
Chapter 1
Preliminaries

1.1 About This Book

This book covers a lot of ground that is constantly shifting. Hardware is constantly
changing, software is always being updated, toolchains are always being improved,
and development methodologies change over time. So yes, this book is likely to be
out of date as soon as it is “printed.” So why bother with this book? There are three
primary reasons:

Reason 1: Students gain a system level view of computers where they see how
hardware and software interact.

Reason 2: System-on-Chip (SoC) Field Programmable Gate Arrays (FPGAs)
are an ideal platform for teaching hardware and software interactions
and low cost SoC FPGAs are affordable for students.

Reason 3: Students get jobs. Students have reported great feedback in their job
interviews. They report that being able to explain how they created
their own custom hardware in the FPGA fabric and being able to
explain how they wrote their own device drivers in Linux have im-
pressed interviewers from some very large companies.

This book takes the you do not understand it until you build it approach to student
learning. This means that the labs in the book are the central focus of the book. It
is the process of building a complete computer system that cements the various
elements together. The chapters exist to support the labs and provide background
information that is needed for completion of the labs.

The choices of hardware, software, and methods are all the fault of the author.
In defense of these choices, the author will argue that in computer science, if there
are choices to be made, they will all be made. This means that one needs to be
familiar with the various approaches that exist and pragmatic when it comes to a
particular choice. Ultimately, a choice has to be made and this book reflects the
biases of the author. Are there better ways? Yes, and this will always be the case in
a field that is moving quickly and constantly changing. This book reflects a current

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_1

4 1 Preliminaries

snapshot in time with no claim that it is the optimal way of doing things. However,
it does accomplish the goal of creating a system-level understanding of computers
for students in spite of the fact that one can quibble about the particular choice of
hardware, software, or target application.

1.1.1 GitHub Repository

The GitHub repositories associated with the book are listed in Table 1.1.

Table 1.1: GitHub book repositories

Book repository link Description

ADSD-SoC-FPGA Primary GitHub site for the book

Code Code repository

Updates

Update repository. It is anticipated that material in the book
will constantly be changing due to advances in hardware,
software, toolchains, and methodologies, so check here for
updates. Note: If something does not work, make sure that
you are using the same version of software that the book
used. There are no guarantees that newer versions of soft-
ware or toolchains will work the same way. In fact, using
the latest versions of software or toolchains is a good way
to break things, so you are on your own if you choose to use
different versions than what the book uses. Always expect
to have toolchain fights when you upgrade to a new version

1.2 Why Learn About SoC FPGAs?

Why do we learn about System-on-Chip (SoC) Field Programmable Gate Arrays
(FPGAs)? In short, SoC FPGAs are extremely flexible digital devices that allow you
to create custom hardware for embedded computing systems with high performance,
high bandwidth, and low deterministic latency.

Computer engineering is a discipline about creating systems using computers for
a particular purpose. This includes creating both custom hardware and software. Cre-
ating custom hardware is what distinguishes computer engineering from computer

https://github.com/ADSD-SoC-FPGA
https://github.com/ADSD-SoC-FPGA/Code
https://github.com/ADSD-SoC-FPGA/Updates

1.2 Why Learn About SoC FPGAs? 5

science. A rough dividing line between computer engineering and computer science,
painted with a broad stroke, is the operating system on a computer. Computer engi-
neering is concerned primarily with everything below the operating system, down
to the hardware circuits, and how the computer interfaces to the physical world and
other systems. Computer science is concerned about what is theoretically possible,
about abstracting computers to make them easier to use, and creating languages with
the right amount of useful abstractions for a particular purpose. And while we are
painting in broad strokes, engineers are the people who make science useful.

In a fantasy world where cost is of no concern, one would create a custom
chip, known as an application-specific integrated circuit (ASIC), for each product
developed. However, creating a custom SoC chip that is ideal for a single purpose
and that is fabricated using a 7 nm process will cost you hundreds of millions of
dollars [1, 2]. This means that creating ASICs that use a leading edge fab process is
only economical if you have a large market that supports it. This is because you can
spread the non-reoccurring engineering (NRE) development costs over millions of
units.

If your target market does not justify rolling an ASIC and you have multi-
ple customers needing the same functionality, you then create what is known as
an application-specific standard product (ASSP). An example of an ASSP is the
AD1939 audio codec1 from Analog Devices [3] that we use to acquire and play au-
dio signals as explained in Chap. 5. Analog Devices markets this chip to customers
who need to convert audio signals from analog to digital and then back to analog.
This works well for customers like us who need an audio codec but do not have the
deep pockets to fund the infrastructure and expertise to create a mixed-signal audio
design. It is challenging to put both digital and analog systems on the same chip
since one has to keep the noisy digital system from injecting noise into the analog
system.

However, what if you want to develop a custom computer hardware system but
do not want the cost and development effort associated with developing ASICs or
ASSPs? A typical choice is to use the familiar CPU to create your system. CPUs
range from cheap microcontrollers where 28.1 billion of them were shipped in 2018
with an average selling price of $0.63 [4] to high-end CPUs such as the Intel Xeon
8180M that cost $13K at introduction [5].

1 Codec stands for coder-decoder, where the coder is an analog-to-digital converter (ADC) and the
decoder is a digital-to-analog converter (DAC).

6 1 Preliminaries

Fig. 1.1: Digital Hardware Devices. ASICs and ASSPs allow great flexibility for
creating custom systems but are very expensive to develop. Microcontrollers are
very cheap but are limited in their performance and flexibility. FPGAs take the
middle ground where the FPGA fabric is programmable, which allows one to create
custom hardware without the costs associated with ASICs and ASSPs

When using a CPU, customization is limited to what can be done in software. If
you want to develop custom hardware, but without the costs associated with ASICs
and ASSPS, this is where FPGAs come into play. FPGAs allow the development of
custom hardware, but the NRE for developing the FPGA device has already been
spread over thousands of FPGA customers.

What are the advantages of FPGAs compared to CPU systems? FPGAs have a
programmable hardware fabric and custom I/O. This allows data to enter and exit
the device with very low latency. The programmable fabric allows the creation of a
custom data plane that gives high performance. An example of this is the creation of
a custom interface and data plane for audio processing that we create in this book.

What are the disadvantages of FPGAs compared to CPU systems? FPGAs are
much harder and take longer to develop. One needs to be familiar with computer
architecture and low-level hardware description languages. When designing FPGA
logic, one has to have a pretty good idea how the logic will be implemented in the
FPGA fabric and what fabric building blocks will be used. If not, the design will be
non-optimal and the design will not fit well in the device. Another disadvantage is

1.3 Prerequisites 7

cost. You will not be using an FPGA for the new toaster oven design that can make
use of a cheap micro-controller.

SoC FPGAs are ideal devices for learning computer engineering. In one device
you can create custom hardware in the FPGA fabric, create Linux device drivers for
your custom hardware, and then control the hardware from a software application in
Linux. It allows you to understand how hardware and software interact and how to
start thinking about hardware–software co-design where you partition up tasks that
are best implemented in hardware and tasks that are best implemented as software.
Understanding this system-level design will provide you with computer engineering
skills that are in high demand. Knowing how hardware works is a great foundation for
being a software developer, which is highlighted in the Alan Kay quote [6] “People
who are really serious about software should make their own hardware.”

1.2.1 Further Reading

A good introduction to FPGAs for those that are new to them is the ebook FPGAs
for Dummies [7].

1.3 Prerequisites

The material covered in this textbook is quite broad, which means that the student
should already be familiar with the topics listed below. As an analogy, we are
starting out on an expedition to climb a mountain peak and the expedition requires
that the expedition members, while not having direct experience climbing mountain
peaks themselves, are familiar with camping, starting fires, and cooking outdoors,
even when the weather is uncertain and could end up dismal and raining. However,
summiting a peak on a clear sunny day where the vista stretches for miles makes the
effort to get there all worth it. Being familiar with the topics below will ensure that
you are OK camping in the woods by yourself.

1.3.1 Prior Hardware Knowledge

It is assumed that you are familiar with basic digital electronics and computer
architecture as sketched below.

• Basic Logic Gates that includes CMOS logic and how NAND and NOR gates
are used to construct digital logic. How these logic gates are used in both
combinational and sequential logic designs. How numbers are represented in
digital systems such as 2’s complement numbers?

8 1 Preliminaries

• Basic Digital Components that includes encoders/decoders, multiplexers, flip-
flops, registers, adders, multipliers, finite state machines, etc.

• Basic Computer Architecture that includes memory (SRAM and DRAM),
FIFOs, data path, pipelining, I/O, control, etc.

1.3.2 Prior Software Knowledge

It is assumed that you are familiar with basic programming concepts and have been
exposed to the following three languages. Other languages used will be described as
we use them (e.g., Python, TCL).

• VHDL, which is a hardware description language. This includes the std_logic_
vector data type, entity, architecture, concurrent statements, processes, the ris-
ing_edge function, if/else and case control statements, etc. A recommended text
for this subject matter is The Designer’s Guide to VHDL by Peter Ashenden [8].

• C, which is widely used in embedded systems and in the Linux kernel. There
are many online resources that can be uncovered by a quick “C tutorial” Google
search.

• Matlab, which is the environment that we will use to create our audio processing
systems. We will also use Simulink for creating our data plane models. A
recommended resource for Matlab and Simulink is the Matlab Onramp [9] and
Simulink Onramp [10].

1.4 Hardware Needed

The hardware needed for this book is listed in the following sections. The hardware
was chosen so that students could purchase their own boards and hardware at minimal
cost, which allows them to develop in their own room rather than having to go to
a laboratory to use an FPGA board. The majority of students have laptops with
Windows 10 installed as the operating system, so this is the PC configuration taken
in this book. It is possible to use Linux as the operating system on your laptop or
computer, but we will not take this approach. It is assumed that if a user already has
Linux running on their laptop, then they are already capable of configuring Linux
and installing software on their own if they choose to do so. And, if they have trouble,
it is assumed that they are capable of figuring out their own Linux solutions.

1.4 Hardware Needed 9

1.4.1 Laptop

It is expected that students have their own laptop (or desktop computer) with the
following capabilities:

• Windows 10 Operating System. Using another operating system is possible,
but you are on your own if you choose to do so. This textbook assumes you are
using Windows 10 on your laptop or desktop computer.

• 8 GB of RAM (ideally 16 GB). Currently, 8 GB is the most common RAM size
that you will find in laptops, which is adequate for the projects in this textbook.
If you have less, it is still possible, but your computer will run slower, especially
when using a virtual machine.

• Wi-Fi. You will need to connect to the Internet and practically all laptops come
with Wi-Fi, so you should be good on this front.

• Two USB Ports. You will need two USB ports on your laptop to connect to two
different connections on the FPGA board. One USB port will be used to program
the FPGA via JTAG, and the other USB port will be used with a terminal window
when booting Linux on the SoC FPGA. If you do not have two USB ports, get
a USB adapter for your laptop that has two USB ports and an Ethernet port.

• Ethernet Port. You will need an Ethernet port that is in addition to the Internet
Wi-Fi connection on your laptop. This is because you will be connecting to the
FPGA board using an Ethernet cable. Some laptops do not have an Ethernet
port with an RJ45 jack, so if this is your case, you will need to get an Ethernet
adapter for your laptop. If you need to get an Ethernet adapter, get an adapter
that has at least two USB ports as well.

1.4.2 DE10-Nano FPGA Board

The FPGA board that is used by this textbook is the DE10-Nano Kit produced by
Terasic (www.terasic.com) that contains an Intel Cyclone V SoC FPGA. The reason
this board was chosen was because it was the lowest cost SoC FPGA board making it
possible for students to get their own board. It provides great value because it contains
the largest SoC FPGA (110K LEs) in the low cost FPGA category. A comparison to
other low cost SoC FPGA boards can be seen in Table 1.2, where it can be seen that
(at the time of this writing) the DE10-Nano had the best value (Fig. 1.2).

10 1 Preliminaries

Fig. 1.2: The Terasic DE10-Nano SoC FPGA board is the FPGA board used by this
textbook. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&
CategoryNo=167&No=1046

1.4.3 Audio Board

The real-time system that students develop in this textbook targets audio signal
processing. Since there was no audio codec on the DE10-Nano, nor was there an
audio card available, a high fidelity audio board was created for the DE10-Nano.
This audio board contains a 24-bit audio codec (Analog Devices AD1939) that can
sample up to 192 kHz. Further information on how this audio board was designed
and how it can be used is found in Chap. 5 Introduction to the Audio Mini Board.
The audio board is shown in Fig. 1.3 and can be purchased from SensorLogic (Audio
Mini Link).

1.4.4 Miscellaneous Hardware

Some additional hardware will need to be purchased as well:

• microSD Card. The DE10-Nano SoC FPGA board comes with a microSD card
that allows it to boot Linux. We will be creating our own version, so you will

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=1046
https://www.sensorlogic.store/collections/audiologic-speech-and-audio-modules/products/fe-audio-edu-1

1.4 Hardware Needed 11

Ta
bl

e
1.

2:
Lo

w
co

st
So

C
FP

G
A

bo
ar

ds

Bo
ar

d
Pr

ic
e1

So
C

FP
G

A
FP

G
A

Fa
br

ic
A

RM
CP

U
5

LE
s2

D
SP

Sl
ic

es
3

M
em

or
y4

Sp
ee

d
D

RA
M

D
E1

0-
N

an
o

$1
46

In
te

lC
yc

lo
ne

V
11

0K
11

2
69

6K
B

80
0M

H
z

1G
B

5C
SE

BA
6U

23
I7

D
E1

-S
oC

$1
75

In
te

lC
yc

lo
ne

V
85

K
87

49
6K

B
80

0M
H

z
1G

B
5C

SE
M

A
5F

31
C6

A
lc

hi
try

A
u

$1
00

X
ili

nx
A

rti
x

7
33

K
90

22
5K

B
N

o
A

RM
CP

U
s

25
6M

B
XC

7A
35

T
N

ot
a

So
C

FP
G

A
(s

ta
nd

al
on

e)

Zy
bo

Z7
-1

0
$1

59
X

ili
nx

Zy
nq

17
K

80
27

0K
B

66
7M

H
z

1G
B

XC
7Z

01
0

Zy
bo

Z7
-2

0
$2

39
X

ili
nx

Zy
nq

53
K

22
0

63
0K

B
66

7M
H

z
1G

B
XC

7Z
02

0
1 E

du
ca

tio
na

lp
ric

e
in

20
21

no
ti

nc
lu

di
ng

sh
ip

pi
ng

.2 I
nt

el
’s

LE
co

nt
ai

ns
an

8-
in

pu
tl

oo
ku

p
ta

bl
e.

X
ili

nx
’s

co
nt

ai
ns

a
6-

in
pu

tl
oo

ku
p

ta
bl

e.
3 I

nt
el

’s
D

SP
Sl

ic
ec

on
ta

in
sa

27
×

27
bi

tm
ul

tip
lie

ra
nd

a6
4-

bi
ta

cc
um

ul
at

or
.X

ili
nx

’s
D

SP
Sl

ic
ec

on
ta

in
sa

18
×

25
bi

tm
ul

tip
lie

r
an

d
a

48
-b

it
ac

cu
m

ul
at

or
.4 I

nt
el

’s
co

nt
ai

ns
10

K
b

M
10

K
bl

oc
ks

.X
ili

nx
’s

co
nt

ai
ns

36
kb

bl
oc

ks
.5 D

ua
lC

or
e

Co
rte

x-
A

9

12 1 Preliminaries

Fig. 1.3: Audio Mini Board that plugs into the DE10-Nano and contains a 24-bit
audio codec (Analog Devices AD1939) that can sample up to 192 kHz

need another microSD card so that you can always plug the factory default image
back into the DE10-Nano board. Any size greater than 8 GB is fine. Currently,
a 32 GB is practically the same cost as an 8 GB, so you might as well get the
32 GB microSD card. You can always allocate the extra space to the Linux root
file system on the DE10-Nano.

• microSD Card Reader. You will need a USB microSD Card Reader so that
you can read/write the microSD card and modify the card images.

• Type A to Mini-B USB Cable. The DE10-Nano kit comes with one Type A to
Mini-B USB Cable, but we will be using both Mini-B ports on the DE10-Nano,
so having an extra cable will be more convenient.

• Ethernet Cable. A short Ethernet cable, ∼1 foot (or longer), to connect the
DE10-Nano board to your laptop.

1.5 Software Needed

The following software will be used in this textbook. Most of the software is free
or there are free commercial versions with the exception of Matlab, which has a
student version that one must buy if one is not associated with an institution with a
Mathworks site license. The list below is given as an overview of the software that
will be used. Instructions for setting up the software are found in Sect. 11.1 Software
Setup.

1.6 The Development Landscape 13

• Windows 10. It is assumed that the student has a Windows 10 laptop or PC and
does not have much experience with Linux.

• Windows Subsystem for Linux. Windows Subsystem for Linux (WSL) comes
in two versions, WSL 1 and WSL 2. WSL 1 (and not WSL 2) is required for
Intel’s Quartus software.

• VirtualBox. We will create an Ubuntu virtual machine (VM) using VirtualBox
on Windows 10.

• Ubuntu 20.04 LTS . We will install Ubuntu as a virtual machine in VirtualBox.
• Matlab and Simulink. The following toolboxes are required in Matlab:

• HDL Coder
• Matlab Coder
• Simulink Coder
• Fixed-Point Designer
• DSP System Toolbox (strongly suggested). Required for some example de-

signs.
• Signal Processing Toolbox (strongly suggested). Required for some example

designs.

• Python. Version 3.8.x or later
• Quartus. The free version Quartus Prime Lite Edition can be used for the

Cyclone V FPGA. Note: Quartus requires WSL 1 with Ubuntu 18.04.
• Putty. Which is a terminal emulator.

1.6 The Development Landscape

Knowing where you need to be to implement certain development steps, type software
commands, or install or run software can be confusing since we will be operating
across two different hardware platforms with two different CPU types:

Platform 1: DE10-Nano FPGA board that contains an ARM CPU inside the
Cyclone V SoC FPGA

Platform 2: Laptop or PC that contains an x86 CPU

and three operating systems:

OS 1: Windows 10 on a Laptop or PC
OS 2: Ubuntu VM, which is Ubuntu Linux running on a virtual machine in

VirtualBox that is running on Windows 10, which in turn is using an x86
CPU.

OS 3: Ubuntu ARM, which is Ubuntu Linux running on the ARM CPUs inside
the Cyclone V SoC FPGA, which is on the DE10-Nano board. Further-
more, the Root File System for Ubuntu ARM on the DE10-Nano can be
located in two different locations:

14 1 Preliminaries

a. On the microSD card that is inserted into the DE10-Nano board.
When Linux uses the root file system on the microSD card, this
is known as the Ship Boot Mode. This is the setup that comes
when you buy the DE10-Nano board, but it is not the setup that
you want to develop with.

b. In an Ubuntu VM folder served over Ethernet by the Ubuntu
VM NFS server. When Linux uses the root file system served by
the Ubuntu VM, this is known as the Developer Boot Mode. We
will be using this boot setup in this book because it is way more
convenient to develop with than using the ship boot mode, which
is not practical for development.

Each operating system has its own software packages, command lines, and terminal
windows. It also means that the DE10-Nano FPGA board and the Laptop/PC can
be connected in any one or in all of the following manners:

Connection 1: USB JTAG using a USB cable with a Mini-B connector plugged
into the USB Blaster port on the left side of the DE10-Nano
board. This connection is used to program the FPGA via JTAG.

Connection 2: USB UART using a USB cable with a Mini-B connector plugged
into the UART port on the right side of the DE10-Nano board.
This connection is used to create a terminal window to interact
with Linux booting on the DE10-Nano.

Connection 3: Ethernet where an Ethernet cable connects the DE10-Nano to
the Laptop/PC. This is used so that Linux can boot from the
Ubuntu VM when using the Developer Boot Mode.

References

1. Semiconductor Engineering. 10nm-versus-7nm. https://semiengineering.
com/10nm-versus-7nm/. Accessed 22 June 2022

2. semiengineering.com. 5nm-vs-3nm. https://semiengineering.com/5nm-
vs-3nm/. Accessed 22 June 2022

3. Analog Devices. AD1939 Audio Codec. https://www.analog.com/en/
products/ad1939.html. Accessed 22 June 2022

4. IC Insights. Microcontrollers Will Regain Growth After 2019
Slump. https://www.icinsights.com/news/bulletins/Microcontrollers-Will-
Regain-Growth-After-2019-Slump/. Accessed 22 June 2022

5. CPU World. Intel Xeon 8180M Specifications. https://www.cpu.world.
com/CPUs/Xeon/Intel-Xeon%208180M.html. Accessed 22 June 2022

6. A. Kay, Alan Kay Quote. https://en.wikiquote.org/wiki/Alan_Kay. Ac-
cessed 22 June 2022

https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/5nm-vs-3nm/
https://www.analog.com/en/products/ad1939.html
https://www.analog.com/en/products/ad1939.html
https://www.icinsights.com/news/bulletins/Microcontrollers-Will-Regain-Growth-After-2019-Slump/
https://www.cpu.world.com/CPUs/Xeon/Intel-Xeon%208180M.html
https://www.cpu.world.com/CPUs/Xeon/Intel-Xeon%208180M.html
https://en.wikiquote.org/wiki/Alan_Kay

References 15

7. A. Moore, R. Wilson, FPGAs For Dummies (2017). https://www.
intel.com/content/dam/support/us/en/programmable/support-resources/
bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf

8. P.J. Ashenden, The Designer’s Guide to VHDL (Morgan Kaufmann,
Burlington, 2008)

9. MathWorks. MATLAB Onramp. https://www.mathworks.com/learn/
tutorials/matlab.onramp.html. Accessed 22 June 2022

10. MathWorks. Simulink Onramp. https://www.mathworks.com/learn/
tutorials/simulink-onramp.html. Accessed 22 June 2022

https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf
https://www.mathworks.com/learn/tutorials/matlab.onramp.html
https://www.mathworks.com/learn/tutorials/matlab.onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html

	1 Preliminaries
	1.1 About This Book
	1.1.1 GitHub Repository

	1.2 Why Learn About SoC FPGAs?
	1.2.1 Further Reading

	1.3 Prerequisites
	1.3.1 Prior Hardware Knowledge
	1.3.2 Prior Software Knowledge

	1.4 Hardware Needed
	1.4.1 Laptop
	1.4.2 DE10-Nano FPGA Board
	1.4.3 Audio Board
	1.4.4 Miscellaneous Hardware

	1.5 Software Needed
	1.6 The Development Landscape
	References

