
DSPPTD: Dynamic Scheme for Privacy
Protection of Trajectory Data in LBS

Ajay K. Gupta and Sanjay Kumar

1 Introduction

Location-aware service [1–3] is a type of context-aware services in which location
is provided as input to the system. The system takes location as input and provides
services to the user. The location may be geometric, i.e., latitude and longitude form,
or it may be semantic, i.e., near and within. User querying the services provides his
or her location to service providers believing that the correct location would improve
the quality of services (QoS). However, it led to a risk of disclosure of private and
confidential information [4]. It is highly challenging to design efficient trade-off
between the QoS and privacy of the mobile user. In location-based services, the user
provides his current location to the third party for a service request. An attacker
(or untrusted service provider) may make an inference attack [5] through these live
locations of the user may infer the personal confidential information regarding his
health or lifestyle by observing location, duration of stay, and habits of activity
performed by him. So, this is a security and privacy problem. The aim here is to
reduce the privacy leakage risk as well as to provide the quality of service.

The general architecture of the cellular mobile environment [15, 16] consists of
mobile units (MU), fixed hosts (FHs), and base stations (BSs). The BS has its fixed
location, functions with two-way radio, and has some data processing capabilities.
The basic function of data and transaction management is done by the database
server (DBS). Many BSs and FHs are linked via a high-speed network. Each cell
has a limited radio coverage area and a BS to manage mobile clients. The cell
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can be seen as a limited bandwidth radio coverage area and normally represented
by the shape of a hexagon. In wireless local area networks, it can be treated as a
high bandwidth network within the area of the building. The wireless channel is
splitted in two channels known as uplink and downlink channels. Here, the first
one is utilized for the submission of the mobile client’s queries, and the second is
used to answer the mobile client queries by the mobile switching stations (MSSs).
The base station controller (BSC) is used to control the various BSs. The mobile
switching center (MSC) gives commands to BSC to control an appropriate BS.
Unlimited mobility in personal communications service, global system for mobile
communication, and reachability to any BS or FH facilitate many services being
easy to deploy in the real world. The public switched telephone network and MSC
connects the databases available for a mobile environment to the outer world.

The mobile transactions run in the frequent disconnection mode. Due to mobility
and frequent disconnection behavior of these mobile transactions, they are long-
lived. The data and/or user may also move in a mobile environment. Therefore,
the mobile transaction may have their associated sub-transactions (cohorts). Among
those, some may run on the MSS and some may run on mobile nodes. Due to the
disconnection and mobility nature of the transaction, it shares its information of
states and also partial results with other transactions. Also, the mobile transaction
should fulfill some prerequisites to work well in the environment of mobility.
With the mobility nature of nodes, the state of the data object being accessed
and the corresponding location information must also move. There should be the
availability of the techniques to deal with concurrency, frequent disconnection,
and consistency between replicated data objects residing at different locations.
The mobile transactions are also executed in a distributed manner, which may
be subjected to further restrictions such as limited bandwidth. Evolving commit
protocols [17] for a distributed transaction in the presence of mobility is the most
challenging task in comparison with the generic environment. Here, the mobile
transaction may need to deal with the forced wait or forced abort, if wireless
channels (uplink or downlink) are not available at any instant of time, and this could
be delayed due to hand off randomly. The mobile transactions might not be in a
position to complete its implementation due to the unavailability of full database
management system (DBMS) capability [18]. This is the reason why conventional
transaction control strategies are not well suited to the mobile environment. If the
connection is not possible to mobile nodes or due to high expenses in continuous
connection, the mobile host can decide to work in disconnected mode also. Based
on the locations of initiation and execution of the mobile transaction, it can be
classified into three types. The first category is of those mobile transactions, which
are both initiated and executed by a mobile host (MH). The second category is of
those mobile transactions [19], which are initiated by fixed host (FH), but executed
by the MH. The third category is of those mobile transactions, which are initiated
by MH, but executed by both MH and FH. In the mobile transaction environment,
where MH initiates transactions but executed completely by FH, the MH requires
no record retrieval capability.
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The location-dependent information system (LDIS) is an application of context-
aware computing in the mobile environment where the transaction is initiated
and/or executed by MH. Moflex is an example of this type of scenario. This
model primarily stood on dependencies set, suitable goals, and also on rules.
Sub-transactions for location-based services are also supported by this model. A
further version of the same scenario is pre-serialization, which permits the cohorts
of the global transactions to commit independently. The serialization technique
permits in releasing the nearby resources in a well time-stamped way. There is
need of integrating revised data visualization and indexing technique of data item
in LDIS for user-friendly response and faster access rate, respectively. A number of
mobile devices together with the personal digital assistants has very small screens.
Therefore, the requirement for potential future research work is to consider the
mobile system screen size and computational limits when developing lightweight
simulation methods for desktop and handheld apps applications. Indexing in LBS
is used to get faster search results. Before one can search through the LBS,
he has to create a search engine index. It facilitates power saving mode to
the client until queried records arrive on the requested channel. Index overhead
induced by an LBS implementation certainly affects indexing approach selection.
The proportional frequency of queries vs. updates especially favors either query-
optimized or update-optimized indexing approaches. The scope of future research
is toward an investigation of trajectory and filtering approaches to further enhance
the efficiency of these indexing approaches in terms of updating and querying.

1.1 Problem Statement

The past trajectory privacy protection approaches mostly rely on obfuscation of
the trajectory locations and add more uncertainty to preserve privacy. However, it
is challenging to monitor the trade-off between the efficacy of trajectory privacy
security and the usefulness for spatial and temporal behavior, and this problem
has not been thoroughly explored or measured in past strategies [6, 10]. The
recent analyses concentrate predominantly on the spatial component of trajectory
details, whereas other semantics such as thematic and temporal attributes are seldom
addressed. In comparison, existing methods depend extensively on manually crafted
procedures. If the process is revealed, the initial trajectory details can be recovered.
To this end, this study intends to investigate the feasibility of deep learning methods
to overcome the above mentioned privacy security challenges in trajectory.

The following points can describe the primary contributions of this work.

1. The edge-based distance measure has been introduced in proposed DSPPTD
for k-path trajectory clustering of deep neural network processed trajectory to
achieve differential privacy before publishing it. The work discusses an end-to-
end solution of deep learning to produce trajectory data supporting differential
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privacy. A Gaussian mechanism for synthetic trajectory preparation has been
described in this work.

2. The two functions, namely mutual information and Hausdorff distance, are used
to measure the intensity of privacy protection and utility of the trajectory data
with training deep learning approach.

3. Analysis of the trade-off between privacy protection effectiveness and the
usefulness of the new model are made utilizing real-world LBS details.

The rest of this paper is organized as follows: Sect. 2 gives an overview of related
work. The deep-learning-based differential privacy protection approach has been
described in Sect. 3. We discuss the factors affecting privacy protection effectiveness
to verify the utility and privacy trade-off of the proposed policy in Sect. 4. Finally,
Sect. 5 concludes this paper.

2 Related Work

With the advancement in mobile technologies, smartphones allow peoples to access
numerous LBSs and provide interactive information depending upon location of
the user. The study of user’ positions and associated confidential information not
only enables more sophisticated and reliable user information to be created but
also inevitably leads to security and privacy problems. Therefore, this domain needs
more research works for the development of location-based technologies to resolve
such burning issues [11–13].

There are various reports on the privacy security of dummy-based trajectories.
Kido et al. [14] were the first who used the concept of a random move to
create dummies. Lu et al. [15] suggested a confidentiality-conscious, dummy-based
strategy for preserving consumer data. However, the history details were overlooked
by these systems. Niu et al. [16] established a Dummy-T effective privacy security
system for the route. It employs the minimum cloaking area and context details to
ensure each dummy produced on the trajectories is just like the real one. However,
it lacks the actual mobility trend and spatiotemporal association, which leads to the
deterioration of the degree of privacy.

The definition of k-anonymity was first introduced for relational databases [17].
If the position of the recipient is indistinguishable from the position of certain
k-1 persons, then the query is said to be location k-anonymous. Zhang et al.
[18] also suggested caching and spatial K-anonymity (CSKA) policy to improve
safety through k-anonymity and caching. This system, though, is not well suited
to protection for trajectories. Moreover, past policies are based on user-clustered
or centralized architectures. Hence, the workload of the network is high, and the
anonymizer could lead the bottleneck performance.

To make sure the optimal distribution of the selected dummy locations, the
authors in [19] also provided an enhanced decay lengths (DLs) approach that
could expand the cloaking region while retaining a degree of privacy near to the
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DLs algorithm. In [15], two approaches of dummy creation were suggested by
the authors, notably grid-based and circle-based methods, which take into account
the privacy criteria. In [8], the authors developed dual dummy-based techniques
to guarantee the k-anonymity of privacy-conscious clients in LBS, recognizing
that opponents would exploit side details. The previous approaches have also not
understood the information on the side that attackers may exploit while picking
dummy locations. While some approaches have taken the side information into
account, they have a high processing cost. However, the effective selection of
dummy locations in IoT remains a research problem. In K-anonymity systems,
Hu et al. [5] applied a credit-incentive framework to maximize the efficiency of
selecting dummy roles. Based on the fuzzy reasoning, credit rating contributes to
a certain maximum level of probability for each customer. A client can still get
help from specific users on the condition that his credit rating passes a certain
likelihood threshold amount. It motivates people to assist others in building K-
anonymity actively. In a sense, all the above solutions originate directly from the
single time LBS position privacy policy [20] and therefore ignore the following two
issues:

(a) Protection of communication messages in user’s LBS request.
(b) Exposure of the users’ real location details due to the continuous importance of

query position.

Present findings on the evolution of privacy protection concentrate primarily on
two sources of study. One is the hierarchical solution to privacy to combine and mix
trajectories from various users such that the detection of person trajectory data is
turned into an issue of k-anonymity [19, 21]. Here, the spatial cloaking method uti-
lizes k-anonymous cloaked spatial regions to combine trajectory locations between
k-objects and renders these trajectories k-anonymized [22]. The mix-zone strategy
often anonymizes trajectory locations in a mix-zone using aliases. It removes the
link between the former section and the latter section of the mix-zone trajectory
[23].

Additionally, the positions of k trajectories are divided into k-anonymized
separate regions first by the generalization-based method and then uniform selection
and reassemble k new trajectories by connecting points of each k-anonymized region
[24]. A further analysis medium is termed geo-masking, which blurs the positions of
actual trajectory details by using spatial dimension interference to cover or change
the original positions. However, spatial trends might not be substantially affected
[25, 26]; for example, Zandbergen [27] discussed the need to preserve privacy and
the spatial usefulness of many forms of geo-masks.

Kwan et al. [28] tested the efficacy of three independent arbitrary geo-masks of
perturbation on lung cancer cases in space research. Seidl et al. [29] introduced grid
masking and random disruption to data sets from GPS and measured the efficiency
of privacy security. Gao et al. [26] studied the efficacy of Twitter data aggregation,
Gaussian disruption, random disruption, exploration of the complexity, degree of
anonymity, and analytics of each process.
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Users may access preference details of the actual position in the implemented
system without revealing their location data to the service provider. Beresford et
al. [30] proposed anonymous communication techniques, who are first to introduce
mixed zones concept. A mixing zone applies to a geographic area where no call
back activity has been recorded by any users. The researchers in [31] allow users to
swap the pseudonyms if they met in mix zone and also care for user to avoid the use
of pseudonym for a larger time. The association of app positions and pseudonyms
may, therefore, be disrupted by pseudonyms exchange.

Finally, it may be claimed that these days scientists are energetically researching
the privacy concern of query processing [5, 32]. A few worthy survey articles
have emerged in recent years addressing privacy problems in LBS—difficulties and
probabilistic scope connected with it [7, 33].

3 Our Proposed Scheme

We follow the system approach based on fog computation, as seen in Fig. 1. It
is made up of three entities: handheld device, LBS server, and fog server. The
fog system is operated by the consumer and installed with enough hard space in
the user’s spare devices. In the proposed approach, the fog server receives the
background information. It applies the DSPPTD policy for protecting trajectory
and dependent confidential information from the attacker while providing maximum
QoS for the user’s query request by the LBS server. The LBS server scans the POIs
of users, and it returns the output of the applicant to the fog server after this fog
server delivers the relevant results to the customer.

Fig. 1 LBS system structure
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Table 1 Key notation used in proposed scheme

Terms Description Terms Description

T Trajectory Theta Skewness parameter based on
zipf access distribution

pt
j Location point at time t of

set j
E Differential privacy

Datat Trajectory original data DNN_Datat DNN processed trajectory data
K Number of clusters K Anonymity degree
E(S) Entropy of set S CmaxH Optimized set using entropy
N System defined variable

N > 2 k
n The total number of snapshots

dt
r A real location from

trajectory at time t
qt−1
j A query probability for j dummy

location at time t−1

T R
(
dt
J |dt−1

j

)
Transition probability from
time t−1 to time t for j
dummy locations, where
2>j≥k-1

HCRt
i Path entropy

M Randomly selected m
locations set from N dummy
locations, where
m ≤ C(2 k-1, N)

m′ Randomly selected m’ locations
set from 2 k optimized set

Dt Anonymous set at time t q
(
dt−1
j

)
Time-dependent query
probability at location dt−1

j

Disttmax Separation length from the
current position to the next

� (x, y) Separation angle between x and y

MI Mutual information HD Hausdorff distance

The concept of cloud fog computing makes server computation resources
available in the ground nearer to end-users. In comparison with clustered data
centers, these nodes are physically much closer to smartphones, which leads to fast
communications between entities. It has the remarkable ability of edge nodes to
process and measure large amounts of data under their own, without submitting
it to distant servers. Fog computing is an intermediary between external servers
and mobile devices. It controls the details that the server can obtain, which can be
accessed locally. For this sense, fog is a smart portal that offloads clouds making
for more effective data collection, retrieval, and analysis. Table 1 summarizes the
notations used in the proposed scheme.

The DSPPTD approach is a trajectory privacy protection that incorporates
the deep neural network and structure of the Gaussian system to build privacy-
preserving synthetic trajectories as substitutes to actual trajectories for the exchange
and publishing of trajectories.

In this paper, we propose a new approach consisting of four main components.
The four main components that are implemented by the system include processing,
generation, optimization, and release of trajectories. A detailed summary of each
unit is given below.



66 A. K. Gupta and S. Kumar

A. Trajectory processing model uses the user’s moving scene to generate corre-
sponding high-dimensional data items.

B. Trajectory generator uses a deep neural network, which takes random noise
and original location points of trajectories as inputs to generate synthetic
trajectories as outputs. The processed trajectory consists of position points in
actual timestamps that can shield the original collection of data.

C. Apply k-means clustering for k subregions division of the location trajectory
data region with common data points.

D. The trajectory release step involves comparing each clustered “synthetic tra-
jectories datum” to corresponding “real” trajectory and merging accordingly.
The process also involves a prejudging mechanism to ensure at least one actual
trajectory record can be seen in processed trajectory.

3.1 Trajectory Processing Model

The trajectory is a sequenced series of user movement points where the interval
period between two user location points does not reach a fixed threshold Th. It is
represented by T : p1 → p2 → · · · → pm, where, Th > pi+t t >0 with (m > i ≥ 1)
and pi ∈ P ⊂ L. The |T| is the number of samplings (|T| = m), and t is defined as
the interval of the sampling point. P = p1, p2 . . . , pm are the arrangement of points
known as user movement log, where each point pi ∈ P contains pi.lat, pi.lng, pi.t,
and pi.v as latitude, longitude, timestamp, and velocity, respectively.

pi = {pi.lat, pi .lng, pi .t, pi .v}

Also, the location coordinate can change as time passes. Figure 2 provides a
distinctly unpredictable glimpse of the initial trajectory data collection. These nodes
are related as per the time – series data and thus shape a trajectory. In the equation,
a general representation of a record is given below:

Fig. 2 Log and trajectory for moving person
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Original Data : Datat : (p1.lat, p1.lng, p1.t, p1.v) →
(p2.lat, p2.lng, p2.t, p2.v) →

→ (pi.lat, pi.lng, pi.t, pi.v)

The Gaussian method is used to attain differential anonymity by applying random
noise to the time parameter t of the client behavior predicted trajectory results.

The Gaussian method can be described using a data set D = {x1, x2, . . . , xN},
privacy parameter ε, global sensitivity �f of given function f.

In the differential privacy mechanism, with the given sibling data set D and D′,
the function f sensitivity is represented by �f as given below:

�f = max
D�D′

∥∥f (D) − f
(
D′)∥∥

D�D
′

is the set of each pair data sets that differs in at most one record.

Theorem 1 For a given output function f : Dd → Rd, the following function M have

(ε, δ)-differential privacy if δ > 4
5 exp

(
− εσ 2

2

)
and ε < 1.

M (f,D) = f (D) + (Y1, Y2, . . . , Yd)

The likelihood of differential privacy is represented by probability δ. The
parameter δ bounds the differential privacy level, and its value is smaller than(

1
|D|

)
. The parameter ε is inversely proportional to privacy protection. The Gaussian

distribution draw in the form of Yi (i = 1, 2, . . . , d) has 0 as the value of mean and
�f σ as the value of standard deviation, i.e., Y(0, (�f σ )).

Trajectory data given in the below equation is the trajectory data post-processing

the Gaussian noise function value, Gaus
(

�f
ε

)
to all-time attribute, that can resist

an attack through context awareness.

Processed Data : ProDatat :
(
p1.lat, p1.lng, p1.t + Gaus

(
�f

ε

)
, p1.v

)
→(

p2.lat, p2.lng, p2.t + Gaus
(

�f
ε

)
, p2.v

)
→

→
(
pi.lat, pi .lng, pi .t + Gaus

(
�f

ε

)
, pi .v

)

3.2 Trajectory Generator

DSPPTD’s essential purpose is to increase the performance of trajectory data
reporting statistics as well as the scheme’s productivity based on maintaining
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the differential privacy. Differential privacy frameworks and deep neural network
(DNN) deep learning algorithms are the core methodologies applied in this paper.
DSPPTD uses differential privacy to offer protection and privacy functionality to
LBS apps and uses DNN to efficient trajectory data processing from complex
time series. DSPPTD is built for a dynamical object movement, which defines the
dynamic model of four components correlated with the speed, latitude, longitude,
and time of the users.

3.3 Multilayer Perceptron and Deep Neural Network

A “perceptron” is a known “artificial neuron,” forming the “neural” system. This
paper first discussed the simplest single hidden layer multilayer perceptron before
deep learning-based multilayer perceptron. In general, the multilayer perceptron
has the structure in which every location might be represented by way of a single
input and a single output neuron and having one hidden layer. Positive weights are
typically considered to be excitatory in neural network, whereas negative weights
are known to be inhibitory. Training is the method of weight change to build a
network that performs some task. The basic architecture of artificial neural network
consists of the three components, namely presynaptic connections, which input xi,
synaptic influence, which is modeled using real weights wi, and neuron reaction,
which is a nonlinear weighted inputs function f.

As shown in Fig. 3, x1, x2, and x3 are given as inputs to the perceptron, which
produces a single binary output. Piecewise linear and sigmoid are examples of
output or response function. The equation for sigmoid and piecewise linear is given
below:

f (x) = 1

1 + e−λx
f (x) =

{
x, if x ≥ θ

0, if x < θ

Fig. 3 Perceptron in ANN
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The functioning of the human brain is imitated by employing neural network
technology for understanding pattern recognition rather than passing the input
through the different layers of simulated neural connection. “Artificial neural
networks” have an “input layer,” at least one “hidden layer” in-between and an
“output layer.” In “feature hierarchy,” specific sorting and order types are carried
out in each layer. To deal with unlabeled or unstructured data is among the practical
uses of these neural networks. Figure 3 shows the perceptron in artificial neural
network (ANN). The leftmost layer refers to “input neurons” present in the “input
layer.” The rightmost layer refers to the “output neurons” present in the “output
layer.” The middle layer refers to the “hidden layer,” which does not contain the
“neurons” of input or the output.

One of the downsides of the “neural network” is cost work slope processing. One
of the quicker ways to deal with slope processing is “error back propagation,” which
gives an in-depth knowledge of changing the metrics toward the system’s behavior.
The “deep neural network gives the hierarchical composition of the “linear” and
“nonlinear” activation function. We propose using “deep neural networks” or “deep
learning.” In this proposed work, the system considers an input layer, two hidden
layers, and a final output layer. The former layers and output layer have been evolved
the activation function sigmoid.

The three steps involved in back propagation preparation are listed below:

1. Training set: Neural network uses a collection of input–output patterns for
training.

2. Test set: For assessment of neural network performance, another collection of
input–output patterns are used.

3. Learning rate: It is a scalar parameter used to determine the change rate, which
is similar to phase size in numerical integration.

Network error is used as termination criteria or as an indicator for desired training
of the neural network. Root mean square error (RMSE) and sum squared error
(SSE) are the two most important indicators commonly used in most of the neural
network applications. The equations for root mean square error (RMSE) and total
sum squared error (SSE) are given below:

RMSE =
√

2∗TSSE

#patterns∗#outputs

TSSE = 1

2

∑
patterns

∑
outputs

(desired − actual)2

The deep neural network processed trajectory data is a new trajectory that may
mask the original data set for the trajectory. Using this training model, we can only
get more anonymous data according to specific points in the complex trajectory. The
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model facilitates the avoidance of loading complete data sets inside the standard
procedures and leads to running time reduction. The trajectory data given in the
below equation is the trajectory data after deep neural network processing of the
trajectory data:

DNNDatat : (p1DNN.lat, p1DNN.lng, p1 DNN.t, p1DNN.v) →
(p2DNN.lat, p2 DNN.lng, p2 DNN.t, p2 DNN.v) →

→ (piDNN.lat, pi DNN.lng, pi DNN.t, pi DNN.v)

The trajectory data generation procedure can be described by Algorithm 1 as
given below:

Algorithm 1: Differential Privacy Generation of Trajectory Data

Input: Trajectory Original Data (Datat)  

Output: DNN processed Trajectory Data (DNN_Datat) 

Begin 

For_ALL Datat 

For_ALL t ≠ 0 in Datat 

∆f = Gaus
∆f 

 ε
= max

D∆D ′  
� � −  � �  

tdnn = t + ∆f  

latdnn = DNNlat(Pro_Datat, tdnn)  

londnn = DNNlon(Pro_Datat, tdnn)  

vdnn = DNNv(Pro_Datat, tdnn)  

(latdnn, londnn, tdnn, vdnn) → DNN_Datat  

End_For  

End_For 

Return DNN_Datat 

End  

3.4 K-Paths Trajectory Clustering

Partition-based approaches are more like clustering techniques that are categorized
before processing by the count of clusters (or centers). A parameter k (k ≤ n, n is
the data point count in the data set) is needed to set the count of final data partitions.
The cluster is represented by partitions, which must require at least one data point.
Partition-based approaches involve techniques of k-medoids and k-means. In [] and
[], two improved variants of k-means and k-medoids are described. The k-means
algorithms have been utilized in several clustering projects. The central concept is
to locate k cluster centers randomly and then in an iterative manner, a grouping of
the piece of data according to the divergence to the nearest clustering center until all
clustering centers converge.
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This step involves the k subregions division of the location trajectory data region
of common points. Here, the positions data with the same timestamp t is first
segmented. Then k subregions or groups are identified with similar data points,
and initial centroid corresponding to each subregion is chosen. If, at any instance,
the area covers a more significant number of mobile users than the threshold,
then k needs to be revised accordingly. In clustering, the location data with closer
trajectories are merged into a common cluster.

The k-paths trajectory clustering process can be defined as given below:
Given a set of trajectories T: p1 → p2 →···→ pm, the goal of the k-paths is to

divide the n trajectories into k (k ≤ n) clusters groups C = {C1, C2, . . . , Ck} to
minimize the below objective function:

O = arg min
C

k∑
j=1

∑
pi∈Cx

Dist (pi, μx)

where each clusters Cx have their centroid path μx, which is an element of the set
of paths in road network directed graph G [34], and Dist is the measure of the
Euclidean distance between two trajectories.

The k-means and k-paths can be differentiated based on the following four points:

(a) In a Euclidean space, trajectories can differ in length rather than fixed-length
vectors.

(b) A trajectory length estimate “Dist” must be specified for two trajectories.
(c) We cannot locate the centroid direction μx by merely measuring the average

value with each trajectory throughout the cluster. Analogous to a version of k-
means named k-medoids [35], it is possible to use a current trajectory as the
centroid path.

Let EH, ALH are the edge histograms and accumulated length histograms,
respectively. The terms ub(i) and lb.(i) be the Ti to its nearest cluster upper
bound distance and the Ti to its second nearest cluster lower bound distance,
respectively. The terms cd(x) and cb(x) be the centroid drift and centroid bound of
μx, respectively. The formula for edge-based distance measure used in Algorithm 2
is given below:

Edge-Based-Distance (T1, T2) = max (|T1|, |T2|)− | T1 ∩ T2 |

|T1| and |T1| be the travel length of the total trajectory T1 and T2, respectively.
In k-path trajectory clustering, the trajectory distance measure “Dist” is replaced by
edge-based distance. Therefore, the applied objective function has been revised as
given below:

O = arg min
C

k∑
j=1

∑
pi∈Cx

Edge-Based-Distance (pi, μx)
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Algorithm 2: K-Paths Clustering (K, DNN_Datat)

Input: Number of clusters (k), DNN processed Trajectory Data (DNN_Datat) 

Output: k centroid paths: {μ1, . . . , μk}. 

Begin
Centroid paths μ = {μ1, · · · , μk} initialization, t ← 0; 

Repeat

If (t = 0) 

For Each Ti ∈ DNN_Datat do 

mini ← +infinity; 

For Each path centroid μj do 

lb(i, j) ← Edge-Based-Distance(pi, μj ); 

If (mini > lb(i, j)) then 

a(i) ← x 

mini ← lb(i, x) 

End For

UpdateHistogram(pi, ALH, EH, a(i)); 

End For

Else 

For Each cluster 

Compute and make changes to centroid bound cb and 

centroid drift cd 

End For

For Each trajectory Ti ∈ DNN_Datat  do 

Compute and make changes to lb and ub; 

If (ub(i) < max(cb(a’(i))/2, lb(i))) then 

a(i) ← a’(i) \\Ti remain in same cluster: 

Else 

mini ← +infinity; 

For Each path centroid μx do 

If (lb(i, x) < ub(i)) then 

lb(i, x) ← Edge-Based-

Distance(pi, μx ); 

If (mini > lb(i, x)) then 

a(i) ← x

mini ← lb(i, x); 

End If

End If

End For

End If

If � (i) ≠ �(� )

UpdateHistogram(pi, ALH, EH, a(i)); 

End If

End For

For Each centroid path μj do 

Compute 

	 = �
�min
�

Edge Based Distance( ) , μ
�

and update μx ; 

End For 

t ← t + 1; 

While (t = 0 or μ changed) 

Return {μ1, . . . , μk}
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The trajectory path-k clustering procedure can be described by Algorithm 2. To
adjust the centroid direction in iteration and to determine the objective function
system manages two histograms of trajectory for each cluster.

(a) Edge histogram: The edge histogram (EHj) for given trajectories in cluster Cj

has the graph edges frequency information in sorted order. EHj(e) stands for
the edge e frequency, i.e., EHj(e) =|e|, and EHj[l] stands for the l-th most
considerable frequency. In any iteration system, no need to reconstruct the
histograms; instead, it holds one histogram progressively for every cluster and
refreshes it only as a trajectory passes through in or goes out of this cluster.
Many trajectories would continue in the same cluster for further iteration,
although there would be few changes to the histogram.

(b) Accumulated length histograms: The critical point is the size in a meter of the
trajectories for each entry. This histogram measures the number of trajectories
that have this defined size. ALH is ordered by key in ascending order; ALHx[l]
gives the trajectories count in cluster Cx that have a size l.

3.5 Trajectory Release

Trajectory release is the last step, which involves comparing each clustered “syn-
thetic trajectories datum” to corresponding “real” trajectory and merging accord-
ingly. The process also involves a prejudging mechanism to ensure at least one
actual trajectory record can be seen in processed trajectory. So when the count of
records is zero, it means that the produced trajectory data is a null trajectory and
is considered to be irregular. The probability of issuing a null trajectory is further
minimized due to the inclusion of the decision process of an irregular course, the
reliability of the orbiting assignment is increased, and better data availability has
been assured.

4 Performance Analysis of Privacy Protection Scheme

To check the feasibility of our proposed approach and the data availability, we
performed specific tests based on TDrive pre-project data from Microsoft research
[38], which includes the trajectory details of 10,357 taxis for a week duration. The
cumulative points count is about 15 million, for a cumulative trajectory size of nine
million kilometers. The evaluation was conducted on Octa-core 3.2 GHz, RAM
of 64 GB, Windows 8 operating system, and Intel i7 processor. The processing
time overhead of the query and service schedule is assumed to be negligible in
the proposed model. Location-based services have drawn millions of users and
their digital footprints are massively contained. The query process and interval
process are the two modules executed for the simulation of the proposed model.
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A location-dependent k-nearest neighbor query (e.g., nearest hospital profile info)
is continuously generated by the query process with the exponential distributed
query interval. Driven by the assessment process surrounding anonymity, modeling,
and uncertainty [36], we are examining the relationship between the efficacy and
usefulness of data security. Past policies are based on user-clustered or user-
centralized architectures. Hence, the workload of the network is high, and the
anonymizer could lead the bottleneck performance. Different from existing work,
our suggested methodology integrates the fog server, which processes the data in an
IoT gateway or fog node, as it is nearer to the consumer and can be partly managed
by the user [37]. For the safety of trajectories, we assume in our system the time-
dependent mobility trend, probability of query, and spatiotemporal connection. It
produces k − 1 dummy positions and trajectories with full entropy, which can
render offline and online original trajectory security. Here, we have undertaken
two measures, namely, mutual information and Hausdorff distance, to establish this
relationship and evaluate the proposed policy. We have a belief that consideration
of these measures may assist in choosing and implementing acceptable methods of
privacy security for particular situations on the pathway. The two measures, i.e.,
mutual information and Hausdorff distance, can be defined as given below.

Mutual information: Mutual information (MI) is a measure of privacy protection
intensity of a given privacy protection scheme. It is directly proportional to the
differential privacy parameter (ε) and inversely proportional to privacy protection
intensity. The differential privacy budget is represented by ε, which is also known
as the differential privacy parameter.

Hausdorff distance: Hausdorff distance is a method for calculating the difference
in a metric space between two sets of points and has been commonly used to
calculate the spatial dissimilarity of two trajectories. We measure the Hausdorff
distance from each pair of initial trajectories to the synthetic ones. A higher value
of Hausdorff distance between trajectories pair represents high dissimilarity of
two trajectories, and so it has a reduced set of POI than original trajectory POIs.
Therefore, the higher Hausdorff distance value shows a lower utility of given
trajectory data for LBS.

From the comparative analysis of past policies such as TSTDA [38], NGTMA
[39], and SDD [40] with the proposed state-of-the-art proposed scheme deep neural
network-based differential privacy protection policy, it is proven that DSPPTD
outperforms the other policy with the highest privacy protection intensity in terms
of mutual information (MI) and trajectory data utility in terms of Hausdorff distance
(HD) has been computed for all models, which have been depicted in Figs. 4 and 5.

The DSPPTD does have the lowest MI level, which shows that RNN-DP has a
higher level of privacy security relative to NGTMA, TSTDA, and SDD methods.
In this study, we discover that the level of privacy security is directly linked to ε as
depicted in Fig. 4. Because DSPPTD uses the Gaussian method in the data collection
step in addition to the exponential method in the data release phase; therefore, the
dual differential privacy security protocols provide better privacy protection.

As depicted in Fig. 5, DSPPTD has the smallest HD of the four systems, so
the data set for publishing is identical to the initial data collection. DSPPTD has
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increased the practicability of results. The fundamental explanation for this is the
prediction system convergence. The trajectory data redundancy is carried out during
the processing of the data. When DSPPTD discovers the data to be incorrect,
it removes this data to boost the reliability of the reported trajectory data. The
reliability of these data leads to the higher utility of the LBS.

As shown in Fig. 6, DSPPTD seems to have the lowest execution time of
algorithms within a separate budget for privacy. The algorithm’s execution time
comprises of time for generating noise and time for processing trajectories. The
execution time of the proposed policy is correlated with the algorithm’s time for
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Fig. 6 Comparison of execution time based on number cluster groups

processing trajectories while the noise generation time is the same for all algorithms.
The distinction lies in the computation time of trajectories. DSPPTD has the benefit
of utilizing the projected model trajectory data collection for the study and is not the
time series data conventional processing. So, it has better execution time efficiency.
We concluded, therefore, that DSPPTD ensures computing security and availability
of data, along with the high efficiency of the device in terms of the running time.

5 Conclusion

In this work, we introduced Dynamic Scheme for Privacy Protection of Trajectory
Data (DSPPTD). DSPPTD involve Gaussian framework and double differential
privacy requirement focused on deep learning to provide private security and edge
computing based on enhanced utility services. For consumer services, a mechanism
of dual deep learning-based differential privacy model has been suggested. Via
empirical study, we have shown that DSPPTD has more effective privacy security
strength, better data efficiency, and overall reliability than state-of-the-art systems
currently existing.

Our future research will concentrate on improving the trajectory resemblance
loss metric model, expanding our system to global trajectory data sets, creating
personalized simulated trajectory data for variable lengths, investigating possible
attacks on privacy and security techniques, and assessing the efficacy and usefulness
of our system in other trajectory data mining and analytics schemes.

Competent Interest Declaration On behalf of all authors, the corresponding author states that
there is no conflict of interest.
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