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Chapter 2
Nanotechnologies in Controlling Aquatic 
Diseases

Haimanti Mondal and John Thomas

2.1  Introduction

Aquaculture is the age-old practice of tending to confined water for growing aquatic 
organisms such as fish and shellfish and harvesting the production for human ben-
efit. It is the human-controlled cultivation and harvest of freshwater and marine 
plants and animals. It includes fish farming, fish culture, mariculture, fish breeding, 
and ocean ranching. Throughout the world, aquaculture operations constitute an 
integral part of fisheries and aquatic resource management. Organisms as varied as 
trout, carp, and tuna (i.e., finfish), shrimps and oysters (i.e., shellfish), and seaweed 
are grown, using ponds, tanks, or nets, in salt, brackish, and fresh waters.

Aquaculture in India is one of the leisure activities among fishermen and farm-
ers. With the passage of time, due to the limitations of the land-based food supply 
and the Malthusian fear, man has turned more seriously to water-based production 
systems. Earlier, it was easier to harvest wild fish stocks when compared to cultur-
ing fish, but now a stage of saturation in production through capture fisheries has 
been reached. Globally, annual water-based production has reached a plateau phase 
of 95–100 million tonnes during the current decade.

A vaccine is a biological preparation that improves immunity to a particular dis-
ease. The agent stimulates the body’s immune system to recognize the agent as a 
foreign body. It destroys the foreign body and “reminisces” it so that the immune 
system can easily recognize and destroy any of these microorganisms that it later 
encounters. There are a lot of varieties of vaccines like DNA vaccines, recombinant 
vaccines, and many more. Whole-cell vaccine is a bacterial suspension of whole 
bacterial cells that have been killed. Whole-cell vaccine production is cheaper. It is 
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of two types: killed vaccine and attenuated vaccine. Though attenuated vaccine pro-
vides both cellular and humoral immunity, there is always a chance of infection in 
immunocompromised individuals and also a possibility of reversion to pathogenic 
forms. Thus, whole-cell killed vaccines are preferred as they are able to provide 
potent immunization. Whole-cell vaccines are preferred over other types because 
they are cheaper than others and also very effective. Though others have been found 
effective, their approval is still an issue, and also their production is difficult as in 
the case of the pertussis vaccine (Halperin et al. 1992). Though this is a human vac-
cine, this issue still affects other vaccines intended for other living forms.

Zhao et al. (2014), Pankhurst et al. (2003), and Tissot et al. (2008) reported that 
nanotechnology has made a huge progress in the field of biomedicine. In addition, 
the application has been increasing in the area of vaccinology, which gave rise to 
“nanovaccinology” (Mamo and Poland 2012; Zhao et al. 2014). Thus, the nanovac-
cines developed contain nanoparticles formulated with antigens either absorbed on 
or encapsulated within the surface against which an immune reaction is elicited 
(Gregory et al. 2013; Zaman et al. 2013).

In the past few decades, nanoparticles have been used as delivery systems and 
adjuvants in vaccines. Nanotechnology has formulated various efficient vaccine 
delivery systems that have helped in protecting the encapsulated antigens from the 
belligerent gastrointestinal environment. They also maintained the sustained release, 
which was inducing the immunostimulatory properties of the vaccine. Moreover, 
nanotechnology has been applied in the development of several fish vaccines for 
mass vaccination by either incorporating them in feed or administering them via 
immersion. Thus, nanovaccines can be a potential alternative and possible solution 
for injection-free mass vaccination and its applications in the aquaculture industry 
(Vinay et al. 2016).

Poly (lactic-co-glycolic acid) (PLGA) and polymeric chitosan are the most 
investigated nanoparticles in the fish vaccine research area (Mohamed et al. 2016). 
PLGA is a synthetic polymeric nanoparticle, whereas chitosan is a natural poly-
meric nanoparticle (Liang et al. 2014; Nirmal et al. 2014). Chitosan nanoparticles 
have been reported in the development of various fish vaccines. A study was reported 
on a nanoparticle-based oral vaccine against infectious salmon anemia virus (ISAV) 
that incorporated an alphavirus replicon as an adjuvant (Aravena et al. 2015).

2.2  Fish Vaccine in Aquaculture

The fish immune system is exposed to part of a pathogen or the entire pathogen 
(antigen), allowing time for the immune system to develop a response. Fish vac-
cines are classified as killed and modified live vaccines. Killed fish vaccines consist 
of killed (heat-killed/formalin-killed) pathogenic bacteria that stimulate the immune 
systems of the water-based production organisms and generate an immune response.

In order to prepare the bacterins, each bacterial isolate was inoculated separately 
into tryptic soy broth (TSB) and incubated for 24 h at 25 °C. Formalin (40% w/v) 
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was added to the broth culture at a final concentration of 0.5% (V/V) and left for 
48 h at room temperature. In the case of bivalent formalin-killed vaccine formula-
tion, an equal portion of each bacterin was added to make one volume of the vac-
cine. Besides, the heat-killed vaccine was prepared by heating the broth culture for 
30  min at 100  °C.  The inactivated cells were counted with the hemocytometer 
(1 × 108 cells/ml) for all the isolates. After that, the bacterins were tested for their 
sterility (free from the living cells) by streaking them onto trypticase soy agar, 
which showed no growth (Dehghani et al. 2012).

Pridgeon and Klesius (2010) reported that the modified live vaccines are com-
prised of live microorganisms that are grown in culture. They cannot cause signifi-
cant disease. Live attenuated vaccines work by stimulating both cell-mediated and 
humoral immune responses and conferring protection for a long time.

Other than PLGA and chitosan, numerous other kinds of nanoparticles have been 
used in fish vaccine delivery including nanoliposomes, calcium phosphate, carbon 
nanotubes, immunostimulating complexes, and biodegradable polymers that have 
the potential to develop new vaccines against various fish pathogens (Vinay 
et al. 2017).

2.3  Types of Vaccines and Their Applications 
in Nanotechnology

2.3.1  Fish Vaccines

With an increase in water-based products for human and animal consumption, a 
decline in fishery resources is also observed simultaneously. Hence, there is an addi-
tional need for alternate sources of water-based products, mainly through the aqua-
culture industry, which is claimed to be the fastest-growing segment of agriculture 
in the world (Hanfman 1993). The increased demand for aquatic animals, which is 
partly due to greater health awareness among consumers and the decline or stagna-
tion of natural harvests, has largely contributed to this rapid growth.

Fish management, coupled with good hygiene practices, remains a major key 
factor in aquaculture-based production systems.

Recent researches are focusing on the importance of nanoparticles in terms of 
their application in the development of fish vaccines in aquaculture (Yildirimir et al. 
2011). Nanoparticles are able to exhibit properties that are interesting as well as 
different compared to their parent compounds, including quantum size effects and 
increased relative surface area. Studies have proven that the application of nanopar-
ticles has led to the enhancement of the stability, solubility, permeability, targeting, 
and biocompatibility of vaccines (You et al. 2012; Lai et al. 2013; Frohlich 2012; 
Doll et al. 2013).
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2.3.1.1  Viral Fish Vaccines

Benmansour and de Kinkelin (1997), Lopez Doriga et al. (2001), and Ronen et al. 
(2003) reported that most of the available virus vaccines for aquaculture nowadays 
are based on inactivated viruses or recombinant subunit proteins. Inactivated or 
killed viral vaccines are generally not successful unless delivered by injection. High 
doses are required to achieve protection. Live viral vaccines have been tested with 
good results in fish. The first viral vaccine for fish was against a carp rhabdovirus, 
causing spring viremia of carp (SVC). Commercially available vaccines for IPNV 
are based on either inactivated cell culture-propagated viruses or recombinant struc-
tural proteins. However, DNA vaccines encoding the same viral glycoproteins are 
remarkably efficacious. Indeed, these DNA vaccines are protective when used in 
small doses and efficacious as early as 4–8 days and for up to 2 years post vaccina-
tion (Corbeil et al. 2000).

A study was carried out to improve the prophylactic efficacy of immersion vac-
cines against fish viral diseases by constructing a targeted single-walled carbon 
nanotube (SWCNT)-based immersion vaccine delivery system “CNTs-M-VP7.” 
The surface of this delivery system was modified with mannose to allow the target-
ing of antigen-presenting cells (APCs). This monosylated nanoparticle-based 
immersion vaccine was able to enter into the fish body through mucosal tissues like 
gill, skin, and intestine and later present to immune-associated tissues. They could 
trigger robust immune responses by inducing the maturation as well as the present-
ing process of the APCs (Zhu et al. 2020).

2.3.1.2  Bacterial Fish Vaccines

The first commercially available bacterial vaccines were against enteric red mouth 
disease (ERM, yersiniosis) and vibriosis, introduced in the USA in the later 1970s 
(Evelyn 1997). These vaccines were based on inactivated whole cell formulations 
and were administered by immersion. Such vaccines have proven efficacious in 
preventing many of the major bacterial diseases. Vibriosis is an example of a disease 
against which the simple inactivated bacterin vaccine works well, but other bacteria 
have proven more difficult to control by vaccination.

Kuzyk et al. (2001) reported the development of new vaccines based on recom-
binant proteins. These new approaches might offer a solution for diseases where 
inactivated bacterins are inefficient, although the long-term performance of the vac-
cines remains to be documented.

The gram-negative bacteria were reported to hamper the growth of finfish in 
aquaculture. All gram-negative bacteria have surface-associated outer membrane 
proteins (OMPs), and they were known as potential vaccine candidates. A study 
revealed the applications of OMPs in designing certain vaccines based on subunit 
vaccines, DNA vaccines, chimeric proteins, and recombinant proteins as potential 
new-generation vaccine candidates for various bacterial pathogens in aquaculture. 
OMPs play a significant role in the adaptive responses of bacteria including iron 
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acquisition, solute and ion uptake, bile salt resistance, antimicrobial resistance, 
serum resistance, and also maintaining the integrity as well as selective permeabil-
ity of the bacterial cell membrane. OMPs that have been found conserved across 
serotypes were used as potential candidates in the design of vaccines (Maiti 
et al. 2020).

2.3.1.3  Fish Vaccines Against Parasites

Parasitic diseases such as white spot disease, whirling disease, amoebic gill disease, 
proliferate kidney disease (PKD), and salmon live infestation create severe prob-
lems in fish farming, and no parasite vaccines are commercially available.

2.3.2  Need for New Fish Vaccines

Aasjord and Slinde (1994) and Mialhe et al. (1995) reported that outbreaks of infec-
tions can cause huge economic losses to fish farmers. There are no prophylactic or 
therapeutic measures available. Chemicals and antibiotics can be used to control 
bacterial and parasitic diseases, but these products often have undesirable side 
effects (Munn 1994).

In the case of viral infections that affect the water-based production systems of 
farms, there are no interventions available. Hence, a massive destruction of the 
infected stock is the only remedy. Current research in this field is focusing on dis-
ease prevention rather than treatment after infection. However, treatment can be 
opted for whenever the vaccine is unavailable. Vaccines provide herd immunity, but 
the currently available vaccines provide protection against bacterial diseases 
(Newman 1993; Schnick et al. 1997).

The high cost of new product development combined with the relatively small 
size of the industry and the low value of individual animals have largely contributed 
to this situation. There is a limited supply of many of the vaccines though tested and 
proven under laboratory conditions. This bias is due to the prohibitive cost of pro-
duction, insufficient protection, or lack of safety (Leong et al. 1997; Munn 1994; 
Newman 1993). The lack of effective viral vaccines is one of the main problems in 
fish vaccinology.

2.3.3  DNA Vaccine

DNA vaccines are the most efficient vaccines established against viral diseases in 
fish to date only at an experimental level. DNA vaccines represent a powerful new 
approach to raising immune responses. The antigens are synthesized in transfected 
cells and obey the modification and antigen presentation rules of eukaryotic cells. 
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Very low levels of antigen (typically monogram levels) induce both antibody and 
cytolytic T-cell responses. Several reviews on DNA vaccines for fish are available 
(Anderson and Leong 2000; Heppell and Davis 2000; Jones 2001; Lorenzen 
et al. 2005).

Recently, research has diverted to the preparation of DNA vaccines that encode 
the pathogenic antigens and, when administered to fish, provide an immune response 
at an effective level (Boudinot et al. 1998; Lorenzen et al. 2000; Lorenzen et al. 
2002; Mclauchlan et al. 2003; Pasnik and Smith 2005; Purcell et al. 2004; Vesely 
et al. 2004). Earlier, several research studies in fish involved the use of genes to 
study the magnitude of expression levels under different conditions with a focus on 
genes encoding proteins such as β-galactosidase, green fluorescent protein, and 
luciferase (Gomez Chiarri et al. 1996).

Advantages of DNA Vaccines
DNA vaccines offer several advantages to aquatic organisms over classical antigen 
vaccines (i.e., live attenuated, whole killed, and subunit vaccines). Practically. DNA 
vaccines are relatively inexpensive and easy to produce. Multivalent vaccines can 
also be easily prepared by mixing together different plasmids or including more 
than one antigen-encoding gene in a single vector for collinear expression, which 
will further reduce the cost of production. In addition, DNA is a very stable mole-
cule at higher temperatures; therefore, shipment and storage need not be in a cold 
environment. All these factors contribute to making DNA vaccines very attractive 
for controlling fish diseases. DNA-based immunization also has immunological 
advantages over traditional methods of vaccination. It can induce strong and lasting 
humoral and cell-dependent immune responses without a boost, similar to that con-
ferred by live vaccines, but without the risk of inadvertent infection (Davis and 
McCluskie 1999).

2.3.4  DNA Vaccines for Fish Pathogens in Nanotechnology

Gomez Chiarri et al. (1996) reported that one of the first bacterial fish pathogens for 
which DNA vaccines were tested was Renibacterium salmoninarum, the causative 
agent of bacterial kidney disease in salmon and trout, but no protective effect has 
been reported. A more generic approach has been attempted for Piscirickettisa sal-
monis, against which fish were vaccinated with a full expression library of plasmid 
DNA. A pathogen-specific antibody response was subsequently detected, but the 
level of protection was relatively low. Sommerset et al. (2005) reported that the viral 
hemorrhagic septicemia virus vaccine induced a high level of protection against 
Atlantic halibut nodavirus in turbot when the challenge was performed shortly after 
vaccination, thus demonstrating early protection and is not limited to rhabdovirus 
infections in salmonid. 
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The DNA vaccine encoding the outer membrane porin protein of Vibrio anguil-
larum in sea bass also provides a good immune response in sea bass (Rajesh Kumar 
et al. 2007).

2.3.4.1  Oral Vaccine

Oral vaccines can be administered effectively to all fishes, regardless of their size. 
This method is a cheap way to either vaccinate or boost the immune status of any 
fish in any cultural environment. However, when administering oral vaccines to 
fishes, the attention is to be focused on overcoming degradation in the digestive 
environment (gut) of the fish so that an effective vaccine delivery is possible with an 
adequate immune response. Other delivery challenges include cost-effective pro-
duction, shelf storage stability, and treatment to prevent leaching from feed upon 
contact with water.

An oral DNA vaccine was designed by loading the bacterial outer membrane 
protein K (ompK) gene of Vibrio parahaemolyticus onto the chitosan nanoparticles. 
They later elicited an immune response in black sea bream, Acanthopagrus 
schlegelii, against the pathogen Vibrio parahaemolyticus (Li et al. 2013). In another 
study, the pH-controlled release of dihydrolipoamide dehydrogenase (DLDH) anti-
gens via a mesoporous silica nanoparticle (MSN) delivery system was used to 
develop an oral fish vaccine. The DLDH antigens of the bacteria, Vibrio alginolyti-
cus, were loaded onto the MSN to design the vaccine delivery system. Moreover, 
hydroxypropyl methylcellulose phthalate (HP55) was coated to ensure the protec-
tion of the immunogen. They displayed the prepared MSN delivery system as a 
potential candidate carrier for fish vaccines through oral administration in aquacul-
ture (Zhang et al. 2021).

2.4  Vibrosis: A Common Disease Pathogen in Aquaculture

A disease outbreak in aquaculture causes significant economic loss, but the use of 
antibiotics is not always preferable due to the development of drug-resistant strains. 
Antibiotic residue may also remain in the fishes, which can be toxic to them as well 
as humans. Sometimes, when the disease is not detected earlier, it finds its way into 
the human food chain, where the infection spreads to humans. Some of the diseases 
common in fisheries are furunculosis, dropsy, ergasilosis, lernaesosis, pike fly virus, 
viral hemorrhagic septicemia (VHS), and many more.

Vibriosis in aquaculture has been reported in various parts of the world. In India 
also, it is very much common. Thus, it has been a major concern. Vibriosis is caused 
by Vibrio spp. and has been a serious disease problem in prawns. Some of the Vibrio 
spp. include V. harveyi, V. parahaemolyticus, V. anguillarum, V. vulnificus, and 
V. splendidus, and some of the diseases they cause are tail necrosis, shell disease, 
red disease, loose shell syndrome (LSS), and white gut disease (WGD).  
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A combination of one or more of these can cause these diseases, and the virulence 
of the disease depends on the strain, its source, and its environment. The severity of 
infection depends on the species and strain of Vibrio involved, the stage of develop-
ment and age of the prawn, and the ambient environmental conditions (Jayasree 
et al. 2006). Mass mortality is observed in different parts of the world in hatcheries 
and growing ponds of prawns (Couch 1978; Overstreet 1978; Lightner 1983, 1985, 
1988, 1996; Sindermann 1990; Ruangpan and Kitao 1992; Chen et al. 1992; Yang 
et al. 1992; de la Pena et al. 1993; Jiravanichpaisal et al. 1994; Mohney et al. 1994; 
Lavilla-Pitogo and de la Pena 1998; Lavilla-Pitago et al. 1998). Over a dozen spe-
cies have been isolated in case of implicated diseases (Overstreet 1978; Lightner 
1988, 1996; Sindermann 1990). Vibriosis is also rampant in the Indian region, and 
infection from luminous vibriosis has caused many hatcheries to shut down 
(Couch 1978).

Vibrio parahaemolyticus, a marine bacterium, causes food-borne disease in 
humans, resulting in gastroenteritis. This is due to the possession of hemolysin 
genes (tdh. Trh. or both) that favor the progression of the disease (Kim et al. 1999). 
The mode of infection of Vibrio parahaemolyticus in fish is mainly via penetration 
of the bacterium to the host (chemotactic activity), followed by the deployment of 
an iron sequestering system, resulting in eventual damage to fish by means of extra-
cellular products, i.e., hemolysin and proteases (Haldar et al. 2010).

Pathogenesis of Vibrio consists of gaining access to the host tissue, colonization, 
and invasion (Lee et al. 2008). During colonization, the composition of the organ-
isms, such as outer membrane proteins (OMPs), plays an important role in their 
adhesion to host cells. OMP is a unique component of the gram-negative bacterial 
cell wall. OMPs are transmembrane proteins, accounting for about half of all the 
outer membrane. OMPs of gram-negative bacteria, which form channels for small 
hydrophilic molecules, are known as porins (Chakrabarti et al. 1996). However little 
information is known about the outer membrane protein of V. parahaemolyticus, so 
it is understandable that many studies have been focused on amplifying genes 
responsible for these porins, to obtain these recombinant properties and understand 
their role in pathogenicity (Ye et al. 2010).

Daniela Ceccarelli et al. (2013) reported that Vibrio parahaemolyticus, autoch-
thonous to estuarine, marine, and coastal environments throughout the world, is the 
causative agent of food-borne gastroenteritis. More than 80 serotypes have been 
described worldwide based on the antigenic properties of the somatic (O) and cap-
sular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was 
isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pan-
demic had taken place.

The most common fish disease caused by bacteria belonging to the genus Vibrio 
is vibrosis. Rajesh Kumar et al. (2007) reported that Vibrio anguillarum produces a 
38-kDa major outer membrane porin protein (OMP) for biofilm formation and bile- 
protected activity caused by Vibriosis. They reported that the gene encoding the 
porin was used to construct a DNA vaccine. The evaluation in Asian seabass (Lates 
calcarifer Bloch) is a common species in the aquaculture industry of the Indian 
coast and a potential resource.
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White spot syndrome virus (WSSV) causes severe economic loss in the shrimp 
culture industry worldwide. Sarathi et  al. (2007) silenced the VP28 gene of the 
WSSV of shrimp by bacterially expressed dsRNA. This technology enabled them to 
produce a uniform quality of the VP28dsRNA, which was used to protect the shrimp 
against WSSV.

White tail disease (WTD) causes severe economic losses in prawn hatcheries and 
farms, and mortalities were observed at 100% within 2 or 3 days. Macrobrachium 
rosenbergii nodavirus (MrNV) and extra small virus (XSV) have been identified as 
pathogenic agents, which are 27 and 15 nm in diameter, respectively. Sudhakaran 
et al. (2008) cloned and sequenced the capsid protein of an Indian isolate of an extra 
small virus from Macrobrachium rosenbergii for gene silencing.

Rajesh Kumar et al. (2008) examines the potential efficacy of a DNA vaccine 
against Vibrio anguillarum through the oral route using chitosan nanoparticle 
encapsulation. The porin gene of V. anguillarum was used to construct a DNA vac-
cine using pcDNA 3.1, a eukaryotic expression vector, and the construct was named 
pVAOMP38. The chitosan nanoparticles were used to deliver the constructed 
plasmid.

2.5  Conclusion

Infectious disease in aquatic organisms leads to a drastic change in the biome, 
thereby causing a potential threat to mankind who are dependent on it. Also, it leads 
to a severe and catastrophic blow to the economy of a nation. Focusing on the grow-
ing human population and the need for alternative resources (water-based cultiva-
tion) for survival, several researches focus on the development of various 
interventions that cure infection among aquatic organisms. On a cost-based analysis 
of various therapeutic measures, vaccines have several advantages and have proven 
to be cost-effective.

From various experimental trials, it is evident that vaccines play a significant role 
in boosting immunity and providing an immune response against many fish patho-
gens. Hence, this study has focused on the area of vaccination towards preventing 
and eradicating various disease pathogens that affect aquatic life. Also, attention is 
drawn towards the benefit of the implementation of vaccination over a large scale to 
cure several communicable diseases of aquatic fauna, which ultimately serves as an 
alternate food resource to the land-based food supply.
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