
Birthday-Bound Slide Attacks
on TinyJAMBU’s Keyed-Permutations

for All Key Sizes

Ferdinand Sibleyras(B), Yu Sasaki(B), Yosuke Todo(B),
Akinori Hosoyamada(B), and Kan Yasuda(B)

NTT Social Informatics Laboratories, Tokyo, Japan
{sibleyras.ferdinand.ez,yu.sasaki.sk,yosuke.todo.xt,
akinori.hosoyamada.bh,kan.yasuda.hy}@hco.ntt.co.jp

Abstract. We study the security of the underlying keyed-permutations
of NIST LWC finalist TinyJAMBU. Our main findings are key-recovery
attacks whose data and time complexities are close to the birthday
bound 264. The attack idea works for all versions of TinyJAMBU permu-
tations having different key sizes, irrespective of the number of rounds
repeated in the permutations. Most notably, the attack complexity is
only marginally increased even when the key size becomes larger. Con-
cretely, for TinyJAMBU permutations of key sizes 128, 192, and 256
bits, the data/time complexities of our key-recovery attacks are about
265, 266, and 269.5, respectively. Our attacks are on the underlying per-
mutations and not on the TinyJAMBU AEAD scheme; the TinyJAMBU
mode of operation limits the applicability of our attacks. However, our
results imply that TinyJAMBU’s underlying keyed-permutations cannot
be expected to provide the same security levels as robust block ciphers of
the corresponding block and key sizes. Furthermore, the provable secu-
rity of TinyJAMBU AEAD scheme should be carefully revisited, where
the underlying permutations have been assumed to be almost ideal.

Keywords: TinyJAMBU · NIST LWC · keyed-permutation · slide
attack

1 Introduction

The Lightweight Cryptography standardization by NIST (NIST LWC) [9] is one
of the most actively discussed topics recently in the symmetric-key cryptography
community. In March 2021, out of 56 candidates NIST kept 10 finalists [10] whose
evaluations would take approximately 12 months [11].

In this paper we target TinyJAMBU [16], one of the finalists of NIST LWC.
TinyJAMBU was designed by Wu and Huang. Roughly speaking, TinyJAMBU
(Fig. 2) can be seen as the duplex construction [2] with its public permutation
replaced by a 128-bit keyed-permutations; or again as similar to SAEB [8].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C.-M. Cheng and M. Akiyama (Eds.): IWSEC 2022, LNCS 13504, pp. 107–127, 2022.
https://doi.org/10.1007/978-3-031-15255-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15255-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-15255-9_6


108 F. Sibleyras et al.

TinyJAMBU has one of the smallest hardware footprints of all the final-
ists. One reason is its small 128 bits of internal state which is near optimal.
Moreover, the round function (Fig. 1) consists of a non-linear feedback shift
register (NLFSR) with only four XOR operations and a single NAND opera-
tion. To optimize throughput, TinyJAMBU varies the number of rounds of the
keyed-permutations throughout the mode. P1 denotes a permutation with fewer
rounds, and P2 the one with more rounds.

Table 1. Summary of attacks. KP, CP, and ACP represent known-plaintexts, chosen-
plaintexts, and adaptively-chosen plaintexts, respectively. †: This corresponds to the
Type-2 difference with a probability of 2−47 [15]. In [16], this analysis was deleted by
considering the difficulty of exploiting it through the mode. Because our interest is P2
as a standalone primitive without the mode, this analysis is of our interest.

Approach Rounds Key size Setting Data Time Memory Reference

differential 512†
any

CP 248 - - [14,15]

differential 640 CP 284 - - [16]

linear 512 KP 260 - - [14,16]

slide infinite

128

KP 265 265 264 Section 3.1

KP 264 265 264 Section 3.2

ACP 272.5 272.5 negl. Section 3.2

192
ACP 265 266 265 Section 4.4

CP 267 269 266 Section A.1

256 ACP 267.5 269.5 267.5 Section 5

Because of its minimalist design, the security of TinyJAMBU needs to be
carefully assessed. For instance, the security proof of TinyJAMBU assumes that
both P1 and P2 are ideal keyed-permutations, while deliberately making P1
weaker. As a matter of fact, the designers have already increased the number of
rounds of P1 from 384 to 640 following a forgery attack over a 338 rounds P1
by Saha et al. [14]. Unlike the old P1, P2 seems to resist those cryptanalyses
due to a larger number of rounds.

In this paper, we focus on slide attacks on TinyJAMBU keyed-permutation
which cannot be thwarted by increasing the number of rounds. As a matter
of fact, the designers do not make any claim on sliding property in the single-
key setting. Moreover, we are interested in sliding property that leads to actual
key-recovery attacks and their total complexity.

1.1 Our Contributions

In this paper, we study the security of the underlying keyed-permutation of
TinyJAMBU as a standalone primitive. Particularly, we investigate all the details
of the sliding property of the keyed-permutation to show that the sliding property



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 109

actually leads to efficient key-recovery attacks for all key sizes. Intuitively, by
ignoring constant factors, the keyed-permutation can be attacked with about
264 queries and computational cost. Most notably, the attack complexity is only
marginally increased even when the key size becomes larger.

We begin with a slide attack on the keyed-permutation of TinyJAMBU-128
because of its simplicity. Slide attacks need to detect a slid pair by using the
birthday paradox, which makes it inevitable to make 264 queries. The simplest
attack scenario requires almost no extra overhead from this minimum require-
ment, which results in the data, time, and memory complexities of 265, 265, and
264, respectively. We then discuss a small observation to halve the data com-
plexity and apply the memoryless meet-in-the-middle attack to achieve the data
and time complexities of 272.5, while the required memory amount is negligible.

However, the simple attack on TinyJAMBU-128 cannot be trivially applied
to a larger key size as the keyed-permutation for a k-bit key has a periodical
structure in every k rounds weakening the key materials recovered by a slid pair.
Nevertheless, the information loss for a large key can be compensated for by
generating more slid pairs. Such a challenge has already been discussed in the
pioneering work [4], and the technique of making a chain of queries was proposed.
The same technique has been exploited by many following works [1,3,6]. In this
paper, we present a new technique called “splitting longer chains” that generates
more slid pairs than the previous method.

Then, we recover the key from multiple input and output pairs of Pk by apply-
ing linear algebra. In particular, we experimentally verified the correctness of our
key-recovery algorithm by assuming an access to several slid pairs. As a result,
we show that the keyed-permutation of TinyJAMBU-192 and TinyJAMBU-
256 can be attacked with a marginally increased complexity than the case with
TinyJAMBU-128. The complexities of our attacks are summarized in Table 1.

Lastly, we show several observations on the keyed-permutation: a combi-
nation of probability 1 differential characteristics and slide attacks to avoid
adaptively-chosen-plaintext queries, a transformation of Pk to the iterative FX-
construction [7], extension of our attacks so that the number of rounds that is
not a multiple of the key-length can be attacked, and implication of our attacks
to the authenticated-encryption with associated data (AEAD) schemes.

Note that results presented in this paper do not violate the security claim of
TinyJAMBU, which is only for the entire scheme including the mode. Neverthe-
less, security of the keyed-permutation is of interest, because it is assumed to be
ideal in the security proof. We believe that the security analysis in this paper
will be valuable for the NIST to choose the winner(s) of NIST LWC.

2 Specifications

TinyJAMBU is a family of AEAD schemes that supports the key sizes of 128,
192, and 256 bits. Each version is called TinyJAMBU-128, TinyJAMBU-192, and
TinyJAMBU-256, respectively. TinyJAMBU uses an n-round keyed-permutation
Pn as a building block.



110 F. Sibleyras et al.

2.1 Keyed-Permutation Pn

The keyed-permutation Pn uses an internal state of 128 bits for all the key sizes,
which is represented by s0, s1, . . . , s127. Let k0, k1, . . . , kklen−1 denote the klen-
bit key. The internal state is updated by applying the following NLFSR n times
by increasing i from 0 to n − 1.

Fig. 1. Step-update function of TinyJAMBU for a klen-bit key.

Fig. 2. The mode of TinyJAMBU. P2 is P1024, P1152, and P1280 for TinyJAMBU-128,
TinyJAMBU-192, and TinyJAMBU-256. P1 is P640, which was updated from previous
P384 at the last-round design tweak in NIST LWC.

feedback ← s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ ki mod klen

for j from 0 to 126 : sj ← sj+1

s127 ← feedback

where ‘⊕,’ ‘∧,’ and ‘¬,’ are XOR, AND, and NOT, respectively. The NLFSR is
depicted in Fig. 1. Note that the tapping bit-positions were chosen so that 32
rounds of Pn can be computed in parallel on 32-bit CPUs.

2.2 AEAD Mode

The computation structure of TinyJAMBU is described in Fig. 2, which resem-
bles the duplex mode with the keyed-permutation Pn. The details of the mode
are omitted in this paper because our target is Pn. To process the nonce, the
associated data, and the second half of the tag, the round number n is 640 for all
key lengths, which is denoted by P1. During the initialization, the encryption,
and the first half of the tag, the round number n is 1024, 1152, and 1280 for
TinyJAMBU-128, TinyJAMBU-192, and TinyJAMBU-256, respectively, which
is denoted by P2.



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 111

The main reason our attack strategy hardly applies to the AEAD mode is
that an attacker can only observe 32 bits out of the 128-bit input and output of
any permutation calls to P1 and P2.

2.3 Security Claim

64-bit security for authentication and 112-, 168-, and 224-bit security for encryp-
tion are claimed for TinyJAMBU-128, TinyJAMBU-192, and TinyJAMBU-256
respectively, against nonce-respecting adversaries who make at most 250 bytes
of queries.

Security of TinyJAMBU mode was proven assuming that P1 and P2 are
ideal keyed-permutations. Nevertheless, the designers reported the existence of
a differential characteristic with a probability of 2−471 and a linear characteristic
with a bias of 2−30 for 512 rounds [15], which is sufficient to conclude that P384,
the original round number for P1, can be distinguished from an ideal object.
Note that no analysis has been known for more than 512 rounds. In particular,
it seems that differential and linear cryptanalysis cannot be applied to P1024,
P1152, and P1280 used in P2.

2.4 Self-similarity of Pn

The keyed-permutation Pn does not use any round constant. Moreover, the bits
from the key are computed by ki mod klen. Hence, as mentioned by the designers
[16], the state-update function of Pn has some sliding property, which is shown
to be exploited with two related keys.2

Given that the internal state size is 128 bits, TinyJAMBU-128 shows the
best fit because Pn is iterative in every 128 rounds and each state bit is
updated exactly once with each key bit. In the following, we first describe the
attack for TinyJAMBU-128 and later extend the attack to TinyJAMBU-192 and
TinyJAMBU-256.

3 Slide Attacks on TinyJAMBU-128

This section presents a slide attack on TinyJAMBU-128. Because of its simplic-
ity, it bears some similarity with other works, e.g. Bar-on et al. [1, Alg.1]. We
first describe a key-recovery attack with 265 known-plaintext queries, 265 offline
computations of P128, and a memory to store 264 queries. We then discuss an
idea to halve the data complexity and further discuss a memoryless variant of
1 This corresponds to the Type-2 difference [15]. In [16], the analysis about the Type-2

difference was deleted due to the difficultly of exploiting it through the mode. Our
interest is P2 as a standalone primitive, so the Type-2 difference is of our interest.

2 The designers did not give any details of this related-key attack, but when K′ =
K ≪ 1, key bits for K′ from round 1 to n equal the key bits for K from round 2 to
n + 1. Hence, a plaintext M processed by EK and a plaintext PK

1 (M) processed by
EK′ are actually the 1-round slid pair.



112 F. Sibleyras et al.

Fig. 3. Overview of slide attacks on the keyed-permutation of TinyJAMBU-128.

the attack. Note that the attack can work for 128t rounds for any positive integer
t > 1 including P1 and P2 of TinyJAMBU-128, and the attack works in the
single-key setting.

3.1 Overview of the Simple Slide Attack

The core of the slide attack (Fig. 3) is to find a slid pair; a pair of plaintext-
ciphertext pairs (A1, B1) and (A2, B2), in which A2 is the internal state after the
first application of P128 for A1, or A2 = P128(A1). This simultaneously ensures
that B2 = P128(B1). A slid pair is generated by using the birthday paradox.
The attacker makes 264 queries of A1 and of A2 to obtain the corresponding B1

and B2. Then, among all the 2128 pairs, one pair will be a slid pair with good
probability. The slid pair can be detected via a 113-bit filter and a collision-
finding algorithm with a computational cost of 264.

Computing 113-Bit Filter. For a given pair of plaintext-ciphertext pairs
(A1, B1) and (A2, B2), we want to know whether the induced key for A2 =
P128(A1) and for B2 = P128(B1) collides. We do a collision-finding algorithm
on values computed separately from (A1, B1) and (A2, B2), which is denoted by
G1(A1, B1) and G2(A2, B2). We denote Gx(Ax, Bx), x ∈ {1, 2} with respect to
the i-th bit by Gx(Ax, Bx)[i].

Let a0, a1, . . . , a127 and a128, a129, . . . , a255 denote A1 and A2, respectively
and b0, b1, . . . , b127 and b128, b129, . . . , b255 denote B1 and B2, respectively. If
(A1, A2) is a slid pair then so is (B1, B2) and ki is computed as follows:

ki = ai+128 ⊕ ai ⊕ ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ ai+91

= bi+128 ⊕ bi ⊕ bi+47 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91.

Bit Positions 0 to 36. For i = 0, 1, . . . , 36, we let G1(A1, B1)[i] and G2(A2, B2)[i]
be the XOR sum of the terms belonging to (A1, B1) and (A2, B2) with respect
to the i-th bit, respectively, i.e.,

G1(A1, B1)[i] := ai ⊕ ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ ai+91⊕
bi ⊕ bi+47 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91,

G2(A2, B2)[i] := ai+128 ⊕ bi+128.



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 113

G1(A1, B1)[i] and G2(A2, B2)[i] can be computed independently from the other
pair, hence a collision on 37 bits of k0, k1, . . . , k36 can be observed.

Bit Positions 37 to 42. For i = 37, 38, . . . , 42, notice that the term ai+91 belongs
to A2. The same applies to B2. Hence, we have

G1(A1, B1)[i] := ai ⊕ ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ bi ⊕ bi+47 ⊕ (¬(bi+70 ∧ bi+85)),

G2(A2, B2)[i] := ai+91 ⊕ ai+128 ⊕ bi+91 ⊕ bi+128.

No Filter for Bit Positions 43 to 57. For i = 43, 44, . . . , 57, one of the inputs
to the AND operation, ai+85 (resp. bi+85), belongs to A2 (resp. B2), while the
other input bit, ai+70 (resp. bi+70), belongs to A1 (resp. B1). Hence, the output
of the AND operation cannot be computed independently.

Bit Positions 58 to 80 and 81 to 127. Following the same strategy, equations for
i = 58, 59, . . . , 80 are defined as

G1(A1, B1)[i] := ai ⊕ ai+47 ⊕ bi ⊕ bi+47,

G2(A2, B2)[i] := (¬(ai+70 ∧ ai+85)) ⊕ ai+91 ⊕ ai+128 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91 ⊕ bi+128,

and equations for i = 80, 81, . . . , 127 are defined as

G1(A1, B1)[i] := ai ⊕ bi,

G2(A2, B2)[i] := ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ ai+91 ⊕ ai+128⊕
bi+47 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91 ⊕ bi+128.

Summary. For each A1 and its query-output B1, the attacker can compute a 113-
bit value to match with G1(A1, B1)[i] for i =∈ {0, 1, . . . , 127}\{43, 44, . . . , 57}.
Similarly, for (A2, B2), the 113-bit value to match can be computed with
G2(A2, B2).

Attack Procedure. The pseudo-algorithm to recover the key of TinyJAMBU-
128 is described in Algorithm 1. For simplicity, here we assume that a table T
of size 264 is available.

Analysis. In the above attack procedure, the attacker makes 264 queries of
A1 and A2, thus the data complexity is 265 known-plaintexts. The bottleneck
of the time complexity is to compute G1(A1, B1) and G2(A2, B2), which is 265

computations of P128. The attack requires a memory of size 264 for the table.
(The table for Step 2 can be omitted by checking the collision in an online manner
when a value of G(A2, B2) is obtained.) In Step 3, 2128 pairs are examined and
2128−113 = 215 pairs will pass this filter, and a valid pair will be detected by
matching the remaining 15 bits.



114 F. Sibleyras et al.

Algorithm 1. A simple slide attack on TinyJAMBU-128 with 264 memory.
1: Generate 264 distinct values for A1, obtain all the respective B1 with 264 queries,

compute G1(A1, B1) for the 113 bits, and store (A1, B1, G1(A1, B1)) in the table.
2: Generate 264 distinct values for A2, obtain all the respective B2 with 264 queries,

compute G2(A2, B2) for the 113 bits, and store (A2, B2, G2(A2, B2)) in the table.
3: Find collisions of G1(A1, B1) and G2(A2, B2) for all 264 × 264 = 2128 pairs.
4: for all pairs with G1(A1, B1) = G2(A2, B2) do
5: Derive k43, . . . , k57, with A2 = P128(A1) and also with B2 = P128(B1).
6: if k43, . . . , k57 from A2 = P128(A1) and from B2 = P128(B1) collide then
7: return K.
8: end if
9: end for

3.2 Reducing Data or Memory Complexity

Halving Data Complexity. Algorithm 1 assumes that queries in Step 1 cor-
respond to the input to P128 and queries in Step 2 correspond to the output
from P128. However, we can reuse the data of Step 1 in Step 2 and look for a
collision the same way. This would halve the data complexity from 265 to 264.

A Memoryless Variant. As in [1], the 264 memory requirement of Algorithm 1
can be removed with the standard memoryless collision-finding algorithm [13],
which exploits a cycle-detection algorithm for the query chain. To do so, we start
with a 113-bit value v0, pads it to 128 bits to get A0, and query to obtain B0.
Then, we compute either G1(A0, B0) or G2(A0, B0) depending on a bit of v0
(LSB for instance). Set the result as v1 and iterate this procedure to generate
the chain of v0, v1, v2, . . ..

On the memory side, we only store some particular values for instance store
the 100 values starting with the most 0 bits. When the chain length reaches about
2113/2, a newly computed vi will eventually collide with one of the stored values.
The exact colliding point can be found by starting from the stored points before
the observed collision. If a collision is between G1(Ai, Bi) and G2(Aj , Bj), Ai and
Aj is a slid pair candidate. If a collision is between Gb(Ai, Bi) and Gb(Aj , Bj)
for the same b ∈ {1, 2}, the algorithm is repeated from scratch by changing v0.

The procedure will be repeated twice on average to find a slid pair candidate
which makes 2 × 2113/2 = 257.5 queries. And the candidate is a slid pair with
probability 2−15, thus we need 215 candidates, which makes the total data com-
plexity of 215 ×257.5 = 272.5 adaptively-chosen-plaintext queries. For each query,
the attacker computes G1 or G2, thus the time complexity is 272.5 computations
of P128. The memory amount is negligible when there are sufficiently few stored
113-bit values.

The memoryless meet-in-the-middle attack is an extreme case to optimize
the memory complexity. A more general tradeoff for data, time, and memory
complexities can be achieved by the parallel collision search [12].



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 115

4 Attacks Against a Larger Key

The same filter will not work for longer key versions TinyJAMBU-192 and
TinyJAMBU-256 as the permutation repeats only after a number of rounds
equal to the key length. However, we show that we can build a 113 − κ-bit filter
for 128 + κ-bit key permutation and still do a key recovery from a slid pair.

4.1 Building a Filter

Concretely, for a given pair of plaintext-ciphertext pairs (A1, B1) and (A2, B2),
we want to know whether the key for A2 = P128+κ(A1) and for B2 = P128+κ(B1)
will collide. Hence, just like in Sect. 3.1, we want to compute colliding values
separately from (A1, B1) and (A2, B2) to efficiently look for a collision.

Similarly, let us denote the bit states si for i ∈ [0, 255 + κ] such that s127 to
s0 is the input, s255+κ to s128+κ is the output and s127+κ to s128 are κ bits of
internal computations. By definition of the permutation we have:

ki = si+128 ⊕ si ⊕ si+47 ⊕ (¬(si+70 ∧ si+85)) ⊕ si+91.

We look for relations of key bits that only depend on input and output bits, that
is on si for i ∈ [0, 127] ∪ [128 + κ, 255 + κ].

First, we ignore all key bits whose AND term (¬(si+70 ∧ si+85)) is not com-
putable given either the input or output bits. There are 113 remaining key bits
that are ki for i ∈ [0, 42] ∪ [58 + κ, 127 + κ]. Indeed, every AND term is unique,
so there is no linear combination that can hope to cancel it.

Fig. 4. Construction of the 113 × (256 + κ) binary matrix M.

Then, we build a binary matrix M with 113 rows, one row for each considered
ki, and 256 + κ columns, one column for each state bit si. Let M(i, j) = 1 if sj

linearly appears in the formula for the ith retained bit key and M(i, j) = 0 oth-
erwise, as illustrated in Fig. 4. For instance, M(0, j) = 1 for j ∈ {128, 91, 47, 0}
and M(0, j) = 0 otherwise.

Then, we use row-wise Gaussian elimination on M to put zeroes on the
columns 128 to 127 + κ that correspond to internal computation state bits.



116 F. Sibleyras et al.

Fig. 5. The 113×(256+κ) binary matrix M after Gaussian elimination. I is the identity
matrix, 0 is the zero matrix and E1, E2, S1, and S2 are binary matrices resulting from
the Gaussian elimination.

Assuming the 128 to 127 + κ-column submatrix is a full rank 113 × κ matrix,
we will at least recover 113 − κ rows with only zeroes on those columns that
naturally correspond to 113 − κ relevant relationships as illustrated in Fig. 5.

The linear part of each relationship is recovered by looking at the other
columns of M and the non-linear part must be also added by looking at the
corresponding key bits involved. By construction, those 113−κ relationships are
linearly independent and will involve both input and output state bits and only
those state bits. Each such row thus implies a relation between key bits, input
bits and output bits that can be summarized as R(k) = Ri(A1) ⊕ Ro(A2) =
Ri(B1) ⊕ Ro(B2); implying Ri(A1) ⊕ Ri(B1) = Ro(A2) ⊕ Ro(B2) that can be
used to efficiently filter a slid pair among many plaintext-ciphertext.

4.2 Enhancing a Filter with Chains of Queries

With the previous method, to attack P240 (κ = 112), we only have a 1-bit filter
which is insufficient. Hence we need a way to leverage on the filter.

Basic Method. We use a technique by Biryukov and Wagner [5] to increase the
number of filtering bits by generating more slid pairs. To multiply the number of
filtering bits, the attacker can generate a chain of queries. That is, after querying
A1 and receiving B1, the attacker queries B1 to obtain C1, then queries C1 to
obtain D1, and so on. A similar chain is generated from each A2. If (A1, A2)
is a slid pair, then so are (B1, B2), (C1, C2) and (D1, D2). Thus, we have the
relationship R(k) = Ri(A1)⊕Ro(A2) = Ri(B1)⊕Ro(B2) = Ri(C1)⊕Ro(C2) =
Ri(D1)⊕Ro(D2) = · · · . When the length of the chains is �, the 113−κ-bit filter
is applied to � pairs, which achieves a � · (113 − κ)-bit filter. For P240 (κ = 112),
we set � = 128 and gets a 128 · (113 − 112) = 128-bit filter to identify the right
slid pair.

Advanced Method: Splitting Longer Chains. We can further chain the
queries to efficiently create multiple chains of the required length. Concretely,
chains of length � + β values can be cut into β + 1 chains of length � (Fig. 6).



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 117

However, comparing those β + 1 chains for any reasonable β won’t yield any
slid pairs since an n-bit permutation won’t loop until about O(2n) iterations.
Nevertheless, comparing two independent chains of length � + β, we can expect
to find a solution among the implied 2β + 2 chains with probability 2(2β +
1)/2128 (fixing the first set of chains, there are 2β + 1 starting points for the
next set of chains that will provide a slid output and the same amount for a slid
input solution). Hence a solution is expected to be found after collecting about
264/

√
4β + 2 sets of β + 1 chains, which makes for a 264(� + β)/

√
4β + 2 data

complexity optimized for β = � − 1. For � = 128, the data complexity becomes√
255/2 · 264 � 267.5.

Fig. 6. Schematic representation of splitting longer chains for � = 5 and β = 2.

4.3 Key-Recovery from Input/Output Pairs

In this section, we explain how to efficiently extract the 128 + κ-bit key from
multiple input/output pairs of P128+κ in only about κ log(κ) operations where
0 ≤ κ ≤ 113.

The key-recovery is described in Algorithm 2 which basically guesses the κ
unseen bit states one by one. Let us explain the first iteration of the algorithm.
We start by taking the matrix M after Gaussian elimination (Fig. 5) that was
allegedly used to filter the pairs (A1, A2) and (B1, B2) both belonging to the
set P. We first guess k0, the first key bit, which corresponds to the first row of
our matrix M as it linearly depends on a128 and not on the rest of the unseen
part. Hence, from k0 we can deduce a128, b128, etc. for all known slid pairs. With
the knowledge of the 128th state bit, a new AND term can be computed that
is a113 ∧ a128 corresponding to k43. Thus, we add the linear term for k43 to the
matrix M , which now contains 114 rows. Row-wise Gaussian elimination will
restore the form of Fig. 5 but with 114 rows and, hence, a (114 − κ)-bit filter.



118 F. Sibleyras et al.

This additional bit of filter enables us to check whether the key guess was wrong.
If the additional filter pass for all pairs, we proceed. Otherwise, we change our
guess. Note that in the last 15 iterations, we can further deduce an additional
AND term using a known output bit.

Algorithm 2. Efficient key-recovery after filtering on TinyJAMBU-(128 + κ).
1: Let P be a list of multiple input/output pairs (S1, S2) whose internal (visible and

invisible) bit states are denoted as si for i from 0 to 255 + κ.
2: Let M be the filter producing matrix as in Fig. 5.
3: for i from 0 to κ − 1 do
4: g ← 0
5: Guess that the relation induced by the (i + 1)th row of M sums to g.
6: ∀(S1, S2) ∈ P : Deduce s128+i from the guess.
7: Add the relation of k43+i in the matrix M .
8: if i ≥ κ − 15 then
9: Add the relation of k58+i in the matrix M .

10: end if
11: Perform row-wise Gaussian elimination with respect to column 128+i to 127+κ.
12: Consider the new computable relation (two relations if i ≥ κ − 15).
13: if ∀(S1, S2) ∈ P : the relations are not equal then
14: if g = 0 then
15: g ← 1
16: Go back to Step 5
17: else
18: No consistent key can be fond. return ∅.
19: end if
20: end if
21: end for
22: For some (S1, S2) ∈ P compute k such that :
23: ki = si+128 ⊕ si ⊕ si+47 ⊕ (¬(si+70 ∧ si+85)) ⊕ si+91

24: return k

The probability of success of this algorithm mainly depends on the probability
of a wrong guess passing through the additional filter created which depends on
the number of input/output pairs we have at hand. Notice that we can further
compute additional input/output pairs by chaining the queries as in Sect. 4.2.
Gathering around log(κ) input/output pairs will detect a wrong guess with about
1−1/κ probability. Hence, it will fully recover κ bits of key with good probability
((1 − 1/κ)κ tends to e−1 � 36.8% as κ grows) and deduce the full 128 + κ bits
of key. Allowing back-tracking is probably efficient but hard to analyze. Notice
that it is possible to know whether the additional filter passed because the guess
is true or because it is independent of the guess. Indeed, the AND term we add
depend both on a newly guessed key (computed state bit) and on a known state.



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 119

Table 2. Experimental reports about Algorithm 2. Success probability with different
size of P on 1000 trials against a theoretical estimate.

|P| 5 6 7 8 9 10 11 12 13 14

success prob. (κ = 64) 3.6 19.3 46.1 69.7 82.2 90.5 95.0 97.6 98.5 99.5

theoretical prob. (κ = 64) 4.0 20.8 46.1 68.0 82.5 90.9 95.3 97.6 98.8 99.4

success prob. (κ = 112) 0.4 4.1 19.9 44.7 69.6 83.8 90.5 95.1 97.7 99.1

theoretical prob. (κ = 112) 0.2 4.5 21.6 46.7 68.4 82.7 91.0 95.4 97.7 98.8

If the known state was 0, then the AND term does not depend on the guess
but if the known state is 1 then the AND term depends linearly on the guess.
Comparing both cases together will give us the correct guess; otherwise the filter
always verifies independently of the guess.

Experimental Reports. We implemented Algorithm 2 and verified the required
number of input/output pairs. We say Algorithm2 succeeded when it returned
the unique secret key. Table 2 summarizes the attack success probability with
different sizes of P and κ ∈ {64, 112}. The theoretical estimation of the success
probability is computed by (1−2−(|P|−1))(κ−15)×(1−2−2×(|P|−1))15. It assumes
there is a 1/2 chance to detect a bad guess per filter per additional input/output
pairs; we have one filter per step up to κ − 15 key bits, and two filters for the
last 15 key bits. The theoretical estimation of log(κ) pairs required amounts to
6 and 7 for κ = 64 and κ = 112, respectively, and has indeed a good probability
of success. The theoretical estimations well fit the success probability of our
experiments.

4.4 Application on TinyJAMBU-192

The internal permutation of TinyJAMBU-192 is the case with κ = 64. With the
technique in Sect. 4.1, we build a 113 − 64 = 49-bit basic filter further enhanced
by the technique of Sect. 4.2 with chain length � = 2. This builds a 2×49 = 98-bit
filter and reduces 2128 candidate pairs to a sufficiently small size.

The pseudo-algorithm to recover the key of TinyJAMBU-192 is described
in Algorithm 3. For simplicity, here we assume that a table T of size 265 is
available. In Step 1, we make 265 queries, in which the first 264 queries can be
known-plaintexts queries, while the last 264 queries must be adaptively-chosen-
plaintext queries. In Step 2, we compute Ri for two pairs and Ro for two pairs,
which is faster than 4 × 264 = 266 computations of P192. In Step 3, the match of
98 bits will be examined for 2128 pairs, hence 230 pairs will remain after the filter.
In Step 5, we further make 2 × 230 = 231 adaptively-chosen-plaintext queries.
Thanks to the additional 49-bit filter, only the right slid pair will remain after
this step. In Step 7, we make additional queries to collect log κ = 6 slid pairs,
which is required by the key-recovery algorithm. The complexity of the key-
recovery algorithm is 64× log 64, which is negligible. In summary, the bottleneck



120 F. Sibleyras et al.

Algorithm 3. An adaptively chosen-plaintext slide attack on TinyJAMBU-192.
1: Generate 264 distinct values for A. Make 264 queries of A to obtain B, and make

264 queries of B to obtain C.
2: Compute Ri(A, B) and Ri(B, C) for the 98 bits, and compute Ro(A, B) and

Ro(B, C) for the 98 bits. Store (A, B, C, Ri(A, B)‖Ri(B, C), Ro(A, B)‖Ro(B, C))
in the table.

3: Find collisions of Ri(A, B)‖Ri(B, C) and Ro(A
′, B′)‖Ro(B

′, C′) for all 2128 pairs.

4: for all pairs with Ri(A, B)‖Ri(B, C) = Ro(A
′, B′)‖Ro(B

′, C′) do
5: Make 2 queries of C and C′ to obtain D and D′.
6: if Ri(C, D) = Ro(C

′, D′) then
7: Make additional queries to extend the chain length to be log κ = 6.
8: Run the key-recovery procedure in Sect 4.3.
9: Return K.

10: end if
11: end for

of the attack is Steps 1 and 2, which requires 265 adaptively-chosen-plaintext
queries, about 266 computational cost, and a memory to store 265 values.

5 Optimization for Attack on TinyJAMBU-256

When κ = 128, which is the parameter for TinyJAMBU-256, the technique
of Sect. 4.1 can no longer construct a filter. Thus, we need additional tricks to
attack TinyJAMBU-256. In this section, we optimize the attack on TinyJAMBU-
256 by exploiting the structure of TinyJAMBU. First, we show a method to
construct a 1-bit filter with only a 2-bit guess. In other words, the complexity
is only increased by a factor 22. Next, we show an efficient method to recover
the secret key given several plaintext-ciphertext pairs on P256. The 15-bit key,
i.e., k0, . . . , k14, is recovered by exploiting the algebraic structure, and then, the
other key bits are recovered by using Algorithm2.

5.1 1-Bit Filter with a 2-Bit Guess

The trivial extension requires an additional 16-bit guess. However, we do not
need to guess the whole 16-bit key, and only an additional 2-bit guess is enough
to obtain a 1-bit filter. Concretely, guessing the 2 bits of key k0 and k15 is enough.
We derive the following equations from the step-update function.

s128 = s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ k0

s143 = s15 ⊕ s62 ⊕ (¬(s85 ∧ s100)) ⊕ s106 ⊕ k15

By guessing k0 and k15, we can compute s128 and s143. Then, we obtain k21 ⊕
k58 ⊕ k186 ⊕ k233 from only known bits. These four key bits are computed as



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 121

k21 = s21 ⊕ s68 ⊕ (¬(s91 ∧ s106)) ⊕ s112 ⊕ s149,

k58 = s58 ⊕ s105 ⊕ (¬(s128 ∧ s143)) ⊕ s149 ⊕ s186,

k186 = s186 ⊕ s233 ⊕ (¬(s256 ∧ s271)) ⊕ s277 ⊕ s314,

k233 = s233 ⊕ s280 ⊕ (¬(s303 ∧ s318)) ⊕ s324 ⊕ s361,

and the sum is

k21 ⊕ k58 ⊕ k186 ⊕ k233 = s21 ⊕ s68 ⊕ (¬(s91 ∧ s106)) ⊕ s112 ⊕ s58 ⊕ s105 ⊕ (¬(s128 ∧ s143))⊕
s314 ⊕ (¬(s256 ∧ s271)) ⊕ s277 ⊕ s361 ⊕ s280 ⊕ (¬(s303 ∧ s318)) ⊕ s324.

Since s128 and s143 are known by guessing k0 and k15, we can get this 1-bit filter.
We want to use this 1-bit filter to detect slid pairs. Given a pair of

plaintext-ciphertext pairs (A1, B1) and (A2, B2), we need to define the cor-
responding functions G1(A1, B1) and G2(A2, B2). Let (a0, a1, . . . , a127) and
(a256, a257, . . . , a383) denote A1 and A2, respectively. Moreover, (b0, b1, . . . , b127)
and (b256, b257, . . . , b383) denote B1 and B2, respectively. Then, two functions are
defined as

G1(A1, B1) := a21 ⊕ a68 ⊕ (¬(a91 ∧ a106)) ⊕ a112 ⊕ a58 ⊕ a105 ⊕ (¬(a128 ∧ a143))⊕
b21 ⊕ b68 ⊕ (¬(b91 ∧ b106)) ⊕ b112 ⊕ b58 ⊕ b105 ⊕ (¬(b128 ∧ b143))

G2(A2, B2) := a314 ⊕ (¬(a256 ∧ a271)) ⊕ a277 ⊕ a361 ⊕ a280 ⊕ (¬(a303 ∧ a318)) ⊕ a324⊕
b314 ⊕ (¬(b256 ∧ b271)) ⊕ b277 ⊕ b361 ⊕ b280 ⊕ (¬(b303 ∧ b318)) ⊕ b324.

Note that G1(A1, B1) depends on the guess of k0 and k15, but G2(A2, B2) is
independent of them.

5.2 Key-Recovery from Input/Output Pairs for P256

Algorithm 2 accepts κ until 113. Therefore, Algorithm2 cannot be applied to
P256 directly. On the other hand, trivial extension is possible by guessing
15(= 128 − 113)-bit key. Recall that Algorithm 2 is very efficient and the time
complexity is O(κ). Even if we additionally guess the 15-bit key, the impact on
the time complexity is negligible compared with previous steps. Although the
trivial extension is already efficient, we present a more efficient algorithm whose
time complexity is still O(κ).

In Algorithm 2, the corresponding row vector is not involved in the matrix
if either of the NAND inputs is unknown. However, in practice, only one side
of NAND inputs is known, so we can obtain an additional relationship. Consid-
ering the following NAND ¬(st ∧ st+15), the output of the NAND is always 1
independently of st+15 when st = 0. On the other hand, when st = 1, the output
of the NAND is st+15 ⊕ 1, i.e., the nonlinear output is linearized. By exploiting
this property, we can recover the first 15-bit key efficiently.

The following is a concrete case to recover k0. When (s113, s256) = (0, 0), we
can compute k6 ⊕ k43 ⊕ k171 ⊕ k218 as

k6 ⊕ k43 ⊕ k171 ⊕ k218 = s6 ⊕ s53 ⊕ (¬(s76 ∧ s91)) ⊕ s97 ⊕ s43 ⊕ s90 ⊕ s262

⊕ s299 ⊕ s265 ⊕ (¬(s288 ∧ s303)) ⊕ s309 ⊕ s346.



122 F. Sibleyras et al.

As the sum removes 3 uncomputable bits, i.e., s134, s171, and s218. Moreover,
when (s113, s256) = (1, 0), we can compute k0 ⊕ k6 ⊕ k43 ⊕ k171 ⊕ k218 as

k0 ⊕ k6 ⊕ k43⊕k171 ⊕ k218 = s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ s6 ⊕ s53

⊕ (¬(s76 ∧ s91)) ⊕ s97 ⊕ s43 ⊕ s90 ⊕ 1 ⊕ (¬(s241 ∧ s256))
⊕ s262 ⊕ s299 ⊕ s265 ⊕ (¬(s288 ∧ s303)) ⊕ s309 ⊕ s346.

As the sum removes 4 uncomputable bits, i.e., s128, s134, s171, and s218. Finally,
the key bit k0 is derived by summing these two equations. This procedure requires
one input-output pairs satisfying each conditions, but the number of restricted
bits is only 2. Therefore, we can recover k0 by observing about 4 input-output
pairs. This procedure can be used to recover kx for 0 ≤ x ≤ 14. Then, the
restricted bits move to (s113+x, s256+x).

5.3 Complexity of TinyJAMBU-256

The attacker guesses 2-bit key k0 and k15 and generates a 1-bit filter. Since a
1-bit filter is insufficient to detect a unique slid pair, the filter is enhanced with
chains of queries. Thus, the attacker enhances the 1-bit filter to a 128-bit filter
and detects only a right slid pair for each 2-bit guess. Deriving the key from
a slid pair is very efficient by using Algorithm2 with the technique shown in
Sect. 5.2. Thus, the data complexity is 267.5. The time complexity is 269.5.

6 Conclusions

We have thoroughly analyzed the slide property of the keyed-permutation used as
TinyJAMBU’s underlying primitive. Our analysis shows that the slide property
can be exploited to mount actual slide attacks with near-birthday-bound com-
plexities for all proposed key sizes (128, 192, and 256 bits). The attacks exploit
multiple (undesirable) properties of the primitive and work independently from
the number of rounds repeated in the permutation.

The attacks do not directly contradict with the security goals to be achieved
by TinyJAMBU [16] but invalidate the rationale that the underlying primitive is
close to ideal. In particular, the attacks bring into question the (relatively high)
112/168/224-bit encryption/secret-key security goal for TinyJAMBU.

We emphasize that one should not treat TinyJAMBU’s primitive as a stan-
dard block cipher like Advanced Encryption Standard (AES), as TinyJAMBU’s
keyed-permutation fails to provide the expected security level (the functional-
ity of a keyed-permutation is the same as that of a block cipher.) The keyed-
permutation is a dedicated primitive that should be used exclusively in Tiny-
JAMBU’s AEAD mode of operation.



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 123

A Discussions and More Observations

A.1 Slide Attack with Deterministic Differential Characteristics

Overall Idea. The chain of queries in Sect. 4.2 efficiently increases the num-
ber of filtering bits, but requires adaptively chosen-plaintext. Here, we discuss
another approach that was also discussed in [5] which avoids adaptively chosen-
plaintext queries and show that it can be applied to recover a 192-bit key. The
idea here is to combine differential characteristics with probability 1 with the
slide attack. Suppose that there is an input and output difference of P192 denoted
by α and β, which is satisfied with probability 1. For a slid pair (A0, B0)
and (A′

0, B
′
0) such that A′

0 = P192(A0) and B′
0 = P192(B0), we define that

A1 = A0⊕α and A′
1 = A′

0⊕β. Then the pair (A1, B1) and (A′
1, B

′
1) also satisfies

A′
1 = P192(A1) and B′

1 = P192(B1) thanks to the probability 1 differential char-
acteristic. Specifically, we obtain 2 slid pairs without using adaptively-chosen-
plaintext queries. Moreover, the number of slid pairs can further increase to 2n if
n-many probability 1 differential characteristics are available, by assuming that
it is possible to satisfy such n-many probability 1 characteristics simultaneously.
This idea for the case with n = 2 is illustrated in Fig. 7.

Fig. 7. Attacks on TinyJAMBU-192 with two deterministic differential characteristics.

Note that the previous attack on TinyJAMBU-192 in Sect. 4.4 required adap-
tively chosen-plaintext queries for not only query chains but also the bit-by-bit
key-recovery explained in Sect. 4.3. Currently, we have not found an efficient
key-recovery procedure that works in the chosen-plaintext setting. Hence, our
approach to recover a 192-bit key is to first identify the valid slid pair and then
guess the last 64 key bits. For this reason, we need to filter out all the wrong
slid-pair candidates, and it is essential to have n = 2 distinct probability 1
characteristics to have a 49 × 22 = 196-bit filter.



124 F. Sibleyras et al.

Deterministic Differential Characteristic for P192. In the keyed-
permutation of TinyJAMBU, the only non-linear operation is the AND opera-
tion between s70 and s85. Recall that in each step, the key bit only impacts s127,
thus during the first 43 rounds, the input to the AND operation is only dependent
on the plaintext. Specifically, given the plaintext value, differential propagation
for the first 43 rounds is deterministic. The same can be applied in the backward
direction, i.e. given the ciphertext value, differential propagation for the last 70
rounds is deterministic. Moreover, we can set some plaintext and ciphertext bits
to 0 to prevent the input difference to AND gates from propagating.

With these observations, we searched for such characteristics for P192 by
using a refined MILP-based evaluation [14] by adding new constraints to ignore
the active AND gates for the first 43 and last 70 rounds from the objective
function. As a result, we found many probability 1 differential characteristics.3

An example is explained in Table 3.

Table 3. An example of probability 1 differential characteristic for TinyJAMBU-192.
Differential masks α, β are represented by hexadecimal numbers.

α : s127, . . . , s1, s0 0000 0000 0004 0000 0000 0008 0000 0000

β : s319, . . . , s193, s192 0000 0008 1000 0000 0080 0000 0004 0000

conditions on plaintext (A0) s97 = 0

conditions on ciphertext (A′
0) s195 = 0, s225 = 0, s232 = 0, s262 = 0

AND is active in rounds 12, 125, 140, 160, 177, and these output differences
are 0.

We confirmed that the rotated variants of the characteristic in Table 3 are
also satisfied with probability 1 for a left rotation by 1, 2, 3, 6, and 7 bits.

Application to TinyJAMBU-192. As mentioned above, using 2 characteris-
tics is sufficient for a 192-bit key. Hence, we use one in Table 3 and its left-rotated
version by 1 bit. When we choose 264 distinct values of A0, we fix s97 = 0
and s98 = 0. We also query A0 ⊕ α, A0 ⊕ (α ≪ 1), and A0 ⊕ α ⊕ (α ≪ 1)
along with A0. Similarly, when we choose 264 distinct values of A′

0, we fix 8 bits
of s195, s225, s232, s262, s196, s226, s233, s263 to 0 to satisfy the conditions on the
ciphertext, and we also query A′

0 ⊕ β, A′
0 ⊕ (β ≪ 1), and A′

0 ⊕ β ⊕ (β ≪ 1)
along with A′

0. Those would derive a 196-bit filter. Hence, we only have a right
slid pair after examining 2128 matching candidates. After detecting the slid pair,
we exhaustively guess the last 64 key bits.

The complexity is 4 × 2 × 264 = 267 chosen-plaintext queries. The computa-
tional cost is less than 4 × 2 × 4 × 264 = 269 computations of P192, which is for
computing 4 Ri or Ro functions for each query. The memory complexity is to
store the queries for A0 and associated quartets, which is 266. The memoryless
attack is made possible by incurring slightly more computational cost.
3 Run time was very short. It finished in a few seconds.



Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 125

A.2 Attacks on Non-multiple Number of Rounds

In our attacks, we assumed that the total number of rounds was a multiple of the
key-length, which is the case with P2 in all the members of TinyJAMBU. One
may wonder that the attack can be prevented by setting the number of rounds
to be a non-multiple the key-length. Here, we show that the restriction of the
number of rounds to be a multiple of the key-length can easily be lifted for the
attacks on P128 and P192 using the deterministic differential characteristics of
Sect. A.1.

Let k be the key of length klen and consider klen×m+s rounds of encryption
for some strictly positive integers m and s. Then, a slid pair (A0, B0), (A′

0, B
′
0) is

such that A′
0 = P k

klen(A0) and B′
0 = P k≪s

klen (B0). That is, B′
0 is the encryption of

B0 with klen rounds but with a circular-shifted key. In that setting, one clearly
cannot chain queries to enhance a filter because the key schedule does not cycle
back to its initial state.

Attacking klen = 128 is mostly unchanged from Sect. 3. We simply derive
equations on key bits independently for the unshifted and shifted cases that will
give us a filter. The only difference is that the 15 unexploitable key bits (bit
positions 43 to 57) are shifted in the second case, which can result in at most
30 unexploitable relationships. Nevertheless, we can always build a 98-bit filter
and perform a key-recovery with the same complexity as before.

For klen = 192, the attack is very similar to Sect. A.1. Indeed, taking the
notation of Fig. 7, we can still apply the same filter but only on the outputs
F (B0, B1) = F (B′

0, B
′
1), F (B0, B2) = F (B′

0, B
′
2), F (B0, B3) = F (B′

0, B
′
3) and

ignoring the relation induced by A0 and A′
0. The actual shift s has no effect

when only comparing relationship on outputs. More generally, in the shifted
case, having n independent differential characteristics increase the filter 2n − 1
fold (instead of 2n previously). For the 192-bit key case, a 49× 3 = 147-bit filter
is still more than enough to filter all the wrong pairs especially as A0 and A′

0

can further help us in the guess stage for the remaining key bits.

A.3 Implication on the Security of the AEAD Schemes

Our results do not easily extend to attacks on TinyJAMBU AEAD schemes
but bring their security into question. That is, they weaken the rationale to
believe 112-bit (resp., 168-bit, or 224-bit) encryption/secret-key security goal
being achieved by TinyJAMBU-128 (resp., TinyJAMBU-192, or TinyJAMBU-
256); to believe so is essentially equivalent to regarding the security goal itself
as an assumption. Neither the security of the primitive nor that of the mode
implies security of the scheme; one is assuming that the combination of the two
should achieve the security goal even though one is aware of the fact that the
primitive is far from being ideal.

In other words, one is assuming that some features of the mode should
“enhance” encryption/secret-key security to 112/168/224 bits even though the
underlying primitive is vulnerable to birthday-bound (i.e., about 64 bits in any
case) key-recovery attacks. The features may include, for example, the fact that



126 F. Sibleyras et al.

“frame bits” [16]4 are inserted into states and that at most 32 bits of each state
value are controllable by adversaries.

In fact, the underlying permutations are already known to be non-ideal. For
instance, the designers show in the specifications that P1 in the AEAD mode
(see Fig. 2) has a differential property of probability 2−83. Nevertheless, we want
to state that our attacks are the first to reveal that P2 of all the versions of
TinyJAMBU is broken by a birthday-bound key-recovery attack, which make
us less confident that the security proof of the mode by the designers can be
regarded as a convincing reason for the security claim holding.

To be fair, we remark that our results do not significantly affect the privacy
security (indistinguishability) shown by the designers or the authentication secu-
rity goal stated by the designers [16]. This is due to the fact that both of these
notions are up to the birthday bound of 64 bits and that our attacks require
birthday-bound complexities.

References

1. Bar-On, A., Biham, E., Dunkelman, O., Keller, N.: Efficient slide attacks. J. Cryp-
tol. 31(3), 641–670 (2018)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

3. Biham, E., Dunkelman, O., Keller, N.: Improved slide attacks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 153–166. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74619-5 10

4. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

5. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

6. Furuya, S.: Slide attacks with a known-plaintext cryptanalysis. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45861-1 17

7. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptol. 14(1), 17–35 (2000). https://doi.org/10.1007/
s001450010015

8. Naito, Y., Matsui, M., Sugawara, T., Suzuki, D.: SAEB: a lightweight blockcipher-
based AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(2), 192–217 (2018)

9. NIST: Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process (2018). https://csrc.nist.gov/Projects/
lightweight-cryptography

4 Indeed, the designers argue that the constants in the mode inserted between permu-
tation calls should prevent slide attacks (refer to Fig. 2); it seems that the existence
of constants should make it hard to extend our slide attacks to AEAD modes.

https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-74619-5_10
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/s001450010015
https://doi.org/10.1007/s001450010015
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography


Birthday-Bound Attacks on TinyJAMBU’s Keyed-Permutations 127

10. NIST: Lightweight Cryptography Standardization: Finalists Announced (2021).
https://csrc.nist.gov/News/2021/lightweight-crypto-finalists-announced

11. NIST: Status Report on the Second Round of the NIST Lightweight Cryptog-
raphy Standardization Process (2021). https://csrc.nist.gov/publications/detail/
nistir/8369/final

12. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

13. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search. New results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 38

14. Saha, D., Sasaki, Y., Shi, D., Sibleyras, F., Sun, S., Zhang, Y.: On the security
margin of TinyJAMBU with refined differential and linear cryptanalysis. IACR
Trans. Symmetric Cryptol. 2020(3), 152–174 (2020)

15. Wu, H., Huang, T.: TinyJAMBU: A Family of Lightweight Authenticated Encryp-
tion Algorithms. Submitted to NIST, September 2019

16. Wu, H., Huang, T.: TinyJAMBU: A Family of Lightweight Authenticated Encryp-
tion Algorithms (Version 2). Submitted to NIST, May 2021

https://csrc.nist.gov/News/2021/lightweight-crypto-finalists-announced
https://csrc.nist.gov/publications/detail/nistir/8369/final
https://csrc.nist.gov/publications/detail/nistir/8369/final
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/0-387-34805-0_38

	Birthday-Bound Slide Attacks on TinyJAMBU's Keyed-Permutations for All Key Sizes
	1 Introduction
	1.1 Our Contributions

	2 Specifications
	2.1 Keyed-Permutation Pn
	2.2 AEAD Mode
	2.3 Security Claim
	2.4 Self-similarity of Pn

	3 Slide Attacks on TinyJAMBU-128
	3.1 Overview of the Simple Slide Attack
	3.2 Reducing Data or Memory Complexity

	4 Attacks Against a Larger Key
	4.1 Building a Filter
	4.2 Enhancing a Filter with Chains of Queries
	4.3 Key-Recovery from Input/Output Pairs
	4.4 Application on TinyJAMBU-192

	5 Optimization for Attack on TinyJAMBU-256
	5.1 1-Bit Filter with a 2-Bit Guess
	5.2 Key-Recovery from Input/Output Pairs for P256
	5.3 Complexity of TinyJAMBU-256

	6 Conclusions
	A  Discussions and More Observations
	A.1  Slide Attack with Deterministic Differential Characteristics
	A.2  Attacks on Non-multiple Number of Rounds
	A.3  Implication on the Security of the AEAD Schemes

	References




