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Abstract Reinforcement Learning (RL) has emerged as a powerful tool to solve
sequential decision-making problems, where a learning agent interacts with an
unknown environment in order to maximize its rewards. Although most RL real-
world applications involve multiple agents, the Multi-Agent Reinforcement Learn-
ing (MARL) framework is still poorly understood from a theoretical point of view. In
this manuscript, we take a step toward solving this problem, providing theoretically
sound algorithms for three RL sub-problems with multiple agents: Inverse Rein-
forcement Learning (IRL), online learning in MARL, and policy optimization in
MARL.We start by considering the IRL problem, providing novel algorithms in two
different settings: the first considers how to recover and cluster the intentions of a set
of agents given demonstrations of near-optimal behavior; the second aims at infer-
ring the reward function optimized by an agent while observing its actual learning
process. Then, we consider online learning in MARL. We showed how the presence
of other agents can increase the hardness of the problem while proposing statis-
tically efficient algorithms in two settings: Non-cooperative Configurable Markov
Decision Processes and Turn-based Markov Games. As the third sub-problem, we
study MARL from an optimization viewpoint, showing the difficulties that arise
from multiple function optimization problems and providing a novel algorithm for
this scenario.

Keywords Multi-agent learning · Reinforcement learning · Inverse reinforcement
learning

1 Introduction

Learning is one of the most fascinating open problems of our days. The first thing
we can do is to observe the word and try to infer how this process happens in nature.
For example, think about how humans learn to perform a task: humans adapt their
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behavior to maximize a signal from the environment. Imagine a child who has to
learn to ride a bicycle. The child starts by sitting on the seat, and nothing hap-
pens. Then she puts her feet on the pedals but rides too slowly, causing the bicycle
to lose its balance, and she falls. She thus learned from her experience that she
must pedal faster to avoid falling again. This concept is mathematically modeled
by Reinforcement Learning [20]. However, we need to consider that humans, and
animals, do not live alone: we are “social beings”, i.e., we act in a social system
in which multiple entities interact with each other. Therefore, the actions of each
individual can modify the learning process of all the other entities involved. For
example, if we decide to buy a stock on the stock exchange, the result of our action
will affect not only us but also the entire stock market. It is easy to imagine that
these interactions can be very complex, and we can hardly understand how our deci-
sions can affect the world around us. One of the sciences that mathematically model
these interactions is called Game Theory [8]. From these considerations, we can
conclude that in order to create a system that is capable of acting autonomously,
we must study how to build an autonomous learning agent (Reinforcement Learn-
ing) and model how this is influenced by the other entities that surround it (Game
Theory). Multi-agent Reinforcement Learning (MARL) [4, 21] is a bridge between
these two worlds. The MARL framework studies the problem of learning by inter-
acting with an unknown system, considering that it is composed of more than one
entity.

In this contribution,weprovide a summaryof thePh.D. dissertation entitled “Chal-
lenges and Opportunities in Multi-Agent Reinforcement Learning” [13], focused on
studying the aspects of learning in multi-agent environments. In Sect. 2 we pro-
vide the preliminaries and background on RL, MARL, and IRL. Then, we start
outline the contribution of the work. For each contribution, we introduce the set-
ting, provide some insights on the proposed algorithm, and discuss the results.
In Sect. 3 we analyze the problem of IRL in a multi-agent environment from two
viewpoints: first, we consider the problem of learning the intentions of another
agent which is learning a new task; second, we propose an algorithm to deal with
IRL about Multiple Intentions, i.e., the problem of recovering the reward func-
tions from a set of experts. In Sect. 4 we address the problem of online learn-
ing in Stochastic Games. Specifically, we propose an algorithm to deal with the
online learning problem in the Configurable Markov Decision Process, where the
two entities involved are the configurator of the environment and the RL agent.
Then, we introduce a new lower bound on the online learning problem in Stochas-
tic Games, proposing an algorithm that nearly matches this lower bound. Finally,
in Sect. 5 we summarize the results and discuss some future research directions.
We do not discuss the fourth part “Policy Optimization in Multi-Agent Reinforce-
ment Learning” due to lack of space. In this part, the author reported the result of
the paper [17], where they introduced a new optimization algorithm for Continuous
Stochastic Games, proving convergence results to equilibrium solutions in general
games.
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2 Preliminaries

In this section, we provide the necessary background on Reinforcement Learning,
Multi-Agent Reinforcement Learning and Inverse Reinforcement Learning.

2.1 (Multi-agent) Reinforcement Learning

Reinforcement Learning (RL) is a framework to learn by trial-and-error in a
sequential-decision way: the agent performs an action and receives feedback from
the environment. The RL problem involves a learning agent (or learner) which inter-
acts with an environment during a sequence of discrete-time steps. This interac-
tion is described by three components: the state s, the action a and the reward r
(see Fig. 1). The state describes the actual configuration of the environment per-
ceived by the agent, which can be a subset of the environment state’s characteris-
tics. The action consists of the decision taken by the RL agent. The environment
responds to every performed action changing the state and giving the agent a
reward, where the reward is numeric feedback of the agent’s performances. The
interactions are formally described by a Markov Decision Process (MDP) [3, 12]
M = (S,A,P,R, γ,μ, H), where S and A are respectively the set of states and
actions, P is the probability of transitioning from a state to another taking an action,
R describes the immediate reward obtained in a state taking an action, γ is the dis-
count factor, μ the initial states distribution and H is the horizon (the number of
sequential interactions between the agent and the environment). An agent’s behavior
is described by a policy π which represents the probability of choosing an action a
in a state s at a particular timestep h. The performance index of an RL agent’s policy
is the expected discounted sum of the rewards collected during the interaction with
the environment:

J (π) := E

[
H−1∑
t=0

γtR(sh, ah)

]
, (1)

Fig. 1 The
agent-environment
interaction in a Markov
decision process
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where the expectation is taken with respect to s0 ∼ μ, sh+1 ∼ P(·|sh, ah), ah ∼
π(·|sh). When multiple agents are involved the MDP framework is extended to
the Markov Game (or Stochastic game) framework. A Markov Game MG =
(S1, . . . ,Sn,A1, . . . ,An,P,R1, . . . ,Rn, γ1, . . . , γn,μ, H) is an MDP where the
transition distribution over the next state depends on the actions of all the agents and
each agent i has its own reward functionRi . In this case the performances of all the
systems are described by equilibrium concepts. The most famous equilibrium is the
Nash Equilibrium (NE), where a joint policy π∗ = {π∗

i }ni=1 is an NE if:

Ji (π
∗) ≥ Ji (πi ,π

∗
−i ) ∀πi ∈ Πi , i ∈ [n]. (2)

The idea behind the NE is that each agent cannot improve its performance, when
the other agents’ policies are fixed. Also other equilibrium concepts are relevant as
Stackelberg Equilibrium and Coarse Correlated Equilibrium.

2.2 Inverse Reinforcement Learning

As we wrote in the previous section, RL is a framework to learn how to perform a
task described by a reward function. However, in some cases, it is extremely difficult
to design a suitable reward function. On the other hand, for many tasks, we already
have experts (for example, humans) who know how to accomplish the same task.
The Imitation Learning (IL) [10] paradigm aims to exploit the expert information to
clone the experts’ behavior or formalize the expert’s intentions. The IL framework
is divided into two main subareas: Behavioral Cloning (BC) and Inverse Reinforce-
ment Learning (IRL). BC, as the name says, aims to clone the expert’s behavior in
order to use it as a policy. IRL, instead, can recover the expert’s reward function
to understand its intentions and use this reward function to learn an optimal policy
in any environment, even different from the one in which the expert acts. The IRL
problem is composed of two agents: an expert who shows how to perform a task
and an observer who watches the expert’s demonstrations and learns from them the
reward function (see Fig. 2). The framework used to model the problem is known

Fig. 2 The expert-observer
interaction in the Inverse
Reinforcement Learning
framework Reward
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as Markov Decision Process without Rewards (MDP\R). An MDP\R is defined as
a tuple M\R = (S,A,P, γ,μ, H) which is the same as an MDP, but without the
notion of a reward function. The expert plays a policy πE which is (nearly) optimal
for some unknown reward functionR, and we are given a dataset D = {τ1, . . . , τm}
of trajectories from πE . The IRL problem consists in recovering the reward function
R that the agent is optimizing.

3 Inverse Reinforcement Learning in Multi-agent
Environments

The IRL [9] framework aims at recovering the reward function of an optimal agent.
In the classical setting, an expert, i.e., an agent that has already learned a task,
makes available a dataset of its interactions with the environment. From this, the IRL
algorithm recovers the reward function that the expert is optimizing. When there
are multiple agents in the environment, the IRL framework changes its objective
too. For example, there could be multiple experts who show their possible different
behaviors, leading to an increase in available data, but a necessity to cluster them by
their intentions. Or, an agent can be interested in learning the other agents’ reward
functions, to use it to compute their strategy or to cooperate; however, it has to
discover it without waiting for the other agent’s convergence to an optimal policy.
In this section we briefly describe two algorithms we designed to recover the reward
function when there are multiple experts (Sect. 3.1) and when we can observe a
learning agent (Sect. 3.2).

3.1 Multiple-intentions Inverse Reinforcement Learning

The first multi-agent framework that we studied is the Multiple-Intentions IRL (MI-
IRL) [2] which involves an observer who has access to the demonstrations performed
by multiple experts. The observer has to recover the reward functions and use them
to cluster the observed agents. Solving this problem is helpful for reasons of explain-
ability since it could be used to understand the similarity between apparently dif-
ferent agents. Moreover, as an immediate benefit, grouping experts who show other
behaviors but share the same intent allows for enlarging the set of demonstrations
available for the reward recovery process. This has a significant impact on several
realistic scenarios, where the only information available is the demonstration dataset,
and no further interactions with the environment are allowed.

In [15] we propose a novel batch model-free IRL algorithm, named �-Gradient
Inverse Reinforcement Learning (�-GIRL), and then we extend it to the multiple-
intention setting. �-GIRL, similarly to [11, GIRL], searches for a reward function
that makes the estimated policy gradient [5] vanish, i.e., a reward function that is a
stationary point of the expected return. However, differently from GIRL, �-GIRL
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Fig. 3 Twitter clustering statistics. Average number of followers (left), followings (center) and
retweets (right) for each cluster

explicitly considers the uncertainty in the gradient estimation process, looking for
the reward function that maximizes the likelihood of the estimated policy gradi-
ents, under the constraint that such reward is a stationary point of the expected
return. Then, we embed �-GIRL into the multiple-intention framework by propos-
ing a clustering algorithm that, by exploiting the likelihood model of �-GIRL,
groups the experts according to their intentions. The optimization of the multiple-
intention objective is performed in an expectation-maximization (EM) fashion, in
which the (soft) agent-cluster assignments and the reward functions are obtained
through an alternating optimization process. In Fig. 3 we present the result of �-
GIRL in recovering and clustering the intents of a group of Twitter users. The
algorithm divided the 14 Twitter accounts into three clusters. The first cluster is
interested in retweeting posts with high popularity. As we can observe from Fig. 3,
this cluster represents a normal Twitter user: he/she follows many users and has a
lower number of followers. In the second cluster, the agents do not retweet often,
and the reason could be they have not used the social network much, as they have
few retweets and follow a small number of people. In the last cluster (to which a
bot, a company, and two HR managers belong) the agents tend to retweet all popular
tweets.

3.2 Inverse Reinforcement Learning from a Learning Agent

The second setting that we take into account is the Inverse Reinforcement Learn-
ing from a Learner (IRLfL), proposed by [6]. The standard IRL setting assumes
that an observer receives the interactions between another agent, the expert, which
already knows how to perform the task, and the environment. However, in some
cases, the observer can observe the learning process of this other agent, and so it
can try to infer the agent’s reward function beforehand. In this setting, the observer
recovers the reward function from a learning agent and not from an expert. In [6] the
authors assume that the learner is learning under an entropy-regularized framework,
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Table 1 Reward weights for the autonomous simulate driving scenario

Recovered weights Real weights

Time 0.0401 0.0017

Jerk 0.0174 0.0003

Slow 0.0001 0.0000

Crash 0.9424 0.9980

motivated by the assumption that the learner is showing a sequence of constantly
improving policies. However, many Reinforcement Learning (RL) algorithms [5] do
not satisfy this assumption, and human learning is also characterized by mistakes
that may lead to non-monotonic learning process. In our work [14], we proposed
an algorithm for this relatively new setting, IRLfL, called Learning Observing a
Gradient not-Expert Learner (LOGEL), which is not affected by the violation of
the constantly improving assumption. Given that many successful RL algorithms
are gradient-based [5] and there is some evidence that the human learning process
is similar to a gradient-based method [19], we assume that the learner is follow-
ing the gradient direction of her expected discounted return. The algorithm learns
the reward function that minimizes the distance between the actual policy param-
eters of the learner and the policy parameters that should be obtained if she were
following the policy gradient using that reward function. In [14], we provide a finite-
sample analysis that bounds the correctness of the recovered weights. Table1 reports
some results on a simulated autonomous driving task. It is easy to see that, the
proposed algorithm succeeds in recovering the correct reward from the driver’s tra-
jectories.

4 Online Learning in Multi-agent Reinforcement Learning

In this section we consider the problem of online learning in MARL. In this case,
we are not only interested in finding the optimal policies but also in measuring
the performance of our algorithm during the learning process. The performance is
measured using the regret, i.e., comparing the performance of the agent’s actual
policy with the optimal one. This problem is important in practice where we cannot
learn from a simulator or using offline data, but we actually learn interacting with
the system. In our work we consider the challenging problem of minimize the regret
in a multi-agent game when we can control only one of the agents. We consider
two different multi-agent framework. In the first one, called Configurable Markov
Decision Process, the two entities are the configurator and the agent. The configurator
can partially control the environment, i.e., the transition probability distribution, and
the agent is the classical RL agent. The second is a Turn-basedMarkov Game, where
the two agents involved optimize two (possibly different) reward functions.
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4.1 Online Learning in Non-cooperative Configurable
Markov Decision Processes

In this section, we briefly expose the result published in [16] where we solved an
online learning problem in the Configurable Markov Decision process framework.
A Configurable Markov Decision process involves two entities, the configurator, and
the agent. This framework is motivated by real-world scenarios in which an external
supervisor (configurator) can partially modify the environment. Previous to [16],
the Configurable Markov Decision Processes [7, Conf-MDPs] consists of simulta-
neously optimizing a set of environmental parameters and the agent’s policy to reach
the maximum expected return. In many scenarios, however, the configurator does not
know the agent’s reward and its intention differs from that of the agent. In [16] the
authors introduce the Non-Cooperative Configurable Markov Decision Processes
(NConf-MDP), a new framework that handles the possibility of having different
reward functions for the agent and the configurator. An NConf-MDP allows model-
ing a more extensive set of scenarios, including all the cases in which the agent and
configurator display a non-cooperative behavior, modeled by the individual reward
functions. Obviously, this setting cannot be solved with a straightforward applica-
tion of the algorithms designed for Conf-MDPs that focus on the case in which both
entities share the same interests. In this novel setting, the authors consider an online
learning problem, where the configurator has to select a configuration, within a finite
set of possible configurations, in order to maximize its own return. This framework
can be seen as a leader-follower game, in which the follower (the agent) is self-
ish and optimizes its own reward function, and the leader (the configurator) has to
decide the best configuration w.r.t. the best response of the agent. Clearly, to adapt
its decisions, the configurator has to receive some form of feedback related to the
agent’s behavior. The authors analyze two settings based on whether the configura-
tor observes only the agent’s actions or also a noisy version of the agent’s reward
function. For the two settings, they propose algorithms based on the Optimism in the
Face of Uncertainty [1] principle, which yield bounded regret.

4.2 Online Learning in General-Sum Stochastic Games

In this setting, we consider the learning problem in two-player general-sum
Markov Games when we can control only one agent which is playing against an
arbitrary opponent to minimize the regret. Previous works only consider the zero-
sum setting, in which the two agents are completely adversarial. However, in some
cases, the two agents may have different reward functions without having conflict-
ing objectives. This class of games is called general-sum Markov Games. In our
work [18], we show that the regret minimization problem is significantly harder than
in standard Markov Decision Processes and zero-sum Markov Games. We derive
a lower bound on the expected regret of any “good” learning strategy. The lower
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bound shows the constant dependencies with the number of deterministic policies
that the agent can play, which is not present in zero-sumMarkov Games andMarkov
Decision Processes. To have an intuition, we can look at Fig. 4. The controllable
agent controls the blue states, while the non-controllable one controls the orange
ones. The idea behind the proof is the following: if the controllable agent does not
play the optimal policy, the uncontrollable one will always choose the action which
leads to the down path, preventing the agent from exploring the environment. After
this result, we propose a novel optimistic algorithm that nearly matches the proposed
lower bound.

5 Conclusions

The work [13] addressed different problems in MARL, going from IRL to online
learning and policy optimization. The MARL framework provides a useful way
to model multi-agent decision-making problems such as smart grids, autonomous
driving, financial markets, drone delivery, and robotic control problems. The main
purpose of the work is to show the flexibility of the MARL framework to model real-
world problems compared to the single-agent one, and, on the other hand, how it leads
to novel challenges: the learning objective changes, the environment is no more sta-
tionary and standard algorithms from single-agent RL cannot be applied.We consider
three sub-problems, inspired by the single-agent literature: IRL in Multi-Agent Sys-
tems, Online Learning in MARL, and Optimization in MARL. Although we provide
novel algorithms for various problems which arise in these contexts, many problems
remain unsolved, and also new open questions, practical and theoretical, come out.

Inverse Reinforcement Learning in Multi-Agent systems From the MI-IRL set-
ting, the�-GIRL algorithmpresents some limitations: we need to specify the number
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of existing clusters as hyperparameter, and the algorithm can converge to stationary
points which are not local maximizers. In the IRL from a Learner setting, the main
challenge arises from the assumption that we know when the agent changes its pol-
icy and so a natural extension could be the automatic detection of the policy change.
Moreover, if we want to play simultaneously and/or the other agents are not rational,
it is necessary to build different algorithms to recover the reward function.

Online Learning in Markov Games There are many future directions in the online
learning problem in Stochastic Games. From our work in Non-cooperative Config-
urable MDPs, a direct follow-up will be extending the approach to deal with con-
tinuous state and action spaces using, for example, function approximation. From
our findings in general-sum Markov Games, it is clear that the algorithm design and
the The resulting performance guarantees heavily depend on any knowledge about
the opponents, either known as a priori or obtainable during the learning process.
An interesting future direction is to assume to have the possibility to observe other
agents’ interactions with the environment or having some previous knowledge about
the other agents (as having access to a finite set of opponents or considering a larger
set of opponents’ classes with some regularity assumptions).
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