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Abstract Soft Sensors are predictors for measurements that are difficult or impos-
sible to obtain by means of a physical sensor. A soft sensor delivers virtual measure-
ments based on several or many physical measurements and a mathematical or 
numerical model that incorporates the physical knowledge about the interdepen-
dencies. In industrial processes, control, optimization, monitoring, and maintenance 
can benefit from the application of soft sensors. In recent years, Machine Learning 
(ML) has proven to be very effective for building soft sensors for industrial applica-
tions. We work on modelling dynamical processes for which the measurements of 
the physical variables are available as time series over long periods. In this article 
we present work on the comparison of different ML methods for modelling dynamic 
processes with the objective of predicting certain output variables. The main applica-
tion focus of our work is on the optimization of the cement production process. We 
compare approaches using Recurrent Neural Networks (RNN) and Convolutional 
Neural Networks (CNN) using real process data from a cement production. The 
cement sector is the third-largest industrial energy consumer. There is a high poten-
tial for energy savings and for the reduction of CO2 emissions by optimizations of the 
production process. We present first results of our research that primarily is aimed 
to improve the robustness of a soft sensor for grain size in the cement production 
process. 
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1 Introduction 

The objective of a soft sensor is the estimation of a quantity, which cannot or not 
easily be measured directly. This description may also match a simple resistance 
thermometer. However, the term soft sensor is only used for inferential measure-
ments that are based on several or many physical measurements and a mathematical 
or numerical model that incorporates the physical knowledge about the interdepen-
dencies. In the literature, the first industrial applications of soft sensors are described 
in the context of chemical process operations. Rao et al. [1] state two objectives 
for developing soft sensors: (1) providing near optimal values for important non-
measurable control variables associated with product quality to improve real-time 
control systems; (2) providing the interpretation of the important process variables 
for operators to enhance the interaction between chemical processes and human 
operators (…). 

The objectives of our work are very similar. The processes we deal with are dynam-
ical and the physical measurements are represented by time series of continuous 
values. We use methods of machine learning to achieve the objectives. 

Data-driven approaches for the development of soft sensors have been used for 
more than twenty years [2]. Early applications of neural networks for this purpose are 
described in [3–6]. Deep Neural Networks (DNN) allow more complex models that 
potentially can lead to an improvement of the prediction accuracy [7, 8]. Recurrent 
Neural Networks (RNN) and Convolutional Neural Networks (CNN) are specific 
types of DNN. They are particularly apt to capture the information on the dynamics 
[9, 10] of the available measurements. A recent review on soft sensors in industrial 
processes [11] provides an excellent overview of the field, far beyond the scope of 
the brief introduction given here. In modern factories all operational events and all 
measurements are digitally recorded. This is also the case for the cement mill that 
we aim to optimize. Figure 1 is an illustration of the cement production process. 
The mill is filled with fresh and coarse material. After grinding, the material is 
split by an air separator into new coarse material and the finished product. Since 
direct measurements inside a cement ball mill are hardly possible, the grain size 
of the material, a crucial parameter, has to be determined offline. This is a manual 
operation with a relatively low sampling rate typically about two hours [12]. Based 
on the measured distribution of the current grain size, a machine operator can adjust 
the air separator. Ball mills have a high specific grinding energy demand [13]. The 
reduction of grinding iterations by means of a real-time estimation of the grain size 
can significantly lower the power consumption.

Previous research has shown that the grain size can be estimated using soft sensors 
developed with a data-driven approach [12, 14]. A related example is the prediction 
of the content of free lime (f-CaO) in cement clinker [15]. In practice, a sustainable 
deployment of this technology has not been achieved yet. The main problems are 
long-term drifts of process parameters, insufficient robustness with respect to situa-
tions not covered by the training data, and lack of transparency of the model behaviour



Machine Learning for Soft Sensors and an Application … 629

Fig. 1 Cement production process flowchart. (Adapted from en.wikipedia.org/wiki/Cement_mill)

for the responsible process operators. These problems are typical for many appli-
cations of artificial intelligence in industry [16]. In Sect. 2 we briefly introduce the 
RNN and the CNN architectures. Our comparative experiments, described in detail 
in Sect. 4, use current and historic data from a cement mill and from the operation 
of a gas-fired absorption heat pump [7]. 

2 Neural Networks for Time Series Prediction 

2.1 Deep Neural Networks (DNN) 

Artificial neural networks (ANN/NN) are an established methodology for modeling 
complex input–output relationships. Figure 2 shows a feedforward neural network, 
a type of network architecture that is widely used for regression or classification 
problems. The example network has a three-dimensional input vector x, one output 
value y, and one hidden layer with two neurons. Using a machine learning algo-
rithm, e.g., backpropagation, the network can be trained to produce certain values 
for y, depending on the given input vectors x. The training process can be described 
as a data-driven optimization of the free network parameters, typically the values 
for the weights and biases. The network architecture and its trained parameters of 
the network, data-driven optimized values for the weights and biases, represent a 
numerical model of the relationship between the inputs and the outputs. A feedfor-
ward neural network may have many layers and a large number of free parameters.
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Fig. 2 Example of a 
feedforward network 

Such networks are called deep neural networks (DNN). DNN models have a higher 
expressive power than models built with small networks. Lippel et al. [7] used a  
DNN for the prediction of output temperatures of a heat pump. 

The input measurements are time series data. As shown in [7], the prediction 
accuracy can be greatly improved when the input vector of the network is augmented 
by some aggregation of measurements taken at preceding points in time. There are 
neural network architectures that are especially suitable for the aggregation of infor-
mation over time. Two of them, recurrent neural networks and convolutional neural 
networks are briefly described in the following paragraphs. 

2.2 Recurrent Neural Networks (RNN) 

The typical characteristics of the RNN architecture are feedback loops, at least one. 
This gives the RNN the capacity to update the current state based on past states and 
current input data [17]. That is, unlike a feedforward NN the output of a RNN depends 
on the current input and an internal state, which can also be called a memory. Practical 
implementations of the feedback loop are based on ‘unfolding’. As is illustrated in 
Fig. 3 only a certain number of past points in time are used by the ‘memory’. In 
our example, only the directly preceding measurement (t-1) is used together with the 
current measurement at time t. For our experiments we use a special type of RNN, 
a so-called ‘long short-term memory’ network (LSTM). LSTM networks have been 
widely and successfully used in various applications. An explanation of LSTM is 
beyond the scope of this article. We refer the interested reader to a review paper by 
Yu et al. [17].

2.3 Convolutional Neural Networks (CNN) 

A convolutional neural network is a special type of feedforward network. CNNs have 
proven extremely successful for image analysis. The CNN architecture is biologically 
inspired, since it is known that the visual system is based on ‘receptive fields’ that 
play a similar role as filter banks in classical computer vision systems [18]. Recently
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Fig. 3 A simple unfolded 
RNN with one hidden layer. 
x is a three-dimensional 
input vector and y is the 
output value at time t

Fig. 4 First convolutional layer of a trained CNN for three 1D time sequences. The kernel slides over 
all time sequences. For every filter the dot product of the input and the kernel weights is calculated. 
After the first calculation (yellow) the kernel slides a fixed step size forward and calculates the next 
value (blue) 

this network architecture has been widely used to process 1D signals from production 
processes [12, 15]. A CNN typically consists of four types of layers: convolutional, 
pooling, flatten and fully connected layer. The convolutional layer calculates for each 
filter a dot product of the input vector and kernel weights. This is followed by a so-
called pooling layer that reduces and aggregates the raw data. In case of an ‘average 
pooling layer’ the amount of data is reduced by averaging the respective inputs. A 
‘max pooling layer’ reduces the amount of data by selecting the largest value. After 
each calculation this filter window slides forward across the layer inputs. The fully 
connected layer at the end of the CNN, will predict the target value (Fig. 4). 

3 Auxiliary Methods 

3.1 Metrics 

The most common used error metric is the mean squared error (MSE), which weights 
outlier stronger. The mean absolute percentage error (MAPE) is also a good metric 
to compare models on different datasets. Using MAPE has the advantage that the
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absolute values of the underlying data is not made explicit. In this article the mean 
absolute percentage error is used to compare results between models and datasets 
[19]: 

MAP  E  =
∑ |ytrue−ypred |

ytrue  

n
· 100 (1) 

where ytrue  denotes the ground truth, ypred the prediction and n the number of 
predictions. There are a number of other metrics that could also be considered as an 
alternative to MSE [20]. 

3.2 Autoencoder for Anomaly Detection 

An often-overlooked problem are possible anomalies and outliers in the data. In the 
following two methods for the detection of anomalies and outliers are described. 
The so called Autoencoder is special neural network architecture that consists of two 
parts. The first part encodes the input sequence by reducing dimensions, the second is 
a decoder that ideally reproduces the input data. Using the training data as reference, 
outliers or anomalies are detected by a reconstruction of the test data and calculating 
the deviations between input and output data of the Autoencoder [21]. 

4 Experiments 

The comparison of the different neural network architectures is made with real 
process data from a cement production plant and from the operation of a gas-fired 
absorption heat pump [7]. Hyperparameter optimization for the number of filters 
(CNN) and cells (LSTM) is performed for both models and datasets. For the heat 
pump the objective is to predict the outlet temperatures for heating Th and cold-
water Tc circuit based on five input variables such as the volume flow rate of used 
gas, inlet temperature and volume flow rate of the heating and cold-water circuit. In 
the cement production process the task is to predict two parameters of the Rosin– 
Rammler-Sperling-Bennett RRSB distribution [22, 23]. In the following sections the 
results for the hyperparameter search and the reaction of the models on outliers are 
shown. For this article a CNN like LeNet-5 is used which consists of two convo-
lutional layers followed by a pooling layer and three fully connected layer with a 
size of 120, 64 and 2 [24]. In both experiments the prediction models are the same 
and are built according to Table 1. The datasets differ in the number of training 
data, validation data, and number of features, while the number of targets is two for 
both models. The heat pump dataset consists of 1.2 million training data points and 
950 thousand validation data points each with five input parameters. In contrast, the



Machine Learning for Soft Sensors and an Application … 633

Table 1 Concrete model 
structures for CNN and 
LSTM used in the 
experiments. The fully 
connected layers form the end 
for both models. Fconv A and 
Fconv B denote the number of 
filters and CellA and CellB 
describe the number of LSTM 
cells 

CNN LSTM 

Layer Output Layer Output 

Convolutional (1200, Fconv A) LSTM (1200, , CellA) 

Avg. pooling (600, Fconv A) LSTM (CellB ) 

Convolutional (600, Fconv B ) – – 

Avg. pooling (300, Fconv B ) – – 

Flatten layer (300 · Fconv B ) – – 

Both 

Layer Output 

Fully connected (120) 

Fully connected (84) 

Fully connected (2) 

Table 2 The best achieved MAPE of the hyperparameter study. The numbers in parenthesis 
describe the used parameters and random seed 

Model Heat pump Cement 

LSTM 0.77% 
(32;16; Seed2) 

2.14% 
(64;4; Seed1) 

CNN 1.15% 
(64;16; Seed1 ) 

2.27% 
(16;32; Seed3) 

cement dataset consists of only 5500 and 605 target data points but with 19 input 
parameters. 

To train the weights in neural networks, initial values must be defined at the 
beginning, which are usually set ‘randomly’. The random seed defines the random 
status to produce reproducible results. In addition, different seeds can be tried out to 
identify a particularly bad or good initialization (Table 2). 

4.1 Hyperparameter Grid Search 

In this section the results of the parameter optimization of both datasets will be 
presented. The selection of the hyperparameters to be optimized remains the same for 
both datasets, while only the random seed changes, since the random selection of the 
weight initialization can have a strong influence on the result. The hyperparameters 
for these experiments are shown in the Table 3.

Initial results with the heat pump dataset in Fig. 4 showed that the CNN (orange) 
mostly produced better and more robust results. However, it also shows that different 
random seeds are important. The best MAPE according to Table 3 from the LSTM in 
the first seed is 2.23% and in the second 0.77%. With the cement dataset the LSTM
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Table 3 Hyperparameter for the grid search. Grid A are the different sizes for the first layer and 
Grid B for the second 

CNN/LSTM 

Grid A 8 16 32 64 

Grid B 8 16 32 64

Fig. 5 Violin plot from 
MAPE of both models and 
datasets over all seeds 

seems to be more stable but with a worse best MAPE then the CNN. Figure 5 shows 
a violin plot for both network architectures and both data branches. It visualizes the 
results summarized for the 3 random seeds. 

The peaks of the violins denote the highest and lowest MAPE. The width indicates 
the distribution of the values and the 3 lines the 3 quartiles. This diagram suggests 
that in the case of the cement dataset, the number of LSTM cells and the selection of 
the random seed does not have a large influence on the result. The distribution for the 
CNN-based model looks similar on both datasets, only shifted in height. While the 
results from the LSTM for the heat pump scatter strongly regardless of the parameter 
choice, the cement dataset shows more consistent and better results than the CNN. 
The Table 3 provides two interesting insights: The best MAPE is very similar for 
the cement dataset for both architectures, while for the heat pump dataset the LSTM 
gives a much better result (Fig. 6).

4.2 Reaction to Outlier 

The other series of experiments investigate the behaviour of the models to outliers in 
the data. For this, we manipulated the dataset and added artificial outliers by replacing 
50,000 contiguous data points (12% of input data) from 5 features with the max value 
of the respective feature. Before the forecast, an attempt is made to detect the outliers
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Fig. 6 Results of the hyperparameter study for both networks (CNN/RNN) and datasets 
(cement/heat pump) in MAPE for 3 random seeds

and replace them with the median of the last 3 days. For this purpose, an autoencoder 
(AE) is used. The Fig. 7 shows the deviation from the ground truth for the RRSB_D 
prediction, where the grey area indicates data manipulation. It is noticeable that the 
LSTM shows significantly better results, especially in the manipulated area beside 
one outlier. 

Fig. 7 Reaction of the 
methods to outlier. Two 
curves showing the deviation 
from the ground truth for the 
target value while a data 
manipulation is taking place 
(dark grey area)
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5 Conclusion 

Machine learning methods have proven to be very effective for building soft sensors. 
In this article, we study two neural net architectures that are specifically suitable 
for modelling time series data. Both CNN and RNN are used with real sensory data 
from two different application domains. The one dataset was collected from a cement 
production process. The other dataset came from the operation of a gas-fired heat 
pump. 

The trained models were assessed by the mean absolute percentage error (MAPE) 
between the predicted values and the ground truth data. We achieved high accuracies 
for both CNN and RNN models. The training of the models was conducted many 
times using different hyperparameters and various numerical training initialisations. 
The respective accuracies of the trained models is not the only relevant criterium. We 
also looked at the robustness of the models in the presence of outliers and anomalies, 
i.e., how good are the predictions when the time sequence contains abnormal values. 
The results on the cement dataset can be considered more robust with the CNN 
models and the RNN models show better robustness on the heat pump dataset. In 
practical applications, a soft sensor should be operating in concert with a detector 
for outliers and anomalies. Beside the comparison of CNN and RNN, we presented 
some preliminary work on the integration of such detectors. For the goal of robust 
and sustainable applications of soft sensors in complex industrial processes we see a 
large potential for a fusion of different machines learning methods that may operate 
in an ensemble or supportively act as decision aids for handling special situations. 
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