
Serverless Software Engineering – and How
to Get There.

Stephen McAleese1, Jordan Conway McLaughlin1, Filip Detyna1, Andrey Murashev1,
Murat Yilmaz2 , and Paul M. Clarke1,3(B)

1 School of Computing, Dublin City University, Dublin, Ireland
{stephen.mcaleese2,jordan.conwaymclaughlin24,filip.detyna2,

andrey.murashev2}@mail.dcu.ie, paul.m.clarke@dcu.ie
2 Department of Computer Engineering, Gazi University, Ankara, Turkey

my@gazi.edu.tr
3 Lero, The Science Foundation Ireland Research Center for Software, Dublin, Ireland

Abstract. Serverless computing is on the rise but developing software to exploit
this space involves a deep rethink of software architecture, deployment, and oper-
ation (perhaps also, software development processes and team structures). Central
to this revolution, we find a compelling argument for distributed, services-based
software architectures. But converting a large, established monolith architecture
system to microservices is non-trivial and fraught with both cost and risk. For
the many firms with established software systems, this architectural system con-
version might be considered the first stop-off on the journey to serverless com-
puting. In tandem, software deployment and production monitoring also require
reinvention. The focus of this paper involves an examination of the advantages
of microservices architectures, include techniques for migrating from monolith
architectures. Through application of a Multivocal Literature Review (MLR), we
find that migrating from a monolith architecture to a microservices architecture is
risky and non-trivial, but that there are techniques that can be employed to support
the transition. We find also that monoliths have their advantages which might be
overlooked to some extent in the race to serverless computing.

Keywords: Serverless software engineering ·Monolith ·Microservices ·
Migration

1 Introduction

The microservice architecture has become increasingly popular in the past several years
as many companies have migrated their monolith applications to microservices [1].
However, the transition can be difficult and challenging [2]. Arguments for whether
to adopt the microservices architecture, how to do so and what to expect during the
transition exist in various forms both in the grey and white literature [36], though the
focus of such literature varies greatly, and in some cases, there is conflicting information.

© Springer Nature Switzerland AG 2022
M. Yilmaz et al. (Eds.): EuroSPI 2022, CCIS 1646, pp. 75–90, 2022.
https://doi.org/10.1007/978-3-031-15559-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15559-8_6&domain=pdf
http://orcid.org/0000-0002-2446-3224
http://orcid.org/0000-0002-4487-627X
https://doi.org/10.1007/978-3-031-15559-8_6

76 S. McAleese et al.

The term microservice was introduced in 2011 to describe an architectural style for
web serviceswhere applications are composedof several small independently deployable
services which each run in their own process, handle a single business capability and
communicate with each other via lightweight mechanisms such as HTTP [3]. Generally,
each microservice is owned by a single small “two-pizza” team which manages its
development, deployment and testing [4]. Microservices have many advantages over
monolithic applications such as better scaling, resilience, technological heterogeneity,
replaceability [5] and modifiability [6].

There has been a significant increase in the popularity of microservices in recent
years as many businesses have decided to use the microservice architecture over the
more traditional monolithic architecture [1]. As of 2020, only 23% of organisations
surveyed were not using the microservices architecture (Fig. 1).

Fig. 1. Microservice adoption rates as of 2020 [1], 23% of respondents said they had not yet
adopted microservice architecture.

The number of searches for the term ‘microservices’ has also increased significantly
over the past several years. Google trends, an online tool for measuring the search
interest of search terms, shows that the worldwide search interest for the search term
‘microservices’ from 2004 onward increased rapidly over the past several years [7].

Netflix and Amazon have been pioneers of the microservice architecture. Amazon
launched their “Amazon Elastic Compute Cloud” in 2006 much ahead of their other
competitors such as Google or Microsoft [8]. Netflix started to migrate their mono-
lithic application to microservices running on AWS in 2009; two years before the term
‘microservice’ was introduced. Netflix’s adoption of this architecture has been pivotal in
facilitating the company’s massive growth. The microservice architecture enables Net-
flix to regularly update their product for millions (Fig. 2) of users worldwide and provide
uninterrupted access to their service [4].

Serverless Software Engineering – and How to Get There 77

Fig. 2. Worldwide Google search interest for the term ‘microservices’. Source: adapted from [7].

A monolith is an application where all the functions of the application are encapsu-
lated in a single running process. The monolithic architecture was the established way
of building applications [6]. Monolithic applications have their own strengths such as
simple deployment and testing [9]. Therefore, the monolith can be viewed as the “least
software” approach to developing an application and is therefore suitable for small
companies. However, large monoliths are associated with many problems such as high
complexity, slower deployment, scaling difficulties and technology lock-in [10]. There
are pros and cons to monoliths and microservices and whether an organisation adopts
the monolithic or microservice architecture depends on contextual factors such as the
size of the company and the rate at which the software might ideally evolve. In this
paper, we examine why microservices are appealing to software firms, what techniques
might be employed when transitioning from a monolith architecture to microservices,
andwhat risks are involved in the process. For serverless computing to be fully embraced,
it seems that a large part of the initiative is dependent on a distributed software architec-
ture. For this reason, this paper focuses on the benefits of microservices architectures,
and later, the techniques that might be adopted when migrating monolith architectures
to microservices.

2 Research Methodology

This research paper was written in the context of a Multivocal Literature Review (MLR)
involving academic and non-academic literature also known as white and grey literature
respectively [36]. Under the guidance of a senior academic, the primary research team
was assigned the research topic “Monolith toMicroservicesMigrations: Techniques and
Pitfalls”. The first task when conducting the MLR was to divide the research paper title
into subproblems by formulating research questions to guide the research process. Each
of the four primary researchers was assigned a single research question. The following
research questions were identified:

• RQ1: Why have microservices increased in popularity in recent years?
• RQ2: What are the advantages of migrating from a monolithic to a microservice
architecture?

• RQ3: What are some techniques for migrating applications from a monolithic to a
microservices architecture?

78 S. McAleese et al.

• RQ4: What are the risks of migrating from a monolithic to a microservices
architecture?

Once the research questions had been chosen, we used certain search keywords and
search engines to create an initial pool of white and grey literature. The names of the
search engines used to find academic literature were Google Scholar and IEEE Xplore
and Google Search was used to find non-academic literature. To find relevant academic
papers, the following search terms were used in Google Scholar: ‘monolith to microser-
vices’, ‘microservices’ and ‘monolith to microservices migration’. For each search term
in Google Scholar, we saved references to all the papers on the first search results page
using the Mendeley reference manager. We also used snowballing to add additional
white and grey literature to the initial document pool which ultimately contained 79
documents.

2.1 Selection Criteria

We then applied inclusion and exclusion criteria to filter out irrelevant or low-quality
documents to create the final literature pool which contained 35 documents. To filter our
collection of academic literature, we first excluded and removed duplicate papers, papers
not written in English, papers with few citations and papers written more than ten years
ago. We then only included papers considered to be relevant to our research questions
and relevance was determined by reading the abstract of each document. When selecting
grey literature documents such as online articles and blog posts, we included documents
which were ranked high enough to be on the first search results page, were written
by prominent industry figures and had enough supporting references. Grey literature
documents were only included if they were insightful and well-written, and if presented
from sources of ostensible credibility.

Before answering the research questions, we read through the papers in the final liter-
ature collection to create research notes, identify useful information and references rele-
vant to answering our research questions. In the following analysis section, a subsection
is dedicated to answering each research question.

3 Analysis

3.1 RQ1: Why have Microservices Increased in Popularity in Recent Years?

There has been a significant increase in the popularity of microservices over the past
several years asmore andmore businesses choose themicroservices architecture over the
more traditional monolithic architecture [1]. In this section, explore the reasons for the
increase inmicroservices to answer the first research question: “Why havemicroservices
increased in popularity in recent years?”.

Reasons for the Increase in Popularity of Microservices. We identified several rea-
sons in the white and grey literature for the increase in popularity of microservices:
the advantages of the microservice over the monolithic architecture, increasing aware-
ness of microservices, supporting technologies which have increased the viability of
microservices and the changing software development culture.

Serverless Software Engineering – and How to Get There 79

Advantages of Microservices. One of the reasons why microservices have increased in
popularity is the advantages they have over the monolithic architecture. Large monoliths
have many downsides such as slower deployment speed, higher coupling, complexity
and technology lock-in and many of these problems can be eliminated by migrating to
a microservice architecture [10]. In recent years, an increasing number of companies
have been motivated by these benefits to replace their monolithic applications with
microservices causing an increase in the popularity of microservices.

Increased Awareness of Microservices. The increase in awareness of microservices in
recent years [7] has probably contributed to the increased use of microservices [2].
Two reasons for this increased awareness include the use of microservices by high-
profile companies such as Amazon and Netflix and the endorsement of microservices by
prominent industry figures. Netflix solved many of their problems using microservices
and since thenmanyother high-profile companies such asUber have also started using the
microservices architecture [4]. The significant increase in interest in microservices after
2014 [7] coincided with the publishing of Martin Fowler’s article on microservices [3]
and the book Sam Newman’s Building Microservices by Sam Newman in the same year
[5]. Since then, many other prominent industry writers such as Chris Richardson have
popularised microservices by writing books, articles and presentations on the subject
[11].

Supporting Technologies. Containers and deployment automation have increased the
feasibility of microservices. In the past deploying a monolith and all its dependencies
could take hours. Deployment time also increases linearly without deployment automa-
tion. Therefore, without deployment automation or containers, deploying amicroservice
application could take an entire week which is not practical [12]. To make the deploy-
ment of microservice applications practical, several technologies are necessary such as
continuous integration, containers, monitoring and logging [6]. Sincemany of these sup-
porting technologies have only been developed in the past several years, microservices
have only recently become practical, which explains the recent increase in popularity.

CulturalChanges. In the past several years,methodologies such as extremeprogramming
and companies such as Amazon with its ‘two-pizza’ teams have advocated that small
autonomous teams are more productive than larger teams [4]. Since each microservice
can be owned by a single team, the microservices architecture is ideal for this new
organisational structure [3]. Other cultural trends such as DevOps with its emphasis
on developer ownership, monitoring and infrastructure are well-suited to microservices
[13].

3.2 RQ2: What are the Advantages of Migrating from a Monolithic
to a Microservice Architecture?

In this section, we describe the benefits of the microservice architecture over the mono-
lithic architecture that have been described in the white and grey literature to understand
why a business might want to migrate from a monolithic to a microservices architecture.

Scalability. Services can be scaled vertically by running the services on more powerful
hardware or horizontally by duplicating an application on multiple servers [14]. There

80 S. McAleese et al.

are limits to vertical scaling because in practice the hardware the service is running on
has finite computational resources [15]. Therefore, as a business scales its services, it
eventually needs to scale horizontally. Monoliths can be scaled horizontally by running
several instances of the monolith on multiple machines but since the monolith must be
scaled as one unit, it is not possible to independently scale individual modules within the
monolith. Microservices address this problem by having separate independently deploy-
able and scalable microservices for each business capability [3]. Microservices can be
scaled horizontallymore effectively and efficiently because individualmicroservices can
be scaled independently. Thus, microservices have a scaling advantage over monoliths,
especially for services that process many requests.

Resilience. A problem in a monolithic application could cause the entire application to
fail as the modules in a monolith are all running in the same process [2]. In contrast,
as each microservice runs independently in a different process, the boundaries between
microservices act as bulkheads and problems in a microservice can more easily be con-
fined to that microservice causing degraded performance instead of a full application
failure [5]. In 2008, when Netflix was using a monolithic architecture, a single mis-
take caused several days of downtime [4]. By breaking its monolithic application into
microservices, Netflix was able to achieve much better availability and resilience.

Organisation Alignment. As software teams grow larger, the rate of development tends
to slow down as the communication overhead is often higher in bigger teams. To address
this problem, Amazon has a “two-pizza” team rule to ensure that teams are no larger
than about ten people [4]. The traditional monolithic architecture does not align well
with small, autonomous teams because it’s often not clear how to divide up the work
of working on the monolith between teams. One common solution to the problem is to
assign a team to each layer of the monolith. For example, there could be a front-end team
and a back-end team. The problemwith this organisational structure is that it is necessary
for a team to collaborate with another team to make changes to a layer other than the one
owned by the team. This makes it significantly more difficult to make changes outside
of the team’s own layer. As a path of least resistance, each team will tend to implement
changes in their own layer creating a siloed architecture [3].

In contrast, the microservice architecture offers much better organisational align-
ment for small teams as there is often a simple one-to-one mapping between teams and
microservices. Each team can own a single microservice and easily make changes to it
without needing to consult other teams resulting in higher agility and velocity [16].

Technological Heterogeneity. Monolithic applications are usually built with a single
technology or programming language. However, a business using a monolithic archi-
tecture may have to commit to using a single technology for a long time because the
cost of porting the entire system to a new technology is high [10] which could promote
technological conservatism and discourage experimentation [2]. Instead, microservices
offer technological heterogeneity where each service can be implemented in using a
different technology that is best suited to the business capability [5]. If a technology
becomes obsolete, an individual microservice can be easily updated or replaced because
of its small size and low coupling with the rest of the system.

Serverless Software Engineering – and How to Get There 81

Higher Velocity. Another major benefit to microservices over monoliths is increased
development and deployment velocity. As the codebase of a monolith increases in size
and complexity, deployment velocity tends to decrease because the entiremonolith needs
to be tested, built and redeployed for every change [17]. As deployment slows down,
teams may decide to deploy multiple changes at a time to maintain velocity. However,
this strategy increases the risk of regressive changes being introduced to the system [5].

As a monolithic codebase increases in size and complexity, development velocity
also tends to fall. The codebase becomes increasingly difficult to understand as it grows
whichmakes it more difficult tomake changes and add new features [6]. Largemonoliths
also slow down the onboarding of new hires because it takes longer for new hires to
understand a large codebase than a smaller one [18].

Many of these problems can be eliminated by using a microservice architecture.
Microservices do not grow beyond a certain size because new business capabilities are
implemented in newmicroservices [3]. Consequently, the problems that arise from large
codebases are less likely to arise when small microservices are used.

3.3 RQ3: What are Some Techniques for Migrating Applications
from a Monolithic to a Microservice Architecture?

Abusinesswith amonolithic architecture (MA)might decide tomigrate to amicroservice
architecture (MSA) once the problems associated with their growing monolith become
greater than the cost associated with migrating it to a microservice architecture [6,
9, 20]. The following section explores several migration techniques which have been
described in white and grey literature and answers the fourth research question, “What
are some techniques for migrating applications from a monolithic to a microservices
architecture?”.

Rebuild the Application from Scratch Using Microservices. A business with a mono-
lithic application that is old, tightly coupled or highly complex might decide to replace
it with a new application built from scratch using microservices if doing so is more cost
effective than migrating the old application [6]. In addition to saving time and money,
the new application could be built with modern technologies and would be less likely
to inherit the undesirable complexity of the monolith. In most cases, however, a busi-
ness’s monolithic application is unlikely to be so poorly implemented that replacing it
completely would be easier than breaking it up into microservices.

Monolith to Microservices Migration Steps. Migrating a monolith to microservices
is a complex and important challenge for businesses that can be challenging to execute
successfully [2]. The challenge is to select the appropriate ‘candidate microservices’
in the monolith: modules or groups of modules in the monolith which are intended to
be extracted and implemented as microservices later [20]. We now describe the high-
level steps we believe are required to migrate a monolith to a microservice architecture.
We propose that migrating from a monolith to a microservice architecture involves the
following steps:

1. Identify candidate microservices in the monolithic application.

82 S. McAleese et al.

2. Choose a method or strategy for extracting the microservices candidates and execute
it until the monolith has been partially or fully replaced by microservices.

Techniques for Candidate Microservice Identification. A variety of techniques for
identifying candidate microservices in monoliths have been described in the white and
grey literature. These techniques can be grouped into three high-level categories: model-
driven, static-analysis and dynamic analysis approaches; though the most common app-
roach described in the academic literature is the model-driven approach [17]. Model-
driven approaches involve creating a visual model of the business using domain dia-
grams, UML diagrams or data flow diagrams and using the model to identify boundaries
between candidate microservices [21]. Static analysis approaches decompose monoliths
by identifying boundaries in the source code structure of the monolith application and
dynamic analysis approaches identify boundaries by analysing the execution traces of
the running monolith [17, 21]. The categories and approaches in each category we will
describe are as follows:

• Model-driven approaches:

– Decompose by business capability
– A dataflow-driven approach
– A graph-based approach

• Static analysis approaches:

– Identify seams

• Dynamic analysis approaches:

– Functionality-oriented microservice extraction

Decompose by Business Capability. Since each microservice should handle a single
business capability [5], one logical decomposition approach is to decompose by busi-
ness capability. Business capabilities can be identified using domain-driven design
(DDD) [22, 23]. Another way to identify business capabilities is via communication
with stakeholders [24]. Then a microservice can be created for each business capability.

Dataflow-Driven Approach. A monolith application can be modelled as a dataflow dia-
gram and this diagram can be used to identifymicroservices. ChenR. et al. [20] describes
a three-step algorithm that uses a dataflow diagram (DFD) to identify microservices. In
the dataflow diagram, data storage components and operations are represented as boxes
and ovals respectively. Thenmicroservices are identified as pairs consisting of operations
and their output data (Fig. 3).

Graph-Based Approaches. Mazlami G. et al. [25] describe a graph-based candidate
microservice identification algorithm involving two steps: construction and clustering.
In the construction phase, a graph representation of the monolith is generated. In the

Serverless Software Engineering – and How to Get There 83

Fig. 3. Identifying microservice candidates using a dataflow diagram (adapted from [20]).

graph, nodes correspond to classes in the monolith and weighted edges between nodes
indicate the level of coupling between classes. In the clustering phase, the graph is
converted into a minimum spanning tree (MST) and edges are removed to partition the
MST into several trees which are each clusters of highly coupled classes. These clusters
are the candidate microservices.

Identify Seams. In the book Building Microservices, author Sam Newman states that
monoliths can be decomposed into microservices by first identifying seams [5] which
are sections of the codebase which can be modified or removed without affecting other
components and are therefore goodmicroservice candidates. To identify seams,Newman
recommends using namespace constructs in the source code as a guide such as packages
in the Java programming language (Fig. 4).

Fig. 4. Identifying microservice candidates using a graph of the monolith’s modules (adapted
from [25]).

84 S. McAleese et al.

Functionality-Oriented Microservice Extraction. Jin, W. et al. have proposed a dynamic
analysis approach named functionality-oriented microservice extraction whichmonitors
the dynamic program behaviour of a monolith service, stores program behaviour in the
form of logs and analyzes the logs to identify candidate microservices [26].

Combining Migration Techniques. Note that it may be effective to use several candidate
microservice identification techniques. One strategy is to start with more abstract model-
driven techniques and combine or verify the results of these methods using static or
dynamic analysis approaches [27].

Microservice Extraction Strategies.Once candidatemicroservices havebeen identified
in themonolith, the next step is to choose a strategy for extracting the candidatemicroser-
vices to form actual microservices so that the monolith can eventually be replaced with
microservices.When extracting microservices, Chris Richardson recommends using the
following principles [28]:

1. Migrate incrementally.Services in themonolith should be converted tomicroservices
incrementally rather than simultaneously to reduce risk and complexity.

2. Migrate the services with the highest return on investment (ROI) first. Richardson
defines the services with the highest ROI as those that have the highest ease of
extraction and the highest benefit of extraction. Richardson says that modules with
more inbound dependencies aremore difficult to decouple and thus have a lower ease
of extraction. Modules with the highest benefit of extraction are those that would
benefit most from the velocity benefits such as modules that are deployed frequently
and the scaling benefits such as microservices that are under heavy load.

Richardson also describes a useful pattern named the strangler pattern for safely and
gradually replacing a monolith with microservices in his book Microservice Patterns
[29].

Strangler Application.To create a strangler application,microservices are extracted from
the monolith and added to the strangler application. New functionality is implemented
as new microservices in the strangler application to prevent the monolith from growing.
Over time, as more services are extracted from the monolith, the strangler application
growswhile themonolith shrinks. Richardson outlines the following process for building
a strangler application by extracting microservices from a monolith application [30]:

1. Split a module within the monolith to form two modules.
2. Split the database so that each module has its own database.
3. Create a new microservice for the new module.
4. Redirect traffic from the new module to the new microservice.
5. Delete the new module because it has been replaced by the microservice (Fig. 5).

The image above shows the result of applying the steps above. By repeating this
process, the monolith is gradually replaced by microservices.

Serverless Software Engineering – and How to Get There 85

Fig. 5. Monolith to microservices migration using a strangler application (adapted from [30]).

3.4 RQ4: What are the Risks of Migrating from a Monolithic to a Microservices
Architecture?

In our multivocal literature review, we have identified several risks associated with
monolith to microservice migrations.

Unnecessary Migration.Although the benefits ofmicroservices have beenwidely com-
municated, themicroservice architecture is not the best architecture for all organisations.
To make a monolith to microservices migration worthwhile, the costs of the migra-
tion such as extra code for inter-service communication and error handling should be
exceeded by the benefits [18]. Microservices are generally more suitable for large organ-
isations because the disadvantages of monoliths tend to increase as they become larger
[20] and the benefits of microservices such as better scaling are only significant for
heavily used services which are more likely to be found at large, established companies
[18]. Therefore, monolith to microservices migrations should be avoided by small com-
panies because the net benefit is more likely to be negative. Andy Singleton recommends
that companies with fewer than 60 developers should not use microservices [18]. If a
business has a good reason to migrate their application to a microservices architecture,
there are still several pitfalls the business is vulnerable to.

Thinking Microservices are a Silver Bullet. Adopting microservices is not a substi-
tute for other essential software engineering practices such as clean code, good design
and automated testing and will not somehow cause all problems to disappear [31, 32].
Also, microservices will only benefit the company substantially if they are carefully
implemented [32].

Adopting Microservices Without Changing Business Practices. A business that pre-
viously divided teams by layers (e.g. front end, back end) should change their team

86 S. McAleese et al.

structure after the adoption of microservices so that each team owns a single microser-
vice [32]. Similarly, the team should adoptDevOps processes such as continuous delivery
to manage their microservices effectively [31].

Difficulty Decoupling the Monolith. Extracting microservices from a monolith can be
challenging [32] if there is a high degree of coupling in the monolith because a change
in one part of the system would affect many components. Databases in monoliths tend
to have particularly high levels of coupling and reputation for being difficult to decouple
[5].

Unwillingness to Change. Developers who invested significant amounts of time into
the development of the monolith may be reluctant to accept the significant change that is
migrating to microservices. Traditional companies or older developers may be unwilling
to accept the newmicroservices architecture because of its significant difference to more
traditional architectures [32].

Increased Security Risk. In monolithic applications, modules communicate with each
other within the same process via internal communication. In contrast, microservices
use network calls to communicate with each other over a network. The problem is that
the APIs microservices use to communicate with each other are exposed to the network
resulting in a greater attack surface area [10]. Ifmeasures to compensate for this increased
attack surface area are not introduced, the new microservices application could be less
secure than the original monolith.

Lower Resilience. Microservices are a distributed system that relies on network calls
instead of internal communication in the case of a monolith. These network calls can
fail [5] and one problem could cascade through the system possibly resulting in lower
resilience than the original monolith if methods for handling the network failures such
as circuit breakers [5] are not put in place.

4 Limitations of Research

Although the researchers behind this paper have made every effort to create a complete
and unbiased multivocal review it must be acknowledged that there are limitations and
imperfections in our research. Perhaps the greatest limitation was that the initial liter-
ature review effort was conducted by four final year undergraduate students who had
limited research knowledge and experience. This limitation has necessarily diminished
the strictly academic quality of the work, but it is nevertheless felt that the findings are of
interest to the community and that this can serve as a minor contribution to an important
topic. The total time available to the researchers was also a constraint as the paper was
researched and written as part of an assignment over several weeks, with the result that
there are only limited references included, and even those included may include the
effects of filter bubbles and recommendations of search engines. However, the research
was guided by experienced software engineering academics at various stages, ultimately
leading to the completion of this research paper. The fact that the steps involved in a
multivocal review are well-defined also served to limit the possibility of errors being
introduced.

Serverless Software Engineering – and How to Get There 87

Another significant limitation relates to the excessive volume ofwhite and grey litera-
ture available through searches. For example, the search term ‘monolith tomicroservices’
returns over two thousand search results in Google Scholar which exceeds the limitation
of most individual researchers. It is therefore necessary to sample only a small subset
of those previous contributions. However, it is likely that a minority of these documents
are highly relevant to our research topic and sorting results by relevance ensures that
only the most relevant papers have been selected for this review.

Apotential source of bias concerns the process of selecting relevant literature from the
initial literature pool. To reduce the effect of subjectivity in this process,weusedobjective
metrics such as the number of citations, publish date and search engine relevance where
possible.

5 Directions for Future Research

Wehave observed that the distribution of research literature relevant to our research ques-
tions was uneven. We found a relative abundance of literature for the reasons behind the
recent increase in the popularity ofmicroservices, the advantages and risks ofmonolith to
microservice migrations and methods for identifying microservice candidates in mono-
liths. However, we found that there was a lack of academic literature related to monolith
to microservices migration steps after the identification of candidate microservices and
practical code-focused migration strategies. To address this shortcoming, we found that
it was often necessary to turn to grey literature to find relevant content. Therefore, we
suggest that candidatemicroservice extraction strategies such as the strangler pattern and
practical code-focused migration techniques could be areas with many opportunities for
further academic research.

Although there are many advantages to the microservice architecture over the mono-
lithic architecture, it may be that published material may tend to underemphasize the
advantages of a monolithic architecture. Some companies such as Intercom [33], believe
that the benefits of microservices have been overstated and that a monolithic architecture
is often better for small companies. To reduce the risk of a bias in favour of the microser-
vice architecture over the monolithic architecture, we believe there is an opportunity
for future research that consolidates and articulates the advantages of the monolithic
architecture.

Finally, since we had limited time when writing this paper, we believe there is
an opportunity for a more thorough and complete multivocal review of monolith to
microservices migrations. Also, as the software engineering discipline evolves, new
ideas and practices related to the topic are likely to create new opportunities for research.

6 Conclusions

By applying amultivocal literature review, we have identified some of the reasons behind
the increase in popularity of themicroservice architecture, and the advantages and pitfalls
associatedwithmonolith tomicroservicesmigrations.Microservices promote lower cou-
pling, increased organisational alignment, better scalability, velocity and resilience, and
technological heterogeneity. We identified several monolith to microservices migration

88 S. McAleese et al.

techniques from three classes of migration techniques: model-driven, static analysis and
dynamic analysis techniques and described how they could be used to identify boundaries
in monoliths between candidate microservices. We then described high-level monolith
to migration strategies and strategies for effectively and safely migrating monoliths to
microservices such as the strangler application. Finally, we outlined some of the risks that
can arise when migrating a monolithic application to microservices such as migrating
for the wrong reasons, seeing microservices as a silver bullet and security risks.

Recent technologies related to deployment automation and service monitoring have
increased the viability of microservices as an alternative to the monolithic architecture,
resulting in increased popularity. It is therefore the case that the apparent rising adoption
of microservices is critically dependent on a cocktail of other technology advancements,
one further example of which is serverless computing, a paradigm in which software
providers do not concern themselves with hardware. This might be particularly the case
for highly distributed architectures (those withmanymicroservices) in a serverless cloud
computing environment, as software providers potentially only need to pay for services
when they are executing. One example of this can be found in Function-as-a-Service
(FaaS) [34]. Much is changing in this space, it is not just a technology fad, fundamental
economic considerations are also present.

Discussions regarding the rise of microservices are potentially misleading, because
it is not just microservices as a standalone concept that is on the rise, it is the convergence
of several emerging concepts that when orchestrated together, present with a harmony
that is appealing to software firms. It might be beneficial to academics and practitioners
alike if this convergence was given a dedicated name: the primary constituent elements
are serverless computing, microservices architecture, automated build and deployment
pipelines, and service monitoring. In previous work we termed thisContinuous Software
Engineering [35], but even that concept has now been stretched. Perhaps this should be
replaced with the term Serverless Software Engineering.

Acknowledgements. This research is supported in part by the Department of Enterprise, Trade
andEmployment, Ireland (https://enterprise.gov.ie/en/) under theDisruptive Technologies Innova-
tionFund grant numberDTIFDT20180116, and also supported in part, bySFI, ScienceFoundation
Ireland (https://www.sfi.ie/) grant No SFI 13/RC/2094 P2 to Lero – the Science Foundation Ireland
Research Centre for Software.

References

1. Loukides, M., Swoyer, S.: Microservices Adoption in 2020 – O’Reilly. https://www.oreilly.
com/radar/microservices-adoption-in-2020/ (n.d.). Accessed 1 February 2022

2. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating to
microservices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32
(2017). https://doi.org/10.1109/MCC.2017.4250931

3. Fowler, M.: Microservices. https://martinfowler.com/articles/microservices.html#footnote-
etymology (n.d.). Accessed 1 February 2022

4. Rud, A.:Why and howNetflix, Amazon, andUbermigrated tomicroservices: learn from their
experience – HYS enterprise. https://www.hys-enterprise.com/blog/why-and-how-netflix-
amazon-and-uber-migrated-to-microservices-learn-from-their-experience/ (n.d.). Accessed
15 February 2022

https://enterprise.gov.ie/en/
https://www.sfi.ie/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://doi.org/10.1109/MCC.2017.4250931
https://martinfowler.com/articles/microservices.html#footnote-etymology
https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/

Serverless Software Engineering – and How to Get There 89

5. Newman, S.: Building Microservices – Sam Newman – Google Books. https://books.google.
ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=building+microserv
ices&ots=uh8heDdFXl&sig=U_FvCd-VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&
q=building%20microservices&f=false (n.d.). Accessed 2 February 2022

6. Kazanavicius, J., Mazeika, D.: Migrating legacy software to microservices architecture. In:
2019 Open Conference of Electrical, Electronic and Information Sciences, EStream 2019 –
Proceedings (2019). https://doi.org/10.1109/ESTREAM.2019.8732170

7. Data source: Google Trends. https://www.google.com/trends
8. Miller, R.: How AWS came to be – TechCrunch. http://tcrn.ch/29cG0Gh (2016). Accessed

11 February 2022
9. de Lauretis, L.: Frommonolithic architecture to microservices architecture. In: Proceedings –

2019 IEEE 30th International Symposium on Software Reliability Engineering Workshops,
ISSREW 2019, pp. 93–96 (2019). https://doi.org/10.1109/ISSREW.2019.00050

10. Dragoni, N., Giallorenzo, S., Lafuente, A. L., et al.: Microservices: yesterday, today, and
tomorrow. Present Ulterior Softw. Eng., 195–216 (2017). https://doi.org/10.1007/978-3-319-
67425-4_12

11. Richardson, C.:What aremicroservices? https://microservices.io/ (n.d.). Accessed 1 February
2022

12. Gouigoux, J.P., Tamzalit, D.: From monolith to microservices: Lessons learned on an indus-
trial migration to a web oriented architecture. In: Proceedings – 2017 IEEE International
Conference on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings,
pp. 62–65 (2017). https://doi.org/10.1109/ICSAW.2017.35

13. Amazon: What is DevOps? – Amazon Web Services (AWS). https://aws.amazon.com/dev
ops/what-is-devops (n.d.). Accessed 17 February 2022

14. Guitart, J., Beltran,V.,Carrera,D., Torres, J.,Ayguadé, E.:Characterizing secure dynamicweb
applications scalability. In: Proceedings – 19th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2005 (2005). https://doi.org/10.1109/IPDPS.2005.137

15. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds. ACM Comput.
Surveys (CSUR) 51(4), 33 (2018). https://doi.org/10.1145/3148149

16. Prasandy, T., Murad, D.F., Darwis, T.: Migrating application frommonolith to microservices.
In: Proceedings of 2020 International Conference on Information Management and Technol-
ogy, ICIMTech 2020, pp. 726–731 (2020). https://doi.org/10.1109/ICIMTECH50083.2020.
9211252

17. Ponce, F., Marquez, G., Astudillo, H.: Migrating from monolithic architecture to microser-
vices: a rapid review. In: Proceedings – International Conference of the Chilean Com-
puter Science Society, SCCC, 2019-November. https://doi.org/10.1109/SCCC49216.2019.
8966423

18. Singleton, A.: The economics of microservices. IEEE Cloud Comput. 3(5), 16–20 (2016).
https://doi.org/10.1109/MCC.2016.109

19. Richardson, C.: Introduction to microservices | NGINX. https://www.nginx.com/blog/introd
uction-to-microservices/ (n.d.). Accessed 15 February 2022

20. Chen, R., Li, S., Li, Z.: From Monolith to microservices: a dataflow-driven approach. In:
Proceedings – Asia-Pacific Software Engineering Conference, APSEC, 2017-December,
pp. 466–475 (2018). https://doi.org/10.1109/APSEC.2017.53

21. Fritzsch, J., Bogner, J., Zimmermann, A.,Wagner, S.: Frommonolith tomicroservices: a clas-
sification of refactoring approaches. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS
2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-06019-0_10

https://books.google.ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=building+microservices&ots=uh8heDdFXl&sig=U_FvCd-VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&q=building%20microservices&f=false
https://doi.org/10.1109/ESTREAM.2019.8732170
https://www.google.com/trends
http://tcrn.ch/29cG0Gh
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1007/978-3-319-67425-4_12
https://microservices.io/
https://doi.org/10.1109/ICSAW.2017.35
https://aws.amazon.com/devops/what-is-devops
https://doi.org/10.1109/IPDPS.2005.137
https://doi.org/10.1145/3148149
https://doi.org/10.1109/ICIMTECH50083.2020.9211252
https://doi.org/10.1109/SCCC49216.2019.8966423
https://doi.org/10.1109/MCC.2016.109
https://www.nginx.com/blog/introduction-to-microservices/
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1007/978-3-030-06019-0_10

90 S. McAleese et al.

22. Khononov, V.: Learning domain-driven design – Vlad Khononov - Google Books. https://
books.google.ie/books?id=qAtHEAAAQBAJ&printsec=frontcover&dq=bounded+con
text&hl=en&sa=X&ved=2ahUKEwj35MTuyfL1AhVhmVwKHT7iAv8Q6AF6BAgEEAI#
v=onepage&q=bounded%20context&f=false (n.d.). Accessed 9 February 2022

23. Richardson, C.: Decompose by subdomain. https://microservices.io/patterns/decomposition/
decompose-by-subdomain.html (n.d.). Accessed 9 February 2022

24. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From monolithic to
microservices: an experience report from the banking domain. IEEE Softw. 35(3), 50–55
(2018). https://doi.org/10.1109/MS.2018.2141026

25. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices frommonolithic software archi-
tectures. In: Proceedings – 2017 IEEE 24th International Conference onWeb Services, ICWS
2017, pp. 524–531 (2017). https://doi.org/10.1109/ICWS.2017.61

26. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice extraction
based on execution trace clustering. In: Proceedings – 2018 IEEE International Conference on
Web Services, ICWS 2018 – Part of the 2018 IEEEWorld Congress on Services, pp. 211–218
(2018). https://doi.org/10.1109/ICWS.2018.00034

27. Fan, C. Y., Ma, S. P.: Migrating monolithic mobile application to microservice architecture:
an experiment report. In: Proceedings – 2017 IEEE 6th International Conference on AI and
Mobile Services, AIMS 2017, pp. 109–112 (2017). https://doi.org/10.1109/AIMS.2017.23

28. Richardson, C.: Decompose your monolith – Six principles for refactoring a monolith to
microservices. https://chrisrichardson.net/post/refactoring/2020/07/28/six-principles-for-ref
actoring-to-microservices.html (n.d.). Accessed 9 February 2022

29. Richardson, C.: Microservices patterns. https://microservices.io/book (n.d.). Accessed 11
February 2022

30. Richardson, C.: Refactoring amonolith tomicroservices. https://microservices.io/refactoring/
(n.d.). Accessed 8 February 2022

31. Richardson, C.: Microservices adoption antipatterns – the series. https://microservices.io/
microservices/antipatterns/-/the/series/2019/06/18/microservices-adoption-antipatterns.htm
(n.d.). Accessed 16 February 2022

32. Carrasco, A., van Bladel, B., Demeyer, S.: Migrating towards microservices: migration and
architecture smells. In: IWoR 2018 – Proceedings of the 2nd International Workshop on
Refactoring, Co-Located with ASE 2018, pp. 1–6 (2018). https://doi.org/10.1145/3242163.
3242164

33. Scanlan, B.: 10 technical strategies to avoid when scaling your startup (and 5 to embrace) –
Inside intercom. https://www.intercom.com/blog/ten-technical-strategies-to-avoid-when-sca
ling-your-startup-and-five-to-embrace (n.d.). Accessed: 13 February 2022

34. Grogan, J., et al.: A multivocal literature review of Function-as-a-Service (FaaS) infrastruc-
tures and implications for software developers. In: Yilmaz, M., Niemann, J., Clarke, P., Mess-
narz, R. (eds.) EuroSPI 2020. CCIS, vol. 1251, pp. 58–75. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56441-4_5

35. O’Connor, R.V., Elger, P., Clarke, P.: Continuous software engineering – A microservices
architecture perspective. J. Softw. Evol. Process 29(11), 1–12 (2017)

36. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature and con-
ducting multivocal literature reviews in software engineering. J. Inf. Softw. Technol. 106,
101–121 (2019)

https://books.google.ie/books?id=qAtHEAAAQBAJ&printsec=frontcover&dq=bounded+context&hl=en&sa=X&ved=2ahUKEwj35MTuyfL1AhVhmVwKHT7iAv8Q6AF6BAgEEAI#v=onepage&q=bounded%20context&f=false
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2018.00034
https://doi.org/10.1109/AIMS.2017.23
https://chrisrichardson.net/post/refactoring/2020/07/28/six-principles-for-refactoring-to-microservices.html
https://microservices.io/book
https://microservices.io/refactoring/
https://microservices.io/microservices/antipatterns/-/the/series/2019/06/18/microservices-adoption-antipatterns.htm
https://doi.org/10.1145/3242163.3242164
https://www.intercom.com/blog/ten-technical-strategies-to-avoid-when-scaling-your-startup-and-five-to-embrace
https://doi.org/10.1007/978-3-030-56441-4_5

	Serverless Software Engineering – and How to Get There.
	1 Introduction
	2 Research Methodology
	2.1 Selection Criteria

	3 Analysis
	3.1 RQ1: Why have Microservices Increased in Popularity in Recent Years?
	3.2 RQ2: What are the Advantages of Migrating from a Monolithic to a Microservice Architecture?
	3.3 RQ3: What are Some Techniques for Migrating Applications from a Monolithic to a Microservice Architecture?
	3.4 RQ4: What are the Risks of Migrating from a Monolithic to a Microservices Architecture?

	4 Limitations of Research
	5 Directions for Future Research
	6 Conclusions
	References

