
Ross K. Snider

Advanced
Digital System
Design using
SoC FPGAs
An Integrated Hardware/Software Approach

Advanced Digital System Design using SoC FPGAs

Ross K. Snider

Advanced Digital System
Design using SoC FPGAs

An Integrated Hardware/Software Approach

Ross K. Snider
Montana State University
Bozeman, MT, USA

ISBN 978-3-031-15415-7 ISBN 978-3-031-15416-4 (eBook)
https://doi.org/10.1007/978-3-031-15416-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-15416-4

To my loving family
My wife Kimberley,
My sons Andrew and Christopher,
My daughters Ashleigh and Emily.

Preface

This textbook arose out of my experiences teaching computer engineering and elec-
trical engineering courses at Montana State University (MSU). Field Programmable
Gate Arrays (FPGAs) are digital devices that have been around since the 1980s
and are accessible to students, allowing them to create their own custom hardware
without the prohibitive expense of creating a custom ASIC or digital chip. FPGAs
started as tiny devices where they functioned as “glue” logic, but they have grown
to be among the largest digital devices today. As FPGAs grew larger, they started
absorbing all sorts of logic functions, including a complete ARM based computer
system, i.e., a System-on-Chip (SoC). SoC FPGAs are ideal devices for teaching
computer engineering since in the same chip you can create custom hardware in the
FPGA fabric and develop software that runs on the ARM CPUs. This allows students
to gain a system level understanding of how computers work. They gain this system
level knowledge by first creating their own custom hardware in the FPGA fabric
and then controlling their hardware by writing a Linux device driver and associated
application software. It has been quite satisfying seeing the excitement in student’s
faces when they finally understand how hardware and software interact.

I also teach the Digital Signal Processing course at MSU, and FPGAs and DSP
go well together. DSP is an important application area of FPGAs, and the highest
performing DSP is done in FPGAs. This is because there can be thousands of
multipliers running in parallel in the FPGA fabric. Not only that, the programmable
I/O of FPGAs allow data to be piped directly to the FPGA fabric, get processed, and
then piped directly back out. This allows these devices to have the lowest processing
latency of any digital device. FPGAs have lower processing latency than CPUs and
GPUs due to this custom I/O.

The focus on audio signal processing is a result of my background in auditory
neuroscience. Before coming to MSU, I completed a postdoctoral fellowship at
Johns Hopkins University in the Laboratory of Auditory Neurophysiology under the
direction of Xiaoqin Wang. Thus I’m interested in how the brain processes sound
and of course the practical aspects of audio processing using FPGAs. The processing
and bandwidth requirements of audio processing fit well within the constraints of
the low-cost Cyclone V SoC FPGA family, making audio processing an accessible

vii

viii Preface

application area for students. A NIH grant for creating a platform for open speech
signal processing was instrumental in developing the audio board targeted in the
book. Thus a natural outcome was to have students create their own real-time sound
effects processor. This has been very motivating for students.

The culmination of my experiences in FPGAs, DSP, auditory neuroscience, and
teaching is this textbook. It is an integrated hardware/software approach to audio
signal processing using SoC FPGAs. SoC FPGAs allow the merging of what has
typically been the siloed areas of computer hardware and software. This textbook is
my attempt at merging these two areas while creating an audio system that students
have fun creating and playing with.

Montana State University
Bozeman, Montana

Ross K. Snider
July 1, 2022

Acknowledgments

I would like to thank Trevor Vannoy who helped create some of the lab and Linux
material. Trevor was very good and helpful on the Linux front and helped many
students debug their systems.

I would like to thank those who had a part in developing the Audio Mini board
that was funded by NIH (grant 1R44DC01544301). Ray Weber for the analog in-
terfacing and initial Linux device driver development. Connor Dack for the PCB
board refinement that was well laid out. Chris Casebeer, Tyler Davis, and Will Tidd
for helping to manage the hardware project and fixing some of the earlier hardware
issues. Doug Roberts and Graham Conran who provided the Sensor Logic business
that is the home for the Audio Mini board.

Finally, I would like to thank the students in my FPGA courses for trying out new
material that didn’t always go as planned and who provided great feedback.

ix

Contents

Part I Introductions

1 Preliminaries . 3
1.1 About This Book . 3

1.1.1 GitHub Repository . 4
1.2 Why Learn About SoC FPGAs? . 4

1.2.1 Further Reading . 7
1.3 Prerequisites . 7

1.3.1 Prior Hardware Knowledge . 7
1.3.2 Prior Software Knowledge . 8

1.4 Hardware Needed . 8
1.4.1 Laptop . 9
1.4.2 DE10-Nano FPGA Board . 9
1.4.3 Audio Board . 10
1.4.4 Miscellaneous Hardware . 10

1.5 Software Needed . 12
1.6 The Development Landscape . 13
References . 14

2 Introduction to System-on-Chip Field Programmable Gate Arrays . . 17
2.1 The Digital Revolution . 17
2.2 Basic FPGA Architecture . 19

2.2.1 External I/O . 20
2.2.2 Logic Elements . 20
2.2.3 Memory . 20
2.2.4 DSP Blocks . 20

2.3 SoC FPGA Architecture . 22
References . 23

xi

xii Contents

3 Introduction to the SoC FPGA Boot Process . 25
3.1 Cyclone V SoC FPGA Boot Process . 25

3.1.1 Boot Step 1: Power-Up or Reset . 26
3.1.2 Boot Step 2: Boot ROM . 26
3.1.3 Boot Step 3: Preloader . 28
3.1.4 Boot Step 4: U-boot . 29
3.1.5 Boot Step 5: Linux . 30
3.1.6 Boot Step 6: Application . 30

References . 30

4 Introduction to the DE10-Nano Board . 33
4.1 DE10-Nano Board . 33

4.1.1 Determining DE10-Nano Board Revision 34
4.1.2 DE10-Nano Information . 34
4.1.3 DE10-Nano Cyclone V SoC FPGA . 34
4.1.4 DE10-Nano Configuration Mode Switch Setting 35

References . 39

5 Introduction to the Audio Mini Board . 41
5.1 Top Level Block Diagram . 42
5.2 Analog Audio Input . 43
5.3 AD1939 Audio Codec . 44

5.3.1 AD1939 Serial Data Port . 47
5.3.2 AD1939 SPI Control Port . 48

5.4 Headphone Analog Audio Output . 50
5.4.1 TPA6130A2 I2C Interface . 51

5.5 DE10-Nano FPGA Connections . 52
References . 53

6 Introduction to Intel Quartus Prime . 55
6.1 Intel Quartus Prime Lite Edition . 55

6.1.1 Installing Windows for Subsystem for Linux (WSL) 55
6.1.2 Download and Install Intel’s Quartus Prime Lite 56
6.1.3 Quartus File Types . 56
6.1.4 Converting Programming Files . 58
6.1.5 Timing . 58
6.1.6 Learning Quartus . 60

6.2 Platform Designer . 62
6.2.1 Creating an Avalon Memory-Mapped Interface 62
6.2.2 Creating a Custom Platform Designer Component 65
6.2.3 Creating an Avalon Streaming Interface 69

6.3 System Console . 69
6.3.1 The General Flow for Using System Console 70
6.3.2 Modifying the Design in Platform Designer 71
6.3.3 Using System Console . 72

Contents xiii

6.3.4 Summary of System Console Commands 77
6.4 Creating IP in Quartus . 78

6.4.1 Creating a ROM IP Component . 78
References . 86

7 Introduction to Memory Addressing . 87
7.1 The View of Memory from the ARM CPUs and Platform Designer . 87

7.1.1 Memory Addressing for Registers on the HPS Lightweight
Bus . 88

7.2 The View of Memory from System Console . 89
Reference . 92

8 Introduction to Verification . 93
8.1 Design Assumptions . 93

8.1.1 Synchronous Designs . 93
8.1.2 Hierarchical Designs . 93
8.1.3 VHDL Code Formatting . 94

8.2 Verification . 95
8.2.1 Why Verify? . 95
8.2.2 Verification Process . 95

8.3 Verification Example 1: File I/O . 97
8.3.1 VHDL File to Verify: my_component1.vhd 98
8.3.2 VHDL Testbench File: my_component1_tb.vhd 99
8.3.3 Creating Test Vectors with Matlab Script my_test_vectors1.m102
8.3.4 Computing the Results with Matlab Function

my_component1.m . 104
8.3.5 Performing Verification with the Matlab Script

my_verification1.m . 107
8.3.6 Running the Example 1 Verification . 111

8.4 Verification Example 2: Using a Quartus ROM IP Component 112
8.4.1 VHDL File to Verify: my_component2.vhd 114
8.4.2 VHDL Testbench File: my_component2_tb.vhd 116
8.4.3 Creating Test Vectors with Matlab Script my_test_vectors2.m117
8.4.4 Computing the Results with Matlab Function

my_component2.m . 117
8.4.5 Performing Verification with the Matlab Script

my_verification2.m . 120
8.4.6 Running the Example 2 Verification . 120

8.5 Homework Problems . 123

9 Introduction to Linux . 125
9.1 The Linux View of Memory . 125
9.2 Cross Compiling the Linux Kernel . 129

9.2.1 Packages Needed . 129
9.2.2 Get the Linux Source Repository and Select the Git Branch . 130

xiv Contents

9.2.3 Configuring the Kernel . 132
9.2.4 Cross Compiling the Kernel . 134

9.3 Kernel Modules . 135
9.3.1 Loadable Kernel Modules . 136
9.3.2 Cross Compiling the Kernel Module . 139
9.3.3 Inserting the Kernel Module into the Linux Kernel 141

9.4 Device Trees . 141
9.4.1 Device Tree Basics . 141
9.4.2 Device Tree Hierarchy . 145
9.4.3 Creating a Device Tree for Our DE10-Nano System 146

9.5 Platform Device Driver . 148
9.6 Steps for Creating a Platform Device Driver for Your Custom

Component in Platform Designer . 150
9.6.1 Testing the Platform Device Driver . 154

9.7 List of Linux Commands . 155
References . 157

10 Introduction to Digital Signal Processing . 159
10.1 Sampling . 159
10.2 Fourier Series . 162
10.3 Geometric Interpretation of the Fourier Transform 167
10.4 The Fast Fourier Transform (FFT) . 172

10.4.1 The Discrete Time Continuous Frequency Fourier Transform173
10.4.2 The Discrete Fourier Transform . 174
10.4.3 FFT . 176

10.5 Practical Considerations When Using the FFT 178
10.5.1 Windowing . 178
10.5.2 Window Length . 181
10.5.3 Window Edge Effects . 183
10.5.4 Window Trade-Offs . 185

References . 189

Part II SoC FPGA System Development

11 Development Environment Setup . 193
11.1 Software Setup . 193

11.1.1 Setting up a PuTTY Terminal Window in Windows to
Communicate with Linux on the DE10-Nano Board 193

11.1.2 VirtualBox Ubuntu Virtual Machine Setup 197
11.1.3 Developer’s Boot Mode Setup . 212
11.1.4 Cross Compiling “Hello World” . 238

11.2 List of U-boot Commands . 244
References . 244

Contents xv

12 Creating a LED Pattern Generator System . 245
12.1 LED_Patterns Component . 246

12.1.1 LED_Patterns Entity . 246
12.1.2 Functional Requirements for LED_Patterns 248
12.1.3 Suggested Architecture . 250

12.2 Homework Problems . 251

Part III SoC FPGA System Examples

Example 1 Audio FPGA Passthrough . 255
1.1 Audio Passthrough System Overview . 255
1.2 Audio Data Streaming . 256

1.2.1 I2S to Avalon Streaming Data Conversion 257
1.3 Quartus Passthrough Project . 267
1.4 Platform Designer . 269

1.4.1 Creating the AD1939 Platform Designer Component 269
1.4.2 Creating a Platform Designer Subsystem for the AD1939 . . . 279
1.4.3 Creating the Platform Designer Passthrough System 284
1.4.4 Generating the Platform Designer System 287

1.5 Linux Device Drivers . 289
1.5.1 Linux SPI Device Driver for the AD1939 Audio Codec 289
1.5.2 Linux I2C Device Driver for the TPA6130A2 Headphone

Amplifier . 289
1.5.3 Linux Device Tree . 290
1.5.4 Loading the Linux Device Drivers on Boot 291

Example 2 Feedforward Comb Filter System . 293
2.1 Overview . 293

2.1.1 Feedback Comb Filter . 294
2.1.2 Comb Filter Uses . 295

2.2 Simulink Model . 295
2.2.1 Overview of the Simulink Model Files 296
2.2.2 Simulink Common Files . 296
2.2.3 Model Specific Files . 298

2.3 Creating the Simulink Model . 299
2.4 VHDL Code Generation Using Simulink’s HDL Coder 305

2.4.1 Common Model Errors . 307
2.4.2 Simulink Setup for HDL Coder . 308
2.4.3 HDL Workflow Advisor . 309

2.5 HPS Integration Using Platform Designer . 317
2.5.1 Hardware Integration Steps . 317
2.5.2 Quartus Project Setup . 318
2.5.3 Creating the Platform Designer Component 318
2.5.4 Importing combFilterProcessor into Platform Designer 322
2.5.5 Testing the combFilterProcessor Using System Console 323

xvi Contents

2.5.6 Quartus Project Cleanup . 323
2.6 Linux Device Driver . 324
References . 324

Example 3 FFT Analysis Synthesis System . 325
3.1 Overview . 325

3.1.1 Frequency Domain Processing . 327
3.2 Simulink Model Files . 328
3.3 Creating the Simulink Model . 329

3.3.1 Analysis . 330
3.3.2 Simulink Logic Analyzer . 332
3.3.3 Frequency Domain Processing . 334
3.3.4 Synthesis . 336
3.3.5 Verification . 339
3.3.6 System Latency . 341

3.4 VHDL Code Generation Using Simulink’s HDL Coder 342
3.5 HPS Integration Using Platform Designer . 343

3.5.1 Hardware Integration Steps . 343
3.5.2 Testing the fftAnalysisSynthesisProcessor Using System

Console . 344
3.6 Linux Device Driver . 344
Reference . 344

Part IV Labs

1 Setting Up the Ubuntu Virtual Machine . 347
1.1 Items Needed . 347
1.2 Lab Steps . 347
1.3 Demonstration . 348
1.4 Deliverables . 348
1.4 Sign-off Sheet . 349

2 Hardware Hello World . 351
2.1 Items Needed . 351
2.2 Lab Steps . 351
2.3 Demonstration . 354
2.4 Deliverables . 354
2.4 Sign-off Sheet . 355

3 Developer’s Setup . 357
3.1 Items Needed . 357
3.2 Lab Steps . 358
3.3 Demonstration . 358
3.4 Deliverables . 359
3.4 Sign-off Sheet . 360
3.5 Common Problems and Solutions . 361

Contents xvii

4 LED Patterns . 365
4.1 Items Needed . 365
4.2 Lab Steps . 365
4.3 Demonstration . 366
4.4 Deliverables . 366
4.4 Sign-off Sheet . 367
4.5 Common Problems and Solutions . 368

5 Signal Tap . 369
5.1 Items Needed . 369
5.2 Lab Steps . 370
5.3 Demonstration . 371
5.4 Deliverables . 371
5.4 Sign-off Sheet . 372

6 Creating a Custom Hardware Component in Platform Designer 373
6.1 Items Needed . 373
6.2 Lab Steps . 373
6.3 Demonstration . 375
6.4 Deliverables . 375
6.4 Sign-Off Sheet . 376
6.5 Common Problems and Solutions . 377

7 Verifying Your Custom Component Using System Console and
/dev/mem . 379
7.1 Items Needed . 380
7.2 Lab Steps . 380
7.3 Demonstration . 382
7.4 Deliverables . 382
7.4 Sign-Off Sheet . 383
7.5 Common Problems and Solutions . 384

8 Creating LED Patterns with a C Program Using /dev/mem in Linux . 385
8.1 C Program Requirements . 385
8.2 Items Needed . 387
8.3 Lab Steps . 387
8.4 Demonstration . 388
8.5 Deliverables . 388
8.5 Sign-off Sheet . 389

9 Linux Kernel Module Hello World . 391
9.1 Items Needed . 391
9.2 Lab Steps . 391
9.3 Demonstration . 392
9.4 Deliverables . 392
9.4 Sign-Off Sheet . 393

xviii Contents

10 Modifying the Linux Device Tree . 395
10.1 Items Needed . 395
10.2 Lab Steps . 395
10.3 Demonstration . 396
10.4 Deliverables . 397
10.4 Sign-off Sheet . 398

11 Creating a Platform Device Driver for the HPS_LED_Patterns
Component . 399
11.1 Items Needed . 399
11.2 Lab Steps . 399
11.3 Demonstration . 400
11.4 Deliverables . 400
11.4 Sign-off Sheet . 401

12 Implementing the Passthrough Project . 403
12.1 Items Needed . 403
12.2 Lab Steps . 404
12.3 Demonstration . 404
12.4 Deliverables . 404
12.4 Sign-off Sheet . 405

13 Implementing the Comb Filter Project . 407
13.1 Items Needed . 407
13.2 Lab Steps . 407
13.3 Demonstration . 408
13.4 Deliverables . 408
13.4 Sign-off Sheet . 409

14 Implementing the FFT Analysis Synthesis Project 411
14.1 Items Needed . 411
14.2 Lab Steps . 411
14.3 Demonstration . 412
14.4 Deliverables . 412
14.4 Sign-off Sheet . 414

15 Creating Your Sound Effect in Simulink . 415
15.1 Items Needed . 415
15.2 Lab Steps . 415
15.3 Demonstration . 417
15.4 Deliverables . 417
15.4 Sign-off Sheet . 418

Contents xix

16 Implementing Your Sound Effect in the FPGA Fabric 419
16.1 Items Needed . 419
16.2 Lab Steps . 419
16.3 Demonstration . 420
16.4 Deliverables . 420
16.4 Sign-off Sheet . 421

17 Writing a Linux Device Driver to Control Your Sound Effect Processor423
17.1 Items Needed . 423
17.2 Lab Steps . 423
17.3 Demonstration . 424
17.4 Deliverables . 424
17.4 Sign-off Sheet . 425

Index . 427

Listings

List of VHDL Code

6.1 Entity of HPS_LED_patterns . 63
6.2 Register Declaration with Default Value . 64
6.3 Register Read Process . 64
6.4 Register Write Process . 65
6.21 ROM Component Declaration . 86
6.22 ROM Component Instantiation . 86
8.1 Synchronous VHDL Process . 93
8.1 VHDL Code Formatting . 94
8.2 Entity of my_component1.vhd . 98
8.3 my_add1_process . 98
8.4 my_delay_process . 99
8.5 Defining signal widths . 99
8.6 Clock Definitions . 99
8.7 Clock Creation . 100
8.8 Variables for File I/O . 100
8.9 Opening files . 100
8.10 While loop . 100
8.11 Reading test vectors . 101
8.12 Writing results . 101
8.13 Synchronizing file I/O with clock . 101
8.14 Closing files . 102
8.31 Entity of my_component2.vhd . 114
8.32 Process that delays and multiplies . 115
8.33 Generated code when MY_DELAY is zero. 115
8.34 Generated code when MY_DELAY is one. 115
8.35 Generated code when MY_DELAY is two. 116
8.36 Generated code when MY_DELAY is greater than two. 116
12.1 Entity of LED_patterns . 247

xxi

xxii Listings

1.1 Entity of AD1939_hps_audio_mini.vhd . 259
1.2 Generic map that configures the shift register to be 32 bits 261
1.3 Instantiating the serial to parallel converter . 261
1.4 Capturing the 24-bit sample from the 32-bit framing window 262
1.5 State machine states that capture the left channel 263
1.6 Creating the Avalon streaming interface signals 263
1.7 Capturing Avalon Streaming data . 264
1.8 Creating the left I2S serial data stream . 265
1.9 Multiplexing the left and right data serial channels 265
1.10 Delaying the DAC BCLK . 266
2.7 Entity of combFilterProcessor.vhd . 319
2.8 Instantiation of ast2lr.vhd . 319
2.9 Instantiation of combFilterSystem.vhd . 320
2.10 Instantiation of lr2ast.vhd . 320
2.11 Control signals in combFilterProcessor.vhd . 321
2.12 Writing to control registers in combFilterProcessor.vhd 321
2.13 Reading from the control registers in combFilterProcessor.vhd 322

List of C Code

9.19 Hello World Kernel Module . 137
9.20 Initializing the Kernel Module . 137
9.23 Exiting the Kernel Module . 139
9.24 Module Macros . 139
9.25 Makefile for hello_kernel_module.c . 140
9.31 Device Tree Root of socfpga.dtsi . 142
9.32 Device Tree Node Information . 143
9.33 Device Tree Node for custom hardware . 144
9.39 Defining Register Offsets . 151
9.40 Creating the .compatible string . 152
9.41 Exporting the component registers to sysfs . 153
9.42 Show function to read the component register . 153
9.43 Store function to write to the component register 154
11.18Hello World . 211
11.89Cross compiling Hello World for the ARM CPU. 239
1.11 Linux Device Tree for the Passthrough project 290
10.0 Device Tree leds node : before modification . 396
10.0 Device Tree leds node : after modification . 396
10.0 Adding device tree include file . 396
11.0 LED Patterns Bash script . 400

Listings xxiii

List of MATLAB Code

6.12 Matlab function for memory initialization . 79
6.13 Error checking . 80
6.14 Opening File . 80
6.15 Memory Initialization File Header . 80
6.16 Memory initialization address value pairs . 81
6.17 Defining Memory Size . 81
6.18 Creating the memory array . 82
6.19 Generating the ROM values . 82
6.20 Saving the ROM values in a .mat file . 82
8.15 Parameter Settings . 102
8.16 Opening a file . 103
8.17 Random coverage . 103
8.18 Writing binary strings . 104
8.19 Closing a file . 104
8.22 Function declaration . 105
8.23 Setting fimath properties . 105
8.24 Adding one . 107
8.25 Verification Parameter Settings . 107
8.26 Reading in the test vectors . 108
8.27 Possible characters for VHDL std_logic type . 109
8.28 Reading in the result vectors . 110
8.29 Computing the Matlab version of my_component1 110
8.30 Comparing the VHDL and Matlab results . 111
8.41 my_component2.m Matlab function . 119
8.42 ROM lookup . 119
8.43 ROM latency . 119
8.44 Comparing Matlab and VHDL results . 120
10.1 Summation of complex exponentials . 165

Acronyms

ACL Access Control List
ADC Analog-to-Digital Converter
ALM Adaptive Logic Module
ASIC Application-Specific Integrated Circuit
ASSP Application-Specific Standard Product
BRAM Block RAM
BSP Board Support Package
CIDR Classless Inter-Domain Routing
CTCFFT Continuous Time Continuous Frequency Fourier Transform
CTFT Continuous Time Fourier Transform
DFT Discrete Fourier Transform
DSP Digital Signal Processing
DTCF Discrete Time Continuous Frequency
DTDF Discrete Time Discrete Frequency
DUT Device Under Test
FFT Fast Fourier Transform
FIR Finite Impulse Response
FPGAs Field Programmable Gate Arrays
FPU Floating Point Units
FT Fourier Transform
GHRD Golden Hardware Reference Design
GPIO General Purpose Input/Ouput
HPS Hard Processor System
IIR Infinite Impulse Response
LEs Logic Elements
LKM Loadable Kernel Module
LUTs Look-Up Tables
MAC Multiply and Accumulate
MBR Master Boot Record
MMU Memory Management Unit
MSB Most Significant Bit

xxv

xxvi Acronyms

MSEL Mode Select
NAT Network Address Translation
NRE Non-Reoccurring Engineering
PLL Phase Locked Loop
PMU Performance Monitoring Unit
Phandle Pointer Handle
SoC System-on-Chip
TLB Translation Lookaside Buffer
VCP Virtual Com Port
VM Virtual Machine
VSG VHDL Style Guide
WSL Windows Subsystem for Linux

Part I
Introductions

2 I Introductions

Digital system development using SoC FPGAs is complicated since it covers a
lot of ground. The topics include hardware, software, and tool chains. Furthermore,
all of these areas are constantly changing. The aim of this introductory section is to
give brief introductions of the material in each of these areas that students should
know in order to build a working system. Students typically have not been exposed
to all these areas that are needed to develop SoC FPGA systems, so introductions to
all these areas are provided.

Chapter 1
Preliminaries

1.1 About This Book

This book covers a lot of ground that is constantly shifting. Hardware is constantly
changing, software is always being updated, toolchains are always being improved,
and development methodologies change over time. So yes, this book is likely to be
out of date as soon as it is “printed.” So why bother with this book? There are three
primary reasons:

Reason 1: Students gain a system level view of computers where they see how
hardware and software interact.

Reason 2: System-on-Chip (SoC) Field Programmable Gate Arrays (FPGAs)
are an ideal platform for teaching hardware and software interactions
and low cost SoC FPGAs are affordable for students.

Reason 3: Students get jobs. Students have reported great feedback in their job
interviews. They report that being able to explain how they created
their own custom hardware in the FPGA fabric and being able to
explain how they wrote their own device drivers in Linux have im-
pressed interviewers from some very large companies.

This book takes the you do not understand it until you build it approach to student
learning. This means that the labs in the book are the central focus of the book. It
is the process of building a complete computer system that cements the various
elements together. The chapters exist to support the labs and provide background
information that is needed for completion of the labs.

The choices of hardware, software, and methods are all the fault of the author.
In defense of these choices, the author will argue that in computer science, if there
are choices to be made, they will all be made. This means that one needs to be
familiar with the various approaches that exist and pragmatic when it comes to a
particular choice. Ultimately, a choice has to be made and this book reflects the
biases of the author. Are there better ways? Yes, and this will always be the case in
a field that is moving quickly and constantly changing. This book reflects a current

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_1

4 1 Preliminaries

snapshot in time with no claim that it is the optimal way of doing things. However,
it does accomplish the goal of creating a system-level understanding of computers
for students in spite of the fact that one can quibble about the particular choice of
hardware, software, or target application.

1.1.1 GitHub Repository

The GitHub repositories associated with the book are listed in Table 1.1.

Table 1.1: GitHub book repositories

Book repository link Description

ADSD-SoC-FPGA Primary GitHub site for the book

Code Code repository

Updates

Update repository. It is anticipated that material in the book
will constantly be changing due to advances in hardware,
software, toolchains, and methodologies, so check here for
updates. Note: If something does not work, make sure that
you are using the same version of software that the book
used. There are no guarantees that newer versions of soft-
ware or toolchains will work the same way. In fact, using
the latest versions of software or toolchains is a good way
to break things, so you are on your own if you choose to use
different versions than what the book uses. Always expect
to have toolchain fights when you upgrade to a new version

1.2 Why Learn About SoC FPGAs?

Why do we learn about System-on-Chip (SoC) Field Programmable Gate Arrays
(FPGAs)? In short, SoC FPGAs are extremely flexible digital devices that allow you
to create custom hardware for embedded computing systems with high performance,
high bandwidth, and low deterministic latency.

Computer engineering is a discipline about creating systems using computers for
a particular purpose. This includes creating both custom hardware and software. Cre-
ating custom hardware is what distinguishes computer engineering from computer

https://github.com/ADSD-SoC-FPGA
https://github.com/ADSD-SoC-FPGA/Code
https://github.com/ADSD-SoC-FPGA/Updates

1.2 Why Learn About SoC FPGAs? 5

science. A rough dividing line between computer engineering and computer science,
painted with a broad stroke, is the operating system on a computer. Computer engi-
neering is concerned primarily with everything below the operating system, down
to the hardware circuits, and how the computer interfaces to the physical world and
other systems. Computer science is concerned about what is theoretically possible,
about abstracting computers to make them easier to use, and creating languages with
the right amount of useful abstractions for a particular purpose. And while we are
painting in broad strokes, engineers are the people who make science useful.

In a fantasy world where cost is of no concern, one would create a custom
chip, known as an application-specific integrated circuit (ASIC), for each product
developed. However, creating a custom SoC chip that is ideal for a single purpose
and that is fabricated using a 7 nm process will cost you hundreds of millions of
dollars [1, 2]. This means that creating ASICs that use a leading edge fab process is
only economical if you have a large market that supports it. This is because you can
spread the non-reoccurring engineering (NRE) development costs over millions of
units.

If your target market does not justify rolling an ASIC and you have multi-
ple customers needing the same functionality, you then create what is known as
an application-specific standard product (ASSP). An example of an ASSP is the
AD1939 audio codec1 from Analog Devices [3] that we use to acquire and play au-
dio signals as explained in Chap. 5. Analog Devices markets this chip to customers
who need to convert audio signals from analog to digital and then back to analog.
This works well for customers like us who need an audio codec but do not have the
deep pockets to fund the infrastructure and expertise to create a mixed-signal audio
design. It is challenging to put both digital and analog systems on the same chip
since one has to keep the noisy digital system from injecting noise into the analog
system.

However, what if you want to develop a custom computer hardware system but
do not want the cost and development effort associated with developing ASICs or
ASSPs? A typical choice is to use the familiar CPU to create your system. CPUs
range from cheap microcontrollers where 28.1 billion of them were shipped in 2018
with an average selling price of $0.63 [4] to high-end CPUs such as the Intel Xeon
8180M that cost $13K at introduction [5].

1 Codec stands for coder-decoder, where the coder is an analog-to-digital converter (ADC) and the
decoder is a digital-to-analog converter (DAC).

6 1 Preliminaries

Fig. 1.1: Digital Hardware Devices. ASICs and ASSPs allow great flexibility for
creating custom systems but are very expensive to develop. Microcontrollers are
very cheap but are limited in their performance and flexibility. FPGAs take the
middle ground where the FPGA fabric is programmable, which allows one to create
custom hardware without the costs associated with ASICs and ASSPs

When using a CPU, customization is limited to what can be done in software. If
you want to develop custom hardware, but without the costs associated with ASICs
and ASSPS, this is where FPGAs come into play. FPGAs allow the development of
custom hardware, but the NRE for developing the FPGA device has already been
spread over thousands of FPGA customers.

What are the advantages of FPGAs compared to CPU systems? FPGAs have a
programmable hardware fabric and custom I/O. This allows data to enter and exit
the device with very low latency. The programmable fabric allows the creation of a
custom data plane that gives high performance. An example of this is the creation of
a custom interface and data plane for audio processing that we create in this book.

What are the disadvantages of FPGAs compared to CPU systems? FPGAs are
much harder and take longer to develop. One needs to be familiar with computer
architecture and low-level hardware description languages. When designing FPGA
logic, one has to have a pretty good idea how the logic will be implemented in the
FPGA fabric and what fabric building blocks will be used. If not, the design will be
non-optimal and the design will not fit well in the device. Another disadvantage is

1.3 Prerequisites 7

cost. You will not be using an FPGA for the new toaster oven design that can make
use of a cheap micro-controller.

SoC FPGAs are ideal devices for learning computer engineering. In one device
you can create custom hardware in the FPGA fabric, create Linux device drivers for
your custom hardware, and then control the hardware from a software application in
Linux. It allows you to understand how hardware and software interact and how to
start thinking about hardware–software co-design where you partition up tasks that
are best implemented in hardware and tasks that are best implemented as software.
Understanding this system-level design will provide you with computer engineering
skills that are in high demand. Knowing how hardware works is a great foundation for
being a software developer, which is highlighted in the Alan Kay quote [6] “People
who are really serious about software should make their own hardware.”

1.2.1 Further Reading

A good introduction to FPGAs for those that are new to them is the ebook FPGAs
for Dummies [7].

1.3 Prerequisites

The material covered in this textbook is quite broad, which means that the student
should already be familiar with the topics listed below. As an analogy, we are
starting out on an expedition to climb a mountain peak and the expedition requires
that the expedition members, while not having direct experience climbing mountain
peaks themselves, are familiar with camping, starting fires, and cooking outdoors,
even when the weather is uncertain and could end up dismal and raining. However,
summiting a peak on a clear sunny day where the vista stretches for miles makes the
effort to get there all worth it. Being familiar with the topics below will ensure that
you are OK camping in the woods by yourself.

1.3.1 Prior Hardware Knowledge

It is assumed that you are familiar with basic digital electronics and computer
architecture as sketched below.

• Basic Logic Gates that includes CMOS logic and how NAND and NOR gates
are used to construct digital logic. How these logic gates are used in both
combinational and sequential logic designs. How numbers are represented in
digital systems such as 2’s complement numbers?

8 1 Preliminaries

• Basic Digital Components that includes encoders/decoders, multiplexers, flip-
flops, registers, adders, multipliers, finite state machines, etc.

• Basic Computer Architecture that includes memory (SRAM and DRAM),
FIFOs, data path, pipelining, I/O, control, etc.

1.3.2 Prior Software Knowledge

It is assumed that you are familiar with basic programming concepts and have been
exposed to the following three languages. Other languages used will be described as
we use them (e.g., Python, TCL).

• VHDL, which is a hardware description language. This includes the std_logic_
vector data type, entity, architecture, concurrent statements, processes, the ris-
ing_edge function, if/else and case control statements, etc. A recommended text
for this subject matter is The Designer’s Guide to VHDL by Peter Ashenden [8].

• C, which is widely used in embedded systems and in the Linux kernel. There
are many online resources that can be uncovered by a quick “C tutorial” Google
search.

• Matlab, which is the environment that we will use to create our audio processing
systems. We will also use Simulink for creating our data plane models. A
recommended resource for Matlab and Simulink is the Matlab Onramp [9] and
Simulink Onramp [10].

1.4 Hardware Needed

The hardware needed for this book is listed in the following sections. The hardware
was chosen so that students could purchase their own boards and hardware at minimal
cost, which allows them to develop in their own room rather than having to go to
a laboratory to use an FPGA board. The majority of students have laptops with
Windows 10 installed as the operating system, so this is the PC configuration taken
in this book. It is possible to use Linux as the operating system on your laptop or
computer, but we will not take this approach. It is assumed that if a user already has
Linux running on their laptop, then they are already capable of configuring Linux
and installing software on their own if they choose to do so. And, if they have trouble,
it is assumed that they are capable of figuring out their own Linux solutions.

1.4 Hardware Needed 9

1.4.1 Laptop

It is expected that students have their own laptop (or desktop computer) with the
following capabilities:

• Windows 10 Operating System. Using another operating system is possible,
but you are on your own if you choose to do so. This textbook assumes you are
using Windows 10 on your laptop or desktop computer.

• 8 GB of RAM (ideally 16 GB). Currently, 8 GB is the most common RAM size
that you will find in laptops, which is adequate for the projects in this textbook.
If you have less, it is still possible, but your computer will run slower, especially
when using a virtual machine.

• Wi-Fi. You will need to connect to the Internet and practically all laptops come
with Wi-Fi, so you should be good on this front.

• Two USB Ports. You will need two USB ports on your laptop to connect to two
different connections on the FPGA board. One USB port will be used to program
the FPGA via JTAG, and the other USB port will be used with a terminal window
when booting Linux on the SoC FPGA. If you do not have two USB ports, get
a USB adapter for your laptop that has two USB ports and an Ethernet port.

• Ethernet Port. You will need an Ethernet port that is in addition to the Internet
Wi-Fi connection on your laptop. This is because you will be connecting to the
FPGA board using an Ethernet cable. Some laptops do not have an Ethernet
port with an RJ45 jack, so if this is your case, you will need to get an Ethernet
adapter for your laptop. If you need to get an Ethernet adapter, get an adapter
that has at least two USB ports as well.

1.4.2 DE10-Nano FPGA Board

The FPGA board that is used by this textbook is the DE10-Nano Kit produced by
Terasic (www.terasic.com) that contains an Intel Cyclone V SoC FPGA. The reason
this board was chosen was because it was the lowest cost SoC FPGA board making it
possible for students to get their own board. It provides great value because it contains
the largest SoC FPGA (110K LEs) in the low cost FPGA category. A comparison to
other low cost SoC FPGA boards can be seen in Table 1.2, where it can be seen that
(at the time of this writing) the DE10-Nano had the best value (Fig. 1.2).

10 1 Preliminaries

Fig. 1.2: The Terasic DE10-Nano SoC FPGA board is the FPGA board used by this
textbook. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&
CategoryNo=167&No=1046

1.4.3 Audio Board

The real-time system that students develop in this textbook targets audio signal
processing. Since there was no audio codec on the DE10-Nano, nor was there an
audio card available, a high fidelity audio board was created for the DE10-Nano.
This audio board contains a 24-bit audio codec (Analog Devices AD1939) that can
sample up to 192 kHz. Further information on how this audio board was designed
and how it can be used is found in Chap. 5 Introduction to the Audio Mini Board.
The audio board is shown in Fig. 1.3 and can be purchased from SensorLogic (Audio
Mini Link).

1.4.4 Miscellaneous Hardware

Some additional hardware will need to be purchased as well:

• microSD Card. The DE10-Nano SoC FPGA board comes with a microSD card
that allows it to boot Linux. We will be creating our own version, so you will

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=1046
https://www.sensorlogic.store/collections/audiologic-speech-and-audio-modules/products/fe-audio-edu-1

1.4 Hardware Needed 11

Ta
bl

e
1.

2:
Lo

w
co

st
So

C
FP

G
A

bo
ar

ds

Bo
ar

d
Pr

ic
e1

So
C

FP
G

A
FP

G
A

Fa
br

ic
A

RM
CP

U
5

LE
s2

D
SP

Sl
ic

es
3

M
em

or
y4

Sp
ee

d
D

RA
M

D
E1

0-
N

an
o

$1
46

In
te

lC
yc

lo
ne

V
11

0K
11

2
69

6K
B

80
0M

H
z

1G
B

5C
SE

BA
6U

23
I7

D
E1

-S
oC

$1
75

In
te

lC
yc

lo
ne

V
85

K
87

49
6K

B
80

0M
H

z
1G

B
5C

SE
M

A
5F

31
C6

A
lc

hi
try

A
u

$1
00

X
ili

nx
A

rti
x

7
33

K
90

22
5K

B
N

o
A

RM
CP

U
s

25
6M

B
XC

7A
35

T
N

ot
a

So
C

FP
G

A
(s

ta
nd

al
on

e)

Zy
bo

Z7
-1

0
$1

59
X

ili
nx

Zy
nq

17
K

80
27

0K
B

66
7M

H
z

1G
B

XC
7Z

01
0

Zy
bo

Z7
-2

0
$2

39
X

ili
nx

Zy
nq

53
K

22
0

63
0K

B
66

7M
H

z
1G

B
XC

7Z
02

0
1 E

du
ca

tio
na

lp
ric

e
in

20
21

no
ti

nc
lu

di
ng

sh
ip

pi
ng

.2 I
nt

el
’s

LE
co

nt
ai

ns
an

8-
in

pu
tl

oo
ku

p
ta

bl
e.

X
ili

nx
’s

co
nt

ai
ns

a
6-

in
pu

tl
oo

ku
p

ta
bl

e.
3 I

nt
el

’s
D

SP
Sl

ic
ec

on
ta

in
sa

27
×

27
bi

tm
ul

tip
lie

ra
nd

a6
4-

bi
ta

cc
um

ul
at

or
.X

ili
nx

’s
D

SP
Sl

ic
ec

on
ta

in
sa

18
×

25
bi

tm
ul

tip
lie

r
an

d
a

48
-b

it
ac

cu
m

ul
at

or
.4 I

nt
el

’s
co

nt
ai

ns
10

K
b

M
10

K
bl

oc
ks

.X
ili

nx
’s

co
nt

ai
ns

36
kb

bl
oc

ks
.5 D

ua
lC

or
e

Co
rte

x-
A

9

12 1 Preliminaries

Fig. 1.3: Audio Mini Board that plugs into the DE10-Nano and contains a 24-bit
audio codec (Analog Devices AD1939) that can sample up to 192 kHz

need another microSD card so that you can always plug the factory default image
back into the DE10-Nano board. Any size greater than 8 GB is fine. Currently,
a 32 GB is practically the same cost as an 8 GB, so you might as well get the
32 GB microSD card. You can always allocate the extra space to the Linux root
file system on the DE10-Nano.

• microSD Card Reader. You will need a USB microSD Card Reader so that
you can read/write the microSD card and modify the card images.

• Type A to Mini-B USB Cable. The DE10-Nano kit comes with one Type A to
Mini-B USB Cable, but we will be using both Mini-B ports on the DE10-Nano,
so having an extra cable will be more convenient.

• Ethernet Cable. A short Ethernet cable, ∼1 foot (or longer), to connect the
DE10-Nano board to your laptop.

1.5 Software Needed

The following software will be used in this textbook. Most of the software is free
or there are free commercial versions with the exception of Matlab, which has a
student version that one must buy if one is not associated with an institution with a
Mathworks site license. The list below is given as an overview of the software that
will be used. Instructions for setting up the software are found in Sect. 11.1 Software
Setup.

1.6 The Development Landscape 13

• Windows 10. It is assumed that the student has a Windows 10 laptop or PC and
does not have much experience with Linux.

• Windows Subsystem for Linux. Windows Subsystem for Linux (WSL) comes
in two versions, WSL 1 and WSL 2. WSL 1 (and not WSL 2) is required for
Intel’s Quartus software.

• VirtualBox. We will create an Ubuntu virtual machine (VM) using VirtualBox
on Windows 10.

• Ubuntu 20.04 LTS . We will install Ubuntu as a virtual machine in VirtualBox.
• Matlab and Simulink. The following toolboxes are required in Matlab:

• HDL Coder
• Matlab Coder
• Simulink Coder
• Fixed-Point Designer
• DSP System Toolbox (strongly suggested). Required for some example de-

signs.
• Signal Processing Toolbox (strongly suggested). Required for some example

designs.

• Python. Version 3.8.x or later
• Quartus. The free version Quartus Prime Lite Edition can be used for the

Cyclone V FPGA. Note: Quartus requires WSL 1 with Ubuntu 18.04.
• Putty. Which is a terminal emulator.

1.6 The Development Landscape

Knowing where you need to be to implement certain development steps, type software
commands, or install or run software can be confusing since we will be operating
across two different hardware platforms with two different CPU types:

Platform 1: DE10-Nano FPGA board that contains an ARM CPU inside the
Cyclone V SoC FPGA

Platform 2: Laptop or PC that contains an x86 CPU

and three operating systems:

OS 1: Windows 10 on a Laptop or PC
OS 2: Ubuntu VM, which is Ubuntu Linux running on a virtual machine in

VirtualBox that is running on Windows 10, which in turn is using an x86
CPU.

OS 3: Ubuntu ARM, which is Ubuntu Linux running on the ARM CPUs inside
the Cyclone V SoC FPGA, which is on the DE10-Nano board. Further-
more, the Root File System for Ubuntu ARM on the DE10-Nano can be
located in two different locations:

14 1 Preliminaries

a. On the microSD card that is inserted into the DE10-Nano board.
When Linux uses the root file system on the microSD card, this
is known as the Ship Boot Mode. This is the setup that comes
when you buy the DE10-Nano board, but it is not the setup that
you want to develop with.

b. In an Ubuntu VM folder served over Ethernet by the Ubuntu
VM NFS server. When Linux uses the root file system served by
the Ubuntu VM, this is known as the Developer Boot Mode. We
will be using this boot setup in this book because it is way more
convenient to develop with than using the ship boot mode, which
is not practical for development.

Each operating system has its own software packages, command lines, and terminal
windows. It also means that the DE10-Nano FPGA board and the Laptop/PC can
be connected in any one or in all of the following manners:

Connection 1: USB JTAG using a USB cable with a Mini-B connector plugged
into the USB Blaster port on the left side of the DE10-Nano
board. This connection is used to program the FPGA via JTAG.

Connection 2: USB UART using a USB cable with a Mini-B connector plugged
into the UART port on the right side of the DE10-Nano board.
This connection is used to create a terminal window to interact
with Linux booting on the DE10-Nano.

Connection 3: Ethernet where an Ethernet cable connects the DE10-Nano to
the Laptop/PC. This is used so that Linux can boot from the
Ubuntu VM when using the Developer Boot Mode.

References

1. Semiconductor Engineering. 10nm-versus-7nm. https://semiengineering.
com/10nm-versus-7nm/. Accessed 22 June 2022

2. semiengineering.com. 5nm-vs-3nm. https://semiengineering.com/5nm-
vs-3nm/. Accessed 22 June 2022

3. Analog Devices. AD1939 Audio Codec. https://www.analog.com/en/
products/ad1939.html. Accessed 22 June 2022

4. IC Insights. Microcontrollers Will Regain Growth After 2019
Slump. https://www.icinsights.com/news/bulletins/Microcontrollers-Will-
Regain-Growth-After-2019-Slump/. Accessed 22 June 2022

5. CPU World. Intel Xeon 8180M Specifications. https://www.cpu.world.
com/CPUs/Xeon/Intel-Xeon%208180M.html. Accessed 22 June 2022

6. A. Kay, Alan Kay Quote. https://en.wikiquote.org/wiki/Alan_Kay. Ac-
cessed 22 June 2022

https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/5nm-vs-3nm/
https://www.analog.com/en/products/ad1939.html
https://www.analog.com/en/products/ad1939.html
https://www.icinsights.com/news/bulletins/Microcontrollers-Will-Regain-Growth-After-2019-Slump/
https://www.cpu.world.com/CPUs/Xeon/Intel-Xeon%208180M.html
https://www.cpu.world.com/CPUs/Xeon/Intel-Xeon%208180M.html
https://en.wikiquote.org/wiki/Alan_Kay

References 15

7. A. Moore, R. Wilson, FPGAs For Dummies (2017). https://www.
intel.com/content/dam/support/us/en/programmable/support-resources/
bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf

8. P.J. Ashenden, The Designer’s Guide to VHDL (Morgan Kaufmann,
Burlington, 2008)

9. MathWorks. MATLAB Onramp. https://www.mathworks.com/learn/
tutorials/matlab.onramp.html. Accessed 22 June 2022

10. MathWorks. Simulink Onramp. https://www.mathworks.com/learn/
tutorials/simulink-onramp.html. Accessed 22 June 2022

https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/misc/fpgas-for-dummies-ebook.pdf
https://www.mathworks.com/learn/tutorials/matlab.onramp.html
https://www.mathworks.com/learn/tutorials/matlab.onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html

Chapter 2
Introduction to System-on-Chip Field
Programmable Gate Arrays

2.1 The Digital Revolution

The digital revolution [1] has changed the course of human history. Its societal impact
has been massive as witnessed by the smartphone in everyone’s pocket. However,
we will not dwell on this topic. Instead we will focus on a digital device called a
Field Programmable Gate Array that is known by its acronym FPGA. FPGAs have
had a long history being invented in the mid-1980s as programmable digital “glue”
that could connect other digital parts together into larger systems.

The utility of FPGAs has increased over time due to Moore’s law which was a
prediction by Gordon Moore in 1965 that the number of transistors that could be put
on a silicon chip would double every year [2]. This exponential growth prediction
has turned out to be true, although the doubling time has been somewhat variable and
has been closer to two years. The historical growth in transistor count can be seen in
Fig. 2.1 where the number of transistors that can be put down on a silicon chip is still
growing at an exponential rate (top curve of orange triangles). Moore’s law is still
alive as can be seen in Table 2.1 where in 2019 Intel with their 10 nm process placed
100 million transistors in one square millimeter. Contrast this to Gordon Moore’s
projection in 1965 that they would be able to put 250,000 components in a square
inch. In the near future, Taiwan Semiconductor Manufacturing Company (TSMC)
has recently announced that they will be able to put a quarter billion transistors in a
square millimeter using their 3 nm process [3].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_2

18 2 Introduction to System-on-Chip Field Programmable Gate Arrays

Table 2.1: Transistor density of Fab Process Nodes. Data from [4, 5]

Process node Intel TSMC TSMC Intel TSMC Intel TSMC
14 nm 10 nm 7 nm 10 nm 5 nm 7 nm 3 nm

Transistor density
(millions of transistors 37.2 52.5 91.2 100.7 171.3 237.2 291.2

per mm2)
Year 2017 2017 2018 2019 2020 2021 2022

Fig. 2.1: Microprocessor Trend Data. CPU performance is not keeping up with
Moore’s law. Figure from [6]

What is not keeping up with Moore’s law is CPU performance as shown by the
blue circles in Fig. 2.1. Single thread performance is plateauing due to CPU clock
speeds (green squares) being limited by the amount of power that can be consumed
and dissipated in a small area (red triangles). If the transistors get too hot, they will
fail. This power dissipation limit is known as the Power Wall [7].

CPU power consumption is made up of dynamic and static power

PCPU = PDynamic + PStatic (2.1)

and dynamic power is comprised of the product of capacitance, voltage, and clock
frequency.

PDynamic = CV2 f (2.2)

2.2 Basic FPGA Architecture 19

Capacitance governs how much charge moves each clock cycle and is reduced by
having smaller geometries, so each process node advance in Table 2.1 reduces power
consumption. The CPU core voltage is also determined by the fab process. Thus
the CPU clock frequency is typically the only parameter that can be modified after
fabrication. As a result, there is a whole industry devoted to CPU overclocking to
get better performance since CPU clock speeds can be set by the motherboard by
modifying BIOS parameters. However, power consumption is linearly tied to clock
speed in Eq. 2.2, and there is a limit to the amount of heat that can be dissipated,
which ultimately places a limit on the clock speed that can be obtained without
damaging the CPU. This is the reason that CPU clock speeds are now typically set
to around 3-4 GHz and are not increasing (unless you push the envelope and cool
your CPU with liquid nitrogen so that you can overclock it to 8.7 GHz, which is the
current record [8].)

The divergence between the transistor count curve (orange triangles) and the CPU
performance curve (blue circles) in Fig. 2.1 tells us that adding more transistors to
a CPU does not help performance much anymore. This means that the only path
forward to get more performance is to go parallel. A natural path that CPU vendors
are following is to put multiple cores in a CPU. As a result, you can see in the data
that once CPU performance started lagging (blue circles), the number of core started
picking up (black diamonds). The limit to the number of cores that can be added
to a CPU is dictated by how fast data can be moved back and forth from external
memory (e.g., DRAM) to a cache associated with a core, which is called memory
bandwidth. Unfortunately, DRAM is much slower than what a CPU can run at, so
there will become a point with too many cores where they cannot be fed data fast
enough. At this point, there will be cores that will just starve from lack of data, so
there is no point in adding these cores if the memory bandwidth cannot support
them. This memory limitation to core count is known as the Memory Wall [7].

What we have been talking about so far are issues related to CPU architectures.
There are diminishing returns when additional transistors are added to CPUs. How-
ever, are there other architecture that can easily scale with the addition of many
transistors? Yes, and I suspect that you have guessed Field Programmable Gate Ar-
rays (FPGAs). What are these devices? How do these scale differently from CPUs?

2.2 Basic FPGA Architecture

FPGAs have basic logic resources that can be connected together via programmable
switches that allow arbitrary routing between these logic resources. These logic
resources and programmable routing are referred to as the FPGA programmable
fabric. The basic logic resources are described in the following sections.

20 2 Introduction to System-on-Chip Field Programmable Gate Arrays

2.2.1 External I/O

FPGAs have external pins that can be used as general purpose input/output (GPIO)
pins. These pins support a variety of voltage levels and I/O standards. FPGAs can
have as few as 128 GPIO pins (e.g., Cyclone V 5CEA2) to as many as 2,304 GPIO
pins (e.g., Stratix 10 GX10M). The GPIO pins allow the FPGA fabric to be directly
connected to data sources/sinks, which allows for very low and deterministic latency
when connecting external devices to custom hardware in the FPGA fabric. The
Cyclone V on the DE10-Nano board contains 288 GPIOs pins connected to the
FPGA fabric and 181 GPIO pins connected to the HPS [9]. The DE10-Nano board
brings out almost 80 pins in its expansion headers.

2.2.2 Logic Elements

Logic functions are implemented as lookup tables that are programmed when the
configuration bitstream is loaded into the FPGA at power-up. A programmable
lookup table with eight inputs can implement an arbitrary logic function with eight
inputs where each of the 256 addressable bits is programmed as part of the config-
uration bitstream. Logic elements also include the ability to register the output and
they have dedicated circuitry to implement fast adders. FPGAs can have as few as
25,000 LEs (e.g., Cyclone V 5CEA2) to as many as ten million LEs (e.g., Stratix 10
GX10M). The Cyclone V Adaptive Logic Module (ALM) is shown in Fig. 2.2 and
is equivalent to 2.5 Logic Elements (LEs) of the older 4-input lookup tables [10].

2.2.3 Memory

Memory is commonly used in the FPGA fabric, so dedicated memory blocks are
implemented that can be put together to create larger memories. They can also be
configured as dual port memories that are useful for creating circular buffers and
FIFOs. The amount of memory can be as little as 1760 kilobits (176 M10K blocks)
in the Cyclone V 5CEA2 to as much as 253 Mbits (12,950 M20K blocks) in the
Stratix 10 GX10M. An M10K block of memory contains 10,000 bits of memory
in the FPGA fabric. The Cyclone V on the DE10-Nano board contains 553 M10K
blocks of embedded memory in the FPGA fabric.

2.2.4 DSP Blocks

An application area that FPGAs are good at is Digital Signal Processing (DSP). The
general form of the difference equation in DSP is the equation

2.2 Basic FPGA Architecture 21

Fig. 2.2: The Cyclone V logic element known as the Adaptive Logic Module (ALM).
The eight inputs require that the lookup table stores 256 bits of information. These
bits can then be routed and saved in four different registers. Additional logic is
contained in the ALM to create fast adders. The Cyclone V on the DE10-Nano board
contains 41,509 ALMs or 110,000 LEs. Figure from [11]

y[n] = 1
a0

��
�

P∑

i=0
bi x[n − i] −

Q∑

j=1
aj y[n − j]��

�
which can make use of multipliers and adders. The Cyclone V has DSP blocks that
contain a 27×27 bit multiplier along with a 64-bit accumulator (adder) to implement
Multiply and Accumulate (MAC) operations. The number of DSP blocks can be as
few as 25 (e.g., Cyclone V 5CEA2) to as many as 5760 DSP blocks running in
parallel (e.g., Stratix 10 GX2800), which gives a peak performance of 23 TMACS
(fixed-point) or 9.2 TFLOPS (single-precision floating-point). The Cyclone V on
the DE10-Nano board contains 112 DSP blocks that can be used to implement FIR
filters such as the one shown in Fig. 2.3. This is why FPGAs can implement high-
performance DSP operations since thousands of DSP blocks can be run in parallel
and the associated DSP coefficients and delayed signal samples can be stored locally
in FPGA memory.

22 2 Introduction to System-on-Chip Field Programmable Gate Arrays

Fig. 2.3 The Cyclone V fabric
contains DSP blocks that can
be used to implement high
performance DSP operations

2.3 SoC FPGA Architecture

System-on-Chip (SoC) Field Programmable Gate Arrays (FPGAs) extend the basic
FPGA architecture with the logic, memory, and DSP resources described earlier with
a complete ARM based computer system. Thus it has become a complete computer
system on a chip as shown in Fig. 2.4. The FPGA Fabric allows a hardware designer
to create custom hardware that can be controlled by software running on the ARM
CPUs. The ARM computer system contains all the peripherals that you would expect
to use with a computer. The ARM CPUs along with the peripherals is known as the
Hard Processor System (HPS). It is referred to as a “hard” processor system since
the ARM CPUs and peripherals have been implemented in silicon. This is in contrast
to earlier systems that could only implement CPUs in the FPGA fabric as custom
hardware. Implementing the ARM CPUs in silicon allows the HPS to run much
faster than it could be implemented as a “soft” processor system running in the
FPGA fabric.

References 23

Fig. 2.4: The Cyclone V SoC FPGA contains a complete ARM based computer
system with peripherals in addition to the FPGA fabric. The ARM CPUs along with
the peripherals are known as the Hard Processor System. Figure adapted from [12]

References

1. I. Bojanova, The digital revolution: What’s on the Horizon? IT Prof. 16(1),
8–12 (2014)

2. G.E. Moore, Cramming more components onto integrated circuits. Electron-
ics 38(8) (1965). https://newsroom.intel.com/wp-content/uploads/sites/11/
2018/05/moores-law-electronics.pdf

3. D. Schor, TSMC Ramps 5nm, Discloses 3nm to Pack Over a Quarter-Billion
Transistors Per Square Millimeter. https://fuse.wikichip.org/news/3453/
tsmc-ramps-5nm-discloses-3nm-to-pack-over-a-quarter-billion-transistors-
per-square-millimeter/. Accessed 23 June 2022

4. WikiChip, 5 nm lithography process. https://en.wikichip.org/wiki/5_nm_
lithography_process. Accessed 23 June 2022

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://fuse.wikichip.org/news/3453/tsmc-ramps-5nm-discloses-3nm-to-pack-over-a-quarter-billion-transistors-per-square-millimeter/
https://en.wikichip.org/wiki/5_nm_lithography_process
https://en.wikichip.org/wiki/5_nm_lithography_process

24 2 Introduction to System-on-Chip Field Programmable Gate Arrays

5. WikiChip, 7 nm lithography process. https://en.wikichip.org/wiki/7_nm_
lithography_process. Accessed 23 June 2022

6. K. Rupp, 42 Years of Microprocessor Trend Data. https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data/. Accessed 23 June 2022

7. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Ap-
proach (Morgan Kaufmann, Burlington, 2011)

8. HWBOT, CPU FREQUENCY: HALL OF FAME, World Records
achieved with CPU Frequency. https://hwbot.org/benchmark/cpu_
frequency/halloffame. Accessed 23 June 2022

9. Intel, Cyclone V Product Table. https://www.intel.com/content/dam/
support/us/en/programmable/support-resources/bulk-container/pdfs/
literature/pt/cyclone-v-product-table.pdf. Accessed 27 June 2022

10. Altera, FPGA Architecture White Paper. https://www.intel.com/content/
dam/support/us/en/programmable/support-resources/bulk-container/pdfs/
literature/wp/wp-01003.pdf. Accessed 27 June 2022

11. Intel, Cyclone V Adaptive Logic Module. https://www.intel.com/content/
www/us/en/docs/programmable/683694/current/adaptive-logic-module.
html. Accessed 27 June 2022

12. Intel, Cyclone V HPS Features. https://www.intel.com/content/www/us/en/
docs/programmable/683694/current/hps-features.html. Accessed 27 June
2022

https://en.wikichip.org/wiki/7_nm_lithography_process
https://en.wikichip.org/wiki/7_nm_lithography_process
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://hwbot.org/benchmark/cpu_frequency/halloffame
https://hwbot.org/benchmark/cpu_frequency/halloffame
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683694/current/adaptive-logic-module.html
https://www.intel.com/content/www/us/en/docs/programmable/683694/current/adaptive-logic-module.html
https://www.intel.com/content/www/us/en/docs/programmable/683694/current/adaptive-logic-module.html
https://www.intel.com/content/www/us/en/docs/programmable/683694/current/hps-features.html
https://www.intel.com/content/www/us/en/docs/programmable/683694/current/hps-features.html

Chapter 3
Introduction to the SoC FPGA Boot
Process

3.1 Cyclone V SoC FPGA Boot Process

This chapter covers how the Intel Cyclone V SoC FPGA gets configured when it
powers up on the DE10-Nano board. This process includes configuring the FPGA
fabric with your custom hardware and booting Linux on the ARM CPUs. The
SoC FPGA on the DE10-Nano board contains the ARM CPUs on which we will
be running the Linux operating system. This means that the boot process is more
involved than the typical FPGA that only has to load the configuration bitstream to
configure the FPGA fabric. SoC FPGAs have to boot the CPUs as well. We also
make the distinction between the following two booting scenarios:

• Ship Boot Mode. This mode is used when the SoC FPGA boots entirely from
the microSD card. It is the typical setup that is used when a product ships and
the system must be self-contained. However, this boot mode is unusable for
development.

• Developer’s Boot Mode. This mode is used when the SoC FPGA boots over
Ethernet and uses a Network File System that is served by a network server,
which in our case will be an Ubuntu Virtual Machine (VM). Changing and
modifying files is much easier done in an Ubuntu VM directory than having to
remove, image, and reinsert a microSD card. Setting up the Developer’s Boot
Mode is described in Chap. 11 Development Environment Setup (page 193).

The Cyclone V SoC FPGA has three ways to initialize both the FPGA fabric and
the ARM CPUs, also known as the Hard Processor System (HPS).

Option 1: Separate FPGA configuration and HPS booting.
Option 2: HPS boots first and then configures the FPGA fabric. This is the

option we will be using.
Option 3: HPS boots from the FPGA fabric.

The boot process has a number of steps that are listed below. These steps are
further described in their own section. The files used during the boot process and the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_3

26 3 Introduction to the SoC FPGA Boot Process

file locations are noted depending on whether the boot mode is the Ship Boot Mode
or Developer’s Boot Mode.

Boot Step 1: Power-Up or Reset
Boot Step 2: Boot ROM
Boot Step 3: Preloader
Boot Step 4: U-boot
Boot Step 5: Linux
Boot Step 6: Application

3.1.1 Boot Step 1: Power-Up or Reset

The boot process begins when the SoC FPGA powers up or a CPU in the MPU
exits from the reset state. (We are assuming a cold reset, i.e., no software registers
have been preserved, which happens in a warm reset.) The boot ROM, which is 64
KB in size and hard coded into the HPS silicon and normally located at address
range 0xFFFD000-0xFFFDFFFF, is mapped to the reset exception address that is
at address 0x0. Thus code starts running from the boot ROM, which has been
temporarily mapped to memory address 0x0 upon reset.

3.1.2 Boot Step 2: Boot ROM

Code running from the Boot ROM checks the BSEL FPGA pins (also known as
BOOTSEL), which offer multiple methods to obtain the preloader image. These
options are shown in Fig. 3.1.

Fig. 3.1: Boot Source Options for the Cyclone V HPS. Table from Intel Cyclone V
Hard Processor System Technical Reference Manual (p. A-6)

3.1 Cyclone V SoC FPGA Boot Process 27

If we examine the DE10-Nano schematic on sheet five as shown in Fig. 3.2, we
can see that these pins have been hard wired to the value of 5. Note that in the
schematic there are symbols for all the resistors. However, there are labels DNI next
to several of them. This stands for Do Not Install. This means that these resistors are
not to be installed during assembly of the PCB. If we look at HPS_BOOTSEL0 in the
schematic, the resistor to ground has a DNI next to it, so it is not connected to ground.
Instead there is a resister connecting HPS_BOOTSEL0 to VCC3P3. This means that
HPS_BOOTSEL0 is connected via a pull up resistor (R140) to 3.3 volts, which
makes it a logical one. HPS_BOOTSEL1 has the opposite case. It is not connected
to 3.3 volts, but instead it is connected to ground via a pull down resistor (R126),
which makes it a logical zero. HPS_BOOTSEL2 is connected in a similar fashion
as HPS_BOOTSEL0 making it a logical one. Thus the BSEL pins on the DE10-
Nano board have been hard wired as 0b101 = 0x5, which means boot from a 3.3V
SD/MMC flash memory, i.e., a microSD card [1] by using the pins SDMMC_CMD,
SDMMC_D0, and SDMMC_CLK [2]. This means that the Cyclone V SoC FPGA
on the DE10-Nano board has been designed to automatically boot from a microSD
card.

Fig. 3.2: Schematic of boot select signals. From sheet 5 of DE10-Nano schematic

Table 3.1: Summary of boot select signal connections

Schematic name Voltage connection FPGA pin connection Bank
HPS_BOOTSEL0 3.3 V J17 7A
HPS_BOOTSEL1 0 V A6 7B
HPS_BOOTSEL2 3.3 V D15 7B

Code from the Boot ROM then reads the Master Boot Record (MBR) that is
located in the first 512 bytes of the microSD card. The MBR contains information
about the partitions (address and size of partitions) on the microSD card. The MBR
is scanned for a partition with the partition type field having the value 0×A2,
which contains the preloader image. Partition A2 is a custom raw partition with no
file system. Most partition tools (such as Windows) will consider this an unknown
partition type.

The Boot ROM Code then loads the preloader image from the microSD card into
on-chip RAM that is only 64 KB in size. This means that the preloader is restricted

28 3 Introduction to the SoC FPGA Boot Process

to 60 KB (4 KB is reserved). The Boot ROM code then hands control over to the
preloader code that is running in the 64 KB on-chip RAM. Thus code has transitioned
from running from the hard wired ROM to the on-chip RAM.

Before the preloader runs, the processor (CPU 0) has been set to the following
state:

1: Instruction cache is enabled.
2: Branch predictor is enabled.
3: Data cache is disabled.
4: MMU is disabled.
5: Floating point unit is enabled.
6: NEON vector unit is enabled.
7: Processor is in Arm secure supervisor mode.

The boot ROM code sets the Arm Cortex-A9 MPCore registers to the following
values:

• R0 contains the pointer to the shared memory block, which is used to pass
information from the boot ROM code to the preloader. The shared memory
block is located in the top 4 KB of on-chip RAM.

• R1 contains the length of the shared memory.
• R2 is unused and set to 0 × 0.
• R3 is reserved.
• All other registers are undefined.

3.1.3 Boot Step 3: Preloader

Once the preloader image has been loaded from the microSD card into on-chip RAM,
which is 64 KB in size and located at memory address 0xFFFF_0000-0xFFFF_FFFF,
the preloader maps the on-chip RAM to 0×0 so that the exception vectors (interrupts)
will use the exception handlers in the preloader image.

The function of the preloader is user-defined. However, typical functions include:

1: Initializing the SDRAM interface. The timing parameters specific to the
DRAM used on the PCB needs to be set. Setting up the DRAM allows the
preloader to load the next stage of the boot software into DRAM since the
next stage will not fit into the 60 KB available in the on-chip RAM. In our
case the next stage is the open-source boot loader U-boot, which will run
from DRAM.

2: Configuring the HPS I/O pins.
3: Initializing the interface that loads the next stage of software (U-boot).

3.1 Cyclone V SoC FPGA Boot Process 29

Once the external DRAM has been set up, the preloader copies the U-boot image
from the microSD card into DRAM. The U-boot image also resides in the 0xA2
partition, immediately after the preloader images. The preloader then hands control
over to the U-boot code that starts running from DRAM.

Note: The preloader is read from the microSD card in both the Ship Boot Mode
and the Developer’s Boot Mode, which means the microSD card needs to be present
for both booting options. However, the microSD card only needs to be imaged initially
once for the Developer’s Boot Mode.

Creating the preloader is part of the process when creating the Board Support
Package (BSP) for an FPGA board since it is the hardware designer that knows
the timing specifications for the DRAM that was chosen for the board. This BSP is
typically created by the board hardware designers. We will not concern ourselves
with this since this has already been created for the DE10-Nano board. Interested
readers can read more about creating the preloader on Rocketboards.org (Generating
and Compiling the Preloader)

3.1.4 Boot Step 4: U-boot

U-boot is an open-source boot loader used to boot Linux on an embedded device.
The U-boot image has been copied to DRAM, so it is not constrained in size to 60
KB like the preloader, which has to fit in the on-chip RAM. The particular case of the
U-boot instructions mentioned here assumes that the microSD card has been flashed
with the image described in Sect. 11.1.3.6 Reimaging the microSD Card with the
Developer’s Image (page 227).

U-boot allows the SoC FPGA to boot entirely from the microSD card (Ship Boot
Mode) or over Ethernet using the Network File System (Developer’s Boot Mode).
U-boot has environmental variables that can be defined and the choice between
Ship Boot Mode and the Developer’s Boot Mode is made by setting the U-Boot
environmental variable nfsboot=true to boot from a Network File System (NFS)
when in the Developer’s Boot Mode. See Sect. 11.1.3.8 Setting U-boot Variables
on the DE10-Nano Board to Boot via NFS/TFTP (page 232) for the instructions on
setting up U-boot for the Developer’s Boot Mode.

Typically there is a U-boot script (e.g., u-boot.scr) that is first read by U-boot.
This allows all the file names and locations of these files to be modified by a single
script.

The files that are used during the boot process are listed in Table 3.2 and the
names and locations of these files can be modified by editing the boot script file. The
boot script file name can be changed by modifying the environment variable boot
script. The file locations depend on the boot mode. See Fig. 11.13 that illustrates the
Developer’s Boot Mode setup.

https://rocketboards.org/foswiki/Documentation/AVGSRDPreloader
https://github.com/u-boot/u-boot

30 3 Introduction to the SoC FPGA Boot Process

Table 3.2: Order and location of files used during the boot process

Boot order File/image Ship boot location Developer’s boot location
1 Preloader Image microSD Card (Partition 3: Type=A2: Raw Binary)
2 U-Boot Image microSD Card (Partition 3: Type=A2: Raw Binary)
3 u-boot.scr microSD Card (Partition 1:

Type=B: FAT32)
/srv/tftp/de10nano/
bootscripts

4 soc_system.rbf microSD Card (Partition 1:
Type=B: FAT32)

/srv/tftp/de10nano/my_
project

5 zImage microSD Card (Partition 1:
Type=B: FAT32)

/srv/tftp/de10nano/
kernel

6 soc_system.dtb microSD Card (Partition 1:
Type=B: FAT32)

/srv/tftp/de10nano/my_
project

7 Linux Root File System microSD Card (Partition 2:
Type= 83: EXT Linux)

/srv/nfs/de10nano/
ubuntu-rootfs

3.1.5 Boot Step 5: Linux

U-boot loads zImage, the compressed Linux kernel image into DRAM, and the
kernel is launched. Linux then reads the device tree blob file soc_system.dtb that
tells Linux what hardware it is running on. Linux then mounts the root file system
that is contained in partition 2 (EXT Linux) on the microSD Card (Ship Boot Mode)
or mounts the root file system over the network via NFS (Developer’s Boot Mode).

3.1.6 Boot Step 6: Application

The user application can then be started up. This can be done by executing a shell
script at boot time. The process for doing this is (very brief outline):

Step 1: Create a shell script that will run your application (e.g., run_this.sh).
Step 2: Create a systemd startup script, e.g., run_this.service that has the lines:

[Service]
ExecStart=/<path>/run_this.sh
(Note: there are additional lines you will need.)

Step 3: Put run_this.service into /etc/systemd/system/.

References

1. Intel, Cyclone V Hard Processor System Technical Reference Manual. https://
www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/
cyclone-v/cv_5v4.pdf. Table A-1, BSEL Values for Boot Source Selection, page
A-6, Accessed 23 June 2022

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

References 31

2. Intel, Cyclone V Hard Processor System Technical Reference Manual. https://
www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/
cyclone-v/cv_5v4.pdf. Table A-2, Boot Source I/O, page A-7, Accessed 23 June
2022

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

Chapter 4
Introduction to the DE10-Nano Board

4.1 DE10-Nano Board

The DE10-Nano board is a low cost FPGA board that contains Intel’s Cyclone V
SoC FPGA with 110K logic elements. The board is manufactured by Terasic and
can be found at here. The block diagram of the board can be seen in Fig. 4.1. The
DE10-Nano board contains the SoC FPGA that has the FPGA fabric for creating
custom hardware and a complete ARM computer system inside the FPGA.

Fig. 4.1: Block Diagram of the DE10-Nano board. Figure from [1]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_4&domain=pdf
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=1046&PartNo=2#contents
https://doi.org/10.1007/978-3-031-15416-4_4

34 4 Introduction to the DE10-Nano Board

4.1.1 Determining DE10-Nano Board Revision

Download the document Board Revision [2] from Terasic to determine which DE10-
Nano board revision you have. You need to know this in order to download the
appropriate documentation.

4.1.2 DE10-Nano Information

Information on the DE10-Nano can be found at the following sources:

Source 1: The Terasic Website [3]. Click on the Resources tab and then look un-
der the Documents section. You can download all the information by
scrolling down to the CD-ROM section and selecting the appropriate
CD-ROM link (which is why you need to know which board revision
you have as determined in Sect. 4.1.1 Determining DE10-Nano Board
Revision. When you click on the CD-ROM symbol, it will actually
download as a .zip file (registration required). This download contains
the following directories:

• \Datasheet—contains data sheets for all the parts on the board.
• \Demonstrations—contains demonstration projects with source

code.
• \Manual—contains the User Manual and other guides.
• \Schematic—contains the board schematics.
• \Tools—contains Terasic’s system builder.

Source 2: The Rocketboards.org (DE10-Nano) Website[4]. Rocketboards.org is
devoted to boards containing Intel’s SoC FPGAs and running Linux
on these boards.

Source 3: The Intel (DE10-Nano) Website[5]. This site contains a DE10-Nano
Get Started Guide.

4.1.3 DE10-Nano Cyclone V SoC FPGA

The SoC FPGA device on the DE10-Nano board is labeled 5CSEBA6U23I7. These
letters are interpreted as follows:

https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=1046&FID=5651e4e0b7a3671ffb4494a46a338bf3
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046&PartNo=4
https://rocketboards.org/foswiki/Documentation/DE10NanoDevelopmentBoard
Rocketboards.org
https://software.intel.com/content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.html

4.1 DE10-Nano Board 35

5C = Intel Cyclone V
SE = SoC with enhanced logic/memory
B = No hard PCIe or hard memory controller

A6 = 110K LEs
U23 = Ultra Fine Line BGA (UBGA) with 672 pins

I = Industrial temperature range (−40 to 100 ◦C)
7 = Speed grade. Devices with lower speed grade numbers run faster

than devices with higher speed grade numbers (and cost more).

The list of possible options for Cyclone V SE devices can be seen in Figure 1–7
(page 1–22) in the Cyclone V Device Handbook [6], which is shown in Fig. 4.2.

Fig. 4.2: Cyclone V SE Ordering Options

4.1.4 DE10-Nano Configuration Mode Switch Setting

The Cyclone V SoC FPGA must be configured when it is powered up. The informa-
tion to configure the FPGA is contained in the configuration bitstream (e.g., .sof file)
that Quartus creates when a design is compiled. Once the configuration bitstream
has been created, it can be loaded into the FPGA in multiple ways depending on
where the bitstream is being stored. The ways the bitstream can be loaded into the
FPGA are:

1. JTAG via the USB Blaster II that is connected to the USB Mini-B connector on
lower left side of board, below the HDMI connector. See Figure 2-1, page 5 of
the DE10-Nano user manual. Programming via JTAG is typically done during
development from the developer’s computer. This is because the bitstream that

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v1.pdf

36 4 Introduction to the DE10-Nano Board

has been created by Quartus is located on your computer and you want to try it out
on the DE10-Nano board. Loading the bitstream via JTAG typically means that
you are iterating on a hardware design in the FPGA fabric. We will occasionally
use the JTAG configuration method in this book.

2. AS or Active Serial configuration from the EPCS128 device. The EPCS128
is a serial flash memory device on the DE10-Nano board that can contain the
configuration bitstream. See Table 3-2 on page 12 of the DE10-Nano user manual
to set the board in AS mode. This is typically done if there is a single bitstream
that will never change, and you will be shipping a product with this bitstream
(i.e., Ship Boot Mode).

3. HPS, i.e., configured from the Hard Processor System via U-boot when Linux
boots. We will primarily be configuring the FPGA through the HPS in this
book. When the FPGA is configured through the HPS, there are 12 possible
configuration modes. Two modes (out of 12 modes) that you will use are listed
below. The other modes can be seen in Table 5-1 (page 5-5) in Intel’s Cyclone V
Hard Processor System Technical Reference Manual [7]. Five pins on the FPGA
(see Fig. 4.3), called the mode select (MSEL) pins, tell the Control Block inside
the FPGA what HPS configuration mode to use.

Fig. 4.3: The MSEL pins (MSEL[4:0]) on the FPGA tell the FPGA Control Block
what configuration mode to use

The MSEL pins are connected to SW10 (see sheet 7 in the DE10-Nano Board
Schematic) and also to pull-up resistors (see Fig. 4.4).

4.1 DE10-Nano Board 37

Fig. 4.4: The MSEL pins are connected to SW10 and to pull-up resistors

When a switch in the DIP switch SW10 is turned on, it grounds the MSEL pin.
Otherwise the MSEL pin sits at Vcc. Thus a switch in the “ON” position means a
“0” on the MSEL pin (negative logic). The location of SW10 on the DE10-Nano
board is shown in Fig. 4.5 and marked by the yellow square.

Fig. 4.5: Location of switch SW10 to set the DE10-Nano FPGA Configuration
Mode. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&
CategoryNo=167&No=1046

There are two switch settings of the FPGA configuration mode switch SW10 that
you need to be aware of. These two switch setting modes are:

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=1046

38 4 Introduction to the DE10-Nano Board

Mode 1: FPPx32. This stands for Fast Passive Parallel x32 mode, Compression
Enabled, Fast POR. This is the default setting of the DE10-Nano board when it
ships. See Fig. 4.6 for this SW10 switch setting.

Fig. 4.6: Default switch SW10 setting (FPPx32) when the DE10-Nano board ships

Mode 2: FPPx16. This stands for Fast Passive Parallel x16 mode (no compression).
This is the mode we will use in this book for running embedded Linux (Ubuntu)
on the DE10-Nano board. In this mode, all the switches on SW10 need to be up in
the zero (ON) state as shown in Fig. 4.7

Fig. 4.7: The switch SW10 setting (FPPx16) used in the book when running Ubuntu
on the DE10-Nano board. All the switches are in the “ON” position

References 39

References

1. Terasic, DE10-Nano Block Diagram. https://www.terasic.com.tw/
attachment/archive/1046/image/DE10-Nano_Blockdiagram.jpg. Accessed
27 June 2022

2. Terasic Inc., How to Find the DE10-Nano Board Revision. https://www.
terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&
No=1046&FID=5651e4e0b7a3671ffb4494a46a338bf3. Accessed 15 Aug
2021

3. Terasic Inc., DE10-Nano Kit. https://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=English&No=1046&PartNo=4. Accessed 15 Aug
2021

4. RocketBoards.org., DE10-Nano Development Board. https://rocketboards.
org/foswiki/Documentation/DE10NanoDevelopmentBoard. Accessed 15
Aug 2021

5. Intel, Terasic DE10-Nano Get Started Guide. https://software.intel.com/
content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.
html. Accessed 15 Aug 2021

6. Intel, Cyclone V Device Handbook Volume 1: Device Overview and
Datasheet. https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/hb/cyclone-v/cv_5v1.pdf. Accessed 15 Aug 2021

7. Intel, Cyclone V Hard Processor System Technical Reference Man-
ual. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/cyclone-v/cv_5v4.pdf. Accessed 15 Aug 2021

https://www.terasic.com.tw/attachment/archive/1046/image/DE10-Nano_Blockdiagram.jpg
https://www.terasic.com.tw/attachment/archive/1046/image/DE10-Nano_Blockdiagram.jpg
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=1046&FID=5651e4e0b7a3671ffb4494a46a338bf3
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=1046&FID=5651e4e0b7a3671ffb4494a46a338bf3
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=1046&FID=5651e4e0b7a3671ffb4494a46a338bf3
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046&PartNo=4
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046&PartNo=4
https://rocketboards.org/foswiki/Documentation/DE10NanoDevelopmentBoard
https://rocketboards.org/foswiki/Documentation/DE10NanoDevelopmentBoard
https://software.intel.com/content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.html
https://software.intel.com/content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.html
https://software.intel.com/content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

Chapter 5
Introduction to the Audio Mini Board

Fig. 5.1: The Audio Mini board plugged into the DE10-Nano FPGA board. The
Audio Mini provides high fidelity audio for the DE10-Nano board and contains an
Analog Devices’ AD1939 192 kHz 24-bit audio codec

The Audio Mini was developed to provide high fidelity audio for the DE10-Nano
board. It was developed as part of an NIH grant (1R44DC015443-01) that developed
an open speech signal processing platform using FPGAs for high-performance DSP

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_5

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_5

42 5 Introduction to the Audio Mini Board

with low and deterministic latency (see (FPGA Open Speech Tools (Frost)). The
DE10-Nano board was targeted in order to provide a low cost SoC FPGA platform
that could be used to learn how digital signal processing could be implemented in the
FPGA fabric and then controlled from Linux running on the ARM CPUs. It allows
DSP, FPGAs, and Linux to be combined together in a low cost platform (compared
to what some FPGA development boards can cost). The DE10-Nano board did not
have audio capability, so we created the Audio Mini add-on board to provide high
fidelity audio.

A brief overview of how the audio board was developed is as follows. The first
step in the development process was to find all the available audio codecs that were
24-bit, could sample at 192 kHz, and were commercially available (and in stock). It
was from this survey that we settled on the Analog Devices AD1939 for the reasons
listed in Listing 5.3. We then purchased the evaluation board for the AD1939 (EVAL-
AD1939) and connected it to the DE10-Nano FPGA board using handcrafted cables
to connect the serial data port and the SPI control port. This allowed us to quickly get
a minimal working example together for evaluation purposes. Once we verified that
the prototype system worked by loading the appropriate register settings and sending
audio data through the FPGA, we undertook the process of creating a custom printed
circuit board (PCB) that would plug into the header posts on the DE10-Nano board.
The Audio Mini board went through several hardware iterations due to corrections
and optimizations and ended up with the final version shown in Fig. 5.1. We used
Altium Designer [1] as the design software for the PCB.

5.1 Top Level Block Diagram

The top level schematic of the Audio Mini is shown in Fig. 5.2. The stereo analog
signal comes into the board from a 3.5 mm audio jack (3.5 mm LINE IN block,
top left) and is sent to the AD1939 audio codec (top center block). The analog
stereo signal coming out of the audio codec is sent to the headphone amplifier block
(3.5 mm HEADPHONE OUTPUT block, top right). The FPGA connections (FPGA
CONNECTORS block, bottom left) connect the header posts on the DE10-Nano
board and connect FPGA digital I/O lines to the AD1939 audio codec (serial data,
SPI control, clock, and reset), the headphone amplifier (I2C volume control), and four
LED and four switches (SUPPORT block lower center). There are also connections
to two digital MEMS microphones, but these are not populated.

https://fpga-open-speech-tools.github.io/

5.2 Analog Audio Input 43

Fig. 5.2: The top level block diagram of Audio Mini board. Schematic figure from
[2] (sheet 4)

5.2 Analog Audio Input

The AD1939 audio codec requires analog differential signals as inputs for the audio
signals. However, audio connections using a 3.5 mm audio jack have single-ended
inputs. Thus the line-in stereo single-ended inputs need to be converted to differential
inputs. The conversion is done using Analog Devices ADA4075-2 ultralow noise
op-amps [3] and the associated circuit that performs this single-ended to differential
conversion is shown in Fig. 5.3. This circuit was adapted from the AD1939 evaluation
(eval) board that had multiple audio interfaces. This illustrates one of the reasons
for using evaluation boards from the manufacturer. By putting together a prototype
system using a reference design provided by the manufacturer, you can see how
the manufacturer supports their own device(s). From the manufacturer’s reference
design, you then add only the circuitry you need from the evaluation board (which
has been designed to accommodate many I/O interfaces) into your own PCB. Note:
The audio input can also handle a microphone input, but doing so will require part
changes (instructions are located on sheet 9 of the schematic [2]).

44 5 Introduction to the Audio Mini Board

Fig. 5.3: The Audio Mini circuit that converts stereo single-ended inputs to dif-
ferential inputs required by the AD1939 audio codec. Schematic figure from [2]
(sheet 9)

5.3 AD1939 Audio Codec

The heart of the Audio Mini board is the Analog Devices’ AD1939 audio codec.
The AD1939 was chosen for several reasons:

Reason 1: It is a 24-bit audio codec that can sample up to a sampling rate of
192 kHz, providing high fidelity audio.

Reason 2: It has a clean interfaces for data (serial data) and control (SPI). See
Fig. 5.4 that shows that the digital ports connect easily to FPGA I/O
pins. This is in contrast to some audio codecs that target embedded
audio applications where a DSP processor is also included in the de-
vice. We wanted a codec where processing would be done externally
in an FPGA and had a straightforward interface.

Reason 3: It has multiple analog audio I/O ports. However, the Audio Mini only
implements stereo in and stereo out due to cost considerations.

5.3 AD1939 Audio Codec 45

Fig. 5.4: The block diagram of the features used in the Analog Devices AD1939
audio codec

The schematic for the AD1939 audio codec can be seen in Fig. 5.5. Audio signals
(stereo left/right) that have been converted to differential inputs (see Sect. 5.2) are
piped into the AD1939 and converted to digital signals at one of the three sample
rates (48 kHz, 96 kHz, or 192 kHz). The digital samples are then sent to the FPGA
using the serial data interface that is comprised of three digital signals (data, bit
clock, and left/right framing clock, see Fig. 5.6). Digital samples to be converted to
analog are sent by the FPGA in the serial data format. The samples are converted by
the AD1939 DAC to analog signals in a differential format and sent to the headphone
driver/amplifier (see Sect. 5.4) for amplified stereo output.

The AD1939 is controlled from the SPI or Serial Peripheral Interface [4]. This is
used to set internal AD1939 registers that control the sample rate, master clock, and
other settings.

The sample rate is controlled by the 12.288 MHz crystal oscillator (see 12.288 MHz
Master Clock in Fig. 5.5) that is attached to the AD1939 and drives the internal Phase
Locked Loop (PLL) to create an internal clock that runs at 256 times the sample rate
fs (12.288 MHz/256= 48 kHz).

The AD1939 is configured to set the ADC bit clock (ABCLK) and ADC left/right
framing clock (ALRCLK) as masters (see Table 5.3). We also set the DAC bit clock
(DBCLK) and DAC left/right framing clock (DLRCLK) as slaves. This means that the
ADC drives all the data clocks in the AD1939. Furthermore, we send the 12.288 MHz
master clock (MCLKO) to a clock input pin on the FPGA that can connect to an
on-board PLL in the Cyclone V FPGA. The reason we do this is so that we can create
a clock in the FPGA fabric using the on-chip PLL where the FPGA fabric clock is a
multiple of the 12.288 MHz master clock (e.g., 12.288× 8= 98.304 MHz). This is so
that we can implement synchronous DSP processing designs for our FPGA fabric
data plane processing and avoid issues that arise when crossing clock domains in
digital systems.

46 5 Introduction to the Audio Mini Board

Fig. 5.5: The heart of the Audio Mini, which is the AD1939 audio codec (codec
stands for coder–decoder where the coder is the ADC or analog-to-digital converter
and the decoder is the DAC or digital-to-analog converter). Analog stereo differential
signals are converted to digital serial signals and vice versa. Schematic figure from
[2] (sheet 5)

Notice at the top of the schematic in Fig. 5.5 that the AD1939 has two separate
3.3 volt power supplies. This is because the AD1939 is a mixed signal design that
contains both analog and digital signals. A mixed signal design is analogous to when
you are studying for an exam and want peace and quiet (i.e., need low noise analog
signals) and there is a crazy party with very loud music (digital signals) nearby.
Hopefully, the building and room you are studying in does not let the party noise
through. If the building is cheaply built, you will be distracted by all the noise. In
a similar fashion, to keep the digital noisy party signals from injecting noise into
the analog signals, the power supplies need to be kept separate. However, it is not
practical to have separate power supplies coming into the PCB and we have only a
single 5 volt pin coming from the DE10-Nano board with which to power the Audio
Mini. The solution is to create separate analog power supplies from the 5 volt input
that are well filtered and then kept separate (see power regulation on schematic sheet
7 of [2]).

5.3 AD1939 Audio Codec 47

5.3.1 AD1939 Serial Data Port

5.3.1.1 Data to the FPGA from the AD1939 ADC

The ADC in the AD1939 samples the analog signals and then sends the digital
samples out of the serial data port in a serial fashion using three digital signals
(SDATA, BCLK, and LRCLK) as shown in Fig. 5.6. The digital signal LRCLK is
the left/right framing clock that runs at the sampling rate fs. When LRCLK is low,
the left channel is being sent out and when it is high, the right channel is being
transmitted. The digital line BCLK is the bit clock for the serial data line SDATA
that allows you to register the sample bits on the rising edge of BCLK. The bit clock
BCLK runs 64 times faster than LRCLK providing 32 rising clock edges for the left
channel and 32 clock edges for the right channel. The 24-bit sample word fits easily
into the 32-bit channel slot and can have different alignment (justification) modes
(the different modes can be seen in Figure 23, page 21 of the AD1939 datasheet
[5]). We chose the I2S justification mode where the Most Significant Bit (MSB)
of the 24-bit sample word starts on the second rising BCLK edge after an LRCLK
edge transition (SDATA delay of 1). The serial data configuration is set in the ADC
Control 1 Register (see Table 24 in the datasheet) and is set to the values shown in
Table 5.3 (24-bit, Stereo, I2S). These register values for the ADC serial data port are
power-up default values, so no power-up configuration needs to be performed.

Fig. 5.6: The I2S stereo serial data mode. The serial data interface is comprised of
three 1-bit signals. The top signal, LRCLK, is the left/right framing clock that runs
at the sample rate fs . The middle signal, BCLK, is the bit clock for audio bit values
that are sent on the bottom signal SDATA. The bit clock BCLK runs 64 times as fast
as the left/right framing clock LRCLK. Figure from [5] (Datasheet figure 23, page
21)

5.3.1.2 Data to the AD1939 DAC from the FPGA

The AD1939 DAC is configured (DAC Control 0 register in Table 5.2) to have the
same serial data format as the ADC. In the initial board development, this allowed the
FPGA to pipe the serial data directly out to the DAC to verify the system was working
without converting the serial data to the Platform Designer Avalon streaming format.

48 5 Introduction to the Audio Mini Board

5.3.1.3 AD1939 FPGA Data Interfacing

In order for the AD1939 to be used in a Platform Designer system, a VHDL and
associated Platform Designer .tcl file was developed so that the AD1939 shows
up in the Platform Designer library with streaming interfaces. This was developed
as part of the first system developed using the AD1939, which is called unsur-
prisingly the passthrough example. This VHDL and Platform Designer interface
is covered in Sect. 1.2 Audio Data Streaming (page 256) and Sect. 1.4 Platform
Designer (page 269).

5.3.2 AD1939 SPI Control Port

The AD1939 is controlled from the bit values contained in seventeen registers that
are accessed using the SPI control port. The Cyclone V SoC FPGA on DE10-Nano
is configured so that the Hard Process System (HPS) exports a SPI interface, which
is connected to the AD1939 SPI port. This Platform Designer HPS configuration
is covered in Sect. 1.5.1 Linux SPI Device Driver for the AD1939 Audio Codec
(page 289) along with the associated Linux device driver so that the AD1939 registers
can be configured after power-up.

5.3.2.1 AD1939 Register Settings

The AD1939 register values that are used in the passthrough example (Sect. 1.5.1
Linux SPI Device Driver for the AD1939 Audio Codec (page 289)) are listed in
Tables 5.1, 5.2, and 5.3. Most of the values used are default values, so minimal
changes need to be made upon power-up. The values that are not default are listed
in blue and have to be set before the system becomes functional.

Table 5.1: AD1939 clock control register settings

PLL and Clock Control 0 (Register Address 0)
Bit Value Function Description
0 0 Normal Operation PLL power-down

2:1 00 INPUT 256 MCLKI/XI pin functionality
4:3 00 XTAL oscillator enabled MCLKO/XO pin
6:5 00 MCLKI/XI PLL input
7 1 Enable: ADC and DAC active Internal master clock enable

PLL and Clock Control 1 (Register Address 1)
Bit Value Function Description
0 0 PLL clock DAC clock source select
1 0 PLL clock ADC clock source select
2 0 Enabled On-chip voltage reference
3 0 0=Not locked, 1=Locked PLL lock indicator (read only)

* Blue values: Non-default values. Must be set after power-up

5.3 AD1939 Audio Codec 49

Table 5.2: AD1939 DAC control register settings (All default values)

DAC Control 0 (Register Address 2)
Bit Value Function Description
0 0 Normal Not powered-down

2:1 00 48 kHz Sample rate
5:3 000 1 SDATA delay (I2S mode)
7:6 00 Stereo Serial format

DAC Control 1 (Register Address 3)
Bit Value Function Description
0 0 Latch in mid-cycle (normal) BCLK active edge (TDM in)

2:1 00 64 (2 channels) BCLKs per frame
3 0 Left low LRCLK polarity
4 0 Slave LRCLK master/slave
5 0 Slave BCLK master/slave
6 0 DBCLK pin BCLK source
7 0 Normal BCLK polarity

DAC Control 2 (Register Address 4)
Bit Value Function Description
0 0 Unmute Master Mute

2:1 00 Flat De-emphasis
4:3 00 24 Word width (bits)
5 0 Noninverted DAC output polarity

DAC Individual Channel Mutes (Register Address 5)
Bit Value Function Description
7:0 00000000 0=Unmute All Channels Unmuted

DAC L1 Volume (Register Address 6)
DAC R1 Volume (Register Address 7)
DAC L2 Volume (Register Address 8)
DAC R2 Volume (Register Address 9)
DAC L3 Volume (Register Address 10)
DAC R3 Volume (Register Address 11)
DAC L4 Volume (Register Address 12)
DAC R4 Volume (Register Address 13)
Bit Value Function Description
7:0 00000000 No attenuation DAC volume control (−3/8 dB per step)

50 5 Introduction to the Audio Mini Board

Table 5.3: AD1939 ADC control register settings

ADC Control 0 (Register Address 14)
Bit Value Function Description
0 0 Normal Not Powered-down
1 0 Off High pass filter
2 0 Unmute ADC 1L mute
3 0 Unmute ADC 1R mute

7:6 1 48 kHz Sample rate

ADC Control 1 (Register Address 15)
Bit Value Function Description
1:0 00 24 24-bit Word width
4:2 000 1 SDATA delay (I2S mode)
6:5 00 Stereo Serial format

ADC Control 2 (Register Address 16)
Bit Value Function Description
0 0 50/50 LRCLK format
1 0 Drive on falling BCLK polarity
2 0 Left low LRCLK polarity
3 1* Master LRCLK master/slave

5:4 00 64 BCLKs per frame
6 1* Master BCLK master/slave
7 1* Internally generated BCLK source

* Blue values: Non-default values. Must be set after power-up

5.4 Headphone Analog Audio Output

To convert the differential analog signals coming from the AD1939 DAC to single-
ended outputs that a user can use to plug their headphones into, we used the Texas
Instrument’s TPA6130A2 stereo headphone amplifier with I2C volume control [6].
The associated circuit can be seen in Fig. 5.7.

5.4 Headphone Analog Audio Output 51

Fig. 5.7: The Texas Instrument’s TPA6130A2 headphone amplifier [6] takes the dif-
ferential output signals from the AD1939, implements volume control (controlled
via I2C), and converts them to singled-ended signals suitable for a headphone con-
nection. Schematic figure from [2] (sheet 11)

5.4.1 TPA6130A2 I2C Interface

The TPA6130A2 headphone amplifier is controlled from the bit values contained in
two registers that are accessed using the I2C interface. The Cyclone V SoC FPGA
on DE10-Nano is configured so that the Hard Process System (HPS) exports an
I2C interface, which is connected to the TPA6130A2 I2C interface. This Platform
Designer HPS configuration is covered in Sect. 1.5.2 Linux I2C Device Driver for
the TPA6130A2 Headphone Amplifier (page 289) along with the associated Linux
device driver so that the TPA6130A2 registers can be configured after power-up.

52 5 Introduction to the Audio Mini Board

5.4.1.1 TPA6130A2 Register Settings

The TPA6130A2 register values that are used in the passthrough example (Sect. 1.5.2
Linux I2C Device Driver for the TPA6130A2 Headphone Amplifier (page 289)) are
listed in Table 5.4. The values that are not default are listed in blue and have to be
set before the system becomes functional.

Table 5.4: TPA6130A2 headphone control register settings

Control Register (Address 1)
Bit Value Function Description
0 0 SWS Software shutdown control
1 0 Thermal 1 indicates a thermal shutdown

3:2 Reserved
5:4 00 Stereo Mode Select
6 1 Enable Enable for right channel amplifier
7 1 Enable Enable for left channel amplifier

Volume and Mute Register (Address 2)
Bit Value Function Description
5:0 xxxxxx Volume 000000 = lowest gain

111111 = highest gain
6 0 Unmute Right channel mute
7 0 Unmute Left channel mute

* blue values: Non-default values. Must be set after power-up

5.5 DE10-Nano FPGA Connections

The connections from the Audio Mini to the DE10-Nano board can be seen in
Fig. 5.8. The signal routing and naming can get confusing, so a “Rosetta Stone”
table (Table 5.5) was created to cross reference names and locations depending
on a particular reference point (device, DE10-Nano board, Cyclone V FPGA, or
VHDL signal name). In the table column 1 gives the schematic signal group name.
Column 2 gives the schematic signal name in the signal group. Column 3 gives the
manufacturer’s datasheet signal name. Column 4 gives the device and the device
pin number that the signal is connected to. Column 5 gives the pin number of the
DE10-Nano header post (header JP7) that the signal goes through. Column 6 gives
the pin number on the Cyclone V FPGA that the signal is connected to. Column 7
gives the GPIO connection name as reference from the DE10-Nano User’s manual.
Finally, in column 8, the VHDL top level signal name is given that references the
signal. This information is typically hidden in the board support file (e.g., FPGA
pin assignment file) but is given to show how such board support information is
created. The FPGA developer typically only cares about the top level signal names
in column 8.

References 53

Fig. 5.8: The Audio Mini connections to the DE10-Nano board. Schematic figure
from [2] (sheet 6)

Table 5.5: Audio Mini FPGA signal connection table

Schematic Schematic Device Device/ DE10-Nano FPGA Terasic VHDL
Signal Net Signal Pin JP7 Header Pin GPIO Signal
Group Name Name Number Pin Number Location Name

AD1939_SPI_CONTROL_PORT

CIN CIN AD1939/30 8 AF27 GPIO_1[7] AD1939_spi_CIN
CLATCH_n CLATCH_n AD1939/35 6 AF28 GPIO_1[5] AD1939_spi_CLATCH_n
CCLK CCLK AD1939/34 5 AG28 GPIO_1[4] AD1939_spi_CCLK
COUT COUT AD1939/31 7 AE25 GPIO_1[6] AD1939_spi_COUT

AD1939_SERIAL_DATA_PORT

ABCLK ABCLK AD1939/28 3 AA15 GPIO_1[2] AD1939_ADC_ABCLK
ALRCLK ALRCLK AD1939/29 9 AG26 GPIO_1[8] AD1939_ADC_ALRCLK
LINE_IN_DSDATA ASDATA2 AD1939/26 13 AG25 GPIO_1[10] AD1939_ADC_ASDATA2
DBCLK DBCLK AD1939/21 15 AH24 GPIO_1[12] AD1939_DAC_DBCLK
DLRCLK DLRCLK AD1939/22 16 AF25 GPIO_1[13] AD1939_DAC_DLRCLK
HEADPHONE_OUT_DSDATA DSDATA1 AD1939/20 18 AF23 GPIO_1[15] AD1939_DAC_DSDATA1

AD1939_CLK_RST MCLK0 MCLK0 AD1939/3 1 Y15 GPIO_1[0] AD1939_MCLK
RST_CODEC_n PD/RST_n AD1939/14 20 AH22 GPIO_1[17] AD1939_RST_CODEC_n

HEADPHONE_I2C SCL SCL TPA6130A2/8 2 AC24 GPIO_1[1] TPA6130_I2C_SCL
SDA SDA TPA6130A2/7 4 AD26 GPIO_1[3] TPA6130_I2C_SDA

HEADPHONE_PWR_OFF_n HEADPHONE_PWR_OFF_n SD_n TPA6130A2/6 10 AH27 GPIO_1[1] TPA6130_power_off

LEDS

LED1 39 AE19 GPIO_1[34] Audio_Mini_LEDs[0]
LED2 37 AG15 GPIO_1[32] Audio_Mini_LEDs[1]
LED3 35 AF18 GPIO_1[30] Audio_Mini_LEDs[2]
LED4 33 AG18 GPIO_1[28] Audio_Mini_LEDs[3]

SWITCHES

SW1 40 AE17 GPIO_1[35] Audio_Mini_SWITCHES[0]
SW2 38 AE20 GPIO_1[33] Audio_Mini_SWITCHES[1]
SW3 36 AF20 GPIO_1[31] Audio_Mini_SWITCHES[2]
SW4 34 AH18 GPIO_1[29] Audio_Mini_SWITCHES[3]

The top level VHDL file that contains the signal names in the right hand column
of Table 5.5 is described in Sect. 1.4.4.2 Hooking Up the soc_system_passthrough
System in the Top Level (page 288).

References

1. Altium, Altium Designer. https://www.altium.com/altium-designer/. Accessed
18 Feb 2022

https://www.altium.com/altium-designer/

54 5 Introduction to the Audio Mini Board

2. C. Dack, Audio Mini Schematics. Audio Logic. https://github.com/ADSD-
SoC-FPGA/Documents/blob/main/AudioMini/AudioMini_Schematics.pdf.
Accessed 16 Feb 2022

3. Analog Devices, ADA4075-2 Data Sheet. https://www.analog.com/media/en/
technical-documentation/data-sheets/ada4075-2.pdf. Accessed 16 Feb 2022

4. Wikipedia, Serial Peripheral Interface. https://en.wikipedia.org/wiki/Serial_
Peripheral_Interface. Accessed 17 Feb 2022

5. Analog Devices, AD1939 Data Sheet. https://www.analog.com/media/en/
technical-documentation/data-sheets/AD1939.pdf. Accessed 16 Feb 2022

6. Texas Instruments, TPA6130A2 138-mW DIRECTPATH™Stereo Headphone
Amplifier with I2C Volume Control. https://www.ti.com/product/TPA6130A2?.
Accessed 18 Feb 2022

https://github.com/ADSD-SoC-FPGA/Documents/blob/main/AudioMini/AudioMini_Schematics.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ada4075-2.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ada4075-2.pdf
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://www.analog.com/media/en/technical-documentation/data-sheets/AD1939.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD1939.pdf
https://www.ti.com/product/TPA6130A2?

Chapter 6
Introduction to Intel Quartus Prime

6.1 Intel Quartus Prime Lite Edition

The DE10-Nano FPGA board that we are targeting contains an Intel Cyclone V SoC
FPGA. This means that we need to use Intel’s Quartus Prime software to create
hardware designs for the Cyclone V SoC FPGA. Fortunately, we can use the free
version of Quartus Prime with the Cyclone V devices, which is called Intel Quartus
Prime Lite Edition.

6.1.1 Installing Windows for Subsystem for Linux (WSL)

Quartus, starting with version 19.1, requires installing Windows Subsystem for
Linux. There are two versions of WSL: WSL 1 and WSL 2. At the time of this
writing, the instructions for Quartus are to install only WSL 1 since WSL 2 is not
supported. The procedure for installing WSL 1 is:

Step 1: Go to:
https://docs.microsoft.com/en-us/windows/wsl/install-win10 and fol-
low Microsoft’s instructions to install Ubuntu 18.04 LTS for WSL.
Note 1: Windows 10 build version 16215.0 or higher is the recom-
mended operating system version.
Note 2: Install only WSL 1 and skip the instructions for updating WSL
1 to WSL 2. WSL 2 is not supported.

Step 2: After installation has been successfully completed, launch Ubuntu 18.04.
Step 3: Install the distro packages described at: https://www.intel.com/content/

www/us/en/docs/programmable/683525/21-3/installing-windows-
subsystem-for-linux.html

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_6

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_6&domain=pdf
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.intel.com/content/www/us/en/docs/programmable/683525/21-3/installing-windows-subsystem-for-linux.html
https://www.intel.com/content/www/us/en/docs/programmable/683525/21-3/installing-windows-subsystem-for-linux.html
https://www.intel.com/content/www/us/en/docs/programmable/683525/21-3/installing-windows-subsystem-for-linux.html
https://doi.org/10.1007/978-3-031-15416-4_6

56 6 Introduction to Intel Quartus Prime

6.1.2 Download and Install Intel’s Quartus Prime Lite

Install the free version of Quartus Prime (Lite Edition) from Intel by following these
steps:

Step 1: First install Windows Subsystem for Linux by following the instructions
in Sect. 6.1.1 Installing Windows for Subsystem for Linux (WSL) (page
55).

Step 2: Get the Quartus Prime Lite Edition from:
https://www.intel.com/content/www/us/en/products/details/fpga/
development-tools/quartus-prime/resource.html.

Step 3: Select the Lite Edition.
Step 4: Select the latest version, which is currently version 20.1 .
Step 5: Further down the page, Select the "Individual Files" tab.

You should see a listing of individual files to download. We do not need
all these files. The ones we do need are listed below. Click the download
arrow at the right to download the files:

• Quartus Prime (includes Nios II EDS)
Note: Also download the Questa-Intel FPGA Edition.

• Cyclone V device support
Note: You do not need any other device support since we will only
be targeting the Cyclone V.

Step 6: Select the "Additional Software" tab. Download the files:

• Quartus Prime Help.
• Quartus Prime Programmer and Tools.

Note: This includes Signal Tap and System Console that we will
use.

Step 7: Install the software by running the downloaded file that starts with
“QuartusLiteSetup...” The installation will take some time.
Note 1: The Quartus Lite install executable will see the help and device
files and install them as if they are already in the same directory.
Note 2: The “QuartusProgrammerSetup. . . ” executable needs to be
installed separately.

6.1.3 Quartus File Types

In the Quartus project folder, there are a number of different file types that are
identified by their extensions.

A list of Quartus file types that you will run across are:

https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/resource.html

6.1 Intel Quartus Prime Lite Edition 57

File Type 1: Quartus Project File (.qpf). This file when opened in Quartus au-
tomatically loads your project. This file can be created by using the
New Project Wizard in Quartus.

File Type 2: Quartus Setting File (.qsf). This file contains the pin assignments
and associates the signal names found in the top level entity with
specific I/O pins on the FPGA.

File Type 3: Synopsys Design Constraints File (.sdc). There are two things
that must be satisfied for your design to be correct. First, your
VHDL logic must be correct, and second, the timing of your logic
must be correct after the Quartus Fitter places and routes your
design in the FPGA fabric. If you do not have a .sdc file in your
project, which constrains your timings, your design is wrong (even
if it appears to function correctly when you compile it). This means
that you must always add a .sdc file to your project. Furthermore,
after each Quartus compilation, you need to check the resulting
timing because a particular place and route may fail to get the
required timing correct. Do not assume your design is correct just
because Quartus compiled your VHDL correctly. It must also meet
your timing requirements.

File Type 4: Top level VHDL file (.vhd). This file contains the top level entity
that has the signal names that are to be connected to specific I/O
pins on the FPGA (i.e., pin assignments) as described in the .qsf
file. You will need to set one of your VHDL files in your project
as the top level file. This is done in Quartus by selecting Files in
the drop down list in the Project Navigator panel and then right
clicking on the desired .vhd file and selecting Set as Top Level
Entity.

File Type 5: SRAM Object File (.sof). This is the configuration file created when
a design is compiled and synthesized by Quartus. It is the bitstream
that configures the FPGA fabric. This bitstream configuration file
is typically loaded into the FPGA by the JTAG programmer.

File Type 6: Raw Binary File (.rbf). The raw binary file format contains the
same information as the .sof configuration file. This .rbf file format
is used by U-boot to configure that fabric when Linux boots up.
The .sof file is converted into a .rbf file by using the Convert
Programming File utility in Quartus. This is found in Quartus by
going to the File menu and selecting Convert Programming Files....

File Type 7: Programmer Object File (.pof). The programmer object file format
contains the same information as the .sof configuration file. This
.pof file format is used to program serial flash devices, which is
how FPGAs are typically configured at power-up when they are not
SoC devices and do not have embedded Linux.

58 6 Introduction to Intel Quartus Prime

6.1.4 Converting Programming Files

When Quartus compiles a project, it places the .sof bitstream file into the subdirec-
tory /output_files under the project directory. This is the file that the Quartus
programmer uses to configure the FPGA fabric when it downloads it via JTAG.
When this bitstream file needs to be loaded by U-boot, it must first be converted into
a .rbf file and then placed into the VM directory that TFTP server will use. The
directory location and name of the .rbf file are specified in the bootscript file.

The steps for converting a .sof file into a .rbf file, where soc_system.sof is the
example file name, are:

Step 1: In Quartus, go to File → Convert Programming Files. . . . and in the
Output programming file section:

1: Set the Programming file type: to Raw Binary File (.rbf).
2: Set the Mode: to Passive Parallel x16.

Note: This requires the switch positions on the DE10_Nano board
to be all in the “On” position (see Fig. 4.7).

3: Set the File name: to soc_system.rbf.

Step 2: In the section Input files to convert:

1: Click on SOF Data.
2: Click on the Add File. . . button.
3: Navigate to /output_files.
4: Select soc_system.sof.
5: Click Open.

Step 3: Click Generate. The .rbf file will be written to the Quartus project folder.

6.1.5 Timing

Just because Quartus compiles your VHDL code correctly does not mean that it will
run correctly in your FPGA. Not only does the logic in your VHDL code need to be
correct, the timing needs to be correct after the design has been placed and routed
by the fitter. Getting the timing correct is called Timing Closure, and this can take
considerable effort when using FPGAs. Fortunately for us, the examples in this book
do not push the limits on how fast we are trying to run the clock or how full we are
trying to fill the FPGA in regard to the fabric resources being used, which makes
placement and routing harder while meeting timing.

Any time you purchase a FPGA, you will need to specify the speed grade of
the device. The same device, but with a faster speed grade, typically costs more. In
Fig. 4.2, we can see that the Cyclone V has three speed grades (6,7, and 8) where
6 is the fastest speed grade. Every device manufactured is slightly different when
manufactured due to process variations, even if it is designed to be an identical part.

6.1 Intel Quartus Prime Lite Edition 59

This means some parts are faster than others and are tested and labeled with different
speed grades. Other factors that affect speed are core voltage (higher Vcc makes the
chip faster) and temperature (higher T makes the chip slower). Thus PVT, which
stands for Process, Voltage, and Temperature, affects how fast a part can run.

After Quartus compiles your design, when you examine the Table of Contents of
the Compilation Report, you will see a section called Timing Analyzer. If you expand
this section, you will see four folders as shown in Fig. 6.1.

Fig. 6.1: Checking Timing in Quartus

These four folders are associated with the PVT designation where in this case
P= {Slow or Fast}, V= 1100 mV= 1.1 V, and T= {−40 C or 100 C}. These cases are
known as corner cases since all combinations of PVT for this device will fall in the
area enclosed by these corner cases. The slowest device would have the parameters
(slowest Process, lowest Voltage, highest Temperature), which in the figure is the
Slow 1100 mV 100 C Model folder. The fastest device would have the parameters
(fastest Process, highest Voltage, lowest Temperature), which in the figure is the Fast
1100 mV −40 C Model.

For our initial timing check, we will take the most conservative view of the
device that we are targeting where we will assume that we have the slowest of the
devices (Slow 1100 mV 100 C Model). If we expand this folder, we see the following
information (Fig. 6.2).

60 6 Introduction to Intel Quartus Prime

Fig. 6.2: Checking Fmax for the Slowest Model in Quartus

If we click on Fmax Summary, this will tell us how fast the FPGA can be clocked
if we have the slowest speed grade device. You should always check Fmax of the
slowest model after each compile to see if your design can run at the targeted
clock speed.

6.1.6 Learning Quartus

One of the skills that computer engineers need to develop is the ability to implement
lifelong learning also known as continuing education. This is important in the com-
puter industry where technology is moving at a blistering pace. Thus it is necessary
to be able to take advantage of training material that exists for learning new skills.
We will take advantage of the training material that Intel provides for their Quartus
software. If you go to Intel’s FPGA Technical Training Curricula (click here for the
link), you will see a section for FPGA Designers as seen in Fig. 6.3. This training
ranges from free online courses to paid instructor-led courses. We only highlight
several of the free online courses in Table 6.1 that are related to the Quartus tools

https://www.intel.com/content/www/us/en/programmable/support/training/curricula.html

6.1 Intel Quartus Prime Lite Edition 61

Fig. 6.3: Intel’s Training Curricula for FPGA Designers

Table 6.1: Intel’s free online training courses for Quartus

Course and description Level

Intel Quartus Prime Software: Foundation (Standard Edition) (click here)
Learn to use the Intel® Quartus® Prime software to develop an FPGA or
CPLD design from initial design to device programming.

100

Timing Analyzer: Introduction to Timing Analysis (click here) Closing
timing can be one of the most difficult and time-consuming aspects of
creating an FPGA design. The Timing Analyzer is used to shorten the
process of timing closure. This part of the training introduces you to the
basic timing analysis concepts required for understanding how to use the
tool. This is part 1. There are 4 parts to watch.

200

Signal Tap Logic Analyzer: Introduction & Getting Started (click here)
The Signal Tap embedded logic analyzer (ELA) is a system-level debug-
ging tool that monitors the state of internal FPGA design signals. This is
part 1. There are 4 parts to watch.

200

Creating a System Design with Platform Designer: Getting Started (click
here) The Platform Designer system integration tool, formerly known as
Qsys, saves design time and improves productivity by automatically gen-
erating interconnect logic to connect intellectual property (IP) functions
and subsystems. This is part 1. There are 2 parts to watch.

200

System Console (click here) System Console is an interactive console for
system-level debug of Platform Designer systems over JTAG. Based on
Tcl, it has a simple set of commands for communicating with various parts
of your Platform Designer system.

300

https://www.intel.com/content/www/us/en/programmable/support/training/course/odsw1110.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/odsw1115.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/odsw1164.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/oqsyscreate.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/oemb1117.html

62 6 Introduction to Intel Quartus Prime

that we will be using so you should browse through all the training that Intel has to
offer.

6.2 Platform Designer

6.2.1 Creating an Avalon Memory-Mapped Interface

Any custom hardware that you create for Platform Designer needs to interface to
the Avalon interconnect network. The network interface supports both memory-
mapped peripherals (covered in this section) and streaming interfaces (covered in
Sect. 6.2.3). Memory-mapped peripherals communicate with the Avalon intercon-
nect network and will have specific memory address locations assigned to them.
Streaming interfaces are useful for data processing tasks on streaming data such as
digital filtering an audio signal.

A memory-mapped interface can function as either a host or an agent. A host can
initiate data transfers (i.e., bus transactions), while an agent only responds to data
transfers (i.e., responds to a host). The Avalon Interface Specifications can be found
at the link Avalon Interface Specifications.

To illustrate how to create and use a memory-mapped interface, control registers
for the HPS_LED_Patterns component (see Fig. 12.1) will be created and attached to
the HPS lightweight bus. We will only implement a simple memory-mapped agent
interface for HPS_LED_Patterns. The Avalon bus agent that we will create will look
like Figure 5 and Figure 6 found on pages 13–14 (section 3.1) in the Avalon speci-
fication. The agent can handle complicated transfers, so there are additional control
signals available. We, however, will only be reading/writing data from Registers 0–3.
This means that our interface will be relatively simple. Since the data bus for the
HPS lightweight bus is 32 bits, we will create 32-bit registers where we will place
32 bits of data onto the bus when the ARM CPUs read the register and capture 32
bits of data on CPU writes.

Notice the timing diagram for reads and writes on the Avalon interface that is
shown in Figure 7 on page 21 (section 3.5.1) of the Avalon spec. You will see that
the data is latched on the rising edge of the clock when the read or write enable is
asserted. In this diagram, we will ignore the bus control signal byteenable since we
will read and write 32 bits and not worry about accessing specific bytes in the 32-bit
word. We will also ignore the signals waitrequest and response since our registers
will be able to respond fast enough, and given the simple interface, we do not need
to respond with optional read/write status bits.

To interface to the Avalon bus, your HPS_LED_Patterns Platform Designer com-
ponent should have the following entity (click here):

16 entity HPS_LED_patterns is
17 port(
18 clk : in std_logic;

�

↪→ -- system clock
19 reset : in std_logic;

�

↪→ -- system reset (assume

�

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://github.com/ADSD-SoC-FPGA/Code/blob/main/dev/led_pgs/hps_led_patterns.vhd

6.2 Platform Designer 63

↪→active high, change at top �

↪→level if needed)
20 avs_s1_read : in std_logic;

�

↪→-- Avalon read control signal
21 avs_s1_write : in std_logic;

�

↪→ -- Avalon write control

�

↪→signal
22 avs_s1_address : in std_logic_vector(1 downto 0);

�

↪→ -- Avalon address; Note:

�

↪→width determines the number of �

↪→ registers created by Platform

�

↪→ Designer
23 avs_s1_readdata : out std_logic_vector(31 downto 0)

�

↪→; -- Avalon read data bus
24 avs_s1_writedata : in std_logic_vector(31 downto 0)

�

↪→; -- Avalon write data bus
25 PB : in std_logic;

�

↪→ -- Pushbutton to change

�

↪→state (assume active high, �

↪→change at top level if needed) �

↪→ (export in Platform Designer

�

↪→)
26 SW : in std_logic_vector(3 downto 0);

�

↪→ -- Switches that determine

�

↪→the next state to be selected �

↪→ (export in Platform Designer)
27 LED : out std_logic_vector(7 downto 0)

�

↪→ -- LEDs on the DE10-Nano

�

↪→board (export in Platform �

↪→Designer)
28);
29 end entity HPS_LED_patterns;

Listing 6.1: Entity of the HPS_LED_patterns component

Notice that the address bus avs_s1_address that connects to the Avalon intercon-
nect is only 2 bits and not 32 bits. This is because the signal width is how you define
how many 32-bit registers your hardware component has. Platform Designer does the
full address decoding for you, and you only need to perform partial address decod-
ing for your registers using the avs_s1_address signal in order to determine which
register is being selected. Thus, the number of bits contained in the std_logic_vector
signal avs_s1_address will determine how many registers your component has.

The prefix avs_s1_ of the Avalon signal names is used because Platform Designer
will correctly interpret these signal names as an Avalon agent interface when im-
ported into Platform Designer and saves the trouble of having to assign them to the
proper Avalon signal interpretation.

64 6 Introduction to Intel Quartus Prime

6.2.1.1 Creating Component Registers

To create registers, you first have to name and create signal declarations for them as
shown in Listing 6.2 where two registers left_gain and right_gain are created. These
signals are given default values, which will be the values these registers take when
the component powers up. These register signals are the internal signals that are used
to connect to the ports and logic inside the component’s architecture.

18 signal left_gain : std_logic_vector(31 downto 0) := "

�

↪→00000100110011001100110011001101 �

↪→"; -- 0.3 fixed point value (

�

↪→W=32, F=28)
19 signal right_gain : std_logic_vector(31 downto 0) := "

�

↪→00000100110011001100110011001101 �

↪→"; -- 0.3 fixed point value (

�

↪→W=32, F=28)

Listing 6.2: Example Register Declarations

Next, we need to be able to read these registers from the ARM CPUs, so we need
to create a read process as shown in Listing 6.3. This is a synchronous process that
checks to see if avs_s1_read has been asserted. If it has, it then uses a case statement
on avs_s1_address to determine which register to read by placing the register’s data
onto the avs_s1_readdata bus. If there are undefined registers in the component’s
register address space, the read needs to return zeros, which is handled by the when
others statement.

25 avalon_register_read : process(clk)
26 begin
27 if rising_edge(clk) and avs_s1_read = '1' then
28 case avs_s1_address is
29 when "00" => avs_s1_readdata <= left_gain;
30 when "01" => avs_s1_readdata <= right_gain;
31 when others => avs_s1_readdata <= (others =>

�

↪→'0'); -- return zeros for �

↪→unused registers
32 end case;
33 end if;
34 end process;

Listing 6.3: Example Register Read Process

To write to the registers, we create a write process as shown in Listing 6.4. An
asynchronous reset will reset the register values to the given values that are similar to
the default power-up values. This synchronous process checks to see if avs_s1_write
has been asserted. If it has, it then uses a case statement on avs_s1_address to
determine which register to write to. In this example, the entire 32 bits are being
transferred from the avs_s1_writedata bus to the register. If the register is smaller, the
appropriate signal slice would need to be performed. If there are undefined registers
in the component’s register address space, the writes are ignored, which is handled
by the when others statement.

6.2 Platform Designer 65

40 avalon_register_write : process(clk, reset)
41 begin
42 if reset = '1' then
43 left_gain <= "00000100110011001100110011001101";

�

↪→-- 0.3 reset default value
44 right_gain <= "00000100110011001100110011001101";

�

↪→-- 0.3 reset default value
45 elsif rising_edge(clk) and avs_s1_write = '1' then
46 case avs_s1_address is
47 when "00" => left_gain <= avs_s1_writedata

�

↪→(31 downto 0);
48 when "01" => right_gain <= avs_s1_writedata

�

↪→(31 downto 0);
49 when others => null; -- ignore writes to unused

�

↪→registers
50 end case;
51 end if;
52 end process;

Listing 6.4: Example Register Write Process

Using Listings 6.2, 6.3, and 6.4 as examples, create four registers for the
HPS_LED_pattern component. These registers need to be connected to the
LED_pattern component signals as follows:

Register 0 ↔ HPS_LED_control
Register 1 ↔ SYS_CLKs_sec
Register 2 ↔ LED_reg
Register 3 ↔ Base_rate

Note: The default/power-up value for Register 0 ↔ HPS_LED_control should be
set to “0” so that the LED_patterns component powers up into the hardware state
machine control mode so that the LED patterns will be created without any software
intervention. You should also set the default/power-up values for the other signals the
same as you created them in Lab 4. In VHDL, you do this in the signal declaration
by setting it to the desired initial value when the signal is created.

6.2.2 Creating a Custom Platform Designer Component

Once the VHDL code for HPS_LED_Patterns has been written and is correct, it will
be imported in Platform Designer. Do not proceed with Platform Designer until you
know that your HPS_LED_Patterns VHDL code is correct.

The steps for creating a Custom Platform Designer Component for
HPS_LED_Patterns are:

66 6 Introduction to Intel Quartus Prime

Step 1: Write the VHDL code for HPS_LED_Patterns.vhd that has the entity
shown in 6.1, that implements the Avalon agent interface with the reg-
isters you need as described in Sect. 6.2.1.1, and that instantiates the
LED_Patterns component from Lab 4. Make sure that this file can be
compiled without errors.

Step 2: Copy the VHDL files that you created earlier for Lab 4, i.e.,
LED_Patterns.vhd, and the others (push-button conditioning files) to
the project directory. Quartus will look in the project folder for any files
it needs.

Step 3: Open Platform Designer in Quartus, and click the New. . . button in the
IP Catalog panel (or select File → New Component). The Component
Editor window will pop up.

a: In the Component Type tab, enter HPS_LED_patterns for
both the Name and Display Name.

b: Click on the Files tab.
i: Under the Synthesis Files section (not the VHDL or

Verilog Simulation Files sections), click Add File. . . .
Browse to and open HPS_LED_patterns.vhd.

ii: Click the Analyze Synthesis Files button. You should
see the green message Analyzing Synthesis Files: com-
pleted successfully. If you do not get this message, it
usually means you have a VHDL syntax error in your
VHDL code. You will need to correct this before pro-
ceeding. Use Quartus to check and correct your VHDL
code since the error messages you get from Platform
Designer by pressing the “Analyze Synthesis Files”
button are typically unhelpful. The assumption is that
these files have already been correctly written before
being added to Platform Designer.

iii: In the messages window, you will see some error mes-
sages that we will fix next, so ignore them for now.

c: Click on the Signals & Interfaces tab. The component editor
most likely misinterpreted the LEDs, push button, and switches
signals as another Avalon interface and made the wrong inter-
pretation regarding these signals.

i: Click on the Avalon_slave_0 interface (assuming this
was the interpretation).

1: On the right by Name:, rename Avalon_slave_0
to export.

2: Change Type: by selecting Conduit in the drop
down menu. Conduit means the signal will
be brought out of the soc_system component
where the signal will be added to the entity.

3: Change Associated Reset: from none to reset.

6.2 Platform Designer 67

ii: Click on LEDs to highlight and change Signal Type to
LEDs (rename to new custom type).

iii: Click on push button to highlight and change Signal
Type to push button (rename to new custom type).

iv: Click on switch to highlight and change Signal Type
to switches (rename to new custom type).

v: Click on s1 (Avalon Memory-Mapped Slave) and
change Associated Reset: from none to reset.

vi: If there are still errors or warnings, fix them by the
process outlined above.

d: Click on the Block Symbol tab. You should see all the signals
in your entity that have now been interpreted correctly as shown
in Fig. 6.4.

Fig. 6.4: HPS_LED_Patterns component in Platform Designer with signals inter-
preted correctly

e: Click the Finish. . . button. It will ask you if you want to save the
.tcl script HPS_LED_patterns_hw.tcl to your project directory.
Click Yes,Save. The .tcl file is what allows the new custom
component to show up in the IP Catalog panel when Platform
Designer opens.

Step 4: In Platform Designer and in the IP Catalog panel, under Project, you
should now see the new component name HPS_LED_patterns.

a: Add the component to the Platform Designer system.
i: Click on HPS_LED_patterns in the IP Catalog panel.
ii: Click on the “+ Add. . . ” button.
iii: Click Finish.

68 6 Introduction to Intel Quartus Prime

b: Scroll down so you see the component and the bus/signal con-
nection options.

i: Connect clock to clk. Highlight clk by clicking on clk
in the clk_hps component. In gray, you will see that
this can be connected to clock. Click on the small cir-
cle to make this connection, which will turn the circle
black. Since we are adding the memory-mapped in-
terface to the lightweight HPS bus, the clock really
needs to be connected to the same clock that is feed-
ing the h2f_ls_axi_clock clock input signal in the hps
component, which in this case is clk from clk_hps.

ii: Connect reset to clk_reset Highlight clk_reset by
clicking on it in the clk_hps component. In gray, you
will see that this can be connected to reset. Click on
the small circle to make this connection.

iii: Connect the memory-mapped interface s1 to the
h2f_lw_axi_master port that is on the hps compo-
nent. This connects the components registers to the
lightweight HPS bus.

iv: On the line that says export in the Name column
and also Conduit in the Description column for the
HPS_LED_patterns component, double click where
it says Double click to export. Rename this ex-
port signal name from hps_led_patterns_0_export to
led_patterns (Fig. 6.5).

Fig. 6.5: Exporting the led_patterns signal in Platform Designer

c: The base address for the Platform Designer system will likely
not be correct, and you will see an error saying that the com-
ponent overlaps another component. Change the Base Address
of the HPS_LED_patterns component in Platform Designer by
selecting in the menu System →. Assign Base Addresses. Make
a note of the base address of the HPS_LED_patterns component
since you will be using this information later. You will notice
that there are two components with the same base address of 0.
This is OK since they are on different buses.

d: Click the Platform Designer button Finish that is found at the
lower right corner of Platform Designer, which will save the
Platform Designer design. Click close when it is done saving.

6.3 System Console 69

Click Yes to regenerate the Platform Designer System, which
will take several minutes.

e: A pop-up window will remind you that the generated .qip file
needs to be added to the project. However, this has already been
done for you. Click “OK.”

Step 5: From the Platform Designer menu bar, select Generate →. Show Instan-
tiation Template. . .

i: Select the HDL language to be VDHL.
ii: Click the Copy button and paste into a text editor. This gives

you the component declaration and instantiation template that
needs to be placed in the top level of your Quartus project.
Note: Do not actually paste this into the top level. We are
only using it to see what changed. You do not want to reenter
all the instantiation connections for the DRAM, etc.

iii: Notice that there are three new signals in the soc_system com-
ponent declaration. Add these signals into the soc_system com-
ponent declaration in DE10Nano_System.vhd.

iv: These signals need to be connected at the top level when the
component is instantiated. Connect these signals as you did in
Lab 4.

Step 6: Using Quartus, compile the design.
Step 7: Use the programmer to download the bitstream to the DE10 board.

6.2.3 Creating an Avalon Streaming Interface

This is covered in Sect. 1.2 Audio Data Streaming (page 256) in Sects. 1.2.1, 1.2.1.2,
1.2.1.3, and 1.4.1, where an Avalon Streaming Sink and Source is created in Platform
Designer for the AD1939 audio codec that is on the Audio Mini-board (Fig. 6.6).

6.3 System Console

System Console is a tool in Quartus that allows you to connect to hardware in the
FPGA fabric using the JTAG interface. This allows you to bypass the ARM CPUs but
yet interact with your hardware component as if the CPUs were reading and writing
registers in your custom component. It allows you to test your hardware before
layering software on top of it. If you created your hardware component, hooked it
up in Platform Designer, wrote C code to interact with it, and it did not work, where
is the problem? Is it your hardware or software? You could end up spending a lot of
time debugging and not even be in the right ballpark. However, if you tested your

70 6 Introduction to Intel Quartus Prime

Fig. 6.6: Data–channel–valid protocol for the Avalon Streaming Interface. Left and
right audio samples share the same data bus. The valid signal marks when there
are valid samples. The channel signal tells which channel (left or right) the sample
belongs to. When the FPGA fabric system clock is 98.304 MHz, the valid signal is
asserted every 2048 system clock cycles when the sample rate of the AD1939 audio
codec is 48 kHz. The ready signal is not used since the downstream components
can handle the sample rate by design (no back pressure needed to stall upstream
components). The error signal is not used in audio processing designs in the book.
Source/sink block diagram from [1]. Signal waveforms were created by WaveDrom
[2], and the associated JSON file can be seen here

custom component with System Console and verified that the hardware was working
correctly, you would know that it was your software that was the problem if you
could not interact with your component. Note: The example used in this section is
associated with Lab 7.

6.3.1 The General Flow for Using System Console

The general procedure for using System Console is outlined below. More information
on using System Console can be found in the User Guide. The overview steps for
using System Console are (further details follow):

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/avalon/avalon_streaming.json
https://www.intel.com/content/www/us/en/docs/programmable/683819/21-3/introduction-to-system-console.html

6.3 System Console 71

Step 1: Add the required components to Platform Designer. At a minimum, this
includes two components:

1: Your custom component that you are testing, which has a
memory-mapped Avalon interface

2: The JTAG to Avalon Master Bridge component

Step 2: In Platform Designer, connect the host interface of the JTAG to Avalon
Master Bridge to the memory-mapped interface of your custom compo-
nent.

Step 3: Regenerate the Platform Designer system with the new components and
compile the design in Quartus.

Step 4: Connect the board and program the FPGA.
Step 5: Start System Console (In Quartus: Tools → System Debugging Tools

→ System Console).
Step 6: Locate and open a master service path (details in Sect. 6.3.3).
Step 7: Perform the desired operations, which typically involve reading and

writing register memory locations in order to test the custom component.
Step 8: Close the master service.

6.3.2 Modifying the Design in Platform Designer

Open Platform Designer and load your system from Lab 6. In the IP Catalog panel
(upper left in Platform Designer) and under the Library section, select and add the
JTAG to Avalon Master Bridge component to your Platform Designer system. This
component can be found in the Library at: Library → Basic Functions → Bridges
and Adapters → Memory-Mapped → JTAG to Avalon Master Bridge as shown in
Fig. 6.7.

Fig. 6.7: Location of JTAG to Avalon Master Bridge component in Platform De-
signer’s library

72 6 Introduction to Intel Quartus Prime

When you add the component, rename it to jtag_mm1 since we will need to refer
to its name later, and it is possible to have more than one of these components (e.g.,
if one had more than one clock domain), which is why we have the 1 suffix and
mm stands for memory-mapped. In Platform Designer, connect up the jtag_mm1
component in the following manner:

Connection 1: clk of jtag_mm1 ↔ clk of clk_hps (i.e., the clock being fed to
the component under test).

Connection 2: clk_reset of jtag_mm1 ↔ clk_reset of clk_hps (i.e., the reset
being fed to the component under tested).

Connection 3: master of jtag_mm1 ↔ s1 (memory-mapped interface of your
component that is most likely named HPS_LED_patterns_0).
The memory-mapped interface s1 will also be attached to the
HPS bus signal h2f_lw_axi_master in the HPS component, so
you will be connecting to the lightweight bus as well.

Connection 4: Leave the master_reset of jtag_mm1 unconnected.

Regenerate the Platform Designer system and recompile the system in Quartus.
This accomplishes steps Step 1: to Step 3: in Sect. 6.3.1.

6.3.3 Using System Console

After the system has been:

1: Compiled by Quartus
2: The DE10-Nano board powered
3: The configuration bitstream downloaded to the FPGA fabric

Start System Console, which can be started in two ways:

Method 1: From within Platform Designer: Tools → System Console
Method 2: From within Quartus: Tools → System Debugging Tools → System

Console

System Console uses the scripting language Tcl, or Tool Command Language,
which is pronounced tickle. One can create Tcl scripts that automate testing and
data collection. Scripts can also graph data in System Console (using Tk). More
information on Tcl (and Tk) can be found at: Tcl main page and Learning Tcl.

We will use several Tcl commands, which will be explained as we use them. Tcl
command explanations will be contained in the grey colored text box, and System
Console interactions will be shown in the light blue colored text box.

Type the following command in the Tcl Console window in System Console:

% get_service_paths master

Listing 6.5: System Console Tcl Command: get_service_paths master that lists all
the master services available

http://wiki.tcl.tk/
http://wiki.tcl.tk/298?redir=20789

6.3 System Console 73

which could result in the output:

/devices/5CSEBA6(.|ES)|5CSEMA6|..@2#USB-1#DE-SoC/(link)/JTAG/

�

↪→alt_sld_fab_sldfabric.node_1/phy_0/f2sdram_only_master. �

↪→master
/devices/5CSEBA6(.|ES)|5CSEMA6|..@2#USB-1#DE-SoC/(link)/JTAG/

�

↪→alt_sld_fab_sldfabric.node_2/phy_1/fpga_only_master.master
/devices/5CSEBA6(.|ES)|5CSEMA6|..@2#USB-1#DE-SoC/(link)/JTAG/

�

↪→alt_sld_fab_sldfabric.node_3/phy_2/hps_only_master.master

In this example (unlikely that you will see this), three JTAG to Avalon Master
Bridge components show up. This means that you would need to know which master
to select and connect to.

Our design is different, and we are only interested in jtag_mm1 since it is the
JTAG to Avalon Master Bridge we added and connected to the memory-mapped port
of HPS_LED_patterns_0. If you have multiple masters, you need to determine what
index to use to select jtag_mm1. (Note: The masters are listed and indexed starting
from index 0). This is why we gave it a specific name jtag_mm1 when we added it to
Platform Designer, so we could easily see it in the list if there are multiple masters.
In the following example, we will assume that it is the first master listed with an
index of zero. If not, use the appropriate index value.

Understanding the Tcl command: get_service_paths <service-type>
System Console uses a virtual file system to organize the available services.

Board connection, device type, and IP names are all part of a service path. In-
stances of services are referred to by their unique service path in the file system.
You get the paths for a particular service with the command get_service_paths
<service-type>.

System Console automatically discovers most services at startup where it
scans for all JTAG and USB-based service instances and collects these service
paths.

The Tcl Command: get_service_paths master looks for master service
types and returns all that are found.

In the Tcl Console window type:

% lindex [get_service_paths master] 0

which will result in

/devices/5CSEBA6(.|ES)|5CSEMA6|..@2#USB-1#DE-SoC/(link)/JTAG/

�

↪→alt_sld_fab_sldfabric.node_2/phy_1/jtag_mm1.master

The Tcl command has selected the jtag_mm1.master service, which has an index
of 0 in the list.

74 6 Introduction to Intel Quartus Prime

Understanding the Tcl command: lindex [get_service_paths master] 0
The Tcl Command: lindex is a built-in command that retrieves an element

from a list.
The Tcl syntax: [] (square brackets) allows a script to be embedded at

any position of any word by enclosing it in brackets. The embedded script is
passed verbatim, without any processing, to the interpreter for execution, and
the result is inserted in its place in the embedding script. This means that [
get_service_paths master] will get executed, which results in a list that is
used by lindex.

Thus the Tcl Command: lindex [get_service_paths master] 0 first finds
all the master service paths and returns them in a list, which is then used by
lindex to select element 0, which is the master service associated with the first
master listed, which in our case is jtag_mm1.

Let us create a variable in Tcl that contains this information since we do not want
to type:
/devices/5CSEBA6(.|ES)|5CSEMA6|..@2#USB-1#DE-SoC/(link)/JTAG/

�

↪→alt_sld_fab_sldfabric.node_2/phy_1/jtag_mm1.master

every time we want to use jtag_mm1. Let us save this in a variable called m, so
now type:

% set m [lindex [get_service_paths master] 0]

Listing 6.6: The set command saves the selected service path to the variable m.

Understanding the Tcl command: set
set is a built-in command that reads and writes variables. It returns the

value of the variable named varName or, if a value is given, stores that value
to the named variable, first creating the variable if it does not already exist.

This means that the Tcl Command: set m [lindex [get_service_paths
master] 0] extracts a list item as described earlier and creates a variable m
that stores this path information. Note: We can see what is in the variable (i.e.,
read the variable) by just calling set with no value associated with the variable
name (an unfortunate function naming convention instead of using a keyword
like read).
In summary:
Write value to variable m: set m value
Read value from variable m: set m

To see what m now contains type:

% set m

6.3 System Console 75

which returns:

/devices/5CSEBA6(.|ES)|5CSEMA6|..@2#USB-1#DE-SoC/(link)/JTAG/

�

↪→alt_sld_fab_sldfabric.node_2/phy_1/jtag_mm1.master

Since System Console services are contained in a virtual file system, we first need
to open the file or service to use it.

Let us now open this master service for jtag_mm1, so type:

% open_service master $m

Listing 6.7: Services in System Console are virtual files that need to be opened to be
used.

Understanding the Tcl command: open_service master $m
The Tcl Command: open_service <service_type> <service_path> is

a built-in command that opens a service of <service_type> pointed to by the
path <service_path>.

The Tcl syntax: $name When $ occurs in a word and is followed by a
sequence of standard ASCII characters and that sequence is the name of a
variable, the value of the variable replaces the $ and the variable name. This
means that $m is replaced by the service path to jtag_mm1.

Thus the Tcl Command: open_service master $m opens a master service
with the path specified in $m that points to jtag_mm1.

We can now read the registers we have created in our custom component. Re-
call from Lab 6 that Register 0 is the HPS_LED_control register, Register 1 de-
fines how many system clocks occur are one second, Register 2 is what gets dis-
played on the LEDs in software mode, and Register 3 controls the base rate of the
LED patterns when under state machine control. Also recall what base address of
HPS_LED_patterns_0 was set to in platform Designer. (If you have forgotten, you
need to open the system in Platform Designer to check the base address.) Assuming
the base address has been set to 0x0 for this example and that we want to read one
32-bit word (0x1) from Register 0, we type:

% master_read_32 $m 0x0 0x1

Listing 6.8: Reading a 32-bit word from memory.

which results in:

0x00000000

In order to figure out what memory address to type in for a particular register in
System Console for your custom component, read section 7.2 The View of Memory
from System Console (page 89).

76 6 Introduction to Intel Quartus Prime

Understanding the Tcl command: master_read_32 $m 0x0 0x1
The Tcl Command: master_read_32 <service_path> <base_address>

<number_of_32-bit_words> is a built-in command that uses the ser-
vice pointed to by <service_path> that reads from memory starting at
<base_address> and reads <number_of_32-bit_words>.

Thus the Tcl command: master_read_32 $m 0x0 0x1 uses jtag_mm1
to read from memory location zero and reads one 32-bit word.

Register2 should be a read/write register, so let us first see what is in the register
and then write a new value to the register. Since our commands start at the base
address, we need to read three 32-bit words. Type the command:

% master_read_32 $m 0x0 0x3

which results in:

0x00000000 0x00000000 0x00000000

We see that register 2 (third value since we are counting from Register 0) has
returned a zero. Let us write a value of 1 to register 2 (and zeros to registers 0 and
1) by typing the command:

% master_write_32 $m 0x0 0x0 0x0 0x1

Listing 6.9: Writing three 32-bit values to memory.

Understanding the Tcl command: master_write_32 $m 0x0 0x0 0x0
0x1

The Tcl Command: master_write_32 <service_path>
<base_address> <list_of_32-bit_values> is a built-in command that
uses the service pointed to by <service_path> that writes to memory starting
at <base_address> and writes all the values in <list_of_32-bit_values>.

Thus the Tcl command: master_write_32 $m 0x0 0x0 0x0 0x1
uses the jtag_mm1 connection to write to memory location starting at zero
the three values in the list (0x0 0x0 0x1). This means we will set Register0 =
0, Register1 = 0, Register2 = 1.

Now if we read our registers by typing the command:

% master_read_32 $m 0x0 0x3

we can see that Register 2 has been set to 1:

0x00000000 0x00000000 0x00000001

6.3 System Console 77

Once we are done testing the Platform Designer component by reading and writing
registers, we close the service by typing:

% close_service master $m

Listing 6.10: Closing the service.

6.3.4 Summary of System Console Commands

The steps for interacting with the registers in your component are:

Step 1: Add a JTAG to Avalon Master Bridge component to your Platform De-
signer system, name it a recognizable name such as jtag_mm1, and
connect it to the slave port of the component that contains the regis-
ters that you want to interact with. Pay attention to the base_address
of the component since you will need this address for System Console
commands.

Step 2: Get the list of all the master services in System Console by typing the
command:

% get_service_paths master

and note what the index is for jtag_mm1. (Note: The index values start
at zero.)

Step 3: Save the service path for jtag_mm1 in the variable m (here we assume
the index value is zero) by typing the command:

% set m [lindex [get_service_paths master] 0]

Step 4: Open the service by typing the command:

% open_service master $m

Step 5: Read the 32-bit registers by typing:

% master_read_32 $m <address> <number_of_words>

Step 6: Write to the registers by typing:

% master_write_32 $m <address> <list_of_words>

Step 7: Close the service by typing:

% close_service master $m

78 6 Introduction to Intel Quartus Prime

6.4 Creating IP in Quartus

6.4.1 Creating a ROM IP Component

When designing a digital system, we put together various logic building blocks. We
would like to avoid having to create every building block ourselves, so this is where
the Quartus IP Catalog is helpful. We can select and use various building blocks
from a library of commonly used blocks. In this example, we will create a ROM that
has the memory size and values of our choosing. The ROM that we will create is
used in Sect. 8.4 where we create and verify a hardware component that computes
the reciprocal square root of a fixed-point value. The ROM is used to compute the
initial guess of the solution, which we need for successful convergence when using
Newton’s method to find the solution.

When Quartus is opened, we can see the IP Catalog on the right-hand side. If
we open the IP Catalog to Installed IP → Library → Basic Functions → On Chip
Memory, we can select different memory types as seen in Fig. 6.8. This includes the
1-PORT ROM that we will use.

Fig. 6.8: Selecting a ROM from the Quartus IP Catalog

However, before we create this 1-PORT ROM using the IP Catalog, we first need
to create a Memory Initialization File (.mif) that specifies what should be in this

6.4 Creating IP in Quartus 79

memory. Otherwise, when the Quartus MegaWizard that creates this ROM asks us
for this file, it will complain if we do not have it ready.

6.4.1.1 Creating the ROM Memory Initialization File

The memory initialization file that we need to create can be seen in Listing 6.11
where only the first 15 lines are shown (click here for the full file listing). The file
starts with a header that describes the file contents. The DEPTH parameter specifies
how many memory words are there in the file, and this needs to be a power of
two. The WIDTH parameter specifies how many bits are in each memory word. The
ADDRESS_RADIX parameter specifies in what radix the memory addresses will be
written. In this file, it is specified as BIN or binary. Other possible radix options are
DEC, OCT, or HEX. We use binary in this specific case since the binary address
relates directly to a fractional word slice in our design, and it is easier to compare this
VHDL signal slice with the associated memory address when it is in a binary radix.
The DATA_RADIX parameter specifies in what radix the data or memory values
will be written. In this file, it is specified as BIN or binary. The CONTENT and
BEGIN parameters mark where the (address : value) pairs start. Address specifies
the memory address where the paired value will be stored at. Comments can follow
the (address : value) pair, and they start with two dashes. After all the (address :
value) pairs have been listed, there is the final END parameter.

1 DEPTH = 256;
2 WIDTH = 12;
3 ADDRESS_RADIX = BIN;
4 DATA_RADIX = BIN;
5 CONTENT
6 BEGIN
7 00000000 : 100000000000 -- 1 : (1)^(-3/2) = 1
8 00000001 : 011111110100 -- 2 : (1.0039)^(-3/2) = 0.99414
9 00000010 : 011111101000 -- 3 : (1.0078)^(-3/2) = 0.98828

10 00000011 : 011111011101 -- 4 : (1.0117)^(-3/2) = 0.98291
11 00000100 : 011111010001 -- 5 : (1.0156)^(-3/2) = 0.97705
12 00000101 : 011111000101 -- 6 : (1.0195)^(-3/2) = 0.97119
13 00000110 : 011110111010 -- 7 : (1.0234)^(-3/2) = 0.96582
14 00000111 : 011110101111 -- 8 : (1.0273)^(-3/2) = 0.96045
15 00001000 : 011110100100 -- 9 : (1.0313)^(-3/2) = 0.95508

Listing 6.11: File Contents : ROM.mif

The memory initialization file is created using two Matlab files, which are
mif_gen.m (click here) and mif_gen_ROM_rsqrt.m (click here). The Matlab func-
tion mif_gen.m takes in four arguments.

43 function mif_gen(filename,array,memory_size ,comments)

Listing 6.12: Matlab function for generation of the memory initialization (.mif) file

The first argument filename specifies the name of the .mif file to be written. The
second argument array is an array of fixed-point objects that contain the memory
values. The third argument memory_size is a two-element vector that specifies the

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/ROM.mif
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/mif_gen.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/mif_gen_ROM_rsqrt.m

80 6 Introduction to Intel Quartus Prime

number of memory words and the size of a memory word in bits. The fourth argument
comments is optional and contains a character array of comments that will be placed
after each (address : value) pair.

In Listing 6.13, the function first checks to see if the memory size specified is
consistent with the data array.

48 if length(array) ~= memory_size(1)
49 error('Length of array passed to mif_gen() does not match

�

↪→ memory size')
50 end
51 if rem(memory_size(1),log2(memory_size(1))) ~= 0
52 error('Length of Memory should be a power of 2')
53 end
54 a = array(1);
55 if a.WordLength ~= memory_size(2)
56 error('Word length of array does not match memory size')
57 end

Listing 6.13: Error checking the function inputs

After the error checking is passed, it opens the .mif file in write mode

62 fid = fopen([filename '.mif'],'w');

Listing 6.14: Opening the file

and then writes the .mif file header as shown in Listing 6.15.

67 line = ['DEPTH = ' num2str(memory_size(1)) ';']; fprintf(fid

�

↪→,'%s\n',line); % The size of memory in words
68 line = ['WIDTH = ' num2str(memory_size(2)) ';']; fprintf(fid

�

↪→,'%s\n',line); % The size of the word in bits
69 line = ['ADDRESS_RADIX = BIN;']; fprintf(fid,'%s\n',line); %

�

↪→ The radix for address values
70 line = ['DATA_RADIX = BIN;']; fprintf(fid,'%s\n',line); %

�

↪→The radix for data values
71 line = ['CONTENT']; fprintf(fid,'%s\n',line);
72 line = ['BEGIN']; fprintf(fid,'%s\n',line); % start of (

�

↪→address : data) pairs

Listing 6.15: Creating the Memory Initialization File Header

After the file header is written, a for loop goes through the array where it constructs
the (address : value) pairs. It creates a fixed-point object for the address and places this
in the line string. It then concatenates this address string with the binary string of the
associated value. If comments are supplied, it concatenates the comment associated
with the pair and writes it to the file. Otherwise, it adds a generic comment.

77 address_bits = log2(memory_size(1));
78 for index = 1:memory_size(1)
79 address = fi(index-1,0,address_bits ,0);
80 a = array(index);
81 line = [address.bin ' : ' a.bin];

6.4 Creating IP in Quartus 81

82 if nargin <= 3
83 line = [line ' -- array(' num2str(index) ') = '

�

↪→num2str(array(index))];
84 else
85 line = [line comments(index ,:)];
86 end
87 fprintf(fid,'%s\n',line);
88 end

Listing 6.16: The memory initialization file structure

The values for the ROM are created in the Matlab script mif_gen_ROM_sqrt.m.
As part of the computation to create the initial guess for the reciprocal square root
function, which is then refined by Newton’s method, the ROM is used as a lookup
table in place of the nonlinear function y = x−3/2, where 1 ≤ x < 2. The fractional
part of x is used as the address into the ROM.

The size of the ROM is specified by the parameters Nbits_address, which is
the size of the ROM address port, and Nbits_word_length, which is the size of
the memory words in bits contained in the ROM. These values are design choices
for the reciprocal square root hardware component that affect the precision of the
computation. However, the memory does not need to be large, in terms of either the
number of words or the word size in bits, because we do not need fine precision for
the starting point y0 for Newton’s method. We just need a rough guess that will be
refined by the Newton iterations.

34 Nbits_address = 8; % address size
35 Nbits_word_length = 12; % size of word in memory (number

�

↪→of bits)
36 Nbits_word_fraction = Nbits_word_length -1; % The number of
�

↪→fractional bits in result.
37 Nwords = 2^Nbits_address; % Number of words in

�

↪→memory

Listing 6.17: Defining the memory size

Since the address into the ROM comes from the fractional bits of x, where
1 ≤ x < 2, we need to generate all the possible address values for this ROM.
We do this as shown in Listing 6.18 by creating an index i that goes from 0 to
2Nbits_address −1. We then create a fixed-point object from the index value with the
value interpreted as an unsigned integer (S= 0, W=Nbits_address, F= 0) and get
the binary string that represents the memory address (fa_bits). The implicit value
that this address represents is x that has a 1 in the one’s place. We get this value
by creating a fixed-point object container (value is temporarily zero) and where the
interpretation is W = Nbits_address + 1 and F = Nbits_address. We then prefix
a “1” to the address string and assign it to this fixed-point container, which gives
us the value x that we want when Matlab makes the assignment and updates the
fixed-point object.

The next step is to get the value y = x−3/2. This is simply done by converting the
fixed-point object fb to a double and raising it to the −3/2 power. We then convert y

82 6 Introduction to Intel Quartus Prime

back to another fixed-point object a with the interpretation we want to place in the
ROM (W=Nbits_word_length, F=Nbits_word_fraction). This fixed-point object is
then stored in the array of all the fixed-point objects. We also create comments that
explain what this memory location represents.

39 for i=0:(Nwords -1) % Need to compute each memory entry (i.e

�

↪→. memory size)
40 fa = fi(i,0,Nbits_address ,0); % fixed point object for

�

↪→address
41 fa_bits = fa.bin; % Memory Address as a

�

↪→binary string
42 fb = fi(0, 0, Nbits_address+1, Nbits_address); % Set

�

↪→number of bits for result, i.e. we are creating the �

↪→ value 1.address_bits
43 fb.bin = ['1' fa_bits]; % set the value using the binary

�

↪→ representation. The address is our input value 1

�

↪→<= x_beta < 2 where the leading 1 has been added.
44 a = fi(double(fb)^(-3/2),0,Nbits_word_length ,

�

↪→Nbits_word_fraction); % compute (x_beta)^(-3/2)

�

↪→and convert to fixed-point with the desired number �

↪→of fraction bits
45 array(i+1) = a;
46 comments = char(comments, [' -- ' num2str(i+1) ' : ('

�

↪→ num2str(double(fb)) ')^(-3/2) = ' num2str(a)]);
47 end

Listing 6.18: Creating the memory array

Having created everything we need for the memory initialization file, we can
specify the file name we want (“ROM”) and then pass the array we created along
with the memory size and comments to mif_gen to have it create the memory
initialization file.

53 filename = 'ROM';
54 memory_size = [Nwords Nbits_word_length];
55 mif_gen(filename,array,memory_size ,comments)

Listing 6.19: Generating the ROM values

We then save the array of fixed-point objects into a .mat file so that we can easily
access the ROM values in Matlab by loading in the .mat file when we perform
verification of any component that uses the ROM. Otherwise, we would have to
parse the .mif file.

62 save([filename '.mat'], 'array')

Listing 6.20: Saving the ROM values in a .mat file

6.4 Creating IP in Quartus 83

6.4.1.2 Creating the ROM IP

Now that we have the memory initialization file we need, we can go ahead and create
the ROM IP in Quartus. With the IP Catalog opened as in Fig. 6.8, double click on
ROM: 1-PORT. A window pops up that asks us what we should name the ROM IP
that will be created and where the generated files should be placed. Note 1: It will be
easiest if you first open a project that has already been created that targets the DE10-
Nano when you create this ROM since we want to target the Cyclone V. The location
would then be this project folder (you do not need to add the IP component to the
project). Note 2: Copy the ROM.mif memory initialization file into this directory.
Name the IP variation ROM and select VHDL as the generated file type. When you
click OK, the window in Fig. 6.9 pops up (it may take a few moments to appear).

Fig. 6.9: Defining the ROM IP Memory Size

In the first panel, we select the memory size, which must be the same size as
the memory initialization file we created. The first question How wide should the
“q” output bus be? needs to be the same as what we set Nbits_word_length to
in mif_gen_ROM_rsqrt.m, which in this example is 12 bits. The second question
How many 12-bit words of memory? needs to be consistent with Nbits_address,
specifically 2Nbits_address , which in this example is 28 = 256 memory words.

For the question What should the memory block type be?, keep it as Auto, so that
the fitter can select whatever memory type is available. Keep the clocking method

84 6 Introduction to Intel Quartus Prime

as single clock since we are not using the memory in a design with multiple clock
domains. Click Next to go to the next panel (Fig. 6.10).

Fig. 6.10: Registering the ROM Output in the Quartus MegaWizard

In the next panel, where it asks the question Which ports should be registered?,
make sure that the selection “q” output port is selected. Typically, we will always
choose to have the inputs and outputs registered since we are interested in perfor-
mance and pipelining our designs will allow it to be clocked faster. This is because
it will shorten possible critical timing paths. The design trade-off is that it now takes
two clock cycles for the ROM output to appear when we send in an address. Keep
this two clock cycle latency in mind when you are using the ROM. We do not need
any other control signals, so leave the other options unchecked. Click Next to go to
the next panel (Fig. 6.11).

This next panel is why we first created the memory initialization file and put it in
the directory where we are creating the ROM. Type in the file name, which in this
example is ROM.mif. Click Next to go to the next panel (EDA), which you can skip
so Click Next again (Fig. 6.12).

In the final panel, select both the VHDL component declaration file (ROM.cmp)
and the instantiation template file (ROM_inst.vhd) so that both these files will be
generated when ROM.vhd is generated. The file ROM.cmp (click here for file) is
shown in Listing 6.21. The file ROM_inst.vhd (click here for file) is shown in
Listing 6.22. This allows you to conveniently cut and paste both the component
declaration and instantiation template into your design. Click Finish to generate the
ROM IP.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/ROM.cmp
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/ROM_inst.vhd

6.4 Creating IP in Quartus 85

Fig. 6.11: Specifying the Memory Initialization File in the Quartus MegaWizard

Fig. 6.12: Creating the Component Declaration and Instantiation Files in the Quartus
MegaWizard

Note: The ROM.qip file that is generated is what you add to your Quartus project
to be able to use the ROM IP. You can also just add the file ROM.vhd to your Quartus
project. To use the ROM IP, you first need to declare the component in your VHDL
code (before the begin statement) as shown in Listing 6.21.

17 component ROM
18 PORT
19 (
20 address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
21 clock : IN STD_LOGIC := '1';
22 q : OUT STD_LOGIC_VECTOR (11 DOWNTO 0)
23);
24 end component;

Listing 6.21: Declaring the ROM Component

86 6 Introduction to Intel Quartus Prime

You would then instantiate the ROM component in your VHDL code (after the begin
statement) and hook it up to the appropriate signals in your design as shown in
Listing 6.22.

5 ROM_inst : ROM PORT MAP (
6 address => address_sig ,
7 clock => clock_sig ,
8 q => q_sig
9);

Listing 6.22: Instantiating the ROM Component

References

1. Intel, Avalon Interface Specifications. https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf.
Accessed 01 Mar 2022

2. WaveDrom, WaveDrom Digital Timing Diagram everywhere. https://
wavedrom.com/. Accessed 01 Mar 2022

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://wavedrom.com/
https://wavedrom.com/

Chapter 7
Introduction to Memory Addressing

The ARM CPUs in the Cyclone V SoC FPGA are 32-bit CPUs and can only address
memory in the range from 0x00000000 to 0xFFFFFFFF (4 GB). The SoC FPGA
contains a number of memory-related devices and peripherals, and the view of
memory in the SoC FPGA depends on the particular device vantage point. This is
illustrated in Fig. 7.1.

Of particular interest to the designs in this book are the far right column that is
labeled MPU and the annotated row labeled Lightweight Bridge. The MPU column
is what the ARM CPUs see in terms of memory. Notice that all the peripherals and
memory bridges are located above 0xC0000000, which places them under control of
the Linux kernel that is running in the MPU. The Lightweight Bridge is the address
range starting at 0xFF200000, and this is where the registers of our custom hardware
are memory-mapped.

7.1 The View of Memory from the ARM CPUs and Platform
Designer

When custom hardware is placed in the FPGA fabric, the control registers for the
custom component are connected to the lightweight bus in Platform Designer as
shown in Fig. 7.2. Platform Designer will assign a “base address” to the custom
component, but in reality this is an offset to the lightweight bridge address of
0xFF200000. How the memory addressing is calculated for registers in custom
hardware is given in Sect. 7.1.1.

The view of memory that the ARM CPUs see is shown in the right column of
Fig. 7.1. Of particular interest is the location of the lightweight HPS-to-FPGA AXI
bridge that is located at memory address 0xFF200000 and ends at 0xFF3FFFFF
having a span of 2 MB where the bridge address width is 21 bits. It is within this
address range that our control registers will exist when our custom hardware com-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_7

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_7

88 7 Introduction to Memory Addressing

Fig. 7.1: SoC FPGA multiple views of memory. Custom hardware that is attached to
the lightweight bus (LW H-to-F) is accessed through the lightweight bridge that has
a base address of 0xFF200000. Figure adapted from [1]

ponent is attached to the HPS bus signal h2f_lw_axi_master in the HPS component
in Platform Designer.

7.1.1 Memory Addressing for Registers on the HPS Lightweight Bus

In Platform Designer, the term “Base Address” for the custom component is mis-
leading since it is the base address on the bus that it is attached to. In reality, it is
an offset to the address of the lightweight HPS-to-FPGA AXI bridge that has an
address of 0xFF200000.

The register address calculation for your custom component when using C on
Linux running on the ARM CPUs is:

7.2 The View of Memory from System Console 89

Fig. 7.2: Memory Addressing of Custom Component

Register[i] = Lightweight Bridge Address + Component Address + i ∗ 4 (7.1)
where i = [0...N − 1] (7.2)

N = Number of Registers (7.3)

where you take the base address of the component that has been assigned by Platform
Designer and add the appropriate number of register offsets that are 4 bytes since the
sizes of the registers that have been created are assumed to be 32 bits. The number
of registers N is determined by the components address width W in the entity, i.e.,
N = 2W .

Thus Register[3] in the example shown in Fig. 7.3 has the physical memory
address:

Register[3] = Lightweight Bridge Address + Component Address + i ∗ 4 (7.4)
= 0xFF200000 + 0x4100 + 3 ∗ 4 (7.5)
= 0xFF200000 + 0x4100 + 0xC (7.6)
= 0xFF20410C (7.7)

7.2 The View of Memory from System Console

The view of memory that System Console sees is taken from the perspective of the
attached JTAG to Avalon Master Bridge component and is shown in Fig. 7.4. The

90 7 Introduction to Memory Addressing

Fig. 7.3: Component Register Addressing from ARM CPUs

memory addressing is relative to this JTAG to Avalon Master Bridge. This means
that the component that you are testing needs to be attached to the same bus as the
JTAG to Avalon Master Bridge component. See Sect. 6.3.2 Modifying the Design
in Platform Designer (page 71) on how to add this component to your Platform
Designer system.

In Platform Designer, the term “Base Address” can be a bit misleading since it is
the base address on the bus that it is attached to. In the System Console case, this is
all we need to know since the JTAG to Avalon Master Bridge component will see
the component under test at this address. This is different from the ARM CPU case
as illustrated in Fig. 7.3.

The register address calculation for your custom component when using System
Console is:

7.2 The View of Memory from System Console 91

Register[i] = Base Address given by Platform Designer + i ∗ 4 (7.8)
where i = [0...N − 1] (7.9)

N = Number of Registers (7.10)

where you take the base address of the component that has been assigned by Platform
Designer and add the appropriate number of register offsets that are 4 bytes since the
sizes of the registers that have been created are assumed to be 32 bits. The number
of registers N is determined by the component address width W in the entity, i.e.,
N = 2W .

Thus Register[3] in the example shown in Fig. 7.4 has the physical memory
address:

Fig. 7.4: Component Register Addressing from System Console

92 7 Introduction to Memory Addressing

Register[3] = Base Address given by Platform Designer + i ∗ 4 (7.11)
= 0x4100 + 3 ∗ 4 (7.12)
= 0x4100 + 0xC (7.13)
= 0x410C (7.14)

Reference

1. Intel, Cyclone V Hard Processor System Technical Reference Man-
ual. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/cyclone-v/cv_5v4.pdf. Figure 8-4, Address Maps for System
Interconnect Masters, page 8-6, Accessed 23 June 2022

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

Chapter 8
Introduction to Verification

8.1 Design Assumptions

8.1.1 Synchronous Designs

Our working assumption is that the system we are creating is a synchronous digital
system where all signals change in lockstep to the system clock. This is why you
should always use the rising_edge() function in your VHDL designs when you create
a process in VHDL. You should get into the habit of always writing if rising_edge(clk)
right after begin in a process(clk) statement as shown in Listing 8.1 (unless you have
a very good reason to do otherwise).

1 my_process_name : process(clk)
2 begin
3 if rising_edge(clk) then
4 <...VHDL code here...>
5 end if;
6 end process;

Listing 8.1: Synchronous VHDL process using the rising_edge() function. You
should always write if rising_edge(clk) right after begin in a process(clk) statement

8.1.2 Hierarchical Designs

We are assuming a hierarchical design process where larger components are com-
prised of smaller ones. If you waited till the very end and your complicated system
did not work, where would you find the error? It would be hard to find. Systems
using SoC FPGAs are even more complex and harder to debug than your typical
computer system because you are developing both the underlying hardware and the
software that uses your hardware. If the system breaks, the problem could exist in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_8

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_8

94 8 Introduction to Verification

your hardware or in the software using your hardware. Thus to reduce the time you
spend debugging, it is important to verify that your building blocks are correctly
created before you use them.

A systematic design approach is to design small components and make sure they
are correct before moving on. It is tempting to jump in and starting using them right
away, but this approach will in the end cause you to waste a lot of time debugging
the system that could have been avoided if you tested and verified right after creating
a building block. (Yes, I have been guilty of this myself.) If you verify the building
blocks as you create them, then when you create a larger component, and it does not
work, you know the error is unlikely to be coming from the smaller components, but
rather in how you are using them in the larger component.

8.1.3 VHDL Code Formatting

When you write code, it is good to follow a style guide. This can help reduce coding
mistakes. Here we present how to use Python to format your VHDL code using the
VSG package.

There are many Python Integrated Development Environments (IDEs) (List of
Python IDEs), so if you already have your own Python environment, then use that
one. If not, then we give PyCharm as a suggested Windows environment and give
the steps to set it up to format VHDL code. The steps are:

Step 1: Install the PyCharm Community Edition. (Download Link)
Step 2: In PyCharm, install the VHDL Style Guide (VSG) package. You can

do this in PyCharm by opening a terminal window and entering the
command pip install vsg.

> pip install vsg

Step 3: Create a project in PyCharm (suggested project name = vsg). Having a
project ready to open and run on a file will make it convenient to use.

Step 4: Add the VHDL style guide adsd_vhdl_style.yaml to the project folder.
Change any style rules in the file if so desired. It will work fine as is.

Step 5: Add the Python script format_vhdl_file.py to the project folder and make
the following edits in the file:

Edit 1: Add the name of your VHDL file (line 18) that you want to
format or check.

Edit 2: Add the path to your VHDL file (line 19).
Edit 3: Add the path to the .yaml file you downloaded in step 4. (It

will be the path to the vsg project directory.)

Step 6: Run the python script format_vhdl_file.py, and fix any errors and warn-
ings in your VHDL file. Repeat until there are no errors or warn-
ings. If you disagree on what a warning or error should be, modify

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.jetbrains.com/pycharm/download/#section=windows
https://vhdl-style-guide.readthedocs.io/en/latest/installing.html
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/python/vsg/adsd_vhdl_style.yaml
https://vhdl-style-guide.readthedocs.io/en/latest/rules.html
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/python/vsg/format_vhdl_file.py

8.2 Verification 95

the file adsd_vhdl_style.yaml accordingly and rename it something like
my_style.yaml.

8.2 Verification

8.2.1 Why Verify?

Computer systems are arguably one of the most complicated systems to develop,
and it is easy to introduce errors in the design process. A design goal is to minimize
errors, while you are developing a system, and it is best (and cheaper) to find potential
errors right away, rather than having your customers find them for you. This is why
you should test and verify your code and digital logic building blocks as you develop
them.

8.2.2 Verification Process

Here we assume that you have just finished creating a VHDL component that you
wish to verify. The process is to send values, known as test vectors through the
component, and check if the results are correct. But how do you know what the
correct result should be? Well, in our case, we will use Matlab and create a Matlab
function that should produce the same output as the VHDL component. Then if
both the VHDL and Matlab code agree with each other, we are pretty certain that
the component is correct. Theoretically, it is possible to make the same mistake in
two different languages where the same mistake manifests itself over all the test
cases. However, the probability of this actually happening is pretty close to zero. The
verification process shown in the following examples assumes that you have both
ModelSim and Matlab installed on your system.

Two examples are provided that illustrate the verification process. Example 1
performs a simple VHDL component verification using the file input.txt for the input
test vectors, and the results are written to the file output.txt. Matlab is used to generate
the test vectors contained in the input file and then to verify that the output is correct.

Example 2 builds upon Example 1 in two ways. The first extension is that the
number of I/O ports in the VHDL component has increased. There are two input ports
to create test vectors for and two output ports to verify. The second extension is that
there is an IP component created with the Quartus IP Wizard (a ROM memory). We
will create this ROM, generate the memory initialization file, and setup ModelSim
so that it can simulate this ROM IP component.

96 8 Introduction to Verification

Fig. 8.1: Verification Flow Diagram. ModelSim verifies the VHDL component
my_component1.vhd using the associated testbench my_component1_tb.vhd by
reading the test vectors from file input.txt and writing the results to output.txt.
The Matlab script my_test_vectors1.m is used to create the test vectors in the file in-
put.txt. Verification is performed by the Matlab scrip my_verification1.m that reads
input.txt and computes what the results should be using my_component1.m. It then
compares this output to what is in output.txt

8.3 Verification Example 1: File I/O 97

8.3 Verification Example 1: File I/O

Verification Example 1 performs verification of a simple VHDL component where
the file input.txt contains that test vectors and the results are written to output.txt.
Matlab is used to generate the test vectors and then to verify that the output is correct.

The starting point for verification is the VHDL design file that we wish to verify,
which in this example is my_component1.vhd. The verification flow is illustrated
in Fig. 8.1, which shows how all the files relate to each other. These files are listed
in Table 8.1.

Table 8.1: Files used to verify my_component1.vhd

File Description

my_component1.vhd VHDL component to be verified

my_component1_tb.vhd VHDL testbench file that verifies my_component1.vhd

my_test_vectors1.m Matlab script that creates the input test vectors and
writes them to input.txt

input.txt File that contains the input test vectors. It is created by
the Matlab script my_test_vectors1.m

output.txt File that contains the simulation results when
my_component1_tb.vhd is run in ModelSim

my_component1.m

Matlab function that computes the same results as
my_component1.vhd and can generate the same re-
sults as is found in output.txt. Verification is complete
when the Matlab function my_component1.m agrees
with the VHDL component my_component1.vhd

my_verification1.m
Matlab script that reads input.txt and runs these test
vectors through my_component1.m and compares
these results to the results found in output.txt

Note: These files can be found on GitHub (click here)

https://github.com/ADSD-SoC-FPGA/Code/tree/main/intro/verification/example1

98 8 Introduction to Verification

8.3.1 VHDL File to Verify: my_component1.vhd

The file my_component1.vhd (click here for the source file) will be the VHDL code
that we wish to verify. The entity can be seen in Listing 8.2, which has a generic
MY_WIDTH that defines the signal widths of the signals my_input and my_output.

31 entity my_component1 is
32 generic (
33 MY_WIDTH : natural);
34 port (
35 my_clk : in std_logic;
36 my_input : in std_logic_vector(MY_WIDTH -1 downto 0);
37 my_output : out std_logic_vector(MY_WIDTH -1 downto 0)
38);
39 end my_component1;

Listing 8.2: Entity of my_component1.vhd

The computation that my_component performs is to simply add 1 to the in-
put, i.e., my_output = my_input + 1. This is done by the synchronous process
my_add1_process that adds 1 to my_input on the rising edge of the clock. This
process can be seen in Listing 8.3.

54 my_add1_process : process(my_clk)
55 begin
56 if rising_edge(my_clk) then
57 my_result <= my_input + 1;
58 end if;
59 end process;

Listing 8.3: my_add1_process

To simulate a component that has multiple clock cycles of latency, we arbitrarily
delay the signal my_result three clock cycles before we send it out of the compo-
nent. The my_delay_process is shown in Listing 8.4, and this coding style is only
suitable for a couple of delays. We also use this style to illustrate the behavior
of VHDL processes. Although processes allow sequential programming, they are
still different from the usual serial programming languages. If we follow a value
through this process, on rising edge 1 of the clock, the contents of my_result are
assigned to my_delay_signal_1. On rising edge 2, my_delay_signal_1 is assigned
to my_delay_signal_2, and on rising edge 3, my_delay_signal_2 is assigned to
my_output. This ordering may look like it will not work if you are looking at it from
the perspective of a typical serial programming language, where it looks like the
value in my_result overwrites all the signals with the same value in successive order.
In a VHDL process however, the assignments do not occur till you are at the very end
of the process where they all occur “instantaneously” and in parallel (actually the
simulator has delta cycles with zero time for these assignments). Thus the behavior
of the process is that all these assignments occur simultaneously at the rising edge
of the clock. This is why in a VHDL process a signal could have several different

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_component1.vhd

8.3 Verification Example 1: File I/O 99

assignments occurring at different locations in the sequential code, but it is only the
last assignment made in the process that actually occurs when you get to the end of
the process. Since my_clock is in the sensitivity list, the process runs again when
any change in my_clock occurs, and we condition our code to run on the rising edge
of the clock to make our designs synchronous with this rising clock edge.

65 my_delay_process : process(my_clk)
66 begin
67 if rising_edge(my_clk) then
68 my_delay_signal_1 <= my_result;
69 my_delay_signal_2 <= my_delay_signal_1;
70 my_output <= my_delay_signal_2;
71 end if;
72 end process;

Listing 8.4: my_delay_process

8.3.2 VHDL Testbench File: my_component1_tb.vhd

The file my_component1_tb.vhd (click here for the source file) is the VHDL test-
bench file that verifies my_component1.vhd, which is the Device Under Test (DUT).
The signal width that is controlled by the generic MY_WIDTH is set by assigning
the constant W_WIDTH to the desired value. In this example, we will be creating
signals that are 16 bits wide.

62 constant W_WIDTH : natural := 16; -- width of
�
↪→input signal for DUT

Listing 8.5: Defining signal widths

Since our components are synchronous, we need to create a clock for our simu-
lation. We do not really care what the frequency of the clock is, just that we have
rising edges. We set the half period of the clock and create the clock signal as shown
below.

63 constant clk_half_period : time := 10 ns; -- clk

�

↪→frequency is 1/(clk_half_period * 2)
64 signal clk : std_logic := '0'; -- clock

�

↪→starts at zero

Listing 8.6: Clock definitions

Note that we need to initialize the clock to zero since we will be toggling the
clock every half period.

99 clk <= not clk after clk_half_period;

Listing 8.7: Clock creation

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_component1_tb.vhd

100 8 Introduction to Verification

The main process in this testbench is reading the test vectors from the file input.txt
and writing the results to output.txt. We start the process by first creating the local
variables for this process as seen in Listing 8.8. The variables read_file_pointer
and write_file_pointer are declared as file objects that will point to files of text
(characters) where text is a VHDL type defined in the package textio. This is why
we need to include this package at the beginning of the testbench (use std.textio.all).

Next, we create two variables line_in and line_out that are declared as line types,
and a line type is a pointer to a string. This allows us to hold the address of a string
(i.e., keep track of where the string is in memory), but it is not the string itself. To
create a place to hold the string, we create a variable input_string, and we must tell it
how many characters the string will contain. We also create the variable input_vector
of std_logic_vector type because this is the type that we want to convert the input
vectors to.

104 process
105 file read_file_pointer : text;
106 file write_file_pointer : text;
107 variable line_in : line;
108 variable line_out : line;
109 variable input_string : string(W_WIDTH downto 1);
110 variable input_vector : std_logic_vector(W_WIDTH

�

↪→-1 downto 0);
111 begin

Listing 8.8: Variables for file I/O

Using the file_open() function, we open the file input.txt in read mode, and
read_file_pointer points to this opened file. In a similar fashion, we open the file
output.txt, but in write mode, it is pointed to by our variable write_file_pointer.

113 file_open(read_file_pointer , "input.txt",

�

↪→read_mode);
114 file_open(write_file_pointer , "output.txt",

�

↪→write_mode);

Listing 8.9: Opening files

We want to read all the test vectors in the file input.txt so we create a while loop
to keep reading until there are no more input test vectors. When that happens, the
endfile() function returns true and the loop stops.

115 while not endfile(read_file_pointer) loop -- Read

�

↪→input file until end of file

Listing 8.10: While loop

The function readline() moves a line of text from the file input.txt into an internal
buffer, and it gives us the address of this buffer in the pointer line_in. We then use
the read() function where we give it the line_in pointer that points to the string in the
buffer, and it copies it into our string variable input_string. We want this string to be

8.3 Verification Example 1: File I/O 101

of type std_logic_vector so we use the conversion function to_std_logic_vector() to
perform the conversion and place it in our input_vector variable. Now we can make
the signal assignment to input_signals since they are the same type and same vector
width. Thus a line of text in input.txt has been converted into a std_logic_vector type
and placed into the input of the component under test. The line that starts with the
keyword report is used to display the values as they are being read in. If you have a
lot of test vectors, you will want to delete or comment this line out.

117 readline(read_file_pointer , line_in); -- Read a

�

↪→line from input file
118 read(line_in, input_string); -- convert

�

↪→ line to a string
119 input_vector := to_std_logic_vector(input_string

�

↪→); -- convert string to std_logic_vector
120 report "line in = " & line_in.all & " value in =

�

↪→ " & integer'image(to_integer(unsigned(

�

↪→input_vector))); -- display what is being

�

↪→read in
121 input_signal <= input_vector; -- assign to the

�

↪→input_signal going into the DUT

Listing 8.11: Reading test vectors

In parallel with a test vector being read in, we have a result vector output_signal
that we want to save to output.txt. The function write() takes our std_logic_vector
output_signal and writes it to the buffer pointed to by line_out. It converts it into
a string in the buffer, and we have to tell it how many characters to write and if it
should be right or left justified. We then write the buffer to the file with the writeline()
function.

123 write(line_out, output_signal , right, W_WIDTH);
124 writeline(write_file_pointer , line_out);

Listing 8.12: Writing results

Notice that this file I/O process does not have a sensitivity list. Instead we use wait
statements within the process. All the statements in the process do not happen until
a wait occurs, and since we want a line to be read in and converted into our input
vector and a result to be written every clock cycle, we wait until we have a rising
edge of the clock signal. If this wait was omitted, the process would run, looping
and reading in all the test vectors until it saw the next wait statement. Then the last
assignments would occur, and you would only see the last test vector in the input file
being assigned and fed into the test component.

126 wait until rising_edge(clk);

Listing 8.13: Synchronizing file I/O with clock

When done, the files are closed, and a final wait statement is written so that the
file I/O process is not restarted again during simulation.

102 8 Introduction to Verification

129 file_close(read_file_pointer);
130 file_close(write_file_pointer);
131 wait; -- we are done so don't read the file again
132 end process;

Listing 8.14: Closing files

8.3.3 Creating Test Vectors with Matlab Script my_test_vectors1.m

In our testbench, we want to verify a component that has an input that is 16 bits wide
and where these 16-bit vectors will be read from the file input.txt. We will create this
input.txt file using the Matlab script called my_test_vectors1.m (click here for the
source file)

The first parameter is Nvectors that will be the number of test vectors created.
Here it is set to 10 so the simulation will be short. Normally, you want as many test
vectors as possible while still being practical given the simulation time. Ideally you
would generate all possible input bit patterns as the test vectors, which is known
as complete coverage. However, if you had an input vector that was 128 bits wide,
complete coverage would require 2128 test vectors. If your simulator could process 232

or 4.3 billion test vectors per second, it would take 2.5 × 1019 centuries to complete
the simulation, clearly not practical. Rather you would need to sample the input range
to reduce the number of test vectors to a more manageable simulation time.

The second parameter is Component_latency that should be set to the latency of
the component being tested. This causes zeros to be written to input.txt to make sure
that the last non-zero test vector gets completely through the component before the
simulation stops.

The next parameter W controls the number of bits or word size in the test vectors.
Even though we will be using fixed-point values, we only need to know the test
vector’s width to create the input bit patterns. We do not concern ourselves with
what these bit patterns mean at this point, and so we set the number of fractional
bits to zero and make the values unsigned so we can treat the vector as an unsigned
integer when creating the test vector bit patterns.

28 Nvectors = 10; % number of test vectors to create
29 Component_latency = 3; % Add enough zeros to flush

�

↪→component pipeline
30 W = 16; % wordlength of my_input
31 F = 0; % we don't care about fraction bits so setting to

�

↪→zero
32 S = 0; % we don't care about sign bit so setting to

�

↪→unsigned

Listing 8.15: Parameter settings

In Matlab, we use the fopen() function to open the file input.txt in write mode
(W) where we will be writing the test vectors. The function returns the file identifier
that we store in the variable fid (short for file ID).

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_test_vectors1.m

8.3 Verification Example 1: File I/O 103

37 fid = fopen('input.txt','w');

Listing 8.16: Opening a file

Since the number of test vectors being generated is likely much smaller than the
number of possible test vectors, we sample a small subset from the much larger set
of all input possibilities. We treat the possible input set as a uniform distribution
and draw from this uniform distribution. We use the rng() function in Matlab to set
up the random number generator. The shuffle argument seeds the generator with the
current time, so that when each time Matlab is started up, the random numbers that
are generated will be different. The twister argument specifies to use the Mersenne
Twister algorithm. This algorithm is good enough for our purposes, and we will not
concern ourselves with finding the “best” random number generator since this is a
rabbit hole we could go down into and not come back from. We create a vector of
random integers using the randi() function. The range of the uniform distribution of
integers is specified by the interval [0 2W−1]. This is the range of unsigned integers
that gives us all possible bit patters for a word length of W. The last two parameters
1,Nvectors in randi() tell it to create a matrix of random values that has 1 row and
Nvectors columns, which is returned in the variable r. The vector r contains the
values that we will use for the test vectors.

43 rng('shuffle','twister'); % 'shuffle' seeds the

�

↪→random number generator with the current time so each �

↪→randi call is different; 'twister' uses the Mersenne

�

↪→Twister algorithm
44 r = randi([0 2^W-1],1,Nvectors); % select from a uniform

�
↪→integer distribution over all possible integers

Listing 8.17: Random coverage

We then go through all the Nvectors random values in the variable r by using
a for loop. We make use of Matlab’s Fixed-Point Designer toolbox by creating a
fixed-point object using the fi() function. The first argument in this function is the
value that will be used for the fixed-point number, which we get by indexing into our
r vector. The second argument is the sign bit S, which we set to zero for unsigned
data types. The third argument is the word length in bits, which we set to W. The last
argument is the number of fraction bits in the word, which we set to zero since we
are assuming unsigned integers. The fixed-point object is returned as the variable f.

A convenient radix conversion that is associated with these fixed-point objects
is the binary string conversion that is accessed by using the suffix .bin (.hex for
hexadecimal and .oct for octal). We can then use this string directly in our fprintf()
function to write the binary string representation directly to our test vector file
input.txt. An example of this test vector input file can be seen in input.txt (click here
for the source file) and is also shown in Listing 8.20.

49 for i=1:Nvectors
50 f = fi(r(i),S,W,F);
51 fprintf(fid,'%s\n',f.bin);

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/input.txt

104 8 Introduction to Verification

52 end

Listing 8.18: Writing binary strings

When we are done writing the test vectors to input.txt, we close the file.
65 fclose(fid);

Listing 8.19: Closing a file

1 1110100011011100
2 1100101100111000
3 1110011111010000
4 1101010111111101
5 0101000100001011
6 1101110001011110
7 1101111100100000
8 1011111010000101
9 1011100101001101

10 0011110111110110
11 0000000000000000
12 0000000000000000
13 0000000000000000

Listing 8.20: File contents : input.txt

8.3.4 Computing the Results with Matlab Function my_component1.m

When the ModelSim simulation is run, the testbench my_component1_tb.vhd pro-
duces the results in file output.txt (click here for the text file), which can also be
seen in Listing 8.21. You can see the latency of my_component1.vhd as the lines
comprised of the character “U,” which means Uninitialized. This means that Mod-
elSim is putting out values from internal signals that have not been initialized and
do not know what these values should be. When the first input finally gets through
the pipeline, we see a result showing up on line 6. If you compare output.txt with
input.txt, you can see that one has been added to all the input binary values.

1 UUUUUUUUUUUUUUUU
2 UUUUUUUUUUUUUUUU
3 UUUUUUUUUUUUUUUU
4 UUUUUUUUUUUUUUUU
5 UUUUUUUUUUUUUUUU
6 1110100011011101
7 1100101100111001
8 1110011111010001
9 1101010111111110

10 0101000100001100
11 1101110001011111
12 1101111100100001
13 1011111010000110
14 1011100101001110
15 0011110111110111
16 0000000000000001
17 0000000000000001
18 0000000000000001

Listing 8.21: File contents: output.txt

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/output.txt

8.3 Verification Example 1: File I/O 105

In order to verify that these results are correct, we need a Matlab function that
produces the same results. This function is called my_component1.m (click here for
the source file). If this Matlab function agrees with the ModelSim output produced
by my_component1.vhd, we can be confident that both the VHDL and Matlab codes
are correct.

The Matlab function declaration of my_component1.m is shown below where we
expect a fixed-point variable to be passed into the function.

27 function y = my_component1(x)

Listing 8.22: Function declaration

We want our fixed-point Matlab operations to reflect what our VHDL code is
doing. This means that we need to change the default behavior of Matlab’s Fixed-
Point Toolbox. The normal behavior is to automatically extend the word length of the
result, which is not always what we do in our VHDL code. In our VHLD code, when
we add 1 to a std_logic_vector signal, the signal size stays the same (yes, overflow
is possible). To make our fixed-point variable have the same behavior, we need to
modify the fixed-point math settings for this variable. We can do this by using the
fimath() function to create a fimath object with our desired settings and then apply
this to our fixed-point variable. We can create multiple fimath objects, each with
their own settings, and apply these to different variables. In this example, we just use
a single fimath setting and apply it to the fixed-point variable x.

36 W = x.WordLength; % Extract the word length W of input

�

↪→ variable x
37 F = x.FractionLength; % Extract the fraction length F of

�
↪→input variable x

38 Fm = fimath('RoundingMethod' ,'Floor',...
39 'OverflowAction' ,'Wrap',...
40 'ProductMode' ,'SpecifyPrecision',...
41 'ProductWordLength' ,W,...
42 'ProductFractionLength' ,F,...
43 'SumMode' ,'SpecifyPrecision',...
44 'SumWordLength' ,W,...
45 'SumFractionLength' ,F);
46 x.fimath = Fm; % Apply these fimath properties to x

Listing 8.23: Setting fimath properties

Even though we really only care about the SumWordLength property in this
example, the fimath settings shown can be used in many situations where you are
adding and multiplying in VHDL, and you want to reflect this in your Matlab
verification code. We will discuss only a few of the fimath options. A complete list
can be seen in Matlab’s fimath reference page.

The first property that is being set is RoundingMethod, which is set to Floor.
Floor causes rounding to round toward negative infinity. This is useful if you are
truncating a fixed-point value where you are taking a VHDL signal slice that is
eliminating some of the least significant fractional bits.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_component1.m
https://www.mathworks.com/help/fixedpoint/ref/embedded.fimath.html

106 8 Introduction to Verification

The next property that is being set is OverflowAction, where it can be set to either
Saturate or Wrap. Both cases can occur in your VHDL code. Wrap is more common
where you have a counter in VHDL using a std_logic_vector signal and you add 1
to the largest value (all ones in the vector), which causes it to become zero (wraps
to zero). Since this is desired behavior in many cases, you want your Matlab code to
reflect this so you would use the Wrap option in this case.

Where wrapping behavior is not desirable is when you are operating on audio
signals. A wrap will cause a large positive value to immediately turn negative (i.e.,
two’s complement overflow), and this will sound like a “pop” in your audio. If the
signal value is too large to fit into your data type, what you want to do is to clip it
to the maximum value that can be represented by the data type (fixed-point vector).
This clipping will cause harmonic distortions to occur, but this will sound much
better than a loud pop. Thus in audio applications, you would use the Saturate option
for overflow behavior of your audio signals.

The next property that is being set is ProductMode, which is set to SpecifyPre-
cision. The default behavior is FullPrecision where Matlab will automatically grow
the data type size in order to keep all of the bits after a multiplication. Here we want
to control both the word length and fraction length of the result. To control the word
length, we set ProductWordLength to W, which means we keep the same word length
as x, which we get from the fixed-point object field x.WordLength. To control the
fraction length, we set ProductFractionLength to F, which means we keep the same
fraction length as x, which we get from x.FractionLength.

You will find in audio hardware that the audio signal is kept as a fractional
data type, i.e., between [−1 1]. The reason is that after a multiplication occurs in
hardware, you can easily resize the vector just by throwing away the least significant
bits that do not fit into the vector. For example, if you had a 24-bit fractional signal and
multiply it by another 24-bit fractional signal, you could keep it as a 24-bit fractional
signal by throwing away the least significant 24 fractional bits. It is unlikely that you
could hear these bits anyway so there would be no point in keeping them around.

The next property that is being set is SumMode, which is set to SpecifyPrecision.
The default behavior is FullPrecision where Matlab will automatically grow the
data type size in order to keep all of the bits after an addition. Here we want to
control both the word length and fraction length of the result. To control the word
length, we set SumWordLength to W, which means we keep the same word length
as x where we can get it from x.WordLength. To control the fraction length, we set
SumFractionLength to F, which means we keep the same fraction length as x where
we can get it from x.FractionLength. This is how we keep the output the same length
as the input since this is the behavior of the add 1 operation in my_component1.vhd
and why the vectors in output.txt are the same length as the vectors in input.txt.

Once a fimath object has been created with the properties that we want, which are
now in the fimath variable Fm, we assign it to the x.fimath field that controls what
happens when x is used.

Finally, we add one to x where we have now specified that x should keep the
same length after addition. This results in the variable y with the same bit width as
variable x, which reflects what our VHDL code is doing.

8.3 Verification Example 1: File I/O 107

53 y = x + 1; % perform the simple add 1 computation

Listing 8.24: Adding one

8.3.5 Performing Verification with the Matlab Script
my_verification1.m

When the ModelSim simulation is run, the testbench my_component1_tb.vhd pro-
duces the results in file output.txt, which can be seen in Listing 8.21. You can see the
latency of my_component1.vhd as the lines comprised of the character “U,” which
means that ModelSim is putting out values from internal signals that have not been
initialized and do not know what these values should be. When the first input finally
gets through the pipeline, we see a result showing up on line 6. If you compare
output.txt with input.txt, you can see that one has been added to all the input values.

We want to compare what is in output.txt with what my_component1.m produces,
and we automate the comparison process using the Matlab script my_verification1.m
(click here for the source file).

The one parameter setting in my_verification1.m that needs to match the parameter
settings in my_test_vectors1.m is the test vector bit width W. The test vectors were
created with no concern as to the interpretation of these binary patterns. Now we
do care what these binary patterns mean. Thus the parameters F and S need to be
set with how we really will be interpreting these input numbers. It just so happens
that in this case we will interpret the numbers again as unsigned integers, keeping
these parameters the same, but typically this is not the case when using fixed-point
numbers.

30 Nvectors = 10; % number of test vectors created
31 Component_latency = 3; % the latency of the component being

�

↪→ tested
32 W = 16; % wordlength
33 F = 0; % number of fractional bits
34 S = 0; % signedness

Listing 8.25: Verification parameter settings

The test vectors are read in from the file input.txt as shown in the code in
Listing 8.26. The file is opened in read mode by Matlab’s fopen() function, and the
returned value assigned to the file handle fid1, which is the pointer to the input file.
The Matlab function fgetl() then reads the first line in the file and puts this in the
variable line_in.

Since we want to interpret what the binary strings in input.txt mean in terms
of numerical values, we create a fixed-point object where variable S has been set
to zero, which means the bit strings will be interpreted as unsigned numbers. W
has been set to 16, which must match the number of bits on each line as seen in
Listing 8.20. The parameter F is set to zero since our numbers are unsigned integers
and have no fractional bits. At this point, in the code, we do not care what the value

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_verification1.m

108 8 Introduction to Verification

of the fixed-point object is and we set it to zero (first argument). We will use this
fixed-point object in a bit. We are going to create an array of fixed-point objects for
each line in input.txt so we set the starting index of this array to one (index = 1;).

We create a while loop and test line_in with the function ischar(). Function fgetl()
returns the lines of text until it reaches the end of the file. When this occurs, a value
of −1 is returned, which is not a character, and this causes ischar() to return false,
stopping the while loop.

We assign the binary bit string that was read in to the fixed-point variable a. By
assigning the binary string to the .bin field of a, Matlab updates the value of a to be
consistent with the binary string and the parameters (S,W,F) that we used when we
first created this fixed-point variable.

We then assigned a to our test_vector array with the current index and display
what this value is. We increment the index for the next round and read in a new line
from the input file and the while loop starts again. When an end-of-file condition is
encountered, the loop ends and we close the input file.

When we are done reading in the test vectors from input.txt, we end up with the
Matlab array test_vectors that contains all of the test vectors where the interpretation
of the numbers given the binary strings have been controlled by the parameters
(S,W,F).

41 fid1 = fopen('input.txt','r');
42 line_in = fgetl(fid1); % read the first line in the file
43 a = fi(0,S,W,F); % interpret the bit string appropriately

�

↪→by creating a fixed-point object with appropriate �

↪→parameters
44 index = 1;
45 while ischar(line_in)
46 a.bin = line_in; % push the binary string into the fixed
�

↪→-point object where it will be interpreted with the �

↪→given S (sign), W (word length), and F (frational �

↪→bits) values
47 test_vectors(index) = a; % save this fixed-point object
48 disp([num2str(index) ' : ' line_in ' = ' num2str(a)]) %

�

↪→display what we are reading in (comment out if there �

↪→a lot of test vectors)
49 index = index + 1;
50 line_in = fgetl(fid1);
51 end
52 fclose(fid1);

Listing 8.26: Reading in the test vectors

When ModelSim writes the test vectors to output.txt, it can write any of the
characters associated with the VHDL std_logic type as seen in Listing 8.27. Since
we only want to deal with numeric values, we are going to ignore any output that has
characters other than “0” or “1.” We create a list of these nonbinary characters in the
string stdchar. We will check for these characters and ignore them, when reading in
the result vectors from output.txt.

8.3 Verification Example 1: File I/O 109

57 % 'U': uninitialized. This signal hasn't been set yet.
58 % 'X': unknown. Impossible to determine this value/result.
59 % '0': logic 0
60 % '1': logic 1
61 % 'Z': High Impedance
62 % 'W': Weak signal, can't tell if it should be 0 or 1.
63 % 'L': Weak signal that should probably go to 0
64 % 'H': Weak signal that should probably go to 1
65 % '-': Don't care.
66 stdchar = 'UXZWLH-'; % create a list of all non-binary

�

↪→std_logic characters we will ignore non-binary strings �

↪→when reading output.txt

Listing 8.27: std_logic characters

The result vectors that ModelSim produced are read in from the file output.txt as
shown in the code seen in Listing 8.28. This code is similar to reading in the test
vectors in Listing 8.26 so we will only describe the differences here. In the while
loop, we want to see if line_in contains any of the nonbinary std_logic characters.
We start by setting the variable s to zero. Then, in a for loop, we add to s the output of
the contains() function that will return 1 if line_in contains one of these nonbinary
characters as we index through all of them. If there are not any, s will remain zero, and
we assign the string to a.bin, which in turn gets saved into the array vhdl_vectors.
If the string does contain nonbinary characters, we ignore this line and print out
message that we are doing so.

73 fid2 = fopen('output.txt','r');
74 line_in = fgetl(fid2); % read first line in file
75 a = fi(0,S,W,F); % interpret the bit string appropriately

�

↪→by creating a fixed-point object with appropriate �

↪→ parameters
76 index = 1;
77 while ischar(line_in)
78 % check if the input string contains any std_logic

�

↪→characters other than the binary characters
79 s = 0;
80 for i=1:7
81 s = s + contains(line_in,stdchar(i)); % check

�

↪→line_in for each non-binary std_logic value �

↪→contains() will return 1 if it finds such a value
82 end
83 if s == 0 % s will be zero if line_in contains only 0s

�

↪→or 1s, which means we have a valid string that we �

↪→ can convert
84 a.bin = line_in; % convert binary string to fixed-

�

↪→point
85 vhdl_vectors(index) = a;
86 disp([num2str(index) ' : ' line_in ' = ' num2str(a)

�

↪→])
87 index = index + 1;
88 else

110 8 Introduction to Verification

89 disp([num2str(index) ' : ' line_in ' ~~ Ignoring

�

↪→line since it contains non-binary std_logic �

↪→characters'])
90 end
91 line_in = fgetl(fid2);
92 end
93 fclose(fid2);

Listing 8.28: Reading in the result vectors

We have now read in the test vectors from input.txt, which have been saved in the
array test_vectors, and the result vectors from output.txt, which have been saved in the
array vhdl_vectors. We next run the test_vectors values through our Matlab function
my_component1.m, producing the vector matlab_vectors as seen in Listing 8.29. If
our VHDL and Matlab codes are correct, matlab_vectors should contain the same
values as vhdl_vectors.

98 matlab_vectors = my_fxpt_function(test_vectors);

Listing 8.29: Computing the Matlab version of my_component1

The comparison of matlab_vectors with vhdl_vectors is shown in Listing 8.30. We
need to take care of one wrinkle before we can fully automate the comparison of these
vector values. We need to know where the results start showing up in vhdl_vectors;
otherwise, we will always be comparing wrong values. This is because of two things.
One, we have the latency through the VHDL component. Second, we may or may not
be ignoring initial result vectors depending on if there are initialized results (i.e., “U”
values) or if these are zero. This can be seen by inspection by comparing the starting
values of the vectors and seeing what the offset is between these two vectors. This
offset is then set in the Matlab verification code (line 105) so the verification can
then be automated for all the values in the vectors. A for loop is used to go through
all the matlab_vectors, comparing them to their associated vhdl_vectors values. A
comparison of the bit patterns is made since verification needs to be bit true, and if
the bit strings do not match, a verification error is produced for this case with the
values being printed out. If no errors are seen, the variable error_flag will remain
zero, and this will result in the final message Verification Succeeded!.

105 index_offset = 0; % set the alignment offset if needed (

�

↪→initial output.txt values might be valid and not �

↪→ignored if they contain only binary characters)
106 error_flag = 0;
107 for i=1:Nvectors
108 x = matlab_vectors(i);
109 y = vhdl_vectors(i + index_offset);
110 if strcmp(x.bin,y.bin) == 0
111 a = test_vectors(i);
112 disp(['

�

↪→---'])
113 disp([' Verification Error Occurred for test

�

↪→vector ' num2str(a) ' = ' a.bin '(index = ' �

↪→num2str(i) ')'])

8.3 Verification Example 1: File I/O 111

114 disp([' Matlab result = ' x.bin ' = ' num2str(x)

�

↪→])
115 disp([' VHDL result = ' y.bin ' = ' num2str(y)

�

↪→])
116 error_flag = 1;
117 end
118 end
119
120 disp(' ')
121 if error_flag == 0
122 disp(' Verification Succeeded!')
123 else
124 disp(' ******* Verification Failed *******')
125 end

Listing 8.30: Comparing the VHDL and Matlab results

8.3.6 Running the Example 1 Verification

Here are the steps to take to run this verification example:

Step 1: Create a \Ex1 directory in Windows and download all the Example 1
verification files from GitHub (click here for the files), with the exception
of the input.txt and output.txt files (you will be creating these), and put
them in this new directory.

Step 2: Open up my_test_vectors1.m in Matlab and run the script. It will create
a new file input.txt, which will be different from the one found on GitHub
because the test vectors are randomly generated.

Step 3: Open ModelSim:

a. Create a Project by selecting File → New → Project.
i. Name the project Ex1.
ii. Under Project Location, browse to the \Ex1 directory you just

created.
iii. Keep the Default Library Name as “work.”
iv. Keep the “Copy Settings From” as is (keep default setting).
v. Click OK.

b. When it asks to Add items to the Project, click on Add Existing File,
browse to \Ex1, and add the three VHDL files. Click OK and close
the Add items to the Project window.

c. Modify the compilation order if it needs to be modified by going to
Compile → Compile Order. . . and rearranging the compile order
(select file and use up/down arrows to change the file order). The
compile order should be:

i. text_util.vhd (Order 0 in Project tab)
ii. my_component1.vhd (Order 1 in Project tab)
iii. my_component1_tb.vhd (Order 2 in Project tab)

https://github.com/ADSD-SoC-FPGA/Code/tree/main/intro/verification/example1

112 8 Introduction to Verification

d. Compile the files (Compile → Compile All).
Note: If the compile fails (a red x will show up in the Status column),
you can see the errors that have been logged in the compile summary
(Compile → Compile Summary).

e. To run the simulation:
i. Select the Library window in ModelSim (click Library tab

above Transcript window).
ii. Expand the work folder.
iii. Double click on my_component_tb (this will open the Wave

window).
iv. To see the signals you want to see, select the component hierar-

chical level in the sim–Default window, click on a signal name
in the Objects window, and either right click and select Add
Wave or drag the signal into the first column of the Wave win-
dow. Add the following signals (from the my_component_tb
instance):
A. clk
B. input_signal
C. output_signal

v. Set the simulation time to 500 ns. (This needs to be long enough
to run all the stimulus vectors through the simulation, so if you
change the number stimulus vectors, you will need to change
this value.)

vi. Run the Simulation (button to the right of the simulation time
window). The file output.txt should be created that contains the
result vectors.

Step 4: Open up my_verification1.m in Matlab and run the script. You should
see the message Verification Succeeded! in the Matlab Command Win-
dow. Note: To see an error message, open the output.txt, change a bit in
one of the result vectors, and re-run my_verification1.m.

8.4 Verification Example 2: Using a Quartus ROM IP
Component

Example 2 builds upon Example 1 in two ways. The first extension is that the number
of I/O ports in the VHDL component has increased. There are two input ports to
create test vectors for and two output ports to verify. The second extension is that
there is an IP component created with the Quartus IP Wizard (a ROM memory). The
steps for creating the Quartus ROM IP can be found in Sect. 6.4.1 Creating a ROM
IP Component (page 78). We will use this ROM IP and its memory initialization file
when verifying my_component2.vhd. The files used in this Example 2 verification
are listed in Table 8.2.

8.4 Verification Example 2: Using a Quartus ROM IP Component 113

Table 8.2: Files used to verify my_component2.vhd

File Description

my_component2.vhd VHDL component to be verified

my_component2_tb.vhd VHDL testbench file that verifies my_component2.vhd

my_test_vectors2.m Matlab script that creates the input test vectors and writes them
to the files input1.txt and input2.txt

input1.txt File that contains the input test vectors for the my_input input
signal. It is created by the Matlab script my_test_vectors2.m

input2.txt
File that contains the input test vectors for the my_rom_address
input signal that contain the address values for the ROM. It is
created by the Matlab script my_test_vectors2.m

output1.txt

File that contains the simulation results when
my_component2_tb.vhd is run in ModelSim. It contains
the output of the signal my_rom_value, which is the output from
the ROM component

output2.txt

File that contains the simulation results when
my_component2_tb.vhd is run in ModelSim. It contains
the output of the signal my_output, which is the signal
containing the computation results

my_component2.m

Matlab function that computes the same results as
my_component2.vhd. Verification is complete when the Matlab
function my_component2.m agrees with the VHDL component
my_component2.vhd

my_verification2.m
Matlab script that reads input1.txt and input2.txt and runs these
test vectors through my_component2.m and compares these
results to the results found in output1.txt and output2.txt

ROM.vhd ROM IP file that was generated by Quartus

ROM.mif Memory initialization file (.mif) for the ROM

ROM.mat

Matlab file that contains the same information as the memory
initialization file. It was generated for verification convenience
so that the .mif file did not need to be parsed when read into
Matlab

Note: The Matlab and VHDL files can be found on GitHub (click here), and similarly, the ROM
files can be found on GitHub (click here)

https://github.com/ADSD-SoC-FPGA/Code/tree/main/intro/verification/example2
https://github.com/ADSD-SoC-FPGA/Code/tree/main/intro/quartus/rom

114 8 Introduction to Verification

8.4.1 VHDL File to Verify: my_component2.vhd

The file my_component2.vhd (click here for the source file) will be the VHDL code
that we wish to verify. The entity can be seen in Listing 8.31, which has generics
that specify the signal widths for the ROM being used, the I/O signal widths for the
component, and the number of clock cycles to delay the output.

32 entity my_component2 is
33 generic (
34 MY_ROM_A_W : natural; -- Width of ROM Address

�

↪→bus
35 MY_ROM_Q_W : natural; -- Width of ROM output
36 MY_ROM_Q_F : natural; -- Number of fractional

�

↪→bits in ROM output
37 MY_WORD_W : natural; -- Width of input signal
38 MY_WORD_F : natural; -- Number of fractional

�

↪→bits in input signal
39 MY_DELAY : natural); -- The amount to delay

�

↪→the product before sending out of component
40 port (
41 my_clk : in std_logic;
42 my_rom_address : in std_logic_vector(MY_ROM_A_W -1

�

↪→downto 0);
43 my_input : in std_logic_vector(MY_WORD_W -1

�

↪→downto 0);
44 my_rom_value : out std_logic_vector(MY_ROM_Q_W -1

�

↪→downto 0);
45 my_output : out std_logic_vector(MY_WORD_W -1

�

↪→downto 0));
46 end my_component2;

Listing 8.31: Entity of my_component2.vhd

The computation that my_component2 performs is to multiply the input signal by
a ROM value, i.e., my_output = my_input x ROM_signal. The input fixed-point
signal is MY_WORD_W bits wide and has MY_WORD_F fractional bits, and the
ROM memory word is MY_ROM_Q_W bits wide and has MY_ROM_Q_F frac-
tional bits. The ROM signal is specified by the input signal my_rom_address, which
is MY_ROM_A_W bits wide and can address 2MY_ROM_A_W memory locations.
The ROM takes two clock cycles for the output to appear after the ROM address
is presented. Note that the ROM generic values need to be consistent with the gen-
erated ROM IP and ROM memory initialization file. The input signal my_input
must be delayed by two clock cycles so that it time aligns with the specified ROM
signal as seen in Listing 8.32. The resulting product my_product is a signal with
MY_WORD_W + MY_ROM_Q_W bits and is trimmed so that it has the same
fixed-point data type (same W and F) as the input signal my_input.

85 my_process : process(my_clk)
86 begin
87 if rising_edge(my_clk) then
88 my_input_delayed_1 <= my_input;

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/my_component2.vhd

8.4 Verification Example 2: Using a Quartus ROM IP Component 115

89 my_input_delayed_2 <= my_input_delayed_1;
90 my_product <= my_input_delayed_2 *

�

↪→rom_value;
91 end if;
92 end process;
93
94 my_product_trimmed <= my_product(MY_WORD_W + MY_ROM_Q_F

�

↪→- 1 downto MY_ROM_Q_F); -- keep the output

�

↪→with the same W & F as the input.

Listing 8.32: Process that delays and multiplies

The product signal my_product_trimmed is then delayed by MY_DELAY clock
cycles. We use VHDL generate statements to include the appropriate VHDL code
depending on the delay value. If the delay is zero, we send the product out with no
delay by connecting it directly to my_output as seen in Listing 8.33.

101 gen_z0 : if MY_DELAY = 0 generate
102 my_output <= my_product_trimmed;
103 end generate;

Listing 8.33: Generated code when MY_DELAY is zero

If MY_DELAY is set to one, we generate a process where the output is assigned
on the rising edge of the clock as seen in Listing 8.34.

106 gen_z1 : if MY_DELAY = 1 generate
107 my_delay_process : process(my_clk)
108 begin
109 if rising_edge(my_clk) then
110 my_output <= my_product_trimmed;
111 end if;
112 end process;
113 end generate;

Listing 8.34: Generated code when MY_DELAY is one

If MY_DELAY is set to two, we generate a process where the additional delay
is made by assignment to an internal signal, which is declared before the generate
begin statement as seen in Listing 8.35. Note that the generate begin statement is not
needed if there are no signals to declare as seen in the previous generate statements.

116 gen_z2 : if MY_DELAY = 2 generate
117 signal my_output_delayed : std_logic_vector(

�

↪→MY_WORD_W -1 downto 0);
118 begin
119 my_delay_process : process(my_clk)
120 begin
121 if rising_edge(my_clk) then
122 my_output_delayed <= my_product_trimmed;
123 my_output <= my_output_delayed;
124 end if;
125 end process;

116 8 Introduction to Verification

126 end generate;

Listing 8.35: Generated code when MY_DELAY is two

If MY_DELAY is greater than two, we generate a process where the additional
delays are made by assignments to an array of signals, which can be seen in List-
ing 8.36. We do this by creating our own array type called my_delay_array and then
specifying the size of this array when we create the signal delay_vector. We can then
make the appropriate assignments between the delay_vectors inside the for loop.
Note: There is a limit to the amount of delay that can be done by creating registers
out of the logic elements in the FPGA fabric. If the delay needs to be large, then it is
better to use dedicated memory in the fabric (e.g., FIFOs or circular buffers created
out of the on-chip RAM blocks).

129 gen_zg2 : if MY_DELAY > 2 generate
130 -- delay array
131 type my_delay_array is array (natural range <>) of

�

↪→std_logic_vector(MY_WORD_W -1 downto 0);
132 signal delay_vector : my_delay_array(MY_DELAY -2

�

↪→downto 0);
133 begin
134 my_delay_process : process(my_clk)
135 begin
136 if rising_edge(my_clk) then
137 delay_vector(0) <= my_product_trimmed;
138 for i in 0 to MY_DELAY -3 loop
139 delay_vector(i+1) <= delay_vector(i);
140 end loop;
141 my_output <= delay_vector(MY_DELAY -2);
142 end if;
143 end process;
144 end generate;

Listing 8.36: Generated code when MY_DELAY is greater than two

8.4.2 VHDL Testbench File: my_component2_tb.vhd

The file my_component2_tb.vhd (click here for the source file) is the VHDL test-
bench file that verifies my_component2.vhd, which is the Device Under Test (DUT).
This testbench is similar to my_component1_tb.vhd, which is described in Sect. 8.3.2
VHDL Testbench File: my_component1_tb.vhd (page 99). The difference is that
two input files are read and two output files created. The input file input1.txt is
fed to the input signal my_input, and the input file input2.txt is fed to the input
signal my_rom_address. The output file output1.txt is created from the output sig-
nal my_output, and the output file output2.txt is created from the output signal
my_rom_value.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/my_component2_tb.vhd

8.4 Verification Example 2: Using a Quartus ROM IP Component 117

8.4.3 Creating Test Vectors with Matlab Script my_test_vectors2.m

The file my_test_vectors2.m (click here for the source file) is the Matlab script that
creates the two input test vector files. This script is similar to my_test_vectors1.m,
which is described in Sect. 8.3.2 VHDL Testbench File: my_component1_tb.vhd
(page 102). It creates the input file input1.txt with test vectors for the input signal
my_input that are 16 bits wide as shown in Listing 8.37. It also creates the input
file input2.txt with test vectors for the input signal my_rom_address that are 8-bit
addresses as shown in Listing 8.38.

1 1011010000011111
2 0100100110000101
3 1010111001011101
4 0000010011010111
5 0101110001100000
6 0111001101011100
7 0010110000001010
8 0010110110011100
9 0101001011100010

10 1111110010010001
11 0000000000000000
12 0000000000000000
13 0000000000000000

Listing 8.37: File contents : input1.txt

1 00011011
2 11100010
3 10011100
4 00011100
5 00110001
6 01100011
7 01100011
8 11100111
9 01001101

10 00101110
11 00000000
12 00000000
13 00000000

Listing 8.38: File contents : input2.txt

8.4.4 Computing the Results with Matlab Function my_component2.m

When the ModelSim simulation is run, the testbench my_component2_tb.vhd pro-
duces two output files output1.txt, shown in Listing 8.39, and output2.txt, shown
in Listing 8.40. Output1.txt (click here for the source file) contains the result of
multiplying the fixed-point input signal (W=16, F=8) with the ROM word (W=12,
F=11). You can see the latency of my_component2.vhd as the lines comprised of
the “U” and “X” characters. The character “U” means Uninitialized and “X” means
Forcing Unknown. This means that ModelSim is putting out values from internal

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/my_test_vectors2.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/output1.txt

118 8 Introduction to Verification

signals that have not been initialized or do not know what these values should be
yet. When the first result finally gets through the pipeline, we see it showing up on
line 9.

The output file Output2.txt (click here for the source file) shows the output from
the ROM component (Listing 8.40), which takes two clock cycles to appear. The
latency is two clock cycles because it takes the first rising edge of the clock to capture
the address and then a second rising edge to put out the value associated with this
address.

1 UUUUUUUUUUUUUUUU
2 UUUUUUUUUUUUUUUU
3 UUUUUUUUUUUUUUUU
4 UUUUUUUUUUUUUUUU
5 UUUUUUUUUUUUUUUU
6 UUUUUUUUUUUUUUUU
7 XXXXXXXXXXXXXXXX
8 XXXXXXXXXXXXXXXX
9 1001101011110111

10 0001110001110111
11 0101010101100100
12 0000010000100100
13 0100011100001010
14 0100011010100010
15 0001101011110111
16 0001000101100100
17 0011011111011001
18 1100010100010010

Listing 8.39: File contents: output1.txt

1 UUUUUUUUUUUU
2 000000000000
3 000000000000
4 011011100010
5 001100011001
6 001111101011
7 011011011001
8 011000100111
9 010011100110

10 010011100110
11 001100001101
12 010101100100
13 011000111110

Listing 8.40: File contents: output2.txt

The Matlab function declaration of my_component2.m (click here for the source
file) is shown below where three parameters are passed to the function. The parameter
x is the input port that takes in the my_input values from the file input1.txt. The
word length and the number of fractional bits of x are extracted in lines 39–40.
The parameter addresses is the input port that takes in the my_rom_address values
(W=8) from the file input2.txt. The parameter rom is the ROM variable array that
was saved in ROM.mat when the ROM memory initialization file was created. This
allows Matlab to easily access the ROM memory values just by loading in a .mat
file rather than having to parse a .mif file. Note that the word length and number of
fractional bits for the ROM memory need to be explicitly set in lines 43–44.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/output2.txt
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/my_component2.m

8.4 Verification Example 2: Using a Quartus ROM IP Component 119

27 function z = my_component2(x,addresses ,rom)

Listing 8.41: Function declaration

The address values are converted into the ROM memory words as seen in List-
ing 8.42. A value of one is added to the address values since the ROM hardware has
a zero index offset and Matlab indexes into arrays with an index offset of one.

50 for i=1:length(addresses)
51 rom_values(i) = rom(addresses(i)+1);
52 end

Listing 8.42: ROM lookup

In order to account for the two clock cycle latency of the ROM, the array of ROM
values is then shifted by two in the array as seen in Listing 8.43 where zeros of the
same fixed-point data type are inserted as place holders. In a similar fashion, the
input values are also delayed by two to match the VHDL component behavior (line
65).

57 f = fi(0,S3,W3,F3);
58 rom_values = [f f rom_values]; % align (shift) vectors to

�

↪→account for latency

Listing 8.43: ROM latency

The input values are then multiplied by their respective ROM value as seen in
Listing 8.44. We allow Matlab to expand the fixed-point product to the full range,
which is its default behavior and why we do not set any fimath properties as we did
in my_component1.m. We extract the resulting binary string of the full product from
the fixed-point object result. We then trim the binary string in a similar way to how
the VHDL std_logic_vector was trimmed to get the same result. This string is then
assigned to a fixed-point object so that we can interpret the results and save it in the
z array. The verbose setting is to allow one to see the string results, which is useful
during development to debug the indexing, but then is turned off once the indexing
for the trimming is correct.

68 for i=1:length(x)
69 m1 = delayed_input(i);
70 m2 = rom_values(i);
71 result = m1 * m2;
72 result_bit_string = result.bin;
73 % perform the same signal slicing as in my_component2.

�

↪→vhd to trim the result
74 left_trim_length = result.WordLength -result.

�

↪→FractionLength -(W1-F1);
75 result_bit_string(1:left_trim_length) = [];
76 result_bit_string(end-F3+1:end) = [];
77 f.bin = result_bit_string; % put it back into the

�

↪→appropriate sized fixed-point object

120 8 Introduction to Verification

78 output = f;
79 z(i) = output; % collect the results
80 if verbose == 1
81 disp(['i = ' num2str(i) '

�

↪→---------------------------------'])
82 disp(['delayed_input = ' m1.hex ' = ' m1.bin ' = '

�

↪→num2str(m1)])
83 disp(['rom_value = ' m2.hex ' = ' m2.bin ' = '

�

↪→num2str(m2)])
84 disp(['result = ' result.hex ' = ' result.bin

�

↪→ ' = ' num2str(result)])
85 disp(['result = ' output.hex ' = ' output.bin

�

↪→ ' = ' num2str(output)])
86 end
87 end

Listing 8.44: Computation of my_component2

8.4.5 Performing Verification with the Matlab Script
my_verification2.m

When the ModelSim simulation is run, the testbench my_component2_tb.vhd pro-
duces the results found in the files output1.txt and output2.txt, which can be seen
in Listings 8.39 and 8.40. We want to compare what is in these files with what
my_component2.m produces, and we automate the comparison process using the
Matlab script my_verification2.m (click here for the source file). This is similar to
the process described in Sect. 8.3.5 Performing Verification with the Matlab Script
my_verification1.m (page 107). The primary difference is reading in the additional
input and output files and performing two separate verifications.

The first verification (lines 154–189) checks that the ROM values in output2.txt
are consistent with the memory initialization file contents that were saved as a .mat
file.

The second verification (lines 202–230) checks that the Matlab function
my_component2.m, using the same inputs, input1.txt (test_vectors) and input2.txt
(address_vectors), produces the same results as the VHDL component did in out-
put1 (vhdl_vectors).

When the Matlab code agrees with the VHDL ModelSim simulation over the
entire input coverage, one is pretty certain that both the Matlab and VHDL codes
are correct.

8.4.6 Running the Example 2 Verification

Here are the steps to take to run this verification example:

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example2/my_verification2.m

8.4 Verification Example 2: Using a Quartus ROM IP Component 121

Step 1: Create a \Ex2 directory in Windows and download all the Example 2
verification files from GitHub (click here for the files), with the exception
of the input1.txt, input2.txt, output1.txt, and output2.txt files (you will
be creating these), and put them in this new directory.

Step 2: Download the files ROM.vhd, ROM.mif, and ROM.mat from GitHub
(click here for the files) and place them in the \Ex2 directory.

Step 3: Open up my_test_vectors2.m in Matlab and run the script. It will create
two new files input1.txt and input2.txt, which will be different from the
ones found on GitHub because the test vectors in these files are randomly
generated each time.

Step 4: Compile the Quartus altera_mf Simulation Library:

a. Create a folder for the library: \Ex2\simlib.
b. Open Quartus and open the EDA Simulation Library Compiler

(Tools → Launch Simulation Library Compiler).
c. Under Tool Name, select ModelSim.
d. Under Executable Location: browse to where you installed Model-

Sim, e.g., C:\Modeltech_pe_edu_10.4a\win32pe_edu.
e. Under Library families, add the Cyclone V device (using >). Note:

The actual device family is not really important since we will just
be simulating with ModelSim.

f. Under Library Language, select VHDL.
g. Under Output Directory, browse to the folder you created (i.e.,
\Ex2\simlib). Note: You will need this path information when
compiling in ModelSim so save this path information. You also
might want to put this library folder in a more general place since
you will be using it for other simulations (e.g., in Lab 1).

h. Click the Start Compilation button.

Step 5: Open ModelSim:

a. Create a Project by selecting File → New → Project.
i. Name the project Ex2.
ii. Under Project Location, browse to the \Ex2 directory you just

created.
iii. Keep the Default Library Name as “work.”
iv. Keep the “Copy Settings From” as is (keep default setting).
v. Click OK.

b. When it asks to Add items to the Project, click on Add Existing File,
browse to \Ex2, and add the four VHDL files. Click OK and close
the Add items to the Project window.

c. Modify the compilation order if it needs to be modified by going to
Compile → Compile Order. . . and rearranging the compile order
(select file and use up/down arrows to change the file order). The
compile order should be:

i. text_util.vhd (Order 0 in Project tab)

https://github.com/ADSD-SoC-FPGA/Code/tree/main/intro/verification/example2
https://github.com/ADSD-SoC-FPGA/Code/tree/main/intro/quartus/rom

122 8 Introduction to Verification

ii. ROM.vhd (Order 1 in Project tab)
iii. my_component2.vhd (Order 2 in Project tab)
iv. my_component2_tb.vhd (Order 3 in Project tab)

d. Tell ModelSim where the altera_mf library is. In ModelSim and
in the Transcript (command) window, issue the following vmap
command that defines a mapping between a logical library name
(altera_mf) and the associated folder that contains the library.

%\myprompta% vmap altera_mf c:/..../simlib/

�

↪→vhdl_libs/altera_mf

Listing 8.45: ModelSim Tcl command: vmap altera_mf

Note 1: For the vmap command, the directories need to be sep-
arated by forward slashes (“/”) rather than back slashes
(“\”), since it follows a Linux path specification rather
than Windows. If you cut and paste the path from Win-
dows, you will need to change this; otherwise, Model-
Sim will complain.

Note 2: Replace /..../ with the appropriate path on your com-
puter system to the location of the altera_mf simulation
library.

Note 3: Create a ModelSim Do file to automate commands
such as this vmap command. In ModelSim, go to File
→New→ Source →Do, and type the vmap command
into the DO file. Save the file as setup.do To reissue this
command, when you reopen ModelSim, you just type
do setup.do in the command window. You can also
add commands to add signals to the WAVE window.
Notice that when you add a signal, that command was
echoed to the command window. You can then just cut
and paste this command into your .do file to automate
any setup for the next ModelSim session.

%\myprompta% do setup.do

Listing 8.46: ModelSim Tcl command: do setup.do

e. Compile the files (Compile → Compile All).
Note: If the compile fails (a red x will show up in the Status column),
you can see the errors that have been logged in the compile summary
(Compile → Compile Summary).

f. To run the simulation,
i. Select the Library window in ModelSim (click Library tab

above Transcript window).
ii. Expand the work folder.

8.5 Homework Problems 123

iii. Double click on my_component2_tb (this will open the Wave
window).

iv. To see the signals you want to see, select the component hierar-
chical level in the sim–Default window, then click on a signal
name in the Objects window, and either right click and select
Add Wave or drag the signal into the first column of the Wave
window. Add the following signals from the my_component_tb
instance. You can also add these to the setup.do file by copy-
ing the commands in the Transcript window after you add the
signals:

• clk
• input1_signal
• input2_signal
• output1_signal
• output2_signal

Add the following signals from the my_component_tb/DUT in-
stance so that you can see the results and the delay of the output:

• my_product
• my_product_trimmed
• my_output

v. Set the simulation time to 500 ns. (This needs to be long enough
to run all the stimulus vectors through the simulation, so if you
change the number stimulus vectors, you will need to change
this value.)

vi. Run the simulation (button to the right of the simulation time
window). The files output1.txt and output2.txt should be cre-
ated that contain the result vectors.

Step 6: Open up my_verification2.m in Matlab and run the script. You should
see the message Verification Succeeded! in the Matlab Command Win-
dow.

8.5 Homework Problems

Problem 8.1
Perform the Example 1 verification as described in Sect. 8.3.6 but with all the
modifications listed below where you operate on signed fixed-point numbers rather
than on unsigned integers. The verification should result in no errors signifying that
both your VHDL and Matlab codes are correct. Note: Specific values for (Vadd, W,
F, S) may be individually assigned to you by the instructor.

Modification 1: Change the vector bit width W from 16 bits to 24 bits.
Modification 2: Change the number of fractional bits F from zero to 12 bits.

124 8 Introduction to Verification

Modification 3: Change the signedness from unsigned to signed, i.e., change S
from zero to one.

Modification 4: Instead of adding 1 to the input signal in my_component1.vhd,
add the value Vadd = 4.125 to the input signal. This will require
creating a constant VHDL signal that is initialized to 4.125 and
where the binary point is aligned with the input signal in order to
add properly. You will also need to modify my_component1.m
to reflect this change in the Matlab function.

Problem 8.2
Perform the Example 2 verification as described in Sect. 8.4.6 but with all the mod-
ifications listed below. This will involve creating a new ROM IP component as
described in Sect. 6.4.1 Creating a ROM IP Component (page 78). The verification
should result in no errors signifying that both your VHDL and Matlab codes are cor-
rect. Note: Specific values for (ROM_A_W, ROM_Q_W, ROM_Q_F, ROM_Q_S,
WORD_W, WORD_F, DELAY) may be individually assigned to you by the in-
structor:

Modification 1: Change the ROM address size ROM_A_W from 8 bits to 10
bits.

Modification 2: Change the ROM word size ROM_Q_W from 12 bits to 16
bits.

Modification 3: Change the number of fractional bits in the ROM word
ROM_Q_F from 11 bits to 10 bits.

Modification 4: Change the signedness of the ROM word from unsigned to
signed, i.e., ROM_Q_S from zero to one.

Modification 5: Create a new memory initialization file (.mif and associated
.mat files) for the ROM that contains random values with
the (ROM_Q_W, ROM_Q_F, ROM_Q_S) specifications given
above.

Modification 6: Change the input word size WORD_W from 16 bits to 24 bits.
Modification 7: Change the number of fraction bits in the input word WORD_F

from 8 bits to 16 bits.
Modification 8: Change the output DELAY from 4 clock cycles to 3 clock

cycles.

Chapter 9
Introduction to Linux

9.1 The Linux View of Memory

Linux is a modern operating system that presents to each process, thread, and user
space program an abstracted view of physical memory where each process and
program has virtually unlimited uniformly contiguous memory. Thus the addresses
that user space programs use are virtual addresses that are different from the physical
address where the memory objects actually reside. Furthermore, there is a division
between user space memory and kernel memory. Since Linux allows each process to
pretend that it has unlimited contiguous memory, it needs to manage the following
Linux Address Types:

• Virtual Addresses The addresses seen by user space programs. In 32-bit systems
that have a maximum of 4 GB of memory, each user space process is limited to
the lower 3 GB of virtual address space. The Linux kernel uses the top 1 GB of
virtual address space.

• Physical Addresses The addresses used by the CPU to access the system’s
physical memory.

• Kernel Logical Addresses The normal address space of the kernel. Kernel
logical addresses and the associated physical addresses differ only by a con-
stant offset. Kernel address space is the area above CONFIG_PAGE_OFFSET
= 0xC0000000 (3 GB), which is the default value for 32-bit CPUs but is config-
urable at kernel build time.

• Kernel Virtual Addresses Similar to logical addresses in that, they are a map-
ping from a kernel-space address to a physical address. Kernel virtual addresses
do not necessarily have the linear, one-to-one mapping to physical addresses
that characterize the logical address space, however.

• Bus Addresses The addresses used between peripheral buses and memory.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_9

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_9

126 9 Introduction to Linux

When each user space process needs to access memory, it uses the virtual address
that the Linux kernel has given it. However, this virtual address needs to be translated
to the physical address where the object being accessed actually resides in physical
system memory. This translation is automatically performed by the Memory Man-
agement Unit (MMU) as shown in Fig. 9.1. Since this address translation occurs with
every memory access, the MMU has its own cache called the Translation Lookaside
Buffer (TLB) to speed up this translation process.

Fig. 9.1: The Linux operating system manages the virtual address spaces for all the
processes (who each think they own all the memory in the world) and the allocation
of real memory to virtual memory. Address translation hardware in the CPU, often
referred to as a Memory Management Unit (MMU), automatically translates virtual
addresses to physical addresses. This is done for each memory unit that is called a
page, which is typically 4K bytes in size. The Translation Lookaside Buffer (TLB)
is a cache that speeds up the page address translations

The address translation that occurs by the MMU is illustrated in Fig. 9.2. Linux
keeps track of all the 4K memory pages in a Page Table that is indexed by the virtual
page number. The virtual page number is used to find the associated page table entry
that has the physical page number. If the virtual page number is not found in the TLB
cache, then it is a cache miss, and the TLB is updated to include the new virtual page
number. There are additional bits in the TLB that are associated with each page, and
these bits contain the following information about the memory page:

• A caching bit is used to indicate that the processor should bypass the cache when
accessing memory. This is important when the memory is a register associated

9.1 The Linux View of Memory 127

with memory-mapped hardware. The register cannot be cached since it can
change value at any time, and the change would not be reflected in the data
cache.

• A dirty (or modified) bit indicates whether the page has been modified since it
was brought into memory.

• A present bit indicates whether this page is in physical memory or on disk (i.e.,
it has been swapped out).

• A reference bit (accessed bit) is used to track whether a page has been accessed,
and is useful in determining which pages are popular and which pages can be
replaced in the cache.

• A protection bit is used to indicate whether the page can be read from, written
to, or executed from. Accessing a page in a way not allowed by these bits will
generate a trap to the OS.

• A valid bit is common to indicate whether the particular translation is valid; for
example, when a program starts running, it will have code and heap at one end
of its address space, and the stack at the other. All the unused space in between
will be marked invalid, and if the process tries to access such memory, it will
generate a trap to the OS that will likely terminate the process.

Fig. 9.2: The Memory Management Unit (MMU) along with the Translation Looka-
side Buffer (TLB) automatically translates virtual addresses to physical addresses

There is a MMU for each CPU in the Cyclone V SoC FPGA as seen in Fig. 9.3.
Microcontrollers typically do not have a MMU, so this is the primary reason why you

128 9 Introduction to Linux

do not see Linux running on microcontrollers, even 32-bit ones. Without a MMU
and associated TLB, performance drastically suffers.

Fig. 9.3: The MMU is contained within each ARM CPU in the Cyclone V HPS.
(figure from [1])

All the peripherals of the Cyclone V HPS, which are shown in Fig. 9.4, have been
memory-mapped in the HPS to be above 0xC0000000 (see Fig. 7.1). This places
them in the Linux kernel address space so that they are under control of the Linux
kernel. This includes the Lightweight Bridge that we use to connect to the registers
in our custom hardware in the FPGA fabric. This is why we need to create a Linux
device driver. If we try to access memory from user space, the program will be using
virtual addresses that could be mapped anywhere below 0xC0000000, and these
memory pages could change location in physical memory at any time if the Linux
kernel wishes to move them. We need a loadable kernel module for our custom
hardware control registers where we tell Linux to connect to a specific physical
memory address. Kernel modules are covered in Sect. 9.3 Kernel Modules (page
135).

9.2 Cross Compiling the Linux Kernel 129

Fig. 9.4: The peripherals of the Cyclone V SoC FPGA are connected through the L3
Master Peripheral Switch and memory-mapped to be above 0xC0000000, putting
them in the Linux kernel address space. (figure from [2])

9.2 Cross Compiling the Linux Kernel

Loadable kernel modules need to be built for the specific kernel version of Linux that
they will be loaded into. This means that the Linux kernel version that is contained
in zImage that gets loaded at boot time needs to match the kernel version that the
kernel module was compiled for. To ensure that both the kernel version and your
module version are the same, we will build both. This means we will simply ignore
the issues that can arise when trying to insert a loadable kernel module into a kernel
that has a different version number.

This section will give instructions on how to build a new kernel image (zImage)
that will be loaded by U-boot at boot time. We will then know that when we compile
our device drivers (see Sect. 9.6) that they will be built against the correct Linux
kernel version that is running on the DE10-Nano board.

9.2.1 Packages Needed

The packages that need to be installed in order to cross compile the Linux kernel
are listed below and some should already be installed. Remember, it is always good
to check for updates in Ubuntu with the command sudo apt update before installing

130 9 Introduction to Linux

packages. Note: Running apt install again after a package has already been installed
will not hurt anything. You will just get a message that it has already been installed
(i.e., it will say <package> is already the newest version).

$ sudo apt update

Listing 9.1: sudo apt update

Package 1: The Linaro GCC tools. Instructions for installation can be found in
Sect. 11.1.4.1 Configure and Set up the Linaro GCC ARM Tools in
Ubuntu VM (page 238).

Package 2: The build-essential package. See item Step 5: Install and Configure
Needed Software in the Ubuntu VM (page 205).

Package 3: The bison package, which is a general-purpose parser generator.
Install bison in the Ubuntu VM with the command:

$ sudo apt install bison

Listing 9.2: sudo apt install bison

Package 4: The flex package, which is a fast lexical analyzer generator. Install
flex in the Ubuntu VM with the command:

$ sudo apt install flex

Listing 9.3: sudo apt install flex

Package 5: The ncurses-dev package, which is a library and API for text-based
user terminals Install ncurses-dev in the Ubuntu VM with the com-
mand:

$ sudo apt install ncurses-dev

Listing 9.4: sudo apt install ncurses-dev

9.2.2 Get the Linux Source Repository and Select the Git Branch

Step 1: Go to the directory where you want /linux-socfpga created, which
will contain the Linux socfpga kernel source repository (e.g., you can
put it in your home directory, so issue the command: cd ∼).

Step 2: Using Git, download Intel’s SoC FPGA kernel repository:

$ git clone https://github.com/altera-

�

↪→opensource/linux-socfpga

Listing 9.5: git clone
https://github.com/altera-opensource/linux-socfpga

https://releases.linaro.org/components/toolchain/binaries/latest-7/

9.2 Cross Compiling the Linux Kernel 131

This will install the repository into the /linux-socfpga directory,
which will be created where you issued the git clone command. If you
have already cloned the repo before, you will want to update it by issuing
git pull (issue the command in the /linux-socfpga directory):

$ git pull https://github.com/altera-

�

↪→opensource/linux-socfpga

Listing 9.6: git pull https://github.com/altera-opensource/linux-socfpga

Step 3: Determine the git branches that exist by issuing the command:

$ git branch -a

Listing 9.7: git branch -a

In the output as shown in Fig. 9.5, you can see what the default
branch version is by looking for the branch pointed to by the string
remotes/origin/HEAD ->. As of this writing, this branch is
socfpga-5.4.124-lts. However, we want to use the latest LTS (long-
term support) branch, so let us change to this branch. In the list of
branches, note the branch that has the latest version number and that
also has “lts” at the end. In this example, it is socfpga-5.10.60-lts.

Fig. 9.5: Git branches in the socfpga Linux source repository

Step 4: Change to the desired branch (socfpga-5.10.60-lts in this example) using
the git checkout command:

$ git checkout socfpga -5.10.60-lts

Listing 9.8: git checkout socfpga-5.10.60-lts

The result (using the command: git branch -a) is shown in Fig. 9.6.
Notice that socfpga-5.10.60-lts is now marked with a leading asterisk
(*), signifying that it is the current branch.

132 9 Introduction to Linux

Fig. 9.6: The newly selected git branch socfpga-5.10.60-lts

You can also see what branch you are using by issuing the command:

$ git branch

Listing 9.9: git branch

and the branch that you are using will be marked with a leading asterisk
(*) as shown in Fig. 9.7.

Fig. 9.7: Checking what git branch you are using

9.2.3 Configuring the Kernel

Step 1: Navigate to the /linux-socfpga directory (the git repo you just down-
loaded).

Step 2: Configure your kernel with the default socfpga configuration options by
issuing the command:

$ make ARCH=arm socfpga_defconfig

Listing 9.10: make ARCH

Note 1: ARCH=arm is an environment variable that tells make we are
cross compiling for the ARM CPU.
Note 2: socfpga_defconfig contains all of the default Kconfig values
for socfpga, as defined by Intel and the community. This file is located
in /linux-socfpga/arch/arm/configs/.

9.2 Cross Compiling the Linux Kernel 133

Note 3: This creates the .config file that is used by make to configure
the kernel when it compiles the kernel.

Step 3: You can see the contents of the .config file by issuing the command:

$ cat .config

Listing 9.11: cat .config

Since we will be creating kernel modules, we will want to add additional
debugging support into the kernel. Configuration options for debugging
that can be turned on in the kernel can be found (here). To make addi-
tional kernel configuration changes, navigate to the /linux-socfpga
directory and type the command:

$ make ARCH=arm menuconfig

Listing 9.12: make ARCH

This pops up the Kernel Configuration panel as shown in Fig. 9.8.

Fig. 9.8: Configuring the Linux kernel using menuconfig

Let us enable the following kernel debug options using menuconfig,
which you just opened:

• CONFIG_DEBUG_KERNEL
• CONFIG_DEBUG_SLAB
• CONFIG_DEBUG_DRIVER
• CONFIG_MODULE_FORCE_UNLOAD

The easiest way to find where these options are located in menuconfig
is to press the / key, which brings up the search window. Typing in

https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch04.html

134 9 Introduction to Linux

CONFIG_DEBUG_KERNEL (case does not matter, and you can type partial
strings) shows that DEBUG_KERNEL is already enabled ([=y]).

Pressing / and typing in debug_slab show that it is not enabled
([=n]) and that it depends on SLAB as well, which is not enabled.

This means that we have to first enable SLAB, so type slab in the
search window, which tells us that we have to enable it in menuconfig
→ General setup → Choose SLAB allocator → SLAB. Notice the (1)
next to the choice. Pressing 1 takes us directly to this option. Once we
have enabled SLAB, we press the / key and type debug_slab, which
tells us that we enable it at menuconfig → Kernel hacking → Memory
Debugging→Debug slab memory allocations. Pressing the number key
associated with this choice will take us directly to this option, where we
enable it.

Now enable the rest of the kernel debug options in the list above and
any other kernel debugging options that you want to enable. Then save
and exit from menuconfig.

9.2.4 Cross Compiling the Kernel

Step 1: Since we will be cross compiling a fair amount when developing for the
ARM CPUs on the DE10_Nano, it will be convenient to create a terminal
window that has the cross compiling export variables already set up for
us. Download the bash script arm_env.sh (click here for the script),
open a terminal window, and run the script by issuing the command:

$ source arm_env.sh

Listing 9.13: source arm_env.sh or . arm_env.sh (source shortcut)

This will export the variables ARCH=arm and CROSS_COMPILE= /usr/
bin/arm-linux-gnueabihf-, and it will change the prompt as shown
in Fig. 9.9 so that we know that this terminal window is set up for cross
compiling since it has the prefix arm| followed by the directory name.

Fig. 9.9: Terminal window prompt after running arm_env.sh
that signifies that the terminal window is set up for cross
compiling

Step 2: Change the directory to where the kernel source is located in the window
that is set up for cross compiling:

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/cross_compiling/arm_env.sh

9.3 Kernel Modules 135

arm|∼» cd ~/linux-socfpga/

Listing 9.14: cd /linux-socfpga/

Step 3: Compile the Linux kernel by issuing the command:

arm|∼/linux-socfpga/» make -j$(nproc)

Listing 9.15: make -j$(nproc)

Note 1: The -j flag specifies the number of simultaneous jobs, which we
set to the number of logical processors on your machine with the nproc
command, which results in faster compile times.
Note 2: Compiling the kernel can take a long time. On an i9-9900k (16
logical processors) with 32 GB of RAM, compilation took 1.5 minutes.
It will likely take 10+ minutes on your virtual machine.
Note 3: If the shell scrip arm_env.sh was not run, you would need to
enter the command:

$ make ARCH=arm CROSS_COMPILE=arm-linux-

�

↪→gnueabihf - -j$(nproc)

Listing 9.16: Make command specifying cross compile export variables

Step 4: Copy the kernel image zImage from ~/linux-socfpga/arch/arm/
boot to /srv/tftp/de10nano/kernel. After compilation, the kernel
image is located at ~/linux-socfpga/arch/arm/boot/zImage. The
zImage is a self-extracting, compressed version of the kernel image that
gets loaded by the U-boot bootloader. Since we are having U-boot to
download the zImage over tftp, you need to copy the new zImage file to
your tftp directory: /srv/tftp/de10nano/kernel/.

9.3 Kernel Modules

The Linux kernel is a modular operating system where kernel modules can be
dynamically loaded into and unloaded from the kernel. This allows the capability
of the kernel to be extended without rebooting the kernel. You can see what kernel
modules exist by going to /lib/modules/<kernel_version>/kernel, which
you can do by issuing the command:

$ cd /lib/modules/$(uname -r)/kernel

Listing 9.17: cd /lib/modules/$(uname -r)/kernel

136 9 Introduction to Linux

Note 1: The command uname -r returns the kernel version number. This is then
used in a command substitution $(uname -r), which places the kernel version string
into the path string.

Note 2: Kernel modules are specific to the Linux kernel version. This is why there
is a directory under /lib/modules that has a specific kernel version. This is also
why you cannot load kernel modules that have been compiled for a specific kernel
into a kernel with a different version number.

Device driver modules that exist (they have been upstreamed and officially merged
into the Linux source tree) can be seen by issuing the command:

$ cd /lib/modules/$(uname -r)/kernel/drivers

Listing 9.18: cd /lib/modules/$(uname -r)/kernel/drivers

You will notice that there are many types of device drivers in the Linux kernel!
We will start the process of developing our own device driver, which will be a
loadable kernel module. We will also keep our source code (and compiled module)
separate from the Linux source tree. This means that our device driver will consider
an out-of-tree build.

9.3.1 Loadable Kernel Modules

A kernel module is an object code file that extends the capability of the Linux kernel.
These files have the extension .ko that stands for kernel object. We will used them to
add device drivers for our new hardware when we create custom components in the
FPGA fabric. Kernel modules that can be added at run time are known as loadable
kernel modules. We will be taking this approach as compared to compiling our
device driver code directly into the Linux kernel. Thus for our purposes, when we
speak of developing device driver code, we will ultimately be creating a .ko file that
will get loaded into the Linux kernel.

Adding a device driver kernel module is the way that user space programs can
interact with hardware that have registers at very specific physical memory addresses
and where the access to those memory locations is controlled by Linux. It is the portal
between our custom hardware in the FPGA fabric and our software running in Linux
user space where one does not have root access.

A simple kernel module is shown in Listing 9.19 (click here for the source file) that
shows a minimal functioning kernel module, and yes, it is a "Hello World" kernel
module. A kernel module needs to have at least two functions. An initialization
function that is called when the kernel module is loaded and an exit function that
is called when the kernel module is unloaded. The initialization function typically
handles tasks such as setting default register values, registering sysfs entries, and
enabling the device. The exit function typically frees any allocated memory and
safely closes down any hardware it is controlling.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/hello_kernel_module.c

9.3 Kernel Modules 137

11 #include <linux/init.h>
12 #include <linux/module.h>
13
14 static int __init my_kernel_module_init(void) {
15 printk(KERN_ALERT "Hello, Linux Kernel World!\n");
16 return 0;
17 }
18 module_init(my_kernel_module_init);
19
20 static void __exit my_kernel_module_exit(void) {
21 printk(KERN_ALERT "Goodbye, Linux Kernel World!\n");
22 }
23 module_exit(my_kernel_module_exit);
24
25 MODULE_DESCRIPTION("Hello World Kernel Module");
26 MODULE_AUTHOR("myFirstName myLastName");
27 MODULE_LICENSE("Dual MIT/GPL");
28 MODULE_VERSION("1.0");

Listing 9.19: Hello world kernel module

Let us examine the initialization part of the kernel module shown in Listing 9.20
and parse Line 14.

14 static int __init my_kernel_module_init(void) {
15 printk(KERN_ALERT "Hello, Linux Kernel World!\n");
16 return 0;
17 }
18 module_init(my_kernel_module_init);

Listing 9.20: Initializing the kernel module

The static keyword means that the function is only visible to this file, i.e., other
files will not be able to access this function since the scope of the function is local
to this file. The int keyword means that the function returns an integer type. The _
_init string means the following: The double underscore __ means that this name
has meaning for the compiler and is defined in init.h (click for reference), which is
why the header linux/init.h is included on line 11.

The __initmacro is placed before the function name my_kernel_module_init,
and it tells the compiler that the function is used only during initialization so that it
can free up memory once the function is finished. The keyword void in the function
argument list means that the function takes no arguments. The opening brace { starts
the beginning of the function body.

Let us now examine Line 15. You will notice that there is a printk rather than the
typical printf that you typically use when programming in C. This is because we are
programming for the Linux kernel, and we must make the distinction between kernel
space and user space. Kernel space is where kernel code lives and runs, whereas user
space is where normal applications run. There are important differences between
kernel space and user space:

https://elixir.bootlin.com/linux/latest/source/include/linux/init.h

138 9 Introduction to Linux

• Kernel space has its own memory space, which is not accessible from user space.
• Kernel code executes at the highest CPU privilege level. CPUs have multiple

privilege levels, which are used to enforce protection rings. In short, privilege
levels place restrictions on what operations/instructions processes have access
to.

• User programs execute at the lowest CPU privilege level.
• The kernel does not have access to the C standard library; thus you cannot use

any of those functions. However, the kernel reimplements some standard library
functions. printk(), for example. Look through the Linux Kernel API, especially
the Basic C Library Functions section, to see what is available.

• Floating point arithmetic is not allowed in kernel space. This is largely because
of the overhead of having to save and restore the floating point unit’s state on
every transition between user space and kernel space.

• The kernel’s stack is very small. Consequently, you should dynamically allocate
any large data structures.

Now getting back to printk, it is for printing messages from the kernel and is
similar to printf(), but with several notable differences, and has the form:

printk(KERN_INFO "Message: %s\n", arg);

First there is a log level KERN_INFO that determines if the message will be printed
to the console or not. If it has higher priority (lower value) than the console_loglevel,
it will be printed to the console. In any event, all messages are printed to the kernel
log buffer /dev/kmsg, which can be read using the Linux command dmesg. We
are using the KERN_INFO log level KERN_ALERT, which has high priority
(only KERN_EMERG has higher priority). Click here for more information on
printk() and log levels. To check what the current console_loglevel is, type the
command:

$ cat /proc/sys/kernel/printk

Listing 9.21: cat /proc/sys/kernel/printk

The four numbers that are shown are the current, default, minimum, and boot-time
log levels. The current level can be changed by the command:

$ echo 8 > /proc/sys/kernel/printk

Listing 9.22: echo 8 > /proc/sys/kernel/printk

where the console_loglevel value of 8 will cause all messages to be printed to the
console.

A second difference from printf() is that printk() cannot use floating point speci-
fiers (floating point is not supported in the Linux kernel). Format specifiers that can
be used in printk are found here.

In line 18 of Listing 9.20, module_init() takes the function to be run when the
kernel module is loaded into the Linux kernel, which in this case is the function
my_kernel_module_init.

https://en.wikipedia.org/wiki/CPU_modes
https://en.wikipedia.org/wiki/Protection_ring
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html
https://www.kernel.org/doc/html/latest/core-api/printk-basics.html
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#printk-specifiers

9.3 Kernel Modules 139

In a similar fashion, the exit function that runs when the kernel module is unloaded
is shown in Listing 9.23.

20 static void __exit my_kernel_module_exit(void) {
21 printk(KERN_ALERT "Goodbye, Linux Kernel World!\n");
22 }
23 module_exit(my_kernel_module_exit);

Listing 9.23: Exiting the kernel module

The kernel module macros are shown in Listing 9.24 and by convention are
placed at the end of the module’s source file. At a minimum, you are required to use
MODULE_AUTHOR().

25 MODULE_DESCRIPTION("Hello World Kernel Module");
26 MODULE_AUTHOR("myFirstName myLastName");
27 MODULE_LICENSE("Dual MIT/GPL");
28 MODULE_VERSION("1.0");

Listing 9.24: Module macros

These macros are defined in <linux/module.h> (click here). The descriptions
of the modules used are:

• MODULE_DESCRIPTION(): Description of what the module does.
• MODULE_AUTHOR(): Who wrote the module.
• MODULE_LICENSE(): Specifies which license applies to your code. If a preferred

free license is not used, the module is assumed to be proprietary, which will
taint the kernel; we do not need to be particularly worried about these issues
as proprietary kernel modules can be loaded, but your code has to be GPL-
licensed if you want it to be merged into the mainline kernel. If you want a more
permissive license, which we are suggesting, you can dual-license your module,
e.g., MODULE_LICENSE("Dual MIT/GPL"). See the kernel license-rules for
more info on the accepted license strings.

• MODULE_VERSION(): Code version number.

9.3.2 Cross Compiling the Kernel Module

Kernel modules must be built with the kernel’s build system, known as kbuild.
Modules can be either built in-tree (within the kernel’s source tree) or out-of-tree
(externally). We will be building our modules out-of-tree. kbuild uses a special
build file syntax, described in the Linux Kernel Makefiles documentation. All we
need at this point are “goal definitions” in the Makefile. For building a module
that only has a single source file, our goal definition will look like this: obj-m :=
<module-name>.o, where <module-name> is the name of your source file (without
an extension).

https://elixir.bootlin.com/linux/latest/source/include/linux/module.h
https://www.kernel.org/doc/html/latest/process/license-rules.html
https://www.kernel.org/doc/html/latest/kbuild/index.html
https://www.kernel.org/doc/html/latest/kbuild/makefiles.html

140 9 Introduction to Linux

The Makefile we will use to compile hello_kernel_module.c is shown in Listing
9.25 (click here for source file).

1 ifneq ($(KERNELRELEASE),)
2 # kbuild part of makefile
3 obj-m := hello_kernel_module.o
4
5 else
6 # normal makefile
7
8 # path to kernel directory
9 KDIR ?= ~/linux-socfpga

10
11 default:
12 $(MAKE) -C $(KDIR) ARCH=arm CROSS_COMPILE=arm-linux-

�

↪→gnueabihf - M=$$PWD
13
14 clean:
15 $(MAKE) -C $(KDIR) M=$$PWD clean
16 endif

Listing 9.25: Makefile for hello_kernel_module.c

The only line that needs modification is line 9 since this must use the correct
path to where you installed /linux-socfpga (see Sect. 9.2.2 Get the Linux Source
Repository and Select the Git Branch (page 130)).

In the directory that contains hello_kernel_module.c and the Makefile, run make:

$ make

Listing 9.26: make

This will create hello_kernel_module.ko, which is a kernel object file known as
a Loadable Kernel Module (LKM) that now can be inserted into the Linux kernel.

To see information related to the kernel module, use the modinfo command:

$ modinfo hello_kernel_module.ko

Listing 9.27: modinfo hello_kernel_module.ko

In the output, you will see the information that you added using the module macros
in the source file. In addition, you will see the vermagic string. If your kernel module
did not load because it was compiled against a different kernel version, this is how
you would check what kernel version the kernel module was compiled against. In our
case, they are the same because we compiled both the kernel and kernel module. In
the vermagic string, also notice ARMv7. This tells us that it has been cross compiled
for the ARM CPUs on the DE10-Nano board.

Now we must copy the compiled kernel module (LKM or .ko file) to the rootfs
seen by the ARM CPUs on the DE10-Nano board. This is located at /srv/nfs/
de10nano/ubuntu-rootfs/root/. You need to be root to copy files to the root
directory. To browse the root directory, you will need to be in a root shell (sudo -i).

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/Makefile

9.4 Device Trees 141

9.3.3 Inserting the Kernel Module into the Linux Kernel

To insert the kernel module into Linux running on the DE10-Nano board, power up
the board and log into Linux using the PuTTY terminal. Since you put the .ko file
in the root directory, you should see the .ko file right after logging in as root when
using the ls command.

To insert the LKM, use the insmod command:

$ sudo insmod hello_kernel_module.ko

Listing 9.28: sudo insmod hello_kernel_module.ko

To see the message printed out with printk that was in the initialization function,
and that was logged in the kernel ring buffer, use the dmesg command:

$ dmesg

Listing 9.29: dmesg

To remove the LKM, use the rmmod command:

$ sudo rmmod hello_kernel_module

Listing 9.30: sudo rmmod hello_kernel_module

To see the exit message printed out with printk that was logged in the kernel ring
buffer, use the dmesg command.

9.4 Device Trees

Device Trees tell Linux what hardware it is running on. When Linux boots on the
DE10-Nano board, two Linux files are loaded by U-Boot. The kernel image (zImage)
contains all the Linux code in a binary image and the device tree blob (.dtb) or binary
file. The .dtb file is how Linux knows what hardware it is running on. When we create
new custom hardware in the FPGA fabric, we have to tell Linux that this hardware
exists by making an additional entry to the device tree for the new hardware. This is
done in the device tree source (.dts) file that can be edited with a text editor, which
is then compiled to the .dtb file. Then, to be able to actually talk to this hardware, we
write a device driver for it. Thus the device tree tells Linux that our new hardware
exists and the device driver allows us to use it from user space.

9.4.1 Device Tree Basics

The root of the device tree is designated as / (just as the root directory in the Linux
file system is designated), and everything contained in the tree is enclosed by curly

142 9 Introduction to Linux

braces {} as shown in Listing 9.31, which shows the first part of socfpga.dtsi. Nodes
in the tree describe hardware that the Linux kernel needs to be informed about.
Nodes are identified by their names and contain associated node information within
their curly braces {}. This node information can be other nodes (sub-nodes) in a
hierarchically fashion. Notice that the node cpus on line 21 contains two nodes
called cpu0 (line 26) and cpu1 (line 32) that describe the dual ARM core of the Intel
Cyclone V SoC FPGA.

8 / {
9 #address-cells = <1>;

10 #size-cells = <1>;
11
12 aliases {
13 serial0 = &uart0;
14 serial1 = &uart1;
15 timer0 = &timer0;
16 timer1 = &timer1;
17 timer2 = &timer2;
18 timer3 = &timer3;
19 };
20
21 cpus {
22 #address-cells = <1>;
23 #size-cells = <0>;
24 enable-method = "altr,socfpga-smp";
25
26 cpu0: cpu@0 {
27 compatible = "arm,cortex-a9";
28 device_type = "cpu";
29 reg = <0>;
30 next-level-cache = <&L2>;
31 };
32 cpu1: cpu@1 {
33 compatible = "arm,cortex-a9";
34 device_type = "cpu";
35 reg = <1>;
36 next-level-cache = <&L2>;
37 };
38 };

Listing 9.31: Device tree root of socfpga.dtsi

Device tree nodes in general are identified with the following syntax:
node_label: node_unit@node_address

as can be seen in Listing 9.32. Let us take the interrupt controller on line 49 as an
example. The node_label: is intc:. Labels are used to reference nodes, which we can
see happening on line 42 where the Performance Monitoring Unit (PMU) (hardware
unit that gathers operation statistics on the ARM CPUs) uses the label to reference
the interrupt controller as the interrupt parent. The syntax <&label> or <&intc>
in this case creates a pointer handle (Phandle), which is a pointer to the interrupt
controller node on line 49. Labels are for human readable referencing.

9.4 Device Trees 143

After the label on line 49, we have the syntax node_unit@node_address given
as intc@fffed000. The node_unit is a name for the hardware component, which can
be the same or different from the label but typically has a more hardware labeling
orientation. The node_address gives the base address of the node on the bus it is
connected to. If it is connected to a specific bus, then it would be listed as a sub-node
under the bus node. If it is sitting as a node under the root node, then the node address
is the general memory address of the system. This is where we will put our custom
hardware node.

40 pmu: pmu@ff111000 {
41 compatible = "arm,cortex-a9-pmu";
42 interrupt -parent = <&intc>;
43 interrupts = <0 176 4>, <0 177 4>;
44 interrupt -affinity = <&cpu0>, <&cpu1>;
45 reg = <0xff111000 0x1000>,
46 <0xff113000 0x1000 >;
47 };
48
49 intc: intc@fffed000 {
50 compatible = "arm,cortex-a9-gic";
51 #interrupt -cells = <3>;
52 interrupt -controller;
53 reg = <0xfffed000 0x1000>,
54 <0xfffec100 0x100>;
55 };

Listing 9.32: Device tree node information

Node information (information contained within the node’s curly braces {}) has
the information presented as:

name = value;

where name is a string and where value can be an array of strings, numbers, or
phandles.

There are several lines of node information that are of particular interest to us
when creating custom hardware in the FPGA fabric. The first one has the form:

compatible = "<manufacturer>,<model>"[,"<manufacturer>,<model>"];

and we can see on Line 50 in Listing 9.32 the compatible string being given the
value "arm,cortex-a9-pmu" where the <manufacturer> is arm and the <model>
is cortex-a9-gic (gic stands for general interrupt controller). This is an important
line for us because the compatible string is used by the Linux kernel to "bind" a
device driver to that hardware node. The kernel is told that a hardware component
exists by creating a node in the device tree, and it is told what device driver to use for
the hardware by the compatible string. Thus this string needs to match the associated
string in your device driver; otherwise, your custom hardware and associated device
driver will not be connected by the kernel, and you will not be able to access the
hardware from the device driver.

144 9 Introduction to Linux

The next line of interest has the form:

reg = <address length>[,<address length>];

The address and length information contained in the reg = property can be variable
in length, so we need two additional pieces of information so that we can interpret
this information. These properties are #address-cells and #size-cells. If these are
not explicitly given in the current node, this information is inherited from the parent
node.

Let us take as an example lines 53–54 in Listing 9.32. This describes where the
registers are located for the interrupt controller, and there are two register areas
that exist for the controller since there are two <address length> entries. In order to
interpret the address for the register locations, we first check to see if #address-cells
and #size-cells have been defined in the intc node. They are not defined in the node,
so we must check the parent, which is the root node, and they are defined in the root
node on lines 9–10 in Listing 9.31 where they both have a value of 1. A value of 1 for
#address-cells means that address is defined by a single number. However, we are not
done yet because numbers in the device tree are always 32-bit values (big-endian).
If we need to represent 64 bits, we must use two numbers (#size-cells=<2>;). Getting
back to our example on Line 53, we know that address is defined as a single number
(one address-cell that is specified by a size-cell of one) and similarly for length. Thus
we know that bank1 of registers for the interrupt controller is located at memory
address 0xfffed000 and has a span of 0x1000 bytes (4096 bytes). Similarly, we
know that bank2 of registers is located at memory address 0xfffec100 and has a
span of 0x100 bytes (256 bytes).

When you create a custom hardware component in Platform Designer, the device
tree node that you create for your component will take the following form and naming
convention:

1 my_label: platform_designer_name@component_address {
2 compatible = "my_initials ,platform_designer_name";
3 reg = <component_address length >;
4 };

Listing 9.33: Device tree node for custom component in platform designer

and will be placed in the device tree root node. We also make the assumption
that #address-cells = <1>; and #size-cells = <1>;, having been defined
this way in the device tree root node. We take the node_unit as the name of the
custom component as it has been entered into Platform Designer. We calculate
the component_address of the reg property as explained in Sect. 7.1.1 Memory
Addressing for Registers on the HPS Lightweight Bus (page 88). The length of the
register span (in bytes) is determined by the size (the number of bits) of the address
signal in the custom component in Platform Designer multiplied by the register size
(32 bits):

length = 4x2Number of address bits (9.1)

9.4 Device Trees 145

The convention for the compatible string property is to use your initials for
the manufacturer string entry and the name of the custom component in Platform
Designer as the model string:

compatible = "my_initials,platform_designer_name"; (9.2)

9.4.2 Device Tree Hierarchy

Device tree sources can be monolithic, but they tend to be hierarchical, especially for
SoC FPGA devices. If you look in the directory of the linux kernel source, located
at ~/linux-socfpga/arch/arm/boot/dts, you will see several thousand device
tree associated files. We are particularly interested in the ones associated with SoC
FPGAs. We can see these files using the command:

$ cd ~/linux-socfpga/arch/arm/boot/dts
$ ls socfpga*

Listing 9.34: Listing the SoC FPGA device tree files

There are three types of device tree files in this directory. The device tree include
files have the .dtsi extension. The device tree board files have the .dts extension that
then get compile and turn into binary (blob) device tree files with the .dtb extension.

These files are organized in a hierarchy as shown in Fig. 9.10 (left side). The
Intel SoC FPGA devices have a base include file socfpga.dtsi that describes the
hard processor system (HPS) that is common across these SoC FPGA devices.
The Cyclone V SoC FPGA devices use the base socfpga.dtsi device tree hardware
description by including this file (which is why it is called an include file and why
it has the .dtsi extension). The information specific to the Cyclone V SoC FPGA is
placed in the socfpga_cyclone5.dtsi file, which is also an include file. Thus include
files can include other include files. When include files are organized this way,
device tree information can be overlaid (added or overwritten) over the information
that was pulled in earlier. Then there is specific board information, which in the case
of Fig. 9.10 (left side) is the socfpga_cyclone5_de0_nano_soc.dts file that is the
device tree file for the DE0-Nano-SoC or Atlas-SoC board.

146 9 Introduction to Linux

Fig. 9.10: Device tree source file hierarchy

Fortunately for us, the device tree for the DE0-Nano-SoC board also works for
the DE10-Nano board since the boards are functionally very similar. All we have to
do is just copy this file and change the extension to .dtsi (and shorten the name a bit)
in order to turn it into an include file that we can pull into the device tree we will
create.

Here we break from the Linux .dts convention since we need not only to have the
board we are working on (DE10-Nano), but we also need a device tree for the custom
system we are creating on top of the DE10-Nano board. Thus our final device tree
(.dts) will have the following naming convention:

socfpga_cyclone5_de10nano_<system_name>.dts

and we will keep this file in the ~/linux-socfpga/arch/arm/boot/dts directory
in order to compile it into a .dtb file (see next section).

9.4.3 Creating a Device Tree for Our DE10-Nano System

When the kernel source was cloned using git (see Sect. 9.2.2 Get the Linux Source
Repository and Select the Git Branch (page 130)), device trees for many ARM related
boards were included in the ~/linux-socfpga/arch/arm/boot/dts directory.

9.4 Device Trees 147

We will now create a device tree source file for our custom SoC FPGA system on
the DE10-Nano board. The steps for creating this file and the associated final .dtb
file are:

Step 1: Turn the de0_nano_soc board .dts file into a .dtsi file that we will include
in our device tree source file (as illustrated in Fig. 9.10).

$ cd ~/linux-socfpga/arch/arm/boot/dts
$ cp socfpga_cyclone5_de0_nano_soc.dts

�

↪→socfpga_cyclone5_de0.dtsi

Listing 9.35: Copying the DE0-Nano-SoC .dts to .dtsi

Step 2: Perform any desired changes or node modifications in
socfpga_cyclone5_de0.dtsi.

Step 3: Copy the example device tree source file for the DE10-Nano system
mysystem that is named:
socfpga_cyclone5_de10nano_mysystem.dts
(click here for the source file) and put it in the Ubuntu VM in the linux
source tree directory: ~/linux-socfpga/arch/arm/boot/dts.

Step 4: Modify the Makefile in the directory ~/linux-socfpga/arch/arm/
boot/dts

Mod 1: Open the Makefile in an editor:

$ code Makefile

Listing 9.36: Editing the Makefile for creating .dtb’s

Mod 2: In the editor, search for the section in the Makefile that has
lines that start with socfpga*. (It will be lines ∼1078-1091
for kernel version 5.15.60)

Mod 3: Insert the new line:
socfpga_cyclone5_de10nano_mysystem.dtb \
which can be done right after the line containing the string:
socfpga_cyclone5_de0_nano_soc.dtb \
and save the Makefile.

Step 5: Change to the top folder in the kernel source directories and compile all
the .dts files:

$ cd ~/linux-socfpga
$ make ARCH=arm dtbs

Listing 9.37: Compile all the .dts files to .dtb files

Step 6: Copy socfpga_cyclone5_de10nano_mysystem.dtb and put it in the
TFTP server so it will get loaded at boot time.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/device_trees/socfpga_cyclone5_de10nano_mysystem.dts

148 9 Introduction to Linux

$ cp ~/linux-socfpga/arch/arm/boot/dts/

�

↪→socfpga_cyclone5_de10nano_mysystem.dtb / �

↪→srv/tftp/de10nano/AudioMini_Passthrough/ �

↪→soc_system.dtb

Listing 9.38: Copy the .dtb file to the TFTP server

Note 1: You can name it something different than soc_system.dtb (e.g.,
mysystem.dtb), but you will need to modify your u-bootscript accord-
ingly.
Note 2: It is suggested that you backup your source .dts file socf-
pga_cyclone5_de10nano_mysystem.dts by putting it in your Quartus
project folder.

9.5 Platform Device Driver

We treat the custom component HPS_LED_patterns (see Sect. 6.2.2 Creating a Cus-
tom Platform Designer Component (page 65) on how to create the HPS_LED_patterns
component) as an independent device in Linux since we can directly address its reg-
isters in memory from the ARM CPUs. Since Linux associates each device with the
bus it is attached to, we attach it to a virtual bus known as the Platform Bus as shown
in Fig. 9.11. This is why the device driver is called a Platform Driver. In the figure,
and in this section, we make the assumption that the HPS_LED_patterns component
is located at memory address 0xff204100 as illustrated in Fig. 7.3, and the four
register offsets are 0x0, 0x4, 0x8, and 0xC bytes, respectively, since they are 32-bit
registers. When the platform driver is inserted into the kernel (it is a loadable kernel
module), it creates a file for each register in the component. Typically, the filename
created has the same name as the register signal in the component. In Fig. 9.11, in
the sysfs virtual file system, we show only one register LED_reg in the locations that
this register shows up due to space. However, there will be four registers associated
with the HPS_LED_patterns component.

The platform device driver source hps_led_patterns.c (click here for the source
file) is provided as an example along with the associated Makefile (click here for the
Makefile). Note: Only two registers (HPS_LED_control and LED_reg) have been
implemented in this source file. The two other registers need to be implemented as
well.

At first glance, the platform driver code seems pretty scattered as shown in
Fig. 9.12. The green arrows show the dependencies. We do not include green arrows
for the data structure hps_leds_patterns_dev since most of the functions reference this
data structure. The code looks scattered because we are just defining data structures
and creating functions that need to be present and inserted into the kernel using the
provided macros. The macros simplify writing the driver code so one only needs to

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/platform_driver/hps_led_patterns.c
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/platform_driver/Makefile

9.5 Platform Device Driver 149

Fig. 9.11: Platform device driver hierarchy in the Linux Kernel for the hardware
component HPS_LED_patterns

150 9 Introduction to Linux

focus on the required functionality. The next section provides the steps one needs to
take to adapt the example platform driver code for a new custom component.

Fig. 9.12: Struct, function, and macro relationships in the Linux platform driver
source file HPS_LED_patterns.c for the hardware component HPS_LED_patterns

9.6 Steps for Creating a Platform Device Driver for Your Custom
Component in Platform Designer

In the steps below, we are assuming that you have created a new Platform Designer
component called my_component.vhd that has been added in Platform Designer
at the base address 0xFF204100, and it has the device tree similar to this de-
vice tree (click here for the device tree source) and where the compatible string is
"my_initials,platform_designer_name." Thus when we refer to "my_component" as
a name, replace it with your component name as named in Platform Designer.
Also replace "my_initials" in the compatible string with your initials. And of course,
you will need to replace the base address 0xFF204100 with the actual address as-
sociated with your component that has been assigned by Platform Designer (see
Sect. 7.1.1 Memory Addressing for Registers on the HPS Lightweight Bus (page
88) on how this address is calculated). Note: The code listings in the steps below
show the component name as hps_led_patterns rather than my_component, which
you would change in Step 2: below.

Step 1: Copy the platform device driver source hps_led_patterns.c (click here
for the source file) and rename it my_component.c. Also copy the
associated Makefile (click here for the Makefile).

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/device_trees/socfpga_cyclone5_de10nano_mysystem.dts
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/platform_driver/hps_led_patterns.c
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/platform_driver/Makefile

9.6 Steps for Creating a Platform Device Driver for Your Custom Component in Platform... 151

Step 2: In both my_component.c and Makefile, perform a find and replace
string search where the string segment "hps_led_patterns" is replaced
by the string segment "my_component". (There will be something
like 92 occurrences replaced if you do a Replace All operation with
matching case. There will be some misses in the header strings due to
case differences, but you can fix these later).

Step 3: In the #define section as shown in Listing 9.39 below, define the register
offsets for all the registers in your component. The suggested naming
convention is REG<number>_<register_name>_OFFSET. The offset
values determine which register you are reading from (4 byte increments
since there are 32-bit registers, see Sect. 7.1.1 Memory Addressing for
Registers on the HPS Lightweight Bus (page 88)). The SPAN #define
value should be the same value as the length value found in the reg
property of the associated device tree node for my_component (see
Sect. 9.1 Device Tree Basics (page 144)). Note: Make sure that your
register offsets and ordering are consistent with your register read/write
VHDL code (i.e., the case statement section operating on the address
signal) in the associated hardware component (see Sect. 6.2.1.1 Creating
Component Registers (page 64)).

28 /* Define the Component Register Offsets*/
29 #define REG0_HPS_LED_CONTROL_OFFSET 0x0
30 /* #define REG1 (Add offset for SYS_CLKs_sec) */
31 #define REG2_LED_REG_OFFSET 0x08
32 /* #define REG3 (Add offset for Base_rate) */
33
34 /* Memory span of all registers (used or not) in

�
↪→the */

35 /* component hps_led_patterns

�

↪→ */
36 #define SPAN 0x10

Listing 9.39: Defining the register offsets and component
memory span

Step 4: Make sure the compatible strings of the driver and device tree node
match. In the of_device_id structure shown in Listing 9.40, make sure
that this compatible field entry matches the compatible string in the
associated device tree node (see Sect. 9.4.1 Device Tree Basics (page
145)). This string matching operation is how the kernel connects the
driver to the hardware. If the string does not match the compatible string
of the device tree node (or one of the strings in the case of multiple string
entries in the device tree node), the kernel will not "bind" the driver to
the associated hardware when the driver is inserted.

479 static const struct of_device_id

�

↪→hps_led_patterns_of_match[] = {
480 // ****Note:**** This .compatible string must

�

↪→be identical to the

152 9 Introduction to Linux

481 // .compatible string in the Device Tree Node

�

↪→for hps_led_patterns
482 { .compatible = "adsd,hps_led_patterns", },
483 { }
484 };
485 MODULE_DEVICE_TABLE(of, hps_led_patterns_of_match);

Listing 9.40: The .compatible string in the driver must match
the compatible string in the device tree node

Step 5: Export your component registers to sysfs. Do this in the sysfs Attributes
section shown in Listing 9.41. For each register that you want exported
to sysfs, i.e., for each register in your Platform Designer component,
there are two things that need to be done in this code section.

1: Use the macro DEVICE_ATTR_RW() to define the sysfs attributes
where the filename you want to show up is used as the argument.
This filename should be the same as what you used for the register
name in Step 3:. Thus it should have the form:

static DEVICE_ATTR_RW(<register_name>)

2: Add an entry in the attribute group structure for the register. This
should take the form:

&dev_attr_<register_name>.attr,

Note: This is where you define what the filenames will be when exported
to sysfs. Thus, if you want a different filename from the component
register name, you would make the appropriate change in the string
<register_name>.

190 // Define sysfs attributes
191 static DEVICE_ATTR_RW(hps_led_control); //

�

↪→Attribute for REG0
192 /* TODO: Add the attributes for REG1 and REG2 using

�

↪→ register names */
193 static DEVICE_ATTR_RW(led_reg); //

�

↪→Attribute for REG3
194
195 // Create an atribute group so the device core can
196 // export the attributes for us.
197 static struct attribute *hps_led_patterns_attrs[] =

�

↪→ {
198 &dev_attr_hps_led_control.attr,
199 /* TODO: Add the attribute entries for REG1 and

�

↪→REG2 using register names*/
200 &dev_attr_led_reg.attr,
201 NULL,
202 };
203 ATTRIBUTE_GROUPS(hps_led_patterns);

Listing 9.41: Exporting the component registers to sysfs

9.6 Steps for Creating a Platform Device Driver for Your Custom Component in Platform... 153

Step 6: Define the show/store (i.e., read/write) functions for each register that
has been exported to sysfs. For each register that was exported to sysfs
in Step 5:, create the following two functions:

f 1: Create the register show function named <register_name>_
show() using the same input arguments as in the example show
function for the LED_reg register in the HPS_LED_patterns com-
ponent as shown in Listing 9.42. The show function returns the
value read by ioread32 as an ascii text file where the value gets
converted into a string by scnprintf. The conversion data type
and string conversion function need to be consistent with the reg-
ister data type. If your data type is different, see scnprintf and
printk-specifiers. The register offset used in ioread32 is what you
defined in Step 3:.

141 static ssize_t led_reg_show(struct device *dev,
142 struct device_attribute *attr, char *buf)
143 {
144 u8 led_reg;
145 struct hps_led_patterns_dev *priv =

�

↪→dev_get_drvdata(dev);
146
147 led_reg = ioread32(priv->base_addr +

�

↪→REG3_LED_REG_OFFSET);
148
149 return scnprintf(buf, PAGE_SIZE , "%u\n",

�

↪→led_reg);

Listing 9.42: Show function to read the component
register exported to sysfs

f 2: Create the register store function named <register_name>_
store() using the same input arguments as in the example store
function for the LED_reg register in the HPS_LED_patterns com-
ponent as shown in Listing 9.43. The store function converts the
string written to a u8 value by using the kernel string conversion
function kstrtou8 and then writes it to your register memory
location using iowrite32. The conversion data type and string
conversion function need to be consistent with the register data
type. If your data type is different, see kernel string conversion
functions. The register offset used in ioread32 is what you de-
fined in Step 3:.

165 static ssize_t led_reg_store(struct device *dev

�

↪→,
166 struct device_attribute *attr, const char *

�

↪→buf, size_t size)
167 {
168 u8 led_reg;
169 int ret;
170 struct hps_led_patterns_dev *priv =

�

↪→dev_get_drvdata(dev);

https://elixir.bootlin.com/linux/latest/ident/scnprintf
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#printk-specifiers
https://elixir.bootlin.com/linux/latest/source/lib/kstrtox.c#L289

154 9 Introduction to Linux

171
172 // Parse the string we received as a u8
173 // See https://elixir.bootlin.com/linux/

�

↪→latest/source/lib/kstrtox.c#L289
174 ret = kstrtou8(buf, 0, &led_reg);
175 if (ret < 0) {
176 // kstrtou16 returned an error
177 return ret;
178 }
179
180 iowrite32(led_reg, priv->base_addr +

�

↪→REG3_LED_REG_OFFSET);
181
182 // Write was succesful , so we return the

�

↪→number of bytes we wrote.
183 return size;

Listing 9.43: Store function to write to the component
register exported to sysfs

Step 7: Change the name in the MODULE_AUTHOR() macro to your name.
Step 8: Compile the driver using the Makefile.
Step 9: Copy the driver (.ko) to the DE10-Nano root file system in the Ubuntu

VM.

9.6.1 Testing the Platform Device Driver

Power up the DE10-Nano board, load the Platform Driver using insmod, and
change to the directory /sys/devices/platform/<base-address>.hps_led_
patterns. In this directory, there should be files associated with your registers.
Read and write values to these registers using echo and cat, i.e.,

$ echo 1 > hps_led_control

Listing 9.44: echo 1 > hps_led_control

$ cat hps_led_control

Listing 9.45: cat hps_led_control

$ echo 0x55 > led_reg

Listing 9.46: echo 0x55 > led_reg

$ cat led_reg

Listing 9.47: cat led_reg

9.7 List of Linux Commands 155

9.7 List of Linux Commands

Below is a list of alphabetized Linux commands that are used in the book:

• ./hello found in Step 7:
• /usr/bin/arm-linux-gnueabihf-gcc –version found in Step 2:
• /usr/bin/arm-linux-gnueabihf-gcc -o hello hello.c found in Step 5:
• cat .config found in Step 3:
• cat /etc/exports found in Step 3:
• cat /proc/sys/kernel/printk found in 9.3.1
• cat hps_led_control found in 9.6.1
• cat led_reg found in 9.6.1
• cd /lib/modules/$(uname -r)/kernel found in 9.3
• cd /lib/modules/$(uname -r)/kernel/drivers found in 9.3
• cd ∼/linux-socfpga/arch/arm/boot/dts found in 9.4.2
• code exports & found in Step 2:
• code hello.c found in Step 3:
• code tftpd-hpa & found in Step 4:
• dmesg found in 9.3.3
• dpkg -s <packagename> found in Step 3:
• echo 0x55 > led_reg found in 9.6.1
• echo 1 > hps_led_control found in 9.6.1
• echo 8 > /proc/sys/kernel/printk found in 9.3.1
• env | grep ARCH found in 11.1.4.3
• env | grep CROSS_COMPILE found in 11.1.4.3
• export -p found in 11.1.4.3
• file hello found in Step 5:
• gcc -o hello hello.c found in Step 6:
• getent group nfs found in Step 5:
• getent group tftp found in Step 2:
• getfacl /srv/tftp found in Step 2:
• git branch found in Step 4:
• git branch -a found in Step 3:
• git checkout socfpga-5.10.60-lts found in Step 4:
• git clone https://github.com/altera-opensource/linux-socfpga found in Step

2:
• git pull https://github.com/altera-opensource/linux-socfpga found in Step 2:
• ifconfig found in Step 3:
• ip addr found in Step 3: and Step 6:
• ip link found in Step 3:
• journalctl -u audio-mini-drivers.service found in 1.5.4
• ls /sys/class/net/ found in Step 3:
• ls socfpga* found in 9.4.2
• make found in 11.1.4.3
• make -j$(nproc) found in Step 3:

156 9 Introduction to Linux

• make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -j$(nproc)
found in Step 3:

• make ARCH=arm dtbs found in Step 5:
• make ARCH=arm menuconfig found in Step 3:
• make ARCH=arm socfpga_defconfig found in Step 2:
• mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n "My script" -d

u-boot.txt u-boot.scr found in Setting 5:
• modinfo hello_kernel_module.ko found in 9.3.2
• nmap -sn 192.168.1.* found in Step 4:a
• route -n found in Step 5:
• source arm_env.sh found in Step 1:
• sudo -i found in Step 4:
• sudo adduser <user_account_name> nfs found in Step 5:
• sudo adduser <user_account_name> tftp found in Step 2:
• sudo adduser <user_account_name> vboxsf found in Step 3:
• sudo apt full-upgrade found in Step 3:
• sudo apt install bison found in Package 3:
• sudo apt install build-essential found in Step 5:
• sudo apt install flex found in Package 4:
• sudo apt install gcc-arm-linux-gnueabihf found in Step 1:
• sudo apt install git found in Step 5:
• sudo apt install iproute2 found in Step 2:
• sudo apt install ncurses-dev found in Package 5:
• sudo apt install net-tools found in Step 2:
• sudo apt install nfs-kernel-server found in Step 1:
• sudo apt install nmap found in Step 4:a
• sudo apt install tftpd-hpa found in Step 1:
• sudo apt install u-boot-tools found in Step 6:
• sudo apt install vim nano found in Step 4:
• sudo apt install virtualbox-guest-utils found in Step 6:
• sudo apt update found in Step 4: and 9.2.1
• sudo chgrp -R tftp /srv/tftp found in Step 2:
• sudo chmod -R a+r /srv/tftp found in 11.1.3.9
• sudo chmod -R g+rwx /srv/tftp found in Step 2:
• sudo chmod g+s tftp found in Step 2:
• sudo chown :tftp tftp found in Step 2:
• sudo exportfs -v found in Step 4:
• sudo groupadd nfs found in Step 5:
• sudo groupadd tftp found in Step 2:
• sudo insmod hello_kernel_module.ko found in 9.3.3
• sudo mkdir -p <directory> found in Step 3:, Step 3:, Step 3:, and Step 1:
• sudo rmmod hello_kernel_module found in 9.3.3
• sudo service nfs-kernel-server restart found in Step 4:
• sudo setfacl -d –set u::rwx,g::rwx tftp found in Step 2:
• sudo snap install –classic code found in Step 4:

References 157

• sudo snap install atom –classic found in Step 4:
• sudo systemctl enable tftpd-hpa found in Step 1:
• sudo systemctl restart tftpd-hpa found in Step 1:
• sudo systemctl restart tftpd-hpa found in Step 5:
• sudo systemctl status tftpd-hpa found in Step 1:
• sudo tar -cpzf ubuntu-rootfs.tar.gz ubuntu-rootfs found in 11.1.3.9
• sudo tar -zxpvf ubuntu-rootfs.tar.gz found in 11.1.3.9
• systemctl enable audio-mini-drivers.service found in Step 5:

References

1. Intel. Cyclone V Hard Processor System Technical Reference Manual. https://
www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/
cyclone-v/cv_5v4.pdf. Figure 10-2, Cortex-A9 MPU Subsystem Block
Diagram, page 10-3, Accessed 24 Jun 2022

2. Intel. Cyclone V Hard Processor System Technical Reference Manual. https://
www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/
cyclone-v/cv_5v4.pdf. Figure 8-1, Interconnect Block Diagram, : L3
Interconnect and L4 Buses, page 8-2, Accessed 24 Jun 2022

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

Chapter 10
Introduction to Digital Signal Processing

This section will not be a comprehensive coverage of Digital Signal Processing
that a student would learn as part of their electrical engineering curriculum, which
often comes as a two-course sequence. The first course is a "Signals and Systems"
course that would include the Continuous Time Fourier Transform (CTFT). Since
computers are heavily involved in signal processing, the theory has been extended to
signals that have been sampled in time. This would be the topic of the second course
called Digital Signal Processing.

Although this section will be math heavy (yes, there is calculus involved), there
will still be useful takeaways for those that use these signal processing algorithms
but do not have the math background. I will highlight areas where you need to be
careful and why certain choices are often made when using these algorithms.

10.1 Sampling

To process a signal with a computer, we first need to create a representation of
this signal. As we will show in Sect. 10.2, we can represent signals using simple
sinusoidal functions. However, this will only work correctly if we ensure that we
have sampled the signal properly. These are the steps for sampling correctly, which
is how we implement the Sampling Theorem.

Step 1: Determine the maximum frequency fmax contained in the continuous
signal we wish to represent in a computer. If we do not know what this
maximum frequency is, which is typically the case, then we need to
limit the frequencies to a known fmax by low pass filtering the signal
to remove all frequencies above fmax. This filter is known as an anti-
aliasing filter and this filtering needs to be performed before sampling.
If there is no analog anti-aliasing circuitry before the analog-to-digital
converter where the sampling occurs, then the sampled signal is suspect.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_10

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_10

160 10 Introduction to Digital Signal Processing

Step 2: Sample the continuous signal that has been conditioned to have no
frequencies greater than fmax with a sampling rate fs that is greater than
twice fmax

Sampling Theorem
fs > 2 fmax

The reason we must sample greater than twice the maximum frequency is due to
the periodicity of the sine and cosine functions. This identity is listed below for the
cosine function.

cos (θ) = cos (θ + 2π) (10.1)

What this means in practical terms is that if we do not ensure that the sampling
theorem has been followed, then there will be high frequencies masquerading as low
frequencies, which is known as aliasing. To illustrate this, let us create two signals
where signal one is comprised of frequency f1, which will be less than one-half fs
and thus properly sampled. We will create a second signal that will be comprised of
frequency f2, and this frequency will violate the sampling theorem. For convenience,
we will create f2 that is some multiple of the sampling rate higher than f1:

f2 = f1 + k fs (10.2)

If we take the first signal with frequency f1

x(t) = cos(2π f1t + φ) (10.3)

and sample it at the sampling period Ts = 1/ fs , it becomes

x[n] = x(nTs) (10.4)
= cos(2π f1nTs + φ)

Now take the second signal with frequency f2

y(t) = cos(2π f2t + φ) (10.5)

and sample it at the same sampling rate:

10.1 Sampling 161

y[n] = y(nTs) (10.6)
= cos(2π f2nTs + φ)
= cos(2π(f1 + k fs)nTs + φ)
= cos(2π f1nTs + 2πk fsnTs + φ)
= cos(2π f1nTs + 2πkn + φ)
= cos(2π f1nTs + φ)
= x[n]

Thus, this higher frequency signal with frequency f2 ends up looking identical to
the signal with frequency f1 after sampling, i.e., Eq. 10.4 equals Eq. 10.6. In a similar
manner, all high-frequency terms greater than fmax would end up masquerading as
lower frequencies less than fs/2 when sampled at fs , which is known as aliasing.
Since we do not want this to happen, we need to ensure that the sampling theorem
has been followed.

The illustration of sampling theorem in the frequency domain is shown in
Fig. 10.1. The spectrum of the signal gets replicated in the frequency domain in
multiples of 2π fs and only one replica (k = 1) is shown in the figure. The sampling
frequency fs controls the spacing between the replicas, and for no overlap to occur,
we can see from the figure that the following inequality needs to hold:

2π fmax < 2π(fs − fmax) Radian Frequency
=⇒ fmax < fs − fmax Cyclic Frequency (Hz)
=⇒ 2 fmax < fs Sampling Theorem

Fig. 10.1: Illustration of the sampling theorem in the frequency domain. The spectrum
of the sampled signal gets replicated at multiples of the sample rate fs (i.e., k fs and
only k = 1 is shown in the figure). The sampling theorem fs > 2 fmax ensures that
there will be no spectral overlap, i.e., aliasing

162 10 Introduction to Digital Signal Processing

10.2 Fourier Series

In signal processing, one of the fundamental ideas is that we can represent signals
such as speech by simple sinusoids and it does not matter if the speech signal is
acoustic where people are talking to each other across a room or if the speech signal
is converted to a digital representation and people are talking to each other across
the country using their cell phones. We can represent any signal just by adding the
appropriate number of sines and cosines together, each with their own amplitude,
frequency, and phase shift. This is known as a Fourier series, which has the following
mathematical form:

s(t) = a0
2
+

N∑

k=1

(
ak cos

(
2π
T kt

)
+ bk sin

(
2π
T kt

))
(10.7)

This is typically written in a complex exponential form using Euler’s formula:

s(t) =
N∑

k=−N
cke

j 2π
T kt (10.8)

since
e jθ = cos θ + j sin θ (10.9)

Let us show how this works with the following fairly complicated arbitrary piece-
wise waveform that has a period ofT = 5 seconds. The waveform has three segments
given by the following function and is shown in Fig. 10.2.

s(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 sin
(
2π

1
6
t

)
+

1
2

sin (2π8t) 0 ≤ t < 3

e(ln (1)−ln (4))t+(4 ln (4)−3 ln (1)) 3 ≤ t < 4
3 4 ≤ t < 5

(10.10)

Let us determine the Fourier series coefficients ck that will allow us to reconstruct
this waveform using a summation of sinusoids. The Fourier coefficients are defined
as

ck =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
T

∫ T

0
s(t)dt k = 0 (DC term)

2
T

∫ T

0
s(t)e−j

2π
T ktdt k > 0

(10.11)

We will use the fact that integration is a linear operator, which means we can
break the waveform into separate segments and integrate each segment separately
and integrate the terms within each segment separately. The first segment is the time
interval 0 ≤ t < 3 and there are two terms (two sinusoids with different frequencies

10.2 Fourier Series 163

Fig. 10.2: An arbitrary signal given by Eq. 10.10

and amplitudes), so we will integrate each term separately over this interval. Thus
the first term 3 sin

(
2π 1

6 t
)

in segment 1 has the DC coefficient:

c0 =
3
5

∫ 3

0
3 sin

(π
3
t
)
dt =

3
5

(
−3
π

cos
(π
3
t
)���

3

0

)
(10.12)

=
−9
5π

(
cos

(
3π
3

)
− cos (0)

)
=

−9
5π

(−1 − 1) (10.13)

=
18
5π

(10.14)

Knowing that
∫
eat sin (bt)dt = eat

a2+b2

[
a sin (bt) − b cos (bt)

]
, we get the rest of

the coefficients for this first term:

ck =
6
5

∫ 3

0
3 sin

(π
3
t
)
e−j

2π
5 kt dt (10.15)

=
6
5

(1
π2

9 +
(−j2πk

5
)2
) [(− j2πk

5
sin

(π
3
t
)
− π

3
cos

(π
3
t
))
e

− j2πkt
5

]3

0
(10.16)

=
6
5

(1
π2

9 − 4π2k2

25

) [π
3
e

− j6πk
5 +

π

3

]
(10.17)

=
2

5π
9 − 4π2k2

5

(
e

− j6πk
5 + 1

)
(10.18)

164 10 Introduction to Digital Signal Processing

=
90

(
1 + e−j

6
5 πk

)

π
(
25 − 36k2) (10.19)

Performing a similar integration for the second term 1
2 sin (2π8t), we get the

Fourier coefficients of

c0 = 0 (10.20)

ck =
20

(
1 − e−j

6
5 πk

)

π
(
1600 − k2) (10.21)

We are not done yet, because if we use this in Matlab, we will end up getting
NANs (not a number) for the case when k = 40 because this results in c40 =

0
0 . For

this case, we apply L’Hospital’s rule:

lim
k→40

∂
∂k

(
20 − 20e−j 6

5 πk
)

∂
∂k

(
1600π − πk2) = lim

k→40

24 jπe−j 6
5 πk

−2πk
=

−3 j
10

(10.22)

Thus the coefficients that will give us the waveform in segment 1 (0 ≤ t < 3) are

ck =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18
5π

k = 0 (DC term)

90
(
1 + e−j

6
5 πk

)

π
(
25 − 36k2) +

20
(
1 − e−j

6
5 πk

)

π
(
1600 − k2) k > 0, k � 40

90
(
1 + e−j

6
5 πk

)

π
(
25 − 36k2) +

−3 j
10

k = 40

(10.23)

We can check these coefficients by generating the waveform (blue curve) for
segment 1 as shown in Fig. 10.3 where we use N = 100 coefficients and plot on
top of the target waveform (green). Note that this curve is zero for the other two
segments.

The waveform for segment 2 (3 ≤ t < 4) has the form s(t) = eat+b , where a and b
are chosen so that s(t) = 4 at t = 3 and s(t) = 1 at t = 4. This gives a = ln (1)− ln (4)
and b = 4 ln (4)−3 ln (1). The Fourier coefficients for segment 2 are calculated using
Eq. 10.11 and are found to be

ck =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e4a+b − e3a+b

5a
k = 0 (DC term)

2
5a − j2πk

(
e4a+b−j 8

5 πk − e3a+b−j 6
5 πk

)
k > 0

(10.24)

10.2 Fourier Series 165

Fig. 10.3: Checking the coefficients for segment 1 (0 ≤ t < 3). The Fourier series is
linear, so we can treat each segment independently

The waveform for segment 3 (4 ≤ t < 5) has a constant value of 3. This results in
the following Fourier coefficients for segment 3:

ck =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
5

k = 0 (DC term)

−6
j2πk

(
1 − e−j

8
5 πk

)
k > 0

(10.25)

The final waveform uses all the coefficients from all the segments and is the sum
of the waveforms for each segment. This reconstruction is shown in Fig. 10.4.

The Matlab files to plot this waveform are listed in Table 10.1 and can be down-
loaded to create the waveform with a different number of coefficients. In Fig. 10.4
and in the subplot with N = 500 coefficients, one can see overshoots and ringing still
happening at the discontinuities. This is known as the Gibbs phenomenon [1]. To get
rid of the overshoots and ringing, one has to include a large number of coefficients,
which tells us that discontinuities and sharp corners contain very high frequencies.

The function sumexp.m in Table 10.1 is done with one line of Matlab code as
shown in Listing 10.1 and illustrates vectorized Matlab code in contrast to using
slower for loops.

34 s=real(C(:)'*(exp(1j*2*pi*f(:)*[0:(1/fs):dur])));

Listing 10.1: Matlab: Summation of complex exponentials

166 10 Introduction to Digital Signal Processing

Fig. 10.4: Signal reconstruction using different numbers of Fourier coefficients (N =
5, 50, 500). As N increases, the signal converges to the "true" solution. The signal is
periodic with period T0 = 5 seconds and three periods are plotted in each case

Table 10.1: Matlab files used to plot arbitrary waveform in Fig. 10.4

File Description Link
fourier_series_Nvalues.m Script that created Fig. 10.4 Click for file
fourier_series_waveform.m Waveform function Click for file
sumexp.m Complex exponential summation Click for file
fourier_series_target_template.m Script to plot true waveform Click for file

To interpret this line of code, we start with creating a row vector [0:(1/fs):dur]
of time values that has a matrix dimension of 1 × Nt , where Nt is the number of
samples (sample rate times time). We then take the vector of harmonic frequencies
f and force it to be a column vector f(:) with dimension Nf × 1, where Nf is the
number of frequencies. Thus we do not care if f comes into the function as a row
or column vector since we force it to be a column vector by using f(:). We then
multiple the column vector of frequencies by the row vector of time samples:

f (:)
Nf × 1

∗ [0:(1/fs):dur]
1 × Nt

= f(:)*[0:(1/fs):dur]
Nf × Nt

(10.26)

This results in an outer product matrix Nf × Nt containing all combinations of
frequencies and times. This matrix gets multiplied by the complex term j ∗ 2 ∗ π and
is the argument to Matlab’s exp() function that results in a matrix of complex values
of size Nf × Nt .

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/fourier_series_Nvalues.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/fourier_series_waveform.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/sumexp.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/fourier_series_target_template.m

10.3 Geometric Interpretation of the Fourier Transform 167

We then take the vector of complex Fourier coefficientsC that could be passed into
the function as either a row or a column vector. It has the same number of elements
as frequencies since this gives the amplitude and phase shift for each frequency
(harmonic). To force it to be a row vector, we first force it to be a column vector C(:)
and then take its transpose C(:)′. We then have the product:

C(:)′
1 × Nf

∗ exp(1j*2*pi*f(:)*[0:(1/fs):dur])
Nf × Nt

= C(:)’*exp(1j*2*pi*f(:)*[0:(1/fs):dur])
1 × Nt

(10.27)
which sums over all frequencies and we are left with the waveform as a function of
time only. Finally, we use real() since we are only interested in the real part of the
signal.

10.3 Geometric Interpretation of the Fourier Transform

If you came across the following equation for the Fourier Transform (FT), in-
frequently called the Continuous Time Continuous Frequency Fourier Transform
(CTCFFT), could you picture in your head what this equation is doing?

ŝ(f) = F {s(t)} =
∫ ∞

−∞
s(t)e− j2π f t dt (10.28)

Let us break this apart, but first let us define what the variables are. The variable
f stands for frequency with units of hertz (Hz) or cycles per second. The variable t
stands for time with units of seconds. The grouping 2π f stands for angular frequency,
often replaced by ω, and has units of radians per second. The variable j stands for
the complex number

√
−1 (sometimes you will see the letter i instead of j).

The first step in breaking this apart is to use Euler’s formula

ejθ = cos (θ) + j sin (θ) (10.29)

which has the following geometric interpretation as seen in Fig. 10.5. The value
e jθ is a point on the unit circle that lives in the complex plane. The position of the
point is determined by the angle θ and has the x coordinate value on the real axis of
cos θ and the y coordinate value on the imaginary axis of sin θ. We interpret the unit
vector (radius one) that connects the origin with point e jθ as being projected to both
the real and imaginary axes using basic trigonometry. Note the circle is called the
Unit Circle since it has a radius of 1 and is the range of e jθ . Thus Euler’s formula
maps all real values of θ to the unit circle and a point specified by θ has a projection
to the real and imaginary axes. The real axis projection has the length of cos (θ) and
the imaginary axis projection has the length of sin (θ).

168 10 Introduction to Digital Signal Processing

Fig. 10.5: Geometric interpretation of Euler’s formula. We interpret the unit vector
(radius one) that connects the origin with point e jθ as being projected to both the
real and imaginary axes using basic trigonometry

We can then interpret the term s(t)e−j2π f t as a vector with a time varying radius
of s(t) that is being projected to both the real and imaginary axes, while the Euler
angle is also changing in time with the value of θ = 2π f t. This causes the vector
(whose radius is changing in time) to spin around the origin in the complex plane
and this spinning vector is called a phasor. As we did for the unit vector in Euler’s
formula, we interpret the signal s(t) as being projected to both the real and imaginary
axes as illustrated in Fig. 10.6 where the projected signal length on the real axis is
s(t) cos (2π f t) and the projected signal length on the imaginary axis is s(t) sin (2π f t).

Now, let us expand the Fourier Transform definition using Euler’s formula:

ŝ(f) =
∫ ∞

−∞
s(t)e−j2π f t dt (10.30)

=

∫ ∞

−∞
s(t)[cos (2π f t) + j sin (2π f t)] dt (10.31)

=

∫ ∞

−∞
s(t)cos (2π f t) dt+ j

∫ ∞

−∞
s(t)sin (2π f t) dt (10.32)

10.3 Geometric Interpretation of the Fourier Transform 169

Fig. 10.6: Euler’s formula projects the signal onto the real and imaginary axes. The
signal s(t) controls the vector length that varies in time along with the projection
angle. The example shown here assumes that both s(t) and cos() are positive. How-
ever, both terms can be both positive and negative and this will change the quadrant
that the projection occurs in

Let us focus on the term s(t) cos (2π f t), which is the signal’s projection to the
real axis. For illustration purposes, we will use the speech signal shown as the blue
line in Fig. 10.7. This will be the signal s(t) being projected to the real axis by the
cosine with time varying angle θ = 2π f t where f = 112.51 Hz (chosen to match
the pitch of the speech signal well). This cosine with f = 112.51 Hz is shaded in a
light green color that is behind the blue speech signal.

The product s(t) cos (2π f t), which is the projection to the real axis, is plotted in
panel A of Fig. 10.8 as a function of time. The product s(t) sin (2π f t), which is the
projection to the imaginary axis, is plotted in panel B as a function of time. The
positive part of the product (as a function of time) is colored in blue and the negative
part of the product is colored in red.

The first term in the Fourier integral
∫ ∞

−∞
s(t) cos (2π f t) dt (10.33)

is just the area under the curve in panel A of Fig. 10.8 where the positive areas
(blue) add and the negative areas (red) subtract. In Matlab, this is just the summation

170 10 Introduction to Digital Signal Processing

Fig. 10.7: Speech signal s(t) used in Euler projection is the curve in blue. The cosine
used for the projection is shaded in green. The cosine frequency of 112.51 Hz was
chosen since it had the greatest Fourier Transform magnitude as can be seen in
Fig. 10.10. The cosine frequency aligns well with the pitch frequency of the speech
signal where most of the speech signal energy is contained

of the product vector s(t) .* cos (2π f t) over the interval shown, which results in
the value −28.57. The signal goes significantly negative during the positive cycle
of cos (2π112.5t), so the area becomes significantly negative. This means that the
signal matches this frequency well (the value would be positive if the negative part
of the speech signal aligned with the negative cycle of the cosine). Similarly, the area
for the imaginary axis project has a value of−7.88. Thus the Fourier Transform at the
frequency f = 112.5 is ŝ(f) = ŝ(112.5) = −28.57 − j7.88, which has a magnitude
of m =

√
(−28.57)2 + (−7.88)2 = 29.64. This is the point of greatest magnitude

marked in Fig. 10.10. Thus, when the signal oscillates at the same frequency as the
cosine, the resulting area of the summation will be large (and can be either positive
or negative), which tells us that there is a lot of signal energy at this frequency. Using
both the sine and cosine tells us the phase shift of the signal relative to the sine and
cosine functions, which is why the result is a complex number.

In contrast, an example of a frequency that does not match the speech signal
well (f = 636 Hz) is shown in Fig. 10.9. At this projection frequency, the signal
summations are close to zero (magnitude = 0.08), which is the low magnitude
marked in Fig. 10.10. Notice that the positive and negative areas are similar and
nearly symmetric. The cosine is going positive and negative, while the signal is not,
which causes the product to be symmetric about zero. This tells us that the signal
does not match this frequency well and thus does not have much signal energy at
this frequency.

10.3 Geometric Interpretation of the Fourier Transform 171

Fig. 10.8: In panel A, the speech signal s(t) is projected to the real axis and the
real axis value is plotted as a function of time. In panel B, the speech signal s(t) is
projected to the imaginary axis and the imaginary axis value is plotted as a function
of time

Fig. 10.9: Example where the frequency does not match the signal well. The positive
area (blue) in this case is similar in area to the negative area (red)

172 10 Introduction to Digital Signal Processing

Fig. 10.10: Fourier transform of the speech signal from Fig. 10.7. Panel A shows
the magnitude of the Fourier transform as a function of frequency. Plot B plots the
normalized magnitude of the Fourier transform in dB = 20 log10(m/max(m)). The
largest magnitude point in both A and B panels is at the frequency (f = 112.51 Hz),
which is used in Figs. 10.7 and 10.8. The low magnitude point in both panels is at the
frequency (f = 636.97 Hz), which is used in Fig. 10.9. Both these points are marked
by green circles

10.4 The Fast Fourier Transform (FFT)

There are many reasons to use the Fourier Transform such as examining the frequency
content of a signal or transforming convolution performed in the time domain to a
much simpler multiply operation in the frequency domain. However we will ignore
much of this mathematical infrastructure since there are many books devoted to this
topic ([2, 3]). Rather, we will turn our attention to some practical considerations
when using the FFT. We will use as our example a speech signal that has been
sampled in time by an analog-to-digital converter (ADC).

Our mathematical starting point is the Fourier Transform (Eq. 10.28) that we
restate here:

ŝ(f) = F {s(t)} =
∫ ∞

−∞
s(t)e− j2π f t dt

10.4 The Fast Fourier Transform (FFT) 173

Notice that the limits of integration are from −∞ to +∞. This is fine when we
integrate continuous functions. However, when we use computers to compute the
Fourier Transform, we immediately break this assumption since we do not have
the time, memory, or patience to deal with infinities. Can we still use the Fourier
Transform definition when we immediately modify the limits of integration? The
general answer is that we cannot assume that it will give us valid answers. This would
be like using an instrument outside of the manufacture’s working specifications. Thus
we need to know what this deviation from the definition is doing to our analysis.
Modifying the limits of integration gets us into windowing, which is covered in
Sect. 10.5.1 Windowing (page 178).

There are additional modifications that are made to the Fourier Transform as
given in Eq. 10.28 to allow computers to implement the transform. These are:

Mod 1: Changing continuous time to discrete time. This is known as the Dis-
crete Time Continuous Frequency (DTCF) Fourier Transform and
is covered in Sect. 10.4.1 The Discrete Time Continuous Frequency
Fourier Transform (page 173). This is useful when you want to deter-
mine the frequency content of a signal over an arbitrary frequency range
(typically a small range) with arbitrary high precision.

Mod 2: Changing continuous frequency to discrete frequency (with discrete
time). This is known as the Discrete Time Discrete Frequency (DTDF)
Fourier Transform and is usually called the Discrete Fourier Transform
(DFT), which is covered in Sect. 10.4.2 The Discrete Fourier Transform
(page 174).

Mod 3: Speeding up the DFT, which is called the Fast Fourier Transform (FFT),
which is covered in Sect. 10.4.3 FFT (page 176). This is the most com-
monly used form of the Fourier Transform when using computers.

10.4.1 The Discrete Time Continuous Frequency Fourier Transform

The first step toward using the Fourier Transform with computers is to use samples
of a signal. This means that the time steps are discrete where they have been sampled
at a particular time interval or sample rate. This changes the integral of the Fourier
Transform definition to a summation and the signal samples are denoted s[n]. The
Fourier Transform that uses discrete time samples is given as

ŝ(f) = Fdtc f {s[n]} =
∞∑

n=−∞
s[n]e− j2π f n

where n ∈ Z, f ∈ R, − fs2 ≤ f ≤ fs
2 .

Notice that the limits of the summation are from −∞ to +∞, so we have not dealt
with windowing yet (see Sect. 10.5.1 Windowing (page 178)). In this definition, we
can use any real frequency value in the domain − fs

2 ≤ f ≤ fs
2 , which corresponds to

174 10 Introduction to Digital Signal Processing

the principal values of the sine/cosine functions (−π ≤ ω ≤ π) where ω = 2π f and
fs is the sampling frequency.

This form is useful when you want to examine the frequency content of a signal
within a specific frequency range and with arbitrary precision (limited by machine
precision and data types used). This form was used to find the local frequency
maximum and local frequency minimum with high precision (double precision) in
Figs. 10.7, 10.8, 10.9 and 10.10. (click here for the source file of dtcfft.m)

10.4.2 The Discrete Fourier Transform

We converted time to discrete sample times in Sect. 10.4.1 The Discrete Time Con-
tinuous Frequency Fourier Transform (page 173) and we now need to convert the
transform to discrete frequencies, so we can easily deal with them using computers.
To do this, we sample the frequencies around the unit circle in the complex plane with
uniform spacing. The full circle has 2π radians and we divide this into N intervals
that gives us N frequencies (normalized). This gives the Discrete Fourier Transform:

ŝ[k] = DFT{s[n]} =
N−1∑

n=0
s[n]e− j

2π
N kn where k = 0, 1, 2, . . . , N − 1

The index n in the signal s[n] is understood to represent samples in the signal that
are spread apart in time by Ts seconds, where Fs = 1/Ts is the sample rate in Hz.
Furthermore, it is assumed that the maximum frequency content in the signal before
sampling was less than Fs/2, which is why you always see anti-aliasing filters
before analog-to-digital (ADC) converters (if you do not see them in the system,
the hardware and signal are suspect). The index k in the spectrum ŝ[k] represents
the normalized radian frequency ω̂ = 2π

N k (normalized to 2π), which means that
regardless of FFT length N , the frequency sampling (evaluation) is done once around
the unit circle. We can also normalize frequency f with respect to the sampling rate
Fs , thus ω̂ = 2π f

Fs
. This means that 2π

N k = 2π f
Fs

or f = k Fs

N , which is how you
convert the DFT index k to frequency. Note: The DFT index k starts at zero, which is
different from the Matlab FFT indexing that starts at one (see example in Table 10.3).
A further wrinkle is that normalized radian frequencies π < ω̂ <= 2π (frequencies
on the bottom half of the unit circle) actually represent negative radian frequencies
since the principle argument for sinusoids must be in the interval −π < θ <= π.
Thus the normalized radian frequencies in the interval π < ω̂ <= 2π effectively
have 2π subtracted from them resulting in negative frequencies.

In practice, the DFT is not used much because there is a much faster algorithm
called the Fast Fourier Transform, or FFT (see Sect. 10.4.3). The computational cost
for the DFT is O(N2) in contrast to the FFT’s computational cost of O(N log N),
which is significantly faster for larger FFT sizes as can be seen in Table 10.2.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/dsp/dtcfft.m

10.4 The Fast Fourier Transform (FFT) 175

Ta
bl

e
10

.2
:C

om
pu

ta
tio

na
lc

os
to

fF
FT

vs
D

FT

FF
T

FF
T

FF
T

D
FT

D
FT

D
FT

FF
T

Po
w

er
of

2
FF

T
siz

e
Re

al
×’

s
Re

al
+’

s
Re

al
×’

s
Re

al
+’

s
Sp

ee
du

p
v

N
=

2v
4N

(lo
g 2
(N

)−
1)

2N
lo

g 2
(N

)
Re

al
op

s
4N

2
4N

2
−

2N
Re

al
op

s
3

8
64

48
11

2
25

6
24

0
49

6
4.

4
4

16
19

2
12

8
32

0
10

24
99

2
20

16
6.

3
5

32
51

2
32

0
83

2
40

96
40

32
81

28
9.

8
6

64
12

80
76

8
20

48
16

,3
84

16
,2

56
32

,6
40

15
.9

7
12

8
30

72
17

92
48

64
65

,5
36

65
,2

80
13

0,
81

6
26

.9
8

25
6

71
68

40
96

11
,2

64
26

2,
14

4
26

1,
63

2
52

3,
77

6
46

.5
9

51
2

16
,3

84
92

16
25

,6
00

1,
04

8,
57

6
1,

04
7,

55
2

2,
09

6,
12

8
81

.9
10

10
24

36
,8

64
20

,4
80

57
,3

44
4,

19
4,

30
4

4,
19

2,
25

6
8,

38
6,

56
0

14
6.

3
11

20
48

81
,9

20
45

,0
56

12
6,

97
6

16
,7

77
,2

16
16

,7
73

,1
20

33
,5

50
,3

36
26

4.
2

12
40

96
18

0,
22

4
98

,3
04

27
8,

52
8

67
,1

08
,8

64
67

,1
00

,6
72

13
4,

20
9,

53
6

48
1.

9
13

81
92

39
3,

21
6

21
2,

99
2

60
6,

20
8

26
8,

43
5,

45
6

26
8,

41
9,

07
2

53
6,

85
4,

52
8

88
5.

6
14

16
,3

84
85

1,
96

8
45

8,
75

2
1,

31
0,

72
0

1,
07

3,
74

1,
82

4
1,

07
3,

70
9,

05
6

2,
14

7,
45

0,
88

0
16

38
.4

15
32

,7
68

1,
83

5,
00

8
98

3,
04

0
2,

81
8,

04
8

4,
29

4,
96

7,
29

6
4,

29
4,

90
1,

76
0

8,
58

9,
86

9,
05

6
30

48
.2

16
65

,5
36

3,
93

2,
16

0
2,

09
7,

15
2

6,
02

9,
31

2
17

,1
79

,8
69

,1
84

17
,1

79
,7

38
,1

12
34

,3
59

,6
07

,2
96

56
98

.8

176 10 Introduction to Digital Signal Processing

10.4.3 FFT

We will not get into the derivation of the FFT since there are good books on the
subject ([4, 5]). Rather, we will look at how to use and interpret the FFT. The signal
that we will examine is shown in Fig. 10.11 where the waveform is shown in the top
plot. This signal (sampled at Fs = 2000 Hz) is zero for 0.5 seconds, a 10 Hz signal for
1 second, zero for 0.5 seconds, 100 Hz for 1 second, and then zero for 0.5 seconds.
This results in a signal with 7002 samples. Since the FFT needs an input length that
is a power of 2, we take an FFT of length N = 8192 where we add zeros to the
end of the signal to make a signal with 8192 samples (known as zero padding). The
output of the FFT is a vector of 8192 complex values, which is hard to plot. Since we
are interested in the frequency content of the signal, we plot the magnitude, which
is the middle plot of Fig. 10.11 where it has been plotted in decibels (i.e., Matlab
command: m1 = 20*log10(abs(f1));) and where the peak dB value has been set to
zero (i.e., Matlab command: m1 = m1-max(m1);). Setting the peak dB value to zero
is typically done since we are usually more interested in the relative magnitudes of
the frequencies in the signal than their absolute magnitudes. As an example in audio,
we are typically more interested in how the audio sounds (harmonics, etc.) rather
than how loud it is when it comes to viewing the audio spectrum.

Fig. 10.11: Top figure: signal with 10 and 100 Hz components sample at Fs =
2000 Hz; middle figure: Output of Matlab’s fft() function that puts the negative
frequencies in the last half of the output vector; bottom figure: spectrum as expected
with frequencies ordered on the real axis

One aspect to notice about the FFT result that is shown in the middle plot of
Fig. 10.11 is the symmetry about the midpoint (DFT index k = 4096 or Matlab’s

10.4 The Fast Fourier Transform (FFT) 177

Fig. 10.12: Matlab’s FFT indexing

index i = 4097), assuming that the FFT was taken of a signal with real (not complex)
values. What can be confusing is that all the FFT values past the midpoint are
associated with negative frequencies and you would expect to see the plot shown
at the bottom of Fig. 10.11 with negative frequencies ordered as expected on the
abscissa axis. Thus just plotting the FFT result will place the negative frequencies on
the right side of the plot (red section) past the positive frequencies (green section).
The reason this occurs is because the FFT normalized frequencies are evaluated
around the unit circle from 0 to 2π as shown in Fig. 10.12 and the frequencies in the
range π < ω̂ <= 2π (bottom half of the circle) are converted by the sinusoid functions
to −π < ω̂ <= 0 by effectively subtracting 2π due to the principle arguments of
sinusoids being −π <= ω̂ <= π. The associated DFT indexing and frequencies
(assuming Fs = 2000) are listed in Table 10.3 for a 16-point FFT.

Due to the symmetry as seen in the middle plot of Fig. 10.11 when taking the
FFT of real signals, typically only the first half of the FFT vector is plotted since
it contains the positive frequencies. Note: If you are performing frequency domain
processing of a real signal that involves taking the inverse FFT and you modify a
positive frequency value by modifying either the magnitude or the phase, you also
need to modify the associated negative frequency in the same manner, i.e., if you
modify a Matlab FFT value at index i (DFT index k=i-1), you also need to modify
the Matlab FFT value at index j = N − i + 2 (DFT index j = N − k + 1), where N is
the FFT length.

178 10 Introduction to Digital Signal Processing

Table 10.3: N = 16-point FFT indexing translations (Fs = 2000)

Matlab FFT index DFT index Frequency (Hz) Matlab conjugate frequency index
i = 1 : NFFT k = i − 1 f = k Fs

NFFT
= k 2000

16 iconj = NFFT − k + 1 = NFFT − i + 2

1 0 0 (DC)
2 1 125 16
3 2 250 15
4 3 375 14
5 4 500 13
6 5 625 12
7 6 750 11
8 7 875 10
9 8 1000 (Nyquist)
10 9 −875 8
11 10 −750 7
12 11 −625 6
13 12 −500 5
14 13 −375 4
15 14 −250 3
16 15 −125 2

10.5 Practical Considerations When Using the FFT

10.5.1 Windowing

In the real-time analysis and synthesis FPGA example system in Sect. 3.1, one can
see a "window" being applied in the Simulink model in Fig. 3.7 before being sent to
the FFT engine. What window should be applied here? What would happen if you
eliminated this windowing step? There are several reasons for performing this step.

To answer these questions, we first need to go back to the original definition of
the Fourier transform, which we show here again:

ŝ(f) = F {s(t)} =
∫ ∞

−∞
s(t)e− j2π f t dt (10.34)

Notice the limits of integration in this definition. When we use computers, we do
not have the time to start at time t = −∞ and then wait until t = +∞. Even if we
could, we would not have the memory to be able to store a signal this long. So what
happens if we have a signal that only lasts from time t = t1 to time t = t2 and is zero
outside this time interval? Let us rewrite this as

10.5 Practical Considerations When Using the FFT 179

ŝ(f) =
∫ ∞

−∞
s(t)e−j2π f t dt (10.35)

=

∫ t1

−∞
s(t)e−j2π f t dt +

∫ t2

t1

s(t)e−j2π f t dt +
∫ ∞

t2

s(t)e−j2π f t dt (10.36)

= 0 +
∫ t2

t1

s(t)e−j2π f t dt + 0 (10.37)

=

∫ t2

t1

s(t)e−j2π f t dt (10.38)

However, we should not take this approach since we are getting away from using
the definition of the Fourier Transform. So instead of playing with the integration
limits, let us leave them alone but modify our signal instead. To do this, let us define
a new signal w(t) as

w(t) =
{

1 if t1 � t � t2
0 otherwise

(10.39)

and we can rewrite the Fourier Transform where we multiple by this windowing
function to time limit our signal and not have to mess with the limits of integration.
The signal is now zero outside the time interval t1 � t � t2.

ŝ(f) =
∫ ∞

−∞
s(t)w(t)e− j2π f t dt (10.40)

This means that when we take the FFT of a signal using a computer, we are always
applying a window function, even if we do not think we are. Note: If you do not
explicitly apply a window to your signal, you are in effect using a rectangular
window as defined in Eq. 10.40.

By using a finite signal, which we have to do when using computers, we have
essentially applied a rectangular window to an infinite signal. So what does this do
to our FFT results? The mathematical answer is the following where we generalize
to any window function w(t). If ŝ(f) is the Fourier Transform of s(t) as seen in
Eq. 10.34 and ŵ(f) is the Fourier Transform of w(t), we take the inverse Fourier
Transform as defined by

s(t) = F−1{ŝ(f)} = 1
2π

∫ ∞

−∞
ŝ(f)ej2π f t df (10.41)

Then the Fourier Transform of the windowed signal is

180 10 Introduction to Digital Signal Processing

F {s(t)w(t)} =
∫ ∞

−∞
[s(t)w(t)] e−j2π f t dt (10.42)

=

∫ ∞

−∞

[1
2π

∫ ∞

−∞
ŝ(ζ)e j2πζ t dζ

]
w(t)e−j2π f t dt (10.43)

=
1

2π

∫ ∞

−∞
ŝ(ζ)

[∫ ∞

−∞
w(t)e−j2π f te j2πζ t dt

]
dζ (10.44)

=
1

2π

∫ ∞

−∞
ŝ(ζ)

[∫ ∞

−∞
w(t)e−j2π(f−ζ)t dt

]
dζ (10.45)

=
1

2π

∫ ∞

−∞
ŝ(ζ)ŵ(f − ζ) dζ (10.46)

=
1

2π
[ŝ(f) ∗ ŵ(f)] (10.47)

Thus multiplication of the signal and the window function in the time domain is
equivalent to convolution in the frequency domain.

What does this mean in practice? Before we answer this, we first need to know
what the Fourier transform of our rectangular window is. For convenience, we will
define t1 = −T

2 and t2 = −T
2 for our rectangular window in Eq. 10.39.

F {w(t)} = ŵ(f) =
∫ ∞

−∞
w(t)e−j2π f t dt (10.48)

=

∫ T
2

− T
2

e−j2π f t dt (10.49)

=
1

− j2π f

[
e−j2π f t

���
T
2

− T
2

]
(10.50)

=
1

− j2π f

[
e−jπ f T − e jπ f T

]
(10.51)

=
T
π f T

[e jπ f T − e−jπ f T

2 j

]
(10.52)

=
T
π f T

sin (π f T) (10.53)

= Tsinc(f T) (10.54)

We can use the Matlab sinc() function to plot this function, which we do in
Fig. 10.13 in the right column for two different values of time width T. The associated
rectangular windows are shown on the left side and the associated Fourier transform
on the right side. Note that the longer rectangular window in time (bottom left)
results in narrower sinc function in frequency (bottom right). This means that to get
a better frequency resolution in the frequency domain, a longer window of the signal
in time needs to be taken.

10.5 Practical Considerations When Using the FFT 181

Fig. 10.13: The Fourier transform of a rectangular window is a sinc function. Longer
windows in time result in narrower sinc functions in frequency

10.5.2 Window Length

In practice we can view the effect of the rectangular window (and other windows) as
a blurring operation in the frequency domain where longer windows in time blur less
in the frequency domain. Shorter windows blur more. To illustrate this, let us look
at the spectrum of a cosine signal with frequency f = 1000 Hz where the Fourier
transform has been compute of the cosine signal using rectangular windows of sizes
[5 10 50 100 1000] msec as shown in Fig. 10.14. As we take longer rectangular
windows of the cosine function in time, the resulting spectrum looks more and more
like the line spectrum we expect for the cosine with f = 1000 Hz (shown as the
green vertical line).

182 10 Introduction to Digital Signal Processing

Fig. 10.14: Spectrum of a cosine signal with frequency f = 1000 Hz evaluated using
windows of sizes [5 10 50 100 1000] msec (Fs = 10,000 Hz). The green vertical line
is located at f = 1000 Hz. The last plot (bottom right) gives all the plots together for
comparison purposes

Window length becomes important if we are trying to resolve frequencies that are
close together. As an example, let us create a signal that is the sum of two cosines,
one at f 1 = 1000 Hz and the other at f 1 = 1050 Hz. Now let us look at the resulting
spectrum using windows of different lengths as shown in Fig. 10.15. With the 10
msec window, we do not even know that there are two frequencies. This is because
the spectrum of the 10 msec window (shown in the upper right of Fig. 10.14) has
been convolved with the two close frequencies and has blurred them together. As the
windows get longer, the blurring from the associated sinc functions (convolution in
the frequency domain) becomes less noticeable. Using a 1000 msec window results
in hardly any blurring since the sinc function is very narrow relative to the separation
(50 Hz) of the two frequencies.

10.5 Practical Considerations When Using the FFT 183

Fig. 10.15: Spectrum of a signal with two cosines with frequencies f = 1000 Hz
and f = 1050 Hz evaluated using windows of sizes [10 13 15 50 100 1000] msec
(Fs = 10,000 Hz). If the window is too short (e.g., 10 msec window top left), the
signal frequencies get blurred together and you cannot resolve them at all. The green
vertical lines are located at f = 1000 Hz and f = 1050 Hz

In summary, the longer the window is in time, the narrower the associated peak
is in frequency. Thus if you are interested in good frequency resolution, use a longer
window, which means using the FFT with more points. The trade-off is lower time
resolution, since you do not know where the frequency occurs within a window, and
longer latency for the FFT computation.

10.5.3 Window Edge Effects

If you look at the Fourier series example in Fig. 10.4, we determined what the Fourier
series coefficients should be over the interval 0 ≤ t ≤ T = 5 seconds. What happened
outside of this interval? Since the sinusoids in the Fourier series are periodic, the
signal represented by the Fourier coefficients becomes periodic with period T, as
can be seen in the figure that shows three periods. Thus anytime we represent a
signal in the frequency domain by taking the FFT, we have turned it into a periodic
signal in time where it continuously repeats outside the window for all time. This
is a subtle point since we typically expect the signal to remain the same when we
extract a portion of it and do not realize that by extracting it (i.e., windowing) and
taking the FFT, we have caused it to repeat continuously in time. This is because we
are only paying attention to the time interval where we extracted the signal and do

184 10 Introduction to Digital Signal Processing

not consider what happened in time outside this interval. Keep this in mind since
this needs to be combined with the following point. If a signal has discontinuities
in it, similar to the discontinuities in the signal example in Fig. 10.4, it will take
many harmonic terms to model the signal well. This means that discontinuities are
associated with high frequencies.

What this means in practice when we used FFTs is that we need to be careful at
the edges of the signal that we are windowing. This is because the FFT will cause
our signal to repeat outside of our window in time and if there are discontinuities at
the windowed edges, the FFT will add high frequencies to model the discontinuities,
even if these frequencies are not present in the original signal.

This is illustrated in Fig. 10.16 where we start with a 64 Hz cosine (top left). We
pick the frequency of the cosine and FFT length (N = 1024) such that when the FFT
causes the signal to repeat outside of the N = 1024 rectangular window, the period of
the 64 Hz cosine aligns well with the effective periodization. This is shown in the top
center plot where the left side (in red) is at the end of the signal window and the green
segment on the right side is where the signal has been effectively replicated in time.
The FFT spectrum in this case is shown (top right). The rectangular window used
had N = 1024 points, which resulted in a very narrow sinc spectrum in the frequency
domain. The noise floor of the FFT spectrum is very low (−314 dB) because of the
cosine that aligned perfectly with the window edges as it was replicated in time. This
perfect alignment rarely happens in practice except in contrived cases like this one
shown.

What typically happens is that the frequency components do not align nicely with
the window replication. This is modeled in the example shown in the middle row
of Fig. 10.16. Here we illustrate a typical practice of zero padding in order to get
a power of two length that we want when applying the FFT. In this example we
just set the last three points to zero. This causes a discontinuity to occur when the
FFT replicates the signal (middle plot). The left side (in red) is at the end of the
signal window and the green segment on the right side is where the signal has been
effectively replicated in time. The FFT spectrum is now significantly different where
the noise floor changed from −314 dB (shown as the green signal) to −55 dB (in
blue). The discontinuity at the window edge has significantly changed the spectrum.

To get rid of discontinuities at the window edges, we can no longer use a
rectangular window. We need a window that squashes the ends down to zero so that
when the signal is replicated by the FFT, there are no discontinuities. A commonly
used window that does this is is the Hanning (or Hann) window. A Hanning window
(N = 1024) applied to the 64 Hz cosine signal with the edge discontinuity is shown
in the bottom left plot in Fig. 10.16. We can see that there are no discontinuities at
the window edges (middle plot). This improves the spectrum representation where
the FFT floor drops from −55 dB (green) to −140 dB (blue) as seen in the bottom
right plot. The −314 dB noise floor is also plotted in green. Note that the spectrum
of the Hanning window has been convolved with the cosine line spectrum, so the
Hanning spectrum can be seen in the blue spectrum curve. The Hanning window is
only one of many windows that we can use, which gets us into the next section on
window trade-offs.

10.5 Practical Considerations When Using the FFT 185

Fig. 10.16: Window edge effects

10.5.4 Window Trade-Offs

When you use the FFT, you are always using a window. If you have not explicitly
applied a window, you have used the rectangular window, which means that you
have convolved the spectrum of the rectangular window (sinc function) with the
signal’s spectrum (a blurring operation). In the previous section we discussed why
using a Hanning window is better than using a rectangular window to eliminate edge
discontinuities. A question you probably have is why a Hanning window? Are there
other windows that could be used? The answer is that there are many other windows
that can be used and this gets us into window trade-offs.

Let us look at the spectrum of the rectangular window (sinc function) shown in
Fig. 10.17. Note that there are two parameters associated with this window spectrum
(and all window spectrums). The width of the main-lobe (width at half-height or
width at the −3 dB point) and how high the side-lobes are relative the height of the
main-lobe. If we want good frequency resolution, we want the main-lobe to be as
narrow as possible. An easy way to control the width of the main-lobe is to use longer
windows in time. However, we can also affect the main-lobe width just by the choice
of window where the windows have the same length in time. This is where the window
trade-offs come into play. Choosing a window that has a narrower main-lobe width
typically causes the side-lobe attenuation to be reduced (side-lobe peaks become
more pronounced). Why is this an issue? Remember that this window spectrum
gets convolved with the signal’s spectrum. This means that energies associated with

186 10 Introduction to Digital Signal Processing

other frequencies will "leak" into other frequency locations, affecting the fidelity of
energy measurement for frequencies of interest (this is known as "leakage"). Thus the
window used is a design trade-off that depends on the application. If you are more
interested in what frequencies are present and being able to resolve frequencies,
choose a window with a narrower main-lobe. If you are wanting to measure the
power that exists at a particular frequency, use a window that has good side-lobe
attenuation, so energy from other frequencies does not leak into your measurement.

Fig. 10.17: Window trade-offs

The trade-off between main-lobe width and side-lobe attenuation can be seen in
Fig. 10.18 for all the windows listed in Tables 10.4 and 10.5 . All the windows except
for the rectangular window squash the window edges to zero in time to eliminate
discontinuities. This is why the rectangular window is rarely used (except if you
forget to apply a window). The Hanning (or Hann) window (blue circle #18) is
typically chosen if you do not know what window to apply since it is a good balance
between main-lobe width and side-lobe attenuation.

10.5 Practical Considerations When Using the FFT 187

Fig. 10.18: Main-lobe width vs side-lobe attenuation for the windows listed in Tables
10.4 and 10.5. The commonly used Hann (or Hanning) window (number 18 in figure
and colored blue) is a good compromise between main-lobe width and side-lobe
attenuation. Windows were computed from Joe Henning’s window utilities [6]

188 10 Introduction to Digital Signal Processing

Table 10.4: Windows associated with Fig. 10.18. Windows sorted according to side-
lobe attenuation. Windows computed from [6]

Window number Window name Side-lobe attenuation Main-lobe width
1 Ultraspherical (0,0.5) 1.8255 0.13281
2 Ultraspherical (0.5,0.5) 6.9263 0.10742
3 Rectangular 13.2619 0.015625
4 Generalized Normal (P = 50) 13.3164 0.035156
5 Ultraspherical (−0.5,0.5) 13.3978 0.13086
6 Planck-taper (0.1) 13.3994 0.015625
7 Kaiser 13.6187 0.015625
8 Generalized Normal (P = 10) 14.4567 0.037109
9 Tukey 15.1229 0.019531
10 Generalized Normal (P = 4) 19.724 0.035156
11 Exponential (tau = 64) 20.158 0.017578
12 Welch 21.3084 0.019531
13 Sine 23.0021 0.019531
14 Triangular 26.5129 0.021484
15 Bartlett 26.5129 0.021484
16 Planck-Bessel (0.1, 4.45) 28.2264 0.021484
17 Taylor 29.6914 0.017578
18 Hann 31.4755 0.023438
19 Bartlett–Hann 35.9391 0.023438
20 Hamming 41.6395 0.021484
21 Gaussian (sigma = 0.4) 43.2658 0.021484
22 Slepian (alpha = 2) 44.7997 0.023438
23 Bohman 46.0164 0.027344
24 Exponential (tau = 9.2693) 49.3683 0.044922
25 Parzen 53.0471 0.029297
26 Blackman 58.1236 0.027344
27 Slepian (alpha = 3) 69.7603 0.027344
28 Flat Top 91.5097 0.058594
29 Blackman–Harris 92.0377 0.03125
30 Nuttall 93.3288 0.03125
31 Dolph–Chebyshev 94.4534 0.029297
32 Slepian (alpha = 4) 95.6357 0.03125
33 Blackman–Nuttall 96.5229 0.029297
34 Slepian (alpha = 10) 260.1093 0.046875

References 189

Table 10.5: Windows associated with Fig. 10.18. Windows sorted according to main-
lobe width. Windows computed from [6]

Window number Window name Side-lobe attenuation Main-lobe width
3 Rectangular 13.2619 0.015625
6 Planck-taper (0.1) 13.3994 0.015625
7 Kaiser 13.6187 0.015625
11 Exponential (tau = 64) 20.158 0.017578
17 Taylor 29.6914 0.017578
9 Tukey 15.1229 0.019531
12 Welch 21.3084 0.019531
13 Sine 23.0021 0.019531
14 Triangular 26.5129 0.021484
15 Bartlett 26.5129 0.021484
16 Planck-Bessel (0.1, 4.45) 28.2264 0.021484
20 Hamming 41.6395 0.021484
21 Gaussian (sigma = 0.4) 43.2658 0.021484
18 Hann 31.4755 0.023438
19 Bartlett–Hann 35.9391 0.023438
22 Slepian (alpha = 2) 44.7997 0.023438
23 Bohman 46.0164 0.027344
26 Blackman 58.1236 0.027344
27 Slepian (alpha = 3) 69.7603 0.027344
25 Parzen 53.0471 0.029297
31 Dolph–Chebyshev 94.4534 0.029297
33 Blackman–Nuttall 96.5229 0.029297
29 Blackman–Harris 92.0377 0.03125
30 Nuttall 93.3288 0.03125
32 Slepian (alpha = 4) 95.6357 0.03125
4 Generalized Normal (P = 50) 13.3164 0.035156
10 Generalized Normal (P = 4) 19.724 0.035156
8 Generalized Normal (P = 10) 14.4567 0.037109
24 Exponential (tau = 9.2693) 49.3683 0.044922
34 Slepian (alpha = 10) 260.1093 0.046875
28 Flat Top 91.5097 0.058594
2 Ultraspherical (0.5,0.5) 6.9263 0.10742
5 Ultraspherical (−0.5,0.5) 13.3978 0.13086
1 Ultraspherical (0,0.5) 1.8255 0.13281

References

1. D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution. SIAM Rev.
39(4), 644–668 (1997)

2. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice-Hall, Hobo-
ken, 1975)

190 10 Introduction to Digital Signal Processing

3. J.G. Proakis, Digital Signal Processing: Principles Algorithms and Applications
(Pearson, London, 2001)

4. R.N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New
York, 1986)

5. E.O. Brigham. The Fast Fourier Transform and Its Applications (Prentice-Hall,
Hoboken, 1988)

6. J. Henning, Window Utilities. MATLAB Central File Exchange https://www.
mathworks.com/matlabcentral/fileexchange/46092-windowutilities. Accessed 18
Jun 2021

https://www.mathworks.com/matlabcentral/fileexchange/46092-windowutilities
https://www.mathworks.com/matlabcentral/fileexchange/46092-windowutilities

Part II
SoC FPGA System Development

192 II SoC FPGA System Development

SoC FPGAs allow you to create custom hardware and software designs, which
gives great flexibility. The downside of developing a highly complex SoC system is
that if the system does not work, where is the problem? The problem could be a bug
in your VHDL code, a misconfiguration of the HPS, or a bug in your C code. How
can you debug such a system? This is much more difficult than developing software
for desktop computers since programmers do not expect that they will need to debug
a PC’s CPU or motherboard if their programs do not work.

There are two strategies that minimize SoC FPGA hardware/software debugging
issues and we will use both.

Strategy 1: Start with a SoC FPGA hardware/software system design that you
know already works. Ideally this will be close to the system you
are targeting. Start with the working system and then slowly modify
it into the system you want. After each modification, test the sys-
tem to make sure that it is still working, fixing what broke at each
modification step.

Strategy 2: When you add a hardware component to Platform Designer, test the
component (e.g., with System Console, which is the topic of Lab 7),
so you know that the hardware is functional before you start layering
software on top of it. If you do not and the component does not
respond to your software, you will not know if the problem is with
your VHDL code, a Platform Designer connection, or with your C
code.

Chapter 11
Development Environment Setup

11.1 Software Setup

11.1.1 Setting up a PuTTY Terminal Window in Windows to
Communicate with Linux on the DE10-Nano Board

The DE10-Nano board uses the FT232R USB UART chip from Future Technology
Devices International Limited or (FTDI) to convert the USB interface on the right
side of the board as shown in Fig. 11.1 into a serial UART interface for the HPS
in the Cyclone V SoC FPGA (schematic shown in Fig. 11.2). Once set up, this
connection appears as a Virtual Com Port (VCP) in Windows. This connection is
used to communicate with Linux running on the DE10-Nano board from the PuTTY
terminal window from within Windows. The physical connection requires the use of
a USB Mini-B cable (Fig. 11.3).

The UART connection is located above the Ethernet connector on the right side of
the board, which is marked UART-to-USB in the figure. Do not use the USB-Blaster
II port on the left side, which has the same USB Mini-B connector.

Fig. 11.1: The USB UART connection is on the right side, above the Ethernet port. It
uses a USB Mini-B Connector. Figure is from the DE10-Nano getting started guide

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_11

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_11&domain=pdf
https://www.ftdichip.com/old2020/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
https://ftdichip.com/
https://doi.org/10.1007/978-3-031-15416-4_11

194 11 Development Environment Setup

Fig. 11.2: The USB UART schematic connection. Figure is from the DE10-Nano
schematic

Fig. 11.3: The USB Mini-B connector

To run the PuTTY UART Terminal in Windows, you will need the following
software items:

Item 1: PuTTY, which can be downloaded from one of the two sources:

Source 1: (click here)
Source 2: (click here)

Item 2: FT232R USB UART Driver. The driver should automatically be in-
stalled by Windows. If not, you can download the driver from the (FTDI
Drivers page).

11.1.1.1 Finding the COM Port Assigned by Windows

You need to know the communications port (e.g., COM3) that was assigned by
Windows to the USB serial port when you run PuTTY. To find this out, check the
Windows Device Manager using the following steps:

Step 1: Type Device Manager in the search window that is right next to the
Windows icon that is at the lower left of the screen.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://ftdichip.com/drivers/vcp-drivers/

11.1 Software Setup 195

Step 2: Open Device Manager and expand the Ports (COM & LPT) section.
Step 3: Find entries that say USB Serial Port. Figure 11.4 shows an example

where the COM port number is COM3. Note: The DE10-Nano board
needs to be plugged into the Mini-B USB cable for the COM port to
show up in Windows.

Fig. 11.4: Getting the COM port number from the windows device manager

Step 4: Verify that the COM port number is the one connected to the DE10-
Nano board by unplugging the board. The COM port should disappear
in the Windows device manager. Note: COM port numbers will change
if you plug in another board but will stay the same if it is the same board.

11.1.1.2 PuTTY Setup

Configure the PuTTY Serial settings by selecting \Connection\Serial in the
Category panel (panel on the left side). On the right side, set the following patterns
to the given values as shown in Fig. 11.5:

Setting 1: COM Port (Serial line to connect to) = The COM port number
determined in Sect. 11.1.1.1

Setting 2: Speed (baud) = 115200
Setting 3: Data bits = 8
Setting 4: Stop bits = 1
Setting 5: Parity = None
Setting 6: Flow control = None

Next, select \Session in the Category panel (left side). Make sure that the
Connection type is Serial as shown in Fig. 11.6.

Open the terminal window by clicking the Open button at the bottom. If PuTTY
only beeps rather than opening a terminal window, you are probably trying to open
the terminal window in the serial configuration setting panel \Connection\Serial
rather than being in the \Sessions panel. Hit return if you do not see the Linux
login prompt or power cycle the DE10-Nano board to see the boot process.

196 11 Development Environment Setup

Fig. 11.5: Setting up the serial settings in PuTTY

Fig. 11.6: Opening a terminal window in PuTTY

Finally, save the configuration settings in the Session window by clicking the Save
button after entering an appropriate session name. This is so that you can load the
settings next time rather than entering all the information again.

11.1 Software Setup 197

11.1.2 VirtualBox Ubuntu Virtual Machine Setup

Fig. 11.7: The Ubuntu Virtual Machine (VM) running on a Windows 10 Laptop
(illustration). The VirtualBox Manager is what opens when you run VirtualBox. The
Ubuntu Virtual Machine (VM) is installed and opened from within the VirtualBox
Manager. The Ubuntu Terminal Window is opened from within the Ubuntu VM and
is where Ubuntu VM Linux commands are entered

11.1.2.1 Overview

We need a Linux development environment in order to compile Linux code that
targets the ARM CPU inside the Cyclone V SoC FPGA. We will do this by creating
a Linux virtual machine on Windows by using VirtualBox, which we will call the
Ubuntu VM. Note that we will be compiling ARM CPU code in the Ubuntu VM,
which is running on Windows 10 using a x86 CPU. Thus the compiler itself will be
running and using x86 instructions, but creating machine code for the ARM CPU.
This process of compiling code for a different CPU than what the compiler is using
is called cross compiling. If you try to run this ARM code in the Ubuntu VM, it will
not work since the Ubuntu VM requires programs to be compiled for the x86 CPU.
The ARM code needs to be transferred to the DE10-Nano board before it can run
(which cannot run x86 code) (Fig. 11.7).

198 11 Development Environment Setup

In addition, we want a Linux environment from which to boot the DE10-Nano
board during development, rather than booting from the microSD card that is shipped
with the board. We will do this by booting from the Ubuntu VM using Ethernet where
the Ubuntu VM will serve all the files used by Linux running on the ARM CPUs.
This is called a Network File System (NFS), and we will create a NFS server in
the Ubuntu VM that will serve these files over the network. This local network will
consist of your laptop connected to the DE10-Nano board by a short Ethernet cable.
We will call booting via NFS the Developer’s Boot Mode. This is in contrast to
booting the DE10-Nano from the microSD card, which we will call the Ship Boot
Mode since booting from the microSD card is the typical boot configuration that
gets shipped when development is done. Note that the NFS directories and all the
code in them that is served by the NFS server, which is run by the ARM CPUs on the
DE10-Nano board, need to be cross compiled in these directories. This means in the
Ubuntu VM, there will be two types of directories. The normal directories that you
see when the Ubuntu VM is first created, which contains x86 code because Ubuntu
is running on a x86 CPU and the NFS directories that need to run on the ARM
CPUs. These NFS directories end up being the root file system for Linux running on
the DE10-Nano board and thus need to be cross compiled for the ARM CPUs.

Setting up the Ubuntu virtual machine requires the following steps:

Step 1: Enable Virtualization in your PC’s BIOS.
Step 2: Download VirtualBox.
Step 3: Download Ubuntu.
Step 4: Install VirtualBox.
Step 5: Install Ubuntu in VirtualBox.
Step 6: Install the VirtualBox Guest Additions.
Step 7: Install desired Linux software in the Ubuntu virtual machine (VM).

11.1.2.2 Enable Virtualization in Your PC’s BIOS

VirtualBox’s 64-bit Virtual Machine (VM) guests will not install unless hardware
virtualization has been enabled in your PC’s BIOS, so check and make sure your
PC/Laptop’s BIOS has virtualization enabled before you proceed with the VirtualBox
installation. If you do not, and virtualization has not been enabled, you will probably
get the error shown in Fig. 11.8.

11.1 Software Setup 199

Fig. 11.8: Bad Bios setting for virtualization

First check if virtualization has been enabled on your PC. To do this in Windows
10, open up the Task Manager, click “More details” if it opens in a minimal window,
and click on the Performance Tab. The task manager can be opened by typing Task
Manager in the lower left search bar in Windows 10. The Performance tab is the tab
just to the right of the Processes tab, which opens by default. Figure 11.9 shows an
example where virtualization has not yet been enabled.

Fig. 11.9: Example showing where virtualization has been disabled and needs to be
enabled

If virtualization is disabled, perform the following steps to enable virtualization
in your PC’s BIOS. Before starting, make sure that you save any work and close
down open programs because you will be rebooting your computer:

200 11 Development Environment Setup

Step 1: Reboot your computer, and when the computer starts booting up, press
the key to access the BIOS (this could be the Delete, Esc, F1, F2, or
F4 depending on the computer manufacturer). If you cannot see a BIOS
message or do not have the opportunity to press a key, especially on a
Windows 10 machine, go to step 2; otherwise, skip to step 3.

Step 2: To set the BIOS on a Windows 10 machine, do the following:

a. Open Settings (type “settings” in search bar).
b. Select Update and Security.
c. Select Recovery (in the left menu).
d. Under Advanced Startup, click Restart Now (your computer will

reboot).
e. Click Troubleshoot.
f. Click Advanced options.
g. Select UEFI Firmware Settings.
h. Click Restart.

Step 3: Enable virtualization in the BIOS. How this is done depends on your
motherboard’s BIOS, so Google “enabling virtualization” and the moth-
erboard or laptop model number. For example, I googled “enabling vir-
tualization ax370” and found the following steps for my AMD Ryzen 7
machine, which was not at all obvious when I first examined the Giga-
byte BIOS (which has a terrible user interface for finding and setting this
parameter). Your steps are likely to be different depending on the make
and model of your motherboard or laptop. However, my steps were:

a. Set Enabled: M.I.T. → Advanced Frequency Settings → Advanced
CPU Core Settings → SVM Mode.

b. Set Enabled: Chipset → IOMMU.

Step 4: Check the performance tab in Windows 10 Task Manager to see that
virtualization has now been enabled. You can see in Fig. 11.10 that
Virtualization has now been enabled in the Task Manager.

Fig. 11.10: Performance tab in task manager showing that virtualization has been
enabled

11.1 Software Setup 201

11.1.2.3 Download VirtualBox

Download VirtualBox and its associated extension pack. We will be installing Vir-
tualBox 6.1 in this example. In general, you should download the version specified
since version dependencies can exist across different software packages. In the case
of VirtualBox, the latest version should work, which can be found at:

https://www.virtualbox.org/

Step 1: Click the Download VirtualBox link. On the download page, you will see
two headings: VirtualBox 6.x.y platform packages and VirtualBox
6.x.y Oracle VM VirtualBox Extension Pack. We will need both
downloads. The version 6.x.y stands for the latest version you see on the
download page (which is VirtualBox 6.1.12 at the time of this writing).

Step 1A: Under the VirtualBox 6.1.12 platform packages head-
ing, click on Windows hosts to download VirtualBox for
Windows 10.

Step 1B: Under the VirtualBox 6.1.12 Oracle VM VirtualBox
Extension Pack heading, click on All platforms to down-
load the extension pack. We need the extension pack so
that the Ubuntu VM can access USB Flash Drives and
share folders with Windows 10.

11.1.2.4 Download Ubuntu

We will typically use that latest LTS release of Ubuntu, which currently is Ubuntu
20.04 LTS . LTS stands for Long-Term Support, and Ubuntu 20.04 LTS will be
supported by Canonical until 2030 [1, 2]. Standard Support typically lasts for 5
years, and the End of Life is 10 years after initial release. Ubuntu can be found at:

http://releases.ubuntu.com/

Select Ubuntu 20.04 LTS or the latest LTS release and download the 64-bit PC
(AMD64) desktop image (ubuntu-20.04.1-desktop-amd64.iso). Note: This down-
load is 2.6 GB, which will take a while to download.

11.1.2.5 VirtualBox Installation

Step 1: Install Oracle’s VM VirtualBox by following the installation instruc-
tions. Default settings are OK (i.e., desired install location, etc.). If you
have a previous version of VirtualBox, you can install over the previous
installation (your VMs will be kept). Update by accepting default values.

https://www.virtualbox.org/
http://releases.ubuntu.com/

202 11 Development Environment Setup

When the new version of VirtualBox runs, if you are updating, it will
prompt you to update the Extension Pack as well.

Step 2: Install the VirtualBox Extension Pack by following the installation
instructions.

11.1.2.6 Setting up Ubuntu in VirtualBox

In this section, we will create the Ubuntu virtual machine (VM) that runs in Virtu-
alBox. We will call this Ubuntu instance running on Windows 10 and x86 CPUs,
Ubuntu VM, to distinguish it from Ubuntu ARM that we will be running on the
DE10-Nano board using the ARM CPUs.

Note: Any time settings are changed in VirtualBox for a virtual machine, the
virtual machine must be completely shut down and restarted in VirtualBox in order
for the change to take effect.

Fig. 11.11: Creating a new virtual machine in VirtualBox

Step 1: Create a New Virtual Machine (VM) by clicking on the New icon as
shown in Fig. 11.11.

a. In the Name and operating system panel, add/select the following:
i. Name: Ubuntu 20.04 LTS .
ii. Machine Folder: F:\Oracle\VMs. (Your installation path will

be different.)
iii. Type: Linux.
iv. Version: Ubuntu (64 bit).
v. Click Next.

b. In the Memory Size panel:
i. Enter: 8192 MB (Note: If your laptop only has 8 GB, you need

to change this to 4 GB, which will work OK but likely slower).
ii. Click Next.

11.1 Software Setup 203

c. In the Hard Disk panel:
i. Select: Create a virtual hard disk now.
ii. Click Create.
iii. In the Hard disk file type panel:

A. Select: VDI for a VirtualBox Disk Image.
B. Click Next.

iv. In the Storage on Physical hard disk panel:
A. Select: Fixed Size. (Note: If your laptop’s hard disk is not

large, you will want to select dynamically allocated.)
B. Click Next.

v. In the File location and size panel:
A. Accept the default file name and path.
B. Enter: 100 GB for hard disk size. (Note: This is the recom-

mended size, but if your laptop does not have much disk
space, you might want to change this to 40 or 50 GB.)

C. Click Create. (It will take a few minutes to create the virtual
hard disk.)

Step 2: Install Ubuntu as the virtual machine operating system. With Ubuntu
20.04 LTS selected in the VirtualBox Manager (in left column), right
click on [Optical Drive] as shown in Fig. 11.12 in the Storage section
and “Choose a disk file. . . .”

a. Browse to where you downloaded the ubuntu-20.04.1-desktop-
amd64.iso file and select it.

b. Click Open.
c. Double click the Ubuntu 20.04 LTS VM in the VirtualBox Manager

to start up the Ubuntu VM (or right click and select Start). It will
take a bit of time to start up, and the screen will be black for some
time so wait until the install welcome screen shows up.

d. In the Welcome screen, click install Ubuntu:
i. Select keyboard and click Continue.
ii. In the Updates and Other software page:

A. Select Normal Installation when asked what apps you
would like to install.

B. Select Download updates while installing Ubuntu in Other
options.

C. Select Install third-party software for graphics. . . in Other
options.

D. Click Continue.
iii. In the Installation type page:

A. Select Erase disk and install Ubuntu.
B. Click Install Now.
C. When it asks “Write the changes to disks,” click Continue.

iv. Select your time zone and click Continue.
v. In the “Who are you?” panel:

204 11 Development Environment Setup

A. Add your name. Note: A short name will make typing
commands more convenient.

B. Change the computer and username if you wish from the
default names generated from the Your name box.

C. Choose your password. Note: You will be using this pass-
word a lot in Ubuntu, so make it short and easy to remember.
We are not going to worry too much about security while
in Developers Mode since we will assume that the majority
of work will be done in the Ubuntu VM where security will
be handled by VirtualBox and Windows 10, and this VM
will not be deployed where security is an issue.

D. Click continue. Installation will take several minutes.
vi. Reboot when it asks you by clicking Restart Now. Hit enter to

continue and ignore the message about the optical drive.
vii. Power off the VM by closing the Ubuntu VM window and

selecting “Power off the machine.”

Fig. 11.12: Installing Ubuntu using the Ubuntu .iso image that is loaded into [Optical
Drive]

11.1 Software Setup 205

11.1.2.7 Install and Configure Needed Software in the Ubuntu VM

We will now use a command line terminal window in the Ubuntu VM. The apt
command is a command line utility for managing Debian packages in Ubuntu and
related Linux distributions. It is a newer and a higher level package management
command than apt-get and has most of the commonly used command options from
apt-get and apt-cache. This means that you can just use apt, rather than apt-get for
all our common use cases.

Step 1: Startup the Ubuntu VM in VirtualBox and log in.
Step 2: If Ubuntu asks about updating software, go ahead and update/install.
Step 3: Open a Terminal window by right clicking on the desktop and selecting

Open Terminal. Note: The window resizing is unlikely to work at this
point, which will be fixed when the Virualbox guest utilities are installed
later in the VM.

Step 4: Update the Ubuntu package lists so that Ubuntu knows what all the latest
update versions are. Do this by typing the Linux command (do not type
the $ symbol, which is the last character of the command line prompt):

$ sudo apt update

Listing 11.1: Linux Command: sudo apt update

a. The sudo command stands for “superuser do”, which allows you to
run commands that require root privileges. It will ask for the root
password. If you run sudo within a timeout window (default 15 min,
which can be changed), it will not ask for a password again.

b. The apt command is a command line tool to manage software
packages and works on a database of available packages (which
needs to be updated to see if newer packages are available). APT
stands for Advanced Package Tool, and apt is typically used to install
new packages.

c. The update option tells apt to update the package list from a server
on the Internet.

Step 5: Get the GCC compiler and related packages by typing the command:

$ sudo apt install build-essential

Listing 11.2: Linux Command: sudo apt install build-essential

a. The install option for apt installs the package specified, which in
this case is build-essential.

b. The build-essential package is a reference for all the packages
needed to compile a Debian package (Ubuntu is derived from De-
bian Linux). Thus installing the build-essential package will install

206 11 Development Environment Setup

the GCC compilers, libraries, and other utilities needed to compile
in Ubuntu. Note: This is an x86 compiler that will be used for com-
piling code to run in the Ubuntu VM that is running on an x86 CPU.
We will also need to compile code to run on the ARM CPUs on the
DE10-Nano, which we will also do in the Ubuntu VM. Thus we will
need a second compiler, a cross compiler, since we will be running
on a x86 machine, but compiling for the ARM CPU. We will install
this cross compiler later in Sect. 11.1.4.1 Configure and Set up the
Linaro GCC ARM Tools in Ubuntu VM (page 238).

Step 6: Install Guest Additions that are needed for USB connectivity, shared
folders, etc. Install by typing the command:

$ sudo apt install virtualbox -guest-utils

Listing 11.3: Linux Command: sudo apt install virtualbox-guest-utils

a. The virtualbox-guest-utils package is a collection of device drivers
and system applications that allows closer integration between the
Ubuntu VM and Windows (shared folders, cut and paste, etc.). This
is useful for moving files between Windows and the Ubuntu VM.
Note 1: If for some reason the window resizing function does not
properly work after using the apt command above (and after the
Ubuntu VM has been restarted), try installing the guest additions
using this method:

i. In the Ubuntu VM, select: Devices → Insert Guest Additions
CD Image. . .

ii. Run the installer.
iii. When done, you can right click on the CD folder that is on the

desktop and click eject to remove it.
Note 2: On some machines, to get window resizing to work properly,
it appears the apt command should be:

$ sudo apt-get install virtualbox -guest-dkms

�

↪→virtualbox -guest-utils virtualbox -guest- �

↪→x11

Listing 11.4: Linux Command: Another method for installing the guest
additions. Note: The red arrows show that the command line is longer
than what can be displayed in the listing. If you cut and paste the
command these arrow characters need to be deleted.

b. Restart the Ubuntu VM after installing.

Step 7: Power off the Ubuntu VM.

11.1 Software Setup 207

11.1.2.8 Configure VirtualBox

This configuration is done in the VirtualBox Manager running in Windows 10. It is
not done in a virtual machine that has been started up from the VirtualBox Manager.

Step 1: Enable 3D Acceleration

a. In VirtualBox Manager (not in the Ubuntu VM) select Ubuntu 20.04
LTS (but do not open).

b. Select: Settings → Display → Check Enable 3D Acceleration (win-
dow resizing can lock up if you do not do this, though it works best
if you have a graphics card).

Step 2: Allow Cut and Paste between Windows and Ubuntu VM.

a. In VirtualBox Manager (not in the Ubuntu VM), select Ubuntu
20.04 LTS (but do not open).

b. Select: Settings → General → Advanced → Shared Clipboard →
Bidirectional.

c. Click OK.
The Bidirectional setting makes sure that both Ubuntu’s and Win-
dow’s clipboards contain the same data.
Note: Ctrl-C does not work in Ubuntu’s Terminal Window like it
does in Windows. To copy/past in Ubuntu’s Terminal Window, do
either of the following:

i. Highlight the desired text, right click, and select copy/paste.
ii. Use Ctrl-Shift-C or Ctrl-Shift-V.

Step 3: Allow Drag and Drop between Windows and Ubuntu VM.

a. In VirtualBox Manager (not in the Ubuntu VM), select Ubuntu
20.04 LTS (but do not open).

b. Select: Settings → General → Advanced → Drag’n’Drop → Bidi-
rectional.

c. Click OK.

Step 4: Create a shared folder between Windows 10 and Ubuntu VM.

a. In Windows 10, create a new folder, e.g.,
F:\Oracle\VMs\shared_folder
that will be used as the shared folder.

b. In VirtualBox Manager (not in the Ubuntu VM), select Ubuntu
20.04 LTS (but do not open).

c. Select: Settings → Shared Folders.
i. Click on the icon at the right that has a plus sign on a folder and

browse to the shared folder you created.
ii. Check the Auto-mount option. The auto-mount option will au-

tomatically mount this folder in Ubuntu. Otherwise, you will
need to mount this manually.

208 11 Development Environment Setup

Note 1: To be able to access this folder, you will need to give
yourself permission to access this folder (see instruction below)
when you log into Ubuntu. You should see sf_shared_folder on
the desktop in Ubuntu. The path location to this folder in Ubuntu
is /media/sf_shared_folder.
Note 2: Additional shared folders will be created later on (e.g.,
quartus_project).

iii. Click OK.

Step 5: Click OK.

11.1.2.9 Give Yourself Permission to Access Shared Folders in Ubuntu VM

Step 1: Startup the Ubuntu VM in VirtualBox and log in.
Step 2: Open a Terminal Window.
Step 3: Set Linux permissions so that you can access the shared folders in Ubuntu

(otherwise you will get the message: “You do not have the permissions
necessary to view the contents of sf_shared_folder”).
To view ownership, i.e., who owns the directory, change to the /media
folder by typing the Linux command:

$ cd /media

Listing 11.5: Linux Command: cd /media

and then type the command:

$ ls -l

Listing 11.6: Linux Command: ls -l

to see the permissions on the shared folder. Note that root is the owner
and vboxsf is the group for sf_shared_folder. To gain access to this
directory, you need to add yourself to the vboxsf group. You do this by
typing the following command:

$ sudo adduser <user_account_name > vboxsf

Listing 11.7: Linux Command: sudo adduser <user_account_name>
vboxsf

where <user_account_name> means use the user name you created in
Sect. 11.1.2.6 Setting up Ubuntu in VirtualBox (do not type the <>
characters).

11.1 Software Setup 209

Note: In order for the adduser command to take effect, you need to log
out and then back in. Otherwise, you will not have permission to access
the shared folder yet. To log out, click the small down arrow symbol in
the upper right corner and select Power Off/Log Out. Then log back in.
You should now be able to see files contained in the shared Windows
directory when you type the command:

$ cd /media/sf_shared_folder

Listing 11.8: Linux Command: cd /media/sf_shared_folder

11.1.2.10 Install More Software in Ubuntu VM

Step 1: Startup the Ubuntu VM in VirtualBox and log in.
Step 2: Open a Terminal window by right clicking on the desktop and selecting

Open Terminal.
Step 3: It is always a good idea to check for updates before installing. In a

terminal window, execute the following commands:

$ sudo apt update

Listing 11.9: Linux Command: sudo apt update

If you see the message that packages can be upgraded after running
update, you can update them with the command:

$ sudo apt full-upgrade

Listing 11.10: Linux Command: sudo apt full-upgrade

The full-upgrade option for apt will remove installed packages if this
is needed to upgrade the system as a whole.
To see if a package has already been installed, use the command:

$ dpkg -s <packagename >

Listing 11.11: Linux Command: dpkg -s <packagename>

although installing the package again using apt will not be a problem if
it has already been installed.

Step 4: Installing a Text Editor You will need a text editor. The text editor you
use comes down to personal preference and here are some options. You
only need to install one of these, and you can substitute your favorite
editor if it is not listed):

210 11 Development Environment Setup

a. Visual Studio Code. In a terminal window, execute the following
command:

$ sudo snap install --classic code

Listing 11.12: Linux Command: sudo snap install - -classic code

Note 1: snap is an app install utility that comes preinstalled in Ubuntu
16.04 or later, so there is no need to install it.
Note 2: You run Visual Studio Code by typing code on the command
line.
Note 3: When you first open a .c file, the Visual Studio Code editor will
ask if you want to install the recommended extensions for C. Install the
extensions by clicking install.

b. Atom. In a terminal window, execute the following command:

$ sudo snap install atom --classic

Listing 11.13: Linux Command: sudo snap install atom –classic

c. Vim and Nano. In a terminal window, execute the following com-
mands:

$ sudo apt install vim nano

Listing 11.14: Linux Command: sudo apt install vim nano

Step 5: Install Git (a version control system used to manage a distributed soft-
ware repository). In a terminal window, execute the following command:

$ sudo apt install git

Listing 11.15: Linux Command: sudo apt install git

Step 6: Install mkimage (a U-Boot tool to create bootscript images). In a ter-
minal window, execute the following command:

$ sudo apt install u-boot-tools

Listing 11.16: Linux Command: sudo apt install u-boot-tools

11.1 Software Setup 211

11.1.2.11 Testing the Ubuntu VM by Compiling “Hello World”

Step 1: Start up the Ubuntu VM in VirtualBox and log in.
Step 2: Open a Terminal Window by right clicking on the desktop and selecting

Open Terminal.
Step 3: Open a text editor by typing the command (The Visual Studio Code

editor is used in this example.):

$ code hello.c

Listing 11.17: Linux Command: code hello.c

Step 4: Enter the following C source code:

1 #include <stdio.h>
2
3 int main(){
4 printf("Hello World\n");
5 printf("My Name is <full_name >\n");
6 return 0;
7 }

Listing 11.18: Hello World

Note: Replace <full_name> in the Hello World code with your first and
last name.

Step 5: Save the file, open a terminal window if one is not already open, and
make sure you are in the same directory as the Hello World .c file.

Step 6: Compile the code by typing the command:

$ gcc -o hello hello.c

Listing 11.19: Linux Command: gcc -o hello hello.c

This will use the GNU C compiler gcc to create the output (-o) file hello,
which is an executable that uses the source file hello.c as input.

Step 7: Run the "Hello World" program by typing the command:

$./hello

Listing 11.20: Linux Command: ./hello

You should see “Hello World” and your name printed on the command
line in the Terminal Window.

212 11 Development Environment Setup

11.1.3 Developer’s Boot Mode Setup

Fig. 11.13: In the developer’s boot mode setup, files that are normally loaded from
partitions 1 and 2 of the microSD card are served by the TFTP and NFS servers in
the Ubuntu VM

The DE10-Nano board ships with a microSD card that contains all the information
needed to boot the SoC FPGA system, which includes the bitstream to configure the
FPGA fabric and Linux to run on the ARM CPUs. This setup is what you would
expect when a hardware product is shipped. However, it is not the setup that you
want as a developer (Fig. 11.13).

The developer setup uses your Ubuntu VM so that the files you change as a
developer will be pulled from directories within the Ubuntu VM when then DE10-
Nano board is powered up. This makes it much easier for development since changes
to the SoC FPGA system can be made in the Ubuntu VM rather than having to
constantly pop the microSD card out and re-image or copy files to the microSD card.
Instead, you just power cycle the DE10-Nano board, and it reboots pulling in the
new files from the Ubuntu VM with the changes you have made. Note: Reboot is
only required for files served by TFTP since these files are associated with booting
and configuring the SoC FPGA on power-up. Files served by the NFS server will be

11.1 Software Setup 213

immediately available, which means that software being developed that can be run
by Linux will be immediately available.

We will use two static IP addresses in this developer’s boot mode setup where
they will be set as private IP addresses, which fall in the range 192.168.0.0–
192.168.255.255. We will pick two convenient addresses to remember, so we will
choose the following static IP addresses for our setup where the NFS and TFTP
servers will be housed in the Ubuntu VM. The even address will be for the Ubuntu
VM, and the FPGA board will be assigned the next odd address.

Static IP for Ubuntu VM: 192.168.1.10
Static IP for DE10-Nano Board: 192.168.1.11

Note: We will be using a dedicated USB Ethernet adapter so there will not be any
IP conflicts as determined in Step 4 of Sect. 11.1.3.3 Network Setup in the Ubuntu
VM.

11.1.3.1 Install the USB Ethernet Adapter

If this is the first time installing the USB Ethernet adapter, the steps to follow are:

Step 1: Before installation of the USB Ethernet adapter, open the Windows 10
Device Manager and note what Network adapters currently exist (you
will need to expand this section).

Step 2: Install the USB Ethernet adapter by following the manufactures instal-
lation instructions.

Step 3: In the Windows 10 Device Manager, see what new Ethernet adapter
shows up. Make note of this name since you will need to select it later
in the VirtualBox Manager when you set up Adapter 2 in item Step 2:
Network Configuration in the VirtualBox Manager (page 215).

If the USB Ethernet adapter has already been installed, the steps to follow are:

Step 1: Open the Windows 10 Device Manager and expand the Network adapters
section.

Step 2: Plug the USB Ethernet adapter into your computer’s USB port.
Step 3: Note what Network adapter shows up. Make note of this name since

you will need to select it later in the VirtualBox Manager when you set
up Adapter 2 in item Step 2: Network Configuration in the VirtualBox
Manager (page 215).

Step 4: Unplug the USB Ethernet adapter from your computer’s USB port.
Step 5: The Network adapter should disappear.

Note: If the new Ethernet adapter does not show up in the Windows 10 Device
Manager, unfortunately this USB Ethernet adapter will not work for the VM setup,
which means that you will need to get a different USB Ethernet Adapter.

214 11 Development Environment Setup

11.1.3.2 Network Configuration in the VirtualBox Manager

The Ubuntu VM will be set up to use two network adapters. This setup needs to
be done in two different software locations. The first configuration is done in the
VirtualBox Manager, and the second is down in a terminal window in the Ubuntu
VM. This section covers what needs to be done in the VirtualBox Manager. The
network setup that needs to be done in the Ubuntu VM is covered in Sect. 11.1.3.3
Network Setup in the Ubuntu VM.

Two network adapters will be created for the Ubuntu VM in the VirtualBox
Manager. Adapter 1 will be set up as a Network Address Translation (NAT) adapter
so that the Ubuntu VM can access the Internet through Windows. It is used to map
one IP address into another IP address. This allows the use of one Internet-routable
IP address of the NAT gateway (i.e., the Internet IP address of your computer) to
be used for our entire private network (Ubuntu VM and DE10-Nano board). We use
it to allow the Ubuntu VM to connect to the Internet and route all traffic through
Windows. Figure 11.14 illustrates this NAT mapping.

Fig. 11.14: Illustration of network address translation (NAT). [3]

Adapter 2 will be set up for bridged networking, which is used for more advanced
networking needs such as running servers in the Ubuntu VM, which we will be
doing. When enabled, VirtualBox connects to one of your installed network cards
and exchanges network packets directly, circumventing Windows network stack. We
will use bridged networking so that the TFTP and NSF servers in the Ubuntu VM
can serve files to the DE10-Nano board.

The steps for setting up the two network adapters are:

11.1 Software Setup 215

Step 1: With Ubuntu 20.04 LTS selected (select but do not run the Ubuntu VM
yet) in the VirtualBox Manager, select: Settings -> Network.
Click on the Adapter 1 tab and select the following:

• Enable Network Adapter (check the box).
• In the Attached to: pull down menu, select NAT.
• Accept the default for Name. (There is no name for NAT.)
• Expand the Advanced menu. Make a note of the MAC Address

(e.g., 080027A53AE7). This is how we will tell which Ethernet
adapter the Ubuntu VM is using for the NAT.

• Click OK.

Step 2: With Ubuntu 20.04 LTS selected (select but do not run the Ubuntu VM
yet) in the VirtualBox Manager, select: Settings -> Network.
Click on the Adapter 2 tab and select the following:

• Enable Network Adapter (check the box).
• In the Attached to: pull down menu, select Bridged Adapter.
• In the pull down menu associated with Name, select the name of

your USB Ethernet adapter that you determine in the Windows 10
Device Manager in Sect. 11.1.3.1 Install the USB Ethernet Adapter
(page 213). Note: Your USB Ethernet Adapter needs to be connected
to be seen.

• Expand the Advanced menu. Make a note of the MAC Address
(e.g., 0800276638E7). This is how we will tell which Ethernet
adapter the Ubuntu VM is using for the Bridged Adapter.

• Make sure that the Cable Connected checkbox is checked.
• Click OK.

11.1.3.3 Network Setup in the Ubuntu VM

Our next step is to configure networking in the Ubuntu VM so go ahead and start up
the Ubuntu VM. The steps for configuring the network are:

Step 1: In VirtualBox, open the Ubuntu VM and open a terminal window.
Step 2: Install iproute2 (tools to manage network configuration).

$ sudo apt install iproute2

Listing 11.21: Linux Command: sudo apt install iproute2

Note: In the past, net-tools (for networking utilities and support, e.g.,
ifconfig) have been used, and to install these tools, use the command:

$ sudo apt install net-tools

Listing 11.22: Linux Command: sudo apt install net-tools

216 11 Development Environment Setup

Step 3: Determine the networking setup in Ubuntu VM by typing the command:

$ ip addr

Listing 11.23: Linux Command: ip addr

Note: In the past, the command has been:

$ ifconfig

Listing 11.24: Linux Command: ifconfig

In Ubuntu, Ethernet interfaces are identified by the name enp0s<x>,
where <x> is the unique number assigned by Linux (e.g., see [4]). In
my case, I can see two interfaces named enp0s3 and enp0s8. Under the
enp0s3 section, I see a line that says:

link/ether 08:00:27:a5:3a:e7 brd ff:ff:ff:ff:ff:ff

which matches the MAC address 080027A53AE7 that we saw in the
VirtualBox Network manager for Adapter 1. Thus we know that the
enp0s3 Ethernet interface is connected to the network through the NAT
Adapter, and thus:

enp0s3 = NAT.

Under enp0s8, I see a line that says:

link/ether 08:00:27:66:38:e7 brd ff:ff:ff:ff:ff:ff

which matches the MAC address 0800276638E7. Thus we know that
the enp0s8 Ethernet interface is connected to the Bridged Adapter, and
thus:

enp0s8 = Bridged Adapter

Therefore, enp0s8 is the bridged adapter that we will want to set up
with a static IP address.
Note: You can also find the names of your network interfaces by using
the command:

$ ls /sys/class/net/

Listing 11.25: Linux Command: ls /sys/class/net/

or

$ ip link

Listing 11.26: Linux Command: ip link

11.1 Software Setup 217

Step 4: Determine the static IP for the Bridged Adapter
Note: You can skip this step. We are assuming that you are using a
dedicated USB Ethernet adapter, which means that there will not be
any IP conflicts. If you are not using a dedicated USB Ethernet, you
are ultimately on your own to configure the local network, and this is
one of the steps that you will have to perform. This first step of finding
IP addresses that are being used is not strictly necessary when using
just the Ubuntu VM on your laptop with the DE10-Nano board and
where these are the only two devices on your private network. However,
if you are setting this up in a scenario where there are many devices
on the private network (e.g., at home where your PC is connected to a
router), you will want to check what IP addresses currently exist. Since
we are assigning static IP address 192.168.1.10, it is possible that the IP
addresses we want to use have already been assigned. We need to check
what addresses have already been assigned and are being used on the
private network. We will do this by using the nmap utility, where nmap
stands for “Network Mapper.” It is a utility for network discovery and
will find all the live hosts on the network.

a. Install nmap if it has not already been installed:

$ sudo apt install nmap

Listing 11.27: Linux Command: sudo apt install nmap

Type the nmap command:

$ nmap -sn 192.168.1.*

Listing 11.28: Linux Command: nmap -sn 192.168.1.*

• The -sn option (no port scan) tells Nmap not to do a port scan
after host discovery, and only print out the available hosts that
responded to the scan.

• The third option 192.168.1.* tells nmap to scan all 256 IP
addresses that start with 192.168.1.

• All the addresses that come back in the response have been
already taken, so make sure the IP address you plan on using
is not in this list. See [5] for more examples of what you can
do with nmap.

Step 5: Determine the netmask (typically 255.255.255.0) and gateway IP ad-
dress of the Bridged Adapter using the following command:

$ route -n

Listing 11.29: Linux Command: route -n

which gives the response shown in Fig. 11.15.

218 11 Development Environment Setup

Fig. 11.15: Kernel routing table from the route command that determines the gateway
IP address and netmask of the bridge adapter

First we note three columns with the headings Gateway, Genmask, and
Use Iface. Under the Use Iface column, we make note of two rows that
correspond to the Bridged Adapter (enp0s8). On these two rows, we then
note the Gateway (192.168.1.1) and Genmask (255.255.255.0) entries.
Therefore, we have:

Bridged Adapter Gateway IP Address = 192.168.1.1
Bridged Adapter Netmask = 255.255.255.0

Note: Your numbers may be a bit different depending on what the Linux
route command returns.

Step 6: Set the static IP for the Bridged Adapter in Ubuntu VM.
Click on the System Menu icon in the upper right corner of Ubuntu
and open the window as shown in Fig. 11.16. Then click on Ethernet
(enp0s8) Connected and click on Wired Settings.

Fig. 11.16: Opening “Settings” in Ubuntu from the system menu

Then with Network selected on the left side, click the gear icon on the
right side for the Bridged Adapter (enp0s8). In the window that pops up,
click on the IPv4 tab and select:

11.1 Software Setup 219

• Manual as the IPv4 Method.
• Enter the IP address of 192.168.1.10 (assuming no conflicts found

in step 4).
• Enter the Netmask and Gateway determined from step 5.
• For the DNS entry, add Google’s name servers 8.8.8.8, 8.8.4.4.
• Click the Apply button when done.

Your configuration should look something like Fig. 11.17. To verify that
the Bridged Adapter (enp0s8) has changed, type the command:

$ ip addr

Listing 11.30: Linux Command: ip addr

and look for the interface enp0s8. The IP address should now be
192.168.1.10.
Note: The Ubuntu VM may need to be shut down and restarted for the
static IP address to take effect.

Fig. 11.17: Setting the static IP address for the bridged adapter in Ubuntu VM

220 11 Development Environment Setup

11.1.3.4 TFTP Server Setup in the Ubuntu VM

We need a TFTP server that U-boot can access when it is configured to boot over the
network. The TFTP server will serve the files that configure the DE10-Nano board
during boot and are the files found in Partition 1 of the microSD card (see Fig. 11.13)
when the DE10-Nano board normally boots from the microSD card. Changing these
files will be much easier if they are served by the TFTP server rather than have
to remove the microSD card from the DE10-Nano board, copy files, and reinsert
the microSD card. This process quickly becomes annoying when it has to be done
for each code change iteration. The acronym TFTP stands for Trivial File Transfer
Protocol.

The steps to set up the TFTP server are:

Step 1: Install TFTP by typing the command in a Ubuntu terminal window:

$ sudo apt install tftpd-hpa

Listing 11.31: Linux Command: sudo apt install tftpd-hpa

Verify that TFTP is running by typing the command:

$ sudo systemctl status tftpd-hpa

Listing 11.32: Linux Command: sudo systemctl status tftpd-hpa

If it is running, you should see a line that says:
Active: active (running) since (some start date and time).
If it is not running, start it with these two commands:

$ sudo systemctl enable tftpd-hpa
$ sudo systemctl restart tftpd-hpa

Listing 11.33: Linux Command: sudo systemctl enable tftpd-hpa

Step 2: TFTP Permissions Setup. First, let us create the tftp group if it does not
exist (Note: The tftp group was automatically created in Ubuntu 20.04.):

$ sudo groupadd tftp

Listing 11.34: Linux Command: sudo groupadd tftp

and add yourself to the tftp group so that you will be included in the
permissions given to the tftp group:

$ sudo adduser <user_account_name > tftp

Listing 11.35: Linux Command: sudo adduser <user_account_name>
tftp

11.1 Software Setup 221

where <user_account_name> is your user account name that you cre-
ated when you installed Ubuntu.
Verify that you have been added to the tftp group by typing the command:

$ getent group tftp

Listing 11.36: Linux Command: getent group tftp

where you should see your user account name listed.
Now give the tftp group ownership of everything created in /srv/tftp,
which will be the location of the files served by the TFTP server. First,
change directories and go to the /srv directory:

$ cd /srv

Listing 11.37: Linux Command: cd /srv

and change the ownership of the /tftp directory by typing the command
(in the /srv directory):

$ sudo chown :tftp tftp

Listing 11.38: Linux Command: sudo chown :tftp tftp

• chown is a command used to change the ownership of files and
directories.

• :tftp signifies that the tftp group will be the new owner.
• tftp is the directory that group tftp is taking ownership of.

Now ensure that any new subfolder or file created in /srv/tftp will
inherit the tftp group ownership. While in the /srv directory, type:

$ sudo chmod g+s tftp

Listing 11.39: Linux Command: sudo chmod g+s tftp

• The chmod command changes the file mode bits.
• g+s means that all new files and subdirectories created within the

directory will inherit the group ID of the directory, rather than the
primary group ID of the user who created the file.

• tftp is the directory that group tftp is taking ownership of.

Since it is possible that some subdirectories were already in /tftp
before we changed ownership, let us change the group ownership of all
the subdirectories and files in /tftp to tftp.

222 11 Development Environment Setup

$ sudo chgrp -R tftp /srv/tftp

Listing 11.40: Linux Command: sudo chgrp -R tftp /srv/tftp

• The chgrp command changes the group ownership.
• The -R option means change all directories and files below in a

recursive manner.
• The tftp option means the group to change to.
• The /srv/tftp means to change the group on this directory (and below

because of the -R option).

Next, let us give rwx permissions (r=read, w=write, x=execute) to the
tftp group to everything in /tftp.

$ sudo chmod -R g+rwx /srv/tftp

Listing 11.41: Linux Command: sudo chmod -R g+rwx /srv/tftp

• The chmod command changes the file mode bits.
• The -R option means change all directories and files below in a

recursive manner.
• The g+rwx option means to add rwx access to the group settings.
• The /srv/tftp means to change the file mode bits in this directory

(and below because of the -R option).

We can see what the file access Control List (ACL) looks like for
/srv/tftp by typing the command:

$ getfacl /srv/tftp

Listing 11.42: Linux Command: getfacl /srv/tftp

Note: The group permissions could also be set using the command:

$ sudo setfacl -d --set u::rwx,g::rwx tftp

Listing 11.43: Linux Command: sudo setfacl

Step 3: Create the following subdirectories in the /srv/tftp directory:

a. /srv/tftp/de10nano/AudioMini_Passthrough
Create the /AudioMini_Passthrough directory. This is where
the .rbf and .dtb files will reside associated with the Quartus
project. We will learn about these files later. Note: Typically you
will create a new directory like this for each new project (e.g.,
/AudioMini_Passthrough) associated with specific hardware
(e.g., /de10nano).

11.1 Software Setup 223

Do this by typing the command:

$ sudo mkdir -p /srv/tftp/de10nano/

�

↪→AudioMini_Passthrough

Listing 11.44: Linux Command: sudo mkdir -p /srv/tftp/de10nano/
AudioMini_Passthrough

• The mkdir command creates directories.
• The -p in mkdir is short for −−parents. It will create parent

directories if they do not exist. It is very useful for creating
nested subdirectories without having to create each parent first
(which you would have to do without the -p option).

b. /srv/tftp/de10nano/kernel
This is where the Linux kernel image zImage will reside.
Do this by typing the command:

$ sudo mkdir -p /srv/tftp/de10nano/kernel

Listing 11.45: Linux Command: sudo mkdir -p /srv/tftp/de10nano/
kernel
c. /srv/tftp/de10nano/bootscripts

This is where the u-boot bootscripts will reside. U-Boot bootscripts
allow customization of U-Boot without having to modify the U-Boot
image on the microSD card. Typically, there will be a bootscript
associated with each project that specifies where project files are
found on the TFTP server. Do this by typing the command:

$ sudo mkdir -p /srv/tftp/de10nano/bootscripts

Listing 11.46: Linux Command: sudo mkdir -p /srv/tftp/de10nano/
bootscripts

Step 4: Change the default directory of TFTP to point to /srv/tftp.
Change to the directory /etc/default by typing the command:

$ cd /etc/default

Listing 11.47: Linux Command: cd /etc/default

Edit the file tftpd-hpa. Visual studio code editor instructions are given
here, but feel free to use your favorite editor. Type the command:

$ code tftpd-hpa &

Listing 11.48: Linux Command: code tftpd-hpa &

Edit the line (line 4) that says:

224 11 Development Environment Setup

TFTP_DIRECTORY="/var/lib/tftpboot"

and change it to:

TFTP_DIRECTORY="/srv/tftp/"

Note: Changing the default directory to /srv/tftp only has to be for
Ubuntu versions prior to 20.04.

When you save the file, you will see vscode gives the error:
Failed to save ‘tftpd-hpa’:Insufficient permissions. Select “Retry as
Sudo” to retry as superuser.
Click the Retry as Sudo option and give the appropriate sudo password.

Note: If you use another editor, set the terminal window shell to have
root access by typing:

$ sudo -i

Listing 11.49: Linux Command: sudo -i

Then change to the desired directory, open the file with your favorite
editor, save the file (the editor will now have permission to write to the
directory), close the editor, and exit the root access shell by typing:

exit

Listing 11.50: Linux Command: exit

Step 5: Restart the TFTP server so that it will now point to /srv/tftp
. Restart the TFTP server by typing the following command:

$ sudo systemctl restart tftpd-hpa

Listing 11.51: Linux Command: sudo systemctl restart tftpd-hpa

Verify that TFTP is running by typing the following command:

$ sudo systemctl status tftpd-hpa

Listing 11.52: Linux Command: sudo systemctl status tftpd-hpa

11.1.3.5 NFS Server Setup in the Ubuntu VM

We need a NFS server so that when Linux boots on the DE10-Nano board it can
mount a root file system contained in the Ubuntu VM rather than mounting the
root file system from the microSD card. This allows us to change files easily in

11.1 Software Setup 225

the directories served by the NFS server rather than having to remove the microSD
card from the DE10-Nano board, inserting the microSD into a Linux computer, and
mounting the root file partition, just to add or change files.
The steps to set up the NFS server are:

Step 1: Install the NFS server by typing the command in a Ubuntu terminal
window:

$ sudo apt install nfs-kernel-server

Listing 11.53: Linux Command: sudo apt install nfs-kernel-server

Create the following directory for the NFS server:

$ sudo mkdir -p /srv/nfs/de10nano/ubuntu-

�

↪→rootfs

Listing 11.54: Linux Command: sudo mkdir -p
/srv/nfs/de10nano/ubuntu-rootfs

This is the directory that will be served to the DE10-Nano board and
will become the root directory when Linux boots on the DE10-Nano
board. Files added to this directory (and in subdirectories) will show up
under the root directory on the DE10-Nano board. It will be much easier
to modify files in this directory than having to modify the rootfs image
on the microSD card when you change a file during development.

Step 2: Edit /etc/exports as root, which is the access control list for filesys-
tems that can be exported to NFS clients. First, go to the /etc directory:

$ cd /etc

Listing 11.55: Linux Command: cd /etc

Edit the file exports. Visual studio code editor instructions are given
here, but feel free to use your favorite editor. Type the command:

$ code exports &

Listing 11.56: Linux Command: code exports &

The single line we will add to the exports file has the general format:

directory_to_share client(share_option1,. . . ,share_optionN)

where we will use:

226 11 Development Environment Setup

directory_to_share = /srv/nfs/de10nano/ubuntu-rootfs/
client = 192.168.1.0/24

The client address specified here is using the
Classless Inter-Domain Routing (CIDR) notation,
which means clients can be in the address range of
192.168.1.0 to 192.168.1.255. The /24 means the
subnet mask of 255.255.255.0 is being applied. We
can set the DE10-Nano board to have an address of
192.168.1.11 since it is included in the allowable
IP address range.

share_option1 = rw
Note: The rw option gives the client both read and
write access to the directory.

share_option2 = no_subtree_check
The no_subtree_check option prevents subtree
checking, which is the process of checking if the
file is still available in the exported tree for every re-
quest. Subtree checking can cause problems if the
file is renamed, while the client has it opened. We
will not bother with subtree checking since subtree
checking tends to cause more problems than it is
worth and has only mild security implications.

share_option3 = sync
The sync option cause NFS to write changes to
disk before replying to requests. This results in a
more stable (but slower) environment.

share_option4 = no_root_squash
The no_root_squash option prevents NFS from
mapping the root user on the client side to an
anonymous user on the server side. This option
is mainly useful for diskless clients such as our
DE10-Nano board when booting using NFS.

Now add the following line to the /etc/exports file:

/srv/nfs/de10nano/ubuntu-rootfs/ 192.168.1.0/24(rw,

�

↪→no_subtree_check ,sync,no_root_squash)

Note: In the share options list, there should be no spaces after the
commas.
Save the file and when you will see vscode give the error:
Failed to save ‘tftpd-hpa’:Insufficient permissions. Select “Retry as
Sudo” to retry as superuser.
Click the Retry as Sudo option and give the appropriate sudo password.

11.1 Software Setup 227

Step 3: Verify that the changes to /etc/exports are correct by typing the
command:

$ cat /etc/exports

Listing 11.57: Linux Command: cat /etc/exports

Step 4: Restart the NFS server by typing the command:

$ sudo service nfs-kernel-server restart

Listing 11.58: Linux Command: sudo service nfs-kernel-server restart

You can see all the exported file systems by typing the command:

$ sudo exportfs -v

Listing 11.59: Linux Command: sudo exportfs -v

Step 5: Set NFS Permissions by first creating the nfs group:

$ sudo groupadd nfs

Listing 11.60: Linux Command: sudo groupadd nfs

Then add yourself to the nfs group:

$ sudo adduser <user_account_name > nfs

Listing 11.61: Linux Command: sudo adduser <user_account_name>
nfs

and then verify that you have been added to the nfs group:

$ getent group nfs

Listing 11.62: Linux Command: getent group nfs

11.1.3.6 Reimaging the microSD Card with the Developer’s Image

We will next re-image the microSD card on the DE10-Nano board with an image
that has been set up to work with the TFTP and NFS servers. The image is different
from what ships with the DE10-Nano since the U-boot variables in the image have
been modified to allow the DE10-Nano board to be easily connected to the TFTP
and NFS in the Ubuntu VM.

To re-image the microSD card, you will need to download and install the following
software on your Windows 10 machine, so go ahead and do that now:

1. 7-Zip. You can download 7-Zip from https://www.7-zip.org.

https://www.7-zip.org

228 11 Development Environment Setup

2. Win32DiskImager or balenaEtcher. You can download Win32DiskImager
from https://sourceforge.net/projects/win32diskimager, and you can download
belenaEtcher from https://www.balena.io/etcher/.

First a couple of notes before we get started:

Note 1: Before proceeding, make sure that your computer files are backed up!
If your computer hard drive (or SSD) got wiped or destroyed, could you
restore the files you care about? If the answer is no, stop right now and
back up the files you care about before proceeding.

Note 2: We are assuming that the microSD card you are going to image has a 16
GB capacity. If your microSD card has a different size, you will need
to translate the numbers accordingly.

The steps to re-image the microSD card are:

Step 1: Download the file audiomini_nfs.img.xz (76 MB), which is the new
microSD card image. Download it from (here).

Step 2: Uncompress the .xz file. In Windows 10, go to the directory that contains
the downloaded .xz file, right click on it, and select 7-Zip → Extract
Here. This will uncompress the .xz file, which will end up as a ∼16GB
.img file.

Step 3: Plug the microSD card into the USB card reader and plug the
card reader into your Windows machine. Note: Ideally, this is a new
microSD card, or at least it is one that you do not care about erasing. If
Windows pops up a couple of messages like the one in Fig. 11.18, this
means the card has been previously used for the DE10-Nano, and there
are two partitions (Partitions 2 and 3) that Windows does not recognize.
Do not click the Format disk button, rather ignore the Windows pop-up
messages (click Cancel for these pop-up windows). If this is the case,
proceed to Step 1:. If your card is new and Windows recognizes it as a
single FAT32 partition, then proceed to Step 2:.

Fig. 11.18: Windows will ask if you want to format the disk
if it does not recognize a partition. This will be the case if
the microSD card already has a SoC FPGA image on it

https://sourceforge.net/projects/win32diskimager
https://www.balena.io/etcher/
https://drive.google.com/drive/folders/1ckWQlOvm5FpulV9ldilX5_NKn_-v80xs?usp=sharing

11.1 Software Setup 229

Step 1: Create a single partition on the microSD card. In the Windows 10
search bar, type “disk management”, and Windows 10 will suggest Cre-
ate and format hard disk partitions. Click on that suggestion. The Disk
Management utility will pop up, and there will be a disk listed (Disk
3 in this example) that is 16 GB (14.84 GB in this example). Here is
what the disk utility shows for the microSD card that shows the three
partitions (Fig. 11.19).

Fig. 11.19: The microSD card will have three partitions if it has been previously
used for the DE10-Nano board

a. Verify that this is the 16 GB microSD card by unplugging it from
Windows. This disk listing should disappear from the Disk Man-
agement utility, and when you plug it back into Windows, it should
reappear (after a bit).

b. For each partition listed for the microSD card disk, right click and
select “Delete Volume.” WARNING: Triple check that this volume
is associated with the microSD card. Windows will ask “Do you
want to delete this partition.” Select Yes (after making sure this is
the microSD card disk). It should now look like (Fig. 11.20):

Fig. 11.20: The microSD card after the partitions have been deleted

c. Right Click on the area that says 14.84 GB Unallocated, and select
“New Simple Volume” and create a volume that is the maximum
disk space (15,192 MB) with FAT32 (accept default settings).

d. Close the Disk Management utility and restart it (otherwise, it may
complain about some errors). It will say that the disk is a raw
partition.

230 11 Development Environment Setup

e. Right click on the partition and format with FAT32. The microSD
card should now look like a new card with a single 14.84 GB FAT32
partition as in Fig. 11.21.

Fig. 11.21: The microSD card with a new single FAT32 partition

f. Proceed to Step 2:.

Step 2: Choose the imaging software that you will use. If it is Win32DiskImager,
go to Step 3:. If it is Etcher, go to Step 4:.

Step 3: Run Win32DiskImager:

a. Browse to where audiomini_nfs.img is located and select it.
b. The device should be the drive that contains the microSD card.

WARNING: Double check that this is the microSD card (14.8 GB
capacity) since you will be overwriting this drive.

c. Click the Write button. Confirm again that you are targeting the
drive with the microSD card. Do not worry about it complaining
about extra space.

d. This will may take 15–25 minutes to write, depending on your write
speed (16 minutes @ 15 MB/s).

e. You are done. You can insert the microSD card into the DE10-Nano
board.

Step 4: Run balenaEtcher:

a. Click Flash from file and select audiomini_nfs.img from where you
uncompressed and stored this image file.

b. Click Select target and select the microSD card.
c. Click Flash! This will take 15–25 minutes to write, depending on

your write speed.
d. You are done. You can insert the microSD card into the DE10-Nano

board.

11.1 Software Setup 231

11.1.3.7 DE10-Nano Board Switch Settings

The location of the configuration DIP Switch SW10 on the DE10-Nano board is
shown in Fig. 11.22. The switch determines how the configuration bitstream for the
FPGA fabric (.rbf file) gets interpreted.

Fig. 11.22: Location of switch SW10 that determines how the .rbf file is interpreted

There are two switch settings to be familiar with.

Setting 1: FPPx32 Fast Passive Parallel x32 mode, Compression Enabled, Fast
POR. This is the Default Setting on DE10-Nano board when it
ships from Terasic. This default switch setting is shown in Fig. 11.23.

Fig. 11.23: DE10-Nano Switch SW10 configuration that is shipped from Terasic

Setting 2: FPPx16 Fast Passive Parallel x16 mode (no compression). This is
the mode we will use for the labs in this book. All switches should
be up in the zero (ON) state as shown in Fig. 11.24.

232 11 Development Environment Setup

Fig. 11.24: DE10-Nano Switch SW10 configuration that will be used in this book

11.1.3.8 Setting U-boot Variables on the DE10-Nano Board to Boot via
NFS/TFTP

We need to tell U-boot what the network settings are and the name the bootscript
it should use since we can have multiple bootscripts in the bootscript folder. We do
this by setting U-boot environment variables, which is done while U-boot is first
booting and before U-boot loads the Linux image. The steps to modify the U-boot
environment variables are:

Step 1: Insert the microSD card that contains the new image into your DE10-
Nano board. (See Sect. 11.1.3.6 Reimaging the microSD Card with the
Developer’s Image (page 227) for instructions on flashing this new im-
age.)

Step 2: Open a PuTTY Terminal Window in Windows and connect a USB cable
to the DE10-Nano board to the UART port (right side above Ethernet
port).

Step 3: Power up the DE10-Nano board. You should see the boot process start
in the PuTTY Terminal Window.

Step 4: When it starts booting and when it says: Hit any key to stop autoboot:,
Hit a key to get to the U-boot prompt.

Once the U-boot prompt appears, type the following U-boot commands to set up
U-boot for the Developer’s Boot Mode.

Setting 1: The U-boot environment variable nfsboot determines if the DE10-
Nano boots from the microSD card (Ship Boot Mode when nfs-
boot=false) or if it boots from the Ubuntu VM (Developer’s Boot
Mode when nfsboot=true). To boot from the Ubuntu VM, set nfs-
boot=true by typing the following U-Boot command:

11.1 Software Setup 233

setenv nfsboot true

Listing 11.63: setenv nfsboot true

Setting 2: Set the IP Address for the DE10-Nano board by typing the follow-
ing U-Boot command:

setenv ipaddr 192.168.1.11

Listing 11.64: setenv ipaddr 192.168.1.11

Setting 3: We need to tell U-Boot the IP Address of the server, which is the
IP address of the Ubuntu VM. This is done by typing the following
U-Boot command:

setenv serverip 192.168.1.10

Listing 11.65: setenv serverip 192.168.1.10

Setting 4: We need to tell U-Boot the IP Address of the NFS server, which is
also the IP address of the Ubuntu VM. This is done by typing the
following U-Boot command:

setenv nfsip 192.168.1.10

Listing 11.66: setenv nfsip 192.168.1.10

Setting 5: Next, we need to tell U-Boot the name of the bootscript to use by set-
ting the environment variable bootscript to the name of the bootscript.
This is done by typing the following U-Boot command:

setenv bootscript lab3.scr

Listing 11.67: setenv bootscript lab3.scr

Note 1: In the U-Boot image that is in the new image that was flashed
to the microSD card, the path that U-boot checks for bootscripts is
/srv/tftp/de10nano/bootscripts/. If you want to change this
path, you need to edit the U-boot environment variable bootcmdnfs.
Note 2: The bootscript tells U-boot the names of the files to load
and where these files are located. You can edit (or copy and rename)
lab3.script to change the directory locations and the names of the
files. The .script file is the human readable text file for bootscripts.
Typically, you will have a bootscript associated with each project
since there is a project directory path specified in the bootscript.
Note 3: The human readable textfile .script needs to be converted
into a machine readable image. This is done with the Linux command
mkimage:

234 11 Development Environment Setup

$ mkimage -A arm -O linux -T script -C none

�

↪→-a 0 -e 0 -n "My script" -d u-boot.txt �

↪→u-boot.scr

Listing 11.68: Linux Command: mkimage

Note 4: If the bootscript U-boot environment variable is set to the
name u-boot.scr, then this name does not need to change when you
change bootscripts. Rather, you can just copy lab3.scr to u-boot.scr or
my_project.scr to u-boot.scr in the Ubuntu VM and not bother having
to stop and reset the U-boot environment variable to change the name.

Setting 6: Finally, we need to tell U-Boot to save the environment variables to
flash so that it boots with these values the next time.

saveenv

Listing 11.69: saveenv

To check the U-boot environment variables, we can print them out (in alphabetical
order) with the U-boot command:

printenv

Listing 11.70: printenv

To check that U-boot can communicate with the Ubuntu VM and assuming that
the TFTP and NFS servers are set up and running, one can ping the server with the
U-boot command:

ping 192.168.1.10

Listing 11.71: ping 192.168.1.10

which should result in the response: host 192.168.1.10 is alive. Next, we need to put
the files that U-boot will be looking for in their correct locations.

11.1.3.9 Setting Up the Audio Mini Passthrough Example

The naming convention for directories in the Ubuntu VM for the TFTP server is as
follows:
/srv/tftp/<board_name>/<project_name>
In this example, we are setting up the Audio Mini Passthrough project on the

DE10_Nano board, so the TFTP project path is:
/srv/tftp/de10nano/AudioMini_Passthrough

and will contain the .rbf and .dtb files for the project.
The Linux command to create this directory is:

11.1 Software Setup 235

$ sudo mkdir -p /srv/tftp/de10nano/

�

↪→AudioMini_Passthrough

Listing 11.72: sudo mkdir -p /srv/tftp/de10nano/AudioMini_Passthrough

Copy the following files from (here):

File 1: soc_system.rbf
File 2: soc_system.dtb
File 3: lab3.scr
File 4: lab3.script
File 5: zImage
File 6: ubuntu-rootfs.tar

and put them in your shared folder that both Windows and the Ubuntu VM can
access. Now in Ubuntu VM copy soc_system.rbf to the project folder:

$ sudo cp /media/sf_shared_folder/soc_system.rbf /srv/

�

↪→tftp/de10nano/AudioMini_Passthrough

Listing 11.73: sudo cp /media/sf_shared_folder/soc_system.rbf
/srv/tftp/de10nano/AudioMini_Passthrough

In a similar manner, copy soc_system.dtb to the project folder:

$ sudo cp /media/sf_shared_folder/soc_system.dtb /srv/

�

↪→tftp/de10nano/AudioMini_Passthrough

Listing 11.74: sudo cp /media/sf_shared_folder/soc_system.dtb
/srv/tftp/de10nano/AudioMini_Passthrough

Note: Make sure that the capitalization and spelling are correct for directory
/AudioMini_Passthrough since it needs to be consistent with the line 3 entry in
the bootscript lab3.script.

All the files and directories in /srv/tftp need to be owned by the tftp group.
If you copy files and they are owned by root, you need to change them to have
the tftp group ownership. Change the group ownership of everything contained in
/srv/tftp to group tftp by using the chgrp command:

$ sudo chgrp -R tftp /srv/tftp

Listing 11.75: sudo chgrp -R tftp /srv/tftp

Note: The -R option for chgrp makes it recursive.
Now we need to change the permission so that everyone can read everything in

/srv/tftp. We do this using the chmod command:

$ sudo chmod -R a+r /srv/tftp

Listing 11.76: sudo chmod -R a+r /srv/tftp

https://drive.google.com/drive/folders/1ckWQlOvm5FpulV9ldilX5_NKn_-v80xs?usp=sharing

236 11 Development Environment Setup

Note 1: The -R option for chmod makes it recursive. Note 2: The a+r option says to
add read permission to all users.

The next two files, lab3.scr and lab3.script, need to be copied to the /srv/
tftp/de10nano/bootscripts folder by using the commands:

$ sudo cp /media/sf_shared_folder/lab3.scr /srv/tftp/

�

↪→de10nano/bootscripts

Listing 11.77: sudo cp /media/sf_shared_folder/lab3.scr
/srv/tftp/de10nano/bootscripts

and

$ sudo cp /media/sf_shared_folder/lab3.script /srv/

�

↪→tftp/de10nano/bootscripts

Listing 11.78: sudo cp /media/sf_shared_folder/lab3.script
/srv/tftp/de10nano/bootscripts

Make sure that these files have group tftp ownership and that one can read them
as was done previously in Listings 11.75 and 11.76.

Next, copy the Linux kernel image zImage into the kernel folder by using the
command:

$ sudo cp /media/sf_shared_folder/zImage /srv/tftp/

�

↪→de10nano/kernel

Listing 11.79: sudo cp /media/sf_shared_folder/zImage
/srv/tftp/de10nano/kernel

and making sure that this image file has group tftp ownership and that one can read
it as was done previously in Listings 11.75 and 11.76.

The next file needs to be put in the nfs folder at the location /srv/nfs/de10nano
using the command:

$ sudo cp /media/sf_shared_folder/ubuntu-rootfs.tar.gz

�

↪→ /srv/nfs/de10nano

Listing 11.80: sudo cp /media/sf_shared_folder/ubuntu-rootfs.tar.gz
/srv/nfs/de10nano

When you untar (uncompress) the file, it will create the /srv/nfs/de10nano/
ubunut-rootfs directory.

First, change to the /de10nano directory:

$ cd /srv/nfs/de10nano

Listing 11.81: cd /srv/nfs/de10nano

11.1 Software Setup 237

and then untar the file using the command:

$ sudo tar -zxpvf ubuntu-rootfs.tar.gz

Listing 11.82: sudo tar -zxpvf ubuntu-rootfs.tar.gz

Note: The tar options used are:

Option 1: The -z option is to unzip.
Option 2: The -x option is to extract (untar).
Option 3: The -p option is to preserve permissions.
Option 4: The -v option is to be verbose.
Option 5: The -f option is to specify the .tar file.

When done, you can remove the .tar file:

$ sudo rm ubuntu-rootfs.tar.gz

Listing 11.83: sudo rm ubuntu-rootfs.tar.gz

Note: When the rootfs is tarred up, it needs all the symbolic links preserved;
otherwise, a kernel panic will occur since it will not be able to find the linked kernel
/sbin/init file. Preserving the symbolic links when tarring the directory is done
with the following command:

$ sudo tar -cpzf ubuntu-rootfs.tar.gz ubuntu-rootfs

Listing 11.84: sudo tar -cpzf ubuntu-rootfs.tar.gz ubuntu-rootfs

11.1.3.10 Running the Audio Mini Passthrough Example

Make sure that you have the following items set up before powering on the DE10-
Nano board:

Setup 1: The Ubuntu VM is running with both the NSF and TFTP servers.
Setup 2: Connect the DE10-Nano board to your Laptop/computer using an Eth-

ernet cable.
Setup 3: Connect the USB cable to the UART port (right side of DE10-Nano).
Setup 4: Open PuTTY in Windows on your laptop and connect to the UART

port to watch the DE10-Nano board boot.

When your DE10-Nano board boots and you log into the HPS Linux via PuTTY
as root (password root), you will see the following files:

238 11 Development Environment Setup

Fig. 11.25: Files in the root directory on the DE10-Nano board when using the
Passthrough example

Note: These files have been served by the NFS server in the Ubuntu VM and
exist in the Ubuntu VM in a directory located at:

/srv/nfs/de10nano/ubuntu-rootfs/root

Any files that you want to run on the DE10-Nano board when in the Developer’s
Boot Mode need to be put into (or below) this /root folder in the Ubuntu VM
(Fig. 11.25).

In order to access this directory, you need root access, which you can get by
issuing the following command:

$ sudo -i

Listing 11.85: sudo -i

which creates a terminal window with default root access. Then you can change to
the /root that was not accessible without root access.

$ cd /srv/nfs/de10nano/ubuntu-rootfs/root

Listing 11.86: cd /srv/nfs/de10nano/ubuntu-rootfs/root

11.1.4 Cross Compiling “Hello World”

Our next step is to cross compile the “Hello World” example and run it on the DE10-
Nano board on the ARM CPUs. We already compiled and ran it in the Ubuntu VM
where it ran on the laptop x86 CPU in Sect. 11.1.2.11 Testing the Ubuntu VM by
Compiling “Hello World” (page 211). We will now do this for the ARM CPUs on
the DE10-Nano board and do this process in two different ways, but first we need to
install the Linaro tools.

11.1.4.1 Configure and Set up the Linaro GCC ARM Tools in Ubuntu VM

The steps to set up the Linaro GCC tools for cross compiling from your x86 CPU
and targeting the ARM CPU are:

Step 1: Install the Linaro tools in the Ubuntu VM by the command:

11.1 Software Setup 239

$ sudo apt install gcc-arm-linux-gnueabihf

Listing 11.87: sudo apt install gcc-arm-linux-gnueabihf

The ARM CPUs on the DE10-Nano board are the ARM Cortex-A9s,
which implements the ARM v7 instruction set. The ARM cores also
contain Floating Point Units (FPU). We note this since we want our
cross compiler to take advantage of the FPUs (rather than using software
libraries to do floating point). This is why we are installing the Linaro
GCC tools with the gnueabihf option, which stands for GNU embedded
application binary interface hard float.

Step 2: Determine the version of Linaro that was installed by running the com-
mand:

$ /usr/bin/arm-linux-gnueabihf -gcc --version

Listing 11.88: /usr/bin/arm-linux-gnueabihf-gcc –version

11.1.4.2 Manual Cross Compilation of Hello World

The steps for manually cross compiling the Hello World program are:
Step 1: Create a hello.c file that will print the following three lines, replacing

the text in the second printf function with your first and last name:
1 #include <stdio.h>
2
3 int main(){
4 printf("Hello ARM CPU World\n");
5 printf(" My name is <first_name > <last_name >\n"

�

↪→);
6 printf("Manual Compilation\n");
7 return 0;
8 }

Listing 11.89: Hello World

Step 2: First compile it so that it will run in the Ubuntu VM that is running on
an x86 CPU on your Windows computer.

$ gcc -o hello hello.c

Listing 11.90: gcc -o hello hello.c

Step 3: Run the program from a Ubuntu VM terminal window:

$./hello

Listing 11.91: ./hello

240 11 Development Environment Setup

Step 4: Now, determine the type of file that was created by using the file com-
mand:

$ file hello

Listing 11.92: file hello

Which will give the response:

Fig. 11.26: ELF x86-64

Notice that the file is a 64-bit executable (ELF) targeting the x86-64
architecture, which allows it to run in the Ubuntu VM on your Windows
x86 laptop (Fig. 11.26).

Step 5: Now compile the hello.c file using the cross compiler:

$ /usr/bin/arm-linux-gnueabihf -gcc -o hello

�

↪→hello.c

Listing 11.93: /usr/bin/arm-linux-gnueabihf-gcc -o hello hello.c

If you try running the file, it will not run in the Ubuntu VM. Determine
the type of this file using the file command:

$ file hello

Listing 11.94: file hello

which will now give the response:

Fig. 11.27: ELF ARM

Notice that the file is now a 32-bit executable (ELF) targeting the ARM
architecture, which is why it will not run in the Ubuntu VM on your
Windows x86 laptop (Fig. 11.27).

Step 6: To run the cross compiled program on the DE10-Nano board, you need
to copy the file to the /root folder in the ubuntu-rootfs root file system
that is being served by the NFS server. You will need root permission
to copy into the /root folder. Assuming that you are in the directory
containing the cross compiled hello world program, copy the file using
the command:

11.1 Software Setup 241

$ sudo cp hello /srv/nfs/de10nano/ubuntu-

�

↪→rootfs/root

Listing 11.95: sudo cp hello /srv/nfs/de10nano/ubuntu-rootfs/root

Remember: Any program that you want to run on the DE10-Nano
board needs to be cross compiled and then placed in the root folder
(or in a subdirectory below root) that is located in the Ubuntu VM at:
/srv/nfs/de10nano/ubuntu-rootfs/root.

Step 7: To test that you can now run the hello world program on the DE10-Nano
board, implement the following steps (a check list is provided for all the
pieces that need to be in place):

Check 1: Make sure that the Ubuntu VM is set up and running the
TFT and NFS servers.

Check 2: Connect your laptop to the USB UART port using a USB
cable with a USB Mini-B connector.

Check 3: A PuTTY window is open and connected to the correct
COM port in Windows.

Check 4: Boot (power cycle) the DE10-Nano board.
Check 5: Login as root on the DE10-Nano board using the PuTTY

window.
Check 6: Run the “Hello World” program from the PuTTY terminal

window by issuing the following command:

$./hello

Listing 11.96: ./hello

11.1.4.3 Makefile Cross Compilation of Hello World

In order to keep things organized, create a directory called /software/lab3 under
your home directory:

$ mkdir -p ~/software/lab3

Listing 11.97: mkdir -p /software/lab3

In this directory, create a new hello.c source file that will print the following three
lines, replacing the text on line two with your first and last name:

Hello ARM CPU World
My name is <first_name> <last_name>
Makefile Compilation

Copy the following two files and put them in your /software/lab3 folder:

242 11 Development Environment Setup

File 1: arm_env.sh (Click here for file)
File 2: Makefile (Click here for file)

Open a terminal window in the Ubuntu VM and execute the commands in
arm_env.sh by using the source command (the source command is used to load
shell commands from a file):

$ source arm_env.sh

Listing 11.98: source arm_env.sh

or the shortcut for source using the dot command (.):

$. arm_env.sh

Listing 11.99: . arm_env.sh

Notice that the prompt has been changed to:

Fig. 11.28: ARM prompt that signifies that the terminal window is set up for ARM
cross compilation

This new prompt tells you that this terminal window has been set up for cross
compiling, which is useful when you have multiple terminal windows open. If you
did not source the shell script, you would need to manually export the variable
CROSS_COMPILE so that any child processes (any program that you run in the
terminal window) would know where the Linaro toolchain is. Furthermore, you
would need to execute the command every time you opened a new terminal window
to compile targeting the ARM processors. This is why we are using the shell script
so that we do not have to type the following lines each time we open a terminal
window for cross compiling.

export CROSS_COMPILE=/usr/bin/arm-linux-gnueabihf-
export ARCH=arm

If you did not change the prompt to signify that the terminal windows have been
set up for cross compiling, or if you wanted to check if the CROSS_COMPILE
variable was set correctly, you could type:

$ export -p

Listing 11.100: export -p

which shows ALL the environmental variables are listed alphabetically. If you just
want to see what the CROSS_COMPILE variable has been set to, use the following
command:

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/cross_compiling/arm_env.sh
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/cross_compiling/Makefile

11.1 Software Setup 243

$ env | grep CROSS_COMPILE

Listing 11.101: env | grep CROSS_COMPILE

To see what the architecture variable has been set to (i.e., the target CPU archi-
tecture), use the following command:

$ env | grep ARCH

Listing 11.102: env | grep ARCH

Now open the Makefile with an editor of your choice and make the following
changes:

Change 1: Change line 26 from:
EXEC=
to:
EXEC=hello.

Change 2: Change line 29 from:
SRCS=
to:
SRCS=hello.c.

Save the Makefile and then compile using the Makefile by typing the command:

$ make

Listing 11.103: make

The Makefile will build both the ARM and x86 versions. To run the x86 version,
type the command:

$./exec/x86/hello

Listing 11.104: ./exec/x86/hello

Copy the file ./exec/arm/hello to the /root folder in the ubuntu-rootfs so
that it can be run by the DE10-Nano board. You will need root permission to copy
into this /root folder.

$ sudo cp ./exec/arm/hello /srv/nfs/de10nano/ubuntu-

�

↪→rootfs/root

Listing 11.105: sudo cp ./exec/arm/hello /srv/nfs/de10nano/ubuntu-rootfs/root

Now boot the DE10-Nano from the Ubuntu VM and run the “Hello World”
program from the DE10-Nano board using the PuTTY terminal window:

./hello

Listing 11.106: ./hello

244 11 Development Environment Setup

11.2 List of U-boot Commands

Below is a list of alphabetized U-boot commands that are used in the book:

• ping 192.168.1.10 used in 11.1.3.8
• printenv used in 11.1.3.8
• saveenv used in Setting 6:
• setenv bootscript lab3.scr used in Setting 5:
• setenv ipaddr 192.168.1.11 used in Setting 2:
• setenv nfsboot true used in Setting 1:
• setenv nfsip 192.168.1.10 used in Setting 4:
• setenv serverip 192.168.1.10 used in Setting 3:

References

1. Canonical. List of releases. https://wiki.ubuntu.com/Releases. Accessed 23
Jun 2022.

2. Canonical. The story of Ubuntu. https://ubuntu.com/about. Accessed: 23 Jun
2022

3. Yangliy. File:Network Address Translation (file2).jpg. https://commons.
wikimedia.org/w/index.php?curid=61795882. Transferred from
en.wikibooks to Commons., Public Domain, Accessed 23 Jun 2022.

4. Canonical. Network Configuration. https://ubuntu.com/server/docs/
network-configuration. Accessed 23 Jun 2022

5. T. Shrivastava. 29 Practical Examples of Nmap Commands for
Linux System/Network Administrators. https://www.tecmint.com/
nmap-command-examples/. Accessed 23 Jun 2022.

https://wiki.ubuntu.com/Releases
https://ubuntu.com/about
https://commons.wikimedia.org/w/index.php?curid=61795882
https://commons.wikimedia.org/w/index.php?curid=61795882
https://ubuntu.com/server/docs/network-configuration
https://ubuntu.com/server/docs/network-configuration
https://www.tecmint.com/nmap-command-examples/
https://www.tecmint.com/nmap-command-examples/

Chapter 12
Creating a LED Pattern Generator
System

We will create a LED Pattern Generation System, shown in Fig. 12.1, that will allow
both hardware and software to generate LED patterns. We will start on the hardware
side by creating the LED_Patterns component in the FPGA fabric, which will be
connected to the switches, push buttons, and LEDs. We will take a hierarchical
design approach where we will create larger hardware blocks out of smaller ones.
We will then create registers for the control signals used to control LED_Patterns
and connect them to the ARM CPUs (i.e., hard processor system or HPS) so that
software running on Linux can control the LEDs. This will be done by creating
the component HPS_LED_Patterns, which will connect the registers to the HPS
Lightweight Bus. When finished, we will then have a component where LED patterns
can be controlled by either hardware or software.

The LED Pattern Generation System is tackled following the steps listed below.

Step 1: Creating the LED_Patterns hardware component. This is covered in
Lab 4.

Step 2: Debugging custom hardware with Signal Tap, an embedded logic ana-
lyzer tool. This is covered in Lab 5.

Step 3: Creating the HPS_LED_Patterns hardware component using Platform
Designer. This is covered in Lab 6.

Step 4: Testing HPS_LED_Patterns using System Console and /dev/mem in
Linux (which requires root access). This is covered in Lab 7.

Step 5: Writing a C program to create LED patterns. This uses /dev/mem in
Linux that requires root access. This is covered in Lab 8.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_12

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_12

246 12 Creating a LED Pattern Generator System

Step 6: Creating a Linux kernel module. This is covered in Lab 9.
Step 7: Modifying the Linux device tree so that Linux will know about your

custom hardware. This is covered in Lab 10.
Step 8: Writing a Linux Device Driver for HPS_LED_Patterns. This allows

user space to access your custom hardware. This is covered in Lab 11.

Fig. 12.1: LED Pattern Generation System

12.1 LED_Patterns Component

The LED_Patterns component is shown in Fig. 12.1 and can function in the FPGA
fabric as a standalone hardware component that generates LED patterns. This com-
ponent conditions the external switch and push-button signals, creates LED patterns
using state machines, and drives the LEDs to display these patterns.

12.1.1 LED_Patterns Entity

The VHDL entity for LED_Patterns is shown in Listing 12.1. You can download this
entity from here.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/dev/led_pgs/led_patterns.vhd

12.1 LED_Patterns Component 247

16 entity LED_patterns is
17 port(
18 clk : in std_logic;

�

↪→ -- system clock
19 reset : in std_logic;

�

↪→ -- system reset (assume

�

↪→active high, change at top �

↪→level if needed)
20 PB : in std_logic;

�

↪→ -- Pushbutton to change

�

↪→state (assume active high, �

↪→change at top level if needed)
21 SW : in std_logic_vector(3 downto 0);

�

↪→ -- Switches that

�

↪→determine the next state to be �

↪→ selected
22 HPS_LED_control : in std_logic;

�

↪→ -- Software is in control

�

↪→ when asserted (=1)
23 SYS_CLKs_sec : in std_logic_vector(31 downto 0);

�

↪→ -- Number of system clock

�

↪→ cycles in one second
24 Base_rate : in std_logic_vector(7 downto 0);

�

↪→ -- base transition period

�

↪→ in seconds, fixed-point data

�

↪→type (W=8, F=4).
25 LED_reg : in std_logic_vector(7 downto 0);

�

↪→ -- LED register
26 LED : out std_logic_vector(7 downto 0)

�
↪→ -- LEDs on the DE10-Nano

�
↪→board

27);
28 end entity LED_patterns;

Listing 12.1: Entity of LED_patterns

The entity signals for the LED_Patterns component are described in Table 12.1.

248 12 Creating a LED Pattern Generator System

Table 12.1: Entity Signals in the LED_patterns Component

Signal Description

clk System clock running at 50 MHz

reset System reset (typically tied to KEY 0)

PB Push-button signal that will be used to change state.
Tied to KEY 1

SW The four switches that will be used to determine the
next state

HPS_LED_control

A signal that controls if the LEDs are controlled from
the hardware state machine or from software via the
LED_reg register. If set to “0,” which it will be for this
lab, the hardware state machine controls the LEDs.
When set to “1,” the LED output signal is connected
directly to register LED_reg, which will be done in a
future lab and controlled via software

SYS_CLKs_sec Set to how many system clock periods are in one second

Base_rate

This signal is set to control the base rate of LED tran-
sitions in seconds and is how the system clock rate is
converted into seconds. Note: This is an unsigned 8-bit
fixed-point word with 4 fractional bits. For example, if
Base_rate = 1.0, then transitions occur every 1 second

LED_reg LED register signal for software control of LEDs

LED Output signal to drive the LEDs

12.1.2 Functional Requirements for LED_Patterns

The first functional requirement of the LED_patterns component that you need to
implement is dictated by the HPS_LED_control input signal. If this is set to one,
the LEDs are controlled from software by the ARM HPS. If it is set to zero, then
the LEDs are controlled by the LED_Patterns component in the FPGA fabric. In
pseudocode, the requirement is:
if (HPS_LED_control == 1) then

LED <= controlled by software that writes to register LED_reg
else

LED <= controlled by hardware state machines in LED_Patterns.

12.1 LED_Patterns Component 249

12.1.2.1 State Machine

When the LED_patterns component is in the hardware control mode (HPS_LED_
control=0), the requirements for the state machine are:

Requirement 1: LED7 (LEDs[7]) always blinks at a 1 * Base_rate seconds
regardless of what the state machine is doing. This will allow
you to verify that your base rate is set correctly.

Requirement 2: The state machine needs to have 5 states described below.
When the state machine is in the noted state, you need to imple-
ment the described LED pattern. Note that these run at different
rates.

State 0: LEDs[6:0] show one lit LED shifting right at 1/2
* Base_rate seconds (circular right shifting). This
is the default reset/power-up state.

State 1: LEDs[6:0] show two lit LEDs, side-by-side, shift-
ing left at 1/4 * Base_rate seconds (circular left
shifting).

State 2: LEDs[6:0] show the output of a 7-bit up counter
running at 2 * Base_rate seconds (counter wraps).

State 3: LEDs[6:0] show the output of a 7-bit down counter
running at 1/8 * Base_rate seconds (counter
wraps).

State 4: User defined pattern. Implement your own pat-
tern. It cannot be an up/down counter or a right/left
shifter or any pattern that any of your classmates
are implementing. Define your pattern and your
own pattern transition rate, i.e., x * Base_rate
seconds.

Requirement 3: State transitions. When the push button (PB) is pressed, the
following sequence needs to happen each time the push button
is pressed:

Sequence 1: The binary code of the switches (SW) is dis-
played on LEDs[6:0] for 1 second. There are
no LED patterns shown during this time.

Sequence 2: The next_state is determined by the binary
code of the switches (SW). If the switches
specify a next_state of 5 or greater, the next_state
is ignored and the current state is kept (the
switch (SW) value is still displayed for 1 sec-
ond even if it is 5 or greater).

Sequence 3: The next_state implements the functionality
from the state descriptions above and stays in

250 12 Creating a LED Pattern Generator System

this state until the switches are changed and
the push button (PB) is pressed again.

12.1.2.2 Conditioning the Push-Button Signal

The external push-button signal needs to be conditioned to operate synchronously
and correctly with the state machine that it will control. We will take a general
approach here that can be used with any state machine and external push button that
needs debouncing (not necessarily the push button on the DE10-Nano).

You will need to create a component called Conditioner that does three things
to the input signal:

Conditioning 1: Synchronizes the signal (two D flip-flops).
Conditioning 2: Debounces the signal.
Conditioning 3: Creates a single pulse with a period of 1 system clock no

matter how long the push button is pressed or how many times
it bounces (small state machine).

Creating these components is left as homework exercises.

12.1.3 Suggested Architecture

You should sketch out a block diagram of all the pieces you need in order to implement
the LED_Patterns component. As you do so, you will want to think about how your
design can be hierarchical. Build the component out of blocks (entities or processes)
that you have tested (or will test) and know to be correct. What you do not want to
do is to create the entire component and then test it to see if it is working correctly.
If you take this approach, you will end up spending much more time debugging
your design than if you took a systematic approach and implemented a hierarchical
process in the first place. It is tempting to throw code together without first thinking
about how all the pieces fit together (i.e., the architecture), and it will feel like
the systematic hierarchical implementation process is slow going and may appear
to be pointless. However, you will end up finishing faster by taking a systematic
hierarchical approach since you will not be spending nearly as much time debugging
your system. Jumping in and starting a design without thinking it through will cause
the system to be fragile, and it will be hard to see where the logic is going wrong.

A suggested hierarchical design is shown in Fig. 12.2. You are free to implement
your own design and encouraged to do so. The suggestions below are to get you
started if you are unsure where to start.

12.2 Homework Problems 251

Fig. 12.2: Suggested architecture for the LED_patterns component

Suggestion 1: Start by sketching a block diagram of the system.
Suggestion 2: Create a separate pattern generator for each pattern described

in Sect. Requirement 2:. Each pattern generator will have its
own state machine with a clock input that will be set with the
appropriate rate. Each pattern can then be tested individually and
sent out to the LEDs.

Suggestion 3: Create a state machine that controls what is sent to the LEDs. To
handle the switch display state (Requirement 3:), a suggestion is
to:

1: Enter the switch display state from any state when the push
button is pressed.

2: Start a One Second Counter when the state is entered.
3: Display the switch value on the LEDs during this time.
4: Leave state when one second is up and go to the state

specified by the switches.

Suggestion 4: Create a clock component that generates all the appropriate clocks
for the different pattern generators.

12.2 Homework Problems

Problem 12.1
Create a Synchronizer component and call this code synchronizer.vhd. When a
person pushes a push button, the signal is asynchronous with respect to the FPGA
fabric clock. Create a VHDL component that synchronizes the input signal, which
is the first thing that needs to be done to an asynchronous signal coming into a
synchronous design. You can do this with two D flip-flops (use behavioral VHDL
for this, i.e., just make two signal assignments on the rising edge of the clock).

Problem 12.2
Create a Debouncer component and call this code debouncer.vhd. We will assume
that the push button needs to be debounced, so create a VHDL component that

252 12 Creating a LED Pattern Generator System

debounces the signal. When a change occurs, i.e., the switch value goes high (we
are assuming positive logic), ignore any further changes for a time period specified
by a generic in debouncer.vhd. Set the generic time period to be 100 msec. You can
assume that the FPGA fabric clock speed is 50 MHz, which means that you will
need to set the generic in the generic map to a value that represents 100 msec. You
are required to use a counter and a state machine in the debouncer component.
Note 1: The output of the debouncer should stay high as long as the push button is
pressed.
Note 2: Any component that uses a state machine needs to have a reset signal in the
entity where the state machine can be reset to the starting state when the reset signal
is asserted.

Problem 12.3
Create a OnePulse component and call this code onepulse.vhd. This component
will create a single pulse with a period of 1 system clock no matter how long the
push button has been pressed (use a state machine).

Problem 12.4
Create a Conditioner component and call this code conditioner.vhd. This com-
ponent instantiates the components Synchronizer, Debouncer, and OnePulse. The
signal flow should be Input → Synchronizer → Debouncer → OnePulse → Output.

Part III
SoC FPGA System Examples

254 III SoC FPGA System Examples

“A good stock of examples, as large as possible, is indispensable for a thorough
understanding of any concept, and when I want to learn something new, I make it
my first job to build one.” A quote by mathematician Paul Halmos.1

1 P.Halmos, I Want to be a Mathematician: An Automathography (page 63, Springer, 1985).

Example 1
Audio FPGA Passthrough

1.1 Audio Passthrough System Overview

The Passthrough System example is the first system developed where the Audio Mini
Board is interfaced to the DE10-Nano board. The overview of the system can be
seen in Fig. 1.1. Stereo audio signals are converted into digital by the analog-to-
digital converter of the AD1939. The digital signals in I2S format are sent to the
FPGA fabric where the serial data words are converted into 24-bit words and made
to conform to the Avalon Streaming Interface, which uses the data–channel–valid
protocol (see Sect. 6.2.3). These signals are then converted back into I2S serial data,
converted by the AD1939 back into analog, and then amplified by the headphone
amplifier. These data conversions require a VHDL component to convert I2S into
Avalon Streaming and back, which is covered in Sect. 1.2.1. This VHDL component
is ported into Platform Designer (described in Sect. 1.4.1) so that it can be easily used
when creating other audio processing systems. There is no audio processing done
in this example since the design goal is to only get the data and control interfaces
working.

You will not see any SPI or I2C control signals associated with the AD1939_hps_
audio_mini data conversion component. To use these control signals, we take ad-
vantage of the Hard Processor System (HPS) that is part the Cyclone V SoC FPGA.
The HPS has SPI and I2C interfaces already in place but must be exported, and this
HPS setup is discussed in Sect. 1.4.3.2. The associated SPI and I2C Linux device
drivers also need to be in place to be able to control the AD1939 audio codec and
TPA6130A2 headphone amplifier, and these are covered in Sect. 1.5.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_13

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_13

256 1 Audio FPGA Passthrough

Fig. 1.1: Audio Passthrough System. Stereo audio signals are converted into digital by
the analog-to-digital converter of the AD1939. The digital signals in I2S format are
sent to the FPGA fabric where the serial data words are converted into 24-bit words
and converted into the Avalon Streaming Interface that uses the data–channel–valid
protocol (see Sect. 6.2.3). These signals are then converted back into I2S serial data
and converted by the AD1939 back into analog where the signals are then amplified
by the headphone amplifier. The SPI and I2C control interfaces are handled by the
Hard Processor System (HPS) in the Cyclone V SoC FPGA and their associated
Linux device drivers

1.2 Audio Data Streaming

Although the AD1939 audio codec can sample up to a fs = 192 kHz sample rate, we
will set the sample rate to 48 kHz since it is good enough for our audio processing
designs that we will start with. Our goal is to route stereo audio data to the FPGA
fabric and back out with minimal latency.

We will set the FPGA fabric clock to run at 98.304 MHz, which is eight times
greater than the AD1939 master clock of 12.288 MHz. This clock will be created
by using one of the FPGA Phase Locked Loops (PLLs). This is done so that we can
implement a synchronous design where all the clock edges align. Having a system
clock of 98.304 MHz processing audio with a sampling rate of 48 kHz means that
there will be 2048 system clock cycles between each audio sample. Thus a lot of
parallel processing can be done in the FPGA fabric in between audio samples.

1.2 Audio Data Streaming 257

1.2.1 I2S to Avalon Streaming Data Conversion

The first conversion that we must do is convert the I2S serial data coming out of
the AD1939 into an Avalon streaming format so that we can easily make streaming
data connections using Intel’s Platform Designer in Quartus. Information on the
Avalon Streaming Interface is covered in Sect. 6.2.3. The conversion to be performed
is shown in Fig. 1.2 where the I2S signals are shown at the top and the Avalon
data–channel–valid signals are shown at the bottom. The VHDL component that
performs this conversion is named AD1939_hps_audio_mini, and the entity of this
component can be seen in Listing 1.1 (click here for the source file).

Fig. 1.2: Converting I2S data from the AD1939 audio codec into Avalon Streaming
data using the data–channel–valid protocol. The Avalon Streaming Interface allows
easy data connections to be made within Platform Designer

In the entity, the clock signal sys_clk (line 79) is assumed to be 98.304 MHz and
created by an on-board PLL that is using the AD1939 12.288 MHz master clock as
a reference. We do this so that we will have a synchronous design where we do not
have to worry about any issues with data crossing boundaries between two different

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/ad1939_hps_audio_mini.vhd

258 1 Audio FPGA Passthrough

clock domains. The sys_reset signal (line 81) is present since we have a state machine
in the component.

The I2S serial data signals coming from the AD1939 ADC (see Listing 1.1 lines
87–93) are physical signals that come into the FPGA. The associated entity, top level,
I2S, and AD1939 names are shown in tabled 1.1. When creating a Platform Designer
component, these signals must be exported (i.e., conduit signals) and connected to
the associated top level signals (click here for the top level source file).

Table 1.1: Serial data signals from the AD1939 ADC

Entity Signal Name Top Level Name I2S Name AD1939 Pin AD1939 Name
ad1939_adc_asdata2 AD1939_ADC_ASDATA2 SDATA 26 asdata2
ad1939_adc_abclk AD1939_ADC_ABCLK BCLK 28 abclk
ad1939_adc_alrclk AD1939_ADC_ALRCLK LRCLK 29 alrclk

Once the I2S data from the AD1939 ADC has been converted into the Avalon
Streaming data–channel–valid protocol (see Sect. 6.2.3), these Avalon Streaming
signals (see Table 1.2) come out of the entity (Listing 1.1 lines 109–113) and into
the FPGA fabric. Connecting up these Avalon Streaming audio signals is done in
Platform Designer (1.4) that automatically creates the bus/network connections for
you, and they are not exported to the top level. The clock signal is not given since the
streaming clock is assumed to be the FPGA fabric system clock (98.304 MHz in this
example). Thus the number of clock cycles between the left (or right) audio samples
is 2048 system clock cycles when assuming a 48 kHz sample rate (see Fig. 1.2).

Table 1.2: Avalon streaming signals from the AD1939 ADC

Entity Output Signal Name Avalon Signal Name
ad1939_adc_data DATA
ad1939_adc_channel CHANNEL
ad1939_adc_valid VALID

74 entity ad1939_hps_audio_mini is
75 port (
76 -- fpga system fabric clock (note: sys_clk is assumed

�

↪→to be faster and
77 -- synchronous to the ad1939 sample rate clock and bit

�

↪→clock, typically
78 -- one generates sys_clk using a pll that is n *

�

↪→ad1939_adc_alrclk)
79 sys_clk : in std_logic;
80 -- fpga system fabric reset
81 sys_reset : in std_logic;
82 --
83 -- Physical signals from adc (serial data)
84 --

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/DE10Nano_AudioMini_System.vhd

1.2 Audio Data Streaming 259

85 -- serial data from ad1939 pin 26 asdata2, adc2 24-bit
86 -- normal stereo serial mode
87 ad1939_adc_asdata2 : in std_logic;
88 -- bit clock from adc (master mode) from pin 28 abclk on

�

↪→ ad1939;
89 -- note: bit clock = 64 * fs, fs = sample rate
90 ad1939_adc_abclk : in std_logic;
91 -- left/right framing clock from adc (master mode) from

�

↪→pin 29 alrclk
92 -- on ad1939; note: lr clock = fs, fs = sample rate
93 ad1939_adc_alrclk : in std_logic;
94 --
95 -- Physical signals to dac (serial data)
96 --
97 -- serial data to ad1939 pin 20 dsdata1, dac1 24-bit
98 -- normal stereo serial mode
99 ad1939_dac_dsdata1 : out std_logic;

100 -- bit clock for dac (slave mode) to pin 21 dbclk on

�

↪→ad1939
101 ad1939_dac_dbclk : out std_logic;
102 -- left/right framing clock for dac (slave mode)
103 -- to pin 22 dlrclk on ad1939
104 ad1939_dac_dlrclk : out std_logic;
105 ---
106 -- Avalon streaming interface from ADC to fabric
107 ---
108 -- Data: w=24; f=23; signed 2's complement
109 ad1939_adc_data : out std_logic_vector(23 downto

�

↪→0);
110 -- Channels: left <-> channel 0; right <-> channel 1
111 ad1939_adc_channel : out std_logic;
112 -- Valid: asserted when data is present
113 ad1939_adc_valid : out std_logic;
114 ---
115 -- Avalon streaming interface to DAC from fabric
116 ---
117 -- Data: w=24; f=23; signed 2's complement
118 ad1939_dac_data : in std_logic_vector(23 downto 0)

�

↪→;
119 -- Channels: left <-> channel 0; right <-> channel 1
120 ad1939_dac_channel : in std_logic;
121 -- Valid: asserted when data is present
122 ad1939_dac_valid : in std_logic
123);
124 end entity ad1939_hps_audio_mini;

Listing 1.1: VHDL Snippet: Entity of AD1939_hps_audio_mini.vhd

260 1 Audio FPGA Passthrough

In this passthrough example, Avalon streaming audio data that would nor-
mally be processed in the FPGA fabric are instead sent directly back to the
AD1939_hps_audio_mini component. These Avalon Streaming output signals (see
Table 1.3) go into the component and are converted into I2S serial data before being
sent to the AD1939 DAC.

Table 1.3: Avalon Streaming Signals going to the AD1939 DAC

Entity Input Signal Name Avalon Signal Name
ad1939_dac_data DATA
ad1939_dac_channel CHANNEL
ad1939_dac_valid VALID

The I2S serial data signals going to the AD1939 DAC (Listing 1.1 lines 99–
104) are physical signals that leave the FPGA and connect to the AD1939 DAC.
The associated entity, top level, I2S, and AD1939 names are shown in Table 1.4.
When creating a Platform Designer component, these signals must be exported (i.e.,
conduit signals) and connected to the associated top level signals in the top level
VHDL file DE10Nano_AudioMini_System.vhd.

Table 1.4: Serial Data Signals going to the AD1939 DAC

Entity Signal Name Top Level Name I2S Name AD1939 Pin AD1939 Name
ad1939_dac_dsdata1 AD1939_DAC_DSDATA1 SDATA 20 dsdata1
ad1939_dac_dbclk AD1939_DAC_DBCLK BCLK 21 dbclk
ad1939_dac_dlrclk AD1939_DAC_DLRCLK LRCLK 22 dlrclk

1.2.1.1 Serial to Parallel Conversion

The first step in processing the I2S serial data coming into the FPGA (see signals in
Table 1.1), which is shown in Fig. 1.2, is to perform a serial to parallel conversion of
the 32-bit framing window that contains the 24-bit sample word. This is done using
a shift register as illustrated in Fig. 1.3. The shift register is configured so that the
bits enter from the right side and shift left. Thus, when we capture the 24-bit sample
word (by capturing all 32 bits in the left/right framing window), the MSB will be on
the left side, i.e., bit 23 of the extracted signal will hold bit 23 of the ADC sample.
The shift register is 32 bits since there are 32 BCLK cycles in each of the left and
right framing windows that are controlled by the LRCLK framing clock.

1.2 Audio Data Streaming 261

Fig. 1.3: Converting the serial I2S data into parallel 24-bit sample words

We utilized Quartus’ IP library to create the 32-bit shift register (click here for
the generated VHDL file). We can see that the shift register is 32 bits, and the shift
direction is left from the generic map as shown in Listing 1.2 (lines 75–79).

75 GENERIC MAP (
76 lpm_direction => "LEFT",
77 lpm_type => "LPM_SHIFTREG",
78 lpm_width => 32
79)

Listing 1.2: The generic map configures the shift register to be 32 bits and to shift
left

The instantiation of the shift register can be seen in lines 200–205 of Listing 1.3.
The clock into the serial to parallel converter is the I2S bit clock (BCLK) that is named
ad1939_adc_abclk. The serial data (SDATA) signal, named ad1939_adc_asdata2, is
connected to the shiftin port.

200 s2p_adc2 : component serial2parallel_32bits
201 port map (
202 clock => ad1939_adc_abclk ,
203 shiftin => ad1939_adc_asdata2 ,
204 q => sregout_adc2
205);

Listing 1.3: Instantiating the serial to parallel converter in component
AD1939_hps_audio_mini

The output q is 32 bits and is connected to the signal named sregout_adc2. We
capture the 24-bit sample word by taking the appropriate 24-bit signal slice as shown
in Listing 1.4.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/serial2parallel_32bits.vhd

262 1 Audio FPGA Passthrough

211 adc2_data <= sregout_adc2(29 downto 6);

Listing 1.4: Capturing the 24-bit sample from the 32-bit framing window

It should be noted that the 24-bit signal still has bits shifting through it on every
rising edge of the bit clock. The 24-bit word only has the correct bits for the sample
word when it is positioned correctly in the 32-bit left/right framing window. This is
where the LRCLK signal comes into play (see Fig. 1.3). When the LRCLK clock
signal (ad1939_adc_alrclk) transitions from low to high, the 32-bit shift register is full
of left data, and this is the time to capture the left sample value. This timing is done by
the state machine contained in the AD1939_hps_audio_mini.vhd component, which
is illustrated in Fig. 1.4.

Fig. 1.4: State machine used to capture the 24-bit I2S audio words using the LRCLK
signal as shown in Fig. 1.3

The state machine is running at the FPGA fabric system clock speed (98.304
MHz), and for this discussion, we assume that it is currently in the state state_left_wait
and that the LRCLK clock (ad1939_adc_alrclk) is low. We will only discuss the left
channel since the right channel is similar.

As soon as the LRCLK goes high (see Fig. 1.3 and associated VHDL code in List-
ing 1.5), the state machine transitions immediately through states state_left_capture
and state_left_valid, taking only one system clock cycle for each state. It is in these
states that we create the Avalon Streaming signals, which is described in the next
section.

229 when state_left_wait =>
230 -- The 32-bit shift register is full of left data
231 -- when alrck goes high
232 if (ad1939_adc_alrclk = '1') then
233 state <= state_left_capture;
234 else

1.2 Audio Data Streaming 263

235 state <= state_left_wait;
236 end if;
237
238 when state_left_capture => -- state to capture data
239 state <= state_left_valid;
240
241 when state_left_valid => -- state to generate valid

�

↪→signal
242 state <= state_right_wait;

Listing 1.5: Left channel states

1.2.1.2 Avalon Streaming Output Interface

When the state machine is in the state state_left_capture, it saves the 24-bit sample
word into the output signal ad1939_adc_data since the 24 bits are correctly aligned
in the 32-bit left/right framing window. The output signal ad1939_adc_data is the
data channel of the Avalon Streaming interface as shown at the bottom of Fig. 1.3,
and it keeps this value until the state machine enters the state_left_capture again
and captures a new value. In the next state state_left_valid, the Streaming Interface
signals valid (1) and channel (0 for left) are sent out. The associated VHDL code is
shown in Listing 1.6. The state machine then deals with the right channel in a similar
manner before repeating the left channel states again.

295 when state_left_capture =>
296 ad1939_adc_data <= adc2_data; -- capture left 24-

�
↪→bit word

297
298 when state_left_valid =>
299 ad1939_adc_valid <= '1'; -- sample is now valid
300 ad1939_adc_channel <= '0'; -- data is from the

�

↪→left channel

Listing 1.6: State machine signals that implement the Avalon Streaming Interface
(left channel)

1.2.1.3 Avalon Streaming Input Interface

When streaming data is sent into the AD1939_hps_audio_mini component’s Avalon
Streaming interface, the valid signal ad1939_dac_valid is asserted when data is
present. The valid signal is continually checked (every system clock cycle) to see if
it has been asserted as shown in Listing 1.7 (line 332). If the valid is asserted, we
then need to determine which channel the data belongs to, which is done by the case
statement block on lines 334–349. However, before the 24-bit data is saved to either
the left or right DAC signal, it needs to be converted to a 32-bit I2S signal. The data

264 1 Audio FPGA Passthrough

is converted into I2S format by adding a leading zero bit and adding seven trailing
zeros to make the data 32 bits.

332 if (ad1939_dac_valid = '1') then -- data has arrived
333
334 case ad1939_dac_channel is
335
336 -- data is in i2s-justified mode, which has one

�

↪→empty bit
337 -- before the MSB. See Fig. 23 on page 21 of the

�

↪→AD1939 datasheet
338 when '0' => -- left data
339 -- pack into 32-bit word for L/R framing slot
340 dac1_data_left <= '0' & ad1939_dac_data & "

�

↪→0000000";
341
342 when '1' => -- right data
343 -- pack into 32-bit word for L/R framing slot
344 dac1_data_right <= '0' & ad1939_dac_data & "

�

↪→0000000";
345
346 when others =>
347 null;
348
349 end case;
350
351 end if;

Listing 1.7: Capturing Avalon Streaming data

Once the left input data has been captured and converted into the 32-bit I2S signal
dac1_data_left, it needs to be converted into serial since I2S is the data serial format
that the AD1939 DAC expects.

1.2.1.4 Parallel to Serial Conversion

The parallel to serial conversion is performed by a 32-bit shift register that performs
the inverse of the serial to parallel shift register discussed in Sect. 1.2.1.1. The
parallel to serial shift register also shifts left since the MSB needs to come out first.
However, there is a control signal load that when asserted (1) loads the 32-bit word
into the shift register. When load is deasserted (0), the shift register shifts left each
bit clock cycle. It turns out that LRCLK signal (see Fig. 1.3) is exactly what we need
for the load signal since we want the load signal to be low during the left frame to
shift out the left channel bits. The right channel is done similarly except we need
the inverse of the LRCLK signal for the load signal for the right parallel to serial
converter.

359 p2s_dac1_left : component parallel2serial_32bits
360 port map (
361 clock => ad1939_adc_abclk ,

1.2 Audio Data Streaming 265

362 data => dac1_data_left ,
363 load => ad1939_adc_alrclk ,
364 shiftout => ad1939_dac_dsdata1_left
365);

Listing 1.8: Creating the I2S serial data stream for the left channel

1.2.1.5 Serial Data Multiplexing

Since we have serial data coming from both the left and right channel parallel to serial
shift registers, we need to select the serial data that goes out with the LRCLK signal,
which is low for left data and high for right data. This is easily done by creating a
signal multiplexer as shown in Listing 1.9. The serial data has been delayed by one
BCLK to align appropriately in the left/right framing window.

394 interleave : process (sys_clk) is
395 begin
396
397 if rising_edge(sys_clk) then
398 if (ad1939_adc_alrclk = '0') then
399 ad1939_dac_dsdata1 <=

�

↪→ad1939_dac_dsdata1_left_delayed;
400 else
401 ad1939_dac_dsdata1 <=

�

↪→ad1939_dac_dsdata1_right_delayed;
402 end if;
403 end if;
404
405 end process interleave;

Listing 1.9: Multiplexing the left and right data serial channels

1.2.1.6 Clocking

The AD1939 is configured in the ADC Control 2 register so that both the ADC bit
clock BCLK and the left/right framing clock LRCLK are set as clock masters (i.e.,
clock sources, see Table 5.3). We keep the BCLK and LRCLK for the DAC as clock
slaves, which is the default configuration (see DAC Control 1 register in Table 5.2).
This means that we need to connect the DAC BCLK and LRCLK to the ADC BCLK
and LRCLK so that the sample rate for the DAC is controlled by the ADC (fs=48
kHz). A timing wrinkle crops up since we have added latency to the DSDATA data
line by virtue of capturing and registering the Avalon data channel. Furthermore, we
would like to add some setup time for the I2S serial data going to the DAC. We can
do this by delaying both the DAC BCLK and LRCLK clocks using the delay_signal
component. A delay of eight system clock cycles (81.4 nanoseconds) is added for
the BCLK as shown in Listing 1.10. The LRCLK is done similarly.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/lib/vhdl/delay_signal.vhd

266 1 Audio FPGA Passthrough

416 delay_dac_bclk : component delay_signal
417 generic map (
418 signal_width => 1,
419 signal_delay => 8
420)
421 port map (
422 clk => sys_clk,
423 signal_input(0) => ad1939_adc_abclk ,
424 signal_delayed(0) => ad1939_dac_dbclk
425);

Listing 1.10: Delaying the DAC BCLK

If a delay is not added to the bit clock ad1939_dac_dbclk going out to the DAC,
the serial data does not have the required setup time as can be seen in Fig. 1.5. The
rising edge of the bit clock is shown in blue, and transitions of the serial data are
shown in green. The serial data is transitioning on the clock edge and sometimes
afterward rather than the requirement of being set up before the clock edge.

Fig. 1.5: Setup time being violated for the DAC serial data with respect to the bit
clock. The rising clock edges are shown in blue. The data transitions are shown in
green. Figure courtesy of Trevor Vannoy

1.3 Quartus Passthrough Project 267

By delaying the bit clock, we shift the serial data transitions well before the rising
edge of the bit clock as shown in Fig. 1.6.

Fig. 1.6: Setup time being met for the DAC serial data with respect to the bit clock.
The rising clock edges are shown in blue. The data transitions are shown in green.
Figure courtesy of Trevor Vannoy

1.3 Quartus Passthrough Project

The Passthrough Quartus project is given as a Golden Hardware Reference Design
(GHRD) for the Audio Mini board working with the DE10_Nano board. The example
passthrough system is a minimal working system (no audio processing) with all the
data and control interfaces working. To create this GHRD, create a Quartus project
folder called \passthrough and copy the following six files into the \passthrough
folder.

Note: The easiest way to download all the passthrough project files for Windows
is to go to the book’s GitHub Code repository (click here for the Code Reposi-
tory), click on the green Code dropdown menu/button, and select Download ZIP
from the dropdown menu. Unzip the Code-main.zip file that gets downloaded,
and go to \Code-main\examples\passthrough where the Passthrough Quar-
tus project files are located (with the exception of delay_signal.vhd, which is located
in \Code-main\lib\vhdl).

https://github.com/ADSD-SoC-FPGA/Code

268 1 Audio FPGA Passthrough

Copy the following files into the \passthrough folder:
File 1: DE10Nano_AudioMini_System.qpf This is the Quartus Project File

that you open in Quartus to open the Passthrough project (click here for
the file).

File 2: DE10Nano_AudioMini_System.vhd This is the Top Level VHDL
File for the Passthrough project (click here for the file).

File 3: DE10Nano_AudioMini_System.qsf This is the Quartus Settings
File for the Passthrough project that contains all assignments and project
settings, such as the pin assignments, which is how the top level VHDL
signal names are connected to specific FPGA I/O pins (click here for the
file).

File 4: DE10Nano_AudioMini_System.sdc This is the Synopsys Design
Constraints File for the Passthrough project. This file contains the
project’s timing constraints that are used by Quartus when fitting the
design into the FPGA fabric (i.e., place and routing have a significant
impact on the timing results) (click here for the file).

File 5: soc_system_hps.qsys This is the Platform Designer File that de-
scribes a basic SoC FPGA system, which contains the HPS or Hard
Processor System. The HPS contains the ARM CPUs and related pe-
ripherals. Platform Designer was previously called Qsys, thus the file
extension (click here for the file). Note: We will create a hierarchi-
cal design where soc_system_hps.qsys will be modified by adding two
Platform Designer subsystems clk_reset_subsystem.qsys (File 6:) and
ad1939_subsystem.qsys (to be created shortly). The resulting hierarchi-
cal design will be called soc_system_passthrough.qsys.

File 6: clk_reset_subsystem.qsys This is the Platform Designer File that
implements and encapsulates the clocks and resets for the passthrough
system (click here for the file).

File 7: soc_system_passthrough.ipx This is the Platform Designer IP Index
File that describes where IP associated with Platform Designer can be
found. This is included so that Platform Designer will see the AD1939
IP located in \passthrough\ip\ad1939 (click here for the file).

Create the project subdirectories: \passthrough\ip\ad1939, and copy the fol-
lowing files into \ad1939:

File 9: ad1939_hps_audio_mini.vhd This is the VHDL file that provides
the Avalon Streaming Interface for the AD1939 audio codec. The
VHDL file name has the string _hps_ in the name to signify that it
requires the SoC FPGA Hard Processor System (HPS) to fully work.
This is because the SPI control interface for the AD1939 is not part
of ad1939_hps_audio_mini.vhd code but is implemented using the SPI
interface through the HPS (click here for the file).

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/DE10Nano_AudioMini_System.qpf
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/DE10Nano_AudioMini_System.vhd
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/DE10Nano_AudioMini_System.qsf
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/DE10Nano_AudioMini_System.sdc
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/soc_system_hps.qsys
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/clk_reset_subsystem.qsys
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/soc_system_passthrough.ipx
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/ad1939_hps_audio_mini.vhd

1.4 Platform Designer 269

File 10: serial2parallel_32bits.vhd This is the 32-bit serial to parallel shift
register used to convert I2S data into 24-bit words. It was generated by
Quartus’ IP wizard (click here for the file).

File 11: parallel2serial_32bits.vhd This is the 32-bit parallel to serial shift
register used to convert 24-bit audio words into I2S data. It was generated
by Quartus’ IP wizard (click here for the file).

File 12: delay_signal.vhd This is a component that can delay signals by the
specified number of clock cycles (click here for the file).

1.4 Platform Designer

We will use Intel’s Platform Designer system integration tool to connect up audio
streaming interfaces using the Avalon Streaming Interface. To do so, we need to
import the AD1939_hps_audio_mini.vhd file into Platform Designer so that it will
show up as a library component where we can easily drop it into our passthrough
and future systems. We also need to set up the clocks associated with the AD1939
component so that all audio related processing will be done synchronously with
respect to the AD1939 master clock. This will be done by creating a Platform
Designer subsystem for the AD1939. We then need to configure the HPS so that
the I2C and SPI signals are exported so that we can control the Audio Mini board.
Finally, we need to generate the Platform Designer system and connected it to the
top level VHDL that has all the associated Audio Mini signals.

1.4.1 Creating the AD1939 Platform Designer Component

Once the Passthrough project files have been copied to their respective directories (see
Sect. 1.3), open Quartus, and open the Quartus project file
DE10Nano_AudioMini_System.qpf that is located in the project folder
\passthrough.

Open Platform Designer in Quartus, which is located under Tools → Plat-
form Designer. After some initializations, it will ask to open a .qsys file. Select
soc_system_hps.qsys and click open. After some checking, the Platform Designer
system will show up as shown in Fig. 1.7. This is the basic SoC FPGA system to
which we will add our AD1939 subsystem once we create the AD1939 component.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/serial2parallel_32bits.vhd
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/parallel2serial_32bits.vhd
https://github.com/ADSD-SoC-FPGA/Code/blob/main/lib/vhdl/delay_signal.vhd

270 1 Audio FPGA Passthrough

Fig. 1.7: The initial Passthrough Platform Designer System

On the left hand top side, you should see the IP Catalog Window. If not, select
View → IP Catalog. We will be creating a new component in Platform Designer
so double click New Component under \Project as shown in Fig. 1.8 (or click the
New. . . button at the bottom of the IP Catalog window). The Component Editor will
pop up.

Fig. 1.8: Creating a new Platform Designer Component for the AD1939

In the Component Type tab of the Component Editor, enter AD1939_Audio_Mini
for both the Name: and Display name: as shown in Fig. 1.9.

1.4 Platform Designer 271

Fig. 1.9: Component Type tab of the Component Editor

In the Files tab of the Component Editor and in the Synthesis Files section at the
top, click the Add File. . . button. Browse to \passthrough\ip\ad193 and open
AD1939_hps_audio_mini.vhd. Then click the Analyze Synthesis Files button. After
getting the green message: “Analyzing Synthesis Files: completed successfully,”
click close. Note: When importing code into Platform Designer, make sure that the
VHDL is correct before importing since the error messages from Platform Designer
are not as helpful as the error messages from a Quartus compilation. You can
check a VHDL file in Quartus by going to the menu and selecting Processing →
Analyze Current File. It is suggested that you do this first and eliminate any VHDL
errors before importing a file into Platform Designer (you do not need to do it for
AD1939_hps_audio_mini.vhd since it is ready to go).

When first importing AD1939_hps_audio_mini.vhd, you will see a bunch of errors
in the Messages window at the bottom of the Component Editor after it has been ana-
lyzed. We will fix these errors next since Platform Designer has assumed wrong inter-
faces for all the signals associated with the entity in AD1939_hps_audio_mini.vhd.
First, click on the Signals and Interfaces tab in the Component Editor. The wrong
signal associations are shown in Fig. 1.10 since it has assumed that they are all Avalon
Memory-Mapped Slave signals, of which none of them are. Notice in Sect. 1.10 at
the bottom of the signal list the command «add interface» that has been marked with
an arrow. We now need to add seven interfaces. To add an interface, click on «add
interface» and select from the drop down menu the interface type.

272 1 Audio FPGA Passthrough

Fig. 1.10: Component Editor making the wrong associations regarding the AD1939
signals

Let us start by adding three clock interfaces since we have three clocks associated
with the component. These are the 98.304 MHz FPGA fabric system clock, the
bit clock BCLK, and the left/right framing clock LRCLK. Click «add interface»,
select Clock Input from the drop down menu, and name the clock interface sys_clk.
Set the clock rate to be 98304000. Now drag the signal sys_clk that is under the
avalon_slave_0 interface to be under the sys_clk interface. The signal type will be
wrong (probably beginbursttransfer) so click in the signal to highlight it and select
clk from the Signal Type: pull down menu. The result should be like the figure in
Fig. 1.11, and the summary of the interface is:

1.4 Platform Designer 273

Interface 1: Name: sys_clk, Interface Type: Clock input

Parameter 1: Clock rate: 98304000

Grouped Signal:

Signal 1: Name: sys_clk[1] Signal Type: clk

Fig. 1.11: Creating the FPGA fabric system clock interface for the AD1939 Platform
Designer component

In a similar manner for the bit clock, click «add interface», select Clock Input
from the drop down menu, and name the clock interface clk_abclk. Set the clock
rate to be 12288000 since this is the fastest the bit clock can be if the sample rate
is 192 kHz (192000 * 64). We will be running the AD1939 sample rate at 48 kHz,
but we want the Platform Designer clock constraint to allow us the possibility of
running at 192 kHz so we will pick the fastest clock speed that it can be. Now drag
the signal ad1939_adc_abclk that is under the avalon_slave_0 interface to be under
the clk_abclk interface. The signal type will be wrong (probably beginbursttransfer)
so click in the signal to highlight it and select clk from the Signal Type: pull down
menu. The summary of the interface is:

Interface 2: Name: clk_abclk Interface Type: Clock input

Parameter 1: Clock rate: 12288000

Grouped Signal:

Signal 1: Name: ad1939_adc_abclk[1] Signal Type: clk

274 1 Audio FPGA Passthrough

Again, in a similar manner for the left/right framing clock, click «add inter-
face», select Clock Input from the drop down menu, and name the clock interface
clk_alrclk. Set the clock rate to be 192000 since this is the fastest the framing clock
can be if the sample rate is 192 kHz. We will be running at 48 kHz, but we want the
Platform Designer clock constraint to allow us the possibility of running at 192 kHz.
Now drag the signal ad1939_adc_alrclk that is under the avalon_slave_0 interface
to be under the clk_alrclk interface. The signal type will be wrong (probably be-
ginbursttransfer) so click in the signal to highlight it and select clk from the Signal
Type: pull down menu. The summary of the interface is:

Interface 3: Name: clk_alrclk Interface Type: Clock input

Parameter 1: Clock rate: 192000

Grouped Signal:

Signal 1: Name: ad1939_adc_alrclk[1] Signal Type: clk

Next, we need the system reset, so click «add interface», select Reset Input
from the drop down menu, and name the reset interface sys_reset. Now drag the
signal sys_reset that is under the avalon_slave_0 interface to be under the sys_reset
interface. The signal type will be wrong (probably beginbursttransfer) so click in the
signal to highlight it and select reset from the Signal Type: pull down menu. Select
sys_clk as the Associated Clock: The summary of the interface is:

Interface 4: Name: sys_reset Interface Type: Reset input
Associated Clock: sys_clk
Grouped Signal:

Signal 1: Name: sys_reset[1] Signal Type: reset

We will now create the Avalon Streaming sink interface, so click «add inter-
face», select Avalon Streaming Sink from the drop down menu, and name the Avalon
Streaming sink interface to_headphone_out. Set the Associated Clock: to sys_clk
and the Associated Reset: to sys_reset. Now drag the 24-bit signal ad1939_dac_data
that is under the avalon_slave_0 interface to be under the to_headphone_out stream-
ing interface. The signal type will be wrong (probably writebyteenable_n) so click in
the signal to highlight it and select data from the Signal Type: pull down menu. Drag
the channel signal ad1939_dac_channel that is under the avalon_slave_0 interface to
be under the to_headphone_out streaming interface. The signal type will be wrong
(probably beginbursttransfer) so click in the signal to highlight it and select channel
from the Signal Type: pull down menu. Drag the valid signal ad1939_dac_valid that
is under the avalon_slave_0 interface to be under the to_headphone_out streaming
interface. The signal type will be wrong (probably beginbursttransfer) so click in the
signal to highlight it and select valid from the Signal Type: pull down menu. Click
on the to_headphone_out streaming interface, and under the Parameters section, set

1.4 Platform Designer 275

Data bits per symbol to 24 since the data signal is 24 bits and set Maximum channel
to 1. If you keep the max channel setting at zero, the right channel (channel 1) will
not be implemented in the system. The result should be like the figure in Fig. 1.12,
and the summary of the interface is:

Interface 5: Name: to_headphone_out Interface Type: Avalon Streaming Sink
Associated Clock: sys_clk
Associated Reset: sys_reset

Parameter 1: Data bits per symbol: 24
Parameter 2: Maximum channel: 1

Grouped Signals:

Signal 1: Name: ad1939_dac_channel[1] Signal Type: channel
Signal 2: Name: ad1939_dac_data[24] Signal Type: data
Signal 3: Name: ad1939_dac_valid[1] Signal Type: valid

Fig. 1.12: Creating the Platform Designer Avalon Streaming Sink interface that goes
to the Headphone amplifier and Headphone out on the Audio Mini board

276 1 Audio FPGA Passthrough

Create the Avalon Streaming source interface in a similar manner. Click «add
interface», select Avalon Streaming Source from the drop down menu, and name
the Avalon Streaming source interface from_line_in. Set the Associated Clock:
to sys_clk and the Associated Reset: to sys_reset. Now drag the 24-bit sig-
nal ad1939_adc_data that is under the avalon_slave_0 interface to be under the
from_line_in streaming interface. The signal type will be wrong (probably read-
data) so click in the signal to highlight it and select data from the Signal Type:
pull down menu. Drag the channel signal ad1939_adc_channel that is under the
avalon_slave_0 interface to be under the from_line_in streaming interface. The
signal type will be wrong (probably writeresponsevalid_n) so click in the signal to
highlight it and select channel from the Signal Type: pull down menu. Drag the valid
signal ad1939_adc_valid that is under the avalon_slave_0 interface to be under the
to_headphone_out streaming interface. The signal type will be wrong (probably
writeresponsevalid_n) so click in the signal to highlight it and select valid from the
Signal Type: pull down menu. Click on the from_line_in streaming interface, and
under the Parameters section, set Data bits per symbol to 24 since the data signal
is 24 bits and set Maximum channel to 1. If you keep the max channel setting at
zero, the right channel (channel 1) will not be implemented in the system. The result
should now be like the figure in Fig. 1.13, and the summary of the interface is:

Interface 6: Name: from_line_in Interface Type: Avalon Streaming Source
Associated Clock: sys_clk
Associated Reset: sys_reset

Parameter 1: Data bits per symbol: 24
Parameter 2: Maximum channel: 1

Grouped Signals:

Signal 1: Name: ad1939_adc_channel[1] Signal Type: channel
Signal 2: Name: ad1939_adc_data[24] Signal Type: data
Signal 3: Name: ad1939_adc_valid[1] Signal Type: valid

1.4 Platform Designer 277

Fig. 1.13: Creating the Platform Designer Avalon Streaming Source interface that
comes from the line-in input on the Audio Mini board

The signals that are left are related signals but are under the wrong interface.
These signals need to be exported since they need to physically connect with
the AD1939 audio codec on the Audio Mini board. Click on the avalon_slave_0
interface to change the interface type and change the Type: to Conduit and the
Name: to connect_to_AD1939. The conduit interface will export these signals out
of the soc_system component so that they can be connected at the top level in the
passthrough project. Set the Associated Clock: to clk_abclk and the Associated Reset:
to sys_reset. Click on the signal ad1939_adc_asdata2 to highlight it, and type in as-
data2 as the Signal Type:. Click on the signal ad1939_dac_dbclk to highlight it, and
type in dbclk as the Signal Type:. Click on the signal ad1939_dac_dlrclk to highlight
it, and type in dlrclk as the Signal Type:. Click on the signal ad1939_dac_dsdata1
to highlight it, and type in dsdata1 as the Signal Type:. The result should be like the
figure in Fig. 1.14, and the summary of the interface is:

Interface 7: Name: connect_to_AD1939 Interface Type: Conduit
Associated Clock: clk_abclk
Associated Reset: sys_reset
Grouped Signals:

Signal 1: Name: ad1939_adc_asdata2[1] Signal Type: asdata2
Signal 2: Name: ad1939_dac_dbclk[1] Signal Type: dbclk

278 1 Audio FPGA Passthrough

Signal 3: Name: ad1939_dac_dlrclk[1] Signal Type: dlrclk
Signal 4: Name: ad1939_dac_dsdata1[1] Signal Type: dsdata1

Fig. 1.14: Creating the Conduit interface that exports the AD1939 data serial signals
that need to connect to the AD1939

At this point, there should be no more errors or warnings, which means that we
are done with the Component Editor, so click Finish. . . and click Yes, Save. Notice
that there is now the new Component AD1939_Audio_Mini under Project in the IP
Catalog window. Click on this new component, and click the +Add. . . button at the
bottom right of the IP Catalog window. The component will be added to the Platform
Designer system, but with errors that we will fix shortly. So for now, just delete the
AD1939 component since we first need to create a Platform Designer subsystem for
it, which is covered in the next Sect. 1.4.2.

Now for a bit of housekeeping. When you clicked the Finish. . . and saved
the component, the AD1939_Audio_Mini_hw.tcl file was created and put in the

1.4 Platform Designer 279

\passthrough project folder. However, this file is associated with the VHDL
file AD1939_hps_audio_mini.vhd. So move AD1939_Audio_Mini_hw.tcl into the
IP folder \passthrough\ip\ad1939. Also, make a backup copy of the .tcl file
since if this gets modified by Platform Designer, you can restore the file without
having to import and making all the signal assignments again (yes, it does happen).

Note: One complicating factor of moving the .tcl file to \passthrough\ip\
ad1939 is that the .tcl script seems to add a relative reference to the VHDL source
code that will cause an error when adding the AD1939 component in Platform
Designer (if the file was imported when in the project directory). If you get this
error, a fix to this is to comment out the add_fileset_file command on line of
AD1939_Audio_Mini_hw.tcl (in the file sets section ∼line 42). Since we include
this directory in the soc_system_passthrough.ipx file, Quartus will find the VHDL
source file even though the path is commented out.

1.4.2 Creating a Platform Designer Subsystem for the AD1939

Open Platform Designer and select File → New System. . ., which will be named
ad1939_subsystem.qsys. It will open up with a Clock Source named clk_0. However,
we will not be using a clock source so delete it.

Now add the ad1939_audio_mini component that you just created by select-
ing it in the IP Catalog window under Project and clicking the +Add. . . but-
ton, and then Finish to close the pop-up window. Do not worry about errors in
the Messages window since we will be fixing them. Rename the component from
ad1939_audio_mini_0 to ad1939_audio_mini.

We are creating a Platform Designer subsystem, which means that any signal that
we want coming out of the subsystem we need to export. To export a signal, double
click in the Export column and on the line that contains the signal that you want to
export, and type in the name of the signal that will show up as a port in the subsystem.
The result should be like Fig. 1.15.

Component ad1939_audio_mini Exports

Export 1: Signal to_headphone_out exported with name to_headphone_out
Export 2: Signal from_line_in exported with name from_line_in
Export 3: Signal connect_to_AD1939 exported with name ad1939_physical

280 1 Audio FPGA Passthrough

Fig. 1.15: Adding the ad1939_audio_mini component to the subsystem and export-
ing signals. The exported signals will show up as ports in the Platform Designer
subsystem

The first clock we need to create and add to the subsystem is the 98.304 MHz
system clock that will be derived from the AD1939 12.288 MHz MCLK (master
clock of the AD1939). To create this clock, we need to use one of the Phase-Locked
Loops (PLLs) that Cyclone V FPGA contains (there are six Cyclone V PLLs in the
FPGA on the DE10-Nano board).

With Platform Designer opened, expand the Library in the IP Catalog window
and expand the path to Library → Basic Functions → Clocks; PLLs and Resets →
PLL. Select PLL Intel FPGA IP and click the +Add. . . button.

Right click on the PLL_0 component that was added and select Rename. Change
the PLL name to sys_clk_from_ad1939_mclk_pll, and move the PLL component to
the top by selecting it and then using the up arrow at the left.

In the configuration window that pops up for the PLL component, and in the
General tab, select the following parameters:

Component sys_clk_from_ad1939_mclk_pll Parameters

Parameter 1: Set Reference Clock Frequency: to 12.288.
Parameter 2: Disable (uncheck) the Enable locked output port since we will

not bother with monitoring whether the PLL is locked or not.
Parameter 3: In the outclk0 section, set the Desired Frequency: to 98.304.

The result should be like the figure in Fig. 1.16. Leave all the other options with
their default settings and click Finish.

https://www.intel.com/content/www/us/en/docs/programmable/683375/current/plls.html

1.4 Platform Designer 281

Fig. 1.16: Setting the PLL parameters for the system clock

Next, export the PLL reference clock:

Component sys_clk_from_ad1939_mclk_pll Exports

Export 4: Signal refclk exported with name ad1939_physical_mclk

Now connect the clock output of the PLL (outclk0) to the sys_clk input of the
ad1939_audio_mini component. The connection is made by clicking on the small
circle that intersects these two signals in the Connect. . . column so that the circle
becomes a black solid circle. An open circle signifies a possible connection but is
not connected. If you click on the signal outclk0, it will make the signal bold in
the connect column, which can make it easier to see what ports can connect to it,
especially if there are a lot of signals in the connect column:

Component sys_clk_from_ad1939_mclk_pll Connections

Connection 1: Source: outclk0 in sys_clk_from_ad1939_mclk_pll
Target: sys_clk in ad1939_audio_mini

The result should be like the figure in Fig. 1.17.

282 1 Audio FPGA Passthrough

Fig. 1.17: Connecting the PLL clock outclk0 to the AD1939_Audio_Mini sys_clk

Now we need to bring in the bit clock and left/right framing clock. Since we are
creating a subsystem in Platform Designer, we need to use clock bridges and
not clock sources. Add a Clock Bridge by going to Library → Basic Functions
→ Bridges and Adaptors → Clock. Rename the clock bridge as ad1939_abclk and
move the component to the top. Open the component and set the clock parameter:

Component ad1939_abclk Parameters

Parameter 4: Explicit clock rate: 12288000

Make the following export:

Component ad1939_abclk Exports

Export 5: Signal in_clk exported with name ad1939_physical_abclk

Make the following clock connection:

Component ad1939_abclk Connections

Connection 2: Source: out_clk in ad1939_abclk
Target: clk_abclk in ad1939_audio_mini

In a similar fashion, add a clock bridge named ad1939_alrclk, and move the
component to the top. Open the component and set the clock parameter:

Component ad1939_alrclk Parameters

Parameter 5: Explicit clock rate: 192000

Make the following export:

Component ad1939_alrclk Exports

Export 6: Signal in_clk exported with name ad1939_physical_alrclk

1.4 Platform Designer 283

Make the following clock connection:

Component ad1939_alrclk Connections

Connection 3: Source: out_clk in ad1939_alrclk
Target: clk_alrclk in ad1939_audio_mini

We want to bring the system clock out of the subsystem, so add another clock
bridge named system_clock, move the component to just below the PLL, and make
the following export:

Component system_clock Exports

Export 7: Signal out_clk exported with name audio_fabric_system_clk

Make the following clock connection:

Component system_clock Connections

Connection 4: Source: outclk0 in sys_clk_from_ad1939_mclk_pll
Target: in_clk in system_clock

Finally, we need to add a reset bridge, which can be found at Library → Basic
Functions → Bridges and Adaptors → Reset. Add a reset bridge named reset, move
the component to the top, and set the following parameter:

Component reset Parameters

Parameter 6: Synchronous edges: None.
Note: If you leave it as the default setting (deassert), it will end
up holding the subsystem in reset and the passthrough system
will not work.

Make the following export:
Component reset Exports

Export 8: Signal in_reset exported with name subsystem_reset

Make the following reset and clock connections:
Component reset Connections

Connection 5: Source: out_reset in reset
Target: reset in sys_clk_from_ad1939_mclk_pll

Connection 6: Source: out_reset in reset
Target: sys_reset in ad1939_audio_mini

Connection 7: Source: outclk0 in sys_clk_from_ad1939_mclk_pll
Target: clk in reset

284 1 Audio FPGA Passthrough

The result should be like Fig. 1.18. Save this subsystem as ad1939_subsystem.qsys,
and place it in the project folder \passthrough.

Fig. 1.18: The AD1939 Platform Designer subsystem ad1939_subsystem.qsys

1.4.3 Creating the Platform Designer Passthrough System

The starting point for the Passthrough system is the given system soc_system_hps.qsys.
Open this system in Platform Designer.

1.4.3.1 Adding the AD1939 Subsystem

In IP Catalog window under Project, expand System, and you will see the
ad1939_subsystem. Add this subsystem like adding any library component by se-
lecting it and clicking the +Add. . . button.

Name the component ad1939_subsystem, move it above the hps component, and
make the following exports:

Component ad1939_subsystem Exports

Export 1: Signal ad1939_physical exported with name ad1939_physical
Export 2: Signal ad1939_physical_abclk exported with name ad1939_

physical_abclk
Export 3: Signal ad1939_physical_alrclk exported with name ad1939_

physical_alrclk
Export 4: Signal ad1939_physical_mclk exported with name ad1939_

physical_mclk

1.4 Platform Designer 285

Then make the following connections:

Component ad1939_subsystem Connections

Connection 1: Source: from_line_in in ad1939_subsystem
Target: to_headphone_out in ad1939_subsystem
Note: This implements the audio passthrough.

Connection 2: Source: fabric_reset_out in clk_reset_inputs
Target: subsystem_reset in ad1939_subsystem

Save this Platform Designer Passthrough system with the name soc_system_
passthrough.qsys.

1.4.3.2 Adding the SPI and I2C Interfaces to the hps Component

Open Platform Designer in Quartus and load soc_system_passthrough.qsys if it is
not already opened. Double click on the hps component in the System Contents
window to open the Parameters window for the Cyclone V Hard Processor System.
Then click the Peripheral Pins tab.

Scroll down to the SPI Controllers section. Make the following configuration
change:

Setting 1: SPIM0 pin: FPGA

Scroll further down to the I2C Controllers section. Make the following configu-
ration change:

Setting 2: I2C0 pin: FPGA

Save the soc_system_passthrough.qsys Platform Designer Passthrough system.

The result is shown in Fig. 1.19 where both the SPI (SPI master 0) and I2C (I2C
0) interfaces were configured with the FPGA option. This means that the SPI and
I2C signals show up in the hps component. The SPI signals (shaded blue) are then
exported with the hps_ prefix where they show up in the soc_system_passthrough
entity that can be connected at the top level. Similarly, the I2C signals (shaded green)
are exported with the hps_ prefix where they show up in the soc_system_passthrough
entity that can be connected at the top level.

286 1 Audio FPGA Passthrough

Fig. 1.19: Configuring the SPI and I2C interfaces in the HPS

The final Platform Designer Passthrough system can be seen in Fig. 1.20.

Fig. 1.20: The Platform Designer Passthrough SoC System

It should be noted that there are more signals inside the HPS than there are
pins on the FPGA device packaging. When designing a PCB with the Cyclone V

1.4 Platform Designer 287

SoC FPGA on it, one of the design choices is which HPS signals to bring out to
which FPGA pins. If you scroll down to the bottom of the Peripheral Pins tab in the
platform Designer HPS Parameters window, you will see the Peripherals Mux Table.
This allows the designer to choose which HPS signals get routed to which physical
pins, which are named in the left column. The complicated design choices can be
seen in the pin information table. These choices have already been made for the
DE10-Nano board, but one advantage of using FPGAs is that we can bring signals
out to the FPGA fabric (exported in Platform Designer) and then route these signals
to available pins in the I/O headers of the DE10-Nano board. This is what we did for
the Audio Mini board for the SPI and I2C control.

1.4.4 Generating the Platform Designer System

Once the Platform Designer system has been finished like in Fig. 1.20, it is time to
generate the HDL for the system. This is done by going to Generate → Generate
HDL. . . where the Generate window will pop up. In the Synthesis section, select
VHDL as the language. You can also uncheck the option Create block symbol file
since we will not be using it. The output directory will be .../passthrough/soc_
system_passthrough which is what we want. Then click the Generate button
(and close). The generation process will take several minutes depending on how
complicated the system is. Our system is not too bad. When done, click Close.

In Platform Designer, select Generate → Show Instantiation Template. . . and
select VHDL as the language. This is how you get the component instantiation and
port map for the Platform Designer system that must be connected at the top level.
Fortunately, this has already been done for you.

The generated system is placed in the /soc_system_passthrough directory
under the Quartus project directory. The system is added to the Quartus project
by means of a .qip file that is located in the project folder under /soc_system_
passthrough/synthesis/soc_system_passthrough.qip. In the Project Nav-
igator in Quartus, select the Files view. You will see a soc_system.qip file listed.
Delete this file and add the soc_system_passthrough.qip file. If you open this file,
you will see thousands of lines of configurations and HDL files.

Note: A common developer’s mistake that is made when working with Platform
Designer systems is the following. You are making changes to the VHDL code that
was imported by the Platform Designer Component Editor. When Platform Designer
generates the soc_system_passthrough system, it COPIES the imported VHDL files
to<project_name>\soc_system_passthrough\synthesis\submodules. The
mistake that is made is making changes to your original VHDL file, not real-
izing that the file getting compiled resides in <project_name>\soc_system_
passthrough\synthesis\submodules. The solutions to this problem are:

Solution 1: Regenerate the Platform Designer soc_system. This can take a bit of
time and is cumbersome when performing code iterations, but the
imported file(s) will get copied.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/dp/cyclone-v/5cseba6.pdf

288 1 Audio FPGA Passthrough

Solution 2: Copy over the file(s) into <project_name>\soc_system_
passthrough\synthesis\submodules after you make edits. This
is generally the easiest and fastest way since you do not need to re-
generate the Platform Designer soc_system_passthrough system.

Solution 3: Create a VHDL wrapper that instantiates an entity whose VHDL
code is placed in a directory that is in Quartus’ search path and make
edits in this location.

1.4.4.1 Platform Designer soc_system Entity and Port Map

Once the system has been generated in Platform Designer, go to Generate →
Show Instantiation Template. . . and select the language to be VHDL. Click
Copy and paste it into an editor. We will reference this shortly. Notice that
there are many signals in this entity. Fortunately, you have been given this
soc_system_passthrough component declaration and port map in the top level VHDL
file DE10Nano_AudioMini_System.vhd so go ahead and open this file up in Quartus.
You can see the file if you select Files in the Quartus Project Navigator. You can
close down Platform Designer at this point.

1.4.4.2 Hooking Up the soc_system_passthrough System in the Top Level

Compare the soc_component_passthrough declaration in the top level file DE10Nano
_AudioMini_System.vhd (lines 231–319) with the instantiation template you copied
in Platform Designer. These should be identical. Now compare the port maps (lines
387–497 in the top level VHDL file). Notice that all these signals have been connected
for you in the top level VHDL file, so do not copy over the port map in the instantiation
template. If you do, there will be a lot of work connecting up signals. For this
passthrough project, you will not need to do anything except compile the project in
Quartus.

However, this will not always be the case. Any time you export (add) or remove a
signal in Platform Designer, you will need to modify both the component declaration
and port map in DE10Nano_AudioMini_System.vhd. Thus the two modifications to
keep in mind for future developments are:

Modification 1: Add or remove any signals in the soc_system component dec-
laration that were exported or removed in Platform Designer.
Just compare the soc_system component in the top level VHDL
file with the instantiation template and make the required few
modifications.

Modification 2: Add or remove any signals in the soc_system port map and
connect them with the appropriate signals in the top level VHDL
file.

Go ahead and compile the project in Quartus.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/DE10Nano_AudioMini_System.vhd

1.5 Linux Device Drivers 289

1.5 Linux Device Drivers

In Fig. 1.1, you will see that there are no direct control lines to the AD1939_hps_
audio_mini component. Rather, the AD1939 audio codec is controlled through a HPS
SPI interface, and the TPA6130A2 headphone amplifier is controlled through a HPS
I2C interface (see Sect. 1.4.3.2 for exporting the HPS SPI and I2C interfaces). Thus
we need Linux device drivers that will use these interfaces to control both devices,
which are on the Audio Mini board (see Chap. 5 for a discussion of the Audio Mini
board). The AD1939 audio codec driver that uses the HPS SPI interface is discussed
in Sect. 1.5.1, and the TPA6130A2 headphone amplifier driver that uses the HPS
I2C interface is discussed in Sect. 1.5.2. These AD1939 register settings are found
in Sect. 5.3.2.1, and the TPA6130A2 register settings are found in Sect. 5.4.1.1.

1.5.1 Linux SPI Device Driver for the AD1939 Audio Codec

The AD1939 audio codec is controlled through a HPS SPI interface where the
register values that can be set are listed in Tables 5.1, 5.2, 5.3. There are several
registers that need to be set that are different from the default power-up values. The
registers that need to be explicitly set are colored blue in the tables.

The Linux device driver code for the AD1939 can be seen at the following GitHub
link (click here for the source file). The steps for compiling the AD1939 Linux device
driver are as follows:

Step 1: Cross Compile the Linux kernel so that the compiled AD1939 kernel
module will have the same version as the Linux kernel. The instructions
for compiling the Linux kernel are found in Sect. 9.2 Cross Compiling
the Linux Kernel (page 129).

Step 2: Download the files ad1939.c, Kbuild, and Makefile from here.
Step 3: Modify the KDIR variable in the Makefile to point to where you in-

stalled/linux-socfpga (see Sect. 9.2.2) and run make (see Sect. 9.3.2).
Step 4: Copy the kernel module ad1939.ko to the DE10-Nano root file system,

and put it in the folder /lib/modules/ in the Ubuntu VM.

1.5.2 Linux I2C Device Driver for the TPA6130A2 Headphone
Amplifier

The TPA6130A2 headphone amplifier is controlled through a HPS I2C interface
where the register values that can be set are listed in Table 5.4. There are several
registers that need to be set that are different from the default power-up values. The
registers that need to be explicitly set are colored blue in the tables.

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/passthrough/linux/ad1939
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/passthrough/linux/ad1939

290 1 Audio FPGA Passthrough

The Linux device driver code for the TPA6130A2 can be seen at the following
GitHub link (click here for the source file). The steps for compiling the TPA6130A2
Linux device driver are as follows:

Step 1: Cross Compile the Linux kernel so that the compiled AD1939 kernel
module will have the same version as the Linux kernel. Note: This should
have already been done for the SPI driver.

Step 2: Download the files tpa613a2.c, Kbuild, and Makefile from here.
Step 3: Modify the KDIR variable in the Makefile to point to where you in-

stalled/linux-socfpga (see Sect. 9.2.2) and run make (see Sect. 9.3.2).
Step 4: Copy the kernel module tpa613a2.ko to the DE10-Nano root file system

and put it in the folder /lib/modules/ in the Ubuntu VM.

1.5.3 Linux Device Tree

The devices that are used to control the Audio Mini board are the SPI and I2C
controllers that are contained in the HPS. There is already a device tree created for
these SoC FPGA devices in the socfpga.dtsi file as shown in Fig. 9.10, and the device
tree hierarchy is described in Sect. 9.4.2 Device Tree Hierarchy (page 145).

The device tree for the passthrough project is shown in Listing 1.11 (click here
for the source file).

1 // SPDX-License-Identifier: GPL-2.0+
2 #include "socfpga_cyclone5_de10_nano.dtsi"
3
4 /{
5 model = "Audio Logic Audio Mini";
6
7 ad1939 {
8 compatible = "dev,al-ad1939";
9 };

10
11 tpa613a2 {
12 compatible = "dev,al-tpa613a2";
13 };
14 };
15
16 &spi0{
17 status = "okay";
18 };

Listing 1.11: The device tree for the passthrough project

The passthrough device tree includes all the previous device tree include files
(line 2) and defines the compatible strings needed so that the Linux kernel will
bind the associated device drivers to these devices. The spi0 device is defined in
socfpga.dtsi file (lines 823–834) in the Linux repository, but on line 833, it says

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/passthrough/linux/tpa613a2
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/passthrough/linux/tpa613a2
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/passthrough/linux/deviceTree/socfpga_cyclone5_de10nano_passthrough.dts

1.5 Linux Device Drivers 291

status = “disabled.” We enable it in the device tree by referencing the spi0 node
using &spi0 and changing its status to status = “okay.” To compile the device tree,
follow the steps in Sect. 9.4.3 Creating a Device Tree for Our DE10-Nano System
(page 146).

1.5.4 Loading the Linux Device Drivers on Boot

The ad1939.ko and tpa613a2.ko kernel modules need to be automatically loaded
when the DE10-Nano first boots up. To do this, we make use of systemd, which is
a service manager in Linux. The steps for setting this service up are:

Step 1: Download the service file audio-mini-drivers.service from here.
Step 2: Copy audio-mini-drivers.service to the DE10-Nano root file system, and

put it in the folder /etc/systemd/system in the Ubuntu VM.
Step 3: Download the shell script load-audio-mini-drivers.sh from here.
Step 4: Copy load-audio-mini-drivers.sh to the DE10-Nano root file system,

and put it in the folder /usr/local/bin in the Ubuntu VM.
Step 5: Enable the systemd service by issuing the command:

$ systemctl enable audio-mini-drivers.service

Listing 1.12: systemctl enable audio-mini-drivers.service

In the audio-mini-drivers.service file, the oneshot service type tells Linux to
execute the service once on boot and then exit. The line, WantedBy=multi-user.target,
tells Linux to start the service when Linux reaches the login screen.

You can read the log of the audio-mini-drivers systemd service of issuing the
command:

$ journalctl -u audio-mini-drivers.service

Listing 1.13: journalctl -u audio-mini-drivers.service

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/passthrough/linux/systemd
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/passthrough/linux/systemd

Example 2
Feedforward Comb Filter System

2.1 Overview

Fig. 2.1: The Feedforward Comb Filter System. Stereo audio signals are run through
the comb filter processor where the left and right channels have the filter applied to
them. This can simulate an echo with an appropriate value of the delay M

The feedforward comb filter [1] can simulate an echo and is one of the basic
building blocks used in digital audio effects. It is a special case of the Finite Impulse
Response (FIR) filter, which has the general form:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_14

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_14&domain=pdf
https://www.dsprelated.com/freebooks/pasp/Comb_Filters.html
https://doi.org/10.1007/978-3-031-15416-4_14

294 2 Feedforward Comb Filter System

y[n] =
M∑

k=0
bk x[n − k] (2.1)

The feedforward comb filter has only two nonzero bk coefficients:

bk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 k = 0
0 1 ≤ k ≤ M − 1
bM k = M

(2.2)

allowing it to be written as

y[n] = b0x[n] + bM x[n − M] (2.3)

This is the feedforward comb filter that is shown in Fig. 2.1. The delay of the echo
is determined by M and the loudness of the echo is determined by bM . The delay
M is in samples, so if you want an echo with a delay of tdelay seconds when using an
audio signal that has been sampled at Fs Hz, you would need a delay M of

M = Fs × tdelay (2.4)

Thus if you wanted to create an echo that had a delay of 100 milliseconds
and the signal was sampled at Fs = 48 kHz, the value of M needed would be
M = 48000 × 0.1 = 4800.

2.1.1 Feedback Comb Filter

Although the feedback comb filter is not implemented in this example (it will be
a lab assignment), it is a special case of the Infinite Impulse Response (IIR) filter,
which has the general form:

y[n] = 1
a0

(
M∑

k=0
bk x[n − k] −

N∑

i=1
aiy[n − i]

)
(2.5)

The feedback comb filter has only one nonzero bk coefficient and only one nonzero
ai coefficient:

2.2 Simulink Model 295

bk =

{
b0 k = 0
0 otherwise

(2.6)

ai =

{
aN i = N

0 otherwise
(2.7)

allowing it to be written as

y[n] = b0x[n] − aN y[n − N] (2.8)

This feedback comb filter can simulate a series of echoes that decay over time.
Care must be taken with the aN coefficient that controls the echo decay rate since it
must be less than 1 (|aN | < 1) for the filter to be stable.

2.1.2 Comb Filter Uses

By time varying parameters of the comb filters, they can be used to create the
following audio effects [1]:

• Reverberation
• Flanging
• Chorus
• Phasing

2.2 Simulink Model

The Simulink model of the comb filter is comprised of multiple parts and files. The
common view that most people have when thinking about the Simulink model is
shown in Fig. 2.8, which is a correct view. However, this view is the end state of the
model. How did we get there? Having just this end view in mind can lead to some
fairly disorganized models if targeted directly without a development framework in
place, which makes it hard to reuse model code when developing new models. In this
chapter we present a model organization and development methodology that keeps
the model organized, allows for easy modifications, and can be used as a framework
for new models. The guiding principles that helped create this framework are listed
below:

Principle 1: A model should be hierarchical where each level is easy to view and
understand.

Principle 2: Simulink blocks should be HDL compatible. Not all Simulink blocks
can be converted to VHDL, so only use blocks that can be converted
(see Sect. 2.4).

296 2 Feedforward Comb Filter System

Principle 3: Parameters in Simulink blocks should not be hard coded. Rather,
variables should be defined in an initialization file and these variable
names used as entries for parameters in Simulink blocks. The reason
for this is for ease of model modification, which happens all the
time during model development. If you want to make a change to
a parameter, you know right where it is in the initialization file. In
contrast, it is practically impossible, and at best, very time consum-
ing, to click through all the blocks in a large hierarchical trying to
find where a certain value was entered.

Principle 4: Model callbacks should have their own associated files. This allows
for easier access and modification using the Matlab editor. These
are common enough that they can be easily reused in new models
(see Sect. 2.2.2). For example, the file initCallback.m is called by the
InitFcn callback (see Fig. 2.2 to see where this callback is accessed
in the model).

Principle 5: Organize code based on functional groupings. The three functional
groupings used in the model are (see Sect. 2.2.3):

Group 1: Model specific parameters. These are created in cre-
ateModelParams.m. This includes the variables that
are used as Simulink block parameter entries.

Group 2: Simulation specific parameters. These are created in
createSimParams.m. This includes the signal data types
that are sent as inputs into the model.

Group 3: HDL conversion specific parameters. These are created
in createHdlParams.m. This includes parameters such
as the targeted FPGA clock speed.

2.2.1 Overview of the Simulink Model Files

Before we get into describing how the model was developed, we first need to describe
the files that will be associated with the Simulink models we develop. We first make
the distinction between files that any model can and will use, which will be placed in
a library folder called simulink-common, and model specific files that will be placed
in the model’s own folder.

2.2.2 Simulink Common Files

First, get the simulink-common folder by going to the book’s code location and clone
the entire repository or click on the green Code button and download the repository
.zip file, so you can just copy the files/folders you want. The folder in the .zip file will

https://github.com/ADSD-SoC-FPGA/Code

2.2 Simulink Model 297

be located at \Code-main\examples\simulink-common (GitHub link). Copy the
simulink-common folder to your computer.

We now need to tell Matlab where this folder is located by adding the folder’s path
to Matlab’s search path. There are multiple ways of doing this, but a convenient way
is to add a command to Matlab’s Startup File that is contained in Matlab’s Startup
Folder. Open (or create) this startup file:

>> edit startup.m

Listing 2.1: Modifying Matlab’s startup file

and add the following command to the file:

>> addpath('\<path_to >\simulink -common ')

Listing 2.2: Adding the Matlab search path to the folder simulink-common

The files in the simulink-common folder are associated with Simulink’s Model
Callbacks. These callback functions are functions that get called at specific times
during the model’s simulation. These callbacks are specified in the Simulink Model
Explorer, which can be found in Simulink at MODELING tab → Model Explorer.
Clicking on the Model Explorer button will pop up a window such as the one below:

Fig. 2.2: Specifying the Simulink model callback functions

In order to see the callbacks, follow these steps that are outlined in Fig. 2.2:

Step 1: Select the top level of the Simulink model.
Step 2: Select the Callback tab.
Step 3: Select the Callback Type.
Step 4: Enter the Callback Function Name and click Apply.

Note: In Model Explorer, if a callback type ends with a *, it means that there is an
entry for this callback.

In our models we use the following callback types (Table 2.1):

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/simulink-common
https://www.mathworks.com/help/matlab/matlab_env/startup-options.html
https://www.mathworks.com/help/matlab/matlab_env/matlab-startup-folder.html
https://www.mathworks.com/help/simulink/ug/model-callbacks.html

298 2 Feedforward Comb Filter System

Table 2.1: Simulink Callback Functions in simulink-common

Callback type Function called Purpose
InitFcn initCallback.m Initialize the model parameters, the simulation pa-

rameters, and the HDL Coder parameters. It calls
the following model specific files:
createModelParams.m
createSimParams
createHdlParams.m

StopFcn stopCallback.m Verify the simulation and play the audio effect. It
calls the following model specific files:
verifySimulation.m
playOutput.m

PostLoadFcn postLoadCallback.m Add the simulink model’s directory to MATLAB’s
search path (for convenience).

CloseFcn closeCallback.m Remove the model’s directory from MATLAB’s
search path (cleanup).

2.2.3 Model Specific Files

To get the Simulink model files for the Feedforward Comb Filter System, go to the
book’s code location and clone the entire repository or click on the green Code
button and download the repository .zip file, so you can just copy the files/folders
you want. The folder in the .zip file will be located at \Code-main\examples\
combFilter\simulink (GitHub link). Copy the folder \combFilter\simulink
to your computer.

The model has the following files contained in \simulink:

File 1: combFilterFeedforward.slx: This is the HDL compatible Simulink
model file.

File 2: circularBufferDPRAM.slx: This is a Simulink Subsystem that imple-
ments the circular buffer, which is HDL compatible.

File 3: createModelParams.m: This file creates the model parameters that are
stored in the data structure modelParams. These are the variable names
that are used in the Simulink blocks, which allows parameter changes to
be made without having to search through all the blocks in the model
hierarchy. It is good programming practice to have a single place to
change parameter values rather than searching everywhere for hard coded
values.

File 4: createSimParams.m: This file creates the simulation specific parame-
ters that are stored in the data structure simParams. These are parameters
such as how long the simulation will run and it defines the data types of
the signals that are fed as input into the model.

File 5: createHdlParams.m: This file creates the HDL Coder parameters that
are stored in the data structure hdlParams. This sets parameters such as
the targeted FPGA clock speed.

File 6: playOutput.m: This file plays the created sound effect.

https://github.com/ADSD-SoC-FPGA/Code
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/combFilter/simulink
https://www.mathworks.com/help/simulink/ug/creating-subsystems.html

2.3 Creating the Simulink Model 299

File 7: verifySimulation.m: This file verifies that the simulation output is cor-
rect.

2.3 Creating the Simulink Model

When developing Simulink models that will be implemented in the FPGA fabric, a
different mental model of the computation needs to be formed as compared to the
mental model that is typically formed when using serial programming languages.
When programming in a serial language, you are just concerned with the step-by-step
logic that needs to be implemented. Programming gets harder when you need to deal
with parallel programming and harder still when you need to think about how it is
being implemented in hardware. This is true even when programming for desktop
computers since programming for optimal performance requires one to be aware of
cache effects and how one deals with chunks of data that fit in cache lines.

Fortunately, parallel data flows for DSP applications can be modeled easily in
Simulink. However, when developing for FPGAs, we need to keep in mind how
computation and memory will be implemented in the FPGA fabric. If you treat
FPGA development like an abstracted computer system, which is typically done
when targeting CPUs, you are likely to implement a model that cannot be placed in
the FPGA fabric.

We will now go through the process of implementing the feedforward comb filter
where we restate Eq. 2.3 here:

y[n] = b0x[n] + bM x[n − M]

The addition and multiplications are straightforward, since adders can be con-
structed out of the logic elements (LEs) and multipliers exist has hardened resources
in the FPGA fabric. However, where are we going to store the audio samples so that
we can get a specific delayed sample? We are not dealing with a CPU with plenty of
DRAM. Furthermore, how are we going to do this in Simulink?

To get to the solution, the first concept to understand is that of a circular buffer,
which is shown in Fig. 2.3. The write pointer (i.e., write address) is where the current
sample will be written, and after the write, the write address will get updated to the
next memory location. When the write address falls beyond the buffer location in
memory, it will be reset to the beginning of the buffer, so conceptually it constantly
wraps around in a circular fashion.

The reason for using a circular buffer, which is true for applications using both
FPGAs and CPUs, is that once a sample has been stored, it would be terribly
inefficient to move a bunch of samples every time a new sample showed up. Rather,
the sample is written once and never moved. It will, however, be overwritten at some
point. When it gets overwritten is determined by the size of the circular buffer, which

300 2 Feedforward Comb Filter System

determines the maximum sample delay that can be achieved before the oldest sample
gets overwritten with a new sample.

Fig. 2.3: The circular buffer (also called a ring buffer) eliminates having to move
samples once they are written

Although the FPGA fabric logic elements (LEs) contain memory in their Look-Up
Tables (LUTs) and flip-flops where the flip-flops store the outputs of the LUTs, a
memory type that can store significantly more data is the Block RAM (BRAM). The
Cyclone V FPGA on the DE10-Nano board (5CSEA6) has 557 of these BRAMs,
which are M10K memory blocks (10.24 Kb) in the fabric. If all this memory
(5.57 Mb) is used to store stereo samples (2 × 24-bit words @ 48 kHz), we could
store 116,041 samples for each left and right channel. This means that we could
create an echo with a maximum delay of 2.4 s on each channel. Of course if we did
this, we would not have BRAMs for anything else.

The BRAMs in the FPGA fabric are dual port memories as shown at the top
of Fig. 2.4 where the two ports are completely independent. This allows data to be
written using clock A and then accessed with a different clock B that is asynchronous
to clock A. Using BRAMs to transfer data is a technique for moving data between
two independent clock domains that avoids metastability issues.

BRAMs can be configured to work together, which allows memories to be created
with arbitrary data word sizes (width) and where the number of data words (depth)
needs to be a power of 2, in order to reflect the memory locations accessed by the
address bus.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_m10k.htm

2.3 Creating the Simulink Model 301

Fig. 2.4: Dual port memory available in the FPGA fabric

The general form of dual port memory can be modeled in Simulink by using the
Dual Rate Dual Port RAM block found in the HDL Coder library. This block can be
seen in the lower left of Fig. 2.4. This block has only one configuration parameter,
the size of the address bus, and this determines the size of the memory. The clock
is inferred from the sample rate of the signal going into the memory, so it is not
explicitly set, and the word size of the memory is inherited from the width of the
input signal.

For our purposes where we need to delay audio samples, we do not need the full
complexity of the dual port memory. Rather, we have a single clock for both ports, we
only want to write to port A, and we only want to read from port B. For this, Simulink

302 2 Feedforward Comb Filter System

has the Simple Dual Port RAM block that is found in the HDL Coder library, which
can be seen in the lower right of Fig. 2.4. This simple dual port memory block is
what we use for the circular buffer as shown in Fig. 2.5. Note that the example shows
only the circular buffer for a single channel. To implement delays for stereo audio,
this delay will need to be implemented twice.

Fig. 2.5: The Simulink model of the circular buffer that was created to delay audio
samples. This circular buffer is abstracted as the Delay block in Fig. 2.6

The audio signal is connected directly to the write data_in port (wr_din). Since
we will always be writing to this port every sample period, we hard code the write
enable port (wr_en) to be one.

The address bus signal wr_addr determines the size of the memory (Nwords =
2wr_addr_size). Here you need to know what device you are targeting (Cyclone V) and
how much memory the device contains (557 M10K memory blocks). If you choose
a memory size that is too big, the design will not synthesize and the fitter in Quartus
will throw an error saying the design will not fit in the fabric.

In order to generate the write address, we next take advantage of the behavior
of counters running in hardware. When the counter overflows because the carry bit
cannot be stored, the counter gets reset back to zero. This is exactly the behavior
that what we want for the circular buffer. We get this wrapping operation for free as
compared to circular buffers written for CPUs where they have to always check to
see if the DRAM write pointer has gone past the buffer in order to reset it back to the
beginning of the buffer. The counter used in Fig. 2.5 is the Counter Free-Running
block found in the HDL Coder library. The number of bits in the counter needs to
match the address bus size (wr_addr) that it is connected to.

2.3 Creating the Simulink Model 303

The delayM value is simply subtracted from the counter value to generate the read
address (rd_addr) that is used to read out the delayed audio sample that has been
delayed by delayM samples. When you run a simulation, you will get a warning that
overflow has occurred in the subtraction block. This is OK since we want the same
type of wrapping overflow that is occurring in the counter block (just in the opposite
direction).

Note: Since both the constant one block and the counter block are sources, both
the data type and sample period need to be explicitly set using variables found in
the modelParams data structure. This is because Simulink cannot infer what these
values should be. These values are set using modelParams variables defined in the
initialization script createModelParams.m in order to allow easy modifications.

Fig. 2.6: The comb filter Simulink model

The comb filter Simulink model is shown in Fig. 2.6 where the circular buffer
has been abstracted as the block named Delay. Abstraction in Simulink is simply
done by selecting the blocks and signal paths that you want grouped together in a
new block, then right clicking on the selection, and selecting Create Subsystem from
Selection (Ctrl+G).

The default behavior for the product blocks in Simulink is to propagate a full
precision data type, which is the sum of the bit widths of the signals. This is done so
that there will not be any loss of precision. This can lead to unnecessary growth in the
size of the signal widths. To keep this from happening, a common practice in audio
DSP is to represent the audio signals and coefficients as fractional data types. Then
when signals and coefficients are multiplied together, the lowest significant bits can
simply be discarded because you cannot hear them anyway. This is why the output
of the product blocks in Fig. 2.6 has been reset to the (W=24, F=23) data types using
variables found in the data structure modelParams. W stands for the signal width
in bits, and F stands for how many fractional bits are in the word. The adder has
similarly been reset to (W=24, F=23). However, one additional option for the adder
has been set in the Signal Attributes tab. The option Saturate on integer overflow has
been selected. This is because there is the slight possibility of overflow if both signals
are at their maximum amplitude, which will cause the resulting signal value to turn
negative. This will be heard as a “pop” in the audio. The saturate option will clip the

304 2 Feedforward Comb Filter System

signal at its maximum value, which although can introduce a harmonic distortion is
much more preferable than having noisy “pops” introduced into the audio.

The feedforward comb filter in Fig. 2.6 has been abstracted into the block named
combFilterFeedforward in Fig. 2.7. The wet/dry mixer block takes the wetDryMix
control value and proportionally mixes a dry signal (unprocessed/raw signal) with
the wet signal (processed signal). The mixing computes the following:

audioout = audiodry × (1 − wetDryMix) + audiowet × wetDryMix (2.9)

where 0 ≤ wetDryMix ≤ 1. Thus

wetDryMix = 0 =⇒ audioout = audiodry
wetDryMix = 1 =⇒ audioout = audiowet
wetDryMix = 0.5 =⇒ audioout = 0.5 audiodry + 0.5 audiowet

Fig. 2.7: The abstracted comb filter followed by wet/dry mixing

The comb filter is finally abstracted into the block named combFilterSystem as
shown in Fig. 2.8. This is the block that we will convert to VHDL in Sect. 2.4.
The blocks feeding the inputs to combFilterSystem get their values from the Matlab
workspace. Since they are source blocks, they have to have both their data types and
sample period defined, which will then be inferred through the system blocks. Since
this is a single rate system, all the blocks are set with the same sample period, which
is the sample rate of the audio signal (Fs = 48 kHz).

2.4 VHDL Code Generation Using Simulink’s HDL Coder 305

Fig. 2.8: The system block that implements the comb filter

2.4 VHDL Code Generation Using Simulink’s HDL Coder

Now that we have built up our Simulink model that implements the feedforward
comb filter as shown in Fig. 2.8, we now turn our attention to using Simulink’s
HDL Coder to convert this model to VHDL. This will provide us with the VHDL
code needed for the feedforward comb filter block shown in Fig. 2.1. Note that this
generated VHDL code is not the complete comb filter processor since we still need
to interface it with the ARM CPUs in order to control the filter parameters from
Linux user space. This interfacing with the HPS is covered in Sect. 2.5.

In order to generate VHDL code, everything that is to be converted to VHDL
needs to be contained within a single block. Thus the block that we will convert is
the block named combFilterSystem in Fig. 2.8. The blocks that provide the inputs
and take the output signal will not be converted. Thus we do not care if these blocks
are HDL compatible or not. This is analogous to creating a VHDL testbench where
we do not care if the VHDL testbench code is synthesizable or not and we just care
that the VHDL contained in the component being tested is synthesizable.

The first thing to be aware of when you are done creating a Simulink model and it
performs simulations correctly is that the block you aim to convert to VHDL is most
likely not fully HDL compatible. Hopefully, the block to be converted was developed
using only the blocks that are HDL Coder compatible. The HDL compatible Simulink
blocks can be seen in the Simulink Library by typing the Matlab command:

306 2 Feedforward Comb Filter System

>> hdllib

Listing 2.3: Matlab command that displays only the HDL compatible blocks.
Note: It does not eliminate all the incompatible blocks

If there are blocks in your Simulink Model that are not contained in the hdllib list,
it is quite likely that the block will cause the HDL Coder to throw an error at you. Even
with this set of filtered blocks, there can be some blocks that if selected with certain
options will end up being HDL Coder incompatible. For example, the Math Function
block found in the Simulink library under /HDLCoder/MathOperations has many
functions that will not work with fixed-point data types, even for simulations, and
even the ones that do simulate have settings that make them problematic for the HDL
Coder (e.g., Math Function: reciprocal with Floor Integer rounding mode).

To check that the top level block being converted contains only HDL compatible
blocks, the following steps can be taken:

Step 1: Make sure that you can first Run a simulation without any errors. Run a
simulation and make sure that any paths that need to be added are added
and you are in the correct directory. You probably want to reduce the
simulation time by setting the parameter simParams.stopTime contained
in the file createSimParams.m to a short time value. This is because the
HDL Coder will run the simulation multiple times while it checks com-
patibility. Thus during development where multiple coding iterations are
being done to get everything correct, it will save considerable time by
making the simulation short since at this point we are more concerned
with getting the model HDL compatible than with simulation results.
Thus, to speed up simulations during HDL Coder operations, you can
set in createSimParams.m :

• simParams.stopTime = 0.1
• simParams.verifySimulation = false
• simParams.playOutput = false

Step 2: To check that the top level block is HDL compatible, click on the top
level block to select it and type the following Matlab command:

>> checkhdl(gcb)

The Matlab get current block command gcb returns the path of the
currently selected block in Simulink. This is why you need to Click on
the block combFilterSystem before running the command checkhdl(gcb).
This will result in a HDL Code Generation Check Report that will present
Errors, Warnings, and Messages. At a minimum, you will need to correct
any errors before proceeding with VHDL code generation.

2.4 VHDL Code Generation Using Simulink’s HDL Coder 307

2.4.1 Common Model Errors

As an example of some of the common errors that you can get when first creating
a Simulink model targeting the FPGA fabric, the initial version of combFilterFeed-
forward model is provided, which is called combFilterFeedforward_attempt1.slx.
If you run checkhdl on the block combFilterSystem in this model, you will get the
following errors (Fig. 2.9):

Fig. 2.9: hdlcheck errors for model combFilterFeedforward_attempt1

These four errors are caused by just one block. If you click on the first error, it
will take you to the wetDryMixer block where it is complaining about the Double
data type that cannot be converted to HDL. This is the result of a block causing the
same error to propagating through multiple blocks inside this wetDryMixer block.

To see the errors being propagated, make sure that you can see all of the data
types associated with the signal paths. If you cannot see the signal types, turn them
on by going to Simulink → DEBUG Tab → Click on Information Overlays in the
DIAGNOSTICS section → Select Base Data Types in the PORTS section.

Fig. 2.10: HDL error caused by a constant source block not defining the data type
correctly. The HDL Coder cannot convert double precision data types

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/combFilter/simulink/combFilterFeedforward_attempt1.slx

308 2 Feedforward Comb Filter System

These errors can crop up when a Simulink model is first being created. This
is because you are initially just interested in how the model performs and you are
exploring what the model can do and you are using the default double precision data
types. In the case of developing an audio effect, you would primarily be interested
to see if the model creates the sound effect you are after and you do not want to
concern yourself with data types at this point. Once the model performs as expected,
it is then time to think about hardware, which means converting to fixed-point data
types (and hardware architectures).

Most of the fixed-point conversion work is simply done by defining the data type
that goes into the model and Simulink propagates the data types throughout the rest
of the model. However, when you create a source block (e.g., a constant value) as
shown in Fig. 2.10, Simulink does not know what this data type should be, so it just
assumes a double precision data type. It also does not know what the sample rate
should be either. Thus anytime you create a source block, you need to define both
the data type and sample time. This is best done using a variable name so that if the
data type or sample rate needs to be changed, you can do it in the initialization script
createModelParams.m rather than hunting through multiple levels of hierarchy in
your model looking for the one source block to check and modify.

To fix the errors, go to the constant 1 block shown in Fig. 2.10 and double click
on the block to open the Block Parameters window. Then, make the following two
changes:

Fix 1: Enter modelParams.audio.samplePeriod in the Sample Time field.
Fix 2: Click on the Signal Attributes tab, and in the Output data type field, enter

the string: fixdt(0,1,0).

Running checkhdl(gcb) will show that these errors have been fixed.
The additional fixed-point conversion work is to reset the outputs of multipliers

and adders back to (W=24, F=23) and also make sure that the adders have the option
Saturate on integer overflow selected. This is to avoid unnecessary signal width
growth that uses fabric resources unnecessarily and because ultimately the output
audio signal must be set to (W=24, F=23) for it to be sent to the DAC in the audio
codec. The Saturate on integer overflow option for adders is to prevent the overflow
effect of a large audio sample value suddenly turning negative, which will be heard
as a “pop.”

2.4.2 Simulink Setup for HDL Coder

When the HDL Coder is run, errors can arise that have to do with how Simulink
has or has not been set up for the HDL code conversion process. For example, the
Simulink solver needs to be set to Fixed-step and Discrete (no continuous states).
If these parameters have not been set, they will be identified as issues when going
through the HDL Coder process. Fortunately, MathWorks now has a function that
will set the Simulink model to the common default values needed for HDL code

2.4 VHDL Code Generation Using Simulink’s HDL Coder 309

generation. Assuming that only the model that you are converting is currently open,
you can simply enter the command:

>> hdlsetup(gcs)

Listing 2.4: Matlab command that sets the default parameters for HDL code
generation

This command will set the default values for HDL code generation. The parameter
values that are affected can be seen here. The command gcs will get the current name
of the Simulink model needed by hdlsetup, which is why you should have only this
model open. If you have multiple models open, you will need to supply the specific
name of the model to hdlsetup.

2.4.3 HDL Workflow Advisor

Before we can run the HDL Workflow Advisor, we need to tell Simulink what syn-
thesis tool we are using and where it is located. We do this with the hdlsetuptoolpath
command:

>> hdlsetuptoolpath('ToolName ', 'Altera Quartus II', '

�

↪→ToolPath ', 'C:\<path_to_quartus >\quartus\bin64\ �

↪→quartus.exe');

Listing 2.5: Matlab Command: hdlsetuptoolpath()

Note: If you need to set this frequently, add this command to your Matlab startup.m
file.

In the Simulink model, right click on the top level block that is to be converted
(combFilterSystem) and select HDL Code → HDL Workflow Advisor. This will
open the following window (Fig. 2.11):

Fig. 2.11: HDL Workflow Advisor

https://www.mathworks.com/help/hdlcoder/ug/check-for-safe-model-parameters.html

310 2 Feedforward Comb Filter System

On the left side, expand 1. Set Target and select 1.1 Set Target Device and Synthesis
Tool. In the associated parameter window, select the following input parameters:

Target Device on DE10-Nano Board

Setting 1: Set Target workflow as Generic ASIC/FPGA
Setting 2: Set Synthesis tool as Altera QUARTUS II. (This should already be

set.)
Setting 3: Set Family as Cyclone V
Setting 4: Set Device as 5CSEBA6U23I7 (and yes, it is annoying that they

do not provide a filter that responds to text input because of all the
options that are surprisingly not listed in alphabetical order).

Setting 5: Set Project folder as hdl_prj. (This should already be set as default.)

When done, click the Run This Task button. Next, select 1.2 Set Target Frequency
and enter 98.304 MHz and click the Run This Task button.

Target Frequency

Setting 6: Set Target Frequency (MHz) as 98.304

Next, select 2. Prepare Model For HDL Code Generation and click the Run All
button.

Now, expand 3. HDL Code Generation, select Set HDL Options, and click the
HDL Code Generation Settings. . . button. The Simulink Model Settings window
will pop up (you can also get the window by pressing Ctrl+E). Set the language to
be VHDL as shown in Fig. 2.12.

Basic Options

Setting 7: Set Language as VHDL

2.4 VHDL Code Generation Using Simulink’s HDL Coder 311

Fig. 2.12: Setting VHDL as the language for the HDL Coder

In the Simulink Configuration Parameters window, navigate to HDL Code Gener-
ation → Global Settings and click on the Coding style tab under Additional settings.
In the RTL Style section, uncheck Inline VHDL configuration and click the Apply
button. If you leave this checked, Quartus will complain about the included config-
uration statements, which are unnecessary since each entity has only one possible
architecture anyway.

Coding Style

Setting 8: Uncheck Inline VHDL configuration

2.4.3.1 Clocking

We now come to the point where there is a collision of two world views. We have the
hardware world of synchronous logic that marches in lockstep to a clock edge. Clocks
are fundamental to digital design and obey the laws of physics in regard to timing.
Time is a physical quantity. We also have computer scientists who have worked their
entire careers to abstract away the low level details of computer systems. Simulink is
such an abstraction because signal processing can be represented at a high abstraction
level. When we run a Simulink simulation, we do not need to concern ourselves with
the clock speed that the CPU is running at. Sure, faster CPUs will run simulations
faster, but the correctness of the simulation does not depend on the CPU clock speed.
Time is an abstraction in a Simulink simulation.

We now have to make the connection between Simulink’s abstracted time and
the physical time of clocks running in the FPGA fabric. The developers of Simulink

312 2 Feedforward Comb Filter System

try their best to stay in the world of abstracted time, which makes it annoying when
connecting to an FPGA clock. You would think that it would be understood that
since clocks are fundamental to VHDL, that when using the HDL Coder toolbox,
you would be allowed to use physical time. An example of where this is done
correctly in the author’s opinion is in the Intel’s DSP Builder, which is a high-level
(and expensive) synthesis tool that layers on top of Simulink. It allows the FPGA
developer to explicitly specify what the FPGA clock speed will be used in the FPGA
fabric, i.e., the physical time.

Where this approach really breaks down in Simulink is when you start dealing
with folding factors to allow time division multiplexing of hardware resources such
as multipliers and you have different folding factors in the model. It would be much
much simpler if one could just specify the physical clock time period and all the
folding factors would then be set accordingly. However, we are not going to deal with
this complication other than to state that there is a significant impedance mismatch
between the two world views when moving from abstracted time to physical time
when you are trying to pretend that physical time does not exist or is subservient to
abstracted time.

The game that the Simulink developers make you play is the requirement to use
the DSP concept of “oversampling” and you have to know what is the fastest signal
in your Simulink model, especially if there are rate transitions buried in the model.
Below are the instructions on how to play this game.

Step 1: Determine the fastest sample rate FfastestSR that is in the Simulink model.
You can determine this by opening the Simulink Timing Legend by either
going to Simulink → DEBUG tab → Information Overlays in the DI-
AGNOSTICS section → selecting Timing Legend in the SAMPLE TIME
section or simply pressing Ctrl + J. The Timing Legend will appear next
to the Simulink model to show what the colors in the model represent
in terms of sample rates. Press the 1

P button to display frequency and
make note of the frequency of the fastest sample rate in the model.

Step 2: Determine the Oversampling Factor, which is calculated in Eq. 2.10.

OversamplingFactor =
FPGA Clock Frequency

FfastestSR
(2.10)

In the comb filter model, the fastest sampling frequency is 48,000 Hz and the
FPGA clock frequency is 98,304,000 Hz. This means that the oversampling factor
needs to be 2048. The steps to set this in Simulink are as follows:

Setting Oversampling Factor to Set Target Clock Frequency

Step 1: Open the Model Settings window (Ctrl+E).
Step 2: Select Global Settings under HDL Code Generation

as seen in Fig. 2.13.
Step 3: Enter the oversampling factor.

2.4 VHDL Code Generation Using Simulink’s HDL Coder 313

Unfortunately, the oversampling factor field only accepts integers and not a vari-
able name, so we cannot directly compute what the oversampling factor should be
during initialization and set the oversampling factor as a variable entry. However, we
can call the function createHdlParams during initialization after computing what the
oversampling factor should be and set it using the HDL Coder function hdlset_param
as shown in Listing 2.6.

42 hdlset_param(gcs,'Oversampling',hdlParams.

�

↪→clockOversamplingFactor)

Listing 2.6: Setting the clock oversampling factor

Fig. 2.13: Setting the oversampling factor to match the FPGA clock frequency

Clock Settings

Setting 9: Set Oversampling factor as 2048. Note: This is actually set by the
Simulink model function createHdlParams.m

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/combFilter/createHdlParams.m

314 2 Feedforward Comb Filter System

After setting the oversampling factor, an additional setting that is good to include
is to set the option to generate the resource utilization report, which gives a report
on the FPGA fabric resources that are required for the generated VHDL code. With
this report, you can determine if the model will fit in the targeted FPGA. To generate
this report, open the Model Settings window (Ctrl+E) and select Report under HDL
Code Generation and check the box next to Generate resource utilization report.

Reports

Setting 10: Check Generate resource utilization report.

Finally, click the Run This Task button in 3.1 Set HDL Options. We are now ready
to generate VHDL code.

2.4.3.2 Generating VHDL Code

Make sure that Matlab’s current working directory is the Simulink folder for the
model since the HDL folder hdl_prj will be placed under the current working
directory. Then, to generate the model’s VHDL code, select 3.2 Generate RTL Code
and Testbench in the HDL Workflow Advisor. Select the Generate RTL code option
and click the Run This Task button as shown in Fig. 2.14.

Fig. 2.14: Generating the VHDL code from the model

When the VHDL code has been generated, the Code Generation Report pops up
as shown in Fig. 2.15.

2.4 VHDL Code Generation Using Simulink’s HDL Coder 315

Fig. 2.15: The Code Generation Report

On the left you can view the Clock Summary as shown in Fig. 2.16, which gives
the sample period of the audio signal and the oversampling factor. The HDL Coder
developers then make you calculate what this really means, which is

FPGA Clock Frequency =
Explicit Oversampling Request

Model Base Rate
(2.11)

=
2048

2.08333−05 = 98.304 MHz

The HDL Coder developers do give this clock information in the Summary
under the non-default model properties as the TargetFrequency value of 98.304.
They also give this TargetFrequency value in the header of the top level VHDL
file combFilterSystem.vhd, but they confusingly state model base rate: 1.01725e-08,
which equals 98.304 MHz, when they use the same term in the Clock Summary
page of the Code Generation Report where they state model base rate: 2.08333e-05,
which is 48 kHz, the sample rate of the input audio signal. You just need to know
from the context that these same terms mean different things.

316 2 Feedforward Comb Filter System

Fig. 2.16: The Clock Summary in Code Generation Report

The Code Interface Report gives the data types and bit widths of the I/O signals.
The High-Level Resource Report as shown in Fig. 2.17 tells you what resources are
needed in the FPGA fabric. It says that we need one RAM, but we need to scroll
to the bottom of the Detailed Report section to see that the size of the RAM is
216 × 24 = 1.57 Mb, which fits easily in the FPGA fabric since we have 5.57 Mb of
BRAM.

Fig. 2.17: The High-Level Resource Report tells you resources are needed in the
FPGA fabric

2.4.3.3 VHDL Files

If you have accepted the default locations for the generated VHDL files in the
HDL Workflow Advisor, they will be located in the Simulink model folder un-
der\<model_folder>\hdl_prj\hdlsrc\combFilterFeedforward. The folder
combFilterFeedforward is the name of the Simulink model and contained in this
folder is the VHDL file combFilterSystem.vhd, which is the name of the block in the
model that was converted to VHDL. Make a note where the folder combFilterFeed-

2.5 HPS Integration Using Platform Designer 317

forward is located since we will eventually need to copy this folder to our Quartus
project folder and put it in the \ip subfolder.

2.5 HPS Integration Using Platform Designer

We now need to create a Platform Designer component called the combFilterProces-
sor that has the three Avalon interfaces shown in Fig. 2.1. These Avalon interfaces
are listed below (Table 2.2).

Table 2.2: Avalon Interfaces in the Comb Filter Processor

Avalon Interface Purpose
Avalon Streaming Sink Receive stereo audio from the ad1939_subsystem.
Avalon Streaming Source Send stereo audio to the ad1939_subsystem.
Avalon Memory-Mapped Connect registers to the ARM CPUs via the HPS lightweight bus.

The files associated with the comb filter model, which are quite similar in name
and can be confused with each other, are listed in Table 2.3.

Table 2.3: Comb Filter Files

File Purpose Location
combFilterFeedforward.slx Simulink Model of the comb filter audio effect. (click here)
combFilterSystem.vhd Top level VHDL file created by the HDL Coder. It

is also the name of the top level block in the comb-
FilterFeedforward Simulink model that was converted
to VHDL. The HDL Coder placed the generated files
into \hdl_prj\hdlsrc\combFilterFeedforward
under the Simulink project folder.

(click here)

combFilterProcessor.vhd The VHDL file for the Platform Designer component
combFilterProcessor

(click here)

2.5.1 Hardware Integration Steps

The steps for creating the new Platform Designer component combFilterProcessor,
which is the block called Comb Filter Processor in Fig. 2.1, are listed below. These
steps are discussed further in the following sections:

Step 1: Start with a known working system. Our starting point will be the
passthrough project where we simply copy the project into a new folder

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/combFilter/simulink
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/combFilter/hdlCoder
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/combFilter/platformDesigner

318 2 Feedforward Comb Filter System

and we do not rename any files before starting out. Renaming files is
tempting since this is a new project, but this opens the door for errors
that would defeat the process of starting with a known working system.
Renaming is the last step.

Step 2: Create the CombFilterProcessor Platform Designer Component.
This will require:

1: Creating the VHDL code for the CombFilterProcessor.
2: Implementing the three Avalon interfaces listed in the table.
3: Converting the Avalon streaming interface to individual left/right

channels that the HDL Coder expects (we purposely set the target
workflow as Generic ASIC/FPGA).

4: Converting the left/right channels back to the Avalon streaming
interface Table 2.2.

5: Instantiating the combFilterSystem component that the HDL
Coder created from our Simulink model. We will instantiate
the combFilterSystem component twice, once for the left channel
and once for the right channel. Note: The registers will control
the left and right channels in the same way.

Step 3: Importing the combFilterProcessor component into Platform De-
signer. The component will be imported and then added to the system.

Step 4: Testing the combFilterProcessor component using System Console.
We need to verify that our hardware works before we can move on to
creating the software that will use our hardware.

Step 5: Quartus Project Cleanup. Here we rename the files to be consistent
with the project name and put files in their expected directory locations.

2.5.2 Quartus Project Setup

Our starting point will be the Passthrough Quartus project described in Sect. 1.3
Quartus Passthrough Project (page 267). Copy this project into a new folder. If you
have not already run this project on the DE10-Nano board with the Audio Mini
board, do so now before proceeding to make sure everything works.

2.5.3 Creating the Platform Designer Component

The VHDL component combFilterProcessor.vhd is essentially Avalon wrapper code
that implements the three Avalon interfaces described in Table 2.2 and connects
them to the VHDL component combFilterSystem.vhd that was created by the HDL
Coder. The entity of combFilterProcessor is shown in Listing 2.7.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/combFilter/platformDesigner/combFilterProcessor.vhd
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/combFilter/hdlCoder/combFilterSystem.vhd

2.5 HPS Integration Using Platform Designer 319

35 entity combfilterprocessor is
36 port (
37 clk : in std_logic;
38 reset : in std_logic;
39 avalon_st_sink_valid : in std_logic;
40 avalon_st_sink_data : in std_logic_vector(23

�

↪→downto 0);
41 avalon_st_sink_channel : in std_logic_vector(0

�

↪→downto 0);
42 avalon_st_source_valid : out std_logic;
43 avalon_st_source_data : out std_logic_vector(23

�

↪→downto 0);
44 avalon_st_source_channel : out std_logic_vector(0

�

↪→downto 0);
45 avalon_mm_address : in std_logic_vector(1

�

↪→downto 0);
46 avalon_mm_read : in std_logic;
47 avalon_mm_readdata : out std_logic_vector(31

�

↪→downto 0);
48 avalon_mm_write : in std_logic;
49 avalon_mm_writedata : in std_logic_vector(31

�

↪→downto 0)
50);
51 end entity combfilterprocessor;

Listing 2.7: Entity of combFilterProcessor.vhd

Stereo audio coming from the AD1939_subsystem, which is in the data-channel-
valid protocol implemented by the Avalon streaming interface, is converted by
ast2lr.vhd to separate left and right audio channels. This instantiation in comb-
FilterProcessor.vhd is shown in Listing 2.8.

121 u_ast2lr : component ast2lr
122 port map (
123 clk => clk,
124 avalon_sink_data => avalon_st_sink_data ,
125 avalon_sink_channel => avalon_st_sink_channel(0),
126 avalon_sink_valid => avalon_st_sink_valid ,
127 data_left => left_data_sink ,
128 data_right => right_data_sink
129);

Listing 2.8: Instantiation of ast2lr.vhd

Taking the left channel as the example, the left data in signal left_data_sink is sent
to the component combFilterSystem.vhd whose instantiation is shown in Listing 2.9.
The processed audio is now in signal left_data_source.

145 left_combfiltersystem : component combfiltersystem
146 port map (
147 clk => clk,
148 reset => reset,

https://github.com/ADSD-SoC-FPGA/Code/blob/main/lib/vhdl/ast2lr.vhd
https://github.com/ADSD-SoC-FPGA/Code/blob/main/examples/combFilter/hdlCoder/combFilterSystem.vhd

320 2 Feedforward Comb Filter System

149 clk_enable => '1',
150 audioin => left_data_sink ,
151 delaym => delaym,
152 b0 => b0,
153 bm => bm,
154 wetdrymix => wetdrymix ,
155 ce_out => open,
156 audioout => left_data_source
157);

Listing 2.9: Instantiation of combFilterSystem.vhd

The individual left and right channels are then converted back into the Avalon
streaming interface with the component lr2ast.vhd whose instantiation is shown in
Listing 2.10. The Avalon streaming audio is then sent to the audio codec.

132 u_lr2ast : component lr2ast
133 port map (
134 clk => clk,
135 avalon_sink_channel => avalon_st_sink_channel(0),
136 avalon_sink_valid => avalon_st_sink_valid ,
137 data_left => left_data_source ,
138 data_right => right_data_source ,
139 avalon_source_data => avalon_st_source_data ,
140 avalon_source_channel => avalon_st_source_channel(0),
141 avalon_source_valid => avalon_st_source_valid
142);

Listing 2.10: Instantiation of lr2ast.vhd

The control signals are defined in Listing 2.11 where the default values are given
(0.5 s delay, setDryMix = 1) so that the echo is very apparent on power-up. This size
and value of each std_logic_vector have to be consistent with the data type defined
in the Simulink model.

109 -- delayM - uint16 - default value = "0001001011000000" =

�

↪→24000 (0.5 sec)
110 signal delaym : std_logic_vector(15 downto 0) := "

�

↪→0101110111000000";
111 -- b0 - sfix16_En16 - default value = "0111111111111111" =

�

↪→ ~0.5
112 signal b0 : std_logic_vector(15 downto 0) := "

�

↪→0111111111111111";
113 -- bm - sfix16_En16 - default value = "0111111111111111" =

�

↪→ ~0.5
114 signal bm : std_logic_vector(15 downto 0) := "

�

↪→0111111111111111";
115 -- wetDryMix - ufix16_En16 - default value =

�

↪→"1111111111111111" = �

↪→~1
116 signal wetdrymix : std_logic_vector(15 downto 0) := "

�

↪→1111111111111111";

Listing 2.11: Control signals in combFilterProcessor.vhd

https://github.com/ADSD-SoC-FPGA/Code/blob/main/lib/vhdl/lr2ast.vhd

2.5 HPS Integration Using Platform Designer 321

The Avalon memory-mapped interface for writing to the registers is shown in
Listing 2.12. The data in bus signal avalon_mm_write is converted to the size of the
register constrained by the data type sign consideration.

204 bus_write : process (clk, reset) is
205 begin
206
207 if reset = '1' then
208 delaym <= "0101110111000000"; -- 24000
209 b0 <= "0111111111111111"; -- ~0.5
210 bm <= "0111111111111111"; -- ~0.5
211 wetdrymix <= "1111111111111111"; -- ~1
212 elsif rising_edge(clk) and avalon_mm_write = '1' then
213
214 case avalon_mm_address is
215
216 when "00" =>
217 delaym <= std_logic_vector(resize(unsigned(

�

↪→avalon_mm_writedata), 16));
218
219 when "01" =>
220 b0 <= std_logic_vector(resize(signed(

�

↪→avalon_mm_writedata), 16));
221
222 when "10" =>
223 bm <= std_logic_vector(resize(signed(

�

↪→avalon_mm_writedata), 16));
224
225 when "11" =>
226 wetdrymix <= std_logic_vector(resize(unsigned(

�

↪→avalon_mm_writedata), 16));
227
228 when others =>
229 null;
230
231 end case;
232
233 end if;
234
235 end process bus_write;

Listing 2.12: Writing to control registers in combFilterProcessor.vhd

The Avalon memory-mapped interface for reading from the registers is shown in
Listing 2.13. The data in the control registers are converted to the size of the bus
signal avalon_mm_readdata that is 32-bits wide, and the sign of the data type is
given so that the appropriate sign extension is made when it is resized to the larger
signal.

322 2 Feedforward Comb Filter System

175 bus_read : process (clk) is
176 begin
177
178 if rising_edge(clk) and avalon_mm_read = '1' then
179
180 case avalon_mm_address is
181
182 when "00" =>
183 avalon_mm_readdata <= std_logic_vector(resize(

�

↪→unsigned(delaym), 32));
184
185 when "01" =>
186 avalon_mm_readdata <= std_logic_vector(resize(

�

↪→signed(b0), 32));
187
188 when "10" =>
189 avalon_mm_readdata <= std_logic_vector(resize(

�

↪→signed(bm), 32));
190
191 when "11" =>
192 avalon_mm_readdata <= std_logic_vector(resize(

�

↪→unsigned(wetdrymix), 32));
193
194 when others =>
195 avalon_mm_readdata <= (others => '0');
196
197 end case;
198
199 end if;
200
201 end process bus_read;

Listing 2.13: Reading from the control registers in combFilterProcessor.vhd

2.5.4 Importing combFilterProcessor into Platform Designer

The process of importing the combFilterProcessor.vhd into Platform Designer to
create the combFilterProcessor component is the same process as described in
Sect. 1.4.1 Creating the AD1939 Platform Designer Component (page 269). The
notable differences are the name of the component and associated VHDL files, the
addition of the Avalon memory-mapped interface, and no exported signals.

The process of adding the combFilterProcessor Platform Designer component to
the system is similar to the process described in Sect. 1.4.3 Creating the Platform
Designer Passthrough System (page 284). The resulting system that shows the inter-
face connections is shown in Fig. 2.18. The jtag_master component has been added
in order to test the control registers.

2.5 HPS Integration Using Platform Designer 323

Fig. 2.18: The Platform Designer system with the combFilterProcessor component

2.5.5 Testing the combFilterProcessor Using System Console

The final hardware test is to exercise the system by placing values into the control
registers using System Console and testing that the hardware system is working
correctly. If you move on without verifying your hardware and your system does not
work when you are developing software, you will waste enormous amounts of time
chasing software bugs when the problem is your hardware.

Make sure that the jtag_master component has been added as shown in Fig. 2.18
and then following the testing procedure found in Sect. 6.3 System Console (page
69).

2.5.6 Quartus Project Cleanup

Now that we know that the system works, we can change file and variable names to
be consistent with the project name. If the system breaks when doing this, we know
that it is just a naming issue and not something more serious.

324 2 Feedforward Comb Filter System

2.6 Linux Device Driver

Implementing the Linux device driver for the four memory-mapped control registers
shown in Fig. 2.1 is done as part of Lab 13.

References

1. J.O. Smith, Physical Audio Signal Processing for virtual musical instruments
and digital audio effects, in Center for Computer Research in Music and
Acoustics (CCRMA) (Stanford University, Stanford, 2010). Online book at
http://ccrma.stanford.edu/jos/pasp/

http://ccrma.stanford.edu/jos/pasp/

Example 3
FFT Analysis Synthesis System

3.1 Overview

Fig. 3.1: The FFT Analysis Synthesis System. Audio signals are converted to the
frequency domain by the FFT where the spectrum is modified and then converted
back to the time domain by the inverse FFT (iFFT)

Converting audio signals to the frequency domain allows the spectrum to be
easily modified. This is because frequency amplitudes and phases can be changed by
multiplication with complex values. The FFT transforms the convolution operation
in the time domain (e.g., FIR filtering) to multiplication in the frequency domain. An
example of this signal processing is shown in Fig. 3.2 where a speech signal segment
is converted to the frequency domain by the FFT, the high frequencies boosted like

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_15

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_15

326 3 FFT Analysis Synthesis System

what a hearing aid would do, and then converted back to the time domain by way of
the inverse FFT. The system that can do this is shown in Fig. 3.1.

Fig. 3.2: Overview of the signal processing performed by the FFT Analysis Synthesis
system

Figure 3.2 shows this processing for one speech segment, but how can we do this
in a continuous manner if we can only operate on a single segment? The solution
is illustrated in Fig. 3.3. The original signal is shown at the top left of the figure
and Hanning windows are applied in succession (the curves labeled W1, W2, W3,
. . ., W5). The Hanning windows are the same length as the FFT (Nfft) and we shift
the Hanning windows by a quarter of the FFT length (Nfft/4). For example, W2 is
identical to W1 except that it has been shifted in time by Nfft/4 samples.

The row in the figure that starts with W1 shows the frequency domain processing
that was illustrated in Fig. 3.2, except that it has been unfolded to be on a single
row. Each row starting with W1, W2, W3, etc. keeps its position in time and shows
the result of multiplying the Hanning window with the original signal. Once the
FFT and inverse FFT operations are done for each of the windowed segments, the
processed signal appears after the delay associated with performing the FFTs. These
time domain signals are kept relative to each other in terms of the Hanning window
shifts (Nfft/4 sample delays), which means that they overlap with each other in time.
The overlapped signals are simply added together resulting in the processed signal

3.1 Overview 327

shown at the bottom of Fig. 3.3. This combination of output segments is known as
Overlap and Add.

Fig. 3.3: Continuous FFT processing using the Overlap and Add method. In this
example high frequencies have been given a boost similar to what a hearing aid
would do, which causes the processed signal to look a bit noisier than the original
signal

3.1.1 Frequency Domain Processing

Once the FFT has transformed the audio signal into the frequency domain, we can
perform any frequency domain operation on the signal that we want. To illustrate this
frequency domain processing, which also has distinct audio differences, we created
four different filtering operations. Three of these simple filters are shown in Fig. 3.4
(low pass, bandpass, and high pass). The fourth is the all pass in which the filter
mask has all ones. If we select the low pass filter option, then the low frequencies
up to 4 kHz are unaffected (multiplied by a gain of one) while the frequencies above
4 kHz are all set to zero. The resulting spectrum is then sent to the inverse FFT to be
converted back to the time domain. It should be noted that we only show the positive
frequencies in Fig. 3.4. However, the mask, when applied to the output of the FFT,
needs to have the same number of values as the length of the FFT since the mask
needs to be applied to the conjugate (negative) frequencies as well. See Sect. 10.4.3
FFT (page 176) for a discussion on positive and negative frequency representation
in the FFT and how frequencies are related to Matlab FFT indexing.

328 3 FFT Analysis Synthesis System

Fig. 3.4: Frequency modifications, i.e., filtering operations (low pass, bandpass, and
high pass) that can be selected in the FFT Analysis Synthesis system. The all pass
option is not shown

3.2 Simulink Model Files

The organization of the Simulink FFT Analysis Synthesis model conforms to the or-
ganization described in Sects. 2.2 Simulink Model (page 295)–2.2.3 Model Specific
Files (page 298). This section describes the comb filter example, but the Simulink
FFT Analysis Synthesis model is organized in the same way. Read these sections if
you are unfamiliar with how the Simulink models are organized.

To get the files for the FFT Analysis Synthesis Simulink model, first get the
simulink-common folder if you have not done so already, which is described in
Sect. 2.2.2 Simulink Common Files (page 296). Then, go to the book’s code
location and clone the entire repository or click on the green Code button
and download the repository .zip file, so you can just copy the files/folders
you want. The Simulink model will be located at \Code-main\examples\
fftAnalysisSynthesis\simulink (GitHub link). Copy the folder
\fftAnalysisSynthesis\simulink to your computer. The Simulink model files
in this directory are listed below:

File 1: fftAnalysisSynthesis.slx: This is the HDL compatible Simulink model
file.

File 2: createModelParams.m: This file creates the model parameters that are
stored in the data structure modelParams. These are the variable names
that are used in the Simulink blocks, which allows parameter changes to

https://github.com/ADSD-SoC-FPGA/Code
https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/fftAnalysisSynthesis/simulink

3.3 Creating the Simulink Model 329

be made without having to search through all the blocks in the model hi-
erarchy. It is good programming practice to have a single place to change
parameter values rather than searching everywhere in the Simulink model
for hard coded values.

File 3: createFFTFilters.m: This file, used by createModelParams.m, creates
the filter masks shown in Fig. 3.4.

File 4: createSimParams.m: This file creates the simulation specific parame-
ters that are stored in the data structure simParams. These are parameters
such as how long the simulation will run, which verification to run, and
it defines the data types of the signals that are fed as input into the model.

File 5: createHdlParams.m: This file creates the HDL Coder parameters that
are stored in the data structure hdlParams. This sets parameters such as
the targeted FPGA clock speed.

File 6: playOutput.m: This file plays the created sound effect.
File 7: verifySimulation.m: This file verifies that the simulation output is cor-

rect. The type of verification is associated with the type of input signal.

3.3 Creating the Simulink Model

The FFT Analysis Synthesis Simulink model is a hierarchical model that divides the
processing into three parts as shown in Fig. 3.5. These three parts are (1) the analysis
part that converts the time domain signal into the frequency domain and contains
the FFT engine, (2) the frequency domain processing, and (3) the synthesis part that
converts the signal back to the time domain and contains the inverse FFT engine.

Fig. 3.5: The FFT Analysis Synthesis system is developed as a hierarchical model
with three blocks for each of the subsystems, which are the analysis, frequency
domain processing, and synthesis blocks

330 3 FFT Analysis Synthesis System

3.3.1 Analysis

The heart of the analysis part of the model is the FFT engine as shown in Fig. 3.6.
The FFT engine is a Simulink block found in the HDL coder library that is optimized
for HDL code generation. The inputs to the FFT block are the audio data and valid
signals. The length of the FFT that the block performs is set by the block parameter
FFT length, which we enter as the variable modelParams.fft.size so that we can easily
change the FFT size in the initialization file createModelParams.m.

When the valid signal into the FFT block is asserted, it tells the FFT block to load
data present on the data signal line. As soon as the FFT engine loads FFT length
samples, it starts the FFT computations. When the FFT engine is finished computing
the FFT, it streams the resulting data out while asserting the output valid signal. We
ignore the ready (not busy) signal since by design we will not be sending data to the
FFT engine when it is busy. The fftFrameBuffering block performs all the operations
necessary to get the FFT frames to the FFT block at the correct timings (which is
why we can ignore the ready signal).

Fig. 3.6: The FFT analysis section that contains the FFT engine

In Fig. 3.3, we can see that we need an entire frame of data that is the same length
as the FFT to be performed. This requires that we save the data in a circular buffer,
which was discussed for the comb filter and shown in Fig. 2.3. This required the use
of a dual port memory available in the FPGA fabric as illustrated in Fig. 2.4. The
Simulink HDL Coder block Simple Dual Port RAM was used for the comb filter
since reading out a delayed sample was done at the same rate that data was being
written into the circular buffer. However, we have a different requirement for the dual
port memory when it comes to performing the FFT. Audio samples need to be fed
into the circular buffer at the audio sample rate, but we need to get a frame of data to
the FFT engine very quickly for two reasons. The first reason is that we want to be
careful with FPGA resources, which means that we want to implement only a single
FFT engine. Thus it needs to run fast enough to keep up with the data being supplied
to it. The second reason is that we want to run the FFT engine as fast as possible
in the FPGA fabric to reduce the latency through the FFT and inverse FFT engines.

3.3 Creating the Simulink Model 331

This means that we need to use the Simulink HDL Coder block Dual Rate Dual Port
RAM that can run the two ports at different rates. This dual rate dual port memory is
contained in the fftFrameBuffering block whose content is shown in Fig. 3.7.

Simulink color codes the sample rates of the signals, so the signals going into the
fftFrameBuffering block in Fig. 3.6 are colored green signifying the 48 kHz audio
sample rate. Signals are leaving the block in red signifying the FPGA fabric clock rate,
which is controlled by the model parameter modelParams.system.upsampleFactor.
There is a minimum speed the FFT block needs to run at in order to keep up with the
audio data. Further increasing the speed (upsample factor) will decrease the latency
through the FFT engines. The fast system clock is generated by an on-board FPGA
PLL clock generator and the limitation of how fast the clock can run is ultimately
constrained by timing closure when compiled in Quartus.

Fig. 3.7: The contents of the fftFrameBuffering block that implements the dual rate
dual port memory for the circular buffer and transitions the Simulink processing
to the FPGA fabric system rate. Green signals are running at the audio sample
rate and red signals are running at the fast system rate. Note: Open the model
fftAnalysisSynthesis.slx in Simulink for better viewing (GitHub link)

The tasks that are performed in Fig. 3.7 by the fftFrameBuffering block are the
following:

Task 1: Collect audio data in the circular buffer in order to create the FFT data
frames. Data is collected in the HDL Coder dual rate dual port RAM
block, the size of which is set by modelParams.dpram1.addressSize in
createModelParams.m.

Task 2: Apply a Hanning window to the audio data in the frame as it streams to
the FFT engine. The Hanning coefficients are stored in the hanningROM
block. The choice of window is discussed in Sect. 10.5.4 and the Han-
ning window compared to other windows is shown in Fig. 10.18. The
Hanning window is a good trade-off between main-lobe width and side-

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/fftAnalysisSynthesis/simulink

332 3 FFT Analysis Synthesis System

lobe attenuation (see Fig. 10.17) if you are unsure what window to use
for the FFT processing.

Task 3: Shift the data frame by FFTlength/4 after each frame has been generated,
but first wait until there is enough data in the circular buffer before
generating the FFT frames. This is done by the fftPulseGen block that
creates a signaling pulse at the start of each frame. Note: The FFT
length can be easily changed, but changing the shift amount will require
substantial changes to the Simulink model since it will change the
number of segments that need to be stored for the overlap and add
operation.

Task 4: Generate the addressing required for both dual memory ports and for the
Hanning ROM. This is done by the counterA block and the addrBgen
block.

Task 5: Transition control signals from the slower audio sample rate to the fast
FPGA system rate. This is done by the fastTransition block. Note that
signals going into this block are green (48 kHz rate) and come out red
(fast system rate).

3.3.2 Simulink Logic Analyzer

The application of the Hanning window and the implementation of the frequency
domain filtering are done on the fly as the FFT frames stream by. This means that
getting the timing right for the outputs of the blocks such as the addrBgen block
can involve some debugging since it is easy to create off-by-one errors. When these
errors occur during development, it is very useful to visualize the timing of the
relevant signals using Simulink’s Logic Analyzer. You can open up the Simulink
Logic Analyzer by clicking its button in the SIMULATION panel in Simulink as
shown in Fig. 3.8.

Fig. 3.8: Accessing the Logic Analyzer in Simulink

To add a signal line to the logic analyzer in order to monitor it and compare its
timing to other signals, click on the line you want to visualize so that three dots
appear above the line as in Fig. 3.9 (step 1). Then move the cursor to the three dots
and select Log Selected Signal. Selecting it again will remove the signal from the
logic analyzer.

3.3 Creating the Simulink Model 333

Fig. 3.9: Adding a signal to the Logic Analyzer in Simulink

An example of a logic analyzer session is shown in Fig. 3.10 that includes signals
inside of the addrBgen block and the output of the hanningROM block.

Fig. 3.10: Example Logic Analyzer session

To view waveforms, such as the Hanning window coefficients as shown in the
figure, perform the following steps:

Step 1: Click on the signal name in Simulink’s Logic Analyzer.
Step 2: Click on the WAVE panel.
Step 3: Set the Format setting to Analog. This renders the signal as a waveform.
Step 4: Set the Height setting to 100, which was done for the hanningROM

signal shown in Fig. 3.10, which allows you to see the waveform better.

Another common setting is to view signals as decimal values (such as counters)
rather than hexadecimal values. To view in this manner, perform the following steps:

Step 1: Click on the signal name.
Step 2: Click on the WAVE panel.
Step 3: Set the Radix setting to Unsigned Decimal. Other options are Hexadec-

imal, Octal, Binary, and Signed Decimal.

334 3 FFT Analysis Synthesis System

Once the signal views have been set up as desired, the debugging process is to run
a simulation to log all the added signals (you can see the signals being logged into
the Logic Analyzer as the simulation runs) and then zoom in on the control signals
to see when they transition and if they are transitioning at the correct times relative
to other control signals such as the fftStart signal.

Some addition Logic Analyzer settings that are useful and convenient are the
following global settings. Click on the Settings button in the LOGIC ANALYZER tab
and select the following global setting options:

Option 1: Select the Radix that you use most often to make it default.
Option 2: Select Fit to view at Stop.
Option 3: Select Display short wave names.
Option 4: Select Display bus element names.

3.3.3 Frequency Domain Processing

The analysis section converts the audio signal to the frequency domain where we
can modify individual frequencies in the frequencyDomainProcessing block whose
content is shown in Fig. 3.11

Fig. 3.11: The contents of the frequencyDomainProcessing block that can modify
the frequency content of the audio signal. The applyComplexGains block can be
bypassed by asserting the passthrough control signal

3.3 Creating the Simulink Model 335

The passthrough control signal, when asserted, allows the audio signal to bypass
any modification to its spectrum. Otherwise spectral modifications will occur in the
applyComplexGains block, whose content is shown in Fig. 3.12.

Fig. 3.12: The contents of the applyComplexGains block that implements the spectral
filtering. The FFT frame is modified via complex multiplications as it streams through
the block. The data and control signals need to be delayed to compensate for the
latency of the fftFilterCoefficients block

The spectrum of the FFT frame is modified via complex multiplications as the
FFT frame streams through the block. The filter coefficients coming out of the
fftFilterCoefficients block are delayed relative to the data in the FFT frame, so the
FFT frame and control signals need to be delayed to compensate for the latency
of the fftFilterCoefficients block. The contents of the fftFilterCoefficients block are
shown in Fig. 3.13.

Fig. 3.13: The contents of the fftFilterCoefficients block

336 3 FFT Analysis Synthesis System

In the fftFilterCoefficients block, the control signal fftValid, when asserted, starts
a counter in the fftROMindexing block, which provides the indexing into the ROMs
that store the filter coefficients. The ROMs are implemented as Lookup Table blocks
in the HDL Coder library. It is assumed that we are dealing with a real audio signal
that has a symmetric spectrum where the conjugate negative frequencies mirror the
positive frequencies. This allows us to store only half of the coefficients, i.e., the
coefficients for the positive frequencies are stored in the ROMs and we reverse the
indexing in the fftROMindexing block when applying the coefficients for the negative
frequencies and change the sign of the imaginary part of the coefficients when the
conjugate signal is asserted. The control signal filterSelect controls which filter ROM
is selected and applied to the FFT frame. The coefficients for these filters are shown
in Fig. 3.4 (only the real part is shown since the imaginary values are zero).

3.3.4 Synthesis

Once the desired frequency domain operations have been applied to the FFT frame
in the frequency domain, it is time to convert the modified FFT frames back to the
time domain. This is done by the synthesis block of Fig. 3.5, whose content is shown
in Fig. 3.14.

Fig. 3.14: The contents of the synthesis block that converts the signal from the
frequency domain to the time domain by the inverse FFT engine and then assembles
the FFT frames

The FFT frames stream into the inverse FFT block (iFFT) that operates in a similar
manner to the FFT block. This means we can ignore the ready signal as in the FFT
block since data will not be sent into the iFFT block while it is busy performing the
iFFT operation. When the iFFT operation is done, that time domain data streams out
of the data port while the valid signal is asserted. The data type coming out of the

3.3 Creating the Simulink Model 337

iFFT is a complex number data type. However, we are assuming that the following
two assumptions hold in our system:

Assumption 1: The audio input signal coming into the system contains only
real numbers. From Euler’s formula (see Eq. 10.29), we can
represent a real-valued signal as a sum of two complex exponen-
tial signals, i.e., cos (θ) = 1

2 (expjθ + exp−jθ) since the imaginary
terms cancel. This is where the two frequencies come from (one
positive and the other negative).

Assumption 2: When we perform the frequency domain operations, we apply
the same coefficient that we did for the positive frequency to
the negative frequency, except for a conjugation operation, i.e.,
changing the sign of the imaginary term.

These two assumptions imply that the imaginary terms have cancelled with each
other leaving only real numbers. This is why we can ignore the imaginary term of
the complex numbers streaming out of the inverse FFT block as shown in Fig. 3.14.

Now that the FFT frames have been converted back to the time domain and they
are real numbers, we can assemble the frames back into a continuous signal as
illustrated in Fig. 3.3. This is done by the overlapAdd block, whose content is shown
in Fig. 3.15.

Fig. 3.15: The contents of the overlapAdd block that assembles the time domain
FFT frames. Note: Open the model fftAnalysisSynthesis.slx in Simulink for better
viewing (GitHub link)

We first apply a Hanning window again to make sure that the ends of the FFT
frame go to zero if the frequency domain processing has changed this. We want the
ends of the FFT frame to be zero since we will be splicing them together and do
not want any discontinuities. As can be seen in Fig. 3.3, the FFT frames overlap in
time. This means that we need to store these frames while we add them together. We
need a memory that can accept a blast of data from the iFFT block that comes in
very quickly at the FPGA system clock and then let the data out at the slower audio
sample rate. A memory type that can do this is called a FIFO, which stands for First

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/fftAnalysisSynthesis/simulink

338 3 FFT Analysis Synthesis System

In First Out. This memory preserves the order of the samples but allows it to be
loaded and unloaded at different rates and intervals.

As can be seen on the right side of Fig. 3.15, there are four FIFOs whose outputs
get added together. This architecture forms the heart of the overlap and add process.
This is why if you change the frame shift value from Nfft/4, it will change the number
of overlapping segments, which will necessitate a change in the number of FIFOs
needed since we need a FIFO for each overlapping segment. It will also change the
required control signal timings as well. Thus the architecture of this model has been
built specifically for the Nfft/4 frame shifts.

You will notice that the output of the FIFO is color coded green since the data
comes out at the audio sample rate. The Pop control signal controls when the data
comes out of the FIFO, i.e., when the data is “popped” out. This means that the Pop
control signal needs to be green, which is the audio sample rate. We will get to how
we set this output control sample rate in moment. The input to the FIFO is the FFT
data rate that is color coded in red signifying the fast FPGA system rate. The Push
control signal, also in red, controls when data can be “pushed” into the FIFO. This
Push control signal is simply the iFFTValid signal coming from the inverse FFT
engine. Thus the data streams out of the iFFT engine, gets multiplied by a Hanning
window, and then streams right into a FIFO. But which FIFO? The iFFTData line
goes to all the FIFO inputs!

We need to control the FIFO Push signals and we do so by the fifoWriteSelect
block. Every time a pulse on the fftFramePulse comes in, it enables a two-bit
free-running counter whose count value is incremented by one and sent into the
fifoWriteSelect block. This implements round robin scheduling for the FIFOs, i.e.,
the FIFOs are selected sequentially and in a circular manner. The fifoWriteSelect
block illustrates the use of a MATLAB Function Block since we can simply code the
output selection as a Matlab switch statement operating on the fifoCounter signal.
The iFFTValid signal is then routed to one of the FIFOs allowing the FFT frame to
be pushed into this FIFO.

OK, fine. We have pushed all the overlapping FFT frames into the FIFOs. How
do we control when we let the frame data out? This is done by the fifoStateMachine
block, which we implement as a MATLAB Function Block. The analogy regarding
the timing is that we have four buckets each with their own spigots. As soon as the
bucket is filled for the first time, we turn the spigot on, never to turn it off again.
We just refill each bucket just as the last drop (sample) comes out of each bucket.
The fifoStateMachine block powers up in the ValidLow state. As soon as it sees the
ifftValid signal asserted, it transitions to the ValidHigh state and stays in this state
while the ifftValid signal remains asserted. When the ifftValid signal is deasserted, we
know that the FIFO has been filled with data so we open the spigot by transitioning
to the AssertPopSignal state where it remains forever asserting the Pop signal of the
FIFO. The Pop signal is run through a rate transition block where it changes rate to
the audio sample rate, and thus it sets the output rate of the FIFO to the audio sample
rate. Then every fourth iFFT frame refills the FIFO so that by design the FIFO never
becomes empty (or overfills).

3.3 Creating the Simulink Model 339

3.3.5 Verification

Once you have developed a Simulink signal processing model, how do you know it
is correct since “The problem with simulations is that they are doomed to succeed”
[1]. In our case we know that applying the forward FFT followed by the inverse
FFT should result in the same signal. Thus a good signal for a quick sanity check
is a simple cosine waveform, which can be selected in the initialization function
createSimParams.m by setting simParams.signalSelect = 2. This creates a cosine
waveform with a frequency of 3 kHz. The system also needs to be set in passthrough
mode so that no spectral processing occurs. One of the Simulink Logic Analyzer
(see Sect. 3.3.2) debugging sessions is shown in Fig. 3.16 where the output of the
Simulink model did not look at all like the cosine input (top signal), which is the
signal just above the bottom trace in the figure. The bottom signal is the corrected
output once the problem was identified. The debugging process was tracing the
cosine waveform through the system to see where it started looking weird. The
output of the iFFT engine looked fine (the second waveform line in Fig. 3.16) and
the outputs of the FIFOs looked fine (waveform lines 3–6 in the figure). However,
it was the output of the adder that looked strange. It turned out that the fixed-point
word length was not large enough, which was causing overflow to occur where large
values were suddenly turning negative when they should not. The solution was to let
Simulink choose what the output data type should be and then apply a gain before
setting the data type back to the default audio data type.

Fig. 3.16: Using the Simulink Logic Analyzer to debug the system with cosine wave.
During initial development, overflow occurred in the add unit of the overlap and
add section resulting in a non-sinusoidal output (the second line from bottom). The
correct output is the bottom waveform

340 3 FFT Analysis Synthesis System

The next step was to perform a more careful comparison between the input and
output than a quick check-by-eye sanity check that is shown in Fig. 3.16 where the
top input waveform looks reasonably similar to the output waveform shown at the
bottom. In order to make a valid comparison, we first needed to figure out what the
latency is through the system since if we compare identical sinusoids that differ in
phase, we will get significant errors.

A good way of determining what the system latency is to send an impulse through
the system. The impulse is selected by setting simParams.signalSelect = 3 and the
verification for the impulse will measure what the latency is through the system. This
latency value is needed to align (delay) the cosine input (simParams.signalSelect =
2) so that it can be compared to the output of the system, which is shown in Fig. 3.17
(upper plot). The sample errors were measured between the shifted input and the
output for the samples between the two vertical red lines. A histogram of the absolute
value of the sample errors is shown in the lower plot. This verification shows that
the input and output waveforms closely track each other. The appropriate sample
errors will ultimately be application dependent and can be reduced by increasing the
precision of the internal fixed-point signals.

Fig. 3.17: Verifying the FFT system can reconstruct the input 2 kHz cosine signal

The final verification perform was to make sure that the frequency domain pro-
cessing performed as expected. To do this, we measured the frequency response
of the system to see if the filter choice (see Fig. 3.4) performed as expected. The
simulation settings, found in createSimParams.m, to check the bandpass filter were
set as follows:

Setting 1: Select the chirp signal by choosing simParams.signalSelect = 4. This
chirp signal will ramp from 0 to 24 kHz over the duration of the
simulation.

3.3 Creating the Simulink Model 341

Setting 2: simParams.stopTime = 1.0. If the simulation time is too short, the res-
olution of the frequencies in the chirp will result in a poor frequency
response.

Setting 3: passthrough = 0. The passthrough needs to be disabled so that the
FFT frames go through the frequencyDomainProcessing block.

Setting 4: filterSelect = 1. This selects the 4–8 kHz bandpass filter as shown in
Fig. 3.4.

Setting 5: simParams.verifySimulation = true.

This verification resulted in the acceptable frequency response shown in Fig. 3.18
for the system using a 128-point FFT. Higher frequency resolutions can be obtain
by setting the FFT size to greater values (e.g., 512-point FFT), but at the expense of
using more FPGA resources and a longer latency through the system.

Fig. 3.18: Frequency response of the 4–8 kHz bandpass filter applied in the frequency
domain processing block

3.3.6 System Latency

The latency through the system is shown in Fig. 3.19 for a model configured to
operate using 256-point FFTs and running at an FPGA fabric speed of 49.152 MHz
(1024 upsample factor). The circular buffer adds 5.3 milliseconds of latency, while
the FFT engines take only 26.3 microseconds to compute 256-point FFTs. Since the
frequency domain modifications of Fig. 3.4 are done on the fly as the FFT frame

342 3 FFT Analysis Synthesis System

is transmitted from the forward FFT engine to the inverse FFT engine, there is
negligible latency added for the frequency domain operations.

Fig. 3.19: Latency of the FFT Analysis Synthesis system. Most of the latency comes
from waiting for audio samples in the input circular buffer

3.4 VHDL Code Generation Using Simulink’s HDL Coder

The VHDL Code Generation follows the same process as described in the combFilter
Sect. 2.4 VHDL Code Generation Using Simulink’s HDL Coder (page 305). Follow
this section to generate VHDL code for the fftAnalysisSynthesis Simulink model.
Only the notable differences from the combFilter VHDL code generation will be
mentioned here.

Difference 1: The Oversampling factor is 1 rather than 2048. This is because
the modelParams.system.upsampleFactor is 2048 for the rate tran-
sition blocks to make the FFT engines run at 98.304 MHz. Thus
FfastestSR is 98,304,000 Hz, which makes the Oversampling factor
one (see Eq. 2.10).

Difference 2: The VHDL files have been placed in the \simulink\hdl_prj\
hdlsrc\fftAnalysisSynthesis folder by the HDL Coder, and
this folder needs to be copied to the ip folder under the fftAnaly-
sisSynthesis Quartus project folder.

3.5 HPS Integration Using Platform Designer 343

3.5 HPS Integration Using Platform Designer

We now need to create a Platform Designer component called the fftAnalysisSynthe-
sisProcessor as seen in Fig. 3.1 (labeled FFT AS Processor). It requires the same
three Avalon interfaces as the combFilterProcessor, which are listed in Table 2.2.

The files associated with the fftAnalysisSynthesisProcessor are listed in Table 3.1.

Table 3.1: FFT Analysis Synthesis System Files

File Purpose Location
fftAnalysisSynthesis.slx Simulink Model of the FFT Analysis Syn-

thesis system.
(click here)

fftAnalysisSynthesis.vhd Top level VHDL file created by the
HDL Coder. It is also the name of
the top level block in the FT Analy-
sis Synthesis Simulink model that was
converted to VHDL. The HDL Coder
placed the generated files into \hdl_prj\
hdlsrc\fftAnalysisSynthesis under
the Simulink project folder.

(Created in Lab 14)

fftAnalysisSynthesisProcessor.vhd The VHDL file for the Platform De-
signer component fftAnalysisSynthesis-
Processor. This VHDL file instantiates the
fftAnalysisSynthesis.vhd component.

(Created in Lab 14)

3.5.1 Hardware Integration Steps

The steps for creating the new Platform Designer component fftAnalysisSynthesis-
Processor, which is the block labeled FFT AS Processor in Fig. 3.1, are listed below:

Step 1: Start with a known working system. Our starting point will be the
combFilter project that you created. Simply copy the project into a new
folder and do not rename any files before starting out. Renaming files is
tempting since this is a new project, but this opens the door for errors
that would defeat the process of starting with a known working system.
Renaming is the last step. See Sect. 2.5.2 Quartus Project Setup (page
318).

Step 2: Create the fftAnalysisSynthesisProcessor Platform Designer Com-
ponent. Follow the steps and process that was done for the combFilter
project, which is found in Sects. Step 2: Hardware Integration Steps
(page 318) and 2.5.3 Creating the Platform Designer Component (page
318).

Step 3: Importing the fftAnalysisSynthesisProcessor component into Plat-
form Designer. This process is described for the combFilter in Sect. 2.5.4

https://github.com/ADSD-SoC-FPGA/Code/tree/main/examples/fftAnalysisSynthesis/simulink

344 3 FFT Analysis Synthesis System

Importing combFilterProcessor into Platform Designer (page 322). Just
delete the combFilter Platform Designer component and replace it with
the fftAnalysisSynthesisProcessor.

Step 4: Testing the combFilterProcessor component using System Console.
We need to verify that our hardware works before we can move on to cre-
ating the software that will use our hardware. This process is described
for the combFilter in Sect. 2.5.5 Testing the combFilterProcessor Using
System Console (page 323).

Step 5: Quartus Project Cleanup. Here we rename the files to be consistent
with the project name and put files in their expected directory locations.

3.5.2 Testing the fftAnalysisSynthesisProcessor Using System Console

The final hardware test is to exercise the system by placing values into the control
registers using System Console and testing that the hardware system is working
correctly. If you move on without verifying your hardware and your system does not
work when you are developing software, you will waste enormous amounts of time
chasing software bugs when the problem is your hardware.

Make sure that the jtag_master component has been added to Platform Designer
and then following the testing procedure found in Sect. 6.3 System Console (page
69).

3.6 Linux Device Driver

Implementing the Linux device driver for the two memory-mapped control registers
shown in Fig. 3.1 is done as part of Lab 14.

Reference

1. P. Grim et al., How simulations fail. Synthese 190(12), 2367–2390 (2013)

Part IV
Labs

346 IV Labs

Normally, when one thinks of an engineering course that has a laboratory associated
with it, a two-hour lab that occurs once a week comes to mind. And because of the
two-hour time limit, many labs will have a Prelab assignment to be completed before
coming to lab. The labs in this book are different. The expected time for a student
to complete a lab in this book is one week. Even given a week, some students find
that finishing a lab in a week’s time frame can be challenging, depending on the lab,
how well they have learned prerequisite material, and their prior coding experience.
There are no Prelabs in this book. Rather, the labs have reading assignments that
cover relevant material needed for the lab, and since students have a week to finish
the lab, they have ample time to read the material. The weekly two-hour lab time
slots are used as help sessions and are a good time for students to demonstration
their working systems for the lab assignment given the prior week.

Another difference between typical engineering labs and labs in this book is that
the labs in this book build on each other. This means that a student who gets behind
will struggle all the way through because of the lab dependencies. The grading
scheme that I have found that works best for this type of material is full credit for
labs turned in on time and that works correctly. However, giving a zero for a late lab
does not work well for this material because the lab still needs to be done and a zero
ends up being a disincentive. What seems to work reasonably well is to mark late
labs off a significant amount each week (e.g., ∼25% per week).

The philosophy taken in this book is that you do not understand a system until
you actually build it. Thus, the labs take a central focus in this book.

Labs 1-11 can be done using just the DE10-Nano board since it covers SoC FPGA
development using the LEDs on the DE10-Nano board. Labs 12 and onward require
the Audio Mini board to implement audio signal processing.

Lab 1
Setting Up the Ubuntu Virtual Machine

The DE10-Nano board contains a Cyclone V SoC FPGA that has ARM CPUs running
Linux. This means that we will be developing Linux software for these ARM CPUs
and we would like a Linux computer to develop on. Instead of using two computers
(one for Windows 10 and another for Linux), we will create a virtual machine (VM)
in Windows 10 using VirtualBox to run Linux. The Linux distribution that we will
use will be Ubuntu 20.04 LTS . For the lab, it is assumed that you have your own
computer with the capability described in Sect. 1.4.1 Laptop (page 9).

1.1 Items Needed

The items needed for Lab 1 are:

Item 1: A Windows 10 Laptop or PC.

1.2 Lab Steps

The steps for Lab 1 are:

Step 1: Install and setup and the Ubuntu VM by following the instructions
found in Sect. 11.1.2 VirtualBox Ubuntu Virtual Machine Setup (page
197).

Step 2: Compile and run the “Hello World” program as described in subsub-
section 11.1.2.11 Testing the Ubuntu VM by Compiling “Hello World”
(page 211).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_16

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_16

348 1 Setting Up the Ubuntu Virtual Machine

1.3 Demonstration

Print out and get Lab 1 Instructor Verification Sheet signed off (page 349) by
demonstrating to the course TA the following:

Demo 1: Show that you can compile and run the Hello World program in the
Ubuntu VM.

1.4 Deliverables

The Deliverables to be turned in or upload to the Lab 1 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your “Hello World” source code, i.e., hello.c
3: A screen shot from the Ubuntu VM terminal window showing that your

program ran correctly with your full name being printed out

Instructor Verification Sheet
Lab # 1

Setting Up the Ubuntu Virtual Machine
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show that you can compile and run the Hello World program in the Ubuntu VM.

Deliverables. Turn in or upload to your Lab 1 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your “Hello World” source code, i.e., hello.c
3: A screen shot from the Ubuntu VM terminal window showing that your program ran

correctly with your full name being printed out

349

Lab 2
Hardware Hello World

Lab 2 will be a simple warm-up exercise where you will use Quartus Prime Lite
Edition 20.1 to implement the hardware version of “Hello World,” which is turning
on and off LEDs. This will be done by simply connecting four switches on the
DE10-Nano board to four LEDs using the FPGA fabric and using simple VHDL
code. The primary intent of this lab is to make sure that your DE10-Nano board and
the Quartus Prime Lite toolchain work for you. During this lab you will install the
free version of Quartus Prime Lite on your computer/laptop.

2.1 Items Needed

The items needed for Lab 2 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit. Purchase the kit from the ECE stockroom. The kit

can also be purchased from the manufacturer terasic.com or from
digikey.com (part# P0496-ND).

2.2 Lab Steps

The steps for Lab 2 are:

Step 1: Read Sect. 4 Introduction to the DE10-Nano Board (page 33) to famil-
iarize yourself with the DE10-Nano board. Pay particular attention to
the following:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_17

351

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_17&domain=pdf
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=1046
https://www.digikey.com/short/nmqj7p38
https://doi.org/10.1007/978-3-031-15416-4_17

352 2 Hardware Hello World

• Determine the DE10-Nano board revision that you have by read-
ing Sect. 4.1.1 Determining DE10-Nano Board Revision (page 34).

• Become familiar with DE10-Nano resources such as the DE10-
Nano:

– User Manual
– Getting Started Guide

See Sect. 4.1.2 DE10-Nano Information (page 34) on where these
resources can be found.

• Read Sect. 4.1.3 DE10-Nano Cyclone V SoC FPGA (page 34) to
understand the particular SoC FPGA device that is on the DE10-
Nano board.

Step 2: Read pages 24–26 of the DE10-Nano User Manual (i.e., Section 3.6
Peripherals Connected to the FPGA in the User Manual) for information
about the slide switches (SWs) and LEDs that you will be using. See
Step 1 on how to get the DE10-Nano User Manual.

Step 3: Install Quartus Prime Lite. See Sect. 6.1.2 Download and Install Intel’s
Quartus Prime Lite (page 56) for installation instructions.

Step 4: Become familiar with Quartus file types by reading Sect. 6.1.3 Quartus
File Types (page 56).

Step 5: Know what Quartus training resources are available by reading
Sect. 6.1.6 Learning Quartus (page 60).

Step 6: In Windows, create a \lab2 project directory and copy the following
three files to this directory.

• DE10_top_level.vhd (click here for file)
• DE10_nano.qsf (click here for file)
• DE10_nano.sdc (click here for file)

Step 7: Create a Quartus Project. Open Quartus and select New Project Wiz-
ard, which goes through the following selections:

a. Intro (click Next)
b. Directory, Name, Top Level Entity

i. Browse to your \Lab2 project directory and set it as the Working
Directory for the project.

ii. Name of Project: Lab2
iii. Name of Top Level Design Entity: DE10_Top_Level
iv. Click Next

c. Project Type. Select Empty Project and click Next.
d. Add Files. Add the following files to the project:

• DE10_Top_Level.vhd
• DE10_Nano.sdc

and Click Next
e. Family, Device, and Board Settings. Select the device

5CSEBA6U23I7 and click next. This is the Cyclone V SoC with
110K LEs that is on the DE10-Nano board.

https://github.com/ADSD-SoC-FPGA/Code/blob/main/labs/lab2/DE10_top_level.vhd
https://github.com/ADSD-SoC-FPGA/Code/blob/main/labs/lab2/DE10_nano.qsf
https://github.com/ADSD-SoC-FPGA/Code/blob/main/labs/lab2/DE10_nano.sdc

2.2 Lab Steps 353

Hint: To find this device, start typing 5CSEBA6U23I7 in the Name
filter box (right side) or cut and past this device name and to narrow
the device selections to this specific FPGA.
Note: To interpret the device labeling, see Sect. 4.1.3 DE10-Nano
Cyclone V SoC FPGA (page 34).

f. EDA Tool Settings. Skip this by clicking Next.
g. Click Finish.

Step 8: Load Pin Assignments. We need to connect the signal names in the top
level VHDL file with their FPGA pins. This has already been setup in the
Quartus setting file that we need to load. In Quartus select, Assignments
→ Import Assignments → Browse to DE10_Nano.qsf → open → OK.

Step 9: View Files. In the Project Navigator bar, select the pull down menu
found at the top of the left panel and select files. You should now see
your .vhd and .sdc files listed. Double click on them to open them up in
the editor window.

Step 10: Write VHDL Code. In the architecture section of DE10_Top_Level.vhd
(starting around line 88), add VHDL code to connect the four switches
(SW [3:0]) on the DE0-Nano-SoC board to the four LEDs (LED [3:0]).
This can be done with one line of VHDL code. Add another VHDL
statement to drive the rest of the LEDs that you are not using to zero.
As a general rule, you should not leave output pins floating.

Step 11: Compile Your Design. Compile your design by selecting Processing →
Start Compilation. There is also an icon to press on the tool bar or you
can type Ctrl+L. If you get errors, you will need to fix them. You can
ignore warning messages for now.

Step 12: Check Timing. Remember the two things that need to be correct for
a correct design? (1) Your logic (VHDL) needs to be correct. (2) The
timing needs to be correct. Can the bit stream that was just created
actually run at the driven clock speeds? This should be checked after
each compile. However, in this lab since we are just connecting Switches
to LEDs and there is no clock involved, the Timing Analyzer has nothing
to report. Practically, in all other designs, clocks will be used to capture
values to be used the next clock cycle. To check timing, see Sect. 6.1.5
Timing (page 58).

Step 13: Download the bit stream to the FPGA.

a. Make sure that the USB cable is connected to the USB Blaster II
port on the DE10-Nano board (left side below power jack).

b. Open the Programmer found in Quartus under Tools → Program-
mer. If the programmer says “No Hardware,” click the Hardware
Setup button, then in the currently selected hardware box, double
click on DE-Soc [USB-1].

c. Click Auto Detect.
d. Select 5CSEBA6.

354 2 Hardware Hello World

e. Click “Add File” and select the .sof file that was created when the
project compiled as the programming file. The .sof file will be in
the \lab2\output_files directory.

f. If there are three devices that show up on the JTAG chain, there
should only be two: SOCVHPS and 5CSEBA6U23. If there are any
extra blocks on the chain, right click it, select edit, and select delete.
Your configuration should be like that in Figure 3–10 on Page 18
of the User Manual. See Step 1 on how to get the DE10-Nano User
Manual.

g. Click “Start” to program the FPGA.

2.3 Demonstration

Print out and get Lab 2 Instructor Verification Sheet signed off (page 355) by
demonstrating to the course TA the following:

Demo 1: Show that you can turn on and off the four LEDs [3:0] by sliding the
switches.

Note 1: In Lab 2, it is known that the DE10-Nano board can reset randomly for some
reason. This is likely because we are not fully configuring the FPGA since we are not
configuring the HPS (ARM CPU system) and ignoring it at this time. It is possible
there are HPS project settings not in place this is causing the instability. In any case,
your switches should be able to drive the LEDs.
Note 2: What appears to solve the random resets in to remove the microSD card,
which is not needed for the lab.

2.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 2 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your VHDL Code

Instructor Verification Sheet
Lab # 2

Hardware Hello World
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show that you can turn on and off the four LEDs [3:0] by sliding the switches.

Deliverables. Turn in or upload to your Lab 2 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your VHDL Code

355

Lab 3
Developer’s Setup

In Lab 3, you will configure your environment to allow the DE10-Nano board to
boot from the Ubuntu VM that you created in Lab 1. This is called the Developer’s
Setup since it allows development without having to remove and modify the microSD
card for every little modification. Instead, the DE10-Nano board will boot and use
files served from the Ubuntu VM. This requires setting up two servers. The TFTP
server and the NFS server. See Fig. 11.13 in Sect. 11.1.3 Developer’s Boot Mode
Setup (page 212) on how these servers will be used to allow the DE10-Nano board
to boot over a local network.

3.1 Items Needed

The items needed for Lab 3 are:

Item 1: A Laptop or PC
Item 2: A USB Ethernet adapter that allows an Ethernet Cable to be plugged

into it
Item 3: The Ubuntu VM that was setup in Lab 1
Item 4: DE10-Nano Kit
Item 5: A microSD Card that is at least 8 GB. A new one or one you don’t mind

overwriting, but one that is different from the one that shipped with the
DE10-Nano board. We will assume that the size is 16 GB for this lab.

Item 6: A short Ethernet Cable to connect the DE10-Nano board to your USB
Ethernet adapter

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_18

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_18

358 3 Developer’s Setup

3.2 Lab Steps

The steps for Lab 3 are:

Step 1: Understand how the Cyclone V SoC FPGA boots by reading Sect. 3
Introduction to the SoC FPGA Boot Process (page 25).

Step 2: Install PuTTY by following the instructions in Sect. 11.1.1 Setting up
a PuTTY Terminal Window in Windows to Communicate with Linux
on the DE10-Nano Board (page 193).

Step 3: Setup the TFTP and NFS servers by following the instructions found
in Sect. 11.1.3 Developer’s Boot Mode Setup (page 212) from the start
of the section through till the end of Sect. 11.1.3.5 NFS Server Setup in
the Ubuntu VM (page 224).

Step 4: Create a new microSD card image by following the instructions found
in Sect. 11.1.3.6 Reimaging the microSD Card with the Developer’s
Image (page 227)

Step 5: Change DE10-Nano board switch settings by following the instruc-
tions found in Sect. 11.1.3.7 DE10-Nano Board Switch Settings (page
231)

Step 6: Set the appropriate U-boot Environment Variables by following the
instructions found in Sect. 11.1.3.8 Setting U-boot Variables on the
DE10-Nano Board to Boot via NFS/TFTP (page 232)

Step 7: Set Up the Audio Mini Passthrough Example by following the in-
structions found in Sect. 11.1.3.9 Setting Up the Audio Mini Passthrough
Example (page 234).

Step 8: Configure and setup the Linaro GCC tools in Ubuntu VM (for
cross compilation) by following the instructions found in Sect. 11.1.4.1
Configure and Set up the Linaro GCC ARM Tools in Ubuntu VM (page
238)

Step 9: Manually Cross Compile Hello World by following the instructions
found in Sect. 11.1.4.2 Manual Cross Compilation of Hello World (page
239).

Step 10: Cross Compile the Hello World program using a Makefile by follow-
ing the instructions found in Sect. 11.1.4.3 Makefile Cross Compilation
of Hello World (page 241). Take a screen shot and upload it to the D2L
Lab 3 Assignment folder. The third line should say “Makefile Compila-
tion.”

3.3 Demonstration

Print out and get Lab 3 Instructor Verification Sheet signed off (page 360) by
demonstrating to the course TA the following:

Demo 1: Demonstrate that the DE10-Nano board boots from your Ubuntu VM
over Ethernet.

3.4 Deliverables 359

Demo 2: Demonstrate that you can create a new file in the Ubuntu VM in the di-
rectory: /srv/nfs/de10nano/ubuntu-rootfs/root (e.g., use the
Linux command touch <your_name>) and show that this new file
exists on the DE10-Nano board using the Putty Terminal Window.

Demo 3: Run the Hello World program on the DE10-Nano board that was com-
piled in the Ubuntu VM using a Makefile. It should print the following:

Hello ARM CPU World
My name is <first_name> <last_name>
Makefile Compilation

3.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 3 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: A screenshot of the Hello World program output that ran on the ARM CPU

(screenshot of the PuTTY terminal window) and that was compiled using a
Makefile

Instructor Verification Sheet
Lab # 3

Developer’s Setup
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Demonstrate that the DE10-Nano board boots from your Ubuntu VM over Ethernet.
Demo 2: Demonstrate that you can create a new file in the Ubuntu VM in the directory:

/srv/nfs/de10nano/ubuntu-rootfs/root (e.g., use the Linux command touch
<your_name>) and show that this new file exists on the DE10-Nano board using the
Putty Terminal Window.

Demo 3: Run the Hello World program on the DE10-Nano board that was compiled in the
Ubuntu VM using a Makefile. It should print the following:

Hello ARM CPU World
My name is <first_name> <last_name>
Makefile Compilation

Deliverables. Turn in or upload to your Lab 3 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: A screenshot of the Hello World program output that ran on the ARM CPU (screenshot of

the PuTTY terminal window) and that was compiled using a Makefile

360

3.5 Common Problems and Solutions 361

3.5 Common Problems and Solutions

Acknowledgement: Thanks to Trevor Vannoy for his help in troubleshooting student’s
labs.

3.5.1 Problem: Serial Connection to DE10-Nano in PuTTY (Or
Similar) is Not Working

Solution 1: Check that your UART settings are correct:

• Baud rate: 115200
• 8 bits
• 1 stop bit
• No parity

Solution 2: Ensure you are plugged into the UART port, not the USB Blaster
port.

Solution 3: Ensure you are using the correct COM port (using Device Manager
in Windows or using dmesg in Linux).

3.5.2 Problem: DE10-Nano Cannot Connect to the Virtual Machine

Solution 1: Ensure the “cable connected” box is checked in your Virtual Box
settings for the Bridged Adapter

Solution 2: Ensure your Ethernet cable is plugged in
Solution 3: Bring your network interfaces down and then up again
Solution 4: Disable the NAT connection and keep the Bridged connection
Solution 5: Ensure your Bridged Adapter is set to use your Ethernet interface,

not your wireless interface

3.5.3 Problem: Virtual Machine Does Not Boot

Solution 1: If using a USB-to-Ethernet adapter, ensure the adapter is plugged
into your computer. The Virtual Machine will not start if a device it
expects does not exist.

Solution 2: If your USB-to-Ethernet adapter is plugged in, ensure the Virtual
Box network settings are using the correct hardware device. Some
adapters seem to show up as multiple devices in Virtual Box.

362 3 Developer’s Setup

3.5.4 Problem: DE10-Nano Cannot Download Files from TFTP Server

Solution 1: Ensure your Ethernet cable is plugged in and your virtual machine
is running.

Solution 2: Ensure your tftp server is running. Use
systemctl status tftpd-hpa to see if it is running. If it is not
running, use systemctl start tftpd-hpa to start the server.

Solution 3: Maker sure read permissions are set to allow everyone to read.

3.5.5 Problem: No Internet Connection in Virtual Machine

Solution 1: Ensure your bridged adapter is not using the same hardware device
that your Windows machine is using for Internet.

Solution 2: Disable your bridged adapter.

3.5.6 Problem: DE10-Nano Fails to Mount the Rootfs Over NFS,
Resulting in a Kernel Panic

Solution 1: Ensure the NFS server is running in your virtual machine:

• systemctl status nfs-kernel-server
• systemctl start nfs-kernel-server

Solution 2: Ensure that your ubunut-rootfs folder is exported by typing
sudo exportfs -v. This should print out something containing
“/srv/nfs/de10nano/ubuntu-rootfs.” If this does not happen, there is
either a syntax error in /etc/exports or you need to restart the NFS
server with sudo systemctl restart nfs-kernel-server. If restarting the
server does not work, then you probably have a syntax error. Check
the syntax in the lab handout, and make sure you did not include a
comment (#) at the beginning of the line.

Solution 3: Restart the NFS server:systemctl restart nfs-kernel-server.
Sometimes one of the dependencies (found by systemctl list-
dependencies nfs-kernel-server) fails to start. Restarting the NFS
server may correct this. If restarting the NFS server does not correct
the problem, then further debugging of the failed dependent service
is necessary.

3.5 Common Problems and Solutions 363

3.5.7 Problem: You Tried to Copy a File to a Directory, but the
Directory Shows up as a File

Solution 1: You did not create the directory before copying the file, so the copy
command renamed the file to what the directory should have been.
Remove the copied file, create the directory, and then recopy the
original file.

3.5.8 Problem: Copying a File Results in a Permission/Access Denied
Error

Solution 1: You (probably) need to use sudo to copy the file. The exception to
this is if you are trying to copy a file to a folder that you should have
access to, like your home folder. If that is the case, you have a more
serious permissions issue, probably because you used sudo when
you should not have. If that is the case, you need to give yourself
ownership of the directory in question by using chown.

3.5.9 Problem: Running a Makefile or Similar Results in a
Permission/Access Denied Error

Solution 1: You need to give yourself ownership of the offending files/directories
by using chown. You likely used sudo when you should not have,
resulting in root being the owner of the offending files/directories.
If you are trying to run a file that is in a system directory (e.g., pretty
much anything that is not a subdirectory of your home folder), you
should not give yourself ownership; you need to use sudo to run the
file.

3.5.10 Problem: I Get an “altera_load: Failed with Error Code -4”
When Booting Up My Board

Solution 1: Switch SW10 on the DE10-Nano board needs to be set to be consis-
tent with the type of .rbf file being loaded. The lab is using passive
parallel x16, which means all the switches need to be “on,” to make
the MSEL pins all zeros. The DE10-Nano board ships with it set to
FPPx32, which is the wrong SW10 setting for this lab.

Lab 4
LED Patterns

For Lab 4, you will create a custom hardware component called LED_patterns that
will create light patterns using the LEDs on the DE10-Nano board. This component
will run in the FPGA fabric and you will create this component using VHDL. We
will in a later lab connect this component to the ARM CPUs to control the LED
patterns from software. Thus, for now, you can ignore the registers that are shown
in Fig. 12.1. In this lab you will instantiate the component LED_patterns at the top
level in your Quartus project and the register-related signals will be hard coded with
appropriate values in the instantiation port map. Later we will create registers where
these values can be changed from the ARM CPUs.

4.1 Items Needed

The items needed for Lab 4 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: Quartus software that was installed as described in Sect. 6.1.2
Item 4: A short USB Cable with a Mini-B connection to connect the DE10-

Nano board to your computer. You will configure the FPGA fabric via
the JTAG USB connection.

4.2 Lab Steps

The steps for Lab 4 are:

Step 1: Read page 24 of the DE10-Nano Terasic User Manual (i.e. Sec-
tion 3.6.1 User push buttons in the Terasic User Manual) for information
about the push buttons that you will be using. Note: Make sure that you

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_19

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_19

366 4 LED Patterns

understand what happens to the push-button signal when it is pushed
and released. If you do not, your state machine will not work since it
will be held in reset.

Step 2: Write VHDL code for the LED_patterns component described in
Sect. 12.1 LED_Patterns Component (page 246). You will need to
use the entity given in Sect. 12.1.1 LED_Patterns Entity (page 246)
and you will need to implement the functional requirements for the
LED_Patterns component found in Sect. 12.1.2 Functional Require-
ments for LED_Patterns (page 248).

Step 3: You can use the Quartus project you created for the Hardware Hello
World Lab and build on that project.

Step 4: Compile your Quartus project.
Step 5: Download the bitstream (.sof) file using the JTAG programmer to con-

figure the FPGA fabric.

4.3 Demonstration

Print out and get Lab 4 Instructor Verification Sheet signed off (page 367) by
demonstrating to the course TA the following:

Demo 1: Demonstrate the 4 states (i.e., 4 specified patterns) of the LED_control
component on the DE10-Nano board.

Demo 2: Demonstrate your user defined LED pattern.

4.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 4 assignment folder are:

1: The Instructor Verification Sheet signed and turned in.
2: A Lab Report that includes:

1: A description of the hardware architecture you created for the
LED_patterns component

2: A description of your user LED pattern that you implemented, along
with the transition rate that you implemented for this pattern

3: The VHDL code of all your Lab 4 components that you created. Upload these
VHDL files to the Lab 4 assignment folder. Note: Do not upload any of the
Quartus project files, just the source code that you created or modified.

Instructor Verification Sheet
Lab # 4

LED Patterns
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Demonstrate the 4 states (i.e., 4 specified patterns) of the LED_control component
on the DE10-Nano board.

Demo 2: Demonstrate your user defined LED pattern.

Deliverables. Turn in or upload to your Lab 4 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in.
2: A Lab Report that includes:

1: A description of the hardware architecture you created for the LED_patterns com-
ponent

2: A description of your user LED pattern that you implemented, along with the
transition rate that you implemented for this pattern

3: The VHDL code of all your Lab 4 components that you created. Upload these VHDL files
to the Lab 4 assignment folder. Note: Do not upload any of the Quartus project files, just
the source code that you created or modified.

367

368 4 LED Patterns

4.5 Common Problems and Solutions

4.5.1 Problem: Hardware State Machine Works When Reset Is Held
Down

Solution 1: The polarity of your reset is probably inverted. The buttons on the
board are active low. Ensure that you are either checking for an
active low reset or preferably you inverted the active low reset to
make it active high.

4.5.2 Problem: Hardware State Machine Only Displays the Switch
State, Not the Patterns

Solution 1: The polarity of your push-button signal is probably inverted. The
push button is active low on the DE10-Nano.

4.5.3 Problem: Nothing Works

Solution 1: Ensure your board is programmed with the correct .sof file.
Solution 2: Check the polarity of your reset signal. Your processes might be

held in a reset state.
Solution 3: Check your values for sys_clk_sec and Base_rate. If either of these

are 0, your state machine will not work because you have effectively
eliminated the clock that drives the pattern generators.

Solution 4: Ensure that your top level entity name matches the one in the QSF
file. If this is not the case, none of your pin assignments will work.

4.5.4 Problem: I Cannot Program the Board

Solution 1: Ensure you are plugged into the USB Blaster port on the DE10-Nano
(left side). This port is the JTAG port, which is what gets used for
programming.

Solution 2: Ensure your programmer is set up correctly. The JTAG chain in
the programmer must contain the HPS and the FPGA fabric, in
that order. The “program/configure” button must be checked in the
FPGA device entry.

Lab 5
Signal Tap

Signal Tap is an embedded logic analyzer tool in Quartus that you can use to debug
your FPGA designs while they run at speed in the FPGA fabric. If you compile your
VHDL, download the bit stream into the FPGA and then find that it is not working
correctly; how do you see what is going on inside the FPGA? You can see what is
going on with your signals by using Signal Tap. We will use Signal Tap in this lab
to probe your design from Lab 4.

5.1 Items Needed

The items needed for Lab 5 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: Quartus software that was installed as described in Sect. 6.1.2.
Item 4: A short USB Cable with a Mini-B connection to connect the DE10-

Nano board to your computer. You will configure the FPGA fabric via
the JTAG USB connection and Signal Tap will use this same connection.

Item 5: A completed Lab 4

As part of this lab, you will also learn how to make use of Intel’s online training
courses to learn about Signal Tap. Continuing education is important in order to
keep up to date with fast changing technical topics such as using FPGAs in computer
engineering. You should become familiar with how to learn new skills when you get
a new job or start a new project. In computer engineering, this type of learning will
never stop. If you do stop learning, you will quickly become obsolete. In this lab we
will show you how to acquire a new debugging skill when you use Quartus, which is
the use of Signal Tap. Intel provides online training for FPGA designers that we will
use to learn about Signal Tap. Point your web browser to Intel’s FPGA Technical
Training (Fig. 5.1).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_20

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_20&domain=pdf
https://www.intel.com/content/www/us/en/programmable/support/training/curricula.html
https://doi.org/10.1007/978-3-031-15416-4_20

370 5 Signal Tap

Fig. 5.1: Intel’s FPGA Technical Training Website

Scroll down to the FPGA Designers section and click on Level 200 under the
Course Catalog heading. Select the Course Type to be Online from the drop down
menu and select your appropriate language (e.g., English). Scroll down until you see
the online courses for Signal Tap (you may need to go to the next page). A faster way
to find these courses is to click on the Catalog tab and perform a search for signal
since the spelling is not consistent in their titles for Signal Tap (the older online
videos spell it Signal Tap).

Click on a course and select “Register Now” at the bottom of the page. Note: You
will need to register and sign into the site.

5.2 Lab Steps

The steps for Lab 5 are:

Step 1: Watch at least the first two Intel training modules for Signal Tap:

1: Signal Tap Logic Analyzer: Introduction and Getting Started
(search for course ODSW1164).

2: Signal Tap Logic Analyzer: Basic Configuration and Trigger
Conditions (search for course ODSW1171).

Step 2: In Signal Tap, set the sample clock to be the fastest clock from your
clock generator block from Lab 4 (e.g., the fastest Clock for Pattern i in
Fig. 12.2). If you use the 50 MHz system clock, you will get too many
samples and you will not be able to see the LED transitions.

Step 3: Use the push button that you use to change the state machine for the
LED patterns as the Signal Tap trigger.

Step 4: In the Signal Tap Node list, add the following signals to monitor from
your design:

1: The state machine state signal that is used to change between
the LED pattern signals

2: The LED signal that goes out to the LEDs
3: The output from all 5 of your pattern generators:

1: Output from Generator 0 (1 LED shifting right)
2: Output from Generator 1 (2 LEDs shifting left)

5.4 Deliverables 371

3: Output from Generator 2 (up counter)
4: Output from Generator 3 (down counter)
5: Output from Generator 4 (your pattern)

Step 5: Run the design and transition into State 3 (down counter). This is the
state you will transition from.

Step 6: Set the switches to 1 so that you will go to State 1 (2 LEDs shifting left).
Step 7: Trigger Signal Tap by pushing the push button and it will transition to

State 1 where the switch values will be displayed for 1 s.
Step 8: Take a screen shot showing the waveform data of your monitored signals

and where the output of Generator 4 (your pattern) is clearly visible.

5.3 Demonstration

Print out and get Lab 5 Instructor Verification Sheet signed off (page 372) by
demonstrating to the course TA the following:

Demo 1: Demonstrate that you can use Signal Tap by showing the signals in Step
4: being monitored.

5.4 Deliverables

The Deliverables to be turned in or uploaded to Lab 5 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: A screen shot of the waveform view of Signal Tap monitoring the signals

in Step 4: and where your patterns is clearly visible
3: A screen shot of the signal configuration pane (where it shows the sample

depth)
4: The answer to this question: How much FPGA on-chip memory was required

to monitor your signals?

Instructor Verification Sheet
Lab # 5
Signal Tap

Print this page and get it signed by the Course Instructor or lab Teaching Assistant.
Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Demonstrate that you can use Signal Tap by showing the signals in Step 4: being
monitored.

Deliverables. Turn in or upload to your Lab 5 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: A screen shot of the waveform view of Signal Tap monitoring the signals in Step 4: and

where your patterns is clearly visible
3: A screen shot of the signal configuration pane (where it shows the sample depth)
4: The answer to this question: How much FPGA on-chip memory was required to monitor

your signals?

372

Lab 6
Creating a Custom Hardware
Component in Platform Designer

In Lab 4, you created the LED_patterns component that created patterns on the
DE10-Nano LEDs using state machines in the FPGA fabric. In this lab, you will create
a new component HPS_LED_patterns, shown in Fig. 12.1, which will instantiate
the LED_patterns component and add registers that will allow you to control the
LEDs from software. This lab will show you how to use Platform Designer, a system
integration tool in Quartus, to add custom hardware in the FPGA fabric that can be
controlled from the ARM CPUs.

6.1 Items Needed

The items needed for Lab 6 are:

Item 1: A Laptop or PC.
Item 2: DE10-Nano Kit.
Item 3: Quartus software that was installed as described in Sect. 6.1.2.
Item 4: A short USB Cable with a Mini-B connection to connect the DE10-

Nano board to your computer. You will configure the FPGA fabric via
the JTAG USB connection.

Item 5: A completed Lab 4.

6.2 Lab Steps

In this lab, you will use a system that is known to work by modifying and compiling
the AudioMini_Passthrough project. The preparation steps for using this project
are:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_21

373

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_21

374 6 Creating a Custom Hardware Component in Platform Designer

Prep 1: Copy the AudioMini_Passthrough Project

1: Get the project from GitHub by clicking on the link DE10-Nano
Projects.

2: Click on the green “Clone or download” button.
3: Select the “Download ZIP” option.
4: It will download all the projects, so just copy the folder
/AudioMini_Passthrough to your Lab 6 location. (In the
downloaded zip file de10nano_projects-dev.zip, the folder is lo-
cated at:/de10nano_projects-dev/AudioMini_Passthrough.)

Prep 2: Modify the project using Platform Designer

1: In Quartus, open the project file DE10Nano_System.qpf that
is contained in /AudioMini_Passthrough. Ignore the warning
that soc_system.qip is not found because we will recreate this
file using Platform Designer.

2: Within Quartus, from the Tools menu, open Platform Designer
and open the file soc_system.qsys.

3: Platform Designer will show a red Error message that states
FE_Qsys_AD1939_Audio_Mini_v1 is not found. We will fix this
by deleting this component since we will not be using it in this
lab.

4: In Platform Designer and in the System Contents view, scroll
down till you see the FE_Qsys_AD1939_Audio_Mini_v1 com-
ponent, click on the name, and delete it (or right click and select
remove). The error message should go away.

5: Regenerate the system by clicking on the “Generate HDL...”
button at bottom right.

1: In the window that pops up, select VHDL for the Synthe-
sis language.

2: Click Generate.
3: Click Close, and the system will be generated (it will take

a few minutes) and click close again.
4: This generates the soc_system.qip file in the project di-

rectory under \soc_system\sythesis that was missing
earlier.

Prep 3: Modify the top-level VHDL file

1: In Quartus, select Files in the Project Navigator pull down menu.
2: Open the top-level file DE10Nano_System.vhd by double click-

ing on it in the Files menu. Note: This is the new top-level file
that you will be using from now on, and it is different from what
you have used in the earlier labs because it now contains the
soc_system component that is connected to external DRAM.

3: We need to remove the signals from the soc_system component
declaration and instantiation that no longer exist since we deleted
the AD1939 component.

https://github.com/fpga-open-speech-tools/de10nano_projects

6.4 Deliverables 375

1: In the DE10Nano_System.vhd file, search (Ctrl-F) for the
lines that contain the prefix “ad1939_physical.” There
will be four lines in the component declaration (lines
213–216 or nearby) and four lines in the instantiation port
map (lines 393–396 or nearby) that you need to delete.

2: Save your changes and compile the system. Your system
should compile with no errors. Note 1: On a computer
with a 6 core 3.4 GHz i7 with 64 GB of RAM, this took
6 minutes 29 seconds. On an AMD Ryzen 7 (8 core 3.6
GHz) and 64 GB of RAM, this took 7 minutes 45 seconds
(slower because of slower hard disk I/O). Note 2: Quartus
compilations perform many disk I/O operations, so a SSD
in your computer will make compilations significantly
faster.

4: Note: This is the system that you will now add your custom
component HPS_LED_patterns to.

Step 1: Create VHDL code for the HPS_LED_patterns component. Read
Sect. 6.2 Platform Designer (page 62) on how to create registers for
your custom component.

Step 2: Add this component in Platform Designer. Read Sect. 6.2.2 Creating a
Custom Platform Designer Component (page 65) on how to do this.

6.3 Demonstration

Print out and get the Lab 6 Instructor Verification Sheet signed off (page 376) by
demonstrating to the course TA the following:

Demo 1: Demonstrate that the behavior of the LED patterns is similar to Lab 4.
Note 1: The demonstration just requires downloading the configuration bit stream
through JTAG and showing that the hardware component runs.
Note 2: We will test the registers in the next lab.

6.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 6 assignment folder are:
1: The Instructor Verification Sheet is signed and turned in.
2: The VHDL code of the HPS_LED_patterns component that you created.
3: The .tcl file that Platform Designer created when you imported HPS_LED_patterns.
4: The answer to this question: What is the base address of your HPS_LED_patterns

custom component in your Platform Designer system?

Instructor Verification Sheet
Lab # 6

Creating a Custom Hardware Component in Platform
Designer

Print this page and get it signed by the Course Instructor or lab Teaching Assistant.
Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Demonstrate that the behavior of the LED patterns is similar to Lab 4.

Deliverables. Turn in or upload to your Lab 6 assignment folder the following
items:

1: The Instructor Verification Sheet is signed and turned in.
2: The VHDL code of the HPS_LED_patterns component that you created.
3: The .tcl file that Platform Designer created when you imported HPS_LED_patterns.
4: The answer to this question: What is the base address of your HPS_LED_patterns custom

component in your Platform Designer system?

376

6.5 Common Problems and Solutions 377

6.5 Common Problems and Solutions

6.5.1 Problem: Error Generating System with Platform Designer or
Compiling the System in Quartus

This includes errors when compiling in Quartus where Quartus does not seem to be
able to compile its own Platform Designer components.

Solution 1: Newer versions of Quartus require Windows Subsystem for Linux
(WSL) to be installed. You need to use WSL 1. See the Quartus
installation guide and the official WSL installation instructions.

Solution 2: Rerun the WSL commands as outlined in Intel’s FPGA Knowledge
Base Article 000080350.

Solution 3: After the WSL updates, rerun the system generation in Platform
Designer, i.e., click the “Generate HDL. . . ” button.

Solution 4: If you keep getting errors, use Quartus 18.1 that does not require
WSL.

Solution 5: Make sure the soc_system.qip file has been added to your project
(located in the project folder at ./soc_system/synthesis/soc_
system.quip).

ttps://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/quartus_install.pdf#page=6
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.intel.com/content/www/us/en/support/programmable/articles/000080350.html

Lab 7
Verifying Your Custom Component Using
System Console and /dev/mem

In Lab 6, you created the custom Platform Designer component HPS_LED_patterns
by developing an Avalon bus wrapper for the LED_patterns component you created
from Lab 4. Registers were added via a simple Avalon memory-mapped interface
in order for the component to be controlled by the HPS lightweight bus. This will
allow the ARM CPUs to control the component via software.

We want to make sure that our hardware is alive and well before we start developing
software to interact with it. If we push ahead and start writing software before we
know our hardware is operating correctly, and it does not work, where is the problem?
Is it our software or hardware? We will use System Console, which is a tool in
Quartus, to make sure that the registers we created in Lab 6 function as expected
before we start layering on software.

In order to use System Console, a new Platform Designer component needs to be
added to your design, which is the JTAG to Avalon Master Bridge component. This
is a component that Platform Designer connects to JTAG on one end so that Quartus
can access it through the JTAG interface via System Console. This JTAG interface is
the one you use on the DE10-Nano board when you download your bitstream to the
FPGA fabric. The other end of the JTAG to Avalon Master Bridge component is a
bus master that can initiate bus transactions. By connecting the bus master interface
to the memory-mapped interface of your custom component in Platform Designer,
you can access and test the registers just like the ARM CPUs would do, but without
needing the HPS to do so.

Once the HPS_LED_patterns component has been verified using System Console,
which shows that you can read and write the component’s registers, we will take
off our hardware development hat, i.e., our “hard hat," and put on our software
development hat, i.e., our “soft hat." We will do this from our C code running on
Linux that uses the character device file /dev/mem, which allows access to physical
memory. This will require root access, which is fine for our testing purposes, but
cannot be used to provide user space access to physical memory. Getting access to
our registers from user space will require developing a Linux device driver, which
will be done in Lab 11.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_22

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_22

380 7 Verifying Your Custom Component Using System Console and /dev/mem

We will use/dev/mem to test the software control mode of your HPS_LED_Patterns
hardware component. In Linux, /dev/mem is a character device file whose byte ad-
dresses are interpreted as physical memory addresses. You already know the phys-
ical address of your registers because you created them and placed them in memory
with Platform Designer. Thus you can directly write to the LED_reg register to
create patterns on the LEDs from software.

Note: In order to use /dev/mem, you need to be root when you run the
software. This approach is for testing purposes since you cannot access /dev/mem
from user space. We will later write a device driver that will allow programs running
in user space to access our hardware.

Finally, be aware that there is a difference in memory addressing between the
JTAG to Avalon Master Bridge (see Sect. 7.2 The View of Memory from System
Console (page 89)) and the ARM CPUs (see Sect. 7.1.1 Memory Addressing for
Registers on the HPS Lightweight Bus (page 88)), but we will get into this shortly.

7.1 Items Needed

The items needed for Lab 7 are:

Item 1: A Laptop or PC.
Item 2: DE10-Nano Kit.
Item 3: Quartus software that was installed as described in Sect. 6.1.2.
Item 4: A short USB Cable with a Mini-B connection to connect the DE10-

Nano board to your computer. You will configure the FPGA fabric via
the JTAG USB connection and then connect through it using System
Console.

Item 5: A completed Lab 6.

7.2 Lab Steps

The steps for Lab 7 are:

Step 1: Using Platform Designer, modify your design from Lab 6 by adding
a JTAG to Avalon Master Bridge component. Read Sect. 6.3 System
Console (page 69) through Sect. 6.3.2 Modifying the Design in Platform
Designer (page 71) on how to add this component.

Step 2: Understand how to calculate register memory addresses in System
Console by reading Sect. 7.2 The View of Memory from System Console
(page 89).

Step 3: Using System Console, read and write to registers in your
HPS_LED_patterns custom component. Read how to do this in
Sect. 6.3.3 Using System Console (page 72).

7.2 Lab Steps 381

Step 4: Perform System Console verification of your custom component by
doing the following:

1: Write a 1 to Register 0 (HPS_LED_control) to put the compo-
nent in software control mode.

2: Write a value to Register 2 (LED_reg). The least significant
bits of the value should show up on the LEDs.

3: Write another bit pattern to Register 2. The LEDs should
reflect this new pattern.

Step 5: Know how to calculate the physical addresses of your custom compo-
nent’s registers that are connected to the HPS lightweight bus by reading
Sect. 7.1.1 Memory Addressing for Registers on the HPS Lightweight
Bus (page 88).

Step 6: Copy the file devmem2.c (click here for the source file) to your Lab
7 directory and rename it mydevmem.c. A couple of notes regarding
devmem2.c:

Note 1: On line 74 of devmem2, mmap() is used to create the
physical address mapping. The last argument (target &
∼MAP_MASK) is done so that mmap() maps a full page on
a page boundary that contains the physical memory map-
ping request.

Note 2: On line 79 of devmem2, it adds the appropriate offset back
in when it accesses the address using the page boundary of
the mapped page.

Step 7: Cross Compile mydevmem.c as you did in Sect. 11.1.4 Cross Compiling
“Hello World” (page 238) and put it in the root file system served by the
NFS server.

Step 8: Use mydevmem.c to write the same values to the same registers as you
did using System Console in Step 4:.

Step 9: devmem2 is not strictly portable because it hardcodes the page size
to 4096 rather than using the system call sysconf(_SC_PAGE_SIZE)
to determine what the page size is. Modify mydevmem.c to use
sysconf(_SC_PAGE_SIZE) to determine what the page size is to make
the code portable. (click here for the getpagesize and sysconf reference).

Step 10: Cross Compile and test your modified mydevmem.c program by doing
the following:

1: Write a new value to Register 1 (SYS_CLKS_sec) that doubles
the LED pattern speeds.

2: Write a new value to Register 3 (Base_rate) that changes the
doubled LED pattern’s speed back to the original speed (keeping
Register 1 with the value that doubles the speed).

https://github.com/radii/devmem2/blob/master/devmem2.c
http://manpages.ubuntu.com/manpages/bionic/man2/getpagesize.2.html

382 7 Verifying Your Custom Component Using System Console and /dev/mem

7.3 Demonstration

Print out and get the Lab 7 Instructor Verification Sheet signed off (page 383) by
demonstrating to the course TA the following:

Demo 1: In System Console, change the value in Register 0 by first reading it,
then writing a new value, and then reading this new value back.

Demo 2: In System Console, write values to Register 2 and show that these
values (least significant bits) are shown up on the LEDs.

Demo 3: Using mydevmem.c, your modified devmem2.c program, show that
you can double a pattern’s speed by writing to Register 1 (SYS_CLKS_sec).

Demo 4: Using mydevmem.c, your modified devmem2.c program, show that
you can put the pattern’s speed back to its original rate by writing
to Register 3 (Base_rate) (and keeping Register 1 with the value that
doubles the speed).

7.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 7 assignment folder are:

1: The Instructor Verification Sheet is signed and turned in.
2: The Platform Designer system (.qsys) file.
3: Your modified mydevmem.c code.
4: The answer to these questions:

1: What value did you write to Register 1 (SYS_CLKS_sec) that doubled
the speed of the patterns?

2: What value did you write to Register 3 (Base_rate) that changed the
doubled pattern’s speed back to the original speed (keeping Register 1
with the value that doubles the speed). Give this value that you wrote
to Register 3 in hexadecimal.

Instructor Verification Sheet
Lab # 7

Verifying Your Custom Component Using System
Console and /dev/mem

Print this page and get it signed by the Course Instructor or lab Teaching Assistant.
Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: In System Console, change the value in Register 0 by first reading it, then writing a
new value, and then reading this new value back.

Demo 2: In System Console, write values to Register 2 and show that these values (least
significant bits) are shown up on the LEDs.

Demo 3: Using mydevmem.c, your modified devmem2.c program, show that you can double
a pattern’s speed by writing to Register 1 (SYS_CLKS_sec).

Demo 4: Using mydevmem.c, your modified devmem2.c program, show that you can put the
pattern’s speed back to its original rate by writing to Register 3 (Base_rate) (and
keeping Register 1 with the value that doubles the speed).

Deliverables. Turn in or upload to your Lab 7 assignment folder the following
items:

1: The Instructor Verification Sheet is signed and turned in.
2: The Platform Designer system (.qsys) file.
3: Your modified mydevmem.c code.
4: The answer to these questions:

1: What value did you write to Register 1 (SYS_CLKS_sec) that doubled the speed
of the patterns?

2: What value did you write to Register 3 (Base_rate) that changed the doubled
pattern’s speed back to the original speed (keeping Register 1 with the value that
doubles the speed). Give this value that you wrote to Register 3 in hexadecimal.

383

384 7 Verifying Your Custom Component Using System Console and /dev/mem

7.5 Common Problems and Solutions

7.5.1 Problem: Hardware State Machine Keeps Running the LEDs
After Setting HPS_LED_control to a 1 (Software Control Mode)

Solution 1: Ensure there is an if statement in your VHDL code to switch between
hardware and software control of the LEDs.

7.5.2 Problem: The Values Written to Registers Do Not Show Up

Solution 1: Ensure that the base address and offset you are writing to are correct.
Solution 2: Ensure that you created a read process in your VHDL code.

7.5.3 No JTAG Masters Show Up in System Console

Solution 1: Ensure you are connected to the USB Blaster port, not to the UART
port.

Solution 2: Click “Load Design” to tell System Console which project you
are using, and then click “Refresh Connections” to make System
Console scan for JTAG connections.

Solution 3: Ensure that you have programmed your board with the latest .sof
file.

Solution 4: Ensure that your Avalon memory-mapped interface is connected to
an Avalon-to-JTAG-master component in Platform Designer.

Solution 5: Make sure that you download the bitstream to configure the FPGA
fabric after the Linux kernel boots on power up or after a reset.
Otherwise, the .rbf file specified in the bootscript will be loaded
from the VM, overwriting the bitstream you downloaded, which
will not have the hardware you expect.

7.5.4 Downloading the Bitstream When the Programmer Fails

Solution 1: Make sure that you are not holding the system in reset (a push button
polarity issue).

Lab 8
Creating LED Patterns with a C Program
Using /dev/mem in Linux

In Lab 7, we tested the HPS_LED_patterns component by using System Console
to read and write the component’s registers. Using System Console is part of the
SoC FPGA developer’s toolbox to make sure your hardware system is functioning
without having to worry about software. We then performed a simple register test
using /dev/mem and devmem2 to read and write the LED_reg register to verify that
we can access the register from the ARM CPUs over the lightweight bus.

In this lab we will take off our hardware development hat, i.e., our “hard hat,”
and put on our software development hat, i.e., our “soft hat.” We will still use the
/dev/mem file to access physical memory, which requires having root access, but
we write a C program that will generate LED patterns.

8.1 C Program Requirements

The C program you need to write for Lab 8 that generates LED patterns has the
following requirements:

Requirement 1: Name the program myLEDpatterns.c.
Requirement 2: It needs to be able to access physical memory using /dev/mem

to write to your HPS_LED_patterns component, so you can use
your program mydevmem.c from Lab 7 as a starting point on
how to use /dev/mem.

Requirement 3: It needs to process the following Command Line Arguments:

Arg 1: -h for help. Typing -h will list what all the command line
arguments can be and how to use them.

Arg 2: -v for verbose. Typing -v will print what the LED pattern
is as a binary string and how long it is being displayed for
as the patterns are being written to the LEDs. For example:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_23

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_23

386 8 Creating LED Patterns with a C Program Using /dev/mem in Linux

LED pattern = 01010101 Display time = 500 msec
LED pattern = 00001111 Display time = 1500 msec

Arg 3: -p for pattern. Typing -p and the associated arguments
pattern1 time1 pattern2 time2 pattern3 time3, etc. will
display these patterns for the time specified and will loop
indefinitely until Ctrl-C is entered.
Note 1: The pattern values should be entered as hexadec-

imal values, e.g., 0x0f.
Note 2: The interval values should be entered as millisec-

onds, e.g., 1500.
Note 3: This is a variable length argument case where any

number of pattern/time pairs could be entered.
Example 1: myLEDpatterns -p 0x55 500 0x0f
1500
Example 2: myLEDpatterns -p 0x55 500 0x0f
1500 0xf0 2000

Note 4: You can assume that -p is the last command line
argument flag given, so you can then process the
variable number of pattern/time pairs last and not
have to worry about any subsequent flags. This
will simplify your command line argument pro-
cessing. In order to handle the variable number of
arguments for myLEDpatterns.c, you can use the
getopt() function, which can be found here. An
example of using getopt to get multiple arguments
can be found here. For those more adventuresome
when it comes to argument parsing, you might
want to consider (Approach 1) or (Approach 2) or
(Approach 3). The approach you take for argument
parsing is up to you.

Note 5: You can implement breaking out of your C pro-
gram using Ctrl-C by looking at this example.
Other signals are given here.

Note 6: In order to handle the display time, you can use
sleep() or usleep() .

Arg 4: -f for file. Typing -f followed by a filename (e.g., mypat-
terns.txt) will open a text file and will read the patterns and
times from this text file. The patterns text file will have a
pattern and time on each row:
<pattern1> <time1>
<pattern2> <time2>
<pattern3> <time3>
where <pattern> is a hexadecimal value (e.g., 0xff) and
<time> is an unsigned integer with units of milliseconds
(e.g., 1500). The program will read to the end of the file,

https://www.gnu.org/software/libc/manual/html_node/Getopt.html
https://stackoverflow.com/questions/3939157/c-getopt-multiple-value
https://www.gnu.org/software/libc/manual/html_node/Argp.html
https://www.gnu.org/software/gengetopt/gengetopt.html
http://www.fresse.org/yuck/
https://stackoverflow.com/questions/4217037/catch-ctrl-c-in-c#4217052
https://unix.stackexchange.com/questions/362559/list-of-terminal-generated-signals-eg-ctrl-c-sigint
https://www.gnu.org/software/coreutils/manual/html_node/sleep-invocation.html
https://man7.org/linux/man-pages/man3/usleep.3.html

8.3 Lab Steps 387

displaying the LED patterns for the time listed on each row,
and when it reaches the end of the file, it will terminate.
Example: myLEDpatterns -f mypatterns.txt
This will read the file mypatterns.txt, which for example
could have the following contents:
0x55 500
0x0f 1500
0xf0 2000
Note 1: You can assume that -f is the last command line

argument flag given, so you can then process the
filename and not have to worry about any subse-
quent flags.

Requirement 4: The program needs to return an error for the following condi-
tions:

Error 1: Both -p and -f are given as arguments. These are mutu-
ally exclusive, so if both are given, the program terminates
saying it can be one or the other, but not both.

Error 2: If the number of arguments following the -p flag is odd, the
program terminates saying that each pattern value should
be followed by a time value.

8.2 Items Needed

The items needed for Lab 8 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: Quartus software that was installed as described in Sect. 6.1.2
Item 4: A completed Lab 7

8.3 Lab Steps

The steps for Lab 8 are:

Step 1: In Lab 7, you programmed the FPGA fabric using the Quartus program-
mer where it used the .sof file. We do not want to keep programming
the FPGA fabric every time the DE10_Nano powers up, so let us have
U-boot do this for us now since it is loading a .rbf file anyway. We just
need to have U-boot load the .rbf file we want since we are done with
creating our custom hardware in the FPGA fabric. To do this, you will
need to:

388 8 Creating LED Patterns with a C Program Using /dev/mem in Linux

1: Convert the .sof file to a .rbf file. See Sect. 6.1.4 Converting
Programming Files (page 58) on how to perform this conversion.

2: Rename the .rbf file to soc_system.rbf since this is the name of
the .rbf that U-boot is loading after it reads the bootscript in the
Ubuntu VM. Later, we will learn how to customize bootscripts
and U-boot to reflect new projects. For now, we will just overwrite
the .rbf file that U-boot is currently using.

3: Copy soc_system.rbf to /srv/tftp/de10nano/audiomini_
passthrough in the Ubuntu VM so that U-boot can load it. You
will be overwriting the .rbf of the same name in this directory.

Step 2: As in Lab 7, know how to calculate the physical addresses of your cus-
tom component’s registers that are connected to the HPS lightweight
bus by reading Sect. 7.1.1 Memory Addressing for Registers on the HPS
Lightweight Bus (page 88).

Step 3: Write code for myLEDpatterns.c using the requirements given in
Sect. 8.1.

Step 4: Cross Compile your myLEDpatterns C program as you did in Sect. 11.1.4
Cross Compiling “Hello World” (page 238) and put it in the root file
system served by the NFS server.

Step 5: Run the myLEDpatterns program on your DE10-Nano board.

8.4 Demonstration

Print out and get Lab 8 Instructor Verification Sheet signed off (page 389) by
demonstrating to the course TA the following:

Demo 1: Show the contents of mypatterns.txt (e.g., cat mypatterns.txt), and then
run myLEDpatterns -f mypatterns.txt

Demo 2: Run it again, but with the added -v flag, i.e., myLEDpatterns -v -f
mypatterns.txt that will print out what is happening.

Demo 3: Run myLEDpatterns with the -p flag and with three pattern/time pairs.
Show that it runs in a loop until you enter Ctrl-C.

8.5 Deliverables

The Deliverables to be turned in or uploaded to the Lab 8 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your well commented C program myLEDpatterns.c
3: Your LED patterns file mypatterns.txt

Instructor Verification Sheet
Lab # 8

Creating LED Patterns with a C Program Using
/dev/mem in Linux

Print this page and get it signed by the Course Instructor or lab Teaching Assistant.
Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show the contents of mypatterns.txt (e.g., cat mypatterns.txt), and then run myLED-
patterns -f mypatterns.txt

Demo 2: Run it again, but with the added -v flag, i.e., myLEDpatterns -v -f mypatterns.txt that
will print out what is happening.

Demo 3: Run myLEDpatterns with the -p flag and with three pattern/time pairs. Show that it
runs in a loop until you enter Ctrl-C.

Deliverables. Turn in or upload to your Lab 8 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your well commented C program myLEDpatterns.c
3: Your LED patterns file mypatterns.txt

389

Lab 9
Linux Kernel Module Hello World

In Lab 8, you interacted with the HPS_LED_patterns component by using /dev/mem
to access physical memory in Linux in order to test the software control mode of your
HPS_LED_Patterns hardware component. However, this required you to have root
access to run the software. We will now start the process of creating a device driver
that will be the portal between user space and the kernel, which can directly access
physical memory. This will allow you to access your custom component registers
from user space where root access is not required.

This lab will introduce you to the “Hello World” kernel module, the process of
cross compiling the module and inserting the kernel module into Linux running on
the DE10-Nano board. However, it will not do anything useful yet like controlling
your registers since the actual device driver for the HPS_LED_patterns component
will be done in Lab 11.

9.1 Items Needed

The items needed for Lab 9 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: A completed Lab 8

9.2 Lab Steps

The steps for Lab 9 are:

Step 1: Cross Compile the Linux Kernel. Do this by following the instruc-
tions in Sect. 9.2 Cross Compiling the Linux Kernel (page 129), which
includes setting up to run the new zImage on the DE10-Nano board.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_24

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_24&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_24

392 9 Linux Kernel Module Hello World

Step 2: Read the sections on Device Drivers and Loadable Kernel Modules.
(Read Sect. 9.3 Kernel Modules (page 135) through Sect. 9.3.1 Loadable
Kernel Modules (page 136).)

Step 3: Create a ~/labs/lab9 folder.
Step 4: Download the example "Hello World" kernel model source file

(found here). Modify the MODULE_AUTHOR() macro and put in your
first and last names.

Step 5: Download the associated Makefile (found here). Modify the Make-
file so that it points to where the kernel source is located (/<path>
/linux-socfpga).

Step 6: Cross Compile the Hello World Kernel Module. Do this by following
the instructions in Sect. 9.3.2 Cross Compiling the Kernel Module (page
139).

Step 7: Insert and Remove the Kernel Module. See Sect. 9.3.3 Inserting the
Kernel Module into the Linux Kernel (page 141).

9.3 Demonstration

Print out and get Lab 9 Instructor Verification Sheet signed off (page 393) by
demonstrating to the course TA the following:

Demo 1: Show the information related to your LKM using the modinfo com-
mand. Your name should be present.

Demo 2: When the LKM is inserted, show the output of the LKM initialization
printk statement using the dmesg and grep commands.

Demo 3: When the LKM is removed, show the output of the LKM exit printk
statement using the dmesg and grep commands.

9.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 9 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your LKM source hello_kernel_module.c
3: The associated Makefile
4: The text file mymodinfo.txt that was created by piping modinfo into
mymodinfo.txt

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/hello_kernel_module.c
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/Makefile

Instructor Verification Sheet
Lab # 9

Linux Kernel Module Hello World
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show the information related to your LKM using the modinfo command. Your name
should be present.

Demo 2: When the LKM is inserted, show the output of the LKM initialization printk state-
ment using the dmesg and grep commands.

Demo 3: When the LKM is removed, show the output of the LKM exit printk statement using
the dmesg and grep commands.

Deliverables. Turn in or upload to your Lab 9 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your LKM source hello_kernel_module.c
3: The associated Makefile
4: The text file mymodinfo.txt that was created by piping modinfo into mymodinfo.txt

393

Lab 10
Modifying the Linux Device Tree

In Lab 9, you created and inserted a simple loadable kernel module (LKM). This
was possible because the Hello World LKM did not interact with hardware. In order
for the Linux kernel to know what hardware it is running on, it must be informed
of the hardware by the compiled device tree .dtb file, which is loaded as part of the
boot process (see Sect. 3.1.5 Boot Step 5: Linux (page 30)). This lab will introduce
you to device trees and you will create a device tree for your custom DE10-Nano
system.

10.1 Items Needed

The items needed for Lab 10 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: A completed Lab 9

10.2 Lab Steps

The steps for Lab 10 are:

Step 1: Read about Device Trees. (Read Sect. 9.4 Device Trees (page 141)
through Sect. 9.4.2 Device Tree Hierarchy (page 145).)

Step 2: Create your Device Tree by following the instructions in Sect. 9.4.3
Creating a Device Tree for Our DE10-Nano System (page 146).
In Step 2: of the section and in the include file that you created
(socfpga_cyclone5_de0.dtsi), modify the leds node from:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_25

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_25

396 10 Modifying the Linux Device Tree

34 leds {
35 compatible = "gpio-leds";
36 hps0 {
37 label = "hps_led0";
38 gpios = <&portb 24 0>;
39 linux,default-trigger = "heartbeat";
40 };
41 };

to:
34 leds {
35 compatible = "gpio-leds";
36 hps0 {
37 color = <LED_COLOR_ID_GREEN >;
38 function = LED_FUNCTION_HEARTBEAT;
39 gpios = <&portb 24 0>;
40 linux,default-trigger = "timer";
41 led-pattern = <500 250>;
42 };

You will also need to add the include file as shown in Line 7:
6 #include "socfpga_cyclone5.dtsi"
7 #include <dt-bindings/leds/common.h>

In Step 3: of the section, when you download the example device tree
source file, modify the example .dts file by adding a node for your
HPS_LED_patterns component that you created in Platform Designer.

Step 3: Compile, move the .dtb file to the TFTP server, and boot your DE10-
Nano board.

10.3 Demonstration

Print out and get Lab 10 Instructor Verification Sheet signed off (page 398) by
demonstrating to the course TA the following:

Demo 1: Show that you can change the blinking LED times on the DE10-
Nano board by changing to the directory /sys/class/leds/hps0
and writing values to the delay_on and delay_off files (times are
in milliseconds). For example:
echo 1000 > delay_on
echo 100 > delay_off

Demo 2: Show that your HPS_LED_patterns component shows up on the DE10-
Nano board and in the directory /proc/device-tree. Go into the
component directory and cat the compatible file that will display the
compatible string associated with this hardware node.

10.4 Deliverables 397

10.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 10 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your include file socfpga_cyclone5_de0.dtsi
3: Your device tree source file socfpga_cyclone5_de10nano_mysystem.dts
4: A screen shot that shows that your HPS_LED_patterns hardware shows up

in /proc/device-tree along with the output of cat’ing the compatible file
that shows the compatible string that contains your initials.

Instructor Verification Sheet
Lab # 10

Modifying the Linux Device Tree
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show that you can change the blinking LED times on the DE10-Nano board by chang-
ing to the directory /sys/class/leds/hps0 and writing values to the delay_on
and delay_off files (times are in milliseconds). For example:
echo 1000 > delay_on
echo 100 > delay_off

Demo 2: Show that your HPS_LED_patterns component shows up on the DE10-Nano board
and in the directory /proc/device-tree. Go into the component directory and
cat the compatible file that will display the compatible string associated with this
hardware node.

Deliverables. Turn in or upload to your Lab 10 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your include file socfpga_cyclone5_de0.dtsi
3: Your device tree source file socfpga_cyclone5_de10nano_mysystem.dts
4: A screen shot that shows that your HPS_LED_patterns hardware shows up in /proc/
device-tree along with the output of cat’ing the compatible file that shows the compatible
string that contains your initials.

398

Lab 11
Creating a Platform Device Driver for
the HPS_LED_Patterns Component

In Lab 10, you created a node in the Linux device tree for the HPS_LEDS_patterns
component. We needed to do this, otherwise Linux would not know that this
hardware existed. In this lab you will create a Linux platform device driver for
HPS_LEDS_patterns that will allow you to read and write the component registers
from user space. These registers will show up as files in Linux, which provides the
user space access.

11.1 Items Needed

The items needed for Lab 11 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: A completed Lab 10

11.2 Lab Steps

The steps for Lab 11 are:

Step 1: Read about Platform Device Drivers. (Read Sect. 9.5 Platform Device
Driver (page 148).)

Step 2: Create your Platform Driver by following the instructions in Sect. 9.6
Steps for Creating a Platform Device Driver for Your Custom Component
in Platform Designer (page 150). The code provided only implements
two of the four registers. Complete the driver so that all registers are
exported to sysfs. Note: In the instructions, it says to perform a string

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_26

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_26&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_26

400 11 Creating a Platform Device Driver for the HPS_LED_Patterns Component

replacement to change instances of hps_led_patterns to my_component,
which would be the process for using the Platform Driver code as a
starting point for a new component. However, in this lab, the component
name is still hps_led_patterns, so skip the string replacement step in this
case.

Step 3: Test your Platform Driver using a bash script: The example below
only uses one register. Modify the script so that all registers are used.

1 #!/bin/bash
2 LEDS=/sys/devices/platform/<base-address >.

�

↪→hps_led_patterns/led_reg
3
4 while true
5 do
6 echo 0x55 > $LEDS
7 sleep 0.25
8 echo 0xaa > $LEDS
9 sleep 0.25

10 done

Step 4: Test your Platform Driver using a C program. Using the provided C
program outline (click here for the file), add tests for all the registers.
Then cross compile and run the test program.

11.3 Demonstration

Print out and get Lab 11 Instructor Verification Sheet signed off (page 401) by
demonstrating to the course TA the following:

Demo 1: Show that you can create LED patterns from the bash script.
Demo 2: Show the output of the test program.

11.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 11 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your platform driver source code hps_led_patterns.c
3: Your test bash script
4: Your test C program

https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/linux/platform_driver/hps_led_patterns_test.c

Instructor Verification Sheet
Lab # 11

Creating a Platform Device Driver for
the HPS_LED_Patterns Component

Print this page and get it signed by the Course Instructor or lab Teaching Assistant.
Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show that you can create LED patterns from the bash script.
Demo 2: Show the output of the test program.

Deliverables. Turn in or upload to your Lab 11 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your platform driver source code hps_led_patterns.c
3: Your test bash script
4: Your test C program

401

Lab 12
Implementing the Passthrough Project

In this lab we make the transition to audio signal processing. The previous labs were
solely based on the DE10-Nano board. In this lab we will add the Audio Mini board
that contains the AD1939 audio codec and implement the Audio FPGA Passthrough
example. We will not perform any audio signal processing, but rather we will just
get the audio signal into the FPGA fabric and back out again. This will provide a
working system that we will use in the next lab to implement audio signal processing.

12.1 Items Needed

The items needed for Lab 12 are:

Item 1: A Laptop or PC
Item 2: DE10-Nano Kit
Item 3: An Audio Mini board that plugs into the DE10-Nano board. The Audio

Mini board can be acquired here.
Item 4: A Sound Source such as your smartphone or laptop that can connect to

an audio cable
Item 5: An Audio Cable that connects the sound source to the Line In audio

input of the Audio Mini board (example cable).
Item 6: Wired Earbuds (or a speaker) that can connect to the Audio Out or

headphone/line-out connection of the Audio Mini board
Item 7: A completed Lab 11

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_27

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_27&domain=pdf
https://www.sensorlogic.store/products/fe-audio-edu-1
https://www.amazon.com/AmazonBasics-Stereo-Audio-Cable-Meters/dp/B00NO73IN2/ref=sr_1_1_sspa?th=1
https://doi.org/10.1007/978-3-031-15416-4_27

404 12 Implementing the Passthrough Project

12.2 Lab Steps

The steps for Lab 12 are:

Step 1: Read about the Audio Mini board. (Read Sect. 5 Introduction to the
Audio Mini Board (page 41).)

Step 2: Read about the Audio Passthrough System example. (Read Sect. 1.1
Audio Passthrough System Overview (page 255).)

Step 3: Implement the Quartus Passthrough Project. (Read Sect. 1.3 Quartus
Passthrough Project (page 267).)

Step 4: Compile the Linux Device Drivers. (Read Sect. 1.5 Linux Device
Drivers (page 289)). This involves compiling the ad1939 driver (see
Sect. 1.5.1), the tpa613a2 driver (see Sect. 1.5.2), and the device tree
(see Sect. 1.5.3) and implementing the systemd service (see Sect. 1.5.4).

12.3 Demonstration

Print out and get the Lab 12 Instructor Verification Sheet signed off (page 405)
by demonstrating to the course TA the following:

Demo 1: Show that you have implemented the Audio Passthrough System ex-
ample where the audio being sent into the Audio Mini input can be
heard coming out of the Audio Mini output.

12.4 Deliverables

The Deliverables to be turned in or uploaded to Lab 12 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: A write-up of all the steps you had to implement to get the system working.

Comment on what part of the passthrough project you liked the best and what
you thought was the hardest part of the project.

Instructor Verification Sheet
Lab # 12

Implementing the Passthrough Project
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show that you have implemented the Audio Passthrough System example where the
audio being sent into the Audio Mini input can be heard coming out of the Audio
Mini output.

Deliverables. Turn in or upload to your Lab 12 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: A write-up of all the steps you had to implement to get the system working. Comment

on what part of the passthrough project you liked the best and what you thought was the
hardest part of the project.

405

Lab 13
Implementing the Comb Filter Project

In this lab we implement the comb filter example that produces an echo and can be
used as the foundation for other sound effects such as reverberation, flanging, and
chorus. This lab builds on the audio passthrough example where we add the comb
filter processor to the audio path in the FPGA fabric.

13.1 Items Needed

The items needed for Lab 13 are the same as what was needed for the audio
passthrough example that was implemented in Lab 12.

13.2 Lab Steps

The steps for Lab 13 are:

Step 1: Read about the Feedforward Comb Filter System example in
Sect. 2.1 Overview (page 293).

Step 2: Run a simulation of the Feedforward Comb Filter model. Download
the model (see Sect. 2.2 Simulink Model (page 295) and Sect. 2.3 Creat-
ing the Simulink Model (page 299)) and run the simulation in Simulink.
Become familiar with the different control signals in the model by exper-
imenting with different values. Determine good values for the control
signals delayM so that the echo is very audible. Make note of these
values since you will need to use these values for the lab verification.

Step 3: Generate VHDL code for the model by following the instructions in
Sect. 2.4 VHDL Code Generation Using Simulink’s HDL Coder (page
305).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_28

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_28&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_28

408 13 Implementing the Comb Filter Project

Step 4: Understand how the combFilterProcessor integrates the model VHDL
code with Platform Designer by reading Sect. 2.5 HPS Integration Us-
ing Platform Designer (page 317).

Step 5: Implement the Quartus Combfilter Project by reading Sect. 2.5 HPS
Integration Using Platform Designer (page 317) (again).

Step 6: Test your hardware using System Console (see Sect. 2.5.5 Testing the
combFilterProcessor Using System Console (page 323)).

Step 7: Update the Linux Device Tree to include the combFilterProcessor
component that was added to Platform Designer. Use your knowledge
gained from Lab 10 to do this.

Step 8: Create the Linux Device Driver for the four control registers. Use your
knowledge gained from Lab 11 to do this.

13.3 Demonstration

Print out and get Lab 13 Instructor Verification Sheet signed off (page 409) by
demonstrating to the course TA the following:

Demo 1: Show that you can change the echo parameters from Linux user space.
Demonstrate several echo delay values that are audibly very different.

13.4 Deliverables

The Deliverables to be turned in or uploaded to Lab 13 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your Linux Device Tree source file (.dts)
3: Your platform driver source code

Instructor Verification Sheet
Lab # 13

Implementing the Comb Filter Project
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show that you can change the echo parameters from Linux user space. Demonstrate
several echo delay values that are audibly very different.

Deliverables. Turn in or upload to your Lab 13 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your Linux Device Tree source file (.dts)
3: Your platform driver source code

409

Lab 14
Implementing the FFT Analysis Synthesis
Project

In this lab we implement the FFT Analysis Synthesis example that transforms the
audio signal into the frequency domain, performs frequency domain processing, and
then transforms the signal back to the time domain.

14.1 Items Needed

The items needed for Lab 14 are the same as what was needed for the audio
passthrough example that was implemented in Lab 12.

14.2 Lab Steps

The steps for Lab 14 are:

Step 1: Read about the FFT Analysis Synthesis System example in Sect. 3.1
Overview (page 325).

Step 2: Run a simulation of the FFT Analysis Synthesis model. Download
the model (see Sect. 3.2 Simulink Model Files (page 328) and Sect. 3.3
Creating the Simulink Model (page 329)) and run the simulation in
Simulink.

Step 3: Change the all pass FFT filter to a band pass filter. The all pass
filter is not shown in Fig. 3.4, but it is created in the Simulink file
createFFTFilters.m in lines 54–57. Note: It is filter 4, but control word
filterSelect=3. The low and high cutoff frequencies for this new bandpass
filter will be individually assigned to you. If not, use 3 kHz as the lower
cutoff frequency and 5 kHz as the upper cutoff frequency.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_29

411

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_29&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_29

412 14 Implementing the FFT Analysis Synthesis Project

Step 4: Run a simulation using your new bandpass filter by following the in-
structions in Sect. 3.3.5 Verification (page 339). Recreate Fig. 3.18 using
your assigned bandpass cutoff values to show the simulated frequency
response of the system with the new bandpass filter.

Step 5: Generate VHDL code for the model by following the instructions in
Sect. 3.4 VHDL Code Generation Using Simulink’s HDL Coder (page
342).

Step 6: Implement the Quartus FFT Project by reading Sect. 3.5 HPS Inte-
gration Using Platform Designer (page 343).

Step 7: Understand how the fftAnalysisSynthesisProcessor integrates the
model VHDL code with Platform Designer by reading Sect. 3.5 HPS
Integration Using Platform Designer (page 343). You will need to create
this VHDL code (similar to the combFilterProcessor.vhd code found in
Table 2.3) and create a Platform Designer component by importing it
into Platform Designer (see Sect. 1.4.1 Creating the AD1939 Platform
Designer Component (page 269)).

Step 8: Test your hardware using System Console (see Sect. 3.5.2 Testing the
fftAnalysisSynthesisProcessor Using System Console (page 344)).

Step 9: Update the Linux Device Tree to include the fftAnalysisSynthesis-
Processor component that was added to Platform Designer. Use your
knowledge gained from Labs 10 and 13 to do this.

Step 10: Create the Linux Device Driver for the two control registers. Use your
knowledge gained from Labs 11 and 13 to do this.

14.3 Demonstration

Print out and get Lab 14 Instructor Verification Sheet signed off (page 414) by
demonstrating to the course TA the following:

Demo 1: Show the figure of the simulated frequency response of the system
using the bandpass filter with your assigned cutoff values (see Step
4:).

Demo 2: Demonstrate the frequency response of the system by playing audio
through the system and selecting the various FFT filters from Linux
user space, including your new bandpass filter.

14.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 14 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: The modified createFFTFilters.m file

14.4 Deliverables 413

3: The figure similar to Fig. 3.18 that you created using your assigned bandpass
cutoff values to show the frequency response of the system with the new
bandpass filter

4: Your Linux Device Tree source file (.dts)
5: Your platform driver source code

Instructor Verification Sheet
Lab # 14

Implementing the FFT Analysis Synthesis Project
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Show the figure of the simulated frequency response of the system using the bandpass
filter with your assigned cutoff values (see Step 4:).

Demo 2: Demonstrate the frequency response of the system by playing audio through the
system and selecting the various FFT filters from Linux user space, including your
new bandpass filter.

Deliverables. Turn in or upload to your Lab 14 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: The modified createFFTFilters.m file
3: The figure similar to Fig. 3.18 that you created using your assigned bandpass cutoff values

to show the frequency response of the system with the new bandpass filter
4: Your Linux Device Tree source file (.dts)
5: Your platform driver source code

414

Lab 15
Creating Your Sound Effect in Simulink

In this lab we start the process of creating your sound effect final project. The first
step is to create a Simulink model that implements the sound effect of your choice.

15.1 Items Needed

The items needed for Lab 15 are:

Item 1: A Laptop or PC
Item 2: Matlab and Simulink

15.2 Lab Steps

The steps for Lab 15 are:

Step 1: Propose a Sound Effect to the instructor. Your sound effect needs prior
approval so that the scope of the project is suitable for the course and it
aligns with the requirements of the final project.

• Choose either a Time Domain sound effect or a Frequency Domain
sound effect.

• If your choice is a Time Domain sound effect, then your example
that you will follow is the Comb Filter example in Sect. 2.1 Overview
(page 293) where you will replace the combFilterProcessor with
your sound effect processor.

• If your choice is a Frequency Domain sound effect, then your ex-
ample that you will follow is the FFT Analysis Synthesis example
in Sect. 3.1 Overview (page 325) where you will replace or modify
the Simulink block applyComplexGains found in the model hier-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_30

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_30&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_30

416 15 Creating Your Sound Effect in Simulink

archy at fftAnalysisSynthesis/frequencyDomainProcessing/apply
ComplexGains.

Step 2: Design the Control Signals of your Simulink sound effect model, which
at a minimum must contain the following signals list below. You will
need to create the appropriate data type for each control signal. Note:
The number of control signals is actually double this number because
you will need both left and right channel control signals.

Signal 1: The Enable signal that controls turning on and off the
sound effect.

• Enable = 1 means the sound effect is turned on.
• Enable = 0 means the sound effect is turned off. This

is considered a bypass where the input signal becomes
the output signal.

Signal 2: The Volume signal that controls the volume (attenuation)
coming out of the sound effect block. The volume con-
trol signal should be an unsigned fixed-point signal that
has a maximum value of 1. The range should be [0 1].
Note: Volume should control the attenuation of the output
signal, regardless of whether the sound effect is enabled
(present) or not.

• Volume = 1.0 means no attenuation.
• Volume = 0.0 means no signal is present.

Signal 3: Sound Effect Control Parameter 1 that controls the
sound effect. Changing the sound effect control word
should cause an easily identifiable (audible) change to
the audio signal. The control signal names for your sound
effect should be descriptive as to what the control sig-
nal does. Note: Extra control parameters that are imple-
mented and that can be changed in real time will be given
bonus credit. These extra signals need to be present in
the final implementation and connected to a Linux device
driver to get the bonus credit.

Step 3: Create Your Simulink Sound Effect Model

• Make sure that you use only HDL compatible blocks for the sound
effect model that will be converted to VHDL (see Sect. 2.4).

• The sound effect needs to operate on the stereo audio signal, i.e.,
the same effect on both the left and right channels (unless the sound
effect requires some type of mixture). Hint: Create the sound effect
for one channel to get it working first. Then, expand to stereo by
replicating the sound effect block in a new stereo block that has both
left and right control signals coming into it.

15.4 Deliverables 417

Step 4: Test Your Simulink Sound Effect Model. The sound effect should be
easy to discern. Using Matlab’s audiowrite, create a WAVE file called
before.wav that creates a copy of the input audio. Then create a WAVE
file called after.wav that saves the output of your sound effect simulation.
You will need both of these files for your lab verification. The after.wav
file is created so that verification can be streamlined without having to
wait for the simulation to run, which can take a long time in certain
cases.

15.3 Demonstration

Print out and get the Lab 15 Instructor Verification Sheet signed off (page 418)
by demonstrating to the course TA the following:

Demo 1: Have your Simulink model ready and open on your laptop. Have the as-
sociated Matlab files all open in an editor. Explain how your Simulink
model works as you go through the model.

Demo 2: Play the before.wav audio file.
Demo 3: Play the after.wav audio file.

15.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 15 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: The Simulink sound effect model (.slx) file
3: All associated Matlab model files:

• createModelParams.m
• createSimParams.m
• createHdlParams.m
• verifySimulation.m
• Any other Matlab files

4: The before.wav audio file
5: The after.wav audio file

Instructor Verification Sheet
Lab # 15

Creating Your Sound Effect in Simulink
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Have your Simulink model ready and open on your laptop. Have the associated
Matlab files all open in an editor. Explain how your Simulink model works as you
go through the model.

Demo 2: Play the before.wav audio file.
Demo 3: Play the after.wav audio file.

Deliverables. Turn in or upload to your Lab 15 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: The Simulink sound effect model (.slx) file
3: All associated Matlab model files:

• createModelParams.m
• createSimParams.m
• createHdlParams.m
• verifySimulation.m
• Any other Matlab files

4: The before.wav audio file
5: The after.wav audio file

418

Lab 16
Implementing Your Sound Effect in the
FPGA Fabric

In this lab we continue with your sound effect final project. The next step is to convert
the Simulink model to VHDL and get it running in the FPGA fabric.

16.1 Items Needed

The items needed for Lab 16 are the same as what was needed for the audio
passthrough example that was implemented in Lab 12.

16.2 Lab Steps

The steps for Lab 16 are:

Step 1: Convert your Sound Effect Simulink Model to VHDL by follow-
ing the process outlined in Sect. 2.4 VHDL Code Generation Using
Simulink’s HDL Coder (page 305) and Sect. 3.4 VHDL Code Genera-
tion Using Simulink’s HDL Coder (page 342).

Step 2: Create the VHDL code that implements your control registers. We
will refer to this as the code soundEffectProcessor.vhd but rename it so
that “soundEffect” is the actual name of your sound effect. An example
of this code is the file combFilterProcessor.vhd found in Table 2.3 and
is what you did in Step 7: of Lab 14.

Step 3: Create a new Quartus Project by copying either the combFilter or FFT
Analysis Synthesis project.

Step 4: Create a Platform Designer component for your sound effect. Do this
by importing soundEffectProcessor.vhd into Platform Designer as out-
line in Sect. 1.4.1 Creating the AD1939 Platform Designer Component
(page 269).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_31

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_31&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_31

420 16 Implementing Your Sound Effect in the FPGA Fabric

Step 5: Compile Quartus and load the FPGA bitstream into the FPGA.
Step 6: Test your sound effect hardware. Test your sound effect in the FPGA

fabric by using System Console (see Sect. 2.5.5 Testing the combFilter-
Processor Using System Console (page 323)).

16.3 Demonstration

Print out and get Lab 16 Instructor Verification Sheet signed off (page 421) by
demonstrating to the course TA the following:

Demo 1: Demonstrate that your sound effect is working in the FPGA fabric by
changing values in the control registers using System Console.

16.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 16 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: The soundEffectProcessor.vhd file (renamed after your sound effect, i.e.,

<soundEffect>Processor.vhd)
3: The associated TCL file (.tcl) that Platform Designer created when you im-

ported soundEffectProcessor.vhd into Platform Designer
4: The Platform Designer system file soc_system.qsys

Instructor Verification Sheet
Lab # 16

Implementing Your Sound Effect in the FPGA Fabric
Print this page and get it signed by the Course Instructor or lab Teaching Assistant.

Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Demonstrate that your sound effect is working in the FPGA fabric by changing
values in the control registers using System Console.

Deliverables. Turn in or upload to your Lab 16 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: The soundEffectProcessor.vhd file (renamed after your sound effect, i.e., <soundEf-

fect>Processor.vhd)
3: The associated TCL file (.tcl) that Platform Designer created when you imported soundEf-

fectProcessor.vhd into Platform Designer
4: The Platform Designer system file soc_system.qsys

421

Lab 17
Writing a Linux Device Driver to Control
Your Sound Effect Processor

In this lab we complete the sound effect final project. The final step is to create the
Linux device driver for the sound effect processor that can read and write to the
memory-mapped control registers.

17.1 Items Needed

The items needed for Lab 17 are the same as what was needed for the audio
passthrough example that was implemented in Lab 12.

17.2 Lab Steps

The steps for Lab 17 are:

Step 1: Update the Linux Device Tree to include the soundEffectProcessor
component that was added to Platform Designer. Use your knowledge
gained from Lab 10 to do this.

Step 2: Create the Linux Device Driver for the control registers. Use your
knowledge gained from Lab 11 to do this. When done, you should be
able to list the contents of /sys/class/misc/soundeffectname and see
files associated with each of your control signals. The device driver
should have your lastname in the compatible string.

Step 3: Create two shell scripts that are listed below:

1: effectDisable.sh When run, the script disables the sound effect
and places your system in bypass mode where the sound effect is
disabled and volume=1.0, i.e., output = input.

2: effectEnable.sh When run, the script enables the sound effect
with parameter settings that make the sound effect easy to hear.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4_32

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15416-4_32&domain=pdf
https://doi.org/10.1007/978-3-031-15416-4_32

424 17 Writing a Linux Device Driver to Control Your Sound Effect Processor

Step 4: Create a Linux user space program called effectShow.c When run,
this program will illustrate and show off your sound effect. The param-
eters chosen, which need to change in time, should allow a listener to
easily hear and experience the sound effect.

17.3 Demonstration

Print out and get Lab 17 Instructor Verification Sheet signed off (page 425) by
demonstrating to the course TA the following:

Demo 1: Demonstrate that the script effectEnable.sh turns on your sound effect.
Demo 2: Demonstrate that the script effectDisable.sh turns off your sound effect.
Demo 3: Demonstrate that the program effectShow cycles through control pa-

rameters that shows off your sound effect.

17.4 Deliverables

The Deliverables to be turned in or uploaded to the Lab 17 assignment folder are:

1: The Instructor Verification Sheet signed and turned in
2: Your Linux Device Tree source file (.dts)
3: Your device driver source code that has your lastname in the compatible

string
4: The source file effectShow.c
5: The source file effectEnable.sh
6: The source file effectDisable.sh

Instructor Verification Sheet
Lab # 17

Writing a Linux Device Driver to Control Your Sound
Effect Processor

Print this page and get it signed by the Course Instructor or lab Teaching Assistant.
Make sure you turn in this signed page to get credit for your lab.

Name:

Verified by: Date:

Lab Demonstration. Demonstrate to the Lab TA the following:

Demo 1: Demonstrate that the script effectEnable.sh turns on your sound effect.
Demo 2: Demonstrate that the script effectDisable.sh turns off your sound effect.
Demo 3: Demonstrate that the program effectShow cycles through control parameters that

shows off your sound effect.

Deliverables. Turn in or upload to your Lab 17 assignment folder the following
items:

1: The Instructor Verification Sheet signed and turned in
2: Your Linux Device Tree source file (.dts)
3: Your device driver source code that has your lastname in the compatible string
4: The source file effectShow.c
5: The source file effectEnable.sh
6: The source file effectDisable.sh

425

Index

A
AD1939 audio codec, 5, 42–50, 69,

70, 255–257, 268, 277, 289,
403

Audio Mini, 41, 42, 44, 46, 52, 53,
234–238, 255, 269, 404, 405

Audio Mini board, 10, 12, 41–53,
69, 255, 267, 269, 275, 277,
287, 289, 290, 318, 346, 403,
404

B
Boot ROM, 26–28

C
Coverage, 102, 103, 120, 159
Cross compiling Linux kernel,

129–135, 139–141, 289, 290,
391

Custom Hardware Register
Addressing, 89, 144, 150, 151,
380, 381, 388

Cyclone V SoC FPGA, vii, 9, 13, 23,
25–30, 34–35, 48, 51, 55, 87,
127, 129, 142, 145, 193, 197,
255, 256, 352, 353, 358

D
DE10-Nano, 9–14, 27, 34–38, 48,

51–53, 69, 84, 134, 146, 147,
154, 194, 198, 206, 231, 232,

237, 243, 250, 260, 268, 269,
288–291, 351–353, 357, 361,
362, 365, 369, 373–375, 378,
380, 387, 391, 395, 399, 403

DE10-Nano board, 12–14, 20, 21,
25, 27, 29, 33–38, 41, 42, 46,
52, 53, 55, 58, 72, 129, 140,
141, 146, 147, 154, 193–198,
202, 212–214, 217, 220,
224–234, 237–241, 243, 255,
267, 280, 287, 300, 310, 318,
346, 347, 351–354, 357–360,
363–367, 373, 379, 380, 388,
391, 396, 398, 403

Developer’s Boot Mode, 14, 25, 26,
29, 30, 198, 212–238, 357, 358

Development Landscape, 13–14
Device trees, 30, 141–148, 150–152,

246, 290–291, 395–399, 404,
408, 409, 412–414, 423–425

DSP blocks, 20–22

F
Fast Fourier Transform (FFT),

172–189, 325–344, 411–415,
419

5CSEBA6U23I7, 11, 34, 310, 352
Fourier series, 162–167, 183

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. K. Snider, Advanced Digital System Design using SoC FPGAs,
https://doi.org/10.1007/978-3-031-15416-4

427

https://doi.org/10.1007/978-3-031-15416-4

428 Index

FPGA fabric, viii, 3, 6, 7, 11, 20, 22,
23, 25, 33, 36, 42, 45, 57, 58,
69, 70, 72, 87, 116, 128, 136,
141, 143, 212, 231, 245, 246,
248, 251, 252, 255, 256, 258,
260, 262, 268, 272, 273, 287,
299–301, 307, 311, 312, 314,
316, 330, 331, 341, 351, 365,
366, 368, 369, 373, 379, 380,
384, 387, 403, 407, 419–421

G
General purpose I/O (GPIO), 20, 52,

53
Geometric interpretation of the

Fourier Transform, 167–172

H
Hanning window, 184–189, 326,

331–333, 337, 338
Hard processor system (HPS), 20, 22,

23, 25–28, 36, 48, 51, 62, 63,
65–68, 71, 73, 75, 87–89, 128,
144, 145, 148–151, 153, 192,
193, 237, 245, 246, 248, 249,
255, 256, 268, 269, 285–287,
289, 290, 305, 317–323,
343–344, 354, 368, 373, 375,
376, 379–381, 384, 385, 388,
391, 396–401, 408, 412

I
Introduction, 1–2, 5, 7, 10, 17–23,

25–30, 33–38, 41–53, 55–157,
159–189, 351, 358, 370, 404

L
LEDs Signal Tap, 370, 371
Lightweight Bridge Memory

Addressing, 87–89, 128
Linux, 3, 25, 34, 42, 55, 87, 125,

193, 245, 255, 305, 344, 347,
358, 377, 379, 385, 391, 395,
399, 404, 408, 412, 416, 423

Linux device driver, vii, 7, 48, 246,
255, 256, 289–291, 324, 344,

379, 404, 408, 412, 416,
423–425

Linux kernel module, 135–141, 246,
391–393

Linux virtual memory, 126
Loadable kernel module (LKM),

128, 129, 136–141, 148, 392,
393, 395

M
Memory, 8, 19, 26, 35, 62, 87, 95,

125, 173, 202, 271, 299, 330,
371, 379, 385, 391, 423

Memory Management Unit (MMU),
28, 126–128

N
Network File System (NFS), 14, 25,

29, 30, 198, 212–213,
224–227, 232–234, 238, 240,
241, 357, 358, 362, 381, 388

P
Physical memory, 89, 91, 125, 127,

128, 136, 379–381, 385, 391
Platform Designer, 47, 48, 61–69,

71–73, 75, 87, 88, 90, 91, 144,
145, 150–154, 192, 257, 258,
260, 268–288, 317–323,
343–344, 373–380, 382–384,
399, 408, 412, 419, 420, 423

Platform device driver, 148–157,
399–401

Power-up, 20, 25, 26, 47, 48, 50–52,
57, 64, 65, 141, 154, 212, 232,
249, 289, 320, 338, 384, 387

Preloader, 26–30
Prerequisites, 7–8, 346
PuTTY, 13, 141, 193–196, 232, 237,

241, 243, 358–361

Q
Quartus file types, 56–57, 352
Quartus IP, 78–87, 95, 261, 269
Quartus Prime, 13, 55–87, 351, 352
Quartus ROM IP, 78–87, 112–123

Index 429

R
Register settings, 42, 48–50, 52, 289
Resources, 8, 19, 22, 34, 58, 299,

308, 312, 314, 316, 330, 341,
352

S
Sampling theorem, 159–161
Settings, 12, 25, 37, 42, 57, 102, 136,

176, 195, 268
Ship boot mode, 14, 25, 26, 29, 30,

36, 198, 232
SoC FPGAs, vii, viii, 2–7, 9–11, 13,

22–23, 25–30, 33, 34, 42, 87,
88, 93, 130, 145, 147, 192,
212, 228, 268, 269, 287, 290,
352, 358, 385

System Console, 56, 61, 69–77,
89–92, 192, 245, 318, 323,
344, 379–385, 408, 412, 420,
421

System Console Register
Addressing, 91

Systemd, 30, 291, 404

T
Test vectors, 95–97, 100–104, 107,

108, 110–113, 117, 120, 121
TFTP, 29, 58, 147, 148, 212–214,

220–224, 227, 232–234, 237,
357, 358, 362, 396

TPA6130A2 headphone amplifier,
51, 52, 255, 289–290

Translation Lookaside Buffer (TLB),
126–128

U
U-boot, 26, 28–30, 36, 57, 58, 129,

135, 141, 210, 220, 223, 227,
232–237, 244, 358

Ubuntu, 13, 38, 55, 129, 198,
201–221, 225, 347

Ubuntu VM, 13, 14, 25, 130, 147,
154, 197–227, 232–235,
237–243, 289–291, 347–349,
357–360, 388

V
Verification, 83, 93–124, 329,

339–341, 348, 349, 354,
358–360, 363, 366, 367, 371,
372, 375, 376, 381–384,
388–389, 392, 393, 396–398,
400, 401, 404–409, 412, 414,
417, 418, 420–421, 424, 425

VHDL testbench, 97, 99–102, 116,
117, 305

VirtualBox, 13, 198, 201–209, 211,
213–216, 347, 361

W
Windows 10, 8, 9, 13, 55, 197,

199–200, 202, 204, 207, 213,
215, 227–229, 347

Window trade-offs, 185–189

	Preface
	Acknowledgments
	Contents
	Listings
	Acronyms
	Part I Introductions
	1 Preliminaries
	1.1 About This Book
	1.1.1 GitHub Repository

	1.2 Why Learn About SoC FPGAs?
	1.2.1 Further Reading

	1.3 Prerequisites
	1.3.1 Prior Hardware Knowledge
	1.3.2 Prior Software Knowledge

	1.4 Hardware Needed
	1.4.1 Laptop
	1.4.2 DE10-Nano FPGA Board
	1.4.3 Audio Board
	1.4.4 Miscellaneous Hardware

	1.5 Software Needed
	1.6 The Development Landscape
	References

	2 Introduction to System-on-Chip Field Programmable Gate Arrays
	2.1 The Digital Revolution
	2.2 Basic FPGA Architecture
	2.2.1 External I/O
	2.2.2 Logic Elements
	2.2.3 Memory
	2.2.4 DSP Blocks

	2.3 SoC FPGA Architecture
	References

	3 Introduction to the SoC FPGA Boot Process
	3.1 Cyclone V SoC FPGA Boot Process
	3.1.1 Boot Step 1: Power-Up or Reset
	3.1.2 Boot Step 2: Boot ROM
	3.1.3 Boot Step 3: Preloader
	3.1.4 Boot Step 4: U-boot
	3.1.5 Boot Step 5: Linux
	3.1.6 Boot Step 6: Application

	References

	4 Introduction to the DE10-Nano Board
	4.1 DE10-Nano Board
	4.1.1 Determining DE10-Nano Board Revision
	4.1.2 DE10-Nano Information
	4.1.3 DE10-Nano Cyclone V SoC FPGA
	4.1.4 DE10-Nano Configuration Mode Switch Setting

	References

	5 Introduction to the Audio Mini Board
	5.1 Top Level Block Diagram
	5.2 Analog Audio Input
	5.3 AD1939 Audio Codec
	5.3.1 AD1939 Serial Data Port
	5.3.1.1 Data to the FPGA from the AD1939 ADC
	5.3.1.2 Data to the AD1939 DAC from the FPGA
	5.3.1.3 AD1939 FPGA Data Interfacing

	5.3.2 AD1939 SPI Control Port
	5.3.2.1 AD1939 Register Settings

	5.4 Headphone Analog Audio Output
	5.4.1 TPA6130A2 I2C Interface
	5.4.1.1 TPA6130A2 Register Settings

	5.5 DE10-Nano FPGA Connections
	References

	6 Introduction to Intel Quartus Prime
	6.1 Intel Quartus Prime Lite Edition
	6.1.1 Installing Windows for Subsystem for Linux (WSL)
	6.1.2 Download and Install Intel's Quartus Prime Lite
	6.1.3 Quartus File Types
	6.1.4 Converting Programming Files
	6.1.5 Timing
	6.1.6 Learning Quartus

	6.2 Platform Designer
	6.2.1 Creating an Avalon Memory-Mapped Interface
	6.2.1.1 Creating Component Registers

	6.2.2 Creating a Custom Platform Designer Component
	6.2.3 Creating an Avalon Streaming Interface

	6.3 System Console
	6.3.1 The General Flow for Using System Console
	6.3.2 Modifying the Design in Platform Designer
	6.3.3 Using System Console
	6.3.4 Summary of System Console Commands

	6.4 Creating IP in Quartus
	6.4.1 Creating a ROM IP Component
	6.4.1.1 Creating the ROM Memory Initialization File
	6.4.1.2 Creating the ROM IP

	References

	7 Introduction to Memory Addressing
	7.1 The View of Memory from the ARM CPUs and Platform Designer
	7.1.1 Memory Addressing for Registers on the HPS Lightweight Bus

	7.2 The View of Memory from System Console
	Reference

	8 Introduction to Verification
	8.1 Design Assumptions
	8.1.1 Synchronous Designs
	8.1.2 Hierarchical Designs
	8.1.3 VHDL Code Formatting

	8.2 Verification
	8.2.1 Why Verify?
	8.2.2 Verification Process

	8.3 Verification Example 1: File I/O
	8.3.1 VHDL File to Verify: my_component1.vhd
	8.3.2 VHDL Testbench File: my_component1_tb.vhd
	8.3.3 Creating Test Vectors with Matlab Script my_test_vectors1.m
	8.3.4 Computing the Results with Matlab Function my_component1.m
	8.3.5 Performing Verification with the Matlab Script my_verification1.m
	8.3.6 Running the Example 1 Verification

	8.4 Verification Example 2: Using a Quartus ROM IP Component
	8.4.1 VHDL File to Verify: my_component2.vhd
	8.4.2 VHDL Testbench File: my_component2_tb.vhd
	8.4.3 Creating Test Vectors with Matlab Script my_test_vectors2.m
	8.4.4 Computing the Results with Matlab Function my_component2.m
	8.4.5 Performing Verification with the Matlab Script my_verification2.m
	8.4.6 Running the Example 2 Verification

	8.5 Homework Problems

	9 Introduction to Linux
	9.1 The Linux View of Memory
	9.2 Cross Compiling the Linux Kernel
	9.2.1 Packages Needed
	9.2.2 Get the Linux Source Repository and Select the Git Branch
	9.2.3 Configuring the Kernel
	9.2.4 Cross Compiling the Kernel

	9.3 Kernel Modules
	9.3.1 Loadable Kernel Modules
	9.3.2 Cross Compiling the Kernel Module
	9.3.3 Inserting the Kernel Module into the Linux Kernel

	9.4 Device Trees
	9.4.1 Device Tree Basics
	9.4.2 Device Tree Hierarchy
	9.4.3 Creating a Device Tree for Our DE10-Nano System

	9.5 Platform Device Driver
	9.6 Steps for Creating a Platform Device Driver for Your Custom Component in Platform Designer
	9.6.1 Testing the Platform Device Driver

	9.7 List of Linux Commands
	References

	10 Introduction to Digital Signal Processing
	10.1 Sampling
	10.2 Fourier Series
	10.3 Geometric Interpretation of the Fourier Transform
	10.4 The Fast Fourier Transform (FFT)
	10.4.1 The Discrete Time Continuous Frequency Fourier Transform
	10.4.2 The Discrete Fourier Transform
	10.4.3 FFT

	10.5 Practical Considerations When Using the FFT
	10.5.1 Windowing
	10.5.2 Window Length
	10.5.3 Window Edge Effects
	10.5.4 Window Trade-Offs

	References

	Part II SoC FPGA System Development
	11 Development Environment Setup
	11.1 Software Setup
	11.1.1 Setting up a PuTTY Terminal Window in Windows to Communicate with Linux on the DE10-Nano Board
	11.1.1.1 Finding the COM Port Assigned by Windows
	11.1.1.2 PuTTY Setup

	11.1.2 VirtualBox Ubuntu Virtual Machine Setup
	11.1.2.1 Overview
	11.1.2.2 Enable Virtualization in Your PC's BIOS
	11.1.2.3 Download VirtualBox
	11.1.2.4 Download Ubuntu
	11.1.2.5 VirtualBox Installation
	11.1.2.6 Setting up Ubuntu in VirtualBox
	11.1.2.7 Install and Configure Needed Software in the Ubuntu VM
	11.1.2.8 Configure VirtualBox
	11.1.2.9 Give Yourself Permission to Access Shared Folders in Ubuntu VM
	11.1.2.10 Install More Software in Ubuntu VM
	11.1.2.11 Testing the Ubuntu VM by Compiling ``Hello World''

	11.1.3 Developer's Boot Mode Setup
	11.1.3.1 Install the USB Ethernet Adapter
	11.1.3.2 Network Configuration in the VirtualBox Manager
	11.1.3.3 Network Setup in the Ubuntu VM
	11.1.3.4 TFTP Server Setup in the Ubuntu VM
	11.1.3.5 NFS Server Setup in the Ubuntu VM
	11.1.3.6 Reimaging the microSD Card with the Developer's Image
	11.1.3.7 DE10-Nano Board Switch Settings
	11.1.3.8 Setting U-boot Variables on the DE10-Nano Board to Boot via NFS/TFTP
	11.1.3.9 Setting Up the Audio Mini Passthrough Example
	11.1.3.10 Running the Audio Mini Passthrough Example

	11.1.4 Cross Compiling ``Hello World''
	11.1.4.1 Configure and Set up the Linaro GCC ARM Tools in Ubuntu VM
	11.1.4.2 Manual Cross Compilation of Hello World
	11.1.4.3 Makefile Cross Compilation of Hello World

	11.2 List of U-boot Commands
	References

	12 Creating a LED Pattern Generator System
	12.1 LED_Patterns Component
	12.1.1 LED_Patterns Entity
	12.1.2 Functional Requirements for LED_Patterns
	12.1.2.1 State Machine
	12.1.2.2 Conditioning the Push-Button Signal

	12.1.3 Suggested Architecture

	12.2 Homework Problems

	Part III SoC FPGA System Examples
	Example 1 Audio FPGA Passthrough
	1.1 Audio Passthrough System Overview
	1.2 Audio Data Streaming
	1.2.1 I2S to Avalon Streaming Data Conversion
	1.2.1.1 Serial to Parallel Conversion
	1.2.1.2 Avalon Streaming Output Interface
	1.2.1.3 Avalon Streaming Input Interface
	1.2.1.4 Parallel to Serial Conversion
	1.2.1.5 Serial Data Multiplexing
	1.2.1.6 Clocking

	1.3 Quartus Passthrough Project
	1.4 Platform Designer
	1.4.1 Creating the AD1939 Platform Designer Component
	1.4.2 Creating a Platform Designer Subsystem for the AD1939
	1.4.3 Creating the Platform Designer Passthrough System
	1.4.3.1 Adding the AD1939 Subsystem
	1.4.3.2 Adding the SPI and I2C Interfaces to the hps Component

	1.4.4 Generating the Platform Designer System
	1.4.4.1 Platform Designer soc_system Entity and Port Map
	1.4.4.2 Hooking Up the soc_system_passthrough System in the Top Level

	1.5 Linux Device Drivers
	1.5.1 Linux SPI Device Driver for the AD1939 Audio Codec
	1.5.2 Linux I2C Device Driver for the TPA6130A2 Headphone Amplifier
	1.5.3 Linux Device Tree
	1.5.4 Loading the Linux Device Drivers on Boot

	Example 2 Feedforward Comb Filter System
	2.1 Overview
	2.1.1 Feedback Comb Filter
	2.1.2 Comb Filter Uses

	2.2 Simulink Model
	2.2.1 Overview of the Simulink Model Files
	2.2.2 Simulink Common Files
	2.2.3 Model Specific Files

	2.3 Creating the Simulink Model
	2.4 VHDL Code Generation Using Simulink's HDL Coder
	2.4.1 Common Model Errors
	2.4.2 Simulink Setup for HDL Coder
	2.4.3 HDL Workflow Advisor
	2.4.3.1 Clocking
	2.4.3.2 Generating VHDL Code
	2.4.3.3 VHDL Files

	2.5 HPS Integration Using Platform Designer
	2.5.1 Hardware Integration Steps
	2.5.2 Quartus Project Setup
	2.5.3 Creating the Platform Designer Component
	2.5.4 Importing combFilterProcessor into Platform Designer
	2.5.5 Testing the combFilterProcessor Using System Console
	2.5.6 Quartus Project Cleanup

	2.6 Linux Device Driver
	References

	Example 3 FFT Analysis Synthesis System
	3.1 Overview
	3.1.1 Frequency Domain Processing

	3.2 Simulink Model Files
	3.3 Creating the Simulink Model
	3.3.1 Analysis
	3.3.2 Simulink Logic Analyzer
	3.3.3 Frequency Domain Processing
	3.3.4 Synthesis
	3.3.5 Verification
	3.3.6 System Latency

	3.4 VHDL Code Generation Using Simulink's HDL Coder
	3.5 HPS Integration Using Platform Designer
	3.5.1 Hardware Integration Steps
	3.5.2 Testing the fftAnalysisSynthesisProcessor Using System Console

	3.6 Linux Device Driver
	Reference

	Part IV Labs
	1 Setting Up the Ubuntu Virtual Machine
	1.1 Items Needed
	1.2 Lab Steps
	1.3 Demonstration
	1.4 Deliverables
	1.4 Sign-off Sheet

	2 Hardware Hello World
	2.1 Items Needed
	2.2 Lab Steps
	2.3 Demonstration
	2.4 Deliverables
	2.4 Sign-off Sheet

	3 Developer's Setup
	3.1 Items Needed
	3.2 Lab Steps
	3.3 Demonstration
	3.4 Deliverables
	3.4 Sign-off Sheet
	3.5 Common Problems and Solutions
	3.5.1 Problem: Serial Connection to DE10-Nano in PuTTY (Or Similar) is Not Working
	3.5.2 Problem: DE10-Nano Cannot Connect to the Virtual Machine
	3.5.3 Problem: Virtual Machine Does Not Boot
	3.5.4 Problem: DE10-Nano Cannot Download Files from TFTP Server
	3.5.5 Problem: No Internet Connection in Virtual Machine
	3.5.6 Problem: DE10-Nano Fails to Mount the Rootfs Over NFS, Resulting in a Kernel Panic
	3.5.7 Problem: You Tried to Copy a File to a Directory, but the Directory Shows up as a File
	3.5.8 Problem: Copying a File Results in a Permission/Access Denied Error
	3.5.9 Problem: Running a Makefile or Similar Results in a Permission/Access Denied Error
	3.5.10 Problem: I Get an ``altera_load: Failed with Error Code -4'' When Booting Up My Board

	4 LED Patterns
	4.1 Items Needed
	4.2 Lab Steps
	4.3 Demonstration
	4.4 Deliverables
	4.4 Sign-off Sheet
	4.5 Common Problems and Solutions
	4.5.1 Problem: Hardware State Machine Works When Reset Is Held Down
	4.5.2 Problem: Hardware State Machine Only Displays the Switch State, Not the Patterns
	4.5.3 Problem: Nothing Works
	4.5.4 Problem: I Cannot Program the Board

	5 Signal Tap
	5.1 Items Needed
	5.2 Lab Steps
	5.3 Demonstration
	5.4 Deliverables
	5.4 Sign-off Sheet

	6 Creating a Custom Hardware Component in Platform Designer
	6.1 Items Needed
	6.2 Lab Steps
	6.3 Demonstration
	6.4 Deliverables
	6.4 Sign-Off Sheet
	6.5 Common Problems and Solutions
	6.5.1 Problem: Error Generating System with Platform Designer or Compiling the System in Quartus

	7 Verifying Your Custom Component Using System Console and /dev/mem
	7.1 Items Needed
	7.2 Lab Steps
	7.3 Demonstration
	7.4 Deliverables
	7.4 Sign-Off Sheet
	7.5 Common Problems and Solutions
	7.5.1 Problem: Hardware State Machine Keeps Running the LEDs After Setting HPS_LED_control to a 1 (Software Control Mode)
	7.5.2 Problem: The Values Written to Registers Do Not Show Up
	7.5.3 No JTAG Masters Show Up in System Console
	7.5.4 Downloading the Bitstream When the Programmer Fails

	8 Creating LED Patterns with a C Program Using /dev/mem in Linux
	8.1 C Program Requirements
	8.2 Items Needed
	8.3 Lab Steps
	8.4 Demonstration
	8.5 Deliverables
	8.5 Sign-off Sheet

	9 Linux Kernel Module Hello World
	9.1 Items Needed
	9.2 Lab Steps
	9.3 Demonstration
	9.4 Deliverables
	9.4 Sign-Off Sheet

	10 Modifying the Linux Device Tree
	10.1 Items Needed
	10.2 Lab Steps
	10.3 Demonstration
	10.4 Deliverables
	10.4 Sign-off Sheet

	11 Creating a Platform Device Driver for the HPS_LED_Patterns Component
	11.1 Items Needed
	11.2 Lab Steps
	11.3 Demonstration
	11.4 Deliverables
	11.4 Sign-off Sheet

	12 Implementing the Passthrough Project
	12.1 Items Needed
	12.2 Lab Steps
	12.3 Demonstration
	12.4 Deliverables
	12.4 Sign-off Sheet

	13 Implementing the Comb Filter Project
	13.1 Items Needed
	13.2 Lab Steps
	13.3 Demonstration
	13.4 Deliverables
	13.4 Sign-off Sheet

	14 Implementing the FFT Analysis Synthesis Project
	14.1 Items Needed
	14.2 Lab Steps
	14.3 Demonstration
	14.4 Deliverables
	14.4 Sign-off Sheet

	15 Creating Your Sound Effect in Simulink
	15.1 Items Needed
	15.2 Lab Steps
	15.3 Demonstration
	15.4 Deliverables
	15.4 Sign-off Sheet

	16 Implementing Your Sound Effect in the FPGA Fabric
	16.1 Items Needed
	16.2 Lab Steps
	16.3 Demonstration
	16.4 Deliverables
	16.4 Sign-off Sheet

	17 Writing a Linux Device Driver to Control Your Sound Effect Processor
	17.1 Items Needed
	17.2 Lab Steps
	17.3 Demonstration
	17.4 Deliverables
	17.4 Sign-off Sheet

	Index

