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 Introduction

The current environmental changes across the globe are serious threats to agricul-
ture and all living organisms (Devendra, 2012). As a result of these environmental 
changes, global temperature may rise up to 3–4°C (WMO, 2014), which may lead 
to serious problems such as food shortage and starvation. Owing to these climate 
changes, plants are persistently facing different stresses such as salinity, heavy met-
als, drought, chilling, heat, increased sunlight, etc. Due to aforesaid stresses, yield 
of crops is being dwindled (Lamaoui, 2018; Dhamgaye & Gadre, 2015; Gao et al., 
2014) that will certainly affect increasing human population (Poljsak et al., 2013).

From chemistry point of view, oxidative stress on plants due to the abovemen-
tioned external stimuli imbalances the ROS-antioxidant interrelations (Fig. 20.1). 
Excess ROS production in response to various stresses has also been known to 
speed up peroxidation of lipids, DNA impairment, and carbonylation of proteins 
(Munns, 2008). Plants produced enzymatic and nonenzymatic antioxidants as a 
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defensive strategy to avoid cytotoxic effects (Shalata et  al., 2001) but ultimately 
hindered plant growth obtained under saline conditions (Taarit et  al., 2012a, b). 
Therefore, there is a need to grow plants under simulated saline conditions using 
exogenous enzymatic and nonenzymatic antioxidants. In this way, the toxic effects 
of salinity on the plant growth can be diminished, which is witnessed by various 
studies (Khan et al., 2013a, b, 2017; Husen et al., 2018).

 Strategies of Plants to Cope with Stress

Plants adapted different strategies at cellular, physiological, biochemical, and 
molecular levels to cope with salinity stress (Gupta & Huang, 2014; Tamang & 
Fukao, 2015; Wang et al., 2018). For instance, plants respond to salinity by Na+ 
selectivity and compartmentalization of Na+ ions at cellular as well as tissue levels. 
Mechanisms of salt tolerance thus could be categorized into two major groups, that 
is, physiological and molecular.

Physiological mechanisms can further be explained by osmotic adjustment and/
or water homeostasis, ion exclusion/inclusion and/or ion homeostasis, ROS scav-
enging, and hormonal biosynthesis (Batool et al., 2015). Among these mechanisms, 
water and ion homeostasis are mainly thought to counter antagonistic impacts of 
salinity on plant growth.

Moreover, many transcription factors such as heat shock factors (HSF) or ABA- 
responsive elements (ABF/ABRE) may induce salinity tolerance in plants (Vinocur 
& Altman, 2005). Stress-induced activation of molecular networks, signal transduc-
tion (starting from the roots toward cellular and whole plant levels), metabolites and 
specific gene expression are among decisive factors of plants to adapt against envi-
ronmental stresses (Nguyen et al., 2018; Ismail et al., 2014; Ashraf, 2009; Vinocur 
& Altman, 2005). In plants, resistance to biotic stresses is usually controlled in a 
simple way, but salinity tolerance as an abiotic factor is controlled by the interaction 
of several genes (i.e., a few major genes along with several minor genes) (Ashraf & 
Harris, 2004; Batool et al., 2015). At the transcriptomic level, genes related to stress 
signaling, transcription regulation, ion transport mechanism, and biosynthesis of 
specific metabolites of complex signaling pathways are responsible for salt stress 
tolerance in plants (Cotsaftis et al., 2011; Kawasaki et al., 2001; Kumar et al., 2013; 
Walia et al., 2007).

 Abiotic Stresses and Plants

Plants growth is significantly affected by various abiotic stresses, which resulted in 
low crop yields. Abiotic stresses included salinity, heavy metals, drought, chilling, 
temperature, water logging, and increased exposure to UV radiations (Dhamgaye & 
Gadre, 2015). Figure 20.2 explained the response of plants to various stresses.

20 Physiological Interventions of Antioxidants in Crop Plants Under Multiple Abiotic…



434

Sun light and

oxygen

Deficiency of

Ascorbic acid

Salinity Drought UV radiation Pathogens Heavy metals

Reactive oxygen

species

Activation of  MAP Kinase 

Antioxidants
MAP

Kinase
SAGs

Senescence

initiation

Resistance
against pathogensProgrammed

Cell death

Pathogen resistance 

O2 Sensitivity

Heat and

chilling stress

Water logging

Fig. 20.2 Diagram showing response of plants to various stresses

Among multiple abiotic stresses, salinity is considered the most alarming, which 
constrained the agricultural production and adversely affected growth and yield of 
chief crops. Salt stress has affected 25% of the agricultural lands all over the globe 
due to application of saline irrigation water. Salinity reduced the water availability 
to crop plants (Taffouo et  al., 2010; Ashraf, 2009). High concentrations of salts 
inhibited the growth of plants due to stumpy osmotic potential of lands, imbalanced 
nutrition, and selected ion effects (Parvaiz & Satyawati, 2008).

Drought, another abiotic factor, is threatening and has disturbed the economy of 
the world by reducing crop production (Cenacchi, 2014). Transgenic plants have 
been prepared to use genes that encoded proteins involved in drought tolerance. 
Accumulation of osmolytes is also one of the important mechanisms that helped the 
plants to tolerate drought stress in plants(Bechtold & Field, 2018).

Chilling stress also affects plant metabolism thus hindering plant growth and 
reproduction. The plants changed their pattern of gene expression to cope with 
chilling stress, thereby producing a suite of metabolites to protect plants against 
chilling (Sanghera et al., 2011).

A. Khan et al.



435

UV radiations also cause a serious threat on the environment and oxidative dam-
age in plants (Du et al., 2011). Due to stress environment, plants switched on their 
antioxidant system to reduce the toxic effects of stress (Carletti et  al., 2013). 
Although UV-absorbing compounds mainly protected the DNA (Stapleton & 
Walbot, 1994), these compounds also played a key role in the plant antioxidative 
defense system and pathogens (Tutejaet al., 2001).

Moreover, heavy metals in the environment is a serious threat to agro-ecosystem 
and crop plants (Ashraf et al., 2015, 2017a, b; Mani & Kumar, 2014). Toxic levels 
of heavy metal in plants often result in the oxidative damage and disruption of struc-
tural and functionality of plant cells (Ashraf et  al., 2018, 2020; Ashraf & Tang, 
2017). The oxidative stress disturbs the equilibrium between prooxidant and anti-
oxidant homeostasis (Flora et al., 2008). Waterlogging and salinity go parallel with 
each other and create severe problems for plant growth. One of the first responses to 
plant against waterlogging is reduction in stomatal conductance (Folzer et  al., 
2006). The deficiency of oxygen due to waterlogging generally leads to the substan-
tial decline in photosynthetic efficiency (Kaur et al., 2018a, b; Ashraf et al., 2011; 
Ashraf & Arfan, 2005) and causes oxidative stress. Due to oxidative stress, reactive 
oxygen species produced and disturbed the metabolic process of plants (Ashraf 
et al., 2011; Ashraf, 2009). Excess of water also inhibit electron transport chain, 
respiration, and ATP formation due to hypoxia (low oxygen concentrations (Ashraf 
et al., 2011). The nutrient uptake and growth of the plants reduced due to the con-
trary effects of waterlogging (Ashraf et al., 2011).

Furthermore, the magnitude of temperature stress increased as the ambient tem-
perature increases from a threshold level, which results in alteration in physio- 
biochemical mechanisms in plants (Kong et  al., 2017). The extent of possible 
damage owing to increased temperature in plants depends on plant developmental 
stage experiencing the high temperature stress (Slafer & Rawson, 1995; Wollenweber 
et al., 2003).

 Antioxidants Combat Plant Abiotic Stresses

Antioxidant defense system is the best strategy adapted by the plants to ameliorate 
the abiotic stresses. Plants produce a variety of enzymatic, nonenzymatic antioxi-
dants, and hormones endogenously in response to aforesaid stresses (Albaladejo 
et al., 2017; Almeselmani et al., 2006; Kandil et al., 2017; Massoud et al., 2018). 
Enzymatic antioxidants included enzymes such as superoxide dismutase (SOD), 
peroxidase (POX), ascorbate peroxidase (APX), catalase (CAT), glutathione reduc-
tase (GR), and polyphenol oxidase (PPO), whereas α-tocopherol, carotenes, and 
ascorbic acid (vitamin C) are nonenzymatic antioxidants produced by the plants to 
alleviate the impacts of abiotic stresses on plants. It is noticed that the abovemen-
tioned endogenous production of antioxidant secondary metabolites is the best way 
but not enough in amount to cope with elevated salinity conditions (Srinieng et al., 
2015). It has been reported that antioxidants being supplied exogenously to plants 

20 Physiological Interventions of Antioxidants in Crop Plants Under Multiple Abiotic…



436

are also fruitful to mitigate plant stresses, particularly salinity (Agada, 2016). Al 
Kharusi et al. (2019) performed an experiment on date palm to induce salinity toler-
ance by application of antioxidants.

Ascorbic acid has been found to be involved in cell wall expansion, enhancement 
of cell division, leaf area, biosynthesis of photosynthetic pigments, and improve-
ment in plant tolerance against multifarious stresses by scavenging ROS (Dey et al., 
2016; Kasote et al., 2015). Moreover, salicylic also modulates the important physi-
ological processes such as photosynthesis, osmoregulation, and nitrogen metabo-
lism (Khan et al., 2013a, b). Salicylic acid also plays its role in the tolerance of 
plants against chilling, drought, salinity, UV radiations, pathogen, heavy metals, 
waterlogging, and heat stresses (Farheen et al., 2018; Khan et al., 2015; Palma et al., 
2013). Exogenous application of trehalose alleviates the adverse effects of salinity 
stress in wheat by changing the physiological process (Alla et al., 2019; Mervat & 
Sadak, 2019; NematAlla et al., 2019). Ellagic acid, a natural polyphenolic antioxi-
dant in various vegetables and fruits (Lima et al., 2014), is distributed in the vacu-
oles as water-soluble ellagitannin and played a vital role in plant defense against a 
number of stresses by capturing ROS effectively (Nagarani et al., 2014; Priyadarsini 
et al., 2002; Saul et al., 2011).

In addition, brassinolide captured ROS effectively and protects the plants from 
oxidative stress. Various literature reports confirmed its oxidative potential when 
applied exogenously against different stresses (Zhou et al., 2015; Behnamnia 2015; 
Javid et al., 2011; Li & Chory, 1999). Moreover, tocochromanols are effective and 
useful group of lipophilic phenolic antioxidants (Housam et al., 2014), which could 
protect key cell components by scavenging free radicals before prior to lipid peroxi-
dation and/or DNA damage. The tocochromanols break the chain reactions involved 
in lipid peroxidation and shield the cellular membranes by repair and replacement 
of lipid in bilayer membranes (Falk and Munnè-Bosch, 2010; Mène-Saffrané & 
DellaPenna, 2010). On the other hand, exogenous GABA application improved 
stress tolerance by regulating the physio-biochemical processes and redox balance 
(Jin et al., 2019; Li et al., 2016). Similarly, carotenoids are important antioxidants 
used as photosynthetic apparatus in plants, algae, and cyanobacteria, which pro-
tected against photooxidative damage and contributed to light harvesting for photo-
synthesis (Ksas et al., 2015).

 Mode of Exogenous Applications of Antioxidants

 Folair Applications of Antioxidants

Foliar spray of an antioxidants is considered a shotgun approach to ameliorate the 
toxic effects of salinity. Foliar application is very economic mode of application to 
save the nutrients. Previously, Khan et al. (2006) and Athar et al. (2009) have per-
formed experiments on wheat by applying different concentrations (0 and 100 mg 
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L−1) of ascorbic acid and found substantial improvements in the growth and devel-
opment of wheat plants. Malik and Ashraf (2012) also performed experiment on 
wheat by applying different concentration of ascorbic acid and hydrogen peroxide 
to mitigate the effects of drought. Ahmad et al. (2014) studied the effect of salicylic 
acid and hydrogen peroxide (each 0, 20, and 40 mgL−1) on maize at low temperature 
stress. Noreen et  al. (2009) reported that exogenous salicylic acid application 
improved salt stress tolerance in sunflower. Baber et al. (2014) also reported that 
salicylic acid application improved the performance of fenugreek under saline con-
ditions. Noreen and Ashraf (2008) reported that exogenous salicylic acid applica-
tion improved the physiology and growth of sunflower under saline conditions. Li 
et al. (2014a, b) stated that foliar spray of salicylic acid improved the photosynthesis 
and antioxidant system in Torreya grandis. Exogenous salicylic acid application 
improved the germination and early growth of wheat under salt stress (Sahli et al., 
2019). Moreover, Desoky and Merwad (2015) performed an experiment on foliar 
applications of ascorbic acid and salicylic acid and found that co-application of both 
resulted in improved the growth and development of wheat under saline conditions 
(Hamideldin et al., 2017; Morsi et al., 2018; Rihan et al., 2017).

 Applications of Antioxidants Through Rooting Media

In a number of studies, much attention has been given on stress tolerance by the 
application of antioxidants through rooting medium. It was observed that antioxi-
dants increased photosynthetic rate via stomatal regulation, which was positively 
associated with stress tolerance. For example, Athar et al. (2009) found improved 
growth of wheat when ascorbic acid was applied through rooting medium at vegeta-
tive stage under salt stress. Malik and Ashraf (2012) also conducted experiment on 
wheat and applied ascorbic acid through rooting medium under drought stress and 
found substantial improvements in growth. In another study, Xu et al. (2015) evalu-
ated the positive effects of ascorbic acid on Festuca arundinacea through rooting 
medium under water stress. Arfan et al. (2007) found improved growth of wheat 
when applied with the salicylic acid through rooting under saline conditions.

 Applications of Antioxidants by Seed Soaking

Exogenous application of antioxidant compounds as a pre-sowing treatment has 
gained a considerable attention in ameliorating the adverse effect of salt stress. In 
this regard, El-Soud et al. (2013) observed that seed treatment of chickpea seeds 
with ellagic acid improved seed germination under PEG-induced stress. Seed soak-
ing of soybean and other crops in distilled water or ASC solution for 4 h improved 
germination under associated physio-biochemical mechanisms under saline 
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conditions (Çavuşoğlu and Bilir 2015; Malik & Ashraf, 2012; Dehghan et al., 2011). 
Kasim et al. (2016) soaked radish seeds in Pterocladia capillacea and Codium tay-
lorii extracts and found improved growth under saline conditions. Khan et al. (2006) 
observed positive effects of pretreatment of wheat seeds with ascorbic acid under 
saline conditions. Overall, pre-treatment of seeds with antioxidants increased 
endogenous level of ascorbic acid that had a protective effect on photosynthetic pig-
ments against salt-induced oxidative stress; thus, antioxidants are involved in the 
regulation of many physiological functions to improve the performance of plants 
under stress conditions.

 Nonenzymatic Antioxidants

To fight against stresses, plants produced antioxidants (Fig. 20.3) that maintained 
the growth and provided strength under stress and non-stress conditions. Most com-
monly studied nonenzymatic antioxidants to mitigate the stresses on plant growth 
included ellagic acid, ascorbic acid, salicylic acid, α-tocopherol, anthocyanins, 
brassinolides, and carotenes.
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 Ellagic Acid

Ellagic acid is a naturally occurring polyphenolic antioxidant that is present in sev-
eral fruits including grapes, nuts, pomegranate, and a wide variety of berries as well 
as in vegetables (Malini et al., 2011). However, ellagic acid played several essential 
roles in plants under stress conditions such as DNA binding, scavenging of ROS, 
and inhibition of ROS production (Fig. 20.4) and protection of DNA from alkylat-
ing injury (Barch et al., 1996). Ellagic acid is also responsible for the restoration of 
normal functioning of various biomolecules. ROS depolarized cell membranes and 
hence disturbed the cell metabolism through seepage of essential ingredients from 
the cell (Hasanuzzaman, 2013). Ellagic acid has displayed antioxidant (Han et al., 
2006; Sepúlveda et  al., 2011), antibacterial (Han et  al., 2006; Sepúlveda et  al., 
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2011), antiviral (Han et al., 2006; Sepúlveda et al., 2011), anti-inflammatory (Mehan 
et  al., 2015), and anticancerous activities (Han et  al., 2006; Mehan et  al., 2015; 
Sepúlveda et  al., 2011) in humans and inhibited UV-induced oxidative stress in 
plants with protection against lipid peroxidation (Bhandari, 2012).

More importantly, it effectively captured ROS at physiological pH to protect 
cells against toxic effects. Under such conditions, the ellagic acid anion is well 
known for its protective role, which continuously regenerated after capturing two 
free radicals, and thus proves more beneficial even at low concentrations (Galano 
et al., 2014). Moreover, the ellagic acid metabolites have also the ability to scavenge 
free radicals efficiently showing that its working performance is not reduced after 
being metabolized. This is an uncommon and constructive characteristic of ellagic 
acid, which made it particularly valuable against oxidative damage (Galano et al., 
2014). Moreover, it has also been reported that ellagic acid provided better protec-
tion against oxidative stress and lipid peroxidation than vitamin E.

In another study, it has been investigated that the antioxidant activity of ellagic 
acid is mainly due to the presence of two pairs of neighboring hydroxyl groups in 
its structure, and it is very effective in inhibiting lipid peroxidation even at micro-
molar (low) concentrations. The scavenging activity of ellagic acid resembled those 
of other antioxidants such as vitamins E and C (Parthasarathi & Park, 2015; Galano, 
2014; Indira et al., 2002).

A recent study showed that ellagic acid is bound to DNA by intercalating with 
the minor groove because of its planar structure. In this function, it activated various 
signaling pathways such as apoptosis, protected from oxidative DNA damage, and 
altered growth factor expression (Parthasarathi & Park, 2015). However, detailed 
investigations are still needed on bioavailability and absorption capacity of 
ellagic acid.

In a study, ellagic acid (50 ppm) was applied as a pre-seed treatment on chickpea 
seedlings, and it was found that ellagic acid accelerated the germination and growth 
with enhanced total antioxidant capacity and contents of compatible components 
(proline and glycine betaine) and antioxidant enzymes. Furthermore, ellagic acid 
decreased the lipid peroxidation levels, glutathione content, and seepage of solutes. 
Thus, the study discovered an improved salt tolerance of gram seedlings under 
osmotic stress by decreasing contents of H2O2 and increasing total antioxidant 
capacity after ellagic acid treatment (Aguilera-Carbo et  al., 2008; El-Soud 
et al., 2013).

 Ascorbic Acid

Ascorbic acid (Fig. 20.3) is a potential antioxidant to scavenge ROS produced under 
stresses (Kumar et  al., 2014). Ascorbic acid possesses antioxidant and cellular 
reductant abilities, promotes plant growth and development, and regulates plant cel-
lular mechanisms against environmental stresses (Hameed et al., 2015). Generally, 
ascorbic acid is present in all plant parts, subcellular compartments including the 
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cell wall and vacuole (Fernie & Szilvia, 2015) except dry seeds (Davey et al., 2000), 
and its concentration varies in different parts of plants (Klause et al., 2016). Ascorbic 
acid is synthesized by almost all higher plants, while animals capable to oxidize 
L-gulono-1,4-lactone can synthesize ascorbic acid. It has been discovered that syn-
thesis of ascorbic acid is regulated by the presence of jasmonate, which induced the 
transcription level and enhanced its production inside the cell (El Hariri et al., 2010; 
Smirnoff, 2005).

Plants release ascorbic acid in response to stresses. It not only captured free radi-
cals but also activated complex biological defense mechanisms at cellular levels 
(Conklin & Barth, 2004) (Fig. 20.5). Exogenous ascorbic acid application reduced 
lipid peroxidation in seedlings of S. fruticose (Hameed et al., 2012) and Brassica 
napus (Dolatabadian et al., 2008) and Phaseolus vulgaris (Saeidi-Sar et al., 2013) 
and in perennial halophytes (Hameed et al., 2015) under salinity stress. Shalata and 
Neumann (2001) described the protective role of exogenous ascorbic acid that 
appeared to be associated to its antioxidant activity. Ascorbic acid via rooting 
medium, pre-sowing seed treatment, and foliar spray has been found reliable to 
reduce the effect of salinity in wheat (Azzedine et al., 2011; Raafat et al., 2011; 
Athar et al., 2008, 2009; Khan et al., 2006; Shalata & Neumann, 2001; Janda et al., 
1999). It can also mitigate the toxic effects of oxidants, inhibit the uptake of sodium, 
and enhance the uptake of potassium (Conklin & Barth, 2004).
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It has been indicated that ascorbic acid is centrally correlated with different 
physiological processes that involved plant growth and production (Hameed et al., 
2012; Younis et al., 2010) and rapidly reached the target area owing to its greater 
solubility in water (Herschbach et al., 2010). Therefore, foliar application of ascor-
bic acid improved salt tolerance of crop plants in a number of ways (Athar et al., 
2008; Dolatabadian et al., 2008; El Hariri et al., 2010; Farahat et al., 2013).

Chemically, ascorbic acid acts as a strong reducing agent and oxidized reversibly 
to dehydroascorbic acid. The investigation on the interactions of various chemicals 
with ascorbic acid and metal ions has shown that ascorbic acid, its oxidation product 
(dehydroascorbic acid), and intermediate, monodehydroascorbic acid free radical 
might function as cycling redox couples in electron transport and membrane elec-
trochemical potentiation. It quenches oxidizing free radicals and other highly reac-
tive oxygen-derived species such as the hydrogen peroxide, hydroxyl radical, and 
singlet oxygen by inactivating them in water-soluble compartments such as the 
plasma, cytosol, and extracellular fluid (Nimse & Pal, 2015).

Exogenous ascorbic acid application induces salt tolerance in wheat and 
improved Na+ ions accumulation, leaf chlorophyll contents, and photosynthetic 
machinery (Akram et al., 2017; Khan et al., 2006). Folair application of ascorbic 
acid enhanced the plant biomass accumulation, photosynthetic pigments, and 
absorption of potassium and calcium ions (Khan et al., 2013a, b).

Application of ascorbic acid on roots not only enhanced the root growth, antioxi-
dant activities, and photosynthetic rate but also improved the antioxidant activities 
(Athar et  al., 2009). Ascorbic acid helped in the accumulation of potassium and 
calcium ions in the leaves; however, application of ascorbic acid on roots did not 
improve the growth of salt-stressed wheat plants (Athar et al., 2008). The exoge-
nous application of ascorbic acid on leaves or via irrigation accelerated the antioxi-
dant activities with enhanced contents of proline in wheat (Batool et al., 2012). The 
pre-treatment of barley with ascorbic acid improved seed germination traits, early 
growth, biomass accumulation, and anatomical features of barley under saline con-
ditions (Çavuşoğlu & Bilir, 2015).

Foliar spray of ascorbic acid on Cyamopsis tetragonoloba grown under sea salt 
irrigation improved plant growth, photosynthetic pigments, protein contents, and 
potassium contents (Gul et al., 2015). Similarly, ascorbic acid improved seed germi-
nation, growth, yield, and ionic composition of eggplant under salt stress (Jan 
et al., 2016).

 Salicylic Acid

Salicylic acid is one of the important antioxidants owing to its involvement in 
endogenous signal mediating local and systemic plant defense response against 
stresses. Salicylic acid is a growth regulator that promoted the growth of plants 
under stress and non-stress conditions (Rivas-San & Plasencia, 2011) (Fig. 20.3). 
Salicylic acid acts as a potential nonenzymatic antioxidant, which plays a key role 
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in regulations of various physiological processes in crop plants (Jayakannan et al., 
2015; Arfanet al., 2007). It has also been found that plants release salicylic acid in 
response to multiple abiotic stresses such as heavy metal toxicity, water stress or 
drought, chilling stress, temperature, and osmotic stress (Jayakannan et al., 2015). 
Some earlier reports showed that exogenous application of salicylic acid could min-
imize the damaging effect of drought on wheat (Waseem et al., 2006) and heavy 
metals in rice (Khan et al., 2015).

Salicylic acid is a phenolic compound involved in many physiological and bio-
chemical processes such as nitrogen metabolism, photosynthesis, proline metabo-
lism and production of antioxidant system, glycine betaine, and plant water relations 
under stress conditions and thereby provided protection in plants against abiotic 
stresses (Viehweger, 2014; Miura & Tada, 2014; Khan et al., 2013a, b). In another 
study, salicylic acid was reported to induce salinity tolerance and increased biomass 
of Torreya grandis owing to improved chlorophyll content and antioxidant activity 
that eventually alleviated the oxidative stress (Li et al., 2014a, b).

The deficiency of salicylic acid in plants could make the effects of salt stress 
more worse and lead to substantial decline in plant growth (Mirdehghan & Ghotbi, 
2014). Salicylic acid-induced pre-adaptation status in plants remained helpful in the 
acclimation to subsequent salt stress via reducing lipid peroxidation in terms of 
reduced malondialdehyde (MDA) content (Li et al., 2014a, b; Deng et al., 2012). In 
wheat, exogenous salicylic acid negated the salt stress-induced growth inhibition 
(Arfan et al., 2007).

Salicylic acid has variable effects on plants regarding plant adaptation to salt 
stress; however, the magnitude of protective effects depends on plant species, appli-
cation dose, application method, and time of application (Metwally et al., 2003). 
Salicylic acid has obtained special attention owing to its protective effects on plants 
under NaCl salinity. Several studies have shown that the effects of cytotoxicity 
induced by salt stress can be overcome by exogenous application of salicylic acid 
(Dong et  al., 2015). Salicylic acid can also act as an endogenic phytohormone, 
which may regulate various physiological and biochemical processes in plants 
(Abedini & Hassani, 2015). Foliar application of salicylic acid promoted growth, 
enzymatic, and photosynthetic activities in salt-stressed sunflower plants (Noreen 
et al., 2009). Foliarly applied salicylic acid on maize grown in saline soil showed 
positive effect at the vegetative stage of maize plants. Exogenous salicylic acid 
application prominently improved sugar, protein, and proline contents and antioxi-
dant enzyme activities. On the other hand, chlorophyll, carotenoids, osmotic poten-
tial, and membrane stability index were reduced (Fahad & Bano, 2012).

In addition, exogenous application and salicylic acid concentrations significantly 
improved plant growth and development (Akhtar et al., 2013). The foliar spray of 
salicylic acid also protected citrus seedlings subjected to salt stress. Growth, chlo-
rophyll (Chl) contents, relative water contents (RWC), maximal quantum yield of 
PS-II photochemistry, and gas-exchange attributes were negatively affected by 
salinity. In addition, cell membrane damage and proline contents were enhanced by 
salinity. It appeared that the best ameliorative remedies of salicylic acid were 
obtained when citrus seedlings were sprayed by 0.50 and 1.0 mM salicylic acid 
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solutions (Khoshbakht & Asgharei, 2015). Cucumber seedlings were treated with 
foliar salicylic acid applications at low concentrations, and it was noted that salt 
stress negatively affected the growth, chlorophyll content, and mineral uptake of 
cucumber plants. However, foliar applications of salicylic improved plant biomass 
accumulation. Moreover, salicylic acid application improved water contents of salt- 
stressed cucumber plants and reduced electrolyte leakage (Yildirim et al., 2008).

 Tocopherols

Tocopherols (Fig. 20.6) are lipophilic antioxidants, which are synthesized in plants 
and some photosynthetic microorganisms. Four isoforms (α, β, γ, δ) of tocopherols 
and tocotrienols, which vary in the positions and number of methyl groups in the 
chromanol ring, are found in nature (Eitenmiller et  al., 2007). Plants mainly 

Fig. 20.6 Structures of important tocopherols
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accumulated tocochromanols to reduce the lipid oxidation (Falk & Munné-Bosch, 
2010). Some evidences suggested that the effectiveness of antioxidant may vary 
between natural and synthetic source of tocochromanols (Ahsan et al., 2015). To 
date, little is known about the specific roles of α- and γ-tocopherols in different plant 
tissues. Tocopherol biosynthesis happens at inner envelope membrane of chloro-
plasts of photosynthetic organisms (Fritsche et al., 2014), which provides protection 
to photosynthetic machinery from oxidative damage and lipid peroxidation owing 
to enhanced ROS production under stress conditions. The important aspect of the 
biosynthetic pathway of tocopherols in plants has already been identified, whereas 
the enzyme tocopherol cyclase has been identified as a key enzyme of tocopherol 
biosynthesis (Ali et al., 2015).

Up to the 1990s, the function of α-tocopherol in plants is believed to be associ-
ated only with antioxidant activity and maintenance of membrane integrity. Later 
on, it was found that α-tocopherol has the ability to transmit cellular signals in 
plants as well as in animal cells. Experiments performed on mutant plants, which 
are unable to synthesize tocopherols, have proved this assumption. Tocochromanols 
are the most effective group of lipophilic phenolic antioxidants, which protect key 
cell components by neutralizing free radicals before they can cause damage to cel-
lular structures and functions (Espinosa-Diez et al., 2015).

Among tocopherols, α-tocopherols (vitamin E), which contain three methyl 
groups, have an excellent antioxidant activity (Kamal-Eldin & Appelqvist, 1996). 
Protective mechanism of vitamin E is the quenching of ROS and removal of the 
polyunsaturated fatty acid radical species (Fig. 20.7), which are generated during 
lipid peroxidation (Shin et al., 2016; Raederstorff et al., 2015; Munne-Bosch, 2013; 
Bramley et al., 2000).

Vitamin E reduced the effect of seawater stress on growth, yield, and physiologi-
cal and antioxidant responses of faba bean plant. Similarly, foliar application with 
α-tocopherol on faba bean plants alleviated injuries and caused diluted seawater 
irrigation. The positive effects are related to the enhancement of protective param-
eters such as antioxidant enzymes, proline, carotenoids, and inorganic ions (K+and 
Ca2+). Tocopherols also improved faba bean plant growth, yield, and quality of 
seeds (Orabi & Abdelhamid, 2016). Foliar application of tocopherols increased 
relative growth rate, plant nitrogen contents, and net assimilation rate and showed 
positive changes in all other parameters and productivity of soybean plants when 
grown under irrigation with moderately saline water (Rady et al., 2015). The anti-
oxidants appraised to alleviate salinity-induced stresses in plants, which has been 
mentioned in Table 20.1.

Exogenous application of α-tocopherols substantially improved salt stress toler-
ance in onion plants by inhibiting endogenous H2O2 and lipid peroxidation and 
enhancing enzymatic (i.e., SOD, CAT, APX, and GR) and nonenzymatic (i.e., 
ascorbic acid and glutathione) antioxidant activities. Moreover, α-tocopherol appli-
cation improved photosynthetic efficiency and plant water status. Therefore, foliar 
application of α-tocopherols could be used to induce salt tolerance in plants (Semida 
et al., 2014).
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Fig. 20.7 Conversion of α-tocopherol into α-tocopherylquinone by its reaction with ROS

 Anthocyanins

Anthocyanins are water-soluble, polar, and pigmented flavonoids (Bendary et  al., 
2013; Prior, 2006; Harborne, 1998; Holton & Cornish, 1995), which also contributed 
to the antioxidant properties (Longo & Vasapollo, 2006) in plants grown under saline 
conditions. Major sources of anthocyanins are cherries, strawberries, blueberries, rasp-
berries, purple grapes, and black currants (Mazza, 2007) and found in the vacuoles of 
the epidermal and mesophyll cells (Chalker-Scott, 1999). Anthocyanins accumulated 
in expanding juvenile tissues and autumnal senescing leaves of deciduous species 
under stress (Amal et al., 2015; Close & Beadle, 2003). Anthocyanin supplementation 
through foods and beverages plays an important role in the prevention of diverse car-
diovascular diseases, cancer, and a plethora of other diseases due to their strong anti-
oxidant, detoxification, anti-proliferation, anti-angiogenic, and anti-inflammatory 
activities (Ames et al., 1993; Nikkhah et al., 2008).
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Table 20.1 Antioxidants used in various crops to alleviate salinity-induced effects

Sr. 
No. Antioxidant Crop Mode References

1 Ellagic acid Cicer arietinum (chickpea) Seed soaking El-Soud et al. (2013)
2 Ascorbic acid Triticum aestivum (wheat) Foliar Khan et al. (2006)

Rooting Athar et al. (2008)
Seed soaking Athar et al. (2009)

Helianthus annuus 
(sunflower)

Foliar Khan et al. (2013a, b)

Saccharum spontaneum 
(wild sugarcane)

Foliar/rooting Batool et al. (2015)

Solanum melongena 
(eggplant)

Foliar Elwan et al. (2007) and 
Jan et al. (2016)

Hordeum vulgare (barley) Seed soaking Çavuşoğlu and Bilir 
(2015)

Cyamopsis tetragonoloba 
(guar)

Foliar Gul et al. (2015)

Sesamum indicum (sesame) Seed soaking Tabatabaei and 
Naghibalghora (2013)

3 Salicylic acid Helianthus annuus 
(sunflower)

Foliar Noreen et al. (2009)

Zea mays (maize) Foliar Fahad and Bano (2012)
Vigna radiata (mung bean) Foliar Akhtar et al. (2013)
Citrus sinensis (citrus) Foliar Khoshbakht and Asgharei 

(2015)
Cynara scolymus (artichoke) Foliar Bagherifard et al. (2015)
Cucumis sativus (cucumber) Foliar Yildirim et al. (2008)

4 Tocopherols Vicia faba (horsebean) Foliar Orabi and Abdelhamid 
(2016)

Glycin max (soybean) Foliar Rady et al. (2015)
Mung bean seedling (Vigna 
radiata)

Soaking Farheen et al. (2018)

Allium cepa (onion) Foliar Semida et al. (2014)
Linum usitatissimum 
(Linseed)

Foliar Sadak and Dawood 
(2014)

5 Anthocyanin Role of anthocyanin in plant 
defense

Endogenous Lev-Yadun and Gould 
(2009)

Higher plants Endogenous Eryılmaz (2006)
Hibiscus esculentus (okra) Endogenous Dkhil and Denden (2012)
Triticum aestivum (wheat) Endogenous Tereshchenko et al. 

(2012)
The photoprotective role of 
anthocyanin pigments in leaf 
tissues

Endogenous Hughes (2007)

6 Flavonoids Flavonoids production in 
plants under stress condition  
Giovanni

Endogenous Agati et al. (2013)

(continued)
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Sr. 
No. Antioxidant Crop Mode References

7 Brassinosteroids Triticum aestivum (wheat) Foliar spray Shahbaz and Ashraf (2007)  
and Eleiwa et al. (2011)

Seed soaking El-Feky et al. (2014)
Lycopersicon esculentum 
(tomato)

Foliar Behnamnia et al. (2015)

Leymus chinensis Trin. Foliar Niu et al. (2016)
Oryza sativa (rice) Seed soaking Sharma et al. (2015)
Citrullus lanatus (water melon) Spray Cheng et al. (2015)
Lycopersicon esculentum 
(tomato)

Spray Slathia et al. (2012)

Leymus chinensis (Chinese 
lyme grass)

Spray Jin et al. (2015)

Zea mays (maize) Foliar Anjum et al. (2011)
Solanum lycopersicum 
(garden tomato)

Foliar Hayat et al. (2012)

Gossypium hirsutum (cotton) Seed soaking Fathima et al. (2011)
Raphanus sativus (radish) Seed soaking Mahesh et al. (2013)

8 28-HBL Cicer arietinum (chickpea) Seed soaking Ali et al. (2007)
Zea mays (maize) Seed soaking Arora et al. (2008)
Triticum aestivum (wheat)
Brassica juncea
Triticum aestivum (wheat)

Foliar
Foliar

Eleiwa et al. (2011)
Hayat et al. (2012)

Foliar Yusuf et al. (2011)
Seed soaking El-Feky (2014)

Brassica juncea (Chinese 
mustard)

Foliar Alyemeni et al. (2013)

9 24-EBL Pisum sativum (garden pea) Rooting Fedina (2013)
Pisum sativum L. (pea) Seed soaking Shahid et al. (2011)
Cucumis sativus (cucumber) Foliar spray Fariduddin et al. (2013)
Solanum melongena 
(eggplant)

Rooting Wu et al. (2017)
Rooting Ding et al. (2012)

Cajanus cajan (pigeon pea) Rooting Dalio et al. (2013)
Capsicum annuum (pepper) Foliar Abbas et al. (2013)
Lactuca sativa Foliar and 

Seed soaking
Ekinci et al. (2012)

Brassica juncea Seed soaking Kaur et al. (2018a, b)
Triticum aestivum (wheat)
Triticum aestivum (wheat)

Foliar Qayyum et al. (2007) and 
Shahbaz et al. (2008)

Foliar Talaat and Shawky (2013)
Acacia gerrardii Foliar Abd Allaha et al. (2018)
Cucumis sativus (cucumber) Foliar Anwar et al. (2018)
Phaseolus vulgaris Foliar Rady (2011)
Hordeum vulgare (barley) Seed soaking Kartal et al. (2009)
Cajanus cajan Rooting Dalio et al. (2011)
Fragaria x ananassa Foliar Karlidag et al. (2011)
Grass seedlings Rooting Wu et al. (2017)

Table 20.1 (continued)
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The promising antioxidant properties of anthocyanins in humans caused also an 
interest to study their role on plant growth under saline conditions. However, the 
ecophysiological roles of anthocyanins are manifold as compatible solutes in 
osmotic regulation, antioxidants, and photoprotectants by masking photosynthetic 
pigments and capturing ROS (Carletti et  al., 2013; Hatier & Gould, 2008; 
Nakabayashi et al., 2014; Steyn et al., 2002). Anthocyanins are well recognized as 
an important component of Quinoa grains owing to their high nutritional value and 
health benefits (Alvarez-Suarez et al., 2014). The induced synthesis and accumula-
tion of anthocyanins under stress at grain filling could be an important functional 
trait for grain nutritional quality of Quinoa. Anthocyanin captures free radicals gen-
erated from the cyanidin oxidation (Castañeda-Ovando et  al. (2009) as well as 
defends plants against environmental stresses such as ultraviolet radiation, drought, 
temperature variations, and attraction of pollinators (Chalker-Scott, 1999; Close & 
Beadle, 2003; Leão et al., 2014; Stone et al., 2001).

Anthocyanins improve drought resistance in plants due to its ability to stabilize 
the water potential and thus hypothesized to be involved in osmotic regulation 
(Chalker-Scott, 2002; Oosten et  al., 2013). Ploenlap and Pattanagul (2015) sug-
gested that the increase in anthocyanin levels under water stress is mainly due to the 
photoprotection of chlorophylls by anthocyanins. The anthocyanin level was 
increased in the juvenile leaves under drought stress, however the accumulation of 
anthocyanins inhibited under severe stress conditions. Similarly, flavonoids with 
radical scavenging activity mitigated oxidative and drought stress in Arabidopsis 
thaliana (Nakabayashi et al., 2014). Moreover, it has been demonstrated that antho-
cyanins are potent antioxidants, displaying up to four times the ROS scavenging 
potential of trolox (Wang et al., 1997), an industry standard in gauging antioxidant 
potential. Moreover, in vivo monitoring of an oxidative burst (following mechanical 
wounding) showed that H2O2 decreased more rapidly in red (anthocyanic) 
Pseudowintera colorata leaves than green ones. While the vacuolar storage of 
anthocyanins was found against their action as direct scavengers of ROS produced 
in the chloroplast, possibly due to cytoplasmic anthocyanins, which act as antioxi-
dants. For example, Zhang et al. (2012) showed that leaves of an acyanic Arabidopsis 
thaliana mutant subjected to a high irradiance displayed a reduced DPPH (2,2- diph
enyl- 1-picryl-hydrazylhydrate) scavenging potential and increased oxidative dam-
age (estimated by cell membrane permeability) as compared to wild-type anthocy-
anic leaves. It was further observed that anthocyanins in Sambucus spp. peduncles 
are responsible for ameliorating light stress during senescence, and anthocyanins 
may additionally prolonged the senescence period. This dichotomy in anthocyanin 
research is unwarranted, and its significance is still poorly acknowledged. 
Identification and exploration of those functions that anthocyanins perform in either 
reproductive or vegetative organs are necessary to understand the adaptive signifi-
cance of anthocyanin production in plants.
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 Brassinosteroids

Brassinosteroids belong to a group of steroid plant hormones with significant 
growth promoting potential (Bishop & Yokota, 2001; Clouse & Sasse, 1998; Chory 
et al., 1989). Brassinosteroids have multiple effects on seed germination, growth, 
leaf abscission, and senescence (Sasse, 1997) although its mechanism is still obscure 
(Mathur et al., 1998). Moreover, brassinosteroids exert anti-stress effects on plants 
such as those caused by cold, heat, drought, and salt (Anuradha & Rao, 2003; 
Dhaubhadel et al., 2002; El-Feky, 2014; Kagale et al., 2007; Ogweno et al., 2008; 
Sharma et al., 2018). The brassinosteroids’ stress response is an intricate sequence 
of biochemical reactions such as induction of protein biosynthesis, activation or 
suppression of key enzymatic reactions, and the production of multiple chemical 
defense compounds (Bajguz & Hayat, 2009; Jin et al., 2015).

Exogenous applications of brassinosteroids under salinity have long been known 
to improve growth and yield in many economically useful plant species (Cheng 
et  al., 2015). In cereals, brassinosteroids promoted growth and yield attributes, 
whereas in leguminous crops, the number of pods per plant and total seed yield 
remained higher after the exogenous application of brassinosteroids (Rao et  al., 
2002). Growth and seed yield of rapeseed plants were also promoted by brassino-
steroid application (Hayat et  al., 2012; Sharma et  al., 2018), and the same was 
reported for seed yield in cotton (Ramraj et al., 1997). Brassinosteroids removed the 
salinity-induced inhibition of seed germination and seedling growth in rice (Oryza 
sativa) and improved the chlorophyll biosynthesis and enhanced nitrate reductase 
activity under salt stress(Anuradha & Rao, 2003; Bajguz & Hayat, 2009).

Furthermore, brassinosteroids had no prominent effect on the leaf cell ultrastruc-
ture under normal conditions; however, damages imposed by salt stress on nuclei 
and chloroplasts were significantly reduced by brassinosteroid treatment in barley 
(Krishna, 2003). When salt solution was supplemented with brassinosteroids, the 
inhibitory effect of salt on rice seed germination was considerably reduced that is 
possibly associated with enhanced levels of nucleic acids and soluble proteins 
(Anuradha & Rao, 2009). The exogenous application of 28-homobrassinolide on 
Pusa Basmati-1, a commercially important rice variety, resulted in reduced growth 
and protein and chlorophyll contents and increased proline and MDA contents of at 
early growth stages (Sharma et al., 2015).

The plants resulting from the seeds soaked in 28-homobrassinolide exhibited 
higher activities of nitrate reductase (23%) and carbonic anhydrase (31%), improved 
dry mass (34%) and nodule number (30%), content of leghemoglobin (28%), and 
nitrogenase activity (30%), while contents of nodule nitrogen and carbohydrate 
were decreased by 5% and 6%, respectively, with ultimate increase in yield (26%) 
in chickpea (Ali et al., 2007). The structures of some important brassinolides are 
given in Fig. 20.8.

In addition, the activities of antioxidative enzymes and protein contents were 
promoted in 28-HBL-treated maize plants. Moreover, application of 28-HBL 
reduced lipid peroxidation in salt-treated maize plants (Arora et al., 2008). Similarly, 
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Fig. 20.8 The structures of some selected brassinolides

foliar spray of 28-HBL increased growth and yield attributes and photosynthetic 
pigments in wheat (Eleiwa et al., 2011). Activities of nitrate reductase and carbonic 
anhydrase, photosynthetic rate, and seed yield were decreased along with content of 
chlorophyll under salt stress; however, application of 28-HBL solutions stimulated 
morpho-physiological attributes in Brassica juncea (Alyemeni et  al., 2013). 
Application of 24-epibrassinolide (24-EBL) attenuated the hostile effects of salinity 
on Eriobotrya japonica plants; however, the effect of 24-EBL was significant at 0.5 
mgL-1 under saline conditions (Sadeghi & Shekafandeh, 2014; Xue, 2012). 
Similarly, the grass seedlings were treated with 24-EBL and induce salinity toler-
ance (Wu et al., 2017). In similar studies, foliar spray of 24-EBL improved growth 
parameters of wheat and Acacia gerrardii plants significantly under saline and non-
saline conditions; however, there was no prominent increase in the mineral contents 
of wheat plants (Abd Allaha et  al., 2018; Ali et  al., 2006; Shahbaz et  al., 2008; 
Shahbaz & Ashraf, 2007). Exogenous application of brassinolide (1.0 mgL-1) 
enhanced growth, carbohydrate, and total soluble proteins in roots and shoots of 
wheat and improved the activities of hydrolytic enzymes, amylase, and protease as 
well under salt stress (El-Fekyl, 2014; Durigan et al., 2011). No doubt, brassino-
steroids alleviated the inhibitory effects of salinity on germination, seedling growth, 
and crop yields; however, further studies are needed to uncover the tolerance mech-
anism imparted by brassinosteroids under stress conditions.
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 Carotenoids

Carotenoids are among the most important nutrients in food and found in all plants 
as natural pigments. They are derived from acyclic C40 isoprenoid lycopene that 
can be classified as a tetraterpene (Heider et al., 2014). Carotenoids are lipophilic 
microconstituents that have beneficial effects on human health and provide protec-
tion against cancer, cardiovascular diseases, and muscular regeneration (Rao & 
Rao, 2007; Sommer & Vyas, 2012). Till date, there are approximately 700 known 
carotenoids that can be categorized as α-carotene, β-carotene, and lycopene and 
xanthophylls (zeaxanthin, lutein, and β-cryptoxanthin), which denote the oxygen-
ated carotenoids fraction. The α-carotene, β-carotene, and β-cryptoxanthin are pro-
moters of vitamin A and are represented in Fig. 20.9.

In plants, carotenoids function a crucial role in protecting chlorophyll owing to 
their antioxidant properties, and the endogenous carotenoid contents are affected by 
several factors such as environmental, genetic, or man-made strategies (Fanciullino 
et al., 2006). The carotenoid-rich extract is usually used in food supplements, food 
additives, medicines, and cosmetics (Mezzomo & Ferreira, 2016).

The extent of expression of carotenogenic genes varied with stress conditions. 
For instance, carotenoid molecules present in the tissues are capable of neutralizing 

Fig. 20.9 The structures of some selected carotenoids
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ROS; however, the mechanism of action of these molecules is based on the modifi-
cations of the cell metabolic functions, aimed at interacting with the polyunsatu-
rated acyl groups of lipids to stabilize membranes and playing a protective role 
against ROS and synergic function with other antioxidants (Raposo et al., 2015). 
Table 20.2. shows uses and sources of some selected antioxidants.

Table 20.2 Sources and uses of some important antioxidants

Serial 
No. Compound Class Sources Uses References

1 Ellagic acid Polyphenolic Vegetables, 
nuts, grapes, 
pomegranate, 
berries

Antioxidant, 
antiviral, 
antibacterial, 
anti-inflammatory, 
anticancerous

Galano et al. 
(2014), 
Bhandari 
(2012) and 
Malini et al. 
(2011)

2 Ascorbic acid Vitamin All plant parts 
except dry 
seeds, citrus 
fruit

Antioxidant, growth 
regulator, 
anti-saline

Kumar et al. 
(2014), 
Hameed et al. 
(2015) and 
Klause et al. 
(2016)

3 Salicylic acid Phenolic 
carboxylic 
acid

Berries, dates, 
grapes, guavas, 
apricots, green 
pepper, olives, 
tomatoes

Antioxidant, growth 
regulator, 
anti-saline

Viehweger 
(2014), Li 
et al. (2014a, 
b) and Abedini 
and Daie 
Hassani (2015)

4 Tocopherols Phenolics Vegetables and 
vegetable oils, 
nuts, grains

Antioxidants Ahsan et al. 
(2015), 
Fritsche et al. 
(2014) and 
Raederstorff 
et al. (2015)

5 Anthocyanins Flavonoids Blueberries, 
cherries, 
raspberries, 
strawberries, 
black currants, 
purple grapes, 
red wine

Antioxidant, 
detoxification 
activity, anti- 
proliferation 
activity, anti- 
angiogenic activity, 
anti-inflammatory 
activity

Chukwu et al. 
(2012), Leão 
et al. (2014) 
and 
Nakabayashi 
et al. (2014)

6 Brassinosteroids Steroid Plants Antioxidant, 
anti-stress, 
enhanced growth 
and yield

El-Feky 
(2014), Cheng 
et al. (2015) 
and Jin et al. 
(2015)

7 Carotenoids Tetraterpenes Tomatoes, 
carrots, and 
apricots, all 
fruit or 
vegetable

Anticancer, 
cardioprotective, 
antioxidant

Fanciullino 
et al. (2006)
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 Enzymatic Antioxidants

The ROS are the by-products of aerobic metabolism, and their production is gener-
ally enhanced under stress conditions (Ashraf & Harris, 2013; Gónmez-Bellot et al., 
2013; Mugnai et al., 2009) through enhanced oxidizing metabolic activities occur-
ring in chloroplasts, mitochondria, and microbodies and disruption of electron 
transport system (Pinheiro & Chaves, 2011). In this context, enzymatic antioxi-
dants, that is, CAT, POX, and SOD, served as efficient ROS scavenging systems to 
evade the oxidative damage (Mittler et al., 2011; Saisanthosh et al., 2018) in plants 
under stress conditions.

 Catalases (CAT)

The CAT is a tetrameric protein of 244 kDa comprising four identical subunits of 
59.7 kDa, and each subunit contains 527 amino acid residues, one haem group, 
namely, iron (III) protoporphyrin IX, and a tightly bound molecule of NADPH 
(Sofo et  al., 2015). Stress conditions predispose the photosynthetic system of 
leaves to photoinhibition resulting in a light-dependent inactivation of the primary 
photochemistry associated with photosystem II (Ashraf & Harris, 2013). At low 
concentrations, H2O2 acts as a signal molecule involved in the regulation of growth 
and development, specific biological/physiological processes, cell cycle, photo-
synthetic functions, and plant responses to biotic and abiotic stresses (Kovalchuk, 
2010; Seki et  al., 2007; Vadez et  al., 2012). Oxidative stress and eventual cell 
death in plants can be caused by excess H2O2 accumulation. Since stress factors 
provoked production of H2O2 in plants, severe damage to biomolecules can be 
possible due to enhanced and non-metabolized cellular H2O2 (Sofo et  al., 
2015;Foyer & Shigeoka, 2011; Apel & Hirt, 2004). Considering the key role of 
CAT in photorespiration, many authors focused on the role of CAT-catalyzed 
pathway under both drought and salt stress. Indeed, the maintenance of CAT 
activity in leaves of drought-stressed plants likely allowed the removal of photo-
respiratory H2O2 produced (De Pinto et al., 2013). Under stress conditions, the 
photorespiration works as energy sink preventing the over-reduction of the photo-
synthetic electron transport chain and photo-inhibition (De Pinto et al., 2013). On 
this basis, photorespiration and CAT pathway cannot be considered wasteful pro-
cesses but appreciated as a key subsidiary component of photosynthesis and 
important parts of stress responses in green tissues for preventing ROS accumula-
tion (Bauwe et al., 2012; Voss et al., 2013).

Enzymes, that is, APX, GPX, and CAT, are able to scavenge H2O2 with different 
mechanisms. Regulation of the CAT gene expression played an important role in the 
levels of CAT activity. The catalase gene expression is regulated by various mecha-
nisms involving peroxisome proliferator-activated receptors (Ford et al., 2011; Sofo 
et al., 2015).
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 Peroxidases

Peroxidases (POXs) having molecular weight ranging from 30 to 150 kDa are 
widely distributed in nature. The POXs are involved in the detoxification of toxic 
pollutants, and its detoxification ability is dependent upon the reduction of perox-
ides such as H2O2 (Saxena et al., 2011). These enzymes are produced by a variety of 
sources including plants, animals, and microbes, whereas POXs have the potential 
for bioremediation of wastewater contaminated with phenols, cresols, and chlori-
nated phenols used for biopulping and biobleaching in paper industry (Malar et al., 
2014). Moreover, the POXs are also used as biosensors. The term POX represents a 
group of specific enzymes such as NADH-POX, glutathione-POX, and iodine-POX 
as well as a variety of nonspecific enzymes that are simply known as POXs. These 
oxidases and POXs have been reported as excellent antioxidants to degrade dyes 
(Caverzan et al., 2012). Specifically, the POX activity involved donating electrons 
that are bound to other substrates such as ferricyanide and ascorbate to break them 
into harmless components. Moreover, the POX donates two electrons to reduce per-
oxides by forming selenols and eliminates peroxides as potential substrate for the 
Fenton reaction (Liochev & Fridovich, 2003, 2010).

In addition, the use of POX for the degradation of pollutants has thrown more 
light on sustainable bioremediation strategies for polluting compounds and environ-
mental protection using different enzymes. Environmental protection is influenced 
by interwoven factors such as environmental legislation, ethics, and education. Each 
of these factors played an important role in influencing national-level environmental 
decisions and personal-level environmental values and behaviors. For environmen-
tal protection to become a reality, it is important for societies and the nations to 
develop each of these areas that together will inform and drive environmental 
decisions.

 Superoxide Dismutase (SOD)

Plant-antioxidant defense machinery comprising antioxidant enzymes and nonen-
zymatic antioxidant components metabolized ROS and their reaction products to 
avert oxidative stress conditions (Gill & Tuteja, 2010; Hasanuzzaman et al., 2012). 
The SOD is a metalloenzyme and one of the most effective components of the anti-
oxidant defense system in plant cells against ROS toxicity. The SODs catalyzed the 
dismutation of O2

•− to H2O2 and O2 in all subcellular compartments such as chloro-
plasts, peroxisomes, mitochondria, cytoplasm, nuclei, and the apoplast (Alscher 
et al., 2002; Gill & Tuteja, 2010). Moreover, the SODs are available at an intracel-
lular concentration of 10−5 M and occur in all oxygen-metabolizing cells and all 
subcellular compartments (Alscher et  al., 2002; Fink & Scandalios, 2002). The 
SODs constituted the first-line defense against abiotic stress-induced enhanced 
ROS production and its reaction products. Nevertheless, all the SOD isoforms are 
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nuclear coded and, where necessary, transported to their subcellular targets by 
means of NH2-terminal targeting sequences (Pan et al., 2006).

Four different isoforms of SODs have been distinguished depending on the metal 
at the active center, which is manganese, iron, copper, and zinc (Miller & Sorkin, 
1997). Previous studies denoted that most of the SODs are intracellular enzymes; 
these are Cu/Zn SOD (which is also extracellular), Mn-SOD, and Fe-SOD.  Cu/
Zn-SODs are generally found in the cytosol of eukaryotic cells and chloroplasts. 
The Mn-SODs are found in mitochondria and reported in chloroplasts and peroxi-
somes in some plants. The dimeric Fe-SODs, which are not found in animals, have 
been reported in chloroplasts of some plants (Gomez et  al., 2003; Droillard & 
Paulin, 1990; Camp et al., 1994; Fridovich, 1995; Salin & Bridges, 1980).

In summary, to detoxify ROS, enzymatic and nonenzymatic antioxidant systems 
become upregulated, whereas H2O2 is scavenged by CAT and POX. The SOD plays a 
determinant role in the protection against the toxic effects of oxidative stress by scav-
enging superoxide radicals and providing their conversion into O2 and H2O2 (Verma 
et al., 2003; Bowler et al., 1992). Overall, the enzymatic antioxidants are first-line 
defense of plants against oxidative stress owing to multiple biotic and abiotic factors.

 Conclusion

Throughout the world, environmental stresses are proved to be a fatal threat for 
agricultural productivity. Plants being sessile in nature have to face multiple abiotic 
stresses. Crops in arid and semiarid regions have to face uncertain periods of drought 
and extreme weather conditions. Thus, improving crop yields under such climatic 
conditions yield is vital to satisfy the increasing food demand. Phytohormones and 
plant growth regulators could play important role in this regard owing to their stress 
alleviatory role. Exogenous application of some phytohormones and plant growth 
regulators could substantially improve the enzymatic and nonenzymatic antioxi-
dants to scavenge ROS and brought promising results regarding growth and produc-
tivity of crops under stress conditions. Moreover, the antioxidants play a diverse 
role in inducing abiotic stress tolerance in plants. Till now, a number of exogenous 
antioxidants have been reported, but still there is a need to discover more economi-
cal antioxidants so that they can be used for beneficial purposes.
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