
Chapter 10
Introduction to Digital Signal Processing

This section will not be a comprehensive coverage of Digital Signal Processing
that a student would learn as part of their electrical engineering curriculum, which
often comes as a two-course sequence. The first course is a "Signals and Systems"
course that would include the Continuous Time Fourier Transform (CTFT). Since
computers are heavily involved in signal processing, the theory has been extended to
signals that have been sampled in time. This would be the topic of the second course
called Digital Signal Processing.

Although this section will be math heavy (yes, there is calculus involved), there
will still be useful takeaways for those that use these signal processing algorithms
but do not have the math background. I will highlight areas where you need to be
careful and why certain choices are often made when using these algorithms.

10.1 Sampling

To process a signal with a computer, we first need to create a representation of
this signal. As we will show in Sect. 10.2, we can represent signals using simple
sinusoidal functions. However, this will only work correctly if we ensure that we
have sampled the signal properly. These are the steps for sampling correctly, which
is how we implement the Sampling Theorem.

Step 1: Determine the maximum frequency fmax contained in the continuous
signal we wish to represent in a computer. If we do not know what this
maximum frequency is, which is typically the case, then we need to
limit the frequencies to a known fmax by low pass filtering the signal
to remove all frequencies above fmax. This filter is known as an anti-
aliasing filter and this filtering needs to be performed before sampling.
If there is no analog anti-aliasing circuitry before the analog-to-digital
converter where the sampling occurs, then the sampled signal is suspect.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_10

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_10

160 10 Introduction to Digital Signal Processing

Step 2: Sample the continuous signal that has been conditioned to have no
frequencies greater than fmax with a sampling rate fs that is greater than
twice fmax

Sampling Theorem
fs > 2 fmax

The reason we must sample greater than twice the maximum frequency is due to
the periodicity of the sine and cosine functions. This identity is listed below for the
cosine function.

cos (θ) = cos (θ + 2π) (10.1)

What this means in practical terms is that if we do not ensure that the sampling
theorem has been followed, then there will be high frequencies masquerading as low
frequencies, which is known as aliasing. To illustrate this, let us create two signals
where signal one is comprised of frequency f1, which will be less than one-half fs
and thus properly sampled. We will create a second signal that will be comprised of
frequency f2, and this frequency will violate the sampling theorem. For convenience,
we will create f2 that is some multiple of the sampling rate higher than f1:

f2 = f1 + k fs (10.2)

If we take the first signal with frequency f1

x(t) = cos(2π f1t + φ) (10.3)

and sample it at the sampling period Ts = 1/ fs , it becomes

x[n] = x(nTs) (10.4)
= cos(2π f1nTs + φ)

Now take the second signal with frequency f2

y(t) = cos(2π f2t + φ) (10.5)

and sample it at the same sampling rate:

10.1 Sampling 161

y[n] = y(nTs) (10.6)
= cos(2π f2nTs + φ)
= cos(2π(f1 + k fs)nTs + φ)
= cos(2π f1nTs + 2πk fsnTs + φ)
= cos(2π f1nTs + 2πkn + φ)
= cos(2π f1nTs + φ)
= x[n]

Thus, this higher frequency signal with frequency f2 ends up looking identical to
the signal with frequency f1 after sampling, i.e., Eq. 10.4 equals Eq. 10.6. In a similar
manner, all high-frequency terms greater than fmax would end up masquerading as
lower frequencies less than fs/2 when sampled at fs , which is known as aliasing.
Since we do not want this to happen, we need to ensure that the sampling theorem
has been followed.

The illustration of sampling theorem in the frequency domain is shown in
Fig. 10.1. The spectrum of the signal gets replicated in the frequency domain in
multiples of 2π fs and only one replica (k = 1) is shown in the figure. The sampling
frequency fs controls the spacing between the replicas, and for no overlap to occur,
we can see from the figure that the following inequality needs to hold:

2π fmax < 2π(fs − fmax) Radian Frequency
=⇒ fmax < fs − fmax Cyclic Frequency (Hz)
=⇒ 2 fmax < fs Sampling Theorem

Fig. 10.1: Illustration of the sampling theorem in the frequency domain. The spectrum
of the sampled signal gets replicated at multiples of the sample rate fs (i.e., k fs and
only k = 1 is shown in the figure). The sampling theorem fs > 2 fmax ensures that
there will be no spectral overlap, i.e., aliasing

162 10 Introduction to Digital Signal Processing

10.2 Fourier Series

In signal processing, one of the fundamental ideas is that we can represent signals
such as speech by simple sinusoids and it does not matter if the speech signal is
acoustic where people are talking to each other across a room or if the speech signal
is converted to a digital representation and people are talking to each other across
the country using their cell phones. We can represent any signal just by adding the
appropriate number of sines and cosines together, each with their own amplitude,
frequency, and phase shift. This is known as a Fourier series, which has the following
mathematical form:

s(t) = a0
2
+

N∑

k=1

(
ak cos

(
2π
T kt

)
+ bk sin

(
2π
T kt

))
(10.7)

This is typically written in a complex exponential form using Euler’s formula:

s(t) =
N∑

k=−N
cke

j 2π
T kt (10.8)

since
e jθ = cos θ + j sin θ (10.9)

Let us show how this works with the following fairly complicated arbitrary piece-
wise waveform that has a period ofT = 5 seconds. The waveform has three segments
given by the following function and is shown in Fig. 10.2.

s(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 sin
(
2π

1
6
t

)
+

1
2

sin (2π8t) 0 ≤ t < 3

e(ln (1)−ln (4))t+(4 ln (4)−3 ln (1)) 3 ≤ t < 4
3 4 ≤ t < 5

(10.10)

Let us determine the Fourier series coefficients ck that will allow us to reconstruct
this waveform using a summation of sinusoids. The Fourier coefficients are defined
as

ck =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
T

∫ T

0
s(t)dt k = 0 (DC term)

2
T

∫ T

0
s(t)e−j

2π
T ktdt k > 0

(10.11)

We will use the fact that integration is a linear operator, which means we can
break the waveform into separate segments and integrate each segment separately
and integrate the terms within each segment separately. The first segment is the time
interval 0 ≤ t < 3 and there are two terms (two sinusoids with different frequencies

10.2 Fourier Series 163

Fig. 10.2: An arbitrary signal given by Eq. 10.10

and amplitudes), so we will integrate each term separately over this interval. Thus
the first term 3 sin

(
2π 1

6 t
)

in segment 1 has the DC coefficient:

c0 =
3
5

∫ 3

0
3 sin

(π
3
t
)
dt =

3
5

(
−3
π

cos
(π
3
t
)���

3

0

)
(10.12)

=
−9
5π

(
cos

(
3π
3

)
− cos (0)

)
=

−9
5π

(−1 − 1) (10.13)

=
18
5π

(10.14)

Knowing that
∫
eat sin (bt)dt = eat

a2+b2

[
a sin (bt) − b cos (bt)

]
, we get the rest of

the coefficients for this first term:

ck =
6
5

∫ 3

0
3 sin

(π
3
t
)
e−j

2π
5 kt dt (10.15)

=
6
5

(1
π2

9 +
(−j2πk

5
)2
) [(− j2πk

5
sin

(π
3
t
)
− π

3
cos

(π
3
t
))
e

− j2πkt
5

]3

0
(10.16)

=
6
5

(1
π2

9 − 4π2k2

25

) [π
3
e

− j6πk
5 +

π

3

]
(10.17)

=
2

5π
9 − 4π2k2

5

(
e

− j6πk
5 + 1

)
(10.18)

164 10 Introduction to Digital Signal Processing

=
90

(
1 + e−j

6
5 πk

)

π
(
25 − 36k2) (10.19)

Performing a similar integration for the second term 1
2 sin (2π8t), we get the

Fourier coefficients of

c0 = 0 (10.20)

ck =
20

(
1 − e−j

6
5 πk

)

π
(
1600 − k2) (10.21)

We are not done yet, because if we use this in Matlab, we will end up getting
NANs (not a number) for the case when k = 40 because this results in c40 =

0
0 . For

this case, we apply L’Hospital’s rule:

lim
k→40

∂
∂k

(
20 − 20e−j 6

5 πk
)

∂
∂k

(
1600π − πk2) = lim

k→40

24 jπe−j 6
5 πk

−2πk
=

−3 j
10

(10.22)

Thus the coefficients that will give us the waveform in segment 1 (0 ≤ t < 3) are

ck =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18
5π

k = 0 (DC term)

90
(
1 + e−j

6
5 πk

)

π
(
25 − 36k2) +

20
(
1 − e−j

6
5 πk

)

π
(
1600 − k2) k > 0, k � 40

90
(
1 + e−j

6
5 πk

)

π
(
25 − 36k2) +

−3 j
10

k = 40

(10.23)

We can check these coefficients by generating the waveform (blue curve) for
segment 1 as shown in Fig. 10.3 where we use N = 100 coefficients and plot on
top of the target waveform (green). Note that this curve is zero for the other two
segments.

The waveform for segment 2 (3 ≤ t < 4) has the form s(t) = eat+b , where a and b
are chosen so that s(t) = 4 at t = 3 and s(t) = 1 at t = 4. This gives a = ln (1)− ln (4)
and b = 4 ln (4)−3 ln (1). The Fourier coefficients for segment 2 are calculated using
Eq. 10.11 and are found to be

ck =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e4a+b − e3a+b

5a
k = 0 (DC term)

2
5a − j2πk

(
e4a+b−j 8

5 πk − e3a+b−j 6
5 πk

)
k > 0

(10.24)

10.2 Fourier Series 165

Fig. 10.3: Checking the coefficients for segment 1 (0 ≤ t < 3). The Fourier series is
linear, so we can treat each segment independently

The waveform for segment 3 (4 ≤ t < 5) has a constant value of 3. This results in
the following Fourier coefficients for segment 3:

ck =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
5

k = 0 (DC term)

−6
j2πk

(
1 − e−j

8
5 πk

)
k > 0

(10.25)

The final waveform uses all the coefficients from all the segments and is the sum
of the waveforms for each segment. This reconstruction is shown in Fig. 10.4.

The Matlab files to plot this waveform are listed in Table 10.1 and can be down-
loaded to create the waveform with a different number of coefficients. In Fig. 10.4
and in the subplot with N = 500 coefficients, one can see overshoots and ringing still
happening at the discontinuities. This is known as the Gibbs phenomenon [1]. To get
rid of the overshoots and ringing, one has to include a large number of coefficients,
which tells us that discontinuities and sharp corners contain very high frequencies.

The function sumexp.m in Table 10.1 is done with one line of Matlab code as
shown in Listing 10.1 and illustrates vectorized Matlab code in contrast to using
slower for loops.

34 s=real(C(:)'*(exp(1j*2*pi*f(:)*[0:(1/fs):dur])));

Listing 10.1: Matlab: Summation of complex exponentials

166 10 Introduction to Digital Signal Processing

Fig. 10.4: Signal reconstruction using different numbers of Fourier coefficients (N =
5, 50, 500). As N increases, the signal converges to the "true" solution. The signal is
periodic with period T0 = 5 seconds and three periods are plotted in each case

Table 10.1: Matlab files used to plot arbitrary waveform in Fig. 10.4

File Description Link
fourier_series_Nvalues.m Script that created Fig. 10.4 Click for file
fourier_series_waveform.m Waveform function Click for file
sumexp.m Complex exponential summation Click for file
fourier_series_target_template.m Script to plot true waveform Click for file

To interpret this line of code, we start with creating a row vector [0:(1/fs):dur]
of time values that has a matrix dimension of 1 × Nt , where Nt is the number of
samples (sample rate times time). We then take the vector of harmonic frequencies
f and force it to be a column vector f(:) with dimension Nf × 1, where Nf is the
number of frequencies. Thus we do not care if f comes into the function as a row
or column vector since we force it to be a column vector by using f(:). We then
multiple the column vector of frequencies by the row vector of time samples:

f (:)
Nf × 1

∗ [0:(1/fs):dur]
1 × Nt

= f(:)*[0:(1/fs):dur]
Nf × Nt

(10.26)

This results in an outer product matrix Nf × Nt containing all combinations of
frequencies and times. This matrix gets multiplied by the complex term j ∗ 2 ∗ π and
is the argument to Matlab’s exp() function that results in a matrix of complex values
of size Nf × Nt .

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/fourier_series_Nvalues.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/fourier_series_waveform.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/sumexp.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/fourier_series_target_template.m

10.3 Geometric Interpretation of the Fourier Transform 167

We then take the vector of complex Fourier coefficientsC that could be passed into
the function as either a row or a column vector. It has the same number of elements
as frequencies since this gives the amplitude and phase shift for each frequency
(harmonic). To force it to be a row vector, we first force it to be a column vector C(:)
and then take its transpose C(:)′. We then have the product:

C(:)′
1 × Nf

∗ exp(1j*2*pi*f(:)*[0:(1/fs):dur])
Nf × Nt

= C(:)’*exp(1j*2*pi*f(:)*[0:(1/fs):dur])
1 × Nt

(10.27)
which sums over all frequencies and we are left with the waveform as a function of
time only. Finally, we use real() since we are only interested in the real part of the
signal.

10.3 Geometric Interpretation of the Fourier Transform

If you came across the following equation for the Fourier Transform (FT), in-
frequently called the Continuous Time Continuous Frequency Fourier Transform
(CTCFFT), could you picture in your head what this equation is doing?

ŝ(f) = F {s(t)} =
∫ ∞

−∞
s(t)e− j2π f t dt (10.28)

Let us break this apart, but first let us define what the variables are. The variable
f stands for frequency with units of hertz (Hz) or cycles per second. The variable t
stands for time with units of seconds. The grouping 2π f stands for angular frequency,
often replaced by ω, and has units of radians per second. The variable j stands for
the complex number

√
−1 (sometimes you will see the letter i instead of j).

The first step in breaking this apart is to use Euler’s formula

ejθ = cos (θ) + j sin (θ) (10.29)

which has the following geometric interpretation as seen in Fig. 10.5. The value
e jθ is a point on the unit circle that lives in the complex plane. The position of the
point is determined by the angle θ and has the x coordinate value on the real axis of
cos θ and the y coordinate value on the imaginary axis of sin θ. We interpret the unit
vector (radius one) that connects the origin with point e jθ as being projected to both
the real and imaginary axes using basic trigonometry. Note the circle is called the
Unit Circle since it has a radius of 1 and is the range of e jθ . Thus Euler’s formula
maps all real values of θ to the unit circle and a point specified by θ has a projection
to the real and imaginary axes. The real axis projection has the length of cos (θ) and
the imaginary axis projection has the length of sin (θ).

168 10 Introduction to Digital Signal Processing

Fig. 10.5: Geometric interpretation of Euler’s formula. We interpret the unit vector
(radius one) that connects the origin with point e jθ as being projected to both the
real and imaginary axes using basic trigonometry

We can then interpret the term s(t)e−j2π f t as a vector with a time varying radius
of s(t) that is being projected to both the real and imaginary axes, while the Euler
angle is also changing in time with the value of θ = 2π f t. This causes the vector
(whose radius is changing in time) to spin around the origin in the complex plane
and this spinning vector is called a phasor. As we did for the unit vector in Euler’s
formula, we interpret the signal s(t) as being projected to both the real and imaginary
axes as illustrated in Fig. 10.6 where the projected signal length on the real axis is
s(t) cos (2π f t) and the projected signal length on the imaginary axis is s(t) sin (2π f t).

Now, let us expand the Fourier Transform definition using Euler’s formula:

ŝ(f) =
∫ ∞

−∞
s(t)e−j2π f t dt (10.30)

=

∫ ∞

−∞
s(t)[cos (2π f t) + j sin (2π f t)] dt (10.31)

=

∫ ∞

−∞
s(t)cos (2π f t) dt+ j

∫ ∞

−∞
s(t)sin (2π f t) dt (10.32)

10.3 Geometric Interpretation of the Fourier Transform 169

Fig. 10.6: Euler’s formula projects the signal onto the real and imaginary axes. The
signal s(t) controls the vector length that varies in time along with the projection
angle. The example shown here assumes that both s(t) and cos() are positive. How-
ever, both terms can be both positive and negative and this will change the quadrant
that the projection occurs in

Let us focus on the term s(t) cos (2π f t), which is the signal’s projection to the
real axis. For illustration purposes, we will use the speech signal shown as the blue
line in Fig. 10.7. This will be the signal s(t) being projected to the real axis by the
cosine with time varying angle θ = 2π f t where f = 112.51 Hz (chosen to match
the pitch of the speech signal well). This cosine with f = 112.51 Hz is shaded in a
light green color that is behind the blue speech signal.

The product s(t) cos (2π f t), which is the projection to the real axis, is plotted in
panel A of Fig. 10.8 as a function of time. The product s(t) sin (2π f t), which is the
projection to the imaginary axis, is plotted in panel B as a function of time. The
positive part of the product (as a function of time) is colored in blue and the negative
part of the product is colored in red.

The first term in the Fourier integral
∫ ∞

−∞
s(t) cos (2π f t) dt (10.33)

is just the area under the curve in panel A of Fig. 10.8 where the positive areas
(blue) add and the negative areas (red) subtract. In Matlab, this is just the summation

170 10 Introduction to Digital Signal Processing

Fig. 10.7: Speech signal s(t) used in Euler projection is the curve in blue. The cosine
used for the projection is shaded in green. The cosine frequency of 112.51 Hz was
chosen since it had the greatest Fourier Transform magnitude as can be seen in
Fig. 10.10. The cosine frequency aligns well with the pitch frequency of the speech
signal where most of the speech signal energy is contained

of the product vector s(t) .* cos (2π f t) over the interval shown, which results in
the value −28.57. The signal goes significantly negative during the positive cycle
of cos (2π112.5t), so the area becomes significantly negative. This means that the
signal matches this frequency well (the value would be positive if the negative part
of the speech signal aligned with the negative cycle of the cosine). Similarly, the area
for the imaginary axis project has a value of−7.88. Thus the Fourier Transform at the
frequency f = 112.5 is ŝ(f) = ŝ(112.5) = −28.57 − j7.88, which has a magnitude
of m =

√
(−28.57)2 + (−7.88)2 = 29.64. This is the point of greatest magnitude

marked in Fig. 10.10. Thus, when the signal oscillates at the same frequency as the
cosine, the resulting area of the summation will be large (and can be either positive
or negative), which tells us that there is a lot of signal energy at this frequency. Using
both the sine and cosine tells us the phase shift of the signal relative to the sine and
cosine functions, which is why the result is a complex number.

In contrast, an example of a frequency that does not match the speech signal
well (f = 636 Hz) is shown in Fig. 10.9. At this projection frequency, the signal
summations are close to zero (magnitude = 0.08), which is the low magnitude
marked in Fig. 10.10. Notice that the positive and negative areas are similar and
nearly symmetric. The cosine is going positive and negative, while the signal is not,
which causes the product to be symmetric about zero. This tells us that the signal
does not match this frequency well and thus does not have much signal energy at
this frequency.

10.3 Geometric Interpretation of the Fourier Transform 171

Fig. 10.8: In panel A, the speech signal s(t) is projected to the real axis and the
real axis value is plotted as a function of time. In panel B, the speech signal s(t) is
projected to the imaginary axis and the imaginary axis value is plotted as a function
of time

Fig. 10.9: Example where the frequency does not match the signal well. The positive
area (blue) in this case is similar in area to the negative area (red)

172 10 Introduction to Digital Signal Processing

Fig. 10.10: Fourier transform of the speech signal from Fig. 10.7. Panel A shows
the magnitude of the Fourier transform as a function of frequency. Plot B plots the
normalized magnitude of the Fourier transform in dB = 20 log10(m/max(m)). The
largest magnitude point in both A and B panels is at the frequency (f = 112.51 Hz),
which is used in Figs. 10.7 and 10.8. The low magnitude point in both panels is at the
frequency (f = 636.97 Hz), which is used in Fig. 10.9. Both these points are marked
by green circles

10.4 The Fast Fourier Transform (FFT)

There are many reasons to use the Fourier Transform such as examining the frequency
content of a signal or transforming convolution performed in the time domain to a
much simpler multiply operation in the frequency domain. However we will ignore
much of this mathematical infrastructure since there are many books devoted to this
topic ([2, 3]). Rather, we will turn our attention to some practical considerations
when using the FFT. We will use as our example a speech signal that has been
sampled in time by an analog-to-digital converter (ADC).

Our mathematical starting point is the Fourier Transform (Eq. 10.28) that we
restate here:

ŝ(f) = F {s(t)} =
∫ ∞

−∞
s(t)e− j2π f t dt

10.4 The Fast Fourier Transform (FFT) 173

Notice that the limits of integration are from −∞ to +∞. This is fine when we
integrate continuous functions. However, when we use computers to compute the
Fourier Transform, we immediately break this assumption since we do not have
the time, memory, or patience to deal with infinities. Can we still use the Fourier
Transform definition when we immediately modify the limits of integration? The
general answer is that we cannot assume that it will give us valid answers. This would
be like using an instrument outside of the manufacture’s working specifications. Thus
we need to know what this deviation from the definition is doing to our analysis.
Modifying the limits of integration gets us into windowing, which is covered in
Sect. 10.5.1 Windowing (page 178).

There are additional modifications that are made to the Fourier Transform as
given in Eq. 10.28 to allow computers to implement the transform. These are:

Mod 1: Changing continuous time to discrete time. This is known as the Dis-
crete Time Continuous Frequency (DTCF) Fourier Transform and
is covered in Sect. 10.4.1 The Discrete Time Continuous Frequency
Fourier Transform (page 173). This is useful when you want to deter-
mine the frequency content of a signal over an arbitrary frequency range
(typically a small range) with arbitrary high precision.

Mod 2: Changing continuous frequency to discrete frequency (with discrete
time). This is known as the Discrete Time Discrete Frequency (DTDF)
Fourier Transform and is usually called the Discrete Fourier Transform
(DFT), which is covered in Sect. 10.4.2 The Discrete Fourier Transform
(page 174).

Mod 3: Speeding up the DFT, which is called the Fast Fourier Transform (FFT),
which is covered in Sect. 10.4.3 FFT (page 176). This is the most com-
monly used form of the Fourier Transform when using computers.

10.4.1 The Discrete Time Continuous Frequency Fourier Transform

The first step toward using the Fourier Transform with computers is to use samples
of a signal. This means that the time steps are discrete where they have been sampled
at a particular time interval or sample rate. This changes the integral of the Fourier
Transform definition to a summation and the signal samples are denoted s[n]. The
Fourier Transform that uses discrete time samples is given as

ŝ(f) = Fdtc f {s[n]} =
∞∑

n=−∞
s[n]e− j2π f n

where n ∈ Z, f ∈ R, − fs2 ≤ f ≤ fs
2 .

Notice that the limits of the summation are from −∞ to +∞, so we have not dealt
with windowing yet (see Sect. 10.5.1 Windowing (page 178)). In this definition, we
can use any real frequency value in the domain − fs

2 ≤ f ≤ fs
2 , which corresponds to

174 10 Introduction to Digital Signal Processing

the principal values of the sine/cosine functions (−π ≤ ω ≤ π) where ω = 2π f and
fs is the sampling frequency.

This form is useful when you want to examine the frequency content of a signal
within a specific frequency range and with arbitrary precision (limited by machine
precision and data types used). This form was used to find the local frequency
maximum and local frequency minimum with high precision (double precision) in
Figs. 10.7, 10.8, 10.9 and 10.10. (click here for the source file of dtcfft.m)

10.4.2 The Discrete Fourier Transform

We converted time to discrete sample times in Sect. 10.4.1 The Discrete Time Con-
tinuous Frequency Fourier Transform (page 173) and we now need to convert the
transform to discrete frequencies, so we can easily deal with them using computers.
To do this, we sample the frequencies around the unit circle in the complex plane with
uniform spacing. The full circle has 2π radians and we divide this into N intervals
that gives us N frequencies (normalized). This gives the Discrete Fourier Transform:

ŝ[k] = DFT{s[n]} =
N−1∑

n=0
s[n]e− j

2π
N kn where k = 0, 1, 2, . . . , N − 1

The index n in the signal s[n] is understood to represent samples in the signal that
are spread apart in time by Ts seconds, where Fs = 1/Ts is the sample rate in Hz.
Furthermore, it is assumed that the maximum frequency content in the signal before
sampling was less than Fs/2, which is why you always see anti-aliasing filters
before analog-to-digital (ADC) converters (if you do not see them in the system,
the hardware and signal are suspect). The index k in the spectrum ŝ[k] represents
the normalized radian frequency ω̂ = 2π

N k (normalized to 2π), which means that
regardless of FFT length N , the frequency sampling (evaluation) is done once around
the unit circle. We can also normalize frequency f with respect to the sampling rate
Fs , thus ω̂ = 2π f

Fs
. This means that 2π

N k = 2π f
Fs

or f = k Fs

N , which is how you
convert the DFT index k to frequency. Note: The DFT index k starts at zero, which is
different from the Matlab FFT indexing that starts at one (see example in Table 10.3).
A further wrinkle is that normalized radian frequencies π < ω̂ <= 2π (frequencies
on the bottom half of the unit circle) actually represent negative radian frequencies
since the principle argument for sinusoids must be in the interval −π < θ <= π.
Thus the normalized radian frequencies in the interval π < ω̂ <= 2π effectively
have 2π subtracted from them resulting in negative frequencies.

In practice, the DFT is not used much because there is a much faster algorithm
called the Fast Fourier Transform, or FFT (see Sect. 10.4.3). The computational cost
for the DFT is O(N2) in contrast to the FFT’s computational cost of O(N log N),
which is significantly faster for larger FFT sizes as can be seen in Table 10.2.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/dtcfft.m

10.4 The Fast Fourier Transform (FFT) 175

Ta
bl

e
10

.2
:C

om
pu

ta
tio

na
lc

os
to

fF
FT

vs
D

FT

FF
T

FF
T

FF
T

D
FT

D
FT

D
FT

FF
T

Po
w

er
of

2
FF

T
siz

e
Re

al
×’

s
Re

al
+’

s
Re

al
×’

s
Re

al
+’

s
Sp

ee
du

p
v

N
=

2v
4N

(lo
g 2
(N

)−
1)

2N
lo

g 2
(N

)
Re

al
op

s
4N

2
4N

2
−

2N
Re

al
op

s
3

8
64

48
11

2
25

6
24

0
49

6
4.

4
4

16
19

2
12

8
32

0
10

24
99

2
20

16
6.

3
5

32
51

2
32

0
83

2
40

96
40

32
81

28
9.

8
6

64
12

80
76

8
20

48
16

,3
84

16
,2

56
32

,6
40

15
.9

7
12

8
30

72
17

92
48

64
65

,5
36

65
,2

80
13

0,
81

6
26

.9
8

25
6

71
68

40
96

11
,2

64
26

2,
14

4
26

1,
63

2
52

3,
77

6
46

.5
9

51
2

16
,3

84
92

16
25

,6
00

1,
04

8,
57

6
1,

04
7,

55
2

2,
09

6,
12

8
81

.9
10

10
24

36
,8

64
20

,4
80

57
,3

44
4,

19
4,

30
4

4,
19

2,
25

6
8,

38
6,

56
0

14
6.

3
11

20
48

81
,9

20
45

,0
56

12
6,

97
6

16
,7

77
,2

16
16

,7
73

,1
20

33
,5

50
,3

36
26

4.
2

12
40

96
18

0,
22

4
98

,3
04

27
8,

52
8

67
,1

08
,8

64
67

,1
00

,6
72

13
4,

20
9,

53
6

48
1.

9
13

81
92

39
3,

21
6

21
2,

99
2

60
6,

20
8

26
8,

43
5,

45
6

26
8,

41
9,

07
2

53
6,

85
4,

52
8

88
5.

6
14

16
,3

84
85

1,
96

8
45

8,
75

2
1,

31
0,

72
0

1,
07

3,
74

1,
82

4
1,

07
3,

70
9,

05
6

2,
14

7,
45

0,
88

0
16

38
.4

15
32

,7
68

1,
83

5,
00

8
98

3,
04

0
2,

81
8,

04
8

4,
29

4,
96

7,
29

6
4,

29
4,

90
1,

76
0

8,
58

9,
86

9,
05

6
30

48
.2

16
65

,5
36

3,
93

2,
16

0
2,

09
7,

15
2

6,
02

9,
31

2
17

,1
79

,8
69

,1
84

17
,1

79
,7

38
,1

12
34

,3
59

,6
07

,2
96

56
98

.8

176 10 Introduction to Digital Signal Processing

10.4.3 FFT

We will not get into the derivation of the FFT since there are good books on the
subject ([4, 5]). Rather, we will look at how to use and interpret the FFT. The signal
that we will examine is shown in Fig. 10.11 where the waveform is shown in the top
plot. This signal (sampled at Fs = 2000 Hz) is zero for 0.5 seconds, a 10 Hz signal for
1 second, zero for 0.5 seconds, 100 Hz for 1 second, and then zero for 0.5 seconds.
This results in a signal with 7002 samples. Since the FFT needs an input length that
is a power of 2, we take an FFT of length N = 8192 where we add zeros to the
end of the signal to make a signal with 8192 samples (known as zero padding). The
output of the FFT is a vector of 8192 complex values, which is hard to plot. Since we
are interested in the frequency content of the signal, we plot the magnitude, which
is the middle plot of Fig. 10.11 where it has been plotted in decibels (i.e., Matlab
command: m1 = 20*log10(abs(f1));) and where the peak dB value has been set to
zero (i.e., Matlab command: m1 = m1-max(m1);). Setting the peak dB value to zero
is typically done since we are usually more interested in the relative magnitudes of
the frequencies in the signal than their absolute magnitudes. As an example in audio,
we are typically more interested in how the audio sounds (harmonics, etc.) rather
than how loud it is when it comes to viewing the audio spectrum.

Fig. 10.11: Top figure: signal with 10 and 100 Hz components sample at Fs =
2000 Hz; middle figure: Output of Matlab’s fft() function that puts the negative
frequencies in the last half of the output vector; bottom figure: spectrum as expected
with frequencies ordered on the real axis

One aspect to notice about the FFT result that is shown in the middle plot of
Fig. 10.11 is the symmetry about the midpoint (DFT index k = 4096 or Matlab’s

10.4 The Fast Fourier Transform (FFT) 177

Fig. 10.12: Matlab’s FFT indexing

index i = 4097), assuming that the FFT was taken of a signal with real (not complex)
values. What can be confusing is that all the FFT values past the midpoint are
associated with negative frequencies and you would expect to see the plot shown
at the bottom of Fig. 10.11 with negative frequencies ordered as expected on the
abscissa axis. Thus just plotting the FFT result will place the negative frequencies on
the right side of the plot (red section) past the positive frequencies (green section).
The reason this occurs is because the FFT normalized frequencies are evaluated
around the unit circle from 0 to 2π as shown in Fig. 10.12 and the frequencies in the
range π < ω̂ <= 2π (bottom half of the circle) are converted by the sinusoid functions
to −π < ω̂ <= 0 by effectively subtracting 2π due to the principle arguments of
sinusoids being −π <= ω̂ <= π. The associated DFT indexing and frequencies
(assuming Fs = 2000) are listed in Table 10.3 for a 16-point FFT.

Due to the symmetry as seen in the middle plot of Fig. 10.11 when taking the
FFT of real signals, typically only the first half of the FFT vector is plotted since
it contains the positive frequencies. Note: If you are performing frequency domain
processing of a real signal that involves taking the inverse FFT and you modify a
positive frequency value by modifying either the magnitude or the phase, you also
need to modify the associated negative frequency in the same manner, i.e., if you
modify a Matlab FFT value at index i (DFT index k=i-1), you also need to modify
the Matlab FFT value at index j = N − i + 2 (DFT index j = N − k + 1), where N is
the FFT length.

178 10 Introduction to Digital Signal Processing

Table 10.3: N = 16-point FFT indexing translations (Fs = 2000)

Matlab FFT index DFT index Frequency (Hz) Matlab conjugate frequency index
i = 1 : NFFT k = i − 1 f = k Fs

NFFT
= k 2000

16 iconj = NFFT − k + 1 = NFFT − i + 2

1 0 0 (DC)
2 1 125 16
3 2 250 15
4 3 375 14
5 4 500 13
6 5 625 12
7 6 750 11
8 7 875 10
9 8 1000 (Nyquist)
10 9 −875 8
11 10 −750 7
12 11 −625 6
13 12 −500 5
14 13 −375 4
15 14 −250 3
16 15 −125 2

10.5 Practical Considerations When Using the FFT

10.5.1 Windowing

In the real-time analysis and synthesis FPGA example system in Sect. 3.1, one can
see a "window" being applied in the Simulink model in Fig. 3.7 before being sent to
the FFT engine. What window should be applied here? What would happen if you
eliminated this windowing step? There are several reasons for performing this step.

To answer these questions, we first need to go back to the original definition of
the Fourier transform, which we show here again:

ŝ(f) = F {s(t)} =
∫ ∞

−∞
s(t)e− j2π f t dt (10.34)

Notice the limits of integration in this definition. When we use computers, we do
not have the time to start at time t = −∞ and then wait until t = +∞. Even if we
could, we would not have the memory to be able to store a signal this long. So what
happens if we have a signal that only lasts from time t = t1 to time t = t2 and is zero
outside this time interval? Let us rewrite this as

10.5 Practical Considerations When Using the FFT 179

ŝ(f) =
∫ ∞

−∞
s(t)e−j2π f t dt (10.35)

=

∫ t1

−∞
s(t)e−j2π f t dt +

∫ t2

t1

s(t)e−j2π f t dt +
∫ ∞

t2

s(t)e−j2π f t dt (10.36)

= 0 +
∫ t2

t1

s(t)e−j2π f t dt + 0 (10.37)

=

∫ t2

t1

s(t)e−j2π f t dt (10.38)

However, we should not take this approach since we are getting away from using
the definition of the Fourier Transform. So instead of playing with the integration
limits, let us leave them alone but modify our signal instead. To do this, let us define
a new signal w(t) as

w(t) =
{

1 if t1 � t � t2
0 otherwise

(10.39)

and we can rewrite the Fourier Transform where we multiple by this windowing
function to time limit our signal and not have to mess with the limits of integration.
The signal is now zero outside the time interval t1 � t � t2.

ŝ(f) =
∫ ∞

−∞
s(t)w(t)e− j2π f t dt (10.40)

This means that when we take the FFT of a signal using a computer, we are always
applying a window function, even if we do not think we are. Note: If you do not
explicitly apply a window to your signal, you are in effect using a rectangular
window as defined in Eq. 10.40.

By using a finite signal, which we have to do when using computers, we have
essentially applied a rectangular window to an infinite signal. So what does this do
to our FFT results? The mathematical answer is the following where we generalize
to any window function w(t). If ŝ(f) is the Fourier Transform of s(t) as seen in
Eq. 10.34 and ŵ(f) is the Fourier Transform of w(t), we take the inverse Fourier
Transform as defined by

s(t) = F−1{ŝ(f)} = 1
2π

∫ ∞

−∞
ŝ(f)ej2π f t df (10.41)

Then the Fourier Transform of the windowed signal is

180 10 Introduction to Digital Signal Processing

F {s(t)w(t)} =
∫ ∞

−∞
[s(t)w(t)] e−j2π f t dt (10.42)

=

∫ ∞

−∞

[1
2π

∫ ∞

−∞
ŝ(ζ)e j2πζ t dζ

]
w(t)e−j2π f t dt (10.43)

=
1

2π

∫ ∞

−∞
ŝ(ζ)

[∫ ∞

−∞
w(t)e−j2π f te j2πζ t dt

]
dζ (10.44)

=
1

2π

∫ ∞

−∞
ŝ(ζ)

[∫ ∞

−∞
w(t)e−j2π(f−ζ)t dt

]
dζ (10.45)

=
1

2π

∫ ∞

−∞
ŝ(ζ)ŵ(f − ζ) dζ (10.46)

=
1

2π
[ŝ(f) ∗ ŵ(f)] (10.47)

Thus multiplication of the signal and the window function in the time domain is
equivalent to convolution in the frequency domain.

What does this mean in practice? Before we answer this, we first need to know
what the Fourier transform of our rectangular window is. For convenience, we will
define t1 = −T

2 and t2 = −T
2 for our rectangular window in Eq. 10.39.

F {w(t)} = ŵ(f) =
∫ ∞

−∞
w(t)e−j2π f t dt (10.48)

=

∫ T
2

− T
2

e−j2π f t dt (10.49)

=
1

− j2π f

[
e−j2π f t

���
T
2

− T
2

]
(10.50)

=
1

− j2π f

[
e−jπ f T − e jπ f T

]
(10.51)

=
T
π f T

[e jπ f T − e−jπ f T

2 j

]
(10.52)

=
T
π f T

sin (π f T) (10.53)

= Tsinc(f T) (10.54)

We can use the Matlab sinc() function to plot this function, which we do in
Fig. 10.13 in the right column for two different values of time width T. The associated
rectangular windows are shown on the left side and the associated Fourier transform
on the right side. Note that the longer rectangular window in time (bottom left)
results in narrower sinc function in frequency (bottom right). This means that to get
a better frequency resolution in the frequency domain, a longer window of the signal
in time needs to be taken.

10.5 Practical Considerations When Using the FFT 181

Fig. 10.13: The Fourier transform of a rectangular window is a sinc function. Longer
windows in time result in narrower sinc functions in frequency

10.5.2 Window Length

In practice we can view the effect of the rectangular window (and other windows) as
a blurring operation in the frequency domain where longer windows in time blur less
in the frequency domain. Shorter windows blur more. To illustrate this, let us look
at the spectrum of a cosine signal with frequency f = 1000 Hz where the Fourier
transform has been compute of the cosine signal using rectangular windows of sizes
[5 10 50 100 1000] msec as shown in Fig. 10.14. As we take longer rectangular
windows of the cosine function in time, the resulting spectrum looks more and more
like the line spectrum we expect for the cosine with f = 1000 Hz (shown as the
green vertical line).

182 10 Introduction to Digital Signal Processing

Fig. 10.14: Spectrum of a cosine signal with frequency f = 1000 Hz evaluated using
windows of sizes [5 10 50 100 1000] msec (Fs = 10,000 Hz). The green vertical line
is located at f = 1000 Hz. The last plot (bottom right) gives all the plots together for
comparison purposes

Window length becomes important if we are trying to resolve frequencies that are
close together. As an example, let us create a signal that is the sum of two cosines,
one at f 1 = 1000 Hz and the other at f 1 = 1050 Hz. Now let us look at the resulting
spectrum using windows of different lengths as shown in Fig. 10.15. With the 10
msec window, we do not even know that there are two frequencies. This is because
the spectrum of the 10 msec window (shown in the upper right of Fig. 10.14) has
been convolved with the two close frequencies and has blurred them together. As the
windows get longer, the blurring from the associated sinc functions (convolution in
the frequency domain) becomes less noticeable. Using a 1000 msec window results
in hardly any blurring since the sinc function is very narrow relative to the separation
(50 Hz) of the two frequencies.

10.5 Practical Considerations When Using the FFT 183

Fig. 10.15: Spectrum of a signal with two cosines with frequencies f = 1000 Hz
and f = 1050 Hz evaluated using windows of sizes [10 13 15 50 100 1000] msec
(Fs = 10,000 Hz). If the window is too short (e.g., 10 msec window top left), the
signal frequencies get blurred together and you cannot resolve them at all. The green
vertical lines are located at f = 1000 Hz and f = 1050 Hz

In summary, the longer the window is in time, the narrower the associated peak
is in frequency. Thus if you are interested in good frequency resolution, use a longer
window, which means using the FFT with more points. The trade-off is lower time
resolution, since you do not know where the frequency occurs within a window, and
longer latency for the FFT computation.

10.5.3 Window Edge Effects

If you look at the Fourier series example in Fig. 10.4, we determined what the Fourier
series coefficients should be over the interval 0 ≤ t ≤ T = 5 seconds. What happened
outside of this interval? Since the sinusoids in the Fourier series are periodic, the
signal represented by the Fourier coefficients becomes periodic with period T, as
can be seen in the figure that shows three periods. Thus anytime we represent a
signal in the frequency domain by taking the FFT, we have turned it into a periodic
signal in time where it continuously repeats outside the window for all time. This
is a subtle point since we typically expect the signal to remain the same when we
extract a portion of it and do not realize that by extracting it (i.e., windowing) and
taking the FFT, we have caused it to repeat continuously in time. This is because we
are only paying attention to the time interval where we extracted the signal and do

184 10 Introduction to Digital Signal Processing

not consider what happened in time outside this interval. Keep this in mind since
this needs to be combined with the following point. If a signal has discontinuities
in it, similar to the discontinuities in the signal example in Fig. 10.4, it will take
many harmonic terms to model the signal well. This means that discontinuities are
associated with high frequencies.

What this means in practice when we used FFTs is that we need to be careful at
the edges of the signal that we are windowing. This is because the FFT will cause
our signal to repeat outside of our window in time and if there are discontinuities at
the windowed edges, the FFT will add high frequencies to model the discontinuities,
even if these frequencies are not present in the original signal.

This is illustrated in Fig. 10.16 where we start with a 64 Hz cosine (top left). We
pick the frequency of the cosine and FFT length (N = 1024) such that when the FFT
causes the signal to repeat outside of the N = 1024 rectangular window, the period of
the 64 Hz cosine aligns well with the effective periodization. This is shown in the top
center plot where the left side (in red) is at the end of the signal window and the green
segment on the right side is where the signal has been effectively replicated in time.
The FFT spectrum in this case is shown (top right). The rectangular window used
had N = 1024 points, which resulted in a very narrow sinc spectrum in the frequency
domain. The noise floor of the FFT spectrum is very low (−314 dB) because of the
cosine that aligned perfectly with the window edges as it was replicated in time. This
perfect alignment rarely happens in practice except in contrived cases like this one
shown.

What typically happens is that the frequency components do not align nicely with
the window replication. This is modeled in the example shown in the middle row
of Fig. 10.16. Here we illustrate a typical practice of zero padding in order to get
a power of two length that we want when applying the FFT. In this example we
just set the last three points to zero. This causes a discontinuity to occur when the
FFT replicates the signal (middle plot). The left side (in red) is at the end of the
signal window and the green segment on the right side is where the signal has been
effectively replicated in time. The FFT spectrum is now significantly different where
the noise floor changed from −314 dB (shown as the green signal) to −55 dB (in
blue). The discontinuity at the window edge has significantly changed the spectrum.

To get rid of discontinuities at the window edges, we can no longer use a
rectangular window. We need a window that squashes the ends down to zero so that
when the signal is replicated by the FFT, there are no discontinuities. A commonly
used window that does this is is the Hanning (or Hann) window. A Hanning window
(N = 1024) applied to the 64 Hz cosine signal with the edge discontinuity is shown
in the bottom left plot in Fig. 10.16. We can see that there are no discontinuities at
the window edges (middle plot). This improves the spectrum representation where
the FFT floor drops from −55 dB (green) to −140 dB (blue) as seen in the bottom
right plot. The −314 dB noise floor is also plotted in green. Note that the spectrum
of the Hanning window has been convolved with the cosine line spectrum, so the
Hanning spectrum can be seen in the blue spectrum curve. The Hanning window is
only one of many windows that we can use, which gets us into the next section on
window trade-offs.

10.5 Practical Considerations When Using the FFT 185

Fig. 10.16: Window edge effects

10.5.4 Window Trade-Offs

When you use the FFT, you are always using a window. If you have not explicitly
applied a window, you have used the rectangular window, which means that you
have convolved the spectrum of the rectangular window (sinc function) with the
signal’s spectrum (a blurring operation). In the previous section we discussed why
using a Hanning window is better than using a rectangular window to eliminate edge
discontinuities. A question you probably have is why a Hanning window? Are there
other windows that could be used? The answer is that there are many other windows
that can be used and this gets us into window trade-offs.

Let us look at the spectrum of the rectangular window (sinc function) shown in
Fig. 10.17. Note that there are two parameters associated with this window spectrum
(and all window spectrums). The width of the main-lobe (width at half-height or
width at the −3 dB point) and how high the side-lobes are relative the height of the
main-lobe. If we want good frequency resolution, we want the main-lobe to be as
narrow as possible. An easy way to control the width of the main-lobe is to use longer
windows in time. However, we can also affect the main-lobe width just by the choice
of window where the windows have the same length in time. This is where the window
trade-offs come into play. Choosing a window that has a narrower main-lobe width
typically causes the side-lobe attenuation to be reduced (side-lobe peaks become
more pronounced). Why is this an issue? Remember that this window spectrum
gets convolved with the signal’s spectrum. This means that energies associated with

186 10 Introduction to Digital Signal Processing

other frequencies will "leak" into other frequency locations, affecting the fidelity of
energy measurement for frequencies of interest (this is known as "leakage"). Thus the
window used is a design trade-off that depends on the application. If you are more
interested in what frequencies are present and being able to resolve frequencies,
choose a window with a narrower main-lobe. If you are wanting to measure the
power that exists at a particular frequency, use a window that has good side-lobe
attenuation, so energy from other frequencies does not leak into your measurement.

Fig. 10.17: Window trade-offs

The trade-off between main-lobe width and side-lobe attenuation can be seen in
Fig. 10.18 for all the windows listed in Tables 10.4 and 10.5 . All the windows except
for the rectangular window squash the window edges to zero in time to eliminate
discontinuities. This is why the rectangular window is rarely used (except if you
forget to apply a window). The Hanning (or Hann) window (blue circle #18) is
typically chosen if you do not know what window to apply since it is a good balance
between main-lobe width and side-lobe attenuation.

10.5 Practical Considerations When Using the FFT 187

Fig. 10.18: Main-lobe width vs side-lobe attenuation for the windows listed in Tables
10.4 and 10.5. The commonly used Hann (or Hanning) window (number 18 in figure
and colored blue) is a good compromise between main-lobe width and side-lobe
attenuation. Windows were computed from Joe Henning’s window utilities [6]

188 10 Introduction to Digital Signal Processing

Table 10.4: Windows associated with Fig. 10.18. Windows sorted according to side-
lobe attenuation. Windows computed from [6]

Window number Window name Side-lobe attenuation Main-lobe width
1 Ultraspherical (0,0.5) 1.8255 0.13281
2 Ultraspherical (0.5,0.5) 6.9263 0.10742
3 Rectangular 13.2619 0.015625
4 Generalized Normal (P = 50) 13.3164 0.035156
5 Ultraspherical (−0.5,0.5) 13.3978 0.13086
6 Planck-taper (0.1) 13.3994 0.015625
7 Kaiser 13.6187 0.015625
8 Generalized Normal (P = 10) 14.4567 0.037109
9 Tukey 15.1229 0.019531
10 Generalized Normal (P = 4) 19.724 0.035156
11 Exponential (tau = 64) 20.158 0.017578
12 Welch 21.3084 0.019531
13 Sine 23.0021 0.019531
14 Triangular 26.5129 0.021484
15 Bartlett 26.5129 0.021484
16 Planck-Bessel (0.1, 4.45) 28.2264 0.021484
17 Taylor 29.6914 0.017578
18 Hann 31.4755 0.023438
19 Bartlett–Hann 35.9391 0.023438
20 Hamming 41.6395 0.021484
21 Gaussian (sigma = 0.4) 43.2658 0.021484
22 Slepian (alpha = 2) 44.7997 0.023438
23 Bohman 46.0164 0.027344
24 Exponential (tau = 9.2693) 49.3683 0.044922
25 Parzen 53.0471 0.029297
26 Blackman 58.1236 0.027344
27 Slepian (alpha = 3) 69.7603 0.027344
28 Flat Top 91.5097 0.058594
29 Blackman–Harris 92.0377 0.03125
30 Nuttall 93.3288 0.03125
31 Dolph–Chebyshev 94.4534 0.029297
32 Slepian (alpha = 4) 95.6357 0.03125
33 Blackman–Nuttall 96.5229 0.029297
34 Slepian (alpha = 10) 260.1093 0.046875

References 189

Table 10.5: Windows associated with Fig. 10.18. Windows sorted according to main-
lobe width. Windows computed from [6]

Window number Window name Side-lobe attenuation Main-lobe width
3 Rectangular 13.2619 0.015625
6 Planck-taper (0.1) 13.3994 0.015625
7 Kaiser 13.6187 0.015625
11 Exponential (tau = 64) 20.158 0.017578
17 Taylor 29.6914 0.017578
9 Tukey 15.1229 0.019531
12 Welch 21.3084 0.019531
13 Sine 23.0021 0.019531
14 Triangular 26.5129 0.021484
15 Bartlett 26.5129 0.021484
16 Planck-Bessel (0.1, 4.45) 28.2264 0.021484
20 Hamming 41.6395 0.021484
21 Gaussian (sigma = 0.4) 43.2658 0.021484
18 Hann 31.4755 0.023438
19 Bartlett–Hann 35.9391 0.023438
22 Slepian (alpha = 2) 44.7997 0.023438
23 Bohman 46.0164 0.027344
26 Blackman 58.1236 0.027344
27 Slepian (alpha = 3) 69.7603 0.027344
25 Parzen 53.0471 0.029297
31 Dolph–Chebyshev 94.4534 0.029297
33 Blackman–Nuttall 96.5229 0.029297
29 Blackman–Harris 92.0377 0.03125
30 Nuttall 93.3288 0.03125
32 Slepian (alpha = 4) 95.6357 0.03125
4 Generalized Normal (P = 50) 13.3164 0.035156
10 Generalized Normal (P = 4) 19.724 0.035156
8 Generalized Normal (P = 10) 14.4567 0.037109
24 Exponential (tau = 9.2693) 49.3683 0.044922
34 Slepian (alpha = 10) 260.1093 0.046875
28 Flat Top 91.5097 0.058594
2 Ultraspherical (0.5,0.5) 6.9263 0.10742
5 Ultraspherical (−0.5,0.5) 13.3978 0.13086
1 Ultraspherical (0,0.5) 1.8255 0.13281

References

1. D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution. SIAM Rev.
39(4), 644–668 (1997)

2. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice-Hall, Hobo-
ken, 1975)

190 10 Introduction to Digital Signal Processing

3. J.G. Proakis, Digital Signal Processing: Principles Algorithms and Applications
(Pearson, London, 2001)

4. R.N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New
York, 1986)

5. E.O. Brigham. The Fast Fourier Transform and Its Applications (Prentice-Hall,
Hoboken, 1988)

6. J. Henning, Window Utilities. MATLAB Central File Exchange https://www.
mathworks.com/matlabcentral/fileexchange/46092-windowutilities. Accessed 18
Jun 2021

https://www.mathworks.com/matlabcentral/fileexchange/46092-windowutilities
https://www.mathworks.com/matlabcentral/fileexchange/46092-windowutilities

	10 Introduction to Digital Signal Processing
	10.1 Sampling
	10.2 Fourier Series
	10.3 Geometric Interpretation of the Fourier Transform
	10.4 The Fast Fourier Transform (FFT)
	10.4.1 The Discrete Time Continuous Frequency Fourier Transform
	10.4.2 The Discrete Fourier Transform
	10.4.3 FFT

	10.5 Practical Considerations When Using the FFT
	10.5.1 Windowing
	10.5.2 Window Length
	10.5.3 Window Edge Effects
	10.5.4 Window Trade-Offs

	References

