and
a ∈ Σ.2

Conjectured automata are well-defined as they are only constructed when
every component contains exactly one short prefix as we will show below and
since ε is an element (resp. Σ is a subset) of every set of suffixes. The conjecture
H is then submitted to an equivalence query. In case H equals L, the teacher
acknowledges this and learning ends with the correct model. Otherwise, the
learner receives a counterexample w for which L(w)
= H(w).

Analyzing Counterexamples. Counterexamples are used to find prefixes in
the set U from equivalence classes of ≡S that are not represented in the set of
short prefixes yet. As long as the hypothesis is not equivalent to L, the set U

2 The Lλ algorithm may (where possible) use its underlying data structure for deter-
mining output values or resort to membership queries and a cache.

328 F. Howar and B. Steffen

begin
Bε = {ε}, B = {Bε}, VBε = {ε} (resp. VBε = ∅ for Mealy), and Sp = ∅
Expand(ε)
H ← Conjecture(Sp, B)
while find counterexample w ∈ Σ+ with H(w) �= L(w) do

C = {w}
while exists w ∈ C with H(w) �= L(w) do

// Analyze Counterexample
Let i s.t. w = w[1,i]av with H(ua · v) �= L(ua · v) for u ∈ As(w[1,i])

while H(u′ · v) = L(u′ · v) for all u′ ∈ As(w[1,i+1])
C ← C ∪ {uav, u′v}
Expand(ua)
// Lazy Refinement
for u, u′ ∈ Sp with u ≡B u′ but ua �≡B u′a for some a ∈ Σ
or L+(ua) �= L+(u′a) in the case of Mealy machines do

Let B 	 ua and v ∈ VB ∪ {ε} with L(ua · v) �= L(u′a · v)
Refine(B′, av) for B′ 	 u

end
H ← Conjecture(Sp, B)

end

end
Return H as final model

end

Algorithm 1: The abstract Lλ algorithm.

must contain a word ua ∈ B \ Sp such that for some suffix v ∈ Σ+ and a short
prefix u′ ∈ B ∩ Sp it holds that L(ua · v)
= L(u′ · v). The algorithms find such
a ua by binary search on the counterexample and adds ua to the set of short
prefixes.

For longer v, adding ua to the short prefixes may not immediately lead
to an inconsistency with corresponding new suffix, and subsequent refinement.
Intuitively, more steps ahead may be required until the difference in behavior
becomes detectable with the current sets of distinguishing suffixes. In such cases,
multiple new short prefixes can be derived from a counterexample and one of
the two words uav and u′v is a guaranteed counterexamples until ua and u′ are
refined into two different components, as we will show.

The Learning Algorithm. The abstract Lλ algorithm is shown in Algorithm 1.
The algorithms starts by initializing the set of prefixes with ε, the access sequence
of the initial state. The set of suffixes is initialized to {ε} in the case of FSAs
or Moore machines, distinguishing states by their associated output, and to the
empty set in the case of Mealy machines. The observations are initialized by
expanding ε as the basis for an initial conjecture. Then the algorithm proceeds
by searching for counterexamples. As long as a counterexample w exists, the
algorithm initializes a set of candidate counterexamples with w and iterates the
following steps until exhausted. First, a new short prefix and two new candi-

Active Automata Learning as Black-Box Search 329

h0ε ∈ As(ε) h1 h2
. . . hk hl hm

w1 w2 wm−1 wm

As(w1)

As(w1 · w2) = As(u · w2) for u ∈ As(w1)

for
u′ ∈ As(w1 · · · wm−1)

H(u′wm) = L(u′wm)

Fig. 2. Replacing prefixes of a counterexamples with short prefixes. For semantic func-
tion L and hypothesis H it is guaranteed that for symbol wm of the counterexample
the conjecture is correct by the definition of the output function λ.

date counterexamples are generated from one of the candidate counterexamples.
Then, consistency of observations is checked. Inconsistent observations for two
short prefixes lead to a new suffix and refinement.

While the abstract Lλ algorithm can be presented without assuming details
about the underlying data structure, we have to specify special cases for inferring
Mealy machine models in two lines of the algorithm: when initializing the set of
suffixes, and when checking consistency. Since it is not guaranteed that a symbol
a ∈ Σ is in the set of suffixes, we have to add corresponding consistency checks.
On the other hand, this (to the best of our knowledge) manifests the first active
automata learning algorithm for Mealy machines that can use an observation
table as a data structure and does not add all alphabet symbols as suffixes to
the table.

Correctness and Complexity. We present technical details and arguments
for the correctness of the approach in the following two lemmas where we use
As(w) as a shorthand for the set B∩Sp of short prefixes in B ∈ B corresponding
to state qB = δH(w), reached by w in H.

Lemma 1. A counterexample w of length m has a prefix w1 . . . wi−1 with i < m
such that for some u ∈ As(w1 · · · wi) and it holds that

1. uwi+1 is not a short-prefix, i.e., uwi+1
∈ Sp, and
2. uwi+1 should become a short-prefix since uwi+1
≡S u′, as witnessed by

L(uwi+1 · wi+2 · · · wm)
= L(u′ · wi+2 · · · wm), for all u′ ∈ As(u · wi+1).

Proof. The argument is almost identical to the one presented by Rivest and
Schapire in their proof of the existence of a distinguishing suffix in a counterex-
ample [16]. The idea of the argument is visualized in Fig. 2. We analyze de-
compositions w = w[1,i] · w[i+1,m] of the counterexample where w[i,j] = wi · · · wj

for 0 ≤ i ≤ j ≤ m and with w[0,0] = ε. Since w is a counterexample, it must hold
that

L(ε · w[1,m]) = L(w)
= H(w) = L(u′ · w[m,m])

for all u′ ∈ As(w[1,m−1]). As a consequence, there must be some index 1 ≤ i < m
at which for some u ∈ As(w[0,i−1]) and all u′ ∈ As(w[0,i])

L(u · w[i,m])
= L(u′ · w[i+1,m]).

330 F. Howar and B. Steffen

The word uwi is obviously not a short-prefix but should be a short-prefix: the
stated inequality implies uwi
≡L u′ since u · w[i,m] = uwi · wi+1 · · · wm and
u′w[i+1,m] = u′ · wi+1 · · · wm. ��
Lemma 2. Analyzing a counterexample leads to refinement and after the anal-
ysis every component has one short prefix.

Proof. We perform a case analysis. A counterexample w leads to new word ua
at index i and witnesses uav, u′v for u′ ∈ As(ua). Suffix v proves that ua is not
≡L-equivalent to any u′. We can distinguish two basic cases:

1) Immediate Refinement. Short prefix ua leads to immediate refinement.
There is one short prefix per component.

2) No Immediate Refinement. If no refinement happens, then H does not
change and w is still counterexample. Still, there is progress: w cannot be
split again at index i since ua was added to Sp. Moreover, we obtain witnesses
uav, u′v, one of which will be a counterexample until ua and u′ are refined
into different components.

As a consequence, we have one access sequence per component after processing
a counterexample. ��

After the lemmas we have proven, correctness of Lλ is trivial: Every coun-
terexample will lead to at least one new short prefix for which it can be proven
that it is not ≡L-equivalent to any existing short prefix. Hypothesis construction
guarantees that H(w) = L(w) for ua ∈ U , that |As(ua)| = 1, and (at least for
the final model) that for u′ ∈ As(ua) it holds that ua ≡L u′—this generalizes
to Σ∗ or Σ+ by induction.

As for query complexity and symbol complexity, for a target L with k input
symbols, n states in the canonic automaton for L, and counterexamples of length
m or shorter Lλ uses O(kn) prefixes and O(n) suffixes in the observations. The
algorithm performs a binary search on counterexamples, and during processing
of counterexamples, components may have more than one access sequence, re-
quiring O(n) tests per analyzed index of the counterexample in the worst case.
This yields the following theorem.

Theorem 1. Algorithm Lλ learns L∗ with O(kn2+n2log(m)) membership queries
and O(n) equivalence queries. ��

Since words in the observations are of length in O(n), we obtain the following
corollary on the symbol complexity of Lλ.

Corollary 1. The symbol complexity of Algorithm Lλ is O(kn3 + n2m log(m)).
��

Comparing the obtained worst-case complexities with the results displayed in
Fig. 1, relying on refinements can increase the queries for analyzing coun-
terexamples in cases when refinement does not occur immediately. While we
construct such a case in the next section, we were not able to observe delayed

Active Automata Learning as Black-Box Search 331

1 0 0 0 1

0 0

a a a a
a

a

a
b

b

b

b b

b

b

Fig. 3. Canonical FSA of target language.

refinement in any of the experiments on models of real systems reported in
Sect. 6. On the other hand, the symbol complexity associated with observations
used for constructing hypothesis automata does not depend on the length of
counterexamples for Lλ, which can be observed in experiments.

5 Demonstration

For the sake of simplicity, we assume an observation table as a data structure in
the presentation of this demonstration example.3 Rows of an observation table
are labeled with prefixes from U , columns are labeled with suffixes. We use a
single big set V that distinguishes all components pairwisely. The cell in row
u and column v holds the value of S(u · v). We demonstrate how the learning
algorithm infers the canonical FSA for a target language shown in Fig. 3.

The learning algorithm starts by expanding ε, adding it to the set of short
prefixes (depicted as the upper set of rows in the table) and adds prefixes a
and b. As S(a · ε)
= S(ε · ε), prefix a becomes a short prefix as well and is
expanded by adding prefixes aa and ab. Now the observations become stable.
The corresponding observation table resulting hypothesis are shown in Fig. 4,
marked as Obs 1 and Hyp 1.

Now, letusassumethat thecounterexamplefindthecounterexample bbbabbaaa,
which is in the target language but not accepted by the hypothesis. The learner
discovers that she can split the counterexample as εb · bbabbaaa, which is still a
counterexample, but when she replaces prefix εb by its only access sequence a,
the word a · bbabbaaa is not a counterexample. Hence, she expands b and adds
words bbbabbaaa and abbabbaaa to the pool of potential counterexamples.

The expansion does not lead to a refinement. Another analysis of the coun-
terexample yields the split aa · aa, where short prefix a is one access sequence of
the prefix bbbabb of the counterexample. While aa · aa is still a counterexample,
none ob the words in {a, b} · {aa} are. Expanding aa (and the set of candidate
counterexamples) still does not lead to a refinement. The next analysis results
in the split aaa · a (aa now being one of the access sequences for the prefix
bbbabba) of the counterexample. Since none of the words in {a, b, aa} · {a} is a
3 A more efficient tree-based version of is used in the evaluation. Both variants are

implemented in LearnLib for reference.

332 F. Howar and B. Steffen

ε

ε 1
a 0

b 0
aa 0
ab 0

ε a a
a

a
a
a

ε 1 0 0 0
a 0 0 0 1
b 0 0 0 1
aa 0 0 1 1
aaa 0 1 1 1
aaaa 1 1 1 1

ba 0 0 1 1
bb 0 0 0 1
ab 0 0 0 1
aab 0 0 1 1
aaab 0 1 1 1
aaaaa 1 1 1 1
aaaab 1 1 1 1

ε a a
a

a
a
a

ba
a
a

bb
a
a
a

ε 1 0 0 0 1 1
a 0 0 0 1 1 1
b 0 0 0 1 1 0
aa 0 0 1 1 1 0
aaa 0 1 1 1 1 1
aab 0 0 0 1 0 1
aaaa 1 1 1 1 1 1

ba 0 0 1 1 1 0
bb 0 0 0 1 0 1
ab 0 0 0 1 1 1
aaba 0 0 1 1 1 0
aabb 1 0 0 0 1 1
aaab 0 1 1 1 1 1
aaaaa 1 1 1 1 1 1
aaaab 1 1 1 1 1 1

1 0
a, b

a

b

1 0 0 0 1

b b b a, b

a, b a a a

Obs 1: Obs 2: Obs 3:

Hyp 1:

Hyp 2:

Fig. 4. Observation table and hypothesis at time of first equivalence query (no. 1),
when bbbabbaaa is no longer a counterexample (no. 2), and final observation table
(no. 3).

counterexample, prefix aaa is expanded (along with the set of candidate coun-
terexamples), finally leading to a sequence of refinements, adding suffixes a, aa,
and aaa and generating components for aa, aaa and aaaa. The corresponding
observation table and hypothesis are shown as Obs 2 and Hyp 2 in Fig. 4.

At this point, the word bbbabbaaa stops being a counterexample but candi-
date word abbabbaaa has become a counterexample. Analyzing this new coun-
terexample, the learner splits it into aab · baaa, which is a counterexample (abba
has access sequence aa). For the next index aa · baaa is not a counterexample.
Expanding aab yields refinements, adding suffixes baaa and bbaaa, generating
the remaining components and resulting in observation table Obs 3, which is
equivalent to the canonical DFA.

We can observe the two particular features discussed in the previous sec-
tion. First: in a round of learning, all expansions eventually lead to refinements.
Second: when analyzing counterexamples, components may contain a growing
number of short prefixes until all refinements are performed.

6 Evaluation

We evaluate the performance of the presented algorithm in three series of ex-
periments on the benchmark set from the Automata Wiki [13]. We implemented

Active Automata Learning as Black-Box Search 333

four versions of the new algorithm in LearnLib, two based on an observation
table (for FSAs and for Mealy Machines), and two based on a discrimination
tree. We use the Mealy variants, denoted Lλ

DT and Lλ
Obs in our experiments

and compare these variants against Mealy variants of learning algorithms imple-
mented in LearnLib [11], namely TTT [10], Observation Packs [7], ADT [6],
Kearns/Vazirani [12], Rivest/Schapire [16], and L∗ [2].

In the first series of experiments, we evaluate all algorithms on the m106.dot
model from the Automata Wiki and vary the length of counterexamples, enabling
a basic comparison of algorithms of the different groups shown in Fig. 1. Coun-
terexamples are generated using a heuristic that tries to find counterexamples
of a certain length cannot be shortened trivially (i.e., such that prefixes of a
counterexample are not counterexamples).

In the second series, we compare the subset of the most efficient learning
algorithms (TTT, Observation Packs, and Lλ

DT) on several benchmarks instances
from the Automata Wiki, namely:

learnresult new Rand 500 10 − 15 MC fix.dot (R500),

mosquitto two client will retain.dot (Mosq),

OpenSSH.dot (SSH),

TCP Windows8 Server.dot (TCP),

m95.dot (M95).

As a third series of experiments, we reproduce the results presented by
Frits and his coauthors in their TACAS 2022 [21] paper and add the new Lλ

DT

learning algorithm to the analysis. We also replace Rivest and Schapire’s learning
algorithm by ObservationPacks to generate data on the effect of using adaptive
distinguishing sequences: The ADT algorithm, the first learning algorithm that
used adaptive distinguishing sequences [6], is algorithmically closest related to
ObservationPacks. This lets us compare the two pairs L#, L#

ADS and Observa-
tionPacks, ADT.

All experiments were computed on a 3, 2 GHz 6-Core Intel Core i7 Mac mini
(2018) with 32 GB of RAM. LearnLib is executed in a Java virtual machine
with 32 GB heap memory. We report averages and standard deviations from 10
executions of every experiment.

Figure 5 shows the results from the first series of experiments. We report
membership queries, equivalence queries, actual length of generated counterex-
amples, and number of input symbols used in membership queries.

The data shows that L∗ and the algorithm by Kearns and Vazirani are im-
pacted by the length of counterexamples with respect to membership queries
and input symbols. L∗ adds all prefixes of counterexamples to the observation
table. Kearns and Vazirani perform a linear forward search over a counterex-
ample. Moreover, we can observe that in relation to the other algorithms Lλ

DT ,
TTT, and ObservationPacks use virtually equally many membership queries and
input symbols (we take a closer look in the second series of experiments) and
that on this benchmark instance not adding all alphabet symbols to the set of

334 F. Howar and B. Steffen

1 10 20 50 100 200 400

105

106

107

Targeted Counterexample Length

M
em

b
er

sh
ip

Q
u
er

ie
s

Lλ
DT TTT

Packs K/V

Lλ
Obs R/S

L∗

1 10 20 50 100 200 400

106

107

108

109

Targeted Counterexample Length

In
p
u
t

S
y
m

b
o
ls

1 10 20 50 100 200 400
0

20

40

Targeted Counterexample Length

E
q
u
iv

a
le

n
ce

Q
u
er

ie
s

1 10 20 50 100 200 400
0

200

400

Targeted Counterexample Length

A
ct

u
a
l
C

e.
L
en

g
th

Fig. 5. Membership queries, input symbols used in membership queries, equivalence
queries, and actual length of generated counterexamples for learning m106.dot from
the Automata Wiki with different learning algorithms and different counterexample
lengths. L∗ did not terminate successfully in most cases for a targeted counterexample
length of 400.

suffixes leads to a significant reduction in membership queries and symbols for
Lλ

Obs compared to Rivest and Schapire’s algorithm.
For equivalence queries we observe that in our limited experiments all algo-

rithms are invariant to the length of counterexamples. The L∗ algorithm that

Active Automata Learning as Black-Box Search 335

R
5
0
0

M
o
sq

S
S
H

T
C

P

M
9
5

102

103

104
M

em
b
er

sh
ip

Q
u
er

ie
s

Lλ
DT

TTT

Packs

R
5
0
0

M
o
sq

S
S
H

T
C

P

M
9
5

104

105

In
p
u
t

S
y
m

b
o
ls

Fig. 6. Membership queries and input symbols for Lλ
DT , TTT , and ObservationPacks

on several systems from the Automata Wiki.

adds all prefixes of counterexamples to the observation table needs the fewest
number of equivalence queries, followed by Rivest and Schapire’s algorithm that
uses an observation table, too (and hence uses found distinguishing suffixes glob-
ally), and the Lλ

Obs algorithm, which uses an observation table but initializes the
set of suffixes as ∅, leading to more equivalence queries than the other two al-
gorithms require. Among the algorithms that are based on decision trees, the
algorithm of Kearns and Vazirani uses more equivalence than the other algo-
rithms consistently since it is the only algorithm that (in it’s original version)
will not analyze counterexamples exhaustively. The fact that ObservationPacks,
TTT, and Lλ

DT use virtually the same number of equivalence queries seems to
indicate that the additional witnesses used by Lλ

DT do not provide an advantage
on this benchmark instance.

The actual length of counterexamples shows that the target length rather
serves as an upper bound over the length of experiment—likely since it is
hard for our randomized implementation to find long counterexamples for early
(small) hypothesis models.

Figure 6 shows the results from the second series of experiments. We report
membership queries and number of input symbols used in membership queries
for Lλ

DT , TTT, and ObservationPacks on five benchmark instances from the
Automata Wiki for counterexamples of (targeted) length 100. ObservationPacks
and Lλ

DT use fewer membership queries than TTT, which exchanges long suf-
fixes during learning by shorter ones, resulting in additional queries (we observe
10% to 30% overhead compared to Lλ

DT). ObservationPacks in many cases uses
significantly fewer membership queries than the other two algorithms. This can
be explained by the fact that in LearnLib, in contrast to our presentation here,
Mealy machines semantics is modeled as Σ+ �→ Ω+ making long suffixes more
likely to distinguish many prefixes. Considering the number of input symbols,
the ObservationPacks algorithm is influenced most by long counterexamples as
the algorithm uses suffixes of counterexamples directly. Lλ

DT and TTT use a

336 F. Howar and B. Steffen

Models (ascending order of size)

103

104

To
ta

l i
np

ut
 s

ym
bo

ls
 a

nd
 r

es
et

s
(lo

g
sc

al
e)

Packs
TTT
L#
ADT
L#-ADS
Lλ

Fig. 7. Input Symbols and resets for Lλ
DT , TTT, ObservationPacks, ADT, L#, and

L#
ADS on experiments from TACAS 2022 [21].

significantly smaller amount of input symbols on most examples, with a visible
edge for Lλ

DT which (in contrast to TTT) does not rely on intermediate suffixes.
Figure 7 shows the results from the third series of experiments.4 The Lλ

DT

narrowly but consistently outperforms the other learning algorithms that do not
use adaptive distinguishing sequences. As in the second series of experiments, the
ObservationPacks performs worst since it uses long suffixes of counterexamples
in the observations. The two learning algorithms that use adaptive distinguishing
sequences improve significantly upon the corresponding variants without adap-
tive distinguishing sequences (ADT vs. ObservationPacks and L#

ADS vs. L#),
yielding the question if similar improvements could be realized for TTT and
Lλ

DT . A detailed account of the integration of distinguishing sequences is beyond
the scope of this paper. We refer readers to [21] instead.

7 Conclusion

We have presented the abstract Lλ learning algorithm along with four imple-
mentations (for finite state acceptors and Mealy machines, as well as based on
an observation table, and based on a decision tree). The defining characteris-
tic of the Lλ algorithm is that no sub-strings of counterexamples are used in

4 Replicating results from a recent paper by Frits and coauthors [21], we count input
symbols and resets instead of inputs symbols in this series.

Active Automata Learning as Black-Box Search 337

the algorithm’s main data structure, resulting in new worst-case complexities
for membership queries and input symbols. We show that, though the obtained
worst-case complexities are slightly worse than the lowest existing worst-case
complexities, the algorithm seems to outperform existing learning algorithms in
practice.

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.W.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 11

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Balcázar, J.L., Dı́az, J., Gavaldà, R.: Algorithms for learning finite automata from
queries: a unified view. In: Du, D.Z., Ko, K.I. (eds.) Advances in Algorithms.
Languages, and Complexity, pp. 53–72. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-1-4613-3394-4 2

4. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017, Part I. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54577-5 10

5. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdog-
mus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, 10–14
July 2017, pp. 142–151. ACM (2017)

6. Frohme, M.T.: Active automata learning with adaptive distinguishing sequences.
CoRR, abs/1902.01139 (2019)

7. Howar, F.: Active learning of interface programs. Ph.D. thesis, Dortmund Univer-
sity of Technology (2012)

8. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

9. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

10. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

11. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS, vol. 9206, pp. 487–495. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 32

12. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-1-4613-3394-4_2
https://doi.org/10.1007/978-1-4613-3394-4_2
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32

338 F. Howar and B. Steffen

13. Neider, D., Smetsers, R., Vaandrager, F.W., Kuppens, H.: Benchmarks for
automata learning and conformance testing. In: Margaria, T., Graf, S., Larsen,
K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?
LNCS, vol. 11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-22348-9 23

14. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–
544 (1958)

15. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

16. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

17. Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.W.: Model learning as a satisfia-
bility modulo theories problem. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77313-1 14

18. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

19. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)
20. Vaandrager, F.W., Bloem, R., Ebrahimi, M.: Learning mealy machines with one

timer. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA
2021. LNCS, vol. 12638, pp. 157–170. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-68195-1 13

21. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) TACAS
2022, Part I. LNCS, vol. 13243, pp. 223–243. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 12

https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12

A Reconstruction of Ewens’ Sampling Formula
via Lists of Coins

Bart Jacobs(B)

Institute for Computing and Information Sciences, Radboud University,
Nijmegen, The Netherlands

bart@cs.ru.nl

Abstract. This overview paper starts from an elementary fact about lists of num-
bers (coins) for which a simple arithmetical proof is lacking. The paper does
provide a proof, but via probabilistic reasoning, using iterations of probabilistic
functions (channels), or equivalently, using iteration of transitions in a proba-
bilistic automaton. The formulas involved capture mutations, with a rate param-
eter, as developed some fifty years ago in population biology by Warren Ewens.
Here, this formula is reconstructed, in a theoretical computer science setting, first
for lists and then also for multisets—like in the original work. The methods for
describing such mutations have wider significance, beyond biology, for instance
in machine learning, when the number of clusters in a classification problem may
grow.

1 Introduction

A good part of Frits Vaandrager’s academic work has involved probabilities, esp. in
automata, for testing and model checking, see e.g. [4,8,20]. Moreover, being a mathe-
matician by training, he appreciates formal arguments in computer science. Therefore,
hopefully, this paper is to his liking.

The starting point below is an elementary arithmetical result about sums, products
and factorials, see Theorem 2. A simple proof is lacking—as far as I know. A proof will
be provided, but it is not so simple. The nice thing about this proof, however, is that
it leads us into probabilistic territory, in particular, into an area that has been explored
some fifty years ago by researchers in population biology [10,11,18,19]. They looked at
the evolution of genes and sought to capture mutations of such genes via probabilistic
formulas. An important outcome is Ewens’ famous sampling formula. This work is
being rediscovered in computer science, esp. in machine learning, e.g. in (probabilistic)
clustering problems where the number of clusters is not fixed and may grow during
the analysis, via a form of mutation, using Dirichlet, Poisson-Dirichlet, or Pitman-Yor
processes, e.g. [9,21–23]. There is also a personal interest in the mathematical structures
underlying these mutations, see [15,16].

This paper has an expository nature and does not contain novel research results. Its
contribution lies in the way that it presents older results from mathematical biology in a

Dedicated to my dear colleague Frits Vaandrager, on the occasion of his 60th birthday.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 339–357, 2022.
https://doi.org/10.1007/978-3-031-15629-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_18&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_18

340 B. Jacobs

more modern setting of (theoretical) computer science, together with explicit proofs—
which are not always present in the original sources. The paper provides an elementary
account that leads via several generalisation steps to Ewens’ formula, in Proposition 14.
This account does not use genes as motivating example, but lists of coins. A key ques-
tion is how to transform a list of coins with sum N into lists with sum N + 1. This
may happen by incrementing the value of one of the coins in the list, or by adding a
coin with value one—which constitutes a mutation. Each of these transitions will have
a probability; these transitions will be iterated. This is the topic of Sect. 3.

In a next step the probabilities of mutations will be governed by a mutation rate
parameter. This extension is in Sect. 4. It makes the approach more general, but does
not fundamentally change the setting.

The lengths of lists of coins that sum to N varies from length 1, for the singleton list
〈N〉 with one coin of value N , to length N , for the list 〈1, . . . , 1〉 of coins with value 1.
Once there is a distribution on lists of coins, one can look at the distribution of lengths
of such lists. In this new distribution the so-called Stirling numbers (of the first kind)
show up. Moreover, this length is a sufficient statistic. Informally this means, that once
we know the length of lists, the mutation rate parameter becomes irrelevant. All this is
described in Sect. 5.

Ewens’ sampling formula assigns probabilities, not to lists, but to multisets of
numbers—called partitions, see [2,15]. Informally, a multiset is a subset in which ele-
ments may occur multiple time, or a list in which the order of elements is irrelevant.
There is a basic ‘accumulation’ function from lists to multisets. It is used in Sect. 6 to
produce Ewens’ distribution, via accumulation, from the coin list distribution. This is a
non-standard way to arrive at Ewens’ formula.

The paper uses a minimum of category theory, simply because category theory pro-
vides an appropriate language to capture the relevant phenomena—also in probability
theory. The required concepts will be explained along the way, in the form of ‘excur-
sions’.

2 The Challenge

Let N = {0, 1, 2, . . .} be the set of natural numbers, and N>0 = {1, 2, 3, . . .} ⊆ N

the set of non-negative/positive numbers. Let’s write L(N>0) =
(
N>0

)�
for the set of

finite lists of such positive numbers. I will use the sum and product of a list of numbers
in the obvious way:

sum
(〈n1, . . . , nk〉) := n1 + · · · + nk =

∑
i ni

prod
(〈n1, . . . , nk〉) := n1 · . . . · nk =

∏
i ni.

(1)

For a list � ∈ L(N>0) I will write ‖�‖ for the length, that is, for its number of elements.
Let’s look at the following issue. Suppose I have arbitrarily many coins for each

value i ∈ N. Given an ‘amount’ N ∈ N>0, I wish to consider the lists � ∈ L(N>0)
with sum(�) = N . Such a list is a sequence of coins that make up the amount N . For
instance for N = 4 we have the lists:

〈1, 1, 1, 1〉 〈1, 1, 2〉 〈1, 2, 1〉 〈2, 1, 1〉 〈2, 2〉 〈1, 3〉 〈3, 1〉 〈4〉. (2)

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 341

These lists are in the inverse image:

sum−1(N) := {� ∈ L(N>0) | sum(�) = N}.

Here is a first result. The proof is skipped and left as an (easy) exercise, as warming
up. Induction on N works.

Lemma 1. For N ∈ N>0, the subset sum−1(N) ⊆ L(N>0) has 2N−1 elements.

Indeed, in (2) we have 8 = 23 = 2N−1 lists, for N = 4.
The next result is the starting point of this paper. It is an elementary number-

theoretic fact, involving sums, products and factorials of natural numbers. I am not
aware of an earlier statement of the result in this elementary form.

Theorem 2. For each N ∈ N,

∑

�∈sum−1(N)

1
‖�‖! · prod(�) = 1. (3)

The obvious thing is to try and prove this result by induction on N , using some
basic arithmetic properties. That fails—at least when I try. A less elementary proof is
presented in the next section—see ultimately in Corrolary 6. It takes quite a detour. In
the end, it does involve an inductive reconstruction of the formula (3).

Here is an illustration of Theorem 2, forN = 4, using the lists in (2). The associated
probabilities and their sum (3) are illustrated below.

〈1, 1, 1, 1〉
�
��

〈1, 1, 2〉
�
��

〈1, 2, 1〉
�
��

〈2, 1, 1〉
�
��

〈2, 2〉
�
��

〈1, 3〉
�
��

〈3, 1〉
�
��

〈4〉
�
��

1
4!·1

1
3!·2

1
3!·2

1
3!·2

1
2!·4

1
2!·3

1
2!·3

1
1!·4

1
24

1
12

1
12

1
12

1
8

1
6

1
6

1
4

︸ ︷︷ ︸
with sum: 1

When you feel challenged to try and find yourself an elementary proof of Theorem 2,
pause here and do not read on.

3 Going Probabilistic

One can view the expression on the left-hand-side in (3) as a sum of probabilities,
specifically as a sum that adds up to one. Thus, there is a probability distribution at
play.

So what is a probability distribution? It is an expression of the form:

1
3 |R〉 + 1

2 |G〉 + 1
6 |B 〉.

This describes a mixture of three colours red (R), green (G) and blue (B), each with an
associated probability, where all probabilities add up to one. The ‘ket’ brackets | − 〉

342 B. Jacobs

have no meaning but are used only to separate probabilities from elements. This nota-
tion is borrowed from quantum theory.

Thus we can view Theorem 2 as justification for the definition of a distribution,
called CLD for coin list distribution. Explicitly, with parameter N ≥ 1,

CLD [N] :=
∑

�∈sum−1(N)

1
‖�‖! · prod(�)

∣
∣�

〉
. (4)

For instance, as we have seen, at the end of Sect. 2:

CLD [4] = 1
24

∣
∣1, 1, 1, 1

〉
+ 1

12

∣
∣1, 1, 2

〉
+ 1

12

∣
∣1, 2, 1

〉
+ 1

12

∣
∣2, 1, 1

〉

+ 1
8

∣
∣2, 2

〉
+ 1

6

∣
∣1, 3

〉
+ 1

6

∣
∣3, 1

〉
+ 1

4

∣
∣4

〉
.

(5)

The main idea is to obtain these expressions CLD [N] inductively, starting from
the (obvious) distribution CLD [1] = 1|1〉, via a construction transforming CLD [N]
into CLD [N + 1]. This transformation should work in such a way that if CLD [N] is
a distribution—with probabilities adding up to one—then so is CLD [N + 1]. This will
then prove Theorem 2.

Thus, the question becomes: how to move from CLD [N] to CLD [N+1]. Intuitively,
we can think about it as follows. Suppose we have a list � ∈ L(N>0) of coins with
sum(�) = N . Can we transform � into a list of coins with sum N + 1? Sure, there are
many ways to do so.

(a) We can pick a coin (item) n in the list � and replace it with a
coin n + 1 with incremented value, while keeping the rest of �
unchanged. The resulting list has sum N + 1. This increment can
be done for each of the ‖�‖-many coins in �, which can each be
incremented separately. Doing so does not change the length of �.

(b) We can add a single coin with value 1 to the list �. There are many
places to do so. In fact, there are ‖�‖ + 1 many places, since the
new coin 1 can be inserted at any position in �, including at the
front and at the end. In this way we increment the length of the
list, by one, but we do not change any of the (existing) coin values.

(6)

For instance, for a list � = 〈1, 2, 3〉 with sum 6, these two approaches give the following
lists with sum 7.

(a) Via increasing one of the elements: 〈2, 2, 3〉, 〈1, 3, 3〉, 〈1, 2, 4〉;
(b) Via insterting a single coin 1 at all possible places: 〈1, 1, 2, 3〉, 〈1, 1, 2, 3〉,

〈1, 2, 1, 3〉, 〈1, 2, 3, 1〉.
Notice that the different methods may yield the same outcome.

People with a background in automata—like Frits Vaandrager—may recognise a
(probabilistic) automaton in these transitions. That makes sense, but it still has to be
determined what the appropriate transition probabilities are. My own background is
in category theory and so I will proceed from a slightly different angle. This requires
some basic definitions—where I will suppress the categorical technicalities—but I’m
going to exploit that probability distributions form a ‘monad’, with an associated form
of ‘Kleisli’ extension =�and composition ◦· .

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 343

Excursion 3. For a set A, I will write D(A) for the set of (discrete) probability dis-
tributions over A. These are finite formal sums of the form

∑
i ri|ai 〉, where ai ∈ A,

and ri ∈ [0, 1] satisfy
∑

i ri = 1. Such an expression ω ∈ D(A) can be identified with
a function ω : A → [0, 1] with finite support supp(ω) := {a ∈ A | ω(a) �= 0} and
satisifying

∑
a∈A ω(a) = 1. I will switch back-and-forth between the ket-notation and

the function-notation, whenever convenient.
Thus, to recall, the aim is to prove membership:

CLD [N] ∈ D
(
sum−1(N)

)
.

It is well known in functional programming—via a ‘map-list’ operation—that func-
tions f can be applied to lists, say 〈u, v, w〉, via element-wise application, giving:
〈f(u), f(v), f(w)〉. The same ‘functoriality’ exists for distributions: each function
f : A → B can be turned into a function D(f) : D(A) → D(B) via:

D(f)
(∑

i ri

∣
∣ai

〉)
:=

∑
i ri

∣
∣f(ai)

〉
. (7)

One then has D(g ◦ f) = D(g) ◦ D(f) and also D(id) = id , where id is the identity
function.

I call a function of the form f : A → D(B) a channel and write it with a
special arrow as f : A → B. These channels will be used as probabilistic func-
tions/computations. They are known and used in the literature under various names,
such as: conditional probability, stochastic matrix, probabilistic classifier, Markov ker-
nel, statistical model, conditional probability table (in Bayesian network), and finally
as Kleisli map (in category theory). The latter categorical perspecitive emphasises that
such channels can be composed sequentially and in parallel, and thus that they form a
symmetric monoidal category.

What we need is transformation of distributions along a channel. Given a distribu-
tion ω ∈ D(A) and a channel f : A → B one can form a ‘push forward’ distribution
on B, written as f =� ω. This is called ‘bind’ in the functional programming language
Haskell. Explicitly:

f =�(∑
i ri|ai 〉

)
:=

∑
i ri · f(ai) =

∑

b∈B

(∑
i ri · f(ai)(b)

) ∣
∣b

〉
. (8)

The assumption is that
∑

i ri = 1. The right-hand-side of (8) is then a distribution
again, with probabilities adding up to one:

∑

b∈B

(∑
i ri · f(ai)(b)

)
=

∑
i ri ·

∑

b∈B

f(ai)(b) =
∑

i ri · 1 = 1.

Via this transformation =�one can define sequential composition of channels, written
as ◦· . It turns two composable channels f : A → B and g : B → C into a new channel
g ◦· f : A → C via:

(
g ◦· f)(a) := g =�f(a) =

∑

c∈C

(
∑

b∈B

f(a)(b) · g(b)(c)

)
∣
∣c

〉
. (9)

344 B. Jacobs

This composition ◦· is associative and has the channel a �→ 1|a〉 as identity. This gives
a category of channels, incorporating discrete probabilistic computation.

The next step is to define a ‘coin addition’ channel; it will play a crucial role in the
proof of Theorem 2. For a list of numbers � = 〈n0, . . . , nk−1〉 ∈ L(

N>0

)
of length

‖�‖ = k the following Python-style notation will be used.

– �[i] is the i-th element ni in the list, where 0 ≤ i < k;
– �[: i] is the sublist 〈n0, . . . , ni−1〉 with the i elements up to position i;
– �[i :] is the sublist 〈ni, . . . , nk−1〉 with the elements from position i onwards;
– + is concatenation of lists.

This is used to introduce additional notation for incrementing an entry at position i <
‖�‖ in list �, and for adding an element (coin) 1 at position j ≤ ‖�‖, namely:

�[i]++ := �[: i] + 〈 �[i] + 1 〉 + �[(i + 1):]

�++j := �[:j] + 〈 1 〉 + �[j :].
(10)

Below, in the proof of Proposition 5 (2) it is used that the set of lists k with sum(k) =
N + 1 can be obtained via these two constructions, �[i]++ and �++j , for lists � with
sum(�) = N and suitable i and j. These two cases also show up in the following coin
addition channel.

Definition 4. The coin addition channel:

L(
N>0

) ca �� D
(
L(

N>0

))

is defined as:

ca(�) :=
∑

0≤i<‖�‖

�[i]
sum(�) + 1

∣
∣
∣ �[i]++

〉

+
∑

0≤j≤‖�‖

1
(sum(�) + 1)(‖�‖ + 1)

∣
∣
∣ �++j

〉
.

(11)

These two sums correspond to the steps (a) and (b) in (6): increment by one in � at each
position i < ‖�‖, and add a coin 1 at each j ≤ ‖�‖, see (10).

Let’s elaborate how the coin addition channel acts on the coin sequence 〈1, 2, 3〉
with sum 6. This concretely shows the increments by one and the additions of one.

ca
(〈1, 2, 3〉) = 1

7

∣
∣2, 2, 3

〉
+ 2

7

∣
∣1, 3, 3

〉
+ 3

7

∣
∣1, 2, 4

〉

+ 1
28

∣
∣1, 1, 2, 3

〉
+ 1

28

∣
∣1, 1, 2, 3

〉
+ 1

28

∣
∣1, 2, 1, 3

〉
+ 1

28

∣
∣1, 2, 3, 1

〉

= 1
7

∣
∣2, 2, 3

〉
+ 2

7

∣
∣1, 3, 3

〉
+ 3

7

∣
∣1, 2, 4

〉

+ 1
14

∣
∣1, 1, 2, 3

〉
+ 1

28

∣
∣1, 2, 1, 3

〉
+ 1

28

∣
∣1, 2, 3, 1

〉
.

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 345

It still needs to be checked that ca(�) in (12) is well-defined: its probabilities add up
to one since: ∑

0≤i<‖�‖

�[i]
sum(�) + 1

+
∑

0≤j≤‖�‖

1
(sum(�) + 1)(‖�‖ + 1)

=

∑
0≤i<‖�‖ �[i]

sum(�) + 1
+

∑
0≤j≤‖�‖ 1

(sum(�) + 1)(‖�‖ + 1)

=
sum(�)

sum(�) + 1
+

‖�‖ + 1
(sum(�) + 1)(‖�‖ + 1)

=
sum(�)

sum(�) + 1
+

1
sum(�) + 1

= 1.

If you like to think in terms of probabilistic automata—or coalgebras—then you
can read the above definition of the coin addition channel ca as giving an automaton
with lists in L(

N>0

)
as positions and with probabilistic transitions between them of the

form:
�

r �� �′ iff ca
(
�
)(

�′) = r ∈ [0, 1].

This is finitely branching, since for each � there are finitely many �′ with �
r−→ �′,

namely those �′ with an incremented entry or with an extra 1. The aim is to prove that
the coin list expression CLD [N] in (4) arises via N transition steps, starting from the
singleton sequence 〈1〉.

There is some logic behind the probabilities of the coin addition channel ca in (12).
For instance, the probability of the increment �[i]++ is determined by the number of
occurrences �[i]. A link to biological mutations is given in Remark 7 below. First, I
describe the main, intended properties of coin addition.

Proposition 5. Let N ∈ N>0.

1. The coin addition channel ca from Definition 4 restricts to a channel:

sum−1(N) ca �� D
(
sum−1(N + 1)

)

2. The transformation along the coin addition channel preserves the coin distribu-
tions (4):

ca =�CLD [N] = CLD [N + 1].

346 B. Jacobs

Proof. The first item holds by construction, so I concentrate on the second one. There:

ca =�CLD [N]

=
∑

�∈sum−1(N)

CLD [N](�) · ca(�)

=
∑

�∈sum−1(N)

∑

0≤i<‖�‖

1
‖�‖! · prod(�) · �[i]

sum(�) + 1

∣
∣
∣ �[i]++

〉

+
∑

0≤j≤‖�‖

1
‖�‖! · prod(�) · 1

(sum(�) + 1)(‖�‖ + 1)

∣
∣
∣ �++j

〉

=
∑

�∈sum−1(N)

∑

0≤i<‖�‖

1
‖�[i]++ ‖! · prod(�[i]++)

· �[i] + 1
N + 1

∣
∣
∣ �[i]++

〉

+
∑

0≤j≤‖�‖

1
‖�++j ‖! · prod(�++j)

· 1
N + 1

∣
∣
∣ �++j

〉

=
∑

�∈sum−1(N)

∑

0≤i<‖�[i]++‖

1
‖�[i]++ ‖! · prod(�[i]++)

· (�[i]++)[i]
N + 1

∣
∣
∣ �[i]++

〉

+
∑

0≤j<‖�++j‖

1
‖�++j ‖! · prod(�++j)

· (�++j)[j]
N + 1

∣
∣
∣ �++j

〉

=
∑

k∈sum−1(N+1)

∑

0≤i<‖k‖

1
‖k‖! · prod(k) · k[i]

N + 1

∣
∣
∣k

〉

=
∑

k∈sum−1(N+1)

1
‖k‖! · prod(k)

∣
∣
∣k

〉
since

∑

0≤i<‖k‖
k[i] = N + 1

= CLD [N + 1].

Corollary 6. The description of CLD [N] in (4) yields a well-defined distribution, with
its probabilities adding up to one, since CLD [1] = 1|1〉 trivially is a distribution, and
CLD [N + 1] = ca =�CLD [N] is a distribution too.

Hence, Theorem 2 holds.

Remark 7. I promised to say a bit more about the probabilities in the coin addition
channel ca in (12). There is a biological and a gastronomical account.

1. Distributions on lists of numbers, like in (4), emerged in population biology. A list
of numbers 〈n0, n1, . . . , nk−1〉 can be used as type that captures the numbers of
occurrences of certain features (like alleles, variants of genes). These numbers may
increase over time, with a probability that is proportional to their existing number.
This explains the occurrence of the number �[i], of occurrences of the i-th feature,
in the first sum in the coin addition description (12). But also, new features may
emerge, as a mutation. These mutations are captured by the second sum in (12),
where a new 1 is added, somewhere in the sequence. The total probability for such a
mutation is 1

N+1 . Since in our list description the addition may happen at any of the
possible ‖�‖ + 1 positions in a list �, the probability of each individual mutation is

1
(N+1)(‖�‖+1) .

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 347

In fact, the descriptions in population biology differ in two ways from the above
account.
– The mutation rate is not fixed, but governed by a parameter θ; this will be

included in the next section.
– The numbers of features are not captured as lists, with an ordering of the
numbers, but as multisets (called partitions), without such ordering, see Sect. 6
below.

This probabilistic description of (parameterised) mutation first appeared in the work
of Warren Ewens [10] from 1972. It formed the starting point for much subsequent
further research, see e.g. [17–19], or [9] for a more recent overview. The sum for-
mula for lists (3) that is central in the current account does not occur in this earlier
line of work—simply because lists are not used at all. But it is very much in the
same spirit.

2. Another description of the situation in this paper is known as the Chinese restaurant
process, see [3] for an old (original) account, or [1, §11.19] and [9, §3.1 and §4.5].
This process is standardly described in terms of multisets, but below I will reformu-
late it in the current setting with lists. It is unclear to me why the restaurant is called
Chinese.
Assume a restaurant has arbitrarily many tables, arranged in one line, at which arbi-
trarily many people can sit. The situation in the restaurant, at a particular point in
time, is determined by a list 〈n0, n1, . . . , nk−1〉 of non-negative numbers, where ni

is the number of people sitting at the i-th table. When a new customer arrives several
things may happen, with certain probabilities.

(a) The new customer can join an existing (occupied) table, say i, with probability
proportional to the number ni of people already sitting at that table.

(b) The new customer can start a new table, which will then have this new customer
as sole occupant. This new table may be inserted at any position in the existing
line-up of tables.

It may be clear that these two options correspond to the ones from (6). The second
case with the new customer starting a new table is the mutation case.

4 Adding a Mutation Rate Parameter

As already mentioned in Remark 7 (1) biologists have already looked, a long time ago,
at the probabilistic mutations that are inherent in the channel-based transitions that we
used so far. In this section we integrate these mutations in a more flexible manner, via
a mutation parameter θ > 0. It will be incorporated in a parameterised version of the
coin addition channel.

Definition 8. Let θ ∈ R>0 be a mutation parameter. The coin addition channel from
Definition 4 will be modified to a parameterised channel:

L(
N>0

) ca(θ)
�� D

(
L(

N>0

))

348 B. Jacobs

The earlier definition is adapted to:

ca(θ)(�) :=
∑

0≤i<‖�‖

�[i]
sum(�) + θ

∣
∣
∣ �[i]++

〉

+
∑

0≤j≤‖�‖

θ

(sum(�) + θ)(‖�‖ + 1)

∣
∣
∣ �++j

〉
.

(12)

The first, unparametrised description ca in Definition 4 corresponds to the special case
where θ = 1. Thus, ca = ca(1).

It is not hard to see that the probabilities in ca(θ)(�) add up to one and that coin
addition restricts to a channel ca(θ) : sum−1(N) → sum−1(N + 1), for each θ ∈ R>0

and N ∈ N>0.
Given these channels, one can apply them iteratively to the singleton sequence in

sum−1(1). I use the same notation as in (4), but now with a parameter t in:

CLD [N](θ) := ca(θ)N−1(〈1〉)
=

(
ca(θ) ◦· · · · ◦· ca(θ)

)
(〈1〉) (N − 1 times)

= ca(θ) =�
(
ca(θ) =�· · · =�ca(θ)(〈1〉)

)
∈ D

(
sum−1(N)

)
.

(13)

The formula (14) below is a ‘list’ version of the famous Ewens sampling formula,
after [10]; the original ‘multiset’ version appears in the next Section, in Proposition 14.
The proof of (14) works like for Proposition 5 (2) and is left to the interested reader.

Proposition 9. Let θ ∈ R>0 and N ∈ N>0. The parameterised coin list distribution
in (13) can be described via the explicit formula:

CLD [N](θ) =
∑

�∈sum−1(N)

N ! · θ‖�‖

‖�‖! · prod(�) · ∏i<N θ + i

∣
∣
∣�

〉
. (14)

When θ is a (positive) natural number, this becomes:

CLD [N](θ) =
∑

�∈sum−1(N)

θ‖�‖

‖�‖! · prod(�) · ((θ
N

))
∣
∣
∣�

〉
.

The latter expression involves the multichoose coefficient:
((

θ

N

))
:=

(
θ + N − 1

N

)
=

(θ + N − 1)!
(t − 1)! · N !

.

This result implicitly involves a strengthening of Theorem 2 in the form of an equa-
tion:

∑

�∈sum−1(N)

θ‖�‖

‖�‖! · prod(�) =
∏

i<N θ + i

N !

=
((

θ

N

))
when θ ∈ N>0.

Theorem 2 is a special case, for θ = 1. Thus the original challenge turns out to be an
instance of a more general, parameterised summation formula.

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 349

5 The Lengths of Coin Sequences

This section first introduces the distribution of lengths of coin sequences, with a fixed
sum. Somewhat remarkably, in this distribution Stirling numbers show up. They are
used in combinatorics to count cycles of permutations. Next, this section shows how
this lengths forms a so-called sufficient statistic and thus captures a key property of
coin list distributions.

One may have noticed that the lengths of lists � ∈ sum−1(N), with a fixed sum
N , varies considerably, from length 1, for � = 〈N〉 to length N , for � = 〈1, 1, . . . , 1〉.
Thus one can ask what the distribution of lengths is, given the distribution of lists (14).
For instance, for the lists with sum 4 in (2) we have seen the distribution CLD [4] =
CLD [4](1) in (5). Applying the length function ‖−‖ to the lists inside the ket-brackets
can be expressed via the functoriality (7) of D, see Excursion 3:

D(‖ − ‖)
(
CLD [4]

)

= 1
24

∣
∣‖1, 1, 1, 1‖〉

+ 1
12

∣
∣‖1, 1, 2‖〉

+ 1
12

∣
∣‖1, 2, 1‖〉

+ 1
12

∣
∣‖2, 1, 1‖〉

+ 1
8

∣
∣‖2, 2‖〉

+ 1
6

∣
∣‖1, 3‖〉

+ 1
6

∣
∣‖3, 1‖〉

+ 1
4

∣
∣‖4‖〉

= 1
24

∣
∣4

〉
+

(
1
12 + 1

12 + 1
12

)∣∣3
〉
+

(
1
8 + 1

6 + 1
6

)∣∣2
〉
+ 1

4

∣
∣1

〉

= 1
24

∣
∣4

〉
+ 1

4

∣
∣3

〉
+ 11

24

∣
∣2

〉
+ 1

4

∣
∣1

〉
.

(15)

Interestingly, these distributions D(‖ − ‖)(CLD [N](θ)
)
of lengths can be described

in terms of Stirling numbers. They are fundamental in combinatorics, in the study of
permutations. There are Stirling numbers ‘of the first kind’ and ‘of the second kind’.
The ones of the first kind are relevant here, and will simply be called Stirling numbers.
See e.g. [13] for more information.

Excursion 10. For numbers n, k ∈ N the defining property of the Stirling number [n
k]

is:
[
n

k

]
=

{
the number of permutations of n elements with k disjoint cycles if k ≤ n

0 if k > n

The following basic properties are useful in calculations. For n ∈ N and k ∈ N>0,
[
0
0

]
= 1

[
0
k

]
=

[
k

0

]
= 0

[
n + 1

k

]
= n ·

[
n

k

]
+

[
n

k−1

]
. (16)

One can then prove further identities like:
[
n

n

]
= 1

[
n + 1

1

]
= n!. (17)

The next equation will be used to make a connection between Stirling numbers and
sums of lists. For N ∈ N>0 and θ > 0,

∑

1≤k≤N

[
N

k

]
· θk =

∏

0≤i<N

θ + i (18)

It is easy to derive, by induction on N .

350 B. Jacobs

This last Eq. (18) can be used to define what is called here the Stirling distribution
on {1, . . . , N}.

SD [N](θ) :=
∑

1≤k≤N

[
N

k

]
· θk

∏
0≤i<N θ + i

∣
∣k

〉
. (19)

For instance,

SD [4](1) = 1
24

∣
∣1

〉
+ 11

24

∣
∣2

〉
+ 1

4

∣
∣3

〉
+ 1

4

∣
∣4

〉
as in (15)

SD [5](2) = 1
15

∣
∣1

〉
+ 5

18

∣
∣2

〉
+ 7

18

∣
∣3

〉
+ 2

9

∣
∣4

〉
+ 2

45

∣
∣5

〉
.

The next result is known in the setting of Ewens distributions, see e.g. [9, §2.2], but
there it is formulated for multisets/partitions (and without proof). The version below is
formulated for lists.

Proposition 11. For each N ≥ 1 the channels of coin list distributions CLD [N] and
Stirling distributions SD [N] are connected via lengths of lists ‖ − ‖ in the following
commuting diagram.

D(
sum−1(N)

) D(‖−‖)
�� D({1, . . . , N})

R>0
CLD [N]

��

SD [N]

��

This means that for each θ ∈ N>0,

∑

�∈sum−1(N)

N ! · θ‖�‖

‖�‖! · prod(�) · ∏
i<N θ + i

∣∣∣‖�‖
〉

= D(‖ − ‖)(
CLD [N](θ)

)

= SD [N](θ)

=
∑

1≤k≤N

[
N

k

]
· θk

∏
0≤i<N θ + i

∣∣k
〉
.

Proof. By induction on N ≥ 1. When N = 1, only 〈1〉 is in sum−1(N), so:

∑

�∈sum−1(1)

1! · θ‖�‖

‖�‖! · prod(�) · ∏
i<1 θ + i

∣
∣
∣‖�‖

〉
=

θ1

1! · 1 · ∏i<1 θ + i

∣
∣1

〉

=
[
1
1

]
· θ1
∏

i<1 θ + i

∣
∣1

〉

=
∑

1≤k≤1

[
1
k

]
· θk

∏
i<1 θ + i

∣
∣k

〉
.

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 351

The induction step is more involved.

D(‖ − ‖)(
CLD [N + 1](θ)

)

=
∑

k∈sum−1(N+1)

CLD [N + 1](θ)(k)
∣∣∣‖k‖

〉

=
∑

k∈sum−1(N+1)

(
ca[N](θ) =� CLD [N](θ)

)
(k)

∣∣∣‖k‖
〉

=
∑

k∈sum−1(N+1), �∈sum−1(N)

CLD [N](θ)(�) · ca[N](θ)(�)(k)
∣∣∣‖k‖

〉

=
∑

�∈sum−1(N)

∑

0≤i<‖�‖

N ! · θ‖�‖

‖�‖! · prod(�) · ∏
i<N θ + i

· �[i]

sum(�) + θ

∣∣∣‖�[i]++ ‖
〉

+
∑

0≤j≤‖�‖

N ! · θ‖�‖

‖�‖! · prod(�) · ∏
i<N θ + i

· θ

(sum(�) + θ)(‖�‖ + 1)

∣∣∣‖�++j ‖
〉

=
∑

�∈sum−1(N)

N ! · θ‖�‖

‖�‖! · prod(�) · ∏
i<N θ + i

· N

N + θ

∣∣∣‖�‖
〉

+
∑

�∈sum−1(N)

N ! · θ‖�‖

‖�‖! · prod(�) · ∏
i<N θ + i

· θ

N + θ

∣∣∣‖�‖ + 1
〉

.

(IH)
=

∑

1≤k≤N

[
N

k

]
· θk

∏
i<N θ + i

· N

N + θ

∣∣k
〉

+
θ

N + θ
· D(− +1)

⎛

⎝
∑

�∈sum−1(N)

N ! · θ‖�‖

‖�‖! · prod(�) · ∏
i<N θ + i

∣∣∣‖�‖
〉
⎞

⎠

(IH)
=

N

N + θ
·

∑

1≤k≤N

[
N

k

]
· θk

∏
i<N θ + i

∣∣k
〉

+
θ

N + θ
· D(− +1)

⎛

⎝
∑

1≤k≤N

[
N

k

]
· θk

∏
i<N θ + i

∣∣k
〉
⎞

⎠

=
∑

1≤k≤N

N ·
[
N

k

]
· θk

∏
i<N +1 θ + i

∣∣k
〉
+

∑

1≤k≤N

[
N

k

]
· θk+1

∏
i<N +1 θ + i

∣∣k + 1
〉

=
1∏

i<N +1 θ + i
·
(

N ·
[
N

1

]
· θ1

∣∣1
〉
+

(
N ·

[
N

2

]
+

[
N

1

])
· θ2

∣∣2
〉
+ · · ·+

(
N ·

[
N

N

]
+

[
N

N−1

])
· θN

∣∣N
〉
+

[
N

N

]
· θN+1

∣∣N + 1
〉
)

(16)
=

1∏
i<N +1 θ + i

·
([

N + 1

1

]
· θ1

∣∣1
〉
+

[
N + 1

2

]
· θ2

∣∣2
〉
+ · · ·+

[
N + 1

N

]
· θN

∣∣N
〉
+

[
N + 1

N + 1

]
· θN+1

∣∣N + 1
〉
)

=
∑

1≤k≤N+1

[
N + 1

k

]
· θk

∏
i<N+1 θ + i

∣∣k
〉
.

352 B. Jacobs

There is more to say. If we consider a coin list distribution CLD [N](θ) and we
condition on a fixed length k ∈ {1, . . . , N}, the mutation rate θ drops out—like
in the Fisher-Neyman factorisation theorem. This indicates that length is a sufficient
statistic, see e.g. [5–7]. I avoid the notion of conditioning and will instead use the
string-diagrammatic description of sufficient statistics developed in [12]—and elabo-
rated in [16]. These string diagrams are a modern intuitive graphical language for com-
putations via channels in (quantum) probability theory. The remainder of this section
describes the situation at hand, without developing a wider picture. The interested
reader is referred to [12,16] for further information.

For a fixed number N , taking the length ‖ − ‖ of coin lists forms a function ‖ − ‖
: sum−1(N) → {1, . . . , N}. It turns out to have a ‘dagger’, in the form of a channel
‖−‖† : {1, . . . , N} → D(

sum−1(N)
)
in the opposite direction. It assigns to a number

1 ≤ k ≤ N a distribution over lists in sum−1(N) of length k. This can be described as
follows.

‖k‖† =
∑

�∈sum−1(N), ‖�‖=k

CLD [N](1)(�)
SD [N](1)(k)

∣
∣�

〉
. (20)

This is a well-defined distribution by Proposition 11. The following result summarises
the situation and includes Proposition 11 (by discarding the left wire). The proof is a
rehearsel of what has already been done.

Theorem 12. Length ‖ − ‖ is a sufficient statistic for the coin list distribution CLD , as
expressed by the following equality of string diagrams.

SD [N]

‖ − ‖†

CLD [N]

‖ − ‖

=

R>0

sum−1(N){1, . . . , N}sum−1(N){1, . . . , N}

R>0

The flow in the diagram works upward. The equality expresses that for N ∈ N>0 and
θ ∈ R>0 the following two joint distributions on {1, . . . , N}× sum−1(N) are equal:

∑

k∈{1,...,N}

∑

�∈sum−1(N), ‖�‖=k

CLD [N](θ)(�)
∣
∣
∣k, �

〉

=
∑

k∈{1,...,N}

∑

�∈sum−1(N), ‖�‖=k

SD [N](θ)(k) · ‖k‖†(�)
∣
∣
∣k, �

〉
.

The essence of this theorem occurs in [9, §2.2], but without the dagger of the length
and the formulation as string diagram.

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 353

6 Multisets Instead of Lists

So far I have used lists of coins, with a certain sum N . That gives rise to a decent theory,
but there are good reasons to use multisets instead of lists. Recall that a multiset—
sometimes also called ‘bag’—is a ‘subset’ in which elements may occur multiple times.
Alternatively, multisets are ‘lists’ in which the order does not matter. The ket notation
will be used not only for distributions, but also for multisets. Thus, 3|R〉+4|G〉+5|B 〉
describes a multiset with the element R occurring 3 times, G occuring 4 times, and B
5 times.

Why use multisets? There are two reasons.

– In the beginning, this paper discussed lists of coins that sum up to a certain value,
like in (2), where the order of the coins is relevant. This is not what happens practice
when people consider coin values. They usually say things like: I use two coins of
1 and one of 3 to get the amount 5. In that case they use the multiset 2|1〉 + 1|3〉,
without worrying about the order of the coins. Instead of lists summing to 4, as in (2)
one can use the following multisets.

4|1〉 2|1〉 + 1|2〉 2|2〉 1|1〉 + 1|3〉 1|4〉. (21)

– When we reconsider the big horizontal brace, at the end of Sect. 2, we see that lists
whose elements are permuted, like 〈1, 1, 2〉, 〈1, 2, 1〉 and 〈2, 1, 1〉 have the same
probability. These lists correspond to the same multiset 2|1〉+1|2〉. This is an indi-
cation that multisets are the more appropriate data type. This suspicion is confirmed
when we take a closer look at the coin list distribution CLD [N] in (4) and (14): The
probability of list � is expressed via the length ‖�‖ and the multiplication prod(�) of
its elements. Both operations are invariant under permutations of the elements in the
list.

Excursion 13. A (finite) multiset over a set A is a formal finite sum
∑

i ni|ai 〉 of ele-
ments ai ∈ A with multiplicity ni ∈ N. Alternatively, it is a function ϕ : A → N with
finite support, where ϕ(a) is the multiplicity of the element a.

The size ‖ϕ‖ of a multiset ϕ over A is its number of elements, where multiplicities
are counted. Thus, ‖ϕ‖ =

∑
a∈A ϕ(a). The set of multisets over A is written as M(A),

and the set of multisets of a fixed size K is the subset M[K](A) ⊆ M(A).
One can turn a list over A into a multiset over A via what I call accumulation,

written as acc , see [14]. Thus, for example,

acc
(
b, a, c, a, b, a, b

)
= 3|a〉 + 3|b〉 + 1|c〉.

More abstractly, accumulation is a function acc : L(A) → M(A), defined as:

acc
(〈a0, . . . , ak−1〉

)
:=

∑
i 1|ai 〉.

It restricts to acc : AK → M[K](A), for each K ∈ N. This works, since
∥
∥acc(�)

∥
∥ =

‖�‖, for a list �.

354 B. Jacobs

For a fixed multiset ϕ =
∑

i ni|ai 〉 ∈ M(A) the number of lists � ∈ L(A) with
acc(�) = ϕ is given by the multinomial coefficient:

(ϕ) :=
(
∑

i ni)!∏
i ni!

=
‖ϕ‖!

∏
i ni!

. (22)

Let set A have n ≥ 1 elements. Then:
(

n

K

)
= the number of subsets ofA of sizeK ≤ n

((
n

K

))
= the number of multisets overA of sizeK.

(23)

Recall the latter multichoose from Proposition 9.

Earlier, sums and products (1) played an important role for lists over N>0. They
will be used for multiset over N>0 too, in such a way that both sides of the following
diagram commute.

L(
N>0

)

acc

��

sum

��

prod

��

N>0 N>0

M(
N>0

)sum

��

prod

		

These analogues for multisets are defined as:

sum
(∑

i ni|ki 〉
)
:=

∑
i ni · ki prod

(∑
i ni|ki 〉

)
:=

∏
i kni

i . (24)

The set P(N) of partitions, see [2,15], with sum N ≥ 1 is written as:

P(N) := {σ ∈ M(N>0) | sum(σ) = N}.

The elements of the set P(4) have already been described, in (21). It is not hard to see
that accumulation of lists to multisets restricts to a function:

sum−1(N) acc �� P(N)

The Ewens distribution EW [N](θ) ∈ D(
P(N)

)
can now be defined as by translating

the coin list distribution to a distribution on partitions, via accumulation:

EW [N](θ) := D(
acc

)(
CLD [N](θ)

)
∈ D(

P(N)
)
. (25)

This yields Ewens’ sampling formula, now reformulated as convex formal sum using
ket’s.

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 355

Proposition 14. For N ∈ N>0 and θ ∈ R>0, Ewens’s sampling formula (25) is:

EW [N](θ) =
∑

σ∈P(N)

N ! · θ‖σ‖

‖σ‖! · prod(σ) · ∏
i<N θ + i

∣
∣σ

〉

=
∑

σ∈P(N)

N ! · θ‖σ‖
∏

i σ(i)! · iσ(i) · (θ + i)

∣
∣σ

〉
.

Proof. Since:

EW [N](θ) = D(
acc

)(
CLD [N](θ)

)

=
∑

�∈sum−1(N)

N ! · θ‖�‖

‖�‖! · prod(�) · ∏i<N θ + i

∣
∣acc(�)

〉

=
∑

�∈sum−1(N)

N ! · θ‖acc(�)‖

‖acc(�)‖! · prod(acc(�)) · ∏i<N θ + i

∣
∣acc(�)

〉

=
∑

σ∈P(N)

∑

�∈acc−1(σ)

N ! · θ‖acc(�)‖

‖acc(�)‖! · prod(acc(�)) · ∏i<N θ + i

∣
∣acc(�)

〉

(22)=
∑

σ∈P(N)

(σ) · N ! · θ‖σ‖

‖σ‖! · prod(σ) · ∏
i<N θ + i

∣
∣σ

〉

=
∑

σ∈P(N)

N ! · θ‖σ‖
∏

1≤i≤N σ(i)! · iσ(i) · (θ + i−1)

∣
∣σ

〉
.

Finally, here are some examples. The first one is a multiset version of (5).

EW [4](1) = 1
24

∣
∣4|1〉〉 + 1

4

∣
∣2|1〉 + 1|2〉〉 + 1

8

∣
∣2|2〉〉 + 1

3

∣
∣1|1〉 + 1|3〉〉 + 1

4

∣
∣1|4〉〉

EW [5](2) = 2
45

∣
∣5|1〉〉 + 2

9

∣
∣3|1〉 + 1|2〉〉 + 1

6

∣
∣1|1〉 + 2|2〉〉 + 2

9

∣
∣2|1〉 + 1|3〉〉

+ 1
9

∣
∣1|2〉 + 1|3〉〉 + 1

6

∣
∣1|1〉 + 1|4〉〉 + 1

15

∣
∣1|5〉〉

The probability of ‘ones only’, that is of the multisets 4|1〉 and 5|1〉 that arise via
multiple mutations, is (relatively) higher in the second distribution EW [5](2), because
it involves a higher mutation rate (2 versus 1).

In combination with Proposition 11 there is the following (standard) result, stating
that the sizes of multisets in Ewens’ distribution are (also) described by the Stirling
distribution SD [N](θ) from (19).

Corollary 15. For each N ≥ 1 the following diagram commutes.

D(
sum−1(N)

) D(acc)
�� D(

P(N)
) D(‖−‖)

�� D({1, . . . , N})

R>0
CLD [N]

EW [N]

��

SD [N]

��

356 B. Jacobs

By functoriality, D(‖ − ‖) ◦ D(acc) = D(‖ − ‖ ◦ acc) = D(‖ − ‖), so that for each
θ ∈ N>0,

D(‖ − ‖)
(
EW [N](θ)

)
= SD [N](θ).

Acknowledgements. Thanks are due to Ceel Pierik for helpful discussion on the material in
Sect. 5.

References

1. Aldous, D.J.: Exchangeability and related topics. In: Hennequin, P.L. (ed.) École d’Été de
Probabilités de Saint-Flour XIII—1983. LNM, vol. 1117, pp. 1–198. Springer, Heidelberg
(1985). https://doi.org/10.1007/BFb0099421

2. Andrews, G.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)
3. Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian non-parametric

problems. Ann. Stat. 2, 1152–1174 (1974). https://doi.org/10.1214/aos/1176342871
4. Berendsen, J., Jansen, D., Vaandrager, F.: Fortuna: model checking priced probabilistic timed

automata. In: Quantitative Evaluation of Systems (QEST), pp. 273–281. IEEE Computer
Society (2010). https://doi.org/10.1109/QEST.2010.41

5. Bernardo, J., Smith, A.: Bayesian Theory. Wiley, Hoboken (2000). https://onlinelibrary.
wiley.com/doi/book/10.1002/9780470316870, https://doi.org/10.1002/9780470316870

6. Billingsley, P.: Probability and Measure. Wiley-Interscience, New York (1995)
7. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics.

Springer, Heidelberg (2006)
8. Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic processes. J.

ACM 54(6), 29 (2007). https://doi.org/10.1145/1314690.1314693
9. Crane, H.: The ubiquitous Ewens sampling formula. Stat. Sci. 31(1), 1–19 (2016). https://

doi.org/10.1214/15-STS529
10. Ewens, W.: The sampling theory of selectively neutral alleles. Theoret. Popul. Biol. 3, 87–

112 (1972). https://doi.org/10.1016/0040-5809(72)90035-4
11. Ferguson, T.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1(2), 209–

230 (1973). https://doi.org/10.1214/aos/1176342360
12. Fritz, T.: A synthetic approach to Markov kernels, conditional independence, and theorems

on sufficient statistics. Adv. Math. 370, 107239 (2020). https://doi.org/10.1016/J.AIM.2020.
107239

13. Guichard, D.: Combinatorics and graph theory (2022). https://www.whitman.edu/
mathematics/cgt online/book/

14. Jacobs, B.: From multisets over distributions to distributions over multisets. In: Logic
in Computer Science. IEEE, Computer Science Press (2021). https://doi.org/10.1109/
lics52264.2021.9470678

15. Jacobs, B.: Partitions and Ewens distributions in element-free probability theory. In: Logic in
Computer Science. IEEE, Computer Science Press (2022). https://doi.org/10.1145/3531130.
3532419

16. Jacobs, B.: Sufficient statistics and split idempotents in discrete probability theory. In: Math-
ematical Foundation of Programming Semantics (2022)

17. Joyce, P.: Partition structures and sufficient statistics. J. Appl. Probab. 35(3), 622–632 (1998).
https://doi.org/10.1239/jap/1032265210

18. Kingman, J.: Random partitions in population genetics. Proc. R. Soc. Ser. A 361, 1–20
(1978). https://doi.org/10.1098/rspa.1978.0089

https://doi.org/10.1007/BFb0099421
https://doi.org/10.1214/aos/1176342871
https://doi.org/10.1109/QEST.2010.41
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316870
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316870
https://doi.org/10.1002/9780470316870
https://doi.org/10.1145/1314690.1314693
https://doi.org/10.1214/15-STS529
https://doi.org/10.1214/15-STS529
https://doi.org/10.1016/0040-5809(72)90035-4
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.1016/J.AIM.2020.107239
https://www.whitman.edu/mathematics/cgt_online/book/
https://www.whitman.edu/mathematics/cgt_online/book/
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.1145/3531130.3532419
https://doi.org/10.1145/3531130.3532419
https://doi.org/10.1239/jap/1032265210
https://doi.org/10.1098/rspa.1978.0089

A Reconstruction of Ewens’ Sampling Formula via Lists of Coins 357

19. Kingman, J.: The representation of partition structures. J. London Math. Soc. 18(2), 374–380
(1978). https://doi.org/10.1112/jlms/s2-18.2.374

20. Lynch, N., Segala, R., Vaandrager, F.: Compositionality for probabilistic automata. In: Ama-
dio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 208–221. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45187-7 14

21. McCullagh, P., Yang, J.: How many clusters? Bayesian Anal. 3(1), 101–120 (2008). https://
doi.org/10.1214/08-BA304

22. Pitman, J.: Random discrete distributions invariant under size-biased permutation. Adv.
Appl. Probab. 28(2), 525–539 (1995). https://doi.org/10.2307/1428070

23. Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator. Ann. Probab. 25(2), 855–900 (1997). https://doi.org/10.1214/aop/1024404422

https://doi.org/10.1112/jlms/s2-18.2.374
https://doi.org/10.1007/978-3-540-45187-7_14
https://doi.org/10.1214/08-BA304
https://doi.org/10.1214/08-BA304
https://doi.org/10.2307/1428070
https://doi.org/10.1214/aop/1024404422

Rooted Divergence-Preserving Branching
Bisimilarity is a Congruence: A Simpler Proof

David N. Jansen1,2(B) and Xinxin Liu1,2,3(B)

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{dnjansen,xinxin}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Southwest University, Chongqing, China

Abstract. Van Glabbeek, Luttik and Spanink proved in 2020 [3] that
rooted divergence-preserving branching bisimilarity is a congruence for
the process specification language consisting of inaction, action prefix,
choice, and recursion. In this article we show the same result by using
an alternative characterization of bisimulation, so that the heavy notion
of bisimulation up to can be spared and a shorter proof obtained.

Keywords: Branching bisimulation · Divergence preservation ·
Congruence

1 Introduction

Already in the first publication mentioned on his webpage [13], Vaandrager
included an extensive discussion of fairness in process algebra. He defines this
notion as “a certain option is not discarded infinitely often.” In particular, this
holds for probabilistic choice: if a discrete random experiment is started infinitely
often, almost surely every outcome is chosen. In the publication, this was used
to prove progress properties of a certain communication protocol where failures
occur with a (low but not further specified) probability. Vaandrager admitted that
“in reality certain choices are fair, other choices are unfair” (for example, non-
probabilistic choices) but decided to postpone the introduction of unfairness. In
this article, we are looking at one consequence of unfairness, namely divergence.

We are working on the basis of Milner’s CCS to describe and compare
behaviours of interacting processes [10]. We mainly consider the subset of finite-
state processes. They are composed from actions by action prefix, choice and
recursion. Full CCS also includes parallel composition and two operators sup-
porting the latter (restriction and relabelling). The recursion operator uses pro-
cess variables to describe a behaviour X satisfying X = E, where X may appear
in the process expression E again.

While CCS differs from ACP, the process algebra used by Vaandrager in sev-
eral publications including [13], we are confident that the superficial differences
are less important than the “close relationships between the various process alge-
bras” in terms of the “semantical reality” (using Vaandrager’s words from [5]).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 358–370, 2022.
https://doi.org/10.1007/978-3-031-15629-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_19&domain=pdf
http://orcid.org/0000-0002-6636-3301
https://doi.org/10.1007/978-3-031-15629-8_19

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 359

Often, processes are compared by means of bisimilarities, notions to find pro-
cesses that have equivalent behaviours. For process expressions considered in this
paper, bisimilarities can be defined in two ways: an algebraic definition defines
bisimilarity on expressions that do not contain free process variables first and
then extends to all expressions through substitutions; an operational definition
defines bisimilarity directly on all expressions, including process variables. Gen-
erally, the two definitions lead to the same relation, and we find both definitions
in the literature, depending on what is easier to use in the context.

In branching and weak bisimulation, it is agreed that internal activity
(denoted with the special action symbol τ in CCS) should be regarded as invis-
ible to the behaviour comparison; but what about divergent internal activity
τ.τ.τ . . .? Depending on the property that the process is required to satisfy, diver-
gence may be a relevant distinction or not: divergent behaviour—if we do not
assume fairness—may delay a required visible behaviour or termination indefi-
nitely.

Branching and weak bisimilarity differ slightly in how they treat internal
choice; we will concentrate on branching bisimilarity, like Vaandrager [6] did.
Branching and weak bisimilarity are not congruences for the CCS operators.
One normally corrects that by a rootedness condition: an initial invisible step
is inequivalent to doing nothing. The resulting relations are called branching
(behaviour) congruence and weak (behaviour) congruence, respectively. The
advantage is: it is much easier to reason about a congruence using an equational
axiomatisation. Several sound and complete axiomatisations for these congru-
ences (and their divergence-preserving variants) exist [2,7,8,11].

However, in order to do so, one needs to prove that this rootedness condi-
tion actually suffices to turn bisimilarity into a congruence. Milner [10] already
proved that rooted weak bisimilarity is a congruence using the algebraic defini-
tion of weak bisimilarity. Van Glabbeek [2] claims that the proof for branching
bisimilarity proceeds similarly. These proofs have to proceed in two steps, follow-
ing the algebraic definition: first, congruence is proven for all closed processes,
and then the proof is extended to the open processes. The divergence-preserv-
ing variants were proven congruences later: For rooted divergence-preserving
weak bisimilarity, a proof along these lines is found in [8]. A detailed proof that
rooted divergence-preserving branching bisimilarity is a congruence has recently
appeared as [3]. In all the proofs mentioned above, a general technique called
bisimulation up to was used, whose soundness often needs lengthy justification.

This contribution shows that using the operational definition of rooted diver-
gence-preserving branching bisimilarity, one can achieve a shorter proof without
resorting to bisimulation up to.

2 Finite-State CCS and Branching Bisimulation

Let V be an infinite set of variables, A an infinite set of visible actions, τ the in-
visible action or silent move (τ /∈ A). We write Aτ for A∪{τ}. The (finite-state
process) expressions are defined by the BNF grammar (for a ∈ Aτ and X ∈ V):

E ::= 0 | X | a.E | E + E | μX.E

360 D. N. Jansen and X. Liu

We denote the set of expressions with E . Informally, the expressions mean:

Inaction: 0 is not capable of any action.
Prefix: a.E first performs action a and afterwards behaves as E.
Non-deterministic Choice: E + F can behave either as E or as F .
Recursion: μX.E behaves as E, except that whenever X is reached in an exe-

cution, then it behaves as μX.E again.

We define the free variables of an expression as follows:

fv(0) = ∅ fv(X) = {X} fv(a.E) = fv(E)
fv(E + F) = fv(E) ∪ fv(F) fv(μX.E) = fv(E) \ {X}

A closed expression or process is an expression P ∈ E with fv(P) = ∅. The set
of all closed expressions is denoted P, and we use P to range over P.

We write E{F/X} for the expression obtained by capture-free substitution
of F for free occurrences of X in E. We write E ≡ F when E and F are
syntactically identical.

We define the semantics of expressions operationally by a transition relation
−→ and a binary relation � between expressions and variables.

Definition 1. The transition relation −→ ⊆ E × Aτ × E (written E
a−→ E′) is

the smallest relation that satisfies:

1. a.E
a−→ E.

2. If E
a−→ E′ then E + F

a−→ E′ and F + E
a−→ E′.

3. If E{μX.E/X} a−→ E′ then μX.E
a−→ E′.

We also write =⇒ for (τ−→)∗ (the transitive-reflexive closure of τ−→) and a=⇒
for =⇒ a−→=⇒.

The relation � ⊆ E×V (written E � X) is the smallest relation that satisfies:

1. X � X.
2. If E � X then E + F � X and F + E � X.
3. If E{μY.E/Y } � X then μY.E � X.

Lemma 2. Let E,F,H ∈ E, a ∈ Aτ , and X ∈ V. Then

1. If H � X and E
a−→ F then H{E/X} a−→ F .

2. If H
a−→ H ′, then H{E/X} a−→ H ′{E/X}.

3. If H{E/X} a−→ F , then either H � X and E
a−→ F , or there is H ′ such

that H
a−→ H ′ and F ≡ H ′{E/X}.

4. If H{E/X} � Y , then either H � X and E � Y , or H � Y .

Proof. This is Lemma 4 in [2], adapted to our notation. �	

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 361

Lemma 3. Let E,F ∈ E, a ∈ Aτ , and X,W ∈ V.

1. μX.E
a−→ F iff there is E′ ∈ E such that F ≡ E′{μX.E/X} and E

a−→ E′.
2. μX.E � W iff E � W and W
= X.

Proof. Claim 1 is Lemma 6 in [8]. The proof of Claim 2 is straightforward. �	
The following way to define bisimulation is modelled after [11].

Definition 4 (Operational Definition). A binary relation R ⊆ E × E is a
divergence-preserving branching bisimulation if R is symmetric and satisfies the
following conditions, for every 〈E,F 〉 ∈ R:

1. Simulation of Actions: Whenever E
a−→ E′, then either a = τ and there

exists F ′ such that F =⇒ F ′ and 〈E,F ′〉 ∈ R and 〈E′, F ′〉 ∈ R, or there exist
F ′, F ′′ such that F =⇒ F ′ a−→ F ′′ and 〈E,F ′〉 ∈ R and 〈E′, F ′′〉 ∈ R.

2. Simulation of Variables: Whenever E � X, then there exists F ′ such that
F =⇒ F ′ � X and 〈E,F ′〉 ∈ R.

3. Simulation of Divergence: Whenever E
τ−→ E1

τ−→ E2
τ−→ · · · is an

infinite τ -run from E, then there exist Ei on the τ -run and F ′ such that
F

τ=⇒ F ′ and 〈Ei, F
′〉 ∈ R.

Two expressions E,F ∈ E are divergence-preserving branching bisimilar (writ-
ten E ≈�

b F) if there exists a divergence-preserving branching bisimulation con-
taining the pair 〈E,F 〉.

Definition 2.1 of [3] defines divergence-preserving branching bisimulation for
closed expressions only and uses a different clause, denoted (D), instead of our
Clause 3 in Definition 4. The two clauses are equivalent for closed expressions
according to Proposition 3.1 in [4]. In other words, when applied to processes, De-
finition 4 results in the same divergence-preserving bisimilarity as Definition 2.1
in [3]. Finally, [4] also proves that ≈�

b is an equivalence relation, and that it is
the largest divergence-preserving branching bisimulation.

3 Congruence for Finite-State Processes

As mentioned earlier, branching bisimulation is not a congruence for the CCS
operators. In particular, a.0 ≈�

b τ.a.0 but a.0+b.0
≈�
b τ.a.0+b.0. One normally

corrects that by a rootedness condition: an initial invisible step is inequivalent
to doing nothing. The resulting relation is called a branching (behaviour) con-
gruence. The advantage is: it is much easier to reason about a congruence using
an equational axiomatisation.

Definition 5. Two process expressions E,F ∈ E are rooted divergence-preserv-
ing branching bisimilar or divergence-preserving branching congruent (written
E =�

b F) if they satisfy:

362 D. N. Jansen and X. Liu

1. Simulation of Actions: Whenever E
a−→ E′, then there exists F ′ such

that F
a−→ F ′ and E′ ≈�

b F ′; whenever F
a−→ F ′, then there exists E′ such

that E
a−→ E′ and E′ ≈�

b F ′.
2. Simulation of Variables: E � X if and only if F � X.

Lemma 6. Let E ∈ E, X ∈ V. Then μX.E =�
b E{μX.E/X}.

Proof. Immediately follows from the operational semantics of Definition 1. �	
Lemma 7. Let E0, E, F0, F be expressions, X and Y be variables. If E0 ≈�

b F0

and E =�
b F , then E0{μX.E/Y } ≈�

b F0{μX.F/Y }.
Proof. For the given E,F with E =�

b F , construct the binary relation S:

S = {〈G{μX.E/Z},H{μX.F/Z}〉 | G,H ∈ E , Z ∈ V, and G ≈�
b H}.

We show that S ∪ S−1 is a divergence-preserving branching bisimulation. When
this is done, since E0 ≈�

b F0, so 〈E0{μX.E/Y }, F0{μX.F/Y }〉 ∈ S, we obtain
E0{μX.E/Y } ≈�

b F0{μX.F/Y }.
It is obvious that S ∪ S−1 is symmetric. To show that S ∪ S−1 is a diver-

gence-preserving branching bisimulation, let 〈C,D〉 ∈ S∪S−1. We need to check
the conditions of Definition 4. If 〈C,D〉 ∈ S, then according to the construction
of S, there exist G ≈�

b H such that C ≡ G{μX.E/Z} and D ≡ H{μX.F/Z}.

1. Simulation of Actions.
Suppose that G{μX.E/Z} a−→ G′. We distinguish cases following Lemma 2,
Claim 3:
Case 1.1: G

a−→ G1 with G′ ≡ G1{μX.E/Z}.
We further distinguish cases on how H simulates transition G

a−→ G1:
Case 1.1.1: a = τ , there is H1 with H =⇒ H1 and G ≈�

b H1 ≈�
b G1.

Then H{μX.F/Z} =⇒ H1{μX.F/Z}, and by the definition S con-
tains the two pairs 〈G{μX.E/Z},H1{μX.F/Z}〉 and 〈G1{μX.E/Z},
H1{μX.F/Z}〉.

Case 1.1.2: There are H1,H2 with H =⇒ H1
a−→ H2 and G ≈�

b H1,
G1 ≈�

b H2.
Then H{μX.F/Z} =⇒ H1{μX.F/Z} a−→ H2{μX.F/Z}, and by the
definition S contains the two pairs 〈G{μX.E/Z},H1{μX.F/Z}〉 and
〈G1{μX.E/Z},H2{μX.F/Z}〉.

Case 1.2: G � Z and μX.E
a−→ G′.

According to Claim 1 of Lemma 3, there is E1 such that E
a−→ E1 and

G′ ≡ E1{μX.E/X}. Since E =�
b F , there exists F1 with F

a−→ F1 and
E1 ≈�

b F1, thus by Claim 2 of Lemma 2 F{μX.F/X} a−→ F1{μX.F/X}
and 〈E1{μX.E/X}, F1{μX.F/X}〉 ∈ S. On the other hand, since ≈�

b

is a divergence-preserving branching bisimulation, there is H1 such that
H =⇒ H1 � Z and G ≈�

b H1. Thus H{μX.F/Z} =⇒ H1{μX.F/Z} a−→
F1{μX.F/X} and 〈G{μX.E/X},H1{μX.F/X}〉 ∈ S.

In all cases, we have found a matching transition for G{μX.E/X} a−→ G′.

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 363

2. Simulation of Variables.
Suppose G{μX.E/Z} � W . Then according to Lemma 2, Claim 4, either
G � Z and μX.E � W , or G � W , and it is routine to show that in both cases
there is H1 with H{μX.F/Z} =⇒ H1{μX.F/Z} � W and 〈G{μX.E/Z},
H1{μX.F/Z}〉 ∈ S.

3. Simulation of Divergence.
Suppose G{μX.E/Z} ≡ G0

τ−→ G1
τ−→ G2

τ−→ · · · is an infinite τ -run from
G{μX.E/Z}. Then we distinguish cases by Lemma 2, Claim 3, according to
whether μX.E ever participates in this infinite τ -run.
Case 3.1: μX.E does not participate in the infinite τ-run.

Then there is an infinite τ -run G
τ−→ G′

1
τ−→ G′

2
τ−→ · · · such that

Gi ≡ G′
i{μX.E/Z} for i = 1, 2, Since ≈�

b is a divergence-preserving
branching bisimulation, with G ≈�

b H there must be H ′ and m such
that H

τ=⇒ H ′ and G′
m ≈�

b H ′, thus H{μX.F/Z} τ=⇒ H ′{μX.F/Z} and
〈G′

m{μX.E/Z},H ′{μX.F/Z}〉 ∈ S.
Case 3.2: μX.E does participate in the infinite τ-run.

Then we can find the smallest k such that Gi ≡ G′
i{μX.E/Z} for i =

0, . . . , k and G′
k � Z and μX.E

τ−→ Gk+1. By Claim 1 of Lemma 3 there
is E′ such that E

τ−→ E′ and Gk+1 ≡ E′{μX.E/X}. Then, since E =�
b F

there is F ′ such that F
τ−→ F ′ with E′ ≈�

b F ′. So F{μX.F/X} τ−→
F ′{μX.F/X} and 〈E′{μX.E/X}, F ′{μX.F/X}〉 ∈ S. On the other hand
we have G ≈�

b H, and for the τ -run from G to G′
k, there must be H1

such that H =⇒ H1 and G′
k ≈�

b H1. Since G′
k � Z there must be H ′

such that H1 =⇒ H ′ � Z and G′
k ≈�

b H ′. Thus we get H{μX.F/Z} =⇒
H ′{μX.F/Z} τ−→ F ′{μX.F/X}, and so we have found F ′{μX.F/X}
such that H{μX.F/X} τ=⇒ F ′{μX.F/X} and 〈Gk+1, F

′{μX.F/X}〉 ∈
S.

If 〈C,D〉 ∈ S−1, then 〈D,C〉 ∈ S, and according to the construction of S, there
exist G ≈�

b H such that D ≡ G{μX.E/Z} and C ≡ H{μX.F/Z}. We can reason
as above to show that 〈C,D〉 also satisfies the conditions of simulation of actions,
variables and divergence. This establishes that S∪S−1 is a divergence-preserving
branching bisimulation. �	

Note that in the proof (Case 3.2), we require congruence E =�
b F (and not

only E ≈�
b F) to ensure that if E0 has an infinite run involving μX.E, then F0

can take at least one τ -step using μX.F . This avoids the wrong conclusion from
τ.X ≈�

b X to μX.τ.X
?≈�
b μX.X.

With the preparation of Lemma 7, we are in the position to present our main
result, which is to provide a more direct proof of the congruence of =�

b .

Theorem 8. =�
b is a congruence on E, i.e. if E =�

b F then a.E =�
b a.F ,

E +D =�
b F +D, D +E =�

b D +F , and μX.E =�
b μX.F for arbitrary a ∈ Aτ ,

D ∈ E, and X ∈ V.

Proof. We assume E =�
b F and prove μX.E =�

b μX.F , all other constructions
are simple.

364 D. N. Jansen and X. Liu

Assume μX.E
a−→ E′. We need to prove that this transition can be simulated

by some strong transition μX.F
a−→ F ′. By Claim 1 of Lemma 3, there exists

E′′ such that E
a−→ E′′ and E′ ≡ E′′{μX.E/X}. Because E =�

b F , there
also exists F ′′ such that F

a−→ F ′′ and E′′ ≈�
b F ′′, and by Lemma 7 we then

get E′′{μX.E/X} ≈�
b F ′′{μX.F/X}. Therefore, μX.F

a−→ F ′′{μX.F/X} is
the transition simulating μX.E

a−→ E′. The converse statement (a transition
μX.F

a−→ F ′ can be simulated by μX.E) is proven analogously.
Clause 2 of Definition 5 is proven similarly, using Claim 2 of Lemma 3. �	
Now we have arrived at the conclusion that =�

b is a congruence. But since
we used an operational definition of =�

b , we need to argue that it is the same
relation discussed in [3]. We will make such an argument in the next section. In
the rest of this section we will prove some properties of ≈�

b and =�
b which will

be used to support the argument in the next section.

Lemma 9. Let E,F,G ∈ E be expressions, X be a variable. If E =�
b F , then

1. G{E/X} =�
b G{F/X};

2. E{G/X} =�
b F{G/X}.

Proof. G{E/X} =�
b G{F/X} is easily proved by routine induction on the struc-

ture of G, using Theorem 8.
To prove E{G/X} =�

b F{G/X}, we first prove the following fact: If K,H are
expressions such that K ≈�

b H, then K{G/X} ≈�
b H{G/X}. To see the fact,

let Y be a variable such that Y /∈ fv(G), by Lemma 6 μY.G =�
b G{μY.G/Y },

and G{μY.G/Y } ≡ G since Y does not occur freely in G. Then

K{G/X} =�
b K{μY.G/X} (Claim 1 above)

≈�
b H{μY.G/X} (Lemma 7)

=�
b H{G/X} (Claim 1 above)

With this fact, suppose E =�
b F , it is easy to prove that E{G/X} =�

b F{G/X}
by analysing the transitions from E{G/X} and F{G/X} using Lemma 2. �	

We define the sort (of visible actions) of a process expression as follows:

sort(0) = ∅ sort(E + F) = sort(E) ∪ sort(F)
sort(X) = ∅ sort(μX.E) = sort(E)

sort(τ.E) = sort(E) sort(a.E) = sort(E) ∪ {a} (if a
= τ)

We will write sort(E,F) for sort(E) ∪ sort(F).
The following lemma is formally very similar to Lemma 20 in [8], but as that

paper uses the algebraic definition and concerns (variants of) weak bisimulation,
we cannot copy their proof.

Lemma 10. Let E,F ∈ E be expressions, X be a variable, a be a visible action,
a /∈ sort(E,F). If E{a.0/X} =�

b F{a.0/X} then E =�
b F .

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 365

Proof. First we construct the following binary relation S:

S = {〈G,H〉 | G,H ∈ E , a /∈ sort(G,H), and G{a.0/X} ≈�
b H{a.0/X}}.

It is routine to show that S is a divergence-preserving branching bisimulation
(note that S is symmetric).

Now suppose E,F be expressions, X be a variable, a be a visible action,
a /∈ sort(E,F), and E{a.0/X} =�

b F{a.0/X}. To prove that E =�
b F , assume

E
b−→ E′. We need to show that this transition can be simulated by a strong

transition F
b−→ F ′. Note that by Claim 2 of Lemma 2, E

b−→ E′ implies
E{a.0/X} b−→ E′{a.0/X}, since E{a.0/X} =�

b F{a.0/X}, it follows that there
is F ′′ such that F{a.0/X} b−→ F ′′ and E′{a.0/X} ≈�

b F ′′, then by Claim 3
of Lemma 2 there exists F ′ such that F

b−→ F ′ and F ′′ ≡ F ′{a.0/X} (since
a /∈ sort(E,F), b cannot be a), so 〈E′, F ′〉 ∈ S, thus E′ ≈�

b F ′. Therefore,
F

a−→ F ′ is the transition simulating E
b−→ E′. Clause 2 of Definition 5 is

proven similarly, using Claim 4 of Lemma 2. �	
Theorem 11. Let E,F ∈ E be expressions, {X1, . . . , Xn} be a set of variables.
Then E =�

b F if and only if for arbitrary processes P1, . . . , Pn ∈ P it holds that
E{P1/X1, . . . , Pn/Xn} =�

b F{P1/X1, . . . , Pn/Xn}.
Proof. We prove the theorem by induction on n. If n = 0, then it holds vacuously.
Assume the claim holds for n, i.e. E′ =�

b F ′ if and only if for arbitrary processes
P1, . . . , Pn ∈ P we have E′{P1/X1, . . . , Pn/Xn} =�

b F ′{P1/X1, . . . , Pn/Xn}. We
prove that the claim holds for n + 1. For the only if direction, suppose E =�

b F
and P1, . . . , Pn+1 ∈ P, we will show

E{P1/X1, . . . , Pn+1/Xn+1} =�
b F{P1/X1, . . . , Pn+1/Xn+1}.

In this case, since E =�
b F , by Claim 2 of Lemma 9 E{Pn+1/Xn+1} =�

b

F{Pn+1/Xn+1}, then by the ind. hyp. E{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn} =�
b

F{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn}, so

E{P1/X1, . . . , Pn+1/Xn+1} ≡ E{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn}
=�

b F{Pn+1/Xn+1}{P1/X1, . . . , Pn/Xn} (IH)
≡ F{P1/X1, . . . , Pn+1/Xn+1}.

Hence the only if direction. For the if direction, we will prove E =�
b F under

the assumption that E{P1/X1, . . . , Pn+1/Xn+1} =�
b F{P1/X1, . . . , Pn+1/Xn+1}

for all P1, . . . , Pn+1 ∈ P. In this case, choose a /∈ sort(E,F), then for all
P1, . . . , Pn ∈ P we have

E{a.0/Xn+1}{P1/X1, . . . , Pn/Xn} ≡ E{P1/X1, . . . , Pn/Xn, a.0/Xn+1}
=�

b F{P1/X1, . . . , Pn/Xn, a.0/Xn+1}
≡ F{a.0/Xn+1}{P1/X1, . . . , Pn/Xn}.

Then by the induction hypothesis E{a.0/Xn+1} =�
b F{a.0/Xn+1}. Now by

Lemma 10 E =�
b F . �	

366 D. N. Jansen and X. Liu

4 Comparison with the Congruence Proof
for a Traditional Definition

Here, we compare our proof with the recent proof by Glabbeek, Luttik and
Spanink [3], who define divergence-preserving branching bisimulation on closed
process expressions only and extend it to open process expressions through sub-
stitutions. This more traditional approach is often used to prove that some rooted
bisimilarity is a congruence; it follows the basic idea of Milner [9,10]. He was
the first to use the so-called “up-to technique”: A relation R is called a weak
bisimulation up to ≈ if P R Q and P

a=⇒ P ′ imply that there exists some Q′

with Q
a=⇒ Q′ and P ′ ≈R≈ Q′. It can be shown that if R is a weak bisimulation

up to ≈ then ≈R≈ is a weak bisimulation.
The important step to prove that some behavioural congruence = is a con-

gruence under recursion, i.e. E = F implies μX.E = μX.F , is: one shows
that the symmetric closure of relation RE,F = {〈G{μX.E/X}, G{μX.F/X}〉 |
G ∈ E and fv(G) ⊆ {X}} is a bisimulation up to ≈ (or, sometimes, a slighty
stronger relation).

Glabbeek, in [2], stated that the proof of [10] can be adapted to (non-diver-
gence-preserving) branching bisimilarity. However, the case of divergence-pre-
serving branching bisimilarity was only handled by Glabbeek et al. [3] recently.
The latter paper used the bisimulation-up-to technique to prove that rooted di-
vergence-preserving branching bisimilarity is a congruence. They had to vary the
relation RE,F for the proof.

More in detail, rooted (divergence-preserving) weak or branching bisimilarity
is defined in [3,8,10] by applying Definition 5 only to closed process expressions.
for open process expressions, [3] sets:

Definition 12 (Algebraic Definition of Divergence-Preserving Branch-
ing Congruence). Given two expressions E,F ∈ E and a vector of variables
〈X1, . . . , Xn〉 that covers their free variables (i.e. fv(E) ∪ fv(F)⊆ {X1, . . . , Xn}),
E and F are algebraically rooted divergence-preserving branching bisimilar or
algebraically divergence-preserving branching congruent (written E =�

a F) if for
arbitrary processes P1, . . . , Pn ∈ P we have

E{P1/X1, . . . , Pn/Xn} =�
b F{P1/X1, . . . , Pn/Xn}.

The two definitions lead to the same relation on finite-state expressions, i.e.
for two expressions E,F it holds that E =�

a F if and only if E =�
b F . Here is a

direct proof using Theorem 11: Let E,F ∈ E and fv(E) ∪ fv(E) = {X1, . . . , Xn},
then E =�

a F iff (by Definition 12) for arbitrary processes P1, . . . , Pn ∈ P,
we have E{P1/X1, . . . , Pn/Xn} =�

b F{P1/X1, . . . , Pn/Xn} iff (by Theorem 11)
E =�

b F . Similar proofs are found e.g. in [2] as Propositions 21 and 3. Van
Glabbeek writes, however, “defining ≈�

b on open process expressions . . . does
not carry over to full CCS.”

Then, [3] introduces their variant of “bisimulation up to ≈�
b ”:

1 Proposition 2 in [2] claims more than we need. An error in another part of the proof
has been pointed out and corrected in [1].

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 367

Definition 13 ([3], Definition 3.10). The symmetric relation R on P is a
rooted divergence-preserving branching bisimulation up to ≈�

b if it satisfies the
conditions:

1. Root Condition: If P
a−→ P ′, then there exists Q′ such that Q

a−→ Q′ and
P ′ ≈�

bR≈�
b Q′.

2. Simulation of Actions: If P =⇒ P ′′ â−→ P ′, then there exist Q′′ and Q

such that Q =⇒ Q′′ â−→ Q′ and P ′′ ≈�
bR≈�

b Q′′ and P ′ ≈�
bR≈�

b Q′. (Here,
P ′′ â−→ P ′ means: either P ′′ a−→ P ′, or a = τ and P ′′ ≡ P ′.)

3. Simulation of Divergence: If there exists an infinite sequence of closed
process expressions (Pk)k∈ω such that P = P0 and Pk

τ−→ Pk+1 for all k ∈
ω, then there also exists an infinite sequence of closed process expressions
(Q�)�∈ω and a mapping σ : ω → ω such that Q = Q0 and Q�

τ−→ Q�+1 and
Pσ(�) ≈�

bR≈�
b Q� for all � ∈ ω.

While they define simulation of divergence differently, it can be shown that
this condition is equivalent to our usual condition (see the explanation after
Definition 4). Also note that ≈�

b is only used to relate closed expressions, where
there is no difference between an operational and an algebraic definition.

They then go on to prove that if R is a rooted divergence-preserving branch-
ing bisimulation up to ≈�

b then R ⊆ =�
b (note that all the relations are between

processes). Then comes the hardest part: they spend almost three pages to prove
that the relation RE,F is a rooted divergence-preserving branching bisimulation
up to ≈�

b if fv(E)∪ fv(F) ⊆ {X}. After that, they can use this property to prove
quickly that =�

a is indeed a congruence under μX. for all process expressions.
In comparison, our proof is much shorter. Still, the hard work of [3] is not

completely lost: we will see shortly that our method does not extend to fur-
ther CCS operators. The reason that we can achieve a shorter proof is that the
operational definition of bisimulation (Definition 4) allows us to discuss opera-
tional behaviour directly on expressions containing free variables, so that we can
construct the relation

S = {〈G{μX.E/Z},H{μX.F/Z}〉 | G,H ∈ E , Z ∈ V, and G ≈�
b H}

in the proof of Lemma 7 and prove S∪S−1 to be a divergence-preserving branch-
ing bisimulation, instead of constructing the less powerful (more strict)

RE,F = {〈G{μX.E/X}, G{μX.F/X}〉 | G ∈ E and fv(G) ⊆ {X}}
and then having to use the bisimulation-up-to technique. In this way we suc-
cessfully avoided the complication relating to this technique. It is interesting to
note the similarities and differences between the constructions of S and RE,F .
In fact, [3] already used a construction similar to S in the proof of Lemma 3.6,
which corresponds to Claim 2 of Lemma 9 of this paper. In other words, follow-
ing the idea of this paper, the proof of Lemma 3.6 in [3] can be generalized to
a proof that μX. preserves =�

a , thus avoiding the use of the bisimulation-up-to
technique altogether.

368 D. N. Jansen and X. Liu

5 Extending the Proof to Full CCS?

Thus far we did only look at finite-state CCS; however, there are operators for
parallelism as well. Full CCS has the following grammar:

E ::= 0 | X | a.E | E + E | μX.E | E|F | E\H | E[f]

where a ∈ Act := A ∪ A ∪ {τ}, X ∈ V as above, H ⊆ A, and f : A → Act . We
denote the set of process expressions in full CCS with Epar. Informally, the new
expressions mean:

Actions with Overline a: Actions a and a can synchronize in parallel processes.
We set a = a and τ = τ .

Parallel Composition: E|F interleaves the behaviours of E and F . Addition-
ally, if E

a−→ E′ and F
a−→ F ′ for some a ∈ A ∪ A, the parallel composition

has the behaviour E|F τ−→ E′|F ′. This models a synchronisation between
the processes.

Restriction: E\H can do all behaviours of E except the actions in H. This
operator is used to forbid E|F from taking certain steps without synchroni-
sation.

Relabelling: Whenever E can do action a or a, then E[f] can do action f(a)
or f(a), respectively, instead.

The transition relation, which is the first part of Definition 1, can easily be
extended to include these constructs:

Definition 14. The transition relation −→ ⊆ Epar ×Act × Epar (written E
a−→

E′) is the smallest relation that satisfies the clauses given in Definition 1 and:

1. If E
a−→ E′, then E|F a−→ E′|F and F |E a−→ F |E′.

2. If E
a−→ E′ and F

a−→ F ′ for some a ∈ A ∪ A, then E|F τ−→ E′|F ′.
3. If E

a−→ E′ and a, a
∈ H, then E\H
a−→ E′\H.

4. If E
a−→ E′, then E[f]

f(a)−→ E′[f]. If E
a−→ E′, then E[f]

f(a)−→ E′[f]. If
E

τ−→ E′, then E[f] τ−→ E′[f].

However, the relation �, which is the second part of Definition 1, does not
convey enough information to form the basis of a correct operational definition
of bisimulation. In particular, one would like to define X|X � X, but how can
this relation then distinguish expression X ∈ E from X|X ∈ Epar? Perhaps van
Glabbeek’s notation of [2,3] can help; they write E

X−→ 0 instead of our E � X,
and this notation could be extended to something like E|E X−→ E|0 X−→ 0|0. In
any case, this would also require extending Claim 3 of Lemma 2: The expression
E = a.X|X cannot do a τ step, but E{a.0/X} can. Similarly, E is not divergent,
but E{μZ.a.a.Z/X} is, even though neither E nor μZ.a.a.Z can do τ steps. The
proof of our central Lemma 7 would need a corresponding extension.

Rooted Divergence-Preserving Branching Bisimilarity is a Congruence 369

Even if that may be possible, other difficulties remain: van Glabbeek’s nota-
tion is not informative enough to describe a restriction like X\{a}|a.0 or a
relabelling like X[a �→ a]|X. We could not find an obvious extension of the
above proof method to full CCS. We are working on an extension [12], using the
bisimulation-up-to technique.

Weak bisimulation (not divergence-preserving) has been shown to be a con-
gruence for all operators except +, and rooted weak bisimulation is a congruence
for all operators [10]. However, these proofs use the bisimulation-up-to technique.

We assume that Robin Milner was aware of (some of) these difficulties and
therefore chose to switch between the two definitions and the two methods: in
1986 [9] he used what we called the algebraic definition to prove congruence for
full CCS, while his article [11] used the operational definition with the smaller
set of operators (to prove the completeness of his axiomatisation of rooted weak
bisimilarity). The remark of van Glabbeek, cited above on page 9, also suggests
that van Glabbeek was aware of the discrepancies. Perhaps the long-term goal
of proving the congruence property for all CCS operators motivated him and the
other authors of [3] to pursue the longer path.

References

1. Basten, T.: Branching bisimilarity is an equivalence indeed! Inf. Proc. Lett. 58(3),
141–147 (1996). https://doi.org/10.1016/0020-0190(96)00034-8

2. van Glabbeek, R.J.: A complete axiomatization for branching bisimulation con-
gruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokołowski, S. (eds.)
Mathematical Foundations of Computer Science 1993. LNCS, vol. 711, pp. 473–
484. Springer, Berlin (1993). https://doi.org/10.1007/3-540-57182-5_39

3. van Glabbeek, R., Luttik, B., Spaninks, L.: Rooted divergence-preserving branch-
ing bisimilarity is a congruence. Log. Meth. Comput. Sci. 16(3), 14:1–14:16 (2020).
https://doi.org/10.23638/LMCS-16(3:14)2020

4. van Glabbeek, R., Luttik, B., Trčka, N.: Branching bisimilarity with explicit diver-
gence. Fundam. Inform. 93(4), 371–392 (2009). https://doi.org/10.3233/FI-2009-
109

5. van Glabbeek, R., Vaandrager, F.: Modular specification of process algebras.
Theor. Comput. Sci. 113(2), 293–348 (1993). https://doi.org/10.1016/0304-
3975(93)90006-F

6. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation
and stuttering equivalence. In: Paterson, M.S. (ed.) Automata, Languages and
Programming. LNCS, vol. 443, pp. 626–638. Springer, New York (1990). https://
doi.org/10.1007/BFb0032063

7. Liu, X., Yu, T.: A complete axiomatisation for divergence preserving branching
congruence of finite-state behaviours. In: 2021 36th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 1–13. IEEE, [s.l.] (2021). https://
doi.org/10.1109/LICS52264.2021.9470647

8. Lohrey, M., D’Argenio, P.R., Hermanns, H.: Axiomatising divergence. Inf. Comput.
203(2), 115–144 (2005). https://doi.org/10.1016/j.ic.2005.05.007

9. Milner, R.: Lectures on a calculus for communicating systems. In: Broy, M. (ed.)
Control Flow and Data Flow: Concepts of Distributed Programming, pp. 205–228.
Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-82921-5_5

https://doi.org/10.1016/0020-0190(96)00034-8
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.23638/LMCS-16(3:14)2020
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.1016/0304-3975(93)90006-F
https://doi.org/10.1016/0304-3975(93)90006-F
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1109/LICS52264.2021.9470647
https://doi.org/10.1109/LICS52264.2021.9470647
https://doi.org/10.1016/j.ic.2005.05.007
https://doi.org/10.1007/978-3-642-82921-5_5

370 D. N. Jansen and X. Liu

10. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
11. Milner, R.: A complete axiomatisation for observational congruence of finite-state

behaviours. Inf. Comput. 81(2), 227–247 (1989). https://doi.org/10.1016/0890-
5401(89)90070-9

12. Sun, Q., Jansen, D.N., Liu, X., Zhang, W.: Divergence-preserving congruences for
CCS. Manuscript under submission (2022)

13. Vaandrager, F.W.: Verification of two communication protocols by means of pro-
cess algebra. Report CS-R6808, CWI, Amsterdam (1986). https://ir.cwi.nl/pub/
6298

https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1016/0890-5401(89)90070-9
https://ir.cwi.nl/pub/6298
https://ir.cwi.nl/pub/6298

Learning Language Intersections

Sebastian Junges and Jurriaan Rot(B)

Institute for Computing and Information Sciences, Radboud University,
Nijmegen, The Netherlands
{sjunges,jrot}@cs.ru.nl

Abstract. We study active automata learning, where the target lan-
guage is given as the intersection of n regular languages. We assume
membership oracles for the individual languages, and various forms of
equivalence queries, implemented as usual via conformance testing. These
oracles can be used by several different learning strategies. In this paper,
we propose these strategies and compare them experimentally.

Keywords: automata learning · intersection · regular language ·
conformance testing · active learning

1 Introduction

Active automata learning is a popular research topic in the last decades, fea-
turing an intriguing combination of elegant theory with proven potential for
applications in analysing correctness of software and hardware systems. Since
the seminal work of Angluin, who proposed the L∗ learning algorithm [1], there
have been numerous results on optimisations and efficient algorithms, extensions
to various different models, and practical case studies [4,9].

We assume a setting in which there are n machines, whose behaviour is
represented by regular languages L1, . . . , Ln over a common alphabet. Our aim
is to learn an automaton which represents the target language

L1 ∩ . . . ∩ Ln .

To this end, we assume membership and equivalence queries for each of the indi-
vidual machines. As usual in automata learning, equivalence queries are imple-
mented by conformance testing.

What is the most effective strategy of learning such a target language? Of
course, one can simply ignore the intersection structure altogether, and use any
of the existing algorithms for active learning. However, there are several other
natural strategies for learning such languages; for instance by learning one com-
ponent at a time, and perhaps reusing information gathered from learning pre-
vious components to speed up learning of the remainder.

This problem is motivated by a practical problem well known to most
researchers, and certainly familiar to the recipient of this festschrift: how to
get coffee. More specifically, how to obtain coffee in a dynamic academic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 371–381, 2022.
https://doi.org/10.1007/978-3-031-15629-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_20&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_20

372 S. Junges and J. Rot

environment, where at every corner of the building there is a slightly differ-
ent coffee machine (let alone the different coffee machines an academic needs to
deal with on their travels). The problem here is to learn a language of interaction
sequences that results in coffee, regardless of the exact model of coffee machine
used1. Slightly more seriously, the problem of learning intersection languages can
be relevant if our task is to learn the safe system interactions in a set of envi-
ronments: if an autonomous robot has to operate in a number of similar, but
slightly different environments, it may be important to know the language of
interactions that are safe in all environments. Yet another example could be the
problem of learning all sequences of inputs that lead to a successful recalibration
of a set of industrial printers.

In this paper we identify and compare three basic strategies for learning
intersections of regular languages, as described above. The paper starts with a
description of three natural strategies (Sect. 2). We then briefly describe our pro-
totype implementation Lcap with several relevant design choices (Sect. 3). Subse-
quently we present an empirical evaluation using this prototype implementation,
with examples that favor the different strategies (Sect. 4). We measure sym-
bol complexity : the total number of input letters provided both in membership
queries and equivalence queries (that is, during conformance testing). Finally,
we describe a range of research challenges that arise in our setting (Sect. 5).

2 Strategies

As described in the introduction, the problem is to learn a minimal automaton
for the intersection ⋂

i≤n

Ln

of a finite family of regular languages L1, . . . , Ln over a common alphabet Σ,
in the style of active automata learning: we assume access to an oracle/teacher
answering membership and equivalence queries. In this section we describe sev-
eral strategies for this task. We refer to the collection of these strategies as L∩.
These strategies are formulated on top of an active learning algorithm, such as
L� [1], TTT [5], L� [10], etc.—the strategies are independent of the choice of algo-
rithm. Explaining how these algorithms work is beyond the scope of this paper;
it suffices for the reader to know that can effectively learn minimal automata
using a polynomial number of membership and equivalence queries.

The precise assumptions about the oracle—which kinds of queries do they
answer—differ slightly among the strategies. Each of these strategies relies on
access to membership queries for individual languages, given by

Mi(w) = [w ∈ Li]

for each i ≤ n and w ∈ Σ∗. This returns true if w ∈ Li, and false otherwise.
1 This might also involve a careful choice of alphabet, perhaps allowing for actions

such as kicking the machine [3].

Learning Language Intersections 373

Further, we assume access to an equivalence query

Ei(L?) = [L? = Li]

for each of the languages Li; this returns true iff L? = Li. In active learning
algorithms, the argument of the query is typically presented in terms of an
automaton, referred to as a hypothesis. It is standard to implement equivalence
queries using black-box testing techniques.

For some of the strategies, we also assume an equivalence query of the form
E1...i(L?) = [L? =

⋂
1≤j≤i Li].

2.1 The Word-by-Word Strategy

The first approach, which we refer to as the word-by-word strategy, is to ignore
the structure of the target language

⋂
i≤n Ln altogether, and just use any active

learning algorithm to learn it. This requires access to the relevant queries for the
intersection language:

– membership queries for the entire intersection, M!(w) =
∧

i[w ∈ Li]; and
– equivalence queries for the entire intersection, E!(L?) = [L? =

⋂
i Li].

These membership queries can be expressed in terms of membership queries
w.r.t. the individual languages, that is, M!(w) =

∧
i Mi(w). It makes sense to

use lazy evaluation: compute M1(w), . . . ,Mn(w) in order, and return false
whenever one of the queries returns false.

The equivalence query E! for the intersection can not be encoded in this way
by individual equivalence queries, and indeed this is a non-trivial assumption.
However, just like for individual equivalence queries, the equivalence query E! can
be implemented naturally via conformance testing; it just means testing words
on multiple machines. Note that we can again use a lazy evaluation strategy in
such an implementation, as with membership queries.

2.2 The Independent Strategy

The next strategy is referred to as independent learning. Here, we learn automata
for each of the languages L1, . . . , Ln, compute an automaton for the intersection
using the product construction, and finally minimise. This just requires mem-
bership queries Mi and equivalence queries Ei for the individual languages. The
independent learning strategy is the most basic one: it simply calls an active
learning algorithm for each of the languages.

The word-by-word strategy and the independent learning strategy are, in
a sense, complementary: where in the independent strategy the intersection is
taken after learning, by the learner, in the word-by-word strategy the intersection
takes place before learning, by the teacher.

374 S. Junges and J. Rot

2.3 The Machine-by-Machine Strategy

The two previous strategies, word-by-word and independent, can be viewed as
realising two extremes: either view the intersection as a single language and
ignore the components (word-by-word), or learn the languages entirely sepa-
rately (independent). We now turn to a somewhat more refined strategy, which
iteratively learns partial intersections L≤i = L1∩. . .∩Li, for increasing i, making
use of previous results as a filter. To this end, we assume access to membership
queries M1...i and equivalence queries E1...i for L≤i.

More precisely, the machine-by-machine strategy is as follows. It starts by
simply learning L1. Now, suppose we learned an automaton which recognises
L≤i: This language is the filter. We then learn L≤i+1, which requires membership
and equivalence queries for the intersection language L≤i+1. The key idea is
that, whenever we do an membership query with word w, we first check whether
w ∈ L≤i, and only if the answer is true, we query Li+1. Similarly, whenever we
do an equivalence query, we first check whether the language of the hypothesis is
a subset of L≤i. In case it is, we proceed with an actual equivalence query; in case
it is not, this gives us a counterexample without having to perform any queries.
Checking subset inclusion here can be done with standard automata-theoretic
techniques, as we access to both models (that is, no queries required).

Note that the machine-by-machine strategy never learns the individual
machines, except for the first language L1; it only learns partial intersections,
which are increasingly close to the target language. Further note that the order
could matter quite a bit in this strategy. This is emphasised by our empirical
evaluation in Sect. 4.

3 Prototype Implementation

We implemented the L∩-flavours in a python library Lcap that serves as a play-
ground for investigating the different strategies2. Lcap takes as input a set of
DFAs and then runs the different learning strategies as described in the pre-
vious section. Lcap uses other libraries based on their ease-of-use: We use the
dfa library [11] for DFA operations, in particular for construction and taking the
intersection. We use the L∗ implementation and equivalence oracles in aalpy [8].

The implementation of the L∩ strategies presents some challenges that
required adapting existing learning algorithms as the APIs did not allow the
required modifications from the outside.

3.1 The Membership Oracle Signature

While the theory for DFA learning typically presents a membership oracle as a
function M : Σ∗ → {0, 1}, a Mealy-machine view on DFA learning leads to a
membership oracle Mseq : Σ∗ → {0, 1}∗ with |Mseq(w)| = |w| and Mseq(w)i =

2 Lcap is available on https://github.com/sjunges/Lcap and https://doi.org/10.5281/
zenodo.6685973.

https://github.com/sjunges/Lcap
https://doi.org/10.5281/zenodo.6685973
https://doi.org/10.5281/zenodo.6685973

Learning Language Intersections 375

M(w[..i]). Such an oracle matches a realistic assumption that the teacher can tell
us for any sequence of inputs to a system it is learning whether it is an accepting
state or not and adheres to the natural rule that we should share as much of the
available information with the learner, but it does complicate lazy evaluation
and filtering. We provide the following two solutions: Either we disable caching
or we use up-to-evaluation. Furthermore, we can use system caching to recover
from the lack of cache.

Up-to-Evaluation. To ensure that the cache works as intended, we construct the
query for Mseq on w as follows. We analyze the first word (on the filter or the
first automaton) completely with the corresponding Mseq oracle. We search for
the last position on which the response yields a positive answer, say on position
j, and take the prefix of the word w[..j]. At this point, we know that the correct
response is the response to Mseq(w) must be of the form Mseq(w[..j]) · 0|w|−j .
Since we are after intersection languages, on subsequent machines we can shorten
the query by omitting the trailing 0|w|−j .

Machine Caching. The idea behind system caching is to put the cache on the
level of the individual machines. That is, one does not cache in the learner, but
rather in the oracle for each machine independently. This does yield additional
overhead in the implementation and in the runtime and it potentially prevents
the learner from inspecting the cache. In terms of the symbol complexity, this
solution is equivalent to having a cache.

3.2 An Adequate Equivalence Oracle

We support the off-the-shelf oracles in aalpy and use the RandomWMethodEq-
oracle in our experiments3, which combines random tests with a characterisation
set for the hypothesis. The construction of the tests is thus not influenced by
the problem structure (that is, its presentation as an intersection). However, it is
good to note the following: The length – or similarly, the expected maximum size
of an automaton – should be sufficient to cover the states of the automaton. In
Mod(30), the intersection of the Mod(2), Mod(3), and Mod(5) languages outlined
above, a path of length say 50 often does not suffice to find the accepting state.

Practically, this conformance oracle does not query individual words, but
interfaces with a step(letter) interface that conceptually iterates over the
output of the Mseq-oracle defined above. The advantage of this oracle is that it
determines violations of equality early on. For the lazy word-by-word strategy
and the machine-by-machine strategy, we therefore cache steps that we do not
require for determining the result. Concretely, for the machine-by-machine, we
keep a FIFO buffer with the tokens. In every step, we first evaluate the step on
the hypothesis. If we do not transition to an accepting state, we add the token to
the buffer and return false. Otherwise, if we transition to an accepting state, we
first replay the buffer to the system under learning and then return whether the

3 Using walks per state=10, walk len=100.

376 S. Junges and J. Rot

system under learning is currently in an system under learning. Similarly, when
doing lazy evaluation in the word-by-word strategy, we hold n FIFO buffers.
We first put the token in all buffer and then iterate over the languages, for each
language we empty the buffer and either return false if we are not in an accepting
state or continue with the next language.

4 Empirical Evaluation

We discuss the prototype on a limited collection of benchmarks. We briefly dis-
cuss the setup, the main takeaways, and then discuss some results in more detail4.

4.1 Setup

We discuss the merits of the different strategies on some handcrafted exam-
ples, using our prototype implementation. In particular, we consider indepen-
dent learning, word-by-word evaluation with lazy evaluation, and machine-by-
machine evaluation. We disabled the cache on the learner and instead cache on
the level of the machines. We do not use up-to-evaluation. All experiments are
executed via Python 3.9 on a Macbook Pro; the individual experiments run in
a matter of seconds and a memory limit of 1 GB is never exceeded.

We collect the following essential data: The number of membership- and
equivalence-queries posed by the oracle (�MQ, �EQ respectively) and the symbol
complexity for answering both methods, denoted SCMQ and SCEQ. Notice that
we measure symbol complexity as the number of symbols/inputs simulated on
any machine/language. For independent learning, all these values are the sum
of the individual invocations. In an (eager) word-by-word fashion, answering the
membership query for a word |w| has symbol-complexity n·w. In the machine-by-
machine approach, querying a learned automaton for L1 ∩ . . . Lj has no symbol-
complexity: we assume that executing these actions on an automaton known
to the learner, rather than on a remote machine, has insignificant cost. As the
algorithm is randomized, all this data is collected as averages over 20 runs and
rounded to the nearest integer.

4.2 Summary

Before we consider details, we summarize our main observations based on the
limited set of benchmarks. First, each of the strategies can be drastically more
efficient than the others in its use of membership queries and the associated
symbol complexity. This statement is witnessed, e.g., by the IMOD(2, 3, 5),
IMOD(10, 8, 2) and MOD(8, 16, 32) benchmarks as detailled below. Differ-
ent benchmarks also vary significantly in the symbol complexity for equivalence
queries, but the difference is not as stark. Second, generally, independent learn-
ing is the best whenever the intersection requires a DFA that is larger than
4 The source code, log files, and experiments are all available via https://doi.org/10.

5281/zenodo.6685973.

https://doi.org/10.5281/zenodo.6685973
https://doi.org/10.5281/zenodo.6685973

Learning Language Intersections 377

the individual DFAs, whereas the contrary is true for the word-by-word strat-
egy. The situation for machine-by-machine learning is slightly differently, but
it is generally good to quickly learn the target language as this yields a rather
efficient filter.

4.3 Detailed Results

The MOD Languages. Consider the following language over Σ = {0, 1} ⊆ N.

MOD(x) = {w ∈ Σ∗ | |w| mod x = 0},

where |w| denotes the length (number of alphabet letters) of a word w. The
minimal DFA for this language has x states. These MOD(x) languages are closed
under intersection. We use MOD(x1, . . . , xn) to denote MOD(x1)∩. . .∩MOD(xn)
and consider learning these languages with the three strategies outlined above.
For details regarding the implementation we use, we refer to Sect. 3. Despite the
simplicity of this setup, we can make plenty of observations based on the data
shown in Table 1. First, above the first horizontal line, we are always learning
the MOD(30) language. Between the first and the second line, we are learning
MOD(24). We make the following observations for MOD(30) and remark that
similar statements hold for MOD(24).

– In the first line, this language is the intersection of just MOD(30); in this
case, all algorithms indeed behave equivalently.

– In the second line, we learn the intersection of three languages. In this case,
independent learning performs very well: We must learn a two-state, a three-
state and a five-state automaton. Neither the symbol complexity for the mem-
bership nor for the equivalence queries is high in this case. For the word-by-
word approach, we are still learning the same automaton. In the eager case,
this would require three times as many membership queries and a symbol
complexity three times higher (because every step and every query must now
be executed on three machines). However, as this is the lazy case, we do not
observe this three-times increase. Finally, for the machine-by-machine case,
we first learn MOD(2), then MOD(6) assuming MOD(2), and then MOD(30)
assuming MOD(6). For this, we require indeed less queries than independently
learning MOD(2), MOD(6), and MOD(30).

– Generally, as the following lines show, the independent approach suffers in
terms of membership queries and the associated symbol complexity from
having to learn on more machines whereas for the other approaches, the
additional cost often alleviates. On the other hand, the equivalence queries
remain expensive as the conformance test scales with the number of states
and the number of machines.

– In the word-by-word approach, after having obtained the correct response for
MOD(30) by querying MOD(2), MOD(3) and MOD(5), only 56 queries are
evaluated on MOD(30) or 2 · 56 queries on MOD(6) and MOD(10). These
queries are the queries that ask about words in MOD(30); lazy evaluation
cannot avoid that these queries are executed on all machines.

378 S. Junges and J. Rot

Table 1. Learning Modulo-languages

Independent Word-By-Word Machine-By-Machine

�MQ SCMQ �EQ SCEQ �MQ SCMQ �EQ SCEQ �MQ SCMQ �EQ SCEQ

MOD(30) 1480 68236 2 27644 1480 68236 2 27644 1480 68236 2 27644

MOD(2, 3, 5) 51 270 5 5303 2496 114306 2 81613 303 12556 5 30758

MOD(2, 3, 5, 6, 10) 234 2727 9 14771 2608 118986 2 121179 417 17441 9 69739

MOD(2, 3, 5, 30) 1573 70632 7 32937 2552 116646 2 101396 360 15034 7 50086

MOD(2, 3, 5, 6, 10, 15, 30) 2125 81825 13 53038 2719 123666 2 160745 535 22576 13 108676

MOD(30, 15, 10, 6, 5, 3, 2) 2062 79452 13 52989 1815 82276 2 146342 1825 83054 14 144862

MOD(15, 10, 6, 5, 3, 2) 617 12072 11 25551 1812 82252 2 130818 711 24203 12 113431

MOD(24) 899 32867 2 19876 899 32867 2 19876 899 32867 2 19876

MOD(3, 8) 101 1092 4 6254 1213 44077 2 39476 342 12009 4 21147

MOD(3, 8, 24) 1101 39485 6 26346 1257 45491 2 54544 388 13610 6 36127

MOD(2, 3, 8) 111 1236 5 7304 1526 55250 2 58668 195 6105 5 23082

MOD(2, 3, 6, 8, 12, 24) 1339 41716 11 38397 1774 63707 2 107840 301 9470 11 56047

MOD(24, 12, 8, 6, 3, 2) 1273 38644 11 38467 1116 39936 2 95214 1128 40686 12 94515

MOD(12, 8, 2, 6, 3) 358 5458 9 18710 1113 39940 2 82817 431 11657 10 70271

MOD(32) 1734 84019 2 30184 1734 84019 2 30184 1734 84019 2 30184

MOD(32, 16, 8) 2262 96594 6 46523 1853 89373 2 72833 1858 89737 6 72847

MOD(8, 16, 32) 2241 100253 6 46657 2079 100074 2 84481 260 8047 6 41438

MOD(32, 16, 8, 4, 2) 2286 96694 9 49646 1973 94726 2 115481 1976 95018 10 115214

MOD(2, 4, 8, 16, 32) 2329 100324 9 49827 3402 163621 2 143979 228 7461 9 44245

– Similarly, in the machine-by-machine approach, the filter after handling
MOD(2), MOD(3) and MOD(5) is MOD(30), thus only words in MOD(30)
are queried to the further machines.

The situation is a bit different when learning MOD(32). Here, we observe that
this setting allows for very efficient filtering in the machine-by-machine approach,
accelerating the learning.

The Inverse of the MOD Languages. We consider the inverse of these languages,
that is

IMOD(x) = {w ∈ Σ∗ | |w| mod x �= 0}.

The minimal DFA for this language has x states. We display some results in
Table 2. We distinguish two cases here: Above the first line, we are again learn-
ing IMOD(30) from individual languages that admit smaller representations.
Additionally, compared to MOD(30), the language (as a set) is much larger.
This means that lazy evaluation and filtering is less efficient. In some sense, this
setting yields the worst-case for word-by-word and machine-by-machine learning.

Below the first line, and in stark contrast to the situation before, the tar-
get language is smaller than the individual languages. Such a situation plays to
the strength of the word-by-word approach. Furthermore, if correctly ordered,
the machine-by-machine approach also avoids creating a large intermediate
automaton.

Learning Language Intersections 379

Table 2. Learning Not-modulo-languages

Independent Word-By-Word Machine-By-Machine

�MQ SCMQ �EQ SCEQ �MQ SCMQ �EQ SCEQ �MQ SCMQ �EQ SCEQ

IMOD(30) 1480 68236 2 27644 1480 68236 2 27644 1480 68236 2 27644

IMOD(2, 3, 5) 51 270 5 5303 1975 54835 5 67017 429 11187 10 26764

IMOD(2, 3, 5, 6, 10) 234 2727 9 14771 2601 71609 5 110570 632 16277 18 69780

IMOD(2, 3, 5, 6, 10, 15, 30) 2125 81825 13 53038 3227 88383 5 154124 852 21788 26 112759

IMOD(30, 15, 10, 6, 5, 3, 2) 2062 79452 13 52989 6003 168201 5 157321 2760 103784 24 135103

IMOD(15, 10, 6, 5, 3, 2) 617 12072 11 25551 5003 140364 5 134784 1661 45854 22 107856

IMOD(8) 83 1070 2 4721 83 1070 2 4721 83 1070 2 4721

IMOD(16, 8) 499 11482 4 16403 165 2140 2 9439 428 10595 4 16520

IMOD(8, 16) 467 10808 4 16142 157 2037 2 9432 108 1273 4 9322

IMOD(32, 24, 16, 8) 3245 134373 8 66514 328 4279 2 18874 8133 556202 12 201424

IMOD(8, 16, 24, 32) 3262 139417 8 66632 306 3969 2 18855 158 1679 8 18434

IMOD(2) 5 6 1 1044 5 6 1 1044 5 6 1 1044

IMOD(8, 4, 2) 106 1163 5 7913 11 16 1 3117 99 1152 5 7927

IMOD(2, 4, 8) 124 1417 5 7959 9 12 1 3089 9 12 3 2996

IMOD(32, 16, 8, 4, 2) 2286 96694 9 49646 17 26 1 5202 1827 85853 9 49781

IMOD(2, 4, 8, 16, 32) 2329 100324 9 49827 13 18 1 5134 13 18 5 4983

IMOD(2, 10, 20) 843 24655 5 22862 9 12 1 3089 9 12 3 2996

IMOD(20, 10, 2) 801 22362 5 22609 11 16 1 3127 676 20359 5 22658

5 Conclusion and Outlook

In this paper, we discussed a straightforward question: What is a natural way to
implement active learning of an intersection of languages. We introduced Lcap, a
prototype implementation of three strategies towards this learning problem. The
empirical evaluation shows that each of these strategies have their strengths and
weaknesses. The problem of learning intersections is an interesting playground,
with plenty of conceptual questions and further room for research5. We identify
several challenges below, divided into three entangled categories.

Conceptual Improvements. The strategies that we considered in this paper
are independent of the underlying algorithm. But one could think of strategies
that re-use the internal data structures that arise during learning (e.g., a table in
L∗ and many of its decendants, or an observation tree as in L�). For instance, in
the machine-by-machine strategy one could start learning the next intersection
language L1 ∩ . . . ∩ Li+1 starting not from an empty table (or tree), but from
the one that led to the final hypothesis for the previous intersection language
L1∩ . . .∩Li. This table/tree should perhaps then be checked against the current
language via membership queries. Such a strategy might work relatively well if
the languages in question are close.

In a similar spirit, the proposed machine-by-machine strategy learns lan-
guages in well-defined steps. There is room for adapting the equivalence queries
and loosening this strict stepwise approach. Instead of investing a similar effort

5 Perhaps by the Festgegenstand !

380 S. Junges and J. Rot

on the equivalence queries for intermediate results, one may arguably assume
that an equivalence query passes and only at the very end do a proper effort to
execute the equivalence query. The risk here is that one assumes an incorrect
intersection of L1 ∩ . . . Lj ; however, one may detect this mistake in the final
equivalence query and roll back.

Practical Considerations. The elephant in the room is which type of inter-
sections is most relevant in real life. We think that the application of these
algorithms to industrial case studies would be most interesting.

While the strategies may be implemented on top of existing frameworks, it
would be best if learning frameworks actively support the required interfaces,
see also the conceptual improvements above. This would additionally allow for
some more practical improvements: The different characteristics we observe in
our empirical evaluation hint at room for hybrid strategies that combine different
aspects. For example, one may group languages, learn their intersection using
a word-by-word approach, and then apply machine-by-machine or independent
learning over those intersections. Alternatively, even in a machine-by-machine
or independent setup, one can query (short) words on additional machines.

Finally, languages are currently statically ordered as provided by the user.
The experiments show that the order has a significant influence on the per-
formance. Developing strategies that adapt the order based on the word being
queried or based on a sample of words may significantly reduce the dependence
on the user-provided order.

Extensions. In the current paper we focused on DFA learning. A natural exten-
sion is to treat Mealy (and Moore) machines; this would require some kind
of algebraic structure on the outputs, generalising conjunction (with Booleans
as output) which we considered here. A related question is whether there is a
connection to the problem of learning product automata, as considered in [7].
Beyond DFAs, different modular setups for learning with a focus on the conse-
quences for the complexity of the problem are discussed in [2]. Orthogonally to
the problem in this paper, one may assume that the target language is the inter-
section of individual languages but that we do not have oracle-access to these
individual languages. A similar problem is studied for passive learning in [6].

In this paper, we measured the uniform symbol complexity. This may be
unrealistic: For example, not all (coffee) machines are equally expensive to access:
A machine located in your house is cheaper to test on than a machine one does
not own. The evaluation of words may depend on the execution speed of a
machine: A digital twin may be much quicker to evaluate on than on a physical
machine. This list is not exhaustive; e.g., some machines have high access cost
(walking to the coffee machine on a different floor) but executing multiple queries
is cheap. The addition of a cost model may open room for more interesting
combinations.

Learning Language Intersections 381

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Caulfield, B., Seshia, S.A.: Modularity in query-based concept learning. CoRR,
abs/1911.02714 (2019)

3. Fiterau-Brostean, P.: Active Model Learning for the Analysis of Network Protocols.
Ph.D thesis, Radboud University, April (2018)

4. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

5. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

6. Lauffer, N., Yalcinkaya, B., Vazquez-Chanlatte, M., Shah, A., Seshia, S.A.: Learn-
ing deterministic finite automata decompositions from examples and demonstra-
tions. CoRR, abs/2205.13013 (2022)

7. Moerman, J.: Learning product automata. In: ICGI, volume 93 of Proceedings of
Machine Learning Research, pp. 54–66. PMLR (2018)

8. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5

9. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
10. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active

automata learning based on apartness. In: TACAS, volume 13243 of LNCS, pp.
223–243. Springer (2022). https://doi.org/10.1007/978-3-030-99524-9 12

11. Marcell Vazquez-Chanlatte. dfa: A python library for deterministic finite automata.
https://github.com/mvcisback/dfa

https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-99524-9_12
https://github.com/mvcisback/dfa

Runtime Verification of Compound
Components with ComMA

Ivan Kurtev1,2(B) and Jozef Hooman3

1 Capgemini Engineering, Eindhoven, The Netherlands
ivan.kurtev@capgemini.com

2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 ESI (TNO), Eindhoven, The Netherlands

jozef.hooman@tno.nl

Abstract. The ComMA language has been developed to specify inter-
faces of software components, including protocol state machines, time
and data constraints, and constraints on relations between events of mul-
tiple interfaces. The language has been devised in close collaboration with
an industrial partner where it has been used to model a large number of
interfaces. Based on a ComMA model, a number of artefacts can be gen-
erated such as documentation and test cases. Important is the generation
of a monitor which is used to check if an implementation conforms to
the specified model. This paper describes the ComMA monitoring algo-
rithms. They are based on runtime verification techniques which have
been extended to deal with the expressive ComMA language.

Keywords: Interface modeling · Runtime Verification ·
Component-based development

1 Introduction

Modern high-tech systems are complex entities consisting of multiple interact-
ing components, typically supplied by different vendors. The lack of precise and
explicit specifications of component interfaces often leads to problems during
the integration of components. Component updates in already deployed systems
may also lead to issues caused, for example, by unexpected changes in the inter-
action protocol and the time behavior. To address these issues, the ComMA
(Component Modeling and Analysis) method and tool have been developed to
support precise modeling of components and their interfaces.

ComMA provides a number of domain-specific languages for specifying client-
server interfaces and component models in which multiple interfaces are used
together. The interface language allows definitions of custom types, interface
signatures in terms of messages exchanged between a client and server, behavior
that specifies the allowed order of messages, and constraints on timing and data
parameters. The component language allows modeling of simple and compound
components (containing multiple parts) that use several interfaces together.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 382–402, 2022.
https://doi.org/10.1007/978-3-031-15629-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_21&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_21

Runtime Verification of Compound Components with ComMA 383

Figure 1 shows a simple Control component that provides interface IControl to
its clients via the provided iControlPort3 port and uses the interfaces ITempera-
ture, IVacuum and ISource via its required ports shown as dashed squares. Fur-
thermore, component models support definition of constraints on the input/out-
put relation of a component in the view of its interfaces and their interactions.

Fig. 1. Example simple ComMA component

The ComMA tool facilitates a number of engineering tasks by automatically
generating artefacts from models. Figure 2 shows the main generators. Using
models as a single source, the generators create UML diagrams of models, docu-
mentation based on a predefined MS Word template, monitoring infrastructure
and test cases among others. The ability to monitor interfaces and components is
a powerful feature of ComMA. It is used to check if an implementation conforms
to an interface and/or component model. The automatically generated monitor
checks if an execution trace that contains messages observed during component
executions adheres to the behavior model and the time and data constraints. The
output of the monitor is conveniently shown in a dashboard that summarizes the
discovered issues along with other useful diagnostic information.

Fig. 2. Overview of ComMA generators

384 I. Kurtev and J. Hooman

One of the main goals of ComMA is to allow easy application by indus-
trial users. The modeling languages use familiar engineering notations such as
state-based specification of the behavioral aspects, commonly found patterns for
timing properties, and software architecture description concepts for component
models. The languages have been developed iteratively respecting the requests
and the feedback from the industrial users.

A number of previous publications [6,7] focused on ComMA interface speci-
fications giving the syntax and semantics of the language, and elaborated on the
interface monitoring algorithm and the check of time and data constraints. This
paper builds upon these results and explains in details the component modeling
language and monitoring algorithm.

The main contribution of our work is the integration of various theoretical
results from the runtime verification body of knowledge into a framework that
bridges the gap between the formal specification languages and the notations
used by engineers, supports automation and integration of engineering tasks. The
proposed specification language constructs do not introduce new logic, they focus
on specifying constraints at the level of abstraction of the engineering models,
handling components with multiple clients, and achieving compact specifications
by refering to interface states. We are currently not aware of other component
monitoring frameworks that utilize commonly used modeling notations to the
degree that ComMA does.

The ComMA tooling is available via the open source Eclipse CommaSuite
project1. The example used in the paper is included in the distribution.

Section 2 is an overview of ComMA interface models and monitoring, high-
lighting the features that are later used for the purpose of component modeling.
Section 3 introduces the component modeling language on the basis of an exam-
ple of a simple component. Section 4 follows with the presentation of compound
components. Section 5 discusses the purpose, challenges and implementation of
component monitoring. Sections 6 and 7 discuss related work and present the
concluding remarks.

2 Interface Modeling and Monitoring

In this section we briefly describe the modeling of interfaces in ComMA
(Sect. 2.1) and the monitoring of interfaces (Sect. 2.2).

2.1 ComMA Interface Modeling

An interface has a signature that defines synchronous and asynchronous calls
from client to server (named commands and signals respectively) and notifica-
tions which are asynchronous messages from server to client. These three together
with replies to commands are the messages that can be exchanged between a
client and server and will be referred to as interface events or messages. The

1 https://www.eclipse.org/comma/.

https://www.eclipse.org/comma/

Runtime Verification of Compound Components with ComMA 385

events may carry parameters. The signature of a simple interface called IVac-
uum, for managing vacuum in a system is shown in the next listing.

signature IVacuum
commands

void VacuumOn
void VacuumOff

noti f ications
VacuumOK

In ComMA, the allowed order of interface events is captured in an interface
behavior model which is defined as a protocol state machine. In addition, an
interface defines time and data constraints. Time constraints specify allowed
time intervals between events. Time and data constraints have been reported
in [6] and are out of scope of this paper. As an example, the state machine of
interface IVacuum is listed.

interface IVacuum
machine VacuumMachine {

i n i t i a l state NoVacuum {
transition trigger : VacuumOn

do : reply
next state : Evacuating

}
state Evacuating {

transition
do : VacuumOK
next state : Vacuum

}
state Vacuum {

transition trigger : VacuumOff
do : reply
next state : NoVacuum }

}
The state machine describes a client-server interface from the viewpoint of a
server, that is, transitions are triggered by client calls of a command or a signal.
The do part of a transition contains a sequence of actions of the server, which
may include assignments to variables, a reply to a command, if-then-else state-
ments, and notification patterns. A notification pattern specifies the occurrence
of notifications; a special case is the any order construct to specify that events
may happen in any order. Moreover, the language allows non-determinism, e.g.,
after a client call there may be multiple possible transitions by the server, pos-
sibly leading to different responses and states.

2.2 Interface Monitoring

Interface monitoring is the process of checking if a trace of observed events
between client and server conforms to the interface definition. The following is

386 I. Kurtev and J. Hooman

an example of the ComMA trace format (apart from this, JSON format is also
supported):

components
Control c t r l
Vacuum vacuum

events

command 0 .0 c t r l iVacuumPort vacuum iVacuumPort
IVacuum VacuumOn

End

reply 0 .11 vacuum iVacuumPort c t r l iVacuumPort
IVacuum VacuumOn

End

notif ication 1 .2 vacuum iVacuumPort c t r l iVacuumPort
IVacuum VacuumOK

End

A trace starts with declarations of component instances (elaborated later
when the component language is explained). They interact by sending messages
to each other. Each message has a timestamp, a source instance and port (ports
are explained in Sect. 3), a target instance and port, and contains the event and
the interface it belongs to. The first message in the example is the command Vac-
uumOn with timestamp 0.0 sent from component ctrl and its port iVacuumPort
to component vacuum.

In ComMA, an interface monitor is a Java program that is automatically
generated from the interface model. The ComMA monitor starts from the initial
state of the state machine and consumes the events from the trace one by one.
As soon as the monitor detects that an event in the trace does not conform
to the state machine, it reports an error with some diagnostic info and stops
monitoring.

Interface Events Augmented with State Information. As will be
described in Sect. 3, component constraints may refer to states of interface
descriptions. To allow checking of such constraints, the interface monitor aug-
ments interface events with the current state of the interface model. If an event
is accepted by the monitor, it is annotated with the state in which it has been
observed (known as observation state) and with the state that will be the current
state when the next event is observed (known as post-observation state).

Since interface models allow non-determinism, multiple transitions for an
event may be possible leading to potentially different observation and post-
observations states. Consider Fig. 3: after observing notification n1, two tran-
sitions can be taken leading to different post-observations states: S1 and S3

Runtime Verification of Compound Components with ComMA 387

respectively. The interface monitor explores all possible traversal paths. If for
a given path, the observed event is not allowed in the current state, the path
is discarded. If all traversal paths are discarded then an interface monitoring
error is detected. If in our example, signal s is observed after n1 then the path
which contains the transition to S2 will be discarded since there notification n2
is expected.

Fig. 3. Example state machine with non-determinism

The interface monitor maintains a list with traversal path descriptions. A
description contains an identifier of the path, observation and post-observation
states. At the start of monitoring only one path exists, assume its identifier is p.
If a path leads to branching due to multiple possible transitions, each branch is
uniquely numbered. The identifiers of the new paths are formed by concatenating
the identifier of the parent path with the branch number. For example, if path
with identifier p122 leads to two new branches their identifiers will be p1221 and
p1222. A path p is a branch of q if the identifier of q is a prefix of the identifier
of p.

After checking an event, the interface monitor provides a list of descriptions
of all active traversal paths. In Sect. 5, we show how these path descriptions are
used in the component monitoring process.

3 Component Models

We present the language constructs to specify components with constraints in
Sect. 3.1 and to capture the identity of communication partners in Sect. 3.2.

3.1 Components with Functional Constraints

Interface specifications define the allowed order of events when a client uses
an interface. Multiple interfaces are usually used together in the context of a
single software unit that interacts with its environment. ComMA uses component
models to define the allowed order of events from multiple interfaces and from
multiple clients of the same interface.

388 I. Kurtev and J. Hooman

As an example, we consider the Control component in Fig. 1 that provides
interface IControl to its clients and uses services from other components via three
interfaces. The textual syntax of component models in ComMA is as follows:

component Control

provided port IContro l iContro lPort3
required port ITemperature iTemperaturePort
required port IVacuum iVacuumPort
required port ISource iSourcePort

Ports are connection points used in the communication between component
instances and are always associated to an interface. We distinguish between
provided and required ports. A provided port is used by the clients of the com-
ponent to connect to and interact with it according to the port’s interface. Mul-
tiple clients are allowed to connect to a provided port. Required ports are used
by the component to connect to its environment (consisting of other component
instances).

The main purpose of a component model is to define constraints on the
order of events observable in the context of the model (sent to or from the
component ports). The construct used to specify this order is called functional
constraint. A functional constraint captures an aspect of the complete behavior
of the component and is usually restricted to a small subset of the observable
events. Component models are not intended to define the complete component
behavior in terms of reactions to all possible events in different states. In other
words, component models are not design specifications that are used to derive
a complete component implementation. An implementation is expected to sat-
isfy all the functional constraints defined in a component model. In addition,
a component model may define time and data constraints (not covered in this
paper).

Functional constraints have two forms: state-based specification (known as
state-based functional constraint) and an expression that has to evaluate to true
for every observed event in the component context (called predicate functional
constraint). The information about the current state of the interface associated
to a port can be used in functional constraints.

As an example, the Control component handles requests for image acquisition
and controls the vacuum and temperature in the system. A requirement for the
control logic is that image acquisition is only possible if vacuum is present,
and a certain temperature is reached. In terms of allowed message sequences,
the command AcquireImage must be observed after the notifications about the
correct state of vacuum and temperature, and only then the acquisition can be
started. The following (simplified) constraint captures this requirement.

use events
command iContro lPort3 : : AcquireImage
command iSourcePort : : S t a r tAcqu i s i t i on

Runtime Verification of Compound Components with ComMA 389

i n i t i a l state Ready {
// i f vacuum and temperature OK s t a r t a c q u i s i t i o n
command iContro lPort3 : : AcquireImage

where iVacuumPort in Vacuum and
iTemperaturePort in TemperatureSet

command iSourcePort : : S t a r tAcqu i s i t i on
next state : Ready

}
The constraint uses only two events listed in the section use events. The use
events sections can also specify event patterns that denote more than one event
such as all commands observed at a given port, all messages at a given port
and so on. The allowed order of the specified events is given in a state machine
similarly to the interface protocol state machines. Events that do not belong to
the set defined in use events are not restricted.

In the example, the machine is very simple, consisting of one state and a single
transition. The transition is triggered when command AcquireImage is observed
at port iControlPort3. The pattern command iControlPort3::AcquireImage is
a subject of a condition: a Boolean expression after the where keyword. iVacu-
umPort in Vacuum evaluates to true if the sequence of messages at iVacuumPort
until the observation of AcquireImage has led to state Vacuum. Here Vacuum is
a state in the IVacuum interface as shown in Sect. 2.1.

The pattern match is successful only if the condition is true. In terms of our
example: AcquireImage is allowed to occur only if the vacuum and temperature
ports are in the right state. This access to interface state information of ports
is extremely handy. Without it, the functional constraint needs to replicate the
sequence of the messages on the two ports that lead to the indicated interface
states, information that is already present in the interface specifications. This
way, code duplication is avoided and the size of the constraint is reduced.

In general, transitions in functional constraints are sequences of actions where
the first action is a message pattern: an indication that a message of a given
kind is expected to be observed. The other supported actions are assignment
and if-then-else. Informally, a state-based functional constraint determines a set
of message traces that conform to it. A trace in this set is such that (i) for
every port, the projection of the trace on this port (i.e. the trace obtained by
keeping only the messages on this port) conforms to the port interface; (ii) the
trace obtained by keeping all the used events conforms to the constraint state
machine. Here ’conforms’ means that starting from the initial state and the first
event in the trace, there is at least one transition traversal path that accepts the
trace.

3.2 Using the Identity of Communication Partners

In a trace, every message has a source and a target, which are identifiers of
component instances, and source and target ports. The component language
provides a construct to capture the identity of the communication party for

390 I. Kurtev and J. Hooman

a message observed at a component port. For example, when a command is
received at a provided port, the identifier of the client can be obtained. Similarly,
when a command is sent from a required port of a component, the identifier of
the component can be obtained. This is illustrated by an example of a shared
resource with multiple clients.

Fig. 4. Example interface and component models for managing shared resource

Assume that a component is providing access to a shared resource via a
single provided port named resPort associated to interface IResource (see Fig. 4).
Multiple clients can request control over this resource and the component is
responsible for the policy of sharing it. The requirement is that at most one
client is allowed to control the resource at a given moment. The following is a
snippet from the corresponding functional constraint.

use events
r e sPort : : reply to command getContro l
notif ication r e sPor t : : c on t ro lLo s t

variables
id c
id c1

i n i t i a l state ResourceFree {
<c> r e sPort : : reply (t rue) to command getContro l
next state : ResourceTaken

resPort : : reply (f a l s e) to command getContro l
next state : ResourceFree

}

state ResourceTaken {
notif ication <c1>r e sPor t : : c on t ro lLo s t where c = = c1

Runtime Verification of Compound Components with ComMA 391

next state : ResourceFree

re sPort : : reply (f a l s e) to command getContro l
next state : ResourceTaken

}
If in the initial state, called ResourceFree, a reply to command getControl

with argument true is observed then the identifier of the client who receives the
reply is bound to the variable c. Note that the type of the variable is id. This is
a predefined primitive type that allows only identity comparison operations. If a
client receives a positive reply to getControl, the state ResourceTaken becomes
the current state. In ResourceTaken no more positive replies to control requests
are allowed. The control over the resource can be released only if the component
decides to send notification controlLost to the client which currently has the
control. Observe the usage of the variable c1 that takes as value the identifier of
the receiver of the notification. It is used in the condition that ensures the client
which is currently in control receives the notification.

This example can be formulated more compactly as a predicate functional
constraint. A predicate constraint is an expression preceded with the keyword
always:

always [0−1] connections at portRes in InContro l

The constraint states that at most one client connected to portRes is in inter-
face state InControl. The expression uses a quantifier over the port connections
(zero or one connection satisfies a condition). Note that for every client/con-
nection of a provided port, a separate instance of the interface state machine is
created, each with its own current state. This example shows how component
functional constraints can restrict the order of events over the connections of a
single port. In contrast, the first example (about control, vacuum and tempera-
ture) involves multiple ports and interfaces.

The interface state of the client at the moment of observing a message may
be different from the state assumed after the observation (recall the difference
between observation and post-observation states explained in Sect. 2.2). As an
illustration, consider two consecutive actions in a functional constraint in the
context of our current example:

<c> r e sPort : : reply (t rue) to command getContro l
where c at r e sPort in I d l e

b := (c at r e sPort in I d l e)

The first action is a pattern that matches replies to getControl with param-
eter true. If it matches the currently observed message, variable c takes a value
(the identifier of the receiver of the reply) and then the where clause is evaluated.
Assume that its value is true (indeed, such a reply can only be observed in state
Idle).

In the second action, however, the same expression evaluates to false since
after observing the reply, the transition to InControl is taken and the interface

392 I. Kurtev and J. Hooman

changes its state (see Fig. 4). Variable b will be assigned with false. This subtlety
affects how the expressions that use the current interface state of a connection
are evaluated. If they are used in the context of a message pattern, the state
at the moment of observing the message is used for the corresponding connec-
tion, otherwise the post-observation state for the last observed message for this
connection is used.

4 Compound Components

Component models may also define the internal component structure: its sub-
components (parts) and their interactions.

Fig. 5. Example compound component model

Figure 5 shows an example of a non-trivial component model called Imag-
ing. It represents a system that captures images of some specimen. The model
has four parts that are instances of other component models: ui, imageAcquisi-
ton, imageProcessing and display. These component models may have their own
internal structure as can be seen from the figure. The process of image acquisi-
tion requires vacuum in the system and a certain temperature level. The image
is produced by a beam, generated by a source, going through the material and
captured by a detector. The detector sends the data for further processing, stor-
age and possibly visualization at a display. The imageAcquisition.control part
is responsible for orchestrating the process: first ensuring vacuum and correct

Runtime Verification of Compound Components with ComMA 393

temperature and then starting the acquisition process. The type of imageAcqui-
sition.control is the Control component introduced in the previous section.

Components are connected via their ports; in Fig. 5 provided ports are shown
as a solid square and required ports as a dashed square. Messages originating
from the required port ui.iControlPort1 are transmitted via a connection to
the provided port imageAcquisition.iControlPort2. The connection between the
latter and control.iControlPort3 means that the messages will be further trans-
mitted to the part control. In this way, a chain of connections defines a full
path for message transmission. A more complex path can be observed between
detector.iProcessingPort and imageProcessing.iProcessingPort.

As an example of the textual syntax of compound components, the next
listing shows the specification of the ImageAcquisition component.

component ImageAcquis i t ion

provided port IContro l iContro lPort2
required port IProc e s s i ng iProc e s s i ngPor t

parts
Control c on t r o l
Temperature temperature
Vacuum vacuum
Acqu i s i t i on a c qu i s i t i o n

connections
iContro lPort2 <−> c on t r o l : : iContro lPort3
con t r o l : : iTemperaturePort <−> temperature : : iTemperaturePort
c on t r o l : : iVacuumPort <−> vacuum : : iVacuumPort
c on t r o l : : iSourcePort <−> a c qu i s i t i o n : : iSourcePort
a c q u i s i t i o n : : iP roc e s s i ngPor t <−> iP roc e s s i ngPor t

Note that a compound component contains parts which are named instances of
component models. The parts have all the ports defined in their model. We will
call such ports part ports and will refer to the ports defined by the component
model as boundary ports. Within a component model, parts can interact with
other parts by using connections between their ports. A connection of this kind
is defined between a pair of provided and required ports of the same interface.
Furthermore, a boundary port may be connected to a part port with the same
kind (provided or required) and of the same interface. A connection indicates a
channel for transmitting messages between the ports. For example, a message
observed at a boundary port is redirected to the connected port of one of its parts.
The ports do not perform any computation. A connection between a boundary
port and a part port is just an indication of a path to the message’s destination.
The boundary port does not create a new message that is forwarded over the
connection.

For a compound component, functional constraints can be used to relate
events of interfaces of different components. For instance, such a constraint may
express that an AcquireImage event on port iControlPort1 of component ui

394 I. Kurtev and J. Hooman

alternates with event DisplayImage on port iDisplayPort of component display.
Moreover, also end-to-end time constraints can be expressed, e.g. to express that
the DisplayImage event should happen within a certain amount of time after the
AcquireImage event.

5 Component Monitoring

Component monitoring is performed for a given trace and component model.
It checks if the trace satisfies: (i) the functional constraints in the model; (ii)
the interface models associated to the component ports. Furthermore, if the
component model has parts, the trace is checked against their models too.

The monitor for a trace has the following logical structure: trace processor
that reads the trace, identifies the component instances to be monitored, and
invokes component and interface monitors. A component monitor contains func-
tional constraint monitors.

We first briefly explain how component instances are specified in the traces,
an elaboration of the information previously given in Sect. 2.2.

5.1 Traces with Messages Between Component Instances

A trace starts with a declaration of all component instances and their models.
The part-whole relation between the instances is encoded in their identifiers.

Imaging imaging
Use r In t e r f a c e imaging . u i
ImageAcquis i t ion imaging . imageAcqui s i t ion

In this declaration, there is one instance of the Imaging model, called imaging,
and two parts of imaging which are named with a compound name where the
prefix is the name of the containing instance and the last segment is the simple
name given in the component model.

Messages cannot cross the boundaries of the containing components for
its source and target. For example, a message from imaging.ui can only
be sent to the parts at the same level of nesting, that is, to imag-
ing.imageAcquisition. Observe that imageAcquisition.iControlPort2 is connected
to control.iControlPort3 (Fig. 5) so the messages received at the former will
be further directed to the latter port. Regardless of the connection, it is
not allowed to specify a message from imaging.ui.iControlPort1 to imag-
ing.imageAcquisition.control.iControlPort3 because it crosses the boundary of
the enclosing imageAcquisition component.

5.2 Algorithm for Monitoring a Trace

For a given trace and a component model, all instances of the component model
are monitored. Note that a trace may have instances of different models. Only
the instances of the given model are considered. An instance behaves according

Runtime Verification of Compound Components with ComMA 395

to its model if the sequence of the messages relevant to this instance satisfies
the constraints in the model and in the models of its direct or indirect parts. A
direct part is contained immediately in the instance, an indirect part is contained
further down in the containment tree induced by the part-whole relation among
components. A message is relevant for a component instance if it is observed at
one of its boundary ports or is exchanged between two of its direct or indirect
parts. When a component instance is monitored all its direct and indirect parts
are monitored too.

Due to the possibility of connections between ports, a given message can be
checked against more than one component model. One of the tasks of the moni-
toring algorithm is for a given message to determine a sequence of checks against
the relevant component models. Assume that we monitor the instance imaging
(see the example in previous section) and imaging.imageAcquisition receives a
message at iControlPort2 from imaging.ui. Let’s denote this message as (ui,
iControlPort1, imageAcquisition, iControlPort2) abstracting away the message
kind and possible parameters. This is a message between parts of the component
being monitored, it is visible in the context of component model Imaging and
therefore it has to be checked against the Imaging constraints. Furthermore, the
message is observed at the boundary ports of two parts thus posing the need to
check it against their models (UserInterface and ImageAcquisition).

When the message is received at imageAcquisition.iControlPort2, the connec-
tion to control.iControlPort3 is followed and the message is ultimately received
by the control part. The message needs to be checked against the Control model
as well. In summary, the considered message will be checked against the following
component models: Imaging, UserInterface, ImageAcquisition, and Control.

The constraints in Control model will refer to messages observed at Control
instances and their boundary ports. Because of this, before checking the message
against the constraints defined in Control, the destination of the message is
changed to (ui, iControlPort1, imageAcquisition.control, iControlPort3).

In summary, for every message relevant to the monitored instance, a list
of (component instance, port) pairs is determined, where the presence of port
is optional. For every element in the list, the message will be checked by the
component monitor for the instance. Both the instance and the port will be used
if one of the message ends needs renaming. In our example the list of pairs is
(imaging,), (userInterface,), (imageAcquisition,), (control, iControlPort3).

Generally, the list is formed in the following way: (i) for a message at compo-
nent boundary port, the instances are the ones reachable following the chain of
port connections towards the component parts; (ii) for a message between parts,
the instances are the ones reachable following the connections from the source
and target message ports plus the immediate parent of the parts. Our example
falls under the second case.

Before the check of functional constraints, interface monitoring is per-
formed. Every relevant message is exchanged in a pair of client and server
components and an interface monitor will be created for this pair. In our
example, an interface monitor will be created for the connection between

396 I. Kurtev and J. Hooman

ui.iControlPort1 and imageAcquisition.iControlPort2. It will provide interface
state information shared among three ports: the two mentioned above and con-
trol.iControlPort3 (note the connection between imageAcquisition.iControlPort2
and control.iControlPort3).

A sketch of the algorithm that processes and monitors a trace is given in
procedure MonitorComponentInstances that takes as input a component model
cModel and a trace. Recall that the trace contains information about the com-
ponent instances and the messages among them. Monitoring is performed on
all messages from the trace that are relevant for the instances of cModel. All
instances of cModel can be obtained from the component declarations part in
trace (line 2). As explained before, a relevant message is observed at a boundary
port or between two (direct or indirect) parts of some instance (lines 9–11). If
a relevant message is found, it is first checked by its interface monitor (created
for the connection between the message’s sender and receiver). The interface
monitor is treated as an object: it can be created, stored and it has behavior
and internal state (line 18). Interface monitoring of a relevant message is always
performed as long as no interface error has been detected for this connection.
If at least one interface error is found for a given component instance on some
of its ports, the check against the component model is not performed anymore.
The map interfaceErrorStatus (line 6) keeps track if an interface error has been
observed for an instance (see lines 24 and 42 where the map is used and updated).
If the interface monitor accepts the message the next step is to perform the check
against the relevant component models (which further leads to checking of their
functional constraints). Traversal path descriptions that will be used in func-
tional constraint checks are obtained from the interface monitor (line 27). The
pairs of component instance and port (as explained previously) are determined
and then iterated (lines 31–40). For every component instance in the pairs, a
component monitor is obtained (line 36, created once on demand, then stored
and used later when the same instance is monitored for another message).
1 MonitorComponentInstances (cModel , t r a c e)
2 i n s t an c e s <− i n s t an c e s o f cModel from t ra c e
3
4 // i n d i c a t e s i f i n t e r f a c e monitoring error occurred
5 // f o r an ins tance ; i n i t i a l i z e d wi th f a l s e
6 i n t e r f a c eE r r o r S t a t u s <− map from in s t an c e s to Boolean
7 While t r a c e has unprocessed messages Do
8 msg <− read next message from t ra c e
9 I f (msg at boundary port o f some i in i n s t an c e s)

10 Or
11 (msg between par t s o f some i in i n s t an c e s)
12 Then
13 i <− the in s t ance that s a t i s f i e s the
14 cond i t i on in l i n e s 9−11
15 // i n t e r f a c e monitor i s i n s t a n t i a t e d once on
16 //demand fo r each pa i r (c l i e n t , s e r v e r) ,
17 // s t o r ed and used when needed

Runtime Verification of Compound Components with ComMA 397

18 in t e r f a c eMon i t o r <− obta in i n t e r f a c e monitor
19 f o r msg
20 I f i n t e r f a c eMon i t o r a l r eady gave e r r o r Then
21 Continue
22 End I f
23 I f msg i s accepted by in t e r f a c eMon i t o r Then
24 I f i n t e r f a c eE r r o r S t a t u s at i i s t rue Then
25 Continue
26 End I f
27 pathDesc r ip t i ons <− obta in t r a v e r s a l path
28 d e s c r i p t i o n s from in t e r f a c eMon i t o r
29 pa i r s In s t ancePor t <− l i s t o f (ins tance , port)
30 f o r cModel and i
31 For Each pa i r in pa i r s In s t ancePor t Do
32 change the r e l e van t message end f o r pa i r
33
34 //component monitor i n s t a n t i a t e d on
35 //demand and s t o r ed
36 componentMonitor <− obta in component
37 monitor f o r pa i r . i n s t ance
38 MonitorComponentInstance (componentMonitor ,
39 msg , pathDesc r ip t i ons)
40 End For
41 Else
42 s e t i n t e r f a c eE r r o r S t a t u s at i to t rue
43 End I f
44 End I f
45 End While
46 c o l l e c t and pr in t r e s u l t s from a l l i n t e r f a c e and
47 component monitors
48 End

The monitoring of a component instance is sketched in procedure Moni-
torComponentInstance. A component monitor contains a list of functional con-
straint monitors (line 4, componentMonitor.fcMonitors). The input message is
checked by every functional constraint monitor for which no error has previously
been detected.

1 MonitorComponentInstance (componentMonitor ,
2 msg ,
3 pathDesc r ip t i ons)
4 For Each fcMonitor in componentMonitor . f cMonitors Do
5 I f fcMonitor has not p r ev i ou s l y detec ted e r r o r
6 Then
7 MonitorFunct iona lConstra int (fcMonitor , msg ,
8 pathDesc r ip t i ons)
9 End I f

10 End For
11 End

398 I. Kurtev and J. Hooman

The implementation of functional constraint monitors and the usage of the
traversal path descriptions is explained in the next section.

5.3 Checking Functional Constraints

We will first discuss how expressions that use interface states at ports are eval-
uated using the information in the traversal path descriptions, and then will
outline the implementation of functional constraint monitors.

Different traversal paths in an interface state machine may lead to different
states. In functional constraints, the expressions that refer to port states may
produce different results for different paths ultimately causing a constraint to
fail for some paths and succeed for others. Furthermore, multiple ports with
multiple interface monitors can exist in the context of a component instance,
each monitor possibly having multiple traversal paths. This means that for a
given component instance, all combinations of traversal paths from all monitors
on all ports need to be formed and functional constraints have to be evaluated
for every combination. When forming the combinations we take into account
that connected ports share an interface monitor and therefore share traversal
paths in a single combination.

In the following explanation we assume that for each functional constraint
there is an implementation in some programming language. Such an implemen-
tation may be based on some of the well known ways to implement state machine
specifications in a general purpose programming language. We also assume that
the implementation is parameterized with a constraint execution context. The
context contains the current state of the machine, the values of the variables,
and the states of the interface monitors associated to the component ports (as
explained previously). The implementation can be configured with a given con-
text and provides a function called consume that receives a message as input.
This function, based on the current machine state, searches for transitions that
match the message. For such a transition, all actions are executed thus lead-
ing to new execution context. If more than one transition exists, all are explored
leading to multiple new execution contexts. The function returns the list of these
new execution contexts. If the list is empty, then the functional constraint fails
for the observed message in the given execution context.

At conceptual level, a functional constraint monitor is a data structure that
contains the implementation of the constraint, a set of tuples with the traversal
path descriptions per interface monitor on the ports (referred to as portsStates),
and for every such tuple a set of constraint execution contexts.

The next procedure sketches the check of a functional constraint on a given
message. The idea here is to check the functional constraint for every tuple with
ports states. The functional constraint monitor is responsible for initializing
and updating the set with these tuples. Since a functional constraint may have
multiple execution contexts, a given tuple with ports states is associated to a
set of execution contexts.

Runtime Verification of Compound Components with ComMA 399

1 MonitorFunct iona lConstra int (fcMonitor ,
2 msg ,
3 pathDesc r ip t i ons)
4 update fcMonitor . po r t sS t a t e s f o r the g iven msg
5 with i n f o from pathDesc r ip t i ons
6 I f fcMonitor . po r t sS t a t e s i s empty Then
7 r e g i s t e r f un c t i o na l c on s t r a i n t e r r o r
8 Return
9 End I f

10 I f msg not used by the f un c t i o na l c on s t r a i n t Then
11 Return
12 End I f
13 newPortsStates <− empty l i s t
14 For Each portsStateTuple in fcMonitor . po r t sS t a t e s Do
15 s e t cur r ent por t s s t a t e s in fcMonitor
16 to portsStateTuple
17 newFCExecutionContexts <− empty l i s t
18 For Each fcContext in portsStateTuple . f cContexts
19 Do
20 s e t cur r ent context in fcMonitor to fcContext
21 newContexts <− fcMonitor . consume (msg)
22 add newContexts to newFCExecutionContexts
23 End For
24 I f newFCExecutionContexts i s not empty Then
25 portsStateTuple . f cContexts <−
26 newFCExecutionContexts
27 add portsStateTuple to newPortsStates
28 End I f
29 End For
30 I f newPortsStates i s empty Then
31 r e g i s t e r f un c t i o na l c on s t r a i n t e r r o r
32 Return
33 Else
34 fcMonitor . po r t sS t a t e s <− newPortsStates
35 End I f
36 End

The first operation in the procedure updates the tuples of ports states with
the info from the path descriptions provided by the interface monitor (line 4). If
in a given tuple the path identifier at the port on which the message is observed
is not a prefix for any path in pathDescriptions this means that the path has
been discarded by the interface monitor after the check of the message. The tuple
is discarded as well. If the path identifier is a prefix of some paths in pathDe-
scriptions, the tuple is replicated for every such path and state information is
updated. It is possible that after this update, all tuples are discarded. This is
treated as functional constraint violation: there are no traversal paths in the
interface monitor that satisfy the functional constraint (lines 6–9). Observe also
that this update is done for every message even if it is not used by the functional
constraint (not listed in use events section).

400 I. Kurtev and J. Hooman

After the update of the ports states, and the check if the message is used by
the constraint (lines 10–12), the logic is straightforward: the outer loop (starting
in line 14) iterates over each tuple of ports states, the inner loop (line 18–
23) iterates over the functional constraint execution contexts for this tuple. The
functional constraint instance is configured with a pair of ports states and context
and then function consume is called. The result is a list of new execution contexts
(line 21). If for a given tuple and all its contexts no transition in the functional
constraint is found for the message (manifested by empty list of new contexts)
the tuple is discarded. If all tuples are discarded, a functional constraint error is
registered (lines 30–32).

The set of tuples with port states may become very large. In practice this
hardly happens: multiple traversal paths in an interface are usually reduced to
one after observing a few events.

The monitoring algorithms presented here serve as a base for the implemen-
tation of the component monitoring tool (done in Java and available in the
Eclipse CommaSuite project). The trace processor, component and functional
constraint monitors, and the functional constraints are completely generated
from component and interface models.

6 Related Work

The component modeling approach presented in this paper uses the concepts of
component, interface, port and connector. They are known from software archi-
tecture and system modeling languages such as UML, SysML, AADL among
others. This is a conscious choice based on the observation that these concepts
are familiar to the practitioners. Monitoring of systems with complex compo-
nent architecture has been addressed in [4,13]. Falcone et al. [4] propose a run-
time verification framework for component-based systems modeled with similar
constructs where behavior is modeled with finite state machines. The ports in
this approach accept simple values whereas in ComMA, ports are associated to
interfaces with signatures that may use complex structures. Stockmann et al.
[13] execute monitoring on traces obtained from simulating a software architec-
ture specified in an executable modeling language. In our approach, traces are
observations on the implementation.

There is a large variety of languages for specifying properties to be moni-
tored. Their theoretical underpinnings are usually in formal logics. Dwyer et al.
[3] identify patterns for properties observed in practice. These patterns have been
used in property specification languages to achieve more compact and intuitive
syntax. ParTraP [2] is a recent work based on this idea. Time and data con-
straints in ComMA are derived from common patterns observed in industrial
practice, like periodicity, response time and others. We have considered using
the patterns identified in [3] for functional constraints but opted for state-based
specifications, already used in the interface definition language.

RML [1] is a domain-specific language for runtime verification. ComMA con-
structs like any order and event patterns have their counterparts in this language.

Runtime Verification of Compound Components with ComMA 401

An interesting possibility is to treat ComMA specifications as syntactic sugar
and investigate how they can be translated to RML primitives.

There exist approaches that weave the monitor’s code into the system under
monitoring (e.g. the language LIME and its monitoring infrastructure [5]). In
our work the monitor is executed separately from the monitored system, often
in offline mode after collecting the observations. This is beneficial in cases where
the system implementation cannot be altered and instrumented.

ComMA compound components may represent distributed systems. This
opens the possibility for distributed monitoring. Currently, the component mon-
itor is monolithic, executed on a single node and working with traces that unite
all (possibly distributed) observations. Performing distributed monitoring is a
possible future direction, whose importance is recognized in a recent survey [10].

7 Conclusions

We presented the ComMA language that allows modeling component-based sys-
tems and specifying properties that are monitored during system execution.
Monitors are automatically generated from component specifications. This work
extends our previous work on specification and monitoring of component inter-
faces in industrial context. It brings a new application scope by allowing multiple
interfaces to be used together in a single component and specifying interacting
components at system level.

As mentioned in earlier publications [6,7,11], ComMA has been developed
driven by user needs in close collaboration with Philips, following the industry-
as-laboratory approach [8]. Hence, the languages use concepts and notations
that are familiar to engineers and aim at rapid industrial adoption. Currently,
the ComMA tooling is actively used at Philips to model and monitor of a num-
ber of industrial components, see for instance [9,12]. Future work will focus on
applications in more complex cases where monitoring the order and timing of
component interaction is a primary focus.

Acknowledgements. We would like to thanks our colleague Dennis Dams and the
anonymous reviewers for many useful suggestions for improvements.

References

1. Ancona, D., Franceschini, L., Ferrando, A., Mascardi, V.: RML: theory and practice
of a domain specific language for runtime verification. Sci. Comput. Program. 205,
102610 (2021). https://doi.org/10.1016/j.scico.2021.102610

2. Blein, Y.: ParTraP: a language for the specification and runtime verification of
parametric properties. (ParTraP: Un langage pour la spécification et vérification à
l’exécution de propriétés paramétriques). Ph.D. thesis, Grenoble Alpes University,
France (2019). https://tel.archives-ouvertes.fr/tel-02269062

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceed-
ings of the 1999 International Conference on Software Engineering, ICSE 1999, Los

https://doi.org/10.1016/j.scico.2021.102610
https://tel.archives-ouvertes.fr/tel-02269062

402 I. Kurtev and J. Hooman

Angeles, CA, USA, 16–22 May 1999, pp. 411–420. ACM (1999). https://doi.org/
10.1145/302405.302672

4. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime veri-
fication of component-based systems in the BIP framework with formally-proved
sound and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2013).
https://doi.org/10.1007/s10270-013-0323-y

5. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME interface speci-
fication language and runtime monitoring tool. In: Bensalem, S., Peled, D.A. (eds.)
RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04694-0 7

6. Kurtev, I., Hooman, J., Schuts, M.: Runtime monitoring based on interface spec-
ifications. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd,
TrustEd. LNCS, vol. 10500, pp. 335–356. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68270-9 17

7. Kurtev, I., Schuts, M., Hooman, J., Swagerman, D.J.: Integrating interface mod-
eling and analysis in an industrial setting. In: Proceedings of 5th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD 2017), pp. 345–352 (2017)

8. Potts, C.: Software-engineering research revisited. IEEE Softw. 19(9), 19–28 (1993)
9. Roos, N.: ComMA interfaces open the door to reliable high-tech systems. Bits

& Chips, 8 September 2020. https://bits-chips.nl/artikel/comma-interfaces-open-
the-door-to-reliable-high-tech-systems/

10. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335
(2019). https://doi.org/10.1007/s10703-019-00337-w

11. Schuts, M., Hooman, J., Kurtev, I., Swagerman, D.J.: Reverse engineering of legacy
software interfaces to a model-based approach. In: Proceedings of the 2018 Feder-
ated Conference on Computer Science and Information Systems (FedCSIS 2018).
Annals of Computer Science and Information Systems (ACSIS), vol. 15, pp. 867–
876 (2018)

12. Schuts, M., Swagerman, D.J., Kurtev, I., Hooman, J.: Improving interface speci-
fications with ComMA. Bits & Chips, 14 September 2017. https://bits-chips.nl/
artikel/improving-interface-specifications-with-comma/

13. Stockmann, L., Laux, S., Bodden, E.: Architectural runtime verification. In: IEEE
International Conference on Software Architecture Companion, ICSA Companion
2019, Hamburg, Germany, 25–26 March 2019, pp. 77–84. IEEE (2019). https://
doi.org/10.1109/ICSA-C.2019.00021

https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1007/978-3-642-04694-0_7
https://doi.org/10.1007/978-3-642-04694-0_7
https://doi.org/10.1007/978-3-319-68270-9_17
https://doi.org/10.1007/978-3-319-68270-9_17
https://bits-chips.nl/artikel/comma-interfaces-open-the-door-to-reliable-high-tech-systems/
https://bits-chips.nl/artikel/comma-interfaces-open-the-door-to-reliable-high-tech-systems/
https://doi.org/10.1007/s10703-019-00337-w
https://bits-chips.nl/artikel/improving-interface-specifications-with-comma/
https://bits-chips.nl/artikel/improving-interface-specifications-with-comma/
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1109/ICSA-C.2019.00021

A Basic Compositional Model for Spiking
Neural Networks

Nancy Lynch1(B) and Cameron Musco2

1 Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, USA

lynch@csail.mit.edu
2 Department of Computer Science, University of Massachusetts, Amherst, USA

Abstract. We present a formal, mathematical foundation for model-
ing and reasoning about the behavior of synchronous, stochastic Spiking
Neural Networks (SNNs), which have been widely used in studies of neu-
ral computation. Our approach follows paradigms established in the field
of concurrency theory.

Our SNN model is based on directed graphs of neurons, classified as
input, output, and internal neurons. We focus here on basic SNNs, in
which a neuron’s only state is a Boolean value indicating whether or not
the neuron is currently firing. We also define the external behavior of an
SNN, in terms of probability distributions on its external firing patterns.
We define two operators on SNNs: a composition operator, which sup-
ports modeling of SNNs as combinations of smaller SNNs, and a hiding
operator, which reclassifies some output behavior of an SNN as internal.
We prove results showing how the external behavior of a network built
using these operators is related to the external behavior of its component
networks. Finally, we definition the notion of a problem to be solved by
an SNN, and show how the composition and hiding operators affect the
problems that are solved by the networks.

We illustrate our definitions with three examples: a Boolean cir-
cuit constructed from gates, an Attention network constructed from
a Winner-Take-All network and a Filter network, and a toy example
involving combining two networks in a cyclic fashion.

Keywords: Spiking Neural Networks · Composition of networks ·
Compositionality

1 Introduction

Understanding computation in biological neural networks like the human brain
is a central challenge of modern neuroscience and artificial intelligence. One

This work was supported by NSF awards CCF-1810758, CCF-2139936, CCF-2003830,
CCF-2046235, and CCF-1763618. Musco was also partially supported by an Adobe
Research grant.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 403–449, 2022.
https://doi.org/10.1007/978-3-031-15629-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_22&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_22

404 N. Lynch and C. Musco

approach to this challenge uses algorithmic methods from theoretical computer
science. That means defining formal computational models for brain networks,
identifying abstract problems that can be solved by such networks, and defining
and analyzing algorithms that solve these problems. Work along these general
lines includes that of Valiant, Navlakha, Papadimitriou, and their collaborators
(see, for example, [3,31,38]).

For the past few years, we and our collaborators have been working on an
algorithmic theory of brain networks, based on synchronous, stochastic Spik-
ing Neural Network (SNN) models. SNNs are a model for neural computation
that includes many important biologically-plausible features, yet is still simple
enough to study theoretically. An SNN is a directed graph of neurons, in which
each neuron fires in discrete spikes, in response to a sufficiently high membrane
potential. The potential is induced by spikes from neighboring neurons, which
can be either excitatory or inhibitory, increasing or decreasing the incoming
potential. In our SNNs, the neurons operate in synchronous rounds, and make
firing decisions stochastically. Inspired by tasks that are solved in actual brains,
we have been defining and studying abstract problems to be solved by our SNNs.
So far, we have developed models and networks for the Winner-Take-All prob-
lem from computational neuroscience [15,17,30,34], problems of neural coding
and similarity detection [6,16], problems of spatial representation of temporal
information [7,40], and problems involving learning [1,2,14,39]. We are continu-
ing to study many other problems and networks, including both static networks
and networks that learn.

In our work so far, we have defined formal models in each paper, as needed.
Here we define a more general computational model for SNNs that we hope will
provide a useful foundation for formal modeling of many networks and formal
reasoning about their behavior. Note that this model is not the most general one
that will be needed, but we believe that it will prove to be a useful first step. In
particular, in the basic version of the SNN model defined here, a neuron’s only
state is a Boolean value indicating whether or not the neuron is currently firing.
This is sufficient to model some algorithms, such as the simple two-inhibitor
Winner-Take-All network in [17]. Other algorithmic work uses variants of the
basic model with more elaborate state such as limited local history, or flags that
enable certain behavior such as learning [14,34]; we expect that the results of
this paper should be extendable to these variants as well, but this remains to
be worked out. We also define an external behavior notion for SNNs, in terms
of probability distributions on its external firing patterns. This can be used for
stating requirements to be satisfied by the networks.

We then define a composition operator for SNNs, which supports modeling
of SNNs as combinations of smaller SNNs. We prove that our external behavior
notion is compositional, in the sense that the external behavior of a composed
network depends only on the external behaviors of the component networks and
not their internal operation. We also define a hiding operator that reclassifies
some output behavior of an SNN as internal, and show that the behavior of
a network obtained by hiding depends only on that of the original network.

A Basic Compositional Model for Spiking Neural Networks 405

A common use of hiding is after composition, when some of the interactions
between the composed networks might be suppressed in the external behavior.

Finally, we give a formal definition of a problem to be solved by an SNN,
and give basic results showing how the composition and hiding operators affect
the problems that are solved by the networks. We illustrate our definitions with
three examples: a Boolean circuit constructed from neurons that act as logical
gates, an Attention network constructed from a Winner-Take-All network and a
Filter network, and a toy example involving combining two networks in a cyclic
fashion.

Related Work: The general approach of this paper—defining formal models and
operators and proving that the operators respect network behavior—is based
on the paradigms of the research area of concurrency theory [5]. Our particular
definitions are inspired by prior work on Input/Output Automata models [8,18–
23,33], including timed, hybrid and probabilistic variants.

Our focus on SNNs was partly inspired by research of Maass, et al. [24–26]
on the computational power of SNNs. Maass explored how features like ran-
domness [27], temporal coding [28], and dynamic edge weights [11] affect the
computational power and efficiency of neural network models. Maass’s work dif-
fers from ours in that he mostly considers asynchronous models that allow fine-
grained control of spike timing—models with significantly different computing
power from ours.

An early synchronous neural network model is the perceptron model, based on
a neuron model invented by McCulloch and Pitts [29]. The neurons are modeled
as deterministic linear threshold elements, without any stochastic behavior as in
our neurons. These elements are assembled into feedforward, layered networks,
whereas our networks are arbitrary directed graphs. Another difference with
respect to our basic model is that, in perceptron networks, real values can be
passed along edges between layers, whereas we use a binary activation function.
Perceptron networks are generally used to implement supervised algorithms for
learning to recognize patterns.

Work by Valiant, Navlakha, Papadimitriou, and collaborators [3,31,38], is
based on a variety of synchronous neural network models. These models are not
presented as general compositional models in the style of concurrency theory.
However, they appear to be compatible with (extended versions of) our model.
Some differences between these models and our basic model are: Valiant [38]
includes elaborate state changes, rather than just simple binary firing decisions;
Papadimitriou [31] and Navlakha [3] assume built-in Winner-Take-All mecha-
nisms; and Valiant and Papadimitriou focus on learning.

In recent work, Berggren and his group are developing a hardware implemen-
tation of a Spiking Neural Network model using nanowires [35,36]. They have
developed a simulator for their implementation, based on the basic SNN model
presented in this paper [12].

Paper Organization: Section 2 contains our definitions for Spiking Neural Net-
works and their external behavior. Section 3 contains our definitions for the com-

406 N. Lynch and C. Musco

position operator for SNNs. Section 4 focuses on the special case of acyclic com-
position, in which connections between SNNs go in only one direction; we prove
a compositionality theory for this case. Section 5 extends these ideas to the more
general case of composition that allows connections in both directions. Section 6
introduces the hiding operator for SNNs. Section 7 introduces our notion of a
problem to be solved by an SNN. We conclude in Sect. 8.

2 The Spiking Neural Network Model

Here we present our model definitions. We first specify the structure of our
networks—the neurons and connections between them. Then we describe how the
networks execute; this involves defining individual (non-probabilistic) executions
and then defining probabilistic behavior. Next we define the external behavior
of a network. We illustrate with two fundamental examples: a Boolean circuit
and a Winner-Take-All network.

2.1 Network Structure

Assume a universal set U of neuron names. A firing pattern for a set V ⊆ U of
neuron names is a mapping from V to {0, 1}. Here, 1 represents “firing” and 0
represents “not firing”.

A Spiking Neural Network, which we generally refer to as just a network, N ,
consists of:

– N , a subset of U , partitioned into input neurons Nin, output neurons Nout,
and internal neurons Nint. We sometimes write Next as shorthand for Nin ∪
Nout, and Nlc as shorthand for Nout ∪ Nint. (Here, lc stands for “locally
controlled”, which means “not input”). Each neuron u ∈ Nlc has an associated
bias, bias(u) ∈ R; this can be any real number, positive, negative, or 0.

– E, a set of ordered pairs of neurons, i.e., directed edges between neurons, rep-
resenting synapses. We permit self-loops. Each edge e = (u, v) has a weight,
weight(e) = weight(u, v), which is a nonzero (positive or negative) real num-
ber.

– F0, an initial firing pattern for the set Nlc of non-input neurons; that is,
F0 : Nlc → {0, 1}.

We assume that input neurons have no incoming edges, not even self-loops.
Output neurons may have incoming or outgoing edges, or both.

Example: Consider the Winner-Take-All network in Fig. 2. The set N of neuron
names consists of Nin = {x1, . . . , xn}, Nout = {y1, . . . , yn}, and Nint = {a1, a2}.
We have bias(a1) = .5γ, bias(a2) = 1.5γ, and for every i, bias(yi) = 3γ, for
some positive real γ. E includes an edge from each xi to its corresponding yi,
an edge in each direction between every a neuron and every y neuron, and a
self-loop on each y neuron. Weights of the edges are as depicted in the figure.
The initial firing pattern F0 gives arbitrary Boolean values for the a and y

A Basic Compositional Model for Spiking Neural Networks 407

neurons (technically, each F0 yields a different network). The initial values of
the x neurons are unspecified, indicating that this network can be used with any
inputs.

2.2 Executions and Probabilistic Executions

We describe how a network operates, beginning with its ordinary, non-
probabilistic executions and then adding probabilistic considerations.

Executions and Traces. We begin by defining a “configuration” of a network,
which describes the current states of all neurons. Namely, a configuration of a
neural network N is a firing pattern for N , the set of all the neurons in the
network. We consider several related definitions:

– An input configuration is a firing pattern for the input neurons, Nin.
– An output configuration is a firing pattern for the output neurons, Nout.
– An internal configuration is a firing pattern for the internal neurons, Nint.
– An external configuration is a firing pattern for the input and output neurons,

Next.
– A non-input configuration is a firing pattern for the internal and output neu-

rons, Nlc.

We define projections of configurations onto subsets of N . Thus, if C is a
configuration and M is any subset of N , then C�M is the firing pattern for M
obtained by projecting C onto the neurons in M . In particular, we have C�Nin

for the projection of C on the input neurons, C�Nout for the output neurons,
C�Nint for the internal neurons, C�Next for the external neurons, and C�Nlc

for the non-input neurons. More generally, we can define the projection of any
firing pattern F for a set M ⊆ N of neurons onto any subset M ′ ⊆ M .

An initial configuration is a configuration C such that C�Nlc = F0. That is,
the values for the locally-controlled neurons are as specified by the given initial
firing pattern. The values for the input neurons are arbitrary. We consider them
to be controlled somehow, from outside the network. For example, they may
be output neurons of another network, or may represent sensory inputs to the
network.

Now we define formally how a network N executes; we assume that it operates
in synchronous rounds. Namely, an execution α of N is a (finite or infinite)
sequence of configurations, C0, C1, . . . , where C0 is an initial configuration.1 We
define the length of a finite execution α = C0, C1, ..., Ct, length(α), to be t. As a
special case, if α consists of just the initial configuration C0, then length(α) = 0.
The length of an infinite execution is defined to be ∞.

We define projections of executions onto subsets of the neurons of N . Namely,
if α = C0, C1, . . . is an execution of N and M is any subset of N , then α�M
1 We place no other restrictions on the general notion of an execution because our

basic model does not impose any restriction on possible transitions.

408 N. Lynch and C. Musco

is defined to be the sequence C0�M,C1�M, We define an M -execution of
N to be α�M for any execution α of N . We define an input execution to be
an M -execution where M = Nin, and similarly for output execution, internal
execution, external execution, and locally-controlled execution (or lc-execution).

To focus on the external behavior of the network, we define the notion of a
“trace”. Namely, for an execution α, we write trace(α) as an alternative notation
for α�Next, the projection of α on the external neurons. We define a trace of N
to be the trace of any execution α of N .

Example: Again, consider the Winner-Take-All network. Suppose that F0, the
initial firing pattern, assigns 0 to all the a neurons and y neurons, that is, none of
these fire initially. Then the executions of the network are just all the sequences
of configurations in which the starting configuration has values of 0 for all the a
and y neurons. The values of the x neurons are arbitrary.

Probabilistic Executions. We define a unique “probabilistic execution” for
any particular infinite input execution βin. First, we say that an infinite execution
α of the network is consistent with βin provided that α�Nin = βin. Also, a finite
execution α is consistent with βin provided that α�Nin is a prefix of βin. Note
that all of the (finite and infinite) executions that are consistent with βin have
the same initial configuration C0. This configuration is constructed from the first
configuration of βin and the initial non-input firing pattern for the network, F0.

The probabilistic execution for βin is defined as a probability distribution P
on the sample space Ω of infinite executions that are consistent with βin. The
σ-algebra of measurable sets is generated from the “cones”, each of which is the
set of infinite executions in Ω that extend a particular finite execution. Formally,
if α is a finite execution that is consistent with βin, then A(α), the cone of α,
is the set of infinite executions that are consistent with βin and extend α. The
other measurable sets in the σ-algebra are obtained by starting with these cones
and closing under countable union, countable intersection, and complement.

Now we define the probabilities for the measurable sets. We start by explicitly
defining the probabilities for the cones, P (A(α)). Based on these, we can derive
the probabilities of the other measurable sets in a unique way, using general
measure extension theorems. For example, Segala presents a similar construction
for probabilistic executions in his PhD thesis, Chapter 4 [32].

We compute the probabilities P (A(α)) recursively based on the length of α
(we assume here that α is consistent with βin):

1. α is of length 0.
Then α consists of just the initial configuration C0; define P (A(α)) = 1.

2. α is of length t, t > 0.
Let α′ be the length-(t − 1) prefix of α. We determine the probability q of
extending α′ to α. Then the probability P (A(α)) is simply P (A(α′)) × q.
Let C be the final configuration of α and C ′ the final configuration of α′.
Then for each neuron u ∈ Nlc separately, we use C ′ and the weights of u’s

A Basic Compositional Model for Spiking Neural Networks 409

incoming edges to compute a potential and then a firing probability for neuron
u. Specifically, for each u, we first calculate a potential, potu, defined as

potu =
∑

(v,u)∈E

C ′(v)weight(v, u) − bias(u).

We then convert potu to a firing probability pu using a standard sigmoid
function:

pu =
1

1 + e−potu/λ
,

where λ is a positive real number “temperature” parameter.2 We combine all
those probabilities to compute the probability of generating C from C ′: for
each u ∈ Nlc such that C(u) = 1, use the calculated probability pu, and for
each u ∈ Nlc for which C(u) = 0, use 1 − pu. The product

∏

u∈Nlc:C(u)=1

pu ×
∏

u∈Nlc:C(u)=0

(1 − pu)

is the probability of generating C from C ′, which is the probability q of
extending α′ to α.

Example: Continuing with the Winner-Take-All network in Fig. 2, suppose again
that F0 assigns 0 to all the non-input neurons. Consider this network with the
input configuration that assigns 1 to x1 and 0 to all the other xi neurons. Suppose
that γ = λ = 1. We compute the probability that y1 fires. The potential for
neuron y1 is 1 × 3 − 3 = 0, and the firing probability calculated from this using
the standard sigmoid function is .50. For any other y neurons, we get potential
0 × 3 − 3 = −3, yielding a firing probability of .05.

We will often consider conditional probabilities of the form P (A(α1)|A(α2)).
Because we use a sigmoid function, we know that P (A(α2)) cannot be 0, and so
this conditional probability is well-defined.3 The following lemma is straightfor-
ward.

Lemma 1. Let α1 and α2 be finite executions of N that are consistent with βin.

1. If neither α1 nor α2 is an extension of the other, that is, if they are incom-
parable, then P (A(α1)|A(α2)) = 0.

2. If α1 is an extension of α2, then P (A(α1)|A(α2)) = P (A(α1))
P (A(α2))

.

Lemma 1 shows how we can compute the conditional probabilities from the
absolute probabilities. Conversely, we can compute the absolute probabilities
from the conditional ones, as follows.
2 This function is called the sigmoid function because of its S-shape, monotonically

mapping the real line to the interval [0, 1]. Although we assume a standard sigmoid
function, the results of this paper would also work with other S-shaped functions.

3 One useful property of standard sigmoid functions is that the probabilities are never
exactly 0 or 1, so we don’t need to worry about 0-probability sets when conditioning.

410 N. Lynch and C. Musco

Lemma 2. Let α be a length-t execution of N , t > 0, and suppose that α is
consistent with βin. Let αi, 0 ≤ i ≤ t be the successive prefixes of α (so that α0

consists of the initial configuration C0 and αt = α). Then

P (A(α)) = P (A(α1)|A(α0)) × P (A(α2)|A(α1)) · · · × P (A(αt)|A(αt−1)).

Notice in the above expression, we did not start with a term for P (A(α0)). This
is not needed because we are considering only executions in which α0 is obtained
from βin and the initial assignment F0. So P (A(α0)) = 1. Also note that each of
the conditional terms is simply a one-step transition probability, which can be
calculated using the potential as described above.

Since we can compute the conditional and absolute probabilities from each
other, either can be used to characterize the probabilistic execution.

Tree Representation: The probabilistic execution for βin can be visualized as
an infinite tree of configurations, where the tree nodes at level t represent the
configurations that might occur at time t (with the given input execution βin).
The configuration at the root of the tree is the initial configuration C0. Each
infinite branch of the tree represents an infinite execution of the network, and
finite initial portions of branches represent finite executions. Note that the same
configuration can appear many times at different vertices of the tree.

If α is a finite branch in the tree, then P (A(α)) is the probability that an
infinite execution will be in the “cone” of executions that begin with α. We
can associate the probability P (A(α)) with the node at the end of the finite
branch—this is simply the probability of reaching the node during probabilistic
operation of the network, using the inputs from βin.

Probabilities for Projected Executions. We extend the A(α) notation so
that it applies to projections of finite executions, not just complete finite execu-
tions. Namely, suppose that M is any subset of the neurons N of N , and γ is
a finite M -execution of N . Then we say that γ is consistent with βin provided
that γ�M ∩ Nin = βin�M ∩ Nin. (This definition is equivalent to our earlier
definition of consistency in Sect. 2.2, for the special case where M = N .) In this
case, we write A(γ) for the set consisting of all infinite executions α of N that
are consistent with βin such that γ is a prefix of α�M . We have:

Lemma 3. Let M be any subset of the neurons N of N , and let γ be a finite
M -execution of N that is consistent with βin. Then, letting α range over the set
of finite executions that are consistent with βin and such that α�M = γ:

1.
A(γ) =

⋃

α

A(α).

2.
P (A(γ)) =

∑

α

P (A(α)).

A Basic Compositional Model for Spiking Neural Networks 411

As an important special case, we consider M = Next, so that γ is specialized
to a finite external execution β of N ; that is, we consider projections on the
external neurons. Then our definition says that β is consistent with βin provided
that β�Nin = βin. In this case, we get:

Lemma 4. Let β be a finite trace of N that is consistent with βin. Then, letting
α range over the set of finite executions that are consistent with βin and such
that trace(α) = β:

1.
A(β) =

⋃

α

A(α).

2.
P (A(β)) =

∑

α

P (A(α)).

We remark that the probabilities for finite executions and traces depend only
on their projections on the locally-controlled neurons, since the input execution
is always βin.

Lemma 5. 1. Suppose that α is a finite execution of N that is consistent with
βin. Then A(α) = A(α�Nlc) and P (A(α)) = P (A(α�Nlc)).

2. Suppose that β is a finite trace of N that is consistent with βin. Then A(β) =
A(β�Nout) and P (A(β)) = P (A(β�Nout)).

Now we give some simple lemmas involving the probabilities for finite execu-
tions and related finite traces. In the following lemma, the conditional probability
statements follow directly from the subset statements.

Lemma 6. Let α be a finite execution of N that is consistent with βin. Suppose
that α′ is a prefix of α. Let β = trace(α) = α�Next and β′ = trace(α′) =
α′�Next. Then α′, β, and β′ are also consistent with βin, and

1. A(α) ⊆ A(β), and P (A(α)|A(β)) = P (A(α))
P (A(β)) .

2. A(α) ⊆ A(α′), and P (A(α)|A(α′)) = P (A(α))
P (A(α′)) .

3. A(α) ⊆ A(β′), and P (A(α)|A(β′)) = P (A(α))
P (A(β′)) .

4. A(α′) ⊆ A(β′), and P (A(α′)|A(β′)) = P (A(α′))
P (A(β′)) .

5. A(β) ⊆ A(β′), and P (A(β)|A(β′)) = P (A(β))
P (A(β′)) .

Consequences of the previous lemmas include the following, which is used in
Sect. 5.2.

Lemma 7. Let α, α′, β, and β′ be as in Lemma 6. Then

1. P (A(α)|A(β′)) = P (A(α)|A(β)) × P (A(β)|A(β′)).
2. P (A(α)|A(β′)) = P (A(α)|A(α′)) × P (A(α′)|A(β′)).

412 N. Lynch and C. Musco

We also give a lemma about repeated conditioning, as for probabilistic exe-
cutions:

Lemma 8. Let β be a length-t trace of N , t > 0, and suppose that β is consistent
with βin. Let βi, 0 ≤ i ≤ t, be the successive prefixes of β (so that β0 consists of
the initial configuration C0 projected on Next and βt = β). Then

P (A(β)) = P (A(β1)|A(β0)) × P (A(β2)|A(β1) · · · × P (A(βt)|A(βt−1)).

As before, we do not need a separate term for P (A(β0)), because we are consid-
ering only traces in which β0 is obtained from βin and the initial assignment F0.
So P (A(β0)) = 1.

Probabilistic Traces. The previous definitions allow us to define a unique
“probabilistic trace” for any particular infinite input execution βin. The proba-
bilistic trace for βin is defined as a new probability distribution Q, this one on
the sample space Ω′ of infinite traces β that are consistent with βin. All of these
traces have the same initial configuration, constructed from the first configura-
tion of βin and the initial output firing pattern for the network, F0�Nout.

The basic measurable sets are the sets of infinite traces in Ω′ that extend a
particular finite trace. Formally, if β is a particular finite trace that is consistent
with βin, then B(β), the “cone” of β, is the set of infinite traces β that are con-
sistent with βin and extend β. Equivalently, B(β) is just the set traces(A(β)).
Again, the other measurable sets in the σ-algebra are obtained by starting with
these cones and closing under countable union, countable intersection, and com-
plement.

We define the probabilities for the cones, Q(B(β)), based on the correspond-
ing probabilities for the probabilistic execution for βin. Namely, if β is a finite
trace of N that is consistent with βin, then we define Q(B(β)) to be simply
P (A(β)). As before, we can use these probabilities to derive the probabilities
of the other measurable sets in a unique way, using general measure extension
theorems as in [32].

2.3 External Behavior of a Network

So far we have talked about individual probabilistic traces, each of which depends
on a fixed input execution βin. Now we define a notion of external behavior
of a network, which is intended to capture its visible behavior for all possible
inputs. In Sects. 4 and 5, we will show that our notion of external behavior is
compositional, which means that the external behavior of the composition of two
networks, N 1 × N 2, is uniquely determined by the external behavior of N 1 and
the external behavior of N 2.

Our definition of external behavior is based on the entire collection of prob-
abilities for the cones of all finite traces. Namely, the external behavior Beh(N)
is the mapping f that maps each infinite input execution βin of N to the col-
lection of probabilities {P (A(β))} determined by the probabilistic execution for

A Basic Compositional Model for Spiking Neural Networks 413

βin. Here, β ranges over the set of finite traces of N that are consistent with βin.4

In terms of probabilistic traces, this is the same as the collection {Q(B(β))},
where β has the same range.

Alternative Behavior Definitions: Other definitions of external behavior are pos-
sible. Any such definition would have to assign some “behavior object” to each
network N .

In general, we define two external behavior notions Beh1 and Beh2 to be
equivalent provided that the following holds. Suppose that N and N ′ are two
networks with the same input neurons and the same output neurons. Then
Beh1(N) = Beh1(N ′) if and only if Beh2(N) = Beh2(N ′).

Here we define one alternative behavior notion, based on one-step condi-
tional probabilities. This will be useful in our proofs for compositionality in
Sect. 5. Namely, we define Beh2(N) to be the mapping f2 that maps each infinite
input execution βin to the collection of conditional probabilities {P (A(β)|A(β′))}
based on the probabilistic execution for βin. Here, β ranges over the set of finite
traces of N with length > 0 that are consistent with βin, and β′ is the one-step
prefix of β.

Lemma 9. The two behavior notions Beh and Beh2 are equivalent.

Proof. Suppose that N and N ′ are two networks with the same input neurons
and the same output neurons. We show that Beh and Beh2 are equivalent by
arguing the two directions separately:

1. If Beh(N) = Beh(N ′) then Beh2(N) = Beh2(N ′).
This follows because the conditional probability P (A(β)|A(β′)) is determined
by the unconditional probabilities P (A(β)) and P (A(β′)); see Lemma 6.

2. If Beh2(N) = Beh2(N ′) then Beh(N) = Beh(N ′).
This follows because the unconditional probability P (A(β)) is determined by
the conditional probabilities, see Lemma 8.
�

2.4 Examples

In this subsection we give two fundamental examples to illustrate our definitions
so far: some simple Boolean gate networks, and a network implementing the
“Winner-Take-All” mechanism from computational neuroscience [9,10,37].

Simple Boolean Gate Networks. Figure 1 depicts the structure of simple
Spiking Neural Networks in our model that represent and-gates, or-gates, and
not-gates. For completeness, we also include an SNN representing the identity
computation.
4 Formally, this “collection” is the mapping from finite traces β that are consistent

with βin to the probabilities P (A(β)). Thus, in terms of data types, Beh(N) is a
nested mapping: a mapping from the set of input executions to the set of mappings
from the set of finite traces consistent with βin to the set [0, 1].

414 N. Lynch and C. Musco

(a) Identity (b) k-input And

(c) k-input Or (d) Not

Fig. 1. Networks representing simple Boolean gates; here L = λ ln(1−δ
δ

), where δ is the
error probability.

We describe the operation of each of these types of networks, in turn. Fix a
positive real number λ for the temperature parameter of the sigmoid function.
Fix an error probability δ, 0 < δ < 1. For each network below, let the initial
firing pattern F0 assign 0 to each locally controlled neuron.

Throughout this section, we use the abbreviation L for the quantity λ ln(1−δ
δ);

note that L may be any real number, but we focus on the case where δ ≤ 1
2 ,

which makes L non-negative. We use the following identities repeatedly:

eL/λ =
1 − δ

δ
,

1
1 + eL/λ

= δ, and
1

1 + e−L/λ
= 1 − δ.

Identity Network: The Identity network has one input neuron x and one output
neuron y, connected by an edge with weight w. The output neuron y has bias b.
Here we define b = L and w = 2L.

With these settings, we get potential w − b = 2L − L = L and (expanding
L, plugging into the sigmoid function, and using the calculations above) output
firing probability 1−δ, in the case where the input fires. Similarly, we get poten-
tial −b = −L and output firing probability δ, in the case where the input does
not fire. Combining these two claims, consider the firing state of x at time 0.
Whether it is 0 or 1, the probability that y’s firing state at time 1 is the same
as x’s firing state at time 0 is exactly 1 − δ.

Now consider what happens with an arbitrary infinite input execution βin,
rather than just one input, that is, consider the probabilistic execution for βin.
Let β be a finite trace of length t ≥ 1 that is consistent with βin; by our

A Basic Compositional Model for Spiking Neural Networks 415

assumption about F0, β must include an initial firing state of 0 for the output
neuron y. Suppose further that β has the property that, for every t′, 1 ≤ t′ ≤ t,
the firing state of y at time t′ is equal to the firing state of x at time t′ −1. Then
by repeated use of the argument above, we get that P (A(β)) = (1 − δ)t.

Now suppose, as above, that β is a length t trace, t ≥ 1, that is consistent
with βin. But now suppose that, in β, the firing state of y at time t is equal to
the firing state of x at time t − 1, but the firing states of y for all earlier times
are arbitrary. Let β′ denote the one-step prefix of β. Then we can show that
P (A(β)|A(β′)) = 1− δ. It follows that, for every time t ≥ 1, the probability that
the firing state of y at time t is equal to the firing state of x at time t−1 is 1−δ.
This uses the law of Total Probability, considering all the possible length t − 1
traces that are consistent with βin.

We also describe the external behavior Beh for this network. Namely, for each
βin, we must specify the collection of probabilities P (A(β)), where β ranges over
the set of finite traces of the network that are consistent with βin. In this case,
for each such β of length t, the probability P (A(β)) is simply (1−δ)aδt−a, where
a is the number of positions t′, 1 ≤ t′ ≤ t, for which y’s firing state in β at time
t′ is equal to x’s firing state in β at time t′ − 1.

k-Input And Network: The And network has k input neurons, x1, x2, . . . , xk, and
one output neuron y. Each input neuron is connected to the output neuron by
an edge with weight w. The output neuron has bias b. The Identity network is
a special case of this network, where k = 1.

The idea here is to treat this as a threshold problem, and set b and w so that
being over or under the threshold gives output firing state 1 or 0, respectively, in
each case with probability at least 1− δ. For a k-input And network, the output
neuron y should fire with probability at least 1 − δ if all k input neurons fire,
and with probability at most δ if at most k − 1 input neurons fire.

The settings for b and w generalize those for the Identity network. Namely,
define b = (2k − 1)L and w = 2b

2k−1 = 2L. When all k input neurons fire,
the potential is kw − b = L, and (expanding L and plugging into the sigmoid
function) the output firing probability is 1 − δ. When k − 1 input neurons fire,
the potential is (k − 1)w − b = −L, and the output firing probability is δ. If
fewer than k − 1 fire, the potential and the output firing probability are smaller.
Similar claims about the external behavior Beh for multi-round computations
to those we argued for the Identity network also hold for the And network.

k-Input Or Network: The Or network has the same structure as the And network.
The Or network also generalizes the Identity network, which is the same as the
1-input Or network. Now the output neuron y should fire with probability at
least 1 − δ if at least one of the input neurons fires, and with probability at
most δ if no input neurons fire. This time we set b = L and w = 2L. When one
input neuron fires, the potential is w − b = L and the output firing probability
is 1 − δ. When more than one fire, then the potential and the firing probability
are greater. When no input neurons fire, the potential is −b = −L, and the
output firing probability is δ. Again, similar claims about the external behavior
for multi-round computations hold for the Or network.

416 N. Lynch and C. Musco

Not Network: The Not network has one input x, one output y, and one internal
neuron a, which acts as an inhibitor for the output neuron.5 The network con-
tains two edges, one from x to a with weight w, and one from a to y with weight
w′. The internal neuron a has bias b and the output neuron y has bias b′.

The assembly consisting of the input and internal neurons acts like the Iden-
tity network, with settings of b and w as before: b = L and w = 2L. So, for
example, if we consider just x’s firing state at time 0, the probability that a’s
firing state at time 1 is the same is exactly 1 − δ.

Let b′, the bias of the output neuron, be −L, and let w′, the weight of the
outgoing edge of the inhibitor, be −2L. Then if the internal neuron a fires at
time 1, then the output neuron y fires at time 2 with probability δ, and if a
does not fire at time 1, then y fires at time 2 with probability 1 − δ. This yields
probability 1 − δ of correct inhibition, which then yields probability at least
(1 − δ)2 that the output at time 2 gives the correct answer for the Not network.

Similar claims about multi-round computations as before also hold for the
Not network, except that the Not network has a delay of 2 instead of 1. More
precisely, consider an arbitrary infinite input execution βin, and consider the
probabilistic execution for βin. Let β be a finite trace of length t ≥ 2 that is
consistent with βin. Then we know that β must begin with a firing state of 0
for y; suppose also that the firing state of y at time 1 is 1. Suppose further
that β has the property that, for every t′, 2 ≤ t′ ≤ t, the firing state of y at
time t′ is unequal to the firing state of x at time t′ − 2. Then we claim that
P (A(β)) ≥ (1− δ)2(t−1)+1 = (1− δ)2t−1. This is because, with probability 1− δ,
the firing state of y at time 1 is equal to 1, and for each of the following times
t′, 2 ≤ t′ ≤ t, with probability at least (1 − δ)2, the firing state of y at time t′ is
unequal to the firing state of x at time t′ − 2.

Winner-Take-All Network. Our next example is a simple Winner-Take-All
(WTA) network for n inputs and n corresponding outputs. It is based on a
network presented in [17]. Assume that some nonempty subset of the input
neurons fire, in a stable manner. The output firing behavior is supposed to
converge to a configuration in which exactly one of the outputs, corresponding
to one of the firing inputs, fires. We would like this convergence to occur quickly,
in some fairly short time tc. And we would like the resulting configuration to
remain stable for a fairly long time ts. Figure 2 depicts the structure of the
network. There should be edges between every pair (xi, yi) with weight 3γ, but
these would be messy to draw.

In terms of the notation in this paper, consider any infinite input execution
βin in which all the input configurations are the same and at least one input
neuron is firing. Consider the probabilistic execution for βin. In [17], we prove
that, in this probabilistic execution, for certain values of tc and ts, the probability

5 We often classify neurons into two categories: excitatory neurons, all of whose outgo-
ing edges have positive weights, and inhibitory neurons, whose outgoing edges have
negative weights. However, this classification is not needed for the results in this
paper.

A Basic Compositional Model for Spiking Neural Networks 417

Fig. 2. A basic Winner-Take-All network.

of convergence within time tc to an output configuration that remains stable for
time ts is at least 1 − δ.

The formal theorem statement is as follows. Here, γ is the weighting factor
used in the biases and edge weights in the network, δ is a bound on the failure
probability, and c1 and c2 are particular small constants.

Theorem 1. Assume γ ≥ c1 log(nts
δ). Then starting from any configuration,

with probability ≥ 1 − δ, the network converges, within time tc ≤ c2 log n log(1δ),
to a single firing output corresponding to a firing input, and remains stable for
time ts. c1 and c2 are universal constants, independent of n, ts, and δ.

In terms of our model, the desirable executions are determined by what
happens in their prefixes ending with time tc + ts − 1. The correctness condition
is that, within this prefix, there is a consecutive sequence of ts times in which
the output neurons exhibit an unchanging firing pattern in which exactly one
output yi fires, and we have xi = 1 in the input configuration. Note that this is
a statement about external behavior (traces) only. Correctness can be expressed
formally in terms of the probabilities of the cones starting with these desirable
traces.

The proof appears in [17]. The basic idea is that, when more than one output
is firing, both inhibitors are triggered to fire. When they both fire, they cause
each firing output to continue firing with probability 1

2 . This serves to reduce
the number of firing outputs at a predictable rate. Once only a single output
fires, only one inhibitor continues to fire; its effect is sufficient to prevent other
non-firing outputs from beginning to fire, but not sufficient to stop the firing
output from firing. All this, of course, is probabilistic.

418 N. Lynch and C. Musco

Note that the network is symmetric with respect to the n outputs. Therefore,
we can refine the theorem above to assert that, for any particular output neuron
yi that corresponds to a firing input neuron xi, the probability that yi is the
eventual firing output neuron is at least 1−δ

n .

3 Composition of Spiking Neural Networks

In this section, we define composition of networks. We focus on composing two
networks, but the ideas extend in a straightforward way to any finite number of
networks. Alternatively, we can describe multi-network composition by repeated
use of two-network composition.

3.1 Composition of Two Networks

Networks that are composed must satisfy some basic, natural compatibility
requirements. These are analogous to those used for I/O automata and similar
models [8,13,23], except that instead of input and output actions, we consider
input and output neurons. Namely, two networks N 1 and N 2 are said to be
compatible provided that:

1. No internal neuron of N 1 is a neuron of N 2.
2. No internal neuron of N 2 is a neuron of N 1.
3. No neuron is an output neuron of both N 1 and N 2.

On the other hand, the two networks may have common input neurons, and
output neurons of one network may also be input neurons of the other network.6

Lemma 10. If N 1 and N 2 are compatible, then they do not have any edges in
common.

Proof. Suppose for contradiction that they have a common edge, from a neuron
u to a neuron v. Then both u and v belong to both networks. Since v is shared,
it must be an input neuron of at least one of the networks, by compatibility.
But then that network has an edge leading to one of its input neurons, which is
forbidden by our network definition.
�

Assuming N 1 and N 2 are compatible, we define their composition N =
N 1 × N 2 as follows:

– N , the set of neurons of N , is the union of N1 and N2, which are the sets of
neurons of N 1 and N 2 respectively. Note that common neurons are included
only once in the set N .
In network N , each neuron retains its classification as input/output/internal
from its sub-network, except that a neuron that is an input of one sub-network

6 In the brain setting, common input neurons for two different networks seem to make
sense: a neuron might have two different sets of outgoing edges (synapses), leading
to different sets of neurons in the two networks.

A Basic Compositional Model for Spiking Neural Networks 419

and output of the other gets classified as an output neuron of N . In particu-
lar, an output neuron of one sub-network that is also an input neuron of the
other sub-network remains an output neuron of N .7

Each non-input neuron in N inherits its bias from its original sub-network.
This definition of bias is unambiguous: if a neuron belongs to both sub-
networks, it must be an input of at least one of them, and input neurons
do not have biases.

– E, the set of edges of N , is defined as follows. If e is an edge from neuron u
to neuron v in either N 1 or N 2, then we include e also in N ; these are the
only edges in N .
Each edge inherits its weight from its original sub-network. This definition of
weight is unambiguous, by Lemma 10.
Thus, if the source neuron u is an input of both sub-networks, then in N , u
has edges to all the nodes to which it has edges in N 1 and N 2. If u is an
output of one sub-network, say N 1, and an input of the other, N 2, then in
N , it has all the incoming and outgoing edges it has in N 1 as well as the
outgoing edges it has in N 2.
On the other hand, the target neuron v cannot be an input of both networks
since it has an incoming edge in one of them. So v must be an output of one,
say N 1, and an input of the other, N 2. Then in N , v has all the incoming
and outgoing edges it had in N 1 as well as the outgoing edges it has in N 2.

– F0, the initial non-input firing pattern of N , gets inherited directly from
the two sub-networks’ initial non-input firing patterns. Since the two sub-
networks have no non-input neurons in common, this is well-defined.

The probabilistic executions and probabilistic traces of the new network N
are defined in the usual way, as in Sect. 2. In Sects. 4 and 5, we show how to
relate these to the probabilistic executions and probabilistic traces of N 1 and
N 2.

Here are some basic lemmas analogous to those in Sect. 2.2. For these lemmas,
fix N = N 1 × N 2 and a particular input execution βin of N , which yields a
particular probabilistic execution P . Recall that we use the notation N j for the
set of neurons of N j , j ∈ {1, 2}.

Lemma 11. Let α be a finite execution of N that is consistent with βin. Suppose
that α′ is a prefix of α. Let β = trace(α) = α�Next and β′ = trace(α′) =
α′�Next.

Let j ∈ {1, 2}. Let αj = α�N j, α′j = α′�N j, βj = β�N j, and β′j = β′�N j.
Then αj, α′j, βj, and β′j are also consistent with βin, and

1. A(αj) ⊆ A(βj), and P (A(αj)|A(βj)) = P (A(αj))
P (A(βj)) .

2. A(αj) ⊆ A(α′j), and P (A(αj)|A(α′j)) = P (A(αj))
P (A(α′j)) .

3. A(αj) ⊆ A(β′j), and P (A(αj)|A(β′j)) = P (A(αj))
P (A(β′j)) .

7 In Sect. 6, we will introduce a hiding operator that reclassifies some output neurons
as internal neurons.

420 N. Lynch and C. Musco

4. A(α′j) ⊆ A(β′j), and P (A(α′j)|A(β′j)) = P (A(α′j))
P (A(β′j)) .

5. A(βj) ⊆ A(β′j), and P (A(βj)|A(β′j)) = P (A(βj))
P (A(β′j)) .

As before, the previous lemmas directly imply other properties, such as:

Lemma 12. Let αj, α′j, βj, and β′j be as in Lemma 11. Then

1. P (A(αj)|A(β′j)) = P (A(αj)|A(βj)) × P (A(βj)|A(β′j)).
2. P (A(αj)|A(β′j)) = P (A(αj)|A(α′j)) × P (A(α′j)|A(β′j)).

Now we consider projections on the locally-controlled neurons of one of the
networks. We have:

Lemma 13. Let α be a finite execution of N that is consistent with βin. Let α′

be a prefix of α and β′ = trace(α′). Let j ∈ {1, 2}. Then
1. P (A(α�N j

lc)|A(α′�N j)) = P (A(α�Nj
lc)∩A(α′�Nj)

P (A(α′�Nj)) .

2. P (A(α�N j
lc)|A(β′�N j)) = P (A(α�Nj

lc)∩A(β′�Nj)

P (A(β′�Nj)) .
3. P (A(α�N j

lc)|A(β′�N j)) = P (A(α�N j
lc)|A(α′�N j)) × P (A(α′�N j)|A(β′�N j)).

Proof. Parts 1 and 2 are just the definitions of conditional probability, spec-
ialized to these sets. For Part 3, note that A(α�N j

lc) ∩ A(β′�N j) = A(α�N j
lc) ∩

A(α′�N j), because α�N j
lc already determines all the firing states for neurons in

N j
lc. Thus, we have that

P (A(α�N j
lc)|A(β′�N j)) =

P (A(α�N j
lc) ∩ A(β′�N j)

P (A(β′�N j))

by Part 2, which is equal to

P (A(α�N j
lc) ∩ A(α′�N j))

P (A(β′�N j))
,

which is in turn equal to

P (A(α�N j
lc) ∩ A(α′�N j))

P (A(α′�N j))
× P (A(α′�N j))

P (A(β′�N j))
.

Part 1 and Lemma 11 then imply that this is equal to

P (A(α�N j
lc)|A(α′�N j)) × P (A(α′�N j)|A(β′�N j)),

as needed.
�
A Special Case: Acyclic Composition: An important special case of composition
is acyclic composition, in which edges connect in only one direction, say from
network N 1 to network N 2. Formally, we say that a composition is acyclic
provided that it satisfies the additional compatibility restriction N1

in ∩N2
out = ∅,

that is, output neurons of N 2 cannot be input neurons of N 1.
Thus, N 1 may have inputs only from the “outside world”, whereas its outputs

can connect to N 1, N 2, and the outside world. N 2 may have inputs from the
outside world and from N 1, and its outputs can connect only to N 2 and the
outside world.

A Basic Compositional Model for Spiking Neural Networks 421

3.2 Examples

Here we give three examples. The first two use acyclic composition, and the third
is a toy example that involves cycles.

Boolean Circuits. Figure 3 contains a circuit that is a composition of four
Boolean gate circuits of the types described in Sect. 2.4: two And networks,
one Or network, and a Not network. We compose these networks into a larger
network that is intended to compute an Xor function.

Fig. 3. Composing four Boolean gate circuits into an Xor network

In terms of the binary composition operator, we can compose the four net-
works in three stages:

1. Compose one of the And networks and the Not network to get a network
with two input neurons, two output neurons, and one internal neuron, by
identifying the output neuron of the And network with the input neuron of
the Not network. Note that the composed network has two output neurons
because the And neuron remains an output—the composition operator does
not reclassify it as an internal neuron. The composed network is intended to
compute the Nand of the two inputs (as well as the And).

2. Compose the network produced in Stage 1 with the Or network to get a 2-
input-neuron, 3-output-neuron, 1-internal-neuron network, by identifying the
corresponding inputs in the two networks. The resulting network has output
neurons corresponding to the Nand and the Or of the two inputs (in addition
to the And output neuron).

3. Finally, compose the Nand network and the Or network with the second And
network, by identifying the Nand output neuron and the Or output neuron
with the two input neurons of the And network. The resulting network has
an output neuron corresponding to the Xor of the two original inputs (in
addition to outputs for the first And, the Nand, and the Or networks).

422 N. Lynch and C. Musco

To state a simple guarantee for this composed circuit, let us assume that
the inputs fire consistently, in an unchanged firing pattern. Then, working from
the previously-shown guarantees of the individual networks, we can say that the
probability that the final output neuron y produces its required Xor value at
time 4 is at least (1 − δ)5. We revisit this example later, in Sect. 4.2.

Attention Using Winner-Take-All. Figure 4 depicts the composition of our
WTA network from Sect. 2.4 with a 2n-input n output Filter network. The
Filter network is, in turn, a composition of n disjoint And gates. The compo-
sition is acyclic since information can flow from WTA to Filter but not vice
versa.

Fig. 4. An Attention network built from a WTA network and a Filter network

The Filter network is designed to fire any of its outputs, zi, right after the
corresponding wi input fires, provided that its yi input (which is an output of
the WTA network) also fires. In this way, the WTA network is used to select
particular outputs of the Filter network to fire—those that are “reinforced” by
the inputs from the WTA.

Assume that the WTA and Filter networks are composed, and the WTA
inputs fire stably, with at least one input firing. Then, as we described in Sect. 2.4,
with probability at least 1 − δ, the WTA network soon stabilizes to an output
configuration with a single firing output yi, which is equally likely to be any of
the n outputs whose corresponding input is firing. That output configuration
should persist for a long time. (Specific bounds are given in Theorem 1.)

After the WTA stabilizes, it reinforces only a particular input wi for the
Filter. From that point on, the Filter’s zi outputs should mirror its wi inputs,
and no other z outputs should fire. The probability of such mirroring should be
at least (1 − δ′)nts , if δ′ denotes the failure probability for an And gate. (Recall
from Example 2.4 that ts is the length of the stable period for the WTA’s

A Basic Compositional Model for Spiking Neural Networks 423

outputs.) In this way, the composition can be viewed as an Attention circuit,
which pays attention to just a single input stream.

Note that the composed network behaves on two different time scales: the
WTA takes some time to converge, but after that, the responses to the selected
intput stream will be essentially immediate.

A Toy Example for Cyclic Composition. Now we give a toy example, con-
sisting of two networks, N 1 and N 2, that affect each other’s behavior. Through-
out this section, we use the abbreviation L for the quantity λ ln(1−δ

δ), as in
Sect. 2.4. We assume that δ is “sufficiently small”.

Figure 5 shows a network N 1 with one input neuron x1, one output neuron
x2, and one internal neuron a1. It has edges from x1 to a1, from a1 to x2, and
from x2 to itself (a self-loop). The biases of a1 and x2 are L and the weights on
all edges are 2L.

Fig. 5. A cyclic composition

Network N 1 behaves so that, at any time t ≥ 1, the firing probability for the
internal neuron a1 is exactly 1 − δ if x1 fires at time t − 1, and is exactly δ if
x1 does not fire at time t − 1. This is the same as for the output neuron of the
Identity network in Sect. 2.4. The firing probability of the output neuron x2 of
N 1 depends on the firing states of both a1 and x2 at time t−1. This probability
is:

– δ, if neither a1 nor x2 fires at time t − 1.
– 1 − δ, if exactly one of a1 and x2 fires at time t − 1.
– 1 − δ3

(1−δ)3+δ3 if both a1 and x2 fire at time t − 1.

It follows that, if input x1 fires at some time t, then output x2 is likely to fire
at time t + 2 (with probability at least (1 − δ)2). Without any additional input
firing, and ignoring the low-likelihood spurious firing of a1, the firing of x2 is
sustained only by the self-loop. This means that the firing probability of x2

decreases steadily over time, by a factor of (1 − δ) at each time. Eventually, the
firing should “die out”.

424 N. Lynch and C. Musco

Network N 2 is similar, replacing x1, a1, and x2 by x2, a2, and x1, respectively.
However, we omit the self-loop edge on x1. The biases are L and the weights on
the two edges are 2L. Network N 2 behaves so that, at any time t ≥ 1, the firing
probability for the internal neuron a2 is exactly 1 − δ if x2 fires at time t − 1,
and is exactly δ if x2 does not fire at time t − 1. Likewise, the firing probability
for the output neuron x1 is exactly 1 − δ if a2 fires at time t − 1 and δ if a2 does
not fire. Thus, if input x2 fires at some time t, then output x1 is likely to fire at
time t + 2 (with probability at least (1 − δ)2). However, in this case, the firing
of x1 is not sustained.

Now consider the composition N = N 1 × N 2, identifying the output x2 of
N 1 with the input x2 of N 2, and the output x1 of N 2 with the input x1 of N 1.
The behavior of N depends on the initial firing pattern. Assume that neither
a1 nor a2 fires initially; we consider the behavior for the various starting firing
patterns for x1 and x2. We consider two cases: If neither x1 nor x2 fires at time
0, then with “high probability”, none of the four neurons will fire for a long time.
On the other hand, If one or both of x1 and x2 fire at time 0, then with “high
probability”, they will trigger all the neurons to fire and continue to fire for a
long time. We give some details in Sect. 5.4.

3.3 Compositionality Definitions

In Sect. 2.3, we defined a specific external behavior notion Beh for our networks,
and an equivalent alternative notion Beh2. Recall that, in general, a behavior
definition B assigns some “behavior object” B(N) to every network N . Here
we define compositionality for general behavior notions. Later in the paper, in
Sects. 4 and 5, we will prove that our particular behavior notions are composi-
tional.

In general, we define an external behavior notion B to be compositional
provided that the following holds: Consider any four networks N 1, N 2, N ′1,
and N ′2, where N 1 and N ′1 have the same sets of input and output neurons,
N 2 and N ′2 have the same sets of input and output neurons, N 1 and N 2 are
compatible, and N ′1 and N ′2 are compatible. Suppose that B(N 1) = B(N ′1)
and B(N 2) = B(N ′2). Then B(N 1 × N 2) = B(N ′1 × N ′2). Said another way:

Lemma 14. An external behavior notion B is compositional if and only if, for
all compatible pairs of networks N 1 and N 2, B(N 1×N 2) is uniquely determined
by B(N 1) and B(N 2).

Now we show that, in general, if two external behavior notions are equivalent
and one is compositional, then so is the other. This will provide us with a method
that will be helpful in Sect. 5 for showing compositionality.

Theorem 2. If B and B′ are two equivalent external behavior notions for spik-
ing neural networks, and B is compositional, then also B′ is compositional.

Proof. Suppose that B and B′ are two external behavior notions and B is
compositional. We show that B′ is compositional. For this, consider any four

A Basic Compositional Model for Spiking Neural Networks 425

networks N 1, N 2, N ′1, and N ′2, where N 1 and N ′1 have the same sets of
input and output neurons, N 2 and N ′2 have the same sets of input and out-
put neurons, N 1 and N 2 are compatible, and N ′1 and N ′2 are compatible.
Suppose that B′(N 1) = B′(N ′1) and B′(N 2) = B′(N ′2). We must show that
B′(N 1 × N 2) = B′(N ′1 × N ′2).

Since B and B′ are equivalent and B′(N 1) = B′(N ′1), we have that B(N 1) =
B(N ′1). Likewise, since B′(N 2) = B′(N ′2), we have that B(N 2) = B(N ′2).
Since B is assumed to be compositional, this implies that B(N 1×N 2) = B(N ′1×
N ′2). Then since B and B′ are equivalent, we get that B′(N 1×N 2) = B′(N ′1×
N ′2), as needed.
�

4 Theorems for Acyclic Composition

Our general composition results appear in Sect. 5. Those are a bit complicated,
mainly because of the possibility of connections in both directions between the
sub-networks. Acyclic composition is an important special case of general com-
position; many interesting examples satisfy the acyclic restriction. Since this case
can be analyzed more easily, we present this first.

Throughout this section, we fix the notation N = N 1×N 2, and assume that
N1

in ∩ N2
out = ∅, that is, there are no edges from N 2 to N 1.

In this section, and from now on in the paper, we will generally avoid writing
the cone notation A(). Thus, we will abbreviate P (A(α)) and P (A(β)) as just
P (α) and P (β). We hope that this makes it easier to read complex formulas and
does not cause any confusion.

4.1 Compositionality

We have not formally defined “compositionality” for the special case of acyclic
composition. So here, we will simply show (Lemma 17) how to express Beh(N)
as a function of Beh(N 1) and Beh(N 2). Thus (Theorem 3), Beh(N) is uniquely
determined by Beh(N 1) and Beh(N 2).

Specifically, we fix any particular input execution βin of N , which generates a
particular probability distribution P on infinite executions of N . We consider an
arbitrary finite trace β of N that is consistent with βin. We show how to express
P (β) in terms of probability distributions P 1 and P 2 on infinite executions of
N 1 and N 2, respectively. These distributions P 1 and P 2 are defined from certain
input executions of N 1 and N 2, respectively.

We begin by deriving a simple expression for P (β), for an arbitrary finite
trace β of N that is consistent with βin, in terms of the same probability distri-
bution P on projections of β.

Lemma 15. Let β be a finite trace of N that is consistent with βin. Then

P (β) = P (β�N1
out) × P ((β�N2

out)|(β�N2
in)).

426 N. Lynch and C. Musco

Proof. Since β�Nin is fixed, we have that

P (β) = P (β�Nout) = P ((β�(N1
out ∪ N2

out)).

This last expression is equal to

P (β�N1
out) × P ((β�N2

out)|(β�N1
out))

by basic conditional probability reasoning. We have that

P ((β�N2
out)|(β�N1

out)) = P ((β�N2
out)|(β�(N1

out ∩ N2
in))),

because the behavior of N 2 does not depend on the firing states of neurons in
N1

out − N2
in. (That is, the firing behavior of the neurons in N2

out is independent
of the behavior of the neurons in N1

out −N2
in, conditioned on the behavior of the

neurons in N1
out ∩ N2

in). The right-hand side of this equation is equal to

P ((β�N2
out)|(β�(N2

in)))

because N2
in consists of N1

out ∩N2
in plus some neurons in Nin, whose firing states

are fixed in βin. Substituting yields

P (β) = P (β�N1
out) × P ((β�N2

out)|(β�N2
in)),

as needed.
�
Thus, Lemma 15 assumes an arbitrary input execution βin of N , which gen-

erates a probability distribution P . This lemma expresses P (β), for an arbitrary
β, in terms of the P -probabilities of other finite traces. However, we are not quite
there: Our main goal here is to express P (β) in terms of probability distributions
P 1 and P 2 that are generated by N 1 and N 2, respectively, from particular infi-
nite input executions for those respective sub-networks. We define these input
executions and distributions as follows.

– Input execution β1
in and distribution P 1 for N 1:

Define the infinite input execution β1
in of N 1 to be βin�N1

in, that is, the
projection of the given input execution on the inputs of N 1. Then define
P 1 to be the probability distribution that is generated by N 1 from input
execution β1

in.
– Input execution β2

in and distribution P 2 for N 2:
This is more complicated, since the input to N 2 depends not only on the
external input βin, but also on the output produced by N 1. Define the infinite
input execution β2

in of N 2 as follows. First, note that N2
in ⊆ Nin ∪ N1

out, that
is, every input of N 2 is either an input of N or an output of N 1. Define
the firing patterns of the neurons in N2

in ∩ Nin using βin, that is, define
β2

in�(N2
in ∩ Nin) = βin�N2

in. And for the firing patterns of the neurons in
N2

in ∩N1
out, use β, that is, define β2

in�(N2
in ∩N1

out) = β�(N2
in ∩N1

out) for times
0, . . . , length(β) and the default 0 for all later times. (This choice for later
times is arbitrary—we just chose 0s to be concrete.) Then define P 2 to be the
probability distribution that is generated by N 2 from input execution β2

in.

A Basic Compositional Model for Spiking Neural Networks 427

Note that, in the second case above, the choice of the input execution β2
in

depends on the particular trace β for which we are trying to express the P -
probability. This is allowed because the external behavior Beh(N 2) is defined to
specify a probability distribution for every individual infinite input execution of
N 2.8

The next lemma restates the result of Lemma 15 in terms of the new probabil-
ity distributions P 1 and P 2. The key idea is that the probability P 2 is essentially
a conditional probability distribution, giving probabilities for N 2’s outputs, con-
ditioned on its inputs being consistent with β.

Lemma 16. Let β be a finite trace of N that is consistent with βin. Then

P (β) = P 1(β�N1
out) × P 2(β�N2

out).

Proof. Fix β, a finite trace of of N that is consistent with βin. By Lemma 15,
we know that:

P (β) = P (β�N1
out) × P ((β�N2

out)|(β�N2
in)).

It suffices to show that these two terms are equal to the corresponding terms in
this lemma, that is, that

P (β�N1
out) = P 1(β�N1

out)

and
P ((β�N2

out)|(β�N2
in)) = P 2(β�N2

out).

These two statements follow directly by unwinding the definitions of P 1 and
P 2, respectively. Specifically, for the first statement, we consider P (β�N1

out), the
probability that the composed network N generates an execution that, when
projected on outputs of N 1, starts with β�N1

out. We note that this probability
is entirely determined by the sub-network N 1, based on βin projected on the
inputs of N 1. But this is just the definition of P 1(β�N1

out).
Likewise, though a bit more subtly, for the second statement, we consider

P ((β�N2
out)|(β�N2

in)), which is the conditional probability that the composed
network generates an execution that, when projected on outputs of N 2, starts
with β�N2

out, conditioned on the event that the inputs to N 2 start with β�N2
in.

This time, the probability is entirely determined by the sub-network N 2, based
on β projected on the inputs of N 2.9 But this is just the definition of P 2(β�N2

out).

�

8 To elaborate: According to our approach throughout this paper, we get a probability
distribution of traces of N 2 by fixing an infinite input execution of N 2. The question
here is, which input to choose? The infinite input βin for the entire system N provides
part of the answer, for inputs of N 2 that are also inputs of N . The other part is
obtained from β projected on the inputs of N 2 that are outputs of N 1. Technically,
we have to pad out β somehow, since we need an infinite input execution, but it
doesn’t matter how we do this, since the probability that N 2 produces outputs
consistent with β depends only on the portion of the input up to length(β).

9 Notice that this probability is entirely determined by the finite input β�N2
in—the

firing states of the input neurons of N 2 after time length(β) do not matter.

428 N. Lynch and C. Musco

The next lemma has a slightly simpler statement than Lemma 16.

Lemma 17. Let β be a finite trace of N that is consistent with βin. Then

P (β) = P 1(β�N1) × P 2(β�N2).

Proof. This follows from Lemma 16 because in each term on the right-hand-side
of the equation in this lemma, the probability depends on the output traces
only—the input traces are fixed. Formally, this uses Lemma 5.
�

Finally, Lemma 17 yields a kind of compositionality theorem for acyclic com-
position:

Theorem 3. Beh(N) is determined by Beh(N 1) and Beh(N 2).

We prove a more general compositionality result in Sect. 5.

4.2 Examples

We revisit our two examples of acyclic composition from Sects. 3.2 and 3.2, this
time analyzing their behavior more precisely.

Boolean Circuits. Let N be the seven-neuron Boolean circuit from Sect. 3.2.
Express N as the composition N 1 × N 2, where

– N 1 is the network resulting from the first two stages in the order of compo-
sitions described in Sect. 3.2. This computes Nand and Or of the two inputs.

– N 2 is the final And network.

Fix βin to be any infinite input execution of N with stable inputs, and let
P be the probabilistic execution of N for βin. In P , we should expect to have
stable, correct outputs for a long while starting from time 4, because the depth
of the entire network is 4. Here we consider just the situation at precisely time 4,
that is, we consider the probabilities P (β) for finite traces β of length exactly 4.
Specifically, we would like to use Lemma 16 to help us show that the probability
of a correct Xor output at time 4 is at least (1 − δ)5.

We work compositionally. In particular, we assume that, in the probabilistic
execution of N 1 for βin, or any other stable input sequence, the probability of
correct (Nand,Or) outputs at time 3 is at least (1 − δ)4. We also assume that,
in the probabilistic execution of N 2 on any input sequence, the probability that
the output at time 4 is the And of its two inputs at time 3 is at least 1 − δ.
We could prove these bounds for our two specific networks N 1 and N 2, but to
emphasize the compositional reasoning, we ignore the internal workings of the
two sub-networks and simply state the bounds here. We use these bounds to get
our result about the composed network N .

So define B to be the set of traces β of N of length 4 such that β gives a
correct Xor output at time 4, as well as correct (Nand, Or) outputs at time 3.
(These traces may differ in their firing states for the And neuron at any time,

A Basic Compositional Model for Spiking Neural Networks 429

and also in their firing states for the Not and Or neurons at times other than
those specified.) We will argue that P (B) ≥ (1 − δ)5, which implies our desired
result.

We have that P (B) =
∑

β∈B P (β). By Lemma 16, this is equal to

∑

β∈B

P 1(β�N1
out) × P 2(β�N2

out).

Here, P 1 and P 2 are defined as in Sect. 4.1, based on β1
in = βin, and for each

particular β, based on β2
in equal to β�N2

in, extended to an infinite sequence
by adding 0’s. Note that the choice of input sequence β2

in for N 2 is uniquely
determined by β�N1

out.
We break this expression up into the double summation:

∑

β1

(
∑

β2

P 1(β1�N1
out) × P 2(β2�N2

out))

Here, β1 ranges over traces of N 1 that are consistent with βin and yield correct
(Nand, Or) outputs at time 3. And for each particular β1, β2 ranges over traces of
N 2 that are consistent with the input sequence β2

in determined from β1�N1
out =

β�N1
out, and whose output at time 4 is the Xor of its inputs at time 3. This is

equal to (collecting terms for each β1):
∑

β1

P 1(β1�N1
out)

∑

β2

P 2(β2�N2
out).

Now, for any particular β1, we know that:
∑

β2

P 2(β2�N2
out) ≥ (1 − δ),

by our assumptions about the behavior of N 2. So the overall expression is at
least ∑

β1

P 1(β1�N1
out)(1 − δ) = (1 − δ)

∑

β1

P 1(β1�N1
out).

We also know that ∑

β1

P 1(β1�N1
out) ≥ (1 − δ)4,

by our assumption about the behavior of N 1. So the overall expression is at least
(1 − δ)(1 − δ)4 = (1 − δ)5, as needed.

Attention Using WTA. We consider the composition of the WTA network
and the Filter network, as described in Sect. 3.2. Now let N 1 denote the WTA
network, N 2 the Filter network, and N their composition. We assume that the
WTA network satisfies Theorem 1, with particular values of δ, tc, ts, γ, c1 and

430 N. Lynch and C. Musco

c2. We assume that each And network within Filter is correct at each time with
probability at least 1 − δ′.

Fix βin to be any infinite input execution of N with stable xi inputs such
that at least one xi is firing. The wi inputs are unconstrained. Let P be the
probabilistic execution of N generated from βin. We want to prove that, accord-
ing to P , with probability at least (1 − δ)(1 − δ′)nts , there is some t ≤ tc such
that: (a) the y outputs stabilize by time t to one steadily-firing output yi, which
persists through time t + ts − 1, and (b) for this particular i, starting from time
t + 1 and continuing for a total of ts times, the zi outputs correctly mirror the
wi inputs at the previous time, and all the other z neurons do not fire.

Again, we work compositionally. We assume that, in the probabilistic exe-
cution of the WTA network N 1 on βin�Nin, the probability of correct, stable
outputs as in Theorem 1 is at least 1−δ. We also assume that, in the probabilis-
tic execution of N 2 on any input sequence, conditioned on any finite execution
prefix, the probability of correct mirroring of inputs for the next t times is at
least (1 − δ′)nts . These assumptions could be proved for our two networks, but
we simply assume them here.

Now define B to be the set of traces β of N of length tc + ts −1 such that all
the desired conditions hold in β, that is, there is some t ≤ tc such that in β, (a)
the y outputs stabilize by time t to one steadily-firing output yi, which persists
through time t+ ts −1, and (b) for this particular i, starting from time t+1 and
continuing for a total of ts times, the zi outputs correctly mirror the wi inputs
at the previous time, and all the other z neurons do not fire. We will argue that
P (B) ≥ (1 − δ)(1 − δ′)nts . We follow the same pattern as in the Boolean circuit
network example in Sect. 4.2.

We have that P (B) =
∑

β∈B P (β). By Lemma 16, this is equal to
∑

β∈B

P 1(β�N1
out) × P 2(β�N2

out).

Here, P 1 and P 2 are defined as in Sect. 4.1, based on β1
in = βin�N1

in and for each
particular β, based on β2

in equal to β�N2
in, extended to an infinite sequence by

adding 0’s. Note that β2
in is uniquely determined by β�(Nin ∪ N1

out).
This expression is equal to:

∑

β1

(
∑

β2

P 1(β1�N1
out) × P 2(β2�N2

out)).

Here, β1 ranges over traces of N 1 that are consistent with βin and for which
there is some t ≤ tc such that in β1, the y outputs stabilize by time t to one
steadily-firing output yi, which persists through time t + ts − 1. And for each
particular β1, β2 ranges over traces of N 2 that are consistent with the input
sequence β2

in determined from βin and β1�N1
out = β�N1

out, and that satisfy the
following correctness condition for N 2: for the first t and associated i that witness
the correctness condition for β1, at times t+1, . . . , t+ts, the zi outputs correctly
mirror the wi inputs at the previous time, and all the other z neurons do not
fire.

A Basic Compositional Model for Spiking Neural Networks 431

This is equal to (collecting terms for each β1):
∑

β1

P 1(β1�N1
out)

∑

β2

P 2(β2�N2
out).

Now, for any particular β1, we know that:
∑

β2

P 2(β2�N2
out) ≥ (1 − δ′)nts ,

by our assumptions about the behavior of N 2. So the overall expression is at
least ∑

β1

P 1(β1�N1
out)(1 − δ′)nts = (1 − δ′)nts

∑

β1

P 1(β1�N1
out).

We also know that ∑

β1

P 1(β1�N1
out) ≥ (1 − δ),

by our assumption about the behavior of N 1. So the overall expression is at least
(1 − δ)(1 − δ′)nts , as needed.

5 Theorems for General Composition

For general composition, the simple approach in Sect. 4 does not work. There,
we were able to prove results such as Lemma 15, which decompose the behavior
of the entire network N in terms of the behavior of the two sub-networks N 1

and N 2. This worked because the dependencies between the behaviors go only
one way, from N 1 to N 2. In the general case, the dependencies go both ways,
potentially leading to circularities.

Fortunately, since we are working in a synchronous model, we can break the
circularities in another way, using discrete time. Namely, the behavior of each
sub-network at time t depends only on the behavior of the other network at
times up to t − 1. We exploit this limitation on dependencies to prove decompo-
sition lemmas such as Lemma 19, leading to our main compositionality theorem,
Theorem 5.

For this section, fix N = N 1 × N 2. We continue to avoid writing the cone
notation A().

5.1 Composition Results for Executions and Traces

For this subsection and the following, fix a particular input execution βin for
N , which yields a particular probabilistic execution P . The main result of this
subsection is Lemma 19. It says that the probability of a certain finite execution
α of the entire network N , conditioned on its trace β, is simply the product
of the probabilities of the two projections of α on the two sub-networks, each
conditioned on its projected trace. In other words, once we fix all the external

432 N. Lynch and C. Musco

behavior of the network, including the part of the behavior involved in interaction
between the two sub-networks, the internal states of the neurons within the two
sub-networks are determined independently. We begin with a straightforward
lemma that treats the two sub-networks asymmetrically.

Lemma 18. Let α be a finite execution of N that is consistent with βin, and
let β = trace(α). Then

P (α|β) = P ((α�N1
int)|β) × P ((α�N2

int)|(α�N1
int), β).

Proof. Standard conditional probability.
�
And now we remove the asymmetry, by identifying the portions of β on which

the internal behavior of the two sub-networks actually depends.

Lemma 19. Let α be a finite execution of N that is consistent with βin, and
let β = trace(α). Then

P (α|β) = P ((α�N1)|(β�N1)) × P ((α�N2)|(β�N2)).

Proof. Lemma 18 says that

P (α|β) = P ((α�N1
int)|β) × P ((α�N2

int)|(α�N1
int), β).

It suffices to show both of the following:

1. P ((α�N1
int)|β) = P ((α�N1)|(β�N1)).

For this, note that

P ((α�N1
int)|β) = P ((α�N1)|β),

because β already includes the firing patterns for all the neurons in N1 −
N1

int = N1
ext. And

P ((α�N1)|β) = P ((α�N1)|(β�N1)),

because the firing behavior of neurons in N1 is independent of the behavior
of the neurons in N −N1, conditioned on β. Putting these two facts together
yields the needed equality.

2. P ((α�N2
int)|(α�N1

int), β) = P ((α�N2)|(β�N2)).
For this, note that

P ((α�N2
int)|(α�N1

int), β) = P ((α�N2)|(α�N1
int), β),

because β already includes the firing patterns for all the neurons in N2 −
N2

int = N2
ext. And

P ((α�N2)|(α�N1
int), β) = P ((α�N2)|β),

because the firing behavior of neurons in N2 is independent of the behavior
of the neurons in N1

int, conditioned on β. Finally,

P ((α�N2)|β) = P ((α�N2)|(β�N2)),

because of locality—the neurons in N2 are the only ones that α�N2 depends
on. Putting these three facts together yields the needed equality.
�

A Basic Compositional Model for Spiking Neural Networks 433

5.2 Composition Results for One-Step Extensions

In this subsection, we describe how to break circularities in dependencies using
discrete time, as a key step toward our general compositionality result. In par-
ticular, we prove two lemmas showing how one-step extensions of executions and
traces of N can be expressed in terms of one-step extensions of executions and
traces of N 1 and N 2.

Our first lemma is about extending a finite execution, either to a particular
longer execution, or just to any execution with a particular longer trace.

Lemma 20. 1. Let α be a finite execution of N of length > 0 that is consistent
with βin. Let α′ be the one-step prefix of α. Then:

P (α|α′) = P ((α�N1
lc)|(α′�N1)) × P ((α�N2

lc)|(α′�N2)).

2. Let β be a finite trace of N of length > 0 that is consistent with βin. Let α′ be
a finite execution of N such that trace(α′) is the one-step prefix of β. Then:

P (β|α′) = P ((β�N1
out)|(α′�N1)) × P ((β�N2

out)|(α′�N2)).

Proof. 1. The non-input neurons of N are those in Nlc = N1
lc ∪ N2

lc. The firing
states of all of these neurons in the final configuration of α are determined
independently. Thus, we have

P (α|α′) = P ((α�N1
lc)|α′) × P ((α�N2

lc)|α′).

Furthermore, the final firing states for the neurons in N1
lc depend only on the

immediately previous states of the neurons in N1, and similarly for N2
lc and

N2, so this last expression is equal to

P ((α�N1
lc)|(α′�N1)) × P ((α�N2

lc)|(α′�N2)),

as needed.
2. The output neurons of N are those in Nout = N1

out ∪ N2
out. The firing states

of all of these neurons in the final configuration of β are determined indepen-
dently. Thus, we have

P (β|α′) = P ((β�N1
out)|α′) × P ((β�N2

out)|α′).

Furthermore, the final firing states for the neurons in N1
out depend only on

the immediately previous states of the neurons in N1, and similarly for N2
out

and N2, so this last expression is equal to

P ((β�N1
out)|(α′�N1)) × P ((β�N2

out)|(α′�N2)),

as needed.

�

The second lemma is about extending a finite trace, either to an execution
or to a longer trace. This is a bit more difficult because we are conditioning only
on traces, which do not include the internal behavior of the two sub-networks.

434 N. Lynch and C. Musco

Lemma 21. 1. Let α be a finite execution of N of length > 0 that is consistent
with βin. Let β′ be the one-step prefix of trace(α). Then:

P (α|β′) = P ((α�N1
lc)|(β′�N1)) × P ((α�N2

lc)|(β′�N2)).

2. Let β be a finite trace of N of length > 0 that is consistent with βin. Let β′

be the one-step prefix of β. Then:

P (β|β′) = P ((β�N1
out)|(β′�N1)) × P ((β�N2

out)|(β′�N2)).

Proof. 1. Fix α and β′ as described. Let α′ be the one-step prefix of α. By
Lemma 7, we have:

P (α|β′) = P (α|α′) × P (α′|β′).

Lemma 20 implies that

P (α|α′) = P ((α�N1
lc)|(α′�N1)) × P ((α�N2

lc)|(α′�N2)).

Lemma 19 implies that

P (α′|β′) = P ((α′�N1)|(β′�N1)) × P ((α′�N2)|(β′�N2)).

Substituting, we get that:

P (α|β′) = P ((α�N1
lc)|(α′�N1)) × P ((α�N2

lc)|(α′�N2)) × P ((α′�N1)|(β′�N1))
×P ((α′�N2)|(β′�N2)).

Rearranging terms and using Lemma 13, Part 3, we see that the right-hand
side is equal to

P ((α�N1
lc)|(β′�N1)) × P ((α�N2

lc)|(β′�N2)),

as needed.
2. Fix β and β′ as described. Let B denote the set of executions α of N such

that trace(α) = β, i.e., such that α�Next = β. Note that what varies among
the different executions in B is just the firing patterns of the neurons in
Nint = N1

int ∪ N2
int. Then P (β|β′) can be expanded as

∑

α∈B

P (α|β′).

By Part 1, this is equal to
∑

α∈B

(P ((α�N1
lc)|(β′�N1)) × P ((α�N2

lc)|(β′�N2)).

Now define B1 to be the set of executions α1 of N 1 such that trace(α1) =
β�N1. Note that all that varies among these α1 is the firing patterns of the
neurons in N1

int. Analogously, define B2 to be the set of executions α2 of N 2

A Basic Compositional Model for Spiking Neural Networks 435

such that trace(α2) = β�N2. All that varies among these α2 is the firing
patterns of the neurons in N2

int.
Now we project the B executions onto N1 and N2, and we get that the
expression above is equal to:

∑

α1∈B1,α2∈B2

(P (α1|(β′�N1)) × P (α2|(β′�N2))).

This sum can be split into the product of sums:
∑

α1∈B1

P (α1|(β′�N1)) ×
∑

α2∈B2

P (α2|(β′�N2)).

This is, in turn, equal to

P ((β�N1
out)|(β′�N1)) × P ((β�N2

out)|(β′�N2)),

as needed.
�

5.3 Compositionality

Finally we are ready to prove that our behavior notion Beh is compositional. In
view of Theorem 2, it suffices to show that our auxiliary behavior notion Beh2

is compositional. And in view of Lemma 14, it suffices to show that Beh2(N) is
uniquely determined by Beh2(N 1) and Beh2(N 2), which we do in Lemma 24.
To accomplish this, we show (in Lemma 23) how to express Beh2(N) in terms
of Beh2(N 1) and Beh2(N 2).

Recall that the definition of Beh2(N) specifies, for each infinite input execu-
tion βin of N , a collection of conditional probabilities, one for each finite trace
β of N of length > 0 that is consistent with βin. Fix any such input execution,
βin, which generates a particular probabilistic execution P of N . Then consider
an arbitrary finite trace β of N of length t > 0 that is consistent with βin. Let β′

be the length t − 1 prefix of β. We show how to express P (β|β′) in terms of the
conditional probabilities that arise from probability distributions P 1 and P 2 on
infinite executions of N 1 and N 2, respectively. These distributions P 1 and P 2

are defined from certain input executions of N 1 and N 2, respectively. We define
these input executions and distributions as follows.

– Input execution β1
in and distribution P 1 for N 1:

Define the infinite input execution β1
in of N 1 as follows. First, note that

N1
in ⊆ Nin ∪ N2

out, that is, every input of N 1 is either an input of N or an
output of N 2. Define the firing patterns of the neurons in N1

in ∩ Nin using
βin, that is, define β1

in�(N1
in ∩ Nin) = βin�N1

in. And for the firing patterns
of the input neurons in N1

in ∩ N2
out, use β′, that is, define β1

in�(N1
in ∩ N2

out) =
β′�(N1

in ∩ N2
out) for times 0, . . . , t− 1, and the default 0 for times ≥ t. Define

P 1 to be the probability distribution that is generated by N 1 from input
execution β1

in.

436 N. Lynch and C. Musco

– Input execution β2
in and distribution P 2 for N 1:

Analogous, interchanging 1 and 2.

Lemma 22. Define β, β′, P 1, and P 2 as above. Then:

P (β|β′) = P 1((β�N1
out)|(β′�N1)) × P 2((β�N2

out)|(β′�N2)).

Proof. Lemma 21, Part 2, tells us that:

P (β|β′) = P ((β�N1
out)|(β′�N1)) × P ((β�N2

out)|(β′�N2)).

So it suffices to show that

P ((β�N1
out)|(β′�N1)) = P 1((β�N1

out)|(β′�N1)),

and similarly for N 2.
The two expressions for N 1 look very similar; their equivalence follows by

unwinding definitions. First, the left-hand expression is based on P , which is
generated by the execution of the entire network N for input βin. Thus, βin

defines the inputs of N 1 that are also inputs of N , but not those that are
outputs of N 2—the latter emerge from P . Then we consider the conditional
probability P ((β�N1

out)|(β′�N1)), which means that we now assume that the
external behavior of N 1 through time t − 1 is β′, and consider the (conditional)
probability that the firing pattern produced by P for the outputs of N 1 at time
t coincides with what is given in β.

On the other hand, the right-hand expression is based on P 1, which is gener-
ated by the execution of just the sub-network N 1 for input β1

in. Then we consider
the conditional probability P 1((β�N1

out)|(β′�N1)), which means that we again
assume that the external behavior of N 1 through time t − 1 is β′, and now con-
sider the (conditional) probability that the firing pattern produced by P 1 for
the outputs of N 1 at time t coincides with what is given in β.

Note that in P , we may have different input sequences to N 1 starting from
time t, depending on what is produced by network N for input βin. In P 1, those
inputs are always 0, as in the definition of β1

in. This difference does not matter,
because we are concerned only with the outputs of N 1 through time t, and these
outputs depend only on inputs to N 1 through time t − 1.

It follows that these two conditional probabilities are the same.
�
Lemma 22 is a nice statement of how the probabilities decompose, and we

generalize this in Lemma 25. However, it is not quite in the right form to prove
compositionality of Beh2. This is because the expressions on the right-hand-
side calculate conditional probabilities for β�N1

out and β�N2
out, which describe

behavior of only output neurons of the two networks, whereas Beh2 is defined
in terms of probabilities for traces that include inputs as well as outputs. So, we
need a technical modification of the lemma.

Specifically, define γ1 to be the length-t trace of N 1 such that γ1�N1
out =

β�N1
out and γ1�N1

in is a prefix of β1
in. That is, γ1 pastes together the output

A Basic Compositional Model for Spiking Neural Networks 437

from β�N1
out with the input used in the definition of P 1. Note that β′�N1 is the

one-step prefix of γ1. Define γ2 analogously.
Now we can state a lemma that expresses conditional probabilities for N

with input βin in terms of conditional probabilities for N 1 with input β1
in and

N 2 with input β2
in.

Lemma 23. Define β, β′, P 1, P 2, γ1, and γ2 as above. Then:

P (β|β′) = P 1(γ1|(β′�N1)) × P 2(γ2|(β′�N2)).

Proof. By Lemma 22, we have that

P (β|β′) = P 1((β�N1
out)|(β′�N1)) × P 2((β�N2

out)|(β′�N2)).

So it suffices to show that the corresponding terms are the same, that is, that:

P 1((β�N1
out)|(β′�N1)) = P 1(γ1|(β′�N1)),

and similarly for N 2. The first case follows because the definition of P 1 fixes the
firing patterns for the neurons in N1

in through time t, in a way that is consistent
with γ1, and the traces γ1 and β agree on the neurons in N1

out. Similarly for the
second case.
�

Now we can conclude compositionality:

Lemma 24. For all compatible pairs of networks N 1 and N 2, Beh2(N) is
determined by Beh2(N 1) and Beh2(N 2).

Proof. Follows directly from Lemma 23.
�
Theorem 4. Beh2 is compositional.

Proof. By Lemmas 24 and 14.
�
Theorem 5. Beh is compositional.

Proof. By Theorems 4 and 2.
�
We end this section with a generalization of Lemma 22 that applies to all four

combinations of executions and traces. The proof is similar to that for Lemma 22,
based on earlier Lemmas 20 and 21. We will use this in Sect. 5.4.

Lemma 25. Let α be a finite execution of N of length > 0 that is consistent
with βin. Let α′ be its one-step prefix. Let β = trace(α) and β′ = trace(α′). Let
P1 and P2 be as defined earlier in this section. Then

1. P (α|α′) = P 1((α�N1
lc)|(α′�N1)) × P 2((α�N2

lc)|(α′�N2)).
2. P (β|α′) = P 1((β�N1

out)|(α′�N1)) × P 2((β�N2
out)|(α′�N2)).

3. P (α|β′) = P 1((α�N1
lc)|(β′�N1)) × P 2((α�N2

lc)|(β′�N2)).
4. P (β|β′) = P 1((β�N1

out)|(β′�N1)) × P 2((β�N2
out)|(β′�N2)).

438 N. Lynch and C. Musco

5.4 Examples

Toy Example for Cyclic Composition. We consider the toy cyclic composi-
tion example from Sect. 3.2. We analyze just one case in detail, namely, where x1

fires at time 0 and x2 does not. We prove that, with probability at least (1−δ)7,
both x1 and x2 fire at time 4.

The input firing sequence βin is trivial here, since the composed network N
has no input neurons. For this example, we assume that, in the initial configura-
tion, x1 fires and the other three neurons do not fire. With these restrictions, we
have a single probability distribution P for infinite executions of N . We argue
compositionally, in terms of executions.

So let E be the set of executions of length 4 in which both x1 and x2 fire at
time 4. We will show that P (E) ≥ (1− δ)7. For this, we define several other sets
of executions. Each set is included in the previous one.

– E0, the set of executions of length 0 consisting of just the initial configuration,
in which x1 is firing and the other neurons are not firing.

– E1, the set of executions of length 1 whose one-step prefix is in E0 and in
which, in the last configuration, a1 is firing.

– E2, the set of executions of length 2 whose one-step prefix is in E1 and in
which, in the last configuration, x2 is firing.

– E3, the set of executions of length 3 whose one-step prefix is in E2 and in
which, in the last configuration, x2 and a2 are both firing.

– E4, the set of executions of length 4 whose one-step prefix is in E3 and in
which, in the last configuration, x1, x2 and a2 are all firing.

Then we can see that

P (E) ≥ P (E4) = P (E4|E3)P (E3|E2)P (E2|E1)P (E1|E0)P (E0)
= P (E4|E3)P (E3|E2)P (E2|E1)P (E1|E0).

We need lower bounds for the four conditional probabilities. For example,
consider P (E4|E3). Let α′ be any execution in E3; we will argue that P (E4|α′) ≥
(1 − δ)3, and use Total Probability to conclude that P (E4|E3) ≥ (1 − δ)3. We
have:

P (E4|α′) =
∑

α

P (α|α′),

where α ranges over the length-4 executions in E4 that extend α′. By Lemma 25,
we may break this down in terms of the two sub-networks and write:

P (α|α′) = P 1((α�N1
lc)|(α′�N1)) × P 2((α�N2

lc)|(α′�N2)),

where P 1 and P 2 are defined from β′ = trace(α′) as in Sect. 5.3.
We can rewrite

∑
α P (α|α′) as

∑

α1

∑

α2

P 1((α1�N1
lc)|(α′�N1)) × P 2((α2�N2

lc)|(α′�N2)),

A Basic Compositional Model for Spiking Neural Networks 439

where α1 ranges over all one-step extensions of α′�N1 such that x2 fires in the
final configuration, and α2 ranges over all one-step extensions of α′�N2 in which
x1 and a2 both fire in the final configuration. This summation is equal to

∑

α1

P 1((α1�N1
lc)|(α′�N1)) ×

∑

α2

P 2((α2�N2
lc)|(α′�N2)).

The first term is ≥ (1 − δ) because we care only that x2 fires in the final con-
figuration, and we have assumed that it fires in the previous configuration. The
second term is ≥ (1 − δ)2, because we care that both x1 and a2 fire in the
final configuration, and we have assumed that a2 and x2 fire in the previous
configuration. So we have:

P (E4|α′) =
∑

α1

P 1((α1�N1
lc)|(α′�N1))×

∑

α2

P 2((α2�N2
lc)|(α′�N2)) ≥ (1−δ)(1−δ)2 = (1−δ)3.

Thus, we have shown that P (E4|E3) ≥ (1 − δ)3, Similar arguments can be
used to show that P (E3|E2) ≥ (1 − δ)2, P (E2|E1) ≥ (1 − δ), and P (E1|E0) ≥
(1 − δ). Combining all the terms we get that P (E4) ≥ (1 − δ)7, as needed.

6 Hiding for Spiking Neural Networks

Now we define our second operator for SNNs, the hiding operator. This operator
is designed to “hide” some previously externally-visible behavior so it becomes
invisible outside the network. Formally, the hiding operator simply reclassifies
some output neurons as internal. The hiding operator can be used in conjunc-
tion with a composition operator; for example, we often want to compose two
networks and then hide the neurons that were used to communicate between
them.

6.1 Hiding Definition

Given a network N and a subset V of the output neurons Nout of N , we define
a new network N ′ = hide(N , V) to be exactly the same as N except that all
the outputs in V are now reclassified as internal neurons. That is, all parts
of the definition of N ′ and N are identical except that N ′

out = Nout − V and
N ′

int = Nint ∪V . The effect of the hiding operator is to make the hidden neurons
ineligible for combining with other neurons in further composition operations.

We give a result in the style of Lemma 24, here saying that the external
behavior of hide(N , V) is determined by the external behavior of N and V .

Theorem 6. For every network N and subset V ⊆ Nout, Beh(hide(N , V)) is
determined by Beh(N) and V .

Proof. Let N ′ = hide(N , V). Fix any infinite input execution βin for N ′, and
let P ′ denote the probabilistic execution of N ′ generated from βin. Consider
any finite trace β of N ′ that is consistent with βin. We must express P ′(β) in

440 N. Lynch and C. Musco

terms of the probability distribution of traces generated by N on some input
execution.

To do this, note that the executions of N are identical to those of N ′—only
the classification of neurons in V is different. In particular, the input execution
βin is also an input execution of N . Let P denote the probabilistic execution
generated of N generated from βin. Then P ′, the probabilistic execution of N ′,
is identical to P , the probabilistic execution of N . So we can write P ′(β) = P (β).

This is not quite what we need, because β is not actually a trace of N—it
excludes firing patterns for neurons in V . But we can define B to be the set of
traces γ of N such that γ�(N ′

ext) = β, that is, B is the set of traces of N that
project to yield β but allow any firing behavior for the neurons in V . Then we
have

P ′(β) =
∑

γ∈B

P (γ).

This is enough to show the needed dependency.
�

6.2 Examples

Boolean Circuits. Let N be the 5-gate Nand circuit from Sect. 3.2. Let V be
the singleton set consisting of just the And neuron within the circuit. We consider
the network N ′ = hide(N , V), which is the same as the Nand circuit except that
the And neuron is now regarded as internal. Thus, N ′ has two internal neurons:
the And neuron, and the internal neuron a of N . Fix βin to be any infinite input
execution (for both N and N ′) with stable inputs, and let P and P ′ be the
probabilistic executions of N and N ′, respectively, generated from βin.

In P ′, we should expect to have stable correct Nand outputs for a long time
starting from time 3. Here we consider just finite traces β of length exactly 3,
and focus on the output at exactly time 3. Thus, we consider the probabilities
P ′(β) for finite traces β of length exactly 3, and we would like to show that the
probability of a correct Nand output at time 3 is at least (1 − δ)3. We use the
connection between P and P ′ to help us show this.

Namely, we assume that, in P , the probability of both a correct And output
at time 1 and a correct Nand output at time 3 is at least (1− δ)3. This could be
proved for the Nand circuit separately, but we simply assume it here.

Now define event B to be the set of traces β of N ′ of length 3 such that β
gives a correct Nand output at time 3. Our assumption about P implies that
P (B) ≥ (1 − δ)3. We argue that P ′(B) ≥ (1 − δ)3, which implies our desired
result.

We have that P ′(B) =
∑

β∈B P ′(β). We know that P ′(β) = P (β) for each
trace β of N ′. Therefore, we have that P ′(B) =

∑
β∈B P (β) = P (B). Since we

have that P (B) ≥ (1 − δ)3, it follows that P ′(B) ≥ (1 − δ)3, as needed.

7 Problems for Spiking Neural Networks

In this section, we define a formal notion of a problem to be solved by a stochas-
tic Spiking Neural Network. Problems are stated in terms of the input/output

A Basic Compositional Model for Spiking Neural Networks 441

behavior that should be exhibited by a network. Namely, for every input, a prob-
lem specifies a set of possibilities, each of which is a probability distribution on
outputs. We define what it means for an SNN to solve a problem. We prove that
this notion of “solves” respects our composition and hiding operators.

7.1 Problems and Solving Problems

We define a problem R for a pair (Nin, Nout) of disjoint sets of neurons to be a
mapping that assigns, to each infinite sequence βin of firing patterns for Nin, a
nonempty set R(βin) of possibilities. Each possibility R ∈ R(βin) is a mapping
that specifies, for every finite sequence β of firing patterns for Nin ∪ Nout that
is consistent with βin, a probability R(β). Thus, the problem R assigns to each
input a set of “possible” probability distributions on outputs.

The probabilities assigned by a particular possibility R must satisfy cer-
tain constraints, designed to guarantee that they generate an actual probability
distribution on the set of infinite sequences of firing patterns for Nin ∪ Nout.
Namely, we require that R assign probability 1 to some particular β of length
0, and that the probabilities assigned to the one-step extensions of any β must
add up to the probability of β.

Now suppose that N is a network with input and output neurons Nin and
Nout, and R is a problem for (Nin, Nout). Then we say that that N solves R
provided that, for any infinite input execution βin for N , there is some possi-
bility R ∈ R(βin) for which the following holds: Let P denote the probabilistic
execution of N for βin. Then for every finite trace β of N , P (β) = R(β). In
other words, R is exactly the trace distribution derived from the probabilistic
execution of N for input βin.

7.2 Composition of Problems

We would like a theorem of the following form: If N 1 solves problem R1 and
N 2 solves problem R2, then the composition of networks N = N 1 × N 2 solves
the composition of problems R = R1 × R2. For this, we must first define the
composition of two problems, R = R1 × R2.

So let R1 be a problem for the pair (N1
in, N1

out) and R2 a problem for the
pair (N2

in, N2
out). Assume that R1 and R2 are compatible, in the sense that

N1
out ∩N2

out = ∅. Then the composition R is defined to be a problem for the pair
(Nin, Nout), where Nout = N1

out ∪ N2
out and Nin = N1

in ∪ N2
in − Nout. The com-

posed problem R should be defined as a mapping that assigns, to each infinite
sequence βin of firing patterns for Nin, a nonempty set R(βin) of possibilities.
Each possibility R ∈ R(βin) should be a mapping that specifies, for every finite
sequence β of firing patterns for Nin ∪ Nout that is consistent with βin, a prob-
ability R(β).

We define the R mapping by considering each βin separately; so fix any βin.
We describe how to define the set R(βin) of possibilities for βin.

To define R(βin), we start by selecting (in an arbitrary way) a single possi-
bility R1(β1

in) ∈ R1(β1
in) for each firing pattern β1

in for N1
in, and likewise a single

442 N. Lynch and C. Musco

possibility R2(β2
in) ∈ R2(β2

in) for each firing pattern β2
in for N2

in.10 We use this
entire collection of choices for R1(β1

in) and R2(β2
in), for all values of β1

in and β2
in,

to construct a single, particular possibility R for βin. Then we define R(βin) to
be the set of all possibilities for βin that can be constructed in this way, based
on all choices for the possibilities R1(β1

in) and R2(β2
in).

So fix the possibilities R1(β1
in) ∈ R1(β1

in) and R2(β2
in) ∈ R2(β2

in) arbitrarily,
as just described. Constructing the possibility R for βin requires us to define R(β)
for every finite sequence β of firing patterns of Nin ∪Nout that is consistent with
βin. We do this recursively. For the base, consider β of length 0, where β is
consistent with βin. Let β1

in be the infinite sequence of all-0 firing patterns for
N1

in, and β2
in be the infinite sequence of all-0 firing patterns for N2

in. Then we
define R(β) = 1 if

R1(β1
in)(β�N1

out) = 1 and R2(β2
in)(β�N2

out) = 1,

and 0 otherwise. That is, we assign probability 1 to the length-0 sequence β that
is consistent with βin, and in which the output firing states are the same as those
to which R1(β1

in) and R2(β2
in) assign probability 1.

For the recursive step, consider β of length ≥ 1, where β is consistent with βin,
and let β′ be the one-step prefix of β. We define R(β) in terms of R(β′). Namely,
let β1

in be the infinite sequence of firing patterns for N1
in that are constructed from

the following: (a) for neurons in N1
in ∩ Nin, use βin�N1

in, and (b) for neurons in
N1

in ∩ N2
out, use β′�(N1

in ∩ N2
out) for times 0, . . . , t−1, and the default 0 for times

≥ t, Define β2
in analogously. Then define R(β) = R(β′) × T 1 × T 2, where T 1 is

the conditional probability R1(β1
in)((β�N1

out)|(β′�N1)) and T 2 is the conditional
probability R2(β2

in)((β�N2
out)|(β′�N2)).11

Theorem 7. If N 1 solves problem R1 and N 2 solves problem R2, then the
composition of networks N = N 1 × N 2 solves the composition of problems R =
R1 × R2.

Proof. Since N 1 solves R1, we know that, for every infinite input execution β1
in

for N 1, there is a possibility in R1(β1
in) that is identical to the trace distribution

derived from the probabilistic execution of N 1 for β1
in. Denote this possibility

by R1(β1
in). Likewise, since N 2 solves R2, we know that, for every infinite input

execution β2
in for N 2, there is a possibility in R2(β2

in) that is identical to the
trace distribution derived from the probabilistic execution of N 2 for input β2

in.
Denote this possibility by R2(β2

in). To show that N solves R, we must show that,
for every infinite input execution βin for N , there is some possibility R ∈ R(βin)
such that R is identical to the trace distribution derived from the probabilistic
execution of N for input βin.
10 Unwinding the definitions a bit, possibility R1(β1

in) is a mapping from sequences
of firing patterns that are consistent with β1

in to probabilities, and analogously for
R2(β2

in).
11 Again unwinding the definitions, R1(β1

in) is the possibility chosen for input β1
in. The

conditional probability R1(β1
in)((β�N1

out)|(β′�N1)) describes the probability that N 1

extends β′�N1 to yield the outputs specified by β. Analogously for T 2.

A Basic Compositional Model for Spiking Neural Networks 443

So fix an input execution βin for N , and define P to be the trace distribu-
tion generated by N for input βin. Also define distribution R for βin using the
recursive approach in the definition of composition of problems, but now based
on the particular selections R1 and R2 just defined. We claim that P = R. To
show this, we must show that, for any finite trace β of N that is consistent with
βin, P (β) = R(β). We do this by induction on the length of β.

For the base, consider β of length 0. The definition of P (β) yields 1 if β
is the initial output configuration of N and 0 otherwise. The initial output
configuration is the unique configuration C for which C�N1

out = F 1
0 �N1

out and
C�N2

out = F 2
0 �N2

out (here using the general notation for initial firing patterns).
On the other hand, the definition of R(β) yields 1 if β is the unique output
configuration of N for which R1(β1

in)(β�N1
out) = 1 and R2(β2

in)(β�N2
out) = 1,

where β1
in and β2

in are infinite sequences of all-0 firing patterns, and 0 for other
output configurations. By definition of R1 and R2, this is, again, just the initial
output configuration of N . This implies that P (β) = R(β).

For the inductive step, consider β of length ≥ 1, and let β′ be the one-step
prefix of β. By the inductive hypothesis, we may assume that P (β′) = R(β′).
We must show that P (β) = R(β).

Fix β1
in and β2

in as in the recursive definition of R(β). Then by the definition
of R(β), we have

R(β) = R(β′) × R1(β1
in)((β�N1

out)|(β′�N1)) × R2(β2
in)((β�N2

out)|(β′�N2)).

Also, for the same β1
in and β2

in, fix P 1 and P 2 to be the probabilistic traces for
N 1 and N 2, respectively. Then by Lemma 22 and Lemma 6, we have

P (β) = P (β′) × P 1((β�N1
out)|(β′�N1)) × P 2((β�N2

out)|(β′�N2)).

The assumption that N 1 solves R1 with the particular possibility R1(β1
in)

implies that the two conditional distributions P 1 and R1(β1
in) are identical, so

P 1((β�N1
out)|(β′�N1)) = R1(β1

in)((β�N1
out)|(β′�N1)).

Similarly, P 2 and R2(β2
in) are identical, so

P 2((β�N2
out)|(β′�N2)) = R2(β2

in)((β�N2
out)|(β′�N2)).

Since all three pairs of corresponding terms in the two equations are equal, we
conclude that their products are equal, that is, P (β) = R(β), as needed.
�

7.3 Hiding of Problems

Next, we define a hiding operator on problems, analogous to the hiding operator
on networks. Namely, given a problem R for (Nin, Nout), and a subset V of the
output neurons Nout of R, we define a new “hidden” problem R′ = hide(R, V)
for (N ′

in, N ′
out), where N ′

out = Nout − V and N ′
in = Nin. The hidden problem

R′ should be defined as a mapping that assigns, to each infinite sequence βin of

444 N. Lynch and C. Musco

firing patterns for N ′, a nonempty set R′(βin) of possibilities. Each possibility
R′ ∈ R′(βin) should be a mapping that specifies, for every finite sequence β of
firing patterns for N ′

in ∪ N ′
out that is consistent with βin, a probability R′(β).

We define this mapping by considering each βin separately; so fix any βin.
To define the set R′(βin), we start by selecting (in an arbitrary way) a single
possibility R ∈ R(βin) We use R to define the possibility R′ for N ′ and input
βin. Since there may be many ways to define R, R′ may wind up containing
many different possibilities.

Constructing the possibility R′ requires us to define R′(β) for every finite
sequence β of firing patterns of N ′

in ∪ N ′
out that is consistent with βin. This

construction is much simpler than that for composition: Let B denote the set of
finite sequences γ of firing patterns for Next such that γ�(N ′

in ∪N ′
out) = β. Then

define
R′(β) =

∑

γ∈B

R(γ).

Theorem 8. If network N solves problem R, and V ∈ Nout, then network
N ′ = hide(N , V) solves problem R′ = hide(R, V).

Proof. Since N solves R, we know that, for every infinite input execution βin

for N , there is a possibility in R(βin) that is identical to the trace distribution
derived from execution of N for input βin. Denote this possibility by R(βin). To
show that N ′ solves R′, we must show that, for every input execution βin for
N ′, there is some possibility in R′(βin) that is identical to the trace distribution
derived from the probabilistic execution of N ′ for input βin.

So fix an input execution βin for N ′. Define P ′ to be the trace distribution
generated by N ′ for input βin. Also define distribution R′ for βin as in the
definition of hiding of problems, now based on the particular selection R(βin)
just defined. We claim that P ′ = R′. This means that for any finite trace β of
N ′ that is consistent with βin, P ′(β) = R′(β).

To see this, let B denote the set of finite sequences γ of firing patterns
for Nin ∪ Nout such that γ�(N ′

in ∪ N ′
out) = β. Then P ′(β) =

∑
γ∈B P (γ) and

R′(β) =
∑

γ∈B R(βin)(γ). Since N solves R with the particular possibility
R(βin), it follows that for each such γ, P (γ) = R(βin)(γ). Consequently, the
two summations are equal, as needed.
�

7.4 Examples

In this section, we define three problems satisfying our formal definition of prob-
lems. They are the Winner-Take-All (WTA) problem, the Filter problem, and
an Attention problem that can be solved by combining solutions to the WTA
and Filter problems.

The Winner-Take-All Problem. We define the Winner-Take-All problem
formally using notation that corresponds to the statement of Theorem 1: we write
it as WTA(n, δ, tc, ts), using four parameters from the theorem statement. The

A Basic Compositional Model for Spiking Neural Networks 445

problem definition allows considerable freedom, in the choice of which output
ends up firing, in the time when the stable interval begins, and in what happens
outside the stable interval.

The set Nin is {x1, . . . , xn}, and Nout is {y1, . . . , yn}. For each infinite
sequence βin of firing patterns for Nin, the WTA problem specifies a set of
probability distributions on sequences of firing patterns for Nin ∪ Nout that are
consistent with βin.

So consider any particular βin. If the firing pattern for Nin in βin is not stable
or does not have at least one firing neuron, then we allow all distributions that
are consistent with βin. Now consider the case where βin is stable with at least
one firing neuron. Then the possibilities for βin are exactly the distributions that
satisfy the following condition: With probability ≥ 1 − δ, there is some t ≤ tc
such that the y outputs stabilize by time t to one steadily-firing output yi, and
this firing pattern persists through time t+ts −1. Notice that these distributions
may differ in many ways, for example, they may give equal probabilities to each
output choice, or may favor some over others. They may exhibit different times,
or probability distributions of times, for when the stable interval begins. They
may exhibit different types of behavior before and after the stable interval.

We argue that our WTA network from Sect. 2.4 solves the formal problem
WTA(n, δ, tc, ts). Specifically, we consider our network with the weighting factor
γ satisfying the inequality γ ≥ c1 log(nts

δ), and with tc ≈ c2 log n log(1δ). And we
allow initial firing patterns for the internal and output neurons to be arbitrary;
so technically, we are talking about a class of networks, not a single network.
Then Theorem 1 implies that each of these networks solves the WTA(n, δ, tc, ts)
problem.

The Filter Problem. We define the Filter problem as Filter(n, δ). The set
Nin is {wi, yi|1 ≤ i ≤ n} and the set Nout is {zi|1 ≤ i ≤ n}. The Filter problem
is intended to say that, for every i, 1 ≤ i ≤ n, the output neuron zi should fire
at any time t ≥ 1 exactly if both the corresponding inputs wi and yi fired at
time t − 1. Thus, it acts like n And networks.

Formally, for each infinite sequence βin of firing patterns for Nin, the
Filter(n, δ) problem specifies a set of probability distributions on sequences of
firing patterns for Nin ∪ Nout that are consistent with βin.

So consider any particular βin. Then the possibilities for βin are exactly
the distributions that satisfy the following condition, here expressed in terms of
conditional probabilities (which could be translated into absolute probabilities):
Let β be any finite sequence over Nin ∪ Nout of length t ≥ 1 that is consistent
with βin, and let Ct be the final configuration of β. Let β′ be the one-step prefix of
β, and Ct−1 be the final configuration of β′. Suppose that, for every i, 1 ≤ i ≤ n,
Ct(zi) = Ct−1(wi) ∧ Ct−1(yi). That is, β extends β′ with correct outputs at the
final time t. Then P (β|β′) ≥ 1 − δ. The differences among these distributions
may involve different conditional probabilities (for example, different for different
outputs), as long as they satisfy the given inequality.

446 N. Lynch and C. Musco

Our simple Filter network of Sect. 3.2 solves the formal Filter problem, with
δ = 1 − (1 − δ′)n, where δ′ is the failure probability for a single And gate at a
single time, according to notation used in Sect. 3.2.

The Attention Problem. We define the Attention problem formally as

Attention(n, δ, tc, ts) = WTA(n, δ′, tc, ts) × Filter(n, δ′′).

Here δ, δ′, and δ′′ are related so that (1 − δ) = (1 − δ′)(1 − δ′′)ts . The set Nin is
{xi, wi|1 ≤ i ≤ n}, and Nout is {yi, zi|1 ≤ i ≤ n}.

By the definition of composition of problems, the guarantees of
Attention(n, δ, tc, ts) combine those of WTA(n, δ′, tc, ts) and Filter(n, δ′′).
That is, for any input sequence βin in which the x inputs are stable,
Attention(n, δ, tc, ts) specifies that, with probability at least (1 − δ′), the y out-
puts converge to a single firing output corresponding to some firing x input
within time tc, and this configuration persists for time ts. Attention(n, δ, tc, ts)
also specifies that, with probability at least (1 − δ′′)ts , the z outputs always
exhibit correct And behavior with respect to the previous time’s y and w firing
behavior. Together, these two properties imply that, assuming stable x inputs,
with probability at least (1 − δ) = (1 − δ′)(1 − δ′′)ts , the Attention network
produces stable behavior of the part of the y outputs, and moreover, during
the stable interval, the network produces z outputs that correctly mirror the w
inputs corresponding to the chosen y output.

Theorem 7 implies that any compatible solutions to WTA(n, δ′, tc, ts) and
Filter(n, δ′′) can be composed to yield a solution to the composed problem
Attention(n, δ, tc, ts). In particular, the solutions to these problems that we pre-
sented in Sects. 2.4 and 3.2 can be composed in this way.

We can also define a version of the Attention problem in which we hide
the y outputs, formally, hide(Attention(n, δ, tc, ts), {y1, . . . , yn}). The guarantees
specified by this problem are similar to those of the Attention(n, δ, tc, ts) prob-
lem, except that the behavior of the y neurons is not mentioned explicitly. Essen-
tially, this problem says that, with probability at least (1−δ) = (1−δ′)(1−δ′′)ts ,
the network correctly mirrors the inputs corresponding to some y output,
throughout the stable interval. The same composition of solutions as above,
with hiding of the y outputs, solves this version of the problem.

8 Conclusions

In this paper, we have presented a formal, mathematical foundation for modeling
and reasoning about the behavior of synchronous, stochastic Spiking Neural
Networks. This foundation is based on a simple version of the SNN model in
which a neuron’s only state is a Boolean value indicating whether the neuron is
currently firing. We have provided definitions for networks and their externally-
visible behavior. We have defined composition and hiding operators for building
new SNNs from others, and have proved fundamental theorems saying that these

A Basic Compositional Model for Spiking Neural Networks 447

operators preserve externally-visible behavior. We have also defined a formal
notion of a problem to be solved by an SNN, and have given basic results showing
how the composition and hiding operators affect the problems that are solved
by networks.

Future work will include using this formal foundation as a basis for describing
and verifying properties of particular SNNs. We have already carried out rather
formal proofs for some of our brain network algorithms (see, e.g., [17]). However,
these have been done in terms of models that were specially-tailored to the
problem at hand, and not in terms of a general modeling framework; we believe
that working in terms of a general framework will contribute toward building
a coherent general theory for SNN algorithms. A good starting point for such
applications might be a study of brain-like mechanisms for focusing attention,
based on simpler mechanisms such as our Winner-Take-All and Filter networks.

In the basic SNN model used in this paper, each neuron has a state that
is just a Boolean indicating whether or not it is currently firing. We plan to
extend the definitions and results to allow a neuron to have more elaborate
state. For example, as in [34], a neuron’s state might include history of its recent
incoming potential or recent firing behavior. Also, as in [14], we may want to
allow a neuron’s state to include some Boolean flags that may turn the neuron
on or off for performing certain activities, such as learning; in the neuroscience
literature, such mechanisms are known as “eligibility traces” [4]. It remains to
carefully extend the definitions and results in this paper to these more elaborate
cases; this paper should provide a useful blueprint for these extensions. With
such model extensions in hand, it will be interesting to revisit work by Valiant,
Navlakha, Papadimitriou, and their collaborators, such as [3,31,38]), trying to
recast it in terms of our general concurrency theory framework.

Acknowledgments. We thank our co-authors on our papers based on SNNs, espe-
cially Merav Parter, Lili Su, Brabeeba Wang, Yael Hitron, C. J. Chang, and Fred-
erik Mallmann-Trenn, for providing many concrete examples that inspired our general
model. We also thank Victor Luchangco and Jesus Lares for reading and contributing
comments on earlier drafts of this paper.

References

1. Chou, C.N., Wang, M.B.: ODE-inspired analysis for the biological version of Oja’s
rule in solving streaming PCA. In: Thirty-third Annual Conference on Learning
Theory (COLT), July 2020. arXiv:1911.02363. Accessed November 2019

2. Chou, C.N., Wang, M.B., Yu, T.: A general framework for analyzing stochastic
dynamics in learning algorithms, June 2020. arXiv:2006.06171

3. Dasgupta, S., Stevens, C.F., Navlakha, S.: A neural algorithm for a fundamental
computing problem. Science 358(6364), 793–796 (2017). http://courses.csail.mit.
edu/6.852/brains/papers/DasguptaStevensNavlakha.pdf

4. Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., Brea, J.: Eligibility traces
and plasticity on behavioral time scales: experimental support of neohebbian three-
factor learning rules. Front. Neural Circ. 12(53) (2018)

http://arxiv.org/abs/1911.02363
http://arxiv.org/abs/2006.06171
http://courses.csail.mit.edu/6.852/brains/papers/DasguptaStevensNavlakha.pdf
http://courses.csail.mit.edu/6.852/brains/papers/DasguptaStevensNavlakha.pdf

448 N. Lynch and C. Musco

5. Haddad, S., Varacca, D. (eds.): 32nd International Conference on Concurrency
Theory, CONCUR 2021, 24–27 August 2021, Virtual Conference. LIPIcs, vol. 203.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://www.dagstuhl.
de/dagpub/978-3-95977-203-7

6. Hitron, Y., Musco, C., Parter, M., Lynch, N.: Random sketching, clustering, and
short-term memory in spiking neural networks. In: 11th Innovations in Theoretical
Computer Science (ITCS 2020), Seattle, Washington, January 2020

7. Hitron, Y., Parter, M.: Counting to ten with two fingers: compressed counting
with spiking neurons. In: European Symposium on Algorithms (ESA), Munich,
Germany, September 2019

8. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science, 2nd edn. Morgan and Clay-
pool Publishers (2010)

9. Lazzaro, J., Ryckebusch, S., Mahowald, M.A., Mead, C.A.: Winner-take-all net-
works of o(n) complexity. Technical report, DTIC Document (1988)

10. Lee, D.K., Itti, L., Koch, C., Braun, J.: Attention activates winner-take-all com-
petition among visual filters. Nat. Neurosci. 2(4), 375–381 (1999)

11. Legenstein, R., Naeger, C., Maass, W.: What can a neuron learn with spike-timing-
dependent plasticity? Neural Comput. 17(11), 2337–2382 (2005)

12. Lombo, A.E., Lares, J.E., Castellani, M., Chou, C.N., Lynch, N., Berggren, K.K.: A
superconducting nanowire-based architecture for neuromorphic computing (2022,
submitted)

13. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo
(1996)

14. Lynch, N., Mallmann-Trenn, F.: Learning hierarchically structured concepts. Neu-
ral Netw. 143, 798–817 (2021)

15. Lynch, N., Musco, C., Parter, M.: Computational tradeoffs in biological neural
networks: self-stabilizing winner-take-all networks. In: Proceedings of the 8th Con-
ference on Innovations in Theoretical Computer Science (ITCS) (2017). https://
arxiv.org/abs/1610.02084

16. Lynch, N., Musco, C., Parter, M.: Neuro-RAM unit with applications to similarity
testing and compression in spiking neural networks. In: Proceedings of the 2017
Internal Symposium on Distributed Computing (DISC) (2017). https://arxiv.org/
abs/1706.01382

17. Lynch, N., Musco, C., Parter, M.: Winner-take-all computation in spiking neural
networks, April 2019. arXiv:1904.12591

18. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185(1),
105–157 (2003). Technical report MIT-LCS-TR-827d, MIT Laboratory for Com-
puter Science, Cambridge, MA 02139, 13 January 2003

19. Lynch, N., Segala, R., Vaandrager, F.: Observing branching structure through
probabilistic contexts. SIAM J. Comput. 37(4), 977–1013 (2007)

20. Lynch, N., Vaandrager, F.: Forward and backward simulations – part I: untimed
systems. Inf. Comput. 121(2), 214–233 (1995)

21. Lynch, N., Vaandrager, F.: Forward and backward simulations – part II: timing-
based systems. Inf. Comput. 128(1), 1–25 (1996)

22. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing (PODC 1987), Vancouver, British Columbia, Canada, pp.
137–151 (1987)

https://www.dagstuhl.de/dagpub/978-3-95977-203-7
https://www.dagstuhl.de/dagpub/978-3-95977-203-7
https://arxiv.org/abs/1610.02084
https://arxiv.org/abs/1610.02084
https://arxiv.org/abs/1706.01382
https://arxiv.org/abs/1706.01382
http://arxiv.org/abs/1904.12591

A Basic Compositional Model for Spiking Neural Networks 449

23. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI-Q.
2(3), 219–246 (1989). Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, Cambridge, MA 02139, November
1988

24. Maass, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

25. Maass, W.: Neural computation with winner-take-all as the only nonlinear opera-
tion. In: Advances in Neural Information Processing Systems (NIPS), vol. 12, pp.
293–299 (1999)

26. Maass, W.: On the computational power of winner-take-all. Neural Comput. 12,
2519–2535 (2000)

27. Maass, W.: Noise as a resource for computation and learning in networks of spiking
neurons. Proc. IEEE 102(5), 860–880 (2014)

28. Maass, W., Schmitt, M.: On the complexity of learning for spiking neurons with
temporal coding. Inf. Comput. 153(1), 26–46 (1999)

29. Mcculloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity.
Bull. Math. Biophys. 5, 127–147 (1943)

30. Musco, C.: The power of randomized algorithms: from numerical linear algebra
to biological systems. Ph.D. thesis, Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, June 2018. Neural
algorithms work covered in Chapter 5

31. Papadimitriou, C.H., Vempala, S.S.: Random projection in the brain and compu-
tation with assemblies of neurons. In: 10th Innovation in Theoretical Computer
Science (ITCS 2019), San Diego, CA, pp. 57:1–57:19, January 2019. https://www.
cc.gatech.edu/vempala/papers/assemblies.pdf

32. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, June 1995

33. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
J. Comput. 2(2), 250–273 (1995)

34. Su, L., Chang, C.J., Lynch, N.: Spike-based winner-take-all computation: funda-
mental limits and order-optimal circuits. Neural Comput. 31(12), 2523–2561 (2019)

35. Toomey, E.: Superconducting nanowire electronics for alternative computing.
Ph.D. thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139, May 2020

36. Toomey, E., Segall, K., Castellani, M., Colangelo, M., Lynch, N., Berggren, K.K.: A
superconducting nanowire spiking element for neural networks. Nano Lett. (2020).
https://doi.org/10.1021/acs.nanolett.0c03057

37. Trappenberg, T.: Fundamentals of Computational Neuroscience. OUP, Oxford
(2009)

38. Valiant, L.G.: Circuits of the Mind. Oxford University Press, Oxford (2000)
39. Wang, B.: Mathematical analysis of static and plastic biological neural circuits.

Master’s thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, May 2020

40. Wang, B., Lynch, N.: Integrating temporal information to spatial information in a
neural circuit (2019). arXiv:1903.01217

https://www.cc.gatech.edu/vempala/papers/assemblies.pdf
https://www.cc.gatech.edu/vempala/papers/assemblies.pdf
https://doi.org/10.1021/acs.nanolett.0c03057
http://arxiv.org/abs/1903.01217

State Identification and Verification
with Satisfaction

Joshua Moerman1(B) and Thorsten Wißmann2

1 Open Universiteit, Heerlen, The Netherlands
joshua.moerman@ou.nl

2 Radboud University, Nijmegen, The Netherlands
thorsten.wissmann@ru.nl

https://joshuamoerman.nl, https://thorsten-wissmann.de

Abstract. We use SAT-solving to construct adaptive distinguishing
sequences and unique input/output sequences for finite state machines
in the flavour of Mealy machines. These sequences solve the state identi-
fication and state verification problems respectively. Preliminary exper-
iments evaluate our implementation and show that this approach via
SAT-solving works well and is able to find many short sequences.

Keywords: SAT solving · Finite State Machines · State
Identification · Conformance Testing · Mealy machines

1 Introduction

In a paper by Lee and Yannakakis [LY94], the notion of adaptive distinguishing
sequence (ADS) is developed. Such a sequence is a (single) experiment which
can determine exactly in which state a given finite state machine (FSM) is.
The experiment consists of input symbols for the FSM, which may depend on
the outputs of the FSM observed so far (making it adaptive). The goal of the
experiment is to determine exactly in which state the given FSM is at the start
of the experiment (making it distinguishing). We use the formalism of Mealy
machines to model FSMs; but the techniques can also be adapted to Moore
machines and DFAs. Whether such an experiment exists for the whole machine
can be decided efficiently. In the special case where we have prior knowledge that
the machine is in one of two states, such a sequence always exists and can also
be found efficiently. Despite these positive results, the general problem is hard:

Theorem [LY94, Theorem 3.4]. Given an FSM and a set of possible initial
states, it is PSpace-complete to tell whether there is an experiment that identifies
the initial state.

Nonetheless, the problem is of practical interest. For instance, the L� algo-
rithm [VGRW22] learns an opaque FSM based on its input/output behaviour,
that is without having access to the internal transition structure. It does so by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 450–466, 2022.
https://doi.org/10.1007/978-3-031-15629-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_23&domain=pdf
http://orcid.org/0000-0001-9819-8374
http://orcid.org/0000-0001-8993-6486
https://doi.org/10.1007/978-3-031-15629-8_23

State Identification and Verification with SAT 451

successively exhibiting distinct states in the FSM that differ in their behaviour,
that is, states that are provably apart. Whenever a longer trace of the FSM is
observed, the algorithm has to identify whether this leads to the same state
as one of the exhibited states so far. Hence, it would be useful if there is a
single experiment from which we could determine in which state the FSM is.
In such a learning algorithm, the queries are often the bottleneck, since they
interact with embedded devices with restricted communication speed. So even
though the learning can be done in polynomial time, it may be worth some extra
computation to reduce the query size or the number of resets.

In this paper, we will use SAT solvers to construct two types of experi-
ments: adaptive distinguishing sequences and unique input/output sequences.
The problem of deciding the existence of these sequences is PSpace-complete.
Our motivation typically asks for short experiments, and so we will fix a bound
(polynomial in the size of the automaton). This bound ensures that the problem
is in NP and so a reduction to SAT is possible. This preference towards short
experiments is perfectly in line with the setting of learning where one can run
multiple short experiments instead of a single long one.

Dedication

This paper is dedicated to Frits Vaandrager who was our supervisor and co-
author.

Frits was the first author’s PhD supervisor: In the very first week of my PhD,
he gave me a very well-defined task: read the paper by Lee and Yannakakis [LY94]
and implement their algorithm. This was a fun start of my research and brought
us useful insights in the area of model learning. I am very thankful to Frits that
he gave me such interesting problems at the start.

Frits is the supervisor of the second author’s postdoc studies: since starting
in Nijmegen, Frits introduced me to the realm of automata learning and testing.
Those numerous research discussions finally led to the L� algorithm [VGRW22],
which makes great use of adaptive (and ordinary) distinguishing sequences.

Now, we once again return to those basic concepts of finite state machines,
as there is still more to discover about adaptive distinguishing sequences and
unique input/output sequences.

2 State Identification and Verification

As commonly done in (software) engineering, we model the systems of interest
as (deterministic) finite state machines for a fixed finite input alphabet I and
output alphabet O.

Definition 2.1. A finite state machine M (FSM) consists of

1. a finite set Q, called the state space,
2. a function δ : Q × I → Q, called the transition function, and
3. a function λ : Q × I → O, called the output function.

452 J. Moerman and T. Wißmann

For states q, q′ ∈ Q, we write q
a/o−−→ q′ to denote δ(q, a) = q′ and λ(q, a) = o,

we call a the input and o the output of the transition. An example FSM is
visualized in Fig. 1a on page page 4. We do not require a specified initial state in
the definition of FSM since it is not relevant for the task of state identification
and verification. In fact, in this task, we are given an FSM in some unknown
state and need to derive from the I/O behaviour, in which state the FSM is.

Definition 2.2. The transition and output functions for an FSM inductively
extend to words:

δ : Q × I∗ → Q; δ∗(q, ε) := q; δ∗(q, aw) := δ∗(δ(q, a), w)
λ : Q × I∗ → O∗; λ∗(q, ε) := ε; λ∗(q, aw) := λ(q, a) · λ∗(δ(q, a), w)

The semantics, i.e. observable behaviour, of a state q ∈ Q are given as a function
�q� : I∗ → O∗ defined as

�q�(w) := λ∗(q, w) .

Two states q1 and q2 are apart [GJ21], i.e., have different observable behaviour,
written w � q1 # q2, if w ∈ I∗ is an input word on which their semantics differ:

�q1�(w) �= �q2�(w).

Since we are only concerned with observable behaviour, we assume that machines
are minimal, meaning that all distinct states in the given FSM are apart.

2.1 Testing Problems

We are in a setting where we are provided with a known machine M but do not
know in which state it currently is:

State identification: The task is to determine the state the M currently is
in. We are allowed to interact with the M by inputting symbols from I and
observing the output O. It is fine if those tests alter the current state of M .
It is our task to determine the state M was in when we were presented it.

State verification: Given a distinguished state q ∈ Q, the task is to verify
whether the FSM is in q.

In either problem, there is no way of resetting the machine. The experiment
may consist of multiple inputs and may depend on the previously produced
outputs of the machine. In the present paper we focus on state identification
and verification since they appear as important subtasks in model learning (also
called machine identification) and in conformance testing and fault detection; a
survey on these problems is given by Lee and Yannakakis [LY96]1.

1 Lee and Yannakakis wrote two papers with similar titles [LY94,LY96]. The one from
1994 contains the polytime ADS algorithm in detail and the one from 1996 contains
a survey with related problems, results (such as bounds), and applications.

State Identification and Verification with SAT 453

Fig. 1. Example of an FSM with inputs I = {i, j} and outputs O = {e, o} in which all
states are pairwise apart.

2.2 Separating and Distinguishing Sequences

The solutions of the state identification and verification problems boil down to
finding clever input sequences such that the output allows us to reason about
the states traversed:

Definition 2.3. For a machine M , a word w ∈ I∗ is

1. a separating sequence for two states p, q ∈ Q if w � p # q.
2. a unique input/output sequence (UIO) of a state p ∈ Q if w � p # q for all

other states q ∈ Q.
3. a preset distinguishing sequence (PDS) if w � p # q for all distinct states

p, q ∈ Q.

Note how each definition requires w � p # q, with the only difference being
the quantification over p and q. This also means that a PDS is automatically a
UIO and a UIO is automatically a separating sequence. See Fig. 1b for examples
of separating sequences.

Separating sequences can be found very efficiently [SMJ16]. Unfortunately,
both UIO sequences and PDSs are very hard to find:

Theorem [LY94]. It is PSpace-complete to decide if a given machine has a
PDS and it is PSpace-complete to decide whether a given state in a given
machine has a UIO.

Under the assumption that NP �= PSpace, this PSpace-completeness
implies that these sequences are not bounded by any polynomial (otherwise
we could find them in NP time).

To overcome this hardness, Lee and Yannakakis looked more closely at the
adaptive distinguishing sequence. In this sequence of inputs, the choice of input
may depend on the output of the machine for the earlier inputs. It is a decision
tree rather than just a sequence. The adaptive nature makes it so that after each
letter a (possibly) smaller set of states is relevant, and so it becomes easier to
continue the experiment.

454 J. Moerman and T. Wißmann

Definition 2.4. We fix a machine M . An adaptive distinguishing sequence
(ADS) is a rooted tree T of which the internal nodes are labelled with input
symbols a ∈ I, the edges are labelled with output symbols o ∈ O, and the leaves
are labelled with states q ∈ Q, such that:

– all edges leaving a certain node have distinct output symbols, and
– reading the inputs and outputs while following the path to a leaf labelled q,

results in words w ∈ I∗ and v ∈ O∗ such that λ(q, w) = v.

Such a tree is called an adaptive distinguishing sequence for M if each state
q ∈ Q has a corresponding leaf.

Theorem [LY94, Theorem 3.1]. Deciding whether a machine has an ADS can
be done in polynomial time.

Example 2.5. We consider the example from Fig. 1a and show that there is no
ADS for M . If the ADS would start with i (i.e. i in the root node), then it cannot
distinguish w and z because δ(w, i) = δ(z, i) and λ(w, i) = λ(z, i). Similarly,
starting with j fails to distinguish y and w. Thus, there is no ADS for the entire
FSM of Fig. 1a. However, we can distinguish states for a smaller subset, for
example the tree depicted in Fig. 1c distinguishes {x, y, z} (and also {x, y, w}).

A preset distinguishing sequence is also an adaptive distinguishing sequence.
And when one follows the root to a leaf in an ADS for the FSM, one obtains a
UIO for the state labelled by the leaf. So the existence of these types of sequences
are ordered:

PDS =⇒ ADS (for M) =⇒ UIOs (for all states)

None of the converse implications holds in general: For a minimal FSM M , all
pairs of states have a separating sequence, but not every state may have a UIO.
Even if every state has a UIO, there may be no ADS for M . And even if there
is an ADS, there may be no PDS.

These sequences are related by the testing problems mentioned above. If an
ADS exists for the entire FSM, then state identification can be solved with it.
Similarly, state verification can be solved with UIO sequences if they exist.

2.3 Identification in a Subset of States

In the context of model learning, we may have additional insight about the FSM
in state identification and verification. Given a (partly unknown) machine M
in an unknown state, we may already exclude some states based on previous
observations, leading to the simplified version of the state identification task:

Local state identification: Given a known machine M that is currently in a
state in the subset Q0 ⊆ Q, the task is to identify the current state exactly.

State Identification and Verification with SAT 455

For Q0 = Q, this is the original problem posed above, and if we have only
two states (i.e., Q0 = {p, q}), then identification problem can be solved with
separating sequences. For the general problem where Q0 is an arbitrary subset
of Q, we adjust the previous sequence definitions:

Definition 2.6. For a machine M and a subset Q0 ⊆ Q, an Q0-local adaptive
distinguishing sequence is an ADS that mentions all states p ∈ Q0 in its leaves.
Likewise, an Q0-local UIO of a state p is a sequence w such that w � p # q for
all q ∈ Q0 other than p.

Surprisingly, finding an ADS for Q0 is PSpace-complete, that is, harder than
finding an ADS for Q0 = Q, visualized in Fig. 2. This comes from the fact that
even if there is no ADS for the full state set Q, there may be one for a subset.
An example for such an FSM is depicted in Fig. 1a which does not have an ADS
for Q = {w, x, y, z} but for the subset Q0 = {x, y, z} (Fig. 1c).

Fig. 2. The general problem of finding ADSs is PSpace-complete. But at the extreme
cases, where Q0 consists of either two states or all states, the problem is in P.

3 Reduction to SAT Solving

SAT solving is concerned with the problem of finding a satisfying assignment
for a boolean propositional formula. This is a fundamental problem in computer
science and enjoys a lot of applications [BHvMW09]. Although the problem is
NP-complete, there exist implementations which work very well in practice.

Most solvers require the input to be in conjunctive normal form (CNF),
which is a conjunction of clauses. In turn, a clause is a disjunction of literals,
where a literal is a proposition variable or a negation of a proposition variable.
Every formula has an equivalent formula in CNF. For instance, we often deal
with an implication such as

(x1 ∧ · · · ∧ xk) =⇒ y

which is equivalent to the clause

¬x1 ∨ · · · ∨ ¬xk ∨ y .

When the conversion to CNF is straightforward (which is the case for implica-
tions), we only present the original formula.

456 J. Moerman and T. Wißmann

Some care is required when turning arbitrary formulas into CNF, as the
formula can get substantially bigger. In order to avoid very big CNF formulas,
it is sometimes beneficial to introduce auxiliary variables, as we will later do.

Cardinality Constraints. It is very common to require that at most one of a
set of literals is satisfied, and such a constraint is called a cardinality constraint.
Such constraints can be encoded directly in CNF in a variety of ways, we use
the following definitions:

at-least-1(x1, . . . , xn) := (x1 ∨ · · · ∨ xn)

at-most-1(x1, . . . , xn) :=
∧

i�=j

(¬xi ∨ ¬xj)

exactly-1(x1, . . . , xn) := at-least-1(x1, . . . , xn) ∧ at-most-1(x1, . . . , xn)

Non-boolean Variables. Often, we want to express not just boolean values,
but a variable x with a bounded domain such as {1, . . . , k}. We do this with a
one-hot encoding (also called direct encoding or sparse encoding), meaning that
we introduce k variables x1, . . . , xk, where xi means that x has value i. This
works in conjunction with the constraint exactly-1(x1, . . . , xk).

As a convention, we use subscripts for indices used in a one-hot encoding and
superscripts otherwise. For example, when we guess a word of length l from an
alphabet I, we introduce the variables xi

a for 1 ≤ i ≤ l and a ∈ I.
We will now translate the problem of finding UIO sequences and ADSs into

SAT. We will encode these problems directly in CNF.

3.1 State Verification via UIO Sequences

We fix a machine M with state space Q and a state q0 ∈ Q. Our task is to find
a UIO sequence for q0, bounded by a length l.

The encoding of finding a UIO sequence of length l is quite straightforward:
We guess the sequence, and determine the outputs of all the states when provided
with this sequence, and check that those outputs differ in at least one place with
the output of q0.

Encoding. We introduce the variables listed in Table 12. We could, theoretically,
encode everything in propositional logic with only the variables aq0,i

a . However,
by introducing the other variables, the resulting CNF formula is much smaller
and easier to construct.

2 We use Fraktur letters to distinguish variables in our encoding, such as a, from
variables ranging over sets used as indices, such as a symbol a ∈ I. The symbols are
chosen so that a stands for alphabet, s stands for state, o stands for output and d

stands for difference.

State Identification and Verification with SAT 457

Table 1. Variables for the encoding of the UIO sequence for a fixed state q0.

Variable Range Meaning

aq0,ia for 1 ≤ i ≤ l, a ∈ I The UIO sequence has symbol a on index i.

sq,iq′ for q, q′ ∈ Q, 1 ≤ i ≤ l State q transitions to q′ after reading the first i
symbols from the UIO sequence.

oq,io for q ∈ Q, 1 ≤ i ≤ l, o ∈ O When state q reads the first i symbols from
the UIO sequence, then the last transition has
output o.

dq,i for 1 ≤ i ≤ l, q ∈ Q \ {q0} Auxiliary variable denoting that the runs of q0
and q for the first i symbols of the UIO sequence
end with different outputs.

One-Hot Encoded Variables. For all the one-hot encoded variables, we require
that exactly one variable is satisfied.

∧

1≤i≤l

exactly-1({aq0,i
a | a ∈ I})

∧
∧

q∈Q

∧

0≤i≤l

exactly-1({sq,i
q′ | q′ ∈ Q})

∧
∧

q∈Q

∧

0≤i≤l

exactly-1({oq,i
o | o ∈ O})

Successor States and Output. If the state q is in state q′ after i symbols, it should
output λ(q′, a) on the current symbol a:

∧

q∈Q

∧

1≤i≤l

∧

a∈I

(
sq,i−1
q′ ∧ aq0,i

a =⇒ oq,i
λ(q′,a)

)

Similarly, we encode that the successor state is consistent with the guessed word:
∧

q∈Q

∧

1≤i≤l

∧

a∈I

(
sq,i−1
q′ ∧ aq0,i

a =⇒ sq,i
δ(q′,a)

)

In the above formulas, when i = 1, we use a new variable sq,0
q′ as short-hand

notation for

sq,0
q′ :=

{
� if q = q′

⊥ if q �= q′.

Differences. So far, we have encoded a word and the according outputs starting
from each state. In order to find UIOs, we need that the outputs of q0 are different
from the outputs of others states q (at some index i). First we encode what it
means for a difference to occur, using the variables dq′,i:

∧

q′∈Q\{q0}

∧

1≤i≤l

∧

o∈O

(
dq′,i ∧ oq0,i

o =⇒ ¬oq′,i
o

)

458 J. Moerman and T. Wißmann

In words this reads: if a difference is claimed (i.e., dq,i is guessed to be true), and
if q0 outputs o, then q′ may not do so. We do not need to encode the converse
direction explicitly.

Finally, we require at least one difference for each state:
∧

q′∈Q\{q0}
at-least-1

(
dq′,1, dq′,2, . . . , dq′,l

)

Putting it Together. Denote the conjunction of all above clauses by

UIO(M, l, q0) .

Lemma 3.1. Given a machine M , a length l, and a state q0, the CNF formula
UIO(M, l, q0) is satisfiable if and only if q0 has a UIO sequence of length l.

Improvements. In order to keep the above encoding simple, we have omitted
the following improvements from the above presentation. The improvements are
explained in more detail in the implementation.

Only Encode Reachable States. As presented, the variables sq,i
q′ are created for

all q′ ∈ Q. This is unnecessary, and only the states reachable from q in exactly
i steps have to be considered. Similarly for the outputs.

Searching Multiple UIOs. In many situations, we may want to find UIO
sequences for multiple states. It is then beneficial to re-use most of the con-
structed formula. This can be achieved with incremental SAT-solving [ES03b].

Extending UIOs to Obtain New UIOs. If a UIO sequence w for state q has been
found, then this could possibly lead to UIO sequences for predecessors of q.

Namely, if q′ is a state with a transition q′ a/o−−→ q and the input/output pair
(a, o) is unique among the predecessors of q, then aw is a UIO sequence for q′.

To use this idea, we define the UIO implication graph as follows. The nodes
are the states in Q, and there is an edge from q to q′ if a UIO sequence for q
can be extended (by 1 symbol) to a UIO for q′. This graph can be precomputed
and many UIOs can be found by traversing this graph. Note, however, that the
found UIOs may not be of minimal length.

Incrementing the Length. The presented encoding works with a fixed bound. It
is useful to start with a low bound and increment this bound one-by-one. This
way, we can find short UIOs for many states, and only need to construct large
formulas for the states which have no short UIOs.

State Identification and Verification with SAT 459

3.2 State Identification via Adaptive Distinguishing Sequences

If we want to identify the current state of an FSM, we can construct an ADS for
a fixed machine M with states Q in a similar way. We fix a subset Q0 ⊆ Q of
potential initial states and a bound l on the length of the sequence. (The length
of an ADS is the depth of the tree.)

The encoding of an ADS is less straightforward than for UIO sequences,
because we are not searching for a single word, but for a tree structure. To tackle
this problem, we recall a remark by Lee and Yannakakis [LY96, Section IV.A]
which relates adaptive distinguishing sequences to sets of sequences:

“[..] we can satisfy the separation property with all sets Zi being singletons
if and only if A has an adaptive distinguishing sequence.”

The sets Zi contain sequences, and if there exists an ADS, these sets are single-
tons. So, instead of searching for a tree, we may as well search for one sequence
per state (together with additional requirements). We rephrase this result in the
following lemma.

Lemma 3.2. The following are in one-to-one correspondence:

1. An adaptive distinguishing sequence for Q0 ⊆ Q
2. A map f : Q0 → I∗ such that for all q, q′ ∈ Q0 with q �= q′:

(a) f(q) � q # q′ (i.e. f(q) is a Q0-local UIO for q).
(b) if wa is a prefix of f(q) and �q�(w) = �q′�(w), then wa is also a prefix of

f(q′).

Proof (Sketch). Given an ADS for Q0, define f : Q0 → I∗ as the map that sends
q ∈ Q0 to word v ∈ I∗ on the internal nodes leading to q in the ADS. This map
satisfies the two properties: (a) For q′ ∈ Q0 with q �= q′, the definition of ADS
implies �q�(v) �= �q′�(v). (b) If wa is a prefix of v, and �q�(w) = �q′�(w), then
q′ must also be in the subtree of the ADS to which w leads and whose node is
labelled a.

Conversely, we can recursively build an ADS from such a map f : Q0 → I∗:
if |Q0| < 2 the ADS is trivial. If Q0 has at least two elements there must be
some a ∈ I that is the prefix of all f(q), q ∈ Q0 by (b). Thus, the root is labelled
a and it has a subtree for each element of {�q�(i) | q ∈ Q0} ⊆ O. The subtree
reached via o ∈ O is recursively constructed for Q′

0 := {q ∈ Q0 | �q�(a) = o} and
f ′ : Q′

0 → I∗, f ′(q) = w with aw = f(q). ��

Encoding. We introduce the variables listed in Table 2. The encoding is similar
to that of UIO sequences. There is one crucial difference: here every state q has
an associated word f(q) in the sense of Lemma 3.2. In order to achive that these
words describe a tree, these input words f(q), f(q′) for different states q, q′ must
be the same, as long as the two states also produce the same output symbols, as
described by the condition in Lemma 3.2.

460 J. Moerman and T. Wißmann

Table 2. Variables used for the ADS encoding

Variable Range Meaning

aq,ia for q ∈ Q0, 1 ≤ i ≤ l, a ∈ I On the word for state q the ith symbol is a.

sq,iq′ for q ∈ Q0, q
′ ∈ Q, 0 ≤ i ≤ l State q transitions to q′ after reading the first

i symbols from its word.

oq,io for q ∈ Q0, 1 ≤ i ≤ l, o ∈ O State q outputs o after reading i symbols from
its word.

dq,q
′,i for q, q′ ∈ Q0, 1 ≤ i ≤ l Auxiliary variable denoting that there is a

difference between the outputs of q and q′ at
position i.

d
q,q′,i

for q, q′ ∈ Q0, 1 ≤ i ≤ l Auxiliary variable denoting that there is a dif-
ference between the outputs of q and q at posi-
tion i or earlier. This is used to allow different
input symbols.

One-Hot Encoded Variables. We again start by requiring that every one-hot
encoded variable has exactly one value enabled:

∧

q∈Q0

∧

1≤i≤l

exactly-1({aq,i
a | a ∈ I})

∧
∧

q∈Q0

∧

0≤i≤l

exactly-1({sq,i
q′ | q′ ∈ Q})

∧
∧

q∈Q0

∧

0≤i≤l

exactly-1({oq,i
o | o ∈ O})

Successor States and Outputs. Similarly to the UIO sequences, we require that
the guessed successor states and outputs are consistent with the transition and
output function:

∧

q∈Q0

∧

1≤i≤l

∧

q′∈Q

∧

a∈I

(
sq,i−1
q′ ∧ aq,i

a =⇒ sq,i
δ(q′,a)

) ∧ (
sq,i−1
q′ ∧ aq,i

a =⇒ oq,i
λ(q′,a)

)

Differences. If the solver claims one of the dq,q′,i to be true, then there must be
an actual difference in output:

∧

q �=q′∈Q0

∧

1≤i≤l

∧

o∈O

(
dq,q′,i ∧ oq,i

o =⇒ ¬oq′,i
o

)

And we encode the fact that there is at least one difference for each pairs of
states q, q′ ∈ Q0.

∧

q �=q′∈Q0

at-least-1
(
dq,q′,1, dq,q′,2, . . . , dq,q′,l

)

State Identification and Verification with SAT 461

Shared Prefixes. Finally, we have to assert that the words of two states are the
same as long as there is no observed difference in output. First, we encode the
“closure” of difference:

∧

q �=q′∈Q0

(
d

q,q′,1 =⇒ dq,q′,1
) ∧

∧

2≤i≤l

(
d

q,q′,i =⇒ (dq,q′,i ∨ d
q,q′,i−1)

)

In words this means that dq,q′,j may only hold true if some difference dq,q′,i holds
true earlier (i.e., for some i ≤ j). (We only need to encode one direction of the
implication.)

Second, states must use the same inputs as long as d
q,q′,i is still false. Note

that the first symbols are always equal.
∧

q �=q′∈Q0

∧

a∈I

(
aq,1

a =⇒ aq′,1
a

) ∧
∧

2≤i≤l

(¬dq,q′,i−1 ∧ aq,i
a =⇒ aq′,i

a

)

Putting it Together. Denote the conjunction of the above clauses by

ADS(M, l,Q0) .

Lemma 3.3. Given a machine M , a length l ∈ N and a subset Q0, the formula
ADS(M, l,Q0) is satisfiable if and only if there exists an ADS for Q0 of depth l.

Improvements. Some of the same improvements mentioned for the UIO
sequence apply here as well. Nevertheless, there is one interesting optimization
specifically for the ADS problem.

Encoding Distinct Successors. As long as two states q, q′ ∈ Q0 produce the same
outputs for an input word w ∈ I∗, i.e. a path in the ADS, the states must
not transition to the same state δ(q, w) = δ(q′, w), because this would make
the states indistinguishable. In the Lee and Yannakakis algorithm, this is called
validity of a split or transition. Every ADS has this validity property, so the ADS
found by the solver will also have this property. We can encode this property
explicitly to help the solver to prune the search. The following clauses state that
as long as there is no difference and one state transitions to q′′, then the other
state is not allowed to transition to q′′.

∧

q �=q′∈Q0

∧

2≤i≤l

∧

q′′∈Q

(¬dq,q′,i−1 ∧ sq,i
q′′ =⇒ ¬sq′,i

q′′
)

In one instance, the solving time was reduced from 90 min to a mere 2 min. It
is not unlikely that other such redundant clauses can be added to improve the
runtime.

462 J. Moerman and T. Wißmann

4 Preliminary Experimental Results

4.1 Implementation

The encoding is implemented in Python and the solving is done through the
PySAT package [IMM18]. This package supports several SAT solvers, such as
MiniSat [ES03a], Glucose [AS09]. The implementation can be found at

https://github.com/Jaxan/satuio.

Throughout the experiments, the SAT solver we use is Glucose3, as this
worked well enough on some preliminary tests. PySAT also allows different
encodings for the cardinality constraints as explained in Sect. 3. We stick to
the default encoding provided by PySAT, which is based on sequential coun-
ters [Sin05].

The experiments are run on a 2020 MacBook Air (with an M1 chip) on a
single core. We use Python version 3.10.2 and PySAT version 0.1.7.dev16.

4.2 Benchmarks

We use finite state machines from the open automata wiki [NSVK18]. This wiki
contains many models from a variety of real-world domains, such as internet
communication protocols, smart cards, and embedded systems. We pick the fol-
lowing two sets of models.

Small Models from Protocols. We have picked the models which are
learned from the DTLS implementations [FJM+20] and MQTT implementa-
tions [TAB17] with fewer than 50 states. Both DTLS and MQTT are internet
protocols with many (open source) implementations. These are state machines
with fewer than 50 states and have between 6 and 11 inputs.

Big Model from an Embedded System. In order to test the scalability of
the encoding, we use the biggest model from the automata wiki, which is the
ESM controller [SMVJ15]. This is a state machine in control of printer hardware
and has 3410 states and 78 inputs. This was used in a case study for automata
learning, and the automata wiki also includes the intermediate hypotheses, which
we use as a family of models of increasing size.

4.3 UIO Experiments

For the UIO sequences, we will compare our efficiency to an algorithm by
Naik [Nai97]. We only have implemented their base algorithm, which is a non-
trivial enumerative search. It searches UIO sequences for all states at the same
time, returning sequences as it finds them.

For each small benchmark, we run both algorithms with a time limit of 3 s.
For the bigger benchmarks, we set a time limit of 10 min. We report how many

https://github.com/Jaxan/satuio

State Identification and Verification with SAT 463

Fig. 3. Results for the small benchmark, comparing our tool (�) and Naik’s algo-
rithm (◦) (timeout = 3 s). The number of UIOs found as fraction of the state space is
plotted left and the average length of the found UIOs is plotted right. Note that there
may be several models with the same number of states.

Fig. 4. Results for the big benchmark, comparing our tool (�) and Naik’s algorithm (◦)
(timeout = 10 min). The number of UIOs found as fraction of the state space is plotted
left and the average length of the found UIOs is plotted right.

UIOs each algorithm finds within that time. Note that some models have states
without UIO sequences, meaning that a search may take a very long time (as
the upper bound on the length is exponential). This is the reason it is necessary
to set a time bound, even for the small models. Also note that both algorithms
search in a non-deterministic way, and so one can be lucky or unlucky in specific
instances.

The results are shown in Figs. 3 and 4. In almost all instances, our algorithm
was able to find more UIO sequences than the baseline algorithm. However, the
baseline algorithm results, on average, in shorter sequences. This may be because
it finds fewer, or because it finds the shortest ones first.

464 J. Moerman and T. Wißmann

We also note that our tool can often find UIO sequences for all states for
the small models in a short time (3 s) and that the UIO sequences are generally
short. In the big benchmark, the found UIO sequences are still relatively short,
but after the first five models, we do not find UIO sequences for all states. This
is partly because not every state has a UIO sequence, and partly because it
is becoming computationally harder to find them when the number of states
increase.

4.4 ADS Experiments

For the ADS we do not have an alternative implementation. So we include some
experiments to see how well the SAT solving scales. We only run the algorithm
for the big benchmark with 3410 states and 78 inputs. (This machine does not
admit an ADS for all states.) For the set of potential initial states, Q0, we pick
a random subset of specified size and set the bound (i.e., depth of the tree) to
be 7.

Fig. 5. Finding ADSs for a random subset Q0, of increasing size. The state machine
used here is the big benchmark with 3410 states and 78 inputs. The checkmarks (�)
indicate satisfiability and the crosses (×) indicate unsatisfiability.

Figure 5 shows the runtime for finding an ADS of given size in the big bench-
mark. We observe that for small sets Q0 the solver is able to find adaptive
distinguishing sequences in mere seconds. But already for 120 states (which is a
small fraction of the total 3410 states), the algorithm needs almost a full minute
to find an ADS or to prove unsatisfiability.

We also observe that bigger sets Q0 more often lead to unsatisfiability. For
these sets, a bigger bound could provide an ADS, at the cost of more computation
time. Interestingly, we see that the solver can prove unsatisfiability a bit faster
than satisfiability.

State Identification and Verification with SAT 465

5 Conclusions and Future Work

We have presented and evaluated a reduction of UIO and ADS computation
to satisfiability checking of CNF formulae, such that the ADS and UIO can be
determined from the satisfying assignment of the formula. The experiments show
that the reduction is able to find many UIO sequences and ADSs. For the UIO
sequences it is competitive with a non-trivial search algorithm by Naik [Nai97].
Unfortunately, for the larger benchmark, the computation time is still rather
large. The experiments also show that, if sequences are found, they are often
short, even in larger models.

The reduction may add some overhead compared to direct implementations
for searching these sequences, but it is a versatile solution. The high level encod-
ing into logic allows us to change the requirements easily, without having to inte-
grate these changes in a search algorithm. One such variation is an extension to
partiality, meaning that the FSM might have an unknown behaviour for certain
input letters a ∈ I. This is the setting in the L� learning algorithm [VGRW22],
where all observations are gathered in a tree, which happens to be a partial
FSM. Here, the partiality expresses that the behaviour for certain inputs is still
unknown, as those inputs have not yet been tested. We are optimistic that the
our generic encoding techniques can also help finding adaptive distinguishing
sequences for partial Mealy machines and other flavours of finite-state machines
that arise in the future.

Acknowledgements. We would like to thank Alexander Fedotov for providing an
implementation of Naik’s algorithm in Java. We are grateful for the many suggestions
by the referees that helped improving the present paper.

References

[AS09] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern
SAT solvers. In: Proceedings of the 21st International Joint Conference
on Artificial Intelligence IJCAI, pp. 399–404 (2009)

[BHvMW09] Biere, A., Heule, M., van Maaren, H. (eds.).: Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press (2009)

[ES03a] Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Appli-
cations of Satisfiability Testing, 6th International Conference, SAT 2003.
Selected Revised Papers, volume 2919 of LNCS, pp. 502–518. Springer
(2003). https://doi.org/10.1007/978-3-540-24605-337

[ES03b] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving.
Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

[FJM+20] Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas,
K., Somorovsky, J.: Analysis of DTLS implementations using protocol
state fuzzing. In: USENIX Security Symposium, pp. 2523–2540. USENIX
Association (2020)

[GJ21] Geuvers, H., Jacobs, B.: Relating apartness and bisimulation. Logical
Meth. Comput. Sci. 17(3) (2021). https://doi.org/10.46298/lmcs-17(3:
15)2021

https://doi.org/10.1007/978-3-540-24605-337
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021

466 J. Moerman and T. Wißmann

[IMM18] Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit
for prototyping with SAT oracles. In: SAT, volume 10929 of LNCS, pp.
428–437 (2018). https://doi.org/10.1007/978-3-319-94144-826

[LY94] Lee, D., Yannakakis, M.: Testing finite-state machines: state identifi-
cation and verification. IEEE Trans. Comput. 43(3), 306–320 (1994).
https://doi.org/10.1109/12.272431

[LY96] Lee, D., Yannakakis, M.: Principles and methods of testing finite state
machines - a survey. Proc. IEEE 84, 1090–1123 (1996). https://doi.org/
10.1109/5.533956

[Nai97] Naik, K.: Efficient computation of unique input/output sequences in
finite-state machines. IEEE/ACM Trans. Netw. 5(4), 585–599 (1997)

[NSVK18] Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for
automata learning and conformance testing. In: Margaria, T., Graf, S.,
Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and
the Why Not? LNCS, vol. 11200, pp. 390–416. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22348-9 23

[Sin05] Sinz, C.: Towards an optimal CNF encoding of boolean cardinality con-
straints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831.
Springer, Heidelberg (2005). https://doi.org/10.1007/11564751 73

[SMJ16] Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences
for all pairs of states. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30000-9 14

[SMVJ15] Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying
automata learning to embedded control software. In: Butler, M., Con-
chon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 67–83.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 5

[TAB17] Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT com-
munication via active automata learning. In: ICST, pp. 276–287. IEEE
Computer Society (2017)

[VGRW22] Vaandrager, F., Garhewal, B., Rot, B., Wißmann, T.: A new approach for
active automata learning based on apartness. In: Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Con-
ference, TACAS: Lecture Notes in Computer Science. Springer 04, 2022
(2022). https://doi.org/10.1007/978-3-030-99524-9 12

https://doi.org/10.1007/978-3-319-94144-826
https://doi.org/10.1109/12.272431
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-030-99524-9_12

A Note on the Message Complexity
of Cidon’s Distributed Depth-First Search

Algorithm

Saidgani Musaev and Wan Fokkink(B)

Vrije Universiteit, Amsterdam, The Netherlands

w.j.fokkink@vu.nl

Abstract. The same distributed depth-first search algorithm was pro-
posed independently by Lakshmanan, Meenakshi, and Thulasiraman,
who gave 4E−N as upper bound on the worst-case message complexity
of the algorithm, and by Cidon, who gave 3E as upper bound. We deter-
mine the exact worst-case message complexity and show that the upper
bound of 3E by Cidon is too strict.

1 Introduction

In distributed computing, often information needs to be gathered from all nodes
in the network, requiring the construction of a sink tree toward a designated root
node. One approach is to build a depth-first search (DFS) tree. Awerbuch [1]
defined a token-based distributed DFS (DDFS) algorithm, which is an improve-
ment of an earlier DDFS algorithm by Cheung [2]. Lakshmanan, Meenakshi, and
Thulasiraman [5] and Cidon [3] independently proposed the same improvement
upon Awerbuch’s algorithm; in line with [4,8], we will refer to this improved
version as Cidon’s algorithm. The traversal of the token through the network
is started by the root of the DFS tree. Before a node p sends the token for the
first time, it sends information messages to its neighbors, to try to avoid that
these neighbors send the token to p in the future. Unlike Awerbuch’s algorithm,
Cidon’s algorithm does not include acknowledgments in response to such infor-
mation messages, and p may forward the token without delay. As a result, p can
receive a spurious token from a neighbor q. The key observation in [3,5] is that
this situation can be recognized at p and q, and can be resolved without loss of
time.

Lakshmanan, Meenakshi, and Thulasiraman proved that 4E−N is an upper
bound on the worst-case message complexity of their algorithm, where E is the
number of edges and N the number of nodes in the network. Cidon proved a
sharper upper bound of 3E, where his line of reasoning is that no edge ever carries
more than three messages (tokens or information messages) during executions of
the algorithm. Tsin [9] showed that Cidon’s analysis of the worst-case message
complexity is flawed, by giving an execution in which four messages are sent
through one of the edges. Tsin however did not present an execution that violates
Cidon’s worst-case message complexity of 3E.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 467–471, 2022.
https://doi.org/10.1007/978-3-031-15629-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_24&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_24

468 S. Musaev and W. Fokkink

We determine the exact worst-case message complexity of Cidon’s algorithm.
Furthermore, we provide an execution on complete network topologies that vio-
lates Cidon’s bound of 3E, for N ≥ 5.

With pleasure we dedicate this paper to Frits Vaandrager, on the occasion of
his 60th birthday. His research works play a pivotal role in the formal analysis
of communication protocols and algorithms for distributed systems. Notably, in
[10] he proved correct a distributed algorithm, somewhat related to depth-first
search, in which all nodes in a distributed network report their weights to a
designated root node via a spanning tree, so that this root can determine the
sum of all these weights.

2 Cidon’s DDFS Algorithm

Consider a connected distributed network consisting of N > 1 nodes and E
bidirectional edges, with message passing communication. A token-based DDFS
algorithm builds a DFS tree in the network by forwarding a token through
the entire network in a depth-first fashion, starting from the designated root
node. Each nonroot selects as parent in the DFS tree the neighbor from which
it receives the token for the first time. The token is forwarded between nodes
according to two rules: (1) the token is not forwarded to the same neighbor twice;
and (2) a nonroot only forwards the token to its parent if there is no other option
left. After having visited all nodes, the token eventually returns to the root who
cannot forward the token anymore, and the algorithm terminates.

The message-optimal token-based DDFS algorithm of Sharma, Iyengar, and
Mandyam [7] keeps the list of IDs of all visited nodes in the token. The token is
not forwarded to neighbors whose IDs are in this list. This guarantees that the
token only travels up and down the N −1 tree edges of the DFS tree, so that the
message complexity is 2N − 2. However, since the token contains a list of IDs,
the algorithm has a relatively high bit complexity. The variant of this algorithm
by Makki and Havas [6] in some cases sends fewer token messages up the DFS
tree, but still has the same the worst-case message and bit complexity as [7].

In Cidon’s algorithm [3,5], each node p, when it holds the token for the
first time, informs its neighbors that it has seen the token. Two neighbors of p
are spared this information message: the node to which p will send the token
next and, if p is a nonroot, p’s parent. Next, p forwards the token (without
delay, unlike Awerbuch’s algorithm [1]) and records to which node forwardp it
forwarded the token last. A third rule is added to the forwarding procedure: (3)
the token is not forwarded to neighbors from which an information message has
been received. If p receives the token from a node q �= forwardp, then it dismisses
the token and marks the edge pq as a frond edge, meaning that it is not a tree
edge. No further action from p is required, because q will eventually receive the
information message from forwardq = p. Then in turn q marks the edge pq as a
frond edge and continues to forward the token to another node (if possible).

If it is assumed that a message takes at most one time unit to reach its
destination, then the worst-case time complexity of Cidon’s algorithm is 2N − 2

On the Message Complexity of Cidon’s Distributed Depth-First Search 469

time units, because at least once per time unit the token is forwarded through a
tree edge, and the N − 1 tree edges all carry two tokens. Frond edges may carry
two information messages and two tokens, so an upper bound on the worst-case
message complexity is 4E. Lakshmanan, Meenakshi, and Thulasiraman proved
a sharper bound of 4E−N . Cidon argued that actually in each execution, edges
carry at most three messages, meaning that 3E would be an upper bound on the
worst-case message complexity. However, Tsin [9] showed there exist executions
in which four messages are sent through the same edge. But he did not present
an execution that takes more than 3E messages.

3 On the Message Complexity of Cidon’s Algorithm

We present an execution of Cidon’s algorithm on a complete network topology
(i.e., there is a bidirectional edge between each pair of distinct nodes) that takes
4E−2N+1 messages. This execution violates Cidon’s bound of 3E if E > 2N−1,
which is the case for a complete graph, meaning that E = N(N−1)

2 , if N ≥ 5.
The idea behind the execution is simply to delay the arrival of an information

message through an edge until a token has been sent into the same edge in the
opposite direction. We assume fully asynchronous message communication: there
is no upper bound on the time between the sending and reception of the same
message. Let p0, . . . , pN−1 be the N ≥ 3 nodes in the complete network, where
p0 is the designated root of the DFS tree. In the end, pi−1 is the parent of
pi in the DFS tree for i = 1, . . . , N − 1. Initially, p0 sends N − 2 information
messages to p2, . . . , pN−1 and the token to p1. When the token from pi−1 arrives
at pi for i = 1, . . . , N − 1, pi sends N − 3 information messages to all nodes
except pi−1, pi, p(i+1) mod N and the token to p(i+1) mod N . So ultimately, when
i = N − 1, pN−1 sends the token p0. Note that at that moment, all information
messages are still in transit. Note moreover that eventually p0 will dismiss the
token from pN−1. The network configuration, with N = 4, can now be depicted
as follows, where t represents a token and i an information message in transit.

Next, for j = 0, . . . , N − 4, pN−1 receives the information message from pj
and then sends the token to pj+1. Finally, pN−1 receives the information message
from pN−3 and then sends the token back to its parent pN−2. After this chain
of events, the network configuration, with N = 4, can be depicted as follows.

470 S. Musaev and W. Fokkink

Now, for i = N − 2, . . . , 1, pi performs the following chain of events. First it
receives the token from pi+1. Next, for j = i+2, . . . , N + i−2, pi sends the token
to pj mod N and then receives the information message from pj mod N . Finally,
pi sends the token to its parent pi−1. After this chain of events, the network
configuration, with N = 4, can be depicted as follows.

To conclude, p0 performs the following chain of events. First it receives the
token from p1. Next, for j = 2, . . . , N − 2, p0 sends the token to pj and then
receives the information message from pj . Finally, p0 sends the token pN−1 and
receives the token from pN−1, after which the execution terminates.

We analyze the number of messages sent in the execution described above,
for general N .

– Each node sends the token to all its neighbors, which adds up to N(N −1) =
N2 − N token messages in total.

– p0 sends information messages to all its neighbors except p1, while pi for
i = 1, . . . , N − 1 sends information messages to all its neighbors except pi−1

and p(i+1) mod N . This adds up to (N − 2) + (N − 1)(N − 3) = N2 − 3N + 1
information messages in total.

So the overall number of messages in the execution on a complete network is
2N2 − 4N + 1.

To determine a precise upper bound on the worst-case message complexity
of Cidon’s algorithm, consider a general distributed network. Let N∗ denote the
number of nonroots that have at least two edges. We can perform an execution
like the one we exhibited on a complete graph, in which information messages
are delayed as much as possible. In such an execution, each node sends tokens to
all its neighbors, adding up to 2E token messages. Furthermore, the root sends
information messages to all but one of its neighbors. And each nonroot with at
least two edges sends information messages to all but two of its neighbors, while

On the Message Complexity of Cidon’s Distributed Depth-First Search 471

each nonroot with one edge sends no information messages. This adds up to
2E − (N +N∗) information messages. So 4E − (N +N∗) messages in total. (For
complete networks this boils down to 2N2 − 4N + 1, because then E = N(N−1)

2
and N∗ = N − 1.)

4 Conclusion

We argued that the precise upper bound on the worst-case message complexity of
Cidon’s algorithm is 4E − (N +N∗), where N∗ denotes the number of nonroots
that have at least two edges. In particular, we presented an execution on a
complete network topology that violates Cidon’s bound of 3E, in case N ≥ 5.

Tsin observed a second flaw in Cidon’s algorithm: a node may consider a
neighbor its child in the DFS tree while in reality it is not. For instance, at
the end of the execution on a complete network that was described in detail in
this paper, p0 would falsely consider pN−1 its child. This problem is avoided by
Lakshmanan, Meenakshi, and Thulasiraman, who distinguish token messages
traveling down the DFS tree from token messages traveling up the DFS tree.
We did not take this subtlety into account here because it has no effect on the
message complexity.

References

1. Awerbuch, B.: A new distributed depth-first-search algorithm. Inf. Process. Lett.
20(3), 147–150 (1985)

2. Cheung, T.-Y.: Graph traversal techniques and the maximum flow problem in
distributed computation. IEEE Trans. Softw. Eng. 9(4), 504–512 (1983)

3. Cidon, I.: Yet another distributed depth-first search algorithm. Inf. Process. Lett.
26(6), 301–305 (1988)

4. Fokkink, W.J.: Distributed Algorithms: An Intuitive Approach, 2nd edn. MIT
Press, Cambridge (2018)

5. Lakshmanan, K.B., Meenakshi, N., Thulasiraman, K.: A time-optimal message-
efficient distributed algorithm for depth-first search. Inf. Process. Lett. 25(2), 103–
109 (1987)

6. Makki, S.A.M., Havas, G.: Distributed algorithms for depth-first-search. Inf. Pro-
cess. Lett. 60(1), 7–12 (1996)

7. Sharma, M.B., Iyengar, S.S.: An efficient distributed depth-first-search algorithm.
Inf. Process. Lett. 32(4), 183–186 (1989)

8. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, Cambridge (2000)

9. Tsin, Y.H.: Some remarks on distributed depth-first search. Inf. Process. Lett.
82(4), 173–178 (2002)

10. Vaandrager, F.: Verification of a distributed summation algorithm. In: Lee, I.,
Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 190–203. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-60218-6 14

https://doi.org/10.1007/3-540-60218-6_14

Minesweeper is Difficult Indeed!

Technology Scaling for Minesweeper Circuits

Alex Thieme1 and Twan Basten1,2(B)

1 Eindhoven University of Technology, Eindhoven, The Netherlands
a.a.basten@tue.nl

2 ESI (TNO), Eindhoven, The Netherlands

Abstract. Various aspects of playing minesweeper have been proven to
be (co-)NP-complete through reductions from circuit-SAT and UNSAT.
The proofs use quite involved minesweeper templates to simulate Boolean
formulas and circuits. We provide a set of much simpler synthesis tem-
plates, leading to much smaller circuit simulations in minesweeper.

Keywords: Games · Complexity · Circuit simulation

1 Introduction

Minesweeper was and is a popular single-player computer game first released
by Microsoft in Windows 3.1 [14]. As for many games, the question was raised
whether or not the game is efficiently solvable, i.e., whether or not there is a
polynomial-time algorithm to compute a winning strategy. For many games,
this is actually not the case (assuming P �= NP). Minesweeper is among the
games for which it turns out that there is no efficient solution strategy.

Minesweeper consistency is the decision problem asking the question whether
or not a partial minesweeper configuration can be completed to a valid mineswee-
per instance. Kaye [6] introduced minesweeper consistency and showed its NP-
completeness through reduction from circuit-SAT. circuit-SAT is the problem to
decide whether or not a one-output Boolean circuit is satisfiable, i.e., whether
or not a Boolean valuation of the circuit’s inputs exists such that the output
becomes 1. Kaye’s reduction uses a set of minesweeper templates, corresponding
to gates and wiring elements, to simulate Boolean circuits in minesweeper.

Scott et al. [8] argue that repeatedly checking minesweeper consistency is
not the only possible way of playing minesweeper, implying that Kaye’s reason-
ing does not show NP-completeness of playing minesweeper. They define the
minesweeper inference problem, asking the question whether or not for a given
partial minesweeper instance that is known to be consistent, there is a covered
square that is derivably safe or unsafe. Scott et al. use templates similar to
those of Kaye to show that minesweeper inference is co-NP-complete, by reduc-
tion from Boolean unsatisfiability, UNSAT. UNSAT is the problem to decide
whether a Boolean formula built from and, or, and not operators and variables

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 472–490, 2022.
https://doi.org/10.1007/978-3-031-15629-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_25&domain=pdf
http://orcid.org/0000-0002-2274-7274
https://doi.org/10.1007/978-3-031-15629-8_25

Minesweeper is Difficult Indeed! 473

cannot be satisfied. UNSAT is the complement of Boolean satisfiability, SAT,
the problem whether or not a Boolean formula is satisfiable.

All the circuit-simulation minesweeper templates proposed by Kaye and Scott
et al. use safe squares as boundaries to create and isolate information flows. We
provide circuit-synthesis templates that use mines to create information flows.
Mines form a strict isolating boundary so that no information leaks to neigh-
boring squares. This leads to more compact and easier to understand templates
and circuits. For instance, a 2-input circuit with three literals and two or gates
that fits within a 57× 21 minesweeper instance with the templates and synthe-
sis approach of this paper, takes 204× 84 squares with the templates of Scott
et al.1. The key ideas underlying the minesweeper circuit-simulation templates
and circuit-synthesis approach developed in this paper are the following:

– Mines are used to create the information flow in Boolean circuits and to
isolate these flows from their environment.

– Inversion (logical negation) is done with a 3× 3 kernel that also serves as a
building block for wires. Consequently, explicit not gates are not needed for
circuit synthesis; inversion can be done in the circuit wiring as appropriate.

– A simple 3× 3 kernel suffices to create four logic states; this kernel serves as
a basis for compact gate templates and wire crossings.

We illustrate how the provided templates can be used to prove NP-complete-
ness of minesweeper consistency, by reducing SAT to minesweeper consistency.
This re-establishes the result of [6], but in contrast to Kaye, we consider the orig-
inal version of minesweeper in which the number of hidden mines is given. This
leads to some extra constraints on the templates and the synthesis to ensure that
the number of mines in the minesweeper instance generated from a SAT instance
is predetermined and independent of the valuation of the Boolean variables in the
SAT instance. These constraints are similar to those introduced by Scott et al.
for the templates used for proving co-NP-completeness of minesweeper inference.
Also Scott et al. consider the original minesweeper version with a given number
of mines. Our templates and synthesis approach can replace the templates and
synthesis of Scott et al. in their co-NP-completeness proof.

The paper is organized as follows. The next section discusses relevant
related work. Section 3 introduces some notations. Section 4 precisely defines
the minesweeper consistency and inference problems. In Sect. 5, we provide tem-
plates for circuit simulation in minesweeper. Section 6 elaborates templates for
synthesis. These templates satisfy design principles that facilitate automated
synthesis and that ensure that the number of mines in the generated minesweeper
instance is predetermined. Section 7 provides the synthesis approach and proves
NP-completeness of minesweeper consistency. Finally, Sect. 8 concludes.

1 The exact dimensions of such a circuit with the templates of [8] depends on the
number of inversions needed. With our templates the dimensions only depend on
the numbers of variables, literals, and (or-)gate layers.

474 A. Thieme and T. Basten

2 Related Work

Information on the history of minesweeper and the rules of the game can be found
on Wikipedia [14]. The book by Garey and Johnson [4] is the classical text on
NP-completeness. Boolean satisfiability, SAT, is the original decision problem
shown NP-complete by Cook [2]. Brief introductions to NP-completeness and
proving NP-completeness through reduction can be found in, for instance, [8]
and on Wikipedia [16], which also contains a list of NP-complete games and
puzzles [15]. Ref. [8] also provides a nice tutorial-style introduction to co-NP-
completeness and its relation to NP-completeness. The complexity of games is
a popular and fun topic of study. The work of Demaine and colleagues [1,5], for
example, provides systematic frameworks for analyzing the complexity of games,
at the same time proving complexity results for a wide selection of well-known
games, including many of the classic Nintendo games.

Kaye [6] introduced minesweeper consistency and showed its NP-complete-
ness through reduction from circuit-SAT. Kaye’s circuit templates are quite
involved. An and gate, for instance, has 23× 13 squares and a wire crossing
is built from and and not gates (24 in total). He later published some further,
simplified templates [7], but they remain quite large. Kaye’s reduction from
circuit-SAT to minesweeper does not guarantee a predefined number of hid-
den mines. We re-establish the NP-completeness of minesweeper consistency by
reduction from SAT for the original version of minesweeper with a given number
of hidden mines. This illustrates that this extra piece of information does not
fundamentally simplify minesweeper.

The latter was also already observed by Scott et al. [8]. Scott et al. argue that
Kaye’s reasoning does not prove NP-completeness of playing minesweeper. Kaye
assumed that minesweeper is played by iteratively solving minesweeper consis-
tency. Scott et al. observe that there may be other strategies to play minesweeper.
They therefore introduce the minesweeper inference problem, which precisely
captures the essence of minesweeper game play. They show that minesweeper
inference is co-NP-complete (and hence that playing minesweeper is most likely
not NP-complete). They do so by reducing UNSAT to minesweeper inference,
for the original version of minesweeper with a given number of hidden mines.

The templates of Scott et al. are similar to those of Kaye, but they are
designed for synthesizing circuits for the original minesweeper game with a given
number of hidden mines. The dimensions of all templates are multiples of three,
the number of mines in each template is always the same, independent of the
valuation of inputs of the circuit element being simulated, and all the predefined
mines are derivable. An or gate, for instance, consists of 24× 18 squares with
exactly 58 mines of which 43 are predefined and derivable; a crossing consists of
15 × 9 squares with 21 mines, of which 14 predefined and derivable. Our gate
templates are also designed for synthesis and ensure that the number of mines
in a synthesized circuit is known. But our templates use mines to create and
isolate information flows, where Scott et al. use safe squares to create flows. The
use of mines to create flows leads to substantially smaller templates than the
templates of Scott et al. Our or gate has 7× 9 squares with 32 mines, of which

Minesweeper is Difficult Indeed! 475

29 predetermined and derivable; our crossing has 6× 6 squares with 19 mines,
16 derivable and 3 depending on the valuation.

The synthesis approach of Scott et al. is based on rectangular tiles. Our
synthesis is based on layers, corresponding to the levels in a tree representation
of the Boolean formula being synthesized. Moreover, we integrate negation in the
wiring. With the already mentioned choice to use mines to create information
flows, these aspects lead to substantially smaller minesweeper circuits than those
of Scott et al.

3 Notations

This section introduces some notations needed in the remainder.
First, we define some notations for natural numbers and grids. Let N denote

the natural numbers and N0 the natural numbers extended with 0. For any
natural numbers k, l ∈ N, let [k] = {n ∈ N0 | n < k} and [k, l] = [k] × [l];
the neighborhood N : [k, l] → 2[k,l] is defined for any (i, j) ∈ [k, l] as N(i, j) =
{(i + p, j + q) ∈ [k, l] \ {(i, j)} | p, q ∈ {−1, 0, 1}}.

Second, we introduce some notations for Boolean formulas and circuits. Let
B = {0, 1} be the set of Boolean values; let V be a set of variables. A Boolean for-
mula f is an expression built from variables from V , the (infix) binary operators
· (and, often left implicit in formulas) and + (or), the (postfix) unary operator
′ (not), and parentheses. A (Boolean) valuation is a function b : V → B that
assigns a Boolean value to all variables. Boolean formula f is satisfiable if and
only if a valuation b of its variables x0, . . . , xn−1 ∈ V (for some n ∈ N) exists
so that the formula evaluates to true, i.e., f(b(x0), . . . , b(xn−1)) = 1. Boolean
circuits generalize Boolean formulas by allowing shared subformulas and multi-
ple outputs. We omit a precise definition, because our reasoning is based on the
subset of Boolean circuits that correspond to Boolean formulas. The Boolean
operators are also referred to as (logic) gates in the context of Boolean circuits.

4 Minesweeper Consistency and Inference

The notations introduced provide a basis for defining both minesweeper consis-
tency and minesweeper inference. We use a � to denote mines.

Definition 1 (The minesweeper consistency problem [6]2). Assume given
a k × l grid, for k, l ∈ N and a number of hidden mines M ∈ [kl + 1]. A
consistent minesweeper instance is a function m : [k, l] → [9] ∪ {�} such that
M = |{(i, j) ∈ [k, l] | m(i, j) = �}| and, for all (i, j) ∈ [k, l], m(i, j) = � or
m(i, j) = |{(p, q) ∈ N(i, j) | m(p, q) = �}|. The minesweeper consistency problem
then is the question whether a partial minesweeper solution, given in the form

2 Kaye does not include the number of still hidden mines in his problem definition;
in line with the original minesweeper game, we include this information, following
Scott et al. [8].

476 A. Thieme and T. Basten

of a partial function mp : [k, l] ↪→ [9] ∪ {�} and a number of mines #m ∈ N0

hidden in the covered squares [k, l]\dom(mp), can be extended to a total function
m : [k, l] → [9] ∪ {�} with |{(i, j) ∈ [k, l] \ dom(mp) | m(i, j) = �}| = #m that
is a consistent minesweeper instance. If so, that partial minesweeper solution is
said to be consistent.

Definition 2 (The minesweeper inference problem[8]). Assume given a
partial minesweeper solution mp : [k, l] ↪→ [9] ∪ {�} derived from a consistent
minesweeper instance m : [k, l] → [9] ∪ {�} such that mp(i, j) = m(i, j) for
all (i, j) ∈ dom(mp), with the number of still hidden mines #m = |{(i, j) ∈
[k, l] \ dom(mp) | m(i, j) = �}|. The minesweeper inference problem is then the
question whether there is a covered grid square (i, j) ∈ [k, l]\dom(mp) for which
it can be inferred from mp and #m whether m(i, j) = � (i.e., the square is unsafe
and contains a mine) or m(i, j) ∈ [9] (i.e., the square is safe).

Kaye [6] showed that minesweeper consistency is NP-complete, although he
did so for the minesweeper version in which the number of hidden mines is not
given. In Sect. 7, we prove NP-completeness of the above version of minesweeper
consistency. The fact that also this version of minesweeper consistency is NP-
complete, despite the extra available information, was already observed by Scott
et al. in [8] and can be proven using the minesweeper circuit-simulation templates
provided in that paper. The main contribution of Scott et al. is that they show
co-NP-completeness of minesweeper inference. The reason to re-establish NP-
completeness of the above version of minesweeper consistency in this paper is
to illustrate the use of the provided minesweeper templates in a well defined
circuit-synthesis approach.

5 Simulating Circuits in Minesweeper

The essence of the complexity proofs for minesweeper consistency and inference
is the observation that it is possible to simulate circuits in minesweeper. Figure
13 shows minesweeper templates for the three Boolean operators defined earlier.
The designs are based on the following principles:

1. Mines are used to isolate gates from their environment. This is essential for
the compactness of their design.

2. A mine is interpreted as a logic 1 and a value in [9], i.e., a safe square – no
mine, as a logic 0. This is opposite to the interpretation of Kaye and Scott et
al.. Because of duality, the interpretation of the Boolean constants in terms
of mines and safe squares is not essential though, and it could be swapped.

3. The leftmost template in Fig. 1 shows a not gate. At its core is a triplet of
two covered squares and one safe square. The triplet is bordered by mines.
This pattern provides logical negation and it returns frequently (in adapted
forms) in the other templates to be presented.

3 All minesweeper figures have been made using the logigames minesweeper solver,
https://www.logigames.com/minesweeper/solver.

https://www.logigames.com/minesweeper/solver

Minesweeper is Difficult Indeed! 477

Fig. 1. Boolean operators/logic gates in minesweeper. Predefined mines are denoted
by red flags, safe squares by grey squares numbered with the number of neighboring
mines (omitting 0s, not seen in this figure), and covered squares by blue squares. (Color
figure online)

Fig. 2. Various wiring elements

4. The two rightmost templates in Fig. 1 show an and an or gate. At their core is
a 3× 3 kernel with an uncovered 3 at its center, two mines and two safe squares
in the corners, and four covered squares. This design ensures that the four
covered squares can contain only a single mine. By appropriately connecting
inputs and outputs to this core, four different states can be represented,
allowing to code any two-variable Boolean function. Inputs and outputs follow
the not pattern. For instance, the (x0, 5, x′

0x1) and (x0, 5, x′
0x

′
1) input patterns

in the and gate and the ((x0 +x1)′(= x′
0x

′
1), 5, x0 +x1) output pattern of the

or gate are instances of the not pattern.

The templates in Fig. 1 are annotated with possible consistent valuations
of the (relevant) covered squares. The correctness of the annotations is easily
verified against the minesweeper rules (see [14]). The annotations confirm that
the templates simulate not, and, and or gates, respectively. The 3× 3 not gate
and the 4× 5 and gate are much smaller than the 13× 4 and 23× 13 not and
gates given originally by Kaye in [6]. Kaye did not provide an or gate in [6].

To create circuits, we need wires to connect gates. Figure 2 shows a variety of
wiring elements. The top three elements show wires, the two leftmost elements at
the bottom show splits, and the bottom right element shows an inverting crossing.

478 A. Thieme and T. Basten

Fig. 3. x′
0x

′
1 + x0 in minesweeper

Thewire and split elements repeatedly use the not pattern.Awire is simply an even
number of concatenated not gates; an odd number of concatenated not gates gives
an inverting wire/inverter. This can be used to obtain either positive or negative
instances of a variable or subformula in circuit construction, as appropriate. The
inverting crossing uses a 3× 3 kernel very similar to the kernels used for the gates.
The crossing can again be combined with not kernels in any appropriate way to
obtain positive or negative instances of subformulas.

Figure 3 shows an example of a circuit simulation in minesweeper, using the
gate templates and (variants of the) wiring elements.

6 Templates for Circuit Synthesis

The templates given in the previous section allow the manual construction of
circuits in minesweeper, and they suffice to prove the original NP-completeness
result of [6]. They cannot be (easily) used for automated synthesis though, and
they are not suitable to prove the earlier mentioned complexity results for the
version of minesweeper in which the number of hidden mines is known.

To support synthesis of Boolean circuits and derive the needed templates, we
observe that any Boolean formula can be represented as a binary tree. Figure 4
(left) shows the tree representation of the example circuit of Fig. 3. We use the
ideas presented in the previous section and the tree representation of Boolean
formulas to develop templates that support synthesis of circuits along the lines of
the tree representation. We define four groups of templates, one for gate layers,
one for wires, one to create a layer of literals, and one to create wiring layers.
But first, we provide a straightforward transformation on Boolean formulas that
simplifies the synthesis and set out some design principles for templates.

Minesweeper is Difficult Indeed! 479

+

•

x0 x1 x0' '

+

+

x0 x1 x0

gates

literals

wires

gates

Fig. 4. Tree representations for Boolean formula x′
0x

′
1 + x0 (left) and the equivalent

formula (x0 + x1)
′ + x0 (right)

6.1 Removing and Gates from Boolean Circuits

Two key laws in Boolean algebra are De Morgan’s laws: x0x1 = (x′
0 + x′

1)
′ and

x0 + x1 = (x′
0x

′
1)

′. The first one shows that and gates can be replaced by or
gates if inputs and outputs are inverted. Figure 4 (right) shows the result of
this transformation for the example circuit. Any resulting double negations can
be removed. After this transformation, the tree representation of the Boolean
circuit consists of layers of (or) gates and wires. Wires may be inverting. The tree
is built on leaves of literals. The root may or may not be inverted; it is not for the
example circuit because it already had an or gate at the root. The transformation
simplifies the synthesis problem, because the resulting representation has only
one type of gate. Moreover, negation is a basic building block in the minesweeper
emulation of circuits that can be integrated in the wires where needed.

6.2 Design Principles for Templates

Our synthesis templates satisfy a number of design principles to facilitate syn-
thesis, with a few small exceptions as explained later.

1. The templates are designed per layer in the tree representation of a Boolean
formula and have a fixed width to support the layer structure. Trees are laid
out from left (leaves, inputs) to right (top, output).

2. The inputs of the simulated circuit element are part of the template; the
outputs are not. Templates can be connected by overlapping output and input
squares as appropriate.

3. Information flows are isolated by single-file rows of mines, bordered on one
side by safe squares. This ensures that all predefined mines in the templates
are derivable when the predefined safe squares in the generated minesweeper
instance are uncovered.

4. The templates ensure that the content of precisely the covered squares is not
derivable.

5. The templates have a given fixed number of mines on the covered squares for
all possible assignments of mines to these covered squares. This ensures that
the number of mines in a generated minesweeper instance is known.

480 A. Thieme and T. Basten

Fig. 5. Gate templates for synthesis

6.3 Templates for Gate Layers

We create two gate templates to build gate layers from the tree representation
of a circuit, one or gate and one wire. The ‘wire gate’ is needed to cross a gate
layer when the tree representing a circuit has no gate at a particular position in
that layer. Figure 5 shows the two gate-layer templates. The templates consist
of the squares inside the solid rectangles. They are shown with some additional
context to ease understanding.

1. The gate templates have a fixed width of seven squares, meaning that a gate
layer is seven squares wide. Both templates use the 3× 3 and-gate kernel
already presented in the previous section. The or template is built from this
3× 3 kernel following De Morgan’s law for the or operator. The inputs of
the or template are five squares apart, to easily connect to the literal layer,
elaborated in the next subsection. The wire template is essentially an and
kernel with a single input. The input and output are inverted so that the
template has the same width as the or template.

2. The or template has 29 predefined mines; the wire template has 18 predefined
mines. As mentioned, these predefined mines form single-file lines bordered
on one side by safe squares, which ensures that all these mines are derivable.

3. The or template has precisely 3 mines on the covered squares, one for each
pair of covered squares forming the inverted inputs and one in the and kernel.
The wire template has precisely 2 mines on the covered squares, one for the
inverted input and one for the and kernel. Note that the covered squares
marked xx′ and x′x are derivably safe, with value 5, deviating from the design
principles outlined earlier. But uncovering these two squares does not reveal
any extra information about the other covered squares. The template can
be redesigned by uncovering these squares or with mines on these squares,
resulting in a straight wire. We chose to present this template for gate layers
based on the and-gate kernel.

Minesweeper is Difficult Indeed! 481

Fig. 6. Wire templates for synthesis: wire (left), inverting wire (right)

Fig. 7. Templates for the literal layer: split (left), crossing (right)

6.4 Wire Templates

Figure 6 shows two wire templates for synthesis, a wire and an inverting wire.
The wire templates are used in connecting the literal layer to the first gate layer
and in wiring layers between gate layers, as further explained below.

1. The wire templates have a width of six squares, to support fixed-width layers.
2. The inverting wire has an extra not kernel, the vertical (x, 5, x′) triple, to

ensure that the number of mines in the template is predetermined, indepen-
dent of the content of the covered squares.

3. The wire template has 18 predefined mines, the inverting wire 16. Both tem-
plates have 2 additional mines on the covered squares, as can be seen from
the annotations.

6.5 Templates for the Literal Layer

Figure 7 shows two templates for constructing the literal layer for a circuit. These
templates are inspired by the split and crossing already presented in Fig. 2.

1. Both templates have a width of six squares. This ensures that all lines of
mines in a literal layer are single-file lines, so that the predefined mines in
such a layer are derivable.

482 A. Thieme and T. Basten

Fig. 8. Fixing the mine count in the literal layer

2. The crossing has 16 predefined mines and 3 additional ones on the covered
squares.

3. The split also has 16 predefined mines, but it either has 1 or 4 mines on the
covered squares. This mine count therefore depends on the valuation of x.
When used for synthesis, the difference needs to be compensated to ensure
that the number of mines in the synthesized circuit is predetermined.

4. Figure 8 shows two connected splits. The valuations of the covered squares
in these two splits are duals. Hence, the combination of the two splits always
has 5 covered mines. This is even so when the splits are connected through a
(normal, non-inverting) wire. This can be used to create a literal layer with
a predetermined number of mines, independent of the valuation of variables.

Figure 9 shows the layout of a literal layer in minesweeper. A literal layer
has a vertical wire for each variable in the Boolean formula for the circuit being
synthesized. For each literal in the formula, a horizontal wire is created. The
vertical wires create the variables sublayer of the literal layer and are built from
crossings stacked on top of each other, with one split at the appropriate place to
derive the needed literal. The resulting horizontal wires have connections both
to the left and to the right. Figure 10 shows the construction for the running
example.

x0x1

k variables

l l
it

er
al

s

xk
optional
inversion

mine
count

split

crossing

Fig. 9. The layout of the literal layer

Minesweeper is Difficult Indeed! 483

Fig. 10. The literal layer of the example circuit: variables and mine count

The variable sublayer is connected to splits in a mine-count sublayer on its
left. Adding one split for every horizontal wire implies that each horizontal wire
has precisely two splits. This ensures a predetermined mine count in this pair,
as explained. The additional splits are laid out alternatingly in two vertical
stacks to make sure that all predefined mines are in single-file lines (and hence
derivable). This alternating layout is achieved by shifting every other split to
the left through a simple wire as already shown in Fig. 2, top left. Note that
this simple wire can be seen as a 4 × 3 template with 8 predefined mines and 1
additional covered mine (see also Fig. 12, top left). As a result of the construction
up to this point, every horizontal wire in the mine-count and variable sublayers
is built from crossings, simple wires, and precisely two splits; see Fig. 10 for the
running example. This ensures a predetermined mine count in this part of the
literal layer. (The borders seen in Fig. 10 are explained and accounted for in
Sect. 7, that elaborates the reduction from SAT to minesweeper consistency.)

To complete the literal layer, we need to ensure that the literals produced as
inputs for the circuit are properly inverted where needed. This can be done by
creating a sublayer with the wire templates given already in Fig. 6. Figure 11
shows the inversion sublayer for the running example. The figure illustrates how

484 A. Thieme and T. Basten

Fig. 11. The literal layer of the example circuit: connection to the first gate layer,
optional inversion

it connects the literal layer to the first gate layer of the circuit. Since the wiring
templates have a predetermined number of mines, the literal layer as a whole
also has a predefined number of mines.

6.6 Templates for Connecting Layers

One more set of templates is needed for circuit synthesis, namely templates to
create wiring layers between gate layers. The layers need to account for vertical
displacements, preferably using as little horizontal space as needed (for compact-
ness of the resulting circuits). Two important observations are, first, that the
literals coming from the literal layer are vertically 6 squares apart, and, second,
that the output of an or gate is 3 squares lower or higher than its inputs. As a
result, the vertical displacements that need to be realized in generating a tree-
shaped circuit in line with the tree representation of Fig. 4 are all 3+6n squares,
for some n ∈ N0. Figure 12 shows the templates for vertical displacement, includ-
ing a simple wire template to be used when no displacement is needed. Figure
13 shows their use in the example circuit.

Minesweeper is Difficult Indeed! 485

x xx x x

x

x

x

x

x

x

x

x

x

x

x

x'

x

x

x

x'

x

3+6n, for odd n

3+6n, for even n

x'

x'

Fig. 12. Wiring elements for vertical displacements of 0 resp. 3 + 6n rows (n ∈ N0)

1. All templates act as normal wires. As explained, inversion may be needed in
the wiring layers. This could be done in the displacement wires. For simplicity,
this is not done though. Optional inversion can be achieved using the earlier
wire templates also used in connecting the literal layer to the first gate layer
of the circuit. Figure 13 shows that this optional inversion is applied directly
to the outputs of the gate layer being connected to the next gate layer (in
line with the tree representation in Fig. 4). The displacement templates can
then be used to realize the needed displacement. Note that the bottom half
of a wiring layer uses templates that are mirrored vertically. This is needed to
avoid undesired connections between circuit parts that would prevent deriv-
ability of the predefined mines.

2. The wire template without displacement (Fig. 12, top left) is four squares
wide, has 8 predefined mines and 1 covered mine; it is used when the input
gate layer does not have an or gate but only a wire, as in the bottom part of
Fig. 13.

3. The templates for non-zero displacements are split in two cases. This is needed
to ensure the combination of derivability of predefined mines, a predetermined
number of mines in total for each of the templates, and compactness of the
templates.

486 A. Thieme and T. Basten

Fig. 13. Synthesized circuit

4. The template for a displacement of 3+6n squares, for even n ∈ N0, including
n = 0, consists of a 4× 6 kernel template that realizes a displacement of 3
(Fig. 12, top middle) and a 5× 6 optional block that can be repeated n times,
as needed (Fig. 12, right). It has 14+14n predefined mines and 1+3m, with
m = n/2, additional mines on its covered squares.

5. The template for 3 + 6n, for odd n ∈ N, also consists of a 4× 6 kernel and
a 4× 6 repeatable block that is included n times. It has 14 + 12n predefined
mines and 3 + 3m, with m = �n/2�, additional mines on its covered squares.

6. The displacement sublayer of a wiring layer is four squares wide. The repeat-
able block in the template for even n has a width of five squares, meaning that
these blocks extend into the gate layer to the right of the displacement sub-
layer when used in a circuit. This does not cause any problems because, due
to the tree-shaped construction, that is empty space where no other circuit
elements appear.

Figure 13 shows the synthesized circuit for our example. It has two gate
layers, in line with the tree representation of Fig. 4. These two layers are con-
nected by a wiring layer, consisting of an inversion sublayer and a displacement
sublayer.

Note that the circuit has an inverter connected to its output, despite the fact
that this inversion is not needed. The reason for including this not kernel at the

Minesweeper is Difficult Indeed! 487

output, also if the circuit does not need it, is that in this way also at the output
the number of mines is independent of the Boolean valuation of the output. As
a result, the number of mines is predetermined for the entire circuit (shown in
its entirety in Figs. 10, 11, and 13).

7 NP-completeness of Minesweeper Consistency

To illustrate the use of the templates given in the previous section, we prove
the NP-completeness of minesweeper consistency by reduction from SAT. An
approach to synthesize minesweeper circuits from a Boolean formula, as already
sketched in the previous section, is the key ingredient of the reduction.

Definition 3 (SAT). SAT is the decision problem whether or not a Boolean
formula is satisfiable.

The reduction from SAT to minesweeper consistency consists of two steps.
Given a Boolean formula, first, the conversion illustrated in Fig. 4 is applied. Sec-
ond, a consistent minesweeper instance is generated that simulates the Boolean
circuit corresponding to the resulting formula, as follows.

Assume that the circuit to be synthesized has k ∈ N variables, l ∈ N literals,
and h ∈ N gate layers. The literal layer determines the height and layout of the
minesweeper instance, so we start with the construction of this literal layer.

1. The height of the generated minesweeper instance is determined by the num-
ber of literals l. Since the split and crossing templates for the literal layer are
6× 6 squares, the height becomes 3 + 6l squares, including a bottom border
of two squares and a top border of one square.

2. Each variable needs precisely one vertical wire in the variables sublayer. Each
wire is constructed from crossings with one split at the appropriate point
to split off the horizontal literal wire. The resulting variables sublayer has a
width of 6k squares.

3. The mine-count sublayer is constructed following the alternating layout of
splits shown in Fig. 10. With at least one gate layer, we have at least two
literals, meaning that the width of the mine-count sublayer is 12 squares.

4. The inversion sublayer creating the correct literals and connecting the lit-
eral layer to the first gate layer is constructed appropriately from wires and
inverting wires, leading to a width of 6 squares.

5. The dimensions of the resulting literal layer thus are (18 + 6k) × (3 + 6l).

Before proceeding with the circuitry of the circuit being synthesized, we
compute the mine count in the literal layer.

1. We start with the borders. The bottom border has three mines for each vari-
able. The top border has no mines itself, but the top splits and crossings have
one extra mine compared to the standard templates on the position of the
topmost safe square marked 7 in those templates. Hence, for each variable,
we have 4 mines due to the borders of the generated minesweeper instance,
4k mines in total.

488 A. Thieme and T. Basten

2. Next, observe that we have kl − l crossings, with 19 mines each. So the
crossings contribute 19l(k − 1) mines.

3. We also have precisely l split pairs that each have 5 mines on their covered
squares. A split in the mine-count sublayer has 23 mines and a split in the
variables sublayer has 16 mines. So the splits contribute 44l mines.

4. A wire used in the alternating layout of the splits in the mine-count sublayer
has 9 mines. We have �l/2� such wires, contributing 9�l/2� mines in total.

5. The inversion sub-layer contributes 20lw +18li mines, where lw is the number
of normal wires used and li is the number of inverting wires used.

6. The total mine count of the literal layer is 4k + 19l(k − 1) + 44l + 9�l/2� +
20lw + 18li = 4k + 19kl + 25l + 9�l/2� + 20lw + 18li.

The core circuitry of the circuit being synthesized is built from gate and
wiring layers as indicated in Fig. 4.

1. The gate and wiring layers can be attached one by one to the literal layer.
At the end, an inverter is added and the output of the circuit is chosen
appropriately to be either the input or the output of this inverter. All parts
of the grid not covered by instances of templates contain only safe squares of
which the correct valuation can be derived from the mine assignment for the
predefined mines in the templates.

2. Each gate layer is 7 squares wide; each wiring layer is 10 squares wide. The
final inverter results in an additional 3 squares width. With h gate layers, this
leads to a width of 7h + 10(h − 1) + 3 = 17h − 7 squares.

3. The mine count in the circuitry depends on the layout of the tree represen-
tation of the formula being converted. It can be computed by counting the
number of used gate, wire, and displacement templates, multiplying these
template counts with the appropriate mine counts derived earlier in Sect. 6,
and adding 7 for the final inverter. The two-square bottom and one-square
top boundaries that extend from the literal layer to the circuitry part do not
contain any mines (besides the ones that are part of a template and hence
already accounted for).

Summarizing the above, given a Boolean formula f with k variables, l literals,
and h gate layers in its tree representation, the outlined synthesis approach
results in a partial minesweeper instance pmf with dimensions (11+6k+17h)×
(3+6l), a predetermined mine count Mf (that depends on the characteristics of
the circuit being synthesized), and a designated output square (i, j)f for some
(i, j) ∈ [11 + 6k + 17h, 3 + 6l], with all squares in all the template instances,
including the borders in the literal layer, uncovered/flagged as indicated in the
templates, and all grid squares outside the scope of the used templates (which
are all safe) uncovered as well. The mine count of still hidden mines #mf of this
partial minesweeper solution is obtained by subtracting the number of flagged
squares in the partial solution from Mf . We now have the following result.

Minesweeper is Difficult Indeed! 489

Proposition 1. A given Boolean formula f is satisfiable if and only if the partial
minesweeper solution pmf ∪ {(i, j)f �→ �} with mine count #mf − 1, i.e., the
generated partial minesweeper solution with a mine allocated to the designated
circuit output, is consistent.

The two-step conversion presented up to this point is polynomial in the size
of the Boolean formula, because it consists of simple substitutions of nodes and
edges in the tree representation of the Boolean formula (by other nodes and
edges in the first step and minesweeper templates in the second step).

Finally, it is clear that minesweeper consistency is in NP. Given a mineswee-
per instance m with mine count M as defined in Definition 1, the consistency
conditions given in Definition 1 can be checked in a single traversal of the grid.

Combining Proposition 1 with the observations in the last two paragraphs
then gives the following result.

Theorem 1 (Complexity of minesweeper consistency). Minesweeper con-
sistency is NP-complete.

8 Conclusions

In this paper, we have given minesweeper templates for simulating and synthe-
sizing circuits. The templates and synthesized circuits are much smaller than
the templates and circuit simulations proposed in earlier work. We used the
templates to prove NP-completeness of minesweeper consistency, for the orig-
inal version of minesweeper, in line with Kaye’s original result for the version
of minesweeper without a given number of hidden mines presented in [6]. Since
our templates and synthesis approach predetermine the number of mines in the
generated minesweeper instance and because all predefined mines are derivable,
the templates can also be used in the proof of Scott et al. in [8], which shows
that minesweeper inference is co-NP-complete. Given the small 3 × 3 kernels that
form the basis for our templates, we do not expect that any further (substantial)
reduction of the size of minesweeper circuits is possible.

Frits Vaandrager. This paper is part of a Festschrift to celebrate the 60th
birthday of Frits Vaandrager. Twan Basten had the pleasure of collaborating
with Frits on several occasions. He got to know Frits as a person that looks
beyond the purely scientific aspects of his work. Frits is a socially involved per-
son, to whom it is important to not only communicate the societal importance
of computer science but also the beauty and the fun of it. Already in 1998,
Frits published an opinion piece [10] in which he argued the need to bring logic
and theoretical computer science closer to society, through independent aca-
demic programs and collaboration with industry. He invested time and effort in
developing educational setups (e.g., [3]) and in developing and teaching a model-
checking module for high schools [9]. And he actively advocates the importance
of theoretical computer science for society at large, as illustrated through this

490 A. Thieme and T. Basten

TV fragment on Dutch national TV [12]. Fun is never far away with Frits. When
writing a Uppaal tutorial [11], he decided to take a puzzle of gossiping girls as
an illustrative example. And in a column on recreational formal methods [13],
he explored the use of SAT solvers to analyze vacuum cleaning scenarios. The
current paper intends to be recreational as well. We hope it is a fun read for
Frits and other readers alike, and that it as such may contribute to popularizing
(theoretical) computer science.

References

1. Aloupis, G., Demaine, E., Guo, A., Viglietta, G.: Classic Nintendo games are (com-
putationally) hard. Theor. Comput. Sci. 586, 135–160 (2015). https://doi.org/10.
1016/j.tcs.2015.02.037

2. Cook, S.: The complexity of theorem proving procedures. In: Proceedings 3rd ACM
Symposium on Theory of Computing, STOC, pp. 151–158. ACM (1971). https://
doi.org/10.1145/800157.805047

3. Fehnker, A., Vaandrager, F., Zhang, W.: Modeling and verifying a Lego car using
hybrid I/O automata. In: Proceedings 3rd International Conference on Quality
Software, QSIC 2003, pp. 280–289. IEEE Computer Society (2003)

4. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman W.H., New York (1979)

5. Hearn, R., Demaine, E.: Games, Puzzles, and Computation. A K Peters/CRC
Press, Boca Raton (2009). https://doi.org/10.1201/b10581

6. Kaye, R.: Minesweeper is NP-complete. Math. Intelligencer 22(2), 9–15 (2000).
https://doi.org/10.1007/BF03025367

7. Kaye, R.: Richard Kaye’s minesweeper pages (2022). https://web.mat.bham.ac.
uk/R.W.Kaye/minesw/minesw.htm

8. Scott, A., Stege, U., van Rooij, I.: Minesweeper may not be NP-complete but is
hard nonetheless. Math. Intelligencer 33(4), 5–17 (2011). https://doi.org/10.1007/
s00283-011-9256-x

9. Vaandrager, F., Jansen, D., Koopmans, E.: Een module over model checking voor
het VWO. In: Proceedings NIOC 2009, pp. 135–137. Hogeschool Utrecht (2009).
in Dutch

10. Vaandrager, F.: Logica is prachtig hulpmiddel bij oplossen informaticaproblemen.
Automatisering Gids 32(13), 17 (1998). in Dutch

11. Vaandrager, F.: A first introduction to Uppaal. Quasimodo Handb. Deliverable
D5.12 (2011). ICT-FP7-STREP-214755 project Quasimodo

12. Vaandrager, F.: Alan Turing: grondlegger van informatica. In: RTL Late Night.
RTL (2015). https://www.rtlxl.nl/programma/rtl-late-night/65b22fda-4ef4-bb8d-
0c90-80f670646220. TV program (fragment). in Dutch

13. Vaandrager, F., Verbeek, F.: Recreational formal methods: designing vacuum clean-
ing trajectories. Bull. EATCS 113, 100–109 (2014)

14. Wikipedia: Microsoft Minesweeper (2022). https://en.wikipedia.org/wiki/
Microsoft Minesweeper

15. Wikipedia: NP-complete games and puzzles (2022). https://en.wikipedia.org/wiki/
List of NP-complete problems#Games and puzzles

16. Wikipedia: NP-completeness (2022). https://en.wikipedia.org/wiki/NP-
completeness

https://doi.org/10.1016/j.tcs.2015.02.037
https://doi.org/10.1016/j.tcs.2015.02.037
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1201/b10581
https://doi.org/10.1007/BF03025367
https://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm
https://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm
https://doi.org/10.1007/s00283-011-9256-x
https://doi.org/10.1007/s00283-011-9256-x
https://www.rtlxl.nl/programma/rtl-late-night/65b22fda-4ef4-bb8d-0c90-80f670646220
https://www.rtlxl.nl/programma/rtl-late-night/65b22fda-4ef4-bb8d-0c90-80f670646220
https://en.wikipedia.org/wiki/Microsoft_Minesweeper
https://en.wikipedia.org/wiki/Microsoft_Minesweeper
https://en.wikipedia.org/wiki/List_of_NP-complete_problems#Games_and_puzzles
https://en.wikipedia.org/wiki/List_of_NP-complete_problems#Games_and_puzzles
https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/NP-completeness

Goodbye ioco

Jan Tretmans1,2(B) and Ramon Janssen1,3

1 Radboud University, Institute iCIS, Nijmegen, The Netherlands
jan.tretmans@tno.nl, ramonjanssen@cs.ru.nl

2 ESI (TNO), Eindhoven, The Netherlands
3 BetterBe, Enschede, The Netherlands

Abstract. Model-based testing involves testing a system under test for
conformance to a model that specifies its behaviour. An important aspect
for model-based testing is the implementation relation that defines pre-
cisely when a system under test conforms to its model. The implementa-
tion relation ioco has often been used and studied in model-based testing
when models are expressed as labelled transition systems, and there are
tools implementing ioco-based test generation. An alternative, slightly
different implementation relation is uioco, which is more recent, has
been less studied, and there are no tools for it. We will compare ioco and
uioco on a couple of aspects, viz. intuition, the decision whether a test
observation is correct, the definition of a consistent refinement relation,
the construction of a canonical implementation for each specification,
and the relation to other input-output implementation relations. For all
these aspects, we conclude that uioco is the preferred implementation
relation, so, goodbye ioco, hello uioco.

1 Introduction

Systematic testing plays an important role in the quest for improved quality and
reliability of software systems. Software testing, however, is often an error-prone,
expensive, and time-consuming process. Estimates are that testing consumes up
to 50% of the total software development effort. The tendency is that this effort
is still increasing due to the continuing quest for better software quality, and the
ever growing size and complexity of systems. The situation is aggravated by the
fact that the complexity of testing tends to grow faster than the complexity of the
systems being tested, in the worst case even exponentially. Whereas development
and construction methods for software allow the building of ever larger and more
complex systems, there is a real danger that testing methods cannot keep pace
with these construction and development methods. This may seriously hamper
the development and testing of future generations of software systems.

Software testing involves checking of required and desired properties of a
software product by systematically executing and experimenting with the soft-
ware, while stimulating it with inputs, and observing and checking its outputs.
Model-Based Testing (MBT) is one of the technologies to meet the challenges
imposed on software testing. MBT is a form of black-box testing where a System
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 491–511, 2022.
https://doi.org/10.1007/978-3-031-15629-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_26&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_26

492 J. Tretmans and R. Janssen

Under Test (sut) is tested for conformance to a model. The model specifies, in
a formal way, what the system is allowed to do and what it shall not do. As
such, the model is the basis for the algorithmic generation of test cases and for
the evaluation of test results. The main virtue of model-based testing is that
it allows test automation that goes well beyond the mere automatic execution
of manually crafted test cases. It allows for the algorithmic generation of large
amounts of test cases, including test oracles for the expected results, completely
automatically from the model of required behaviour.

An important prerequisite for MBT is the precise definition of what it means
for an sut to conform to its model. Conformance is expressed using an imple-
mentation relation or conformance relation. Although an sut is a black box, we
can assume it could be modelled by some model instance in a domain of imple-
mentation models. This assumption is commonly referred to as the testability
assumption [10]. This assumption allows reasoning about suts as if they were
formal models, and it makes it possible to define a conformance relation as a
formal relation between the domain of specification models and the domain of
implementation models.

One of the formal theories for model-based testing uses Labelled Transi-
tion Systems (LTS) as models and ioco (input-output-conformance) as imple-
mentation relation [17,18]. An LTS is a structure with states, representing the
states of the actual system, and with transitions between states representing
the actions that the system may perform. Actions can be inputs, outputs, or
internal steps. The implementation relation ioco expresses that an sut con-
forms to its specification if the sut never produces an output that cannot be
produced by the specification in the same situation. A particular, virtual output
is quiescence, actually expressing the absence of real outputs. Such absence of
outputs is considered an observable event. Moreover, ioco allows underspecifi-
cation: after inputs for which the specification model does not specify anything,
the implementation may show arbitrary behaviour. The ioco-testing theory for
LTS provides a test generation algorithm that is sound and exhaustive, i.e., the
(possibly infinitely many) test cases generated from an LTS model detect all and
only ioco-incorrect implementations. The ioco-testing theory constitutes a well-
defined theory of model-based testing, and it forms the basis for various practical
MBT tools, like TorX [6], TGV [14], Uppaal-Tron [15], Axini Test Manager [4],
JTorx [5], and TorXakis [19].

Another implementation relation on LTS, akin to ioco, is uioco, for universal
ioco. The relation uioco was introduced in [7] and it differs from ioco in how
it deals with nondeterministic underspecification, which will be explained later.
For specification models without nondeterministic underspecification the two
relations coincide. The relation uioco is the newer one, it has been less studied
in the literature, and there are no tools directly implementing test generation
for uioco.

In this paper we will compare the implementation relations ioco and uioco,
first, by explaining some examples and showing how the relations deal with non-
deterministic underspecification in Sect. 3, and, second, by comparing them on

Goodbye ioco 493

some more formal criteria. The latter include test observations and decidabil-
ity of whether these are correct or not in Sect. 4, the definition of a refinement
relation consistent with the implementation relation in Sect. 5, the construction
of a standard, canonical implementation for each specification in Sect. 6, and
the relation to other input-output implementation relations in Sect. 7. From this
analysis we conclude that uioco is the better choice, so, goodbye ioco.

This paper does not contain any new technical results. It re-explains and re-
interprets results from [11], partly from [12], and from the forthcoming thesis by
the second author [13]. In those papers, however, the main topic is the conjunc-
tion of models to express the union of test suites, whereas the main conclusion of
this paper is only presented as a scattered, collateral result. Yet, the comparison
of ioco and uioco is in itself a valuable result, which deserves a separate paper.

2 Preliminaries

Model-based testing deals with systems under test (sut), implementations, mod-
els, implementation relations, test cases, test generation algorithms, and sound-
ness and exhaustiveness of the generated test cases with respect to the imple-
mentation relations. An important aspect is the chosen implementation relation.
This section introduces two implementation relations on labelled transition sys-
tems, viz. ioco and uioco, which are part of the ioco-theory for model-based
testing; see [17,18] for a more elaborate treatment of this theory.

Models. In the ioco/uioco-test theory, specification models, implementations,
and test cases are all expressed as labelled transition systems.

Definition 1. A labelled transition system with inputs and outputs is a 5-
tuple 〈Q,LI , LU , T, q0〉 where Q is a countable, non-empty set of states; LI is a
countable set of input labels; LU is a countable set of output labels, such that
LI ∩ LU = ∅; T ⊆ Q × (LI ∪ LU ∪ {τ}) × Q, with τ /∈ LI ∪ LU , is the transition
relation; and q0 ∈ Q is the initial state.

The labels in LI and LU represent the inputs and outputs, respectively, of a
system, i.e., the system’s possible interactions with its environment. Inputs are
usually decorated with ‘?’ and outputs with ‘!’. We use L = LI ∪ LU when we
abstract from the distinction between inputs and outputs.

The execution of an action is modelled as a transition: (q, μ, q′) ∈ T expresses
that the system, when in state q, may perform action μ, and go to state q′ . This is
more elegantly denoted as q μ−−→ q′. Transitions can be composed: q μ−−→ q′ μ′

−−→ q′′,
which is written as q μ·μ′

−−−→ q′′.
Internal transitions model some internal action or computation of a system

that is not visible to the environment of the system. Internal actions are labelled
with the special action τ (τ /∈ L). Consequently, the observable behaviour of a
system is captured by the system’s ability to perform sequences of observable
actions. Such a sequence of observable actions, say σ, is obtained from a sequence

494 J. Tretmans and R. Janssen

of actions under abstraction from the internal action τ , and it is denoted by σ=⇒ .
If, for example, q a·τ ·τ ·b·c·τ−−−−−−−→ q′ (a, b, c ∈ L), then we write q

a·b·c===⇒ q′ for the τ -
abstracted sequence of observable actions. We say that q is able to perform the
trace a·b·c ∈ L∗, where the set of all finite sequences over L is denoted by L∗,
with ε denoting the empty sequence. If σ1, σ2 ∈ L∗ are finite sequences, σ1·σ2 is
the concatenation of σ1 and σ2. Some more, standard notations and definitions
are given in Definitions 2 and 3.

Definition 2. Let p = 〈Q,LI , LU , T, q0〉 be a labelled transition system with
q, q′ ∈ Q, μ, μi ∈ L ∪ {τ}, a, ai ∈ L, and σ ∈ L∗.

q μ−−→ q′ ⇐⇒def (q, μ, q′) ∈ T
q μ1·...·μn−−−−−−→ q′ ⇐⇒def ∃q0, . . . , qn : q = q0

μ1−−→ q1
μ2−−→ . . . μn−−→ qn = q′

q μ1·...·μn−−−−−−→ ⇐⇒def ∃q′ : q μ1·...·μn−−−−−−→ q′

q
μ1·...·μn−−−−−−−→/ ⇐⇒def not ∃q′ : q μ1·...·μn−−−−−−→ q′

q
ε=⇒ q′ ⇐⇒def q = q′ or q τ ·...·τ−−−−→ q′

q
a=⇒ q′ ⇐⇒def ∃q1, q2 : q

ε=⇒ q1
a−→ q2

ε=⇒ q′

q
a1·...·an======⇒ q′ ⇐⇒def ∃q0 . . . qn : q = q0

a1==⇒ q1
a2==⇒ . . .

an==⇒ qn = q′

q
σ=⇒ ⇐⇒def ∃q′ : q

σ=⇒ q′

q
σ

=⇒ ⇐⇒def not ∃q′ : q
σ=⇒ q′

In our reasoning about labelled transition systems we will not always distin-
guish between a transition system and its initial state. If p = 〈Q,LI , LU , T, q0〉,
we will identify the labelled transition system p with its initial state q0, and,
e.g., we write p

σ=⇒ instead of q0
σ=⇒ .

Definition 3. Let p be a (state of a) labelled transition system, P a set of states,
A ⊆ L a set of labels, and σ ∈ L∗.

1. traces(p) =def {σ ∈ L∗ | p
σ=⇒}

2. p after σ =def {p′ | p
σ=⇒ p′}

3. P after σ =def

⋃
{ p after σ | p ∈ P}

The class of labelled transition systems with inputs in LI and outputs in
LU is denoted as LTS(LI , LU), or just LTS when LI and LU are assumed to be
globally known. For technical reasons we restrict this class to strongly converging
and image finite systems. Strong convergence means that infinite sequences of
τ -actions are not allowed to occur. Image finiteness means that the number of
non-deterministically reachable states shall be finite, i.e., for any σ, p after σ
shall be finite.

Input-Output Transition Systems. In the ioco/uioco-testing theory a specifica-
tion model is a labelled transition system in LTS. In order to formally reason
about a System Under test (sut) the assumption is made that the sut behaves as
if it were some kind of behavioural, formal model. This assumption is referred to
as the testability assumption and this model is called an implementation model.

Goodbye ioco 495

In the ioco/uioco-testing theory the testability assumption is that a system
under test behaves as if it were a labelled transition system that is always able
to perform any input action, i.e., all inputs are enabled in all states. Such a
system is defined as an input-output transition system. The class of such input-
output transition systems is denoted by IOTS(LI , LU) ⊆ LTS(LI , LU).

Definition 4. An input-output transition system is a labelled transition system
with inputs and outputs 〈Q,LI , LU , T, q0〉 where all input actions are enabled in
any reachable state: ∀σ, q : q0

σ=⇒ q implies ∀a ∈ LI : q
a=⇒

Quiescence. A state of a system where no outputs or internal actions are enabled,
and consequently the system is forced to wait until its environment provides an
input, is called suspended, or quiescent [20]. An observer looking at a quiescent
system does not see any outputs. This particular observation of seeing nothing
can itself be considered as an event, which is denoted by δ (δ /∈ L∪{τ}); p δ−→ p
expresses that p allows the observation of quiescence. Also these transitions can
be composed, e.g., p

δ·?a·δ·?b·!x========⇒ expresses that initially p is quiescent, i.e., does
not produce outputs, but p does accept input action ?a, after which there are
again no outputs; when then input ?b is performed, the output !x is produced.
We use Lδ for L ∪ {δ}, and traces that may contain the quiescence action δ
are called suspension traces. Suspension traces are the observations that we can
make of an sut during testing: we observe sequences of inputs, outputs, and
quiescence, the latter in practice by setting a time-out and observing that no
output arrived before the time-out expired.

Definition 5. Let p = 〈Q,LI , LU , T, q0〉 ∈ LTS.

1. A state q of p is quiescent, denoted by δ(q), if ∀μ ∈ LU ∪ {τ} : q
μ−−→/

2. Δ(p) =def 〈 Q, LI , LU ∪ {δ}, T ∪ Tδ, q0 〉,
with Tδ =def {q δ−→ q | q ∈ Q, δ(q)}

3. The suspension traces of p are Straces(p) =def {σ ∈ L∗
δ | Δ(p) σ=⇒}

From now on we will include δ-transitions in the transition relations, i.e., we
consider Δ(p) instead of p, unless otherwise indicated. Definitions 2 and 3 also
apply to transition systems with label set Lδ.

The Implementation Relation ioco. An implementation relation is intended to
precisely define when an implementation model is correct with respect to a spec-
ification model. For implementation models we consider IOTS and for specifi-
cation models we choose LTS, so an implementation relation imp is generically
written as imp ⊆ IOTS × LTS.

The first specific implementation relation that we consider is ioco, which
is abbreviated from input-output conformance. Informally, an implementation
i ∈ IOTS is ioco-conforming to specification s ∈ LTS if after any suspension
trace of s, the outputs (including quiescence) observed with i are included in
those of s. After a trace that is not a suspension trace of s, nothing is specified:
i is free to perform any ouput (implementation freedom, partial specification, or
underspecification).

496 J. Tretmans and R. Janssen

Definition 6. Let q be a state in a transition system, Q be a set of states,
i ∈ IOTS, and s ∈ LTS, then

1. out(q) =def {x ∈ LU | q x−−→ } ∪ { δ | δ(q)}
2. out(Q) =def

⋃
{out(q′) | q′ ∈ Q}

3. i ioco s ⇐⇒def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)
⇐⇒ ∀σ ∈ traces(Δ(s)) : out(Δ(i) after σ) ⊆ out(Δ(s) after σ)

Fig. 1. Example labelled transition systems.

Example 1. Figure 1 presents three examples of labelled transition systems mod-
elling candy machines. There is an input action for pushing a button ?but , and
there are outputs for obtaining chocolate !choc and liquorice !liq : LI = {?but}
and LU = {!liq , !choc}.

Since k1, k2 ∈ IOTS(LI , LU) they can be both specifications and implemen-
tations; k3 is not input-enabled, and can only be a specification. We have that
out(k1 after ?but) = {!liq} ⊆ {!liq , !choc} = out(k2 after ?but) and indeed
k1 ioco k2, but k2 /ioco k1. For k3 we have out(k3 after ?but) = {!liq , δ} since
δ(l2), and out(k3 after ?but ·?but) = {!choc}, so both k1, k2 /ioco k3.

The importance of having suspension actions δ in the set of traces over which
ioco quantifies is illustrated in Fig. 2. It holds that out(r1 after ?but ·?but) =
out(r2 after ?but ·?but) = {!liq , !choc}, but we have out(r1 after ?but ·δ·?but) =
{!liq , !choc} ⊃ {!choc} = out(r2 after ?but ·δ·?but). So, without δ in these traces
r1 and r2 would be considered implementations of each other in both directions,
whereas with δ, r2 ioco r1 but r1 /ioco r2.

Proposition 1. Let i, i1, i2 ∈ IOTS, s, s1, s2 ∈ LTS.

1. i1 ioco i2 iff Straces(i1) ⊆ Straces(i2)
2. i1 ioco i2 and i2 ioco s imply i1 ioco s
3. ioco is a preorder on IOTS, i.e., it is reflexive and transitive.
4. In general, ioco ⊆ IOTS × LTS is neither reflexive nor transitive.

Goodbye ioco 497

The Implementation Relation uioco. The implementation relation ioco allows
partial specifications: the behaviour of the implementation after traces not in
the specification, i.e., underspecified traces, is not specified. The implementation
relation uioco (universal input-output conformance) has a slightly different way
of dealing with underspecified traces.

Definition 7. Let i ∈ IOTS and s ∈ LTS.

1. Utraces(s) =def {σ ∈ Straces(s) | ∀σ1, σ2 ∈ L∗
δ , a ∈ LI :

σ = σ1·a·σ2 implies not s after σ1 refuses a }
where s after σ1 refuses a ⇐⇒def ∃s′ : s

σ1==⇒ s′ and s′ a

=⇒
2. i uioco s ⇐⇒def ∀σ ∈ Utraces(s) : out(Δ(i) after σ) ⊆ out(Δ(s) after σ)

Example 2. Consider k3 of Fig. 1 as a specification. Since k3 is not input-enabled,
it is a partial specification. For example, ?but ·?but ·?but is an underspecified
trace, and any implementation behaviour is allowed after it. On the other hand,
?but is clearly specified; the allowed outputs after it are !liq and δ. For the trace
?but ·?but the situation is less clear. According to ioco, ?but ·?but ∈ Straces(k3)
and the expected output is out(k3 after ?but ·?but) = {!choc}. According to
uioco, however, ?but ·?but /∈ Utraces(k3), so ?but ·?but is an underspecified trace,
and any implementation behaviour is allowed after it.

Fig. 2. More labelled transition systems.

Proposition 2.

1. ioco ⊂ uioco
2. For deterministic specifications, i.e., | s after σ | ≤ 1 for all σ ∈ L∗

δ , and on
IOTS, ioco = uioco

498 J. Tretmans and R. Janssen

Example 3. Because Utraces(s) ⊆ Straces(s) it is evident that uioco is not
stronger than ioco. That it is strictly weaker follows from the following example.
Take k3 in Fig. 1 as a (partial) specification, and consider r1 and r2 from Fig. 2
as implementations. Then r2 /ioco k3 because !liq ∈ out(r2 after ?but ·?but)
and !liq /∈ out(k3 after ?but ·?but). But ?but ·?but /∈ Utraces(k3) and indeed
it holds that r2 uioco k3. Also r1 /ioco k3, but in this case also r1 /uioco k3.
The reason for this is that we have ?but ·δ·?but ∈ Utraces(k3), !liq ∈
out(r1 after ?but ·δ·?but) and !liq /∈ out(k3 after ?but ·δ·?but).

Testing. For testing, based on an implementation relation imp, be it ioco or
uioco, we have to define what test cases are, i.e., what is the domain of test cases
TEST , and how they are executed on implementations. Then test-generation
algorithms can be developed that generate test suites, i.e., sets of test cases,
from a specification model: Πimp : LTS → P(TEST). Such a generated test
suite shall detect only incorrect implementations, i.e., the test suite shall be
sound :

i imp s implies i passes Πimp(s)

and in the limit it shall detect all incorrect implementations, i.e., it shall be
exhaustive (though this is usually not achievable in practical testing):

i passes Πimp(s) implies i imp s

Test generation depends on the specific implementation relation, so for ioco and
uioco different test generation algorithms have to be developed. In this paper we
focus on comparing ioco and uioco as implementation relations, so testing and
test generation are not further elaborated; see [18] for the further formalization
of testing and for a sound and exhaustive test-generation algorithm for ioco.

3 Examples

In this section, some more examples are discussed that illustrate the differences
between ioco and uioco.

Example 4. Revisiting Example 2 of Sect. 2 with k3 of Fig. 1 as a partial spec-
ification, we clearly have that ?but ·?but ·?but /∈ Straces(k3), and consequently
?but ·?but ·?but /∈ Utraces(k3). Hence, it is an underspecified trace for ioco as
well as for uioco, and it is underspecified in the left branch of k3 as well as in
the right branch, so any implementation behaviour is allowed after it.

On the other hand, ?but is clearly a specified trace for both ioco and uioco,
?but ∈ Straces(k3) and ?but ∈ Utraces(k3), and the allowed outputs after it are
!liq and δ.

For the trace ?but ·?but , the relations differ. In the left branch of k3, i.e.,
going to state l1, ?but ·?but is underspecified, whereas in the right branch of
k3, i.e., going to state l2, ?but ·?but is specified. So we have nondetermin-
istic underspecification and this is where ioco and uioco differ. For ioco,

Goodbye ioco 499

?but ·?but is specified, ?but ·?but ∈ Straces(k3), and the expected output is
out(k3 after ?but ·?but) = {!choc}, but for uioco, ?but ·?but is underspecified,
?but ·?but /∈ Utraces(k3) because k3 after ?but refuses ?but , and any imple-
mentation behaviour is allowed after it.

The relation ioco states that ?but ·?but is not an underspecified trace, because
there exists a state where it is specified, whereas uioco states that ?but ·?but is
underspecified, because there exists a state where it is underspecified. One could
say that underspecification is existential for uioco and universal for ioco and,
the other way around, that specified traces are existential for ioco and universal
for uioco, hence Utraces for universal traces and uioco.

Note that, though ?but ·?but is underspecified for uioco, we cannot remove
the right branch of k3. The right branch specifies that the expected output is
!choc after ?but ·δ·?but ∈ Utraces(k3).

Fig. 3. ioco and uioco examples.

Example 5. Consider specification s2 in Fig. 3. We again have that for ioco,
?but ·?but is specified, whereas for uioco it is underspecified. Now we can remove
branches: for ioco, the left branch can be removed, i.e., s2 is for ioco equivalent
to its right branch. For uioco, s2 is equivalent to its left branch, i.e., all uioco
conforming implementations are the same.

Example 6. Consider specification s1 in Fig. 3, where explicit quiescence labels
have been added. The trace ?but ·δ·?but is underspecified for ioco as well as
for uioco: ?but ·δ·?but /∈ Straces(s1) and ?but ·δ·?but /∈ Utraces(s1). Yet, the
only possible output for an ioco-conforming implementation i after ?but ·δ·?but
is !choc. This is the case, since out(s1 after ?but ·?but) = {!choc}, and the
trace ?but ·δ·?but will lead to the same states as ?but ·?but , because any δ-
action is the result of a δ-loop in the transition system. In other words, if
there would be some output !y = !choc after ?but ·δ·?but then !y would also be
in out(i after ?but ·?but) which would make the implementation ioco noncon-
forming. Consequently, out(i after ?but ·δ·?but) must be {!choc}, though trace
?but ·δ·?but might seem underspecified.

500 J. Tretmans and R. Janssen

So, apparently, for ioco we have to do some “jumping around” in the tran-
sition system of the specification. Though after ?but ·δ it might seem that we
are in the right branch of s1, we also still have to consider the left branch to
judge about conforming behaviour. This “jumping around” has some peculiar
unintuitive and formal consequences as will be shown later.

For uioco, the trace ?but ·?but is also underspecified, so this problem does
not occur.

Fig. 4. Non-implementable ioco specification s3.

Example 7. Consider s3 in Fig. 4, introduced by Bourdonov and Kossatchev [8],
with LI = {a?} and LU = {x!, y!}. Specification s3 is non-implementable for
ioco, as can be shown as follows [11]. Assume an implementation i ∈ IOTS
with i ioco s3. We have that δ·a?·δ·a? ∈ Straces(i), because:
(1) ε ∈ Straces(i);
(2) then out(Δ(i) after ε) = ∅; moreover, out(Δ(s3) after ε) = {δ}, so it must
be that out(Δ(i) after ε) = {δ}, and consequently δ ∈ Straces(i);
(3) then also δ·a? ∈ Straces(i) since i is input-enabled;
(4) analogous to (2): out(Δ(s3) after δ·a?) = {δ}, thus out(Δ(i) after δ·a?) =
{δ}, so also δ·a?·δ ∈ Straces(i);
(5) analogous to (3): δ·a?·δ·a? ∈ Straces(i), as i is input-enabled.

Let out(i after δ·a?·δ·a?) = X, then, because δ·a?·δ·a? ∈ Straces(i), it holds
that X = ∅ (since there is either a ’real’ output x! or y!, and if not, there is output
δ). Moreover, since δ-transitions are always added as loops in Δ(i), we can leave
them out, and the resulting traces will at least have the same outputs as after
δ·a?·δ·a?:

out(Δ(i) after δ·a?·a?) ⊇ X and out(Δ(i) after a?·δ·a?) ⊇ X

Furthermore, if i ioco s3 holds, then we must have that

out(Δ(i) after δ·a?·a?) ⊆ out(Δ(s3) after δ·a?·a?) = {x!}
out(Δ(i) after a?·δ·a?) ⊆ out(Δ(s3) after a?·δ·a?) = {y!}

Goodbye ioco 501

Combining all these constraints for X, we conclude that there is no possible
X satisfying all of them. This implies that the conforming implementation i
cannot exist: s3 is a specification that has no conforming implementations at all.
Apparently, there exist unimplementable specifications. In [13] an even smaller
unimplementable specification of only 6 states and one output is given.

For uioco, there are no unimplementable specifications. Specification s3
could be implemented by an implementation with just an a?-loop in the initial
state. Since the traces a?·a?, δ·a?·a?, and a?·δ·a? are underspecified for uioco,
outputs x! and !y do not have to appear.

4 Test Observations

During testing, test cases are executed on an sut and observations are made
of what happens during test execution. Based on these observations a verdict
is assigned whether the system passed or failed the test. As argued in Sect. 2,
the observations for testing systems modelled as IOTS are suspension traces,
i.e., sequences of inputs, outputs, and occurrences of quiescence. So, for each
suspension trace we must decide whether it is allowed, i.e., whether it is correct
or not according to the specification model together with the implementation
relation. If we can derive from the specification with the implementation relation
such a set of allowed suspension traces, then conformance can be expressed
by trace inclusion: an sut conforms iff each trace observed during testing is
contained in this set of allowed suspension traces.

The relations ioco and uioco, however, are not defined as trace inclusion,
but as inclusion of out-sets after some suspension traces; see Def. 6 and 7. So,
these definitions have to be transformed into a trace-based characterization, so
that we can express ioco and uioco as inclusion of suspension traces. This
trace characterization is based upon the so-called conformal traces introduced
in [8]. A conformal trace is a suspension trace which may occur in some correct
implementation. These are not necessarily the same as the suspension traces of
the specification, since underspecified traces of the specification may occur in
an implementation and some traces of the specification can be disallowed as in
Example 6. The set of all conformal traces of a specification constitutes its trace
characterization. For both ioco and uioco this leads to a trace-based inclusion
relation.

Definition 8. Let σ ∈ L∗
δ , s ∈ LTS, and imp an implementation relation.

1. Trace σ is a conformal trace of s with respect to imp if there exists an imp-
correct implementation that has this trace:

σ cflimp s ⇐⇒def ∃i ∈ IOTS : i imp s and σ ∈ Straces(i)

2. The imp-trace characterization of s is 〈s〉imp =def {σ ∈ L∗
δ | σ cflimp s}

502 J. Tretmans and R. Janssen

Theorem 1. Let i ∈ IOTS, s ∈ LTS.
1. 〈i〉ioco = 〈i〉uioco = Straces(i)
2. i ioco s iff 〈i〉ioco ⊆ 〈s〉ioco
3. i uioco s iff 〈i〉uioco ⊆ 〈s〉uioco

For ioco as well as for uioco, we can easily determine whether an observed
suspension trace of the sut is allowed, once we have the corresponding trace
characterization of the specification s. The definition of trace characterization,
however, though well-defined, is not at all constructive. So, we have to find a way
to constructively obtain the trace characterization from s, preferably represented
as some automaton or labelled transition system obtained by transformation
from s. This is rather intricate as it involves both adding and removing traces
of s. This is where ioco and uioco actually differ.

ioco-Trace Characterization. In [11], a construction for an ioco-trace character-
ization from s is given. It involves quite a number of intermediate transforma-
tions on labelled transition systems, and it is rather complicated, in particular,
because the intermediate transformation steps may generate inconsistent sys-
tems, which cannot represent valid behaviour of suspension traces. Examples of
inconsistency are that there are suspension traces in which quiescence cannot
be followed by another quiescence (called quiescence stability), that quiescence
cannot be removed (quiescence reducibility), or that there is a state that has no
outputs and no quiescence (non-blockingness). Given that quiescence is mod-
elled as a δ-loop for all states that have no outputs (Def. 5), such inconsistencies
cannot lead to a valid set of suspension traces; for a formal elaboration of incon-
sistency in terms of suspension languages, see [11]. The transformation steps to
obtain an ioco-trace characterization are the following:

1. Δ: deltafication, i.e., adding explicit quiescence actions;
2. det : determinization;
3. Ξ: demonic completion, i.e., adding explicit underspecification and mak-

ing the system input-complete; the resulting system may violate quiescence
reducibility ;

4. ζ: recover quiescence reducibility and stability, but this may result in loosing
non-blockingness;

5. η: recovers non-blockingness, and delivers the final, consistent labelled tran-
sition system.

Theorem 2. 〈s〉ioco = traces(η(ζ(Ξ(det(Δ(s))))))

So, this gives a construction for a concrete transition system representing
the conformal traces of the ioco-trace characterization. This construction is not
only complicated, but also complex: due the exponential complexity of det and
ζ it has a double exponential upper bound.

This high complexity in itself is already problematic. Moreover, it only holds
for finite models, whereas many realistic models have an infinite state space,
e.g., models expressed in a process algebraic language with recursion [19], or
as symbolic transition system using data parameters with infinite domains [9].

Goodbye ioco 503

Computing an explicit transition system representation is then infeasible. The
usual way of dealing with such an infinite state space is constructing the state
space as far as necessary. For example, to check whether a given suspension trace
σ is a conformal trace of specification s, instead of constructing the full, trans-
formed transition system, we could attempt to construct only the initial part
with depth up to the length of σ, to check whether σ ∈ 〈s〉ioco. Unfortunately,
this does not work for a labelled transition system representing the ioco-trace
characterization: finding out whether a given trace is ioco-conformal is undecid-
able, even if q after � for every state q and action � is finite and computable. Any
trace σ may be non-conformal because some extension of σ of unknown length
leads to an inconsistent state further in the transition system. The entire state
space of the specification must be checked for inconsistent states to detect non-
conformal traces. Investigating an initial part is not sufficient, by construction
of η. Consider the specification s3 in Fig. 4, which has no conforming implemen-
tations, so 〈s〉ioco = ∅, and in particular ε /∈ 〈s〉ioco. But to find this out we
have to explore the whole transition system of s3, and we cannot restrict to the
states reachable after ε.

Theorem 3. Determining whether σ cflioco s holds is undecidable.

uioco-Trace Characterization. For uioco, the construction of a labelled transi-
tion system representing the uioco-trace characterization 〈s〉uioco turns out to
be much simpler. The difference with ioco is that the order of applying demonic
completion Ξ and determinization det is reversed for uioco: determinization is
performed on the demonically completed specification. This exactly reflects the
difference between ioco and uioco in dealing with underspecified inputs. The
resulting labelled transition system is already consistent, so that the transfor-
mations ζ and η are not necessary anymore. The result is a consistent labelled
transition system exactly representing the uioco-trace characterization. Mor-
ever, since determinization det preserves traces, we can even leave it out.

Theorem 4. 〈s〉uioco = traces(Ξ(Δ(s)))

Hence, we can check uioco-conformal traces directly by checking suspension
trace inclusion, after performing demonic completion on the specification. This is
PSPACE-complete [16]. Moreover, in contrast to the ioco-trace characterization,
the uioco-trace characterization is decidable. To check whether a suspension
trace is conformal to specification s, we construct Ξ(Δ(s)) and see whether σ
is a trace. For infinite s, we can construct only the needed part: we only need
to explore the δ-transitions and demonically-completed input actions that are
traversed when following trace σ through s.

Theorem 5. Determining whether σ cfluioco s holds is decidable,
under the condition that q after � is computable for all q and �.

Note that there are specifications with the same suspension traces, but
with different uioco-trace characterizations, because the branching structure

504 J. Tretmans and R. Janssen

of the specification does matter. Consider specification s2 of Fig. 3. Consider
also only the right branch of this specification and call it s′

2. Then Straces(s2) =
Straces(s′

2), but 〈s2〉uioco = 〈s′
2〉uioco, e.g., the trace ?but ·?but ·!liq ∈ 〈s2〉uioco,

but ?but ·?but ·!liq /∈ 〈s′
2〉uioco. This means that there is no transformation pos-

sible from Straces(s2) to its uioco-trace characterization. The transformation
to obtain the uioco-trace characterization must really occur on the labelled
transition system of s2.

Also the other way around holds: systems with different sets of suspension
traces may have the same uioco-trace characterization. In the example above,
Fig. 3, consider the left branch and call it s′′

2 . Then Straces(s2) = Straces(s′′
2),

but 〈s2〉uioco = 〈s′′
2〉uioco.

Conclusion. The implementation relations ioco and uioco can both be
expressed as trace-based relations, but the construction for uioco is much sim-
pler, it has lower complexity, and checking whether an observed suspension trace
is allowed according to the specification, is decidable, whereas it is not decidable
for ioco.

More on Testing. Ideally, after executing a test case, we wish to give the verdict
pass if and only if the observed suspension trace is allowed, i.e., is conformal.
For ioco, this is only possible by looking at the whole transition system of the
specification, which, of course, is not possible for infinite specifications. The ioco-
test generation of [18], however, is a so-called on-the-fly (or on-line) algorithm: it
only looks, lazily, at the transition system of s as far as necessary for the actions
of the test case. Consequently, this algorithm will not always give the desired
verdict for each individual suspension trace, i.e., pass if and only if the observed
trace is conformal. Yet, this algorithm is sound and exhaustive. Soundness holds
for individual suspension traces: if a trace leads to a fail then the trace is non-
conformal. Exhaustiveness of the algorithm in [18], however, does not apply
to individual traces but to the whole test suite, i.e., the set of all generated
test cases: a trace in a generated test case may lead to pass though it is non-
conformal, but then some other test case will detect the non-conformance of the
implementation.

Consider again the specification in Fig. 4. The algorithm of [18] will generate
a test case to test what happens after trace ε, and this test case will have the
verdict pass for an implementation that reacts with δ after ε, though δ is not a
conformal trace. But there will be more test cases: a test case to test that

after δ·a? the output is δ,
after δ·a?·a? the output is x!,
after a? the output is δ,
after a?·a? the output is x! or y!, and
after a?·δ·a? the output is y!.
Now, following an analogous reasoning as in Example 7, no implementation

can pass all these test cases, so any implementation will eventually fail with the
whole test suite generated with the algorithm of [18], which is consistent with
the specification in Fig. 4 having no ioco-conforming implementations.

Goodbye ioco 505

For passive testing, or monitoring, however, this argumentation does not
hold. During monitoring we observe only one trace, and the verdict shall be
pass if and only if the observed trace is allowed, i.e., is conformal. Because
deciding whether a trace is ioco-conformal is undecidable, ioco is unsuitable as
an implementation relation for monitoring.

5 Refinement

An implementation relation defines which implementations in IOTS are correct
with respect to a specification in LTS. It compares two different entities, imple-
mentations in IOTS and specifications in LTS, and, consequently, it does not
make sense to consider properties like reflexivity or transitivity. Yet, it does make
sense to compare specifications between themselves, e.g., to express which spec-
ifications are equivalent, to do stepwise refinement, or to perform test selection
by specification weakening. Stepwise refinement is a manner of system devel-
opment where the starting point is an abstract specification model, which is
refined in a step-by-step manner, adding more implementation details in each
step, leading to more concrete specification models, until a very concrete model
is obtained where all implementation freedom has been fixed, and which can be
transformed into an executing realization. Each refinement step reduces the set
of possible implementations, and refinement steps shall be reflexive and transi-
tive: each refinement is a correct refinement of itself, and if s1 is a refinement of
s2 and s2 is a refinement of s3 then s1 shall be a refinement of s3. Refinement
is formalized by a refinement relation on specification models and it is defined
in a straightforward way by relating each specification to its set of conforming
implementations. Reflexivity and transitive follow then immediately from the
reflexivity and transitivity of ⊆, so refinement is a preorder on LTS. This can
be done for any implementation relation.

Definition 9. Let s, s1, s2 ∈ LTS and imp ⊆ IOTS × LTS.

1. Impimp(s) =def {i ∈ IOTS | i imp s}
2. s1 �imp s2 ⇐⇒def Impimp(s1) ⊆ Impimp(s2)
3. s1 �imp s2 ⇐⇒def Impimp(s1) = Impimp(s2)

Furthermore, P(IOTS) with partial order ⊆ is a lattice, with least upper
bound (join) ∪, greatest lower bound (meet) ∩, top element IOTS, and bottom
element ∅. This lattice can be lifted to the domain of �-equivalence classes of
specifications. In this way, conjunction and disjunction of specifications can be
introduced as the meet and join in this lattice, respectively.

Definition 10. Let s1, s2 ∈ LTS and imp ⊆ IOTS × LTS.

1. The conjunction of s1 and s2 for imp is

s1 ∧imp s2 =def Impimp(s1) ∩ Impimp(s2)

506 J. Tretmans and R. Janssen

2. The disjunction of s1 and s2 for imp is

s1 ∨imp s2 =def Impimp(s1) ∪ Impimp(s2)

3. The universal, or top specification is

s�imp
such that Impimp(s�imp

) = IOTS

4. The unimplementable, or bottom specification is

s⊥imp
such that Impimp(s⊥imp

) = ∅

The top specification for ioco and uioco is the so-called chaos model,
denoted by χ ∈ IOTS ⊆ LTS. The model chaos allows any behaviour: For
any i ∈ IOTS, i ioco χ and i uioco χ hold. The bottom specification for ioco
is the �-equivalence class of all labelled transition systems that do not allow
any implementation: �s3��ioco

, with s3 of Fig. 4. Note that an unimplementable
specification is a correct refinement of any other specification, which might seem
counter-intuitive.

The bottom specification for uioco does not exist in LTS: any specification
model s ∈ LTS has an implementation i ∈ IOTS with i uioco s, as follows
from Theorems 1.3 and 4. So, for uioco, either Def. 10 must be restricted to a
semi-lattice, i.e., a lattice without bottom element, or an artifical bottom element
must be added.

Refinement, conjunction, and disjunction for ioco and uioco are easily
defined as above, but these definitions, just as for conformal traces in the previous
section, do not help at all in checking a refinement or constructing a conjunction.
That is why we link refinement to conformal traces. If an implementation relation
imp can be expressed as inclusion of imp-trace characterizations, then this also
holds for refinement. This means that for checking refinement and calculating
conjunction and disjunction we can use ioco- and uioco-trace characterizations.

Proposition 3. If imp ⊆ IOTS × LTS can be expressed as imp-trace charac-
terization inclusion, i.e., i imp s iff 〈i〉imp ⊆ 〈s〉imp

then s1 �imp s2 iff 〈s1〉imp ⊆ 〈s2〉imp

Conclusion. For ioco as well as for uioco, a refinement preorder for specifica-
tion models can be defined, such that a refined model allows less conforming
implementations. Also conjunction and disjunction of models can be defined. To
check refinement or to compute conjunction we can use ioco- and uioco-trace
characterizations. In Sect. 4, we showed that this is much easier and more feasible
for uioco than for ioco.

More on Disjunction. Disjunction of two specifications expresses that an imple-
mentation can implement one or the other (or both). Nondeterministic behaviour
in a model means that one of the behaviours can be nondeterministically chosen.
One of the core problems of ioco is that nondeterministic choice does not act as
disjunction.

Goodbye ioco 507

Example 8. Consider the specification s2 of Fig. 3, take the left branch of s2 as
specification s′

2, and the right branch as specification s′′
2 . According to Def. 10,

disjunction s′
2 ∨ s′′

2 combines the conforming implementations of s′
2 and s′′

2 . The
nondeterministic choice of behaviours s′

2 and s′′
2 is s2. An implementation i that

can do the trace ?but ·?but ·!liq does not ioco-conform to the nondeterministic
choice of s′

2 and s′′
2 , but it does conform to s′

2 ∨ s′′
2 because it is in Impioco(s′

2).

More on uioco. The implementation relation uioco is defined on IOTS ×LTS.
It can be extended to a relation on LTS by adding the converse of the require-
ment on out-sets for in-sets, by adding the requirement that all inputs specified
must be implemented [21]:

s1 uioco′ s2 ⇐⇒def ∀σ ∈ Utraces(s2) : out(s1 after σ) ⊆ out(s2 after σ)
∧ in(s1 after σ) ⊇ in(s2 after σ)

where in(s after σ) =def {a ∈ LI | not p after σ refuses a }
Though this looks intuitive, uioco′ is not uioco-refinement: uioco′ ⊂�uioco,

since implicit underspecification and the explicit use of the chaos specification
χ lead to the same set of conforming implementations, but implicit underspeci-
fication does not uioco′-relate to χ.

6 Canonical Implementations

Refinement relations are reflexive, so any specification is a correct refinement
of itself. For implementation relations ioco and uioco we would also like to
have a kind of quasi-reflexivity, so that for each specification we can construct
in a standard way a canonical implementation that behaves as much as possi-
ble like the specification. For ioco and uioco, however, such a construction is
not immediately obvious, since implementations and specifications come from
different domains.

Also for canonical implementations we can revert to trace characterizations.
From Theorem 1 it follows that, given specification s ∈ LTS, for an implemen-
tation i ∈ IOTS with Straces(i) = 〈s〉ioco it holds that i ioco s, and analo-
gously, for an implementation i ∈ IOTS with Straces(i) = 〈s〉uioco it holds that
i uioco s.

So we have to construct an implementation i ∈ IOTS with the given set of
Straces(i). The first step is constructing a labelled transition system with explicit
δ-transitions, following Theorems 2 for ioco and 4 for uioco, respectively. The
second step involves transforming δ-actions, which are not allowed in IOTS,
to internal τ -transitions such that quiescence occurs in the right states. Such a
construction is given in [11] and not repeated here.

Consequently, also for canonical-implementation construction there is the
huge difference in complexity and feasibility of constructions for ioco and uioco.
For ioco the construction is practically, and for infinite specifications also theo-
retically, infeasible for almost any realistic specification, whereas for uioco the

508 J. Tretmans and R. Janssen

construction can be performed lazily and on-the-fly, constructing the canonical
implementation from Ξ(Δ(s)) as far as needed.

Note that for input-enabled specifications the situation is simplified accord-
ing to Proposition 1: on IOTS, ioco is a preorder. Also note that canonical-
implementation construction is complete for uioco, but partial for ioco: there
are specifications s that do not have any conforming implementation, which
means that 〈s〉ioco = ∅, and, consequently, Straces(i) = ∅. There is no imple-
mentation in IOTS with Straces(i) = ∅ since for any i always ε ∈ Straces(i).

7 Relating Relations

Next to ioco, uioco, and its refinements, there are other relations on labelled
transition systems with inputs and outputs, in particular, alternating simula-
tion and different versions of alternating trace containment originating from
game theory and formal verification of component-based systems [2,3]. Figure 5
relates the relations ioco, uioco′, alternating simulation ≤as, alternating trace
containment ≤atc, and the interpretation of alternating trace containment ≤tb

∀∀∃∃
from [12].

Fig. 5. (from [12]) Relating ioco, uioco, alternating simulation ≤as, alternating trace
containment ≤atc, and the interpretation of alternating trace containment ≤tb

∀∀∃∃. An
arrow from relation A to relation B denotes that A is stronger than B. The dashed
arrow only holds if quiescence is explicitly added to the models related by ≤tb

∀∀∃∃.
Relation ioco is only defined if the first argument is input-enabled; uioco′ is the
extended uioco relation on LTS. Moreover, all relations without arrows between them
are different, as is shown by counter-examples in [12].

Alternating simulation ≤as is the only branching-time relation, the others
are linear-time relations. Linear-time relations are more natural to serve as
implementation relation for testing since test observations are usually linear,
i.e., traces. Branching-time relations like alternating simulation, are not black-
box observational. Testing such a relation involves unrealistic testing actions,
like freezing and copying states and undo-ing actions [1]. Yet, a branching-time
relation could be used for refining and verifying a system, in which case it is

Goodbye ioco 509

desirable that this activity is sound with respect to the implementation relation
used for testing. In principle, the relations ≤as and uioco′ are not related, but
if quiescence δ is explicitly added and treated as a normal output action, then
≤as⊆ uioco′. This means that any design activity done on the basis of ≤as,
e.g., the construction of an implementation, is sound with respect to testing
with uioco. For ioco this is not the case: ≤as and ioco are unrelated, whether
quiescence is added or not.

We conclude that uioco is the better fit in the spectrum of input-output
relations, and that ioco is too strong to act as an implementation relation for
testing: a system designed or verified with any of the other relations might be
rejected when tested based on ioco.

8 Concluding Remarks

We have compared the implementation relations ioco and uioco:

– Both ioco and uioco can be expressed as trace-based relations, but the con-
struction for uioco is much simpler, it has lower complexity, and checking
whether an observed suspension trace is allowed according to the specifica-
tion, is decidable, whereas it is not decidable for ioco.

– For ioco as well as for uioco a refinement preorder can be defined, such that
a refined model allows less conforming implementations. Also conjunction and
disjunction of models can be defined. As for trace-based relations, checking
of refinement and computation of conjunction are much simpler and more
feasible for uioco than for ioco.

– The relations ioco and uioco both allow the construction of a canonical
implementation, but, as before, there is the huge difference in complexity and
feasibility of constructions for ioco and uioco. For ioco the construction
is practically, and for infinite specifications also theoretically, infeasible for
almost any realistic specification, whereas for uioco the construction can be
performed lazily and on-the-fly, constructing the canonical implementation
from Ξ(Δ(s)) as far as needed.

– The relation uioco is the better fit in the spectrum of input-output relations,
whereas ioco is too strong to act as an implementation relation for testing.
A system designed or verified for correctness using, for example, alternating
simulation might be rejected when tested based on ioco, but not if tested
with uioco.

– In the examples of Sect. 3 we have seen that some specifications are unimple-
mentable, and that sometimes we have to “jump around” in the whole model
to decide about conforming behaviour.

Altogether, we conclude that uioco is the better choice as implementation
relation for model-based testing, so, goodbye ioco, hello uioco.

510 J. Tretmans and R. Janssen

Acknowledgements. We thank Piërre van de Laar, Tim Willemse, and the anony-
mous reviewers for their valuable feedback and suggestions.

And, of course, we wish to thank Frits Vaandrager. Not only is this work dedicated
to him, on the occasion of his 60th birthday, but Frits also played a major role in our
analysis of the secrets of ioco and uioco, if not through his feedback and discussions
on our research, then surely through the daily dose of optimism and the amusing
conversations during the coffee breaks. We thank Frits for his inspiration, support, and
pleasant collaboration, and for giving us quiescence. Without these this contribution
would not have been written. Frits, thank you, and happy birthday!

References

1. Abramsky, S.: Observational equivalence as a testing equivalence. Theor. Comput.
Sci. 53(3), 225–241 (1987)

2. de Alfaro, L., Henzinger, T.: Interface automata. In: Gruhn, V. (ed.) Joint 8th
European Software Engineering Conference and 9th ACM SIGSOFT Symposium
on the Foundation of Software Engineering – ESEC/FSE-01. SIGSOFT Software
Engineering Notes, vol. 26, pp. 109–120. ACM Press, New York, NY, USA (2001).
http://doi.acm.org/10.1145/503271.503226

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

4. Axini: Testautomatisering. http://www.axini.com
5. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.

In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 21

6. Belinfante, A., et al.: Formal test automation: a simple experiment. In: Csopaki,
G., Dibuz, S., Tarnay, K. (eds.) Testing of Communicating Systems. ITIFIP, vol.
21, pp. 179–196. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-
35567-2 12

7. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-6 7

8. Bourdonov, I., Kossatchev, A.: Specification completion for IOCO. Program. Com-
put. Softw. 37(1), 1–14 (2011). Original Russian Text Published in Program-
mirovanie 2011

9. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
-2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). https://doi.org/
10.1007/11940197 3

10. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-59293-8 188

11. Janssen, R., Tretmans, J.: Matching implementations to specifications: the corner
cases of ioco. In: ACM/SIGAPP Symposium on Applied Computing – Software
Verification and Testing Track, pp. 2196–2205. SAC 2019, ACM, New York, NY,
USA (2019)

http://doi.acm.org/10.1145/503271.503226
https://doi.org/10.1007/BFb0055622
http://www.axini.com
https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1007/978-0-387-35567-2_12
https://doi.org/10.1007/978-0-387-35567-2_12
https://doi.org/10.1007/978-3-540-24617-6_7
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/3-540-59293-8_188

Goodbye ioco 511

12. Janssen, R., Vaandrager, F., Tretmans, J.: Relating alternating relations for con-
formance and refinement. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019.
LNCS, vol. 11918, pp. 246–264. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34968-4 14

13. Janssen, R.: Refinement and partiality for model-based testing. Ph.D. thesis, Rad-
boud University, Nijmegen, The Netherlands (2022)

14. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Softw. Tools Technol. Transfer 7(4), 297–315 (2005)

15. Larsen, K., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded soft-
ware using Uppaal-Tron: an industrial case study. In: Wolf, W. (ed.) EMSOFT
2005 – ACM International Conference On Embedded Software, pp. 299–306. ACM
(2005)

16. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proceedings of the 5th Annual ACM Symposium on Theory of computing (STOC),
pp. 1–9. ACM (1973)

17. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw.-Concepts Tools 17(3), 103–120 (1996)

18. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

19. Tretmans, J., van de Laar, P.: Model-based testing with TorXakis – the mysteries of
dropbox revisited. In: Strahonja, V., Hertweck, D., Kirinić, V. (eds.) Central Eur.
Conf. on Information and Intelligent Systems – CECIIS, pp. 247–258. Faculty of
Organization and Informatics, University of Zagreb, Varaždin, Croatia (2019)

20. Vaandrager, F.: On the relationship between process algebra and input/output
automata. In: Logic in Computer Science, pp. 387–398. Sixth Annual IEEE Sym-
posium, IEEE Computer Society Press (1991)

21. Volpato, M., Tretmans, J.: Towards quality of model-based testing in the ioco
framework. In: International Workshop on Joining AcadeMiA and Industry Con-
tributions to Testing Automation – JAMAICA 2013, pp. 41–46. ACM, New York,
NY, USA (2013)

https://doi.org/10.1007/978-3-030-34968-4_14
https://doi.org/10.1007/978-3-030-34968-4_14
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Process Algebras and Flocks of Birds

Rocco De Nicola1, Luca Di Stefano2, Omar Inverso3, and Serenella Valiani1(B)

1 IMT School of Advanced Studies, Lucca, Italy
serenella.valiani@imtlucca.it

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France
3 Gran Sasso Science Institute (GSSI), L’Aquila, Italy

Abstract. Many natural and artificial systems studied across a variety
of disciplines, from biology to social sciences, consist of relatively simple
agents with a partial knowledge of the system as a whole, where complex
collective dynamics that are difficult to anticipate emerge from local
interaction. We argue how formal methods broadly understood can be
of assistance in such studies with a systematic approach to specification
and analysis. To convey our argument, we elaborate a proof of concept
inspired from an instance of emergent behaviour commonly observed in
flocks of birds.

1 Introduction

Sophisticated collective dynamics can be observed in a variety of biological sys-
tems [18], such as herds of animals [25], colonies of insects [28], flocks of birds
and schools of fish [23], but also in artificial systems such as political parties [27],
smart cities [29], cyber-physical systems, and many others [8,15,21]. The study
of such systems poses several challenges, such as intuitive specification and fast
validation of different hypotheses on so-called emergent behaviour and other
complex properties.

In this paper, we argue that concepts, methods, and tools from the wider
area of formal methods, to which Frits Vaandrager has dedicated most of his
research efforts, can be of assistance in such activities. In particular, with the
right ingredients, an integrated approach to formal specification and verification
can open up to seemingly distant disciplines, where there could be plenty to be
gained. The right ingredients here consist of a domain-specific formal language
and effective verification procedures.

We consider a well-known example of collective behaviour known as flock-
ing, that spontaneously emerges from the movement of birds in a flock. It is
a fascinating natural phenomenon studied in a variety of disciplines, including
ethology [22], optimization [1], economics [11], biology [18], and many others.

Flocking was considered as the combined effect of conflicting forces in the
1950s s by Emlen, who proposed a model where an attractive force, which causes
the birds to move closer to each other, is combined with a repulsive force that
limits the size of the flock [17]. In the late 1980s, Reynolds refined this concept
by introducing three separate rules, namely cohesion, alignment, and separation,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 512–523, 2022.
https://doi.org/10.1007/978-3-031-15629-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_27&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_27

Process Algebras and Flocks of Birds 513

where flockmates move closer to each other when far apart, adapt their move-
ments according to those of their neighbours, and avoid collisions by keeping
a minimum distance from each other, respectively [23]. In practice, the com-
bined effect of Reynold’s rules can generate collective patterns of movement that
resemble those of flocks of birds in the nature. Reynold’s flocking model is an
interesting example of bottom-up modelling of sophisticated collective behaviour
via simple local rules. Indeed, the idea that collective behaviour can be expressed
in terms of local interactions in a natural way is also backed up by more recent
studies, from biology [12,18] to physics [3,4].

Elaborating an accurate model of flocking is outside the scope of this paper.
Rather, we are interested in the study of minimalistic models that can mimic
the dynamics described above at least in part. We focus on cohesion, which is
commonly acknowledged as a core property of flocking [13,26,28]. Cohesion is
usually defined based on the capability of each bird to determine a flock centroid
(e.g., in Reynold’s model, the barycentre of birds in the cohesion zone [23]). We
would like to see whether it would be possible to achieve something similar
to cohesion with minimal specifications, for instance by simply having birds
approach pairwise non-deterministically.

We thus develop an initial model of flocking behaviour using a process alge-
bra for collective systems [14] (Sect. 2). We carry out the analysis of cohesion
using sequential emulation [16], spotting a corner case in the specifications which
prevents cohesion (Sect. 3). We use the counterexample produced by our analy-
sis to refine the specifications, and re-analyse cohesion (Sect. 4). We report some
final considerations in Sect. 5.

2 A Simplified Model of a Flocking Behaviour

Let us now consider a minimalistic model of flocking behaviour, where each bird
b looks at another bird a in the flock, estimates the future position of a based
on a’s current movement, and aims at moving towards that position (Fig. 1). To
account for inertia, the new direction of b is averaged with its previous direction.
To avoid collisions, in case the position where b wants to move is already occupied
by another flockmate, b slows down. Assuming that all birds in the flock behave
like this, we would like to know whether such rules would be sufficient to achieve
cohesion.

Cohesion is usually defined based on the capability of each bird to determine
a flock centroid (e.g., in Reynold’s model, the barycentre of birds in the cohesion
zone [23]). In our model, instead, a bird tries to approach a point where another
bird in the system is likely going to be in the future.

We formalise the description given above by relying on the process description
language LAbS [14]. A simplified version of the formal specifications is shown in
Algorithm 1. Lines 2–6 describe the interface, i.e. the set of features, or attributes,
that a bird exposes to the rest of the system. Here, the interface contains two
attributes x and y describing the position of a bird on a two-dimensional grid, and
two attributes dir x and dir y representing the movement vectors of the bird

514 R. De Nicola et al.

b

a

(a)

b

a

(b)

b

a

(c)

Fig. 1. Bird b targets bird a (a), looks at a’s direction (b), and gets closer (c).

along the two axes. Each attribute has a range of feasible values. The position
attributes may range over the interval [0, G] and the direction attributes over
[−D,D + 1]. G and D are two parameters that respectively denote the size of the
grid where the birds move, and the maximum length of the movement vectors
(see Fig. 4 for the possible directions with D = 1). The symbol ← denotes
assignments to attributes. To model non-deterministic initialisation, attributes
are assigned ranges of values rather than specific ones. Each agent also has an
implicit attribute id, which is a unique identifier between 0 and the number of
agents in the system.

The behaviour of each bird is defined in lines 8–27. The recursive definition
at line 8 indicates that each bird repeatedly performs the same actions, given
in process Move. This process is in turn defined as a sequence of assignments.
Please note the symbol := that denotes assignments to local variables, and the
enclosing curly braces that enforce atomicity.

The Move process consists of two parts. The first part (lines 11–19) imple-
ments the mechanism presented at the beginning of the section (Fig. 1). First,
we non-deterministically select one agent by means of the pick 1 command and
assign it to a variable p (line 11). Then, we check whether this agent is isolated or
not. We define p to be isolated when its distance from every other agent is larger
than a parameter δ (line 12). Note that, in general, an attribute name decorated
with an id (e.g., xp) evaluates to the value of the attribute for the agent with the
given id. If the selected bird p is not isolated, the bird will approach it; other-
wise, the bird will keep moving in its current direction. Also note that we define
the distance operator d(·) at line 12 as the Manhattan distance, or �1-norm [7]:
the distance between two points is the sum of the absolute differences between
their components. Specifically, given two points b,p in a two-dimensional space,
we have d((xb, yb), (xp, yp)) = |xb−xp| + |yb−yp|, which corresponds to the
combined length of the segments shown in Fig. 2. Starting from line 14 the bird
estimates the future position (ax, ay) of the agent appId to approach by multi-
plying its direction vector by a parameter ω. It then approximates a movement
vector adir towards that position by comparing (x, y) and (ax, ay) component-
wise with a tolerance parameter ε. We only report the instructions for the x
component of the vector; the y component is computed similarly.

In the second part of the Move process (lines 22–26), the bird updates its
own attributes. Specifically, the bird’s new direction is the average between the
previous one and the vector adir computed beforehand. Please note that the

Process Algebras and Flocks of Birds 515

Listing 1: Initial specifications for a flock of birds.
1 agent Bird {
2 Interface =
3 x ← 0..G;
4 y ← 0..G;
5 dir x ← −D..D + 1;
6 dir y ← −D..D + 1
7

8 Behaviour = Move; Behaviour
9

10 Move = {
11 p := pick 1;
12 pIsIsolated := forall Bird b, b �= p ⇒ d((xp, yp), (xb, yb)) > δ;

13 appId := if pIsIsolated then id else p;
14 ax := xappId + ω · dir xappId;
15 sgn x := if x > ax then 1 else −1;

adir x :=16 if a = id then
17 dir x

18 else
19 if |x − ax| < ε then 0 else sgn x · D;

20 # assign ay, sgn y, adir y as above
21

22 dir x ← (dir x + adir x)/2;
23 dir y ← (dir y + adir y)/2;
24 posIsFree := forall Bird b, (xb �= x + dir x) ∨ (yb �= y + dir y);
25 x ← if posIsFree then x + dir x else x

26 y ← if posIsFree then y + dir y else y

27 }
28 }

division used here is an integer division with rounding. Finally, the bird checks
whether the cell it would reach by moving along its new direction is free: if so,
the bird moves there by updating its attributes x and y; otherwise, it stays in
its current cell (lines 24–26).

3 Analysis of Cohesion

We now carry out the analysis of cohesion for the model of flocking behaviour
given in the previous section. The key element of our verification flow is a sym-
bolic encoding of the specifications into a sequential imperative program, which
we call an emulation program [16]. The encoding reduces the problem of check-
ing whether the system satisfies the given property to checking reachability in
the emulation program. This has the twofold advantage of detaching the speci-
fication language from the verification technique, and allowing to automatically
re-use program analysis tools for general-purpose languages.

516 R. De Nicola et al.

p = (xp, yp)

b = (xb, yb)

Fig. 2. Manhattan distance between two points in two dimensions.

The emulation program uses a minimal set of features (i.e., loops and
statically-sized arrays), and can be concretised with limited effort into different
target languages, depending on the verification technology of preference; it also
embeds an explicit scheduler, which allows to apply specific scheduling policies.
We target the C language and rely on bounded model checking [9] for the actual
analysis; we choose round-robin scheduling, i.e., agents perform their actions
in a round-robin fashion. We call epoch an execution fragment in which every
agent in the system performs precisely one action. This allows us to consider
verification bounds in terms of epochs. The verification flow described above is
implemented in our prototype tool SLiVER1, that takes care of generating the
emulation program from the specifications of the system under analysis, instru-
menting the emulation program for verification to be carried out by the back
end model checker, and translating any counterexample from the model checker
into a human-readable output with respect to the initial system specifications.

In order to assess cohesion, we set up a scenario with two separate groups
of birds positioned at a certain distance from each other (Fig. 3), and check
whether, given enough epochs for the system to evolve, the two groups end up
forming a single flock. We thus instantiate the system of Listing 1 with four
agents, a grid of size G = 1024 (lines 3–4), movement vectors of max modulo
D = 1 for the possible directions of agents (lines 5–6), a sensitivity ω = 10 to
estimate the future position of the bird to approach (line 14), a distance δ =32
to determine whether an agent is isolated (line 12), and a tolerance parameter
ε = 5 to approximate the approach vector (line 19). We non-deterministically
position the two groups of birds into two smaller sub-grids of size 9×9, the birds
in the left-hand group oriented bottom to top, and those in the right-hand group
oriented right to left. The two regions are 40 cells apart, therefore the Manhattan
distance between any two birds from different groups is initially at most 76 cells.
Figure 5a shows a feasible initial state under these constraints. We enforce these
constraints by specifying them as quantified predicates in a dedicated section of
the specifications (Listing 2).

With the above set up, we use our prototype to check whether, after B steps,
every execution of the system reaches a state where all birds are at most k cells
apart (lower values of k indicating a more compact flock and thus a stronger
cohesion). To express this property, we decorate the specifications of Listing 1
as shown in Listing 3. Since birds are initially not farther than 76 cells, we
start checking the property for a cohesion distance k of 75, to check whether

1 The tool is available at https://github.com/labs-lang/sliver.

https://github.com/labs-lang/sliver

Process Algebras and Flocks of Birds 517

Fig. 3. Initial areas, in grey, where agents can position themselves. (Color figure online)

(0,1) (1,1)(-1,1)

(0,-1) (1,-1)(-1,-1)

(1,0)(-1,0)

Fig. 4. Possible directions of a bird with movement vectors of max. size D=1.

the birds can get barely closer together than in the initial state. Indeed, our
tool immediately produces a counterexample showing that the specifications of
Listing 1 fail to guarantee even such minimal degree of cohesion.

The counterexample is shown in Fig. 5. Intuitively, since each bird keeps
approaching a bird within the same group, the groups will stay separate indef-
initely if they don’t meet by accident, and thus the flock will never achieve
cohesion. Figure 5a shows the initial state of the system. During the first epoch,
first the 1-orange and 2-blue agents choose to approach the 3-red and 4-green
ones, respectively, altering their direction accordingly (Figs. 5b). Then, the 3-
red and 4-green agents make the symmetrical choice (Fig. 5c). At this point, the
two subgroups have parallel direction vectors and the cohesion property is still
unsatisfied, as the red agent is more than 75 cells apart from the green one.
From now on, agents in each subgroup keep selecting each other as the agent to
approach, meaning that the subgroups keep moving parallel to each other and
never achieve the desired degree of cohesion (Fig. 5d).

4 Revising the Model

The counterexample obtained in Sect. 3 shows that when adopting the behaviour
of Listing 1 the birds may never achieve cohesion, as they will completely ignore
the other birds outside their group. In this section we modify the specification
of Listing 1 to address this problem so that each bird can also approach agents
outside its own group. We then repeat the analysis to check whether the revised
specifications improve cohesion.

518 R. De Nicola et al.

(a) (b)

(c) (d)

Fig. 5. Two groups of birds failing to achieve cohesion. (Color figure online)

Intuitively, as a possible way to improve cohesion, a bird should be able to
alternately approach other birds from his own group and from the other group.
To accommodate this, we change the specifications as shown in Listing 4. An
attribute groupId initialized to either 0 or 1 keeps track which group a bird ini-
tially belongs to. Another attribute, check, is initialized to 0 and is used to guide
the selection of the bird to be approached (lines 4–5). Finally, line 11 of Listing 1
is replaced by lines 9–10 of Listing 4. After this change, the non-deterministic
selection of the bird p to be approached is constrained by a predicate, introduced
by the keyword where. This predicate states that, if the attribute check is cur-
rently set to 0, the agent may pick any bird indiscriminately. However, if check
is set to 1, then the agent must pick a bird whose groupId is different from its
own (line 9). Then, the agent flips the value of check (line 10). This means that
a bird will necessarily pick somebody outside its own initial group at least every
other epoch.

We repeat the same experiment described in Sect. 3 on the specifications
revised as above to verify flocks of 4, 6, and 8 agents with the same parameters
listed in Sect. 3, increasing the verification bound until obtaining a positive ver-
dict. Figure 6 reports the minimum number of epochs needed to reach a positive
verdict for varying systems and values of k. The number of epochs grows lin-
early as the cohesion distance k decreases and does not blow up as the number of
birds increases, suggesting that achieving cohesion does not become particularly
harder for larger flocks, at least not for such simple specifications.

Figure 7 reports additional measurements on the amount of time and memory
needed to obtain the positive verdicts reported in Fig. 6, where we can observe

Process Algebras and Flocks of Birds 519

Listing 2: Initial scenario with two separate groups of birds.
1 assume {
2 DifferentPositions =

forall Bird a, forall Bird b, a = b ∨ xa �= xb ∨ ya �= yb
3 GridLeft =

forall Bird b, (idb mod 2 = 0) ∨ ((480 < xb < 490) ∧ (480 < yb < 490))
4 GridRight =

forall Bird b, (idb mod 2 �= 0) ∨ ((510 < xb < 520) ∧ (510 < yb < 520))
5 AlignmentLeft = forall Bird b, (idb mod 2 = 0) ∨ (dirxb = 0 ∧ diry = 1)
6 AlignmentRight =

forall Bird b, (idb mod 2 �= 0) ∨ (dirxb = −1 ∧ diry = 0)
7 }

Listing 3: Cohesion property.
1 check {
2 Cohesion = finally forall Bird b, forall Bird c, d((xb, yb), (xc, yc)) < k
3 }

that the performance quickly degenerates when increasing the number of birds
and of epochs; the model checker must in fact exhaustively explore the state
space up to a bound which is given by the number of epochs multiplied by the
number of agents. Changing the back end technology can affect the efficiency
of analysis significantly [16], but comparing different techniques is outside the
scope of this paper.

We performed all the experiments in a virtualized environment on a dedicated
machine running 64-bit GNU/Linux with kernel 5.4.0 and equipped with four
2-GHz Xeon E7-4830v4 10-core processors and 512 GB of physical memory.

Listing 4: Revised version of the specifications in Listing 1.
1 agent Bird {
2 Interface =
3 ...
4 groupId ← 0..2;
5 check ← 0
6

7 Behaviour = Move; Behaviour
8 Move = {
9 p := pick 1 where (check = 0) ∨ (groupId �= groupIdp);

10 check ← (check + 1) mod 2;
11 ...
12 }
13 }

520 R. De Nicola et al.

69707172737475

2

4

6

8

10

12

Cohesion distance

E
po

ch
s

4 agents
6 agents
8 agents

Fig. 6. Number of epochs to achieve cohesion at different distances.

69707172737475

101

102

103

104

105

Cohesion distance

T
im

e
(s
)

4 agents
6 agents
8 agents

69707172737475

102

103

Cohesion distance

M
em

or
y
(M

B
)

4 agents
6 agents
8 agents

Fig. 7. Resources needed to verify cohesion varying cohesion distance.

5 Conclusion

The main point we intend to make with this paper is that existing methodologies,
techniques, and tools from the wider area of formal methods, when appropriately
combined, can be of assistance in the study of different classes of so-called col-
lective systems of interest in a variety of disciplines. To support our argument,
we have shown how formal languages and modern verification procedures can be
combined to study the behaviour of flocks of birds. The technical contribution
of this paper is clearly only a proof of concept to support our argument, but in
our opinion points out relevant research directions which it may be worthwhile
pursuing.

With respect to the specific scenario considered in this paper, we plan to
devise further refined models of flocking behaviour and formally verify different

Process Algebras and Flocks of Birds 521

properties, possibly working on the back end verification technique to improve
efficiency, considering distributed analysis or large-scale simulation with com-
puting clusters. We certainly plan to apply our methodology to other classes
of systems, either artificial or natural, and would like to try to interact with
researchers from different areas in the long run.

From a technical standpoint, our approach can be improved in several ways.
With respect to scalability, techniques for parameterized model checking may
help, as they would enable us to demonstrate that a property holds for all sys-
tems larger than a threshold. So far, these techniques have been demonstrated
on models and languages with limited agent capabilities [5,19,20]; the ques-
tion whether they may be adapted to more high-level languages such as LAbS
is open. Orthogonal approaches such as symmetry reduction and partial order
reduction [2,10] could facilitate the verification of larger systems, but their inte-
gration in our verification flow might require considerable efforts. Lastly, in this
paper we have only experimented with bounded analysis. Indeed, our verifica-
tion workflow can accommodate other kinds of back end technologies. It would
be interesting to experiment with unbounded verification of properties using
state-of-the-art inductive techniques such as k-induction [24] or PDR [6].

References

1. Alaliyat, S., Yndestad, H., Sanfilippo, F.: Optimisation of Boids swarm model
based on genetic algorithm and particle swarm optimisation algorithm (compara-
tive study). In: Squazzoni, F., Baronio, F., Archetti, C., Castellani, M. (eds.) 28th
European Conference on Modelling and Simulation, ECMS 2014, Brescia, Italy,
27–30 May 2014, pp. 643–650. European Council for Modeling and Simulation
(2014). https://doi.org/10.7148/2014-0643

2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63166-6 34

3. Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topo-
logical rather than metric distance: evidence from a field study. Proc. Nat. Acad.
Sci. 105(4), 1232–1237 (2008). https://doi.org/10.1073/pnas.0711437105, www.
pnas.org/doi/abs/10.1073/pnas.0711437105

4. Bialek, W., et al.: Statistical mechanics for natural flocks of birds. Proc. Natl.
Acad. Sci. 109(13), 4786–4791 (2012)

5. Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of popula-
tion protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol.
10981, pp. 604–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3 34

6. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions. Universitext, Springer, New York (2011). https://doi.org/10.1007/978-0-
387-70914-7

https://doi.org/10.7148/2014-0643
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1073/pnas.0711437105
www.pnas.org/doi/abs/10.1073/pnas.0711437105
www.pnas.org/doi/abs/10.1073/pnas.0711437105
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/978-0-387-70914-7

522 R. De Nicola et al.

8. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In:
Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9 4

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

11. Cont, R., Bouchaud, J.P.: Herd behavior and aggregate fluctuations in financial
markets. Macroecon. Dyn. 4(2), 170–196 (2000)

12. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory
and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

13. Craig, W.: Appetites and aversions as constituents of instincts. Biol. Bull. 34(2),
91–107 (1918)

14. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Compu. Program. 187, 102345 (2020). https://doi.org/10.1016/j.scico.
2019.102345

15. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: From
Animals to Animats: Proceedings of the First International Conference on Simu-
lation of Adaptive Behavior, pp. 356–365 (1991)

16. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems
via sequential emulation. ACM Trans. Softw. Eng. Methodol. 31(3), 1–41 (2022).
https://doi.org/10.1145/3490387

17. Emlen, J.T.: Flocking behavior in birds. The Auk 69(2), 160–170 (1952)
18. Grégoire, G., Chaté, H., Tu, Y.: Moving and staying together without a leader.

Phys. D: Nonlinear Phenom. 181(3–4), 157–170 (2003)
19. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: param-

eterized model checking of threshold-based distributed algorithms. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 6

20. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification
of robot swarms. In: Bonet, B., Koenig, S. (eds.) 29th Conference on Artificial
Intelligence (AAAI), pp. 2081–2088. AAAI (2015)

21. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot.
Auton. Syst. 30(1–2), 85–101 (2000)

22. Norris, K.S., Schilt, C.R.: Cooperative societies in three-dimensional space: on the
origins of aggregations, flocks, and schools, with special reference to dolphins and
fish. Ethol. Sociobiol. 9(2–4), 149–179 (1988)

23. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Stone, M.C. (ed.) Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 1987, Anaheim, 27–31 July 1987, pp.
25–34. ACM (1987). https://doi.org/10.1145/37401.37406

24. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X 8

25. Sumpter, D.J.: The principles of collective animal behaviour. Philos. Trans. Royal
Soc. B: Biol. Sci. 361(1465), 5–22 (2006)

https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/BFb0028741
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1145/3490387
https://doi.org/10.1007/978-3-319-21690-4_6
https://doi.org/10.1145/37401.37406
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8

Process Algebras and Flocks of Birds 523

26. Trotter, W.: Instincts of the Herd in Peace and War. TF Unwin Limited (1920)
27. Valentini, G., Hamann, H., Dorigo, M., et al.: Self-organized collective decision

making: the weighted voter model. In: AAMAS, pp. 45–52 (2014)
28. Wheeler, W.M.: The Social Insects: Their Origin and Evolution. Routledge, Abing-

don (2015)
29. Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., Fortino, G.:

Swarm intelligence and IoT-based smart cities: a review. In: Cicirelli, F., Guerrieri,
A., Mastroianni, C., Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart
Urban Ecosystems. IT, pp. 177–200. Springer, Cham (2019). https://doi.org/10.
1007/978-3-319-96550-5 8

https://doi.org/10.1007/978-3-319-96550-5_8
https://doi.org/10.1007/978-3-319-96550-5_8

The Integration of Testing and Program
Verification

A Position Paper

Petra van den Bos and Marieke Huisman(B)

Formal Methods and Tools, University of Twente, Enschede, The Netherlands

m.huisman@utwente.nl

Abstract. Formal analysis techniques for software systems are becom-
ing more and more powerful, and have been used on non-trivial exam-
ples. We argue that the next step forward is to combine these different
techniques in a single framework, which makes it possible to (i) analyse
different parts of the system with different techniques, (ii) apply differ-
ent techniques on a single component, and (iii) seamlessly combine the
results of the various analysis. We describe our vision of how this integra-
tion can be achieved for the analysis techniques of testing and deductive
verification. We end with an overview of research challenges that need
to be addressed to achieve this vision.

1 Introduction

As our society depends more and more on software in every aspect of our daily
lives, we have become crucially dependent on software functioning correctly and
reliably, and without doing us any harm. Over the last decades, many differ-
ent techniques have been developed that can help us to obtain such guarantees.
These techniques range from running a few test cases to full formal verification
of the software’s properties. With this wide range of approaches that we have
available, we see that the amount of effort that is required to use such a tech-
nique is typically counterbalanced by the guarantees that are provided by it.
In particular for powerful techniques, the required formal description might be
even larger than the software system or program itself. Therefore, to make effec-
tive use of this wide range of techniques, we need to find a way to balance and
combine the effort and effectiveness of the different approaches in an optimal
way.

To achieve this balance, we argue that an integration of those different tech-
niques is necessary. This integration should enable the following ways of verifying
a system:

– different system parts can be analyzed with different techniques;
– a formal technique used to analyze a system part can be replaced by another;

and
– the analysis results can be combined seamlessly.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 524–538, 2022.
https://doi.org/10.1007/978-3-031-15629-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_28&domain=pdf
http://orcid.org/0000-0003-4467-072X
https://doi.org/10.1007/978-3-031-15629-8_28

The Integration of Testing and Program Verification 525

There are many different reasons why the integration of formal techniques
for software analysis is necessary:

– Usually some parts of a system are more critical than others. Critical parts
should be verified thoroughly, using techniques with strong guarantees, while
other parts can be analyzed with easy-to-apply techniques that provide
weaker guarantees.

– By allowing the flexible use of techniques with proportionally required efforts
and provided guarantees, the threshold for applying formal techniques is
lowered. Consequently, a general boost in software quality can be expected,
because some sort of formal techniques can easily be applied to large parts of
the system.

– Software is almost never a static artifact, but changes continuously, while it
also runs in changing environment. These changes result in different needs for
correctness guarantees. Ease in swapping of applied techniques will support
this change.

– Without clear results from the analysis effort, it is hard to know where to
improve the software. Hence, when combining techniques, combining the anal-
ysis results is essential to transfer the knowledge obtained in the analysis effort
to the development of the system. By combining analysis results, again, a
boost in quality of the software is to be expected, as this will provide more
pointers for improvement, than separate results for parts alone. Also we think
that combining results is a smaller challenge than applying one analysis tech-
nique on the whole system.

To exemplify what such an integration would encompass, this paper sketches
what the integration would look like for the authors’ research areas: testing and
deductive verification. This way, we provide a concrete view on how the integra-
tion could work. Deductive verification [17], or program verification, is a static
analysis method applied on the code level of a system. Testing consists of execut-
ing the system and observing whether the systems behaviour is as expected. We
distinguish between two different testing techniques: automated testing, where
test cases are written by humans (e.g. developers), and model-based testing,
where test cases are derived algorithmically from a formal model [28,38].

To understand how testing and verification can be integrated, we first discuss
the testing and deductive verification in more detail, with their strengths and
weaknesses (Sect. 2). Then we sketch what our ideal approach to integrating
testing and verification would look like (Sect. 3), and after that we discuss what
we see as the open research challenges that need to be addressed to reach this
goal (Sect. 4). We have grouped these challenges in three categories: challenges
that are related to how these techniques can be combined, challenges that need
to be addressed in the area of testing, and challenges that need to be addressed
in the area of deductive verification.

526 P. van den Bos and M. Huisman

2 Strengths and Weaknesses of Testing and Verification

This section gives a brief overview of automated testing, model-based testing,
and deductive verification, and for each of these formal analysis techniques we
discuss strengths and weaknesses.

General Strengths and Weaknesses of Testing. Testing is the most applied app-
roach for validating software, and has already shown its practical value on many
relevant case studies [1,10,20,24,39,41] An important advantage is that testing
can be applied independently from the programming language(s) and internal
details of the system implementation, by focusing on the (black-box) input-
output behaviour of the system. As long as there is an interface that can be
used by the test cases, testing works. Furthermore, by only modeling or select-
ing tests for the most relevant or important aspects of a system, the time needed
for testing can be reduced. A general drawback of testing is that testing is always
limited to a finite number of runs of the program with a finite length, and thus
exhaustively testing all possible behaviours of the system is usually impossible.
Moreover, because testing looks at actual, concrete runs of a system, some situa-
tions require the tests to be run multiple times, to uncover previously undetected
problems in the code, e.g. when the software runs on different types of hardware,
or in threads that can be interleaved in many orders.

Automated Testing. Automated testing [5] is more lightweight than model-based
testing and deductive verification, in terms of effort and expertise required. It
comprises executing hand-written test cases automatically. The test cases are
small programs that execute some system code, e.g. by calling a method/func-
tion/procedure, and then checking that the result of this execution, e.g. a part
of the system state, is as expected.

Because these test cases can be executed automatically, e.g. by using a testing
framework as JUnit, the tests can be run any time, and many times. This allows
for testing after any change made to the system, although execution time poten-
tially increases with the number of tests, making this infeasible and impractical.
Test cases are relatively easy to write. First of all they can check a very specific
property of the system which requires only limited knowledge of the system.
Second, test cases are usually written in a language developers are familiar with.
Furthermore, one can start applying automated testing by just writing the first
test case, and expand the set over time.

However, as the set of test cases grows, the maintenance of this set becomes
an issue. A lack of overview may lead to (almost) duplicate test cases, or parts of
the system without test cases. Code coverage measurements can help to detect
this, but improving the set of test cases is still a manual task. Moreover, a change
in the system may require a change in many test cases to get all test cases
succeeding again. The ‘guarantee’ automated testing provides is often expressed
in the lines of code executed by at least one test case. The lines of code reached
by any test case can be measured easily, but no semantic or formal guarantee,

The Integration of Testing and Program Verification 527

e.g. expressed as a specification of behaviour or functionality, is obtained by just
executing a set of test cases.

We note that, as a set of test cases selected based on an educated guess
and domain knowledge about the system, can find some initial bugs quickly,
automated testing is, especially in the initial stages of building a system, a very
easy to use, and effective technique.

Model-Based Testing. Model-based testing [11] is a testing technique rooted in
formal methods [38], where the specification of the system’s behaviour to be
tested is given as a formal model. Tests are derived automatically, using a test
generation algorithm. The choice of algorithm determines the guarantees that
can be provided after executing the set of generated tests. The formal model
provides the overview that automated testing often lacks. Model-based testing
can be scaled to larger systems by increasing the abstraction level of the model,
i.e. by generating tests at the level of the user or component interface, instead
of generating unit tests.

In this paper we consider white-box testing on the unit level, for automated
testing, and black-box model-based testing on the higher levels. In white-box
testing, test generation algorithms may use information from the code, e.g. to
generate a test for both branches of an if-statement. For black-box testing we
just assume that the system can be tested via some interface. A model then
specifies the system by only using this interface.

Guarantees provided by test generation algorithm can consist of structural
model coverage guarantees [9,10], or semantic guarantees, e.g. in the form of test
purposes [40]. Although these guarantees are based on executions of the system,
and hence do not provide a complete guarantee of correctness, they are much
stronger than automated testing, by expressing the guarantee on the level of
the model instead of the collection of test executions. The main disadvantage of
model-based testing is the requirement of the existence of a model: constructing
it is usually a larger effort than writing a few test cases, and requires more
expertise, because modelling languages are usually formal languages, e.g. finite
state machines or labeled transition systems. Lastly, test generation algorithms
are usually designed for a specific formal modelling language, as the guarantee
they provide is linked to the language. Moreover, the powerful guarantees usually
imply more required restrictions, e.g. only control flow but no (unbounded) data.
More research is needed to integrate and lift test generation algorithms and their
guarantees.

Deductive Verification. In contrast to running tests, program verification (a.k.a.
deductive verification) [17] makes a static analysis of the program, based on
the code only, and in this analysis it considers all possible behaviours of the
program. Thus, any property that is established by program verification holds
for all executions of the program, and will remain to hold if the program is
deployed on different hardware (provided that any assumptions that are made for
the verification are guaranteed by the hardware). Typically, the user writes the
desired properties as special annotations of the program code. Typical examples

528 P. van den Bos and M. Huisman

of annotations are pre- and postconditions of single methods, or global invariant
properties that hold throughout the execution of a program. Also loop invariants
are often written as program annotations. The verifier then uses (variants and
extension of) Hoare logic proof rules [18] to verify that a program respects its
specification. This makes program verification a powerful analysis technique,
which can be used for a large range of different properties.

However, to establish these general properties, often the prover needs to be
guided by a large number of auxiliary annotations, i.e., properties that are sup-
posed to hold at a particular point in the program, such as loop invariants, which
have to be provided by the user manually. Adding all these auxiliary properties
to guide the prover requires substantial expertise in program verification, and
can take a large amount of time, which makes it hard to apply this technique
on large-scale, industrial applications. As the verification is closely connected to
the semantics of the program language that is used to develop the software, any
extension of the program language requires also an extension of the verification
support. Moreover, to make the provers underlying the verification technique
work automatically, we often need to make abstractions over the state space of
the program. For example, most deductive verification tools will abstract the
computer type int into the mathematical type of integers, while the type float
is abstracted to reals (if supported at all).

Despite these challenges, in recent years, enormous progress has been made
to improve program verification tools, making them work for large parts of real-
istic languages (such as Java [3,11–13] and C [25]), and even considering complex
language features such as concurrency [7]. These state-of-the-art program veri-
fiers have been used on relevant case studies, such as the widely used TIMsort
algorithm [34], a parallel nested depth-first search algorithm [31], as used in par-
allel model checking, and implementations of prefix sum algorithms [35], a basic
library function used for many GPU algorithms.

Strengths and Weaknesses of Testing and Verification. Finally, we would like to
stress that there are two inherent properties of testing and verification that are
hard to adapt and need to be considered when applying the techniques:

– The quality of testing and verification depends on the quality of the require-
ments that are formalised. Only requirements that are explicitly formulated
and specified can be tested and/or verified. We note that if the user of the
formal technique does not write the specification, he may still choose a tool
or algorithm that provides a generic specification, e.g. no “crash” or no null
pointer exceptions, but for stronger guarantees a formal property specification
is necessary.

– Testing and verification are post hoc techniques, that require a (partial) imple-
mentation to do the analysis, as no results can be obtained for a non-existent
implementation. Nevertheless, having a specification can help to guide the
implementation effort significantly.

The Integration of Testing and Program Verification 529

3 Our Vision

As discussed above, in order to effectively scale the use of formal analysis tech-
niques, and to make them better applicable and easier to apply, we need to
integrate formal techniques. This way techniques can be combined and switched
between, depending on the required strengths of the correctness guarantees.

First of all, for this approach to work, it is essential to identify the different
parts that make up the system, and to have support to analyse these parts
in isolation, as well as to analyse the interaction between the different parts.
Ideally, at each of these levels, we have different techniques that we can apply
(i.e. support for both testing and verification), such that a user/developer can
decide which technique to use.

To decide what technique would be appropriate, different considerations are
relevant. During the development phase, it is important that one is able to
get quick push-button feedback whether the implementation is “on track”, i.e.,
according to the specification, and testing is often the right approach for this.
Once the implementation is finalised, it depends on the nature of the program
part whether testing, i.e., analysis of some executions, is sufficient, or whether
it should be fully verified. As verification takes more effort, this would typically
be the case for crucial data structures, or parts that are highly safety-critical.
However, it can also be useful elsewhere, for example if in a later stage, a bug is
detected, which did not manifest during testing. Verification will then provide
the means to analyse the executions that were not covered by testing.

Below we propose a scheme to apply and integrate testing and deductive
verification for analyzing a software system. The scheme is visualized in Fig. 1.

1. A model M describes system level behaviour on the level of user interactions.
Model-based test generation algorithms can be used to generate system level
test cases.

2. The model M is decomposed into model parts M0,M1, . . . ,Mn describing
only a part of the system. These model parts can be of any format that helps
describing a part of the system in more detail. A model part Mi corresponds
to an implementation part Ii.

3. From a model part Mi contracts Ci are generated. These contracts are used
to either check the validity of implementation parts with deductive verifi-
cation, or to generate implementations using a correct-by-construction app-
roach. Both the models Mi and contract Ci can be used to generate tests
for sub-parts that are not analyzed with deductive verification or derived by
correct-by-construction techniques.

We motivate and explain this scheme as follows:

1. We use testing for the analysis of system level behaviour, since testing allows
for abstraction, i.e. the model can describe the system at the level of user
interactions instead of at code level. Appropriate test generation algorithms
need to be selected from the abstract model, for generating test cases, to run
concrete executions in the system.

530 P. van den Bos and M. Huisman

M

M0 M1 M2

I0 I1
System

I2

C0 C1 C2

Fig. 1. Scheme for integration of testing and deductive verification

2. To perform more detailed analysis, model M is decomposed into model parts
Mi, describing an implementation part at code level. Part-specific details may
be added at this stage, but is important to maintain the link with the global
model M , such that it remains possible to merge the part-specific analysis
results into an overall analysis result. A system is divided into implementation
parts, where a part can be of different forms, e.g. a system component, a
process, or a function/behaviour of the system. The model parts Mi should
match the implementation parts Ii.

3. To allow for flexible use of testing and deductive verification in analyzing
implementation parts, both should be used at code level, in a way that they
strengthen each other. By generating contracts from the model parts, the
effort of using deductive verification is reduced. If generation cannot generate
a full contract, the contract may be augmented manually. Moreover, develop-
ment effort can also be reduced, by using these contracts, and possibly also
the model parts, for code generation in a correct-by-construction approach.

In the next section we will describe the challenges that we believe need to be
solved in testing, verification, and their combination, in order to implement this
scheme.

4 Challenges

To realise the vision outlined above, there are still a number of important
research challenges that need to be addressed. This section lists some of these
challenges, and divides them into three categories: challenges for integration,
challenges for testing, and challenges for deductive verification.

4.1 Challenges for Integration

Challenge 1 (Common Specification Language). As mentioned above, a
system developer should be able to seamlessly switch between different formal

The Integration of Testing and Program Verification 531

analysis mechanisms. This requires that all the desired properties are speci-
fied in a single specification formalism, which should combine both data and
control-flow related properties. It should provide enough abstraction to describe
the system-level behaviour to be used for model-based testing, but also should
allow to capture precise code-level details. Existing specification languages typi-
cally support a single analysis technique; examples of specification languages are
automata and process algebras [38] for model-based testing and JML [26,27] and
ACSL [6] for contract-based specifications (for deductive verification). An inter-
esting approach in this direction is the ppDATE specification language, which
enhances the control-oriented property language of DATE, with data-oriented
pre- and postconditions [4].

Challenge 2 (Connected Specifications at Different Abstraction Lev-
els). As our specifications can express both system-wide level properties, as well
as properties about the code, we also need to develop techniques that allow to
make the transition between these two levels: given a model that describes the
abstract system-level behaviour, and a method or function that implements one
step in this overall process, we need to define suitable refinement and abstraction
techniques that allow to switch between the different levels, while making sure
that the various levels are properly connected. In particular, this means that we
need to investigate techniques that (i) can generate contracts from model-level
specifications, and (ii) can generate system-level model descriptions from indi-
vidual method contracts, combined with a high-level program that shows the
pattern in which the methods are called.

The particular challenge that we need to handle here is that the different
levels focus also on different aspects of the behaviour: the system-wide level
is more focusing on the control-flow, while the concrete implementation-level
focuses also on data-oriented properties.

In this context, we would also like to mention our recent work on Alpinist [36].
Alpinist takes as input an annotated and verified program, and it then applies
an optimisation to both to the annotations and the code, such that the resulting
optimised program can still be verified and has a better performance. We believe
that similar ideas can be used in the context of program refinements: a high-
level description is annotated and verified, and then via several refinement steps
transformed into efficiently executable code, which can still be verified.

Challenge 3 (Code-level Generation). In addition to having specifications
at different levels, we also would like to understand how system-level models can
be refined into executable code (with suitable annotations). Program synthesis is
an active research area, with a large number of open challenges. We have already
explored this idea in a limited setting, where high-level system descriptions are
given as choreographies, i.e. sequential programs that describe communications
between processes. These sequential programs can then be decomposed into par-
allel programs [8,23]. The functional correctness that was deductively verified for
the sequential program is preserved in the decomposition into parallel programs.
The approach has been implemented in the tool VeyMont [8]. The current app-
roach still works in a fairly restricted setting, in particular the processes need

532 P. van den Bos and M. Huisman

to be named explicitly, and their number is hence bounded. In future work we
plan to support an unbounded number of processes.

Challenge 4 (Educated Choice of Analysis Technique). As mentioned a-
bove, given an implementation part, we can apply both testing and verification.
Testing will often be much less work, but only provides guarantees for the execu-
tions that have been tested, while verification in principle considers all possible
executions, but also requires much extra effort. Therefore, we believe that it is
important to develop heuristics that provide an estimate about the expected
investment versus the payoff of applying the different techniques. These heuris-
tics could depend for example on how a part of the code is used within the
application, on the complexity of the computations that are being done, or on
the sensitivity to changes elsewhere in the program.

Challenge 5 (Error Propagation at Different Specification Levels). If
we have specifications at different levels that describe different aspects of the
code, we also need to have ways to provide error messages at these different
specification levels. For example, if there is an error in the implementation,
then we should also be able to indicate that this error exists in the system-level
model. To support this, this error has to be propagated up and described at the
appropriate level, such that the system-level model developer can understand
that it is the responsibility of the code developer to fix the issue.

Challenge 6 (Using Testing Results for Verification). We believe that
the information that is obtained during the testing phase can be used to extract
information about the code, and to generate auxiliary annotations with possible
intermediate properties, which can help to speed up the analysis process. Of
course, this requires also some way to interact with the developer to discard
annotations that are wrongly inferred. Notice that such a technique also can
help during the testing phase itself: if the system infers unexpected or wrong
properties, they could also point to an error in the implementation.

4.2 Challenges for Testing

Challenge 7 (Maintenance of Test Cases and Models). Almost always
systems are subject to change. Consequently, the test cases used for automated
testing, or the models used for test generation, need to be updated as well. With
automated testing, the test set will grow with the system, but the tests need
to remain a good indicator for the quality of the system, while time spent on
test execution is manageable. A challenge here is to detect and reduce similar
test cases to reduce execution time, while adding test cases for new parts of the
system to guarantee the quality of these new parts. For model-based testing,
the same holds: the model needs to be updated to reflect the changed software,
and the challenge is to understand what parts need to be updated, or added;
(de)composition of models (see next challenge) may help to keep an overview of
the system, as small model parts are easier to understand than one monolithic
model. We note that verification annotations also need to be updated when code

The Integration of Testing and Program Verification 533

changes, but as this all happens at the code level, the correspondence is much
more obvious and direct.

Challenge 8 (Composition and Decomposition of Models). A monolithic
model describing the system as a whole is difficult to construct and hard to
maintain. Like in deductive verification, a more modularized approach is helpful,
as specifying small parts that can be combined is much easier than reasoning
about the system and all its interactions as a whole. Besides such composition
methods, decomposition also helps in specifying a model, as a composed model.
For example, after composing behavioral features into one model, this model can
be decomposed in a different way, e.g. components and processes. Moreover, a
model can describe the system behavior on a global, abstract level, and then
be decomposed into parts, possibly with gaps that need to be filled in with
implementation level details.

Challenge 9 (Test Selection). Selecting the right tests is important to reduce
test execution time, while maximizing the discovery of bugs in the system. Tests
should be selected based on the risk and impact a bug can have on some part
of the system. However, establishing these risks, impacts, and the parts of the
system that are at risk, is usually a rather informal educated guess. Moreover,
this risk then needs to be translated into a formal selection criterion. In case
of automated testing, a categorization of test cases could be used to distinguish
the system parts that they analyse. In case of model-based testing, test selection
boils down to choosing the right test generation algorithm. Moreover, the avail-
able choices in algorithms usually depend on the modelling formalism. In this
direction, a more technical challenge is to find better test generation algorithms.
They should allow for flexible scaling in the number of test cases, and provide a
scaling in the guarantees offered as well. Additionally, better algorithms should
be developed for expressive modelling and specification languages that include
both control flow and (unbounded) data, as such languages will help with the
integration of testing and verification.

4.3 Challenges for Deductive Verification

Challenge 10 (Language Features). In order to make deductive verifica-
tion usable in an industrial setting, the verifiers need to extend their support
for different language features, such as exception support (see [33] for initial
ideas in this direction), floating point numbers (currently partially supported by
some tools, such as KeY [2], Frama-C [29] and Why3 [15]), strings, input/out-
put, reflection, streams, and logging mechanisms. Part of this is an engineering
effort, but to support verification of for example reflection and streams, also new
verification techniques need to be developed.

Challenge 11 (Annotation Generation). A major bottleneck for deductive
verification is the amount of annotations that needs to be written. We conjecture
that for a large part of code, suitable annotations to prove memory safety can
be generated automatically, using e.g. techniques for loop invariant generation,

534 P. van den Bos and M. Huisman

but also by developing suitable heuristics that recognise boilerplate code pat-
terns. The literature already contains ample work on loop invariant generation,
see e.g. [16,19,22,37], however these papers often focus on automatically infer-
ring loop invariants for loops doing complex numerical calculations, while they
ignore many standard code patterns, for example a loop manipulating all single
elements in an array (with [16] as a noteworthy exception). Therefore, we believe
that the combination with recognising frequently occurring code patterns will
be important to actually make progress on this challenge.

Moreover, when reasoning about concurrent software, such as is done by for
example VerCors [7], Viper [30] and VeriFast [21], we typically require permission
annotations, which allow us to prove data race freedom: permission annotations
indicate whether a thread has (shared) read access to a heap location, or (exclu-
sive) write access. Some initial techniques have been developed to infer these
permission annotations [14]. However, also here for many programs, permissions
are following standard patterns, and can be generated automatically, and we
believe that good heuristics can lead to good progress here.

Challenge 12 (Multi-language Software). Moreover, modern software is
often composed of modules written in different programming languages, that
communicate via a well-defined communication interface. Deductive verification
tools typically support single languages, and it is a major effort to add support
for a new programming language. We believe that an important step forward
will be to develop deductive verifiers with multi-language support, that easily
can be extended for new programming languages. One possible approach that we
see to achieve this is by developing verification techniques for a core language,
and for any newly added language, we only need to define an embedding into
this core language. Of course, this raises additional challenges: how to reason
about language features that are not easily embedded into the core language, at
what level to write the specifications, and how to ensure that verification errors
are reported at the right level (ideally, at the level of the source language, rather
than at the core)?

Challenge 13 (Generating Unit Tests). There is a close correspondence
between code contracts and unit tests: a precondition indicates under which cir-
cumstances the test should be executed (the required test set-up), while the
postcondition corresponds to the test goal. This idea has been explored for
sequential programs in tool such as JMLUnitNG [42], and the test case gen-
erator of Whiley [32]. However, it is still an open challenge how to extend this
technique to a concurrent setting, where the testing has to consider possible
interleaving with other threads. Moreover, if one uses permission-based annota-
tions to capture the access permissions of threads, it would also be interesting
to include these permission annotations in the generated test cases, but this
requires setting up a runtime framework to keep track of access permissions.

Challenge 14 (Explicit Platform-dependent Assumptions). When we
verify a program, we often make implicit assumptions about the underlying com-
putation model, in order to keep the verification tractable. It is an important

The Integration of Testing and Program Verification 535

challenge to be able to make these assumptions explicit, such that we know which
parts of the system are verified in a platform-independent manner, and which
parts are platform-dependent. If we have this information, then it means that
we only have to re-test those parts of the system that are platform-dependent
when the system is deployed on a different platform.

5 Conclusion

This position paper motivated the need for integration of formal techniques: their
combination will increase their effectiveness, and enable the right level of analysis
guarantees required for a sufficient level of trust in the correct functioning of the
analyzed system. We proposed a scheme for integrated use of automated testing,
model-based testing, and deductive verification to show how this integration can
be used concretely. Finally, we identified a number of research challenges that
need to be dealt with, in order for this integration to become reality.

References

1. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F., Verwer, S.: Learning and
testing the bounded retransmission protocol. In: Heinz, J., Higuera, C., Oates,
T. (eds.) Proceedings of the Eleventh International Conference on Grammatical
Inference, vol. 21. Proceedings of Machine Learning Research. University of Mary-
land, College Park, pp. 4–18. PMLR (2012). https://proceedings.mlr.press/v21/
aarts12a.html

2. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive ver-
ification of floating-point Java programs in KeY. In: TACAS 2021. LNCS, vol.
12652, pp. 242–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72013-1 13

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification the KeY Book, vol. 10001. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6

4. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: Verifying data- and
control-oriented properties combining static and runtime verification: theory and
tools. Formal Methods Syst. Des. 51(1), 200–265 (2017). https://doi.org/10.1007/
s10703-017-0274-y

5. Ammann, P., Outt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

6. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language, Version 1.14 (2018)
7. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification

of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

8. van den Bos, P., Jongmans, S.: VeyMont: parallelising verified programs instead of
verifying parallel programs. Manuscript

9. van den Bos, P., Tretmans, J.: Coverage-based testing with symbolic transition
systems. In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp. 64–82.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31157-5 5

https://proceedings.mlr.press/v21/aarts12a.html
https://proceedings.mlr.press/v21/aarts12a.html
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-030-31157-5_5

536 P. van den Bos and M. Huisman

10. van den Bos, P., Vaandrager, F.W.: State identification for labeled transi-
tion systems with inputs and outputs. Sci. Comput. Program. 209, 102678
(2021). https://doi.org/10.1016/j.scico.2021.102678. https://www.sciencedirect.
com/science/article/pii/S016764232100071X. ISSN 0167-6423

11. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

12. Cok, D.R.: OpenJML: software verification for Java 7 using JML, Open-JDK,
and Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) 1st Workshop
on Formal Integrated Development Environment (F-IDE). EPTCS, vol. 149, pp.
79–92 (2014). https://doi.org/10.4204/EPTCS.149.8. https://dx.doi.org/10.4204/
EPTCS.149.8

13. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

14. Dohrau, J., Summers, A.J., Urban, C., Münger, S., Müller, P.: Permission inference
for array programs. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10982, pp. 55–74. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96142-2 7

15. Fumex, C., Marché, C., Moy, Y.: Automating the verification of floating-point
programs. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp.
102–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 7

16. Galeotti, J., Furia, C., May, E., Fraser, G., Zeller, A.: Inferring loop invariants
by mutation, dynamic analysis, and static checking. IEEE Trans. Softw. Eng. 41,
1019–1037 (2015)

17. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9 18

18. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969). ISSN 0001-0782

19. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 7

20. Huertas, T., Quesada-López, C., Mart́ınez, A.: Using model-based testing to reduce
test automation technical debt: an industrial experience report. In: Rocha, Á.,
Ferrás, C., Paredes, M. (eds.) ICITS 2019. AISC, vol. 918, pp. 220–229. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11890-7 22

21. Jacobs, B., Smans, J., Piessens, F.: Solving the VerifyThis 2012 challenges with
VeriFast. Int. J. Softw. Tools Technol. Transfer 17(6), 659–676 (2014). https://doi.
org/10.1007/s10009-014-0310-9

22. Janota, M.: Assertion-based loop invariant generation. In: 1st International Work-
shop on Invariant Generation (WING) (2007)

23. Jongmans, S.S., van den Bos, P.: A predicate transformer for choreographies. In:
Sergey, I. (ed.) ESOP 2022. LNCS, vol. 13240. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-99336-8 19

24. Karlsson, S., Čaušević, A., Sundmark, D., Larsson, M.: Model-based automated
testing of mobile applications: an industrial case study. In: 2021 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 130–137 (2021). https://doi.org/10.1109/ICSTW52544.2021.00033

https://doi.org/10.1016/j.scico.2021.102678
https://www.sciencedirect.com/science/article/pii/S016764232100071X
https://www.sciencedirect.com/science/article/pii/S016764232100071X
https://doi.org/10.1007/b137241
https://doi.org/10.4204/EPTCS.149.8
https://dx.doi.org/10.4204/EPTCS.149.8
https://dx.doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-72308-2_7
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-19835-9_7
https://doi.org/10.1007/978-3-030-11890-7_22
https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1109/ICSTW52544.2021.00033

The Integration of Testing and Program Verification 537

25. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2 32

26. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006)

27. Leavens, G., et al.: JML reference manual. Department of Computer Science, Iowa
State University, February 2007. https://www.jmlspecs.org

28. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996). https://doi.org/10.1109/5.533956

29. Mattsen, S., Cuoq, P., Schupp, S.: Driving a sound static software analyzer with
branch-and-bound. In: 13th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2013, Eindhoven, Netherlands, 22–23
September 2013, pp. 63–68. IEEE Computer Society (2013). https://doi.org/10.
1109/SCAM.2013.6648185

30. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

31. Oortwijn, W., Huisman, M., Joosten, S.J.C., van de Pol, J.: Automated verification
of parallel nested DFS. In: TACAS 2020. LNCS, vol. 12078, pp. 247–265. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 14

32. Pearce, D.J., Utting, M., Groves, L.: An introduction to software verification with
Whiley. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430,
pp. 1–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3 1

33. Rubbens, R., Lathouwers, S., Huisman, M.: Modular transformation of Java excep-
tions modulo errors. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021.
LNCS, vol. 12863, pp. 67–84. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85248-1 5

34. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

35. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal verification of parallel
prefix sum. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM
2020. LNCS, vol. 12229, pp. 170–186. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-55754-6 10

36. şakar, Ö., Safari, M., Huisman, M., Wijs, A.: Alpinist: an annotation-aware GPU
program optimizer. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol.
13244, pp. 332–352. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99527-0 18

37. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation
using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 57

38. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-47166-2_32
https://www.jmlspecs.org
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/SCAM.2013.6648185
https://doi.org/10.1109/SCAM.2013.6648185
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-45190-5_14
https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

538 P. van den Bos and M. Huisman

39. Tretmans, J.: On the existence of practical testers. In: Katoen, J.-P., Langerak,
R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 87–106.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 5

40. de Vries, R.G., Tretmans, J.: Towards formal test purposes. Formal Approaches
Test. Softw. FATES 1, 61–76 (2001)

41. Zafar, M.N., Afzal, W., Enoiu, E., Stratis, A., Arrieta, A., Sagardui, G.: Model-
based testing in practice: an industrial case study using graphwalker. In: 14th
Innovations in Software Engineering Conference (Formerly Known as India Soft-
ware Engineering Conference), ISEC 2021, Bhubaneswar, Odisha, India. Associa-
tion for Computing Machinery (2021). https://doi.org/10.1145/3452383.3452388.
ISBN 9781450390460

42. Zimmerman, D.M., Nagmoti, R.: JMLUnit: the next generation. In: Beckert, B.,
Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 183–197. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18070-5 13

https://doi.org/10.1007/978-3-319-68270-9_5
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1007/978-3-642-18070-5_13

Discovering Directly-Follows Complete
Petri Nets from Event Data

Wil M. P. van der Aalst(B)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

https://www.vdaalst.com

Abstract. Process mining relies on the ability to discover high-quality
process models from event data describing only example behavior. Process
discovery is challenging because event data only provide positive exam-
ples and process models may serve different purposes (performance anal-
ysis, compliance checking, predictive analytics, etc.). This paper focuses
on the discovery of accepting Petri nets under the assumption that both
the event log and process model are directly-follows complete. Based on
novel insights, two new variants (α1.1 and α2.0) of the well-known Alpha
algorithm (α1.0) are proposed. These variants overcome some of the lim-
itations of the classical algorithm (e.g., dealing with short-loops and non-
unique start and ending activities) and shed light on the boundaries of the
“directly-follows completeness” assumption. These insights can be lever-
aged to create new process discovery algorithms or improve existing ones.

Keywords: Process Discovery · Process Models · Petri Nets

1 Introduction

Process mining is increasingly adopted by larger organizations to find and remove
inefficiencies, bottlenecks, and compliance issues [1]. There are over 40 process
mining vendors (cf. www.processmining.org) and more than half of the Fortune-
500 corporations are already using process mining [16]. Thousands of organi-
zations are extracting event data from systems such SAP, Salesforce, Oracle,
ServiceNow, and Workday to apply process mining. Despite the widespread use
of process mining, many challenges remain, ranging from data extraction and
scalability to discovering better process models and providing better diagnostics.

Although most process mining tools support the discovery of higher-level
models visualized in terms of BPMN (Business Process Model and Notation)
(next to conformance checking and predictive analytics), in practice process ana-
lysts and managers mostly use the so-called Directly-Follows Graphs (DFGs) to
get initial insights. In a DFG all activities and their frequencies are shown. The
activities are connected through directed edges that show how often one activ-
ity is followed by another activity within the same case (i.e., process instance).
These edges can also be annotated with durations (minimum, maximum, mean,
etc.), because events have timestamps. The creation of DFGs is simple and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 539–558, 2022.
https://doi.org/10.1007/978-3-031-15629-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_29&domain=pdf
www.processmining.org
https://doi.org/10.1007/978-3-031-15629-8_29

540 W. M. P. van der Aalst

highly scalable. However, there are also many limitations (e.g., producing com-
plex underfitting process models), as discussed in [2].

Fig. 1. Accepting Petri net AN 1 discovered for L1 = [〈a, c, e, f〉5, 〈a, e, c, f〉4, 〈a, b, c,
e, f〉4, 〈a, b, e, c, f〉3, 〈a, e, b, c, f〉3, 〈a, b, b, c, e, f〉3, 〈a, b, b, e, c, f〉2, 〈a, e, b, b, c, f〉2, 〈a, c,
e, d, c, e, f〉2, 〈a, e, c, d, c, e, f〉2, 〈a, c, e, d, b, c, e, f〉2, 〈a, e, c, d, b, b, c, e, f〉2, 〈a, b, c, e, d, c,
e, f〉, 〈a, b, e, c, d, e, c, f〉, 〈a, e, b, c, d, c, e, f〉, 〈a, b, c, e, d, e, c, f〉, 〈a, b, c, e, d, c, e, d, c, e, d,
b, e, b, c, f〉, 〈a, c, e, d, c, e, d, e, c, f〉] using the new Alpha algorithm.

To overcome the limitations of DFGs, dozens (if not hundreds) of process dis-
covery techniques have been developed. The core idea is very simple. The input
(i.e., an event log) can be viewed as a multiset of traces. Each trace corresponds
to a case, i.e., one execution of the process for a patient, order, student, package,
etc. A trace is represented as a sequence of activities. Since multiple cases may
exhibit the same sequence, we need to consider multisets. L1 = [〈a, c, e, f〉5, 〈a,
e, c, f〉4, . . .] in the caption of Fig. 1 describes such an event log, e.g., there are
five cases following the sequence 〈a, c, e, f〉. Note that in this compact represen-
tation, we abstract from timestamps, resources, costs, etc. Based on such input,
we would like to produce models such as the accepting Petri net AN 1 shown
in Fig. 1. AN 1 is able to produce all the traces in L1. Note that activity e is
concurrent to b and c such that c and e occur the same number of times (at least
once) and b can occur any number of times.

Fig. 2. Accepting Petri net AN ′
1 discovered for L1 using the classical Alpha algorithm.

The original Alpha algorithm [1,5] was the first algorithm able to discover
concurrent process models from event logs. The algorithm assumes that the

Discovering Directly-Follows Complete Petri Nets from Event Data 541

underlying process can be represented as a free-choice structured workflow net
without short loops. For this class of process models, the algorithm guarantees
to return the correct process model assuming a directly-follows complete event
log [5]. For process models outside this class, the results are unpredictable. The
discovered model may be underfitting or not sound. The limitations were already
investigated in the original paper. One of the problems is the inability to discover
short loops.This is illustrated inFig. 2, which shows the processmodelwhen apply-
ing the original, over twenty year old, Alpha algorithm. The self-loop involving b
and the length-two loops involving d cause problems. Activities b and d are dis-
connected and it is impossible to replay parts of the event log L1. The Alpha algo-
rithm has more problems, some of which can be resolved by using more information
[24,25]. However, these extensions are complex and impose more assumptions.

Fig. 3. Directly-Follows Graph (DFG) based on L1.

In this paper, we take a different route. We simply assume that the Directly-
Follows Graph (DFG) is all the information we have. For event log L1, we assume
that the DFG in Fig. 3 is all we have. Moreover, we look beyond the traditional
subclasses of Petri nets. We do not assume workflow nets or the free-choice
property. Instead, we focus on structural directly-follows complete accepting Petri
nets. The accepting Petri net AN 1 shown in Fig. 1 is an example of this class
of models. Therefore, we consider both directly-follows complete event logs and
structural directly-follows complete process models. This provides novel insights
and also leads to two new versions of the Alpha algorithm that are as compact
and simple as the original algorithm, but more powerful.

The remainder of this paper is organized as follows. Section 2 introduces event
logs and accepting Petri nets. Section 3 discusses different notions of directly-
follows completeness and Sect. 4 lists the typical subclasses of Petri nets con-
sidered. Section 5 presents an improved version of the original algorithm that
drops the workflow net assumption. Section 6 changes the core part of the algo-
rithm allowing for the discovery of short loops. The paper ends with a discussion
(Sect. 7) and conclusion (Sect. 8).

2 Preliminaries

In this section, we introduce basic concepts, but assume that the reader is (some-
what) familiar with the basics of Petri nets and process mining. For completeness,
we refer to [1] for process mining and [13,14] for an extensive introduction to
Petri nets.

542 W. M. P. van der Aalst

In process mining, multisets and sequences play an important role. B(X) =
X → N is a multiset over X. For example, if X = {a, b, c}, then [a3, b2, c] ∈ B(X),
[a4, b2] ∈ B(X), [a6] ∈ B(X) are three multisets each consisting of six elements.
X∗ is the set of sequences over X, e.g., σ = 〈a, b, a, b, c〉 ∈ X∗. We use the
standard operations on multisets and sequences, e.g., {x ∈ σ} = {a, b, c} and
[x ∈ σ] = [a2, b2, c].

We start by introducing event logs. An event log is a collection of events
typically grouped in cases, ordered by time, and labeled by activity names. In
its simplest form each event has a case identifier, an activity name, and a times-
tamp. Events can have many more attributes, e.g., costs, resource, location,
etc. There are also more sophisticated event log notions, e.g., partially ordered
events, events with explicit uncertainty, and events that may refer to any num-
ber of objects of different types, see, for example, the eXtensible Event Stream
(XES, www.xes-standard.org) standard and Object Centric Event Log (OCEL,
www.ocel-standard.org) standard. Here, we consider the most basic setting and
only consider the ordering of activities within cases. This implies that an event
log can be described as a multiset of traces, where each trace is a sequence of
activities (also called a process variant). An example trace is σ = 〈a, b, a〉. Many
cases can have the same trace. Therefore, an event log is a multiset of traces.
E.g. L = [〈a, b, a〉12, 〈b, a, a〉8] is an event log with 60 events describing the traces
of 20 cases distributed over two process variants.

Definition 1 (Event Log). Uact is the universe of activity names. A trace
σ = 〈a1, a2, . . . , an〉 ∈ Uact

∗ is a sequence of activities. An event log L ∈ B(Uact
∗)

is a multiset of traces.

In the caption of Fig. 1, there is another (larger) example of an event log L1 =
[〈a, c, e, f〉5, 〈a, e, c, f〉4, 〈a, b, c, e, f〉4, 〈a, b, e, c, f〉3, . . .], e.g., there are five cases
corresponding to trace 〈a, c, e, f〉, four cases corresponding to 〈a, e, c, f〉, etc.

Fig. 4. An accepting Petri net AN 2 = (N,Minit ,Mfinal) with Minit = [p1], Mfinal =
[p6], and lang(AN 2) = {〈a, b, a〉, 〈b, a, a〉}.

We use accepting Petri nets to model processes. Figure 4 shows an exam-
ple accepting Petri net AN 2 allowing for two traces: 〈a, b, a〉 and 〈b, a, a〉. The
Petri net has six places P = {p1, p2, p3, p4, p5, p6} (represented by circles),
four transitions T = {t1, t2, t3, t4} (represented by squares), and 10 arcs F =
{(p1, t1), (t1, p2), . . . , (t4, p6)}. Transitions can be labeled, e.g., l(t2) = a and
l(t3) = b.

www.xes-standard.org
www.ocel-standard.org

Discovering Directly-Follows Complete Petri Nets from Event Data 543

Definition 2 (Labeled Petri Net). A labeled Petri net is a tuple N =
(P, T, F, l) with P the set of places, T the set of transitions, P ∩ T = ∅,
F ⊆ (P × T) ∪ (T × P) the flow relation, and l ∈ T
→ Uact a labeling function.
•t = {p ∈ P | (p, t) ∈ F} is the set of input places and t• = {p ∈ P | (t, p) ∈ F}
is the set of output places of a transition t ∈ T . The same notation can be used
for input and output transitions of a place p ∈ P : •p = {t ∈ T | (t, p) ∈ F} and
p• = {t ∈ T | (p, t) ∈ F}.

Note that the labeling function may be partial and that multiple transitions
may have the same label. For AN 2 in Fig. 4, t1
∈ dom(l) and l(t2) = l(t4). It
a transition t has no label, i.e., t
∈ dom(l), we also write l(t) = τ and say the
transition is silent or invisible. In Fig. 4, •p1 = ∅, p1• = {t1}, •t1 = {p1}, t1• =
{p2, p3}, etc. States in Petri nets are called markings that mark certain places
with tokens (represented by black dots). Technically, a marking is a multiset of
places M ∈ B(P). An accepting Petri net has an initial marking Minit and a
final marking Mfinal .

Definition 3 (Accepting Petri Net). An accepting Petri net is a triplet
AN = (N,Minit ,Mfinal) where N = (P, T, F, l) is a labeled Petri net, Minit ∈
B(P) is the initial marking, and Mfinal ∈ B(P) is the final marking. UAN is the
set of accepting Petri nets.

In AN 2 depicted in Fig. 4, Minit = [p1] is the initial marking, and Mfinal =
[p6]. A transition is called enabled if each of the input places has a token. An
enabled transition may fire (i.e., occur), thereby consuming a token from each
input place and producing a token for each output place. For example, firing t1
in the initial making leads to marking [p2, p3]. There are 6 reachable markings
starting from Minit = [p1]: [p1], [p2, p3], [p2, p5], [p3, p4], [p4, p5], and [p6].

Definition 4 (Reachable Markings and Enabled Firing Sequences). Let
AN = (N,Minit ,Mfinal) ∈ UAN be an accepting Petri net with N = (P, T, F, l).
M1

t→ M2 denotes that in M1 ∈ B(P) transition t ∈ T is enabled and firing
t results in marking M2 ∈ B(P). M1

σ→ Mn with σ = 〈t1, t2, . . . tn−1〉 ∈ T ∗

denotes that there are markings M2, . . . Mn−1 ∈ B(P) such that Mi
ti→ Mi+1

for 1 ≤ i < n, i.e., there is an enabled firing sequence σ leading from M1 to
Mn. efs(AN) = {σ ∈ T ∗ | ∃M∈B(P) Minit

σ→ M} is the set of enabled firing
sequences. rmk(AN) = {M ∈ B(P) | ∃σ∈T ∗ Minit

σ→ M} is the set of reachable
markings.

Definition 5 (Liveness and Boundedness). Let AN = (N,Minit ,Mfinal) ∈
UAN be an accepting Petri net with N = (P, T, F, l). AN is live if for any
reachable marking M ∈ rmk(AN) and every transition t ∈ T , there exists a
marking reachable from M enabling t. AN is bounded if rmk(AN) is finite (i.e.,
there is a k such that no place can have more than k tokens). AN is safe if for
any M ∈ rmk(AN) and p ∈ P : M(p) ≤ 1 (i.e., each place holds at most 1 token
in any reachable marking).

544 W. M. P. van der Aalst

Accepting Petri net AN 1 in Fig. 1 has six reachable markings and is safe,
but not live. AN 2 depicted in Fig. 4 also has six reachable markings and is safe,
but not live. Adding a short-circuiting transition tsc connecting p6 to p1 (i.e.,
•tsc = {p6} and tsc• = {p1}) in Figs. 1 and 4 makes both nets live.

Definition 6 (Complete Firing Sequences). Let AN = (N,Minit ,Mfinal) ∈
UAN be an accepting Petri net with N = (P, T, F, l). cfs(AN) = {σ ∈ T ∗ |
Minit

σ→ Mfinal} is the set of complete firing sequences of AN , i.e., all firing
sequences starting in the initial marking Minit and ending in the final marking
Mfinal .

For the accepting Petri net AN 2 in Fig. 4, cfs(AN 2) = {〈t1, t2, t3, t4〉, 〈t1, t3,
t2, t4〉}. The accepting Petri net AN 1 in Fig. 1, allows for arbitrary long complete
firing sequences. Hence, cfs(AN 1) = {〈t1, t3, t5, t6〉, 〈t1, t2, t3, t5, t6〉, 〈t1, t2, t5,
t2, t2, t3, t6〉, . . .} has infinitely many elements.

Firing a transition t corresponds to executing activity l(t) if t ∈ dom(l). To
map complete firing sequences to traces, we apply labeling function l such that
visible transitions are mapped onto activities and visible transitions are skipped.
For AN 2, i.e., the accepting Petri net in Fig. 4, and the two corresponding com-
plete firing sequences σ1 = 〈t1, t2, t3, t4〉 and σ2 = 〈t1, t3, t2, t4〉: l(σ1) = 〈a, b, a〉
and l(σ2) = 〈b, a, a〉. Note that firing t1 cannot be observed and t2 and t4 are
mapped onto the same activity a.

Definition 7 (Traces of an Accepting Petri Net). Let AN = (N,Minit ,
Mfinal) ∈ UAN be an accepting Petri net. lang(AN) = {l(σ) | σ ∈ cfs(AN)} are
the traces possible according to AN .

For the accepting Petri net AN 2 in Fig. 4, lang(AN 2) = {〈a, b, a〉, 〈b, a, a〉}.
The accepting Petri net AN 1 in Fig. 1, allows for infinitely many traces:
lang(AN 1) = {〈a, c, e, f〉, 〈a, b, c, e, f〉, 〈a, b, e, b, b, c, f〉, . . .}.

An accepting Petri net is sound, if there are no dead transitions and, from
any reachable state, it is possible to reach the final state.

Definition 8 (Soundness). Let AN = (N,Minit ,Mfinal) ∈ UAN be an accept-
ing Petri net with N = (P, T, F, l). AN is sound if and only if (1) for any t ∈ T
there exists a σ ∈ efs(AN) such that t ∈ σ (i.e., t is not dead), and (2) for any
σ1 ∈ efs(AN) there exists a σ2 ∈ T ∗ such that σ1 · σ2 ∈ cfs(AN) (i.e., from any
reachable marking, it is possible to reach the final state).

Discovering a process model from a collection of example traces is one of the
main process mining tasks. Ideally, the discovered process model is sound.

Definition 9 (Process Discovery). A discovery algorithm disc ∈
B(Uact

∗) → UAN produces an accepting Petri net for each event log.

Many algorithms described in literature implement a discovery function
disc ∈ B(Uact

∗) → UAN , e.g., [4,5,9–11,17–21,24–27]. Not all are explicitly
discovering accepting Petri nets. However, also process trees can be converted
into accepting Petri nets and if an explicit final marking is missing it can often
be added.

Discovering Directly-Follows Complete Petri Nets from Event Data 545

Definition 10 (Conformance Checking). Let Udiag be the universe of con-
formance diagnostics. A conformance checking algorithm conf ∈ B(Uact

∗) ×
UAN → Udiag produces conformance diagnostics given an event log and accept-
ing Petri net as input.

Conformance checking is a topic in itself [1,3,12,22]. Therefore, we do not
detail the type of diagnostics Udiag . Most conformance measures are normalized
to [0, 1] where values close to 0 are bad and values close to 1 are good.

Conformance diagnostics may focus on (1) recall, also called (replay) fitness,
which aims to quantify the fraction of observed behavior that is allowed by the
model, (2) precision, which aims to quantify the fraction of behavior allowed by
the model that was actually observed (i.e., avoids “underfitting” the event data),
(3) generalization, which aims to quantify the probability that new unseen cases
will fit the model (i.e., avoids “overfitting” the event data), and (4) simplicity,
which refers to Occam’s Razor and can be made operational by quantifying the
complexity of the model (number of nodes, number of arcs, understandability,
etc.).

Let’s try to operationalize recall and precision. Recall is concerned with traces
in the event log not possible in the model, i.e., Lnofit = [σ ∈ L | σ
∈ lang(AN)].
Precision is concerned with traces possible in the model, but not appearing in the
event log, i.e., Lmiss = {σ ∈ lang(AN) | σ
∈ L}. However, this is not so simple.
The event log contains only example behavior (a sample) and any model with
loops has infinitely many traces. In such cases Lmiss has infinitely many elements
by definition. If the model aims to describe the mainstream behavior, then Lnofit

may contain exceptional behavior that was left out deliberately. Moreover, traces
may be partly fitting and one often wants to strike a balance between precision
(avoiding “underfitting” the sample event data) and generalization (avoiding
“overfitting” the sample event data).

These considerations make process mining different from many other model-
learning techniques such as synthesis, system identification, grammatical infer-
ence, regular inference, automata learning [6–8,15,23]. The field of model learn-
ing can be structured using three dimensions: (a) only positive examples versus
positive and negative examples, (b) input data is complete (in some form) or
not, (c) passive learning (just observations) versus active learning (interactions).
Process mining focuses on passive learning using only positive examples with
only weak completeness guarantees. This makes it very difficult. For example, it
is impossible to actively test hypotheses.

A detailed discussion of process discovery and conformance checking tech-
niques (including possible quality criteria) is outside the scope of this paper (see
[1,3,12,22] for details).

3 Directly-Follows Completeness

Most process discovery algorithms heavily rely on the directly-follows relation,
i.e., activities following each other directly, either in the event log or process

546 W. M. P. van der Aalst

model. The goal is to find models that have the same directly-follows relation
as seen in the event log. The motivation to do this is simple. One cannot expect
to see all possible traces in an event log. The event log only contains a sample.
However, it is reasonable to assume that one can witness the complete directly-
follows relation in the event log, i.e., if a can be followed by b we should see it
at least once in the input data.

In the section, we define different directly-follows completeness notions, also
considering the structure of the accepting Petri net.

Consider event log L1 = [〈a, c, e, f〉5, 〈a, e, c, f〉4, 〈a, b, c, e, f〉4, 〈a, b, e, c, f〉3,
〈a, e, b, c, f〉3, 〈a, b, b, c, e, f〉3, 〈a, b, b, e, c, f〉2, 〈a, e, b, b, c, f〉2, 〈a, c, e, d, c, e, f〉2,
〈a, e, c, d, c, e, f〉2, 〈a, c, e, d, b, c, e, f〉2, 〈a, e, c, d, b, b, c, e, f〉2, 〈a, b, c, e, d, c, e, f〉,
〈a, b, e, c, d, e, c, f〉, 〈a, e, b, c, d, c, e, f〉, 〈a, b, c, e, d, e, c, f〉, 〈a, b, c, e, d, c, e, d, c, e,
d, b, e, b, c, f〉, 〈a, c, e, d, c, e, d, e, c, f〉] and accepting Petri net AN 1 shown in
Fig. 1. Assume that L1 was obtained by repeatedly simulating the accepting
Petri net AN 1. In this case, we have a known ground truth, because we want the
discovery algorithm disc to discover AN 1 based on L1, i.e., disc(L1) = AN 1.
However, due to the two loops and concurrency, there are many possible traces.
The self-loop involving b and the length-two loops involving d allow for an arbi-
trary number of b’s, c’s, d’s, and e’s in a single trace. Hence, one cannot expect to
observe all possible traces. In fact, this is impossible. One can try to increase the
sample (i.e., the number traces in the event log), but the foundational problem
remains: we only have example traces. However, event log L1 is directly-follows
complete with respect to model AN 1. This is reflected by the Directly-Follows
Graph (DFG) in Fig. 3. To explain directly-follows completeness, we first define
some core concepts.

Definition 11 (Adding Artificial Start and End Activities). �
∈ Uact is
an artificial start activity, �
∈ Uact is an artificial end activity, ˆUact = Uact ∪{�
, �}. For any σ ∈ Uact

∗, σ̂ = 〈�〉 ·σ · 〈�〉. For any L ∈ B(Uact
∗), L̂ = [σ̂ | σ ∈ L].

For any S ⊆ Uact
∗, Ŝ = {σ̂ | σ ∈ S}.

The “hat notation” adds artificial starts and ends to traces, languages, and
event logs. For L2 = [〈a, b, a〉5, 〈b, a, a〉4]: L̂2 = [〈�, a, b, a, �〉5, 〈�, b, a, a, �〉4].
Definition 12 (Log-Based Directly-Follows Relation). Let L ∈ B(Uact

∗)
be an event log.

– act(L) = [σ(i) | σ ∈ L ∧ 1 ≤ i ≤ |σ|] is the multiset of activities in the event
log (note that σ(i) is the i-th element in the sequence σ).

– df (L) = [(σ(i), σ(i + 1)) | σ ∈ L̂ ∧ 1 ≤ i < |σ|] is the multiset of directly-
follows relations in the event log (note that the artificial start activity � and
end activity � have been added to the traces in L̂).

– a1 ⇒L a2 if and only if (a1, a2) ∈ df (L), a1
⇒L a2 if and only if (a1, a2)
∈
df (L), and a1 ⇔

L
a2 if and only if a1 ⇒

L
a2 and a2 ⇒

L
a1.

Take again L2 = [〈a, b, a〉5, 〈b, a, a〉4]: act(L2) = [a18, b9], df (L2) = [(�, a)5,
(�, b)4, (a, a)4, (a, b)5, (b, a)9, (a, �)9]. Hence, we can write � ⇒

L2
a, b ⇒

L2
a,

b
⇒L2
b, a ⇒L2

�, etc. Similar relations can be obtained for process models as is
defined next.

Discovering Directly-Follows Complete Petri Nets from Event Data 547

Definition 13 (Behavioral Model-Based Directly-Follows Relation).
Let AN = (N,Minit ,Mfinal) ∈ UAN be an accepting Petri net with S =
lang(AN) as possible traces.

– actb(AN) = {σ(i) | σ ∈ S ∧ 1 ≤ i ≤ |σ|} is the set of activities possible
according to the model’s behavior.

– df b(AN) = {(σ(i), σ(i+1)) | σ ∈ Ŝ ∧ 1 ≤ i < |σ|} is the set of directly-follows
relations possible according to the model’s behavior.

– a1 ⇒b
AN

a2 if and only if (a1, a2) ∈ df b(AN), a1
⇒b
AN

a2 if and only if (a1, a2)
∈
df b(AN), and a1 ⇔b

AN
a2 if and only if a1 ⇒b

AN
a2 and a2 ⇒b

AN
a1.

For the accepting Petri net AN 2 in Fig. 4, we find actb(AN 2) = {a, b},
df b(AN 2) = {(�, a), (�, b), (a, a), (a, b), (b, a), (a, �)}. Hence, we can write
� ⇒b

AN2
a, b ⇒b

AN2
a, b
⇒b

AN2
b, a ⇒b

AN2
�, etc.

Next, we consider a novel concept that takes the structure of the accepting
Petri net into account. For this, we only consider sound models where all tran-
sitions have a label (no silent transitions). Each place has a set of input and
output transitions. These are in a structural directly-follows relation. If t1 ∈ •p
and t2 ∈ p•, then we expect – based on the structure – that activity l(t1) can
be directly followed by activity l(t2). If multiple places in the Petri net can be
enabled concurrently, the same is expected to hold for the input transitions of
one place and the output transitions of another concurrently marked place.

Definition 14 (Structural Model-Based Directly-Follows Relation).
Let AN = (N,Minit ,Mfinal) ∈ UAN be a sound accepting Petri net with
N = (P, T, F, l) and dom(l) = T .

– acts(AN) = {l(t) | t ∈ T} is the set of activities in the model (consider only
structure and not behavior).

– df s(AN) = {(l(t1), l(t2)) | ∃M∈rmk(AN) ∃p1,p2∈M t1 ∈ •p1 ∧ t2 ∈ p2•} ∪ {(�
, l(t)) | ∃p∈Minit

t ∈ p•} ∪ {(l(t), �) | ∃p∈Mfinal
t ∈ •p} is the set of directly-

follows relations possible according to the model’s structure.
– a1 ⇒s

AN
a2 if and only if (a1, a2) ∈ df s(AN), a1
⇒s

AN
a2 if and only if (a1, a2)
∈

df s(AN), and a1 ⇔s
AN

a2 if and only if a1 ⇒s
AN

a2 and a2 ⇒s
AN

a1.

Fig. 5. Accepting Petri net AN 3 that is not structural directly-follows complete.

acts(AN) = actb(AN) by definition for sound accepting fully labeled Petri
nets. However, df s(AN) and df b(AN) do not need to be the same. Consider for

548 W. M. P. van der Aalst

example accepting Petri net AN 3 in Fig. 5. df s(AN 3) = {(�, a), (�, b), (a, c),
(a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, �), (e, �)}, but df b(AN 3) = {(�
, a), (�, b), (a, c), (b, c), (c, d), (c, e), (d, �), (e, �)}, i.e., the relations corresponding
to places p3 and p4 are missing.

Based on accepting Petri net AN 3 in Fig. 5, we consider two related event
logs: L3 = [〈a, c, d〉10, 〈b, c, e〉10] and L′

3 = [〈a, c, d〉5, 〈a, c, e〉5, 〈b, c, d〉5, 〈b, c, e〉5].
Event log L3 could have been generated by simulating AN 3, but L′

3 could not
(e.g., 〈a, c, e〉 is not possible). However, both have the same directly-follows rela-
tions (shown in Fig. 6). Both event logs are directly-follows complete for AN 3.

Definition 15 (Directly-Follows Complete Log). Let L ∈ B(Uact
∗) be an

event log and AN = (N,Minit ,Mfinal) ∈ UAN be an accepting Petri net. L is
directly-follows complete for AN if df (L) = df b(AN).

Fig. 6. Directly-follows graph based on the behavior of the accepting Petri net in Fig. 5.
Note that the long-term dependencies between a and d, and b and e are missing because
these activities never directly follow one another.

Note that df (L3) = df (L′
3) = df b(AN 3) = {(�, a), (�, b), (a, c), (b, c), (c, d),

(c, e), (d, �), (e, �)}. Hence, both event logs are directly-follows complete with
respect to AN 3.

Obviously, models like AN 3 are difficult to discover. Region-based techniques
are able to find the places p3 and p4, but are unusable for real-life data sets
because they produce complex overfitting process models and are not scalable.
Therefore, we are interested in the class of structural directly-follows complete
accepting Petri nets.

Definition 16 (Structural Directly-Follows Complete Model). Let
AN = (N,Minit ,Mfinal) ∈ UAN be a sound accepting Petri net with N =
(P, T, F, l) and dom(l) = T . AN is structural directly-follows complete if
df s(AN) = df b(AN).

Note that Definition 16 does not depend on a log. It is a model property. AN 1

in Fig. 1 is structural directly-follows complete, AN 3 in Fig. 5 is not. Figure 7
shows that the free-choice property and structural directly-follows completeness
are independent.

Discovering Directly-Follows Complete Petri Nets from Event Data 549

Fig. 7. Two accepting Petri net: (a) AN 4 is not free-choice, but structural directly-
follows complete (e.g., d can be directly followed by both f and g) and (b) AN 5 is
free-choice, but not structural directly-follows complete (despite p4, activity b is never
directly followed by e).

4 Subclasses of Accepting Petri Nets Relevant for Process
Mining

Properties such as soundness, liveness, and boundedness are behavioral proper-
ties. Structural directly-follows completeness is both structural and behavioral.
In this section, we list properties relevant for process mining that are structural.

Definition 17 (Structural Properties). Let N = (P, T, F, l) be Petri net.

– N is a state machine if for all t ∈ T : |•t| ≤ 1 and |t•| ≤ 1.
– N is a marked graph if for all p ∈ P : |•p| ≤ 1 and |p•| ≤ 1.
– N is free-choice if for all t1, t2 ∈ T with •t1 ∩ •t2
= ∅: •t1 = •t2.
– N is uniwired if for all t1, t2 ∈ T : |t1• ∩ •t2| ≤ 1.
– N is join-free if for all p ∈ P and t ∈ p•: |•p| ≤ 1 or |•t| ≤ 1.
– N is free of self-loops if for all t ∈ T : •t ∩ t•
= ∅.
– N is free of length-two loops if for all t1, t2 ∈ T : t1•∩•t2 = ∅ or t2•∩•t1 = ∅.
– N is free of PT handles if for all p ∈ P and t ∈ T there are no two elementary

paths from p to t sharing only p and t.
– N is free of TP handles if for all p ∈ P and t ∈ T there are no two elementary

paths from t to p sharing only p and t.
– N is a workflow net if there is one source place p� ∈ P and one sink place

p� ∈ P such that •p� = p�• = ∅ and all nodes are on a path from p� to p�.

Note that these properties consider only the net structure (i.e., the initial
marking and behavior are not considered). Free-choice nets separate choice and
synchronization and most process discovery algorithms aim to produce free-
choice nets (note that process trees and basic BPMN models with XOR and
AND gateways correspond to free-choice nets). Block-structured process mod-
els (e.g., process trees) are also free of PT and TP handles. The basic Alpha
algorithm has difficulties dealing with self-loops, length-two loops, and non-free-
choice constructs. Workflow nets have places explicitly indicating the start and
the end of the process.

In the remainder, we focus on regular accepting Petri nets as our target
model. Such nets have desirable properties such as safeness, soundness, and have
no silent or duplicate activities.

550 W. M. P. van der Aalst

Definition 18 (Regular Accepting Petri Nets). AN = (N,Minit ,Mfinal) ∈
UAN is a regular accepting Petri net if AN is safe, sound, and l is bijective (i.e.,
a one-to-one correspondence between transitions and activities).

The following theorem is a generalization of Theorem 4.1 in [5].

Theorem 1. Let AN = (N,Minit ,Mfinal) ∈ UAN be a regular accepting Petri
net. For any two transitions t1, t2 ∈ T such that t1 •∩• t2 = ∅: if l(t1) ⇒b

AN
l(t2),

then l(t2) ⇒b
AN

l(t1).

Proof. For simplicity, we assume that l is the identity function (this can be
achieved by renaming transitions using bijection l). Let a, b ∈ T , a • ∩ • b = ∅,
and a ⇒b

AN
b. We need to prove that b ⇒b

AN
a. If a = b, this holds trivially. Hence,

we assume a
= b. Because a ⇒b
AN

b, there is a trace σ1 · 〈a, b〉 · σ2 ∈ lang(AN).
Because a•∩•b = ∅, σ1 ·〈b〉 is enabled. If σ1 ·〈b, a〉 is not enabled, then b removes a
token from an input place of a without returning it (remember that AN is safe).
However, if a consumes the token first, then b can no longer fire (leading to a
contradiction), i.e., σ1 · 〈b, a〉 is enabled. Therefore, σ1 · 〈b, a〉 · σ2 ∈ lang(AN)
and b ⇒b

AN
a. ��

5 The α1.0 and α1.1 Algorithms

The original Alpha algorithm was developed over two decades ago [5]. We refer to
the original algorithm as α1.0. It was described in publications such as [1,5] and
during the development of α1.0 it was already proven that any Structured Work-
flow Net (SWN) without self-loops can be “rediscovered”, i.e., a directly-follows
complete event log obtained by simulating SWN contains enough information for
the algorithm to discover the SWN again (modulo renaming of places). An SWN
is free-choice, join-free, has a source and sink place, and no implicit places (cf.
Definition 17). As pointed out in [1,5], α1.0 has many known limitations. The
algorithm assumes that the event log is directly-follows complete and that all
behavior observed should be captured in the model (i.e., no noise and infrequent
behavior). Moreover, it has problems dealing with short loops and processes that
cannot be expressed as a workflow net.

Over the last two decades, there have been many proposals to “repair” α1.0

e.g., [24,25]. However, these alternative approaches assume information that goes
beyond the directly-follows relation and most of them are much more compli-
cated (with many case distinctions). In this paper, we propose two variants of
α1.0: α1.1 and α2.0. These are as simple as the original algorithm, but allow for
the discovery of a larger class of process models. In this section, we introduce
α1.1 which is close to α1.0 and only changes the initial and final parts of the
process model to allow for non-workflow nets.

Definition 19 (α1.1 Algorithm). The α1.1 algorithm implements a function
discα1.1 ∈ B(Uact

∗) → UAN that returns an accepting Petri net discα1.1(L) for
any event log L ∈ B(Uact

∗). Let A = act(L) and Â = A ∪ {�, �}.

Discovering Directly-Follows Complete Petri Nets from Event Data 551

1. Cnd(L) = {(A1, A2) | A1 ⊆ Â ∧ A1
= ∅ ∧ A2 ⊆ Â ∧ A2
= ∅ ∧
(∀a1∈A1∀a2∈A2 a1 ⇒

L
a2 ∧ a2
⇒

L
a1) ∧ (∀a1,a2∈A1 a1
⇒

L
a2) ∧ (∀a1,a2∈A2

a1
⇒
L
a2)} are the candidate places,

2. Sel(L) = {(A1, A2) ∈ Cnd(L) | ∀(A′
1,A′

2)∈Cnd(L) A1 ⊆ A′
1 ∧ A2 ⊆ A′

2 =⇒
(A1, A2) = (A′

1, A
′
2)} are the selected maximal places,

3. P = {p(A1,A2) | (A1, A2) ∈ Sel(L)} is the set of all places,
4. T = {ta | a ∈ A} is the set of transitions,
5. F = {(ta, p(A1,A2)) | (A1, A2) ∈ Sel(L) ∧ a ∈ A1 ∩ A} ∪ {(p(A1,A2), ta) |

(A1, A2) ∈ Sel(L) ∧ a ∈ A2 ∩ A} is the set of arcs,
6. l = {(ta, a) | a ∈ A} is the labeling function,
7. Minit = [p(A1,A2) ∈ P |�∈ A1] is the initial marking, Mfinal = [p(A1,A2) ∈ P |

� ∈ A2] is the final marking, and
8. discα1.1(L) = ((P, T, F, l),Minit ,Mfinal) is the discovered accepting Petri net.

The first two steps are most important. Set Sel(L) defines the set of places in
terms of preceding and succeeding activities. Steps 3–8 are mostly bookkeeping,
i.e., all the elements in Sel(L) are mapped onto places with the corresponding
connections. � and � are placeholders for the start and end of the process and
are not mapped onto transitions, but define the initial and final marking.

Figure 8 shows a simple example highlighting the difference between α1.0

and α1.1. For the event log L = [〈a, b〉10, 〈b, a〉10], the α1.1 algorithm specified in
Definition 19 generates the correct regular accepting Petri net shown in Fig. 8(a).
α1.0 tries to create a workflow net with only one initially marked place (cf.
Fig. 8(b)). The model in Fig. 8(b) is unable to replay any of the traces in the
event log, whereas the model in Fig. 8(a) is able to replay all and does not
allow for unseen behavior. The original algorithm does not allow for concurrent
initial and final activities and also does not allow for initial and final activities
occurring at different positions. For L = [〈a, b〉10, 〈b, a〉10]: � ⇒

L
a, � ⇒

L
b,

a ⇒
L
b, b ⇒

L
a, a ⇒

L
�, and b ⇒

L
�. Hence, Cnd(L) = Sel(L) = {({�}, {a}), ({�

}, {b}), ({a}, {�}), ({b}, {�})}. Note that p1 corresponds to ({�}, {a}), etc.

Fig. 8. Improvement over the original algorithm: (a) shows the correct model AN 6

obtained by α1.1 and (b) shows the incorrect model AN ′
6 obtained by α1.0 for the

event log L = [〈a, b〉10, 〈b, a〉10].

552 W. M. P. van der Aalst

Fig. 9. α1.0 produces an incorrect model for L4 = [〈a, b, c〉10, 〈a, b, d, a, b, c〉5,
〈a, b, c, e, b, c〉5, 〈a, b, d, a, b, c, e, b, c〉2, 〈a, b, c, e, b, d, a, b, c〉2]. Note that none of the
traces can be replayed.

Another event log where α1.0 fails and α1.1 produces the desired
model is L4 = [〈a, b, c〉10, 〈a, b, d, a, b, c〉5, 〈a, b, c, e, b, c〉5, 〈a, b, d, a, b, c, e, b, c〉2,
〈a, b, c, e, b, d, a, b, c〉2] for which � ⇒

L
a, a ⇒

L
b, b ⇒

L
c, b ⇒

L

d, c ⇒
L

e, c ⇒
L

�, d ⇒
L

a, and e ⇒
L

b. Sel(L) = {({�
, d}, {a}), ({a, e}, {b}), ({b}, {c, d}), ({c}, {e, �})} describes the four places, e.g.,
p({�,d},{a}) is initially marked, •p({�,d},{a}) = {d}, and p({�,d},{a})• = {a}.
Figure 9 shows the incorrect model produced by the α1.0 algorithm. Figure 10
shows the correct model produced by the α1.1 (and later α2.0) algorithm. Note
that the latter model is able to replay all traces.

Fig. 10. α1.1 produces the desired model for L4.

6 The α2.0 Algorithm

The α1.1 algorithm overcomes some of the limitations of the original α1.0 algo-
rithm, but for “internal places” the characteristics are essentially the same and
short-loops are still a problem. For L1 = [〈a, c, e, f〉5, . . .] in Fig. 1, still the incor-
rect accepting Petri net AN ′

1 (Fig. 2) is discovered due to the self-loop involving
b and the length-two loop involving c and d. The requirements used in Cnd(L)
(Definition 19) are always violated for short loops. For any (A1, A2) ∈ Cnd(L):
if a ⇒

L
a, then a cannot be part of A1 and a cannot be part of A2. For any

Discovering Directly-Follows Complete Petri Nets from Event Data 553

loop of length 2 involving a and b, we have a ⇒L b and b ⇒L a and the condi-
tion ∀a1∈A1∀a2∈A2 a1 ⇒

L
a2 ∧ a2
⇒

L
a1 used in the computation of Cnd(L) is

violated for places connecting a and b.
For L1, we have b⇒L1

b due to the self-loop involving b, and c⇒L1
d and d ⇒L1

c
due to the length-two loop involving c and d. Therefore, there cannot be a place
connecting b to itself or a place connecting c to d or d to c. This can be solved
by changing only the first step of the α1.1 algorithm specified in Definition 19.

Definition 20 (α2.0 Algorithm). The α2.0 algorithm implements a function
discα2.0 ∈ B(Uact

∗) → UAN that only differs from discα1.1 in the first step (com-
putation of Cnd(L)). The rest is the same as in Definition 19.

Cnd2.0(L) = {(A1, A2) | A1 ⊆ Â ∧ A2 ⊆ Â ∧ (1)
(∀a1∈A1∀a2∈A2 a1 ⇒

L
a2) ∧ (2)

(∃a1∈A1\A2∃a2∈A2\A1 a2
⇒L a1) ∧ (3)
(∀a1∈A1 ∀a2∈A1\A2 a1
⇒

L
a2) ∧ (4)

(∀a1∈A2\A1 ∀a2∈A2 a1
⇒L a2)} (5)

Candidate places are again represented by pairs of sets of activities.
(A1, A2) ∈ Cnd2.0(L) should still be such that elements of A1 are in a directly-
follows relation with elements of A2. However, it is no longer required that the
reverse never holds, i.e., we no longer demand that ∀a1∈A1∀a2∈A2 a2
⇒L a1.
Instead, we assume the weaker requirement that ∃a1∈A1\A2∃a2∈A2\A1 a2
⇒

L
a1.

This implies that A1
= ∅ and A2
= ∅. Note that a1 ∈ A1 \ A2 and a2 ∈ A2 \ A1

such that a2
⇒L a1 ensures that there is an activity a1 producing a token for the
place without removing it and an activity a2 consuming a token from the place
without putting it back.

Consider the event log L = [〈a, b, d〉10, 〈a, b, c, b, d〉3, 〈a, b, c, b, c, b, d〉2, 〈a, b, c,
b, c, b, c, b, d〉]. The α2.0 algorithm discovers the loop of length two and returns
the correct Petri net. The model returned by α1.0 and α1.1 only allows for trace
〈a, b, d〉 and leaves c disconnected from the rest.

The α2.0 algorithm is also able to discover the regular accepting Petri net
AN 1 shown in Fig. 1. Note that α2.0 inherits all the improvements of the α1.1

algorithm. Actually, the algorithm is able to discover all structural directly-
follows complete models in this paper. Describing the exact conditions under
which the α2.0 algorithm is able to rediscover the correct model based on a
directly-follows complete event log is outside the scope of the paper. However,
the examples clearly show that the class of correctly discovered process models
is extended significantly.

The α1.1 and α2.0 algorithms have been implemented in ProM by Aaron
Küsters. (The reader can download the ProM Nightly Build from www.
promtools.org.) Experiments show that for most event logs more places can be
discovered compared to the original algorithm, i.e., there are fewer transitions
without any connecting places. Since there is no guarantee that all places are
fitting for arbitrary processes, a check has been added to remove places that
cannot replay a predefined percentage of cases.

www.promtools.org
www.promtools.org

554 W. M. P. van der Aalst

7 Discussion

The α2.0 algorithm is able to rediscover accepting Petri nets such as AN 1 in
Fig. 1, AN 4 in Fig. 7(a), AN 6 in Fig. 8(a) based on a directly-follows complete
event log. The α2.0 algorithm is of course unable to discover models from event
logs that are not directly-follows complete. It fully depends on ⇒

L
, but this is

a reasonable assumption. What has not been observed cannot be discovered!
The α2.0 algorithm is also unable to discover models that are not structural
directly-follows complete. The notion of structural directly-follows complete was
introduced in this paper. Accepting Petri net AN 3 in Fig. 5 is not structural
directly-follows complete because a
⇒

L
d and b
⇒

L
e although there are places

(p3 and p4) connecting these activities. Accepting Petri net AN 5 in Fig. 7(b) is
not structural directly-follows complete, because b
⇒

L
e while there is a place

(p4) connecting b to e.
Such problems are unavoidable when assuming directly-follows complete-

ness. Therefore, directly-follows-based algorithms like the α2.0 algorithm need
to be supported by pre- and post-processing techniques. Here, we discuss some
examples.

An obvious preprocessing step is the filtering of activities and variants as
described in [2]. The approach is to first remove infrequent or chaotic activities
and then order the remaining variants by frequency (selecting the most frequent
ones). Note that most event logs follow a Pareto distribution, i.e., most of the
behavior is explained by a limited number of activities and variants.

An obvious postprocessing step is to remove places that do not fit. One can use
the α2.0 algorithm and then check every place individually. This can be done very
efficiently. For a place p, one can first look at the sum of the absolute frequencies
of the activities represented by •p and compare this with the sum of the absolute
frequencies of the activities represented by p•. If there is a substantial mismatch,
the place can be discarded or repaired. It is also possible to project the event
log onto activities •p ∪ p• and perform token-based replay or alignments. This
can be done very efficiently for a single place. It is possible to set a threshold
to retain only the places that fit a minimum percentage of traces. In general,
process mining tools should avoid producing models that have known problems.

Fig. 11. Accepting Petri net AN ′
1 having the same directly-follows relations as AN 1,

i.e., df b(AN 1) = df b(AN ′
1).

Discovering Directly-Follows Complete Petri Nets from Event Data 555

It is also possible to improve discovery by exploiting the fact that we are inter-
ested in safe accepting Petri nets, i.e., there should not be two tokens in the same
place for a particular case. This can be exploited to rule out certain constructs
and speed-up the implementation of the algorithm and postprocessing.

It is important to note that there are processes that are behaviorally different,
but have the same directly-follows relation. Figure 11 shows an accepting Petri
net AN ′

1 such that df b(AN 1) = df b(AN ′
1), i.e., the corresponding DFGs are

identical (the DFG shown in Fig. 3) although the behaviors are different. This
shows the weakness of any algorithm relying on directly-follows relations only.

Figure 12(a) maps the arcs of the DFG shown in Fig. 3 (based on event log L1)
onto the places of accepting Petri net AN 1 in Fig. 1. Figure 12(b) maps the same
arcs onto the places of accepting Petri net AN ′

1 in Fig. 11. Note the difference in
the connections between d and e. Figure 12 nicely illustrates that bidirectional
arcs either correspond to concurrency or loops of length two. Often it is clear
whether bidirectional arcs correspond to concurrency or loops of length two.
However, this cannot always be decided based on just the DFG as the example
shows.

Another possible refinement is to consider more elements of Cnd2.0(L). We
now consider only the maximal elements when applying Sel(L) to the candi-
dates generated in the first step. However, if we can quickly check places on
projected event logs, it is possible to select the “largest one” of good qual-
ity. Instead of replaying, we can first check the total number of produced
and consumed tokens for a place. Given (A1, A2) ∈ Cnd2.0(L), we can com-
pare

∑
σ∈L

∑
a∈A1

| [a ∈ σ] | (tokens produced for the candidate place) and∑
σ∈L

∑
a∈A2

| [a ∈ σ] | (tokens consumed from the candidate place). If these
values are very different, we can discard candidate (A1, A2). Instead, we pick the
maximal candidate not having obvious quality problems.

Fig. 12. Mapping the Directly-Follows Graph (DFG) based on L1 onto the places of
AN 1 and AN ′

1.

556 W. M. P. van der Aalst

Finally, there is the observation that regular accepting Petri nets (cf. Defini-
tion 18) cannot produce arbitrary directly-follows relations ⇒b

AN
. There is no reg-

ular accepting Petri net AN with df b(AN) = {(�, a), (a, b), (a, c), (b, c), (c, �)}.
This knowledge can be used to replace problematic edges in the directly-follows
relation by silent activities before applying the α2.0 algorithm. In this exam-
ple, one should replace (a, c) by (a, τ) and (τ, c) and then the α2.0 algorithm
produces the desired result.

8 Conclusion

Discovering accepting Petri nets from example data in such a way that the result-
ing model is not overfitting or underfitting is extremely challenging. One cannot
assume that all possible behaviors are in the sample log. Therefore, one needs
to resort to assumptions like directly-follows completeness. The original Alpha
algorithm (α1.0) was based on this assumption. In this paper, we tried to push
the boundaries of what can be discovered using this assumption and also intro-
duced the new concept of structural directly-follows completeness. The insights
obtained led to two new variants of the original α1.0 algorithm: α1.1 and α2.0.
The α2.0 can correctly discover short-loops and non-workflow-net structures.
Combining these with the usual pre- and post-processing steps (i.e., filtering and
local checks) results in a discovery algorithm that is practically usable. Future
work aims at extensive experimentation of the presented approach and detect-
ing/repairing structures in directly-follows relations that cannot stem from a
process corresponding to regular accepting Petri net.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2023 Internet of Production – 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer-Verlag,
Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4 1

2. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of
the directly-follows graph. In: International Conference on Enterprise Information
Systems (Centeris 2019), volume 164 of Procedia Computer Science, pp. 321–328.
Elsevier (2019)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discovery 2(2), 182–192 (2012)

4. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010). https://doi.org/
10.1007/s10270-008-0106-z

5. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10270-008-0106-z

Discovering Directly-Follows Complete Petri Nets from Event Data 557

6. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 4

7. Aarts, F., Heidarian, F., Vaandrager, F.: A theory of history dependent abstrac-
tions for learning interface automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 240–255. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1 18

8. Angluin, D., Smith, C.H.: Inductive inference: theory and methods. Comput. Surv.
15(3), 237–269 (1983)

9. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019). https://doi.org/10.1007/s10115-018-
1214-x

10. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75183-0 27

11. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering Petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85758-7 26

12. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer-Verlag, Berlin (2018). https://doi.org/
10.1007/978-3-319-99414-7

13. Desel, J., Esparza, J.: Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK
(1995)

14. Desel, J., Reisig, W.: Place/transition nets. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models. Lecture Notes in Computer Science, vol.
1491, pp. 122–173. Springer-Verlag, Berlin (1998). https://doi.org/10.1007/3-540-
65306-6 15

15. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures - part 1 and part 2. Acta
Informatica 27(4), 315–368 (1989). https://doi.org/10.1007/BF00264612

16. Kerremans, M., Srivastava, T., Choudhary, F.: Gartner market guide for process
mining, Research Note G00737056 (2021). https://www.gartner.com

17. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs: a constructive approach. In: Colom, J.M., Desel,
J. (eds.) Applications and Theory of Petri Nets 2013. Lecture Notes in Computer
Science, vol. 7927, pp. 311–329. Springer-Verlag, Berlin (2013)

18. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

19. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018). https://doi.
org/10.1007/s10270-016-0545-x

20. Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by
exploiting the token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019.
LNCS, vol. 11522, pp. 258–278. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21571-2 15

https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-642-32940-1_18
https://doi.org/10.1007/978-3-642-32940-1_18
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/BF00264612
https://www.gartner.com
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-030-21571-2_15
https://doi.org/10.1007/978-3-030-21571-2_15

558 W. M. P. van der Aalst

21. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7 14

22. Syring, Anja F., Tax, Niek, van der Aalst, W.M.P.: Evaluating conformance
measures in process mining using conformance propositions. In: Koutny, Maciej,
Pomello, Lucia, Kristensen, Lars Michael (eds.) Transactions on Petri Nets and
Other Models of Concurrency XIV. LNCS, vol. 11790, pp. 192–221. Springer, Hei-
delberg (2019). https://doi.org/10.1007/978-3-662-60651-3 8

23. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2002)
24. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with

non-free-choice constructs. Data Min. Knowl. Disc. 15(2), 145–180 (2007)
25. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process

models with prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021 (2010)
26. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-

cess discovery using integer linear programming. Fund. Inform. 94, 387–412 (2010)
27. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-

covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2017). https://doi.org/10.1007/s00607-017-0582-5

https://doi.org/10.1007/978-3-642-13675-7_14
https://doi.org/10.1007/978-3-662-60651-3_8
https://doi.org/10.1007/s00607-017-0582-5

Fair Must Testing for I/O Automata

Rob van Glabbeek(B)

School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

rvg@cs.stanford.edu

Abstract. The concept of must testing is naturally parametrised with a
chosen completeness criterion or fairness assumption. When taking weak
fairness as used in I/O automata, I show that it characterises exactly the
fair preorder on I/O automata as defined by Lynch & Tuttle.

Keywords: I/O automata · Must testing · Fairness

This paper is dedicated to Frits Vaandrager at the occasion of his 60th birthday.
I fondly remember my days at CWI as a starting computer scientist, sharing an
office with Frits. Here I had the rare privilege of sharing all my ideas with Frits
at the time they were formed, and receiving instantaneous meaningful feedback.
This feedback has had a great impact on my work.

I take the opportunity to also pass best wishes and warmest thoughts to Frits
from Ursula Goltz, whom I am visiting while finishing this paper. My joint work
with Ursula was inspired by my work with Frits on connecting Petri nets and
process algebra.

1 Introduction

May- and must-testing was proposed by De Nicola & Hennessy in [2]. It yields
semantic equivalences where two processes or automata are distinguished if and
only if they react differently on certain tests. The tests are processes that addi-
tionally feature success states. Such a test T is applied to a process A by tak-
ing the CCS parallel composition T |A, and implicitly applying a CCS restric-
tion operator to it that removes the remnants of uncompleted communication
attempts. The outcome of applying T to A is deemed successful if and only if
this composition yields a process that may, respectively must, reach a success
state. It is trivial to recast this definition of may- and must-testing equivalence
using the CSP parallel composition ‖ [8] instead of the one from CCS.

I/O automata [9] are a model of concurrency that distinguishes output
actions, which are under the control of a given automaton, from input actions,
which are stimuli from the environment on which an automaton might react. The
parallel composition ‖ of I/O automata, exactly like the one of CSP, imposes
synchronisation on actions the composed automata have in common. However, it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 559–574, 2022.
https://doi.org/10.1007/978-3-031-15629-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_30&domain=pdf
http://orcid.org/0000-0003-4712-7423
https://doi.org/10.1007/978-3-031-15629-8_30

560 R. van Glabbeek

allows forming the composition A‖B only when A and B have no output actions
in common. This makes it impossible to synchronise on actions c where both A
and B have the option not to allow c in certain states.

Must testing equivalence for CCS and CSP partially discerns branching time,
in the sense that is distinguishes the processes τ.(a ` b) and τ.a ` τ.b displayed
in Fig. 1. This is not the case for I/O automata, as the synchronisations between
test and tested automaton that are necessary to make such distinctions are ruled
out by the restriction described above.

It is not a priori clear how a given process or automaton must reach a suc-
cess state. For all we know it might stay in its initial state and never take any
transition leading to this success state. To this end one must employ an assump-
tion saying that under appropriate circumstances certain enabled transitions will
indeed be taken. Such an assumption is called a completeness criterion [5]. The
theory of testing from [2] implicitly employs a default completeness criterion
that in [7] is called progress. However, one can parameterise the notion of must
testing by the choice of any completeness criterion, such as the many notions of
fairness classified in [7].

Lynch & Tuttle [9] defined a trace and a fair preorder on I/O automata, which
were meant to reason about safety and liveness properties, respectively, just like
the may- and must testing preorders of [2]. Unsurprisingly, as formally shown
in Sect. 5 of this paper, the trace preorder on I/O automata is characterised
exactly by may testing. Segala [12] has studied must-testing on I/O automata,
employing the default completeness criterion, and found that on a large class of
I/O automata it characterises the quiescent trace preorder of Vaandrager [13].
It does not exactly characterise the fair preorder, however.

In my analysis this is due to the choice of progress as the completeness
criterion employed for must testing, whereas the fair preorder of I/O automata
is based on a form of weak fairness. In this work I study must testing on I/O
automata based on the same form of weak fairness, and find that it characterises
the fair preorder exactly.

Although I refer to must-testing with fairness as the chosen completeness
criterion as fair must testing, it should not be confused with the notion of fair
testing employed in [1,10]. The latter is also known as should testing. It incor-
porates a concept of fairness that is much stronger than the notion of fairness
from I/O automata, called full fairness in [7].

In [6] another mode of testing was proposed, called reward testing. Reward-
testing equivalence combines the distinguishing power of may as well as must
testing, and additionally makes some useful distinctions between processes that
are missed by both may and must testing [6]. As for must testing, its definition
is naturally parametrised by a completeness criterion. When applied to I/O
automata, using as completeness criterion the form of fairness that is native to
I/O automata, it turns out that reward testing is not stronger than must testing,
and also characterises the fair preorder.

Fair Must Testing for I/O Automata 561

2 I/O Automata

An I/O automaton is a labelled transition system equipped with a nonempty set
of start states, with each action that may appear as transition label classified as
an input, an output or an internal action. Input actions are under the control of
the environment of the automaton, whereas output and internal actions, together
called locally-controlled actions, are under the control of the automaton itself.
I/O automata are input enabled, meaning that in each state each input action
of the automaton can be performed. This indicates that the environment may
perform such actions regardless of the state of the automaton; an input transition
merely indicates how the automaton reacts on such an event. To model that
certain input actions have no effect in certain states, one uses self-loops.

I/O automata employ a partition of the locally-controlled actions into tasks
to indicate which sequences of transitions denote fair runs. A run is fair unless
it has a suffix on which some task is enabled in every state, yet never taken.

Definition 1. An input/output automaton (or I/O automaton) A is a tuple
(acts(A), states(A), start(A), steps(A), part(A)) with

– acts(A) a set of actions, partitioned into three sets in(A), out(A) and int(A)
of input actions, output actions and internal actions, respectively,

– states(A) a set of states,
– start(A) Ď states(A) a nonempty set of start states,
– steps(A) Ď states(A) ˆ acts(A) ˆ states(A) a transition relation with the

property that ∀s P states(A). ∀a P in(A). D(s, a, s′) P steps(A), and
– part(A) Ď P(local(A)) a partition of the set local(A) :“ out(A) ∪ int(A) of

locally-controlled actions of A into tasks.

Let ext(A) :“ in(A) ∪ out(A) be the set of external actions of A.

An action a P acts(A) is enabled in a state s P states(A) if D(s, a, s′) P steps(A).
A task T P part(A) is enabled in s if some action a P T is enabled is s.

Definition 2. An execution of an I/O automaton A is an alternating sequence
α “ s0, a1, s1, a2, . . . of states and actions, either being infinite or ending with a
state, such that s0 P start(A) and (si, ai`1, si`1) P steps(A) for all i ă length(α).
Here length(α) P IN ∪ {8} denotes the number of action occurrences in α. The
sequence a1, a2, . . . obtained by dropping all states from α is called sched(α).
An execution α of A is fair if, for each suffix α′ “ sk, ak`1, sk`1, ak`2, . . . of α
(with k P IN ^ k ď length(α)) and each task T P part(A), if T is enabled in each
state of α′, then α′ contains an action from T .

In [9] two semantic preorders are defined on I/O automata, here called ĎT and
ĎF , the trace and the fair preorder. In [9] S ĎT I and S ĎF I are denoted “I
implements S” and “I solves S”, respectively. Here S is an I/O automaton that
is (a step closer to) the specification of a problem, and I one that is (a step
closer to) its implementation. The preorder ĎT is meant to reason about safety
properties: if S ĎT I then I has any safety property that S has. In the same
way, ĎF is for reasoning about liveness properties. In [12] and much subsequent

562 R. van Glabbeek

work S ĎF I is written as I ĎF S. Here I put I on the right, so as to orient the
refinement symbol Ď in the way used in CSP [8], and in the theory of testing [2].

I/O automata are a typed model of concurrency, in the sense that two
automata will be compared only when they have the same input and output
actions.

Definition 3. Let trace(α) be the finite or infinite sequence of external actions
resulting from dropping all internal actions in sched(α), and let fintraces(A)
be the set {trace(α) | α is a finite execution of A}. Likewise fairtraces(A) :“
{trace(α) | α is a fair execution of A}. Now

S ĎT I :ô in(S) “ in(I) ^ out(S) “ out(I)^ fintraces(I) Ď fintraces(S)
S ĎF I :ô in(S) “ in(I) ^ out(S) “ out(I)^fairtraces(I) Ď fairtraces(S) .

One writes A ”T B if A ĎT B ^ B ĎT A, and similarly for ”F .

By [7, Thm. 6.1] each finite execution can be extended into a fair execution. As
a consequence, A ĎF B ñ A ĎT B.

The parallel composition of I/O automata [9] is similar to the one of CSP [8]:
participating automata Ai and Aj synchronise on actions in acts(Ai)Xacts(Aj),
while for the rest allowing arbitrary interleaving. However, it is defined only when
the participating automata have no output actions in common.

Definition 4. A collection {Ai}iPI of I/O automata is strongly compatible if

– int(Ai) X acts(Aj) “ H for all i, j P I with i ‰ j, and
– out(Ai) X out(Aj) “ H for all i, j P I with i ‰ j,
– no action is contained in infinitely many sets acts(Ai).

The composition A “ ∏
iPI Ai of a countable collection {Ai}iPI of strongly com-

patible I/O automata is defined by

– int(A) :“ ⋃
iPI int(Ai),

– out(A) :“ ⋃
iPI out(Ai),

– in(A) :“ ⋃
iPI in(Ai) ´ out(A),

– states(A) :“ ∏
iPI states(Ai),

– start(A) :“ ∏
iPI start(Ai),

– steps(A) is the set of triples (�s1, a, �s2) such that, for all i P I, if a P acts(Ai)
then (�s1[i], a, �s2[i]) P steps(Ai), and if a /P acts(Ai) then �s1[i] “ �s2[i], and

– part(A) :“ ⋃
iPI part(Ai).

Clearly, composition of I/O automata is associative: when writing A1‖A2 for∏
iP{1,2} Ai then (A‖B)‖C ∼“ A‖(B‖C), for some notion of isomorphism ∼“,

included in ”T and ”F . Moreover, as shown in [9], composition is monotone
for ĎT and ĎF , or in other words, ĎT and ĎF are precongruences for composi-
tion:

if Ai ĎT Bi for all i P I, then
∏

iPI Ai ĎT

∏
iPI Bi , and

if Ai ĎF Bi for all i P I, then
∏

iPI Ai ĎF

∏
iPI Bi .

Fair Must Testing for I/O Automata 563

The first condition of strong compatibility is not a limitation of generality.
Each I/O automaton is ”T and ”F -equivalent to the result of bijectively renam-
ing its internal actions. Hence, prior to composing a collection of automata, one
could rename their internal actions to ensure that this condition is met. Up
to ”T and ”F the composition would be independent on the choice of these
renamings.

3 Testing Preorders

Testing preorders [2] are defined between automata A, defined as in Definition 1,
but without the partition part(A) and without the distinction between input
and output actions, and therefore also without the input enabling requirement
from Item 4. The parallel composition of automata is as in Definition 4, but
without the requirement that the participating automata have no output actions
in common.

Definition 5. An automaton A is a tuple (acts(A), states(A), start(A),
steps(A)) with

– acts(A) a set of actions, partitioned into two sets ext(A) and int(A) of external
actions and internal actions, respectively,

– states(A) a set of states,
– start(A) Ď states(A) a nonempty set of start states, and
– steps(A) Ď states(A) ˆ acts(A) ˆ states(A) a transition relation.

A collection {Ai}iPI of I/O automata is compatible if

– int(Ai) X acts(Aj) “ H for all i, j P I with i ‰ j, and
– no action is contained in infinitely many sets acts(Ai).

The composition A “ ∏
iPI Ai of a countable collection {Ai}iPI of compatible

I/O automata is defined by

– int(A) :“ ⋃
iPI int(Ai),

– ext(A) :“ ⋃
iPI ext(Ai),

– states(A) :“ ∏
iPI states(Ai),

– start(A) :“ ∏
iPI start(Ai), and

– steps(A) is the set of triples (�s1, a, �s2) such that, for all i P I, if a P acts(Ai)
then (�s1[i], a, �s2[i]) P steps(Ai), and if a /P acts(Ai) then �s1[i] “ �s2[i].

A test is such an automaton, but featuring a special external action w, not used
elsewhere. This action is used to mark success states: those in which w is enabled.
The parallel composition T‖A of a test T and an automaton A, if it exists, is
itself a test, and [T‖A] denotes the result of reclassifying all its non-w actions
as internal. An execution of [T‖A] is successful iff it contains a success state.

564 R. van Glabbeek

Definition 6. An automaton A may pass a test T , notation A may T , if [T‖A]
has a successful execution. It must pass T , notation A must T , if each complete
execution1 of [T‖A] is successful. It should pass T , notation A should T , if each
finite execution of [T‖A] can be extended into a successful execution.

Write A Ďmay B if ext(A) “ ext(B) and A may T implies B may T for each
test T that is compatible with A and B. The preorders Ďmust and Ďshould are
defined similarly.

The may- and must-testing preorders stem from [2], whereas should-testing
was added independently in [1] and [10]. I have added the condition ext(A) “
ext(B) to obtain preorders that respect the types of automata. A fourth mode of
testing, called reward testing, was contributed in [6]. It has no notion of success
state, and no action w; instead, each transition of a test T is tagged with a real
number, the reward of taking that transition. A negative reward can be seen as
a penalty. Each transition (s, a, s′) of [T‖A] with a P acts(T) inherits its reward
from the unique transition of T it projects to; in case a �P acts(T) it has reward
0. The reward reward(α) of an execution α is the sum of the rewards of the
actions in α.2 Now A Ďreward B if ext(A) “ ext(B) and for each test T that
is compatible with A and B and for each complete execution β of [T‖B] there
exists a complete execution α of [T‖A] such that reward(α) ď reward(β).

In the original work on testing [2,6] the CCS parallel composition T |A was
used instead of the CSP parallel composition T‖A; moreover, only those execu-
tions consisting solely of internal actions mattered for the definitions of passing
a test. The present approach is equivalent, in the sense that it trivially gives rise
to the same testing preorders.

The may-testing preorder can be regarded as pointing in the opposite direc-
tion as the others. Using CCS notation, one has τ.P Ĺmay τ.P ` τ.Q, yet
τ.P ` τ.Q Ĺmust τ.P , τ.P ` τ.Q Ĺshould τ.P and τ.P ` τ.Q Ĺreward τ.P . The
inverse of the may-testing preorder can be characterised as survival testing. Here
a state in which w is enabled is seen as a failure state rather than a success
state, and automaton A survives test T , notation A surv T , if no execution of
[T‖A] passes through a failure state. Write A Ďsurv B if ext(A) “ ext(B) and
A surv T implies B surv T for each test T that is compatible with A and B.
By definition, A Ďsurv B iff B Ďmay A.

The only implications between reward, must and may/survival testing are

A Ďreward B ñ A Ďmust B and A Ďreward B ñ A Ďsurv B .

Namely, any must test T witnessing A Ęmust B can be coded as a reward test
by assigning a reward `1 to all transitions of T leading to a success state (and
0 to all other transitions). Likewise any survival test T witnessing A Ęsurv B
can be coded as a reward test by assigning a reward ´1 to all transitions of T
leading to a failure state.
1 The original work on must testing [2] defined an execution to be complete if it either
is infinite, of ends in a state without outgoing transitions. Here I will consider the
concept of a complete execution as a parameter in the definition of must testing.

2 If α is infinite, its reward can be `8 or ´8; see [6] for a precise definition.

Fair Must Testing for I/O Automata 565

The notions of may- and should-testing are unambiguously defined above,
whereas the notions of must- and reward testing depend on the definition of a
complete execution. In [5] I posed that transition systems or automata constitute
a good model of distributed systems only in combination with a completeness
criterion: a selection of a subset of all executions as complete executions, mod-
elling complete runs of the represented system.

The default completeness criterion, employed in [2,6] for the definition of
must- and reward testing, deems an execution complete if it either is infinite,
of ends in deadlock, a state without outgoing transitions. Other completeness
criteria either classify certain finite executions that do not end in deadlock as
complete, or certain infinite executions as incomplete.

The first possibility was explored in [5,7] by considering a set B of actions
that might be blocked by the environment in which an automaton is running.
Now a finite execution can be deemed complete if all transitions enabled in its
last state have labels from B. The system might stop at such a state if indeed
the environment blocks all those actions. Since in the application to must- and
reward testing, all non-w transitions in [T‖A] are labelled with internal actions,
which cannot be blocked by the environment, the above possibility of increasing
the set of finite complete executions does not apply.

The second possibility was extensively explored in [7], where a multitude of
completeness criteria was defined. Most of those can be used as a parameter in
the definition of must- and reward testing. So far, the resulting testing preorders
have not been explored.3

4 Testing Preorders for I/O Automata

Since I/O automata can be seen as special cases of the automata from Sect. 3, the
definitions of Sect. 3 also apply to I/O automata. The condition ext(A) “ ext(B)
should then be read as in(A) “ in(B) ^out(A) “ out(B). The only place where
it makes an essential difference whether one works with I/O automata or general
automata is in judging compatibility between automata and tests. Given two I/O
automata A and B, let A ĎLTS

must B be defined by first seeing A and B as general
automata (by dropping the partitions part(A) and part(B)), and then applying
the definitions of Sect. 3, using the default completeness criterion. In contrast,
let A ĎPr

must B be defined as Sect. 3, but only allowing tests that are themselves
I/O automata (seeing the special action w as an output action), and that are
strongly compatible with A and B. The superscript Pr stands for “progress”, the
name given in [7] to the default completeness criterion. The difference between
ĎLTS

must and ĎPr
must is illustrated in Fig. 1.

Here A and B are automata with acts(A) “ acts(B) “ {τ, a, b}, and T is
a test with acts(T) “ {a, b, w}. The short arrows point to start states. Test T
witnesses that A ĘLTS

must B, for A must T , yet �(B must T). Here it is crucial
that a P acts(T), even though this action labels no transition of T , for otherwise

3 The paper [4] explores these testing preorders; it was written after the present paper.

566 R. van Glabbeek

Fig. 1. Classic example of how branching time is discerned by must testing

the a-transition of A would return in [T‖A] and one would not obtain A must T.
To see A, B and T as I/O automata, one needs to take in(A) “ in(B) “ in(T) “
H, and thus a, b P out(A) X out(B) X out(T). However, this violates the strong
compatibility of T with A and B, so that T is disqualified as an appropriate test.
There is no variant of T that is strongly compatible with A and B and yields
the same result; in fact A ”Pr

must B.

5 May Testing

For may-testing on I/O automata there is no difference between ĎLTS
may—allowing

any test that is compatible with A and B—and Ďmay—allowing only tests that
are strongly compatible with A and B. These preorders both coincide with the
trace preorder ĚT .

Theorem 1. A ĎLTS
may B iff A Ďmay B iff B ĎT A.

Proof. Suppose B ĎT A, i.e., in(A) “ in(B) ^ out(A) “ out(B) and
fintraces(A) Ď fintraces(B), and let T be any test compatible with A and B.
The automaton T need not be an I/O automaton, and even if it is, it need not
be strongly compatible with A and B. It is well-known that ĎT is a precongru-
ence for composition [8], so fintraces(T‖A) Ď fintraces(T‖B). Since C may T
(for any C) iff w occurs in a trace σ P fintraces(T‖C), it follows that A may T
implies B may T . Thus A ĎLTS

may B.
That A ĎLTS

may B implies A Ďmay B is trivial.
Now suppose A Ďmay B. Then in(A) “ in(B) ^ out(A) “ out(B). Let

σ “ a1a2 . . . an P fintraces(A). Let T be the test automaton

S

1 2
a1

3
a2

n W
an

E
w

Fair Must Testing for I/O Automata 567

with out(T) :“ in(A) Z {w}, in(T) :“ out(A) and int(T) :“ H. To make sure
that T is an I/O automaton, the dashed arrows are labelled with all input actions
of T , except for ai (if ai P in(T)) for the dashed arrow departing from state i.
By construction, T is strongly compatible with A and B. Now C may T (for
any C) iff σ P fintraces(C). Hence A may T , and thus B may T , and therefore
σ P fintraces(B). ��

6 Must Testing Based on Progress

Definition 7. An I/O automaton T is complementary to I/O automaton A if
out(T) “ in(A) Z {w}, in(T) “ out(A) and int(T) X int(A) “ H.

In this case T and A are also strongly compatible, so that T‖A is defined, and
in(T‖A) “ H. I now show that for the definition of ĎPr

must it makes no difference
whether one restricts the tests T that may be used to compare two I/O automata
A and B to ones that are complementary to A and B.

For use in the following proof, define the relation ” between I/O automata by
C ” D iff states(C) “ states(D) ^ start(C) “ start(D) ^ steps(C) “ steps(D).
Note that T‖A ” T ′‖A implies that A must T iff A must T ′.

Proposition 1. A ĎPr
must B iff in(A) “ in(B) ^ out(A) “ out(B) and A must

T implies B must T for each test T that is complementary to A and B.

Proof. Suppose A ĎPr
must B. Then in(A) “ in(B) ^ out(A) “ out(B) and

A must T implies B must T for each test T that is strongly compatible with
A and B, and thus certainly for each test T that is complementary to A and B.

Now suppose in(A) “ in(B) ^ out(A) “ out(B) but A ĘPr
must B. Then there

is a test T , strongly compatible with A and B, such that A must T , yet
�(B must T). It suffices to find a test T ′′ with the same properties that is
moreover complementary to A and B.

First modify T into T ′ by adding ext(A)\ext(T) to in(T ′), while adding a loop
(s, a, s) to steps(T ′) for each state s P states(T ′) and each a P ext(A) \ ext(T).
Now T‖A “ T ′‖A and T‖B “ T ′‖B, and thus A must T ′, yet �(B must T ′).
Moreover, ext(A) “ ext(B) Ď ext(T ′).

Modify T ′ further into T ′′ by reclassifying any action a P in(T ′) X in(A) as
an output action of T ′′ and any a P ext(T ′)\(ext(A)Z{w}) as an internal action
of T ′′. How part(T ′′) is defined is immaterial. Then T ′‖A ” T ′′‖A and T ′‖B ”
T ′′‖B, and thus A must T ′′, yet �(B must T ′′). Now out(T ′′) “ in(A) Z {w},
in(T ′′) “ out(A), int(T ′′) X int(A) “ H and int(T ′′) X int(B) “ H. ��

Using the characterisation of Proposition 1 as definition, the preorder ĎPr
must on

I/O automata has been studied by Segala [12, Sect. 7]. There it was related to
the quiescent trace preorder ĎQ defined by Vaandrager [13]. Similar as for the
preorders of Sect. 2, I write S ĎQ I for what was denoted I ĎQ S in [12], and
I ĎqT S in [13].

568 R. van Glabbeek

Definition 8. An execution α is quiescent if it is finite and its last state enables
only input actions. Let qtraces(A):“{trace(α) | α is a quiescent execution of A}.
Now

S ĎQ I :ô S ĎT I ^ qtraces(I) Ď qtraces(S) .

An I/O automaton is finitely branching iff each of its states enables finitely
many transitions; it is strongly convergent if it has no infinite execution α with
trace(α) finite, i.e., no execution with an infinite suffix of only internal actions.

Theorem 2 ([12, Thm. 7.3]). Let A and B be finitely branching and strongly
convergent I/O automata. Then A ĎPr

must B iff A ĎQ B.

Note that an execution is quiescent iff it is fair and finite. By [12, Thm. 5.7], if
A is strongly convergent then A ĎF B implies A ĎQ B. (For let A ĎF B. If σ P
qtraces(B), then σ P fairtraces(B) Ď fairtraces(A) so A has a fair execution α
with trace(α) “ σ. As A is strongly convergent, α is finite. Hence σ P qtraces(A).)
This does not hold when dropping the side condition of strong convergence. Take
A = and B = τ with acts(A) “ H and acts(B) “ int(B) “ {τ}.
Then A ”F B, yet A ĘQ B (and A ĘPr

must B).
Even restricted to finitely branching and strongly convergent I/O automata,

AĎQB does not imply AĎF B. This is illustrated by [12, Examples 5.1 and 5.2].

7 Must Testing Based on Fairness

As explained in Sect. 3, the notion of must testing is naturally parametrised by
the choice of a completeness criterion. As I/O automata are already equipped
with a completeness criteria, namely the notion of fairness from Definition 2, the
most appropriate form of must testing for I/O automata takes this concept of
fairness as its parameter, rather than the default completeness criterion used in
Sect. 6.

A problem in properly defining a must-testing preorder ĎF
must involves the

definition of the operator [] employed in Definition 6. In the context of standard
automata, this operator reclassifies all its external actions, except for the success
action w, as internal. When applied to I/O automaton A, it is not a priori clear
how to define part([A]), for this is a partition of the set of locally-controlled
actions into tasks, and when changing an input action into a locally-controlled
action, one lacks guidance on which task to allocate it to. This was a not a
problem in Sect. 6, as there the must-testing preorder ĎPr

must depends in no way
on part .

Below I inventorise various solutions to this problem, which gives rise to
three possible definitions of ĎF

must. Then I show in Sect. 9 that all three resulting
preorders coincide, so that it doesn’t matter on which of the definitions one
settles. Moreover, these preorders all turn out to coincide with the fair preorder
ĎF that comes with I/O automata.

My first (and default) solution is to simply drop the operator [] from
Definition 6:

Fair Must Testing for I/O Automata 569

Definition 9. An I/O automaton A must pass a test T fairly—A mustF T—if
each fair execution of T‖A is successful. Write A ĎF

must B if in(A) “ in(B) ^
out(A) “ out(B) and A mustF T implies B mustF T for each test T that is
strongly compatible with A and B.

This is a plausible approach, as none of the testing preorders discussed in Sects. 3,
4, 5 and 6 would change at all were the operator [] dropped from Definition 6.
This is the case because the set of executions, successful executions and complete
executions of an automaton A is independent of the status (input, output or
internal) of the actions of A.

The above begs the question why I bothered to employ the operator [] in
Definition 6 in the first place. The main reason is that the theory of testing [2]
was developed in the context of CCS, where each synchronisation of an action
from a test with one from a tested process yields an internal action τ . Definition 6
recreates this theory using the operator ‖ from CSP [8] and I/O automata [9],
but as here synchronised actions are not internal, they have to be made internal
to obtain the same effect. A second reason concerns the argument used towards
the end of Sect. 3 for not parametrising notions of testing with a set B of actions
that can be blocked; this argument hinges on all relevant actions being internal.

My second solution is to restrict the set of allowed tests T for comparing I/O
automata A and B to those for which in(T‖A) “ in(T‖B) “ H. This is the case
iff in(T) Ď out(A) and in(A) Ď out(T). In that case [T‖A] and [T‖B] are trivial
to define, as the set of locally-controlled actions stays the same. Moreover, it
makes no difference whether this operator is included in the definition of must
or not, as the set of fair executions of a process is not affected by a reclassification
of output actions as internal actions.

Definition 10. Write A
HĎF

must B if in(A)“in(B)^out(A)“out(B) and more-
over A mustF T implies B mustF T for each test T that is strongly compatible
with A and B, and for which in(T‖A) “ in(T‖B) “ H.

A small variation of this idea restricts the set of allowed tests even further,
namely to the ones that are complementary to A and B, as defined in Defini-
tion 7. This yield a fair version of the must-testing preorder employed in [12].

Definition 11. Write A
cmĎF

must B if in(A) “ in(B) ^ out(A) “ out(B) and
A mustF T implies B mustF T for each T that is complementary to A and B.

As a last solution I consider tests T that are not restricted as in Definitions 10
or 11, while looking for elegant ways to define [T‖A] and [T‖B]. First of all,
note that no generality is lost when restricting to tests T such that ext(A)(“
ext(B)) Ď ext(T), regardless how the operator [] is defined. Namely, employing
the first conversion from the proof of Proposition 1, any test T that is strongly
compatible with I/O automata A and B can converted into a test T ′ satisfying
this requirement, and such that T‖A “ T ′‖A and T‖B “ T ′‖B.

An application of [] to T‖A consists of reclassifying external actions of T‖A
as internal actions. However, since for the definition of the testing preorders it

570 R. van Glabbeek

makes no difference whether an action in T‖A is an internal or an output action,
one can just as well use an operator []′ that merely reclassifies input actions of
T‖A as output actions. Note that in(T‖A) Ď in(T), using that ext(A) Ď ext(T).
Let T ∗ be a result of adapting the test T by reclassifying the actions in in(T‖A)
from input actions of T into output actions of T ; the test T ∗ is not uniquely
defined, as there are various ways to fill in part(T ∗).

Observation 1. Apart from the problematic definition of part([T‖A]′), the I/O
automaton [T‖A]′ is the very same as T ∗‖A.

In other words, the reclassification of input into output actions can just as well
be done on the test, instead of on the composition of test and tested automaton.
The advantage of this approach is that the problematic definition of part([T‖A]′)
is moved to the test as well. Now one can use T ∗‖A instead of [T‖A]′ in the
definition of must testing for any desired definition of part(T ∗). This amounts
to choosing any test T ∗ with in(T ∗‖A) “ H. It makes this solution equivalent
to the one of Definition 10.

8 Action-Based Must Testing

The theory of testing from [2] employs the success action w merely to mark
success states; an execution is successful iff it contains a state in which w is
enabled. In [3] this is dubbed state-based testing. Segala [11] (in a setting with
probabilistic automata) uses another mode of testing, called action-based in [3],
in which an execution is defined to be successful iff it contains the action w.

Although the state-based and action-based may-testing preorders obviously
coincide, the state-based and action-based must-testing preorders do not, at
least when employing the default completeness criterion. An example showing
the difference is given in [3]. It involves two automata A and B, which can in fact
be seen as I/O automata, such that A ĘPr

must B, yet A
ab”Pr

must B. Here ab”Pr
must is

the action-based version of ”Pr
must.

So far I have considered only state-based testing preorders on I/O automata.
Let

abĎF
must be the action-based version of ĎF

must. It is defined as in Definition 9,
but using mustFab instead of mustF . Here A mustFab T holds iff each fair trace
of T‖A contains the action w. Below I will show that when taking the notion
of fairness from [9] as completeness criterion, state-based and action-based must
testing yields the same result, i.e.,

abĎF
must equals ĎF

must. In fact, I need this result
in my proof that ĎF

must coincides with ĎF .

9 Fair Must Testing Agrees with the Fair Traces Preorder

The following theorem states that the must-testing preorder on I/O automata
based on the completeness criterion of fairness that is native to I/O automata,
in each of the four forms discussed in Sects. 7 and 8, coincides with the standard
preorder of I/O automata based on reverse inclusion of fair traces.

Fair Must Testing for I/O Automata 571

Theorem 3. A
abĎF

must B iff A ĎF
must B iff A

HĎF
must B iff A

cmĎF
must B iff A ĎF B.

Proof. Suppose AĎF B, i.e., in(A)“in(B)^out(A)“out(B) and fairtraces(B)Ď
fairtraces(A), and let T be any test that is strongly compatible with A and B.
Since ĎF is a precongruence for composition (cf. Sect. 2), fairtraces(T‖B) Ď
fintraces(T‖A). Since for action-based must testing C mustFab T (for any C)
iff w occurs in each fair trace σ P fairtraces(T‖C), it follows that A mustFab T
implies B mustFab T . Thus A

abĎF
must B.

Now suppose A
abĎF

must B. In order to show that A ĎF
must B, suppose that

A mustF T , where T is a test that is strongly compatible with A and B. Let
the test T ∗ be obtained from T by (i) dropping all transitions (s, a, s′) P steps(T)
for s a success state and a ‰ w, and (ii) adding a loop (s, a, s) for each success
state s and a P in(T). Since for state-based must testing it is irrelevant what
happens after encountering a success state, one has

C mustF T iff C mustF T ∗ (1)

for each I/O automaton C. Moreover, I claim that for each C one has

C mustF T ∗ iff C mustFab T ∗. (2)

Here “if” is trivial. For “only if”, let α be a fair execution of T ∗‖C, and suppose,
towards a contradiction, that α contains a success state (s, r), with s a success
state of T ∗ and r a state of C, but does not contain the success action w. Let α′

be the suffix of α starting with the first occurrence of (s, r). Then all states of
α′ have the form (s, r′), and the action w is enabled in each of these states. Let
T P part(T ∗‖C) be the task containing w. Since w is a locally controlled action
of T ∗, by Definition 4 all members of T must be locally controlled actions of T ∗.
No such action can occur in α′. This contradicts the assumption that α is fair
(cf. Definition 2), and thereby concludes the proof of (2).

From the assumption A mustF T one obtains A mustFab T ∗ by (1) and (2),
and B mustFab T ∗ by the assumption that A

abĎF
must B. Hence B mustF T by

(2) and (1). Thus A ĎF
must B.

That A ĎF
must B implies A

HĎF
must B is trivial.

That A
HĎF

must B implies A
cmĎF

must B is also trivial.
Finally, suppose A

cmĎF
must B. Then in(A) “ in(B) ^ out(A) “ out(B). Let

σ “ a1a2 . . . an P fairtraces(B). Let T be the test automaton

W E
w

1

τ

2
a1

τ

3
a2

τ

n

τ

S
an

with out(T) :“ in(A) Z {w}, in(T) :“ out(A) and int(T) :“ {τ}. The dashed
arrows are labelled with all input actions of T , except for ai (if ai P in(T)) for

572 R. van Glabbeek

the dashed arrow departing from state i. By construction, T is complementary
to A and B. Now C must T (for any C) iff σ �P fairtraces(C). Hence B may
not T , and thus A may not T , and therefore σ P fairtraces(A).

The case that σ “ a1a2 · · · P fairtraces(B) is infinite goes likewise, but with-
out the state S in T . Hence A ĎF B. ��

10 Reward Testing

The reward testing preorder taking the notion of fairness from Definition 2 as
underlying completeness criterion can be defined on I/O automata by analogy
of Definitions 9, 10 or 11. Here I take the one that follows Definition 9, as it is
clearly the strongest, i.e., with its kernel making the most distinctions.

Definition 12. Write A ĎF
reward B if in(A) “ in(B) ^ out(A) “ out(B) and

for each reward test T that is strongly compatible with A and B and for each
fair execution β of T‖B there is a fair execution α of T‖A with reward(α) ď
reward(β).

When taking progress as underlying completeness criterion, reward testing is
stronger than must testing; the opening page of [6] shows an example where
reward testing makes useful distinctions that are missed by may as well as must
testing. When moving to fairness as the underlying completeness criterion, must
testing no longer misses that example, and in fact must testing becomes equally
strong as reward testing. In order to show this, I will use the following notation.

Definition 13. Let A1 and A2 be two strongly compatible I/O automata. A
state �s of A1‖A2 is a pair (�s [1], �s [2]) with �s [k] P states(Ak) for k “ 1, 2. Let
α “ �s0, a1, �s1, a2, . . . be an execution of A1‖A2. The projection α[k] of α to the
kth component Ak, for k “ 1, 2, is obtained from α by deleting “, ai, �si” whenever
ai /P acts(Ak), and replacing the remaining pairs �si by �si[k].

Moreover, if σ is a sequence of external actions of A1‖A2, then σæAk is what
is left of σ after removing all actions outside acts(Ak).

Note that if σ “ trace(α), for α an execution of A1‖A2, then σæAk “ trace(α[k]).
Moreover, if α is an execution of T‖A, were T is a test and A a tested automaton,
then all rewards of the actions in α are inherited from the ones in α[1], so that

reward(α) “ reward(α[1]). (3)

Theorem 4. A ĎF
reward B iff A ĎF

must B iff A ĎF B.

Proof. That A ĎF
reward B implies A ĎF

must B has been shown in [6, Thm. 7] and
is also justified in Sect. 3.

That A ĎF
must B implies A ĎF B has been demonstrated by Theorem 3.

Suppose A ĎF B, i.e., in(A) “ in(B) ^ out(A) “ out(B) and fairtraces(B) Ď
fairtraces(A), and let T be any test that is strongly compatible with A and B.
Let β be a fair execution of T‖B. By [9, Prop. 4], β[1] is a fair execution of

Fair Must Testing for I/O Automata 573

T , and β[2] is a fair execution of B. Since A ĎF B, automaton A has a fair
execution γ with trace(γ) “ trace(β[2]). Let σ :“ trace(β). Then σ is a sequence
of external actions of T‖A such that σæT “ trace(β[1]) and σæA “ σæB “
trace(β[2]) “ trace(γ). By [9, Prop. 5], there exists a fair execution α of T‖A
such that trace(α) “ σ, α[1] “ β[1] and α[2] “ γ. By (3) one has reward(α) “
reward(α[1]) “ reward(β[1]) “ reward(β). Thus A ĎF

reward B. ��

11 Conclusion

When adapting the concept of a complete execution, which plays a central rôle
in the definition of must testing, to the weakly fair executions of I/O automata,
must testing turns out to characterise exactly the fair preorder on I/O automata.
Moreover, reward testing, which under the default notion of a complete execution
is much more discriminating than must testing, in this setting has the same dis-
tinguishing power. Interesting venues for future investigation include extending
these connections to timed and probabilistic settings.

References

1. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 313–327. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60218-6 23

2. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

3. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising testing
preorders for finite probabilistic processes. Log. Methods Comput. Sci. 4(4), 4
(2008). https://doi.org/10.2168/LMCS-4(4:4)2008

4. van Glabbeek, R.J.: Just testing. https://theory.stanford.edu/∼rvg/abstracts.
html#160

5. van Glabbeek, R.J.: Justness: a completeness criterion for capturing liveness prop-
erties (extended abstract). In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019.
LNCS, vol. 11425, pp. 505–522. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17127-8 29

6. van Glabbeek, R.J.: Reward testing equivalences for processes. In: Boreale, M.,
Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for
Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 45–70. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21485-2 5

7. van Glabbeek, R.J., Höfner, P.: Progress, justness and fairness. ACM Comput.
Surv. 52(4), 69 (2019). https://doi.org/10.1145/3329125

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Hoboken
(1985)

9. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989). https://groups.csail.mit.edu/tds/papers/Lynch/CWI89.pdf

10. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gécseg,
F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60084-1 112

https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.2168/LMCS-4(4:4)2008
https://theory.stanford.edu/~rvg/abstracts.html#160
https://theory.stanford.edu/~rvg/abstracts.html#160
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-21485-2_5
https://doi.org/10.1145/3329125
https://groups.csail.mit.edu/tds/papers/Lynch/CWI89.pdf
https://doi.org/10.1007/3-540-60084-1_112

574 R. van Glabbeek

11. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 62

12. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Inf.
Comput. 138(2), 194–210 (1997). https://doi.org/10.1006/inco.1997.2652

13. Vaandrager, F.W.: On the relationship between process algebra and input/output
automata. In: Proceedings of the Sixth Annual Symposium on Logic in Computer
Science (LICS 1991), Amsterdam, The Netherlands, 15–18 July 1991. IEEE Com-
puter Society, pp. 387–398 (1991). https://doi.org/10.1109/LICS.1991.151662

https://doi.org/10.1007/3-540-61604-7_62
https://doi.org/10.1006/inco.1997.2652
https://doi.org/10.1109/LICS.1991.151662

Passive Automata Learning:
DFAs and NFAs

Hans Zantema1,2(B)

1 Department of Computer Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.zantema@tue.nl
2 Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. It is a natural question to find a DFA or NFA for which a
given set of words should be accepted and another given set should not
be accepted. In this short note we investigate how to find a smallest
automaton for both types by means of SMT solving, and compare the
results.

1 Introduction

The question how to learn an automaton has extensively been studied. A land-
mark in this research is the algorithm L∗ from Angluin [2]. Here a DFA is
learned by asking two types of questions: membership queries by which it is
asked whether a word is in the language, and equivalence queries by which it is
asked whether a given DFA accepts the language. This was the starting point
of a large amount research in this direction. A recent variant includes L# [8]
in which the focus is on apartness: proving inequality of observations rather
than equivalence. Instead of for DFAs, a similar approach for NFAs has been
investigated in [3].

But all these variants exploit active learning: the learner starts from scratch
and has a strategy to ask questions to be answered by an oracle. This is in
contrast to passive learning, where a set of positive examples is given that has
to be accepted and a set of negative examples that has to be not accepted. A
most natural question in this area is finding a smallest DFA satisfying these
requirements. This question has proven to be NP-complete in [4]. As it is NP-
complete, indeed it is not expected that it can be solved for larger instances.
But wit the current developments in SAT/SMT solving it makes sense to get a
feeling until which size passive learning is feasible. The goal of this note is to
investigate this, based on randomly generated examples sets, both for DFAs and
NFAs.

Encoding DFA passive learning by pure SAT solving has been elaborated
in [5]. Similar work for NFAs has been done in [6]. For both holds that the
encoding is in pure SAT, and the emphasis is on developing specific tricks to
improve results.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 575–580, 2022.
https://doi.org/10.1007/978-3-031-15629-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_31&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_31

576 H. Zantema

In this note we will achieve comparable results by a direct encoding in SMT
and using the standard SMT solver Z3. Surprisingly, an approach very similar
to ours for DFAs was described independently in [7]. We have special interest for
comparing DFAs and NFAs: for a given positive set and negative set of examples
we search for both a smallest compatible DFA and a smallest compatible NFA.
As expected, often the NFA will have less states. On the other hand, for a fixed
n searching for an NFA of n states is in general more expensive than searching
for a DFA of n states, so in advance it is unclear what will be most expensive in
computation time: finding a smallest DFA or finding a smallest NFA. If the main
goal is to find a simple compatible regular language that can be used to predict
whether a fresh string will be in the language or not, finding this language quickly
is more important than the type of description of the language. In this view it is
a natural question to compare the computation times for the two formats. Our
experiments show that often finding a smallest NFA is found quicker, but not
always.

2 Finding a Smallest DFA

Assume that two disjoint sets A+ and A− of words over an alphabet Σ are given,
and a number n. We will construct a boolean formula that is satisfiable if and
only if a DFA of n states exists such that all words in A+ are accepted and all
words in A− are not accepted. We specify the set Q of states to be {1, 2, . . . , n},
of which 1 is defined to be the initial state, and the DFA will be given by two
functions δ : Q × Σ → Q and F : Q → B, where B stand for the Booleans.

In the usual DFA definition δ is extended to δ∗ : Q × Σ∗ → Q, and a word
w is defined to be accepted if F (δ∗(1, w)) is true.

Instead of defining δ∗ in our encoding we compute the set P of all prefixes of
words from A+∪A−, including these word themselves. The key idea is to specify
a function D : P → Q for which we have D(w) = δ∗(1, w) for all w ∈ P . We do
this by collecting the requirements D(ε) = 1 and D(w) = δ(D(w′), a) for every
w ∈ P that can be written as w′a for w′ ∈ Σ∗ and a ∈ Σ, note that w′ ∈ P
since P is closed under prefixes.

It is interesting to realize that this set P has a tree structure and yields a
partial compatible automaton that is typically not minimal, but gives an upper
bound for the minimal size of a compatible DFA. SAT based minimization of
such a partial automaton for the setting of Mealy machines is described in [1].

Finally we have the acceptance requirements F (D(w)) for all w ∈ A+ and
¬F (D(w)) for all w ∈ A−. Consider the formula consisting of the conjunction
of all these requirements. By construction it is satisfiable if and only if a DFA of
n states exists such that all words in A+ are accepted and all words in A− are
not accepted.

This is encoded directly in Z3 by not only numbering the elements of Q but
also the elements of P and Σ and declaring three functions

δ : Int × Int → Int, F : Int → B, D : Int → Int.

Passive Automata Learning: DFAs and NFAs 577

Apart from the already mentioned parts of the formula also the requirements
0 < δ(i, j) ≤ n are added for all i = 1, 2, . . . , n and all j = 1, 2, . . . ,#Σ.
Summarizing, the full formula reads as follows:

D(ε) = 1 ∧
∧

w=w′a∈P

D(w) = δ(D(w′), a) ∧

∧

w∈A+

F (D(w)) ∧
∧

w∈A−

¬F (D(w)) ∧

n∧

i=1

k∧

j=1

0 < δ(i, j) ≤ n.

Here n is the number of states of the DFA to be searched, k = #Σ, and the
elements of P are numbered, and identified with their numbers. Essentially the
same encoding was described in [7], where also register automata and IORAs
were considered and the focus was on comparison with active learning, while we
focus on comparison with NFAs on randomly generated data.

Now our program repeats building this formula for increasing n, starting by
n = 2, applies Z3, until Z3 results in establishing SAT. Then Z3 also gives the
satisfying assignment, by which the full DFA is specified.

3 Finding a Smallest NFA

Again assume that two disjoint sets A+ and A− of words over an alphabet Σ
are given, and a number n. Now we will construct a boolean formula that is
satisfiable if and only if an NFA of n states exists such that all words in A+

are accepted and all words in A− are not accepted. Here we take the standard
definition of an NFA with a single initial state and no ε steps. Again we specify
the set Q of states to be {1, 2, . . . , n}, of which 1 is defined to be the initial state,
and the NFA will be given by two functions δ and F : Q → B, specifying the
transition function and the final states. But now we have δ : Q × Q × Σ → B,
where δ(q, q′, a) states that there is an a-step from q to q′. Again we define and
number the set P of all prefixes of words from A+∪A−, and in our SMT formula
we declare a function D : P ×Q → B, in which D(w, q) states that there is path
from 1 to q consecutively labeled by the symbols of w. So a string w ∈ P is
defined to be accepted if and only if a state q exists satisfying both F (q) and
D(w, q). This results in the following formula that is satisfiable if and only if a
compatible NFA of n states exist:

D(ε, 1) ∧
n∧

i=2

¬D(ε, i) ∧

n∧

i=1

∧

w=w′a∈P

(D(w, i) ↔
n∨

j=1

(D(w′, j) ∧ δ(j, i, a))) ∧

578 H. Zantema

∧

w∈A+

(
n∨

i=1

(F (i) ∧ D(w, i))) ∧
∧

w∈A−

(¬
n∨

i=1

(F (i) ∧ D(w, i))),

in which again the elements of P are numbered, and identified with their num-
bers.

Again our program repeats building this formula for increasing n, starting by
n = 2, applies Z3, until Z3 results in establishing SAT. The full NFA is obtained
from the resulting satisfying assignment.

4 Results

Our main goal is to get a feeling for which sizes of DFAs and NFAs this approach
is feasible, and how they compare. To do so, we randomly generated several sets
A+ and A− and applied the above approach. This generation has two parameters:
the sizes of A+ and A−, and the lengths of the words. As expected, for A+ and
A− consisting of a few short words the resulting DFAs and NFAs are small and
are found very quickly, while for A+ and A− consisting of a great number of
long words small corresponding DFAs and NFAs are established not to exist
and for larger automaton sizes the procedures run out of time. Our goal is
to get an impression of the border between these two extremes by executing
the above approach for a great number of randomly generated sets A+ and A−.
Instead of generating big tables describing all detailed results for many cases and
computation times in milliseconds, we prefer to focus on general conclusions on
the one hand, and on the details of one single particular representative example
on the other hand.

Generally speaking, the DFA approach turns out to be feasible if the resulting
DFA has up to 9 or 10 states if the words are not too long, say up to 7, for longer
words (length 10 or 12) it hardly goes beyond 7 states. The NFA approach turns
out to be feasible if the resulting NFA has up to 8 states if the words are not too
long, say up to 7, for longer words it hardly goes beyond 6 states. There is a lot
of variation in computation time. For a fixed pair of sets A+ and A− sometimes
the smallest DFA is found much faster than the smallest NFA, and sometimes
the other way around.

We agree that these sizes are quite limited. For more structured sets A+ and
A− than our randomly generated samples one may expect higher sizes. Also one
may think of further optimizations on our most basic encodings by which the
sizes may slightly increase. On the other hand, the DFA and NFA we will give
now for one particular example clearly show that the results of our approach
are far beyond what may be expected from guessing or from approaches without
computer support.

To get a feeling of what can be achieved we now elaborate one particular
example in which both randomly generated A+ and A− consist of 20 words of
length at most 7:

Passive Automata Learning: DFAs and NFAs 579

A+ =

{ba, bba, baba, bbaba, baaaa, bbbaba, bababa, abaaba, baaaba, baabbba, bbababa,
baababa, aaababa, bbbbbaa, ababbaa, bababaa, aababaa, aabbaaa, baabaaa, bbaaaaa},

A− =

{aab, aba, aaa, abba, aaba, abaaa, babbba, aabbba, aaabba, abbaba, aabaaa,
baaaaa, aaaaaa, bbbabba, abbabba, babbaba, aabbaba, bbbaaba, bbaaaba, aaaaaba}.

It turns out that a smallest compatible DFA consist of 10 states, which is found
by the above approach in 419 s, of which nearly all time is used by Z3 for proving
that the formula for 9 states is unsatisfiable. The final formula for 10 states
has size 4 kB, and satisfiability is found by Z3 in a fraction of a second. The
corresponding DFA is the following, in which as usual the initial state is indicated
by an incoming arrow and the final states are indicated by double circles.

b

a

a

b b

a

b

a

a

b

bb

a a

a

ba

b

b

a

Now we switch to NFAs for the same sets A+ and A−. It turns out that
a smallest compatible NFA consists of 7 states, which is found by the above
approach in 47 s, of which nearly all time is used by Z3 for proving that the
formula for 6 states is unsatisfiable. The final formula for 7 states has size 140 kB,
and satisfiability is found by Z3 in 2 s. The corresponding NFA is the following:

b

b

a

a
a

a

a, b

b

b

a, b

b

a

b

b a
b

aa

b

580 H. Zantema

Both the minimal DFA and minimal NFA may be not unique, and distinct
compatible minimal automata may be describe distinct languages. Indeed in
the above example the resulting DFA and NFA describe distinct languages, for
instance, the word bbb is accepted by the NFA, but not by the DFA.

In our approach for both the DFAs and NFAs by far the most computation
time is consumed by proving that the formula for an automaton of size n − 1 is
unsatisfiable, for n being the smallest value for which there is a solution. Hence if
the goal is to find a compatible automaton that does not need to be a guaranteed
smallest one, a good policy is still to consider the procedure for increasing n,
but simply stop it if it takes long, and then continue by the next n.

References

1. Abel, A., Reineke, J.: MeMin: sat-based exact minimization of incompletely specified
mealy machines. In: 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 94–101. IEEE Press (2015)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75, 87–106 (1987)

3. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI International Joint Conference on Artificial Intelligence, pp. 1004–1009
(2009)

4. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
37(3), 302–320 (1978)

5. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere,
J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 66–79. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 7

6. Lardeux, F., Monfroy, E.: Improved SAT models for NFA learning. In: Dorronsoro,
B., Amodeo, L., Pavone, M., Ruiz, P. (eds.) OLA 2021. CCIS, vol. 1443, pp. 267–279.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85672-4 20

7. Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.: Model learning as a satisfiability
modulo theories problem. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA
2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77313-1 14

8. Vaandrager, F., Garhewal, B., Rot, J., Wissmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) TACAS
2022. LNCS, vol. 13243, pp. 223–243. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 12

https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-030-85672-4_20
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12

Author Index

Aceto, Luca 1
Anastasiadi, Elli 1

Baier, Christel 27
Barendregt, Henk 46
Basten, Twan 472
Bergstra, Jan A. 63
Bollig, Benedikt 81

Castiglioni, Valentina 1
Ciancia, Vincenzo 98
Cleaveland, Rance 116

Damasceno, Carlos Diego N. 137
De Nicola, Rocco 512
de Vink, Erik P. 98
Di Stefano, Luca 512
Dubslaff, Clemens 27

Fehnker, Ansgar 151
Ferreira, Tiago 164
Fokkink, Wan 467
Fränzle, Martin 201
Frohme, Markus 180
Funke, Florian 27

Garavel, Hubert 213
Geuvers, Herman 266
Groote, Jan Friso 306

Hooman, Jozef 382
Howar, Falk 321
Huisman, Marieke 524

Ingólfsdóttir, Anna 1
Inverso, Omar 512

Jacobs, Bart 339
Jansen, David N. 358
Janssen, Ramon 491
Jantsch, Simon 27
Jensen, Peter G. 283
Jilissen, Kevin H. J. 306
Junges, Sebastian 371

Kurtev, Ivan 382

Lang, Frédéric 213
Larsen, Kim G. 283
Latella, Diego 98
Laveaux, Maurice 306
Leucker, Martin 81
Liu, Xinxin 358
Lynch, Nancy 403

Massink, Mieke 98
Mikučionis, Marius 283
Moerman, Joshua 450
Musaev, Saidgani 467
Musco, Cameron 403

Neider, Daniel 81

Piribauer, Jakob 27

Raffone, Antonino 46
Rot, Jurriaan 371

Silva, Alexandra 164
Steffen, Bernhard 180, 321
Strüber, Daniel 137

Thieme, Alex 472
Tretmans, Jan 491
Tucker, John V. 63

Valiani, Serenella 512
van den Bos, Petra 524
van der Aalst, Wil M. P. 539
van Glabbeek, Rob 559
van Heerdt, Gerco 164
van Spaendonck, P. H. M. 306

Willemse, Tim A. C. 306
Wißmann, Thorsten 450

Zantema, Hans 575
Ziemek, Robin 27

	Preface
	Organization
	Contents
	Non-finite Axiomatisability Results via Reductions: CSP Parallel Composition and CCS Restriction
	1 Introduction
	2 Preliminaries
	3 The Proof Strategy: Reduction Mappings
	4 Axiomatisability Results for CSP Parallel Composition
	4.1 The Languages BCCSPAp, BCCSPActp, BCCSPp and BCCSPp
	4.2 The Negative Result for BCCSPAp
	4.3 The Case of BCCSPp and the Negative Result for BCCSPp
	4.4 The Case of BCCSPActp

	5 The Case of Restriction
	5.1 The Negative Result
	5.2 The Reduction

	6 Concluding Remarks
	References

	Operational Causality – Necessarily Sufficient and Sufficiently Necessary
	1 Introduction
	2 Preliminaries
	3 Necessary and Sufficient Causes
	3.1 Necessary Causes
	3.2 Sufficient Causes

	4 Finding Good Causes
	4.1 Degrees of Sufficiency and Necessity
	4.2 Weight-Minimal Necessary Causes

	5 Conclusion
	References

	Axiomatizing Consciousness with Applications
	1 Towards Consciousness
	2 Consciousness as Discrete, Probabilistic-Computable Actor
	3 Compound Consciousness
	4 Self
	5 Mindfulness: Mechanism and Application to ER
	6 Suffering
	6.1 Suffering as Pain
	6.2 Suffering as Change
	6.3 Suffering from Lack

	7 Release: "3223379 Suffering and "3222378 Freedom
	8 Freedom Paradox
	9 Layers of Consciousness
	10 Conclusion
	References

	Symmetric Transrationals: The Data Type and the Algorithmic Degree of its Equational Theory
	1 Introduction
	2 Basic Theory of Abstract Data Types
	2.1 Expansions, Extensions, and Enlargements

	3 The Symmetric Transfields
	3.1 Algebra of Peripheral Numbers and their Equational Specification
	3.2 Making a Symmetric Transfield
	3.3 Making a Bounded Symmetric Transfield

	4 Rationals and Transrationals
	4.1 Transrationals and Bounded Transrationals
	4.2 Minimality of the Bounded Transrationals

	5 One-One Degree of Equations in Symmetric Transrationals
	5.1 The Diophantine Problem for the Rationals
	5.2 Equational Theories

	6 Concluding Remarks
	6.1 Background on the Rationals and Their Enlargements
	6.2 Practical Computer Arithmetics
	6.3 Hybrid Systems

	References

	A Survey of Model Learning Techniques for Recurrent Neural Networks
	1 Introduction
	2 Recurrent Neural Networks as Language Acceptors
	3 Model Learning for Recurrent Neural Networks
	3.1 Answering Equivalence Queries Probably Approximately Correct
	3.2 Equivalence Queries Inspired by Statistical Model Checking
	3.3 An Abstraction Refinement Approach to Equivalence Queries

	4 Explainability Beyond Regular Languages
	5 Conclusion
	References

	Back-and-Forth in Space: On Logics and Bisimilarity in Closure Spaces
	1 Introduction
	2 Preliminaries
	3 Bisimilarity for Closure Models
	3.1 CM-bisimilarity
	3.2 Logical Characterisation of CM-bisimilarity

	4 CMC-bisimilarity for QdCMs
	4.1 CMC-bisimilarity for QdCMs
	4.2 Logical Characterisation of CMC-bisimilarity

	5 CoPa-Bisimilarity for QdCM
	5.1 CoPa-bisimilarity
	5.2 Logical Characterisation of CoPa-bisimilarity

	6 Conclusions
	References

	Better Automata Through Process Algebra
	1 Introduction
	2 Languages, Regular Expressions and Automata
	2.1 Alphabets and Languages
	2.2 Regular Expressions
	2.3 Finite Automata

	3 Kleene's Theorem
	4 NFAs via Structural Operational Semantics
	4.1 An Operational Semantics for Regular Expressions
	4.2 Building Automata Using Acceptance and Transitions
	4.3 Computing NFAs from Regular Expressions

	5 Discussion
	6 Conclusions and Directions for Future Work
	A SOS Rules for Acceptance and Transitions
	References

	Family-Based Fingerprint Analysis: A Position Paper
	1 Introduction
	2 Software Fingerprinting
	2.1 Model Learning
	2.2 A Methodology and Taxonomy for Formal Fingerprint Analysis

	3 Family-Based Fingerprint Analysis
	3.1 Family-Based Modeling and Analysis
	3.2 A Framework for Family-Based Fingerprint Analysis
	3.3 Practical and Theoretical Implications

	4 Final Remarks
	References

	What's in School? – Topic Maps for Secondary School Computer Science
	1 Introduction
	2 Computer Science Learning and Teaching Standards
	3 Topic Maps
	4 Model Checking Unit
	5 Discussion and Conclusion
	References

	Tree-Based Adaptive Model Learning
	1 Introduction
	2 Preliminaries
	2.1 Learning with a Classification Tree

	3 Learning Evolving Systems Incrementally
	3.1 Correctness and Termination

	4 Experiments
	5 Conclusion
	A Omitted Incremental Subroutines
	B Additional Experiment Graphs
	B.1 Mutation Benchmark
	B.2 Feature-Add Benchmark

	References

	From Languages to Behaviors and Back
	1 Introduction
	2 Preliminaries for Behavioral Systems
	2.1 A Semantic Point of View
	2.2 A Technical Point of View

	3 Systems of Procedural Transition Systems
	3.1 A Semantic Point of View
	3.2 A Technical Point of View

	4 Learning Systems of Procedural Transition Systems
	4.1 A Semantic Point of View
	4.2 A Technical Point of View

	5 On Behaviors and Reductions to Well-Matched Languages
	6 Evaluation
	6.1 Benchmark Setup
	6.2 Results

	7 Related Work
	8 Outlook and Future Work
	References

	The Quest for an Adequate Semantic Basis of Dense-Time Metric Temporal Logic
	1 Introduction
	2 Signal Duration Calculus
	3 Formulae Differentiating Signal Classes
	4 Conclusion
	References

	Equivalence Checking 40 Years After: A Review of Bisimulation Tools
	1 Introduction
	2 Retrospective of the 1980s
	2.1 Bisimulation Tools Based on Term Rewriting
	2.2 Algorithms for Bisimulations on Finite-State Systems
	2.3 Early Bisimulation Tools

	3 Retrospective of the 1990s
	3.1 New Algorithms for Bisimulations
	3.2 Algorithms for On-the-Fly Verification
	3.3 Algorithms for Symbolic Verification
	3.4 Algorithms for Compositional Verification
	3.5 Enhanced Bisimulation Tools
	3.6 New Bisimulation Tools
	3.7 Bisimulation Tools for Timed and Hybrid Systems
	3.8 Bisimulation Tools for Probabilistic and Stochastic Systems
	3.9 Bisimulation Tools for Mobile Systems

	4 Retrospective of the 2000s
	4.1 New Algorithm for Strong Bisimulation
	4.2 New Bisimulation Tools
	4.3 Bisimulation Tools Using On-the-Fly Verification
	4.4 Bisimulation Tools Based on Compositional Verification
	4.5 Bisimulation Tools Based on Parallel/Distributed Computing
	4.6 Bisimulation Tools Based on Symbolic Verification
	4.7 Bisimulation Tools for Timed Systems
	4.8 Bisimulation Tools for Probabilistic and Stochastic Systems

	5 Retrospective of the 2010s
	5.1 New Bisimulation Tools
	5.2 Bisimulation Tools for Probabilistic and Stochastic Systems
	5.3 Bisimulation Tools for Mobile Systems
	5.4 Bisimulation Tools Based on Parallel/Distributed Computing
	5.5 Bisimulation Tools Based on Compositional Verification
	5.6 Recent Results for Strong and Branching Bisimulations

	6 Conclusion
	References

	Apartness and Distinguishing Formulas in Hennessy-Milner Logic
	1 Introduction
	2 Bisimulation and Apartness for LTSs
	2.1 Hennessy-Milner Logic for Bisimulation

	3 Weak Bisimulation and Apartness for LTSs
	3.1 Hennessy-Milner Logic for Weak Bisimulation

	4 Branching Bisimulation and Apartness for LTSs
	4.1 Hennessy-Milner Logic for Branching Bisimulation
	4.2 Examples
	4.3 Related and Further Work

	References

	Playing Wordle with Uppaal Stratego
	1 Introduction
	2 Wordle
	3 Uppaal Stratego
	4 Wordle in Uppaal Stratego
	5 Evaluation
	6 Conclusion
	References

	Using the Parallel ATerm Library for Parallel Model Checking and State Space Generation
	1 Introduction
	2 ATerm Library
	3 State Space Generation
	4 Model Checking via Boolean Equation Systems
	5 Conclusion
	References

	Active Automata Learning as Black-Box Search and Lazy Partition Refinement
	1 Introduction
	2 Regular Languages and Automata
	3 MAT Learning
	4 The L Algorithm
	5 Demonstration
	6 Evaluation
	7 Conclusion
	References

	A Reconstruction of Ewens' Sampling Formula via Lists of Coins
	1 Introduction
	2 The Challenge
	3 Going Probabilistic
	4 Adding a Mutation Rate Parameter
	5 The Lengths of Coin Sequences
	6 Multisets Instead of Lists
	References

	.26em plus .1em minus .1emRooted Divergence-Preserving Branching Bisimilarity is a Congruence: A Simpler Proof
	1 Introduction
	2 Finite-State CCS and Branching Bisimulation
	3 Congruence for Finite-State Processes
	4 Comparison with the Congruence Proof for a Traditional Definition
	5 Extending the Proof to Full CCS?
	References

	Learning Language Intersections
	1 Introduction
	2 Strategies
	2.1 The Word-by-Word Strategy
	2.2 The Independent Strategy
	2.3 The Machine-by-Machine Strategy

	3 Prototype Implementation
	3.1 The Membership Oracle Signature
	3.2 An Adequate Equivalence Oracle

	4 Empirical Evaluation
	4.1 Setup
	4.2 Summary
	4.3 Detailed Results

	5 Conclusion and Outlook
	References

	Runtime Verification of Compound Components with ComMA
	1 Introduction
	2 Interface Modeling and Monitoring
	2.1 ComMA Interface Modeling
	2.2 Interface Monitoring

	3 Component Models
	3.1 Components with Functional Constraints
	3.2 Using the Identity of Communication Partners

	4 Compound Components
	5 Component Monitoring
	5.1 Traces with Messages Between Component Instances
	5.2 Algorithm for Monitoring a Trace
	5.3 Checking Functional Constraints

	6 Related Work
	7 Conclusions
	References

	A Basic Compositional Model for Spiking Neural Networks
	1 Introduction
	2 The Spiking Neural Network Model
	2.1 Network Structure
	2.2 Executions and Probabilistic Executions
	2.3 External Behavior of a Network
	2.4 Examples

	3 Composition of Spiking Neural Networks
	3.1 Composition of Two Networks
	3.2 Examples
	3.3 Compositionality Definitions

	4 Theorems for Acyclic Composition
	4.1 Compositionality
	4.2 Examples

	5 Theorems for General Composition
	5.1 Composition Results for Executions and Traces
	5.2 Composition Results for One-Step Extensions
	5.3 Compositionality
	5.4 Examples

	6 Hiding for Spiking Neural Networks
	6.1 Hiding Definition
	6.2 Examples

	7 Problems for Spiking Neural Networks
	7.1 Problems and Solving Problems
	7.2 Composition of Problems
	7.3 Hiding of Problems
	7.4 Examples

	8 Conclusions
	References

	State Identification and Verification with Satisfaction
	1 Introduction
	2 State Identification and Verification
	2.1 Testing Problems
	2.2 Separating and Distinguishing Sequences
	2.3 Identification in a Subset of States

	3 Reduction to SAT Solving
	3.1 State Verification via UIO Sequences
	3.2 State Identification via Adaptive Distinguishing Sequences

	4 Preliminary Experimental Results
	4.1 Implementation
	4.2 Benchmarks
	4.3 UIO Experiments
	4.4 ADS Experiments

	5 Conclusions and Future Work
	References

	A Note on the Message Complexity of Cidon's Distributed Depth-First Search Algorithm
	1 Introduction
	2 Cidon's DDFS Algorithm
	3 On the Message Complexity of Cidon's Algorithm
	4 Conclusion
	References

	Minesweeper is Difficult Indeed!
	1 Introduction
	2 Related Work
	3 Notations
	4 Minesweeper Consistency and Inference
	5 Simulating Circuits in Minesweeper
	6 Templates for Circuit Synthesis
	6.1 Removing and Gates from Boolean Circuits
	6.2 Design Principles for Templates
	6.3 Templates for Gate Layers
	6.4 Wire Templates
	6.5 Templates for the Literal Layer
	6.6 Templates for Connecting Layers

	7 NP-completeness of Minesweeper Consistency
	8 Conclusions
	References

	Goodbye ioco
	1 Introduction
	2 Preliminaries
	3 Examples
	4 Test Observations
	5 Refinement
	6 Canonical Implementations
	7 Relating Relations
	8 Concluding Remarks
	References

	Process Algebras and Flocks of Birds
	1 Introduction
	2 A Simplified Model of a Flocking Behaviour
	3 Analysis of Cohesion
	4 Revising the Model
	5 Conclusion
	References

	The Integration of Testing and Program Verification *9pt
	1 Introduction
	2 Strengths and Weaknesses of Testing and Verification
	3 Our Vision
	4 Challenges
	4.1 Challenges for Integration
	4.2 Challenges for Testing
	4.3 Challenges for Deductive Verification

	5 Conclusion
	References

	Discovering Directly-Follows Complete Petri Nets from Event Data
	1 Introduction
	2 Preliminaries
	3 Directly-Follows Completeness
	4 Subclasses of Accepting Petri Nets Relevant for Process Mining
	5 The 1.0 and 1.1 Algorithms
	6 The 2.0 Algorithm
	7 Discussion
	8 Conclusion
	References

	Fair Must Testing for I/O Automata
	1 Introduction
	2 I/O Automata
	3 Testing Preorders
	4 Testing Preorders for I/O Automata
	5 May Testing
	6 Must Testing Based on Progress
	7 Must Testing Based on Fairness
	8 Action-Based Must Testing
	9 Fair Must Testing Agrees with the Fair Traces Preorder
	10 Reward Testing
	11 Conclusion
	References

	Passive Automata Learning: DFAs and NFAs
	1 Introduction
	2 Finding a Smallest DFA
	3 Finding a Smallest NFA
	4 Results
	References

	Author Index

