
Energy Conscious Scheduling for
Fault-Tolerant Real-Time Distributed
Computing Systems

Savina Bansal, Rakesh Kumar Bansal, and Kiran Arora

1 Introduction

An integration between computing and physical world with upcoming advances in
technology has made it possible to fulfill the growing computational demands and
needs of industry and individuals. Pervasive computing devices employ controllers
to read physical inputs through sensors, perform data processing, and feed tangible
outputs to actuators. Real-time functions especially based on artificial intelligence
such as computer vision and sensor fusion are gaining popularity due to cost-
effective availability of needed hardware owing to advances in VLSI and related
technologies. Real-time applications, as in avionics and aerospace engineering,
automobile sectors, mission and safety-critical application in defense and medical
fields, for which timely completion within a given time deadline is very crucial along
with logical accuracy, demand usage of real-time systems. Timeliness is essential
for real-time application as beyond the specific time window or time instant (also
referred as task deadline of a task) even a logically correct outcome is of no use.
Failing to honor deadline can lead to serious consequences—from loss of signal
quality, as during video-conferencing, to some bigger financial loss or may even
cost human lives [37, 49]. Real-time systems are capable of producing accurate
results within the given deadline provided the tasks are scheduled properly over

S. Bansal · R. K. Bansal
Department of Electronics and Communication Engineering, Giani Zail Singh Campus College of
Engineering & Technology, Bathinda, India
e-mail: savina.bansal@gmail.com; drrakeshkbansal@gmail.com

K. Arora (�)
Department of Computer Science and Engineering, Baba Hira Singh Bhattal Institute of
Engineering & Technology, Lehragaga, India
e-mail: erkiranarora@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Pandey et al. (eds.), Role of Data-Intensive Distributed Computing Systems in
Designing Data Solutions, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-15542-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15542-0_1&domain=pdf

 885 50756 a 885 50756
a
 
mailto:savina.bansal@gmail.com

 11272 50756 a 11272 50756 a
 
mailto:drrakeshkbansal@gmail.com

 885 55738 a 885 55738 a
 
mailto:erkiranarora@gmail.com

 2690 61494 a 2690 61494
a
 
https://doi.org/10.1007/978-3-031-15542-0_1


4 S. Bansal et al.

Fig. 1 Embedded system market [14]

them. Scheduling, in general, relates to allocation and assignment of incoming tasks
to the underlying computing processor/s such that deadlines of all tasks get honored.
The major concern of this work is on scheduling of real-time systems.

The development of systems with real-time capability is increasing at a fast
pace (Fig. 1) to satisfy the needs of our day-to-day lives. More specifically, these
systems have application that affects our social and personal lives directly or
indirectly such as bank transactions, automobiles, traffic signal controller, medical
care, video-conferencing, smart home, and firefighting [40]. As per the new Global
Info Research study, it is projected that worldwide market growth for embedded
systems will rise from 86,500 million US dollar in 2020 to 11,620 million US
dollar in 2025, at a compound annual growth rate of approximately 6.1% [39].
For instance, contemporary cars have hundreds of processing units equipped to
provide basic features such as vehicle control to specialized facilities for safety
and comfort. To recognize its surroundings, perception subsystem in the vehicle
should be able to process enormous data that demands huge computational power
necessitating the use of multicore or multiprocessor systems [35] in order to achieve
higher throughput, reduced response time, and increased reliability.

Substantial advancement in the performance of present-day computing systems
has led to considerable rise in power consumption. In fact, the amount of heat
generated by them is quickly growing to level equivalent to nuclear reactors as
shown in Fig. 2 [46, 57]. As projected by Moore’s law, energy utilization of
computing systems has increased at an exponential rate from last few decades.
Such rise in energy consumption results in ecological and monetary problems
due to which energy management has turn out to be a prime design concern for
computing systems [1, 13, 20, 38]. In the scientific and technical literature, the
interrelation between energy, economy, and environment is recognized with “3E”



Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 5

Fig. 2 Rise in power densities [46]

[56]. United Nations Development Organization proposed at the beginning of the
twenty-first century that this triple bond is of global importance and is among the
eight Millennium Development Goals (MDGs) in the global economic scenario.
The evolution of objective of ensuring environmental sustainability promotes the
importance of energy management. In light of this, 3E is more conspicuous today
than ever before, making energy management a premier research problem for
computational systems.

However, the main target for energy saving in such systems is processor, as
a major fraction of total power is consumed by CPU alone. As the complexity
and computational power of real-time computing systems grow, it leads to high
operating temperature generation due to excessive transistor integration on small
size chips. Miniaturization further aggravates energy consumption of processors.
State-of-the-art processors consume a substantial amount of energy. For example,
Intel Core i7-975 drains estimated 83W of power in idle state, and AMD FX
8350 processor has a peak power consumption of 210 W [41]. Various assessments
[5, 8, 72] recommended that main focus should be on power efficiency while design-
ing complex real-time systems. Hence, it becomes necessary to consider energy
management as a mandatory parameter for real-time multiprocessor scheduling
algorithms.

Along with the timing precision, real-time systems must be reliable, but a pre-
cisely designed system may fail, which can lead to unexpected situations. Massive
heat dissipation adversely affects reliability and performance of semiconductor
devices as well and also contributes to global warming [17]. Another serious threat
to reliability is caused by high operating temperature, which is a direct consequence
of high power consumption generated owing to excessive transistor integration in



6 S. Bansal et al.

small size. As reported by Srinivasan et al. [53], maximum rise in temperature
realized by 180 nm processor is 15 ◦K lesser than realized by 65 nm processor,
and scaling to such small value leads to 316% growth in error rate. For safety-
critical real-time computing systems, reliability is a vital feature because faults may
cause deadline violations, which can also be disastrous at times. To avoid this, fault
detection and tolerance features should be incorporated in the system to achieve
high reliability so that it can operate proficiently even in case of faults. Therefore,
reducing energy consumption while maintaining reliability of a real-time system is
a challenging problem and requires consideration.

2 Energy Management

The presence of miniaturized electronic components and chips in the contemporary
computing systems makes energy consumption scenario worst ever. The most
prevailing digital electronic technology is Complementary Metal-Oxide Semicon-
ductor (CMOS), whose peak power dissipation occurs during state transitions
of transistors. To handle power consumption of CMOS circuits, static power
dissipation (based on leakage voltage) and dynamic power dissipation (based on
supply current) need to be minimized [31–33]:

– Static power: It arises as an after-effect of leakage current flowing through
transistors. Leakage current increases exponentially with reduced thickness of
insulating region and leads to rise in static power.

– Dynamic power: It is a consequence of repeated charging and discharging of
capacitance of several hundreds of gates in contemporary chips.

To reduce static and dynamic power consumption, commonly used techniques
are dynamic power management (DPM) and dynamic voltage and frequency
scaling (DVFS), respectively. These techniques are overviewed in the following
subsections.

2.1 Dynamic Power Management

Intel, HP, and Microsoft presented an enhanced framework, called Advanced
Configuration and Power Interface (ACPI) for device configuration and monitoring
[7, 60]. Basically, ACPI provides a simple and adaptable interface to operating
system for configuring and discovering peripherals. The motive of ACPI-based
power management is to put the whole system or devices that are unused or less
used into low-power states when possible.

Due to arbitrary workloads during operation time, DPM attains energy efficiency
in the system by judiciously lowering the performance of system components and by
switching off the processor in idle periods, thereby saving energy. However, putting



Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 7

system component to power-saving state and taking back to the active state involve
energy and time overhead.

Every processor has some minimum transition time from one state to another
called break-even time b0. When an idle interval is greater than the break-even time,
only then processor is put to sleep mode to take advantage of DPM for reducing
energy consumption. DPM technique involves taking decision of putting the system
components to a power-saving state based on the size of forthcoming idle period. For
example, energy budget of switching between states will be larger than the energy
saved in the sleep state if the idle period is relatively small. Thus, transition to power-
saving state must be done only when idle interval is greater than break-even time.
The smallest value of b0 is the one that consumes exactly an equal amount of energy
if kept in active state or transition it from active to power-efficient state.

2.2 Dynamic Voltage and Frequency Scaling

Growing computing capabilities demand usage of higher operating frequency of
processors, which lead to higher energy consumptions. To sustain necessary pro-
cessor performance by using higher operational frequencies, a number of integrated
transistors per chip are growing day by day [12]. Fast switching of a large number
of transistors increases the frequency of a processor and also makes them dissipate
more dynamic power.

Dynamic power consumption of a processor and supply voltage have quadratic
relation between them such that:

ρdyn = ℘ζef υ2f, (1)

where ρdyn is the dynamic power, ℘ is the gate activity factor, ζef is the switched
capacitance, υ is the supply voltage, and f is the operating frequency. DVFS
dynamically adjusts voltage/frequency to reduce processor’s power consumption;
however, it trades energy with performance since reducing frequency will in turn
increase execution time of application. The challenge for DVFS technique for real-
time applications is how to preserve the feasibility of a system while reducing
voltage so that all deadlines can be honored and energy consumption is decreased.
So, care must be taken while using DVFS for real-time applications, as they have
stringent timing constraint.

Nowadays, processors being launched in the market have DVFS capabilities
enabled on it, such as an AMD R-series [2]. Thus, in contemporary processors,
it is possible to dynamically regulate the supply voltage and operational frequency
to cut down dynamic power consumption using DVFS but at the price of elongated
circuit delay [6, 9]. Real-time DVFS techniques can be differentiated based on time
of speed adjustment as inter-task and intra-task.



8 S. Bansal et al.

– Inter-task DVFS: With inter-task DVFS techniques, a job runs at the same
frequency level until it finishes its execution after being dispatched or is
preempted by a high-priority job. The speed may be readjusted when it restarts
execution after preemption depending on the available slack at that particular
time. A majority of DVFS algorithms are based on inter-task technique as it has
low run-time overhead.

– Intra-task DVFS: The intra-task algorithms adjust the speed at the well-
determined power-management points (PMPs) at run time and focus on reducing
dynamic energy consumption. But they involve extra energy and time overhead
owing to a large number of speed changes.

Decrease in processor frequency leads to reduction in frequency-dependent
power, but it increases execution time of task, which in turn results in rise in static
and independent power. To overcome this problem, a critical frequency fcrit , also
called energy-efficient frequency, has been proposed in the literature [29], below
which the DVFS does not remain effective. So, tasks should not be executed at
frequency lower than fcrit .

3 Fault Tolerance

Rapid advancement in scale and complexity of real-time multiprocessor computing
systems has made reliability an increasingly challenging issue. Due to the aggressive
scaling of transistors, CMOS devices become more susceptible to extrinsic effects
such as high-energy radiations and electromagnetic interference. Thus, computing
systems have become prone to various types of faults that may introduce some errors
in results. In a combinational logic circuit from 600 nm to 50 nm feature size [52],
the soft error rate (SER) per chip increases by nine orders of magnitude. If scaling
process remains at the same pace, then for 16 nm technology, per day per computer
chip will have at least one failure [23, 34].

Despite being designed perfectly, a system may fail abnormally owing to
unpredictable fault occurrence. A fault is a situation of unusual response due to some
defect in the system. A fault may be a hardware defect or an implementation flaw
in the software. In other words, a system is supposed to have failure when service
provided by it diverges from the desired service. For example, a computing system
that observes the state of critical patients in the hospital must take an action as soon
as the patient’s state changes. A remedial measure must be taken if patient’s blood
pressure decreases/increases beyond a specific threshold, such as giving an alarm
or injecting medicine in patient’s body. This process must be performed strictly in
a defined time limit (or deadline). Thus, computing system employed in hospitals
especially in intensive care units (ICU) should guarantee that even if the processor
incurs fault, the task is executed within its deadline [18]. Another example is in
flight control systems where often tasks are activated by the controllers depending



Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 9

on the output seen on screen. However, if system incurs a fault, it should be able to
handle fault before the deadline [36].

Processor faults are broadly classified as permanent and transient faults:

– Permanent faults: Hardware failures lead to permanent faults caused due to
manufacturing defects at the time of fabrication or due to wear and tear because
of aging. The sole way to tolerate permanent faults is hardware redundancy (to
employ additional hardware components). Permanent faults cause damages to
processors and can hamper its working.

– Transient fault: This type of fault generates soft errors (or single-event upsets
(SEU)), which is not persistent and may cause errors in computation or cor-
ruption in data. Moreover, with continuing scaling of CMOS technologies,
approximately all digital systems are prone to transient faults along with systems
that work in outer space [70]. Studies showed that transient faults appear more
often as compared to permanent faults [11, 19].

Many techniques have been proposed for detecting faults based on hardware and
software [30, 42]. The well-known error detection mechanisms are fail-signal
processors, alarms or watchdogs, signatures, and acceptance tests (ATs) [10, 23, 45].

3.1 Fault-Tolerant Techniques

Fault tolerance is basically concealing error by switching to another unit of work
at the time of fault occurrence. Redundancy is generally applied in the form of
extra resources to mask faults for preserving required levels of performance in the
system [19]. To integrate fault tolerance in the computing system, approaches have
been suggested to tolerate faults that are generally based on redundancy of various
resources such as hardware, software, time, and information.

– Hardware redundancy is achieved by deploying extra hardware in the system
for the replacement of a faulty component.

– Software redundancy employs substitute implementations of program that can
be used in case the initial version encounters a fault at run time.

– Information redundancy techniques are used to handle faults that occur while
transferring or storage of data such as error detection and correcting codes.

– Time redundancy uses extra CPU time for re-execution of a faulty task or
executes a secondary task in case of a fault.

To tolerate permanent faults, hardware redundancy is essential, but repeating
the execution of task fully or partially helps in tolerating a transient fault [48].
Re-execution and checkpointing are two most commonly used time redundancy-
based techniques for tolerating transient faults that repeat task fully and partially,
respectively.



10 S. Bansal et al.

– Checkpointing: This technique saves the snapshot of current state of system to
stable storage during the execution at regular intervals called checkpoints, where
every checkpoint comprises all the context information required to restart process
from that point of time. On detecting a fault, system re-executes faulty segment
from the most recent correct checkpoint. This technique is able to tolerate g-faults
in a task.

– Re-execution: Under this technique, re-execution of original task in a failure
situation is done and is widely used to tolerate transient fault.

If the system is safety critical, task duplication/replication is used to tolerate
transient faults to provide required reliability level. However, redundancy increases
resource overhead such as rise in energy consumption. Owing to the rising concern
for energy management and reliability in contemporary world, energy-saving
techniques must be incorporated in fault-tolerant real-time task scheduling.

4 Joint Optimization of Energy and Fault Management

Computing systems are nowadays affecting almost every facet of our everyday
life. Due to the increased responsibilities, it becomes essential that computer
systems should provide both safety and reliability. For many years, researchers have
addressed the emerging problems of system reliability, which come along with this
thriving evolution of VLSI technology and raised it as prime design concern for real-
time systems. Energy management has also become as an essential design parameter
for real-time systems due to various environmental, economic, technical, and social
issues such as hike in green-house gas emission, cooling infrastructure cost due to
more heat dissipation, and damage to public health. If not judiciously handled, high
energy consumption and degraded reliability will restrict the advancements to be
made to real-time multiprocessor computing systems in upcoming future.

Systems such as avionics, defense, and space exploration with real-time con-
straints need to be reliable as well as energy-efficient. Conventional approaches
focused solely on timing constraints, whereas recently additional design issues
such as thermal, energy, and reliability have gained attention, which has made
the scheduling problem more complex. Hence, it is desirable that task scheduling
algorithms for real-time systems must consider different constraints such as timing,
energy, and reliability and be designed systematically to accomplish the specified
design objectives.

Together, reliability and energy management are conflicting design goals for
a real-time system. Redundancy-based reliability/fault-tolerance enhancement
techniques increase energy consumption due to overhead of the additional
resources/computation. Researchers have also observed that there exists an inverse
relationship between supply voltage and the rate of transient faults. As a result,
reducing energy consumption makes the system more vulnerable to transient faults.



Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 11

The ability to achieve timeliness for real-time applications increases on multipro-
cessor systems with an increased number of computing units. With a greater number
of processing units, the possibility of enhancing reliability/fault tolerance improves
by having increased prospects for replication of tasks. However, redundancy of tasks
raises energy consumption due to multiple executions. Owing to this reason, energy-
aware task scheduling algorithms remain a pressing concern for the fault-tolerant
real-time multiprocessor system. However, it is challenging to reduce energy while
tolerating faults because both are conflicting issues having a trade-off between them.
These concerns have motivated the research for joint optimization of energy and
system reliability.

Several schemes are available in the literature that deals with the joint problem of
power and reliability management on single as well as multiprocessor platforms. Re-
execution, checkpointing, and replication along with voltage scaling and shutdown
methods are frequently used strategies to preserve desired level of reliability/fault
tolerance and power management in the system. Not only the task ordering for
execution on a given processor but task mapping to various processors also affects
energy consumption and reliability of the system. Hence, there are various aspects
of fault-tolerant task scheduling on a real-time multiprocessor system where energy
efficiency can be improved. The research fraternity has shifted to examine the
problems at the intersection of fault tolerance and power management in recent
past. Task scheduling techniques for joint management of fault tolerance and energy
efficiency are discussed below as per the classification shown in Fig. 3.

Fault tolerant energy 
aware RTS Techniques

Re-execution with 
voltage scaling based

Check-pointing with 
voltage scaling based

Task-duplication with 
voltage scaling based

On uniprocessor platform On multiprocessor platform On multiprocessor platform

Standby-
sparing 

techniques 

Y-replication 
techniques

M-of-N 
hardware 

redundancy 
techniques

Fig. 3 Classification of real-time scheduling techniques with joint management of energy and
reliability



12 S. Bansal et al.

Re-execution with Voltage Scaling A combination of time redundancy and voltage
scaling is used to tackle the joint problem of fault tolerance and energy management
on uniprocessor system. Based on re-execution strategy, reliability-aware power
management (RA-PM) refers to the unified approach of energy management and
fault tolerance based on time redundancy and has been explored in the literature
with different aspects. It refers to the notion of original reliability, which is the
probability of successfully executing all real-time tasks at maximum CPU speed
with no transient fault. RA-PM works by utilizing the available slack for slowing
down the tasks with DVFS policy as well as for executing backup copy of scaled
tasks in case of fault [69]. Zhu et al. [69] proposed RA-PM over periodic real-
time tasks by considering both EDF [69] and RM [71] as underlying scheduling
algorithms and showed that RA-PM approach maintains the original reliability of
all tasks while saving energy.

In another work based on aperiodic tasks, Zhu [70] exploited dynamic slack
for further lowering the frequency of tasks and to assign backup tasks to enhance
reliability with RA-Greedy algorithm. He also proposed checkpointing for utilizing
dynamic slack when recovery placement is not possible due to small size of available
slack. The energy-constrained version of reliability-aware power management
(ECRM) has been presented by Zhao et al. [65], where they focus on achieving
maximum reliability for a real-time system that works in a limited energy budget.

For fixed-priority real-time system with weakly hard QoS constraint, Niu
et al. [44] proposed reliability conscious energy-aware scheduling (FPRMK-EM)
algorithm by reserving space for recovery of mandatory jobs in case of failure and
reducing frequency of other tasks for energy efficiency.

Zhang et al. [61] targeted to improve energy savings of real-time system with
shared resources under the constraint of reliability with EDF/DDM as underlying
scheduling algorithm. They proposed Dynamic Low-Power Scheduling Algorithm
for Periodic Tasks with Shared Resources (DLPSR) algorithm that exploits dynamic
slack for reliability preservation and energy conservation.

Considering the preemption overhead, Xu et al. [59] proposed reliability-aware
power-management algorithms that effort to reduce execution time and energy
consumption of real-time tasks by minimizing the number of preemptions. They
proposed greedy energy efficiency scheduling algorithm (GEE) based on greedy
strategy of maximally utilizing slack time. Further, GEEPU and GLEEPU have been
proposed that reduce frequency based on processor utilization, and DGAET exploits
dynamic slack for improving energy saving.

Zhao et al. [66] proposed Generalized Shared Recovery (GSHR) technique,
where in spite of separate recovery copies for scaled tasks, one or more global shared
recovery blocks are reserved, which can be used by any task at whatever time in the
situation of fault. In case a task encounters a fault, it uses the recovery block, and
the rest of the tasks are then executed at the maximum speed. This scheme improves
the reliability of a system to great extent due to the ability to tolerate multiple
faults by same task with multiple shared recovery blocks. Thus, it can be used
for safety-critical systems where it is essential to maintain certain arbitrary level
of reliability in an energy-efficient manner. The authors proposed shared recovery



Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 13

scheme for common-deadline-based tasks (Incremental Reliability Configuration
Search—IRCS) [64, 66], periodic tasks [67], and precedence constrained tasks
(SHR-DAG) [68], where frequency of tasks and the number of recovery blocks are
determined based on the given reliability target.

Qi et al. [50] proposed global-scheduling-based reliability-aware power-
management scheme for individual and shared recovery schemes on multiprocessor
system. They showed that it is NP-hard problem to find an optimal solution for the
selection of subgroup of tasks for energy and reliability management. Algorithms to
exploit dynamic slack have also been proposed by them to improve energy savings.

Reliability-aware dynamic power management (RA-DPM) has been presented
by Fan et al. [17] with shared recovery blocks on single processor system. As soon
as a minimum number of tasks execute successfully, time reserved for recoveries is
used for reducing frequency for extending energy savings dynamically.

Huang et al. [28] proposed energy-efficient fault-tolerant mapping and schedul-
ing for precedence constrained tasks with mixed-integer linear programming formu-
lation on heterogeneous multiprocessor system. They proposed List-based Binary
Particle Swarm Optimization (LBPSO) algorithm that is based on particle swarm
optimization to obtain high-quality solution in terms of energy saving and reliability.

Checkpointing with Voltage Scaling In order to guarantee reliability and energy
efficiency, an adaptive checkpointing scheme (ADT-DVS) has been presented by
Zhang et al. [63] assuming Poisson fault model. They adjust checkpoint intervals
dynamically to tolerate a fixed number of faults for a set of periodic tasks with EDF
scheduling policy on a single processor system.

For fixed-priority scheduling algorithm, Zhang et al. [62] proposed a unified
approach for checkpointing and DVFS (both task-level and application-level speed
scaling) for tolerating g-transient faults while lessening energy consumption for
periodic real-time task sets. The authors used genetic-algorithm-based approach
(GA) to find the optimal frequency assignment with exhaustive search, which is
computationally unfeasible for heavy workload applications on the processor with
a large number of available discrete frequency levels. Using adaptive checkpointing
technique, work was done by Wei et al. [58] based on the behavior of tasks and
fault rate at run time while complying with tasks’ deadline constraints. Two offline
DVFS scheduling algorithms—application-level DVS (A-DVS) and task-level DVS
(T-DVS)—were proposed for fixed-priority real-time tasks by exploring dynamic
slack to minimize energy consumption.

Another non-uniform checkpointing technique combined with DVFS for power
management has been presented by Melhem et al. [43], which has an advantage
of improved energy saving over uniform checkpointing. They considered EDF
scheduling algorithm for periodic tasks on a single-core processor with the con-
straint of having at most one failure in the system. To reduce the number of
checkpoints for the sake of minimizing energy consumption, two-state checkpoint-
ing (TsCp) concept has been introduced by Salehi et al. [51] where non-uniform



14 S. Bansal et al.

checkpointing is applied in the fault-free scenario but as soon as the fault occurs,
system shifts to uniform checkpointing policy.

Duplication with Voltage Scaling A majority of strategies that have been proposed
in the literature for fault-tolerant energy-aware task scheduling based on duplication
of task copies are for homogeneous platform. Research works done on multiproces-
sors using duplication of task have been divided into three categories based on the
number of duplicate/replicated copies of tasks as follows:

– Standby-sparing techniques: Standby-sparing strategy uses one level of repli-
cation, such that each task has exactly one replica to execute for fault handling
on dual processor system. The workload handled by this technique is not greater
than the maximum utilization bound of single processor because extra processor
is just employed to provide fault tolerance by scheduling duplicate task copies
on it.

For independent periodic tasks with common deadline, Ejlali et al. [15]
proposed that instead of using standby-sparing scheme with hot or cold spares,
Low-Energy Standby-Sparing (LESS) is more effective in saving energy while
providing reliability. LESS reduces voltage of primary tasks by applying DVFS
and delays backup tasks maximally keeping the deadline constraint fulfilled.
They considered reduced energy model and reliability model by considering
energy and time overheads as well as static-energy consumption.

Aminzadeh et al. [3] did the comparative analysis of system-level energy-
management schemes based on DVFS and DPM for standby-sparing systems
and proposed a Markov model to analyze their energy and reliability parameters.
They proposed that hybrid method of postponing secondary tasks and frequency
reduction of primary and backup tasks on standby-sparing system always save
more energy as compared to simple DVFS and DPM methods.

For fixed-priority scheduling, Haque et al. [26] suggested that executing
primary tasks at lower voltage and backing up tasks at maximum voltage
maintain reliability of the system as well as save energy. They proposed Standby-
Sparing Fixed-Priority (SSFP) algorithm for periodic tasks that uses dual-priority
scheduling approach on spare processor to delay backup tasks and applied
deallocation strategy as well to save energy by canceling backup tasks whose
corresponding primary tasks have finished successfully. Dynamic slack has been
exploited to enhance energy saving by reducing speed of tasks on main processor
and further delaying of backup tasks at run time.

Ansari et al. [4] followed the similar concept of [26] for energy- and
reliability-aware scheduling on standby-sparing system by using dual-priority
strategy for earliest deadline first scheduling algorithm. They presented a new
Adaptive Dual-Queue scheduling (AdDQ) algorithm and showed that their work
saves 14% more energy than ASSPT and CSSPT algorithms [24].

– M-of-N hardware redundancy techniques: Optimistic TMR has been proposed
by Elnozahy et al. [16] to reduce the energy consumption for conventional TMR
systems. Two out of three machines run at lower frequency and their result is



Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 15

matched. The output is released, but in case of deviation in results, output of
third machine that was slower than other ones is used as tie-breaker.

Benefit of multiprocessor platform has been exploited by Salehi et al.
[51] with N-modular redundancy to improve reliability by masking errors on
multiple processing units; however, it imposes substantial energy overhead. They
suggested to work in two phases to carry out N-modular redundancy. Half-plus-
one copies for every task are executed in the first indispensable phase, and the
rest of the copies are executed in the on-demand phase only if fault appeared in
the earlier phase thereby saving energy in fault-free scenario.

– Y-replication techniques: For a set of independent periodic tasks, Unsal et al.
[55] proposed an energy-aware fault-tolerance technique with primary–backup
scheme, which defers the execution of backup tasks as late as possible to
minimize overlap between the execution of primary and backup copies. Energy
consumption is reduced by canceling the backup copy on successful completion
of primary copy.

For the heterogeneous systems, Tosun [54] proposed energy- and reliability-
aware task scheduling and achieved 62% energy saving against energy-oblivious
schemes. He presented an integer linear-programming-based framework for
mapping and scheduling tasks to heterogeneous multiprocessor system on chip
(HMPSoC) for periodic real-time tasks.

For highly safety-critical systems, to achieve target reliability level, a certain
number of replicas are required. But to generate an energy-efficient schedule,
tasks must be executed at reduced frequency value. For preemptive periodic real-
time applications, Haque et al. [27] analyzed the interplay between the energy,
replication, frequency, and reliability. They proposed a method to create energy–
frequency–reliability (EFR) table [25] and then how to use it for determining the
extent of replication and frequency reduction for lowering energy consumption
with the help of energy-efficient replication (EER) algorithm.

Poursafaei et al.[47] used EFR table and presented an algorithm that works
in two phases. The first phase is offline replication in which extent of replication
and frequency reduction is determined for every task depending on the given
reliability target. Later on, at run time, the online phase prevents the execution of
redundant copies of task whose one of the copies has finished successfully.

By extending the concept of standby-sparing scheme to multiprocessor
system, Guo et al. [22] proposed paired-SS and generalized-SS task configuration
schemes for independent periodic real-time tasks with dynamic-priority schedul-
ing algorithm. They used worst-fit decreasing strategy for task allocation and
showed that generalized-SS is a more energy-efficient configuration for dynamic-
priority task set on multiprocessor system. Later on, they extended the concept
for mixed scheduling where in spite of standby-sparing configuration, tasks are
allocated in mixed manner, such that every processor has a mixture of primary
and backup tasks provided that copies of same task are not allocated to the
same processor with POED-Mix algorithm. POED algorithm is used to schedule
primary tasks with ASAP preference and backup tasks in ALAP manner [21] to
save energy by delaying backup tasks for reducing overlap in the execution of
two copies of same task as well as minimizing the number of executed backup.



16 S. Bansal et al.

5 Conclusion

With the growing availability of multiprocessor technology, hardware redundancy
has emerged as a suitable candidate for providing fault tolerance in real-time
systems. Duplicating tasks on separate processing units has turned up as a fit-
ting technique to meet stringent reliability requirements. But efficient scheduling
techniques are required to handle the after-effect of replicating task resulting
in increased energy consumption. Use of dynamic voltage scaling and dynamic
power-management techniques has been the choice of researchers for designing
energy-efficient scheduling algorithms. However, in fault-tolerant systems, careful
application of energy-management schemes is required, as execution on processor
at lower voltage raises fault rate.

References

1. Agarwal, M. M., Govil, M. C., Sinha, M., & Gupta, S. (2019). Fuzzy based data fusion
for energy efficient internet of things. International Journal of Grid and High Performance
Computing, 11(3), 46–58. https://doi.org/10.4018/ijghpc.2019070103

2. AMD. 2nd generation AMD embedded R-series APU. https://www.amd.com/en/products/
embedded-r-series-2nd-gen-apu (2nd). Accessed 20 March 2020

3. Aminzadeh, S., & Ejlali, A. (2011). A comparative study of system-level energy management
methods for fault-tolerant hard real-time systems. IEEE Transactions on Computers 60(9),
1288–1299 (2011). https://doi.org/10.1109/tc.2011.42

4. Ansari, M., Safari, S., Poursafaei, F. R., & Salehi, M. (2017). AdDQ: Low-energy hardware
replication for real-time systems through adaptive dual-queue scheduling. The CSI Journal on
Computer Science and Engineering, 15(1), 31–38.

5. Attia, K. M., El-Hosseini, M. A., & Ali, H. A. (2017). Dynamic power management techniques
in multi-core architectures: A survey study. Ain Shams Engineering Journal, 8(3), 445–456.
https://doi.org/10.1016/j.asej.2015.08.010

6. Aydin, H., Melhem, R., Mosse, D., & Mejia-Alvarez, P. (2004). Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers, 53(5), 584–600. https://doi.org/10.
1109/tc.2004.1275298

7. Bambagini, M. (2014). Energy Saving in Real-Time Embedded Systems. Ph.D. Thesis, ReTiS
Lab, TeCIP Institute, Pisa, Italy.

8. Bambagini, M., Marinoni, M., Aydin, H., & Buttazzo, G. (2016). Energy-aware scheduling for
real-time systems. ACM Transactions on Embedded Computing Systems, 15(1), 1–34. https://
doi.org/10.1145/2808231

9. Burd, T. D., & Brodersen, R. W. (1995). Energy efficient CMOS microprocessor design. In
Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences
(Vol. 1, pp. 288–297). https://doi.org/10.1109/HICSS.1995.375385

10. Campbell, A., McDonald, P., & Ray, K. (1992). Single event upset rates in space. IEEE
Transactions on Nuclear Science, 39(6), 1828–1835. https://doi.org/10.1109/23.211373

11. Castillo, X., McConnel, S. R., & Siewiorek, D. P. (1982). Derivation and calibration of a
transient error reliability model. IEEE Transactions on Computers, C-31(7), 658–671. https://
doi.org/10.1109/tc.1982.1676063

12. Cong, J., Nagaraj, N. S., Puri, R., Joyner, W., Burns, J., Gavrielov, M., Radojcic, R., Rickert,
P., & Stork, H. (2009). Moore’s law: Another casualty of the financial meltdown? In 2009 46th
ACM/IEEE Design Automation Conference (pp. 202–203).


 9412 24910 a 9412 24910 a
 
https://doi.org/10.4018/ijghpc.2019070103

 21619 26017 a 21619
26017 a
 
https://www.amd.com/en/products/embedded-r-series-2nd-gen-apu
https://www.amd.com/en/products/embedded-r-series-2nd-gen-apu

 6885 30445 a 6885 30445 a
 
https://doi.org/10.1109/tc.2011.42

 -563 37087 a -563 37087 a
 
https://doi.org/10.1016/j.asej.2015.08.010

 28107 39301 a 28107
39301 a
 
https://doi.org/10.1109/tc.2004.1275298
https://doi.org/10.1109/tc.2004.1275298

 32220 44835
a 32220 44835 a
 
https://doi.org/10.1145/2808231
https://doi.org/10.1145/2808231

 7940 49263 a 7940 49263 a
 
https://doi.org/10.1109/HICSS.1995.375385

 19512 51477 a 19512 51477 a
 
https://doi.org/10.1109/23.211373

 32220 53691 a 32220 53691
a
 
https://doi.org/10.1109/tc.1982.1676063
https://doi.org/10.1109/tc.1982.1676063


Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 17

13. Dewangan, B. K., Agarwal, A., Venkatadri, M., & Pasricha, A. (2019). Energy-aware
autonomic resource scheduling framework for cloud. International Journal of Mathematical,
Engineering and Management Sciences, 4(1), 41–55. https://doi.org/10.33889/ijmems.2019.4.
1-004

14. EETimes, Staff, E. (2017). 2017 Embedded Market Survey (2017). Accessed 21 May 2020.
15. Ejlali, A., Al-Hashimi, B. M., & Eles, P. (2012). Low-energy standby-sparing for hard real-time

systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(3), 329–342. https://doi.org/10.1109/tcad.2011.2173488

16. Elnozahy, E., Melhem, R., & Mosse, D. (2002) Energy-efficient duplex and TMR real-time
systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002. IEEE Comput. Soc.
https://doi.org/10.1109/real.2002.1181580

17. Fan, M., Han, Q., & Yang, X. (2017). Energy minimization for on-line real-time scheduling
with reliability awareness. Journal of Systems and Software, 127, 168–176. https://doi.org/10.
1016/j.jss.2017.02.004

18. Ghosh, S., Melhem, R., & Mosse, D. (1997). Fault-tolerance through scheduling of aperiodic
tasks in hard real-time multiprocessor systems. IEEE Transactions on Parallel and Distributed
Systems, 8(3), 272–284. https://doi.org/10.1109/71.584093

19. Ghosh, S., Melhem, R., Mossé, D., & Sarma, J. S. (1998). Fault-tolerant rate-monotonic
scheduling. Real-Time Systems, 15(2), 149–181. https://doi.org/10.1023/a:1008046012844

20. Goyal, N., Dave, M., & Verma, A. K. (2016). Energy efficient architecture for intra and
inter cluster communication for underwater wireless sensor networks. Wireless Personal
Communications, 89(2), 687–707. https://doi.org/10.1007/s11277-016-3302-0

21. Guo, Y., Su, H., Zhu, D., & Aydin, H. (2015). Preference-oriented real-time scheduling and its
application in fault-tolerant systems. Journal of Systems Architecture, 61(2), 127–139. https://
doi.org/10.1016/j.sysarc.2014.12.001

22. Guo, Y., Zhu, D., Aydin, H., Han, J. J., & Yang, L. T. (2017). Exploiting primary/backup mech-
anism for energy efficiency in dependable real-time systems. Journal of Systems Architecture,
78, 68–80. https://doi.org/10.1016/j.sysarc.2017.06.008

23. Han, Q., Wang, T., & Quan, G. (2015). Enhanced fault-tolerant fixed-priority scheduling of
hard real-time tasks on multi-core platforms. In 2015 IEEE 21st International Conference on
Embedded and Real-Time Computing Systems and Applications. IEEE. https://doi.org/10.1109/
rtcsa.2015.22

24. Haque, M. A., Aydin, H., & Zhu, D. (2011). Energy-aware standby-sparing technique for
periodic real-time applications. In 2011 IEEE 29th International Conference on Computer
Design (ICCD). IEEE. https://doi.org/10.1109/iccd.2011.6081396

25. Haque, M. A., Aydin, H., & Zhu, D. (2013). Energy-aware task replication to manage
reliability for periodic real-time applications on multicore platforms. In 2013 International
Green Computing Conference Proceedings (pp. 1–11). IEEE. https://doi.org/10.1109/igcc.
2013.6604518

26. Haque, M. A., Aydin, H., & Zhu, D. (2015). Energy-aware standby-sparing for fixed-priority
real-time task sets. Sustainable Computing: Informatics and Systems, 6, 81–93. https://doi.org/
10.1016/j.suscom.2014.05.001

27. Haque, M. A., Aydin, H., & Zhu, D. (2017). On reliability management of energy-aware real-
time systems through task replication. IEEE Transactions on Parallel and Distributed Systems,
28(3), 813–825. https://doi.org/10.1109/tpds.2016.2600595

28. Huang, K., Jiang, X., Zhang, X., Yan, R., Wang, K., Xiong, D., & Yan, X. (2018). Energy-
efficient fault-tolerant mapping and scheduling on heterogeneous multiprocessor real-time
systems. IEEE Access, 6, 57614–57630. https://doi.org/10.1109/access.2018.2873641

29. Jejurikar, R., Pereira, C., & Gupta, R. (2001). Leakage aware dynamic voltage scaling for real-
time embedded systems. In Proceedings of the 41st Annual Design Automation Conference,
DAC ’04 (pp. 275–280). ACM. https://doi.org/10.1145/996566.996650

30. Jhumka, A., Hiller, M., Claesson, V., & Suri, N. (2002). On systematic design of globally
consistent executable assertions in embedded software. ACM SIGPLAN Notices, 37(7), 75.
https://doi.org/10.1145/566225.513843


 19664 1907 a 19664 1907
a
 
https://doi.org/10.33889/ijmems.2019.4.1-004
https://doi.org/10.33889/ijmems.2019.4.1-004

 5709 7442 a 5709 7442
a
 
https://doi.org/10.1109/tcad.2011.2173488

 -563 10763 a -563
10763 a
 
https://doi.org/10.1109/real.2002.1181580

 28107 12977 a 28107
12977 a
 
https://doi.org/10.1016/j.jss.2017.02.004
https://doi.org/10.1016/j.jss.2017.02.004

 8688 17405 a 8688
17405 a
 
https://doi.org/10.1109/71.584093

 17809 19619
a 17809 19619 a
 
https://doi.org/10.1023/a:1008046012844

 12557 22940 a 12557 22940 a
 
https://doi.org/10.1007/s11277-016-3302-0

 32220 25153 a 32220 25153 a
 
https://doi.org/10.1016/j.sysarc.2014.12.001
https://doi.org/10.1016/j.sysarc.2014.12.001

 3671 29581 a 3671 29581
a
 
https://doi.org/10.1016/j.sysarc.2017.06.008

 25964 32902 a 25964 32902
a
 
https://doi.org/10.1109/rtcsa.2015.22
https://doi.org/10.1109/rtcsa.2015.22

 8191 37330 a 8191 37330 a
 
https://doi.org/10.1109/iccd.2011.6081396

 24161 40651 a 24161
40651 a
 
https://doi.org/10.1109/igcc.2013.6604518
https://doi.org/10.1109/igcc.2013.6604518

 29283 43972 a 29283
43972 a
 
https://doi.org/10.1016/j.suscom.2014.05.001
https://doi.org/10.1016/j.suscom.2014.05.001

 5709 48400 a 5709 48400 a
 
https://doi.org/10.1109/tpds.2016.2600595

 14778 51720 a 14778 51720 a
 
https://doi.org/10.1109/access.2018.2873641

 11360 55041 a 11360 55041
a
 
https://doi.org/10.1145/996566.996650

 -563 58362 a -563
58362 a
 
https://doi.org/10.1145/566225.513843


18 S. Bansal et al.

31. Kaur, N., Bansal, S., & Bansal, R. K. (2016). Energy conscious scheduling with controlled
threshold for precedence-constrained tasks on heterogeneous clusters. Concurrent Engineer-
ing, 25(3), 276–286. https://doi.org/10.1177/1063293x16679001

32. Kaur, N., Bansal, S., & Bansal, R. K. (2016). Energy efficient duplication-based scheduling
for precedence constrained tasks on heterogeneous computing cluster. Multiagent and Grid
Systems, 12(3), 239–252. https://doi.org/10.3233/MGS-160252

33. Kaur, N., Bansal, S., & Bansal, R. K. (2017). Duplication-controlled static energy-efficient
scheduling on multiprocessor computing system. Concurrency and Computation: Practice and
Experience, 29(12), e4124. https://doi.org/10.1002/cpe.4124

34. Khudia, D. S., & Mahlke, S. (2014). Harnessing soft computations for low-budget fault
tolerance. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE. https://doi.org/10.1109/micro.2014.33

35. Kim, J., Kim, H., Lakshmanan, K., & Rajkumar, R. (2013). Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-driving car. In 2013 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS) (pp. 31–40).

36. Lala, J., & Harper, R. (1994). Architectural principles for safety-critical real-time applications.
Proceedings of the IEEE, 82(1), 25–40. https://doi.org/10.1109/5.259424

37. Leveson, N. G. (1986). Software safety: Why, what, and how. ACM Computing Surveys, 18(2),
125–163. https://doi.org/10.1145/7474.7528

38. Li, K. (2016). Energy and time constrained task scheduling on multiprocessor computers with
discrete speed levels. Journal of Parallel and Distributed Computing, 95, 15–28. https://doi.
org/10.1016/j.jpdc.2016.02.006

39. Market, E.S. (2020). Embedded system market by hardware (MPU, MCU, application-specific
integrated circuits, DSP, FPGA, and memories), software (middleware, operating systems),
system size, functionality, application, region—global forecast to 2025. Accessed 21 May
2020.

40. Marwedel, P. (2018). Embedded system design. Springer International Publishing. https://doi.
org/10.1007/978-3-319-56045-8

41. Masiero, M., & Roos, A. (2012). Power consumption—CPU charts 2012: 86 processors from
AMD and Intel, tested (2012). Accessed 02 Jan 2020.

42. Meixner, A., Bauer, M. E., & Sorin, D. (2007). Argus: Low-cost, comprehensive error detection
in simple cores. In 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007). IEEE. https://doi.org/10.1109/micro.2007.18

43. Melhem, R., Mosse, D., & Elnozahy, E. (2004). The interplay of power management and fault
recovery in real-time systems. IEEE Transactions on Computers, 53(2), 217–231. https://doi.
org/10.1109/tc.2004.1261830

44. Niu, L., & Li, W. (2016). Reliability-conscious energy management for fixed-priority real-time
embedded systems with weakly hard QoS-constraint. Microprocessors and Microsystems, 46,
107–121. https://doi.org/10.1016/j.micpro.2016.03.005

45. Oh, S. K., & Macewen, G. H. (1992). Toward fault-tolerant adaptive real-time distributed
systems.

46. Pollack, F. J. (1999). New microarchitecture challenges in the coming generations of CMOS
process technologies (keynote address) (abstract only). In Proceedings of the 32Nd Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 32 (p. 2). IEEE Computer
Society.

47. Poursafaei, F. R., Safari, S., Ansari, M., Salehi, M., & Ejlali, A. (2015). Offline replication and
online energy management for hard real-time multicore systems. In 2015 CSI Symposium on
Real-Time and Embedded Systems and Technologies (RTEST). IEEE. https://doi.org/10.1109/
rtest.2015.7369847

48. Pradhan, D. K. (1996). Fault-tolerant computer system design. Prentice-Hall.
49. Punnekkat, S. (1997). Schedulability Analysis for Fault Tolerant Real-time Systems. Ph.D.

Thesis, University of York, UK.


 7373 1907 a 7373 1907
a
 
https://doi.org/10.1177/1063293x16679001

 9159 5228 a 9159 5228
a
 
https://doi.org/10.3233/MGS-160252

 9879 8549 a 9879 8549
a
 
https://doi.org/10.1002/cpe.4124

 1946 11870 a 1946 11870 a
 
https://doi.org/10.1109/micro.2014.33

 14526 17405 a 14526
17405 a
 
https://doi.org/10.1109/5.259424

 3201 19619 a 3201 19619 a
 
https://doi.org/10.1145/7474.7528

 30782 21833 a 30782
21833 a
 
https://doi.org/10.1016/j.jpdc.2016.02.006
https://doi.org/10.1016/j.jpdc.2016.02.006

 30782 28474 a 30782 28474
a
 
https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/10.1007/978-3-319-56045-8

 8101 35116 a 8101 35116 a
 
https://doi.org/10.1109/micro.2007.18

 30782 37330 a 30782 37330
a
 
https://doi.org/10.1109/tc.2004.1261830
https://doi.org/10.1109/tc.2004.1261830

 3201 41758 a 3201 41758 a
 
https://doi.org/10.1016/j.micpro.2016.03.005

 25964 51720 a 25964
51720 a
 
https://doi.org/10.1109/rtest.2015.7369847
https://doi.org/10.1109/rtest.2015.7369847


Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed. . . 19

50. Qi, X., Zhu, D., & Aydin, H. (2011). Global scheduling based reliability-aware power
management for multiprocessor real-time systems. Real-Time Systems, 47(2), 109–142. https://
doi.org/10.1007/s11241-011-9117-x

51. Salehi, M., Ejlali, A., & Al-Hashimi, B. M. (2016). Two-phase low-energy n-modular redun-
dancy for hard real-time multi-core systems. IEEE Transactions on Parallel and Distributed
Systems, 27(5), 1497–1510. https://doi.org/10.1109/tpds.2015.2444402

52. Shivakumar, P., Kistler, M., Keckler, S., Burger, D., & Alvisi, L. (2002). Modeling the effect
of technology trends on the soft error rate of combinational logic. In Proceedings International
Conference on Dependable Systems and Networks. IEEE Comput. Soc. https://doi.org/10.
1109/dsn.2002.1028924

53. Srinivasan, J., Adve, S., Bose, P., & Rivers, J. (2004). The impact of technology scaling on
lifetime reliability. In International Conference on Dependable Systems and Networks, 2004.
IEEE. https://doi.org/10.1109/dsn.2004.1311888

54. Tosun, S. (2011). Energy- and reliability-aware task scheduling onto heterogeneous MPSoC
architectures. The Journal of Supercomputing, 62(1), 265–289. https://doi.org/10.1007/
s11227-011-0720-3

55. Unsal, O. S., Koren, I., & Krishna, C. M. (2002). Towards energy-aware software-based fault
tolerance in real-time systems. In Proceedings of the 2002 International Symposium on Low
Power Electronics and Design (pp. 124–129). ACM Press. https://doi.org/10.1145/566408.
566442

56. Uribe-Toril, J., Ruiz-Real, J., Milán-García, J., & de Pablo Valenciano, J. (2019). Energy,
economy, and environment: A worldwide research update. Energies, 12(6), 1120. https://doi.
org/10.3390/en12061120

57. Venkatachalam, V., & Franz, M. (2005). Power reduction techniques for microprocessor
systems. ACM Computing Surveys, 37(3), 195–237. https://doi.org/10.1145/1108956.1108957

58. Wei, T., Mishra, P., Wu, K., & Zhou, J. (2012). Quasi-static fault-tolerant scheduling schemes
for energy-efficient hard real-time systems. Journal of Systems and Software, 85(6), 1386–
1399. https://doi.org/10.1016/j.jss.2012.01.020

59. Xu, H., Li, R., Zeng, L., Li, K., & Pan, C. (2018). Energy-efficient scheduling with reliability
guarantee in embedded real-time systems. Sustainable Computing: Informatics and Systems,
18, 137–148. https://doi.org/10.1016/j.suscom.2018.01.005

60. Zahaf, H. E. (2016). Energy efficient scheduling of parallel real-time tasks on heterogeneous
multicore systems. Ph.D. Thesis, Lille 1 University of Science and Technology, France.

61. Zhang, Y. W., Zhang, H. Z., & Wang, C. (2017). Reliability-aware low energy scheduling in
real time systems with shared resources. Microprocessors and Microsystems, 52, 312–324.
https://doi.org/10.1016/j.micpro.2017.06.020

62. Zhang, Y., & Chakrabarty, K. (2006). A unified approach for fault tolerance and dynamic power
management in fixed-priority real-time embedded systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(1), 111–125. https://doi.org/10.1109/tcad.
2005.852657

63. Zhang, Y., & Chakrabarty, K. (2004). Dynamic adaptation for fault tolerance and power
management in embedded real-time systems. ACM Transactions on Embedded Computing
Systems, 3(2), 336–360. https://doi.org/10.1145/993396.993402

64. Zhao, B., Aydin, & H., Zhu, D. (2009). Enhanced reliability-aware power management through
shared recovery technique. In Proceedings of the 2009 International Conference on Computer-
Aided Design (pp. 63–70). ACM Press. https://doi.org/10.1145/1687399.1687412

65. Zhao, B., Aydin, H., & Zhu, D. (2010). On maximizing reliability of real-time embedded
applications under hard energy constraint. IEEE Transactions on Industrial Informatics, 6(3),
316–328. https://doi.org/10.1109/tii.2010.2051970

66. Zhao, B., Aydin, H., & Zhu, D. (2011). Generalized reliability-oriented energy management for
real-time embedded applications. In Proceedings of the 48th Design Automation Conference
on—DAC ’11. ACM Press. https://doi.org/10.1145/2024724.2024815


 32220 800 a 32220 800 a
 
https://doi.org/10.1007/s11241-011-9117-x
https://doi.org/10.1007/s11241-011-9117-x

 10134 5228 a 10134 5228
a
 
https://doi.org/10.1109/tpds.2015.2444402

 28107 8549 a 28107 8549 a
 
https://doi.org/10.1109/dsn.2002.1028924
https://doi.org/10.1109/dsn.2002.1028924

 1946 12977 a 1946 12977
a
 
https://doi.org/10.1109/dsn.2004.1311888

 25964 15191 a 25964 15191
a
 
https://doi.org/10.1007/s11227-011-0720-3
https://doi.org/10.1007/s11227-011-0720-3

 22906
19619 a 22906 19619 a
 
https://doi.org/10.1145/566408.566442
https://doi.org/10.1145/566408.566442

 30782 22940 a 30782 22940 a
 
https://doi.org/10.3390/en12061120
https://doi.org/10.3390/en12061120

 19142 26260 a 19142 26260 a
 
https://doi.org/10.1145/1108956.1108957

 1789 29581 a 1789 29581 a
 
https://doi.org/10.1016/j.jss.2012.01.020


4612 32902 a 4612 32902 a
 
https://doi.org/10.1016/j.suscom.2018.01.005

 -563 38437 a -563 38437 a
 
https://doi.org/10.1016/j.micpro.2017.06.020

 24161 41758 a 24161
41758 a
 
https://doi.org/10.1109/tcad.2005.852657
https://doi.org/10.1109/tcad.2005.852657

 8688 46186 a 8688 46186
a
 
https://doi.org/10.1145/993396.993402

 14427 49507 a 14427 49507
a
 
https://doi.org/10.1145/1687399.1687412


3201 52827 a 3201 52827 a
 
https://doi.org/10.1109/tii.2010.2051970

 9793 56148 a 9793 56148 a
 
https://doi.org/10.1145/2024724.2024815


20 S. Bansal et al.

67. Zhao, B., Aydin, H., & Zhu, D. (2012). Energy management under general task-level reliability
constraints. In 2012 IEEE 18th Real Time and Embedded Technology and Applications
Symposium (pp. 285–294). IEEE. https://doi.org/10.1109/rtas.2012.30

68. Zhao, B., Aydin, H., & Zhu, D. (2013). Shared recovery for energy efficiency and reliability
enhancements in real-time applications with precedence constraints. ACM Transactions on
Design Automation of Electronic Systems, 18(2), 1–21. https://doi.org/10.1145/2442087.
2442094

69. Zhu, D., & Aydin, H. (2009). Reliability-aware energy management for periodic real-time
tasks. IEEE Transactions on Computers, 58(10), 1382–1397. https://doi.org/10.1109/TC.2009.
56

70. Zhu, D. (2010). Reliability-aware dynamic energy management in dependable embedded real-
time systems. ACM Transactions on Embedded Computing Systems, 10(2), 1–27. https://doi.
org/10.1145/1880050.1880062

71. Zhu, D., Qi, X., & Aydin, H. (2007). Priority-monotonic energy management for real-time
systems with reliability requirements. In 2007 25th International Conference on Computer
Design. IEEE. https://doi.org/10.1109/iccd.2007.4601963

72. Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., & Prieto, M. (2013). Survey of energy-
cognizant scheduling techniques. IEEE Transactions on Parallel and Distributed Systems,
24(7), 1447–1464. https://doi.org/10.1109/tpds.2012.20


 12268 1907 a 12268 1907 a
 
https://doi.org/10.1109/rtas.2012.30

 22435 5228 a 22435
5228 a
 
https://doi.org/10.1145/2442087.2442094
https://doi.org/10.1145/2442087.2442094

 22409 8549 a 22409 8549
a
 
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56

 30782 11870 a 30782 11870 a
 
https://doi.org/10.1145/1880050.1880062
https://doi.org/10.1145/1880050.1880062

 5082 16298 a 5082 16298 a
 
https://doi.org/10.1109/iccd.2007.4601963

 6650 19619 a 6650 19619
a
 
https://doi.org/10.1109/tpds.2012.20

	Energy Conscious Scheduling for Fault-Tolerant Real-Time Distributed Computing Systems
	1 Introduction
	2 Energy Management
	2.1 Dynamic Power Management 
	2.2 Dynamic Voltage and Frequency Scaling 

	3 Fault Tolerance
	3.1 Fault-Tolerant Techniques 

	4 Joint Optimization of Energy and Fault Management
	5 Conclusion
	References


