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 Introduction of Phenomics

Phenomics is the study of the phenome with the goal of characterizing phenotypes 
in a rigorous and formal fashion and linking them to the genes and gene variations 
that cause them (alleles). The study of plant development, performance, and com-
position is known as plant phenomics. Phenotyping technologies are used in for-
ward phenomics to “sieve” collections of germplasm for important traits. The 
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sieve or screen may be high-throughput, completely automated, and low-resolu-
tion, with higher-resolution, lower-throughput measurements following. Abiotic 
or biotic stress challenges may be used in screenings, which must be repeatable 
and physiologically relevant. Reverse phenomics is the detailed dissection of 
attributes that have been found to be valuable to disclose mechanistic insight and 
use this mechanism in new techniques. A physiological characteristic may need to 
be reduced to biochemical or biophysical processes and subsequently to a gene 
or genes.

 High-Throughput Phenomics (HTP)

Phenomics is the study of multidimensional phenotypes with high throughput and 
correct achievement at different (cell, tissues, organs, individual plant, plots, and 
field) levels during the developmental stages of a crop. The phenotypic performance 
of crops is totally dependent upon the interaction between genotypes and environ-
mental factors such as climatic factors, biotic and abiotic factors, and management 
methods of crops. In other words, phenomics can be defined as the whole study of 
high dimensional phenotypes. To improve the crop and understand the plant biol-
ogy, its necessary to obtain data on all main features of phenotype in detail, as 
shown in Table 6.1.

 Phenotypic Technologies

The phenotypic traits can measure exactly through the fast growth of harmless or 
nontoxic senses and advanced techniques of imaging in which visible, thermal 
infrared, fluorescence, 3D, and hyperspectral imaging, as well as tomographic 
imaging using magnetic resonance imaging (MRI) or X-ray computed tomogra-
phy (CT) are involved. The number of high-throughput phenotyping (HTP) plat-
forms can increase with the help of different technologies like sensing technologies, 
automatic controlled technologies, computers, robotics, and aeronautics for crop 
phenotypic traits inquiry. Numerous phenotypic platforms for the traits of the 
crop at numerous application scales are developed by scientists. In this chapter, 
there are three types of phenotypic platforms: microscopic, ground-based, and 
aerial phenotyping platforms split on the bases of imaging levels, which permit 
the representation of phenotypic traits at the different levels (tissue level, indi-
vidual plant level, plot level, and field level). For the highly developing field of 
phenomics and giving rise to an increasing amount and diversity of data, high-
throughput technologies are generally used. Turn off the extent data into the 
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Table 6.1 Various imaging tools and techniques used for different traits phenotyping

Sr. 
no.

Imaging tools and 
techniques Traits to be measured/phenotype

1 Visible light Shoot biomass, yield attributes, leaf morphology, ear traits,  
and root traits are all factors to consider

2 RGB imaging Growth dynamics, chlorosis and necrosis, simple pigmentation, 
senescence, projected structures, surfaces, shoot colors, roots, seeds, 
leaf spots, growth dynamics, chlorosis and necrosis, simple 
pigmentation, and senescence

3 MRI, CT (X-ray) Internal structures, in-soil structures, volumetric data, root 
development, and metabolites are all examples of internal structures

4 Thermal infrared Index of the surface of the leaf, temperature of the leaf, insect state 
infestation, sheet and canopy water status

5 Laser, stereo 
imaging, time of 
flight imaging

Deep 3D structure, leaf angle, leaf area, plant height, cover, biomass 
amount, and structural composition are all factors to consider

6 Hyperspectral Moisture content, leaf wellness, panicle health, wheat quality, 
pigments composition, and other factors.

7 Multispectral 
imaging

Minimal pigmentation, discontinuous spectrum reflection, includes 
NIR

8 PAM-fluorescence, 
wet chemistry, 
destructive sampling

Advanced studies of plant physiological functions and processes, 
including photosystem II activity, metabolite and phytohormonal 
profiles, enzyme activities

9 Fluorescence 
imaging

Leaf disease severity ratings, leaf health status, and more. 
Photosynthetic performance, quantum yield, non-photochemical 
quenching, leaf disease severity ratings, leaf health status, and more. 
Photosynthetic system (indirect), biomass development, nitrogen 
content, and senescence are some of the topics covered in this paper

10 Thermal imaging Temperature of the leaf or canopy surface, relation to stomatal 
conductance, and biotic and abiotic stress responses

11 3D imaging Turning structure; sheet corner distributions; canopy structure; root 
architecture; height

12 MRI Water content, morphometric parameters, etc.
13 Hyperspectral 

imaging
Senescence, water, chlorosis/necrosis, continuous spectral 
reflectance, including NIR, immediate physiology, advanced 
pigmentation, and specialized specific pigments, such as 
xanthophyll related to biochemical composition and photosynthesis, 
senescence, water, chlorosis/necrosis

14 PET Solute content, metabolites content, etc.
15 Fluorescence 

imaging
Photosynthetic machinery and associated metabolism, predicted leaf 
area, research of leaf stress owing to biotic and abiotic causes, 
snapshots of photosynthetic performance, and senescence

beneficial forecast and perception the artificial intelligence (AI) acts as a game 
changer. Although we need specialized programming skills and deep knowledge 
about machine learning, deep learning and ensemble learning algorithms are used 
to understand this artificial intelligence.

6 Applications of High-Throughput Phenotypic Phenomics
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 HTP Methods

 RGB Imaging

RGB camera or RGB imaging method is mostly used to measure the morphological 
effects of plants (caused by its cost efficiency and ease of insertion). RGB cameras 
consist of an infrared blocking filter (VIS camera) that can detect the light wave-
length of 400–700 nm instead of customer cameras. For the measurement of the 
color of every pixel, this camera used different color sensors (red, green, and blue). 
Scientists concluded that the model’s prediction accuracy could be enhanced by 
adding other elements such as the growth date (Golzarian et al., 2011) or more ana-
tomical or physiological characteristics in a more complex model (Chen et  al., 
2014). Because of its cost-effectiveness and ease of installation, the RGB camera 
approach is the most extensively used technology for measuring plant morphologi-
cal features. RGB cameras (VIS cameras) include an infrared blocking filter that 
detects light wavelengths between (400 and 700 nm), unlike consumer cameras. 
The VIS camera measures through red, green, and blue color sensors as shown in 
Fig. 6.1.

 Near-Infrared Imaging

In different topics, the highest reflectance is in the near-infrared wavelength range 
(700–1400 nm). This near-infrared imaging (NIR) attribute is employed to confirm 
plant transformations during drought stress.

Fig. 6.1 High-throughput phenotyping technology concept
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 Hyperspectral Imaging

Hundreds of thousands of bands per pixel are detected by hyperspectral sensors, 
which cover the visible (400–700  nm), NIR (700–1000  nm), and SWIR 
(1000–2500 nm) wavelength ranges. Even though the data’s physical complexity 
mandates the use of high-performance analytical processors, sensitive detectors are 
required, and also pictures may be recorded at high resolution with restricted spatial 
coverage to distinguish reactions to different pressures and large data storage 
capacity.

 Fluorescence Imaging

With the fluorescence sensors, we can easily test the photosynthetic ability of the 
crop, and it can be tested by the estimation of chlorophyll fluorescence. For exam-
ple, the excretion of unessential energy by the plant in the form of fluorescence.

 Applications of High-Throughput (HTP) 
Phenotypic (Phenomics)

According to Soulé (1967), the word phenome implies an entire phenotype like 
genome manifestation in a certain location (Houle et al., 2010; Chen et al., 2014). 
As a result, a plant phenotype in an agricultural system must be viewed as the out-
come of complicated G*E*M interactions (Houle et al., 2010). The word phenom-
ics was coined in 1997 (schork, 1997) and was described as the methodical study of 
phenotypes at an organism-wide ranging like genomics and the various further 
omics technologies (Houle et al., 2010). The set of morphological, physiological, 
and recital-associated features of a genotype in the environment is known as the 
phenotype (Dhondt et al., 2013). In other disputes, phenomic is an inclusive wide- 
ranging study of high-dimensional phenotypes that is vital for the generation of 
meticulous data on all important aspects of phenotypes and for an improved under-
standing of plant biology and crop improvement. Therefore, the phenotyping sys-
tem not only includes tools for performing phenotypes on its own but also plants in 
a specific environment, from the tightly controlled condition of the climatic cham-
ber to the natural environment of the field it also means to grow (Dhont et al., 2013). 
The throughput of a plant phenotyping system relates to the number of individual 
units at a given organization. Steven A., a UC Berkeley and LBNL scientist, invented 
the term phenomics to describe the scientific study of phenotypes. As a result, it is 
a multidisciplinary field of study that includes biology, data science, engineering, 
and other disciplines.

6 Applications of High-Throughput Phenotypic Phenomics
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 Phenotypic Technologies

Multidisciplinary collaboration and some of the initial developments were targeted 
toward assessing genetically modified crops on a large scale (Reuzeau et al., 2005). 
Plant refurbishment approaches, Trait Mill, a suite of proprietary bioinformatics 
tools, a high-throughput gene engineering system, Crop Design (Belgium) estab-
lished a HTP stage that was utilized to detect morphometric characteristics. (aboveg-
round biomass, plant shape, and plant color) that might have an impact on yield. 
TraitMill’s details, as well as the trial methodology and results, were inappropri-
ately kept confidential (Reuzeau et al., 2005).

 High-Throughput Phenomic Methods

Scanalyzer 3D platform:

Hairmansis et al. (2014) and Neilson et al. (2015) reported that the Scanalyzer 
3D platform was created by Lemna Tec in Germany, and it has been implemented in 
numerous countries. Computer-controlled conveyor systems are installed at the 
Plant Accelerator (Australian Plant Phenomics Facility, University of Adelaide, 
Australia), automated weighing–watering devices, imaging stations, Near-infrared 
(NIR), fluorescence (at near-infrared wavelengths between 700 and 1400 nm, the 
green portions of plants had the maximum reflectivity), and Hyperspectral imaging 
(hundreds of thousands of bands per pixel are detected using hyperspectral sensors, 
which cover the visible spectrum) (Mathieu et al., 2015).

RADIX Imaging Marié et  al. (2016) and Jeudy et  al. (2016) examined the 
RhizoTubes (an automated “plant-to-sensor” platform including 1200 rhizo tubes to 
acquire the RSA in about 6–8 weeks) and RhizoSlide (a rhizoslide platform used to 
screen the shoots and roots of 200 maize plants) (Le Marié et al., 2016).

 Quantitative Plant Morphology Detection Through Phenomics

To maintain future food security, it is critical to developing crop tolerance to abiotic 
stresses and new pests brought on by climate change. The growing use of gene edit-
ing, as well as the continuous utilization of natural genetic diversity, present excel-
lent prospects for producing novel alleles and selecting natural sources of genetic 
variation for crop development. This necessitates the examination of hundreds of 
lines growing in a variety of environments. At the same time, breakthroughs in DNA 
marker assays and sequencing technology have enabled genotyping to achieve this 
throughput at a reasonable cost, similar innovations provide an urgent demand for 
high-throughput and meaningful phenotypic data. The purpose of plant phenomics, 
which we describe as the study of the development of plants, is to achieve this and 
implementation of a set of tools and methodologies that are used to achieve three 
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key objectives—gathering data on the structures, functions, and performances of 
huge groups of plants, as well as their surroundings; analyzing, organizing, and 
storing the generated datasets; and constructing models that can untangle and recre-
ate plant activity in a variety of settings. Plant phenomics has advanced significantly 
in the last decade, with new sensors and imaging approaches being developed for a 
variety of features, organs, and conditions. When it comes to turning sensor data 
into knowledge, however, data handling and processing remain significant obstacles 
(Tardieu et al., 2017).

Plant phenotyping is the study of complex plant characteristics such as growth, 
development, tolerance, resistance, architecture, physiology, ecology, and yield, as 
well as the fundamental assessment of quantitative parameters that serve as the 
foundation for more sophisticated aspects. Photosynthetic efficiency, root shape, 
biomass, leaf features, fruit traits, and yield-related aspects direct measuring param-
eters in the plant phenotype, including biotic and abiotic stress response. To enable 
current genetic crop development, there is a necessity for more effective and reliable 
phenotyping data, given the fast development of high-throughput genotype screen-
ing for associated growth, yield, and resistance to various biotic and abiotic stresses 
in plant breeding and genomics. Currently, expert visual evaluation is used to assess 
phenotypic features for disease resistance or stress in breeding programs (Yang 
et al., 2020). This takes time and may result in prejudice between experts and exper-
imental duplicates as shown in Fig. 6.2.

It will be a huge challenge for plant science and crop development to ensure that 
crop production is sufficient to meet the needs of a human population that is pre-
dicted to reach more than 9 billion by 2050. This aim is difficult to achieve because 
crop output increases at a 1.3% annual rate, which is insufficient to keep up with 
population growth. High-yielding, stress-tolerant plants can be selected 

Fig. 6.2 Application of phenomics implemented in breeding program
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significantly more quickly and efficiently than is now possible by connecting the 
genotype to the phenotype. Breeders can benefit from advances in technology such 
as next-generation DNA sequencing, which might potentially boost the rate of 
genetic improvement through molecular breeding (Jaradat, 2018). However, our 
capacity to unravel the genetics of quantitative variables relevant to growth, yield, 
and stress adaptability is limited because of a paucity of phenotyping skills. Long 
before the discovery of DNA and molecular markers, plant breeders and farmers 
made decisions based on phenotypes. The more crosses and habitats that are used 
for selection, the better the chance of finding a superior variety.

It is necessary to improve breeding efficiency to fulfill future demands. The 
establishment of huge mapping populations has been aided by high-throughput 
genotyping and phenotyping panels made up of hundreds of recombinant inbred 
lines and the creation of massive mapping populations and phenotyping diversity 
panels made up of hundreds of recombinant inbred lines. Although molecular 
breeding techniques place a greater focus on genotypic information, phenotypic 
data is still required. Phenotypes are used for selection and to train a prediction 
model in genomic selection. A single phenotyping cycle is utilized in maker-
assisted recurrent selection phenotyping to develop markers for future selection 
through generations to find potential events in transgenic investigations (Chaerle 
& Straeten, 2001).

Breakthroughs in phenotyping are critical for capitalizing on advances in tradi-
tional, molecular, and transgenic breeding (Li et al., 2014). Plant phenomics is con-
cerned with defining the plasticity of the plant phenome when subjected to a variety 
of environmental variables rather than just correlating a genotype with one pheno-
type in a specific state (e.g., in a controlled environment). In contrast to most ani-
mals, which maintain roughly the same structure regardless of their environment, 
plants can take on a variety of architectural forms depending on the circumstances. 
After being exposed to either short- or long-day circumstances, the same type of 
Arabidopsis thaliana can produce a huge 30-leaf plant or a small 8-leaf plant. Water 
deficiency, nitrogen deficiency, and poor light all have a significant impact on the 
quantity and size of plant organs. As a result, plant phenomics research concentrates 
on the study of variation in organism structure, whereas animal phenomics research 
is primarily concerned with metabolism (Tardieu et al., 2017).

 Quantitative Plant Morphology Detection Through Phenomics

Analysis of plant development, production, and formation is called Phenomics. 
According to (Soulé, 1967), the word “phenome” implies an entire phenotype like; 
genome manifestation in a certain location; collection of expression in a body 
belongs to phenome. To get valuable characters from assembled germplasm, for-
ward phenomics act as a tool. Complete analysis of traits exposes systematic under-
standing and permits the development of this mechanism in new methods. 
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Measurable and qualitative characteristics of a fused at a certain phase of ontogen-
esis in certain living conditions of a living system. At a considerable range, a supe-
rior proportion of phenotypic data find through phenomics. Skelly, Lobos, Orgogozo, 
and some other scientists proved that phenomics is usually considered parallel to 
genomics.

The procedure of development, transformation, and regulation of phenotypic 
expressions in living systems are examined in phenomics, then decreased to regu-
larities (Skelly et al., 2013; Orgogozo et al., 2015; Lobos et al., 2017) though varies 
from genomics. Because of differences in phenotypic manifestation of characteris-
tics upon the ecological circumstances, the entire classification of a genome is fea-
sible in genomics, while the entire classification of phenome is not easy in 
phenomics, have been proved by Houle (Houle et al., 2010). Achievement of molec-
ular genetics and breeding efforts particularly in field crops ever more defines 
through phenomics (Afonnikov et al., 2016). Plant phenotyping is considered an 
advanced and practically designed method of plant physiology (Furbank et  al., 
2011). Phenotypical modification that detect structural variation is quite easy to 
identify and examine. Stress response phenotypes depend on structural markers to 
compute stress responses in both ways. Phenotypes of numerous plants were 
recorded by Parent in 2015 because of the development of visual imagination and 
remote sensing skills and can easily be calculated at once mechanically and con-
stantly (Parent et al., 2015).

Several sensors are utilized by extraordinary-data examining systems to access 
some structural characteristics like: plant height, canopy size, leaf area, green leaf 
pigment, shoot angle, virus spot size, and plant wilt degree. An individual can 
widely explain the significance of characters through this data like plant manner, 
nutritional value, drought acceptance, and virus resistance. A number of technolo-
gies are applied in various plants. By utilizing the Tomato Analyzer image, fruit 
shape traits were evaluated in 21 eggplant accessions from four varieties (Hurtado 
et al., 2013). A total of 23 fruit form parameters were calculated for agreement for 
fruit shape index, blockiness, homogeneity, proximal fruit end shape, asymmetry, 
internal eccentricity, and slenderness. (Hui et al., 2018). Three-dimensional (3D) 
canopy of cucumber, pepper, and eggplant based on multiview stereo (MVS) 
about plant canopy. By utilizing Crop Circle ACS-470 technique, Jaradat (2018) 
has isolated phenotypic information and some factors involving less heat toler-
ance during propagation, premature plant, etc. (Jaradat, 2018). Brassica napus 
verities that commonly grow in the Midwestern United States having extraordi-
nary yields, and these can be measured through attributes. Tomato biomass and 
important linear association among expected shoot area, plant numeral biomass 
was analyzed by a scientist Laxman et al. (2018) using Scan analyzer 3D large 
scale imaging platform (Laxman et al., 2018). Bernotas et al. (2019) brief about 
photometer stereoscopic (PS) images, which consist of phenotype arrangement 
and its eudicot variety, including some vegetables like cabbage, tomato, and oil-
seed rapes (Bernotas et al., 2019).

6 Applications of High-Throughput Phenotypic Phenomics
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 Phenotyping of Roots in Plants Through Phenomics

Root system architecture (RSA) explains the spatial configuration of the root sys-
tem rising from root morphology, topology, and distribution (Lynch, 1995). Root 
architecture, domestication environment, and techniques may be used to direct 
breeding programs to connect a root system with a life strategy and agroecology, 
increasing system adaptability (Bullock et al., 2017; Schmidt et al., 2016). Hypocotyl 
roots, as well as basal roots in some species, initiate epigeal germination between 
the radical and the cotyledons, which are elevated out of the soil. Above the basic 
root, there are three groups of epigeal germinators (Zobel, 2011). Basal roots of 
common beans can be divided into three types (Zobel & Waisel, 2010). Hypocotyl, 
main, and basal roots are among the types of roots. Basal roots emerge from the 
hypocotyl’s base. Root morphology (Zhu et al., 2011), leaf features (Micol, 2009), 
biomass (Tackenberg, 2007; Golzarian et al., 2011), yield-related traits (Duan et al., 
2011), photosynthetic proficiency (Clark et al., 2011), and abiotic stress response 
(Rellan-Alvarez et al., 2015) are the most widely considered phenotypic traits Here, 
we will go through some of the most important plant phenotyping instruments, as 
well as some of the most promising photonics-based technologies.

As a result, despite notable breakthroughs, there are relatively few publically 
available root phenotyping datasets. Laboratory investigations benefit from 
improved levels of control, and at least in a few cases, loci with fundamental RSA 
in early root development have been identified. Nonetheless, the growth flasks uti-
lized in these experiments, which were filled with actual or artificial soil (Rellan- 
Alvarez et  al., 2015), limited geographic and temporal explanations for small or 
immature root systems (Judd et al., 2015; Lobet et al., 2013). Individual tools offer 
varying degrees of computational automation, ranging from manual to semiauto-
matic to fully automatic, making this software assembly an exciting prospect. None 
of these, however, give a combined stage that can (a) combine secondary root 
images with environmental and phenotypic metadata, (b) provide nontechnical 
users with continuous access to supercomputing resources, and (c) communicate 
content within a cooperative team and with the general public.

We formed DIRT in order to speak about these issues. The DIRT stage includes 
several key features that enable researchers to: (a) manage root picture collections 
and metadata, (b) interactively standardize dimension pipelines, (c) calculate crop 
root traits on available high-throughput compute platforms; and (d) analyze compu-
tation outcomes. DIRT enables researchers to process thousands of root images, 
complete the pipeline with routine parameters, and display and analyze calculated 
RSA output connected to the raw images. As a result, our stage allows researchers 
with few practical capabilities to access high-throughput computational stages. 
Thus, automation, remote control, and data (image) investigation pipelines agree-
able to HTP stages acceptable showing of large plant populations, germplasm col-
lections (core collections), breeding material, and mapping populations with 
increased accuracy and precision in phenotypic trait achievement attached with 
decreased labor input attained by high-throughput (Junker et al., 2015).
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More study is needed to fully utilize genomics and molecular breeding methods 
in crop improvement, which address the creation of phenotyping tools and tech-
nologies, phenomics for a specific trait, phenotyping requirements, ongoing initia-
tives, and obstacles (Furbank & Tester, 2011; Cobb et al., 2013; Lobet, 2017). This 
review study aims to: emphasize the importance of phenomics and phenotypic con-
straints in crop improvement in the genomics era, (i) review the current status of 
phenomics stages and accommodations worldwide, (ii) emphasize the use of high- 
throughput phenomics platforms for trait separation in different crop plants and 
detection of genes/QTLs for a variety of traits in different crop plants, and (iii) 
emphasize the need for phenomics files and phenotyping. Responsible root function 
in soil, as well as root structure and growth screening, has long been a fascinating 
area (Gregory et  al., 2009). For cereal species growing on stored soil moisture, 
access to water at penetration is critical for drought tolerance, and a study using 
model species to identify genes relevant for root characteristics is now underway. 
Small, short-lifecycle crop models, which are better suitable for cereal species, have 
recently been produced and are great systems for phenomic display (Watt 
et al., 2009).

This topic denotes a few technologies ranging from imaging in thin layers of soil 
or reproduction media to MRI and X-ray CT-scanning (Faget et al., 2009; Nagel 
et al., 2009). Root crown phenotyping occurs at the apex of crop root systems and 
can be utilized for marker-assisted breeding, genetic mapping, and a more sympa-
thetic understanding of how roots inspire soil resource acquisition. There are a num-
ber of imaging methodologies and picture series available, but none of them are 
optimized for high-throughput, reproducible, and vigorous root crown phenotyping. 
The RhizoVision Crown stage includes an imaging unit, picture detention software, 
and image analysis software that have been upgraded to remove measurements from 
huge numbers of root crowns in a uniform manner to identify that root crown shapes. 
The hardware platform uses a backlight and a monochrome machine vision camera. 
The RhizoVision Imager and RhizoVision Analyzer are free, open-source applica-
tions that improve picture capture and analysis by incorporating spontaneous graph-
ical user boundaries.

Physical validation of the RhizoVision Analyzer was done using copper wire, 
and feature validation was done with 10,464 ground truth simulated images of dicot 
and monocot root systems. The soybean and wheat root crowns were then pheno-
typed using this platform. The researchers phenotyped 2799 soybean (Glycine max) 
root crowns from 187 lines and 1753 wheat (Triticum aestivum) root crowns from 
186 lines in both species; principal component analysis revealed comparable con-
nections between characteristics. The greatest heritability was 0.74 in soybean and 
0.22 in wheat, demonstrating that species and population variations must be taken 
into account. The RhizoVision Crown platform enables HTP of crop root crowns 
and establishes a benchmark against which open plant phenotyping platforms can 
be measured.

The total volume of soil that roots can investigate is influenced by RSA, which is 
shaped by interactions between genetic and environmental components (Schmidt 
et  al., 2016). The number, length, growth angle, elongation rate, diameter, and 
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branching of axial and lateral root phenes (or elemental units of phenotypic) shape 
the final RSA. Weaver and colleagues (Weaver, 1925; Weaver & Bruner, 1926) pio-
neered root-digging, diagramming, and photography methods that have been widely 
utilized for almost half a century (Böhm, 2012). These classical methods were since 
changed by Stoeckeler and Kluender (1938) with the use of water to remove soil 
particles from the root systems on a large scale and the use of high-pressure air to 
enter soil pores while leaving roots complete (Kosola et al., 2007). Devised hydro 
pneumatic root elutriation to give a rapid and repeatable method for extracting roots 
from the soil of field-composed soil important samples with minimal harm (Smucker 
et al., 2009).

Traditional digging methods are best for trees and shrubs because the root sys-
tems of woody plants are often stronger and more resistant to breakage than grasses 
or annual crops. The existing inability to quantify root architecture in the field is a 
major hindrance to current “phenomic” technologies’ claims of marker-assisted 
selection for better root system features. Traditional field approaches for root phe-
notyping, such as digging up soil cores and using standard digging techniques to 
control root depth, root branching density, and root angle, are still considered the 
best (Trachsel et al., 2011; Nielsen et al., 1997). Such approaches, however, do not 
reveal the finer aspects of root architecture, anatomy (for example, root hair densi-
ties), or function (e.g., nutrient uptake as a result, identifying crops with increased 
root architectural traits, as well as developing appropriate instruments for studying 
root growth in the soil, largely under field settings, remains a major challenge for 
current plant biology. Under drought conditions, root architecture changes dramati-
cally, favoring the formation of more long lateral roots and root hairs to increase 
total surface area for better water absorption (Osmont et al., 2007). The increase in 
root quantity, mostly deeper in the soil, results in an enhanced plant water status, 
which is required to promote biomass production and yield when combined with 
techniques that limit water loss, such as stomatal closure, leaf systematic, and leaf 
abscission.

A new machine vision-based facility for the automated evaluation of yield- 
related characteristics in rice has been developed. This work resulted in the creation 
of an integrated facility for completely automated yield trait scoring. The facility 
can thresh rice panicles, evaluate rice production attributes, and pack loaded spike-
lets automatically. The accuracy (mean absolute percentage error is less than 5%) 
and efficiency of this unique machine vision-based facility were demonstrated in 
tests (1440 plants per continuous 24 h workday) (Table 6.2).

Future Perspective Phenotypic–genotypic integrated breeding as the sequencing 
technology of crops has advanced. With the emergence of phenomics, breeding has 
entered a new age. It allows breeders to accurately phenotype many samples. 
Breeders may be able to correlate a lot more traits with accordant genotypes if it is 
combined with NGS technology. In current years, even more innovative attempts in 
the phenomics field have been made; computational approaches like machine learn-
ing (ML), deep learning (DL), and artificial intelligence (AI) have been integrated 
with HTP analyses to anticipate the population of many crops.
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Table 6.2 Advantages and disadvantages of HTP application in field crops

Sr. 
No. Technology and tools Advantages Disadvantages

1 GROWSCREEN-Rhizo In soil-filled rhizotrons, 
high-throughput methods for 
obtaining shoot and root traits 
were used

In 2D rhizotrons, root 
development is restricted 
(rhizobox)

2 PhenoBox Affordably priced and simple to 
maintain

Large-scale screening 
requires a lot of work

3 Field Scanalyzer, a 
rail-based gantry 
phenotyping system

High picture resolution is 
achieved by the integration of 
many optical sensors

Expensive; small image 
area; fluctuating ambient 
light

4 MRI–PET; PET–CT; 
MRI–CT

3D root system topologies may 
be obtained in soil-filled tubes

Costly; time-consuming; no 
specialist prototype for 
agriculture research

5 TraitMill; Scanalyzer3D; 
PHENOARCH; HRP

For big populations, dynamic and 
automatic methods are used to 
acquire shoot growth, biomass, 
and a wealth of information

It is expensive to maintain 
and upgrade; it need the 
involvement of diverse 
professionals

6 CPRS, a fixed 
phenotyping tower

Simple to set up and maintain There was only a limited 
amount of agricultural 
information available in 
fixed regions
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