
Forecasting Domestic Water Demand 
Using Meteorological and Satellite Data: 
Case Study of Greater Beirut Area 

J. Saade, S. Ghanimeh, M. Atieh, and E. Ibrahim 

1 Introduction 

Acknowledging the dire need for water security, the United Nations established 
Goal 6 of the Sustainable Development Goals (SDGs), for year 2030, on Clean 
Water and Sanitation. Nonetheless, the target is still behind as by 2019 around 785 
million people still lack basic drinking water service (UN Statistical Commission 
2019). The SDGs also acknowledge, through Goal 13: the impacts of climate change 
on the hydrological cycle, on various ecosystems, and eventually on the existence 
of humanity. In fact, temperatures in the Middle East and North Africa (MENA) 
region are expected to become more extreme (Atlantic Council 2019; El-Samra et al. 
2017; Lange 2019; Waha et al. 2017) with a 4 °C projected  increase in average  
temperatures by 2050 (WEF 2019). The MENA region is expected to experience 
hotter summers with more frequent heatwaves (ArabNews 2019; Bucchignani et al. 
2018). Consequently, Lebanon’s national communications revealed the pronounced 
impacts of the changing climate in terms of reduction in water supply and increase 
in water demand.
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From the water supply perspective, the anticipated cost of climate-induced drop 
in agricultural, domestic, and industrial water supply in Lebanon is estimated at $ 21 
Million, $ 320 Million, and $ 1,200 Million by 2020, 2040, and 2080, respectively— 
noting that the country’s gross domestic product (GDP) is about 60 billion USD 
(MoF 2019). Similarly, the cost of climate-caused reduction in water availability 
for generation of hydroelectricity is estimated at $ 3 Million, $ 31 Million, and $ 
110 Million by 2020, 2040, and 2080 respectively (MoE 2016). A negative water 
balance of -518 million cubic meters (MCM) was projected for year 2030 (World 
Bank 2003). 

Likewise, water demand is expected to change with the climate and weather 
conditions. At the global level, water demand is categorized as: agricultural (69%), 
industrial (19%), and domestic (12%). The latter has increased substantially from 
50 km3/year in 1950 to more than 500 km3/year in 2010 (FAO & AQUASTAT 
2015). In developing countries like Lebanon, domestic water demand (30%) comes 
second after agricultural water demand (61%); while industrial demand constitutes 
the smallest share (9%) (Hamdar et al. 2015; MoEW  2012). In fact, studies of highly 
congested regions of the country revealed a remarkably high domestic demand, 
reaching 54% in Beirut and Mount Lebanon and projected to reach up to 46% in 
Greater Beirut Area (GBA) in 2030 (Comair 2011; Yamout and El-Fadel 2005). In 
this context, the World Bank projected an increase in annual water demand from 
1,257 MCM in 2003 to 2,818 MCM by 2030. This is paralleled with a shift in 
relative shares of sectors from 9%, 27%, and 64% to 15%, 45%, and 40% for the 
industrial, domestic, and agricultural demands respectively—showing the anticipated 
dominance of domestic water demand in the future. 

Furthermore, Middle Eastern countries, including Lebanon, have specific chal-
lenges attributed to internal and cross-boundary migration. Specifically, in the context 
of Lebanon, the country hosts 173 refugees per 1,000 citizens, the largest number 
of refugees per capita worldwide (Hussein et al. 2020). This has exacerbated the 
already negative water balance, which is expected to peak in 2030 (Hussein et al. 
2020), especially with the limited governmental strategies (Shaban 2020). 

While worldwide efforts have been made to project the effects of climate change 
on domestic water demand (Table 1), such studies remain limited in Mediterranean 
countries—despite the already visible water deficit. In Lebanon, the 2010 National 
Water Sector Strategy (NWSS), amended in 2015 and adopted by the Ministry of 
Energy and Water (MoEW), projected a 30% domestic water demand by 2030 with 
an urban water consumption of 185 lpcd (MoEW 2010, 2012).

The NWSS tackles the water deficit problem by increasing water supply, with 
marginal attention to optimizing water demand. It aims at providing an additional 
935 MCM of water by spring capture (65 MCM), artificial recharge of groundwater 
aquifers (200 MCM), and surface storage though the construction of 18 dams and 
23 hill lakes (670 MCM to reach a water storage of 14.9%) (MoEW 2012). 

The anticipated population growth in GBA calls for a better focus on the demand 
side of the water budget, taking climate change into consideration. Yet, local studies 
that back up this hypothesis remain limited, especially with data scarcity and lack of 
access to water records. This study aims at investigating the link between domestic
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Table 1 Impact of weather on domestic water consumption 

References Study area Weather parameters Findings 

Rasifaghihi et al. 
(2020) 

Montreal, Canada Daily minimum 
temperature, daily 
maximum temperature, 
daily precipitation 

Definition of a 
temperature threshold 
above which the effect 
of weather parameters 
on water demand 
becomes considerable 

Uthayakumaran et al. 
(2019) 

Sydney, Australia Average daily 
precipitation, number 
of days in a month 
when precipitation 
exceeds 2 mm, average 
daily maximum 
temperature, number 
of days in a month 
when temperature 
exceeds 300 °C, and 
average daily pan 
evaporation 

Increase in water 
demand of 2.3% and 
4.4% in short-term (up 
to 2040) and long-term 
(2060–2080) based on 
the A2 Scenario 

Wang et al. (2017) Yellow river basin, 
China 

Average temperature Under RCP 4.5, average 
water demand will 
increase by 20.2% by 
end of the century 

Al-Zahrani et al. 
(2015) 

Al Khobar, KSA Minimum, average, 
and maximum 
temperature and 
humidity, rainfall 
frequency, total 
intensity, and wind 
speed (all at a daily 
time-step) 

Temperature is the most 
relevant weather 
parameter in projecting 
water demand, followed 
by humidity, wind 
speed, and rainfall 
frequency 

Chang et al. (2014) Portland, USA Maximum temperature 
and precipitation (daily 
and monthly), and day 
of the week 

Maximum temperature 
and precipitation, 
combined, explain 48% 
of the variation in 
seasonal monthly water 
use in June and July 
(summer months). 
Including the day of the 
week explained 87% of 
the daily variation in 
seasonal water use 

Al-ahmady (2011) Mosul, Iraq Season, water supply 
continuity, and family 
size 

Yearly average water 
demand was found to be 
180 ± 64 L per capita 
per day (lpcd), with 
diurnal variation 
between 125 ± 65 lpcd 
and 235 ± 64 lpcd in 
winter and summer

(continued)
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Table 1 (continued)

References Study area Weather parameters Findings

Neale et al. (2007) British Columbia, 
Canada 

Daily maximum 
temperature 

Annual residential per 
capita outdoor water 
demand would increase 
by 6367 L for every 1 
°C increase in monthly 
mean daily maximum 
temperature 

Source Own elaboration

water demand and meteorological variables and targets future changes in water 
demand in GBA, under climate Representative Concentration Pathways (RCP) 4.5 
and RCP 8.5 through utilizing water demand patterns, meteorological data, and 
remote sensing data. GBA is one of the most congested areas of the country and 
is fed by one major watershed (El Kalb river watershed) that is currently under 
severe stress—and is expected to suffer greatly with the future climatic changes. As 
such, the findings of this work are crucial to support informed decisions at the level 
of governmental planning and sound demand-side management of water resources 
in Lebanon 

2 Methods and Materials 

2.1 Study Area 

Providing home to 2.4 million inhabitants, GBA covers an area of 253 km2, including 
Lebanon’s capital, Beirut city, that covers an area of 67 km2 (Fig. 1). About 11% 
of the Lebanese population lives in Beirut city and another 27% of the population 
lives in its suburbs (CDR 2017). GBA is located east central Lebanon at an altitude 
ranging between 0 and 400 m above sea level and is characterized to be with a 
Mediterranean climate (Faour and Mhawej 2014; OCHA  2016; UN  2020; Yamout 
and El-Fadel 2005). GBA is heavily populated with an average population density 
of 6,200 inhabitants/km2. About 70% of the water demand in GBA is supplied by 
one main treatment station in Dbaye (Faour and Mhawej 2014).

Dbaye station is fed by two springs; Jeita (172 MCM/year) and Kachkouch (70 
MCM/year) (Badran 2016) (CDR/DAR 2014). When the discharge from the springs 
is low, groundwater is pumped from 26 wells in Jeita watershed and 13 wells in Beirut 
southern suburbs to overcome the shortage (Badran 2016; Margane and Schuler 
2013). Water is conveyed through four main pipelines from Dbaye station to two 
stations at the north of GBA, one in central Beirut, and another one at the south of 
Beirut.
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Fig. 1 Map of the study area: location of GBA in Lebanon’s map (Level 1), location of Beirut city 
in GBA’s map (Level 2), the zones of Beirut city (Level 3)

2.2 Water Demand Data 

Given the absence of records for the GBA water demand pattern, the latter was 
estimated by applying the GBA local average water demand of 185 L/day/capita 
(CAS 2008; Jaafar et al. 2020) to the demand time pattern of Syracuse (Fig. 2). 
Syracuse is an urban coastal city in Italy, characterized by a Mediterranean climate 
with warm to hot dry summers and mild wet winters, like Beirut. Using WorldClim 
data, (Hijmans et al. 2005; O’Donnell and Ignizio 2012), a global gridded historical 
dataset (1960 to 1991), the similarity between the two cities with respect to climatic 
conditions can be illustrated. The data was accessed through Google Earth Engine 
(GEE) (Google Earth Engine 2021) with 30 arc-second spatial resolution. The mean 
annual temperature of the two cities are comparable where in Syracuse it is about 
16 °C while in Beirut it is 20 °C (Fig. 3). The annual mean diurnal range capturing 
temperature fluctuation (Fig. 4) shows consistent fluctuation of 8 °C for the two cities.
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Fig. 2 Monthly demand as compared to average demand (%) in Syracuse, Italy (Campisi-Pinto 
et al. 2012) 

turieBesucaryS 

030 Annual mean temperature [oC] 

Fig. 3 The annual mean temperature of the two cities using the WorldClim dataset

Regarding precipitation seasonality, both cities exceed 80% variability (expressed as 
coefficient of variation) (Fig. 5) throughout the year, highlighting the Mediterranean 
seasons of wet winters and dry summers. Considering the similarities in weather 
and overall socio-economic aspects, it is assumed that similar water demand patterns 
would prevail in Syracuse and GBA (Campisi-Pinto et al. 2012). The demand pattern 
of Syracuse was averaged for the years 2002 to 2008 (Campisi-Pinto et al. 2012). 
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turieBesucaryS 

030 Mean diurnal range [oC] 

Fig. 4 The mean diurnal range of the two cities using the WorldClim dataset 

turieBesucaryS 

0 100Coefficient of variation [%] 

Fig. 5 The precipitation seasonality of the two cities using the WorldClim dataset 

2.3 Weather Data Acquired by Ground Stations 

Weather data was obtained from Achrafieh (Fig. 1) weather station in GBA for the 
period ranging from June 2017 to March 2019—considered to be the reference period 
(Litani River Authority data). The weather parameters used in this study include 
monthly temperature data, relative humidity, wind speed, and atmospheric pressure 
(Fig. 6). In addition, solar radiation (RS), in MJ/m2/day, was computed using Eq. (1) 
(Bou-Fakhreddine et al. 2019; Valiantzas 2013). 

RS ≈ kRS RA 

⎷
Tmax − D (1)

where Tmax is the maximum monthly temperature kRs is the radiation adjustment 
coefficient ranging between 0.12 and 0.25 (default value 0.17), RA is the extrater-
restrial radiation obtained according to the latitude position (FAO 2020). D is the
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Fig. 6 GBA weather data, Achrafieh station
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dew point (°C, temperature at which relative humidity reaches 100% saturation)— 
calculated using Eq. (2) adopted by the American Meteorological Society (Lawrence 
2005), where Tavg is the average monthly temperature: 

D = Tavg − 
100 − RH  

5 
(2) 

2.4 Land-Surface Temperature Acquired Using Satellite Data 

An essential variable in water balance analysis and land-surface processing is 
Land Surface Temperature (LST) that can be acquired through various approaches 
including in-situ measurements along with satellite observations. As data is generally 
scare in Lebanon, in-situ LST data are not available, and thus, Moderate Resolution 
Imaging Spectroradiometer (MODIS) can provide a great opportunity in this regard. 
MODIS spaceborne data is the most commonly used remote sensing LST data (Phan 
and Kappas 2018). It is freely available, has a spatial resolution of 1 km, and continu-
ously covers the study area as cloud cover permits (Mo et al. 2021). MODIS TERRA 
provides daily coverage with overpass at local times 10:30 a.m. and 10:30 p.m. 

For this work, monthly mean (averaged day and night) MODIS LST values were 
derived for Beirut from daily MODIS data accessed through Google Earth Engine 
platform where a full day and night data dataset is provided (Fig. 7). The data product 
is MYD11A1 retrieved using the generalized split-window and day/night algorithms 
(Phan and Kappas 2018; Wan  2013). 
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Fig. 7 Average monthly LST and air temperature for Beirut city for the period 2017–2019
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2.5 Model Structure and Performance 

Linear regression analysis is adopted in this study as it has been proven satisfactory 
to explain water demand variation in function of weather variables (Al-Zahrani and 
Abo-Monasar 2015; Chang and Praskievicz 2014; Gato et al.  2007) and MODIS 
LST (Alavipanah et al. 2016; Enriquez et al. 2019). A linear regression model is 
developed, of the form provided in Eq. (3). The weather parameters considered for 
modeling are minimum temperature (Tmin), average temperature (Tavg), maximum 
temperature (Tmax), solar radiation (RS), wind speed (W) and relative humidity (H), 
and atmospheric pressure (Patm), and Land Surface Temperature (LST). 

q = 
m∑

i=1 

β0 + α i β i+ ∈ (3) 

where q is the specific demand flowrate (lpcd), β0 is the regression intercept, αi is 
the is the ith predictor’s regression slope, βi is the ith variable, where the number of 
selected variable is i ∈ [0, m], and ε is an error term representing random noise for 
effect of variables not included in the model equation, referred to as a Gaussian error 
term (Aitken et al. 1991; Koegst et al. 2008; Rasifaghihi et al. 2020). 

The performance of the model was evaluated using: (1) the p-value test of inde-
pendent variables (weather parameters), with a statistical significance level of 0.05; 
and (2) the coefficient of determination (R2) to assess the goodness-of-fit of the 
model—having a minimum of 0 (indicating that the model does not explain any of 
the variation in water demand) and a maximum of 1 (indicating that the water demand 
can be fully predicted by the model) (Eq. 4). 

R2 = 1 − 
1 
n

∑n 
i

(
yi − y

∧)2 

1 
n

∑n 
i (yi − y)2

(4) 

where y
∧

is the forecasted water demand, yi is the actual water demand, y is the mean 
actual water demand, and n is the number of observations. 

The analysis considered simple linear regression (i.e., m = 1) and assessed the 
correlation of demand with each variable. On the other hand, a multivariate linear 
regression was also carried out, and the selection of the number of independent 
variables aimed at reducing multicollinearity. The Variation Inflation Factor (VIF) 
(Eq. 5) was used to select the suitable variables, where (Akinwande et al. 2015), 

V I  F  = 1 

1 − R2 (5) 

VIF thus iterated among the variable and excluded one variable causing multi-
collinearity at a time. The multivariate regression was implemented using the 
Classification and Regression Training (CARET) package in R (Kuhn 2008).
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Fig. 8 Current versus future monthly average temperature (Tavg) under RCP 2.6, RCP 4.5, RCP 
6.0, and RCP 8.5 during 2020–2039, 2040–2059, 2060–2079, 2080–2099 (World Bank 2020) 

2.6 Climate Change Projections 

Climate change projections for minimum, average, and maximum temperatures were 
obtained from the Climate Change Knowledge Portal for four 20-year periods: 2020– 
2039, 2040–2059, 2060–2079 and 2080–2099 (World Bank 2020) (Fig. 8). Those 
were simulated using the Beijing Climate Center Climate System Model (BCC— 
CSM 1), adopted in several scholar articles (Wang et al. 2018; Jun Wang et al. 
2017). 

3 Results and Discussion 

3.1 Water Demand Models 

The independent variables, including weather and LST datasets, were mostly corre-
lated (Fig. 9). Wind speed and humidity showed the lowest correlation with other 
variables, yet correlations were still significant. The four-seasoned Mediterranean 
climate where rainfall is highest in the cold winters is apparent in the high negative 
correlations between precipitation and each of air temperature and LST.
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Fig. 9 Pairwise correlation 
matrix plot of the 
independent variables 
indicating Spearman’s 
correlation as per the color 
legend. All correlations were 
statistically significant 
(p-value < 0.05) 
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Linear regression relationships were established between individual weather 
parameters (independent variables) and water demand (the dependent variable) 
(Fig. 10). The analysis of the resulting models revealed that all weather parameters 
were statistically significant (p-value < 0.05) at the exception of relative humidity 
(p-value = 0.065) (Table 2). The negative correlation between atmospheric pressure 
and water demand showed the best fit with R2 value of 0.58, resulting in a linear 
regression model with the least error (i.e. minimum difference between predicted 
and observed water demand). The next best fit regression models were those based 
on temperature (Tavg, Tmin, Tmax) as independent variable. They showed positive 
correlations with R2 values of 0.52, 0.52, and 0.50, respectively. Similar levels of 
accuracy were reported: 0.57 to 0.70 for calibration and from 0.56 to 0.68 for valida-
tion (Al-Zahrani and Abo-Monasar 2015) and 0.33 to 0.38 (Chang and Praskievicz 
2014). Wind speed showed low correlation with water demand (R2 = 0.25), thus 
proven inadequate to explain the variation in water demand.

For the multi-variable regression analysis, the VIF iterative test with a threshold 
for excluding variables of VIF > 10, recommended only preserving solar radiation, 
Tmin, humidity, and wind speed, where their VIF’s in this final subset of variables 
were 3.37, 3.22, 1.43, and 1.24 respectively. The data were then partitioned 70% and 
30% for training and validation, respectively, and the following equation (Eq. 6) was  
achieved, with an R2 exceeding 0.7 and high significance of all variables, except for 
solar radiation where p-value > 0.1 (Table 3). 

Demand = 176.3 + 0.5RS + 1.5T min − 0.68H + 13.4W (6)
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Tavg (oC)(c) 

y = 1.2468x + 162.09 
R² = 0.5161 
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Tmin (oC)(b) 

y = 1.2025x + 155.82 
R² = 0.5008 
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y = 0.7613x + 134.71 
R² = 0.1595 
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Fig. 10 Linear regression relationships between water demand and weather variables: a solar radi-
ation, b minimum temperature, c average temperature, d maximum temperature, e humidity, f 
atmospheric pressure and g wind speed 

Table 2 Model performance and statistical significance of weather variables 

Statistical measures Rs Tavg Tmin Tmax H Patm W 

R2 0.4340 0.5170 0.5160 0.5000 0.1590 0.5825 0.2460 

p-value 0.0008 0.0002 0.0002 0.0002 0.0655 0.00001 0.0188

where RS is the average monthly solar radiation in MJ/m2, Tmin is the minimum air 
temperature in °C averaged monthly, H is the average monthly relative humidity in 
%, and W is the average monthly wind speed in m/s. Figure 11 shows the partial 
regression plots detailing the relationship between the demand and each predictor
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Table 3 Multivariable regression results 

Residuals 

Min 1Q Median 3Q Max 

−6.09 −3.38 −0.04 3.33 9.40 

Coefficients 

Variable Estimate Std. error t-value Pr (> |t|) 

Intercept 176.33 18.43 9.57 ~0*** 

Solar radiation (MJ/m2) 0.50 0.70 0.72 0.48 

Tmin (0 C) 1.53 0.48 3.19 0.07** 

Humidity (%) −0.68 0.35 −1.96 0.07 

Wind speed (W) 13.41 5.75 2.33 0.04* 

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
Residual standard error: 5.142 on 12 degrees of freedom 
Multiple R-squared: 0.7757, Adjusted R-squared: 0.701, F-statistic: 10.38 on 4 and 12 degrees of 
freedom, p-value: 0.0007197

variable, while controlling for the presence of the other variables in the model. These 
plots were produced using the “car” package in R (Fox and Weisberg 2019).

3.2 Forecasted Water Demand 

Considering that forecasts of future solar radiation wind speed, and humidity levels in 
Lebanon are lacking, water demand in GBA was projected using the linear regression 
models for minimum, average and maximum temperature (Tmin, Tavg and Tmax) (Table 
3). These parameters were also adopted in other studies for forecasting the impact 
of the climate change on residential water demand (Al-Zahrani and Abo-Monasar 
2015; Rasifaghihi et al. 2020). 

Four periods (2020–2039, 2040–2059, 2060–2079, 2080–2099) were simu-
lated. Climate forecasts revealed higher temperatures during summer months (June, 
July, August) and lower temperatures during winter months (December, January, 
February), compared to the reference period (2017–2019). As expected, RCP 8.5 
showed the highest increase in temperature (Fig. 8). Consequently, the simulation 
results, using Tmin, Tavg and Tmax models, showed an increase of per capita water 
demand during summer and a decrease during winter. All three models showed very 
similar trends and the forecasted water demand values were close. For comparison 
purposes, the benchmark period (2017–2019) was also simulated, and the values are 
compared to the forecasted demand for all four future periods; the subsequent anal-
ysis considers the range of water demand predicted by the three temperature-based 
models. 

On average, the yearly demand is forecasted (by the three temperature models) 
to increase under all scenarios, except RCP 2.6 (Fig. 12). Furthermore, a temporal
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Fig. 11 Partial regression plots showing the effect of adding a new variable to a model by controlling 
the effect of the predictors in use
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Fig. 12 Average yearly water demand (lpcd) under RCP 2.6, 4.5, 6.0, and 8.5 for the three models: 
a Tmin, b Tavg and c Tmax

shift in extreme demands, i.e., minimum and maximum monthly average demand, 
is expected. The former is expected to gradually shift backward, from February 
to January; while the latter is anticipated to gradually move forward from July to 
August—similarly to previously reported observations (Ghimire et al. 2016). This 
can be attributed to the anticipated climatic changes in terms of (1) shift in seasons, 
(2) longer dry periods, and (3) more intense yet shorter wet periods (Giorgi and 
Lionello 2008; Schilling et al. 2012). 
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The maximum water demand, occurring during the dry season, is anticipated to 
increase by 1 to 2 Lpcd on the short term (2020–2039) and 2 to 6 Lpcd on the 
long term (2080–2099) (Fig. 13b). Similarly, the minimum water demand, occurring 
during the wet season, is expected to decrease by about 3 Lpcd on the short term 
(2020–2039). But it will rise again and the difference with respect to current values 
will gradually drop to 2, 1 and 0 Lpcd, under RCP 4.5, 6 and 8.5, respectively, by the 
end of the century (Fig. 13a). To note that, under RCP 2.6, minimum and maximum 
temperatures remain fairly constant throughout the century.

3.3 Impacts on Total Demand 

The total population size of GBA was forecasted by the Greater Beirut Water Supply 
Augmentation project (CDR 2017). It is expected to reach 3.5 million by 2035, 
compared to a current population of 2.0 million. Thus, about 46% increase in domestic 
water demand is expected due to population growth alone, leading to a yearly deficit 
of 227.7 MCM (CDR 2017). 

On top of that, this study showed that climate change would cause an additional 
increase in domestic demand (during the dry period) of 45–90 thousand cubic meter 
per month on the short term (2020–2039) and 90–270 thousand cubic meter per 
month on the long term (2080–2099), as a best-case scenario as without consid-
ering population growth. Despite the fact that these figures do not seem substantial 
compared to the total yearly deficit, they are expected to occur at the most sensitive 
time of the year. In fact, the dry period is the most water stressed time of the year. 
Commonly, the water supply is not sufficient and most citizens buy tanked water at 
high prices and without any quality control measures. Thus, the expected monthly 
increase in water demand would result in an acute deficit during summer, accompa-
nied by economic impacts and a possible surge in water-borne diseases. The latter 
was already proved to be substantial in Beirut due to the anticipated temperature 
increase alone (Yamout and El-Fadel 2005). 

4 Conclusions and Recommendations 

This study addresses one component of the anticipated socio-economic impacts of 
climate change on GBA, that is the increase in water demand. When combining all 
effects, including those of rising temperatures, reduced water availability, increased 
heat waves and heat island effect, among others, the anticipated additional burden 
looks disastrous—considering the already high vulnerability of GBA. In response, 
the Lebanese national and regional water authorities often advocate measures to 
ensure additional supply. Examples of planned projects for increased supply to GBA 
include: Awali river conveyor, Bisri dam, Janneh dam and Damour dam.
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Fig. 13 Simulated water demand (lpcd) under RCP 2.6, 4.5, 6.0, and 8.5 for the three models: a 
minimum monthly average, b maximum monthly average
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In such a data-scarce environment, Lebanon lacks detailed analysis of its water 
demand and influencing factors. This work investigated the link between domestic 
water demand patterns with monthly meteorological data and remotely sensed land 
surface temperature. The water demand pattern was found to be well described 
through minimum air temperature, humidity, wind and solar radiation, providing 
R2 exceeding 0.7. Temperature was found to be highly correlated to water demand, 
and as it is the only dataset providing forecasts in the context of scenarios of climate 
change, it was used to forecast domestic water demand. Without considering an 
increase in population, an increase of 45–90 thousand cubic meter per month on the 
short term (2020–2039) and 90–270 thousand cubic meter per month on the long 
term (2080–2099) is expected for Beirut. 

With domestic demand making up 76.9% of the total demand (Hamdar et al. 2015; 
MoEW 2012), assuming no agricultural water demand in GBA, attention should be 
drawn to the reduction of domestic water demand. This is especially true in the case 
of GBA where network losses are high (average of 47.5% in Lebanon compared to 
35% global average) (MoEW 2012). In fact, a smart metering pilot test performed 
over a Achrafieh zone, as part of the Greater Beirut Water Supply Project, showed 
network losses of 52.4% (Bambos 2018). The average deficit between actual supply 
and demand, at the study zone, was found to be 53.5 Lcpd, equivalent to 28.95% of 
the demand. 

Yet, efficient planning for reduced water demand calls for improved availability 
of accurate and systematic data. The whole country, including GBA, lacks actual 
demand figures due to (1) incomplete metering infrastructure and (2) absence of 
governmental monitoring and control of private water distribution businesses. Simi-
larly, losses and actual water supply (reaching the consumer end) are not tracked by 
water authorities. 
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