
A Neural Blockchain for Requirements
Traceability: BC4RT Prototype

Selina Demi1 , Ricardo Colomo-Palacios1 , Mary Sánchez-Gordón1(B) ,
Carlos Velasco2, and Ramon Cano2

1 Østfold University College, Halden, Norway
{selina.demi,ricardo.colomo-palacios,

mary.sanchez-gordon}@hiof.no
2 ByEvolution Creative Factory, Málaga, Spain

{carlos.velasco,ramon.cano}@byevolution.com

Abstract. The ever-increasing globalization of the software industry presents
challenges related to requirements engineering activities.Managing requirements’
changes and tracing software artifacts is not trivial in a multi-site environment
composed of a variety of stakeholders that do not trust each other. In this study,
we propose a neural blockchain prototype for the traceability of requirements
(BC4RT) throughout the software development lifecycle in interorganizational
software projects. The prototype is implemented using a neural blockchain plat-
form, namelyNDLArcaNet, due to its inherent properties: performance efficiency,
sustainability, and scalability. Besides these features, the proposed prototype pro-
vides a holistic and reliable view of software artifacts, requirements’ changes,
and trace links. The increased visibility enhances collaboration, communication,
and trust among stakeholders, and can potentially improve software development
efficiency and quality.

Keywords: Blockchain technology · Requirements traceability ·
Interorganizational software projects · Neural distributed ledger

1 Introduction

Software engineering (SE) has shifted from conventional co-located development to
global distributed development. Today’s software products are developed as a result of
complex supply chains that entail the collaboration of a variety of distributed partners
throughout the software lifecycle, from conceptualization and development, to mainte-
nance [1].While global software development companies leverage benefits of distributed
development: time, cost, and access to skillful resources, they also face a set of chal-
lenges: lack of communication and coordination, lack of uniformprocesses in amulti-site
environment, lack of trust, lack of management and transfer, and challenges related to
requirements engineering (RE) activities [2] which is the focus of this study. Managing
requirements’ changes, and tracing software artifacts in both a forward and backward
direction is not a trivial activity in interorganizational software projects [3]. Although

© Springer Nature Switzerland AG 2022
M. Yilmaz et al. (Eds.): EuroSPI 2022, CCIS 1646, pp. 45–59, 2022.
https://doi.org/10.1007/978-3-031-15559-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15559-8_4&domain=pdf
http://orcid.org/0000-0001-5988-4697
http://orcid.org/0000-0002-1555-9726
http://orcid.org/0000-0002-5102-1122
https://doi.org/10.1007/978-3-031-15559-8_4


46 S. Demi et al.

a plethora of traceability studies exists [4], the traceability community has outlined the
open challenge of enabling full traceability in complex and large-scale software devel-
opment contexts that rely on cross-organizational collaboration of multiple stakeholders
[5, 6].

This study proposes a neural blockchain prototype for the trustworthy management
and traceability of requirements in interorganizational software projects. This proposal
lies in the concept of creating tokens for each requirement, tracking the lifecycle of
such tokens, and certifying operations that are performed on tokens, without the need
for resource-wasteful consensus algorithms. Therefore, neural blockchains present an
opportunity to store artifacts created throughout the software development lifecycle in
a scalable, efficient, and transparent manner, while retaining security. In addition, the
proposed prototype enables participants of the software development lifecycle with a
holistic and reliable view of software artifacts, requirements’ changes, and trace links.
The increased visibility on the software development process may lead to enhanced
communication and coordination, and trust among stakeholders in interorganizational
software projects. In turn, this can potentially improve software development efficiency
and quality.

The remainder of this study is structured as follows: Sect. 2 provides an overview
of the fundamental blockchain concepts, applications of blockchain technology in soft-
ware engineering, and requirements engineering and traceability challenges. Section 3
proposes a neural blockchain prototype for the management and traceability of require-
ments throughout the software development lifecycle, and Sect. 4 presents implementa-
tion details of the prototype. Section 5 concludes the study and presents directions for
future research.

2 Background

2.1 Blockchain Basics

Blockchain is a peer-to-peer (P2P) distributed ledger technology that stores digital trans-
actions in a chain of blocks [7]. These digital transactions represent interactions between
P2P network peers that entail the exchange of digital assets which can be in the form
of information, good, services or rules to trigger another transaction [8]. Network peers
group up the transactions into blocks and distribute them throughout the network. It is
noteworthy that these peers need to achieve agreement with regards to the correct data
state on the system. Ensuring the consistency of data on the ledger for all network peers
requires the deployment of consensus algorithmswhich vary among different blockchain
implementations. The main two groups of consensus algorithms are [8]: (i) Proof-of-X
algorithms, and (ii) Byzantine Fault Tolerant algorithms. Furthermore, the exchange of
assets relies on contractual rights and obligations of nodes that can be digitized and
managed by smart contracts (SCs). SCs are computer programs that are stored on the
blockchain and enable the modification of the ledger state when certain conditions are
met. The modification of the ledger state is triggered by a transaction posted to the
distributed ledger [9]. Initially, smart contracts were conceptualized to enable trusted
agreements among different parties in a trustless environment [9], but nowadays they



A Neural Blockchain for Requirements Traceability 47

are considered similar to general purpose software programs and can, at least theoreti-
cally, perform any computational task that can be performed by conventional programs
[10].

The first blockchain application was proposed in 2008 and was named Bitcoin
[11]. Although distributed ledger technologies existed prior to Bitcoin, the novelty of
blockchain lies in the combination of existing technologies, such as P2P networks, cryp-
tography, transactions timestamping and shared computational power [8]. The combi-
nation of these technologies enables the sharing and storage of data in a decentralized
manner without the need to entrust a central party for the maintenance of the ledger.
Belotti et al. [8] categorized blockchains with respect to network accessibility in: (i)
permissionless blockchains – anyone can participate in the network and modify the net-
work state, e.g., Bitcoin and Ethereum. (ii) permissioned blockchains – only selected
nodes can participate in the network and modify the network state. The latter can be
further categorized according to the nature of participants in private blockchains and
consortium blockchains. While in private blockchains participants are within the same
organization, in consortium blockchains several organizations share a common goal.

2.2 Blockchain in Software Engineering

Recently, academic researchers have encouraged the cross-fertilization of blockchain
technology and SE [12, 13]. Our previous systematic mapping study [14] explored the
alignment betweenblockchain inherent properties and themodern (global) SE landscape,
benefits and challenges of using this technology, and the proposed use cases. In what
follows, a limited number of these use cases is introduced:

Lenarduzzi et al. [15] proposed a blockchain model that uses SCs to relieve some
of the duties of the product owner in agile processes such as Lean-Kanban or Scrum.
In this model, SCs automatically validate the correctness of user stories implemented
by developers by comparing the acceptance tests output with the expected output. The
correct implementation of user stories triggers the automatic payment to developers in
cryptocurrencies or tokens.

Yilmaz et al. [16] proposed a blockchainmodel inwhich the project leader introduces
new work structures to the blockchain network, developers choose their preferred tasks
and develop code which is validated by testers. Testers share a candidate block and
generate consequent blocks collaboratively. This model is aimed to address trust and
integrity issues in large-scale agile development.

Bose et al. [17] proposed the application of blockchain for trustworthy software
provenance. The authors introduced a framework enabled by blockchain technology
named Blinker that captures and queries provenance data by means of PROV family
of specifications, verifies the authenticity of the data through voting mechanisms and
enables hierarchical and interactive visualization of provenance related data.

Yau and Patel [18] adopted blockchain technology to achieve reliable coordination in
collaborative software development. Their blockchain-based approach aims to address
limitations of centralized solutions, such as single point of failure, data tampering and
auditability, and lack of verification for the data to be stored. Smart contracts are used
to verify the compliance of acceptance criteria for software components in an automatic
fashion.



48 S. Demi et al.

None of these studies focus on the application of blockchain technology for the man-
agement and traceability of requirements throughout the software development lifecycle
in interorganizational software projects.

2.3 Requirements Engineering and Traceability

Requirements engineering (RE) is a critical component of effective software develop-
ment projects. While previous studies provided empirical evidence to support the contri-
bution of effective RE to improved productivity, product quality, and risk management
[19], the RE process has been considered as inherently complex and difficult to stan-
dardize via holistic solutions [20]. As software becomes more complex and the number
of stakeholders, along with their heterogeneity increases, there is a need to enhance the
large-scale RE process [21]. One of the most critical challenges that has been identified
in RE, particularly in managing requirements’ changes in global software development
is the lack of communication, coordination, and control that leads to reduced levels of
trust and confidence among distributed team members [22]. In addition, Akbar et al.
[22] highlighted the lack of change impact analysis at distributed sites as a significant
challenge. Estimating the impact of changes on the system’s costs, time and quality is
essential, yet difficult to achieve in distributed settings.

According to Jayatilleke and Lai [23], requirements traceability can contribute to
keep track of the impact of changes. Traceability has been defined as “the ability to follow
the life of a requirement in both a forward and backward direction…” [24] or as the ability
to create, maintain, and use links between artifacts generated in different phases of the
software lifecycle [5]. Traceability is particularly important in safety-critical domains,
in light of proving the specification of safety requirements, the consideration of these
requirements during the design and development phases, and their validation in test
cases [25]. Despite its importance, establishing traceability in practice is not a trivial task
[25]. Our recent systematic literature review reported on 21 challenges of implementing
traceability in organizational settings [4]. In particular, the findings revealed that in
practice, traceability is perceived as an overhead, and its potential benefits are invisible
throughout the software development lifecycle. Previous studies [6, 25] pinpointed the
provider-user gap as the main factor that shapes this perception, along with the poor
visualization of trace links. As a result, practitioners become demotivated to create
and maintain trace links and assign a low priority to traceability tasks. In addition,
previous studies [6, 25, 26] raised concerns regarding the deterioration of trace links
as a consequence of not updating these links when artifacts change. These changes
should be propagated and affected stakeholders should be notified in order to update the
corresponding trace links.

The global software development paradigm exacerbates these issues, as the commu-
nication, coordination, and trust among stakeholders is difficult to achieve in distributed
settings [4]. One of the few studies that provides empirical evidence on requirements
traceability in interorganizational software projects has been carried out by Rempel et al.
[3]. Rempel et al. [3] outlined organizational boundaries as the main problem area, as
it leads to restricted access to artifacts created by the other project parties due to lack
of trust. Therefore, the authors outlined the need to ensure availability and reliability of
traceability in interorganizational software projects. To address these requirements, our



A Neural Blockchain for Requirements Traceability 49

study proposes a blockchain-enabled prototype for requirements traceability (BC4RT)
which is described in Sect. 3.

3 Blockchain-Enabled Requirements Traceability Prototype

Managing and tracing requirements throughout the software development lifecycle in a
transparent and reliable fashion is important to ensure trust among different stakeholders.
Figure 1 depicts a simplifiedversion of the software development lifecyclewhich consists
of 4 logical users – requirements manager, developer, tester, and customer. Other users
are omitted for simplicity.

Fig. 1. High-level conceptualization of blockchain-enabled requirements traceability prototype:
BC4RT

This prototype relies on the assumptions that users are located in distributed settings,
and they do not trust each other, but they need to collaborate for the development of a
large-scale software development project. In this context, blockchain technology can
serve as a secure repository to store software artifacts and their changes by ensuring
reliability, transparency, trust, traceability, and auditability. The logical users can perform
different operations which are explained in the following section.

Requirements managers can create or register new projects and new requirements
for each project that should be stored on the distributed ledger. The timestamp of when
the requirement was created, contributor name, and the current status “created” should
also be stored on the ledger. In addition, requirements managers should be able to change



50 S. Demi et al.

existing requirements and their respective attributes, such as version, description, short
name. In such a case, the current status of the requirement should be “changed” from
“created” and the timestamp of when the requirement is changed should be stored on
the ledger. However, the immutable nature of blockchain technologies does not allow
changing stored data.

At first glance, onemay argue that the immutable property of blockchain goes against
the ever-changing nature of software artifacts. The authors identified two potential solu-
tions to address this challenge: (i) when requirements managers change existing require-
ments, a new requirement record with a new ID is created. This new requirement should
point to the initial requirement that was changed by means of a previous requirement
ID field; (ii) perceive requirements as digital assets and using the concept of tokens to
represent them. Each token may generate its own blockchain ledger to audit the lifecycle
of any requirement token throughout the software development lifecycle. In this study,
the authors followed the latter approach, as it is more efficient than the former.

Furthermore, developers can register source code files for each specific requirement
and consequently, the current status of the requirement is updated from “created” or
“changed” to “implemented”. Testers can register test cases for each requirement and
the results of these test cases. The registration of test cases changes the status of the
requirement automatically from “implemented” to “tested”. Moreover, the customer has
permission to view requirements’ changes, and track requirements’ lifecycle using the
audit mode. In addition, the customer can perform more complex queries, for instance
retrieve the IDs and number of requirements whose status is “tested”, but the test result
is “failed”.

Finally, it is important to consider an efficient, scalable and secure platform to store
software artifacts, such as source code files, or test cases files. If conventional blockchain
platforms were chosen, these files would have been stored in secure off-chain storage,
such as IPFS (Interplanetary File System) and the generated hashwould have been stored
in the blockchain platform to access the file’s content [17]. This study adopts a novel
blockchain platform that enables the secure storage of files of any size and type, while
retaining efficiency and scalability. The blockchain platform adopted by this study is
explained in the following Sect. 4.1.

4 Implementation

4.1 Neural Distributed Ledger

The concept of neural distributed ledger (NDL) was recently proposed by Velasco et al.
[27] and inspired by Swan [28]’s idea of developing blockchains as “personal thinking
chains”. A neural blockchain is internally structured into subsets of groups that work
in parallel and are interconnected analogously to how neuron groups are aggregated in
human brains. The main utility of such blockchains lies in addressing interoperability,
performance, and scalability issues that exist in conventional blockchain platforms [27].
In this study, the authors decided to implement an innovative and collaborative P2P
network, namelyNDLArcaNet. NDLArcaNet ensures the protection and secure transfer
of digital assets of any type.



A Neural Blockchain for Requirements Traceability 51

In order to understand NDL ArcaNet, it is important to explain the concept of NDL
Arca, as a secure token directory. NDLArca [29] is a distributed repository of tokens that
ensures the protection of tokens’ content against illegitimate access. Tokens are valu-
able, unique and certified data that must be accessed only by their legitimate owners and
must be stored throughout their lifecycle in a secure repository to prevent unauthorized
access and illegitimate modifications. Tokens are grouped into tables which are in turn
grouped into databases. This structure lies in the combination of key-value storage and
column-based databases. The keys are valuable to enable the identification of contents
in any environment and are expressed in the ULID (Universally Unique Lexicographi-
cally Sortable Identifier) format. ULID generates identifiers by considering both base32
encoded timestamp (first 10 characters), and randomness (remaining 16 characters). The
values are always encrypted and point to dynamic tables (variable array []). The non-
static columns of these tables contain token fields’ ID and token fields’ content. This
dynamic nature enables token fields’ values to be changed according to users’ needs.
CRUD (create, read, update, delete) operations can be performed on tokens, along with
other operations, such as import and export.

Moreover, according to [29], the security of NDL Arca is ensured by applying a
set of techniques, such as 2-key encrypted token, as the data is double encrypted with
database password and token password,AES256 (AdvancedEncryption Standard), RSA
(Rivest-Shamir-Adleman), zero trust and zero knowledge cryptography, and hashing
functions. It is worthy to mention that although NDL Arca was designed mainly for a
blockchain network due to its inherent capabilities of replication, hashing of contents,
and distributing them across the network, it can be installed on any system according to
[29], e.g., using Arca to create a centralized dedicated server, or a database system in the
cloud. The use of NDL Arca in a multi-domain network is referred to as NDL ArcaNet.

In our case study, requirements are considered tokens because they are valuable,
identifiable, and unique digital assets. Requirements tokens are stored in a secure token
repository and are created and updated in a collaborative manner among different stake-
holders of the software development lifecycle who share a secret key. Each operation
applied on tokens is visible and transparent to other parties in the network. All the opera-
tions performed on tokens will be validated by trusted certifiers who are incentivized by
means of service payments that they receive for each digital signature. Trusted certifiers
will validate operations on tokens without knowing the content of tokens, by applying
zero-knowledge cryptography.

The authors selected this platform due to three main advantages that are important in
the software engineering context: (i) performance efficiency – each node (wallet) applies
and verifies its own transactions independently, enabling parallel work, thus maximizing
the number of transactions per second. Each node can trust the token content by checking
signatures, removing the need for the majority of the network nodes to vote and reach a
consensus. The lack of consensus leads to each wallet working as a local database, but
with slightly higher latency due to the use of signature mechanisms. Should consensus-
based distributed ledger technologies be used, storing a large number of requirements or
other large software files would not be affordable. However, NDL systems scale better
and their limitations regarding real time operations are comparable to the limitations
of centralized databases. (ii) sustainability – nodes collaborate to validate transactions,



52 S. Demi et al.

therefore costly, resource-wasteful, and competitive-based consensus algorithms (e.g.,
PoW, PoS) are not used and gas is not required to perform transactions. (iii) scalability
– the platform can integrate million nodes because each node is independent and can
work in real-time. While the Internet transfers packets of data, NDL ArcaNet transfers
signed packets of data. Despite this, ArcaNet is able to scale in a similar fashion to the
Internet.

4.2 Blocks Structures for BC4RT Prototype

The proposed blockchain-enabled requirements traceability prototype relies on the
underlying blocks structures that are depicted in Fig. 2.

Fig. 2. Blocks structures for BC4RT prototype

Each token generates its own signed blockchain ledger that enables the verification
of its provenance, integrity, evolution, and history, by means of the audit mode. The
goal of the BC4RT prototype is to trace the lifecycle of requirements throughout the
software development lifecycle. Therefore, a token was created for each requirement,
as a child of the project token. The project token consists of the following fields: token
code (ULID), domain, name of the project, and the password of the token. Other fields
can be created to include additional information regarding the project. Furthermore, the
requirement token consists of the following fields: token code (ULID), project code
that points to the parent token, token password, domain, version of the requirement,
the current status of the requirement (created, modified/changed, implemented, tested),
requirement’s description, short name, timestamp of when the requirement was created,
timestamp of when the requirement was modified, the contributor who performed a
specific operation on the token, flags (implemented/tested), source code file, and test
cases file.



A Neural Blockchain for Requirements Traceability 53

The emission of the requirement token generates the first block (Block #1) which
is composed of the following elements: metadata, e.g., ULID, and timestamp, previous
block/parent signatures which entail signing with private keys the hash of the previous
block, token content which consists of the fields’ content of the requirement token, next
signers or the signers of the next block which are a set of trusted certifiers and random
nodes, and the signatures of the current block. Signers that are defined in the previous
block’s next signers field should sign with their private keys the hash of the current
block fields (metadata, parent signatures, token content, and next signers). While the
consequent blocks have the same structure as the first block, they do not store the whole
content of token fields, only the changes.

Finally, it is noteworthy that any first block needs a genesis block which is pro-
vided by the other parties of the network in a random manner. This structure allows
stakeholders of the software development lifecycle to keep track of what/when/how/by
whom requirementswere created, changed, implemented, and tested in a trustworthy and
transparent manner. A shared traceability repository based on blockchain ensures that
software artifacts stored by distributed stakeholders have not been altered illegitimately.

4.3 User Interface

In what follows, we present the front end of the BC4RT application using simple sce-
narios that rely on the iTrust application that can be accessed online [30]. iTrust is an
electronic health records application that is developed andmaintained as a software engi-
neering project for undergraduate students at North Carolina State University [31]. iTrust
was chosen because it deals with safety-critical information and due to the availability
of the traceability dataset [31].

The user logs in by specifying the role, i.e., requirements manager, coder, tester, or
customer, as depicted in Fig. 3. Figure 4, Fig. 5, and Fig. 6 show the view of the require-
ments manager who is allowed to create a new project, new requirement tokens, and
update existing requirements, respectively. The attributes of requirements are require-
ment ID, contributor, requirement version, description, short name, current state, history
of states (created, changed, implemented, tested), source code file, and test case file.
Each of these tokens generates its own blockchain ledger that stores the changes that
have been validated by trusted certifiers.

Fig. 3. Login view



54 S. Demi et al.

First, the requirements manager creates a new project with the assigned project
token ID: 01G4JM6G1FQPPHKAH4EAXNA27M (See Fig. 4). Then, the requirements
manager creates new requirements for the project by clicking on the “Create” option of
the radio button “Requirement”, inputs the description and short nameof the requirement,
while the token ID is generated automatically (See Fig. 5).

Fig. 4. Requirements manager view (“Create project”)

Fig. 5. Requirements manager view (“Create requirement”)

Once the requirements manager clicks “Accept”, the blockchain ledger is gen-
erated for the requirement token. The current state of the requirement is “created”,
and the timestamp of when the requirement was created is also presented to the user
(See Fig. 6). The requirements manager can also update previously-created require-
ments by clicking on the “Update” option of the radio button “Requirement”. For
instance, in Fig. 6 the requirements manager is updating the requirement with the ID =
01G4JMRW7M6CZPXJJK030H4AKK, by entering the new version= 1.1, description
= “The patient should be able to view and edit lab procedure tasks” and short name =



A Neural Blockchain for Requirements Traceability 55

“REQ_ViewEditLab”. Once the requirement manager clicks “Accept”, the requirement
token fields are updated, the current status is “changed”, and the timestamp of when the
requirement was changed is also stored and presented to the user, as depicted in Fig. 6.

Fig. 6. Requirements manager view (“Update requirement”)

Second, the developer logs in the blockchain platform and is allowed to upload the
source code file for each requirement (See Fig. 7). Once the developer enters a source
code file and clicks on the “Accept” button, the state of the specific requirement token
is updated in three dimensions: (i) source code field is updated with the name of the file
(ii) the implemented field is updated (iii) the current status is changed from “created”
or “changed” into “implemented”.

Fig. 7. Developer view (“Upload source code”)

Third, the tester logs in the blockchain platform and is allowed to upload the test
case file for each requirement (See Fig. 8). Once the tester enters a test case file and
clicks on the “Accept” button, the state of the specific requirement is updated in three
dimensions: (i) test case field is updated with the test case file name (ii) the current status
of the requirement is changed from “implemented” into “tested” (iii) the tested field is
updated, if the tester clicks on the “Passed” option of the radio button “Test Result”.



56 S. Demi et al.

Fig. 8. Tester view (“Upload test cases and test results”)

Finally, the customer is constrained to only view the state of the project token and
requirements tokens. Therefore, the customer can check the list of all requirements,
which requirements have been created, changed, implemented, and/or tested. In addition,
it is possible to trace the lifecycle of each requirement by double clicking on a specific
requirement record. An example of the history of a specific requirement is depicted in
Fig. 9.

Fig. 9. Trace the lifecycle of a specific requirement

5 Conclusion and Future Work

This study presented a blockchain-oriented prototype, namely BC4RT to enable the
traceability of software artifacts created by distributed stakeholders throughout the soft-
ware development lifecycle. For each requirement stored on the distributed ledger, one
could trace its origin, updates, the timestamp of when it was created or changed, if it
was implemented and/or tested, and by whom, the current status, and related software
artifacts, such as source code and test cases, in a scalable, efficient and trustworthy man-
ner. Therefore, requirements managers, developers, testers, customers, along with other
stakeholders, e.g., project managers or quality assurance team could benefit from the
application of blockchain, since it ensures full visibility on the software development



A Neural Blockchain for Requirements Traceability 57

lifecycle and facilitates tracking projects’ progress. Enabling full visibility can enhance
the performance of practitioners in solving software engineering tasks. For instance,
keeping track of all changes in a transparent and reliable manner facilitates the analysis
of the impact of these changes on system’s cost, time, and quality, which is not a trivial
task in distributed settings.

The authors implemented the proposed BC4RT prototype using a novel neural dis-
tributed ledger, namely NDL ArcaNet because the inherent features of this platform
ensure performance efficiency, sustainability and scalability while retaining security.
The authors perceive the potential of third and fourth generation blockchain platforms
and encourage further exploration of the benefits and feasibility of such platforms beyond
the software engineering context. Domains that need to process massive data, such as
Internet-of-Things (IoT) may greatly benefit from the efficiency and increased security
of neural blockchain platforms.

Our future work will focus on validating the usefulness, practicality, and validity
of the blockchain-enabled prototype through software engineering experts’ judgement.
Future versions of the prototypemay incorporate the emission of tokens to represent other
software artifacts, such as source code and test cases, as children of requirements’ tokens.
In addition, futureworkmay be devoted to automate the registration of software artifacts,
their attributes, content and changes, by means of data ingestion tools or plugins that
can capture the artifacts generated from a variety of tools used throughout the software
development lifecycle [32].

References

1. Ebert, C., Kuhrmann,M., Prikladnicki, R.: Global software engineering: evolution and trends.
In: 2016 IEEE 11th International Conference on Global Software Engineering (ICGSE),
pp. 144–153 (2016)

2. Niazi, M., Mahmood, S., Alshayeb, M., et al.: Challenges of project management in global
software development: a client-vendor analysis. Inf. Softw. Technol. 80, 1–19 (2016). https://
doi.org/10.1016/j.infsof.2016.08.002

3. Rempel, P., Mäder, P., Kuschke, T., Philippow, I.: Requirements traceability across organiza-
tional boundaries - a survey and taxonomy. In: Doerr, J., Opdahl, A.L. (eds.) Requirements
Engineering: Foundation for Software Quality, pp. 125–140. Springer, Berlin, Heidelberg
(2013)

4. Demi, S., Sanchez-Gordon,M.,Colomo-Palacios,R.:What havewe learnt from the challenges
of (semi-) automated requirements traceability?ADiscussion onblockchain applicability. IET
Softw. 15(6), 391–411 (2021)

5. Gotel, O., Cleland-Huang, J., Hayes, J.H., et al.: Traceability fundamentals. In: Cleland-
Huang, J., Gotel, O., Zisman, A. (eds.) Software and Systems Traceability, pp. 3–22. Springer,
London (2012)

6. Wohlrab, R., Knauss, E., Steghöfer, J.-P., Maro, S., Anjorin, A., Pelliccione, P.: Collaborative
traceabilitymanagement: amultiple case study from the perspectives of organization, process,
and culture. Requirements Eng. 25(1), 21–45 (2018). https://doi.org/10.1007/s00766-018-
0306-1

7. Zheng, Z., Xie, S., Dai, H.-N., et al.: Blockchain challenges and opportunities: a survey. Int.
J. Web Grid Serv. 14, 352–375 (2018)

https://doi.org/10.1016/j.infsof.2016.08.002
https://doi.org/10.1007/s00766-018-0306-1


58 S. Demi et al.

8. Belotti,M., Božić, N., Pujolle, G., Secci, S.: A vademecumon blockchain technologies: when,
which, and how. IEEE Commun. Surv. Tutorials 21, 3796–3838 (2019). https://doi.org/10.
1109/COMST.2019.2928178

9. Vacca, A., Di Sorbo, A., Visaggio, C.A., Canfora, G.: A systematic literature review of
blockchain and smart contract development: techniques, tools, and open challenges. J. Syst.
Softw. 174, 110891, (2021). https://doi.org/10.1016/j.jss.2020.110891

10. Pinna,A., Ibba, S., Baralla,G., et al.: Amassive analysis of ethereum smart contracts empirical
study and code metrics. IEEE Access 7, 78194–78213 (2019). https://doi.org/10.1109/ACC
ESS.2019.2921936

11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentral. Bus. Rev. 21260
(2008)

12. Colomo-Palacios, R.: Cross fertilization in software engineering. In: Yilmaz, M., Niemann,
J., Clarke, P., Messnarz, R. (eds.) EuroSPI 2020. CCIS, vol. 1251, pp. 3–13. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56441-4_1

13. Marchesi, M.: Why blockchain is important for software developers, and why software engi-
neering is important for blockchain software (Keynote). In: 2018 International Work-shop on
Blockchain Oriented Software Engineering (IWBOSE), p. 1 (2018)

14. Demi, S., Colomo-Palacios, R., Sánchez-Gordón, M.: Software engineering applications
enabled by blockchain technology: a systematic mapping study. Appl. Sci. 11, 2960 (2021).
https://doi.org/10.3390/app11072960

15. Lenarduzzi, V., Lunesu, M.I., Marchesi, M., Tonelli, R.: Blockchain applications for agile
methodologies. In: Proceedings of the 19th International Conference on Agile Software
Development: Companion. Association for Computing Machinery, Porto, Portugal, pp. 1–3
(2018)

16. Yilmaz, M., Tasel, S., Tuzun, E., Gulec, U., O’Connor, R.V., Clarke, P.M.: Applying
blockchain to improve the integrity of the software development process. In: Walker, A.,
O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2019. CCIS, vol. 1060, pp. 260–271. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-28005-5_20

17. Bose, R.P.J.C., Phokela, K.K., Kaulgud, V., Podder, S.: BLINKER: a blockchain-enabled
framework for software provenance. In: 2019 26th Asia-Pacific Software Engineering
Conference (APSEC), pp. 1–8 (2019)

18. Yau, S.S., Patel, J.S.: Application of blockchain for trusted coordination in collaborative
software development. In: 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC), pp. 1036–1040 (2020)

19. Damian,D., Chisan, J.: An empirical study of the complex relationships between requirements
engineering processes and other processes that lead to payoffs in productivity, quality, and
risk management. IEEE Trans. Softw. Eng. 32, 433–453 (2006). https://doi.org/10.1109/TSE.
2006.61

20. Franch, X., Fernández, D.M., Oriol, M., et al.: How do practitioners perceive the relevance
of requirements engineering research? an ongoing study. In: 2017 IEEE 25th International
Requirements Engineering Conference (RE), pp. 382–387 (2017)

21. Fucci, D., Palomares, C., Franch, X., et al.: Needs and challenges for a platform to sup-
port large-scale requirements engineering: a multiple-case study. In: Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering andMeasurement.
Association for Computing Machinery, New York, NY, USA, pp. 1–10 (2018)

22. Akbar, M.A., Sang, J., Khan, A.A., Hussain, S.: Investigation of the requirements change
management challenges in the domain of global software development. J. Softw. Evol. Process
31, e2207 (2019)

23. Jayatilleke, S., Lai, R.: A systematic review of requirements change management. Inf. Softw.
Technol. 93, 163–185 (2018). https://doi.org/10.1016/j.infsof.2017.09.004

https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1016/j.jss.2020.110891
https://doi.org/10.1109/ACCESS.2019.2921936
https://doi.org/10.1007/978-3-030-56441-4_1
https://doi.org/10.3390/app11072960
https://doi.org/10.1007/978-3-030-28005-5_20
https://doi.org/10.1109/TSE.2006.61
https://doi.org/10.1016/j.infsof.2017.09.004


A Neural Blockchain for Requirements Traceability 59

24. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability problem. In:
Proceedings of IEEE International Conference on Requirements Engineering, pp. 94–101
(1994)

25. Maro, S., Steghöfer, J.-P., Staron, M.: Software traceability in the automotive domain: Chal-
lenges and solutions. J. Syst. Softw. 141, 85–110 (2018). https://doi.org/10.1016/j.jss.2018.
03.060

26. Mäder, P., Gotel, O.: Towards automated traceability maintenance. J. Syst. Softw. 85, 2205–
2227 (2012). https://doi.org/10.1016/j.jss.2011.10.023

27. Velasco, C., Colomo-Palacios, R., Cano, R.: Neural distributed ledger. IEEE Softw. 37, 43–48
(2020). https://doi.org/10.1109/MS.2020.2993370

28. Swan, M.: Blockchain Thinking : the brain as a decentralized autonomous corporation [Com-
mentary]. IEEE Technol. Soc. Mag. 34, 41–52 (2015) .https://doi.org/10.1109/MTS.2015.
2494358

29. Arca. In: ByEvolution Creative Factory. https://byevolution.com/en/arca/. Accessed 8 Jun
2022

30. iTrust. In: SourceForge. https://sourceforge.net/projects/itrust/. Accessed 23 May 2022
31. Meneely, A., Smith, B., Williams, L.: Appendix B: iTrust electronic health care system case

study. Softw. Syst. Traceability 425 (2012)
32. Demi, S., Sánchez-Gordón, M., Colomo-Palacios, R.: A blockchain-enabled framework for

requirements traceability. In: Yilmaz, M., Clarke, P., Messnarz, R., Reiner, M. (eds.) EuroSPI
2021. CCIS, vol. 1442, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85521-5_1

https://doi.org/10.1016/j.jss.2018.03.060
https://doi.org/10.1016/j.jss.2011.10.023
https://doi.org/10.1109/MS.2020.2993370
https://doi.org/10.1109/MTS.2015.2494358
https://byevolution.com/en/arca/
https://sourceforge.net/projects/itrust/
https://doi.org/10.1007/978-3-030-85521-5_1

	A Neural Blockchain for Requirements Traceability: BC4RT Prototype
	1 Introduction
	2 Background
	2.1 Blockchain Basics
	2.2 Blockchain in Software Engineering
	2.3 Requirements Engineering and Traceability

	3 Blockchain-Enabled Requirements Traceability Prototype
	4 Implementation
	4.1 Neural Distributed Ledger
	4.2 Blocks Structures for BC4RT Prototype
	4.3 User Interface

	5 Conclusion and Future Work
	References




