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Abstract. The amount of data generated daily in the financial markets
is diverse and extensive; hence, creating systems that facilitate decision-
making is crucial. In this paper, different intelligent systems are pro-
posed and tested to predict the closing price of the IBEX 35 using ten
years of historical data with four different neural networks architectures.
The first was a multi-layer perceptron (MLP) with two different acti-
vation functions (AF) to continue with a simple recurrent neural net-
work (RNN), a long-short-term memory (LSTM) network and a gated
recurrent unit (GRU) network. The analytical results of these models
have shown a strong, predictable power. Furthermore, by comparing the
errors of predicted outcomes between the models, the LSTM presents the
lowest error with the highest computational time in the training phase.
Finally, the empirical results revealed that these models could efficiently
predict financial data for trading purposes.

Keywords: Machine learning · IBEX35 · Stock market prediction ·
Artificial neural networks · Recurrent neural network · Gated recurrent
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1 Introduction

The main concern of many economic agents is to forecast the future trends of
the financial markets to make better decisions. The methods used and the time
frames to predict are diverse. The stock markets represent a fundamental piece
of any modern economy by letting investors exchange financial instruments at
an agreed price with many fluctuations over time. These variations are consid-
ered chaotic and non-stationary; however, there is some empirical evidence [18]
suggesting that stock returns can have some predictable components rejecting
the hypothesis of the random walks.

All the economic agents need to be aware of the stock market’s implications
at different economic levels. As seen in the global financial crisis of 2007–2009,
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the financial contagion affected different sectors of the real economy, such as
consumer goods, industrials, telecommunications and technology [4]. Therefore,
forecasting future stock prices and trends can be crucial for better financial
decisions. However, this is not an easy task because the nature of the stock mar-
ket is intrinsically nonlinear, non-parametric and chaotic, where many variables
interact, making prices move in one direction or another.

The prediction process in the stock market has been approached by two differ-
ent methodologies, fundamental and technical analysis. The first one is based on
the valuation of the intrinsic value of stocks by using the current and future earn-
ings of the company to evaluate the fair value and then contrast this information
with the market value indexed in the stock exchange. The second methodology
does not count on the company’s financial statements as the primary source of
information. However, it merely relies on data using historical stock prices to
make predictions trying to identify statistical trends.

Many investors use both methodologies to make buying or selling decisions,
and the 87 % of fund managers use some technical analysis [19]. However, the
increasing expansion and evolution of datification and automation prompted the
financial markets to find new processes to remain competitive and reinvent their
services. Then artificial intelligence and machine learning became a powerful tool
for institutions, financial advisers, banks and wealth managers and disruptively
transformed their business model [17].

This research focuses on studying Artificial Neural Networks (ANN) and
attempts to clarify further the use of its different variations in predicting the
stock market. This work starts with a bibliographic review in Sect. 2, about the
use of ANN to solve some financial problems and continues with the Materi-
als and methods in Sect. 3 to explain the initial settings of the experimenta-
tion. Then, to continue in Sect. 4 with the description of ANNs, starting with
the description and creation of an Multi-Layer Perceptron (MLP) network in
Sect. 4.1. Subsequently, the structure of a Recurrent Neural Network (RNN) is
presented, introducing the Simple RNN, Long-Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) architectures in Sect. 4.2. Finally, to finish with the
results and discussion and conclusions about the performance of these models
predicting financial times series in section in Sect. 5 and 6 respectively.

2 Background

Over the years, ANNs have played a vital role in the decision-making process
of banks and financial institutions due to the adaptation of new and auto-
mated systems to their operations. These new technologies have been quickly
adopted because they are consistent and objective, eliminating human bias or
wrong assumptions. In addition, ANNs empower investors and institutions to
create new powerful models by extracting information from past observations
and improving preconceived models.

The ANN are a bio-inspired computing system based on many connected
processors called neurons activated by different types of activation functions
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(AF) triggered according to specific weights and bias. This system aims to min-
imize the prediction error by using a feed-forward optimization that will change
the weights of the different interconnected neurons. This model can capture non-
linearities and has been used in different business applications to predict financial
distress, bankruptcy analysis, stock price predictions, and credit scoring Tkac et
al. [26].

Different ANN applications to predict the stock market can be found in the
literature. For example, Qui et al. [23] used an ANN to predict the return of
the Japanese Nikkei 225 index by using a hybrid approach based on a genetic
algorithm and simulated annealing. Additionally, Pyo et al. [22] analyzed the
prediction of a stock exchange index, building three hypotheses to forecast the
daily closing prices of the Korea Stock Price Index 2000 by using an ANN and
two SVMs models. Also, Kara et al. [14] using a three-layered feed-forward ANN
and an SVM model, predicted the direction of the Istanbul stock exchange index,
concluding that the 75.74% performing prediction for the ANN was significantly
better than for the SVM. Moreover, to predict the stock market index Moghad-
dam et al. [20] created an ANN using the four and nine previous days as inputs,
concluding that there is no distinct difference between using different days.

Sagir et al. [24] presented a contrast between ANNs and classical statistical
techniques to predict the Malaysian stock market index using three variables,
showing that the ANN was more accurate than the multiple linear regression
model in this research, with a coefficient of determination of 0.9256. Also, Ariyo
Adebiyi et al. [2] compared an autoregressive integrated moving average with an
ANN to predict the price of a single stock using 5680 observations. The authors
concluded that the ANN model is better, having a higher forecasting accuracy;
however, there is not statistically significant.

An example of the integration of metaheuristics to predict financial data
with neural networks was performed by Gocken et al. [11], where an ANN is
hybridized with a genetic algorithm and harmony search to make a feature selec-
tion to reduce the complexity of variable selection. In their model, the inputs
were technical indicators concluding that hybrid ANN can be successfully used
to forecast the stock market price movement. Additionally, Enke et al. [10] intro-
duced an information gain technique to evaluate the prediction of stock market
returns using data mining and ANN for level estimation and classification with
macroeconomic variables as inputs. As a result, the ANN model was more accu-
rate, showing more consistency than a linear regression forecast and generating
higher profits than other strategies with the same risk exposure.

Another example of a hybrid model using ANN to predict financial time
series is the work made by Kim et al. [15], combining LSTM, GARCH mod-
els and moving averages. These authors concluded that LSTM single models
could effectively learn temporal patterns of time-series data with fewer predic-
tion errors than deep feed-forward network-based integrated models.
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3 Materials and Methods

This study coded and tested four different models using Python programming
language. The data set used to create the inputs for this model was the Spanish
Exchange Index, known as IBEX 35. The entire data set used in this research
contains 2454 observations, covering the closing prices and volume values from
June 1, 2010, to December 31, 2019, covering almost ten years of daily prices in
which different trends took place that may represent a normal market cycle. The
Anderson-Darling test was performed on the sample data and rejected the null
hypothesis; therefore, the assumption of normal distribution in the data sample
cannot be allowed. Because the values of the data-set did not follow a normal
distribution, the closing prices and the volume values were rescaled between
(−1 < x < 1) to be used with the hyperbolic tangent functions and between
(0 < x < 1) with the sigmoid activation function. The performance metrics to
measure the predictive ability of the different models used in this research were
the mean square error (MSE), mean absolute error (MAE), mean squared log
error (MLE) metrics, and the determination coefficient (R2).

The common input layer for the ANN architectures use in this study is pre-
sented in Eq. 1:

Xinput(t) = f [v(t − 4), v(t − 3), v(t − 2), v(t − 1),
c(t − 4), c(t − 3), c(t − 2), c(t − 1)]

(1)

where c(t) is the function for closing price and v(t) for volume value at a given
time t.

For the training phase, the data-set was split into two parts. The first por-
tion contains the initial 80% of the data selected for the training set, while the
remaining 20% for the test sets.

4 ANN Architectures

This section first introduces a model that consists of an ANN with a multi-
layer network structure coded by the authors, using NumPy library for matrix
multiplication, and continues with another three models constructed using Keras
and TensorFlow [1] to build a simple RNN, LTSM and GRU commonly used in
different artificial intelligence projects.

4.1 Multi-layer Neural Network

The most widely implemented neural network topologies [12] is the MLP, a
multi-layer network structure where the neurons are displayed as input, output,
and hidden layers. The other components in the models are weights, connecting
coefficients between layers, and activation functions that trigger a signal given
a weighted sum of its input. In the first part of this research, two AFs used will
be used, the sigmoid (SF) and hyperbolic tangent functions (HTF), while for
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the simple RNN, LSTM and GRU the rectified linear units (RELU) activation
function.

The training phase of an ANN model consists of four steps: Initialization of
weights to small random values, forward pass, backward pass and updating of the
weights and biases [24]. In this study, for the MLP architecture, two hidden layers
will be used and one input and output layer; therefore, three weights matrices
(SWi) were created and initialized with random values for the initialization of
weights. Where ni is the numbers of nodes of the input layer, nj for the first
hidden layer and nk for the second hidden layer.

For the forward pass, the first step was the multiplication between the input
values of the vector Xinput(t) and the SW1 matrix (2) were evaluated in the AF.

AF1 = Xinput(t) · SW1 (2)

in the following steps, when i is greater than one:

AFi = AFi−1 · SWi (3)

Once the final layer is reached, the output value must be compared with the
target value (4).

δ = youtput − ytarget (4)

In the back pass, the error derivate goes back to the input layer updating the
weights (SW1, SW2, SW3). The first vector in the back pass is the derivative of
the activation function of the δ multiplied by a learning rate (α); the remaining
steps will be the multiplication of the first back pass vector by the transpose
matrix of SW3 and by the derivative of the second activation AF2 and the same
procedure for a third error vector (5)

e1 = e2 · SWT
2 · AF ′(Xinput) (5)

Then e1 multiply by the transpose matrix of Xinput is updating SW1 and
then the following steps (6) until the last weight.

ΔSWi = AFT
i−1 · ei (6)

4.2 Recurrent Neural Networks

RNN are one type of ANN that deals with data that has sequential inputs. This
architecture has been used to process speech, language and sentiment data [27],
specially predicting the next character and word in a given text [5], and for
more complex tasks [16]. As mentioned previously, RNNs can process sequential
inputs using an internal memory to process these incoming inputs and as Le Cun
et al. [16] pointed, this model is able to keep in their hidden units a sort of state
vector, which can enclose details of previous parts of the sequence. Therefore
RNN can process at the same time the previous and recent flow of inputs data
by using this hidden unit or layer to keep a historical record. However, the RNN
only takes one sequence at any given time. In this research, three commonly used
types of RNN will be tested. The following section will describe the LSTM and
the GRU architecture.
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LSTM. The advantage of an RNN is that it learns long term dependencies over
time; however, there are some error back-flow problems [13], showing difficulties
to achieve a proper learning process. Therefore the information can not be stored
for a long time. A novel solution was introduced by hochreiter and schmidhuber
[13] proposing the LSTM model in order to correct this problem, augmenting
the network with explicit memory, using hidden units to remember short and
long term values. The total number of units of the LSTM is displayed to create
a network with an input node, an input, an output, and a forget gates, where
the gates will regulate the flow of the information. In the following equations
(7–12) is possible to see the forward pass of the LSTM unit [13].

gt = ˜C = ϕ(Wgxt + Ught−1 + bg) (7)

it = σ(Wixt + Uiht−1 + bi) (8)

ft = σ(Wfxt + Ufht−1 + bf ) (9)

ot = σ(Woxt + Uoht−1 + bo) (10)

Ct = gt ∗ it + ft ∗ Ct−1 (11)

ht = ot ∗ ϕ(Ct) (12)

where it represents the input gate activation vector,ft is the forget gate activation
vector, ot the output gate activation vector, Ct represents the cell state vector,
ht is the output vector of the LSTM unit, σis SF function, b: biases for the
respective gates, W,U are weight matrices for the respective gates, ϕ represents
a HTF and ∗ is an element-wise product.

Several studies used LSTM to predict the stock market in the last five years,
where this technique and its modifications dominate the financial time series
forecasting [25]. However, despite their popularity, there are some variations on
this model. One modification of LSTM is the GRU model that aims to resolve
the vanishing and exploding gradient problem presented in the previous model
[6].

GRU. This model was introduced by Cho et al. [8] in 2014, proposing a novel
ANN called RNN Encoder-Decoder consisting of two RNNs. This model has
fewer parameters and has proven a competitive performance to others models like
LSTM. Furthermore, it is possible to observe that GRU and LSTM have gating
units that modulate the flow of information inside the unit cell. However, it does
not have a separate memory cell [9]. According to Alom et al. [3] this model
is now popular among people who work with RNN because the computational
cost and the simplicity of GRU are better compared to others. Furthermore,
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the decrease in the computational cost is due to the absence of an output gate,
accelerating the speed of the model [21]. GRUs have been successfully applied
to many applications for pattern analysis where sequential data is used as input
and multivariate time series with missing values [7]. Among the classical GRU’s
disadvantages is that it is very easy to fall into local minimum with small time
series and complex time order. Apart from the sensitivity to the time order,
Pei et al. [21] describe some disadvantages that this model has with the data,
quoting that for GRUs is hard to detect the implication information of time
series and that an imbalanced data can affect the performance of the model by
influencing the convergence.

5 Results and Discussion

Diverse ANN structures were tested with the SF and HTF functions to determine
the best topology for the MLP net, and in this investigation we have tested
different values for the different layers, ranging from one to fifty nodes. As shown
in Table 1 different results were obtained by changing the configuration of the
ANN. The learning process was made with ten thousand iterations and an α =
0.01, in all the MLP architectures tested.

Table 1. R2 of the ANN model using the SF and the HTF.

R2

no Structure SF HTF

1 5-5 0.4789 0.6294

2 5-40 <0 0.5775

3 10-20 0.8646 0.7428

4 10-30 <0 0.7819

5 20-20 0.7172 0.7694

6 20-30 0.9242 0.7522

7 30-15 0.8213 0.8485

8 30-30 0.9213 0.8950

9 39-21 0.8166 0.9241

10 40-40 <0 0.9065

11 40-25 0.9275 0.9159

12 50-50 <0 0.8633

The prediction accuracy of the ANN model that uses the SF function is
statistically different from the others that used HTF. The Wilcoxon signed-rank
test was performed to compare the accuracy with the null hypothesis as follows:

H0 : μR2/SF = μR2/HTF

H1 : μR2/SF �= μR2/HTF
(13)
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Even though it is possible to accept differences because the null hypothesis
was rejected is not possible to affirm which activation function works better with
this model, but the best coefficient of determination found was 0.9275, obtained
by using the SF.

Fig. 1. Output and predicted values of the IBEX 35 index using SF (40-25), performed
in test set.

When the number of nodes in the hidden layer is low, the model performs
worse than with more numbers of nodes, this phenomenon was clearer using SF
than HTF, but this might not always necessarily true. For example when using
SF the R2 is not constantly growing at a given rate. At first, a low number of
nodes returned a low R2, and as the number of nodes starts to increment also,
the R2 increases. However, when there are 40 nodes in each layer, the R2 is
negative; therefore, there is no optimal number of nodes for each layer. Also,
negative R2 values can be found in some specific ANN structures. The highest
R2 found was 0.9275 by using SF with 40 nodes in the first hidden layer and 25
in the second as shown in Fig. 1. For the ANN with HTF, the best R2 found was
0.9241, as shown in Table 1, with an ANN with 39 and 21 nodes.

It is possible to observe that the ANN with SF has lower MSE, MAE, and
MLE levels than those using HFT when the number of nodes is relatively low.
However, this trend changed when the number of nodes was more extensive than
30 in the first hidden layer.

5.1 Recurrent Neural Network Performance

This section will present the implementation of the simple RNN, LSTM and GRU
models. These models were implemented using the Keras library for Python
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backup by the Tensorflow library. The data were pre-processed in the same
way that was done for the previous models, but in the following cases, it was
normalized only between (0 < x < 1). The simple RNN sequential model was
implemented using one Keras Simple RNN layer of 8 nodes and a hidden dense
layer with 32 nodes and a RELU activation function. The MSE loss function was
applied for compilation with an RMSprop optimizer, while epochs were 50 with
a batch size of 1. The MSE for this model was 17520.86 while the R2 = 0.8814.
The MAE was 116.30, and MLE was equal to 0.00020.

For the LSTM, a sequential model was applied using one Keras LSTM layer
of 32 nodes and one dense layer with eight nodes as an input to match the shape
of the matrix that holds the arranged data. The loss function applied was the
MSE with an ADAM optimizer and a RELU activation function. The number
of epochs was equal to 50 with a batch size of 1. The results were, MAE = 69.33
with a MSE = 7192.27, while the r2 = 0.9513 with a MLE = 0.000083. The GRU
model was implemented using one Keras GRU layer of 8 nodes, one hidden dense
layer with 32 nodes with a RELU activation function and an MSE loss function
for compilation with an RMSprop optimizer. The number of epochs was 50 with
a batch size of 1. The MSE for this model was 8608.07 while the R2 = 0.9417.
The MAE was 71.40, and MLE was equal to 0.000092.

5.2 Results Comparison

The best result in terms of R2 is obtained by LSTM, with a R2 = 0.9513 and
GRU with a R2 = 0.9417. Also, these two models presented the lowest errors
compared to the others; however, it is also important to consider the computa-
tional time to analyse the model’s performance fully. It is possible to observe in
Table 2 the results of Simple RNN, LSTM and GRU models.

Table 2. Performance of MLP (SF 20-30), Simple RNN, LSTM and GRU models,
using the test set.

R2 MSE MAE MLE Time (seconds)

MLP 0.9275 10701.29 80.18 0.00012 136.3

RNN 0.8814 17520.86 116.30 0.00020 141.9

LSTM 0.9513 7192.27 69.33 0.000083 273

GRU 0.9417 8608.07 71.40 0.000092 228.6

The simple RNN showed the worst performance in terms of R2, MAE, MSE
and MLE errors; however, this is true compared to the best MLP results because
some MLP configurations showed worst performance than RNN as shown in
Table 2.

In this study, in order to have an analysis of the computational time, the
platform Google Colaboratory was used as a tool for accelerating the learning
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applications to have similar performance levels to those acquired with a dedicated
hardware. The computational time results show that the model with the lowest
computational time was the MLP made by the authors, with 40 and 25 nodes
using an SF activation function. This model took 136.3 s to complete, while the
Simple RNN was the second-fastest, taking 141.9 s. The model that took more
time to be completed was the LSTM model taking 273 s to complete all the
routines, followed by the GRU, which took 228.6 s. These performances took
almost twice the time that MLP and Simple RNN.

6 Conclusions

Implementing different neural network architectures to forecast financial time
series has shown a predictive capacity with low errors. Although all forms of
ANN have successfully predicted the IBEX-35, LSTM has the best results. It is
essential to consider that the ANN structure and the number of iterations in the
training phase will determine the model’s predictive capacity. However, there
are no clear procedures to define a proper structure because the error does not
decrease linearly. Therefore is necessary to include in further studies different
types of heuristics to optimize the computational time of the training phase and
the search for the optimal ANN architecture. Even though these ANNs have
a high R2 at predicting the closing price of a stock market index, using these
models as a tool for financial trading can be challenging because investors need to
consider price predictions and the risk and the size of any given trading position.
Hence, any potential strategy needs to consider rigorous risk management with
a robust backtest.

In addition, because financial markets are interconnected, there might be
other variables impacting the prices and bias of the market so that an exten-
sive feature selection could improve the prediction of the model. Consequently,
further research can be done to increment the number of significant variables
used by the model and search for different ANN architectures to predict closing
values and make a trading system that can be a reliable tool to predict financial
markets.

In order to have proper management and performance of deep learning meth-
ods applied to financial time series, it is crucial to consider a robust data set with
a proper and reliable testing phase for the model. Especially during times of high
uncertainty, when the complexity and size of the financial markets grow. Due to
the nature of the markets, the predicted outcomes will not necessarily represent
future outcomes because there are rapid changes in the market dynamics. Thus,
when picking the training data, it is necessary to keep in mind that one asset
or instrument can only have one historical price record; therefore, any model
trained to forecast financial data is vulnerable or prone to overfitting.

Not choosing a correct data set is dangerous because the model can predict
outcomes similar or exact to the underlying data set but will fail to predict
future values. Therefore, it is important to consider this vulnerability for future
works, where models can be tested with historical data from multiple assets
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and adding some synthetic data. Furthermore, using other deep learning models,
such as generative adversarial models, could create endless data-sets for multiple
scenarios that are not real but close enough to a potentially real scenario.

The forecast of future financial values is essential to investors and private
companies and for government policymakers who need to make an appropriate
asset allocation of scarce resources. In this way, better financial predictive models
will not only help financial agents but could potentially affect everyone.
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