
A Proposal for a Computational
Framework Architecture and Design
for Massive Virtual World Generation

and Simulation

Zintis Erics(B) and Arnis Cirulis

Faculty of Engineering, Vidzeme University of Applied Sciences, Valmiera, Latvia
{zintis.erics,arnis.cirulis}@va.lv

Abstract. In recent decades, computer games have become a perva-
sive form of entertainment leading to dramatic growth in complexity
and scale in terms of content and employed technologies. However, sev-
eral flaws in design methodology complicate the development process
of massive and highly interactive virtual worlds. This paper proposes a
novel architecture for a computational framework to cope with the grow-
ing complexity and scale of computer games. The research done should
provide both a conceptual basis for a data driven development method-
ology and a practical implementation of systems designed for integration
of various computation technologies. This paper lays out the proposed
architecture, discusses concepts and design considerations involved and
notes future research required.

Keywords: Computer simulations · Computer games · Virtual
worlds · Level of detail · Algorithmic efficiency

1 Introduction

In the last few decades computer games have gained in popularity as a widely
available form of entertainment, even more so in the last few years [3]. This rise
can be mostly attributed to computer games being able to offer various challenges
and immersion into virtual worlds. These capabilities are further enhanced by the
continued rise in computational power and availability of consumer grade hard-
ware furthering the graphics fidelity of virtual worlds. However, these advances
are approaching the limits of what is reasonable [25]. The combination of these
aspects has put focus on the intelligence, or lack thereof, within virtual worlds.
More often than not, this intelligence is painted in a negative light. Classical
examples of this include artificial intelligence (AI) driven non-player charac-
ter (NPC) obliviousness to the changing environment or incapability to choose
effective tactics in combat. Equally, if not more, problematic can be the lack of
appropriate challenge presented by such NPCs often seen as incapable of exploit-
ing obvious weaknesses in the player’s tactics or inability to track line of sight
c© Springer Nature Switzerland AG 2022
L. T. De Paolis et al. (Eds.): XR Salento 2022, LNCS 13445, pp. 37–47, 2022.
https://doi.org/10.1007/978-3-031-15546-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15546-8_3&domain=pdf
http://orcid.org/0000-0002-8467-5659
http://orcid.org/0000-0001-9577-0646
https://doi.org/10.1007/978-3-031-15546-8_3


38 Z. Erics and A. Cirulis

exploiting targets. These and many other observations led to the realization that
existing methods and techniques for computer game AI development and imple-
mentation are incapable to efficiently scale with the growing size and complexity
of virtual worlds.

This incapability should be considered alongside the various issues concerning
the interactivity of virtual worlds. The most prevalent examples are the various
implementations of world borders, an artificial and sometimes blatantly obvious
limitation of where the players can go and explore. The inability to interact with
seemingly functional objects or the limitation of being able to break down walls,
chop trees or dig ground only in very specific, designer approved and specially
prepared places. Not to mention the impossibility to climb over various kinds of
fallen trees, rocks or mountains that would be perfectly reasonable maneuvers in
real life. These issues have been prevalent for decades and are often accepted as
design or hardware limitations. While there are games that successfully address
select issues [9,11,21], these often come with a significant increase in development
time and a shift or two in design philosophy often making the solutions one of
the selling points and core elements of the game [11,21].

Both of these limitations, in the realms of intelligence and interactivity, often
stem from the practice of faking various real-life systems with minimal effort. The
fakes will often look akin to the real-life counterparts when viewed or interacted
with from angles or in ways anticipated by the designers. The illusion tends
to dissipate rapidly when used in an unusual way, giving rise to various bugs
and exploits. Fixing such issues often requires patching each individual location
or redesigning the involved systems. While the first fix may be attractive in
smaller projects, its efficiency in terms of development time falls short in larger
ones. On the other hand, the second fix may be overkill for smaller projects, but
the only reasonable option for larger ones. Additionally, system redesign often
places requirements on or reveals flaws in other systems resulting in a cascade of
redesigns. All of these issues intensify when considering moddable games. In such
cases, the original designers do not control all the potential content of the game.
This requires robust, expressive, performant and well-documented systems and
limits the original designers’ capability to redesign existing systems requiring
more refined implementation from the start.

This methodology of faking systems and various related techniques comes
from a time when visual spectacle was one of the main goals and computational
resources were much more limited, especially on consumer grade hardware. In
the time since the spectacle has been polished to such a degree that further
improvements are marginal at best [25], and as a result, focus is being shifted to
game design. In addition, the research and advances in algorithm and simulation
design are more accessible than ever before. As such, this paper identifies key
requirements and proposes an architecture of a data driven simulation frame-
work for generation and operation of scalable virtual worlds. The rest of this
document is laid out as follows: the Sect. 2 offers a brief overview of the most
notable problems observed and expands on several requirements for the proposed
framework. Section 3 provides overview of the main concepts of the proposed
framework and Sect. 4 follows up with a discussion of the more obscure yet



A Proposal for a Computational Framework Architecture and Design 39

fundamental aspects of the architecture. Finally, the Sect. 5 draws conclusions
and lays out future work.

2 Problems and Requirements

One of the main reasons for the aforementioned issues is the lack of data; this is
an internal consequence especially visible in moddable games. In the intelligence
department, this is often seen as NPC unawareness of certain objects, states or
entire systems that are represented to the player. A prime example are various
animation states or even animation systems in general. Another area to consider
is the lack of NPC memory of objects or states, especially in combination with
spatial awareness, an example scenario would be tracking or intercepting a target
through a complex environment like a city. One final aspect to consider would be
awareness of other NPCs, such capabilities would aid in both, strategical analysis
for long-term planning and tactical analysis for more complex combat encoun-
ters. All of this should be considered in an environment that can present partial
or even misleading information, such as limited visibility or use of camouflage,
to both players and NPCs.

Meanwhile, in terms of interactivity, one of the hardest problems to solve
would be the world borders as these represent the fundamental spatial limitations
of the area of content, removing these would require either a planet’s worth of
content [11,20,30] or procedural generation [11,21]. The problem of both terrain
and object destructibility seems simple enough until potential implications on
structural stability or object functionality are considered [9,21]. The climbing
problem would be simple to solve on its own, albeit it would require redesign of
world borders and various other systems to account for the player’s location in
unusual places [23].

This is only half of the story. One also needs to consider where to acquire the
data required and how to use it. In most of the aforementioned problems most of
the complexity lies in the use of the data while its acquisition provides only minor
to no hindrance. An exception to this rule is the world border problem. Here the
complexity shifts almost exclusively to data acquisition. In terms of intelligence,
the availability of all the aforementioned data would lead to a severe increase in
requirements for computational power and AI complexity. These would increase
further because of multiplying possibilities to consider in terms of interactivity.

While the computational power necessary for reasonably accurate solutions
to aforementioned problems is available on consumer grade hardware, the issues
often lie in its inefficient use. For example, several of the most popular game
engines offer limited multithreading support, often restricting engine access to
a single thread [8,13]. While this simplifies engine design, it complicates, hin-
ders and requires special considerations in the use of multithreading in games
[28,33]. Such design decisions may have been reasonable in previous decades,
but with the rise and focus on CPU core counts in the recent years [14,19],
it is becoming a problem. Another issue is the object-oriented programming
paradigm often employed in game design. While it is the bread and butter of



40 Z. Erics and A. Cirulis

modern programming practices [17] and easy to use, it often leaves performance
on the table when it comes to systems and algorithms working on large amounts
of objects [10].

This leads us to the first major requirement of the proposed framework, the
ability to use as much performance as possible while still being approachable by
developers used to the old ways. The second requirement is maximal modularity.
This should aid in both system development and moddability of the resulting
games, as well as portability of designed systems. The third and final major
requirement is maximal usability outside the gaming industry. This effectively
means that the framework should be generic enough to be usable for simulation
and computation in other industries and scientific pursuits. One minor require-
ment should be addressed: the portability of the framework itself. This means
that the framework should be developed to maximize simplicity, and minimize
and compartmentalize the reliance on and interaction with the engine. This is
of secondary priority though and perfect portability is most likely unachievable,
albeit such development practices should aid in porting of both the framework
itself and various systems developed within it to other game engines.

3 Framework Architecture

The overall architecture of the proposed framework consists of three main con-
cepts: worlds, simulations and layers (see Fig. 1). Each world encapsulates a
system of simulations and functions as an ordered directed acyclic graph. Each
simulation is a process that executes some kind of computation receiving inputs
and producing outputs. The input and output data of a simulation is partitioned
into layers, each layer functions as a container holding data of a similar nature.

Fig. 1. An overview of the architecture depicting the looping operation of the entire
system, nesting of worlds, parallel execution of simulations without interdependencies
and linear execution of a distributed simulation.



A Proposal for a Computational Framework Architecture and Design 41

A world functions similarly to a higher order simulation, it has inputs and
outputs, represents an arbitrary computational process and can be executed.
This means that a world can be used as a simulation itself allowing for greater
flexibility given by a nested approach to the overall system architecture. In this
sense, a world represents a higher order process that facilitates access to and
orchestration of other processes. To this end, it provides access to the underly-
ing simulations to external processes, executes the simulations when requested
and manages the computational graph. In addition, the world is responsible for
passing the data, in form of layers, along the computation path while individual
simulations are responsible for interpreting and linking of their relevant input
and output layers. Such division of responsibility should allow for addition and
replacement of individual simulations while still maintaining the possibility to
use custom communication formats between knowledgeable simulations.

The simulations themselves can represent any computational process. This
includes, but is not limited to, classical simulations using agent, event or stock-
based approaches as well as various hybrids. The computation itself can use any
means necessary to arrive at the result, for instance, classical algorithms executed
on the CPU, parallel algorithms executed on the GPU or special purpose schemes
such as ECS. Note that this flexibility extends beyond single processes or even
machines, individual simulations could be executed in a distributed fashion with
or without knowledge of encompassing worlds. This is aided by the worlds only
passing around layers, effectively pointers to arbitrary data collections. Since
simulations and layers do data linking and interpretation, this allows for more
performant use schemes amongst knowledgeable simulations by exploiting access
to the raw data. Additionally, this allows for smart layers hiding the complexities
and potentially distributed nature of the underlying data by providing a generic
access interface.

The layers provide a data exchange interface that satisfies patterns for generic
and more specialized raw access to the underlying data. Moreover, the generic
access can hide various peculiarities of the underlying data storage such as dis-
tribution over the network or processes and internal data structure complexities
as well as the use of various caches to aid efficiency. Meanwhile, the raw access
serves as a more direct route to the underlying data storage exposing all the
peculiarities and controls of the distribution process. This effectively means that
the underlying data storage can use any means, regions or entities from a struc-
tural standpoint and RAM, VRAM, HDD, SSD or network resources from a
technology standpoint.

Some general notes need to be addressed. First, while this architecture allows
mixing of various technologies through generic interfaces, it also emphasizes per-
formance gains by using a single technology throughout facilitated by the raw
access interfaces. It is probable that these smart layer interfaces will aid in the
use of various linking techniques amongst knowledgeable simulations increasing
the overall performance by cutting out unnecessary back and forth transfor-
mations. Second, this architecture uses similar principles to already established
technologies such as ECS [1,18,32] and GP GPU [31] and can be considered a



42 Z. Erics and A. Cirulis

more generic approach encompassing both. This framework will aid in practical
use and combination of various technologies exploiting benefits of each while
minimizing drawbacks, as well as providing common terminology and metrics
for discussing various technicalities.

4 Design Considerations

In addition to the aforementioned general structure, several other aspects need
to be considered, the first of which is the temporal integration methodology. It
must be noted that one of the expected main use cases of the proposed frame-
work involves various simulations of drastically different temporal scales. This
effectively means that a world may be executing varied simulations concerning
everything from cosmological scale mega structure and galaxy formation to the
processes of individual cells and tissues. Such a variety of processes has a match-
ing variety of effective temporal resolutions, meaning that a scheduler is required
to execute all simulations at the right times to maintain both simulated process
integrity and overall system efficiency. Additionally, each world and simulation
may have its own scheduler. This is aided by the nested overall structure, but also
means that each simulation must use the same generic scheduling interface. This
also implies that each individual simulation may use its own internal scheduling
methodology as long as it conforms to the external interface. To achieve this at
least two scheduling strategies will be provided, a more discrete one using the
closest discrete bins based on powers of two [29] and a more arbitrary one using
an unbalanced binary tree with a smart iterator. Of course, any other strategy
may be implemented and used, as long as it conforms to the external interface.

Similarly, the spatial integration methodology also requires consideration.
In this case, the same foreword can be referred to for a visualization of the
vast differences in the spatial scale of simulated processes. However, this case
is more complicated than temporal integration since various simulations may
use vastly different methods for partitioning the simulated region. So far various
methods have been observed, chiefly amongst them are the classical grid-based
approaches [6], various octree-based implementations [2], use of Voronoi tessel-
lation and Delaunay triangulation [29] and simple collections of discrete enti-
ties [29]. It should be noted that the proposed framework needs to be able to
support use cases in both two and three-dimensional space as well as different
coordinate systems local to larger entities such as planets and moons. Together
all of this means that the external interface of layers needs to support generic
value lookups based on coordinates and a reference coordinate system while
providing some additional information such as coordinate system extents and
translation functions between local and global coordinate systems. These con-
siderations raise concerns regarding potential loss of precision across different
coordinate system interfaces. As an extreme example, the coordinates necessary
for an astrophysical simulation spanning hundreds of parsecs cannot be put on
the same 64-bit float as the ones measured in nanometers and used in bacterial
simulations, certainly not without loss of precision. Moreover, while indefinite



A Proposal for a Computational Framework Architecture and Design 43

precision numerical schemes that could allow for unified storage exist [26], these
are almost exclusively implemented in software and prohibitively expensive in
terms of computational power [12]. Additionally, the highest performance hard-
ware available to consumers prioritizes support of 32-bit floats [15,24] leading to
a necessary choice between performance and precision.

So far, we have discussed the proposed framework’s support for two types
of dynamic resolutions, temporal and spatial. Both of these concepts have for
decades been used as ways to improve simulation efficiency by cutting out unnec-
essary detail [2]. In a sense, this goal is the same as that of level of detail (LOD)
systems used in computer games, also, for a considerable amount of time [27].
These LOD systems increase the performance of games mainly by limiting the
resolution of graphical assets used for far away objects while maintaining accept-
able graphical fidelity. As such we consider the concepts of temporal and spa-
tial resolutions to be just single aspects of larger concepts, temporal level of
detail (T-LOD) and spatial level of detail (S-LOD) respectively. This assump-
tion aids in two aspects, firstly it provides umbrella terms to group various not
only resolution-based techniques together and, secondly, it provides a flexible
terminology to measure and manipulate the fidelity of simulations. The regard
of these concepts, alongside the terminology, have paved the way for another:
functional level of detail (F-LOD). This is the concept of changing the executed
simulation logic based on the required fidelity of the region under consideration.
While, at first glance, this may seem similar to S-LOD, F-LOD merely builds
on top of it. Where S-LOD partitions space into regions of varying sizes, F-LOD
decides what logic should be executed upon them, meanwhile T-LOD determines
how often this execution should happen. Note that some games [4,16,22] and
simulations [34] have used similar techniques, but to our knowledge, there has
been no attempt of consolidating these approaches under a single banner.

In the previous discussion, we briefly mentioned fidelity, and while the con-
cept itself is clear, it expresses how close a replica is to the original, the question
lays in the measurement of perceived fidelity. Perceived fidelity is of importance
since it effectively measures what level of fidelity can be expressed given the
observer’s interface. The key factors to consider here are the limitations of the
observer’s interface. These introduce a point beyond which any increase in fidelity
does not produce any noticeable effect [7]. In classic LOD systems, this is mea-
sured using geometric and pixel errors relative to the highest fidelity assets avail-
able. The system tries to minimize these errors while remaining within bounds
of its limited resources [5]. This raises an important question: how should the
errors be measured in temporal, spatial and functional aspects of various simula-
tions? While the exact measurement unit is unimportant, what is of paramount
importance is the relative stability and consistency of the measurements used by
various simulations. While the exact considerations and guidelines of this system
remain unclear and a subject to further study what is clear is that significant
considerations should be directed to the observer attachment to certain aspects
of the virtual world. In this sense attachment effectively measures how noticeable
would be the loss of the aspect under consideration. Again, this is of paramount



44 Z. Erics and A. Cirulis

importance since the focus of the entire framework is to provide believable and
consistent virtual worlds on a massive scale within limited resources. Under
such conditions exploration is inevitable, which will lead to the generation of
new or LOD increase of the existing regions of the world. This will also lead
to pressure on the limited resources and the need to lower the LOD or entirely
leave something out. One of the first things to leave would be something of the
least consequence for the observers. The currently unresolved question is how to
measure this potential consequence, this attachment in a stable and consistent
manner. Again, this is a subject for further study.

The preceding outline paints the proposed framework as a system of simu-
lations for partial or complete generation and evolution of interactive environ-
ments with potential to use both random and hard-coded initial conditions. This
brings up the discussion regarding two of the main algorithm design considera-
tions: evolution and generation. In this sense the evolution is the application of
iterative logic to the simulation state advancing it to the next one in time. This
methodology can be employed to both create content and provide interactivity.
Meanwhile, generation is the application of initialization logic to create a simula-
tion state. This methodology can only be used to create content. The evolution
methodology is mostly used for simulations in more scientific endeavors due
to its temporal causality and problem domain complexity while the generation
methodology is mostly applied to computer games due to the lack of computa-
tional resources for complex simulations and necessity for perfect realism. In this
context let us recall that the proposed framework may need to increase LOD or
generate entirely new regions in response to observer exploration. As such at
least parts of the region state, if not the entire region, would need to be created
using the generation methodology. This effectively means that to ensure consis-
tency with already existing, potentially evolved regions the generation method
used would need to rapidly bring the state of the region to the desired point in
time or LOD while still maintaining the desired fidelity. Again, depending on
the complexity of the simulations and temporal interdependencies of the region
states involved it may not be feasible to evolve the region due to computational
resources or temporal logistics. This means that each simulation with multiple
LODs or indefinite bounds would need at least two algorithms, one for evolving
the regions normally and the other for increasing LOD or generating new regions
on the spot. While for simpler simulations with fewer time steps repeated appli-
cation of evolution logic to generate new regions could be performant enough,
that cannot be said for more complex simulations, worlds that are advanced sig-
nificantly far enough in time or LOD increase. Moreover, it may be difficult to
provide matching generation algorithms for more complex simulations, as such
this is a subject for further study.

Altogether it can be seen that the proposed framework would specialize in
the creation and operation of partial virtual worlds in a sense that these worlds
would not be complete due to the constraints of computational resources. As such
these worlds would have more realized regions and ones that are more imaginary
in the sense of higher and lower simulation LODs respectively. Effectively the



A Proposal for a Computational Framework Architecture and Design 45

created virtual worlds would not be complete realizations, rather they would be
more akin to a moving window serving as an interface with everything out of its
bounds, potentially blurred. In this regard the key challenges lie in designing a
system that could adapt to observer interactions in a performant enough way
to keep up with the required fidelity while remaining flexible enough to support
moddability and incorporation of both standard and cutting-edge technologies.

5 Conclusion

This paper outlined and exemplified some systematic problems concerning com-
mon patterns employed in the design methodology of computer game systems.
For brevity, we classified these into two avenues: intelligence and interactivity.
We noted several performance, modularity and portability requirements that
should be addressed to construct a framework to successfully alleviate these
issues. Next, we proposed such a framework employing data driven development
methodology that should fulfil the noted requirements and sketched its core
architecture in terms of worlds, simulations and layers. We also noted several con-
siderations to take into account during the proposed framework’s development
phase, namely, temporal, spatial and functional integration, perceived fidelity
and observer attachment and the mixed use of both evolution and generation
algorithms.

In addition, we noted several areas for further study, specifically, the mea-
surements of error terms in temporal, spatial and functional integration, the
evaluation of observer attachment and matching evolution and generation algo-
rithms. Albeit it must be noted that these are largely overarching conceptual
directions, as such most of the following research should concern implemen-
tation technicalities. In this regard we already foresee a number of potential
avenues chiefly concerning massively parallel algorithm design, implementation
and notation as well as other, more miscellaneous questions.

References

1. Andrea Catania: Godex, March 2022. https://github.com/GodotECS/godex.
Accessed 29 Mar 2022

2. Barnes, J.H., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Nature
324, 446–449 (1986)

3. Barr, M., Copeland-Stewart, A.: Playing video games during the Covid-19 pan-
demic and effects on players’ well-being. Games Cult. 17(1), 122–139 (2022).
https://doi.org/10.1177/15554120211017036

4. Bay 12 Games: Slaves to Armok: God of blood Achapter II: Dwarf fortress. https://
www.bay12games.com/dwarves. Accessed 1 Mar 2022

5. CesiumGS: 3D Tiles, February 2022. https://github.com/CesiumGS/3d-tiles/
blob/main/3d-tiles-reference-card.pdf. Accessed 1 Mar 2022

6. Chan, K.H., Im, S.K.: Fast Grid-Based Fluid Dynamics Simulation with Conser-
vation of Momentum and Kinetic Energy on GPU, pp. 299–310, December 2017.
https://doi.org/10.1007/978-3-319-71598-8_27

https://github.com/GodotECS/godex
https://doi.org/10.1177/15554120211017036
https://www.bay12games.com/dwarves
https://www.bay12games.com/dwarves
https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-reference-card.pdf
https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-reference-card.pdf
https://doi.org/10.1007/978-3-319-71598-8_27


46 Z. Erics and A. Cirulis

7. Deering, M.: The Limits Of Human Vision, October 2000
8. Gerke Max Preussner: East coast devcon 2014: Concurrency & parallelism

in ue4 - tips for programming with many CPU cores, April 2015. https://
www.slideshare.net/GerkeMaxPreussner/concurrency-parallelism-in-ue4-tips-for-
programming-with-many-cpu-cores. Accessed 29 Mar 2022

9. Ghost Ship Games: Deep rock galactic. https://store.steampowered.com/app/
548430/Deep_Rock_Galactic. Accessed 1 Mar 2022

10. Ali, H.: Why OOP is not performance efficient, May 2020. https://www.linkedin.
com/pulse/why-we-need-move-from-oop-hadid-ali. Accessed 29 Mar 2022

11. Hello Games: No Man’s Sky. https://www.nomanssky.com. Accessed 1 Mar 2022
12. Turner-Trauring, I.: Massive memory overhead: Numbers in python and how

NumPy helps, October 2021. https://pythonspeed.com/articles/python-integers-
memory. Accessed 29 Mar 2022

13. Bonastre, J.: Why should I use threads instead of coroutines?, November
2016. https://support.unity.com/hc/en-us/articles/208707516-Why-should-I-use-
Threads-instead-of-Coroutines. Accessed 29 Mar 2022

14. Rupp, K.: 42 years of microprocessor trend data, February 2018. https://www.
karlrupp.net/2018/02/42-years-of-microprocessor-trend-data. Accessed 29 Mar
2022

15. Carbotte, K.: Nvidia’s new Titan v pushes 110 teraflops from a single
chip, December 2017. https://www.tomshardware.com/news/nvidia-titan-v-110-
teraflops,36085.html. Accessed 29 Mar 2022

16. Ludeon Studios: Rimworld. https://store.steampowered.com/app/294100/
RimWorld. Accessed 1 Mar 2022

17. Medi Madelen Gwosdz: If everyone hates it, why is OOP still so
widespread?, September 2020. https://stackoverflow.blog/2020/09/02/if-everyone-
hates-it-why-is-oop-still-so-widely-spread. Accessed 29 Mar 2022

18. Michele Caini: EnTT, March 2022. https://github.com/skypjack/entt. Accessed
29 Mar 2022

19. Bailey, M.: Parallel programming: Moore’s law and multicore, March 2022. https://
web.engr.oregonstate.edu/~mjb/cs475/Handouts/moores.law.and.multicore.2pp.
pdf.Accessed 29 Mar 2022

20. Mobius Digital: Outer wilds, https://store.steampowered.com/app/753640/
Outer_Wilds. Accessed 1 Mar 2022

21. Mojang Studios: Minecraft. https://www.minecraft.net. Accessed 1 Mar 2022
22. Netcore Games: Tales of Maj’eyal, https://te4.org. Accessed 1 Mar 2022
23. Nintendo: The legend of Zelda: Breath of the wild. https://www.zelda.com/breath-

of-the-wild. Accessed 1 Mar 2022
24. NVIDIA Corporation & affiliates: CUDA C++ Programming Guide, March 2022.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed
29 Mar 2022

25. Gallaga, O.L.: Is it really worth upgrading your PC for ‘ultra’ gaming graphics?,
February 2021. https://debugger.medium.com/is-it-really-worth-upgrading-your-
pc-for-ultra-gaming-graphics-634c61c6f75f. Accessed 29 Mar 2022

26. Python Software Foundation: Built-in Types, March 2022. https://docs.python.
org/3/library/stdtypes.html. Accessed 29 Mar 2022

27. RasterGrid Kft.: GPU based dynamic geometry LOD, October 2010. https://www.
rastergrid.com/blog/2010/10/gpu-based-dynamic-geometry-lod. Accessed 29 Mar
2022

28. Meredith, R.: Simple multithreading for unity, July 2017. https://richardmeredith.
net/2017/07/simple-multithreading-for-unity. Accessed 29 Mar 2022

https://www.slideshare.net/GerkeMaxPreussner/concurrency-parallelism-in-ue4-tips-for-programming-with-many-cpu-cores
https://www.slideshare.net/GerkeMaxPreussner/concurrency-parallelism-in-ue4-tips-for-programming-with-many-cpu-cores
https://www.slideshare.net/GerkeMaxPreussner/concurrency-parallelism-in-ue4-tips-for-programming-with-many-cpu-cores
https://store.steampowered.com/app/548430/Deep_Rock_Galactic
https://store.steampowered.com/app/548430/Deep_Rock_Galactic
https://www.linkedin.com/pulse/why-we-need-move-from-oop-hadid-ali
https://www.linkedin.com/pulse/why-we-need-move-from-oop-hadid-ali
https://www.nomanssky.com
https://pythonspeed.com/articles/python-integers-memory
https://pythonspeed.com/articles/python-integers-memory
https://support.unity.com/hc/en-us/articles/208707516-Why-should-I-use-Threads-instead-of-Coroutines
https://support.unity.com/hc/en-us/articles/208707516-Why-should-I-use-Threads-instead-of-Coroutines
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data
https://www.tomshardware.com/news/nvidia-titan-v-110-teraflops,36085.html
https://www.tomshardware.com/news/nvidia-titan-v-110-teraflops,36085.html
https://store.steampowered.com/app/294100/RimWorld
https://store.steampowered.com/app/294100/RimWorld
https://stackoverflow.blog/2020/09/02/if-everyone-hates-it-why-is-oop-still-so-widely-spread
https://stackoverflow.blog/2020/09/02/if-everyone-hates-it-why-is-oop-still-so-widely-spread
https://github.com/skypjack/entt
https://web.engr.oregonstate.edu/~mjb/cs475/Handouts/moores.law.and.multicore.2 pp.pdf
https://web.engr.oregonstate.edu/~mjb/cs475/Handouts/moores.law.and.multicore.2 pp.pdf
https://web.engr.oregonstate.edu/~mjb/cs475/Handouts/moores.law.and.multicore.2 pp.pdf
https://store.steampowered.com/app/753640/Outer_Wilds
https://store.steampowered.com/app/753640/Outer_Wilds
https://www.minecraft.net
https://te4.org
https://www.zelda.com/breath-of-the-wild
https://www.zelda.com/breath-of-the-wild
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://debugger.medium.com/is-it-really-worth-upgrading-your-pc-for-ultra-gaming-graphics-634c61c6f75f
https://debugger.medium.com/is-it-really-worth-upgrading-your-pc-for-ultra-gaming-graphics-634c61c6f75f
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://www.rastergrid.com/blog/2010/10/gpu-based-dynamic-geometry-lod
https://www.rastergrid.com/blog/2010/10/gpu-based-dynamic-geometry-lod
https://richardmeredith.net/2017/07/simple-multithreading-for-unity
https://richardmeredith.net/2017/07/simple-multithreading-for-unity


A Proposal for a Computational Framework Architecture and Design 47

29. Springel, V.: E pur si muove:galilean-invariant cosmological hydrodynamical simu-
lations on a moving mesh. 401(2), 791–851 (2010). https://doi.org/10.1111/j.1365-
2966.2009.15715.x

30. System Era Softworks: Astroneer. https://store.steampowered.com/app/361420/
ASTRONEER. Accessed 1 Mar 2022

31. Unity Technologies: Compute shaders. March 2022. https://docs.unity3d.com/
2022.2/Documentation/Manual/class-ComputeShader.html. Accessed 29 Mar
2022

32. Unity Technologies: Entities overview, March 2022. https://docs.unity3d.com/
Packages/com.unity.entities@0.50/manual/index.html. Accessed 29 Mar 2022

33. Blanco, V.: Multithreading overview March 2021. https://vkguide.dev/docs/extra-
chapter/multithreading. Accessed 29 Mar 2022

34. Weinberger, R., Springel, V., Pakmor, R.: The Arepo public code release. Astro-
phys. J. Suppl. Ser. 248(2), 32 (2020). https://doi.org/10.3847/1538-4365/ab908c

https://doi.org/10.1111/j.1365-2966.2009.15715.x
https://doi.org/10.1111/j.1365-2966.2009.15715.x
https://store.steampowered.com/app/361420/ASTRONEER
https://store.steampowered.com/app/361420/ASTRONEER
https://docs.unity3d.com/2022.2/Documentation/Manual/class-ComputeShader.html
https://docs.unity3d.com/2022.2/Documentation/Manual/class-ComputeShader.html
https://docs.unity3d.com/Packages/com.unity.entities@0.50/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.50/manual/index.html
https://vkguide.dev/docs/extra-chapter/multithreading
https://vkguide.dev/docs/extra-chapter/multithreading
https://doi.org/10.3847/1538-4365/ab908c

	A Proposal for a Computational Framework Architecture and Design for Massive Virtual World Generation and Simulation
	1 Introduction
	2 Problems and Requirements
	3 Framework Architecture
	4 Design Considerations
	5 Conclusion
	References




