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Preface

This textbook arose out of my experiences teaching computer engineering and elec-
trical engineering courses at Montana State University (MSU). Field Programmable
Gate Arrays (FPGAs) are digital devices that have been around since the 1980s
and are accessible to students, allowing them to create their own custom hardware
without the prohibitive expense of creating a custom ASIC or digital chip. FPGAs
started as tiny devices where they functioned as “glue” logic, but they have grown
to be among the largest digital devices today. As FPGAs grew larger, they started
absorbing all sorts of logic functions, including a complete ARM based computer
system, i.e., a System-on-Chip (SoC). SoC FPGAs are ideal devices for teaching
computer engineering since in the same chip you can create custom hardware in the
FPGA fabric and develop software that runs on the ARM CPUs. This allows students
to gain a system level understanding of how computers work. They gain this system
level knowledge by first creating their own custom hardware in the FPGA fabric
and then controlling their hardware by writing a Linux device driver and associated
application software. It has been quite satisfying seeing the excitement in student’s
faces when they finally understand how hardware and software interact.

I also teach the Digital Signal Processing course at MSU, and FPGAs and DSP
go well together. DSP is an important application area of FPGAs, and the highest
performing DSP is done in FPGAs. This is because there can be thousands of
multipliers running in parallel in the FPGA fabric. Not only that, the programmable
I/O of FPGAs allow data to be piped directly to the FPGA fabric, get processed, and
then piped directly back out. This allows these devices to have the lowest processing
latency of any digital device. FPGAs have lower processing latency than CPUs and
GPUs due to this custom I/O.

The focus on audio signal processing is a result of my background in auditory
neuroscience. Before coming to MSU, I completed a postdoctoral fellowship at
Johns Hopkins University in the Laboratory of Auditory Neurophysiology under the
direction of Xiaoqin Wang. Thus I’m interested in how the brain processes sound
and of course the practical aspects of audio processing using FPGAs. The processing
and bandwidth requirements of audio processing fit well within the constraints of
the low-cost Cyclone V SoC FPGA family, making audio processing an accessible
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application area for students. A NIH grant for creating a platform for open speech
signal processing was instrumental in developing the audio board targeted in the
book. Thus a natural outcome was to have students create their own real-time sound
effects processor. This has been very motivating for students.

The culmination of my experiences in FPGAs, DSP, auditory neuroscience, and
teaching is this textbook. It is an integrated hardware/software approach to audio
signal processing using SoC FPGAs. SoC FPGAs allow the merging of what has
typically been the siloed areas of computer hardware and software. This textbook is
my attempt at merging these two areas while creating an audio system that students
have fun creating and playing with.

Montana State University
Bozeman, Montana

Ross K. Snider

July 1, 2022
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Part I
Introductions



2 I Introductions

Digital system development using SoC FPGAs is complicated since it covers a
lot of ground. The topics include hardware, software, and tool chains. Furthermore,
all of these areas are constantly changing. The aim of this introductory section is to
give brief introductions of the material in each of these areas that students should
know in order to build a working system. Students typically have not been exposed
to all these areas that are needed to develop SoC FPGA systems, so introductions to
all these areas are provided.



Chapter 1 ®
Preliminaries Checkcfor

1.1 About This Book

This book covers a lot of ground that is constantly shifting. Hardware is constantly
changing, software is always being updated, toolchains are always being improved,
and development methodologies change over time. So yes, this book is likely to be
out of date as soon as it is “printed.” So why bother with this book? There are three
primary reasons:

Reason 1: Students gain a system level view of computers where they see how
hardware and software interact.

Reason 2: System-on-Chip (SoC) Field Programmable Gate Arrays (FPGAs)
are an ideal platform for teaching hardware and software interactions
and low cost SoC FPGA s are affordable for students.

Reason 3: Students get jobs. Students have reported great feedback in their job
interviews. They report that being able to explain how they created
their own custom hardware in the FPGA fabric and being able to
explain how they wrote their own device drivers in Linux have im-
pressed interviewers from some very large companies.

This book takes the you do not understand it until you build it approach to student
learning. This means that the labs in the book are the central focus of the book. It
is the process of building a complete computer system that cements the various
elements together. The chapters exist to support the labs and provide background
information that is needed for completion of the labs.

The choices of hardware, software, and methods are all the fault of the author.
In defense of these choices, the author will argue that in computer science, if there
are choices to be made, they will all be made. This means that one needs to be
familiar with the various approaches that exist and pragmatic when it comes to a
particular choice. Ultimately, a choice has to be made and this book reflects the
biases of the author. Are there better ways? Yes, and this will always be the case in
a field that is moving quickly and constantly changing. This book reflects a current
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snapshot in time with no claim that it is the optimal way of doing things. However,
it does accomplish the goal of creating a system-level understanding of computers
for students in spite of the fact that one can quibble about the particular choice of
hardware, software, or target application.

1.1.1 GitHub Repository

The GitHub repositories associated with the book are listed in Table 1.1.

Table 1.1: GitHub book repositories

Book repository link Description
ADSD-SoC-FPGA Primary GitHub site for the book
Code Code repository

Update repository. It is anticipated that material in the book
will constantly be changing due to advances in hardware,
software, toolchains, and methodologies, so check here for
updates. Note: If something does not work, make sure that
you are using the same version of software that the book
Updates used. There are no guarantees that newer versions of soft-
ware or toolchains will work the same way. In fact, using
the latest versions of software or toolchains is a good way
to break things, so you are on your own if you choose to use
different versions than what the book uses. Always expect
to have toolchain fights when you upgrade to a new version

1.2 Why Learn About SoC FPGAs?

Why do we learn about System-on-Chip (SoC) Field Programmable Gate Arrays
(FPGASs)? In short, SoC FPGAs are extremely flexible digital devices that allow you
to create custom hardware for embedded computing systems with high performance,
high bandwidth, and low deterministic latency.

Computer engineering is a discipline about creating systems using computers for
aparticular purpose. This includes creating both custom hardware and software. Cre-
ating custom hardware is what distinguishes computer engineering from computer


https://github.com/ADSD-SoC-FPGA
https://github.com/ADSD-SoC-FPGA/Code
https://github.com/ADSD-SoC-FPGA/Updates

1.2 Why Learn About SoC FPGAs? 5

science. A rough dividing line between computer engineering and computer science,
painted with a broad stroke, is the operating system on a computer. Computer engi-
neering is concerned primarily with everything below the operating system, down
to the hardware circuits, and how the computer interfaces to the physical world and
other systems. Computer science is concerned about what is theoretically possible,
about abstracting computers to make them easier to use, and creating languages with
the right amount of useful abstractions for a particular purpose. And while we are
painting in broad strokes, engineers are the people who make science useful.

In a fantasy world where cost is of no concern, one would create a custom
chip, known as an application-specific integrated circuit (ASIC), for each product
developed. However, creating a custom SoC chip that is ideal for a single purpose
and that is fabricated using a 7 nm process will cost you hundreds of millions of
dollars [1, 2]. This means that creating ASICs that use a leading edge fab process is
only economical if you have a large market that supports it. This is because you can
spread the non-reoccurring engineering (NRE) development costs over millions of
units.

If your target market does not justify rolling an ASIC and you have multi-
ple customers needing the same functionality, you then create what is known as
an application-specific standard product (ASSP). An example of an ASSP is the
AD1939 audio codec! from Analog Devices [3] that we use to acquire and play au-
dio signals as explained in Chap. 5. Analog Devices markets this chip to customers
who need to convert audio signals from analog to digital and then back to analog.
This works well for customers like us who need an audio codec but do not have the
deep pockets to fund the infrastructure and expertise to create a mixed-signal audio
design. It is challenging to put both digital and analog systems on the same chip
since one has to keep the noisy digital system from injecting noise into the analog
system.

However, what if you want to develop a custom computer hardware system but
do not want the cost and development effort associated with developing ASICs or
ASSPs? A typical choice is to use the familiar CPU to create your system. CPUs
range from cheap microcontrollers where 28.1 billion of them were shipped in 2018
with an average selling price of $0.63 [4] to high-end CPUs such as the Intel Xeon
8180M that cost $13K at introduction [5].

! Codec stands for coder-decoder, where the coder is an analog-to-digital converter (ADC) and the
decoder is a digital-to-analog converter (DAC).
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Fig. 1.1: Digital Hardware Devices. ASICs and ASSPs allow great flexibility for
creating custom systems but are very expensive to develop. Microcontrollers are
very cheap but are limited in their performance and flexibility. FPGAs take the
middle ground where the FPGA fabric is programmable, which allows one to create
custom hardware without the costs associated with ASICs and ASSPs

When using a CPU, customization is limited to what can be done in software. If
you want to develop custom hardware, but without the costs associated with ASICs
and ASSPS, this is where FPGAs come into play. FPGAs allow the development of
custom hardware, but the NRE for developing the FPGA device has already been
spread over thousands of FPGA customers.

What are the advantages of FPGAs compared to CPU systems? FPGAs have a
programmable hardware fabric and custom I/O. This allows data to enter and exit
the device with very low latency. The programmable fabric allows the creation of a
custom data plane that gives high performance. An example of this is the creation of
a custom interface and data plane for audio processing that we create in this book.

What are the disadvantages of FPGAs compared to CPU systems? FPGAs are
much harder and take longer to develop. One needs to be familiar with computer
architecture and low-level hardware description languages. When designing FPGA
logic, one has to have a pretty good idea how the logic will be implemented in the
FPGA fabric and what fabric building blocks will be used. If not, the design will be
non-optimal and the design will not fit well in the device. Another disadvantage is
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cost. You will not be using an FPGA for the new toaster oven design that can make
use of a cheap micro-controller.

SoC FPGAs are ideal devices for learning computer engineering. In one device
you can create custom hardware in the FPGA fabric, create Linux device drivers for
your custom hardware, and then control the hardware from a software application in
Linux. It allows you to understand how hardware and software interact and how to
start thinking about hardware—software co-design where you partition up tasks that
are best implemented in hardware and tasks that are best implemented as software.
Understanding this system-level design will provide you with computer engineering
skills that are in high demand. Knowing how hardware works is a great foundation for
being a software developer, which is highlighted in the Alan Kay quote [6] “People
who are really serious about software should make their own hardware.”

1.2.1 Further Reading

A good introduction to FPGAs for those that are new to them is the ebook FPGAs
for Dummies [7].

1.3 Prerequisites

The material covered in this textbook is quite broad, which means that the student
should already be familiar with the topics listed below. As an analogy, we are
starting out on an expedition to climb a mountain peak and the expedition requires
that the expedition members, while not having direct experience climbing mountain
peaks themselves, are familiar with camping, starting fires, and cooking outdoors,
even when the weather is uncertain and could end up dismal and raining. However,
summiting a peak on a clear sunny day where the vista stretches for miles makes the
effort to get there all worth it. Being familiar with the topics below will ensure that
you are OK camping in the woods by yourself.

1.3.1 Prior Hardware Knowledge

It is assumed that you are familiar with basic digital electronics and computer
architecture as sketched below.

* Basic Logic Gates that includes CMOS logic and how NAND and NOR gates
are used to construct digital logic. How these logic gates are used in both
combinational and sequential logic designs. How numbers are represented in
digital systems such as 2’s complement numbers?
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* Basic Digital Components that includes encoders/decoders, multiplexers, flip-
flops, registers, adders, multipliers, finite state machines, etc.

* Basic Computer Architecture that includes memory (SRAM and DRAM),
FIFOs, data path, pipelining, I/O, control, etc.

1.3.2 Prior Software Knowledge

It is assumed that you are familiar with basic programming concepts and have been
exposed to the following three languages. Other languages used will be described as
we use them (e.g., Python, TCL).

e VHDL, which is a hardware description language. This includes the std_logic_
vector data type, entity, architecture, concurrent statements, processes, the ris-
ing_edge function, if/else and case control statements, etc. A recommended text
for this subject matter is The Designer’s Guide to VHDL by Peter Ashenden [8].

e C, which is widely used in embedded systems and in the Linux kernel. There
are many online resources that can be uncovered by a quick “C tutorial” Google
search.

* Matlab, which is the environment that we will use to create our audio processing
systems. We will also use Simulink for creating our data plane models. A
recommended resource for Matlab and Simulink is the Matlab Onramp [9] and
Simulink Onramp [10].

1.4 Hardware Needed

The hardware needed for this book is listed in the following sections. The hardware
was chosen so that students could purchase their own boards and hardware at minimal
cost, which allows them to develop in their own room rather than having to go to
a laboratory to use an FPGA board. The majority of students have laptops with
Windows 10 installed as the operating system, so this is the PC configuration taken
in this book. It is possible to use Linux as the operating system on your laptop or
computer, but we will not take this approach. It is assumed that if a user already has
Linux running on their laptop, then they are already capable of configuring Linux
and installing software on their own if they choose to do so. And, if they have trouble,
it is assumed that they are capable of figuring out their own Linux solutions.
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1.4.1 Laptop

It is expected that students have their own laptop (or desktop computer) with the
following capabilities:

Windows 10 Operating System. Using another operating system is possible,
but you are on your own if you choose to do so. This textbook assumes you are
using Windows 10 on your laptop or desktop computer.

8 GB of RAM (ideally 16 GB). Currently, 8 GB is the most common RAM size
that you will find in laptops, which is adequate for the projects in this textbook.
If you have less, it is still possible, but your computer will run slower, especially
when using a virtual machine.

Wi-Fi. You will need to connect to the Internet and practically all laptops come
with Wi-Fi, so you should be good on this front.

Two USB Ports. You will need two USB ports on your laptop to connect to two
different connections on the FPGA board. One USB port will be used to program
the FPGA via JTAG, and the other USB port will be used with a terminal window
when booting Linux on the SoC FPGA. If you do not have two USB ports, get
a USB adapter for your laptop that has two USB ports and an Ethernet port.
Ethernet Port. You will need an Ethernet port that is in addition to the Internet
Wi-Fi connection on your laptop. This is because you will be connecting to the
FPGA board using an Ethernet cable. Some laptops do not have an Ethernet
port with an RJ45 jack, so if this is your case, you will need to get an Ethernet
adapter for your laptop. If you need to get an Ethernet adapter, get an adapter
that has at least two USB ports as well.

1.4.2 DE10-Nano FPGA Board

The FPGA board that is used by this textbook is the DE10-Nano Kit produced by
Terasic (www.terasic.com) that contains an Intel Cyclone V SoC FPGA. The reason
this board was chosen was because it was the lowest cost SoOC FPGA board making it
possible for students to get their own board. It provides great value because it contains
the largest SoC FPGA (110K LEs) in the low cost FPGA category. A comparison to
other low cost SoC FPGA boards can be seen in Table 1.2, where it can be seen that
(at the time of this writing) the DE10-Nano had the best value (Fig. 1.2).
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Fig. 1.2: The Terasic DE10-Nano SoC FPGA board is the FPGA board used by this
textbook. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&
CategoryNo=167&No=1046

1.4.3 Audio Board

The real-time system that students develop in this textbook targets audio signal
processing. Since there was no audio codec on the DE10-Nano, nor was there an
audio card available, a high fidelity audio board was created for the DE10-Nano.
This audio board contains a 24-bit audio codec (Analog Devices AD1939) that can
sample up to 192 kHz. Further information on how this audio board was designed
and how it can be used is found in Chap. 5 Introduction to the Audio Mini Board.
The audio board is shown in Fig. 1.3 and can be purchased from SensorLogic (Audio
Mini Link).

1.4.4 Miscellaneous Hardware

Some additional hardware will need to be purchased as well:

e microSD Card. The DE10-Nano SoC FPGA board comes with a microSD card
that allows it to boot Linux. We will be creating our own version, so you will
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Fig. 1.3: Audio Mini Board that plugs into the DE10-Nano and contains a 24-bit
audio codec (Analog Devices AD1939) that can sample up to 192 kHz

need another microSD card so that you can always plug the factory default image
back into the DE10-Nano board. Any size greater than 8 GB is fine. Currently,
a 32 GB is practically the same cost as an 8 GB, so you might as well get the
32 GB microSD card. You can always allocate the extra space to the Linux root
file system on the DE10-Nano.

* microSD Card Reader. You will need a USB microSD Card Reader so that
you can read/write the microSD card and modify the card images.

* Type A to Mini-B USB Cable. The DE10-Nano kit comes with one Type A to
Mini-B USB Cable, but we will be using both Mini-B ports on the DE10-Nano,
so having an extra cable will be more convenient.

* Ethernet Cable. A short Ethernet cable, ~1 foot (or longer), to connect the
DE10-Nano board to your laptop.

1.5 Software Needed

The following software will be used in this textbook. Most of the software is free
or there are free commercial versions with the exception of Matlab, which has a
student version that one must buy if one is not associated with an institution with a
Mathworks site license. The list below is given as an overview of the software that
will be used. Instructions for setting up the software are found in Sect. 11.1 Software
Setup.
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* Windows 10. It is assumed that the student has a Windows 10 laptop or PC and
does not have much experience with Linux.

* Windows Subsystem for Linux. Windows Subsystem for Linux (WSL) comes
in two versions, WSL 1 and WSL 2. WSL 1 (and not WSL 2) is required for
Intel’s Quartus software.

¢ VirtualBox. We will create an Ubuntu virfual machine (VM) using VirtualBox
on Windows 10.

e Ubuntu 20.04 LTS . We will install Ubuntu as a virtual machine in VirtualBox.

* Matlab and Simulink. The following toolboxes are required in Matlab:

* HDL Coder

* Matlab Coder

* Simulink Coder

* Fixed-Point Designer

* DSP System Toolbox (strongly suggested). Required for some example de-
signs.

» Signal Processing Toolbox (strongly suggested). Required for some example
designs.

e Python. Version 3.8.x or later

¢ Quartus. The free version Quartus Prime Lite Edition can be used for the
Cyclone V FPGA. Note: Quartus requires WSL 1 with Ubuntu 18.04.

* Putty. Which is a terminal emulator.

1.6 The Development Landscape

Knowing where you need to be to implement certain development steps, type software
commands, or install or run software can be confusing since we will be operating
across two different hardware platforms with two different CPU types:

Platform 1: DE10-Nano FPGA board that contains an ARM CPU inside the
Cyclone V SoC FPGA
Platform 2: Laptop or PC that contains an x86 CPU

and three operating systems:

OS 1: Windows 10 on a Laptop or PC

OS 2: Ubuntu VM, which is Ubuntu Linux running on a virtual machine in
VirtualBox that is running on Windows 10, which in turn is using an x86
CPU.

OS 3: Ubuntu ARM, which is Ubuntu Linux running on the ARM CPUs inside
the Cyclone V SoC FPGA, which is on the DE10-Nano board. Further-
more, the Root File System for Ubuntu ARM on the DE10-Nano can be
located in two different locations:
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a. On the microSD card that is inserted into the DE10-Nano board.
When Linux uses the root file system on the microSD card, this
is known as the Ship Boot Mode. This is the setup that comes
when you buy the DE10-Nano board, but it is not the setup that
you want to develop with.

b. In an Ubuntu VM folder served over Ethernet by the Ubuntu
VM NFS server. When Linux uses the root file system served by
the Ubuntu VM, this is known as the Developer Boot Mode. We
will be using this boot setup in this book because it is way more
convenient to develop with than using the ship boot mode, which
is not practical for development.

Each operating system has its own software packages, command lines, and terminal
windows. It also means that the DE10-Nano FPGA board and the Laptop/PC can
be connected in any one or in all of the following manners:

Connection 1: USB JTAG using a USB cable with a Mini-B connector plugged
into the USB Blaster port on the left side of the DE10-Nano
board. This connection is used to program the FPGA via JTAG.

Connection 2: USB UART using a USB cable with a Mini-B connector plugged
into the UART port on the right side of the DE10-Nano board.
This connection is used to create a terminal window to interact
with Linux booting on the DE10-Nano.

Connection 3: Ethernet where an Ethernet cable connects the DE10-Nano to
the Laptop/PC. This is used so that Linux can boot from the
Ubuntu VM when using the Developer Boot Mode.
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Chapter 2 )
Introduction to System-on-Chip Field S
Programmable Gate Arrays

2.1 The Digital Revolution

The digital revolution [1]has changed the course of human history. Its societal impact
has been massive as witnessed by the smartphone in everyone’s pocket. However,
we will not dwell on this topic. Instead we will focus on a digital device called a
Field Programmable Gate Array that is known by its acronym FPGA. FPGAs have
had a long history being invented in the mid-1980s as programmable digital “glue”
that could connect other digital parts together into larger systems.

The utility of FPGAs has increased over time due to Moore’s law which was a
prediction by Gordon Moore in 1965 that the number of transistors that could be put
on a silicon chip would double every year [2]. This exponential growth prediction
has turned out to be true, although the doubling time has been somewhat variable and
has been closer to two years. The historical growth in transistor count can be seen in
Fig. 2.1 where the number of transistors that can be put down on a silicon chip is still
growing at an exponential rate (top curve of orange triangles). Moore’s law is still
alive as can be seen in Table 2.1 where in 2019 Intel with their 10 nm process placed
100 million transistors in one square millimeter. Contrast this to Gordon Moore’s
projection in 1965 that they would be able to put 250,000 components in a square
inch. In the near future, Taiwan Semiconductor Manufacturing Company (TSMC)
has recently announced that they will be able to put a quarter billion transistors in a
square millimeter using their 3 nm process [3].
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Table 2.1: Transistor density of Fab Process Nodes. Data from [4, 5]

Process node Intel TSMC | TSMC Intel TSMC Intel TSMC
14 nm 10 nm 7nm 10 nm 5nm 7nm 3nm

Transistor density
(millions of transistors 37.2 52.5 91.2 100.7 171.3 237.2 291.2
per mm?)

Year 2017 2017 2018 2019 2020 2021 2022
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Fig. 2.1: Microprocessor Trend Data. CPU performance is not keeping up with
Moore’s law. Figure from [6]

What is not keeping up with Moore’s law is CPU performance as shown by the
blue circles in Fig. 2.1. Single thread performance is plateauing due to CPU clock
speeds (green squares) being limited by the amount of power that can be consumed
and dissipated in a small area (red triangles). If the transistors get too hot, they will
fail. This power dissipation limit is known as the Power Wall [7].

CPU power consumption is made up of dynamic and static power

Pcpu = PDynamic + Pstatic (2.1)

and dynamic power is comprised of the product of capacitance, voltage, and clock

frequency.
Ppynamic = CV*f (2.2)
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Capacitance governs how much charge moves each clock cycle and is reduced by
having smaller geometries, so each process node advance in Table 2.1 reduces power
consumption. The CPU core voltage is also determined by the fab process. Thus
the CPU clock frequency is typically the only parameter that can be modified after
fabrication. As a result, there is a whole industry devoted to CPU overclocking to
get better performance since CPU clock speeds can be set by the motherboard by
modifying BIOS parameters. However, power consumption is linearly tied to clock
speed in Eq. 2.2, and there is a limit to the amount of heat that can be dissipated,
which ultimately places a limit on the clock speed that can be obtained without
damaging the CPU. This is the reason that CPU clock speeds are now typically set
to around 3-4 GHz and are not increasing (unless you push the envelope and cool
your CPU with liquid nitrogen so that you can overclock it to 8.7 GHz, which is the
current record [8].)

The divergence between the transistor count curve (orange triangles) and the CPU
performance curve (blue circles) in Fig. 2.1 tells us that adding more transistors to
a CPU does not help performance much anymore. This means that the only path
forward to get more performance is to go parallel. A natural path that CPU vendors
are following is to put multiple cores in a CPU. As a result, you can see in the data
that once CPU performance started lagging (blue circles), the number of core started
picking up (black diamonds). The limit to the number of cores that can be added
to a CPU is dictated by how fast data can be moved back and forth from external
memory (e.g., DRAM) to a cache associated with a core, which is called memory
bandwidth. Unfortunately, DRAM is much slower than what a CPU can run at, so
there will become a point with too many cores where they cannot be fed data fast
enough. At this point, there will be cores that will just starve from lack of data, so
there is no point in adding these cores if the memory bandwidth cannot support
them. This memory limitation to core count is known as the Memory Wall [7].

What we have been talking about so far are issues related to CPU architectures.
There are diminishing returns when additional transistors are added to CPUs. How-
ever, are there other architecture that can easily scale with the addition of many
transistors? Yes, and I suspect that you have guessed Field Programmable Gate Ar-
rays (FPGAs). What are these devices? How do these scale differently from CPUs?

2.2 Basic FPGA Architecture

FPGAs have basic logic resources that can be connected together via programmable
switches that allow arbitrary routing between these logic resources. These logic
resources and programmable routing are referred to as the FPGA programmable
fabric. The basic logic resources are described in the following sections.
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2.2.1 External I/0

FPGAs have external pins that can be used as general purpose input/output (GP10O)
pins. These pins support a variety of voltage levels and I/O standards. FPGAs can
have as few as 128 GPIO pins (e.g., Cyclone V SCEA2) to as many as 2,304 GPIO
pins (e.g., Stratix 10 GX10M). The GPIO pins allow the FPGA fabric to be directly
connected to data sources/sinks, which allows for very low and deterministic latency
when connecting external devices to custom hardware in the FPGA fabric. The
Cyclone V on the DE10-Nano board contains 288 GPIOs pins connected to the
FPGA fabric and 181 GPIO pins connected to the HPS [9]. The DE10-Nano board
brings out almost 80 pins in its expansion headers.

2.2.2 Logic Elements

Logic functions are implemented as lookup tables that are programmed when the
configuration bitstream is loaded into the FPGA at power-up. A programmable
lookup table with eight inputs can implement an arbitrary logic function with eight
inputs where each of the 256 addressable bits is programmed as part of the config-
uration bitstream. Logic elements also include the ability to register the output and
they have dedicated circuitry to implement fast adders. FPGAs can have as few as
25,000 LEs (e.g., Cyclone V SCEA?2) to as many as ten million LEs (e.g., Stratix 10
GX10M). The Cyclone V Adaptive Logic Module (ALM) is shown in Fig.2.2 and
is equivalent to 2.5 Logic Elements (LEs) of the older 4-input lookup tables [10].

2.2.3 Memory

Memory is commonly used in the FPGA fabric, so dedicated memory blocks are
implemented that can be put together to create larger memories. They can also be
configured as dual port memories that are useful for creating circular buffers and
FIFOs. The amount of memory can be as little as 1760 kilobits (176 M10K blocks)
in the Cyclone V 5CEA2 to as much as 253 Mbits (12,950 M20K blocks) in the
Stratix 10 GX10M. An M10K block of memory contains 10,000 bits of memory
in the FPGA fabric. The Cyclone V on the DE10-Nano board contains 553 M10K
blocks of embedded memory in the FPGA fabric.

2.2.4 DSP Blocks

An application area that FPGAs are good at is Digital Signal Processing (DSP). The
general form of the difference equation in DSP is the equation
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Fig. 2.2: The Cyclone V logic element known as the Adaptive Logic Module (ALM).
The eight inputs require that the lookup table stores 256 bits of information. These
bits can then be routed and saved in four different registers. Additional logic is
contained in the ALM to create fast adders. The Cyclone V on the DE10-Nano board
contains 41,509 ALMs or 110,000 LEs. Figure from [11]
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which can make use of multipliers and adders. The Cyclone V has DSP blocks that
contain a 27 X 27 bit multiplier along with a 64-bit accumulator (adder) to implement
Multiply and Accumulate (MAC) operations. The number of DSP blocks can be as
few as 25 (e.g., Cyclone V 5CEA2) to as many as 5760 DSP blocks running in
parallel (e.g., Stratix 10 GX2800), which gives a peak performance of 23 TMACS
(fixed-point) or 9.2 TFLOPS (single-precision floating-point). The Cyclone V on
the DE10-Nano board contains 112 DSP blocks that can be used to implement FIR
filters such as the one shown in Fig.2.3. This is why FPGAs can implement high-
performance DSP operations since thousands of DSP blocks can be run in parallel
and the associated DSP coefficients and delayed signal samples can be stored locally
in FPGA memory.
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2.3 SoC FPGA Architecture

System-on-Chip (SoC) Field Programmable Gate Arrays (FPGAs) extend the basic
FPGA architecture with the logic, memory, and DSP resources described earlier with
a complete ARM based computer system. Thus it has become a complete computer
system on a chip as shown in Fig. 2.4. The FPGA Fabric allows a hardware designer
to create custom hardware that can be controlled by software running on the ARM
CPUs. The ARM computer system contains all the peripherals that you would expect
to use with a computer. The ARM CPUs along with the peripherals is known as the
Hard Processor System (HPS). It is referred to as a “hard” processor system since
the ARM CPUs and peripherals have been implemented in silicon. This is in contrast
to earlier systems that could only implement CPUs in the FPGA fabric as custom
hardware. Implementing the ARM CPUs in silicon allows the HPS to run much
faster than it could be implemented as a “soft” processor system running in the
FPGA fabric.
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Fig. 2.4: The Cyclone V SoC FPGA contains a complete ARM based computer
system with peripherals in addition to the FPGA fabric. The ARM CPUs along with
the peripherals are known as the Hard Processor System. Figure adapted from [12]
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Chapter 3

Introduction to the SoC FPGA Boot
Process

3.1 Cyclone V SoC FPGA Boot Process

This chapter covers how the Intel Cyclone V SoC FPGA gets configured when it
powers up on the DE10-Nano board. This process includes configuring the FPGA
fabric with your custom hardware and booting Linux on the ARM CPUs. The
SoC FPGA on the DE10-Nano board contains the ARM CPUs on which we will
be running the Linux operating system. This means that the boot process is more
involved than the typical FPGA that only has to load the configuration bitstream to
configure the FPGA fabric. SoC FPGAs have to boot the CPUs as well. We also
make the distinction between the following two booting scenarios:

» Ship Boot Mode. This mode is used when the SoC FPGA boots entirely from
the microSD card. It is the typical setup that is used when a product ships and
the system must be self-contained. However, this boot mode is unusable for
development.

e Developer’s Boot Mode. This mode is used when the SoC FPGA boots over
Ethernet and uses a Network File System that is served by a network server,
which in our case will be an Ubuntu Virtual Machine (VM). Changing and
modifying files is much easier done in an Ubuntu VM directory than having to
remove, image, and reinsert a microSD card. Setting up the Developer’s Boot
Mode is described in Chap. 11 Development Environment Setup (page 193).

The Cyclone V SoC FPGA has three ways to initialize both the FPGA fabric and
the ARM CPUs, also known as the Hard Processor System (HPS).

Option 1: Separate FPGA configuration and HPS booting.

Option 2: HPS boots first and then configures the FPGA fabric. This is the
option we will be using.

Option 3: HPS boots from the FPGA fabric.

The boot process has a number of steps that are listed below. These steps are
further described in their own section. The files used during the boot process and the
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file locations are noted depending on whether the boot mode is the Ship Boot Mode
or Developer’s Boot Mode.

Boot Step 1: Power-Up or Reset
Boot Step 2: Boot ROM

Boot Step 3: Preloader

Boot Step 4: U-boot

Boot Step 5: Linux

Boot Step 6: Application

3.1.1 Boot Step 1: Power-Up or Reset

The boot process begins when the SoC FPGA powers up or a CPU in the MPU
exits from the reset state. (We are assuming a cold reset, i.e., no software registers
have been preserved, which happens in a warm reset.) The boot ROM, which is 64
KB in size and hard coded into the HPS silicon and normally located at address
range OxFFFDO0O-OxFFFDFFFF, is mapped to the reset exception address that is
at address 0x0. Thus code starts running from the boot ROM, which has been
temporarily mapped to memory address 0x0 upon reset.

3.1.2 Boot Step 2: Boot ROM

Code running from the Boot ROM checks the BSEL FPGA pins (also known as
BOOTSEL), which offer multiple methods to obtain the preloader image. These
options are shown in Fig. 3.1.

Table A-1: BSEL Values for Boot Source Selection

BSEL[2:0] Value Flash Device

0x0 Reserved

0x1 FPGA (HPS-to-FPGA bridge)

0x2 1.8 V NAND flash memory

0x3 3.3 V NAND flash memory

Ox4 1.8 V SD/MMC flash memory with external
transceiver

0x5 3.3 V SD/MMC flash memory with internal
transceiver

Fig. 3.1: Boot Source Options for the Cyclone V HPS. Table from Intel Cyclone V
Hard Processor System Technical Reference Manual (p. A-6)
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If we examine the DE10-Nano schematic on sheet five as shown in Fig. 3.2, we
can see that these pins have been hard wired to the value of 5. Note that in the
schematic there are symbols for all the resistors. However, there are labels DNI next
to several of them. This stands for Do Not Install. This means that these resistors are
not to be installed during assembly of the PCB. If we look at HPS_BOOTSELDO in the
schematic, the resistor to ground has a DNI next to it, so it is not connected to ground.
Instead there is a resister connecting HPS_BOOTSELO to VCC3P3. This means that
HPS_BOOTSELDO is connected via a pull up resistor (R140) to 3.3 volts, which
makes it a logical one. HPS_BOOTSEL1 has the opposite case. It is not connected
to 3.3 volts, but instead it is connected to ground via a pull down resistor (R126),
which makes it a logical zero. HPS_BOOTSEL?2 is connected in a similar fashion
as HPS_BOOTSELO making it a logical one. Thus the BSEL pins on the DE10-
Nano board have been hard wired as Ob101 = 0x5, which means boot from a 3.3V
SD/MMC flash memory, i.e., a microSD card [1] by using the pins SDMMC_CMD,
SDMMC_DO0, and SDMMC_CLK [2]. This means that the Cyclone V SoC FPGA
on the DE10-Nano board has been designed to automatically boot from a microSD
card.

Default Setting: BOOTSEL[2:0]=101 (Boot from SD CARD)
CLKSEL[1:0] =00

VCC3P3
o
DNI R127, . A1K HPS_BOOTSELO (BOOTSELO) R140, . 10K
) R128,. " " MK L1 (BOOTSEL1) R139,.% .Y A10K DNI
DNI R125 1K HPS BOOTSEL2 (BOOT R138 10K
R124 1K HPS_SPIM_SS (CLOCKSELO) R137 10K _DNI
R123 1K HPS CLOCKSEL1 (CLOCKSEL1) R135W1DK DNI

Fig. 3.2: Schematic of boot select signals. From sheet 5 of DE10-Nano schematic

Table 3.1: Summary of boot select signal connections

Schematic name |Voltage connection|FPGA pin connection | Bank
HPS_BOOTSELO 33V 17 TA
HPS_BOOTSELL1 ov A6 7B
HPS_BOOTSEL2 33V D15 7B

Code from the Boot ROM then reads the Master Boot Record (MBR) that is
located in the first 512 bytes of the microSD card. The MBR contains information
about the partitions (address and size of partitions) on the microSD card. The MBR
is scanned for a partition with the partition type field having the value 0 x A2,
which contains the preloader image. Partition A2 is a custom raw partition with no
file system. Most partition tools (such as Windows) will consider this an unknown
partition type.

The Boot ROM Code then loads the preloader image from the microSD card into
on-chip RAM that is only 64 KB in size. This means that the preloader is restricted
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to 60 KB (4 KB is reserved). The Boot ROM code then hands control over to the
preloader code that is running in the 64 KB on-chip RAM. Thus code has transitioned
from running from the hard wired ROM to the on-chip RAM.

Before the preloader runs, the processor (CPU 0) has been set to the following
state:

Instruction cache is enabled.

Branch predictor is enabled.

Data cache is disabled.

MMU is disabled.

Floating point unit is enabled.

NEON vector unit is enabled.

Processor is in Arm secure supervisor mode.

AR G S e

The boot ROM code sets the Arm Cortex-A9 MPCore registers to the following
values:

* RO contains the pointer to the shared memory block, which is used to pass
information from the boot ROM code to the preloader. The shared memory
block is located in the top 4 KB of on-chip RAM.

* R1 contains the length of the shared memory.

e R2 is unused and set to 0 X 0.

* R3isreserved.

* All other registers are undefined.

3.1.3 Boot Step 3: Preloader

Once the preloader image has been loaded from the microSD card into on-chip RAM,
which is 64 KB in size and located at memory address OxFFFF_0000-OxFFFF_FFFF,
the preloader maps the on-chip RAM to 0x0 so that the exception vectors (interrupts)
will use the exception handlers in the preloader image.

The function of the preloader is user-defined. However, typical functions include:

1: Initializing the SDRAM interface. The timing parameters specific to the
DRAM used on the PCB needs to be set. Setting up the DRAM allows the
preloader to load the next stage of the boot software into DRAM since the
next stage will not fit into the 60 KB available in the on-chip RAM. In our
case the next stage is the open-source boot loader U-boot, which will run
from DRAM.

2: Configuring the HPS 1/0O pins.

3: Initializing the interface that loads the next stage of software (U-boot).
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Once the external DRAM has been set up, the preloader copies the U-boot image
from the microSD card into DRAM. The U-boot image also resides in the 0xA2
partition, immediately after the preloader images. The preloader then hands control
over to the U-boot code that starts running from DRAM.

Note: The preloader is read from the microSD card in both the Ship Boot Mode
and the Developer’s Boot Mode, which means the microSD card needs to be present
for both booting options. However, the microSD card only needs to be imaged initially
once for the Developer’s Boot Mode.

Creating the preloader is part of the process when creating the Board Support
Package (BSP) for an FPGA board since it is the hardware designer that knows
the timing specifications for the DRAM that was chosen for the board. This BSP is
typically created by the board hardware designers. We will not concern ourselves
with this since this has already been created for the DE10-Nano board. Interested
readers can read more about creating the preloader on Rocketboards.org (Generating
and Compiling the Preloader)

3.1.4 Boot Step 4: U-boot

U-boot is an open-source boot loader used to boot Linux on an embedded device.
The U-boot image has been copied to DRAM, so it is not constrained in size to 60
KB like the preloader, which has to fit in the on-chip RAM. The particular case of the
U-boot instructions mentioned here assumes that the microSD card has been flashed
with the image described in Sect. 11.1.3.6 Reimaging the microSD Card with the
Developer’s Image (page 227).

U-boot allows the SoC FPGA to boot entirely from the microSD card (Ship Boot
Mode) or over Ethernet using the Network File System (Developer’s Boot Mode).
U-boot has environmental variables that can be defined and the choice between
Ship Boot Mode and the Developer’s Boot Mode is made by setting the U-Boot
environmental variable nfshoot=true to boot from a Network File System (NFS)
when in the Developer’s Boot Mode. See Sect. 11.1.3.8 Setting U-boot Variables
on the DE10-Nano Board to Boot via NFS/TFTP (page 232) for the instructions on
setting up U-boot for the Developer’s Boot Mode.

Typically there is a U-boot script (e.g., u-boot.scr) that is first read by U-boot.
This allows all the file names and locations of these files to be modified by a single
script.

The files that are used during the boot process are listed in Table 3.2 and the
names and locations of these files can be modified by editing the boot script file. The
boot script file name can be changed by modifying the environment variable boot
script. The file locations depend on the boot mode. See Fig. 11.13 that illustrates the
Developer’s Boot Mode setup.


https://rocketboards.org/foswiki/Documentation/AVGSRDPreloader
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Table 3.2: Order and location of files used during the boot process

Boot order File/image Ship boot location |Developer’s boot location

1 Preloader Image microSD Card (Partition 3: Type = A2: Raw Binary)

2 U-Boot Image microSD Card (Partition 3: Type = A2: Raw Binary)

3 u-boot.scr microSD Card (Partition 1:|/srv/tftp/del®nano/
Type = B: FAT32) bootscripts

4 soc_system.rbf microSD Card (Partition 1:|/srv/tftp/del@nano/my_
Type = B: FAT32) project

5 zImage microSD Card (Partition 1:|/srv/tftp/delOnano/
Type = B: FAT32) kernel

6 soc_system.dtb microSD Card (Partition 1:|/srv/tftp/del®nano/my_
Type = B: FAT32) project

7 Linux Root File System|microSD Card (Partition 2:|/srv/nfs/del®nano/
Type = 83: EXT Linux) ubuntu-rootfs

3.1.5 Boot Step S: Linux

U-boot loads zImage, the compressed Linux kernel image into DRAM, and the
kernel is launched. Linux then reads the device tree blob file soc_system.dtb that
tells Linux what hardware it is running on. Linux then mounts the root file system
that is contained in partition 2 (EXT Linux) on the microSD Card (Ship Boot Mode)
or mounts the root file system over the network via NFS (Developer’s Boot Mode).

3.1.6 Boot Step 6: Application

The user application can then be started up. This can be done by executing a shell
script at boot time. The process for doing this is (very brief outline):

Step 1: Create a shell script that will run your application (e.g., run_this.sh).
Step 2: Create a systemd startup script, e.g., run_this.service that has the lines:
[Service]
ExecStart=/<path>/run_this.sh
(Note: there are additional lines you will need.)
Step 3: Put run_this.service into /etc/systemd/system/.
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Chapter 4
Introduction to the DE10-Nano Board

4.1 DE10-Nano Board

®

Check for
updates

The DE10-Nano board is a low cost FPGA board that contains Intel’s Cyclone V
SoC FPGA with 110K logic elements. The board is manufactured by Terasic and
can be found at here. The block diagram of the board can be seen in Fig.4.1. The
DE10-Nano board contains the SoC FPGA that has the FPGA fabric for creating

custom hardware and a complete ARM computer system inside the FPGA.

FFGA
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HPS User Button
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Fig. 4.1: Block Diagram of the DE10-Nano board. Figure from [1]
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4.1.1 Determining DE10-Nano Board Revision

Download the document Board Revision [2] from Terasic to determine which DE10-
Nano board revision you have. You need to know this in order to download the
appropriate documentation.

4.1.2 DE10-Nano Information

Information on the DE10-Nano can be found at the following sources:

Source 1: The Terasic Website [3] Click on the Resources tab and then look un-
der the Documents section. You can download all the information by
scrolling down to the CD-ROM section and selecting the appropriate
CD-ROM link (which is why you need to know which board revision
you have as determined in Sect. 4.1.1 Determining DE10-Nano Board
Revision. When you click on the CD-ROM symbol, it will actually
download as a .zip file (registration required). This download contains
the following directories:

* \Datasheet—contains data sheets for all the parts on the board.

* \Demonstrations—contains demonstration projects with source
code.

* \Manual—contains the User Manual and other guides.

¢ \Schematic—contains the board schematics.

* \Tools—contains Terasic’s system builder.

Source 2: The Rocketboards.org (DE10-Nano) Website[4] Rocketboards.org is
devoted to boards containing Intel’s SoC FPGAs and running Linux
on these boards.

Source 3: The Intel (DE10-Nano) Website[5]. This site contains a DE10-Nano
Get Started Guide.

4.1.3 DE10-Nano Cyclone V SoC FPGA

The SoC FPGA device on the DE10-Nano board is labeled SCSEBA6U2317. These
letters are interpreted as follows:


https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=1046&FID=5651e4e0b7a3671ffb4494a46a338bf3
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046&PartNo=4
https://rocketboards.org/foswiki/Documentation/DE10NanoDevelopmentBoard
Rocketboards.org
https://software.intel.com/content/www/us/en/develop/articles/terasic-de10-nano-get-started-guide.html
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5C = Intel Cyclone V

SE = SoC with enhanced logic/memory
B = No hard PCIe or hard memory controller

A6 = 110K LEs

U23 = Ultra Fine Line BGA (UBGA) with 672 pins
I = Industrial temperature range (—40 to 100 °C)
7 = Speed grade. Devices with lower speed grade numbers run faster
than devices with higher speed grade numbers (and cost more).

The list of possible options for Cyclone V SE devices can be seen in Figure 1-7
(page 1-22) in the Cyclone V Device Handbook [6] which is shown in Fig. 4.2.

Figure 1-7. Ordering Information for Cyclone V SE Devices— Preliminary

F : FineLine BGA (FBGA st ek e
u - Ulma IFineLine EBGA [LEIBGA] C : Commercial temperature (T; = 0° C to 85° C)
: I Industrial tempesature (T, = -40° C to 100° C)
Embedded Hard IPs A 1 Automotive temperature (T, = -40° C to 125° C)
B : Mo hard PCle or hard ocessor Cores
memory controller i
M : Nohard PCle and 1 hard 1§ Single-com
memary controller 2 : Dualcore

(sc | sefulasfrlan]clel2]n]

5C: CycloneV

option: wathod
ramily variant N : Lead-iree packaging
SE: SoC FPGA with enhanced logic/memory 4 T ES: Engineering sample
ember Code FBGA Package Type "PGA Fabric Speed Gr

A2 ;25,000 logic elements 31 896 pins 6 (fastest)

Ad: 40,000 logic elements UBGA Package Type 4

AS @ 85,000 logic elements 19 : 484 pins 8

A : 110,000 logic elements 23 : 672 pins

Fig. 4.2: Cyclone V SE Ordering Options

4.1.4 DE10-Nano Configuration Mode Switch Setting

The Cyclone V SoC FPGA must be configured when it is powered up. The informa-
tion to configure the FPGA is contained in the configuration bitstream (e.g., .sof file)
that Quartus creates when a design is compiled. Once the configuration bitstream
has been created, it can be loaded into the FPGA in multiple ways depending on
where the bitstream is being stored. The ways the bitstream can be loaded into the
FPGA are:

1. JTAG via the USB Blaster II that is connected to the USB Mini-B connector on
lower left side of board, below the HDMI connector. See Figure 2-1, page 5 of
the DE10-Nano user manual. Programming via JTAG is typically done during
development from the developer’s computer. This is because the bitstream that


https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v1.pdf
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has been created by Quartus is located on your computer and you want to try it out
on the DE10-Nano board. Loading the bitstream via JTAG typically means that
you are iterating on a hardware design in the FPGA fabric. We will occasionally
use the JTAG configuration method in this book.

AS or Active Serial configuration from the EPCS128 device. The EPCS128
is a serial flash memory device on the DE10-Nano board that can contain the
configuration bitstream. See Table 3-2 on page 12 of the DE10-Nano user manual
to set the board in AS mode. This is typically done if there is a single bitstream
that will never change, and you will be shipping a product with this bitstream
(i.e., Ship Boot Mode).

HPS, i.e., configured from the Hard Processor System via U-boot when Linux
boots. We will primarily be configuring the FPGA through the HPS in this
book. When the FPGA is configured through the HPS, there are 12 possible
configuration modes. Two modes (out of 12 modes) that you will use are listed
below. The other modes can be seen in Table 5-1 (page 5-5) in Intel’s Cyclone V
Hard Processor System Technical Reference Manual [7]. Five pins on the FPGA
(see Fig. 4.3), called the mode select (MSEL) pins, tell the Control Block inside
the FPGA what HPS configuration mode to use.

Bank 9A vc%aPa
VCCIO - 3 = 3V J8 FPGA CONF DONE R147, 10K
CONF_DONE — — AN
nSTATUS HE FPGA NSTATUS R1 10K s
FPGA NCONFIG
NCONFIG [--F R13G. A~ A10K
nce =2 J|||.
J10 MSELD
MSELO I"Hg—MSELT.
MSEL1 G6 MSELZ
MSEL2
2 [Ki0___mseLs
MSEL3 Mg MSEL4
MSEL4

Fig. 4.3: The MSEL pins (MSEL[4:0]) on the FPGA tell the FPGA Control Block
what configuration mode to use

The MSEL pins are connected to SW10 (see sheet 7 in the DE10-Nano Board

Schematic) and also to pull-up resistors (see Fig. 4.4).
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Default Setup MSEL[4:0] = 10010,
AS Fast Mode

VCC3P3

SW10 Q
1 1] 12 MSELO R8 1K

- -\ N\ —
2 11 MSEL1 R 1K !
3 —— 0 MSEL2 R10 W1K
4 MSEL3 R1 1K
- MSEL4 R12 W1K
; e | 7 AN

—— »* o Fad
DIP SWITCH

Fig. 4.4: The MSEL pins are connected to SW10 and to pull-up resistors

When a switch in the DIP switch SW10 is turned on, it grounds the MSEL pin.
Otherwise the MSEL pin sits at Vcc. Thus a switch in the “ON” position means a
“0” on the MSEL pin (negative logic). The location of SW10 on the DE10-Nano
board is shown in Fig. 4.5 and marked by the yellow square.

FPGA Configuration Mode Switch

it L7 AKRNRAS |l|||l (AN
-

L
Ay il n

Fig. 4.5: Location of switch SW10 to set the DE10-Nano FPGA Configuration
Mode.  https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&
CategoryNo=167&No=1046

There are two switch settings of the FPGA configuration mode switch SW10 that
you need to be aware of. These two switch setting modes are:


https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=1046
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Mode 1: FPPx32. This stands for Fast Passive Parallel x32 mode, Compression
Enabled, Fast POR. This is the default setting of the DE10-Nano board when it
ships. See Fig. 4.6 for this SW10 switch setting.

TEEEEEE
oz
1o

Fig. 4.6: Default switch SW10 setting (FPPx32) when the DE10-Nano board ships

Mode 2: FPPx16. This stands for Fast Passive Parallel x16 mode (no compression).
This is the mode we will use in this book for running embedded Linux (Ubuntu)
on the DE10-Nano board. In this mode, all the switches on SW10 need to be up in
the zero (ON) state as shown in Fig. 4.7

Fig. 4.7: The switch SW10 setting (FPPx16) used in the book when running Ubuntu
on the DE10-Nano board. All the switches are in the “ON” position
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Chapter 5 )
Introduction to the Audio Mini Board Sheck for

Fig. 5.1: The Audio Mini board plugged into the DE10-Nano FPGA board. The
Audio Mini provides high fidelity audio for the DE10-Nano board and contains an
Analog Devices’ AD1939 192 kHz 24-bit audio codec

The Audio Mini was developed to provide high fidelity audio for the DE10-Nano
board. It was developed as part of an NIH grant (1R44DC015443-01) that developed
an open speech signal processing platform using FPGAs for high-performance DSP

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 41
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with low and deterministic latency (see (FPGA Open Speech Tools (Frost)). The
DE10-Nano board was targeted in order to provide a low cost SoC FPGA platform
that could be used to learn how digital signal processing could be implemented in the
FPGA fabric and then controlled from Linux running on the ARM CPUs. It allows
DSP, FPGAs, and Linux to be combined together in a low cost platform (compared
to what some FPGA development boards can cost). The DE10-Nano board did not
have audio capability, so we created the Audio Mini add-on board to provide high
fidelity audio.

A brief overview of how the audio board was developed is as follows. The first
step in the development process was to find all the available audio codecs that were
24-bit, could sample at 192 kHz, and were commercially available (and in stock). It
was from this survey that we settled on the Analog Devices AD1939 for the reasons
listed in Listing 5.3. We then purchased the evaluation board for the AD1939 (EVAL-
AD1939) and connected it to the DE10-Nano FPGA board using handcrafted cables
to connect the serial data port and the SPI control port. This allowed us to quickly get
a minimal working example together for evaluation purposes. Once we verified that
the prototype system worked by loading the appropriate register settings and sending
audio data through the FPGA, we undertook the process of creating a custom printed
circuit board (PCB) that would plug into the header posts on the DE10-Nano board.
The Audio Mini board went through several hardware iterations due to corrections
and optimizations and ended up with the final version shown in Fig.5.1. We used
Altium Designer [1] as the design software for the PCB.

5.1 Top Level Block Diagram

The top level schematic of the Audio Mini is shown in Fig. 5.2. The stereo analog
signal comes into the board from a 3.5 mm audio jack (3.5 mm LINE IN block,
top left) and is sent to the AD1939 audio codec (top center block). The analog
stereo signal coming out of the audio codec is sent to the headphone amplifier block
(3.5 mm HEADPHONE OUTPUT block, top right). The FPGA connections (FPGA
CONNECTORS block, bottom left) connect the header posts on the DE10-Nano
board and connect FPGA digital I/O lines to the AD1939 audio codec (serial data,
SPI control, clock, and reset), the headphone amplifier (12C volume control), and four
LED and four switches (SUPPORT block lower center). There are also connections
to two digital MEMS microphones, but these are not populated.


https://fpga-open-speech-tools.github.io/
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Fig. 5.2: The top level block diagram of Audio Mini board. Schematic figure from
[2] (sheet 4)

5.2 Analog Audio Input

The AD1939 audio codec requires analog differential signals as inputs for the audio
signals. However, audio connections using a 3.5 mm audio jack have single-ended
inputs. Thus the line-in stereo single-ended inputs need to be converted to differential
inputs. The conversion is done using Analog Devices ADA4075-2 ultralow noise
op-amps [3] and the associated circuit that performs this single-ended to differential
conversion is shown in Fig. 5.3. This circuit was adapted from the AD1939 evaluation
(eval) board that had multiple audio interfaces. This illustrates one of the reasons
for using evaluation boards from the manufacturer. By putting together a prototype
system using a reference design provided by the manufacturer, you can see how
the manufacturer supports their own device(s). From the manufacturer’s reference
design, you then add only the circuitry you need from the evaluation board (which
has been designed to accommodate many I/O interfaces) into your own PCB. Note:
The audio input can also handle a microphone input, but doing so will require part
changes (instructions are located on sheet 9 of the schematic [2]).
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Fig. 5.3: The Audio Mini circuit that converts stereo single-ended inputs to dif-
ferential inputs required by the AD1939 audio codec. Schematic figure from [2]

(sheet 9)

5.3 AD1939 Audio Codec

The heart of the Audio Mini board is the Analog Devices’ AD1939 audio codec.

The AD1939 was chosen for several reasons:

Reason 1: It is a 24-bit audio codec that can sample up to a sampling rate of
192 kHz, providing high fidelity audio.

Reason 2: It has a clean interfaces for data (serial data) and control (SPI). See
Fig. 5.4 that shows that the digital ports connect easily to FPGA I/O
pins. This is in contrast to some audio codecs that target embedded
audio applications where a DSP processor is also included in the de-
vice. We wanted a codec where processing would be done externally
in an FPGA and had a straightforward interface.

Reason 3: It has multiple analog audio I/O ports. However, the Audio Mini only
implements stereo in and stereo out due to cost considerations.
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Fig. 5.4: The block diagram of the features used in the Analog Devices AD1939
audio codec

The schematic for the AD1939 audio codec can be seen in Fig. 5.5. Audio signals
(stereo left/right) that have been converted to differential inputs (see Sect.5.2) are
piped into the AD1939 and converted to digital signals at one of the three sample
rates (48 kHz, 96 kHz, or 192 kHz). The digital samples are then sent to the FPGA
using the serial data interface that is comprised of three digital signals (data, bit
clock, and left/right framing clock, see Fig. 5.6). Digital samples to be converted to
analog are sent by the FPGA in the serial data format. The samples are converted by
the AD1939 DAC to analog signals in a differential format and sent to the headphone
driver/amplifier (see Sect. 5.4) for amplified stereo output.

The AD1939 is controlled from the SPI or Serial Peripheral Interface [4]. This is
used to set internal AD1939 registers that control the sample rate, master clock, and
other settings.

The sample rate is controlled by the 12.288 MHz crystal oscillator (see 12.288 MHz
Master Clock in Fig. 5.5) that is attached to the AD1939 and drives the internal Phase
Locked Loop (PLL) to create an internal clock that runs at 256 times the sample rate
fs (12.288 MHz/256 = 48 kHz).

The AD1939 is configured to set the ADC bit clock (ABCLK) and ADC left/right
framing clock (ALRCLK) as masters (see Table 5.3). We also set the DAC bit clock
(DBCLK) and DAC left/right framing clock (DLRCLK) as slaves. This means that the
ADC drives all the data clocks in the AD1939. Furthermore, we send the 12.288 MHz
master clock (MCLKO) to a clock input pin on the FPGA that can connect to an
on-board PLL in the Cyclone V FPGA. The reason we do this is so that we can create
a clock in the FPGA fabric using the on-chip PLL where the FPGA fabric clock is a
multiple of the 12.288 MHz master clock (e.g., 12.288 x 8 =98.304 MHz). This is so
that we can implement synchronous DSP processing designs for our FPGA fabric
data plane processing and avoid issues that arise when crossing clock domains in
digital systems.
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Fig. 5.5: The heart of the Audio Mini, which is the AD1939 audio codec (codec
stands for coder—decoder where the coder is the ADC or analog-to-digital converter
and the decoder is the DAC or digital-to-analog converter). Analog stereo differential
signals are converted to digital serial signals and vice versa. Schematic figure from
[2] (sheet 5)

Notice at the top of the schematic in Fig. 5.5 that the AD1939 has two separate
3.3 volt power supplies. This is because the AD1939 is a mixed signal design that
contains both analog and digital signals. A mixed signal design is analogous to when
you are studying for an exam and want peace and quiet (i.e., need low noise analog
signals) and there is a crazy party with very loud music (digital signals) nearby.
Hopefully, the building and room you are studying in does not let the party noise
through. If the building is cheaply built, you will be distracted by all the noise. In
a similar fashion, to keep the digital noisy party signals from injecting noise into
the analog signals, the power supplies need to be kept separate. However, it is not
practical to have separate power supplies coming into the PCB and we have only a
single 5 volt pin coming from the DE10-Nano board with which to power the Audio
Mini. The solution is to create separate analog power supplies from the 5 volt input
that are well filtered and then kept separate (see power regulation on schematic sheet
7 of [2]).
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5.3.1 AD1939 Serial Data Port

5.3.1.1 Data to the FPGA from the AD1939 ADC

The ADC in the AD1939 samples the analog signals and then sends the digital
samples out of the serial data port in a serial fashion using three digital signals
(SDATA, BCLK, and LRCLK) as shown in Fig. 5.6. The digital signal LRCLK is
the left/right framing clock that runs at the sampling rate f;. When LRCLK is low,
the left channel is being sent out and when it is high, the right channel is being
transmitted. The digital line BCLK is the bit clock for the serial data line SDATA
that allows you to register the sample bits on the rising edge of BCLK. The bit clock
BCLK runs 64 times faster than LRCLK providing 32 rising clock edges for the left
channel and 32 clock edges for the right channel. The 24-bit sample word fits easily
into the 32-bit channel slot and can have different alignment (justification) modes
(the different modes can be seen in Figure 23, page 21 of the AD1939 datasheet
[51). We chose the 12S justification mode where the Most Significant Bit (MSB)
of the 24-bit sample word starts on the second rising BCLK edge after an LRCLK
edge transition (SDATA delay of 1). The serial data configuration is set in the ADC
Control 1 Register (see Table 24 in the datasheet) and is set to the values shown in
Table 5.3 (24-bit, Stereo, 12S). These register values for the ADC serial data port are
power-up default values, so no power-up configuration needs to be performed.

LRCLK LEFT CHANNEL / RIGHT CHANNEL

FS-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL

Fig. 5.6: The I2S stereo serial data mode. The serial data interface is comprised of
three 1-bit signals. The top signal, LRCLK, is the left/right framing clock that runs
at the sample rate f;. The middle signal, BCLK, is the bit clock for audio bit values
that are sent on the bottom signal SDATA. The bit clock BCLK runs 64 times as fast
as the left/right framing clock LRCLK. Figure from [5] (Datasheet figure 23, page
21)

5.3.1.2 Data to the AD1939 DAC from the FPGA

The AD1939 DAC is configured (DAC Control O register in Table 5.2) to have the
same serial data format as the ADC. In the initial board development, this allowed the
FPGA to pipe the serial data directly out to the DAC to verify the system was working
without converting the serial data to the Platform Designer Avalon streaming format.
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5.3.1.3 AD1939 FPGA Data Interfacing

In order for the AD1939 to be used in a Platform Designer system, a VHDL and
associated Platform Designer .tcl file was developed so that the AD1939 shows
up in the Platform Designer library with streaming interfaces. This was developed
as part of the first system developed using the AD1939, which is called unsur-
prisingly the passthrough example. This VHDL and Platform Designer interface
is covered in Sect. 1.2 Audio Data Streaming (page 256) and Sect. 1.4 Platform
Designer (page 269).

5.3.2 AD1939 SPI Control Port

The AD1939 is controlled from the bit values contained in seventeen registers that
are accessed using the SPI control port. The Cyclone V SoC FPGA on DE10-Nano
is configured so that the Hard Process System (HPS) exports a SPI interface, which
is connected to the AD1939 SPI port. This Platform Designer HPS configuration
is covered in Sect. 1.5.1 Linux SPI Device Driver for the AD1939 Audio Codec
(page 289) along with the associated Linux device driver so that the AD1939 registers
can be configured after power-up.

5.3.2.1 AD1939 Register Settings

The AD1939 register values that are used in the passthrough example (Sect. 1.5.1
Linux SPI Device Driver for the AD1939 Audio Codec (page 289)) are listed in
Tables 5.1, 5.2, and 5.3. Most of the values used are default values, so minimal
changes need to be made upon power-up. The values that are not default are listed
in blue and have to be set before the system becomes functional.

Table 5.1: AD1939 clock control register settings

PLL and Clock Control 0 (Register Address 0)

Bit Value Function Description
0 0 Normal Operation PLL power-down
2:1 00 INPUT 256 MCLKU/XI pin functionality
4:3 00 XTAL oscillator enabled MCLKO/XO pin
6:5 00 MCLKI/XI PLL input
7 1 Enable: ADC and DAC active Internal master clock enable

PLL and Clock Control 1 (Register Address 1)

Bit Value Function Description
0 0 PLLclock DAC clock source select
1 0 PLLclock ADC clock source select
2 0 Enabled On-chip voltage reference
3 0 O0=Notlocked, 1 =Locked PLL lock indicator (read only)

* Blue values: Non-default values. Must be set after power-up
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Table 5.2: AD1939 DAC control register settings (All default values)

DAC Control 0 (Register Address 2)

Bit Value Function Description
0 0 Normal Not powered-down
2:1 00 48 kHz Sample rate
53 000 1 SDATA delay (I12S mode)
7:6 00 Stereo Serial format

DAC Control 1 (Register Address 3)

Bit Value Function Description

0 0 Latch in mid-cycle (normal) BCLK active edge (TDM in)
2:1 00 64 (2 channels) BCLKs per frame

3 0 Left low LRCLK polarity

4 0 Slave LRCLK master/slave

5 0 Slave BCLK master/slave

6 0 DBCLK pin BCLK source

7 0 Normal BCLK polarity

DAC Control 2 (Register Address 4)

Bit Value Function Description
0 0 Unmute Master Mute
2:1 00 Flat De-emphasis
4:3 00 24 Word width (bits)

5 0 Noninverted

DAC output polarity

DAC Individual Channel Mutes (Register Address 5)

Bit Value Function

Description

7:0 00000000 0 =Unmute

All Channels Unmuted

DAC L1 Volume (Register Address 6)
DAC R1 Volume (Register Address 7)
DAC L2 Volume (Register Address 8)
DAC R2 Volume (Register Address 9)
DAC L3 Volume (Register Address 10)
DAC R3 Volume (Register Address 11)
DAC L4 Volume (Register Address 12)
DAC R4 Volume (Register Address 13)
Bit Value Function

Description

7:0 00000000 No attenuation

DAC volume control (—3/8 dB per step)
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Table 5.3: AD1939 ADC control register settings

ADC Control 0 (Register Address 14)

Bit Value Function

Description

0 0 Normal

1 0 Off

2 0  Unmute

3 0  Unmute
7.6 1 48kHz

Not Powered-down
High pass filter
ADC 1L mute
ADC 1R mute
Sample rate

ADC Control 1 (Register Address 15)

Bit Value Function

Description

1:0 00 24
4:2 000 1
6:5 00 Stereo

24-bit Word width
SDATA delay (I12S mode)
Serial format

ADC Control 2 (Register Address 16)

Bit Value Function Description

0 0 50/50 LRCLK format

1 0 Drive on falling BCLK polarity

2 0 Leftlow LRCLK polarity

3 1* Master LRCLK master/slave
54 00 64 BCLKs per frame

6 1% Master BCLK master/slave

7 1% [Internally generated BCLK source

* Blue values: Non-default values. Must be set after power-up

5.4 Headphone Analog Audio Output

To convert the differential analog signals coming from the AD1939 DAC to single-
ended outputs that a user can use to plug their headphones into, we used the Texas
Instrument’s TPA6130A2 stereo headphone amplifier with I2C volume control [6].
The associated circuit can be seen in Fig. 5.7.
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Fig. 5.7: The Texas Instrument’s TPA6130A2 headphone amplifier [6] takes the dif-
ferential output signals from the AD1939, implements volume control (controlled
via 12C), and converts them to singled-ended signals suitable for a headphone con-
nection. Schematic figure from [2] (sheet 11)

5.4.1 TPA6130A2 I2C Interface

The TPA6130A2 headphone amplifier is controlled from the bit values contained in
two registers that are accessed using the I2C interface. The Cyclone V SoC FPGA
on DE10-Nano is configured so that the Hard Process System (HPS) exports an
12C interface, which is connected to the TPA6130A2 I2C interface. This Platform
Designer HPS configuration is covered in Sect. 1.5.2 Linux I2C Device Driver for
the TPA6130A2 Headphone Amplifier (page 289) along with the associated Linux
device driver so that the TPA6130A2 registers can be configured after power-up.
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5.4.1.1 TPA6130A2 Register Settings

The TPA6130A2 register values that are used in the passthrough example (Sect. 1.5.2
Linux I12C Device Driver for the TPA6130A2 Headphone Amplifier (page 289)) are
listed in Table 5.4. The values that are not default are listed in blue and have to be
set before the system becomes functional.

Table 5.4: TPA6130A2 headphone control register settings

Control Register (Address 1)
Bit Value Function Description
0 0 SWS Software shutdown control
1 0 Thermal 1 indicates a thermal shutdown
3:2 Reserved
5:4 00 Stereo Mode Select
6 1  Enable Enable for right channel amplifier
7 1 Enable Enable for left channel amplifier

Volume and Mute Register (Address 2)
Bit Value Function Description
5:0 xxxxxx Volume 000000 = lowest gain

111111 = highest gain
6 0  Unmute Right channel mute
7 0 Unmute Left channel mute

* blue values: Non-default values. Must be set after power-up

5.5 DE10-Nano FPGA Connections

The connections from the Audio Mini to the DE10-Nano board can be seen in
Fig.5.8. The signal routing and naming can get confusing, so a “Rosetta Stone”
table (Table 5.5) was created to cross reference names and locations depending
on a particular reference point (device, DE10-Nano board, Cyclone V FPGA, or
VHDL signal name). In the table column 1 gives the schematic signal group name.
Column 2 gives the schematic signal name in the signal group. Column 3 gives the
manufacturer’s datasheet signal name. Column 4 gives the device and the device
pin number that the signal is connected to. Column 5 gives the pin number of the
DE10-Nano header post (header JP7) that the signal goes through. Column 6 gives
the pin number on the Cyclone V FPGA that the signal is connected to. Column 7
gives the GPIO connection name as reference from the DE10-Nano User’s manual.
Finally, in column 8, the VHDL top level signal name is given that references the
signal. This information is typically hidden in the board support file (e.g., FPGA
pin assignment file) but is given to show how such board support information is
created. The FPGA developer typically only cares about the top level signal names
in column 8.
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Fig. 5.8: The Audio Mini connections to the DE10-Nano board. Schematic figure

from [2] (sheet 6)

Table 5.5: Audio Mini FPGA signal connection table

Schematic Schematic Device Device/ DE10-Nano FPGA Terasic VHDL
Signal Net Signal Pin JP7 Header Pin GPIO Signal
Group Name Name Number Pin Number Location Name
CIN CIN 'AD1939/30 8 AF27 GPIO_I[7] ADI939_spi_CIN
CLATCH_n CLATCH_n AD1939/35 6  AF28 GPIO_I[5] ADI939_spi CLATCH_n
AD1939_SPLLCONTROL_PORT ¢y ¢ CCLK  ADI939/34 5 AG28 GPIO_1[4] ADI939_spi CCLK
cout COUT  ADI93931 7 AE25 GPIO_1[6] ADI939_spi_COUT
ABCLK ABCLK  ADI939728 3 AAI5 GPIO_I[2] ADI939_ADC_ABCLK
ALRCLK ALRCLK  AD1939/29 9 AG26 GPIO_1[8] ADI939_ADC_ALRCLK
LINE_IN_DSDATA ASDATA2 AD1939/26 13 AG25 GPIO_I[10] ADI1939_ADC_ASDATA2
AD1939_SERIAL_DATA_PORT 15y DBCLK  ADI93921 15 AH24 GPIO_I[12] AD1939_DAC_DBCLK
DLRCLK DLRCLK  AD1939/22 16 AF25 GPIO_I[13] AD1939_DAC_DLRCLK
HEADPHONE_OUT_DSDATA DSDATA| ADI939/20 18 AF23 GPIO_I[15] ADI939_DAC_DSDATAI
D1om CLK RST MCLKO MCLKO  ADI93973 T Y15 GPIO_1[0] ADI939 MCLK
39_CLK RST_CODEC_n PD/RST_n  AD1939/14 20 AH22 GPIO_I[17] ADI939_RST_CODEC_n
SCL SCL TPAGI30A28 2 AC24 GPIO_I[I] TPAGI30_12C_SCL
HEADPHONE_[2C SDA SDA TPA6130A2/7 4  AD26 GPIO_1[3] TPAG6130_12C_SDA
FEADPHONE_PWR_OFF_n_HEADPHONE_PWR_OFF_n_SD_n TPAGI30A26 10 AHZ7 GPIO_I[1] TPAGI30_power off
TEDI 39 AEIS GPIO_I[34] Audio_Minl_LEDS[0]
LEDS LED2 37 AGIS GPIO_I[32] Audio_Mini_LEDs[1]
LED3 35 AFI8 GPIO_I[30] Audio_Mini_LEDs[2]
LED4 33 AGI8 GPIO_1[28] Audio_Mini_LEDs[3]
SWI 0 AEI7 GPIO_I[35] Audio_Min_SWITCHES[O]
SW2 38 AE20 GPIO_I[33] Audio_Mini_SWITCHES[1]
SWITCHES SW3 36 AF20 GPIO_I[31] Audio_Mini_SWITCHES[2]
SW4 34 AHI8 GPIO_I[29] Audio_Mini_SWITCHES[3]

The top level VHDL file that contains the signal names in the right hand column
of Table 5.5 is described in Sect. 1.4.4.2 Hooking Up the soc_system_passthrough

System in the Top
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Chapter 6 “®
Introduction to Intel Quartus Prime

updates

6.1 Intel Quartus Prime Lite Edition

The DE10-Nano FPGA board that we are targeting contains an Intel Cyclone V SoC
FPGA. This means that we need to use Intel’s Quartus Prime software to create
hardware designs for the Cyclone V SoC FPGA. Fortunately, we can use the free
version of Quartus Prime with the Cyclone V devices, which is called Intel Quartus
Prime Lite Edition.

6.1.1 Installing Windows for Subsystem for Linux (WSL)

Quartus, starting with version 19.1, requires installing Windows Subsystem for
Linux. There are two versions of WSL: WSL 1 and WSL 2. At the time of this
writing, the instructions for Quartus are to install only WSL 1 since WSL 2 is not
supported. The procedure for installing WSL 1 is:

Step 1: Go to:
https://docs.microsoft.com/en-us/windows/wsl/install-win10 and fol-
low Microsoft’s instructions to install Ubuntu 18.04 LTS for WSL.
Note 1: Windows 10 build version 16215.0 or higher is the recom-
mended operating system version.
Note 2: Install only WSL 1 and skip the instructions for updating WSL
1 to WSL 2. WSL 2 is not supported.

Step 2: Afterinstallation has been successfully completed, launch Ubuntu 18.04.

Step 3: Install the distro packages described at: https://www.intel.com/content/
www/us/en/docs/programmable/683525/21-3/installing-windows-
subsystem-for-linux.html
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6.1.2 Download and Install Intel’s Quartus Prime Lite

Install the free version of Quartus Prime (Lite Edition) from Intel by following these

steps:

Step 1:

Step 2:

Step 3:
Step 4:
Step 5:

Step 6:

Step 7:

First install Windows Subsystem for Linux by following the instructions
in Sect. 6.1.1 Installing Windows for Subsystem for Linux (WSL) (page
55).

Get the Quartus Prime Lite Edition from:
https://www.intel.com/content/www/us/en/products/details/fpga/
development-tools/quartus-prime/resource.html.

Select the Lite Edition.

Select the latest version, which is currently version 20.1 .

Further down the page, Select the "Individual Files" tab.

You should see a listing of individual files to download. We do not need
all these files. The ones we do need are listed below. Click the download
arrow at the right to download the files:

¢ Quartus Prime (includes Nios II EDS)
Note: Also download the Questa-Intel FPGA Edition.

* Cyclone V device support
Note: You do not need any other device support since we will only
be targeting the Cyclone V.

Select the "Additional Software" tab. Download the files:

* Quartus Prime Help.

* Quartus Prime Programmer and Tools.
Note: This includes Signal Tap and System Console that we will
use.

Install the software by running the downloaded file that starts with
“QuartusLiteSetup...” The installation will take some time.

Note 1: The Quartus Lite install executable will see the help and device
files and install them as if they are already in the same directory.

Note 2: The “QuartusProgrammerSetup...” executable needs to be
installed separately.

6.1.3 Quartus File Types

In the Quartus project folder, there are a number of different file types that are
identified by their extensions.

A list of Quartus file types that you will run across are:
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File Type 1:

File Type 2:

File Type 3:

File Type 4:

File Type 5:

File Type 6:

File Type 7:

Quartus Project File (.qpf). This file when opened in Quartus au-
tomatically loads your project. This file can be created by using the
New Project Wizard in Quartus.

Quartus Setting File (.qsf). This file contains the pin assignments
and associates the signal names found in the top level entity with
specific I/O pins on the FPGA.

Synopsys Design Constraints File (.sdc). There are two things
that must be satisfied for your design to be correct. First, your
VHDL logic must be correct, and second, the timing of your logic
must be correct after the Quartus Fitter places and routes your
design in the FPGA fabric. If you do not have a .sdc file in your
project, which constrains your timings, your design is wrong (even
if it appears to function correctly when you compile it). This means
that you must always add a .sdc file to your project. Furthermore,
after each Quartus compilation, you need to check the resulting
timing because a particular place and route may fail to get the
required timing correct. Do not assume your design is correct just
because Quartus compiled your VHDL correctly. It must also meet
your timing requirements.

Top level VHDL file (.vhd). This file contains the top level entity
that has the signal names that are to be connected to specific I/O
pins on the FPGA (i.e., pin assignments) as described in the .qsf
file. You will need to set one of your VHDL files in your project
as the top level file. This is done in Quartus by selecting Files in
the drop down list in the Project Navigator panel and then right
clicking on the desired .vhd file and selecting Set as Top Level
Entity.

SRAM Object File (.sof). This is the configuration file created when
adesign is compiled and synthesized by Quartus. It is the bitstream
that configures the FPGA fabric. This bitstream configuration file
is typically loaded into the FPGA by the JTAG programmer.

Raw Binary File (.rbf). The raw binary file format contains the
same information as the .sof configuration file. This .rbf file format
is used by U-boot to configure that fabric when Linux boots up.
The .sof file is converted into a .rbf file by using the Convert
Programming File utility in Quartus. This is found in Quartus by
going to the File menu and selecting Convert Programming Files....
Programmer Object File (.pof). The programmer object file format
contains the same information as the .sof configuration file. This
.pof file format is used to program serial flash devices, which is
how FPGAs are typically configured at power-up when they are not
SoC devices and do not have embedded Linux.
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6.1.4 Converting Programming Files

When Quartus compiles a project, it places the .sof bitstream file into the subdirec-
tory /output_£files under the project directory. This is the file that the Quartus
programmer uses to configure the FPGA fabric when it downloads it via JTAG.
When this bitstream file needs to be loaded by U-boot, it must first be converted into
a .rbf file and then placed into the VM directory that TFTP server will use. The
directory location and name of the .rbf file are specified in the bootscript file.

The steps for converting a .sof file into a .rbf file, where soc_system.sof is the
example file name, are:

Step 1: In Quartus, go to File — Convert Programming Files. ... and in the
Output programming file section:

1: Set the Programming file type: to Raw Binary File (.rbf).

2: Set the Mode: to Passive Parallel x16.
Note: This requires the switch positions on the DE10_Nano board
to be all in the “On” position (see Fig. 4.7).

3: Set the File name: to soc_system.rbf.

Step 2: In the section Input files to convert:

Click on SOF Data.

Click on the Add File. . . button.
Navigate to /output_files.
Select soc_system.sof.

5: Click Open.

swz

Step 3: Click Generate. The .rbf file will be written to the Quartus project folder.

6.1.5 Timing

Just because Quartus compiles your VHDL code correctly does not mean that it will
run correctly in your FPGA. Not only does the logic in your VHDL code need to be
correct, the timing needs to be correct after the design has been placed and routed
by the fitter. Getting the timing correct is called Timing Closure, and this can take
considerable effort when using FPGAs. Fortunately for us, the examples in this book
do not push the limits on how fast we are trying to run the clock or how full we are
trying to fill the FPGA in regard to the fabric resources being used, which makes
placement and routing harder while meeting timing.

Any time you purchase a FPGA, you will need to specify the speed grade of
the device. The same device, but with a faster speed grade, typically costs more. In
Fig. 4.2, we can see that the Cyclone V has three speed grades (6,7, and 8) where
6 is the fastest speed grade. Every device manufactured is slightly different when
manufactured due to process variations, even if it is designed to be an identical part.
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This means some parts are faster than others and are tested and labeled with different
speed grades. Other factors that affect speed are core voltage (higher Vcc makes the
chip faster) and temperature (higher T makes the chip slower). Thus PVT, which
stands for Process, Voltage, and Temperature, affects how fast a part can run.

After Quartus compiles your design, when you examine the Table of Contents of
the Compilation Report, you will see a section called Timing Analyzer. If you expand
this section, you will see four folders as shown in Fig. 6.1.

File Edit View Project Assignments Processing Tools Window Help
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Tasks Compilation > =QF =

Task

Fig. 6.1: Checking Timing in Quartus

These four folders are associated with the PVT designation where in this case
P={SloworFast},V=1100mV =1.1V,and T = {—40 C or 100 C}. These cases are
known as corner cases since all combinations of PVT for this device will fall in the
area enclosed by these corner cases. The slowest device would have the parameters
(slowest Process, lowest Voltage, highest Temperature), which in the figure is the
Slow 1100 mV 100 C Model folder. The fastest device would have the parameters
(fastest Process, highest Voltage, lowest Temperature), which in the figure is the Fast
1100 mV —40 C Model.

For our initial timing check, we will take the most conservative view of the
device that we are targeting where we will assume that we have the slowest of the
devices (Slow 1100 mV 100 C Model). If we expand this folder, we see the following
information (Fig. 6.2).
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Fig. 6.2: Checking Fmax for the Slowest Model in Quartus

If we click on Fmax Summary, this will tell us how fast the FPGA can be clocked
if we have the slowest speed grade device. You should always check Fmax of the
slowest model after each compile to see if your design can run at the targeted
clock speed.

6.1.6 Learning Quartus

One of the skills that computer engineers need to develop is the ability to implement
lifelong learning also known as continuing education. This is important in the com-
puter industry where technology is moving at a blistering pace. Thus it is necessary
to be able to take advantage of training material that exists for learning new skills.
We will take advantage of the training material that Intel provides for their Quartus
software. If you go to Intel’s FPGA Technical Training Curricula (click here for the
link), you will see a section for FPGA Designers as seen in Fig. 6.3. This training
ranges from free online courses to paid instructor-led courses. We only highlight
several of the free online courses in Table 6.1 that are related to the Quartus tools


https://www.intel.com/content/www/us/en/programmable/support/training/curricula.html

6.1 Intel Quartus Prime Lite Edition

FPGA Designers

Description Course Catalog

Traditional FPGA developers code in languages such as Verilog HDL and
VHDL. These developers are comfortable with creating FPGAs using the
Intel Quartus Prime software, closing timing on complicated hardware
circuits and managing complicated I/O interfaces to the FPGA.

Level Level
100 200

Fig. 6.3: Intel’s Training Curricula for FPGA Designers

Table 6.1: Intel’s free online training courses for Quartus

Level
300

Course and description

Level

Intel Quartus Prime Software: Foundation (Standard Edition) (click here)
Learn to use the Intel® Quartus® Prime software to develop an FPGA or
CPLD design from initial design to device programming.

100

Timing Analyzer: Introduction to Timing Analysis (click here) Closing
timing can be one of the most difficult and time-consuming aspects of
creating an FPGA design. The Timing Analyzer is used to shorten the
process of timing closure. This part of the training introduces you to the
basic timing analysis concepts required for understanding how to use the
tool. This is part 1. There are 4 parts to watch.

200

Signal Tap Logic Analyzer: Introduction & Getting Started (click here)
The Signal Tap embedded logic analyzer (ELA) is a system-level debug-
ging tool that monitors the state of internal FPGA design signals. This is
part 1. There are 4 parts to watch.

200

Creating a System Design with Platform Designer: Getting Started (click
here) The Platform Designer system integration tool, formerly known as
Qsys, saves design time and improves productivity by automatically gen-
erating interconnect logic to connect intellectual property (IP) functions
and subsystems. This is part 1. There are 2 parts to watch.

200

System Console (click here) System Console is an interactive console for
system-level debug of Platform Designer systems over JTAG. Based on
Tcl, it has a simple set of commands for communicating with various parts
of your Platform Designer system.

300
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https://www.intel.com/content/www/us/en/programmable/support/training/course/odsw1164.html
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that we will be using so you should browse through all the training that Intel has to
offer.

6.2 Platform Designer
6.2.1 Creating an Avalon Memory-Mapped Interface

Any custom hardware that you create for Platform Designer needs to interface to
the Avalon interconnect network. The network interface supports both memory-
mapped peripherals (covered in this section) and streaming interfaces (covered in
Sect. 6.2.3). Memory-mapped peripherals communicate with the Avalon intercon-
nect network and will have specific memory address locations assigned to them.
Streaming interfaces are useful for data processing tasks on streaming data such as
digital filtering an audio signal.

A memory-mapped interface can function as either a host or an agent. A host can
initiate data transfers (i.e., bus transactions), while an agent only responds to data
transfers (i.e., responds to a host). The Avalon Interface Specifications can be found
at the link Avalon Interface Specifications.

To illustrate how to create and use a memory-mapped interface, control registers
for the HPS_LED_Patterns component (see Fig. 12.1) will be created and attached to
the HPS lightweight bus. We will only implement a simple memory-mapped agent
interface for HPS_LED_Patterns. The Avalon bus agent that we will create will look
like Figure 5 and Figure 6 found on pages 13—14 (section 3.1) in the Avalon speci-
fication. The agent can handle complicated transfers, so there are additional control
signals available. We, however, will only be reading/writing data from Registers 0-3.
This means that our interface will be relatively simple. Since the data bus for the
HPS lightweight bus is 32 bits, we will create 32-bit registers where we will place
32 bits of data onto the bus when the ARM CPUs read the register and capture 32
bits of data on CPU writes.

Notice the timing diagram for reads and writes on the Avalon interface that is
shown in Figure 7 on page 21 (section 3.5.1) of the Avalon spec. You will see that
the data is latched on the rising edge of the clock when the read or write enable is
asserted. In this diagram, we will ignore the bus control signal byteenable since we
will read and write 32 bits and not worry about accessing specific bytes in the 32-bit
word. We will also ignore the signals waitrequest and response since our registers
will be able to respond fast enough, and given the simple interface, we do not need
to respond with optional read/write status bits.

To interface to the Avalon bus, your HPS_LED_Patterns Platform Designer com-
ponent should have the following entity (click here):

16| entity HPS_LED_patterns is

17
18

19

port(
clk : in  std_logic; d
<— -- system clock
reset : in  std_logic; d

— -- system reset (assume d


https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://github.com/ADSD-SoC-FPGA/Code/blob/main/dev/led_pgs/hps_led_patterns.vhd
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<—active high, change at top
—level if needed)

avs_sl_read : in  std_logic; d
<—-- Avalon read control signal

avs_sl_write : in  std_logic; d
<~ -- Avalon write control (
<—signal

avs_sl_address : in  std_logic_vector(l downto 0);J
<~ -- Avalon address; Note: |/

—width determines the number of/
< registers created by Platform(
< Designer
avs_sl_readdata : out std_logic_vector (31 downto )/
<—; -- Avalon read data bus
avs_sl_writedata : in std_logic_vector (31 downto Q)

<; -- Avalon write data bus
PB : in  std_logic; d
< -- Pushbutton to change (

<—state (assume active high,
~—change at top level if needed)d
<— (export in Platform Designerd

=)
SW : in  std_logic_vector (3 downto 0);J
< -- Switches that determine (

—the next state to be selected
< (export in Platform Designer)

LED : out std_logic_vector (7 downto Q)
< -- LEDs on the DE10-Nano J
—board (export in Platform J
<—Designer)

)8
end entity HPS_LED_patterns;

Listing 6.1: Entity of the HPS_LED_patterns component

Notice that the address bus avs_s/_address that connects to the Avalon intercon-
nect is only 2 bits and not 32 bits. This is because the signal width is how you define
how many 32-bit registers your hardware component has. Platform Designer does the
full address decoding for you, and you only need to perform partial address decod-
ing for your registers using the avs_sI_address signal in order to determine which
register is being selected. Thus, the number of bits contained in the std_logic_vector
signal avs_s1_address will determine how many registers your component has.

The prefix avs_sI_ of the Avalon signal names is used because Platform Designer
will correctly interpret these signal names as an Avalon agent interface when im-
ported into Platform Designer and saves the trouble of having to assign them to the
proper Avalon signal interpretation.
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6.2.1.1 Creating Component Registers

To create registers, you first have to name and create signal declarations for them as
shown in Listing 6.2 where two registers left_gain and right_gain are created. These
signals are given default values, which will be the values these registers take when
the component powers up. These register signals are the internal signals that are used
to connect to the ports and logic inside the component’s architecture.

signal left_gain : std_logic_vector(31 downto 0) := "J
—00000100110011001100110011001101
—"; -- 0.3 fixed point value (d
—W=32, F=28)

signal right_gain : std_logic_vector(31 downto 0) := "J
—00000100110011001100110011001101
—"; -- 0.3 fixed point value (d

—>W=32, F=28)

Listing 6.2: Example Register Declarations

Next, we need to be able to read these registers from the ARM CPUs, so we need
to create a read process as shown in Listing 6.3. This is a synchronous process that
checks to see if avs_sI_read has been asserted. If it has, it then uses a case statement
on avs_sI_address to determine which register to read by placing the register’s data
onto the avs_sI_readdata bus. If there are undefined registers in the component’s
register address space, the read needs to return zeros, which is handled by the when
others statement.

avalon_register_read : process(clk)

begin
if rising_edge(clk) and avs_sl_read = 'l' then
case avs_sl_address is
when "00" => avs_sl_readdata <= left_gain;
when "01" => avs_sl_readdata <= right_gain;
when others => avs_sl_readdata <= (others => (
—'0'); -- return zeros for
—unused registers
end case;
end if;

end process;

Listing 6.3: Example Register Read Process

To write to the registers, we create a write process as shown in Listing 6.4. An
asynchronous reset will reset the register values to the given values that are similar to
the default power-up values. This synchronous process checks to see if avs_sI_write
has been asserted. If it has, it then uses a case statement on avs_sI_address to
determine which register to write to. In this example, the entire 32 bits are being
transferred from the avs_s1_writedata bus to the register. If the register is smaller, the
appropriate signal slice would need to be performed. If there are undefined registers
in the component’s register address space, the writes are ignored, which is handled
by the when others statement.
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avalon_register_write : process(clk, reset)
begin
if reset = 'l' then
left_gain <= "00000100110011001100110011001101"; J
—-- 0.3 reset default value
right_gain <= "00000100110011001100110011001101";
—-- 0.3 reset default value
elsif rising_edge(clk) and avs_sl_write = 'l' then
case avs_sl_address is
when "00" => left_gain <= avs_sl_writedatad
— (31 downto 0);
when "01" => right_gain <= avs_sl_writedatad
— (31 downto 0);
when others => null; -- ignore writes to unused
<——registers
end case;
end if;

end process;

Listing 6.4: Example Register Write Process

Using Listings 6.2, 6.3, and 6.4 as examples, create four registers for the
HPS_LED_pattern component. These registers need to be connected to the
LED_pattern component signals as follows:

Register 0 & HPS_LED_control
Register 1 & SYS_CLKs_sec
Register 2 & LED_reg

Register 3 < Base_rate

Note: The default/power-up value for Register 0 <> HPS_LED_control should be
set to “0” so that the LED_patterns component powers up into the hardware state
machine control mode so that the LED patterns will be created without any software
intervention. You should also set the default/power-up values for the other signals the
same as you created them in Lab 4. In VHDL, you do this in the signal declaration
by setting it to the desired initial value when the signal is created.

6.2.2 Creating a Custom Platform Designer Component

Once the VHDL code for HPS_LED_Patterns has been written and is correct, it will
be imported in Platform Designer. Do not proceed with Platform Designer until you
know that your HPS_LED_Patterns VHDL code is correct.

The steps for creating a Custom Platform Designer Component for
HPS_LED_Patterns are:
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Step 1:

Step 2:

Step 3:
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Write the VHDL code for HPS_LED_Patterns.vhd that has the entity
shown in 6.1, that implements the Avalon agent interface with the reg-
isters you need as described in Sect.6.2.1.1, and that instantiates the
LED_Patterns component from Lab 4. Make sure that this file can be
compiled without errors.

Copy the VHDL files that you created earlier for Lab 4, ie.,
LED_Patterns.vhd, and the others (push-button conditioning files) to
the project directory. Quartus will look in the project folder for any files
it needs.

Open Platform Designer in Quartus, and click the New. .. button in the
IP Catalog panel (or select File — New Component). The Component
Editor window will pop up.

a: In the Component Type tab, enter HPS_LED_patterns for
both the Name and Display Name.

b: Click on the Files tab.

i: Under the Synthesis Files section (not the VHDL or
Verilog Simulation Files sections), click Add File... .
Browse to and open HPS_LED_patterns.vhd.

ii: Click the Analyze Synthesis Files button. You should
see the green message Analyzing Synthesis Files: com-
pleted successfully. If you do not get this message, it
usually means you have a VHDL syntax error in your
VHDL code. You will need to correct this before pro-
ceeding. Use Quartus to check and correct your VHDL
code since the error messages you get from Platform
Designer by pressing the “Analyze Synthesis Files”
button are typically unhelpful. The assumption is that
these files have already been correctly written before
being added to Platform Designer.

iii: In the messages window, you will see some error mes-
sages that we will fix next, so ignore them for now.

c: Click on the Signals & Interfaces tab. The component editor
most likely misinterpreted the LEDs, push button, and switches
signals as another Avalon interface and made the wrong inter-
pretation regarding these signals.

i: Click on the Avalon_slave_0 interface (assuming this
was the interpretation).

1: On the right by Name:, rename Avalon_slave_0
to export.

2: Change Type: by selecting Conduit in the drop
down menu. Conduit means the signal will
be brought out of the soc_system component
where the signal will be added to the entity.

3: Change Associated Reset: from none to reset.
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ii:

iii:

iv:

vi:
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Click on LEDs to highlight and change Signal Type to
LEDs (rename to new custom type).

Click on push button to highlight and change Signal
Type to push button (rename to new custom type).
Click on switch to highlight and change Signal Type
to switches (rename to new custom type).

Click on sl (Avalon Memory-Mapped Slave) and
change Associated Reset: from none to reset.

If there are still errors or warnings, fix them by the
process outlined above.

d: Click on the Block Symbol tab. You should see all the signals
in your entity that have now been interpreted correctly as shown
in Fig. 6.4.

HPS_LED_pattemns_inst

Jelk

vs_s1_writedata[31..0] |

vs_s1_read

vs_s1_readdata[31..0] iz 2t

HPS_LED_pattemns

Fig. 6.4: HPS_LED_Patterns component in Platform Designer with signals inter-

preted correctly

e: Click the Finish. .. button. It will ask you if you want to save the
.tel script HPS_LED_ patterns_hw.tcl to your project directory.
Click Yes,Save. The .tcl file is what allows the new custom
component to show up in the IP Catalog panel when Platform
Designer opens.

Step 4: In Platform Designer and in the IP Catalog panel, under Project, you
should now see the new component name HPS_LED_patterns.

a: Add the component to the Platform Designer system.
i: Clickon HPS_LED_patterns in the IP Catalog panel.
ii: Click on the “+ Add...” button.
iii: Click Finish.
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b: Scroll down so you see the component and the bus/signal con-
nection options.

i:

ii:

ii:

iv:

E HPS_LED_patterns_0
dock
reset
sl
expert

Connect clock to clk. Highlight clk by clicking on clk
in the clk_hps component. In gray, you will see that
this can be connected to clock. Click on the small cir-
cle to make this connection, which will turn the circle
black. Since we are adding the memory-mapped in-
terface to the lightweight HPS bus, the clock really
needs to be connected to the same clock that is feed-
ing the h2f Is_axi_clock clock input signal in the hps
component, which in this case is clk from clk_hps.
Connect reset to clk_reset Highlight clk_reset by
clicking on it in the clk_hps component. In gray, you
will see that this can be connected to reset. Click on
the small circle to make this connection.

Connect the memory-mapped interface sl to the
h2f_lw_axi_master port that is on the hps compo-
nent. This connects the components registers to the
lightweight HPS bus.

On the line that says export in the Name column
and also Conduit in the Description column for the
HPS_LED_patterns component, double click where
it says Double click to export. Rename this ex-
port signal name from hps_led_patterns_0_export to
led_patterns (Fig. 6.5).

|HPS_LED_patterns

IClock Input clk_hps
|Reset Input [dock])
|Avalon Memory Mapped Slave [dodk]
|Conduit led_patterns [codk]

Fig. 6.5: Exporting the led_patterns signal in Platform Designer

c: The base address for the Platform Designer system will likely
not be correct, and you will see an error saying that the com-
ponent overlaps another component. Change the Base Address
of the HPS_LED_patterns component in Platform Designer by
selecting in the menu System —. Assign Base Addresses. Make
anote of the base address of the HPS_LED_ patterns component
since you will be using this information later. You will notice
that there are two components with the same base address of 0.
This is OK since they are on different buses.

d: Click the Platform Designer button Finish that is found at the
lower right corner of Platform Designer, which will save the
Platform Designer design. Click close when it is done saving.
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Click Yes to regenerate the Platform Designer System, which
will take several minutes.

e: A pop-up window will remind you that the generated .qip file
needs to be added to the project. However, this has already been
done for you. Click “OK.”

Step 5: From the Platform Designer menu bar, select Generate —. Show Instan-
tiation Template. . .

i: Select the HDL language to be VDHL.

ii: Click the Copy button and paste into a text editor. This gives
you the component declaration and instantiation template that
needs to be placed in the top level of your Quartus project.
Note: Do not actually paste this into the top level. We are
only using it to see what changed. You do not want to reenter
all the instantiation connections for the DRAM, etc.

iii: Notice that there are three new signals in the soc_system com-
ponent declaration. Add these signals into the soc_system com-
ponent declaration in DE10Nano_System.vhd.

iv: These signals need to be connected at the top level when the
component is instantiated. Connect these signals as you did in
Lab 4.

Step 6: Using Quartus, compile the design.
Step 7: Use the programmer to download the bitstream to the DE10 board.

6.2.3 Creating an Avalon Streaming Interface

This is covered in Sect. 1.2 Audio Data Streaming (page 256) in Sects. 1.2.1, 1.2.1.2,
1.2.1.3, and 1.4.1, where an Avalon Streaming Sink and Source is created in Platform
Designer for the AD1939 audio codec that is on the Audio Mini-board (Fig. 6.6).

6.3 System Console

System Console is a tool in Quartus that allows you to connect to hardware in the
FPGA fabric using the JTAG interface. This allows you to bypass the ARM CPUs but
yet interact with your hardware component as if the CPUs were reading and writing
registers in your custom component. It allows you to test your hardware before
layering software on top of it. If you created your hardware component, hooked it
up in Platform Designer, wrote C code to interact with it, and it did not work, where
is the problem? Is it your hardware or software? You could end up spending a lot of
time debugging and not even be in the right ballpark. However, if you tested your
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Avalon Streaming
Data - Channel - Valid

Protocol _

Data Source Data Sink
il [eady Motused

valid Lo

24 Bits

data —
] —— Not Used
channel |
<max_channel> 5 channeis (1 sit)

System Clock = 98.304 MHz

Audio Sample Rate
Fs = 48.0 kHz
Ts = 20.8 microseconds

Fig. 6.6: Data—channel—valid protocol for the Avalon Streaming Interface. Left and
right audio samples share the same data bus. The valid signal marks when there
are valid samples. The channel signal tells which channel (left or right) the sample
belongs to. When the FPGA fabric system clock is 98.304 MHz, the valid signal is
asserted every 2048 system clock cycles when the sample rate of the AD1939 audio
codec is 48 kHz. The ready signal is not used since the downstream components
can handle the sample rate by design (no back pressure needed to stall upstream
components). The error signal is not used in audio processing designs in the book.
Source/sink block diagram from [1]. Signal waveforms were created by WaveDrom
[2], and the associated JSON file can be seen here

custom component with System Console and verified that the hardware was working
correctly, you would know that it was your software that was the problem if you
could not interact with your component. Note: The example used in this section is
associated with Lab 7.

6.3.1 The General Flow for Using System Console

The general procedure for using System Console is outlined below. More information
on using System Console can be found in the User Guide. The overview steps for
using System Console are (further details follow):


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/avalon/avalon_streaming.json
https://www.intel.com/content/www/us/en/docs/programmable/683819/21-3/introduction-to-system-console.html
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Step 1: Add the required components to Platform Designer. At a minimum, this
includes two components:

1: Your custom component that you are testing, which has a
memory-mapped Avalon interface
2: The JTAG to Avalon Master Bridge component

Step 2: In Platform Designer, connect the host interface of the JTAG fo Avalon
Master Bridge to the memory-mapped interface of your custom compo-
nent.

Step 3: Regenerate the Platform Designer system with the new components and
compile the design in Quartus.

Step 4: Connect the board and program the FPGA.

Step 5: Start System Console (In Quartus: Tools — System Debugging Tools
— System Console).

Step 6: Locate and open a master service path (details in Sect. 6.3.3).

Step 7: Perform the desired operations, which typically involve reading and
writing register memory locations in order to test the custom component.

Step 8: Close the master service.

6.3.2 Modifying the Design in Platform Designer

Open Platform Designer and load your system from Lab 6. In the IP Catalog panel
(upper left in Platform Designer) and under the Library section, select and add the
JTAG to Avalon Master Bridge component to your Platform Designer system. This
component can be found in the Library at: Library — Basic Functions — Bridges
and Adapters — Memory-Mapped — JTAG to Avalon Master Bridge as shown in
Fig.6.7.

Project
) New Component...
# System
Library
= Basic Functions
[} Arithrme b
=} Bridges and Adaplors
) Cock
) Internupt
= Memory Mapped
& Address Span Extender
® Avalon-MM Cock Crossng Bridge
® AvalonMM DOR Memory Half Rate Bridge
o AvalonM Ppelne Bridge
® Avalon-MM Unaloned Burst Expansion Bridge
® AN] Bridge
& AXI Tmeout Bridge
.
) Reset
) Streaming

Fig. 6.7: Location of JTAG to Avalon Master Bridge component in Platform De-
signer’s library
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When you add the component, rename it to jtag_mm1 since we will need to refer
to its name later, and it is possible to have more than one of these components (e.g.,
if one had more than one clock domain), which is why we have the 1 suffix and
mm stands for memory-mapped. In Platform Designer, connect up the jtag_mm1l
component in the following manner:

Connection 1: clk of jtag_mml < clk of clk_hps (i.e., the clock being fed to
the component under test).

Connection 2: clk_reset of jtag_mml < clk_reset of clk_hps (i.e., the reset
being fed to the component under tested).

Connection 3: master of jrag_mml < sl (memory-mapped interface of your
component that is most likely named HPS_LED_patterns_0).
The memory-mapped interface s1 will also be attached to the
HPS bus signal h2f Iw_axi_master in the HPS component, so
you will be connecting to the lightweight bus as well.

Connection 4: Leave the master_reset of jtag_mml unconnected.

Regenerate the Platform Designer system and recompile the system in Quartus.
This accomplishes steps Step 1: to Step 3: in Sect. 6.3.1.

6.3.3 Using System Console

After the system has been:

1: Compiled by Quartus
2: The DE10-Nano board powered
3: The configuration bitstream downloaded to the FPGA fabric

Start System Console, which can be started in two ways:

Method 1: From within Platform Designer: Tools — System Console
Method 2: From within Quartus: Tools — System Debugging Tools — System
Console

System Console uses the scripting language Tcl, or Tool Command Language,
which is pronounced tickle. One can create Tcl scripts that automate testing and
data collection. Scripts can also graph data in System Console (using Tk). More
information on Tcl (and Tk) can be found at: Tcl main page and Learning Tcl.

We will use several Tcl commands, which will be explained as we use them. Tcl
command explanations will be contained in the grey colored text box, and System
Console interactions will be shown in the light blue colored text box.

Type the following command in the Tcl Console window in System Console:

Listing 6.5: System Console Tcl Command: get_service_paths master that lists all
the master services available


http://wiki.tcl.tk/
http://wiki.tcl.tk/298?redir=20789
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which could result in the output:

In this example (unlikely that you will see this), three JTAG to Avalon Master
Bridge components show up. This means that you would need to know which master
to select and connect to.

Our design is different, and we are only interested in jtag mml since it is the
JTAG to Avalon Master Bridge we added and connected to the memory-mapped port
of HPS_LED_patterns_0. If you have multiple masters, you need to determine what
index to use to select jtag_mm1. (Note: The masters are listed and indexed starting
from index 0). This is why we gave it a specific name jtag_mm1 when we added it to
Platform Designer, so we could easily see it in the list if there are multiple masters.
In the following example, we will assume that it is the first master listed with an
index of zero. If not, use the appropriate index value.

Understanding the Tcl command: get_service_paths <service-type>

System Console uses a virtual file system to organize the available services.
Board connection, device type, and IP names are all part of a service path. In-
stances of services are referred to by their unique service path in the file system.
You get the paths for a particular service with the command get_service_paths
<service-type>.

System Console automatically discovers most services at startup where it
scans for all JTAG and USB-based service instances and collects these service
paths.

The Tel Command: get_service_paths master looks for master service
types and returns all that are found.

In the Tcl Console window type:

which will result in

The Tcl command has selected the jtag mml.master service, which has an index
of 0 in the list.
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Understanding the Tcl command: lindex [ get_service_paths master ] 0

The Tel Command: lindex is a built-in command that retrieves an element
from a list.

The Tel syntax: [ ] (square brackets) allows a script to be embedded at
any position of any word by enclosing it in brackets. The embedded script is
passed verbatim, without any processing, to the interpreter for execution, and
the result is inserted in its place in the embedding script. This means that [
get_service_paths master | will get executed, which results in a list that is
used by lindex.

Thus the Tcl Command: lindex [ get_service_paths master ] 0 first finds
all the master service paths and returns them in a list, which is then used by
lindex to select element 0, which is the master service associated with the first
master listed, which in our case is jtag_mml.

Let us create a variable in Tcl that contains this information since we do not want
to type:

every time we want to use jtag_mml. Let us save this in a variable called m, so
now type:

Listing 6.6: The set command saves the selected service path to the variable m.

Understanding the Tcl command: set
set is a built-in command that reads and writes variables. It returns the
value of the variable named varName or, if a value is given, stores that value
to the named variable, first creating the variable if it does not already exist.
This means that the Tcl Command: set m [ lindex [ get_service_paths
master | 0] extracts a list item as described earlier and creates a variable m
that stores this path information. Note: We can see what is in the variable (i.e.,
read the variable) by just calling set with no value associated with the variable
name (an unfortunate function naming convention instead of using a keyword
like read).
In summary:
Write value to variable m: set m value
Read value from variable m: set m

To see what m now contains type:
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which returns:

Since System Console services are contained in a virtual file system, we first need
to open the file or service to use it.
Let us now open this master service for jtag_mml, so type:

Listing 6.7: Services in System Console are virtual files that need to be opened to be
used.

Understanding the Tcl command: open_service master $m

The Tel Command: open_service <service_type> <service_path> is
a built-in command that opens a service of <service_type> pointed to by the
path <service_path>.

The Tel syntax: $name When $ occurs in a word and is followed by a
sequence of standard ASCII characters and that sequence is the name of a
variable, the value of the variable replaces the $ and the variable name. This
means that $m is replaced by the service path to jtag_mml.

Thus the Tel Command: open_service master $m opens a master service
with the path specified in $m that points to jtag mml.

We can now read the registers we have created in our custom component. Re-
call from Lab 6 that Register O is the HPS_LED_control register, Register 1 de-
fines how many system clocks occur are one second, Register 2 is what gets dis-
played on the LEDs in software mode, and Register 3 controls the base rate of the
LED patterns when under state machine control. Also recall what base address of
HPS_LED_patterns_0 was set to in platform Designer. (If you have forgotten, you
need to open the system in Platform Designer to check the base address.) Assuming
the base address has been set to 0x0 for this example and that we want to read one
32-bit word (0x1) from Register 0, we type:

Listing 6.8: Reading a 32-bit word from memory.

which results in:

In order to figure out what memory address to type in for a particular register in
System Console for your custom component, read section 7.2 The View of Memory
from System Console (page 89).
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Understanding the Tcl command: master_read_32 $m 0x0 O0x1

The Tcl Command: master_read_32 <service_path> <base_address>
<number_of_32-bit_words> is a built-in command that uses the ser-
vice pointed to by <service_path> that reads from memory starting at
<base_address> and reads <number_of _32-bit_words>.

Thus the Tel command: master_read_32 $m 0x0 O0x1 uses jtag mml
to read from memory location zero and reads one 32-bit word.

Register2 should be a read/write register, so let us first see what is in the register
and then write a new value to the register. Since our commands start at the base
address, we need to read three 32-bit words. Type the command:

which results in:

We see that register 2 (third value since we are counting from Register 0) has
returned a zero. Let us write a value of 1 to register 2 (and zeros to registers 0 and
1) by typing the command:

Listing 6.9: Writing three 32-bit values to memory.

Understanding the Tcl command: master_write_ 32 $m 0x0 0x0 0x0
0x1

The Tel Command: master_write_32 <service_path>
<base_address>  <list_of_32-bit_values> is a built-in command that
uses the service pointed to by <service_path> that writes to memory starting
at <base_address> and writes all the values in <[ist_of _32-bit_values>.

Thus the Tcl command: master_write_32 $m 0x0 0x0 0x0 Ox1
uses the jtag mml connection to write to memory location starting at zero
the three values in the list (0x0 0x0 Ox1). This means we will set RegisterQ =
0, Registerl = 0, Register2 = 1.

Now if we read our registers by typing the command:

we can see that Register 2 has been set to 1:



6.3 System Console 77

Once we are done testing the Platform Designer component by reading and writing
registers, we close the service by typing:

Listing 6.10: Closing the service.

6.3.4 Summary of System Console Commands

The steps for interacting with the registers in your component are:

Step 1: Add a JTAG to Avalon Master Bridge component to your Platform De-
signer system, name it a recognizable name such as jtag mml, and
connect it to the slave port of the component that contains the regis-
ters that you want to interact with. Pay attention to the base_address
of the component since you will need this address for System Console
commands.

Step 2: Get the list of all the master services in System Console by typing the
command:

and note what the index is for jtag mml. (Note: The index values start
at zero.)

Step 3: Save the service path for jtag_mml1 in the variable m (here we assume
the index value is zero) by typing the command:

Step 4: Open the service by typing the command:

Step 5: Read the 32-bit registers by typing:

Step 6: Write to the registers by typing:

Step 7: Close the service by typing:
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6.4 Creating IP in Quartus
6.4.1 Creating a ROM IP Component

When designing a digital system, we put together various logic building blocks. We
would like to avoid having to create every building block ourselves, so this is where
the Quartus IP Catalog is helpful. We can select and use various building blocks
from a library of commonly used blocks. In this example, we will create a ROM that
has the memory size and values of our choosing. The ROM that we will create is
used in Sect. 8.4 where we create and verify a hardware component that computes
the reciprocal square root of a fixed-point value. The ROM is used to compute the
initial guess of the solution, which we need for successful convergence when using
Newton’s method to find the solution.

When Quartus is opened, we can see the /P Catalog on the right-hand side. If
we open the IP Catalog to Installed IP — Library — Basic Functions — On Chip
Memory, we can select different memory types as seen in Fig. 6.8. This includes the
1-PORT ROM that we will use.

IP Catalog e x
L X =
v @ installed IP

~ Project Directory
No Selection Available
~ Library
™ Basic Functions
*  Arithmetic
» Bridges and Adaptors
» Clocks; PLLs and Resets
> Confi
> o

> Miscellaneous

ion and F

g ing

~ ©On Chip Memory
¥ FIFO
# RAM initializer
¥ RAM: 1-PORT
RAM: 2-PORT
¥ ROM: 1-PORT
¥ ROM: 2-PORT
¥ shift register (RAM-based)

Fig. 6.8: Selecting a ROM from the Quartus IP Catalog

However, before we create this 1-PORT ROM using the IP Catalog, we first need
to create a Memory Initialization File (.mif) that specifies what should be in this
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memory. Otherwise, when the Quartus MegaWizard that creates this ROM asks us
for this file, it will complain if we do not have it ready.

6.4.1.1 Creating the ROM Memory Initialization File

The memory initialization file that we need to create can be seen in Listing 6.11
where only the first 15 lines are shown (click here for the full file listing). The file
starts with a header that describes the file contents. The DEPTH parameter specifies
how many memory words are there in the file, and this needs to be a power of
two. The WIDTH parameter specifies how many bits are in each memory word. The
ADDRESS_RADIX parameter specifies in what radix the memory addresses will be
written. In this file, it is specified as BIN or binary. Other possible radix options are
DEC, OCT, or HEX. We use binary in this specific case since the binary address
relates directly to a fractional word slice in our design, and it is easier to compare this
VHDL signal slice with the associated memory address when it is in a binary radix.
The DATA_RADIX parameter specifies in what radix the data or memory values
will be written. In this file, it is specified as BIN or binary. The CONTENT and
BEGIN parameters mark where the (address : value) pairs start. Address specifies
the memory address where the paired value will be stored at. Comments can follow
the (address : value) pair, and they start with two dashes. After all the (address :
value) pairs have been listed, there is the final END parameter.

DEPTH = 256;

WIDTH = 12;
ADDRESS_RADIX = BIN;
DATA_RADIX = BIN;

CONTENT

BEGIN

00000000 : 100000000000 -- 1 : (1)A(-3/2) =1

00000001 : 011111110160 -- 2 : (1.0039)A(-3/2) = 0.99414
00000010 : 011111101000 -- 3 : (1.0078)A(-3/2) = 0.98828
00000011 : 011111011101 -- 4 : (1.0117)4(-3/2) = 0.98291
00000100 : 011111010001 -- 5 : (1.0156)A(-3/2) = 0.97705
00000101 : 011111000101 -- 6 : (1.0195)A(-3/2) = 0.97119
00000110 : 011110111010 -- 7 : (1.0234)A(-3/2) = 0.96582
00000111 : 011110101111 -- 8 : (1.0273)4(-3/2) = 0.96045
00001000 : 011110100160 -- 9 : (1.0313)A(-3/2) = 0.95508

Listing 6.11: File Contents : ROM.mif

The memory initialization file is created using two Matlab files, which are
mif_gen.m (click here) and mif_gen_ ROM_rsqrt.m (click here). The Matlab func-
tion mif_gen.m takes in four arguments.

43| function mif_gen(filename,array,memory_size,comments) !

Listing 6.12: Matlab function for generation of the memory initialization (.mif) file

The first argument filename specifies the name of the .mif file to be written. The
second argument array is an array of fixed-point objects that contain the memory
values. The third argument memory_size is a two-element vector that specifies the


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/ROM.mif
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/mif_gen.m
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/mif_gen_ROM_rsqrt.m
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number of memory words and the size of a memory word in bits. The fourth argument
comments is optional and contains a character array of comments that will be placed
after each (address : value) pair.

In Listing 6.13, the function first checks to see if the memory size specified is
consistent with the data array.

if length(array) ~= memory_size(1l)
error('Length of array passed to mif_gen() does not matchd
“— memory size')
end
if rem(memory_size(l),log2(memory_size(l))) ~= 0
error('Length of Memory should be a power of 2')
end
a = array(l);
if a.WordLength ~= memory_size(2)
error('Word length of array does not match memory size')
end

Listing 6.13: Error checking the function inputs

After the error checking is passed, it opens the .mif file in write mode

fid = fopen([filename '.mif'],'w');

Listing 6.14: Opening the file

and then writes the .mif file header as shown in Listing 6.15.

line = ['DEPTH = ' num2str(memory_size (1)) ';']l; fprintf(fidd
—,'%s\n',line); % The size of memory in words
line = ['WIDTH = ' num2str(memory_size(2)) ';']l; fprintf(fidd

—,'%s\n',line); % The size of the word in bits
line = ['ADDRESS_RADIX = BIN;']; fprintf(fid, '%s\n',line); %d
< The radix for address values

line = ['DATA_RADIX = BIN;']; fprintf(fid, '%s\n',line); % d
—The radix for data values

line = ['CONTENT']; fprintf(fid, '%s\n',line);

line = ['BEGIN']; fprintf(fid, '%s\n',line); % start of (4

<—address : data) pairs

Listing 6.15: Creating the Memory Initialization File Header

After the file header is written, a for loop goes through the array where it constructs
the (address : value) pairs. It creates a fixed-point object for the address and places this
in the line string. It then concatenates this address string with the binary string of the
associated value. If comments are supplied, it concatenates the comment associated
with the pair and writes it to the file. Otherwise, it adds a generic comment.

address_bits = log2(memory_size(1l));

for index = l:memory_size(1l)
address = fi(index-1,0,address_bits,0);
a = array(index);
line = [address.bin

0 o 0

a.bin];
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if nargin <= 3
line = [line -- array (' num2str(index) ') = ' J
—num2str (array(index)) 1;

else

line = [line comments(index,:)];
end
fprintf(£fid, '%s\n',line);

end

Listing 6.16: The memory initialization file structure

The values for the ROM are created in the Matlab script mif_gen_ROM_sqrt.m.
As part of the computation to create the initial guess for the reciprocal square root
function, which is then refined by Newton’s method, the ROM is used as a lookup
table in place of the nonlinear function y = x73/2 where 1 < x < 2. The fractional
part of x is used as the address into the ROM.

The size of the ROM is specified by the parameters Nbits_address, which is
the size of the ROM address port, and Nbits_word_length, which is the size of
the memory words in bits contained in the ROM. These values are design choices
for the reciprocal square root hardware component that affect the precision of the
computation. However, the memory does not need to be large, in terms of either the
number of words or the word size in bits, because we do not need fine precision for
the starting point yo for Newton’s method. We just need a rough guess that will be
refined by the Newton iterations.

Nbits_address = 8; % address size

Nbits_word_length
—of bits)

Nbits_word_fraction = Nbits_word_length-1; % The number of J
< fractional bits in result.

Nwords = 27Nbits_address; % Number of words in J
<—memory

12; % size of word in memory (number J

Listing 6.17: Defining the memory size

Since the address into the ROM comes from the fractional bits of x, where
1 < x < 2, we need to generate all the possible address values for this ROM.
We do this as shown in Listing 6.18 by creating an index i that goes from 0 to
pNbits_address _ | e then create a fixed-point object from the index value with the
value interpreted as an unsigned integer (S =0, W = Nbits_address, F=0) and get
the binary string that represents the memory address (fa_bits). The implicit value
that this address represents is x that has a 1 in the one’s place. We get this value
by creating a fixed-point object container (value is temporarily zero) and where the
interpretation is W = Nbits_address + 1 and F = Nbits_address. We then prefix
a “1” to the address string and assign it to this fixed-point container, which gives
us the value x that we want when Matlab makes the assignment and updates the
fixed-point object.

The next step is to get the value y = x~3/2. This is simply done by converting the
fixed-point object fb to a double and raising it to the —3/2 power. We then convert y
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back to another fixed-point object a with the interpretation we want to place in the
ROM (W = Nbits_word_length, F = Nbits_word_fraction). This fixed-point object is
then stored in the array of all the fixed-point objects. We also create comments that
explain what this memory location represents.

for i=0:(Nwords-1) % Need to compute each memory entry (i.ed
<. memory size)

fa = fi(i,0,Nbits_address,0); % fixed point object for J
<—address

fa_bits = fa.bin; % Memory Address as a
<—binary string

fb = fi(®, O, Nbits_address+1l, Nbits_address); % Set (
—number of bits for result, i.e. we are creating thed
< value 1.address_bits

fb.bin = ['1' fa_bits]; % set the value using the binaryd
< representation. The address is our input value 1 J
—<= x_beta < 2 where the leading 1 has been added.

a = fi(double(fb)A(-3/2),0,Nbits_word_length,d
—Nbits_word_fraction); % compute (x_beta)*(-3/2)
<——and convert to fixed-point with the desired number
<—of fraction bits

array(i+1l) = a;
comments = char(comments, [' -- ' num2str(i+l) " : ('d
— num2str (double(£fb)) ')A(-3/2) = ' num2str(a)l]);

Listing 6.18: Creating the memory array

Having created everything we need for the memory initialization file, we can
specify the file name we want (“ROM”) and then pass the array we created along
with the memory size and comments to mif_gen to have it create the memory
initialization file.

filename 'ROM ' ;

4|memory_size = [Nwords Nbits_word_length];

mif_gen(filename,array,memory_size,comments)

Listing 6.19: Generating the ROM values

We then save the array of fixed-point objects into a .mat file so that we can easily
access the ROM values in Matlab by loading in the .mat file when we perform
verification of any component that uses the ROM. Otherwise, we would have to
parse the .mif file.

62| save([filename '.mat'], 'array') I

Listing 6.20: Saving the ROM values in a .mat file
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6.4.1.2 Creating the ROM IP

Now that we have the memory initialization file we need, we can go ahead and create
the ROM IP in Quartus. With the IP Catalog opened as in Fig. 6.8, double click on
ROM: 1-PORT. A window pops up that asks us what we should name the ROM IP
that will be created and where the generated files should be placed. Note 1: It will be
easiest if you first open a project that has already been created that targets the DE10-
Nano when you create this ROM since we want to target the Cyclone V. The location
would then be this project folder (you do not need to add the IP component to the
project). Note 2: Copy the ROM.mif memory initialization file into this directory.
Name the IP variation ROM and select VHDL as the generated file type. When you
click OK, the window in Fig. 6.9 pops up (it may take a few moments to appear).

Ay

MegaWizard Plug-In M

[page 1 of 5] ? X

'Zj ROM: 1-PORT [ et ] ooamertoon

[1]Parameter
Settings

[Fcmaa] > > menmt >

Currently selected device family: |cydone v v

[4] Match project/default

How wide should the ‘g’ output bus be? 12 | bits
How many 12-bit words of memory? words

Mote: You could enter arbitrary values for width and depth

Stk type: AT What should the memory block type be?
@ Auto QO mas O M1k
M-RAM LCs Options...

Set the maximum block depth to | Auto ~ | words

‘What docking method would you like to use?

®) single dock
() Dual dock: use separate ‘input’ and ‘output’ docks

Fig. 6.9: Defining the ROM IP Memory Size

In the first panel, we select the memory size, which must be the same size as
the memory initialization file we created. The first question How wide should the
“q” output bus be? needs to be the same as what we set Nbits_word_length to
in mif_gen_ROM_rsqrt.m, which in this example is 12 bits. The second question
How many 12-bit words of memory? needs to be consistent with Nbits_address,
specifically 2/Vbits_address hich in this example is 28 = 256 memory words.

For the question What should the memory block type be?, keep it as Auto, so that

the fitter can select whatever memory type is available. Keep the clocking method
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as single clock since we are not using the memory in a design with multiple clock
domains. Click Next to go to the next panel (Fig. 6.10).

% MegaWizard Plug-In Manager [page 2 of 5]

'Zj ROM: 1-PORT

[1]Parameter [2]ED!

Settings

Which ports should be registered?
‘data’ input port
‘address’ input port
'q output port
Create one dock enable signal for each dock signal.

[] Note: All registered ports are controlled by the More Options...
enable signal(s)

Create byte enable for port A

What is the width of a byte for byte enables? | g bits

0 Create an ‘adr’ asynchronous dear for
the registered ports

[ create a ‘rden' read enable signal

More Options...

Fig. 6.10: Registering the ROM Output in the Quartus MegaWizard

In the next panel, where it asks the question Which ports should be registered?,
make sure that the selection “q” output port is selected. Typically, we will always
choose to have the inputs and outputs registered since we are interested in perfor-
mance and pipelining our designs will allow it to be clocked faster. This is because
it will shorten possible critical timing paths. The design trade-off is that it now takes
two clock cycles for the ROM output to appear when we send in an address. Keep
this two clock cycle latency in mind when you are using the ROM. We do not need
any other control signals, so leave the other options unchecked. Click Next to go to
the next panel (Fig. 6.11).

This next panel is why we first created the memory initialization file and put it in
the directory where we are creating the ROM. Type in the file name, which in this
example is ROM.mif. Click Next to go to the next panel (EDA), which you can skip
so Click Next again (Fig. 6.12).

In the final panel, select both the VHDL component declaration file (ROM.cmp)
and the instantiation template file (ROM_inst.vhd) so that both these files will be
generated when ROM.vhd is generated. The file ROM.cmp (click here for file) is
shown in Listing 6.21. The file ROM_inst.vhd (click here for file) is shown in
Listing 6.22. This allows you to conveniently cut and paste both the component
declaration and instantiation template into your design. Click Finish to generate the
ROM IP.


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/ROM.cmp
https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/quartus/rom/ROM_inst.vhd
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X MegaWizard Plug-In M

[page 3 of 5] ? x

"Zj ROM: 1-PORT

Do you want to specify the initial content of the memory?
Mo, leave it blank

Initialize memory content data to X0(..X on
power-up in smulation
@ Yes, use this file for the memory content data

(You can use a Hexadecmal (Intel-format) File [.hex] or a Memory
Initialization File [.mif])

Block type: AUTO

[ooers |

File name: | ROM.mif] |

The initial content file should conform to which port’s

dimensions? PORT-A

Dnhwm-SysmMemeomntEdw to capture and
update content independently of the system dock

The ‘Instance ID' of this ROM is: NONE

Fig. 6.11: Specifying the Memory Initialization File in the Quartus MegaWizard

File Description

v|ROM.vhd Variation file

[JrOM.inc AHDL Indude file

M RrOM.cmp VHDL component dedaration file
[CJrROM.bsf Quartus Prime symbol file
2ROM _inst.vhd Instantiation template file

Fig. 6.12: Creating the Component Declaration and Instantiation Files in the Quartus
MegaWizard

Note: The ROM.qip file that is generated is what you add to your Quartus project
to be able to use the ROM IP. You can also just add the file ROM.vhd to your Quartus
project. To use the ROM IP, you first need to declare the component in your VHDL
code (before the begin statement) as shown in Listing 6.21.

component ROM
PORT
(
address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
clock : IN STD_LOGIC := '1';
q : OUT STD_LOGIC_VECTOR (11 DOWNTO 0)
)
end component;

Listing 6.21: Declaring the ROM Component
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You would then instantiate the ROM component in your VHDL code (after the begin
statement) and hook it up to the appropriate signals in your design as shown in
Listing 6.22.

ROM_inst : ROM PORT MAP (
address => address_sig,
clock => clock_sig,

=> q_sig

Listing 6.22: Instantiating the ROM Component
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Chapter 7 )
Introduction to Memory Addressing S

The ARM CPUs in the Cyclone V SoC FPGA are 32-bit CPUs and can only address
memory in the range from 0x00000000 to OxFFFFFFFF (4 GB). The SoC FPGA
contains a number of memory-related devices and peripherals, and the view of
memory in the SoC FPGA depends on the particular device vantage point. This is
illustrated in Fig. 7.1.

Of particular interest to the designs in this book are the far right column that is
labeled MPU and the annotated row labeled Lightweight Bridge. The MPU column
is what the ARM CPUs see in terms of memory. Notice that all the peripherals and
memory bridges are located above 0xC0000000, which places them under control of
the Linux kernel that is running in the MPU. The Lightweight Bridge is the address
range starting at 0xFF200000, and this is where the registers of our custom hardware
are memory-mapped.

7.1 The View of Memory from the ARM CPUs and Platform
Designer

When custom hardware is placed in the FPGA fabric, the control registers for the
custom component are connected to the lightweight bus in Platform Designer as
shown in Fig.7.2. Platform Designer will assign a “base address” to the custom
component, but in reality this is an offset to the lightweight bridge address of
0xFF200000. How the memory addressing is calculated for registers in custom
hardware is given in Sect. 7.1.1.

The view of memory that the ARM CPUs see is shown in the right column of
Fig.7.1. Of particular interest is the location of the lightweight HPS-to-FPGA AXI
bridge that is located at memory address OxFF200000 and ends at OxFF3FFFFF
having a span of 2 MB where the bridge address width is 21 bits. It is within this
address range that our control registers will exist when our custom hardware com-
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Master
DMA  Peripherals(5)  DAP

OxFFFFFFFF
OxFFFFO000

OxFFFEC000
0xFFFDO000

0xFF400000

0xFF200000 = | 0xf200000
Lightweight Bridge
Base Address 0xFFO00000

0x00100000
0x00010000

Fig. 7.1: SoC FPGA multiple views of memory. Custom hardware that is attached to
the lightweight bus (LW H-to-F) is accessed through the lightweight bridge that has
a base address of 0xFF200000. Figure adapted from [1]

ponent is attached to the HPS bus signal h2f_Iw_axi_master in the HPS component
in Platform Designer.

7.1.1 Memory Addressing for Registers on the HPS Lightweight Bus

In Platform Designer, the term “Base Address” for the custom component is mis-
leading since it is the base address on the bus that it is attached to. In reality, it is
an offset to the address of the lightweight HPS-to-FPGA AXI bridge that has an
address of 0xFF200000.

The register address calculation for your custom component when using C on
Linux running on the ARM CPUs is:
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DE10-Nano Board

armHard Processor System (HPS) FPGA Fabric
Custom Component
) ) Base Address of Custom Component
Lightweight as assigned by Platform Designer
HESHoERCA 0x0000_4100
Bridge with (Note: This is an offset to the
Base Address of HPS-to-FPGA Bridge address)
0xFF20_0000
Memory Mapped
- Registers
@ [« | Register0 >
L3 Slave £
Peripheral Switch = B Regicter1 MI_)
H L= Component
I e [ Regsterz |-»  °9C
L3 Main Switch o
T, N necisters ML
< I b
» & Regiiters By
ARM CPUs

Fig. 7.2: Memory Addressing of Custom Component

Register[i] = Lightweight Bridge Address + Component Address +7 x4  (7.1)
where i = [0..N — 1] (7.2)
N = Number of Registers (7.3)

where you take the base address of the component that has been assigned by Platform
Designer and add the appropriate number of register offsets that are 4 bytes since the
sizes of the registers that have been created are assumed to be 32 bits. The number
of registers NV is determined by the components address width W in the entity, i.e.,
N =2%.

Thus Register[3] in the example shown in Fig.7.3 has the physical memory
address:

Register[3] = Lightweight Bridge Address + Component Address +i x4  (7.4)

= 0xFF200000 + 0x4100 + 3 = 4 (7.5)
= 0xFF200000 + 0x4100 + 0xC (7.6)
= 0xFF20410C (7.7)

7.2 The View of Memory from System Console

The view of memory that System Console sees is taken from the perspective of the
attached JTAG to Avalon Master Bridge component and is shown in Fig. 7.4. The
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Custom Component Register Addressing from ARM CPU

5 A g Custom 2
Addresses
.- Register Offsets
Reg N
+—Offset = N*4
OXFF3FFFFF™~
Custom Reg 3
Component “—Offset = 12 = 0xC

Red2 +—Offset=8
Reg 1

- +—Offset=4
0

RN Oset=0

Note: The registers are 32 bits.
Thus the 4 byte offsets.

Accessing Custom Component Registers from the ARM CPU

To access Register 3 in your Custom Component,
the physical address (in bytes) would be:

Register 3 Address Register 3 Physical Address
Base Address of Lightwa;ght HPS-to-FPGA Bridge OxFFETJODDD
Base Address of C'Lstom Component il OxOOOBM 00
assigned by Platform Designer
Register+ 3 Offset D;C
DxFF2=lJ41 oc

Fig. 7.3: Component Register Addressing from ARM CPUs

memory addressing is relative to this JTAG to Avalon Master Bridge. This means
that the component that you are testing needs to be attached to the same bus as the
JTAG to Avalon Master Bridge component. See Sect. 6.3.2 Modifying the Design
in Platform Designer (page 71) on how to add this component to your Platform
Designer system.

In Platform Designer, the term “Base Address” can be a bit misleading since it is
the base address on the bus that it is attached to. In the System Console case, this is
all we need to know since the JTAG to Avalon Master Bridge component will see
the component under test at this address. This is different from the ARM CPU case
as illustrated in Fig. 7.3.

The register address calculation for your custom component when using System
Console is:
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Register[i] = Base Address given by Platform Designer + i * 4 (7.8)
where i = [0...N — 1] (7.9)
N = Number of Registers (7.10)

where you take the base address of the component that has been assigned by Platform
Designer and add the appropriate number of register offsets that are 4 bytes since the
sizes of the registers that have been created are assumed to be 32 bits. The number
of registers N is determined by the component address width W in the entity, i.e.,
N =2%.

Thus Register[3] in the example shown in Fig.7.4 has the physical memory
address:

Custom Component Register Addressing from System Console

C:mu:?n";nt Register
Addresses Addresses
Register Offsets
Reg N

4+— Offset = N*4

[— Custom
compenent  COMponent

Base
Address

3
s +—Offset = 12 = 0xC

Reg 2

0x00004100 4+—Offset=8

Reg 1
= +— Offset =4

Reg 0
9 +—Offset=0

Note: The registers are 32 bits.
Thus the 4 byte offsets.

JTAG
JTAG to A‘f'alon Mote: The custom component slave interface
Master Bridge needs to be connected to the JTAG to Avalon
Master Bridge in Platform Designer.

Accessing Custom Component Registers from the System Console

To access Register 3 in your Custorn Component,
the physical address (in bytes) would be:

Register 3 Address Register 3 Physical Address
Base Address of Custom Component 0x00004100
assigned by Platform Designer
+ a:amg}o » +
Register 3 Offset 0xC
0x0000410C

Fig. 7.4: Component Register Addressing from System Console
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Register[3] = Base Address given by Platform Designer + i * 4 (7.11)
=0x4100 +3 =4 (7.12)
= 0x4100 + 0xC (7.13)
= 0x410C (7.14)
Reference

1. Intel, Cyclone V Hard Processor System Technical Reference Man-
ual. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/cyclone-v/cv_5v4.pdf. Figure 8-4, Address Maps for System
Interconnect Masters, page 8-6, Accessed 23 June 2022
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Chapter 8 ™
Introduction to Verification

updates

8.1 Design Assumptions
8.1.1 Synchronous Designs

Our working assumption is that the system we are creating is a synchronous digital
system where all signals change in lockstep to the system clock. This is why you
should always use the rising_edge() function in your VHDL designs when you create
aprocessin VHDL. You should get into the habit of always writing if rising_edge(clk)
right after begin in a process(clk) statement as shown in Listing 8.1 (unless you have
a very good reason to do otherwise).

my_process_name : process(clk)
begin
if rising_edge(clk) then
<...VHDL code here...>
end if;
end process;

Listing 8.1: Synchronous VHDL process using the rising_edge() function. You
should always write if rising_edge(clk) right after begin in a process(clk) statement

8.1.2 Hierarchical Designs

We are assuming a hierarchical design process where larger components are com-
prised of smaller ones. If you waited till the very end and your complicated system
did not work, where would you find the error? It would be hard to find. Systems
using SoC FPGAs are even more complex and harder to debug than your typical
computer system because you are developing both the underlying hardware and the
software that uses your hardware. If the system breaks, the problem could exist in
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your hardware or in the software using your hardware. Thus to reduce the time you
spend debugging, it is important to verify that your building blocks are correctly
created before you use them.

A systematic design approach is to design small components and make sure they
are correct before moving on. It is tempting to jump in and starting using them right
away, but this approach will in the end cause you to waste a lot of time debugging
the system that could have been avoided if you tested and verified right after creating
a building block. (Yes, I have been guilty of this myself.) If you verify the building
blocks as you create them, then when you create a larger component, and it does not
work, you know the error is unlikely to be coming from the smaller components, but
rather in how you are using them in the larger component.

8.1.3 VHDL Code Formatting

When you write code, it is good to follow a style guide. This can help reduce coding
mistakes. Here we present how to use Python to format your VHDL code using the
VSG package.

There are many Python Integrated Development Environments (IDEs) (List of
Python IDEs), so if you already have your own Python environment, then use that
one. If not, then we give PyCharm as a suggested Windows environment and give
the steps to set it up to format VHDL code. The steps are:

Step 1: Install the PyCharm Community Edition. (Download Link)

Step 2: In PyCharm, install the VHDL Style Guide (VSG) package. You can
do this in PyCharm by opening a ferminal window and entering the
command pip install vsg.

> pip install vsg I

Step 3: Create a project in PyCharm (suggested project name = vsg). Having a
project ready to open and run on a file will make it convenient to use.

Step 4: Add the VHDL style guide adsd_vhdl_style.yaml to the project folder.
Change any style rules in the file if so desired. It will work fine as is.

Step 5: Add the Python script format_vhdl_file.py to the project folder and make
the following edits in the file:

Edit 1: Add the name of your VHDL file (line 18) that you want to
format or check.

Edit 2: Add the path to your VHDL file (line 19).

Edit 3: Add the path to the .yaml file you downloaded in step 4. (It
will be the path to the vsg project directory.)

Step 6: Run the python script format_vhdl_file.py, and fix any errors and warn-
ings in your VHDL file. Repeat until there are no errors or warn-
ings. If you disagree on what a warning or error should be, modify
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the file adsd_vhdl_style.yaml accordingly and rename it something like
my_style.yaml.

8.2 Verification
8.2.1 Why Verify?

Computer systems are arguably one of the most complicated systems to develop,
and it is easy to introduce errors in the design process. A design goal is to minimize
errors, while you are developing a system, and it is best (and cheaper) to find potential
errors right away, rather than having your customers find them for you. This is why
you should test and verify your code and digital logic building blocks as you develop
them.

8.2.2 Verification Process

Here we assume that you have just finished creating a VHDL component that you
wish to verify. The process is to send values, known as test vectors through the
component, and check if the results are correct. But how do you know what the
correct result should be? Well, in our case, we will use Matlab and create a Matlab
function that should produce the same output as the VHDL component. Then if
both the VHDL and Matlab code agree with each other, we are pretty certain that
the component is correct. Theoretically, it is possible to make the same mistake in
two different languages where the same mistake manifests itself over all the test
cases. However, the probability of this actually happening is pretty close to zero. The
verification process shown in the following examples assumes that you have both
ModelSim and Matlab installed on your system.

Two examples are provided that illustrate the verification process. Example 1
performs a simple VHDL component verification using the file input.zxt for the input
test vectors, and the results are written to the file output.txt. Matlab is used to generate
the test vectors contained in the input file and then to verify that the output is correct.

Example 2 builds upon Example 1 in two ways. The first extension is that the
number of I/O ports in the VHDL component has increased. There are two input ports
to create test vectors for and two output ports to verify. The second extension is that
there is an IP component created with the Quartus IP Wizard (a ROM memory). We
will create this ROM, generate the memory initialization file, and setup ModelSim
so that it can simulate this ROM IP component.
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Matlab File * VHDLDesignfile | | VHDLTestbench File
my_test_vectorsl.m my_component1.vhd my_component1_th.whd
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Fig. 8.1: Verification Flow Diagram. ModelSim verifies the VHDL component
my_componentl.vhd using the associated testbench my_componentl_tb.vhd by
reading the test vectors from file input.txt and writing the results to output.txt.
The Matlab script my_test_vectorsl.m is used to create the test vectors in the file in-
put.txt. Verification is performed by the Matlab scrip my_verificationl.m that reads
input.txt and computes what the results should be using my_component1.m. It then
compares this output to what is in output.txt
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8.3 Verification Example 1: File I/O

Verification Example 1 performs verification of a simple VHDL component where
the file input.txt contains that test vectors and the results are written to output.txt.
Matlab is used to generate the test vectors and then to verify that the output is correct.

The starting point for verification is the VHDL design file that we wish to verify,
which in this example is my_componentl.vhd. The verification flow is illustrated
in Fig. 8.1, which shows how all the files relate to each other. These files are listed

in Table 8.1.

Table 8.1: Files used to verify my_componentl.vhd

File

Description

my_component1l.vhd

VHDL component to be verified

my_componentl_tbh.vhd

VHDL testbench file that verifies my_component1.vhd

my_test_vectorsl.m

Matlab script that creates the input test vectors and
writes them to input.txt

input.txt

File that contains the input test vectors. It is created by
the Matlab script my_test_vectorsl.m

output.txt

File that contains the simulation results when
my_componentl_tb.vhd is run in ModelSim

my_componentl.m

Matlab function that computes the same results as
my_componentl.vhd and can generate the same re-
sults as is found in output.txt. Verification is complete
when the Matlab function my_componentl.m agrees
with the VHDL component my_component1.vhd

my_verificationl.m

Matlab script that reads input.txt and runs these test
vectors through my_componentl.m and compares
these results to the results found in output.txt

Note: These files can be found on GitHub (click here)
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8.3.1 VHDL File to Verify: my_componentl.vhd

The file my_componentl.vhd (click here for the source file) will be the VHDL code
that we wish to verify. The entity can be seen in Listing 8.2, which has a generic
MY_WIDTH that defines the signal widths of the signals my_input and my_output.

entity my_componentl is
generic (
MY_WIDTH : natural);

port (
my_clk : in std_logic;
my_input : in std_logic_vector(MY_WIDTH-1 downto 0);

my_output : out std_logic_vector (MY_WIDTH-1 downto 0)

)8

end my_componentl;

Listing 8.2: Entity of my_component1.vhd

The computation that my_component performs is to simply add 1 to the in-
put, i.e., my_output = my_input + 1. This is done by the synchronous process
my_add1_process that adds 1 to my_input on the rising edge of the clock. This
process can be seen in Listing 8.3.

my_addl_process : process(my_clk)
begin
if rising_edge(my_clk) then
my_result <= my_input + 1;
end if;
end process;

Listing 8.3: my_add1_process

To simulate a component that has multiple clock cycles of latency, we arbitrarily
delay the signal my_result three clock cycles before we send it out of the compo-
nent. The my_delay_process is shown in Listing 8.4, and this coding style is only
suitable for a couple of delays. We also use this style to illustrate the behavior
of VHDL processes. Although processes allow sequential programming, they are
still different from the usual serial programming languages. If we follow a value
through this process, on rising edge 1 of the clock, the contents of my_result are
assigned to my_delay_signal_I. On rising edge 2, my_delay_signal_I is assigned
to my_delay_signal_2, and on rising edge 3, my_delay_signal_2 is assigned to
my_output. This ordering may look like it will not work if you are looking at it from
the perspective of a typical serial programming language, where it looks like the
value in my_result overwrites all the signals with the same value in successive order.
In a VHDL process however, the assignments do not occur till you are at the very end
of the process where they all occur “instantaneously” and in parallel (actually the
simulator has delta cycles with zero time for these assignments). Thus the behavior
of the process is that all these assignments occur simultaneously at the rising edge
of the clock. This is why in a VHDL process a signal could have several different
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assignments occurring at different locations in the sequential code, but it is only the
last assignment made in the process that actually occurs when you get to the end of
the process. Since my_clock is in the sensitivity list, the process runs again when
any change in my_clock occurs, and we condition our code to run on the rising edge
of the clock to make our designs synchronous with this rising clock edge.

my_delay_process : process(my_clk)
begin
if rising_edge(my_clk) then
my_delay_signal_1 <= my_result;

my_delay_signal_2 <= my_delay_signal_1;
my_output <= my_delay_signal_2;
end if;

end process;

Listing 8.4: my_delay_process

8.3.2 VHDL Testbench File: my_componentl_tb.vhd

The file my_componentl_th.vhd (click here for the source file) is the VHDL test-
bench file that verifies my_component1.vhd, which is the Device Under Test (DUT).
The signal width that is controlled by the generic MY_WIDTH is set by assigning
the constant W_WIDTH to the desired value. In this example, we will be creating
signals that are 16 bits wide.

constant W_WIDTH : natural := 16; -- width of J
<—input signal for DUT

Listing 8.5: Defining signal widths

Since our components are synchronous, we need to create a clock for our simu-
lation. We do not really care what the frequency of the clock is, just that we have
rising edges. We set the half period of the clock and create the clock signal as shown
below.

constant clk_half period : time := 10 ns; -- clk
< frequency is 1/(clk_half_period * 2)
signal clk : std_logic := '0'; -- clock

“—starts at zero

Listing 8.6: Clock definitions

Note that we need to initialize the clock to zero since we will be toggling the
clock every half period.

clk <= not clk after clk_half_period; I

Listing 8.7: Clock creation
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The main process in this testbench is reading the test vectors from the file input.txt
and writing the results to output.txt. We start the process by first creating the local
variables for this process as seen in Listing 8.8. The variables read_file_pointer
and write_file_pointer are declared as file objects that will point to files of rext
(characters) where fext is a VHDL type defined in the package textio. This is why
we need to include this package at the beginning of the testbench (use std.textio.all).

Next, we create two variables line_in and line_out that are declared as line types,
and a line type is a pointer to a string. This allows us to hold the address of a string
(i.e., keep track of where the string is in memory), but it is not the string itself. To
create a place to hold the string, we create a variable input_string, and we must tell it
how many characters the string will contain. We also create the variable input_vector
of std_logic_vector type because this is the type that we want to convert the input
vectors to.

process
file read_file_pointer T text;
file write_file_pointer : text;
variable line_in : line;
variable line_out : line;
variable input_string : string (W_WIDTH downto 1);
variable input_vector : std_logic_vector (W_WIDTH/

~—-1 downto 0);
begin

Listing 8.8: Variables for file I/O

Using the file_open() function, we open the file input.txt in read mode, and
read_file_pointer points to this opened file. In a similar fashion, we open the file
output.txt, but in write mode, it is pointed to by our variable write_file_pointer.

file_open(read_file_pointer, "input.txt",
<—read_mode) ;

file_open(write_file_pointer, "output.txt", d
“——write_mode);

Listing 8.9: Opening files

We want to read all the test vectors in the file input.txt so we create a while loop
to keep reading until there are no more input test vectors. When that happens, the
endfile() function returns true and the loop stops.

while not endfile(read_file_pointer) loop -- Read
—input file until end of file

Listing 8.10: While loop

The function readline() moves a line of text from the file input.txt into an internal
buffer, and it gives us the address of this buffer in the pointer /ine_in. We then use
the read() function where we give it the line_in pointer that points to the string in the
buffer, and it copies it into our string variable input_string. We want this string to be
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of type std_logic_vector so we use the conversion function fo_std_logic_vector() to
perform the conversion and place it in our input_vector variable. Now we can make
the signal assignment to input_signals since they are the same type and same vector
width. Thus a line of text in input.txt has been converted into a std_logic_vector type
and placed into the input of the component under test. The line that starts with the
keyword report is used to display the values as they are being read in. If you have a
lot of test vectors, you will want to delete or comment this line out.

readline(read_file_pointer, line_in); -- Read a
<——line from input file

read(line_in, input_string); -- converty
< line to a string

input_vector := to_std_logic_vector(input_stringd
<—); -- convert string to std_logic_vector

report "line in = " & line_in.all & " value in ={
<— " & integer 'image(to_integer (unsigned(J
<—input_vector))); -- display what is being
<—read in

input_signal <= input_vector; -- assign to the J

<—input_signal going into the DUT

Listing 8.11: Reading test vectors

In parallel with a test vector being read in, we have a result vector output_signal
that we want to save to output.txt. The function write() takes our std_logic_vector
output_signal and writes it to the buffer pointed to by line_out. It converts it into
a string in the buffer, and we have to tell it how many characters to write and if it
should be right or left justified. We then write the buffer to the file with the writeline()
function.

write(line_out, output_signal, right, W_WIDTH);
writeline(write_file_pointer, line_out);

Listing 8.12: Writing results

Notice that this file I/O process does not have a sensitivity list. Instead we use wait
statements within the process. All the statements in the process do not happen until
a wait occurs, and since we want a line to be read in and converted into our input
vector and a result to be written every clock cycle, we wait until we have a rising
edge of the clock signal. If this wait was omitted, the process would run, looping
and reading in all the test vectors until it saw the next wait statement. Then the last
assignments would occur, and you would only see the last test vector in the input file
being assigned and fed into the test component.

126 wait until rising_edge(clk); I

Listing 8.13: Synchronizing file I/O with clock

‘When done, the files are closed, and a final wait statement is written so that the
file I/O process is not restarted again during simulation.
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129
130
131
132

file_close(read_file_pointer);

file_close(write_file_pointer);

wait; -- we are done so don't read the file again
end process;

Listing 8.14: Closing files

8.3.3 Creating Test Vectors with Matlab Script my_test_vectorsl.m

In our testbench, we want to verify a component that has an input that is 16 bits wide
and where these 16-bit vectors will be read from the file input.txt. We will create this
input.txt file using the Matlab script called my_test_vectorsl.m (click here for the
source file)

The first parameter is Nvectors that will be the number of test vectors created.
Here it is set to 10 so the simulation will be short. Normally, you want as many test
vectors as possible while still being practical given the simulation time. Ideally you
would generate all possible input bit patterns as the test vectors, which is known
as complete coverage. However, if you had an input vector that was 128 bits wide,
complete coverage would require 2!2® test vectors. If your simulator could process 232
or 4.3 billion test vectors per second, it would take 2.5 x 10'° centuries to complete
the simulation, clearly not practical. Rather you would need to sample the input range
to reduce the number of test vectors to a more manageable simulation time.

The second parameter is Component_latency that should be set to the latency of
the component being tested. This causes zeros to be written to input.txt to make sure
that the last non-zero test vector gets completely through the component before the
simulation stops.

The next parameter W controls the number of bits or word size in the test vectors.
Even though we will be using fixed-point values, we only need to know the test
vector’s width to create the input bit patterns. We do not concern ourselves with
what these bit patterns mean at this point, and so we set the number of fractional
bits to zero and make the values unsigned so we can treat the vector as an unsigned
integer when creating the test vector bit patterns.

28| Nvectors = 10; % number of test vectors to create
29| Component_latency = 3; % Add enough zeros to flush (
<—component pipeline

30/W = 16; % wordlength of my_input

31| F = 03 % we don't care about fraction bits so setting to
<—>zero

32|S = 0; % we don't care about sign bit so setting to
<—unsigned

Listing 8.15: Parameter settings

In Matlab, we use the fopen() function to open the file input.txt in write mode
(W) where we will be writing the test vectors. The function returns the file identifier
that we store in the variable fid (short for file ID).
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fid = fopen('input.txt','w');

Listing 8.16: Opening a file

Since the number of test vectors being generated is likely much smaller than the
number of possible test vectors, we sample a small subset from the much larger set
of all input possibilities. We treat the possible input set as a uniform distribution
and draw from this uniform distribution. We use the rng() function in Matlab to set
up the random number generator. The shuffle argument seeds the generator with the
current time, so that when each time Matlab is started up, the random numbers that
are generated will be different. The rwister argument specifies to use the Mersenne
Twister algorithm. This algorithm is good enough for our purposes, and we will not
concern ourselves with finding the “best” random number generator since this is a
rabbit hole we could go down into and not come back from. We create a vector of
random integers using the randi() function. The range of the uniform distribution of
integers is specified by the interval [0 2% ~!]. This is the range of unsigned integers
that gives us all possible bit patters for a word length of W. The last two parameters
1,Nvectors in randi() tell it to create a matrix of random values that has 1 row and
Nvectors columns, which is returned in the variable . The vector r contains the
values that we will use for the test vectors.

rng('shuffle', 'twister'); % 'shuffle' seeds the {
<—random number generator with the current time so each J
—randi call is different; 'twister' uses the Mersenne |/

—Twister algorithm
r = randi ([0 22W-1],1,Nvectors); % select from a uniform |/
<—integer distribution over all possible integers

Listing 8.17: Random coverage

We then go through all the Nvectors random values in the variable r by using
a for loop. We make use of Matlab’s Fixed-Point Designer toolbox by creating a
fixed-point object using the fi() function. The first argument in this function is the
value that will be used for the fixed-point number, which we get by indexing into our
r vector. The second argument is the sign bit S, which we set to zero for unsigned
data types. The third argument is the word length in bits, which we set to W. The last
argument is the number of fraction bits in the word, which we set to zero since we
are assuming unsigned integers. The fixed-point object is returned as the variable f.

A convenient radix conversion that is associated with these fixed-point objects
is the binary string conversion that is accessed by using the suffix .bin (.hex for
hexadecimal and .oct for octal). We can then use this string directly in our fprintf()
function to write the binary string representation directly to our test vector file
input.txt. An example of this test vector input file can be seen in input.txt (click here
for the source file) and is also shown in Listing 8.20.

49| for i=1:Nvectors

50

51

f = fi(r(i),S,W,F);
fprintf(fid, "%s\n',f.bin);


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/input.txt
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52| end !
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Listing 8.18: Writing binary strings

When we are done writing the test vectors to input.txt, we close the file.

fclose(fid); !

Listing 8.19: Closing a file

1110100011011100
1100101100111000
1110011111010000
1101010111111101
0101000100001011
1101110001011110
1101111100100000
1011111010000101
1011100101001101
0011110111110110
0000000000000000
0000000000000000
0000000000000000

Listing 8.20: File contents : input.txt

8.3.4 Computing the Results with Matlab Function my_componentl.m

When the ModelSim simulation is run, the testbench my_componentl_tb.vhd pro-
duces the results in file output.txt (click here for the text file), which can also be
seen in Listing 8.21. You can see the latency of my_componentl.vhd as the lines
comprised of the character “U,” which means Uninitialized. This means that Mod-
elSim is putting out values from internal signals that have not been initialized and
do not know what these values should be. When the first input finally gets through
the pipeline, we see a result showing up on line 6. If you compare output.txt with
input.txt, you can see that one has been added to all the input binary values.

yuuuuuuyuuuuuuuy
Uuuuuuuuuuuuuuuy
yuuuuuuyuuuuuuuy
yuuuuuuyyuuuuuuy
yuuuuuuyuuuuuuuy
1110100011011101
1100101100111001
1110011111010001
1101010111111110
0101000100001100
1101110001011111
1101111100100001
1011111010000110
1011100101601110
0011110111110111
0000000000000001
0000000000000001
0000000000000001

Listing 8.21: File contents: output.txt


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/output.txt
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In order to verify that these results are correct, we need a Matlab function that
produces the same results. This function is called my_componentl.m (click here for
the source file). If this Matlab function agrees with the ModelSim output produced
by my_componentl.vhd, we can be confident that both the VHDL and Matlab codes
are correct.

The Matlab function declaration of my_componentl.m is shown below where we
expect a fixed-point variable to be passed into the function.

27| function y = my_componentl(x) !

Listing 8.22: Function declaration

We want our fixed-point Matlab operations to reflect what our VHDL code is
doing. This means that we need to change the default behavior of Matlab’s Fixed-
Point Toolbox. The normal behavior is to automatically extend the word length of the
result, which is not always what we do in our VHDL code. In our VHLD code, when
we add 1 to a std_logic_vector signal, the signal size stays the same (yes, overflow
is possible). To make our fixed-point variable have the same behavior, we need to
modify the fixed-point math settings for this variable. We can do this by using the
fimath() function to create a fimath object with our desired settings and then apply
this to our fixed-point variable. We can create multiple fimath objects, each with
their own settings, and apply these to different variables. In this example, we just use
a single fimath setting and apply it to the fixed-point variable x.

36|W = x.WordLength; % Extract the word length W of inputd
<— variable x

37/\F = x.FractionLength; % Extract the fraction length F of (
<—input variable x

38| Fm = fimath('RoundingMethod' ,'Floor',...

39 'OverflowAction' , 'Wrap', ...

40 '"ProductMode’ , 'SpecifyPrecision',...

41 '"ProductWordLength' JW, ...

42 '"ProductFractionlLength’ JF,

43 'SumMode' , 'SpecifyPrecision',...

44 'SumWordLength' W, ...

45 'SumFractionLength' ,F);

46| x.fimath = Fm; % Apply these fimath properties to x

Listing 8.23: Setting fimath properties

Even though we really only care about the SumWordLength property in this
example, the fimath settings shown can be used in many situations where you are
adding and multiplying in VHDL, and you want to reflect this in your Matlab
verification code. We will discuss only a few of the fimath options. A complete list
can be seen in Matlab’s fimath reference page.

The first property that is being set is RoundingMethod, which is set to Floor.
Floor causes rounding to round toward negative infinity. This is useful if you are
truncating a fixed-point value where you are taking a VHDL signal slice that is
eliminating some of the least significant fractional bits.


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_component1.m
https://www.mathworks.com/help/fixedpoint/ref/embedded.fimath.html
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The next property that is being set is OverflowAction, where it can be set to either
Saturate or Wrap. Both cases can occur in your VHDL code. Wrap is more common
where you have a counter in VHDL using a std_logic_vector signal and you add 1
to the largest value (all ones in the vector), which causes it to become zero (wraps
to zero). Since this is desired behavior in many cases, you want your Matlab code to
reflect this so you would use the Wrap option in this case.

Where wrapping behavior is not desirable is when you are operating on audio
signals. A wrap will cause a large positive value to immediately turn negative (i.e.,
two’s complement overflow), and this will sound like a “pop” in your audio. If the
signal value is too large to fit into your data type, what you want to do is to clip it
to the maximum value that can be represented by the data type (fixed-point vector).
This clipping will cause harmonic distortions to occur, but this will sound much
better than a loud pop. Thus in audio applications, you would use the Saturate option
for overflow behavior of your audio signals.

The next property that is being set is ProductMode, which is set to SpecifyPre-
cision. The default behavior is FullPrecision where Matlab will automatically grow
the data type size in order to keep all of the bits after a multiplication. Here we want
to control both the word length and fraction length of the result. To control the word
length, we set ProductWordLength to W, which means we keep the same word length
as x, which we get from the fixed-point object field x.WordLength. To control the
fraction length, we set ProductFractionLength to F, which means we keep the same
fraction length as x, which we get from x.FractionLength.

You will find in audio hardware that the audio signal is kept as a fractional
data type, i.e., between [—1 1]. The reason is that after a multiplication occurs in
hardware, you can easily resize the vector just by throwing away the least significant
bits that do not fit into the vector. For example, if you had a 24-bit fractional signal and
multiply it by another 24-bit fractional signal, you could keep it as a 24-bit fractional
signal by throwing away the least significant 24 fractional bits. It is unlikely that you
could hear these bits anyway so there would be no point in keeping them around.

The next property that is being set is SumMode, which is set to SpecifyPrecision.
The default behavior is FullPrecision where Matlab will automatically grow the
data type size in order to keep all of the bits after an addition. Here we want to
control both the word length and fraction length of the result. To control the word
length, we set SumWordLength to W, which means we keep the same word length
as x where we can get it from x.WordLength. To control the fraction length, we set
SumFractionLength to F, which means we keep the same fraction length as x where
we can get it from x.FractionLength. This is how we keep the output the same length
as the input since this is the behavior of the add 1 operation in my_componentl.vhd
and why the vectors in output.txt are the same length as the vectors in input.txt.

Once a fimath object has been created with the properties that we want, which are
now in the fimath variable Fm, we assign it to the x.fimath field that controls what
happens when x is used.

Finally, we add one to x where we have now specified that x should keep the
same length after addition. This results in the variable y with the same bit width as
variable x, which reflects what our VHDL code is doing.
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53ly = x + 1; % perform the simple add 1 computation !

Listing 8.24: Adding one

8.3.5 Performing Verification with the Matlab Script
my_verificationl.m

When the ModelSim simulation is run, the testbench my_componentl_tb.vhd pro-
duces the results in file output.txt, which can be seen in Listing 8.21. You can see the
latency of my_componentl.vhd as the lines comprised of the character “U,” which
means that ModelSim is putting out values from internal signals that have not been
initialized and do not know what these values should be. When the first input finally
gets through the pipeline, we see a result showing up on line 6. If you compare
output.txt with input.txt, you can see that one has been added to all the input values.

We want to compare what is in output.txt with what my_componentI.m produces,
and we automate the comparison process using the Matlab script my_verificationl.m
(click here for the source file).

The one parameter setting in my_verificationl.m that needs to match the parameter
settings in my_test_vectorsl.m is the test vector bit width W. The test vectors were
created with no concern as to the interpretation of these binary patterns. Now we
do care what these binary patterns mean. Thus the parameters F and S need to be
set with how we really will be interpreting these input numbers. It just so happens
that in this case we will interpret the numbers again as unsigned integers, keeping
these parameters the same, but typically this is not the case when using fixed-point
numbers.

Nvectors = 10; % number of test vectors created
Component_latency = 3; % the latency of the component beingd
— tested

W = 16; % wordlength
3|F = 03 % number of fractional bits
S 0; % signedness

Listing 8.25: Verification parameter settings

The test vectors are read in from the file input.zxt as shown in the code in
Listing 8.26. The file is opened in read mode by Matlab’s fopen() function, and the
returned value assigned to the file handle fidl, which is the pointer to the input file.
The Matlab function fgetl() then reads the first line in the file and puts this in the
variable line_in.

Since we want to interpret what the binary strings in input.txt mean in terms
of numerical values, we create a fixed-point object where variable S has been set
to zero, which means the bit strings will be interpreted as unsigned numbers. W
has been set to 16, which must match the number of bits on each line as seen in
Listing 8.20. The parameter F is set to zero since our numbers are unsigned integers
and have no fractional bits. At this point, in the code, we do not care what the value


https://github.com/ADSD-SoC-FPGA/Code/blob/main/intro/verification/example1/my_verification1.m
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of the fixed-point object is and we set it to zero (first argument). We will use this
fixed-point object in a bit. We are going to create an array of fixed-point objects for
each line in input.txt so we set the starting index of this array to one (index = 1;).

We create a while loop and test line_in with the function ischar(). Function fgetl()
returns the lines of text until it reaches the end of the file. When this occurs, a value
of —1 is returned, which is not a character, and this causes ischar() to return false,
stopping the while loop.

We assign the binary bit string that was read in to the fixed-point variable a. By
assigning the binary string to the .bin field of @, Matlab updates the value of a to be
consistent with the binary string and the parameters (S,W,F) that we used when we
first created this fixed-point variable.

We then assigned a to our test_vector array with the current index and display
what this value is. We increment the index for the next round and read in a new line
from the input file and the while loop starts again. When an end-of-file condition is
encountered, the loop ends and we close the input file.

When we are done reading in the test vectors from input.txt, we end up with the
Matlab array test_vectors that contains all of the test vectors where the interpretation
of the numbers given the binary strings have been controlled by the parameters
(S,W,F).

fidl = fopen('input.txt','r');
line_in = fgetl(fidl); % read the first line in the file

a = fi(0,S,W,F); % interpret the bit string appropriately J
—by creating a fixed-point object with appropriate J{
<—parameters

index = 1;

while ischar(line_in)
a.bin = line_in; % push the binary string into the fixedd
<—-point object where it will be interpreted with the (
<—given S (sign), W (word length), and F (frational J{
—bits) values
test_vectors(index) = a; % save this fixed-point object
disp([num2str(index) ' : ' line_in ' = ' num2str(a)]) % J
—display what we are reading in (comment out if there {
<—a lot of test vectors)
index = index + 1;
line_in = fgetl(fidl);

end

2| fclose (£fid1);

Listing 8.26: Reading in the test vectors

When ModelSim writes the test vectors to output.txt, it can write any of the
characters associated with the VHDL std_logic type as seen in Listing 8.27. Since
we only want to deal with numeric values, we are going to ignore any output that has
characters other than “0” or “1.” We create a list of these nonbinary characters in the
string stdchar. We will check for these characters and ignore them, when reading in
the result vectors from output.txt.
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'U': uninitialized. This signal hasn't been set yet.
'X': unknown. Impossible to determine this value/result.
'0': logic ©
'1': logic 1
'Z': High Impedance
'W': Weak signal, can't tell if it should be ® or 1.
'L': Weak signal that should probably go to 0
'H': Weak signal that shou