
Convex Multi-Task Learning with Neural
Networks

Carlos Ruiz1(B), Carlos M. Aláız1, and José R. Dorronsoro1,2

1 Dept. Computer Engineering, Universidad Autónoma de Madrid,
Madrid, Spain

carlos.ruizp@uam.es
2 Inst. Ing. Conocimiento, Universidad Autónoma de Madrid, Madrid, Spain

Abstract. Multi-Task Learning aims at improving the learning process
by solving different tasks simultaneously. The approaches to Multi-Task
Learning can be categorized as feature-learning, regularization-based and
combination strategies. Feature-learning approximations are more natu-
ral for deep models while regularization-based ones are usually designed
for shallow ones, but we can see examples of both for shallow and deep
models. However, the combination approach has been tested on shal-
low models exclusively. Here we propose a Multi-Task combination app-
roach for Neural Networks, describe the training procedure, test it in
four different multi-task image datasets and show improvements in the
performance over other strategies.

Keywords: Multi-task learning · Deep learning · Convex combination

1 Introduction

In Machine Learning (ML) it is often assumed that the data is independently
identically distributed, and the empirical risk minimization principle [19], typi-
cally used in supervised learning, bases its generalization abilities in this claim.
However, we often find problems with different but possibly related data distri-
butions. Multi-Task Learning (MTL) [2] solves jointly those similar problems,
each of which is considered a task.

Extending the taxonomy of [24], the MTL approaches can be divided in
three main blocks: feature-learning models, regularization-based methods and
combination approaches. Feature-learning models try to learn a space of features
useful for all tasks at the same time. The regularization-based methods impose
some soft constraints on the task-models so that there exists a connection across
them. Finally, the combination approach combines task-specific models with a

The authors acknowledge financial support from the European Regional Development
Fund and the Spanish State Research Agency of the Ministry of Economy, Industry,
and Competitiveness under the project PID2019-106827GB-I00. They also thank the
UAM–ADIC Chair for Data Science and Machine Learning and gratefully acknowledge
the use of the facilities of Centro de Computación Cient́ıfica (CCC) at UAM.

c© Springer Nature Switzerland AG 2022
P. Garćıa Bringas et al. (Eds.): HAIS 2022, LNAI 13469, pp. 223–235, 2022.
https://doi.org/10.1007/978-3-031-15471-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15471-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-15471-3_20


224 C. Ruiz et al.

common one shared for all tasks. Recently a convex combination formulation
was proposed in [16].

In ML we call deep models those who have a feature learning process that
construct new features along the training process. The standard example are
deep neural networks where the nonlinear process up to the last hidden layer
builds new extended features presumably better than the original ones. The
shallow models by which we essentially mean models different from deep NNs,
in contrast, use directly the original features or a fixed transformation of them.
Shallow models are not limited to linear approaches. Although kernel models
are very expressive due to the implicit transformation of the original features
in some Reproducing Kernel Hilbert Space (RKHS), this transformation is non-
learnable and they can be considered shallow. In feature-learning-based MTL
we can find examples of both deep models [5,13,15] and shallow ones [12]. Also
in regularization-based approaches we have examples with deep [23] and shallow
approaches [1,7,17]. However, the combination-based approach has only been
applied to shallow models [8,18,22].

In this work we propose a convex formulation for a combination-based MTL
approach based on deep models. To the best of our knowledge this is the first
combination-based approach to MTL using deep models. The convex formulation
we use enables an interpretable parametrization. The goal of this work is to define
this approach and test its properties. More precisely, our main contributions are:

– Review the taxonomy for MTL, where we include a third category, the
combination-based approaches, different from the original feature-learning
and regularization-based approaches.

– Show a general formulation for convex combination-based MTL. Where the
hypotheses that are combined can be taken from a wide range of models, not
limited to kernel models.

– Propose a combination-based MTL with deep models and use a convex for-
mulation for better interpretability.

– Implement this approach and test it with four image datasets.

This rest of the paper is organized as follows. In Sect. 2 we revise the Multi-
Task Learning paradigm, reviewing different approaches and proposing a taxon-
omy. In Sect. 3 we present the general formulation for convex combination-based
approaches and propose its application using Neural Networks. In Sect. 4 we
show the experiments carried out to test our proposal and analyze their results.
The paper ends with some conclusions and pointers to further work.

2 Multi-Task Learning Approaches

Multi-Task Learning (MTL) tries to learn multiple tasks simultaneously with
the goal of improving the learning process of each task. Given T tasks, a Multi-
Task (MT) sample is z = {(xr

i , y
r
i ) ∈ R

d ×Y; i = 1, . . . ,mr; r = 1, . . . , T}, where
Y can be R in the case of regression or {0, 1} in the case of classification; the
superindex r ∈ {1, . . . , T} indicates the task and mr the number of examples in



Convex Multi-Task Learning with Neural Networks 225

each task. The pair (xr
i , y

r
i ) can be also expressed as the triplet (xi, yi, ri). The

MT regularized risk for hypotheses hr, that will be minimized, is defined as:

T∑

r=1

mr∑

i=1

�(hr(xr
i ), y

r
i ) + R(h1, . . . , hT ), (1)

where � is some loss function and R some regularizer. One strategy to minimize
this risk, denoted Common Task Learning (CTL), consists in using a common
model for all the tasks, h1, . . . , hT = h. On the other side, in the Independent
Task Learning (ITL) approach we minimize the risk independently for each task,
without any transfer of information between them. Between these two extreme
approaches lies MTL. The coupling between tasks can be enforced using differ-
ent strategies. The choice of a strategy is influenced by the properties of the
underlying models performing the learning process. In this paper we will focus
on deep models, but in this section we will also discuss shallow models.

2.1 Multi-Task Learning with a Feature-Learning Approach

The feature-based approaches implement transfer learning by sharing a represen-
tation among tasks; that is, hr(x) = gr(f(x)), where f is some common feature
transformation that can be learned and gr is a task-specific function over these
features. The first approach, Hard Sharing, is introduced in [5], where a Neural
Network with shared layers and multiple outputs is used. The hidden layers are
common to all tasks and, using the representation from the last hidden layer, a
linear model is learned for each task; see Fig. 1 for an illustration. In the figure,
a sample belonging to task 1 is used, the updated shared weights are represented
in red, and in blue the updated specific weights. The input neurons are shown in
yellow, the hidden ones in cyan and the output ones in magenta. The regularized
risk corresponding to feature-learning MTL can be expressed as

T∑

r=1

mr∑

i=1

�(gr(f(xr
i )), y

r
i ) + μ1

T∑

r=1

Ωr(gr) + μ2Ω(f), (2)

where Ωr and Ω are regularizers that penalize the complexity of the functions
gr and the function f , respectively; μ1 and μ2 are hyperparameters. The reg-
ularization over the predictive functions gr can be done independently because
the coupling is enforced by sharing the feature-learning function f .

A relaxation of the Hard Sharing approach consists in using the hypotheses
hr(x) = gr(fr(x)) where a coupling is enforced between the feature functions
fr. This is known as Soft Sharing, where specific networks are used for each
task and some feature sharing mechanism is implemented at each level of the
networks; examples are cross-stitch networks [13] or sluice networks [15]. In deep
models, where a good representation is learned in the training process, Feature-
Learning MTL is the most natural approach; however some Feature-Learning
MTL approaches for shallow models can be found [12].



226 C. Ruiz et al.

h1(x)

h2(x)

Fig. 1. Hard sharing neural network for two tasks and a two-dimensional input.

2.2 Multi-Task Learning with a Regularization-Based Approach

The regularization-based approaches are used when the hypothesis for each task
can be expressed as hr(x) = wᵀ

r φ(x), where φ(x) is a non-learnable transfor-
mation which is the same for all tasks, and wr are the parameters of interest
to establish a relation between tasks. The transformation φ(x) can be just the
identity, using then the original features x in linear models, or some non-linear
transformation of x, explicit in deep models and implicit in kernel models. Here,
the coupling is enforced by imposing some penalty over the matrix W whose
columns are the vectors wr. The Multi-Task regularized risk is

T∑

r=1

mr∑

i=1

�(wᵀ
r φ(xr

i ), y
r
i ) + μΩ(W ), (3)

where Ω(W ) is some regularizer of the matrix W and μ is a hyperparame-
ter. For example, in [1,6] a low-rank constraint Ω(W ) = rankW is imposed
over W , while in [7,17] a graph connecting the tasks is defined and a Lapla-
cian regularization is used to penalize the distances between parameters, i.e.,
Ω(W ) =

∑T
r,s=1 Ars ‖wr − ws‖2, where A is the adjacency matrix of the graph

that encodes the pairwise task relations. These strategies can be more suitable
for MTL with shallow models, but they are also applicable for deep ones [23].
In any case, in this work we use the standard L2 regularization common in deep
networks; in particular, coupling is not necessarily enforced by the regularizer.

2.3 Multi-Task Learning with a Combination Approach

Another strategy, different to both the feature-learning and regularization-based
approaches, is a combination hr(x) = g(x) + gr(x) of a shared common model
and task-specific ones. This approach was introduced in [8], where a combina-
tion of models hr(x) = (w + vr )ᵀφ(x) + b + br is defined; here w and vr are
the common and task-specific weights, respectively, whereas b and br are the
corresponding biases. The regularized risk is here

T∑

r=1

mr∑

i=1

�((w + vr)ᵀφ(xr
i ) + b + br, y

r
i ) + μ1 ‖w‖2 + μ2

T∑

r=1

‖vr‖2 . (4)



Convex Multi-Task Learning with Neural Networks 227

If wr = w + vr, the risk in (4) is equivalent to that in (3) with the regularizer

Ω(W ) = ρ1

T∑

r=1

∥∥∥∥∥wr −
(

T∑

r=1

wr

)∥∥∥∥∥

2

+ ρ2

T∑

r=1

‖wr‖2

for some values of the hyperparameters ρ1(μ1, μ2) and ρ2(μ1, μ2). That is, it
imposes a regularization that penalizes the complexity of the parameters wr

and the variance between these parameters. Observe that both the common and
specific parts belong to the same RKHS defined by the transformation φ.

An extension proposed in [4] uses hr(x) = wᵀφ(x)+b+vᵀ
r φr(x)+br, where

different transformations are used: φ for the common and φr for each of the
specific parts. That is, the common part and each of the specific parts can belong
to different spaces and, hence, capture distinct properties of the data. In [4] the
connection of this MT approach with the Learning Under Privileged Information
paradigm [20] is also outlined. A convex formulation for this approach, named
Convex MTL, is presented in [16], where we have hr(x) = λ{wᵀφ(x) + b} +
(1 − λ){vᵀ

r φr(x) + br} and λ is a hyperparameter in the [0, 1] interval. This
parameter controls how much to share among the tasks. When λ = 1, the model
is equivalent to the CTL approach, whereas λ = 0 represents the ITL approach.
The regularized risk corresponding to this convex formulation is

T∑

r=1

mr∑

i=1

�(λ{wᵀφ(x)+b}+(1−λ){vᵀ
r φr(x)+br}, yr

i )+μ

(
‖w‖2 +

T∑

r=1

‖vr‖2
)

,

(5)
where the hyperparameters μ1 and μ2 from (4) have been changed for λ and
μ for a better interpretability: μ is the single regularization parameter and λ
determines the specificity of our models. We can find the combination approach
in the context of shallow models in [18,22].

3 Convex MTL Neural Networks

3.1 Definition

The Convex MTL formulation described above in terms of linear models in some
RKHS, can be generalized as the problem of minimizing the regularized risk

T∑

r=1

m∑

i=1

�(λg(xr
i ) + (1 − λ)gr(xr

i ), y
r
i ) + μ

(
Ω(g) +

T∑

r=1

Ωr(gr)

)
, (6)

where Ω and Ωr are regularizers and g and gr are functions. Observe that (6) is
not an a posteriori combination of common and specific models, but the objective
function is minimized jointly on g and the specific models g1, . . . , gT . In (5) each
model acts in a different space determined by the implicit transformations φ
and φr, that is g(xr

i ;w) = wᵀφ(xr
i ) + b and gr(xr

i ;wr) = wᵀ
r φr(xr

i ) + br. This
permits a great flexibility but also imposes, for instance, the challenge of finding



228 C. Ruiz et al.

the optimal kernel width that implicitly defines the space for each model if
kernels are used to define the underlying RKHS.

The Convex MTL neural network can be defined using a convex combination
of common and task-specific models. The output of the overall model can be
expressed as

hr(xr
i ) = λ{wᵀf(xr

i ;Θ) + b} + (1 − λ){wᵀ
r fr(xr

i ;Θr) + br}. (7)

That is, we use neural networks as the models g(xr
i ;w, Θ) = wᵀf(xr

i ;Θ) + b
and gr(xr

i ;wr, Θr) = wᵀ
r fr(xr

i ;Θr) + br. where Θ and Θr are the sets of hidden
weights, and w, wr are the output weights of the common and specific networks,
respectively, and b and br the output biases. In this formulation, the common and
specific feature transformations f(xr

i ;Θ) and fr(xr
i ;Θr), the feature-building

functions of the hidden layers, are automatically learned in the training process.
This formulation offers multiple combinations since we can model each com-

mon or independent function using different architectures. For example, we can
use a larger network for the common part, since it will be fed with more data,
and simpler networks for the specific parts. Even different types of neural net-
works, such as fully connected and convolutional, can be combined depending on
the characteristics of each task. This combination of neural networks can also be
interpreted as an implementation of the LUPI paradigm [20], i.e., the common
network captures the privileged information for each of the tasks, since it can
learn from more sources. To the best of our knowledge, this is the first joint-
learning MTL approach for deep models, in contrast with previous feature-based
or parameter-based approaches.

3.2 Training Procedure

The goal of the Convex MTL NN is to minimize the regularized risk
T∑

r=1

m∑

i=1

�(hr(xr
i ), y

r
i ) + μ

(
‖w‖2 +

T∑

r=1

‖wr‖2 + Ω(Θ) + Ω(Θr)

)
. (8)

Here, hr is defined as in equation (7), and Ω(Θ) and Ω(Θr) represents the L2

regularization of the set of hidden weights of the common and specific networks,
respectively. Given a loss �(ŷ, y) and a pair (xt

i, y
t
i) from task t, the gradient with

respect to some parameters P is

∇P�(ht(xt
i), y

t
i) =

∂

∂ŷt
i

�(ŷt
i , y

t
i)|ŷt

i=ht(xt
i)

∇Pht(xt
i). (9)

Recall that we are using the formulation ht(xt
i) = λ{wᵀf(xt

i;Θ) + b} + (1 −
λ){wᵀ

t ft(xt
i;Θt) + bt}, where we make a distinction between output weights

w,wt and hidden parameters Θ,Θt. The corresponding gradients are

∇w ht(xt
i) = λ{f(xt

i, Θ)}, ∇Θht(xt
i) = λ{wᵀ∇Θf(xt

i, Θ)} :

∇wt
ht(xt

i) = (1 − λ){ft(xt
i, Θ)}, ∇Θt

ht(xt
i) = (1 − λ){wᵀ∇Θt

ft(xt
i, Θt)};

∇wr
ht(xt

i) = 0, ∇Θr
ht(xt

i) = 0, for r �= t.
(10)



Convex Multi-Task Learning with Neural Networks 229

h1(x)

h2(x)

g1(x)

1− λ

g(x)

λ

λ

g2(x)

1− λ

Fig. 2. Convex MTL neural network for two tasks and a two-dimensional input.

The convex combination information is transferred in the back propagation step
as follows: the gradients of the loss function with respect to the common net-
work parameters are scaled by λ, the gradients with respect to the t-th specific
network parameters are scaled by 1 − λ, and the rest of the task-specialized
networks parameters have null gradients, so they are not updated. The regular-
ization is independent in each network, so the gradients of the regularizers are
also computed independently. That is, no specific training algorithm has to be
developed for the Convex MTL NN, so (8) can be minimized with any stochastic
gradient descent strategy using back propagation. In Fig. 2, a Convex MTL NN
is shown. In particular, the updated shared weights are represented in red, and
in blue the updated specific weights. Specific networks are framed in black boxes
and the common one in a blue box. The input neurons are shown in yellow, the
hidden ones in cyan (except those in grey), and the output ones in magenta. We
use the grey color for hidden neurons containing the intermediate functions that
will be combined for the final output: g1(x), g2(x) and g(x). The thick lines are
the hyperparameters λ and 1 − λ of the convex combination.

3.3 Implementation Details

Our implementation of the Convex MTL neural network is based on
PyTorch [14]. Although we include the gradients expressions in equation (10),
the PyTorch package implements automatic differentiation, so no explicit gradi-
ent formulation is necessary. The Convex MTL is implemented using (possibly
different) PyTorch modules for the common model and each of the specific mod-
ules. In the forward pass of the network, the output for an example x from
task r is computed using a forward pass of the common module and the specific
module corresponding to task r, and the final output is simply the convex com-
bination of both outputs. In the training phase, in which minibatches are used,



230 C. Ruiz et al.

Algorithm 1: Forward pass for Convex MTL neural network.
Input: Xmb, tmb // Minibatch data and task labels

Output: f // Forward pass for the minibatch

Data: λ // Parameter of convex combination

Data: g; g1, . . . , gT // Modules of the common and specific networks

for xi, ti ∈ (Xmb, tmb) do
fi ← λg(xi) + (1 − λ)gti(xi) // Convex combination

end

the full minibatch is passed through the common model, but the minibatch is
partitioned using only the corresponding examples for each task-specific mod-
ules. As mentioned above, with the adequate forward pass, the PyTorch package
automatically computes the scaled gradients in the training phase.

In Algorithm 1 we show the pseudo-code of this Convex MTL forward pass,
where g and g1, . . . , gT are the common and task-specific modules whose pre-
dictions are combined. As mentioned above, for the backward pass we rely on
PyTorch automatic differentiation, so we do not need an explicit algorithm.

4 Experimental Results

4.1 Problems Description

To test the performance of the Convex MTL deep neural network approach
we use four different image datasets: var-MNIST, rot-MNIST, var-FMNIST and
rot-FMNIST. Datasets var-MNIST and rot-MNIST are the result of applying two
different procedures, which will be detailed below, to the MNIST dataset [11],
while for var-FMNIST and rot-FMNIST we apply the same procedure over the
fashion-MNIST dataset [21]. Both MNIST and fashion-MNIST datasets are com-
posed of 28× 28 grey-scale images, with 10 balanced classes; also both problems
have 70 000 examples. The procedures considered divide the original datasets
and apply a different transformation to each resulting subset. To do this, we
shuffle the original data and divide it equally among the tasks considered.

For datasets var-MNIST and var-FMNIST we consider two transformations
described for the MNIST Variations datasets in [3]: background random, adding
random noise to the original image, and background image, adding random
patches of natural images. Using these transformations we define three tasks:
standard, random and images, where either no transformation or one of the
background random and the background image transformations is applied, respec-
tively, to define each task. That is, two tasks have 23 333 examples each, and
there are 23 334 in the third one.

The datasets var-MNIST and var-FMNIST are generated using the procedure
specified in [9]. We define six different tasks, each one corresponding to a rotation
of 0, 15, 30, 45, 60 and 75◦, respectively; therefore, there are four tasks with 11
667 examples and two with 11 666. In Fig. 3, examples of the tasks for the four
problems considered are shown.



Convex Multi-Task Learning with Neural Networks 231

Fig. 3. Images of the four classification problems used. Each image has a title indicating
the corresponding task. The rows correspond to var-MNIST, rot-MNIST, var-FMNIST

and rot-FMNIST (from top to bottom).

4.2 Experimental Procedure

We compare four different models, all based on deep neural networks: a Common-
Task Learning approach ctlNN, an Independent-Task learning approach itlNN, a
Convex Multi-Task Learning approach cvxmtlNN and a hard sharing Multi-Task
Learning approach hsNN. The base architecture of all models is a convolutional
NN that we will name convNet. The architecture is based on the Spatial Trans-
former Network (STN) [10] architecture proposed in Pytorch1, for further work
using STN’s. This convNet has 2 convolutional layers of kernel size 5, the first
one with 10 output channels and the second one with 20; then we add a dropout
layer, a max pooling layer and two hidden linear layers with 320 and 50 neurons
each. In the ctlNN approach, a single convNet with 10 outputs, one for each
class, is used. For the itlNN approach, an independent convNet with 10 outputs
is used for each task. In cvxmtlNN both the common and task-specific networks
are modelled using a convNet with 10 outputs; hsNN uses a convNet and a group
of 10 outputs for each task.

All the models considered are trained using the AdamW algorithm and the
optimal weight decay parameter μ is selected using a cross-validation grid search
over the values

{
10−4, 10−3, 10−2, 10−1, 100

}
. The rest of the parameters corre-

sponding to the algorithm are set to the default values: the dropout rate is 0.5

1 www.pytorch.org/tutorials/intermediate/spatial transformer tutorial.html.

www.pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html


232 C. Ruiz et al.

and a stride of 2 for the 2 × 2 max pooling layer. Additionally, in the cvxmtlNN
model the mixing parameter λ is also included in the grid search using the
values {0, 0.2, 0.4, 0.6, 0.8, 1}. The training and test sets are generated using a
task-stratified 70 % and 30 % random split of the complete datasets. Grid-search
is done by cross-validation using 5 folds over the training subset. We use task-
stratified folds, that is, we divide the training set in 5 differents subsets where the
task proportions are kept constant. Notice that the problems are class-balanced,
so no further stratification is needed.

4.3 Analysis of the Results

To obtain results less sensitive to the randomness in deep networks, once the
hyperparameters have been selected by cross-validation, we refit the models with
optimal hyperparameters five times using the entire training set and the predic-
tions are combined as described below. The final goal in classification problems
is typically to maximize accuracy; however it cannot be used as a loss, so we will
minimize the categorical cross entropy. We show both scores in the results.

In Table 1 we compute a single accuracy score for each model using the
majority voting prediction of the 5 refitted models. In Table 2 we show the
average cross entropy loss of the 5 different models. We also show in the tables
the optimal values for hyperparameter λ∗ selected in CV for cvxmtlNN. In
both tables, cvxmtlNN obtains the best results in all four problems and the
itlNN comes second except for the var-MNIST problem using majority voting.
That is, training a specific model for each task obtains better results than the
more rigid ctlNN or hsNN models. Also, although the ctlNN model obtains the
worst results, the difference is not that large, so it suggests that the tasks are
not very different, or that there exists information shared across tasks. The
hsNN model consistently outperforms the ctlNN model and it seems to capture
some shared information; however this hard sharing approach seems too rigid to
fully exploit this common knowledge. Our proposal, the cvxmtlNN model, has
the adequate flexibility because it trains specific modules for each task, but it
also captures the shared information through the common model. Moreover, in
cvxmtlNN the training of the common and specific models is made jointly and
since this results in better models, we can conclude that, although the common
and specific parts do not learn totally overlapping information, they complement
each other’s learning. This is supported by the fact that the λ values selected in
CV are away from the extremes 0 and 1 of the independent and common models.



Convex Multi-Task Learning with Neural Networks 233

Table 1. Test accuracy with majority voting.

var-MNIST rot-MNIST var-FMNIST rot-FMNIST

ctlNN 0.964 0.973 0.784 0.834

itlNN 0.968 0.981 0.795 0.873

hsNN 0.971 0.980 0.770 0.852

cvxmtlNN 0.974 0.984 0.812 0.880

(λ∗ = 0.6) (λ∗ = 0.8) (λ∗ = 0.6) (λ∗ = 0.6)

Table 2. Test mean categorical cross entropy.

var-MNIST rot-MNIST var-FMNIST rot-FMNIST

ctlNN 1.274 ± 0.143 1.145 ± 0.039 2.369 ± 0.183 1.757 ± 0.075

itlNN 1.072 ± 0.029 0.873 ± 0.058 2.356 ± 0.130 1.598 ± 0.042

hsNN 1.087 ± 0.253 0.898 ± 0.073 3.067 ± 0.888 1.888 ± 0.075

cvxmtlNN 0.924 ± 0.024 0.831 ± 0.029 2.147 ± 0.090 1.482 ± 0.063

(λ∗ = 0.6) (λ∗ = 0.8) (λ∗ = 0.6) (λ∗ = 0.6)

5 Conclusions and Further Work

Here we have proposed a combination-based MTL approach using deep networks
to define common and task-specific models that work together through a convex
formulation. We have revised a taxonomy of previous MTL proposals adding the
combination-based models as a distinct category; to the best of our knowledge,
ours is the first proposal in this new category which uses neural networks.

The most popular NN based approach to MTL has been hard sharing, where
tasks share the hidden parameters and different outputs are used for each task.
In our experiments we have observed that our model outperforms the hard shar-
ing approach in the four image problems considered. Moreover, our proposal
also obtains better results than the baseline neural models for common- or
independent-task learning. From this fact, we can infer that our MTL approach
is able to extract and jointly exploit the information learned by the common and
task-specific parts. We point out that the convex combination approach to MTL
can also be applied to other models, such as SVMs. However, their potentially
very high computational cost is well known and, in fact, we have not been able
to apply them to our image classification problems.

As lines of further work, we point out that the mixing λ coefficient selected
here as a hyperparameter by CV, can be alternatively seen as another network
weight to be learned. It is also interesting to fully exploit the flexibility of our
approach by using different architectures for each one of the common and task-
specific modules. We are currently pursuing these and other ideas.



234 C. Ruiz et al.

References

1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from mul-
tiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

2. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198
(2000)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

4. Cai, F., Cherkassky, V.: SVM+ regression and multi-task learning. In: International
Joint Conference on Neural Networks, IJCNN 2009, pp. 418–424. IEEE Computer
Society (2009)

5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
6. Chen, J., Tang, L., Liu, J., Ye, J.: A convex formulation for learning shared struc-

tures from multiple tasks. In: ACM International Conference Proceeding Series,
ICML 2009, vol. 382, pp. 137–144 (2009)

7. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel meth-
ods. J. Mach. Learn. Res. 6, 615–637 (2005)

8. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 109–117. ACM (2004)

9. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for
object recognition with multi-task autoencoders. In: IEEE International Confer-
ence on Computer Vision, ICCV, pp. 2551–2559. IEEE Computer Society (2015)

10. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks (2015). https://doi.org/10.48550/ARXIV.1506.02025. https://arxiv.org/
abs/1506.02025

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

12. Maurer, A., Pontil, M., Romera-Paredes, B.: Sparse coding for multitask and trans-
fer learning. In: Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, vol. 28, pp. 343–351. JMLR.org (2013)

13. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-
task learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, pp. 3994–4003. IEEE Computer Society (2016)

14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035
(2019)

15. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR
abs/1706.05098 (2017)

16. Ruiz, C., Aláız, C.M., Dorronsoro, J.R.: A convex formulation of SVM-based multi-
task learning. In: Pérez Garćıa, H., Sánchez González, L., Castejón Limas, M.,
Quintián Pardo, H., Corchado Rodŕıguez, E. (eds.) HAIS 2019. LNCS (LNAI),
vol. 11734, pp. 404–415. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-29859-3 35

17. Ruiz, C., Aláız, C.M., Dorronsoro, J.R.: Convex graph Laplacian multi-task learn-
ing SVM. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol.
12397, pp. 142–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61616-8 12

18. Ruiz, C., Aláız, C.M., Dorronsoro, J.R.: Convex formulation for multi-task L1-,
L2-, and LS-SVMs. Neurocomputing 456, 599–608 (2021)

https://doi.org/10.48550/ARXIV.1506.02025
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025
https://doi.org/10.1007/978-3-030-29859-3_35
https://doi.org/10.1007/978-3-030-29859-3_35
https://doi.org/10.1007/978-3-030-61616-8_12
https://doi.org/10.1007/978-3-030-61616-8_12


Convex Multi-Task Learning with Neural Networks 235

19. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer, New
York (1982)

20. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control
and knowledge transfer. J. Mach. Learn. Res. 16, 2023–2049 (2015)

21. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms (2017)

22. Xu, S., An, X., Qiao, X., Zhu, L.: Multi-task least-squares support vector machines.
Multimedia Tools Appl. 71(2), 699–715 (2013). https://doi.org/10.1007/s11042-
013-1526-5

23. Yang, Y., Hospedales, T.M.: Trace norm regularised deep multi-task learning. In:
5th International Conference on Learning Representations, ICLR 2017. OpenRe-
view.net (2017)

24. Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1),
30–43 (2017)

https://doi.org/10.1007/s11042-013-1526-5
https://doi.org/10.1007/s11042-013-1526-5

	Convex Multi-Task Learning with Neural Networks
	1 Introduction
	2 Multi-Task Learning Approaches
	2.1 Multi-Task Learning with a Feature-Learning Approach
	2.2 Multi-Task Learning with a Regularization-Based Approach
	2.3 Multi-Task Learning with a Combination Approach

	3 Convex MTL Neural Networks
	3.1 Definition
	3.2 Training Procedure
	3.3 Implementation Details

	4 Experimental Results
	4.1 Problems Description
	4.2 Experimental Procedure
	4.3 Analysis of the Results

	5 Conclusions and Further Work
	References




