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Preface

TheSeventeenth InternationalWorkshop onSecurity (IWSEC2022)was held as a hybrid
event, bothonline andonsite, inTokyo, Japan, betweenAugust 31 andSeptember 2, 2022.
It was co-organized by the Technical Committee on Information Security in Engineering
Sciences Society (ISEC) of the Institute of Electronics, Information and Communication
Engineers (IEICE) and the Special Interest Group on Computer Security (CSEC) of the
Information Processing Society of Japan (IPSJ).

Following IWSEC’s tradition, this year we also had two tracks, Track A: Cryptogra-
phy and Track B: Cybersecurity and Privacy with two separate Program Committees. In
total we received 34 submissions, 23 to Track A and 11 to Track B, each of which was
then reviewed in a double-blind fashion by three to four experts in the pertinent fields.
After comprehensive review and shepherding, we accepted 12 papers, nine in Track A
and three in Track B, and included their revised and refined versions in this publica-
tion. Among them the Best Paper Award went to “Efficient Multiplication of Some-
what Small Integers Using Number-Theoretic Transforms” by Hanno Becker, Vincent
Hwang,Matthias J. Kannwischer, Lorenz Panny, and Bo-Yin Yang; and the Best Student
Paper Award went to “On Extension of Evaluation Algorithms in Keyed-Homomorphic
Encryption” by Hirotomo Shinoki and Koji Nuida.

We are grateful to all thosewho contributed to the success of IWSEC2022 during this
difficult time of theCOVID-19 pandemic. In particular, wewould like to thank all authors
for submitting their works to the workshop, and we express our deepest appreciation to
the members of the Program Committees and the external reviewers for their thorough
reviews and in-depth discussions leading to the workshop’s excellent program. Last but
not least, we would like to thank the general co-chairs, Noboru Kunihiro and Yuji Suga,
for their supreme leadership, as well as all members of the Organizing Committee for
the great work resulting in the successful event.

September 2022 Chen-Mou Cheng
Mitsuaki Akiyama
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Efficient Multiplication of Somewhat
Small Integers Using Number-Theoretic

Transforms

Hanno Becker1(B), Vincent Hwang2,3(B), Matthias J. Kannwischer3(B),
Lorenz Panny3(B), and Bo-Yin Yang3(B)

1 Arm Research, Cambridge, UK
hanno.becker@arm.com

2 National Taiwan University, Taipei, Taiwan
vincentvbh7@gmail.com

3 Academia Sinica, Taipei, Taiwan

matthias@kannwischer.eu, lorenz@yx7.cc, by@crypto.tw

Abstract. Conventional wisdom purports that FFT-based integer mul-
tiplication methods (such as the Schönhage–Strassen algorithm) begin
to compete with Karatsuba and Toom–Cook only for integers of several
tens of thousands of bits. In this work, we challenge this belief, lever-
aging recent advances in the implementation of number-theoretic trans-
forms (NTT) stimulated by their use in post-quantum cryptography. We
report on implementations of NTT-based integer arithmetic on two Arm
Cortex-M CPUs on opposite ends of the performance spectrum: Cortex-
M3 and Cortex-M55. Our results indicate that NTT-based multiplication
is capable of outperforming the big-number arithmetic implementations
of popular embedded cryptography libraries for integers as small as 2048
bits. To provide a realistic case study, we benchmark implementations
of the RSA encryption and decryption operations. Our cycle counts on
Cortex-M55 are about 10× lower than on Cortex-M3.

Keywords: FFT-based multiplication · NTT · Arm processors · RSA

1 Introduction

The development of fast algorithms for arithmetic on big numbers is a well-
established field of research. As with any computational problem, its study can
be dissected into two parts: First, the analysis of the asymptotic complexity.
Second, the analysis of concrete complexity for a chosen size of input. The
results are often different: An algorithm may have inferior asymptotic perfor-
mance but superior practical performance for a certain input size. The analysis
of the “crossover point”, that is, the input size at which an asymptotically faster
algorithm also becomes practically faster, is an important question when mov-
ing from theory to practice. The present paper is about the evaluation of such a
crossover point in the case of big number arithmetic on microcontrollers.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C.-M. Cheng and M. Akiyama (Eds.): IWSEC 2022, LNCS 13504, pp. 3–23, 2022.
https://doi.org/10.1007/978-3-031-15255-9_1
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4 H. Becker et al.

The multiplication of big numbers can be performed in a variety of ways
of decreasing asymptotic complexity and (unsurprisingly) increasing sophistica-
tion. At the base, so-called “schoolbook multiplication” approaches calculate the
product of two n-limb numbers (a0, . . . , an−1) and (b0, . . . , bn−1) by computing
and accumulating all n2 subproducts aibj . While from a practical perspective, a
lot of research has been conducted on the optimal concrete strategy, they all lead
to an asymptotic complexity of O(n2). Next, the Karatsuba method [KO63] and
its generalization by Toom–Cook [Too63] lower the asymptotic complexity to
O(n1+s) for varying 0 < s < 1; for example, Karatsuba’s method of computing

(a0 + ta1)(b0 + tb1) = a0b0 + t2a1b1 + t((a0 + a1)(b0 + b1) − a0a0 − a1b1)

leads to an asymptotic complexity of O(nlog2 3) ⊆ O(n1.585). Moving further,
starting with the famous Schönhage–Strassen algorithms [SS71], FFT-based inte-
ger multiplications achieve asymptotic complexity O(n log n log log n) and better,
and the long conjectured (and presumably final) complexity of O(n log n) was
only recently achieved in [HH21].

Despite its far superior asymptotic complexity, however, NTT-based integer
multiplication is not used for number ranges found in contemporary public-key
cryptography: In fact, quadratic multiplication strategies appear to be the most
prominent choice in those contexts. At the same time, the past years have seen
significant research and progress regarding fast implementation of the NTT,
stimulated by their prominence in post-quantum cryptography. The primary
objective of this paper is to evaluate how those optimizations affect the practical
performance and viability of NTT-based big number arithmetic.

1.1 Results

We find that the crossover point for viability of NTT-based modular arithmetic
is at around 2048 bits. More precisely, we compare to modular arithmetic imple-
mentations found in the popular TLS libraries BearSSL and Mbed TLS, and
find that our NTT-based implementation outperforms both by 1.3×–2.2× on
Cortex-M3 and by 1.8×–6.4× on Cortex-M55. We also notice that there is con-
siderable optimization potential for the schoolbook multiplications in BearSSL
and Mbed TLS—when this is implemented, 2048-bit NTT-based modular multi-
plication is only slightly better (1.1×) than schoolbook multiplication on Cortex-
M3, and essentially equal on Cortex-M55. When moving to 4096-bit multipli-
cation, however, our NTT-based implementation outperforms even those highly
optimized schoolbook multiplications. We thus think that NTT-based modular
arithmetic should be considered from 2048-bit onwards.

Software: Our Cortex-M3 code is available at https://github.com/ntt-int-mul/
ntt-int-mul-m3. Our Cortex-M55 code will be made available soon at https://
gitlab.com/arm-research/security/pqmx.

Related Work. Present-day general-purpose computer algebra systems switch
to FFT-based multiplication only for very large numbers. For example,

https://github.com/ntt-int-mul/ntt-int-mul-m3
https://github.com/ntt-int-mul/ntt-int-mul-m3
https://gitlab.com/arm-research/security/pqmx
https://gitlab.com/arm-research/security/pqmx
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GMP [GMP] uses Schönhage–Strassen when multiplying numbers with more
than 3000–10000 limbs (i.e., at least 96 000 bits) depending on the platform.1

However, when tailoring an implementation to a specific integer size and plat-
form, the crossover point appears to be lower. Previous work on implementing
RSA using Schönhage–Strassen [GKZ07] in hardware concluded that it can only
outperform Karatsuba and Toom–Cook for key sizes larger than 48 000 bits.
[Gar07] reports similar findings: It estimates Schönhage–Strassen to be competi-
tive only for RSA key sizes above 217 ≈ 131 000 bits, several orders of magnitude
beyond typical RSA parameter choices. To the best of our knowledge, there
is no competitive implementation of real-world RSA using FFT-based integer
multiplication.

Other Work. In addition to improvements to the efficiency of number-theoretic
transforms, post-quantum cryptography has stimulated research into efficient
schoolbook multiplication strategies for integers of a few hundred bits, as found in
elliptic-curve or isogeny cryptography. It would be interesting to study and com-
pare the performance of RSA based on the combination of Karatsuba and those
new quadratic multiplication algorithms. Another avenue for further research is
the evaluation of NTT-based arithmetic on high-end processors.

2 Preliminaries

2.1 RSA

The RSA (Rivest–Shamir–Adleman) cryptosystem [RSA78] was the most com-
mon public-key cryptosystem for decades and remains in widespread use, pri-
marily with keys of 2048, 3072, or 4096 bits. We briefly recap how it works.

During key generation, a semiprime N = pq with p and q of roughly equal
size is generated. The public key is N and a small e to which power it is easy to
raise, commonly e = 216 +1. We have xkφ(N)+1 ≡ x (mod N) for all x, k, where
φ(N) = (p − 1)(q − 1) is the totient function. With d ≡ e−1 (mod φ(N)), the
public map x �→ xe mod N is then inverted by the secret map y �→ yd mod N ,
the secret key being d. Both encryption and signing primitives can be constructed
based on this pair of public/private maps.

The private map can be evaluated using the Chinese Remainder Theorem
(CRT) method, computing x = yd mod N by interpolating x ≡ yd mod (p−1)

(mod p) and x ≡ yd mod (q−1) (mod q). Modular multiplications are commonly
implemented using Montgomery multiplication, and modular exponentiation
uses windowing methods (see Sect. 3).

2.2 FFT-Based Integer Multiplication

Numerous versions of FFT-based integer multiplications are known, but their
blueprint is typically the following: First, find an FFT-based quasi-linear time
1 https://gmplib.org/manual/FFT-Multiplication.

https://gmplib.org/manual/FFT-Multiplication
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multiplication algorithm in a suitable polynomial ring. Second, find a means to
reduce integer multiplication to the chosen kind of polynomial multiplications.

Starting with Schönhage–Strassen and Pollard [SS71,Pol71], numerous
instantiations of this idea have been developed, using polynomials over C, finite
fields Fq, integers modulo Fermat numbers Z/(22

n

+ 1)Z, and also multivariate
polynomial rings [HH21]. Here, we focus on NTT-based integer multiplication
using polynomials in Zq[X]/(Xn−1) with q a prime or bi-prime, which is close to
[Pol71]. While variable-size integer multiplication requires recursive application
of the above principle, it is not necessary for the integer sizes considered here.

Section 2.3 discusses how the NTT yields a quasi-linear multiplication in
Zq[X]/(Xn − 1). We now explain the reduction from integer multiplication.

To turn a multiplication of a, b ∈ Z into a multiplication in Zq[X]/(Xn − 1),
one first lifts a, b to integer polynomials A,B ∈ Z[X] along f : Z[X] →
Z,X �→ 2�, the canonical choice being the radix-2� presentations of a, b. Since
f(AB) = ab, it suffices to compute AB ∈ Z[X]. To do so, one chooses q and
n such that AB ∈ Z[X] is a canonical representative for the finite quotient
Zq[X]/(Xn − 1), that is, it is of degree < n with coefficients in {0, . . . , q − 1}.
Under these circumstances, one can then uniquely recover AB from its image
g(AB) = g(A)g(B) under g : Z[X] → Zq[X]/(Xn − 1). We have thus reduced
the computation of ab in Z to that of g(A)g(B) in Zq[X]/(Xn − 1).

2.3 Number-Theoretic Transforms

The number-theoretic transform (NTT) is a generalization of the discrete Fourier
transform, replacing the base ring C of the complex numbers by other commu-
tative rings, commonly finite fields Fq. In the present context, its value lies in
the fact that it transforms convolutions into pointwise products in quasi-linear
time, reducing the complexity of convolutions from quadratic to quasi-linear.

Definition. We’re working over Zq := Z/qZ for odd q and fix ω ∈ Zq an nth
root of unity. We write [n] := {0, 1, . . . , n − 1}. The NTT [Für09,HH21] is the
canonical projection Zq[x]/〈xn − 1〉 → ∏

i Zq[x]/
〈
x − ωi

〉
, which under the iso-

morphism Zq[x]/
〈
x − ωi

〉 ∼= Zq,a(x) �→ a(ωi) can also be described as

NTT : Zq[x]/〈xn − 1〉 → Z
n
q , NTT(a) :=

(
a(1),a(ω), . . . ,a(ωn−1)

)
.

If ω is a principal nth root of unity and n is invertible in Zq, this constitutes
a ring isomorphism NTT : Zq[x]/〈xn − 1〉 ∼= Z

n
q ; in particular, we have ab =

NTT−1 (NTT(a) ·Π NTT(b)), where ·Π is the pointwise multiplication in Z
n
q .

Fourier Inversion. Domain and codomain of the NTT can be identified via
the isomorphism of Zq-modules (not rings) ϕ : Zq[x]/〈xn − 1〉 ∼= Z

n
q , xi ↔ ei

(where ei is the ith unit vector). This renders the resulting NTT : Z
n
q → Z

n
q

close to an involution: NTT2 = muln ◦ neg, where muln : Zn
q → Z

n
q is pointwise

multiplication with n and neg : Zn
q → Z

n
q sends ei to eneg(i) with neg(0) = 0

and neg(i) = n − i for i > 0 (we don’t distinguish between a permutation on
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[n] and the induced isomorphism on Z
n
q ). Another way of saying this is that

NTT′ : Zq[x]/〈xn − 1〉 ∼= Z
n
q defined by NTT′(a) :=

(
a(1),a(ω−1), . . . ,a(ω−(n−1))

)

is, up to multiplication by n and application of ϕ, the inverse of NTT : Zq[x]/
〈xn − 1〉 ∼= Z

n
q . This is the Fourier Inversion Formula, and the curious reader

will find that it boils down to the orthogonality relations
∑

j ωij = n · δi,0.

Fast Fourier Transform. The NTT can be calculated using the Cooley–Tukey
(CT) FFT algorithm: For n = 2m, CT splits Zq[x]/

〈
x2m − ζ2

〉
into Zq[x]/

〈xm − ζ〉×Zq[x]/〈xm + ζ〉 via CT(a+xmb, ζ) = (a+ ζb, a− ζb) for a, b of degree
< m—this is called a CT butterfly. The idea can be applied recursively, and for
n = 2k we in particular obtain a map NTTCT : Zq[x]/〈xn − 1〉 ∼= Z

n
q which is equal

to bitrev ◦ NTT, where bitrev : [2k] → [2k] is the bitreversal permutation.
The CT strategy can also be applied for radices r 
= 2, performing one

splitting Zq[x]/〈xrm − ζr〉 ∼= ∏
i Zq[x]/

〈
xm − ωi

rζ
〉

at a time. When applied
recursively to a factorization n = r1 · · · rs, the resulting map NTTCT : Zq[x]/
〈xn − 1〉 ∼= Z

n
q agrees with σ(r1, . . . , rs) ◦ NTT, where σ(r1, . . . , rs) is given by

[n] ∼= [r1] × . . . × [rs]
reverse−−−−→ [rs] × . . . × [r1] ∼= [n]

where the first and last map are lexicographic orderings. Note that σ(2, . . . , 2) =
bitrev, and σ(r1, . . . , rs) is an involution only if (r1, . . . , rs) is a palindrome.

Inverse NTT. For the computation of NTT−1
CT , there are two approaches: First,

one can invert CT butterflies via Gentleman–Sande butterflies GS(a, b, ζ) =
(a + b, (a − b)ζ). Alternatively, one can leverage NTTCT = σ ◦ NTT and NTT−1 =
mul1/n◦NTT′ to compute NTT−1

CT = mul1/n◦NTT′◦σ−1 = mul1/n◦σ−1◦NTT′
CT◦σ−1.

If σ is an involution (e.g., if n = 2k), this is mul1/n ◦ σ ◦ NTT′
CT ◦ σ−1 and can

thus be implemented like NTTCT while implicitly applying the permutation σ;
this leads to the implementation of NTT−1

CT as presented in [Abd+22, Figure 1],
which does not require explicit permutations. For a general mixed-radix NTT,
however, σ is not an involution, and an explicit permutation by σ−2 is needed;
we avoid this via Good’s trick, as explained in the next section.

GS butterflies lead to exponential growth for an exponentially shrinking num-
ber of coefficients, while CT butterflies yield linear growth for all coefficients.
This impacts the amount and placement of reductions during NTT±1.

Good’s Trick. For n = rs with coprime r, s, another strategy to computing NTTn

is computing the bottom edge in the commutative diagram

Zq[x]/〈xn − 1〉 Z
n
q

Zq[u]/〈ur − 1〉 ⊗Zq
Zq[v]/〈vs − 1〉 Z

r
q ⊗Zq

Z
s
q

ui⊗vj↔xk

∼=
k≡i (mod r)
k≡j (mod s)

NTTω
n

NTTωe

r ⊗ NTTωf

s

e≡0 (mod s), e≡1 (mod r)
f≡1 (mod s), f≡0 (mod r)

ei⊗ej↔ek∼=
k≡i (mod r)
k≡j (mod s)
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This has two benefits: First, if r, s are prime powers then NTT±1
r/s can be computed

via CT as described above, avoiding non-involutive permutations. Second, fewer
twiddle factors are needed for the computation of NTTs ⊗ NTTr.

Incomplete NTTs. Denoting R := Zq[x]/〈xn − 1〉 and Ri := Zq[x]/
〈
x − ωi

〉
, the

NTT splitting NTT : R
∼=−−→ ∏

i Ri transfers to any R-algebra: If S is an R-
algebra, we have S ∼= S ⊗R R ∼= S ⊗R

∏
i Ri

∼= ∏
i S ⊗R Ri. The most common

example are incomplete NTTs: The ring S := Zq[y]/
〈
ynh − 1

〉
is an algebra over

its subring R := Zq[yh]/
〈
ynh − 1

〉 ∼= Zq[x]/〈xn − 1〉 to which the NTT applies,
and so S ∼= ∏

i S ⊗R Zq[yh]/
〈
yh − ωi

〉
=

∏
i Zq[y]/

〈
yh − ωi

〉
.

The benefits of using incomplete NTTs are: First, we only need an nth prin-
cipal root of unity to partially split Zq[y]/

〈
ynh − 1

〉
. Second, polynomial multi-

plication using incomplete NTTs and “base multiplication” in Zq[y]/
〈
yh − ωi

〉

may be faster than for full NTTs and base multiplication in Zq.
We use incomplete NTTs for all parameter sets—see below.

Fermat Number Transforms. The Fermat number transform (FNT) is a special
case of NTT where the modulus is a Fermat number Ft := 22

t

+ 1 [AB74]. For
the coefficient ring ZFt

, we can compute a size-n NTT if n divides 2t+2. If we
choose 2 to be the principal 2t+1th root of unity, then the twiddle factors for a
size-(t+1) Cooley–Tukey FFT are all powers of 2.

Since there are square roots for ±2, we can choose a principal 2t+2th root
of unity ω with ω =

√
2 and compute a size-2t+2 NTT [AB74]. Furthermore, if

Ft is a prime, then we can compute a size-22
t

NTT. Note that the only known
prime Fermat numbers are F0, . . . , F4.

2.4 Modular Reductions and Multiplications

(Refined) Barrett Reduction. Signed Barrett reduction approximates

a mod± q = a − q �a/q� = a − q
⌊
a R

q /R
⌉

≈ a − �a · �R/q� /R� =: bar� �
q,R(a),

where R = 2w is a power of 2 and �R/q� is a precomputed integer approximation
to R

q . The quality of the resulting approximation bar� �
q,R(a) ≈ a mod± q—and in

particular, the question of when it may in fact be an equality—depends on the
value of w, and two choices for w are common, as we now recall.

First, w = M where M ∈ {16, 32} is the word or half-word size bitlength,
allowing

⌊−
R

⌉
to be conveniently implemented using rounding high multiply

instructions. We call this the “standard” Barrett reduction.
Second, w = (M − 1) + �log2 q�, which is maximal under the constraint

that �R/q� is a signed M -bit integer: This choice leads to higher accuracy of the
approximation, but typically requires an additional instruction. We will hence-
forth call it the “refined” Barrett reduction. For standard Barrett reduction, both
�a� := 2

⌊
a
2

⌉
and �a� := �a� can be useful, while for refined Barrett reduction,

we always choose �a� = �a� because of its tighter bound |�a� − a| ≤ 1
2 .



Efficient Multiplication of Somewhat Small Integers Using NTTs 9

Note that both “standard” and “refined” Barrett reductions are already
known in the literature as Barrett reduction. We make this distinction for
introducing an extension of the signed Barrett multiplication introduced
by [Bec+22a].

(Refined) Barrett Multiplication. For two integers a, b and a modulus q, signed
Barrett multiplication [Bec+22a] approximates

ab mod± q = ab− q
⌊

ab
q

⌉
= ab− q

⌊
a bR

q /q
⌉

≈ ab−
⌊
a ·

�
bR
q

�
/R

⌉
q =: bar� �

q,R(a, b),

where again R = 2w is a power of 2 and �bR/q� is a precomputed integer
approximation to bR

q . Previously, only the choice w = M ∈ {16, 32} was con-
sidered. In analogy with refined Barrett reduction, we suggest to also consider
w = (M − 1)+ �log2 q�− �log2 |b|�, which again is maximal under the constraint
that �bR/q� is a signed M -bit integer. We call the resulting approximation to
ab mod± q the “refined” Barrett multiplication.

We summarize the quality and size of Barrett reduction and multiplication:

Fact 1. Let q ∈ N be odd and a, b ∈ Z with |a|, |b| < 2M−1 for M ∈ {16, 32}.
Moreover, let �−� : Q → Z be any integer approximation, i.e. |x − �x�| ≤ 1 for
all x ∈ Q, and put t mod� � q := t − q �t/q�.

Then for R := 2M we have |bar� �
q,R(a, b)| ≤ a(bR mod� � q)

R
+ R

2 .

Proof. [Bec+22a, Corollary 2] ��
Fact 2. Let q ∈ N be odd and a, b ∈ Z with |a|, |b| < 2M−1 for M ∈ {16, 32}.
Moreover, pick k ≥ 1 maximal s.t. ε := |�bR/q� − bR/q| ≤ 2−k. Finally, set
R := 2w for w := (M − 1) + �log2 q� − �log2 |b|�. Then:

If log2 |a| < (M − 1) − (�log2 |b|� − (k − 1)), then bar� �
q,R(a, b) = ab mod± q.

Restating Fact 2 in simple terms: Refined Barrett reduction (the special case
b = 1) yields canonical representatives for all inputs a with |a| < 2M−1. For
a refined Barrett multiplication, the range of inputs for which bar� �

q,R(a, b) is
guaranteed to be canonical is narrowed by the bitwidth of b; however, this can
be compensated for by an exceptionally close approximation bR/q ≈ �bR/q�.
Proof of Fact 2. Setting δ := a �bR/q� /R−ab/q, it follows from the definition of ε
and k that |δ| ≤ |a|/2k+w. Since �−� changes its value only when crossing values

of the form { 2n+1
2 } for n ∈ Z, for

⌊
ab
q

⌉
and

⌊
a� bR

q �
R

⌉

=
⌊

ab
q + δ

⌉
to agree it is

sufficient to show that |δ| < min
{∣

∣
∣ 2n+1

2 − c
q

∣
∣
∣ | c, n ∈ Z

}
= 1

2q —the last equality
holds since q is odd. Refined Barrett multiplication is thus guaranteed to yield
the canonical representative of ab if |a|

2k+w < 1
2q , i.e. |a| < 2k+w−1

q . Plugging in
w = M − 1 + �log2 q� − �log2 |b|� and estimating q < 2�log2 |q|	+1, this follows
provided log2 |a| < (M − 1) − (�log2 |b|� − (k − 1)), as claimed. ��
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Example 1. Let M = 32, q = 114826273, and b = 774. Then �log2 q� = 26 and
�log2 b� = 10, so w = 47. Moreover, ε := |�bR/q� − bR/q| satisfies ε < 2−11. Thus,
according to Fact 2, the refined Barrett multiplication bar±

q,R(−, b) for R := 247

does therefore yield canonical representatives for all inputs a with |a| < 231: The
exceptionally good approximation �bR/q� ≈ bR/q makes up for the size of b.

Montgomery Multiplication. The Montgomery multiplication [Mon85] of a, b
with respect to a modulus q and a 2-power R > q is defined as mont+q (ab) =
hi (a · b + q · lo (q′ · lo (a · b))) , providing a representative of abR−1 modulo q.
Here, q′ = −q−1 mod R, and lo and hi are extractions of the lower and upper
log2 R bits, respectively. Montgomery multiplication is defined and relevant for
both small-width modular arithmetic such as modular arithmetic modulo a 16-
bit or 32-bit prime, as well as large integer arithmetic as used, e.g., in RSA.

Multi-precision Montgomery Multiplication. Montgomery multiplication for big
integers is implemented iteratively: For a, b =

∑
i biBi, one computes a represen-

tative of abB−n by writing abB−n = . . . (ab2 + (ab1 + (ab0)B−1)B−1)B−1 . . . and
computing each x �→ (x + abi)B−1 using a Montgomery multiplication w.r.t. B.
Each such step involves the computation and accumulation of P = x+abi and of
Q = ((x+abi)0q′ mod B)p. If the products are computed separately, this is called
Coarsely Integrated Operand Scanning (CIOS) [KAK96]. If (x + abi)0q′ mod B
is computed first and then P + Q is computed in one loop, it is called Finely
Integrated Operand Scanning (FIOS).

Divided-Difference for Chinese Remainder Theorem (CRT). We compute poly-
nomial products modulo q1q2 by interpolating products modulo q1 and q2 using
the divided-difference algorithm for CRT [Chu+21]: Let q0, q1 be two coprime
integers and m1 := q−1

0 mod ±q1. For a system u ≡ u0 (mod q0), u ≡ u1

(mod q1) with |u0| < q0
2 , |u1| < q1

2 , we solve for u with |u| < q0q1
2 by computing:

u = u0 +
(
(u1 − u0)m1 mod ±q1

)
q0. (1)

2.5 Implementation Targets

We briefly explain our choice of implementation targets.

Cortex-M3. The Arm R© Cortex R©-M3 CPU is a low-cost processor found in a
wide range of applications such as microcontrollers, automotive body systems,
or wireless networking. It implements the Armv7-M architecture and features a
3-stage pipeline, an optional memory protection unit (MPU) and a single-cycle
32 × 32 → 32-bit multiplier with optional 1-cycle accumulation or subtraction.

We select the Cortex-M3 primarily for two reasons: First, it is a popular
choice of MCU for automotive hardware security modules (e.g. Infineon AURIX
TC27X). Second, its 32×32 → 64 long multiplication instructions smull, smlal,
umull, umlal have data-dependent timing and lead to timing side channels when
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used to process sensitive data. To avoid those, implementations need to use
single-width multiplication instructions mul, mla, and mls instead. We expect
this reduction of basic multiplication width to have a more significant impact on
the runtime of classical multiplication than on (quasi-linear) NTT-based multi-
plication. A goal of the paper is to evaluate this intuitive assessment.

Cortex-M55. The Cortex-M55 processor is the first implementation of the
Armv8.1-M architecture, with optional support for the M-Profile Vector Exten-
sion (MVE), or Arm R© Helium

TM
Technology. It features a 5-stage pipeline when

Helium is enabled, and except for some pairs of Thumb instructions, it is single
issue. In addition to the Helium vector extension, it supports the Low Overhead
Branch Extension, as well as tightly coupled memory (TCM) for both code and
data, with a total Data-TCM bandwidth of 128-bit/cycle, 64-bit/cycle for CPU
processing and 64-bit/cycle for concurrent DMA transfers. For a more extensive
introductions to both the Armv8.1-M architecture and the Cortex-M55 CPU,
we refer to [Bec+22b, Section 3] and the references therein.

We select the Cortex-M55 for the following reasons: First, due to its support
for SIMD vector processing, it is an exciting and powerful new implementation
target—the cryptographic capabilities of which are still to be explored. Second,
the authors are not aware of means to vectorize classical umaal-based multi-
plication strategies using MVE, while in contrast it has been demonstrated in
[Bec+22b] that the NTT is amenable for significant speedup using MVE. We are
thus curious to understand how a vectorized NTT-based integer multiplication
fares compared to classical umaal-based integer multiplication.

3 Implementations

3.1 High-Level Strategy

We implement Montgomery multiplication on top of NTT-based large inte-
ger multiplication, the latter as described in Sect. 2.2. This is in contrast to
CIOS/FIOS approaches for iterative Montgomery multiplication, which never
need to compute the double-width product of two large integers.

We pick R = 2�·n/2, which in contrast to R = 2N aligns taking the low and
high half w.r.t. R with taking the low resp. high halves of polynomials.

NTT-based large integer multiplication involves a considerable amount of
precomputation, such as chunking and NTT. Since each Montgomery multipli-
cation involves three integer multiplications—a ·b, t := q′ ·(a ·b)low, and p ·t—two
of which involve static factors p and p′, we buffer their precomputations. We also
make use of asymmetric multiplication [Bec+22a] and refer to the resulting NTT
and base multiplication as NTTheavy and basemullight.

Algorithm 1, Algorithm 2 and Appendix E describe our modular multiplica-
tion strategy in more detail. Appendix B explains how to perform the non-trivial
precomputation of p−1 mod R for our large choice of R.
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Algorithm 1:
Montgomery squaring using NTTs
Input: p, aR mod p,

p̂−1 = NTT(chk(p−1 mod 2k)),
p̂ = NTT(chk(p))

Output: c = a2R mod p

1: â = NTT(chk(a))
2: t = dechk(NTT−1(â ◦ â))
3: t̂ = NTT(chk(t mod 2k))
4: l = dechk(NTT−1(t̂ ◦ p̂−1))
5: l̂ = NTT(chk(l mod 2k))
6: r = dechk(NTT−1(l̂ ◦ p̂))
7: c = t

2k
− r

2k

8: if c < 0 then c = c + p
9: return c

Algorithm 2:
Montgomery multiplication using NTTs
Input: aR mod p, bR mod p

p̂−1 = NTT(chk(p−1 mod 2k)),
p̂ = NTT(chk(p))

Output: c = a · b · 2−k mod p

1: â = NTT(chk(a))
2: b̂ = NTT(chk(b))
3: t = dechk(NTT−1(â ◦ b̂))
4: t̂ = NTT(chk(t mod 2k))
5: l = dechk(NTT−1(t̂ ◦ p̂−1))
6: l̂ = NTT(chk(l mod 2k))
7: r = dechk(NTT−1(l̂ ◦ p̂))
8: c = t

2k
− r

2k

9: if c < 0 then c = c + p
10: return c

3.2 Parameter Choices

Recall from Sect. 2.2 that the Schönhage–Strassen algorithm involves lifting N -
bit numbers to Z[X] along X �→ 2� and computing their product in Zq[X]/(Xn−
1) using the NTT. We now describe our choices of N, 	, n, q; they were found by
manually tailoring the algorithm to the given target architectures.

First, if we divide our inputs into 	-bit chunks, we need n ≥ 2
⌈

N
�

⌉
; otherwise,

we cannot lift from Zq[X]/(Xn − 1) back to Zq[X]. For performance, we also
want n so that NTT-based polynomial multiplication is fast, e.g., a 2-power.
Hence, we may deliberately choose n > 2

⌈
N
�

⌉
and pad with zeros when needed.

Secondly, the coefficients of the product of two dimension-(n/2) polynomials
with 	-bit coefficients are bounded by n

2 · 22�, so we need q ≥ n
2 · 22� to be able

to lift from Zq[X] back to Z[X]. However, we also need to pick q so that Zq

has a principal nth root of unity, as otherwise the NTT is not defined. We pick
q = q1q2 a bi-prime and compute modulo q1 and q2 separately via CRT; using
two half-size moduli maps to the available hardware multipliers better than a
single larger q. Table 1 presents our choices, and we explain them in detail now.

On the Cortex-M3, we use chunks of 	 = 11 bits, so
⌈

N
�

⌉
= 187 for N = 2048

and
⌈

N
�

⌉
= 373 for N = 4096, but pick slightly larger n = 384 > 2

⌈
N
�

⌉
for

N = 2048 and n = 768 > 2
⌈

N
�

⌉
for N = 4096 since both are dimensions

for which a fast NTT can be implemented. Next, we need q1q2 ≥ 192 · 222 for
N = 2048 and q1 · q2 ≥ 384 · 222 for N = 4096; we pick (q1, q2) = (12289, 65537)
for N = 2048, and (q1, q2) = (25601, 65537) for N = 4096. The Fermat prime
q2 = 65537 allows particularly fast NTT computation using the FNT, while the
other prime is chosen to be the smallest admissible prime for which a 128th
(resp. 256th) primitive root of unity exists.
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Table 1. Parameters

Cortex-M3

bits (N) chunking (�) poly length (n) NTT modulus q = q1 · q2
2048 11 bits 384 128 = 27 12289 · 65537
4096 11 bits 768 256 = 28 25601 · 65537

Cortex-M55

bits (N) chunking (�) poly length (n) NTT modulus q = q1 · q2
2048 22 bits 192 64 · 3 = 26 · 3 114 826 273 · 128 919 937
4096 22 bits 384 128 · 3 = 27 · 3 114 826 273 · 128 919 937

On the Cortex-M55, we use chunks of 	 = 22 bits, so
⌈

N
�

⌉
= 94 for N = 2048

and
⌈

N
�

⌉
= 187 for N = 4096, but again pick slightly larger n = 192 > 2

⌈
N
�

⌉

for N = 2048 and n = 384 > 2
⌈

N
�

⌉
for N = 4096 since those are NTT-

friendly dimensions. For q = q1q2, we pick 114 826 273 · 128 919 937 for both
N = 2048 and N = 4096. Those choices are motivated as follows: First, we have
q ≈ 253.7 > 251.58 ≈ 384

2 · 244. In fact, since we even have q > 4 · ( 3842 · 244),
we can recover the coefficients in the sum of two polynomial products as the
signed canonical representatives of their image in Zq. The former allows saving
one CRT during the Montgomery multiplication, while the latter means that we
don’t need a signed-to-unsigned conversion after the signed CRT. Second, q1, q2
are carefully chosen so that (q2 mod q1)−1 in Zq2 is amenable to refined Barrett
multiplication—in fact, since (q2 mod q1)−1 = 774, this is what we observed
in Example 1. Thirdly, both q1 − 1 and q2 − 1 are multiples of 96 and thus
support incomplete dimension-96 NTTs. Finally, q1, q2 < 227 are small enough
that during the dimension-96 NTTs, no explicit modular reduction is necessary.

3.3 Chunking and Dechunking

We need to convert between multi-precision integers and polynomials, which we
refer to as “chunking” chk() and “dechunking” dechk(). chk() takes an N -bit
multi-precision integer and splits it into n chunks of 	 bits each, viewed as the
coefficients of a polynomial. In other words, we lift along Z[X] → Z,X �→ 2�.
dechk() converts a polynomial to a multi-precision integer by evaluating the
polynomial at X = 2�. As the coefficients of polynomials may grow beyond 2�

during computation, this requires carrying through the entire polynomial and
packing into a multi-precision integer.

3.4 Modular Exponentiation and Table Lookup

For the private-key operations, we use square-and-multiply with Algorithms 1
and 2 to implement constant-time exponentiation with a fixed window size of
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w bits. This requires constant-time table lookups, and choosing the optimal w
depends on the relative costs of a modular multiplication compared to such
lookups: The cost of a lookup scales linearly in the table size 2w, whereas the
number of required multiplications only scales proportionally to 1/w. We have
determined that w = 6 is the fastest choice for both Cortex-M3 and Cortex-
M55 and both 2048 and 4096 bits. We note that memory consumption will be
an increasing concern as w grows, since the lookup table contains 2w entries—
exponentially large in w. In turn, reducing w will incur only a mild performance
penalty while allowing for a significant reduction in the table size.

It may seem at first that storing the table entries in NTT domain should be
preferable. However, the much larger size of elements in NTT domain results in
drastically slower table lookups, which in our implementation clearly outweighs
the cost of transforming to NTT domain on the fly after each load. Thus, our
implementation stores the table entries as integer values.

For the public-key operation, we use a straightforward square-and-multiply
for the fixed public exponent 216+1 which is overwhelmingly common in practice.

3.5 Implementation Details for Cortex-M3

Our Cortex-M3 NTT implementation relies on a code generator written in
Python, featuring a bounds checker which determines when it should insert
reductions, and which aborts if it cannot guarantee the correctness of the com-
putation. The result is a set of fully unrolled assembly implementations of NTT,
inverse NTT, base multiplication and squaring, for configurable moduli.

The code generator uses the same high-level structure for FNTs and “generic”
NTTs, the main difference being in the reductions. The generator also recog-
nizes multiplications by power-of-two constants and converts them to shifts when
appropriate; this is one of the main optimizations employed by FNTs.

Number-Theoretic Transforms. We use incomplete NTTs of lengths 384 = 27 · 3
and 768 = 28 · 3. Both NTTs are implemented for the prime moduli q1 = 12289
(q1 = 25601) and q2 = 65537, which by CRT correspond to a single NTT of the
same length modulo q1 · q2. We use CT butterflies for the forward NTT and GS
butterflies for the inverse. Layers are merged as appropriate2 to eliminate unnec-
essary store-load pairs. The base multiplication is a straightforward polynomial
multiplication in a ring of the form Zq[X]/(X3−ζ). The CRT computation after
the inverse NTTs is applied to each coefficient separately and follows Eq. 1.

“General” Number-Theoretic Transform. For most moduli including q1 = 12289
and q1 = 25601, we use a combination of (signed) Montgomery multiplication
(Appendix A, Algorithm 4) and (signed) Barrett reductions (Appendix A, Algo-
rithm 3). The Barrett reduction comes in two variants, the difference consisting

2 The layers are merged as 4 + 3 resp. 4 + 2 + 2 in the forward NTTs, exploiting that
the upper half of the input coefficients are zero, and 3 + 2 + 2 resp. 3 + 3 + 2 in the
inverse NTTs. Register pressure prohibits more aggressive merging.
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in the optional addition of R/2 before the right shift. Skipping the addition is
faster, but results in worse reduction quality.

Fermat Number Transform. For the Fermat prime q2 = 216 + 1 = 65537, we use
variants of the “FNT reduction” shown in Appendix A, Algorithm 5. Depending
on the desired reduction quality, the algorithm is either applied (1) as written,
or (2) with its input offset by 215 and the output correspondingly offset by −215,
or (3) followed by a conditional subtraction of 216 + 1 if the output is > 215.
Method (2) produces a representative in {−216 +1, 216 − 1}, while the output of
method (3) is a canonical symmetric representative, i.e., lies in {−215, ..., 215}.
Methods (2) and (3) are equally fast if the constant 215 can be kept in a low
register throughout. If register pressure renders this undesirable, method (2) pro-
vides a convenient “intermediate” solution between the very fast FNT reduction
and the canonical symmetric reduction.

Constant-Time Lookup. We use predicated moves to extract the desired table
entry in a “striding” fashion: For each slice of four 32-bit words, the respec-
tive part of each table entry is loaded and conditionally moved into a set of
target registers using a itttt eq; moveq; moveq; moveq; moveq instruction
sequence. The target registers are stored after processing all entries. Compared
to the alternative of traversing the table entry by entry, this finalizes each output
word immediately, and no partial outputs have to be stored and reloaded.

3.6 Implementation Details for Cortex-M55

Pipeline Efficiency. As explained in [Bec+22b], Cortex-M55 is a dual-beat imple-
mentation of MVE; that is, most MVE instructions execute over two cycles. To
still achieve a Instructions per Cycle (IPC) rate of more than 0.5 without costly
dual-issuing logic, Cortex-M55 supports instruction overlapping for neighboring
vector instructions, provided they use different execution resources. The balance
and ordering of instructions is therefore crucial for performance. We find that all
our core subroutines have a good balance between load/store, addition and mul-
tiplication instructions and can be carefully arranged to maximize instruction
overlapping, achieving an IPC > 0.9. Table 5 provides details.

Number-Theoretic Transform. We implement incomplete NTTs of degree 96 =
3 · 32 and 192 = 3 · 64 via Good’s trick, using CT butterflies and Barrett multi-
plication throughout. Algorithm 6 is a translation of Barrett multiplication into
MVE. No explicit modular reductions are necessary during NTT or NTT−1, as we
confirm using a script tracking the bounds of modular representative throughout
the NTT, applying Fact 1 repeatedly.

Base Multiplication. The incomplete NTTs leave us with base multiplications in
rings of the form Zq[X]/(X4 − ζ) with a < 32-bit prime q, which we implement
essentially using the method of [Bec+22b]: A polynomial a = a0+a1X +a2X

2+
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a3X
3 is first expanded into a sequence ã = (a0, . . . , a3, ζa0, . . . , ζa3), and 64-

bit representatives of the coefficients of a · b are computed as dot products of
(b3, b2, b1, b0) with length-4 subsequences of ã, using vmalaldav. Here, we instead
compute ã = 1

n (a0, . . . , a3, ζa0, . . . , ζa3), where n is the incomplete NTT degree,
taking care of the scaling by 1

n as part of the base multiplication.

CRT. We vectorize the divided-difference interpolation (1), producing chunked
outputs. We allow non-reduced inputs and compute canonical reductions u′

0 of
u0 and of (u1−u′

0)m1 as part of the CRT rather than at the end of NTT−1. For the
computation of (u1−u′

0)m1, we use refined Barrett multiplication, leveraging our
choice of primes. The long multiplication ((u1 − u′

0)m1 mod ±q1) q0 is computed
via vmul[h], aligned to the 2�-boundary via (a, b) �→ (a mod 2�, b·232−�+

⌊
a/2�

⌋
)

(note |bi| < 2
52.7�−32 = 221, so |210bi| < 231), and the low part added to u′
0.

This results in a non-canonical chunked presentation of the CRT interpolation
with 32-bit values, which are finally reduced to < 2� + 232−� = 222 + 210 via
ai �→ (ai mod 2�) +

⌊
ai−1/2�

⌋
. We found that the slight non-canonicity of the

coefficients does not impact functional correctness, while enabling vectorization
of the above routine—a perfect reduction, in turn, is inherently sequential.

Constant Time Lookup. In contrast to Cortex-M3 we do not use predicated move
operations: A block of loads followed by a block of predicated moves allows for
only very little instruction overlapping. Instead, we use load-multiply-accumulate
sequences with secret constant 0/1 for the conditional moves, achieving very good
instruction overlapping. Overall, we obtain a constant-time lookup of 5184 cycles
for a table of 8192-bytes—26% over the theoretical minimum of 8192/2 cycles
necessary to load each table entry once with a 64-bit data path. See Sect. C.

As our data resides in uncached Data-TCM, it is tempting to consider a plain
load for a constant time lookup. We strongly advise against this: While access to
D-TCM is typically single-cycle, it’s not in general: On Cortex-M55 a D-TCM
load with secret address could happen concurrently with a DMA transfer and
trigger a memory bank conflict depending on the addresses being loaded. While
this particularly issue could be circumvented in our present context, it might be
problematic on future microarchitectures, and it appears prudent to simply stick
to the principle that memory access patterns should not rely on secret data.

4 Results

4.1 Benchmark Environment

Cortex-M3. We use the STM32 Nucleo-F207ZG with the STM32F207ZG
Cortex-M3 core with 128 kB RAM and 1 MB flash.We clock the Cortex-M3
at 30 MHz (rather than the maximum frequency of 120 MHz) to void having
any flash wait states when fetching code or constants from flash. We place the
stack in SRAM1 (112 kB) only since it results in slightly better performance.
We use libopencm33 and some hardware abstraction code is taken from pqm34.
3 https://github.com/libopencm3/libopencm3.
4 https://github.com/mupq/pqm3.

https://github.com/libopencm3/libopencm3
https://github.com/mupq/pqm3
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Table 2. Performance of our NTTs and FNTs in cycles

Cortex-M3

(N, n) q NTT NTTheavy basemul basesqr basemullight NTT−1

(2048, 384)
12289 12 409 14 692 7 053 6 101 5 949 15 130

65537 7 635 9 631 7 181 6 488 5 563 11 090

(4096, 768)
25601 31 491 35 805 13 808 11 386 11 729 36 227

65537 19 892 23 697 14 062 12 160 10 957 25 015

Cortex-M55

(N, n) q NTT NTTheavy basemul basesqr basemullight NTT−1

(2048, 192)
114 826 273

814 1 441 1 500 – 880 900
128 919 937

(4096, 384)
114 826 273

2 027 3 230 2 894 – 1 696 2 195
128 919 937

We use the SysTick counter for benchmarking. We use arm-none-eabi-gcc ver-
sion 11.2.0 with -O3.

Cortex-M55. We make use of the Arm MPS3 FPGA prototyping board with an
FPGA model of the Cortex-M55r1 (AN552). Both the prototyping board and
the FPGA model are publicly available5. Qemu supports a previous revision of
the image (AN547) and can be used for running our code as well. However, for
meaningful benchmarks, the FPGA board is required. We make use of the tightly
coupled memory for code (ITCM) and data (DTCM). The core is clocked at the
default frequency of 32 MHz. We use the PMU cycle counter for benchmarking.
We use arm-none-eabi-gcc version 11.2.0 with -O3.

4.2 NTT and FNT Performance

Table 2 contains the cycle counts for our core transformations. For the Cortex-
M3, we implement four different transforms using specialized code for each com-
bination of size and modulus. This allows us to minimize the number of explicit
modular reductions taking into account the size of the modulus and its twiddles,
and also to have a much faster FNT (modulo 65537) than the NTTs modulo
12289 and 25601. For the Cortex-M55 and a given size, the same code is used
for both moduli with different precomputed constants; since no explicit modu-
lar reductions are required, we do not see prime-specific optimization potential.
Base squaring and multiplication are the same, as we do not see optimization
potential for squaring.
5 https://developer.arm.com/tools-and-software/development-boards/fpga-prototypi

ng-boards/download-fpga-images.

https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images
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Table 3. Performance of modular multiplication, squaring, exponentiation in
cycles. expmodpublic is a modular exponentiation with the exponent 65537.
expmodprivate is a modular exponentiation with a private n-bit exponent.

Cortex-M3

n mulmod sqrmod expmodpublic expmodprivate

This work

2048

220 047 196 830 4 227 473 494 923 435

This work (FIOS) 234 041 – 4 912 705 543 648 872

BearSSL [Bear] 283 038 – 18 350 210 718 347 177

This work

4096

510 708 454 128 9 752 690 2 250 748 647

This work (FIOS) 926 523 – 19 458 326 4 228 661 467

BearSSL [Bear] 1 102 151 – 70 443 207 5 505 856 187

Cortex-M55

n mulmod sqrmod expmodpublic expmodprivate

This work

2048

21 330 19 701 389 482 50 085 366

This work (FIOS) 20 260 – 426 707 50 683 718

MbedTLS [Mbed] 41 443 – 884 416 108 441 240

BearSSL [Bear] 83 517 – 5 400 650 217 123 645

This work

4096

47 660 43 620 861 450 218 110 707

This work (FIOS) 73 316 – 1 540 685 358 080 308

MbedTLS [Mbed] 152 371 – 3 223 797 755 391 521

BearSSL [Bear] 328 801 – 21 254 533 1 6468̇34 048

4.3 Modular Arithmetic: Multiplication, Squaring, Exponentiation

Table 3 presents timings for our modular arithmetic routines.
For Cortex-M3, we compare with BearSSL [Bear] (v0.6, i15 implementation)

which to our knowledge is the only library claiming to be constant-time on the
Cortex-M3. We also consider a handwritten FIOS implementation (Sect. 2.4).

On Cortex-M55, we compare to BearSSL v0.6 (i31 implementation), to
Mbed TLS [Mbed] v3.1.0, and to our own handwritten FIOS implementation.
The BearSSL implementation compiles down to umlal, while the Mbed TLS
implementation uses CIOS (Sect. 2.4) with umaal-based inline assembly.

We find that our implementations outperform Mbed TLS and BearSSL sig-
nificantly for both 2048-bit and 4096-bit parameters. Moreover, for Cortex-M3,
our NTT-based implementation is also slightly faster than the handwritten FIOS
implementation for 2048-bit, and considerably faster for 4096-bit.

Somewhat surprisingly, the umaal-based handwritten FIOS is much faster than
the umaal-based CIOS in Mbed TLS, and on par with our NTT-based implementa-
tion for 2048-bit. For 4096-bit, however, the NTT-based implementation prevails.
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The optimization potential between umaal-based FIOS and CIOS lies within mem-
ory accesses: Mbed TLS’ CIOS assembly does not leverage the 64-bit data path of
Cortex-M55, and merging of loops in FIOS also saves accesses. We reported this
optimization potential to the Mbed TLS team.6

Figure 1 shows the distribution of cycles spent in one modular multiplication.

36%

36%

18%

7%
3%

Cortex-M3, 2048 bits

40%

36%

15%

6%
3%

NTT
INTT
base
CRT
other

Cortex-M3, 4096 bits

36%

25%

24%
14%

1%

Cortex-M55, 2048 bits

39%

27%

21%

12%

1%

Cortex-M55, 4096 bits

Fig. 1. Clock cycles spent on the subroutines of a single modular multiplication.

A Reduction Algorithms for Cortex-M3 and Cortex-M55

Algorithm 3: (log2 R)-bit Barrett
reduction on Cortex-M3.
Input: a = a
Output: a = a mod± q

1: mul t, a, �R/q�
2: (optional) add t, t, #(R/2)
3: asr t, t, #log2 R

4: mls a, t, q, a

Algorithm 4: 16-bit Montgomery
multiplication on Cortex-M3.
Input: (a, b) = (a, b216 mod± q)
Output: a = ab mod± q

1: mul a, a, b

2: mul t, a, −q−1 mod± 216

3: sxth t, t

4: mla a, t, q, a

5: asr a, a, #16

6 See https://github.com/ARMmbed/mbedtls/issues/5666
and https://github.com/ARMmbed/mbedtls/issues/5360.

https://github.com/ARMmbed/mbedtls/issues/5666
https://github.com/ARMmbed/mbedtls/issues/5360


20 H. Becker et al.

Algorithm 5: FNT reduction on
Cortex-M3.
Input: a = a
Output: a = a mod± 65537 ∈
[−32767, 98303]

1: ubfx t, a, #0, #16

2: sub a, t, a, asr#16

Algorithm 6: Barrett multiplication
on Cortex-M55.

Input: (a, b, b’) =

(
a, b,

�b232/q�2
2

)

Output: a = ab mod± q

1: vmul.s32 l, a, b

2: vqrdmulh.s32 h, a, b’

3: vmla.s32 l, h, q

B On Precomputing the Montgomery Constant

Montgomery multiplication (see Sect. 2.4) requires the precomputation of
q−1 mod R. When implementing RSA via “large” Montgomery multiplication,
rather than a FIOS approach, this means that we need to precompute n−1 mod R
for encryption and p−1 mod R and q−1 mod R for decryption. For decryption this
can be computed as a part of key generation and stored as a part of the secret
key. For encryption, however, it needs to be computed online.

Modular inversion x−1 mod 2r can be performed using “Hensel lifting”: If
xy − 1 = 2ka, so that y is an inverse to x modulo 2k, then y′ = 2y −x2y satisfies
xy′ − 1 = −(xy − 1)2 = 22ka2, and hence y′ is an inverse of x modulo 22k.
This yields x−1 mod 2k after O(log k) iterations. One may observe that this is
the sequence of approximate solutions to xy = 1 for x via the Newton–Raphson
method in the 2-adic integers.

We prototyped Hensel-lifting to assess its relative cost compared to the mod-
ular exponentiation; we did not seek a fully optimized version. On the Cortex-M3
we implement both a variable-time variants using umlal for encryption and a
constant-time variant using mla for key generation. For the Cortex-M55, we
achieve the best performance using umaal. We list the performance in Table 4.
We see that already a basic implementation has only a small performance over-
head compared to an exponentiation (e.g., < 5% for RSA-4096).

Table 4. Performance of Hensel lifting; numbers for RSA-4096 in bold.

k Cortex-M3 Cortex-M55

mla (constant-time) umlal (variable-time) umaal (constant-time)

2112 85 337 45 326 12 430

4224 313 695 163 107 38 575
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C Table Lookup

Algorithm 7:
Conditional move on Cortex-M3
1: ldr.w a, [tbl, #4]

2: ldr.w b, [tbl, #8]

3: ldr.w c, [tbl, #12]

4: ldr.w d, [tbl], #16

5: cmp.n idx, #dst

6: itttt.n EQ

7: moveq.w a, A

8: moveq.w b, B

9: moveq.w c, C

10: moveq.w d, D

Algorithm 8:
Overlapping-friendly conditional
accumulation on Cortex-M55
1: cmp idx, #dst

2: cset mask, EQ // idx == dst

3: vldrw.u32 t, [tbl], #16

4: vmla.s32 A, t, mask

5: vldrw.u32 t, [tbl], #16

6: vmla.s32 B, t, mask

7: vldrw.u32 t, [tbl], #16

8: vmla.s32 C, t, mask

9: vldrw.u32 t, [tbl], #16

10: vmla.s32 D, t, mask

D Pipeline Efficiency of Cortex-M55 Implementation

Table 5 shows Performance Monitoring Unit (PMU) statistics for the
subroutines of our Cortex-M55 modular exponentiation (N = 4096).
We use ARM PMU CYCCNT, ARM PMU INST RETIRED, ARM PMU MVE INST RETIRED,
and ARM PMU MVE STALL for counting cycles, retired instructions, retired
MVE instructions, and MVE instructions causing a stall, respectively.
We derive the rate of Instructions per Cycle (IPC), as well as
ARM PMU MVE INST RETIRED/ARM PMU MVE STALL as a measure of the MVE over-
lapping efficiency. Despite most MVE instructions running for 2 cycles, instruc-
tion overlapping allows achieving an IPC > 0.9.

Table 5. Performance Monitoring Unit statistics for Cortex-M55 implementa-
tion.

Primitive Cycles Instructions
Instructions

per Cycle (IPC)

MVE

instructions

MVE

stalls

MVE

efficiency

NTT 2 027 1 936 0.95 1 876 27 98.6%

NTTheavy 3 231 3 017 0.93 2 742 130 96.0%

NTT−1 2 195 2 128 0.96 2 072 9 99.6%

basemul 2 894 2 737 0.94 2 500 109 95.6%

basemullight 1 695 1 659 0.97 1 634 6 99.6%

CRT 4287 4 216 0.98 3 563 13 99.6%

Table lookup 5 184 4 816 0.92 4 132 12 99.7%
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E High-level Multiplication Structure

See Fig. 2.

Fig. 2. High-level structure of our integer multiplication algorithm. Finely dot-
ted arrows denote a conceptual reinterpretation with no change in representation.
Dashed arrows denote a canonical choice of lift, e.g., a representative of minimal
degree for polynomials or a smallest non-negative representative for integers.
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Abstract. We define two metrics on vector spaces over a finite field
using the linear complexity of finite sequences. We then develop coding
theory notions for these metrics and study their properties. We give a
Singleton-like bound as well as constructions of subspaces achieving this
bound. We also provide an asymptotic Gilbert-Varshamov-like bound
for random subspaces. We show how to reduce the problem of finding
codewords with given Hamming weight into a problem of finding a vector
of a given linear complexity. This implies that our new metric can be
used for cryptography in a similar way to what is currently done in the
code-based setting.

Keywords: Linear code · Linear complexity · Periodic linear
complexity · Gilbert-Varshamov · Signature scheme

1 Introduction

Code-based Cryptography was informally born in 1978, when Robert J. McEliece
proposed a new cryptosystem based on the hardness of decoding linear codes
(binary Goppa codes) in the Hamming metric [20]. The advantage of this app-
roach is that cryptosystems of this kind are considered safe against adversaries
with access to quantum computers. More precisely, there is no known quantum
algorithm that can decode a random linear code in polynomial time. After 40
years of cryptanalysis, the cryptosystem is still considered to be secure, as a gen-
eral framework. However, the protocol requires the use of relatively large public
keys, which may be undesirable in certain applications.

To address the key size issue, it was initially suggested to use different families
of linear codes, as well as “structured” linear codes (e.g. [10,19,24]). After several
years and various unsuccessful attempts, the field has stabilized, and one can say
that code-based encryption/key-establishment protocols are going to be crystal-
lized (also thanks to NIST’s Standardization effort [23]) into one of two main
categories: the original McEliece framework (with only minor improvements that
do not affect security, e.g. [22]) or protocols based on structured parity-check
codes such as QC-MDPC [21]. The former, although with its well-known limita-
tions, provides a safe choice relying on 40 years of security history [1]. The latter,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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instead, represents the opposite trend, namely a choice aimed at a performance
advantage, which however fails to fully explore some security aspects [3].

The situation is different for code-based signature schemes, for which a satis-
factory solution has yet to be found; it is worth noting that the few code-based
signature schemes submitted to NIST’s process were all either broken, or with-
drawn. This has prompted a large body of work in recent years, trying to circum-
vent the traditional issues by either relying on a different coding problem [7,11]
or leveraging innovative frameworks [14–16] in the Hamming metric. As we will
show, the notion of weight for vectors is closely related to the notion of linear
complexity for sequences. This motivates us to study the linear complexity of
sequences as a new metric for coding theory, with an eye towards cryptographic
applications.

1.1 Overview

Let Fq be the finite field of size q. We recall some notions from coding theory in
the Hamming metric. Let x = (x1, · · · , xn) ∈ F

n
q . The Hamming weight wH(x)

of x is the number of non-zero entries of x. If x and y are two elements of Fn
q ,

we define the Hamming distance between x and y as dH(x,y) = wH(x − y). A
linear code C of length n over Fq is a subspace of Fn

q paired with the distance
dH . The minimum distance of a linear code C is the smallest value of dH(x,y)
for any two distinct codewords x,y ∈ C.

The most important parameters for a linear code C are the size q of the base
field, the length n, the dimension k and minimum distance d of the code. We
denote such code by [n, k, d] and the field is assumed to be understood. One
has to optimize the choice of these parameters for applications. For example,
one typically wants to construct codes that have simultaneously large dimension
and large minimum distance, while the base field should preferably be as small
as possible (binary field for example). A trade-off between the minimum distance
and the dimension should be considered, as captured by the Singleton bound.

Theorem 1 (Singleton bound). Let C be an [n, k, d] linear code over Fq.
Suppose that d is the minimum distance of C. Then,

d ≤ n − k + 1.

Due to this, we want to have codes which maximize both the dimension and
the minimum distance of the codes. Thus we want to have codes for which the
inequality in the above definition is an equality. Such codes are defined as follows.

Definition 1. An [n, k, d] linear code C which attains the Singleton bound i.e.
d = n − k + 1, is called a Maximum Distance Separable (MDS) code.

There exist explicit instances of maximum distance separable codes. One easy
construction is given by the following. Let n = q − 1 and let α = (α1, · · · , αn)
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be a vector having as entries all the distinct non-zero elements of Fq. We define
the evaluation map as

evα : Fq[x] → F
n
q

f(x) �→ (f(α1), · · · , f(αn))

Let Fq[x]<k be the vector space of all polynomials of degree at most k − 1.
Then the image C = evα (Fq[x]<k) is an MDS code. This comes from the fact
that a polynomial of degree at most k − 1 can have at most k − 1 roots. The
code we just described is called Reed-Solomon code.

It is this relation between the property of the roots of polynomials and the
weights of vectors which is interesting for us. The following theorem is a conse-
quence of the König-Rados Theorem [18, Chap. 6].

Theorem 2. Let F∗
q = {α1, . . . , αq−1} and let f(x) = a0 + a1x+ · · ·+ aq−2x

q−2

be a polynomial over Fq. If f(x) has q − 1 − r roots, then (f(α1), · · · , f(αq−1))
has (Hamming) weight r and the periodic sequence (a0, · · · , aq−2) has linear
complexity r i.e. there exist c0, . . . , cr−1 ∈ Fq such that

ai+r mod(q−1) =
r−1∑

j=0

cjai+j mod(q−1), ∀i ∈ N

and r is the smallest for such integer.

Through Theorem 2, we can relate the linear complexity of a periodic
sequence with the Hamming weight of a vector. However, we have only periodic
sequences with period q − 1. This raises the following question: what happens if
we consider sequences (a0, . . . , an) of any length not necessarily equal to q − 1?
Even more generally, what is the situation with any type of sequences which
are not necessarily assumed to be periodic? We will answer these questions in
the next sections. Our goal is to provide a theory of the linear complexity of
subspaces of sequences. Such a theory can in fact be used as a basis to consider
new code-based cryptosystems based on the linear complexity of sequences.

1.2 Our Contribution

Using rank metric in lieu of the Hamming metric is a popular trend in code-
based cryptography, occasionally leading to interesting results [2,4]. While this
approach is not always completely satisfactory and its security is still not fully
explored [5,6,25], it does hint at the possibility of using other metrics for building
protocols, which provides additional motivation for our work. In this paper,
we strive to show that the metric connected to the linear complexity of finite
sequences is viable to build cryptographic schemes. To do that, we first carefully
develop the necessary coding theory notions, beginning in Sect. 2 by describing
linear-feedback shift registers and some of their properties. We then present the
definition of linear complexity for both arbitrary finite sequences and sequences
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with a fixed period. Accordingly, in Sect. 3, we define two new metrics on F
n
q by

considering the linear complexity of finite sequences and periodic sequences with
a fixed period. We give a Singleton-like bound with respect to the new metrics
and we construct optimal subspaces i.e. subspaces that achieve the bound. In
the interest of space, these subspaces and their applications are described in
Appendix B. We then move on to studying hard problems in this metric, which
is a fundamental step to apply the metric to cryptography. Thus, in Sect. 4, we
show that, given a subspace of F

n
q , the problem of finding codewords with a

given linear complexity is NP-complete. We do this for both finite and periodic
sequences. The result is achieved by reducing the problem of finding a codeword
with given Hamming weight to a problem of finding vectors with given linear
complexity. In Sect. 5, we describe further properties of the linear complexity of
sequences. We give an asymptotic Gilbert-Varshamov-like bound, which shows
that most subspaces have large minimum distance with respect to the linear
complexity. Furthermore, we describe techniques for solving the hard problems
introduced earlier, which effectively constitute attack techniques for the schemes,
and analyze their complexity. Finally, in Sect. 6 we describe a sample application
to the cryptographic setting, by adapting a construction of Feneuil et al. [15]
and explaining why its formulation in terms of linear complexity provides a
computational advantage.

2 Linear-Feedback Shift Registers

We fix a finite field Fq where q is a power of a prime.

Definition 2. A Linear-Feedback Shift Register (LFSR) of order l over Fq is
an infinite sequence (ai) over Fq such that there are fixed cj ∈ Fq, j = 0, . . . , l−1
with,

ai+l =
l−1∑

j=0

cjai+j , ∀i ∈ N.

The feedback polynomial associated to (ai) is f(z) = zl − ∑l−1
j=0 cjz

j .

Definition 3. Let (ai) be an LFSR over Fq. The generating function A(z) asso-
ciated to (ai) is the formal power series

A(z) =
∞∑

i=0

aiz
i.

Given an LFSR over Fq with feedback polynomial f(z) and generating func-
tion A(z), one can show [18, Chap. 8] that for some polynomial g(z) of degree
l − 1 at most, we have

A(z) =
g(z)
f∗(z)

,

where f∗ is the reciprocal polynomial given by f∗(z) = zlf
(
1
z

)
.
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Definition 4 (Linear Complexity). Given a non-zero finite sequence (ai) =
(a0, · · · , an−1) ∈ F

n
q , the linear complexity L(ai) of the sequence is the smallest

l such that

ai+l =
l−1∑

j=0

cjai+j , ∀i, 0 ≤ i ≤ n − l − 1,

for some fixed cj ∈ Fq. We set L(0) = 0, where 0 = (0, . . . , 0).

Another family of sequences are periodic sequences.

Definition 5 (n-periodic Linear Complexity). Let n be a positive integer.
An infinite sequence (ai) is called n-periodic if for all i ≥ 0, ai+n = ai. Such
sequences are written as (a0, . . . , an−1). The linear complexity of the sequence is
defined as

Lp(a0, . . . , an−1) = L(a0, . . . , an−1, a0, . . . , an−1).

Remark 1. It is possible that an n-periodic sequence is l-periodic for some l < n.
The context tells us what period we consider for our sequences.

Given a finite sequence, it is possible to compute the shortest LFSR that
produces it. This can be done using the Berlekamp-Massey algorithm in O(n2)
field operations in Fq [18, Chap. 8]. Furthermore, if the linear complexity of the
sequence is n/2, then n successive terms of the sequence are enough to uniquely
find the shortest shift register.
We have the following property for the linear complexity of finite sequences.

Proposition 1. Let (ai) = (a0, · · · , an−1) be a finite sequence over Fq. Then
L(ai) ≤ n. Furthermore the only sequences attaining the bound n are of the form
(0, · · · , 0, a), with a ∈ F

∗
q .

Proof. We can just use an LFSR with (ai) as initial state so that the maximum
linear complexity is at most n. It is obvious that (0, · · · , 0, a) has linear com-
plexity n. Finally, if (ai) = (a0, · · · , an−1) is such that aj �= 0 for some j with
0 ≤ j ≤ n− 2, then by taking ci = 0 except when i = j, where cj = an−1/aj , we
prove that an−1 =

∑n−2
j=0 cjaj so that the linear complexity is at most n − 1. 	


The corresponding property for periodic sequences is given in the following
proposition.

Proposition 2. Let (ai) := (a0, · · · , an−1) be an n-periodic sequence over Fq.
Then Lp(ai) ≤ n.

Proof. It is enough to show that the LFSR defined by the coefficients in Fq,
(c0, . . . , cn−1) = (1, 0, . . . , 0) generates the periodic sequence with initial input
(a0, . . . , an−1). Thus the linear complexity is smaller or equal to n. 	

Remark 2. Unlike the case of finite sequences, there can be periodic sequences
other than (0, · · · , 0, a), with a ∈ F

∗
q that attain the bound in the proposition.
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As an example, we can use Theorem 2. Start with a codeword in F
n
q with Ham-

ming weight n = q −1: then, the corresponding polynomial will have coefficients
which form an n-periodic sequence of linear complexity n.

The key property of the linear complexity of sequences which will be used
later is the following.

Theorem 3. Let (ai) and (bi) be two finite sequences of the same length. If
(ci) = (ai) + (bi), then

L(ci) ≤ L(ai) + L(bi).

Proof. With a slight abuse of notation, we denote by (ai) (resp. (bi)) the LFSR
generating the finite sequence (ai) (resp. (bi)). Suppose that these LFSR have
generating functions

ga(z)
f∗

a (z)
and

gb(z)
f∗

b (z)
,

respectively. Then the generating function of the LFSR generating (ci) is

ga(z)f∗
b (z) + gb(z)f∗

a (z)
f∗

a (z)f∗
b (z)

.

Thus, (ci) can be generated by an LFSR with the feedback polynomial
fa(z)fb(z). It follows that the linear complexity of the sequence is at most
L(ai) + L(bi). 	

Corollary 1. Let (ai) and (bi) be two finite periodic sequences of the same
period. If (ci) = (ai) + (bi), then

Lp(ci) ≤ Lp(ai) + Lp(bi).

3 Coding Theory Using Linear Complexity

Let Fq be a finite field and let n be a positive integer. We will consider vectors
in F

n
q and embed them with two different metrics using the linear complexity of

finite (resp. periodic) sequences.

Definition 6. Let a = (a0, · · · , an−1) ∈ F
n
q and b = (b0, · · · , bn−1) ∈ F

n
q be two

finite sequences of n elements of Fq each. Then we define two distances on F
n
q as

d1(a,b) = L((ai) − (bi)) and d2(a,b) = Lp((ai) − (bi)).

It is easy to see that both maps define a distance. We only show it for d1,
but the proof for d2 is similar.

(i) By definition d1(a,b) = 0 ⇔ a = b.
(ii) By definition of L, L(ai) ≥ 0.
(iii) The symmetry is obvious, i.e. d1(a,b) = d1(b,a).
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(iv) For the triangular inequality,

d1(a,b) = L((ai) − (bi))
= L((ai) − (ci) + (ci) − (bi))
≤ L((ai) − (ci)) + L((ci) − (bi)), by Theorem 3
= d1(a, c) + d1(c,b).

Thus, d1 indeed defines a distance of Fn
q . In a similar fashion, d2 also defines a

distance.
As in traditional coding theory, we can define a subset of Fn

q and fix a metric
dj , j = 1, 2 on this set. We will derive basic coding results for this context.

Definition 7. Let S be a subset of Fn
q together with a distance d ∈ {d1, d2}. The

minimum distance d of S is the minimum of d(a,b) for distinct a,b ∈ S. We
describe the parameters of S as [n, |S|, d]. In case S is a k-dimensional subspace
of Fn

q , then d is the minimum linear complexity of the non-zero sequences in S
and we say S is an [n, k, d] code with this metric.

Next, we inspect the bounds on a [n, |S|, d]-subset of Fn
q .

Theorem 4 (Singleton Bound). Let Fq be a finite field of size q. Let S ⊂ F
n
q

be a set of elements of Fn
q together with a distance d ∈ {d1, d2}, with minimum

distance d with respect to the metric. Then |S| ≤ qn−d+1.

Proof. It is clear that for any finite sequence (ai), L(ai) ≤ Lp(ai) and therefore,
for any a and b in F

n
q , d1(a,b) ≤ d2(a,b). Thus it is enough to show the thesis

for the distance d2. We define the linear map φ as

φ : Fn
q → F

n−d+1
q

(a0, · · · , an−1) → (
1 . . . 1

)
⎛

⎜⎝
a0 . . . an−d an−d+1 . . . an−1

...
. . .

...
...

. . .
...

ad−1 . . . an−1 a0 . . . ad−2

⎞

⎟⎠

This map is constrained to be injective on S, otherwise (if two sequences a and
b were mapped to the same image) then a−b would be mapped to zero. In this
case, if we write a − b = (c0, . . . , cn−1), then

(
1 · · · 1

)
⎛

⎜⎝
c0 . . . cn−d cn−d+1 . . . cn−1

...
. . .

...
...

. . .
...

cd−1 . . . cn−1 c0 . . . cd−2

⎞

⎟⎠ =
(
0 · · · 0

)
.

Thus the last row is a linear combination of the previous rows. But this would
imply that Lp

(
(ai) − (bi)

)
≤ d − 1 i.e. d2(a,b) ≤ d − 1. This contradicts the

minimum distance of S. By injectivity, we must have that |S| ≤ |(Fn−d+1
q )|. 	
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Note that in this proof, instead of using
(
1 · · · 1

)
, we can use any vector with 1

as last entry. These operations are equivalent to the puncturing operation on codes.
Namely, using

(
0 · · · 0 1

)
is analogue to puncturing at the first d − 1 positions.

Remark 3. In case S is linear of dimension k over Fq, then the Singleton bound
is k ≤ n − d + 1.

To conclude this section, we mention the existence of structures that achieve
the Singleton bound. We call these Optimal Sets of Sequences, and describe them
briefly in Appendix B.

4 Linear Complexity Coset Weight Problems

Given that our initial motivation was the possibility of an application to cryp-
tography, in this section we show that the problem of decoding random linear
codes with respect to the linear complexity metrics d1 and d2 is a difficult prob-
lem. Namely, we show that some problems related to the linear complexity are
NP-complete. Recall that a decisional problem P is said to be in NP if, for any
instance of P with a positive answer, there is an algorithm which can verify
the solution in polynomial time. A problem P is called NP-hard if any problem
in NP can be reduced to P in polynomial time. If a problem is both NP and
NP-hard, then it is called NP-complete. NP-complete problems are considered
to be intractable. One example of an NP-complete problem, which is relevant
for us, is the following (where we indicate (I) for Input and (Q) for Question).

Coset Weight Problem (CWP):

(I) A matrix H ∈ F
r×n
q , a vector b ∈ F

r
q and a non negative integer ω.

(Q) Is there a vector a ∈ F
n
q such that wH(a) ≤ ω and aH� = b?

CWP was proven to be NP-complete in [13]. However, the statement in [13]
is proved only for the binary field. A more general statement with arbitrary field
size is proved in [8]. For our theory, we want to show that the following problems
related to the linear complexity are NP-complete.

Linear Complexity Coset Weight Problem (LCCWP):

(I) A matrix H ∈ F
r×n
q , a vector b ∈ F

r
q and a non-negative integer ω.

(Q) Is there a vector a ∈ F
n
q such that L(a) ≤ ω and aH� = b?

Periodic Linear Complexity Coset Weight Problem (PLCCWP):

(I) A matrix H ∈ F
r×n
q , a vector b ∈ F

r
q and a non-negative integer ω.

(Q) Is there a vector a ∈ F
n
q such that Lp(a) ≤ ω and aH� = b?

To show that these decision problems are NP-complete, we first show that
CWP can be reduced to PLCCWP. Then we show that PLCCWP can be reduced
to LCCWP. To begin, we show a reduction from CWP to a more specialized
problem, which we state below. Its difference with CWP is that the size of the
field Fq is not arbitrary but it is fixed to be q = n + 1.
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Fixed-Field Coset Weight Problem (FFCWP):

(I) A matrix H ∈ F
r×(q−1)
q , a vector b ∈ F

r
q and a non negative integer ω.

(Q) Is there a vector a ∈ F
q−1
q such that wH(a) ≤ ω and aH� = b?

The result is proven in the following theorem.

Theorem 5. FFCWP is NP-complete.

Proof. The fact that FFCWP is NP is easy to see. Next, we transform an instance
of CWP to an instance of FFCWP. Let H ∈ F

r×n
q , b ∈ F

r
q and ω a non-negative

integer from an instance of CWP. Let Q = q
logq(n+1)�. It is clear that Q ≥ n+1.
If Q > n + 1, then construct the matrix H1 ∈ F

r×(Q−1)
Q by appending columns

of zeros to the matrix H. Finding a ∈ F
n
q such that wH(a) ≤ ω and aH� = b is

reduced to finding (a|0) ∈ F
Q−1
q such that wH(a) ≤ ω and (a|0)H�

1 = b. Now,
if there was a polynomial-time algorithm which solves FFCWP, we could use
it to find a1 such that a1H�

1 = b. Note that a1 can still be a vector over FQ.
However, we show that we can use this to get a solution over Fq. Due to the form
of H1, we may assume that a1 = (a1, . . . , an, 0, . . . , 0). Now, let TrQ/q be the
trace function corresponding to the finite extension FQ/Fq. We also denote by
TrQ/q(x), for any vector x over FQ, where the trace map is applied individually
on the entries of x. Then, since the matrix H1 and the vector b have entries in
Fq, we have that

(TrQ/q(a1), . . . , T rQ/q(an), 0, . . . , 0)H�
1 = TrQ/q

(
(a|0)H�

1

)
= TrQ/q(b) = b.

This gives us (TrQ/q(a1), . . . , T rQ/q(an))H� = b where the vector given by
(TrQ/q(a1), . . . , T rQ/q(an)) has entries over Fq. Notice that the trace over Fq/Fq

can be computed in polynomial time. Therefore a polynomial-time algorithm
solving FFCWP also solves CWP in polynomial time. Since CWP is NP-
complete, it is NP-hard, from which it follows that FFCWP must also be NP-
hard, and hence NP-complete. 	

Remark 4. Switching from the field Fq of size q to the field FQ with Q = q�logq(n)�

does not increase the difficulty of the problem exponentially. Indeed, instead of
working over the field Fq, we just work on a field of size Q ∼ n.

We now use the result in Theorem 5 to show that PLCCWP is also NP-
complete. First of all, note that it is easy to see that PLCCWP is in NP. Next,
we will need to translate the notion of Hamming distance into the notion of
linear complexity. For that we recall the results from Sect. 1.

Let q be a power of a prime. Theorem 2 says that if f(x) = f0 + f1x + · · · +
fq−2x

q−2 is a polynomial over a finite field Fq of size q, then the number of roots
of f(x) in F

∗
q is given by q − 1 − ω, where Lp(f0, f1, . . . , fq−2) = ω ≤ q − 1.

Another tool that we need is how to convert a vector into a polynomial.
That is done via the interpolation using a Vandermonde matrix. Suppose that
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we have a finite field with q elements Fq = {0, b1, . . . , bq−1}. Then the following
Vandermonde matrix is invertible.

V =

⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1
b1 b2 . . . bq−1

b21 b22 . . . b2q−1
...

...
. . .

...

bq−2
1 bq−2

2 . . . bq−2
q−1

⎞

⎟⎟⎟⎟⎟⎠
. (1)

Thus for any (c1, . . . , cq−1) ∈ F
q−1
q , there is a unique polynomial f0 + f1x +

· · · + fq−2x
q−2 such that f(bi) = ci. This can be computed via (f0, . . . , fq−2) =

(c1, . . . , qq−1)V −1. We denote the map by

φ : F
q−1
q → F

q−1
q (2)

(c1, . . . , cq−1) �→ (f0, . . . , fq−2)

Now, let us see how we can convert a linear code into a subspace of periodic
sequences. Suppose that we have a finite field Fq with q elements. Assume that
C ⊂ F

q−1
q . Let c = (c1, · · · , cq−1) ∈ F

q−1
q . If we assume that {a1, · · · , aq−1} = F

∗
q ,

then, via the map in Eq. (2), any c can be written as

c = (f(a1), · · · , f(aq−1)),

for some polynomial f(x) of degree q−2 over Fq. Using Theorem 2 and the above
discussion, we see that the Hamming weight of c is the same as the periodic
linear complexity Lp(f0, f1, . . . , fq−2). Therefore, we have the following corre-
spondence.

{
Codewords c in F

q−1
q

using the Hamming weight

}
⇔

{
Finite sequences cV −1 in F

q−1
q

using the linear complexity

}
(3)

Now, with FFCWP, we have a parity-check matrix H ∈ F
r×(q−1)
q and a

vector b ∈ F
r
q. We want to find c ∈ F

q−1
q such that cH� = b and wH(c) ≤ ω.

Using the Vandermonde matrix in Eq. (1) and the correspondence (3), we can
write c = aV . Thus aV H� = b. So if we set H1 = V H�, then the problem
is equivalent to finding a ∈ F

q−1
q such that aH�

1 = b and Lp(c) ≤ ω. In other
words, solving FFCWP over Fq−1

q , can be reduced to solving PLCCWP over Fq.

Theorem 6. Solving PLCCWP is at least as hard as solving FFCWP.

Since by Theorem 5, solving a general instance of FFCWP is NP-complete,
we can also conclude that solving PLCCWP is NP-hard. Thus, we have the
following theorem.

Theorem 7. PLCCWP is NP-complete.
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Now, because we know that Lp(a1, . . . , an) = L(a1, . . . , an, a1, . . . , an), we
can reduce an instance of PLCCWP to an instance of LCCWP in the following
manner. Suppose we are looking for a such that Lp(a) = ω ≤ n and aH� = b.
This can be interpreted as looking for (a|a) such that L(a|a) = ω ≤ n and
(a|a)H�

1 = (b|0), where

H1 =
[
H 0
In −In

]

If there were an algorithm solving LCCWP, then we could use it with the
parity-check matrix H1 and syndrome (b|0) to find a solution (a1|a2). The
identity matrix In in H1 ensures that a1 = a2, so we find a solution of the form
(a|a) and therefore we get a solution to PLCCWP. Thus, we have the following
theorem.

Theorem 8. LCCWP is NP-complete.

From Theorem 2, we have seen that there is a correspondence between linear
complexity and Hamming weight. As we have seen in this section, the problem
of decoding in the Hamming metric can be translated into a problem of decoding
with linear complexity, where the period of the sequences is fixed. It is therefore
natural to ask if we can do the converse. It is not straightforward to use the
previous results. Namely, when we start with a finite field Fq with the Hamming
metric, we end up with the field FQ with the linear complexity, for Q = ql,
and the period of the finite sequence is fixed to be n = Ql − 1. Thus, for the
converse, if we start with periodic sequences with period n such that n+1 is not
a power of a prime, we cannot use the above correspondence. However, we are
going to show that, with a more general version of Theorem 2, we are still able
to switch from periodic linear complexity to Hamming metric. We begin with
the following.

Proposition 3 ([12]). Let Fq be a finite field and let w be a primitive n-th root
of unity lying in Fqm for some m. The linear complexity of Lp(a0, . . . , an−1)
with ai ∈ Fq is equal to the Hamming weight of (c0, . . . , cn−1), where ci =∑n−1

j=0 w−ijaj.

By the previous proposition, if one starts with a subspace of Fn
q embedded

with the n-periodic linear complexity, then one can transform the problem to
a Hamming-metric version over the field Fqm in a straightforward way. In this
case, the problem can be easily translated to a problem with Hamming metric,
the theoretic results from Hamming metric can be translated into results in
the periodic linear complexity metric. Hence, from here on, we focus on finite
sequences that are not restricted to a fixed period and are measured with the
distance d1.

5 Properties of Linear Complexity

As we have seen, one can compute the linear complexity of a sequence using the
Berlekamp-Massey algorithm. Thus, if a sequence has small linear complexity,
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one can easily find an LFSR generating this sequence. Due to this fact, we usually
want to have sequences with large linear complexity. Therefore, one important
question is to know how many finite sequences have large linear complexity.
Another motivation for this section is that knowing the number of sequences
with a given linear complexity is important for the security aspect of a code-
based cryptosystem using linear complexity as metric. In the vast majority of the
traditional code-based cryptosystems, in fact, one has to randomly generate error
vectors with a fixed Hamming weight. We may think of the same by replacing
the Hamming weight by linear complexity. In order to parametrize the security
of such scheme, one again needs to know the number of sequences with a given
linear complexity. When we consider finite sequences, there is already an answer
to this question [17]. As mentioned in the last paragraph of the previous section,
we are only interested in finite sequences without fixed periods. Thus, we will
only use the linear complexity L and the distance d = d1.

Theorem 9 ([17]). Let ω ≤ n be positive integers. Then, the number of
sequences (ai) = (a1, . . . , an) having length n and linear complexity L(ai) = ω
over a finite field Fq of size q is given by

⎧
⎪⎨

⎪⎩

1 if ω = 0,

q2ω−1(q − 1) if ω ≤ �n
2 �,

q2(n−ω)(q − 1) if ω > �n
2 �.

Theorem 10. Given two integers ω ≤ n, the number b(n, ω) of finite sequences
(ai) = (a1, . . . , an) having length n and linear complexity L(ai) at most ω over
a finite field Fq of size q is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ω = 0,
q2ω+1 + 1

q + 1
if ω + 1 ≤ n − ω,

1 − q2(n−ω)

1 + q
+ qn if n − ω ≤ ω.

Proof. Direct computation from Theorem 9. 	

Since we also know the size of balls with respect to the linear complexity

from Theorem 10, we can give a formula for the sphere packing bound.

Theorem 11 (Sphere Packing Bound). Let S be a set of sequences of length
n and with minimum distance d. Then

|S| ≤

⎧
⎪⎪⎨

⎪⎪⎩

qn(q + 1)

q2� d−1
2 	 + 1

if 2�d−1
2 � ≤ n − 1,

qn(q + 1)

1 − q2(n−� d−1
2 	) + (1 + q)qn

if 2�d−1
2 � > n − 1.

Proof. This is a direct consequence of Theorem 10 and uses the fact that the
union of the spheres of radius �d−1

2 � centered at the sequences in S is a disjoint
union. 	
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Our next theorem is the analogue to the Gilbert-Varshamov bound.

Theorem 12 (Gilbert-Varshamov Bound for Linear Complexity). Let
d ≤ n be positive integers. Let Aq(n, d) be the size of the largest possible subset
S of Fn

q with minimum distance d with respect to the metric d1. Then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aq(n, d) = qn if d = 1,

Aq(n, d) ≥ qn(q + 1)
q2d−1 + 1

if d ≤ n − d + 1,

Aq(n, d) ≥ qn(q + 1)
1 + qn(q + 1) − q2(n−d−1)

if d ≥ n − d + 2.

Proof. We follow the proof in the classical Hamming metric. When d = 1, the
result is trivial. Suppose that |C| = Aq(n, d). Because of the maximality of S,
any elements of F

n
q should be contained in a ball B(x, d − 1), with center x

and radius d − 1, for some x ∈ S. Thus F
n
q = ∪x∈SB(x, d − 1). Thus, we have

|Fn
q | ≤ |S|b(n, d − 1). The results follow from Theorem 10. 	

The following is a version of the Gilbert-Varshamov bound for linear spaces

of sequences.

Theorem 13 (Gilbert-Varshamov Bound for Linear Spaces). Let d ≤ n
be positive integers. Let Dq(n, d) be the dimension of the largest possible subspace
S of Fn

q with minimum distance d with respect to the metric d1. Then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dq(n, d) = n if d = 1,

Dq(n, d) ≥ logq

(
qn(q + 1)
q2d−1 + 1

)
if d ≤ n − d + 1,

Dq(n, d) ≥ logq

(
qn(q + 1)

1 + qn(q + 1) − q2(n−d−1)

)
if d ≥ n − d + 2.

Proof. Again, the case d = 1 is trivial. For a non-zero vector x ∈ F
n
q , we denote

by 〈x〉, the one-dimensional Fq-space generated by x. Now, if S has maximal
dimension, say k, then for any element x ∈ F

n
q \S, the space S +Fq

〈x〉 should
contain an elements of linear complexity smaller than d. Thus, there is a ∈ S and
b ∈ F

∗
q such that a+bx has linear complexity at most d−1. Thus x ∈ B(a, d−1).

On the other hand, if x ∈ S then x ∈ B(x, d−1). Thus we get to the same proof
of the previous theorem: Fn

q = ∪x∈SB(x, d − 1). The results follow. 	

The bounds in Theorems 11, 12 and 13 were given for the reader to compare

to the case of linear codes equipped with the Hamming metric. However, we
have already seen a bound on the maximum size of set of sequences with a
given minimum distance (see Theorem 4) and we have shown that the bound
is attained for any parameters and without restriction on the base field. Now,
we want to give a criteria for the optimal subspaces of sequences. To do this,
for any integer t < n and a vector b = (b1, . . . , bt), we define the matrix Mb ∈
F

n×(n−t)
q by
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Mb =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 . . . 0
... b1 . . . 0

bt

...
. . .

...

−1 bt
. . . b1

0 −1
. . .

...
...

. . .
. . . bt

0 . . . 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem 14. Let S be an [n, k] subspace of sequences over Fq and let k ≤
n − d + 1. Let G be a generator matrix of S. Then the following statements are
equivalent:

(i) The minimum distance of S is d.
(ii) There exists a vector c = (c1, . . . , cd) ∈ F

d
q such that GMc has rank strictly

smaller than k. Furthermore, GMb has full rank k for any vector b =
(b1, . . . , bd−1) ∈ F

d
q .

Proof. Suppose that the minimum distance is d. Because no element of S has
linear complexity smaller than d, then if a = (a1, . . . , an) ∈ S no coefficients
b = (b1, . . . , bd−1) can generate a with initial state a1, . . . , ad−1. Thus we have
that (m1, . . . ,mk)GMb �= 0 for any (m1, . . . ,mk) ∈ F

k
q . Therefore GMb ∈

F
k×(n−d)
q has no left kernel i.e. it has full rank k. In a similar fashion, if there is

a codeword of linear complexity d, then we can find c = (c1, . . . , cd) such that
GMc ∈ F

k×(n−d)
q has non-empty left kernel and thus its rank is smaller than k.

The converse can be proved using the same idea in reverse fashion. 	

Corollary 2. Let S be an [n, k, d] subspace of sequences over Fq. Then S is
optimal, i.e. d = n − k + 1, if and only if GMb ∈ F

k×k
q is invertible for any

b = (b1, . . . , bn−k) ∈ F
n−k
q . In particular S has a generator matrix of the form

G = [X|Ik].

Proof. A direct consequence of Theorem 14. 	

The previous corollary gives a characterization of optimal subspaces of

sequences. Our next step is to give a bound on the minimum distance of ran-
dom subspaces. This follows a method analogous to the asymptotic Gilbert-
Varshamov bound in the Hamming metric case (See [9] for example).

Fix a positive integer 1 ≤ d ≤ n. Let G be a matrix in F
k×n
q chosen uniformly

at random. Suppose that SG is the row space of G. Let P be the probability
that the minimum distance d(SG) of SG is strictly smaller than d i.e.

P = Prob (d(SG) < d) = Prob
(∃x ∈ F

k
q\{0} : L(xG) < d

)
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It is clear that
P ≤

∑

x∈Fk
q \{0}

Prob (L(xG) < d) .

Now, because G is a uniformly random variable, so is xG. Thus

Prob (L(xG) < d) =
b(n, d − 1)

qn
.

Thus

P ≤ (qk − 1)
b(n, d − 1)

qn
.

Thus we have the following theorem.

Theorem 15. Let G be a random (k ×n) matrix over Fq and let SG be the row
space of G over Fq. Let d < n/2 be the minimum distance of S and let ε > 0,
where k = n − 2d − ε. Then Prob (d(SG) < d) ≤ 2

q2qεn .

Proof. Let P = Prob (d(SG) < d). From the previous paragraph, we have

P ≤ (qk − 1)
b(n, d − 1)

qn
.

Because d/n < 1/2, then by Theorem 10,

P ≤ (qk − 1)
q2d−1 + 1
(q + 1)qn

≤ 2qkq2d−1

qn+1

Thus
P ≤ 2

q2qn−k−2d
,

and the result follows. 	

Now, in Theorem 15, q−εn decreases exponentially with respect to n. Thus, we
can conclude the following.

Corollary 3. With high probability, a random k × n matrix over F
n
q generates

a space of sequences with minimum distance at least n−k
2 .

6 Cryptographic Applications

In this section, we illustrate one possible application of our theory to cryptography.
Namely, we show how a recent signature scheme by Feneuil et al. [15], which uses
the popular “MPC-in-the-head” paradigm, can be formulated in terms of linear
complexity, and how this leads to an improvement. Due to space constraints, we
are not able to describe the signature scheme in full; instead, we summarize the
relevant part of the scheme, and present our proposed modification.
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Let H be a parity-check matrix of a random [n, k] code and let y ∈ F
n−k
q . For

the purpose of verification, a prover wants to prove that he knows x ∈ F
n
q such

that xHT = y and wH(x) ≤ w. The prover does not want to reveal information
about x. Note that, by taking H = [H′|In−k], we can write (xA|xB)HT = y for
x = (xA|xB). In this case, xA uniquely determines x from y and H.

Following the notation of [15], let Fpoly be a finite extension of Fq such
that n ≤ |Fpoly| and let {γ1, . . . , γn} be distinct elements of Fpoly. Let S(X) ∈
Fpoly[X] be the polynomial interpolation of the points (γi, xi). It is easily seen
that the condition wH(x) ≤ r is equivalent to S(x) having at least n − w roots
in {γ1, · · · , γn}. In [15], it is shown that this is equivalent to the existence of two
polynomials P,Q ∈ Fpoly[X] such that Q · S − P · F = 0, where deg P ≤ w − 1,
deg Q = w and F =

∏n
i=1(X − γi). In order to prove his knowledge, the prover

does the following.

(1) Write xA =
∑N

j=1 x
(j)
A . These define x =

∑N
j=1 x

(j) and ensures that the
syndrome relation xHT = y is satisfied. The elements of these sums are
what we call the shares in the MPC protocol.

(2) Find the interpolation polynomial S(j)(X) using the points (γi, x
(j)
i ), where

i = 1, . . . , n and x(j) = (x(j)
1 , . . . , x

(j)
n ). By the linearity of the Lagrange

interpolation, S(X) =
∑N

j=1 S(j)(X).
(3) Write Q(X) =

∑N
j=1 Q(j)(X).

(4) Write (P · F )(X) =
∑N

j=1(P · F )(j)(X).
(5) To verify that Q(X)S(X) = (P · F )(X). One can verify that Q(rl)S(rl) =

(P · F )(rl) for 1 ≤ l ≤ r and rj elements of an extension Fpoints of Fpoly.
(6) To make this verification without revealing Q(rl) and S(rl), one needs to

use the decompositions Q(rl) =
∑N

j=1 Q(j)(rl), S(rl) =
∑N

j=1 S(j)(rl) and
(P · F )(rl) =

∑N
j=1(P · F )(j)(rl) in an MPC protocol.

For full details about the usage of these steps in a zero-knowledge protocol
for syndrome decoding, we refer the reader to [15].

In Step (2), the prover is required to make several of interpolations to find the
polynomials S(j)(X). These computations negatively affect the performance of
the scheme. In the following, we explain how to use a system with periodic linear
complexity as metric, and completely avoid the interpolation steps, thereby con-
siderably speeding up the scheme of [15]. In the remaining part of this section,
we set n = q − 1 and therefore we can also choose Fpoly = Fq.

Let H be a parity check matrix of a random [n, k] code and let y ∈ F
n−k
q .

Now, a prover wants to show that he knows a ∈ F
n
q such that aHT = y and

Lp(a) ≤ w, without revealing information about a. Again, we take H = [H′|In−k]
and we can write (aA|aB)HT = y for a = (aA|aB).
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By Theorem 2 and Eq. (3), if a = (a0, . . . , an−1) and S(X) =
∑q−2

i=0 aiX
i,

then wH(S(γ0), . . . , S(γq−2)) = Lp(a), where F
∗
q = {γ0, . . . , γn−1}. Using the

same method as before, showing that Lp(a) ≤ w is therefore the same as showing
the existence of two polynomials P,Q ∈ Fpoly[X] such that Q · S − P · F = 0,
where deg P ≤ w−1, deg Q = w and F =

∏n
i=1(X −γi). The difference with the

scheme in the Hamming metric is that the polynomial S(X) is already defined
by a. Thus, no interpolation is needed, as claimed. In general, these are the steps
the prover needs to follow.

(1’) Write aA =
∑N

j=1 a
(j)
A . This defines a =

∑N
j=1 a

(j) and ensures that the
syndrome relation aHT = y is satisfied. The elements of these sums are the
shares in the MPC protocol.

(2’) The coefficients of a(j) define a polynomial S(j)(X). By linearity, we have
S(X) =

∑N
j=1 S(j)(X).

(3’) Write Q(X) =
∑N

j=1 Q(j)(X).
(4’) Write (P · F )(X) =

∑N
j=1(P · F )(j)(X).

(5’) To verify that Q(X)S(X) = (P · F )(X), one can verify that Q(rl)S(rl) =
(P · F )(rl) for 1 ≤ l ≤ r and rj elements of an extension Fpoints of Fpoly.

(6’) To perform this verification without revealing Q(rl) and S(rl), one needs to
use the decompositions Q(rl) =

∑N
j=1 Q(j)(rl), S(rl) =

∑N
j=1 S(j)(rl) and

(P · F )(rl) =
∑N

j=1(P · F )(j)(rl) in an MPC protocol.

As mentioned above, since in this setting we have n = q − 1 and Fpoly = Fq,
Eq. (3) shows that syndrome decoding of the form xHT = y and wH(x) ≤ w
is equivalent to syndrome decoding of the form aHT

1 = y. In this regard, the
parameter sets for the Hamming metric are exactly the same parameter sets
for the periodic linear complexity metric. In order to find the best parameters
for a security of the scheme with the linear complexity, we can therefore use
parameters from the Hamming metric. We can for example use a similar set of
parameters as in the Variant 3 described in [15], working on a field Fq = Fpoly =
F256, and using a code of length n = q − 1 = 255 and dimension k = 128.
The weight of the secret key a in this case is w = 80. An implementation of
the scheme of [15] in this new metric is planned as future work, as well as a
translation to the (non-periodic) linear complexity setting.
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A The Berlekamp-Massey Algorithm

Algorithm 1. Berlekamp-Massey
1: procedure BM(s0, · · · , sn−1)
2: f(z) ← 1, A(z) ← 1,
3: L ← 0, m = −1, e ← 1
4: for i from 0 to n − 1 do
5: d ← si +

∑L
j=1 fjsi−j

6: if d �= 0 then
7: B(z) ← f(z)
8: f(z) ← f(z) − (d/e)A(z)zi−m

9: if 2L ≤ i then
10: L ← i + 1 − L
11: m ← i
12: A(z) ← B(z)
13: e ← d
14: end if
15: end if
16: end for
17: return L and f(z)
18: end procedure

B Optimal Sets of Sequences

Definition 8 (Optimal Sets of Sequences). We call a set S ⊂ F
n
q an Opti-

mal Set of Sequences (OSS) (resp. Optimal Set of Periodic Sequences (OSPS))
if the minimum distance with respect to the metric d1 (resp. d2) of S reaches the
bound of the previous theorem i.e. if S has elements of length n and minimum
distance d and �S = qn−d+1.

Example 1. Let S be the set of sequences of length n over a finite field Fq

defined by
S = {(0, · · · , 0, a1, · · · , ak) : ai ∈ Fq}.

Then, S is both an OSS an OSPS of dimension k. That is because the sequences
cannot be generated by an LFSR of length smaller than n − k + 1 except when
it is the zero sequence.

The nice property of using the set of sequences with the linear complexity
as a metric is that, in opposite to maximum distance separable codes in the
Hamming metric, we can have an optimal set of sequences for any parameters.
The construction works even for the binary field. Furthermore, the decoding of
OSS given in Examples 1 is straightforward. They are similar and we will only
describe it for the OSS in Example 1. First let us look at the unique decoding
property.
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Proposition 4. Suppose that S is an [n,M, d] set of sequences. Suppose that
y ∈ Fq is equal to x + e, where x ∈ S and L(e) < d

2 . Then, the decomposition
x + e is unique.

Proof. If y = x1 + e1 = y2 + e2, then x1 − x2 = e2 − e1. Therefore d(x1, x2) =
L(e2−e1). By Theorem 3, d(x1, x2) ≤ L(e2)+L(e1) < d. This is in contradiction
with the minimum distance of S.

Let S, of dimension k, be the OSS in Example 1. Suppose that we know
y = x + e with x ∈ S and L(e) < n−k+1

2 . By Proposition 4, we know that e is
unique. Since the n − k first entries of x are equal to zero. Then we know the
first n − k entries of e. Now, since L(e) < n−k+1

2 , we can uniquely recover the
LFSR generating e by using Berlekamp-Massey. on the first n − k entries of e.
We are therefore able to produce the whole e and then we compute x = y − e.
By Proposition 4, the resulting x is the only correct original codeword.

C Application for Decoding Reed-Solomon Codes

We can use linear complexity to get a decoding algorithm for Reed-Solomon
coded (see Sect. 1). Let F

∗
q = {α1, . . . , αn}, where n = q − 1. The Reed Solomon

code C is defined as

C = {(f(α1), . . . , f(αn)) : f(x) ∈ Fq[x], deg f(x) ≤ k − 1}.

Assume that the received codeword is c+e and wH(e) ≤ n−k+1
2 . By Theorem 2,

c corresponds to a polynomial fc of degree at most k − 1, and e corresponds
to a polynomial fe of degree at most q − 2. The first step of decoding is to
interpolate c+ e to get fc + fe. Now, since fc has degree at most k − 1, the last
n−k+1 coefficients of fe are the same as the last n−k+1 coefficients of fc+fe.
Since e has Hamming weight smaller or equal to n−k+1

2 , the coefficients of fe
has linear complexity t ≤ n−k+1

2 . In particular the last n − k + 1 coefficients of
fe is generated by an LFSR of length t at most. Now, given that t ≤ n−k+1

2 and
since we know n − k + 1 coefficients, the Berlekamp-Massey algorithm gives the
shortest LFSR generating these coefficients. The same LFSR also generates the
whole array of coefficients of fe periodically, and so we can recover the whole of
fe using simple linear algebra. Finally, evaluating fe at (α1, . . . , αn) gives us e.
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Abstract. As attack scenarios and targets are constantly expanding,
cache side-channel attacks have gradually penetrated into various daily
applications and brought great security risks. The success of a cache
side-channel attack relies heavily on the pre-knowledge of some impor-
tant parameters of the target cache system. Existing methods for reading
cache parameters have their limits. In this paper, a series of tests are pro-
posed to extract cache parameters at runtime, which provides a method
for launching existing cache side-channel attacks in some restricted cases
and reduces the cost of attacks. They have been used to extract cache
parameters on four processors using three different architectures, as well
as in a restricted virtual machine environment. The extracted parameters
match with the publicly available information, including some parame-
ters unavailable from the CPUID instruction.

Keywords: hardware security · cache side-channel · micro-architecture

1 Introduction

Cache side-channel attacks have become an important way of leaking critical
information in modern computer systems, especially after their employment in
the Meltdown [1] and Spectre attacks [2]. The attack scenario has been broadened
from a single core to multicore processors, virtual machines (VMs) [3] and trusted
execution domains [4–6]. The targets of attacks also grow from just the secrets
of crypto-algorithms to users’ private data [7,8], the mapping of virtual and
physical address spaces [9] and manipulating data bits in memory [10].

The success of a cache side-channel attack relies heavily on the pre-knowledge
of some important parameters of the target cache system. The access latency of
the target cache is used as the time reference for inferring cache states [11]. The
size of a cache and the number of cache sets affect the probability in finding
an address conflicting with the target address [12]. Attacking using the minimal
eviction set is crucial for a clean and stealth attack [13], while the size of this
eviction set is decided by the number of ways in each cache set in set-associative
caches [12,13]. The replacement policy asserts significant impact on the way of
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using eviction sets. For permutation-based policies [14], such as the widely used
pseudo LRU (Least Recently Used) [15], sequentially accessing an eviction set
is sufficient to dislodge the target. However, repeated and complicated accessing
methods are required when scan-resistant policies, such as RRIP (Re-Reference
Interval Prediction) [16], are adopted by modern processors [17]. In addition, it is
found that the replacement policy also decides the optimal method for searching
eviction sets [18].

Before launching the actual attack, attackers need to collect the aforemen-
tioned parameters with some investigation. Some parameters, such as the size of
cache, might be publicly available if the processor information can be precisely
identified through the CPUID instruction of x86-64 or the lscpu command on
Linux. Other parameters, usually the access latency of individual cache levels,
could be calculated by running tests on the target system [11,13,19]. However,
the existing methods have some limitations. Not all architectures provide the
CPUID instruction. Even when it is available to user land, it might be virtualized
to mask the cache related information or even provide wrong information [20].
System commands, such as lscpu, might not be available as attackers have no
method to open a shell. Testing the access latency at runtime might be prob-
lematic if all high-resolution timers, like the RDTSC of x86-64, are disabled [21].
Finally, attacks might be launched in a restricted environment [7] where attack-
ers have almost no direct access to machine level instructions or resources.

To address these issues, this paper proposes a series of tests to extract the
required cache parameters at runtime. These tests do not rely on accessing any
of the files, commands and instructions leaking the cache information or the
processor model. Instead of utilizing existing timing sources on the target system,
a high-resolution timer is created and utilized to measure the access latency of
all cache levels. Consequently, these tests have the potential to be ported across
different computer architectures and running in restricted environments, which
provides a method for launching existing cache side-channel attacks in some
restricted cases and reduces the cost of attacks. In fact, we have already run the
same tests on four processors over three different instruction sets (ISAs) including
x86-64, AArch64 and RISC-V, as well as in a virtual machine environment. The
tests have successfully extracted almost all the aforementioned cache parameters,
including some parameters unavailable from the CPUID instruction.

2 Background

2.1 Cache Architecture

In modern processors, caches adopt a multi-level hierarchical structure. Taking
the recent Intel processors as an example, level-one (L1) and level-two (L2)
caches are privates caches accessible only by the local core, while level-three cache
(L3 $), acting as the LLC (last-level cache), is shared by all cores. Normally,
caches located near the processor core pipeline (inner caches), such as L1 $,
operate at a higher speed and smaller size than those far away from the core
(outer caches), such as the LLC. A memory access always starts from the inner
caches and inquires the outer caches only when data misses in the inner ones.
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Fig. 1. A virtually indexed and physically tagged cache

Fig. 2. Process of Prime+Probe attack

Almost all caches use a set-associative internal structure. The cache space
is divided into cache sets and each set contains multiple ways of fixed sized
cache blocks. Figure 1 depicts a virtually indexed and physically tagged cache
normally used as the L1 $. The 2s cache sets are indexed by a segment of the
virtual address (VA[b+s-1:b]) while the lower b bits (VA[b-1:0]) are used as the
cache block offset and the higher bits (VA[63:12] assuming the 4KB page size)
are used by the translate lookaside buffer (TLB) for generating the physical page
number also used as the tag for the cache way matching. Each cache set contains
w cache blocks, i.e., w ways. When accessing a data, a cache set is selected by
the VA and all cache blocks inside this set are simultaneously checked with the
tag provided by the TLB. If the data is cached, one of the cache blocks would
match with the tag; otherwise, the data is uncached (a miss) and will be fetched
from the outer cache. Consequently, this missing block is stored in the cache set
at either an unoccupied way or a cache block, chosen by a replacement policy,
is evicted to the outer cache to make a room.

2.2 Cache Side-Channel Attacks

Cache side-channel attacks are based on the difference in time, where the latency
is small when an attacker accesses a cached address but large when this address is
evicted from the cache [22,23]. Attackers can obtain a lot of sensitive information
from this time difference, which leads to information leakage.
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Commonly used cache side-channel attacks are mostly divided into two
categories: flush-based attacks and conflict-based attacks. The flush-based
attacks [24–26] require explicit cache control instructions to invalidate the target
cache block, such as the clflush [24] on x86, in addition to requiring the target
cache block must be shared between the attacker and the victim. This type of
attack is simple and accurate but it relies too much on memory sharing and
cache control instructions, making this attack unsuccessful in many restricted
situations. If either of the above conditions is not satisfied, the attacker could
launch conflict-based attacks to achieve similar effect [12]. This type of attack
exploits the fact that each cache set holds only a fixed number of cache blocks,
and blocks mapped to the same set conflict with each other [27–30]. The attacker
can thus control the state of a cache set by occupying it completely. After the
victim program is executed, victim information can be inferred by rechecking
whether the cache set is still fully occupied.

Prime+Probe [31] is the most classic conflict-based cache side-channel attack.
The attack process can be roughly divided into three stages, as shown in Fig. 2:
(1) Prime: The attacker accesses a pre-prepared eviction set to occupy the
target cache set to evict all victim data. (2) Wait: The attacker waits for a
period of time, during which the victim executes the program and reoccupies
the cache. (3) Probe: The attacker accesses the eviction set again and records
the access latency. If the victim accesses the target cache set while waiting, some
of the attacker’s cache blocks are evicted from the target cache set. They must
be reloaded from memory during probe resulting prolonged access latency.

In a conflict-based cache side-channel attack, an important step is to con-
struct the eviction set, which consists of a collection of (virtual) addresses that
are all congruent to each other with the target address [12,13], i.e., all mapping
to the same cache set.

Definition 1. If and only if two virtual addresses x and y map to the same cache
set, Set(x) = Set(y) [13], but are not on the same cache block, Cb(x) �= Cb(y),
then the addresses x and y are said to congruent to each other:

Congruent(x, y) ⇐⇒ Set(x) = Set(y) ∧ Cb(x) �= Cb(y) (1)

Definition 2. [x] denotes the collection of all congruent addresses with address
x. Suppose the number of ways for the cache set is w. For a target address x, a
collection of virtual addresses S is an eviction set for x if x /∈ S, and at least w
addresses in S are congruent with x [13]:

x /∈ S ∧ |[x] ∩ S| ≥ w (2)

3 Threat Model

We assume unprivileged attackers with the ability to launch a multi-thread
program on the target system and allocate consecutive memory in the virtual
memory space. All files, commands and instructions that might leak the cache
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Fig. 3. Construct the randomized sequence of addresses

Algorithm 1: Latency measurement
1 function latency(Sr)
2 start = timer()
3 foreach p in Sr do p = ∗p
4 return (timer() − start)/len(Sr)

5 end

information or the processor model has been disabled on the target system,
attackers cannot get these information directly by reading files or executing
commands such as lscpu. Attackers cannot directly launch a flush-based attack.
The parameters of the target platform are not known to attackers in advance
and need to be obtained through actual measurements. Attackers may be in a
virtual environment. Meanwhile, sources of high-resolution timers, such as the
RDTSC of x86-64, might be removed or made unusable.

4 Measuring Cache Access Latency

The access latency of a cache is the foremost crucial parameter required for time
side-channels while also the easiest one to obtain. It is therefore chosen as the
first cache parameter to be extracted.

4.1 Random Cache Scan

The main idea of estimating the access latency of a cache is by measuring the
overall latency of accessing a pre-constructed sequence of addresses. In order to
accurately measure the access latency while effectively circumventing the various
optimization implemented in modern processors, the access latency is averaged
from the overall time of traversing a long and randomized sequence of addresses
Sr constructed according to Fig. 3 [17]. A consecutive memory space So is initially
allocated from the virtual address space. According to a predefined stride, a
consecutive address sequence Ss is constructed from So and then randomized
to form the final Sr. A final step is to link Sr into a linked-list by storing the
next address in the memory pointed by the current address, which is the key in
disabling instruction level parallelism as described by Algorithm 1.

Before actually extracting the cache access latency using Algorithm 1, Sr

is accessed for multiple times to ensure the maximum number of addresses of
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Sr have already been cached. The final round of traverse is a timed run. Inside
the traverse, the next address is decided by reading the content of the current
address (line 3); therefore, the processor pipeline cannot accurately predict the
next address and the overall traverse time is an accumulation of individual mem-
ory accesses. Naturally, the averaged cache access latency is averaged from the
overall time. Conceptually, this latency can be considered as the optimal cache
performance for a certain size of data (So) after the cache system is properly
warmed. The detailed method to extract the cache access latency of individual
cache levels will be revealed in Sect. 5.

4.2 A Portable Timer

The latency of cache accesses ranges from a couple to several hundreds of
nanoseconds [11]. To accurately measure this latency, especially for the L1
caches, we need high-resolution timers. On x86-64 processors, such a timer can
be conveniently built from the RDTSC instruction. Other processor architectures
are nevertheless lack of such high-resolution source of time in user land. We
summarize the applicable architectures of commonly used timer resources and
their approximate accuracy in Table 2 in Sect. 6.

In order to achieve the portability across architectures, we choose to construct
a virtual time stamp (VTS) as firstly introduced in [32] for all processors. The
detailed method is illustrated in Algorithm 2. Assuming the processor under test
is a multicore processor, a separated child timer thread is attached to a unique
core, which does nothing else but constantly increases a global counter cnt. In the
main thread, the latency measurement process then utilizes cnt as a wall clock
for timing. Since self-increasing is usually faster than memory accesses, this wall
clock should be quick enough as long as it is not disturbed by context switching.1
Additionally, each time the global variable cnt is incremented, it requires access-
ing memory twice. Actually, it is possible to reduce the number of memory
accesses by executing the self-increment operation directly through assembly
instructions [28]. This means that the global variable cnt can be incremented
faster in the same time, thus improving the resolution. The actual resolution of
this virtual time stamp is evaluated in Sect. 6.

Furthermore, we did not attach threads to a certain core (without using CPU
affinity) in the actual experiments. According to our observations, the probability
of threads being migrated to other cores is very low and is a small probability
event. If the counting thread has core migration, we believe that there will be an
impact on the clock accuracy within a short period of time when the migration
occurs, but these effects will be averaged over multiple samples in the experiment
and have little effect on the final result. Of course, using CPU affinity to attach
the counting thread on one core will improve the accuracy of the algorithm, but
it will also inevitably reduce the cross-platform capability of the algorithm.

1 Such context switching can be detected by software as it usually leads to outstanding
measurement errors.
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Algorithm 2: Virtual time stamp
1 global variable cnt ← 0
2 //child timer thread
3 while(true) do cnt + +
4

5 //main thread
6 function latency’(Sr)
7 start = cnt
8 foreach p in Sr do p = ∗p
9 return (cnt − start)/len(Sr)

10 end

Fig. 4. Extracting basic parameters using random cache scan

5 Methodology of Extraction

This section describes the series of tests used to extract individual cache param-
eters. To better illustrate the details of each test, we provide actual test results
collected from an Intel i7-3770 using RDTSC as the timing source. In addition,
the virtual time stamp are used as the timer to detect replacement policies in
Figs. 6 and 7 since ARM and RISC-V architecture processors are involved. The
experimental results of using the virtual time stamp and running on other more
recent processor architectures are revealed in Sect. 6.

5.1 Cache Size and Latency of All Levels

The parameter extraction starts with a series of cache scans using a relatively
small stride (such as 64B) but with different sizes of So. An exemplary test on
an Intel i7-3770 is depicted in Fig. 4a. The number of cache levels, the access
latency and the size are the first batch of parameters to be extracted.

When So is smaller than the size of L1 $, the access latency l denotes the
L1 access latency as all accesses hit in L1 $. When So grows well beyond the
size of L1 $, nearly all access miss in L1 because the long scan pattern leaves no
locality for the L1 $ to explore. Consequently, all accesses are served by the L2
$ and l equates to the access latency of the L2 $. Similarly, we can extract the
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L3 access latency using an even larger So. However, we need to first figure out
the sizes of individual cache levels.

According to Fig. 4a, the latency l increases with So at a varying speed. When
So grows just surpassing the size of a cache, l jumps from the access latency of
the current level to the next. The number of cache levels can be extracted by
counting the number of these latency jumps. It is found that such jumps can be
clearly detected by analyzing the slope curve, which measures the first order of
derivative of l calculated as:

f(i) =
li+1 − li

2
+

li − li−1

2
(3)

where f(i) denotes the increasing speed of l at x-axis location i. Note that the x-
axis and the y-axis for the slope curve in Fig. 4a are both logarithmized. We use
x-axis location i as the function input while the corresponding So and l are li and
So,i respectively. A value of l is sampled every time that So is increased by

√
2.2

As shown in the slope curve, three peaks unambiguously reveal the existence of
three levels of caches. More interestingly, the peaks locate exactly in the vicinity
of the sizes of individual caches. This is because when the size of So exceeds the
cache size, the cache generates a large number of capacity misses [33] and the
average access latency of the sequence increases sharply. Using the related So

of a peak as a rough estimation and correcting it using common sense, such as
the number of sets should be 2’power, we can infer the sizes of individual cache
levels. Moreover, the latency of a cache level can be estimated using the latency
li at location of the lowest f(i) related to the cache level.

5.2 Size of a Cache Block

A cache block is the smallest portion of data being communicated between
caches. Although almost all modern processors adopt a uniformed block size
of 64 bytes to ease the implementation of cache coherence, some processors use
non-64 uniformed block size or even different block sizes across cache levels. We
cannot simply assume that the block size is 64 bytes universally.

The way to extract the block size at a certain cache level is to pinpoint a
match between the block size and a stride. If the chosen stride is smaller than
the block size, each cache block has multiple addresses contained in Sr while
only one address is contained if the stride is equal to or larger than the block
size. When So grows just beyond the cache size, part of cache accesses begin to
miss and the average latency starts to rise. In this situation, the average access
latency using a smaller stride is lower than using a larger stride. Since multiple
addresses of the same cache block is contained in Sr using a small stride and a
whole cache block is refilled when missed, each cache refill is effectively a prefetch

2 Introducing extra samples in between each pair of basis points (×2) sharpens the
peaks in the slope curve, which makes the peaks easy to detect but leads to long
running time. As a trade-off, only one extra sample is added at the middle (

√
2) of

the basis points on the logarithmized x-axis.
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Fig. 5. Extracting the number of ways

for the remaining addresses not yet accessed to the same block, which then leads
to the reduced latency. If we sweep stride from a small value to a value larger
than the block size, a gradual rise of the latency curve should be observable
until the stride is equal to the block size. Any further increase on stride results
in a similar latency curve. Consequently, the first stride fails to raise the latency
curve is equal to the block size.

In our test, the stride is gradually doubled from 8 to 256 bytes. The latency
curves for strides from 32 to 128 bytes are depicted in Fig. 4b. The Intel i7-3770
adopts a uniformed block size of 64 bytes. The latency using a stride of 32 bytes
is indeed lower than the latency of stride 64 and 128 bytes while the latency
curve of the latter mostly identical. However, it is difficult to check whether two
curves are identical by a program. Instead, we check whether the peaks of two
slope curves are co-located with a small error. Also shown in Fig. 4b, the peaks
of the slope curves of stride 64 and 128 bytes perfectly co-located for all cache
levels, which reveals that all cache levels use the same block size of 64 bytes. The
extra benefit of using the slope curve is the enlarged distance between peaks.
For the peaks using stride less than 64 bytes, the height of the peak is noticeably
lower and the location is pushed rightwards, thanks to the much milder latency
jumps produced by them.

5.3 Number of Cache Ways and Sets

The random cache scan can be used to extract the number of ways in a L1 cache
set provided the L1 $ is set-associative. As shown in Fig. 5a, the latency curve
moves rightwards when the stride grows beyond 4KB. This is because all the
addresses in the 32KB Sr (stride = 4KB) are congruent [13] and mapped to the
same cache set due to the hardwired cache set index VA[b+s-1:b] as illustrated
in Fig. 1, and they are just enough to fill the whole set. When the stride increased
to 8KB, the number of addresses is halved. To fill the whole set then requires a
Sr covering 64KB. Note that the size Sr divided by the stride is both 8 for the
two cases, revealing the number of ways in the L1 $ is 8. We can explain it from
another angle. Since the L1 $ is virtually indexed, by choosing addresses with
the same stride, we effectively create an eviction set for a set. Detecting the shift
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of curve thus reveals the minimum number of addresses required for an eviction
set, which is exactly the number of ways for set-associative caches [13,34].

However, this method is only suitable for L1 $ because all outer caches are
physically indexed and addresses apart from the same stride on longer guaranteed
of mapping to the same set. For the outer caches, we extend the group elimination
search algorithm [13,34] to search for congruent addresses instead of using the
random cache scan. At the beginning, the number of congruent addresses a is
large enough to fill the whole set to create an eviction set. However, it cannot
create an eviction set anymore when a is less than the number of ways. By
gradually reducing the number of congruent addresses in an eviction set, we can
derive the minimum number of addresses, which is also the number of ways.
Figure 5b shows the results of extracting the number of ways of the L3 $ on both
i7-3770 and a latest i7-9700. When the number of addresses is set to less than the
minimum number (the number of ways), the success rate of finding an eviction
set immediately drops to zero. The result clearly reveals that the numbers of
ways are 16 and 12 for the L3 $ on Intel i7-3770 and i7-9700 respectively.

The detailed steps is illustrated in Algorithm 3. The input candidate set C is
divided into a+1 groups (a is the number of congruent addresses). Since the evic-
tion set contains a congruent addresses, there must be a certain group among the
a+1 groups that does not contain the addresses in the eviction set. For each group
G, if the target address x can still be evicted after removing it from the candidate
set C, it means that the addresses in the group G are irrelevant to the eviction set,
then remove the group G. Conversely, keep the group G and continue to detect
whether the next group G can be removed. Until a group G that can be removed
from the candidate set C is found, then the current round of detection is ended.
The remaining candidate set C continues to be divided into a+ 1 groups to start
the next round of detection until the number of congruent addresses inC is exactly
equal to a, thus the eviction set S is successfully obtained.

Finally, since cache size equates the production of number of sets, number of
ways and block size, it is straightforward to calculate the number of sets once
the other three parameters are extracted, i.e. cache size = set∗way ∗block size.

5.4 Replacement Policy

In a cache side-channel attack, dislodging the target address by traversing
an eviction set is literally a thrashing access pattern [16] whose effectiveness
is closely related to the replacement policy adopted by the target cache. A
couple of traverses are usually enough for permutation-based policies, such as
LRU [35]. Increasing the number of traverses is sufficient to defeat random
replacement policies. Complicated traverse algorithms [12] would be required
for scan-resistant policies, such as RRIP [16,36]. Instead of detecting the exact
types of policies [19], this paper tries to classify replacement policies into three
categories: permutation-based, random and scan-resistant policies.

It is relatively easy to differentiate permutation and non-permutation poli-
cies. Figure 6 depicts the jump of access latency when Sr grows beyond the size
of the L1 $ on Intel i7-3770 and the HiFive unleashed board (RISC-V proces-
sor). The virtual time stamp is used to measure the access latency. As indicated
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Algorithm 3: Group elimination search
Input: C, candidate set; x, target address; a, number of congruent addresses.
Output: S, eviction set for x.

1 function group_reduction(s, x, a)
2 while |C| > a do
3 G1, . . . , Ga+1 ← split(C, a + 1)
4 i ← 1
5 while ¬ TEST (C\Gi, x) do
6 i ← i + 1
7 end
8 C ← C\Gi

9 end
10 S ← C
11 return S

12 end
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Fig. 6. Differentiating permutation and non-permutation policies

by the result, the two L1 $ certainly adopts different replacement policies. Intel
i7-3770 likely uses a permutation-based policy because the access latency sud-
denly increases when Sr just grows beyond the cache size (32KB), indicating
the cache scan with 9 addresses can easily dislodge all the 8 cache blocks. As for
the RISC-V processor, much more congruent addresses are required for evicting
the whole cache set, denoting the use of a non-permutation policy.

To further differentiate scan-resistant and random policies, we have done
a modified cache scan as described by Fig. 6 in [17] on the RISC-V processor
whose caches adopting non-permutation policies. The sequence Sr is divided
into a short and a long sequence. The short sequence should fit in the target
cache and are initially traversed multiple times to mimicking a access pattern
with temporal locality. The whole sequence is then used in a normal cache scan
but only the access latency of the short sequence is measured. If a scan-resistant
policy is adopted, addresses belonging to the long sequence are replaced before
the short ones, and the latency curve is pushed rightwards, as described in [17].

In summary, permutation and non-permutation policies are detected using
a normal cache scan. A permutation policy is used if the latency curve shows a
narrow and sharp jump at the size of the cache; otherwise, a non-permutation
policy is used. A modified cache scan is then applied. If the latency curve of
the short sequence is noticeably pushed rightwards from the size of the cache, a
scan-resistant policy should be used; otherwise, it is likely to be a random one.



58 S. Shen et al.

 0

 50

 100

 150

 200

 10  20  30  40  50  60  70  80

N
um

be
r 

of
 e

xp
er

im
en

ts
 (

64
00

0 
tim

es
)

Access latency (VTS cycle)

 Accessing victim

(a) Detecting if victim is evicted
from L2 $

 0

 500

 1000

 1500

 2000

 2500

 3000

 20  40  60  80  100  120  140

N
um

be
r 

of
 e

xp
er

im
en

ts
 (

64
00

0 
tim

es
)

Access latency (VTS cycle)

L1 hit
L2 miss

(b) Obtaining the latency of access-
ing memory

Fig. 7. Detecting the random replacement policy by latency distributions

Furthermore, there is a way to verify the use of a random policy by calculating
whether the substitution rate is completely random through a large number of
repeated experiments. Take the L2 $ on the Jetson Nano (ARM architecture) as
an example, the number of its ways is 16. If the L2 $ adopts uses a random policy,
then the probability of successfully evicting the target address to memory should
be only 1/16 when using a congruent address to evict the target address. By
repeating the experiment we can obtain this probability and thus infer whether
the cache adopts a random policy. We first need to find two addresses called
attacker and victim that map to the same cache set on both L1 and L2 $.
Then the eviction set of attacker and victim is constructed. Each address in the
eviction set must be in the same set as these two addresses in L1 $ but in a
different set in L2 $, in order to ensure that no additional noise is introduced
when evicting the target address to the L2 $.

First, access the eviction set to evict the victim to the L2 $, and then re-
access the eviction set to evict the attacker to the L2 $ as well. Since attacker
and victim are congruent with each other, victim may be evicted from the L2 $
to memory during this process. Finally, the state of the victim in the cache is
inferred according to its access latency. The above experiments were performed
64,000 times and the access latency of the victim was counted. This experiment
uses the virtual time stamp as the timer and the results are shown in Fig. 7a.
According to the analysis, the probability that the attacker successfully evicts
the victim to memory is 1/16 (the reciprocal of the numbers of ways for the L2
$) if the L2 $ adopts a random policy. In this case, the access latency of victim
is the time it takes to fetch data from memory.

To obtain the access latency of memory, we need to count the cache access
latency in different states. A certain target address is accessed multiple times
to make it cached, and then it is evicted from the cache through the cache
flush instruction. These two different states of access latency are recorded and
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the results are shown in Fig. 7b. We can intuitively obtain the access latency of
memory (L2 miss) is about 30 or more.3

We then calculated the frequency of access latency greater than 30 in Fig. 7a,
which is about 1/18 of the total number of experiments (the practically possi-
ble number of ways closest to this value is 16). Only the random policy has a
replacement rate of 1/16, so we can infer that the L2 $ does adopt a random
policy based on this result. This experiment exploits the law of large numbers,
i.e., repeating the experiment many times under the same conditions, the fre-
quency of a random event will approximate its probability. That is why we need
a sufficient number of experiments to ensure accuracy, and this also brings a
long time-consuming problem. How to detect the random policy more quickly
and accurately is also one of our subsequent research goals.

6 Experiment Results

We have chosen four representative processors using three different architectures
to conduct the experiments. The processor information is illustrated in Table 1.
Besides the relatively old i7-3770, a latest i7-9700 processor is also tested. We
have also managed to run the tests on two non-x86 processors which we have
access to. One is a Jetson Nano board mounted with an Arm Cortex-A57 proces-
sor and the other one is a HiFive Unleashed board mounted with a SiFive u540
processor. All processors run a Linux operating system while tests are compiled
with the default GNU GCC compiler. In order to further verify the usability of
this method in some restricted environments, such as cloud computing, browser
sandboxes, etc., we installed a virtual machine on the i7-9700 processor and per-
formed the same cache parameter extraction experiments in the virtual machine
environment.

The methods of measuring time varies across architectures and the commonly
used time resources are shown in Table 2. The resolution may vary within the
same architecture due to extra factors such as dynamic frequency scaling. Among
them, the RDTSC register has the highest precision, which can reach 0.3 ns on the
i7-9700 processor, but it is only applicable to the x86 architecture. The ARM
architecture can use the cntvct_e10 register for timing, which has an accuracy
of about 52 ns on the Jetson Nano processor. Both the time and cycle registers
can be used for timing on the RISC-V architecture, and their accuracy is 1 µs
and 1 ns respectively on HiFive Unleashed processor. While the virtual time
stamp we used is applicable to all three architectures above.

We verify the resolution of the virtual time stamp by calculating the increase
of the global variable cnt during a certain runtime period, the details are as
follows: In the main thread, we accurately control the running time through a
sleep function and record the increment of the global variable cnt in the child
timer thread during this period. Dividing the running time by the increment
produces the resolution of the virtual time stamp, which indicates how long
3 This latency is not consistent with Table 3 as extra delay is caused by the operations

to clean states at the beginning of each test.
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Table 1. Processor information and timer resolution

Intel Intel Intel (VM) Jetson Nano Unleashed
Processor i7-3770 i7-9700 i7-9700 Cortex-A57 SiFive u540
Arch. x86-64 x86-64 x86-64 ARMv8.0-A RV64GC
OS Ubuntu 16.04 Ubuntu 18.04 Ubuntu 16.04 Ubuntu 18.04 OpenEmbeded
GCC ver. 5.4 5.4 5.4 7.5 10.2
Resolution 1.9ns 1.2ns 1.2ns 5.0ns 11.0ns

Table 2. Comparison of time resources under different architectures

RDTSC cntvct_e10 time cycle virtual time stamp (VTS)
Arch. x86 ARM RISC-V RISC-V x86/ARM/RISC-V
Resolution 0.3ns 52.0ns 1.0us 1.0ns 1.2-11.0ns

it takes for the global variable cnt to increase by one unit. In addition, the
child timer thread will increase the single-core CPU overhead to over 90%, thus
this timer runs at the highest frequency. The resolution achieved by the virtual
time stamp method is revealed on the final row of Table 1. It is shown that the
virtual time stamp achieves nanosecond resolution on all processors. All of the
experiment results provided in this section are collected from tests using this
virtual time stamp.

Taking the virtual time stamp as the precise timer, we extract the access
latency at all cache levels by scanning the random address sequence on the four
processors. The specific latency as well as its slope variation is shown in Fig. 8
and Table 3 along with the extracted cache parameters. Although the L1 access
latency on all processors is less than the resolution of the virtual time stamp,
the latency of the L2 $ is always longer than 1. Note that the we only need to
differentiate a L1 hit from miss, as long as the measured difference between the
L1 and L2 latency is longer than 1, the resolution of the virtual time stamp is
high enough.

Intel processors normally adopt a three-level cache hierarchy but only two
levels are found on the two non-x86 processors. The proposed tests successfully
produce an estimation on all cache parameters except for the numbers of sets and
ways for the L2 $ on Intel processors. These L2 $ caches are found to be phys-
ically indexed caches. As described in Sect. 5.3, the test extracts the number of
ways by trying to figure out the minimum number of congruent addresses needed
by an eviction set. However, the group elimination algorithm [12] suffers from
significant error rate and fails to produce any eviction sets. With some inves-
tigation, we suspect the L2 $ on these Intel processors might be non-inclusive
with regarding to the L1 $.

The non-inclusive structure means that when the data in the upper-level
cache is evicted, this evicted data will be written back to the next-level. It ensures
that the current cache only holds data that is not in the upper-level cache. The
design and implementation of non-inclusive cache are more complex but improve
security by making the eviction set construction much more difficult [37]. The
current trend in cache design is a shift from inclusive to non-inclusive, such
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(a) i7-3770 (x86-64)
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(b) i7-9700 (x86-64)
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(c) Jetson Nano (ARM)
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Fig. 8. Extracting cache latency through virtual time stamp (VTS)

as Intel’s Skylake architecture, which has designed the L3 $ as a non-inclusive
structure. Although it is reported possible to construct eviction sets for L3 $
using directory-based coherence policy [37], it is unlikely for a non-inclusive and
private L2 $ to use directory. Finding eviction sets on it thus remains an open
question requiring further research.

In the virtual machine environment, we extracted the same cache parameters
as the i7-9700 processor in the normal environment except for the number of
ways for the L3 $. This is because the two-layer address translation mechanism
in the virtual machine (VM VA to host VA, and then from host VA to host
PA) leads to an increase in TLB pressure and a significant increase in miss rate.
Previous studies have shown that this noise can significantly affect the success
rate of the eviction set search algorithm [38]. It was found that the existing
opensourced algorithms, such as the group elimination algorithm [13] and the
random algorithm [12], cannot work directly in the virtual environment for the
time being. How to address such problems in a restricted environment is also
one of our future work.

We have compared the extracted parameters against the information avail-
able from CPUID and lscpu. All the parameters match with the publicly avail-
able information while the correctness on the extracted types of replacement
policies remains unclear. It is partially verified by a separate research [19] that
the Intel processors do adopt scan-resistant policies on the L3 $ and even the
L2 $ for recent processors. Whether the L2 $ of i7-3770 indeed adopting a scan-
resistant policy would need further investigation. Some counter-intuitive results
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Table 3. Extracted cache parameters

i7-3770 i7-9700 i7-9700 (VM) Jetson Unleashed

Latency 0.59 0.72 0.73 0.52 0.31
Size 32KB 32KB 32KB 32KB 32KB

L1 Block 64B 64B 64B 64B 64B
Set/Way 64/8 64/8 64/8 256/2 64/8
Replace permu. permu. permu. permu. random

Latency 1.76 2.18 2.21 3.34 3.63
Size 256KB 256KB 256KB 2MB 2MB

L2 Block 64B 64B 64B 64B 64B
Set/Way ? ? ? 2048/16 1024/32
Replace scan-res. scan-res. scan-res. random permu.

Latency 5.58 8.83 8.94
Size 8MB 12MB 12MB

L3 Block 64B 64B 64B
Set/Way 8192/16 16384/12 ?
Replace scan-res. scan-res. scan-res.

are found on the RISC-V processors as it uses a random replacement policy on
the L1 $. Since the L1 $ has high performance requirements, permutation-based
replacement policies (such as LRU, etc.) are usually adopted. We have double-
checked our experiment result. The opensourced implementation of the SiFive
u540 (Rocket-Chip) does show the possibility to set the policy to random for L1
$ but it is still an odd choice for performance concerns.

7 Conclusion

A series of tests have been proposed in this paper to extract the cache param-
eters crucial for cache side-channel attacks. With the help of a virtual time
stamp timer, the proposed tests have the potential to be ported across different
computer architectures and running in restricted environments, which provide a
method for launching existing cache side-channel attacks in some restricted cases
and reduces the cost of attacks. We have conducted experiments on four rep-
resentative processors using three different architectures, as well as in a virtual
machine environment. Nearly all cache parameters have been extracted except
for the number of ways of the L2 $ on Intel processors because these caches
are suspected non-inclusive, which makes the construction of the eviction set
extremely difficult. All the extracted parameters match with the publicly avail-
able information using CPUID and lscpu. How to effectively construct an eviction
set in a non-inclusive cache or virtual machine environment is currently a chal-
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lenge in the field of cache side-channel attacks, which is also one of our next
research goals.
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Abstract. The kernel data of an operating system kernel can be mod-
ified through memory corruption by exploiting kernel vulnerabilities.
Memory corruption allows privilege escalation and defeats security mech-
anisms. The kernel control flow integrity verifies and guarantees the order
of invoking kernel codes. The kernel address space layout randomization
randomizes the virtual address layout of the kernel code and data. The
additional kernel observer focuses on the unintended privilege modifica-
tions to restore the original privileges. However, these existing security
mechanisms do not prevent writing to the kernel data. Therefore, kernel
data can be overwritten by exploiting kernel vulnerabilities. Additionally,
privilege escalation and the defeat of security mechanisms are possible.

We propose a kernel data protection mechanism (KDPM), which is
a novel security design that restricts the writing of specific kernel data.
This mechanism protects privileged information and the security mech-
anism to overcome the limitations of existing approaches. The KDPM
adopts a memory protection key (MPK) to control the write restriction
of kernel data. The KDPM with the MPK ensures that the writing of
privileged information for user processes is dynamically restricted during
the invocation of specific system calls. To prevent the security mecha-
nisms from being defeated, the KDPM dynamically restricts the writing
of kernel data related to the mandatory access control during the execu-
tion of specific kernel codes. Further, the KDPM is implemented on the
latest Linux with an MPK emulator. We also evaluated the possibility of
preventing the writing of privileged information. The KDPM showed an
acceptable performance cost, measured by the overhead, which was from
2.96% to 9.01% of system call invocations, whereas the performance load
on the MPK operations was 22.1 ns to 1347.9 ns.

1 Introduction

The operating system (OS) kernel encounters threats, in which privileges may
be escalated and security mechanisms may be defeated. The user process of
the adversary exploits the kernel code containing vulnerabilities (i.e., vulnerable
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kernel code), thereby corrupting the memory. Thus, privileged information can
be modified and kernel data of the security mechanism can be altered to gain
full administrator privileges. By modifying the kernel data related to mandatory
access control (MAC), the user acquires administrator privileges and circumvents
the MAC restrictions [1,2].

The following are the countermeasures that can prevent kernel attacks via
vulnerable kernel code. Kernel control flow integrity (KCoFI) inspects the order
of code execution [3] to restrict the kernel code from being illegally invoked
[4]. Kernel address space layout randomization (KASLR) randomizes the vir-
tual addresses of the kernel code and kernel data in the kernel memory space to
foil attacks [5], whereas the additional kernel observer (AKO) detects uninten-
tional rewriting in response to the changes in the privileged information of user
processes against a privilege escalation attack [6].

These mitigate the kernel data from being illegally modified via kernel vul-
nerabilities. However, if the kernel memory is successfully corrupted, kernel data
can be overwritten. We consider that a running kernel does not restrict the writ-
ing of kernel data in the kernel mode. Existing approaches do not control the
write restrictions of kernel data related to privileged information and security
mechanisms. Therefore, an adversary can gain full administrator privileges.

In this study, we propose a kernel data protection mechanism (KDPM), which
is a novel security capability that dynamically controls the write restrictions of
specific kernel data as protected kernel data. Figure 1 provides an overview of
the KDPM, which determines whether system calls and kernel codes have write
permission of the kernel data in the kernel layer. To ensure kernel data protection
and managing write restrictions, the KDPM adopts the Intel memory protection
key (MPK), which is a protection keys for supervisor (PKS). A PKS provides a
protection key that handles write restrictions for each page of kernel data.

The KDPM assumes that the user process of an adversary invokes a vulner-
able kernel code which attempts to modify the kernel data related to privileged
information or security mechanism. The KDPM focuses the mitigation of the
illegal overwritten of these kernel data. The privileged information is changed
by specific system calls and the policy of MAC is modified by specific kernel
codes. Moreover, the function pointers of the MAC are never modified at the
running kernel. The KDPM provides a straightforward application of the PKS
to maintain simple design of the kernel data protection. Additionally, the KDPM
combines the characteristics of system calls, kernel code behavior, and hardware
features. The limitation of the KDPM is a little difficult to support frequently
modified kernel data.

The KDPM has two implementations that focus on the different types of
kernel attacks. Implementation 1 is a general purpose for the protection of
privileged information to prevent privilege escalation. This allows user pro-
cesses to write to protected kernel data only when write-permitted system calls
are invoked. Implementation 2 protects the kernel data of the security mech-
anism (e.g., MAC) to prevent security mechanism from being defeated. This
reduces overheads to limit the write restriction timing of protected kernel data.
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Fig. 1. Overview of the kernel data protection mechanism

Further, Implementation 2 allows the protected kernel data to be written only
when executing a write-permitted kernel code.

– Implementation 1: To prevent a privilege escalation attack, Implementa-
tion 1 controls the write restriction of privileged information in each write-
permitted system call to protect the privileged information of user processes.

– Implementation 2: Implementation 2 controls the write restriction of the
kernel data related to the security mechanism in each write-permitted kernel
code to prevent the defeating security mechanism attack.

Intel CPUs containing a PKS are not available as of March 2022 and will be
implemented on the next generation CPUs; however, a PKS is available in the
QEMU environment [7]. This study is an early application of the forthcoming
PKS to protect kernel data. The following are the contributions of this study:

1. We designed the KDPM that protects the kernel data in the running kernel to
prevent privilege escalation and defeat of security mechanism attacks through
vulnerable kernel code. The implementations of the latest Linux kernel use
a PKS to handle the write restriction of the kernel code during a specific
system call or specific kernel code execution.

2. To evaluate the KDPM, we confirmed that the kernel with Implementation
1 can prevent the modification of privileged information by the adversary’s
user process. Additionally, we confirmed that the kernel with Implementation
2 can prevent the defeat of security mechanisms. The overhead of Implemen-
tation 1 requires latency of system call ranging from 2.96% to 9.01%, and the
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Fig. 2. Intel memory protection key [8]

processing time for the kernel with Implementation 2 for writing the PKS
is 22.1 ns. Furthermore, reading the register operation requires 30.5 ns, and
writing the register operation requires 1347.9 ns.

2 Background

2.1 Memory Protection Key

Intel CPU provides an MPK, which is a security feature provided to control read
and write restrictions on a page basis, that is, page table entry (PTE) [8]. The
MPK includes protection keys for userspace (PKU) and the protection key right
for user mode register for the user mode. In addition, the MPK includes PKS
and IA32_PKRS_MSR register (hereinafter, PKRS) for the kernel mode.

As shown in Fig. 2, the PTE has 16 4-bit protection keys (Pkeys), and the
32-bit flag (two bits per Pkey: write disable (WD) and access disable (AD))
controls the read and write restriction for each Pkey

The read and write restriction for Pkey i (0 ≤ i ≤ 15) is performed via the
register. If the value of bit AD i × 2 is 0, read is allowed. In contrast, if the value of
bit AD i × 2 is 1, read is not allowed. Additionally, if the value of bit WD i × 2+1
is 0, write is allowed; and if the value of bit WD i × 2+1 is 1, write is not allowed.

2.2 Kernel Vulnerability

Kernel vulnerabilities are improper implementations that lead to kernel attacks
[9]. Privilege escalation forcibly invokes kernel codes that modify privileged infor-
mation [10–12]. Specifically, the variable cred of the kernel data that stores priv-
ileged information is overridden from the normal user to the administrator [13].
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The defeat of the MAC forcefully modifies the list of function pointers
that manage the access control decisions in the kernel. Meanwhile, the vari-
able selinux_hooks that stores function pointers, is modified to the inserted
kernel codes that bypass the access control [1,2].

The combination of privilege escalation and the MAC being disabled provides
full administrator capability to the adversary with no restrictions on the kernel.

3 Threat Model

3.1 Environment

We assumed a threat model for the KDPM. The adversary acquires administra-
tor privileges and disables the MAC in the target environment as follows:

– Adversary: An adversary gains normal user privileges, attempts privilege
escalation, and defeats the MAC via the PoC code that exploits kernel
vulnerabilities.

– Kernel: A kernel contains kernel vulnerabilities that can be exploited for
privilege escalation and defeating the MAC. Existing security mechanisms
(e.g., KCoFI, KASLR, and AKO) are not applied.

– Kernel vulnerability: A kernel vulnerability is the presence of a vulnerable
kernel code that exploits kernel memory corruption.

– Attack targets: Attack targets are kernel data related to privileged informa-
tion of user process (e.g., user id) and kernel data of the MAC (e.g., function
pointers and access policies).

3.2 Scenario

The adversary induces the attack that executes the PoC code as the user process
exploits the vulnerable kernel code. The following are the details of an attack:

1. Privilege escalation attack
The user process of the adversary forcefully rewrites user privileges to gain
administrator privileges for attaining full control of the computer.

2. Defeating security mechanisms
The user process of the adversary forcefully disables the MAC by replacing
the function pointer of the kernel code with one that does not make access
decisions.

4 Design

4.1 Concept

To manage write restrictions on specified kernel data, we designed the KDPM
to satisfy the following requirement:
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Fig. 3. Design overview of the KDPM

– Requirement: Prevent privilege escalation and defeat of security mechanisms
by illegally modifying kernel data via kernel vulnerabilities. The kernel must
control the write restrictions of kernel data for specific system calls and kernel
codes on the running kernel. The kernel data can be written only when system
calls are invoked and the authorized kernel codes are executed.

4.2 Approach

The KDPM supports the kernel data as protected kernel data (e.g., variable or
function pointer) and the identifier to satisfy the aforementioned requirement.
Figure 3 shows an overview of the KDPM that supports the linking of the iden-
tifier to the write-permitted system calls and write-permitted kernel code.

Protected Kernel Data: The following are the definitions of protected kernel
data and identifiers:

– Protected kernel data: The kernel data of the user process (e.g., privileged
information) and security mechanisms (e.g., the function pointer and access
policy).

– Identifier: The identifier is used to set the write restrictions of the protected
kernel data. For controlling the write restriction, the identifier is associ-
ated with the protected kernel data, write-permitted system call, and write-
permitted kernel code.

The kernel with the KDPM provides a list of protected kernel data and
corresponding identifiers in advance at the time of booting. Additionally, the
kernel data for each user process generation is assumed to be protected.
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Table 1. Comparison of the implementations of the KDPM

Item Implementation 1 Implementation 2

Protected kernel data Privilege information Function pointer & Access policy

Handling System call Kernel code

Mitigation Privilege escalation MAC defeating

Performance High Low

Handling of Write Restrictions: The KDPM handles the write restrictions
of the protected kernel data using specific system calls and kernel codes. The
KDPM defines and manages the following:

– Write-permitted system call: A system call has write permission for the pro-
tected kernel data.

– Write-permitted kernel code: The kernel code is authorized to write to the
protected kernel data.

The KDPM disables write restrictions during a write-permitted system call
is issued or write-permitted kernel code is executed. At the end of the write-
permitted system call or write-permitted kernel code execution, the KDPM
enables the write restriction to the protected kernel data.

5 Implementation

In this study, the KDPM is implemented on Linux with the x86 64 CPU archi-
tecture. Table 1 presents the protected kernel data and write control timing
according to the implementations. The following are the implementation details:

– Implementation 1: This manages the protected kernel data containing privi-
leged information and write-permitted system calls that change the privileges
of the user process. Even if a user process attempts a privilege escalation, the
privilege information cannot be written during the execution of another sys-
tem call.

– Implementation 2: This manages protected kernel data related to the MAC
(e.g., the Linux Security Module (LSM)) and write-permitted kernel code
that changes the security policy or access control decision. Even if the user
process attempts to defeat the MAC, the function pointer of the kernel code
related to the LSM and security policy in the kernel data cannot be written
during another kernel code execution. It is internal to the kernel and has little
impact on the performance of user processes.

5.1 Protected Kernel Data Management

Implementations 1 and 2 equally manage the protected kernel data and the
processes that handle page faults.
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Table 2. Protected kernel data and write-permitted system call of Implementation 1

Item Description

Protected kernel data
User ID (e.g., uideuidfsuidsuid)

Group ID (e.g., gidegidfsidsgid)

Write-permitted system call
execve, setuid, setgid, setreuid, setregid

setresuid, setresgid, setfsuid, setfsgid

Protected Kernel Data: A Linux kernel with implementations that support
an identifier is set to the protected kernel data, which is arranged on one page
(4 KB), and the PKS handles the write restriction.

– Identifier: Implementations control the write restriction of the protected ker-
nel data and identification number i. The identification number i is the same
as the value of the Pkey i (4 bit) of PTE.

– Write restriction control: Implementations use the identification number i of
the protected kernel data to control Pkey i of the PKRS. If the value of WDi
in the PKRS is set to 1, write access is restricted; however, if WDi is set to
0, write access is permitted.

The handling of write restrictions by the implementations with the PKRS is
a different process (for details, see Sects. 5.2 and 5.3).

Page Fault Handling: The kernel with implementations supports the page
fault handler functions do_page_fault and do_double_fault to identify illegal
page references of protected kernel data by the PKS. In the Linux kernel, a
page fault (i.e., error number 35) is a violation of the write protection on a
page of Pkey. The implementations do not allow writing to the protected kernel
data, and these send a SIGKILL to the target user process using the function
force_sig_info.

5.2 Implementation 1

Figure 4 presents an overview of Implementation 1. Implementation 1 protects
the privilege information for each user process. It manages the list of protected
kernel data and that of write-permitted system calls.

Protected Kernel Data: Implementation 1 generates a dedicated page (4 KB)
as protected kernel data when a user process is created. The dedicated page
stores the privileged information of the user process provided in Table 2. The list
of write-permitted system calls is also protected and write restriction control is
performed by the PKS at the kernel startup.
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Fig. 4. Implementation 1 of the KDPM

Handling of Write Restrictions: Implementation 1 admits the system calls
that change the privileged information (Fig. 2). The process of controlling the
write restrictions of the protected kernel data using Pkey is as follows:

1. The kernel identifies a system call invoked by a user process.
2. The kernel determines if the system call number is included in the list of

write-permitted system calls.
(a) For write-permitted system calls: the kernel sets the protected kernel data

with the write-enable permission by the PKRS.
3. The execution of the system call is continued.
4. After the system call: the kernel restores the protected kernel data and is set

to the write-disable permission by the PKRS.

5.3 Implementation 2

Figure 5 presents an overview of Implementation 2. Implementation 2 adopts
the write-permitted kernel code of the LSM and supports the list of kernel data
related to the LSM and that of the write-permitted kernel codes. Implementation
2 handles the write restrictions for the protected kernel data when executing
write-permitted kernel codes that change the access control policy and access
control decision.
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Fig. 5. Implementation 2 of the KDPM

Protected Kernel Data: Table 3 presents the kernel data to be protected in
Implementation 2. Additionally, selinux_hooks is a variable that stores function
pointers that are part of the kernel data related to the LSM, and selinux_state
is a variable that stores the access control policy. Furthermore, the list of write-
permitted kernel codes is protected by write restriction control using the PKS.

Handling of Write Restrictions: Implementation 2 stores the function
pointer of the kernel data related to the LSM, and the list of write-permitted
kernel codes is set during the booting of the kernel. Table 3 also presents the
kernel codes to be included in the list of write-permitted kernel codes.

The following procedure is used to control the restrictions on the write-
permitted kernel code using the PKS:

1. The kernel invokes the kernel code of Implementation 2 during the execution
of the write-permitted kernel code.

2. The kernel code of Implementation 2 determines whether the caller belongs
to a write-permitted kernel code.



76 H. Kuzuno and T. Yamauchi

Table 3. Protected kernel data and write-permitted kernel code of Implementation 2

Item Description

Protected kernel data
Function pointer (e.g., selinux hooks)

Security policy (e.g., selinux state)

Write-permitted kernel code
Kernel functions in the selinux hooks

avc init, avc insert, avc node delete, avc node replace

(a) In the case of a write-permitted kernel code, the kernel performs write
restriction control using the PKS to set the protected kernel data as write
enabled.

(b) The kernel registers the write restriction of the protected kernel data in
the timer and sets it to be called after a certain time.

3. The kernel continues processing the write-permitted kernel code.
4. Before the end of the write-permitted kernel code, the kernel code of Imple-

mentation 2 is called. The kernel performs write restriction using the PKS to
set the protected kernel data as write disabled.

5. The kernel finishes the processing of the write-permitted kernel code.

Implementation 2 verifies the write restriction setting using the timer to
prevent write as enable continued unintentionally. Implementation 2 also checks
the number of kernel code invocations to determine whether the write restriction
enabled and disabled are the same. Further, Implementation 2 verifies whether
the duration of write enable exceeds the specified time. The timer is a comple-
mentary feature to prevent missing of the configuration of the PKS protection
setting. This timer usually requires sufficient time to miss it between starting
and finishing the execution of the write-permitted kernel code.

6 Evaluation

6.1 Security Capability

The security capability evaluation validates whether the kernel with the KDPM
adequately protects privileged information.

1. Prevention of privilege escalation attack
A kernel vulnerability that can be exploited for a privilege escalation attack is
introduced into the Linux kernel. We evaluate the kernel with Implementation
1, which enables the write restriction of the privileged information of user
processes. This prevents an adversary from performing a privilege escalation
attack.

2. Preventing the defeat of security mechanism
We evaluate the kernel with Implementation 2, which enables the write restric-
tion of kernel data of the LSM to prevent MAC defeat.
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6.2 Performance Evaluation

In performance evaluation, we investigate whether the kernel and user processes
are affected by Implementation 1 and the effect of the PKS operations used in
Implementation 2.

1. Measurement of the kernel performance overhead
To measure the performance of the Linux kernel with Implementation 1, the
benchmark software calculates the overhead of the system call invocation
latency.

2. Measurement of PKS performance overhead
To measure the performance of the PKS in the KDPM, we measure the pro-
cessing time of the PKS operations in the Linux kernel with Implementation 2.

6.3 Evaluation Environment

Equipment: We evaluated the PoC code and kernel using a physical machine
equipped with an Intel (R) Core (TM) i7-7700HQ (2.80 GHz, x86 64) processor
with 16 GB memory.

The security capability evaluation was implemented on a virtual machine
because QEMU 6.0.91 supports the PKS. However, the PKS is not available as
of January 2022 on the Intel CPU. The guest OS on QEMU was Debian 10.2, and
Implementations required 15 source files and 431 lines for Linux kernel 5.3.18.
The PKS performance for Implementation 2 was evaluated using a measurement
program that required 165 lines for Linux kernel 5.3.18.

Implementation: To evaluate the security capability, a kernel vulnerability
was introduced into the Linux kernel using a PoC code [14] that leads to priv-
ilege escalation via memory corruption through the system call number 350.
Additionally, the Linux kernel module (LKM) attempted to overwrite the LSM
function pointer to defeat the MAC on the running kernel:

– Privilege escalation: Vulnerable kernel code 1 refers to CVE-2017-6074
[14], which was implemented as a system call sys_kvuln01. The PoC code
exploits the vulnerable kernel code to overwrite the privileged information of
a user process for privilege escalation.

– Defeating security mechanism: A customized LKM attempts to overwrite
the function pointer of the kernel code that manages the LSM file access
permission to circumvent the MAC decision.

6.4 Security Capability Evaluation Result

Prevention of Privilege Escalation Attack: The security evaluation result
for the adversary’s user process is shown in Fig. 6. In line 3, the kernel captures
the original system call (i.e., system call number 350) with process ID 1661. The
kernel indicates 0× 8, which indicates that the write disable (WD) of Pkey 1 is
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Fig. 6. Prevention of a privilege escalation attack

Fig. 7. Prevention of a MAC defeat

enabled. In line 10, the kernel catches a page fault (i.e., error number 35) when
writing to the page that stores the privileged information with Pkey 1. The page
fault indicates a write protection violation of a page protected by the Pkey. In
line 14, the kernel sends SIGKILL to the user process of the adversary.

Preventing the Defeat of Security Mechanism: The security evaluation
result of the LKM is shown in Fig. 7. In line 2, the LKM attempts to find one of
the function pointers of selinux_hooks. In line 5, LKM attempts to overwrite the
function pointer of selinux_hooks. In line 7, the kernel catches a page fault (i.e.,
error number 35) when writing to the page storing the function pointer with Pkey
1. The page fault indicates a write protection violation of a page protected by Pkey.

From the security evaluation results, we confirmed that the Linux kernel
with the KDPM prevents privilege escalation attacks and avoids the defeat of
security mechanism. The KDPM correctly manages the Pkey and detect memory
corruption of the vulnerable kernel code.

6.5 Performance Evaluation Result

Measurement of the Kernel Processing Overhead: The system call over-
head was measured using LMbench benchmark software. A vanilla kernel was
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Table 4. System call invocation overhead of Implementation 1 (µs)

System call Vanilla kernel Implementation 1 Overhead

fork+/bin/sh 227111.28 236738.69 9627.41 (4.24%)

fork+execve 12780.0566 13931.6703 1151.6136 (9.01%)

fork+exit 10837.0729 11285.5603 448.4874 (4.14%)

open/close 1302.5639 1334.5312 41.9672 (2.95%)

read 168.8898 180.4594 11.5696 (6.85%)

write 164.2567 176.4273 12.1705 (7.41%)

fstat 195.0063 203.7508 8.7445 (4.48%)

stat 613.7426 631.9393 18.1966 (2.96%)

Table 5. Overhead of PKS operations (ns)

Instruction Implementation 2

Pkey write 30.5

PKRS read 22.1

PKRS write 1347.9

compared with the kernel with Implementation 1. LMbench was executed 10
times to calculate the average system call latency.

LMbench performs 54 invocations of the system call for fork+/bin/sh, 4
invocations for fork+execve, 2 invocations for fork+exit and open/close, and
the other is 1 invocation. Table 4 shows the overhead of the system call. The
highest and lowest overheads are fork+execve with 9.01% and stat with 2.96%,
respectively.

Measurement of PKS Operations: The Linux kernel with Implementation 2
invokes the Pkey write of the PTE and read and write of the PKRS. The measure-
ment program was repeated 10,000 times, and the average value was calculated.
Table 5 shows the cost of the PKS operations. The write of Pkey required 30.5 ns;
PKRS read required 22.1 ns, and PKRS write required 1347.9 ns.

7 Discussion

7.1 Security Capability Consideration

We demonstrated that the kernel with the KDPM can detect and prevent PoC
codes through a kernel vulnerability with a privilege escalation attack and an
LKM with a defeat of security mechanisms. In addition, we confirmed that the
kernel and user process operations were not affected by the operation that
restricts the writing of kernel data. The evaluation result confirms that the
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KDPM can dynamically control read restrictions by appropriately setting the
PKS. The KDPM only allows system calls for permissions to change privileges
and kernel codes for modifying access control information. Therefore, the KDPM
prevents the illegal modification of privileged information and kernel code related
to access control.

Additionally, the KDPM mitigates the threat from the latest kernel vul-
nerabilities (e.g., zero-day attack) before the kernel patch is released. Because
the KDPM manages a small number of write-permitted system calls and kernel
codes. It ensures that the system call or kernel code of a zero-day attack can be
manually removed from the write-permitted lists for the protected kernel data
to reduce the potential of a kernel attack.

Moreover, analyzing the security capability of the implementations requires
the inspection of memory access sequences from the attack of the actual memory
corruption kernel vulnerability that performs the illegal modification of kernel
data for additional evaluation.

7.2 Performance Consideration

The performance evaluations reveal that the kernel with the implementations
requires overhead in kernel processing and read control by the PKS. The duration
required for the PKS operations of Implementations 1 and 2 are the same.

The difference of performance costs for each implementation, Implementation
1 determines whether a system call number is allowed to be written. The user
process affects the execution time of the system call and generates privileged
information of the user process. Meanwhile, Implementation 2 determines the
write-permitted kernel code for processing each access control mechanism. We
consider that Implementation 2 has an impact on kernel processing when access
control decisions are necessary.

To inspect the performance costs of the implementations, we consider the
measurements of overheads for practical applications or an evaluation of other
benchmark software, such as UnixBench and SPEC.

7.3 Limitation

Design Limitation: We consider that the PKS is lightweight for protecting
kernel data. However, if multiple kernel data share a Pkey, the effects of the
write available timing during asynchronous processing should be determined
due to interrupts and exceptions in the kernel.

If a kernel vulnerability is discovered and an attack is successful, the vul-
nerable kernel code may have contained a write-permitted system call or write-
permitted kernel code. This is a case of circumventing of the KDPM, which
allows the modification of protected kernel data.

The design of the KDPM retains the static information in the list of write-
permitted system calls and that of write-permitted kernel codes for the kernel.
Customizing both lists is difficult and requires additional permissions for the
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running kernel or kernel modules. We consider the modification of both lists
through a kernel component (e.g., kernel module or extended Berkley Packet
Filter).

Implementation Limitation: The limitation of the PKS is that the number
of Pkeys is 16. The 0th Pkey is used as the initial value of the PTE. The kernel
data to be protected must be managed using 15 Pkeys. As the number of types
of kernel data to be protected is limited, an appropriate classification of kernel
data should be considered when applying the KDPM.

Additionally, Implementation 2 requires an additional kernel process for the
restriction of kernel data, which adds to the performance load and requires kernel
modifications. Additionally, the timer of Implementation 2 may induce the kernel
instability owing to the write permission being forcefully disabled before the
write-permitted kernel code is terminated. We require the consideration that
the investigation for the time of kernel code execution to adjust the actual value
of the timer setting.

7.4 Portability

The portability of the KDPM to other OSs must be considered. The KDPM
relies on the PKS, which requires the implementation of virtual memory space
with a PTE in the OS that supports an Intel CPU.

8 Related Work

User Process Data Protection Using the MPK: For data protection using
the MPK in applications, libmpk provides a flexible library that supports user
processes. This can manipulate the protected data using the PSU [15]. ERIM
is proposed as a separation method for the protected user process data into
different user processes using PSUs [16].

Kernel Data Protection Using the MPK: To protect the kernel code and
kernel data using the MPK in the kernel, xMP proposes a security mechanism
that provides multiple domains. These contain pages of kernel memory space
that are allocated using the PKU. The virtual machine monitor (VMM) man-
ages domains via Pkeys [17]. Additionally, libhermitMPK proposes a security
mechanism to protect against unauthorized reading and writing by dividing and
managing the kernel code and data into multiple Pkeys [18].

Prevention of Malicious Code Execution: To prevent illegal kernel code
execution in the kernel, the control flow integrity (CFI) [3], which verifies the
order of program function calls, is applied [19]. To apply the CFI to the kernel,
KCoFI is proposed as a security mechanism for preserving the integrity of the
order of invoking kernel codes as the original architecture [4].
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Table 6. Comparison of kernel protection approaches and types of target vulnerability
(C.: code execution, M.: memory corruption) [20]

Feature libhermitMPK [18] xMP [17] KCoFI [4] KDPM

Protection Entire kernel Entire kernel Kernel behavior Kernel data

Granularity Kernel code VM Kernel code System call & Kernel code

Implementation In-kernel VMM monitoring In-kernel In-kernel

Limitation Kernel code security VMM overhead Original Architecture Pkey number

Target Vulnerability M. M. C. M.

8.1 Comparison

Table 6 presents a comparison of the KDPM with existing security mechanisms
[4,17,18].

Furthermore, libhermitMPK separates the kernel into two regions (i.e.,
Safe/Unsafe) using Pkeys [18]. The running kernel code can only read and write
to kernel data belonging to the same region. In addition, xMP manages the
kernel memory space of the guest OS kernel into multiple domains using Pkeys.
The kernel codes and kernel data are assigned forcefully for each domain through
the VMM [17]. Although libhermitMPK and xMP show that kernel data can be
overridden if the same Pkey is assigned to a vulnerable kernel code and overhead
using the VMM, the KDPM assigns Pkeys only to the protected kernel data to
separately control system calls and kernel codes from the write restrictions of
the kernel data.

KCoFI adopts the CFI for kernel processing that corresponds with the asyn-
chronous behavior to handle the interruption and context switch of tasks [4].
Although KCoFI prevents the invocation of illegal kernel code, kernel memory
corruption is not covered. If an attacker executes an arbitrary code in the kernel
mode, the KDPM protection may be defeated. We recommend applying the CFI
to the kernel with the KDPM to prevent hardware security defeat. Therefore,
the CFI verifies the order of invocation of kernel codes to prevent the illegal
execution of the kernel code, which attempts to controls hardware registers. The
kernel with the KDPM preserves the kernel data protection.

9 Conclusion

An adversary can achieve privilege escalation and the defeat of security mecha-
nisms by corrupting the kernel memory. KCoFI, KASLR, and AKO are kernel
attack countermeasures that mitigate and prevent the threat of kernel attacks.
However, vulnerable kernel codes can still modify the kernel data at the kernel
layer.

In this paper, we proposed a novel security design of a KDPM that man-
ages write restrictions on specific kernel data. The KDPM enables the kernel
to control write privileges on PTEs using the MPK PKS in the running ker-
nel by the CPU. We compared the KDPM with existing approaches. From the
two implementations of the KDPM, Implementation 1 protects the privileged
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information of the user process to prevent privilege escalation, whereas Imple-
mentation 2 protects the kernel data of the MAC to prevent the defeat of security
mechanisms.

In the evaluation, we introduced a kernel vulnerability that can be exploited
for privilege escalation attacks and demonstrated the restriction capability for
the writing of privileged information of the user processes. The performance
evaluation showed that the overhead for invoking system call on Linux with
Implementation 1 ranged from 2.96% to 9.01%, and the PKS operations overhead
on Linux with Implementation 2 ranged from 22.1 ns to 1347.9 ns.

In future studies, to prevent vulnerable kernel code execution and illegal
modification of kernel data due to the principle of security risk and performance
overhead, researchers can provide the design of lightweight security mechanism
that combines the verification of kernel code execution sequence and the write
protection of kernel data at the adequate timing to mitigate kernel attacks.
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Abstract. Cybersecurity threats have been increasing and growing more
sophisticated year by year. In such circumstances, gathering Cyber Threat
Intelligence (CTI) and following up with up-to-date threat information is
crucial. Structured CTI such as Structured Threat Information eXpres-
sion (STIX) is particularly useful because it can automate security opera-
tions such as updating FW/IDS rules and analyzing attack trends. How-
ever, as most CTIs are written in natural language, manual analysis with
domain knowledge is required, which becomes quite time-consuming.

In this work, we propose CyNER, a method for automatically structur-
ing CTIs and converting them into STIX format. CyNER extracts named
entities in the context of CTI and then extracts the relations between
named entities and IOCs in order to convert them into STIX. In addi-
tion, by using key phrase extraction, CyNER can extract relations between
IOCs that lack contextual information, such as those listed at the bottom
of a CTI, and named entities. We describe our design and implementa-
tion of CyNER and demonstrate that it can extract named entities with
the F-measure of 0.80 and extract relations between named entities and
IOCs with the maximum accuracy of 81.6%. Our analysis of structured
CTI showed that CyNER can extract IOCs that are not included in exist-
ing reputation sites, and that it can automatically extract IOCs that have
been exploited for a long time and across multiple attack groups. CyNER
is thus expected to contribute to the efficiency of CTI analysis.

Keywords: Cyber Threat Intelligence · Information Extraction ·
Named Entity Recognition · Relation Extraction · STIX

1 Introduction

Cybersecurity threats have been increasing and growing more sophisticated year
by year. In such circumstances, gathering Cyber Threat Intelligence (CTI) and
following up with up-to-date threat information is crucial. For example, CTI
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contains information on new vulnerabilities, malware, attackers’ methods, and
countermeasures against them. Indicator Of Compromise (IOC) is often included
as an indicator for detecting attacks, and consists of, for example, IP addresses,
URLs of suspicious sites, and hash values of malware. By utilizing this informa-
tion for the detection rules of firewalls and intrusion detection systems, attacks
can be detected in advance. Thus, by appropriately extracting and utilizing the
information of the malware, vulnerability, and IOCs contained in CTI, it is pos-
sible to construct detection rules and analyze attack trends.

CTI is often first distributed as unstructured data in media such as blogs,
news sites, and social networking sites. There is a time lag between the release
of such information and its structuring—sometimes up to a month or more [22].
Therefore, in order to keep up with the latest threat information, it is necessary
to analyze and utilize unstructured data. However, more than 60,000 CTIs are
published every month [13], and it is not realistic to analyze all of them manually.
In addition, since many CTIs are written in natural language, it is difficult
to simply implement machine processing on them. In such circumstances, it is
important to structure a CTI written in natural language into a form that can
be processed by machines, and to support efficient analysis.

To resolve these challenges, some studies [21,32] have tried to analyze
unstructured CTIs by constructing dictionaries or ontologies. However, in the
security field, new words tend to be generated because of new malware or vul-
nerabilities, so their continuous maintenance is not easy. In addition, since IOCs
such as URLs and IP addresses have a fixed format, they can be extracted by
using regular expressions, but they often lack contextual information such as
what kind of malware or attacker they are being used by. It is difficult to use
such noncontextual information for analysis and to judge whether it is appli-
cable as a detection rule or not. Therefore, it is important to add contextual
information such as malware name and attacker name to the IOC.

Other research has examined machine learning, probabilistic method, and
graph mining to perform robust information extraction for unknown words and
to provide meaning to IOCs. For example, [42] matches Common Vulnerabilities
and Exposures (CVE) summaries with Common Platform Enumeration (CPE)
through machine learning-based Named Entity Recognition (NER) with high
accuracy. In addition, iACE [18] attempts to extract contextual information about
IOCs using graph mining. These studies mitigate the aforementioned difficulties
with maintaining dictionaries and ontologies and the lack of contextual informa-
tion. On the other hand, these methods, including the above-mentioned research,
assumed that words related to IOCs appear in the neighborhood of IOCs. As for
the semantics of IOCs, there are many cases in which IOCs are listed at the bottom
of a CTI after the main topic is described. In such cases, the context of the IOCs
is missing, and the existing methods, which assume that IOCs and their related
words appear in the same neighborhood, cannot give proper context to the IOCs.

To solve these problems, we propose CyNER, a method for structuring CTIs
using Natural Language Processing (NLP) techniques such as NER and Rela-
tion Extraction (RE). The proposed method aims to improve the efficiency of
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analysis by extracting named entities that should be focused on in the context of
cybersecurity, such as malware names, vulnerability names, and IOCs. CyNER
also aims to structure CTIs in a way that maintains contextual information
by extracting relations between named entities. In addition, by estimating the
topics mentioned in a CTI through key phrase extraction and associating them
with IOCs, we can give contextual information such as relevant malware names
and vulnerability names to IOCs lacking context, which is not possible with the
existing methods. This makes it possible to link noncontextual IOCs to relevant
malware or vulnerability names, which is difficult to extract with existing meth-
ods [18,45] that assume that technical terms associated with IOCs will appear
in the same sentence. Moreover, we aim to improve the usability of the data
by structuring them in a general-purpose format of Structured Threat Informa-
tion eXpression (STIX) [30]. This makes it possible, for example, to conduct
crossover analysis for threat information that is dispersed across different infor-
mation sources. Although there are studies that cross-analyze already structured
information such as blocklists and threat feeds [17,23], it is difficult for existing
studies to cross-analyze unstructured threat information due to the existence of
IOCs separated from the main texts as mentioned above. The contributions of
this paper are as follows.

– By extracting named entities and relations between named entities from
unstructured CTIs, CyNER automatically structures them in the STIX 2.1
format. In addition, by extracting key phrases from CTI and associating them
with noncontextual IOCs, we can extract relations that have no relation in
the neighborhood, which is not done in existing RE methods.

– The evaluation with our dataset showed that both the named entities and
noncontextual IOCs could be extracted. We found that the F-measure for
NER can be improved by up to 2.4 points by using a language model trained
on a domain corpus for structuring CTI, compared to using a general-purpose
language model. In addition, we were able to link entities to noncontextual
IOCs with an accuracy of up to 81.65%.

– Using CyNER, we structured 52,292 CTIs from 34 sources, extracted 270,047
IOCs, and conducted a crossover analysis. In this analysis, the following facts
were revealed and the possibility of using CyNER was demonstrated.
• We compared the coverage of the IOCs extracted by CyNER with that of

existing reputation services, and showed that CyNER can extract IOCs
that are not included in the existing services.

• We found that 19,010 IOCs were reported continuously, and some were
exploited by multiple attack groups for more than a year.

2 Background and Challenges

2.1 Cyber Threat Intelligence

As mentioned earlier, threat information, called CTI, and especially structured
CTI, has an important role to play in conducting security operations. In this
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context, various structured formats for cyber security have been developed for
the purpose of machine-readable security information and information sharing in
a common format. There is OpenIOC [20], which specializes in IOCs, and STIX
[30] and MISP [27], which cover a wider range of information. For example, STIX
consists of two parts: SDO (STIX Domain Object), which is an object of domain
terms in the context of cyber security, and SRO (STIX Relationship Object),
which is a relationship between SDOs.

The infrastructure for sharing such information is also being developed. Face-
book ThreatExchange [8], the Defense Industrial Base Cybersecurity Informa-
tion Sharing Program [7], and Automated Indicator Sharing [5] are frameworks
for sharing reliable information among member organizations. There are also
public frameworks for sharing IOCs, such as AlienVault OTX [1], OpenCTI [33],
and MISP. However, a structured CTI for sharing in these frameworks needs to
be created separately.

2.2 NLP

Information extraction is an NLP task in which structured data are extracted
from unstructured documents. This task consists of various technologies such
as NER, which extracts named entities from sentences, and RE, which extracts
relations between named entities.

In recent years, high accuracy in information extraction has been achieved by
using language models such as Word2Vec [24] to convert words or sentences into
numerical expressions called distributed representations, which are then used
as input for various tasks. In particular, Bidirectional Encoder Representations
from Transformers (BERT) [6] and applied language models based on BERT
have achieved high performance in a variety of tasks. There are also a number of
later improved models, such as RoBERTa [19] for higher accuracy and ALBERT
[16] for lighter weight.

2.3 Challenges

As mentioned above, structured CTI is useful and the infrastructure for sharing
it is being developed. On the other hand, since most CTI is written in natural
language, unstructured CTI needs to be structured. In this case, it is desirable
to structure the CTI in a common format (as discussed in Sect. 2.1) so that we
can utilize the various functions that have been developed, such as visualization
and linkage with security appliances. Therefore, the goal of this research is to
automatically convert CTI into a common format. In order to achieve this, the
following issues need to be addressed.

Challenge 1: The complexity of terms. As mentioned above, new terms are
developed every day, so extracting terms using a dictionary is not easy because
it requires continuous maintenance of the dictionary. In addition, there are mul-
tiple terms that have the same meaning (e.g., “C&C” and “C2”, “APT10” and
“menuPass”. In addition, some unique expressions overlap with common words
(e.g., meltdown).
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Fig. 1. Overview of CyNER.

Challenge 2: Extraction of distant relationships. In natural language of the
general domain, named entities with relations often co-occur in the same or
neighboring sentences, and existing RE methods often use the same sentence
or a few neighboring sentences as the search range of relations [11,26,34,40].
This is not true, however, for CTI. For example, a specific malware threat is
described in detail in the text, and the IOCs related to the malware are listed at
the bottom of the CTI. In this case, the IOCs at the bottom of the CTI should be
associated with name of the malware as a named entity, but since the IOCs are
located far from the name of the malware, it is difficult to extract this relation
using existing RE methods. In fact, when we examined the 270,047 IOCs we
collected, more than half of them (144,430) were separated from the main texts
(e.g., bullet points). Thus, it is necessary to implement a method for extracting
such distant relations and restore the context of “noncontextual” IOCs.

3 Design and Implementation

3.1 Basic Idea and Overview

As discussed, while CTI structured according to a common format has various
advantages, the construction cost is high and it is not practical to manually
structure all unstructured CTIs. Therefore, our proposed method aims to auto-
matically structure CTIs in a common format to support efficient analysis. To
accomplish this, we need to solve the two challenges mentioned in Sect. 2.3.

First, to solve Challenge 1, we use BERT and related methods for NER.
BERT is a machine learning-based method that can extract a greater number of
new words compared to dictionary-based methods. In addition, unlike previous
word representation methods such as Word2Vec, BERT can construct word rep-
resentations that take into account the context. This increases the likelihood of
recognizing words with equivalent meaning even if they are different. In addition,
BERT learns embedded representations on a sub-word basis, not on a word basis.
This is expected to increase the likelihood of recognizing unique expressions by
subword, even if the word is new.

In order to solve Challenge 2, we assume that the noncontextual IOCs are
related to the words that represent the CTI in question, and extract the distant
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relationships related to the IOCs by using key phrase extraction. Specifically, key
phrases are extracted from the CTI, and those that match the named entities
extracted by the NER are judged to be the words that represent the IOC in ques-
tion, and the relationship is established. In this way, we should be able to extract
relations even when there is no word representing the IOC in the neighborhood.

Figure 1 shows the overview of the proposed method. First, articles are col-
lected from sites that publish CTI, and then text in the collected CTIs are
preprocessed for the later stage of processing. Then, only CTIs are extracted by
classifying the articles, and non CTIs are rejected. After that, information that
should be described as STIX is extracted by NER and RE. Finally, the extracted
information is formatted as STIX.

In the following sections, we describe the details of the processing for each
step.

3.2 Information Gathering

First, CyNER gathers candidates of CTI from various websites such as blogs
and official reports. CyNER initially crawls all CTI-related webpages and gath-
ers all articles. In this paper, we chose several major websites and implemented
a crawler and parser tailored for each. In addition, to prevent duplication of
articles and overload of target websites, CyNER gathers only updated articles.
To do so, updated articles are gathered by using RSS feeds in cases where target
websites provide RSS. Otherwise, CyNER parses CTI-providing pages and ver-
ifies whether the articles are new or not. After that, CyNER gathers only new
articles.

3.3 Preprocessing

In this step, CyNER carries out preprocessing for text in the gathered CTIs. Web
articles often include non-CTI information such as html tags, advertisements,
and navigation bars, so CyNER extracts body texts for deleting any unnecessary
information.

Next, CyNER performs refang on the IOCs. Refang means to returning
defanged IOCs to their original form, e.g., converting “example[.]com” into “exam-
ple.com”. In doing so, IOCs can be extracted by regular expression. The refang
mechanism is implemented by defining refanging rules (such as replacing “[.]” with
“.”) in advance and then using rule-based search and replace. One of the refang
rules is removing brackets. All refang rules are shown in the Appendix B.

After this preprocessing, the collected information is processed to make it suit-
able for the later stage of NLP. Specifically, the extracted text is divided into sen-
tences so that it can be processed by the language model.

3.4 Pretraining

As mentioned above, BERT and other pre-trained language models are widely
available and can be used for NER. On the other hand, it is known that pre-training
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Table 1. Named entity list.

STIX object Extracted items Description Examples Extraction method

Attack pattern name Attack pattern name Spear Phishing NER

Campaign name Campaign name Operation Aurora NER

Threat actor name Threat actor name APT10 NER

Identity name Name Hitachi, Ltd. NER

Indicator pattern IOC URL, hash, etc. Regular expression

Malware
labels Malware type Ransomware NER

name Malware name WannaCry NER

Tool name Tool name Metasploit NER

Vulnerability name Vulnerability name
CVE-2014-0160 Regular expression

HeartBleed NER

on a domain-specific corpus in a specialized field improves the accuracy of various
tasks based on the model in question [4]. Therefore, we aim to improve the accu-
racy of NER by constructing our own pre-training model using the domain corpus
of the cyber security field.

In order to build a pre-training model for the cyber security domain, we first
crawl web pages that publish CTI and collect them as candidates for the domain
corpus to be used as training data for building the language model. Next, we
remove unnecessary information from the collected CTI to extract sentences for
training. Specifically, in order to extract the main text, we remove unnecessary
information such as HTML tags and JavaScript. In addition, even in the body part,
there are still some sentences such as headings and bullets that are not necessary
for learning. Therefore, referring to the literature [35], we remove the unnecessary
information by the following process to make a domain corpus.

– Pages with less than 5 sentences
– Lines with less than 3 words
– Lines that may be signatures such as snort (lines starting with “{” or “$”)

Finally, the domain corpus constructed so far is used for pre-training to build
the language model. By using the above method, we aim to improve the accuracy
of NER for structuring CTI.

3.5 CTI Classification

Some of the blogs and official pages that provide CTIs include articles introducing
products and seminars. Since these are not CTIs, we reject them by constructing
a binary classifier to determine whether they are CTIs or not. Our binary classifier
consists of the aforementioned pre-trained BERT and a fully-connected layer that
outputs whether the input document is a CTI or not.

3.6 Named Entity Recognition

To modify the corpus that has been processed up to this point into a form suitable
for NLP, NER is performed. We first define the items to be extracted as extended
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Table 2. Relation rule list.

Subject Object Relation

Indicator pattern Attack pattern name

indicates
- Hash value Campaign name

- File name Malware name

Threat actor name

Malware name

Indicator

communicates-with- URL

- IP address

named entities (Table 1). As mentioned earlier, CyNER carries out structuring
according to the STIX 2.1 format. Therefore, we define the named entities in a
form corresponding to the objects (SDOs) in STIX. As already described, format-
ted named entities (e.g., IP addresses, URLs, and CVE numbers) are extracted by
regular expressions. In addition, other named entities are extracted by the NER
model, which is implemented by fine-tuning huggingface [41] pre-trained models
(BERT, RoBERTa, and ALBERT) for NER, the same as CTI classification.

3.7 Relation Extraction

By extracting the relationships between the named entities extracted in the previ-
ous step, CyNER acquires the contextual information. The definition of the rela-
tionship between IOCs and named entities is provided in Table 2. This definition is
aligned with the SRO of STIX 2.1. CyNER firstly extracts relationships by existing
method such as [18] for named entities located at same sentence. Here, on the basis
of the policy described in Sect. 3.1, CyNER also attempts to extract the relation-
ships between named entities and independent IOCs (Fig. 2). The specific process
flow is as follows.

1. Among the IOCs extracted with regular expressions in the NER step, extract
those independently listed, e.g., located alone at the bottom of a CTI, as can-
didates for RE.

2. Extract the top 10 key phrases that represent the CTI by using a key phrase
extraction technique.

3. Among the extracted named entities, compare the named entities that can have
a relationship with the IOCs with the key phrases, and associate the one that
matches the top key phrase with the IOC as having the predefined relationship.
The properties of the named entities that can have a relationship with the IOCs
are attack pattern, campaign name,malware name, and threat actor name. In
other words, each IOC is assigned a relationship with up to four named entities.

With the above process, we can extract relationships between named entities
and “noncontextual” IOCs, which are difficult to extract with existing methods.

As a key phrase extraction method, we used MultipartiteRank [2], which had
the highest accuracy for our test data among the several methods we implemented
and compared. The details are described in Sect. 4.
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Fig. 2. Extraction method for noncontextual IOCs of CTI.

3.8 STIX Generation

STIX is generated using the named entities and their relationships extracted in the
previous process. Specifically, first, the named entities extracted in the NER step
are converted into the corresponding SDOs. Next, the relations extracted in the
RE step are converted into SROs that define the relations among STIX objects.
Finally, a STIX object is created for each CTI using a bundle object that groups
STIX objects.

4 Evaluation

4.1 Experimental Setup

We implemented a prototype of CyNER according to the design described above
and conducted the following two evaluations.

1. Named Entity Recognition Accuracy. CyNER attempts to extract the
named entities (shown in Table 1) using a fine-tuned language model for SDO
extraction; therefore, the accuracy of the NER is evaluated in terms of the pre-
cision, recall, and F-measure. In doing so, we will also test whether the accuracy
is improved by pre-training language models using domain corpora.

2. Relation Extraction Accuracy. CyNER extracts relations between named
entities and noncontextual IOCs of CTIs by comparing the results of NER with
those of key phrase extraction. We evaluate the correctness of this RE. We then
implement several key phrase extraction methods and evaluate which one is
most suitable for this task.

In addition, we use CyNER to structure and analyze CTI. In this way, we verify
the possibility of using CyNER for CTI-based security operations. Specifically, we
also conducted the following evaluations.

3. IOC coverage. CyNER extracts named entities from unstructured CTI and
associates them with IOCs. We compare and evaluate whether the coverage of
IOCs and information associated with IOCs extracted by CyNER is as good as
that of the de facto service. Specifically, we compare VirusTotal, a service for
evaluating IOCs, and AlienVault OTX, a platform for sharing structured CTIs.



94 S. Fujii et al.

4. Time-series information. By using the proposed method, we can handle the
time-series information ofCTI and IOCs from the past to the present in a unified
manner. Therefore, we analyze CTI and IOC from the viewpoint of time series
and examine the possibility of using them.

4.2 Dataset

To conduct each of the evaluations described in the previous section, we selected
34 sites that distribute CTIs on the basis of existing studies and interviews with
practitioners (detailed in the Appendix A). We implemented a crawler for each site
and collected 75,652 CTI candidates published between June 2001 and December
2020, and then constructed the following datasets for evaluation. In all evaluations,
data before 2019 were used for training and data after 2019 were used for testing.
The labeling of the data was done independently by the author, who are experts
in the field of cyber security. In addition, CTIs for labeling were randomly selected
as described below, but those that contain few named entities were excluded.

– Dataset for training language models. The collected CTIs were subjected to the
preprocessing described in Sect. 3.3 and then made into a domain corpus for
language model training. The dataset consists of about 3,000,000 lines totaling
about 320 MB.

– Dataset for NER. We randomly picked up the collected CTIs and prepared 100
CTIs annotated with named entities. This dataset consists of 13,479 sentences,
193,027 words, and 4,562 named entities in total.

– Dataset for extracting IOC relations.We randomly picked up the collected CTIs
and prepared 100 CTIs that include at least one IOC. This dataset contains
2,371 IOCs.

– Dataset of structured CTI. Among the 75,652 CTIs mentioned above, 52,292
CTIs are evaluated by the CTI classifier in this section. The number of unique
IOCs associated with named entities by CyNER is 270,047, and it consists
50,323 hashs, 184,349 URLs, and 35,375 IP addresses. Note that URLs in
the Alexa Top 10,000 and private IP addresses defined in RFCs are excluded
because they are highly likely to be false positives.

4.3 Result

Evaluation 1: Named Entity Recognition Accuracy. In this evaluation, 70
articles (70%) were used for training and 30 for verification. The training data were
further divided into a 70% training set and a 30% validation set for training. For
the models, we used BERT and its later variants, RoBERT and ALBERT, which
are representative of the pre-training models available in huggingface. For each
model, we used large, which has more parameters and higher accuracy, and base,
which is lighter. In addition, in order to compare machine learning-based mod-
els with dictionary-based methods, dictionary-based NER was used as a baseline.
Specifically, we registered named entities in the training data into a dictionary and
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Table 3. NER accuracy of each model.

Method Model Precision Recall F-measure

Dictionary [12,18,21,32,45] - 0.74 0.56 0.65

CRF [29,42] - 0.68 0.68 0.68

bert-base-uncased 0.81 0.70 0.75

bert-large-uncased 0.78 0.73 0.75
BERT [37]

roberta-base 0.78 0.73 0.76

roberta-large 0.85 0.74 0.78

albert-base 0.84 0.73 0.77

albert-large 0.84 0.70 0.77

bert-base-uncased 0.81 0.76 0.78

bert-large-uncased 0.78 0.76 0.77

CyNER roberta-base 0.81 0.79 0.80

(BERT fine-tuned by domain corpus) roberta-large 0.80 0.80 0.80

albert-base 0.81 0.74 0.78

albert-large 0.80 0.74 0.78

Table 4. Accuracy of rela-
tion extraction.

Method Accuracy (%)

PositionRank 77.22

TopicRank 69.59

MultipartiteRank 81.65

Table 5. IOC coverage of each platform.

IOC type Method Total Existed (rate) Did not exist (rate)

CyNER 1,000 1,000 (100%) 0 (0.0%)

SHA256 VT 1,000 906 (90.6%) 94 (9.4%)

OTX 1,000 25 (2.5%) 975 (97.5%)

CyNER 1,000 1,000 (100%) 0 (0.0%)

IPv4 VT 1,000 998 (99.8%) 2 (0.2%)

OTX 1,000 195 (19.5%) 805 (80.5%)

extracted named entities from the validation data using the dictionary. As another
baseline, we used the NER model with CRF, which is a well-known conventional
method. We trained each model for 200 epochs. The final accuracy of both models
is shown in Table 3, which includes the values of the data for validation.

First, we can see that the accuracy of all machine learning-based models was
higher than that of the baseline dictionary. In order to determine the effect of pre-
training with the domain corpus, we evaluated the accuracy with and without the
domain corpus for each model except the baseline. The results without the domain
corpus are listed in the BERT row, and the results with the domain corpus are
listed in the CyNER row. From the experimental results, we can see that the F-
measure improved in all the models, with a maximum improvement of about 2.4
points in bert-base-uncase (from 0.7523 to 0.7760). In addition, roberta-large had
the highest accuracy among all models with an F-measure of 0.8012. This result
confirms that pre-training with domain corpora can improve the accuracy of NER
in the field of cyber security. Note that the following evaluations and analyses are
conducted using CyNER with roberta-large.
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Fig. 3. Number of AV detections for IOCs included in VirusTotal.

Evaluation 2: Relation ExtractionAccuracy. In this evaluation, we selected
PositionRank [10], TopicRank [3], and MultipartiteRank [2] as the key phrase
extraction methods and measured the percentage of correct answers when per-
forming the relation extraction described in Sect. 3.7 using each method. In this
case, only nouns, proper nouns, and adjectives were used as candidates for key
phrases. We then compared the list of extracted key phrases with the list of unique
expressions, and extracted those that matched as related words. The percentage
of correct answers in this evaluation is shown in Table 4. MultipartiteRank had the
highest percentage of correct answers, at 81.65%. The accuracy of PositionRank
was almost the same, at 77.22%. Both methods favored words close to the begin-
ning of the sentence, which suggests that key phrases related to IOCs in CTI have a
high co-occurrence with words close to the beginning of the sentence. These results
demonstrate that BERT is suitable for CTI classification, RoBERTa for NER, and
MultipartiteRank for relation extraction.

4.4 IOC Coverage

In this evaluation, we checked whether or not the IOCs extracted by CyNER were
included in VirusTotal and OTX, and compared their coverage. We randomly
selected IOCs that were associated with one or more malware. The properties of
the IOCs are the hash value of the malware (SHA256) and the communication
destination (IPv4 address). In addition, we selected 1,000 hash values and 1,000
communication destinations, and used them for comparison.

First, Table 5 shows the results of the coverage evaluation. In this evalua-
tion, we compared the coverage of VirusTotal and OTX based on 1,000 SHA256
and 1,000 IPv4 addresses each which are associated with the malware families
extracted by CyNER. The coverage of OTX was 2.5% for SHA256 and 19.5% for
IPv4, which is relatively low, probably due to the fact that OTX relies heavily
on manual and expert registration. In contrast, the coverage of VirusTotal was
90.6% for SHA256 and 99.8% for IPv4, which included most of the IOCs extracted
by CyNER. Since the number of contributors to VirusTotal is larger than that of
OTX, it is assumed that most of the IOCs listed in the public CTI, which is the
source of information for CyNER, have already been submitted. However, among
the IOCs extracted by CyNER, there were some that were not included in either
service, so it is useful to be able to structure such IOCs automatically and with
contextual information by linking them to malware families.

Next, we compared the results in terms of the amount of information. First,
although OTX lacks some coverage (as described above), it can be tagged
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Fig. 4. Lifetime for each type of IOC.

manually and often contains the same amount of information or more than
CyNER. In addition, VirusTotal can scan the target with dozens of AV products
and URL scanners. The results of these scans are shown in Fig. 3.

Most of the files (SHA256) were detected by more than 30 AV products, which
means that the results can be used to estimate with high accuracy whether the
target is malware or not. In contrast, for the communication destination (IPv4),
almost all of them were detected by fewer than ten engines, and it is not easy to
estimate whether the target is malicious or not using only these results. This may
be indirectly due to the fact that it is not easy to determine whether the target is
malicious or not by simple scanning due to cloaking and the use of non-well-known
ports. We also verified whether malware families can be estimated based on the
scan results of VirusTotal using AVCLASS [38]. Of the 906 samples included in
VirusTotal, we were able to estimate the malware family for about 40% as well as
CyNER, but not for the remaining 60%. This can be attributed to the lack of infor-
mation associated with the malware family, since some specimens and AV engines
were detected with generic names such as Generic.Trojan. In addition, although
samples that download malware in the latter stage were related to a specific mal-
ware family in a series of attacks, they were detected only as “Downloader” in iso-
lation, and thus, similarly, no information related to the malware family could be
obtained. On the other hand, CyNER can link IOCs to malware families in CTI, so
it is highly possible to determine whether a malware is malicious or not regardless
of whether it is SHA256 or IPv4. In addition, since CyNER links IOCs to attacks
mentioned in CTI without depending on the nature of the sample, it is possible to
link even Downloader to malware families that were dropped in the later stages.

4.5 Time-Series

In this section, we analyze IOC from the view point of time-series. For each IOC,
the date when it was first reported by CTI and the date when it was last reported
were recorded, and the difference in the number of days between them was defined
as the observation period. The observation period was defined as the difference in
the number of days between the two dates. Figure 4 shows the results of the sur-
vey divided by the type of IOC (IP address, URL, and hash), and the observation
period plotted by its length. As we can see, most of the observation periods are
within the range of 0 to 2 days for all the IOC types. In particular, 49,527 hash val-
ues, or more than 98% of all IOCs, fall within this range. This is probably due to
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the fact that it is relatively easy to detect malware based on hash values. Moreover,
because hash values can be changed by variants, malware with the same hash tends
not to be used for a long time. In addition, many of the URLs and IP addresses have
a short observation period, suggesting that they are used and discarded after each
attack.

On the other hand, although not the majority, 19,010 cases had an observation
period of more than three days, and some of them were reported for a long period of
time, especially for URLs and IP addresses. For example, 59[.]188[.]0[.]197 was an
IP address that had been observed for a relatively long period of time (792 days).
This IP address was reported as the C2 server in the spear phishing attack of the
Temper Panda group in 2014. The IP address was later reported to have been used
in an attack by the same group in 2015, suggesting that it is one of the attack infras-
tructures that the group has been continuously exploiting. The same IP address
was also reported to have been used in an attack by theAPT16 group in 2015, sug-
gesting that the attack infrastructure may be shared by multiple attack groups.
Thus, it is possible that we can automatically extract more dangerous IOCs by
extracting IOCs that have been observed for a long time.

5 Discussion

5.1 Practicality

Due to resource constraints, there is a real need to add only those threats that
are of a higher level to the block list. For such a requirement, CyNER can be used
to select those that are associated with a specific threat, or those that have been
reported over a long period of time or across multiple sources. In addition, CyNER
can be used to present long-term IOCs in chronological order, or to present IOCs
that have been reported across multiple sources, which is expected to improve the
efficiency of operations for the aforementioned requirements. In addition, since the
IOCs are structured as STIX, which is a common format, it is expected that the
utilization by existing libraries (e.g., visualization by STIX Visualizer [31]) and
the automatic linkage with the security appliance can be utilized.

On the other hand, there are some points that need to be considered in practical
use. Although we used the F-measure uniformly in this accuracy evaluation, the
accuracy that we consider important differs depending on the task. For example,
for manual incident response, coverage is important even if false positives are toler-
ated. In contrast, when creating a block list, true positives are important because
it is undesirable to over-detect normal communication. It is therefore necessary to
choose which indicators are important depending on the task. In addition, it has
been suggested that CTI potentially contains false positives [17] so it may be desir-
able to introduce a separate filter for sensitive applications against false positives.

5.2 Limitation

FalsePositives andFalseNegatives. If theURLor IP address is defanged using
an unknown method, there is a possibility that it cannot be refanged and cannot be
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extracted using regular expressions. However, in most cases, the defanging method
is standardized for each CTI site, so we assume it is possible to deal with the prob-
lem by establishing a refang rule for each site.

In CyNER, all IOCs included in a CTI are handled flatly, and all IOCs are
linked to a word that represents the CTI. In other words, the proposed method
is likely to be incompatible with CTIs containing multiple topics in a single CTI,
such as weekly reports.

Information Sources. In this paper, we focused on blogs and official announce-
ments as CTI sources, but CTIs are published in other forms as well. One major
CTI source is SNS, e.g., Twitter. Therefore, a lot of research has focused on col-
lecting CTI from SNS: [39] gathers the vendor’s patch release information from
SNS, and [28] gathers threats or vulnerability information from SNS. In SNS anal-
ysis research, there are a number of unique challenges, e.g., texts are shorter than
common articles, so extracting information is difficult [28,39], or fake information
is potentially included, and verification is necessary [43]. Of course, intelligence in
SNS has its advantages, primarily in that it is more prompt than in blogs; thus,
in the future, we plan to extend CyNER for the importation of other sources for
intelligence promptness and coverage. In addition, although 34 sources were used
in this study, the information obtained in this experiment is not necessarily cover-
age, since other sources may exist.

5.3 Research Ethics

When collecting CTIs for evaluation in this paper, a certain interval was set for
each access when information was obtained from the same site. In addition, as
described in the design section, we checked for updates to the articles, and if there
were none, we did not attempt further access. These measures reduce the unnec-
essary load on the CTI distribution site.

6 RelatedWork

Structuring CTI. Prior research has attempted to structure unstructured data
by creating dictionaries and ontologies [21,32]. In [32], cyber ontologies and their
extensions for malware were discussed. In addition, [21] argued the importance
of developing a multi-layered cyber threat intelligence ontology. However, in the
security field, continuous maintenance of dictionaries and ontologies is not easy
because new words are often created due to the emergence of new malware, the
discovery of vulnerabilities, and the assignment of code names. CyNER mitigates
this challenge by using machine learning-based information extraction. Also, in
[21], it was pointed out that existing ontologies lack expressiveness and coverage
due to a lack of development.

To mitigate these issues, some studies have attempted to structure unstruc-
tured data by machine learning-based or probabilistic method-based natural lan-
guage processing, similar to the proposed method [14,15,18,29,36]. In particular,
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iACE [18] attempted to extract not only named entities but also contextual infor-
mation related to IOCs by using graph mining. However, the relationships with
distant IOCs were not extracted, in contrast to our own work.

NLP inCybersecurity. In addition to the aforementioned structuring, a number
of studies have focused on the use of CTI. FeatureSmith [44] generates features by
text mining CTI and automatically builds a model to detect Android malware. [9]
is another method for automatically constructing threat detection rules from CTI.
TTPDrill [12] conducts text mining for CTI and assigns the descriptions to TTPs
and Cyber Kill Chains, and ChainSmith [45] estimates the roles of IOCs extracted
from CTI. POIROT [25] performs Threat Hunting by graphing and comparing
audit logs and CTI, respectively; Extractor [37] automates the graphing of CTI.
However, the objectives of these studies did not involve structuring CTI, and none
of them carried out crossover analyses of CTI. Although they have different goals,
all these methods use natural language processing techniques to analyze and utilize
CTI in the same way as CyNER.

CrossoverAnalysis forCTI.There are also several studies that attempt to per-
form crossover analysis of CTIs. [23] investigated IP addresses and domains in mul-
tiple blocklists and found that many IOCs are unique to a single list. [17] similarly
investigated multiple blocklists. We focus on CTI in its unstructured state rather
than blocklists, and conduct crossover analysis after structuring it.

7 Conclusion

In this paper, we proposed CyNER, a method to automatically convert CTIs writ-
ten in natural language into STIX, with the aim of improving the efficiency of anal-
ysis. CyNER extracts named entities and relations between named entities from
CTI and then automatically structures them into STIX 2.1 format. Key phrases
are extracted in units of CTI and then associated with noncontextual IOCs. This
enables the extraction of relations that have no relation in the neighborhood, which
is not possible in previous RE methods.

We extracted 270,047 IOCs from 52,292 CTIs of 34 information sources using
CyNER, and conducted a crossover analysis. The results showed that CyNER
can extract IOCs that are not included in the existing reputation services. We
also found that 19,010 IOCs are continuously reported and that some IOCs are
exploited across multiple attack groups for more than a year. From the above
results, it is expected that CyNER will contribute to the efficiency of CTI anal-
ysis. Future work will include improving the accuracy of each task and evaluating
CyNER on larger datasets.

A Source of CTI

Table 6 shows 34 sources of CTIs used by CyNER. We’re very grateful to all of the
CTI publishers.



CyNER: Information Extraction from Unstructured Text of CTI Sources 101

Table 6. Source websites of CTIs.

# Publisher URL

1 Avast Blog https://blog.avast.com/

2 Certego http://www.certego.net/en/news/

3 Checkpoint https://blog.checkpoint.com/

4 Cisco Talos https://blog.talosintelligence.com/

5 Cofense https://cofense.com/blog/

6 Crowdstrike https://www.crowdstrike.com/blog/category/threat-intel-research/

7 Cylance https://threatvector.cylance.com

8 Dancho Danchev’s Blog https://ddanchev.blogspot.com/

9 Dynamo https://blog.dynamoo.com/

10 FireEye Blogs, Threat Research https://www.fireeye.com/blog/threat-research.html

11 Fox-it https://blog.fox-it.com/

12 Hexacorn http://www.hexacorn.com/blog/

13 ICS-CERT, advisories https://ics-cert.us-cert.gov/advisories

14 ICS-CERT, alerts https://ics-cert.us-cert.gov/alerts

15 InQuest Blog http://blog.inquest.net/blog/

16 Kaspersky lab, securelist https://securelist.com/

17 krebs on security https://krebsonsecurity.com/

18 malware-trafic-analysis https://www.malware-traffic-analysis.net/

19 Malwarebytes Labs, Threat Analysis https://blog.malwarebytes.com/category/threat-analysis/

20 MalwareMustDie http://blog.malwaremustdie.org/

21 McAfee Threat Center http://www.mcafee.com/us/threat center/

22 Naked Security https://nakedsecurity.sophos.com/

23 360 Netlab Blog http://blog.netlab.360.com/

24 paloalto cybersecurity https://researchcenter.paloaltonetworks.com/cybersecurity-2/

25 Sucuri https://blog.sucuri.net/

26 Symantec https://symantec.com/blogs/threat-intelligence

27 TaoSecurity https://taosecurity.blogspot.com/

28 The Hacker News https://thehackernews.com/

29 Threatpost https://threatpost.com/blog/

30 TrendLabs Security Intelligence Blog https://blog.trendmicro.com/trendlabs-security-intelligence/

31 US-CERT, alerts https://www.us-cert.gov/ncas/alerts

32 Webroot https://www.webroot.com/blog/

33 WeLiveSecurity https://www.welivesecurity.com/

34 Zscaler blogs https://www.zscaler.com/blogs/research

B Refang Rules

Table 7 shows all the refang rules implemented in CyNER.

Table 7. Refang and defang rules.

Category Before refanging After refanging

URL “hccp”, “hxxp”, “hXXp”, “xxxx”, “[http]” “http”

URL “hxxps”, “xxxxx”, “[https]” “https”

URL “http ://”, “http//”, “http:///” “http://”

URL “https ://”, “https//”, “https:///” “https://”

URL “:// ” “://”

URL “\/” “//”

URL “[www]”, “(www)” “www”

IPv4/URL “(.)”, “[.[”, “].]”, “[dot]”, “(dot)”, “[punkt]”, “(punkt)”, “DOT”, “DOT” “.”

IPv4/URL “ .com” “.com”

IPv6/URL “[:]” “:”

https://blog.avast.com/
http://www.certego.net/en/news/
https://blog.checkpoint.com/
https://blog.talosintelligence.com/
https://cofense.com/blog/
https://www.crowdstrike.com/blog/category/threat-intel-research/
https://threatvector.cylance.com
https://ddanchev.blogspot.com/
https://blog.dynamoo.com/
https://www.fireeye.com/blog/threat-research.html
https://blog.fox-it.com/
http://www.hexacorn.com/blog/
https://ics-cert.us-cert.gov/advisories
https://ics-cert.us-cert.gov/alerts
http://blog.inquest.net/blog/
https://securelist.com/
https://krebsonsecurity.com/
https://www.malware-traffic-analysis.net/
https://blog.malwarebytes.com/category/threat-analysis/
http://blog.malwaremustdie.org/
http://www.mcafee.com/us/threat_center/
https://nakedsecurity.sophos.com/
http://blog.netlab.360.com/
https://researchcenter.paloaltonetworks.com/cybersecurity-2/
https://blog.sucuri.net/
https://symantec.com/blogs/threat-intelligence
https://taosecurity.blogspot.com/
https://thehackernews.com/
https://threatpost.com/blog/
https://blog.trendmicro.com/trendlabs-security-intelligence/
https://www.us-cert.gov/ncas/alerts
https://www.webroot.com/blog/
https://www.welivesecurity.com/
https://www.zscaler.com/blogs/research
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Abstract. We study the security of the underlying keyed-permutations
of NIST LWC finalist TinyJAMBU. Our main findings are key-recovery
attacks whose data and time complexities are close to the birthday
bound 264. The attack idea works for all versions of TinyJAMBU permu-
tations having different key sizes, irrespective of the number of rounds
repeated in the permutations. Most notably, the attack complexity is
only marginally increased even when the key size becomes larger. Con-
cretely, for TinyJAMBU permutations of key sizes 128, 192, and 256
bits, the data/time complexities of our key-recovery attacks are about
265, 266, and 269.5, respectively. Our attacks are on the underlying per-
mutations and not on the TinyJAMBU AEAD scheme; the TinyJAMBU
mode of operation limits the applicability of our attacks. However, our
results imply that TinyJAMBU’s underlying keyed-permutations cannot
be expected to provide the same security levels as robust block ciphers of
the corresponding block and key sizes. Furthermore, the provable secu-
rity of TinyJAMBU AEAD scheme should be carefully revisited, where
the underlying permutations have been assumed to be almost ideal.

Keywords: TinyJAMBU · NIST LWC · keyed-permutation · slide
attack

1 Introduction

The Lightweight Cryptography standardization by NIST (NIST LWC) [9] is one
of the most actively discussed topics recently in the symmetric-key cryptography
community. In March 2021, out of 56 candidates NIST kept 10 finalists [10] whose
evaluations would take approximately 12 months [11].

In this paper we target TinyJAMBU [16], one of the finalists of NIST LWC.
TinyJAMBU was designed by Wu and Huang. Roughly speaking, TinyJAMBU
(Fig. 2) can be seen as the duplex construction [2] with its public permutation
replaced by a 128-bit keyed-permutations; or again as similar to SAEB [8].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C.-M. Cheng and M. Akiyama (Eds.): IWSEC 2022, LNCS 13504, pp. 107–127, 2022.
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TinyJAMBU has one of the smallest hardware footprints of all the final-
ists. One reason is its small 128 bits of internal state which is near optimal.
Moreover, the round function (Fig. 1) consists of a non-linear feedback shift
register (NLFSR) with only four XOR operations and a single NAND opera-
tion. To optimize throughput, TinyJAMBU varies the number of rounds of the
keyed-permutations throughout the mode. P1 denotes a permutation with fewer
rounds, and P2 the one with more rounds.

Table 1. Summary of attacks. KP, CP, and ACP represent known-plaintexts, chosen-
plaintexts, and adaptively-chosen plaintexts, respectively. †: This corresponds to the
Type-2 difference with a probability of 2−47 [15]. In [16], this analysis was deleted by
considering the difficulty of exploiting it through the mode. Because our interest is P2
as a standalone primitive without the mode, this analysis is of our interest.

Approach Rounds Key size Setting Data Time Memory Reference

differential 512†
any

CP 248 - - [14,15]

differential 640 CP 284 - - [16]

linear 512 KP 260 - - [14,16]

slide infinite

128

KP 265 265 264 Section 3.1

KP 264 265 264 Section 3.2

ACP 272.5 272.5 negl. Section 3.2

192
ACP 265 266 265 Section 4.4

CP 267 269 266 Section A.1

256 ACP 267.5 269.5 267.5 Section 5

Because of its minimalist design, the security of TinyJAMBU needs to be
carefully assessed. For instance, the security proof of TinyJAMBU assumes that
both P1 and P2 are ideal keyed-permutations, while deliberately making P1
weaker. As a matter of fact, the designers have already increased the number of
rounds of P1 from 384 to 640 following a forgery attack over a 338 rounds P1
by Saha et al. [14]. Unlike the old P1, P2 seems to resist those cryptanalyses
due to a larger number of rounds.

In this paper, we focus on slide attacks on TinyJAMBU keyed-permutation
which cannot be thwarted by increasing the number of rounds. As a matter
of fact, the designers do not make any claim on sliding property in the single-
key setting. Moreover, we are interested in sliding property that leads to actual
key-recovery attacks and their total complexity.

1.1 Our Contributions

In this paper, we study the security of the underlying keyed-permutation of
TinyJAMBU as a standalone primitive. Particularly, we investigate all the details
of the sliding property of the keyed-permutation to show that the sliding property
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actually leads to efficient key-recovery attacks for all key sizes. Intuitively, by
ignoring constant factors, the keyed-permutation can be attacked with about
264 queries and computational cost. Most notably, the attack complexity is only
marginally increased even when the key size becomes larger.

We begin with a slide attack on the keyed-permutation of TinyJAMBU-128
because of its simplicity. Slide attacks need to detect a slid pair by using the
birthday paradox, which makes it inevitable to make 264 queries. The simplest
attack scenario requires almost no extra overhead from this minimum require-
ment, which results in the data, time, and memory complexities of 265, 265, and
264, respectively. We then discuss a small observation to halve the data com-
plexity and apply the memoryless meet-in-the-middle attack to achieve the data
and time complexities of 272.5, while the required memory amount is negligible.

However, the simple attack on TinyJAMBU-128 cannot be trivially applied
to a larger key size as the keyed-permutation for a k-bit key has a periodical
structure in every k rounds weakening the key materials recovered by a slid pair.
Nevertheless, the information loss for a large key can be compensated for by
generating more slid pairs. Such a challenge has already been discussed in the
pioneering work [4], and the technique of making a chain of queries was proposed.
The same technique has been exploited by many following works [1,3,6]. In this
paper, we present a new technique called “splitting longer chains” that generates
more slid pairs than the previous method.

Then, we recover the key from multiple input and output pairs of Pk by apply-
ing linear algebra. In particular, we experimentally verified the correctness of our
key-recovery algorithm by assuming an access to several slid pairs. As a result,
we show that the keyed-permutation of TinyJAMBU-192 and TinyJAMBU-
256 can be attacked with a marginally increased complexity than the case with
TinyJAMBU-128. The complexities of our attacks are summarized in Table 1.

Lastly, we show several observations on the keyed-permutation: a combi-
nation of probability 1 differential characteristics and slide attacks to avoid
adaptively-chosen-plaintext queries, a transformation of Pk to the iterative FX-
construction [7], extension of our attacks so that the number of rounds that is
not a multiple of the key-length can be attacked, and implication of our attacks
to the authenticated-encryption with associated data (AEAD) schemes.

Note that results presented in this paper do not violate the security claim of
TinyJAMBU, which is only for the entire scheme including the mode. Neverthe-
less, security of the keyed-permutation is of interest, because it is assumed to be
ideal in the security proof. We believe that the security analysis in this paper
will be valuable for the NIST to choose the winner(s) of NIST LWC.

2 Specifications

TinyJAMBU is a family of AEAD schemes that supports the key sizes of 128,
192, and 256 bits. Each version is called TinyJAMBU-128, TinyJAMBU-192, and
TinyJAMBU-256, respectively. TinyJAMBU uses an n-round keyed-permutation
Pn as a building block.
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2.1 Keyed-Permutation Pn

The keyed-permutation Pn uses an internal state of 128 bits for all the key sizes,
which is represented by s0, s1, . . . , s127. Let k0, k1, . . . , kklen−1 denote the klen-
bit key. The internal state is updated by applying the following NLFSR n times
by increasing i from 0 to n − 1.

Fig. 1. Step-update function of TinyJAMBU for a klen-bit key.

Fig. 2. The mode of TinyJAMBU. P2 is P1024, P1152, and P1280 for TinyJAMBU-128,
TinyJAMBU-192, and TinyJAMBU-256. P1 is P640, which was updated from previous
P384 at the last-round design tweak in NIST LWC.

feedback ← s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ ki mod klen

for j from 0 to 126 : sj ← sj+1

s127 ← feedback

where ‘⊕,’ ‘∧,’ and ‘¬,’ are XOR, AND, and NOT, respectively. The NLFSR is
depicted in Fig. 1. Note that the tapping bit-positions were chosen so that 32
rounds of Pn can be computed in parallel on 32-bit CPUs.

2.2 AEAD Mode

The computation structure of TinyJAMBU is described in Fig. 2, which resem-
bles the duplex mode with the keyed-permutation Pn. The details of the mode
are omitted in this paper because our target is Pn. To process the nonce, the
associated data, and the second half of the tag, the round number n is 640 for all
key lengths, which is denoted by P1. During the initialization, the encryption,
and the first half of the tag, the round number n is 1024, 1152, and 1280 for
TinyJAMBU-128, TinyJAMBU-192, and TinyJAMBU-256, respectively, which
is denoted by P2.
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The main reason our attack strategy hardly applies to the AEAD mode is
that an attacker can only observe 32 bits out of the 128-bit input and output of
any permutation calls to P1 and P2.

2.3 Security Claim

64-bit security for authentication and 112-, 168-, and 224-bit security for encryp-
tion are claimed for TinyJAMBU-128, TinyJAMBU-192, and TinyJAMBU-256
respectively, against nonce-respecting adversaries who make at most 250 bytes
of queries.

Security of TinyJAMBU mode was proven assuming that P1 and P2 are
ideal keyed-permutations. Nevertheless, the designers reported the existence of
a differential characteristic with a probability of 2−471 and a linear characteristic
with a bias of 2−30 for 512 rounds [15], which is sufficient to conclude that P384,
the original round number for P1, can be distinguished from an ideal object.
Note that no analysis has been known for more than 512 rounds. In particular,
it seems that differential and linear cryptanalysis cannot be applied to P1024,
P1152, and P1280 used in P2.

2.4 Self-similarity of Pn

The keyed-permutation Pn does not use any round constant. Moreover, the bits
from the key are computed by ki mod klen. Hence, as mentioned by the designers
[16], the state-update function of Pn has some sliding property, which is shown
to be exploited with two related keys.2

Given that the internal state size is 128 bits, TinyJAMBU-128 shows the
best fit because Pn is iterative in every 128 rounds and each state bit is
updated exactly once with each key bit. In the following, we first describe the
attack for TinyJAMBU-128 and later extend the attack to TinyJAMBU-192 and
TinyJAMBU-256.

3 Slide Attacks on TinyJAMBU-128

This section presents a slide attack on TinyJAMBU-128. Because of its simplic-
ity, it bears some similarity with other works, e.g. Bar-on et al. [1, Alg.1]. We
first describe a key-recovery attack with 265 known-plaintext queries, 265 offline
computations of P128, and a memory to store 264 queries. We then discuss an
idea to halve the data complexity and further discuss a memoryless variant of
1 This corresponds to the Type-2 difference [15]. In [16], the analysis about the Type-2

difference was deleted due to the difficultly of exploiting it through the mode. Our
interest is P2 as a standalone primitive, so the Type-2 difference is of our interest.

2 The designers did not give any details of this related-key attack, but when K′ =
K ≪ 1, key bits for K′ from round 1 to n equal the key bits for K from round 2 to
n + 1. Hence, a plaintext M processed by EK and a plaintext PK

1 (M) processed by
EK′ are actually the 1-round slid pair.
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Fig. 3. Overview of slide attacks on the keyed-permutation of TinyJAMBU-128.

the attack. Note that the attack can work for 128t rounds for any positive integer
t > 1 including P1 and P2 of TinyJAMBU-128, and the attack works in the
single-key setting.

3.1 Overview of the Simple Slide Attack

The core of the slide attack (Fig. 3) is to find a slid pair; a pair of plaintext-
ciphertext pairs (A1, B1) and (A2, B2), in which A2 is the internal state after the
first application of P128 for A1, or A2 = P128(A1). This simultaneously ensures
that B2 = P128(B1). A slid pair is generated by using the birthday paradox.
The attacker makes 264 queries of A1 and of A2 to obtain the corresponding B1

and B2. Then, among all the 2128 pairs, one pair will be a slid pair with good
probability. The slid pair can be detected via a 113-bit filter and a collision-
finding algorithm with a computational cost of 264.

Computing 113-Bit Filter. For a given pair of plaintext-ciphertext pairs
(A1, B1) and (A2, B2), we want to know whether the induced key for A2 =
P128(A1) and for B2 = P128(B1) collides. We do a collision-finding algorithm
on values computed separately from (A1, B1) and (A2, B2), which is denoted by
G1(A1, B1) and G2(A2, B2). We denote Gx(Ax, Bx), x ∈ {1, 2} with respect to
the i-th bit by Gx(Ax, Bx)[i].

Let a0, a1, . . . , a127 and a128, a129, . . . , a255 denote A1 and A2, respectively
and b0, b1, . . . , b127 and b128, b129, . . . , b255 denote B1 and B2, respectively. If
(A1, A2) is a slid pair then so is (B1, B2) and ki is computed as follows:

ki = ai+128 ⊕ ai ⊕ ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ ai+91

= bi+128 ⊕ bi ⊕ bi+47 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91.

Bit Positions 0 to 36. For i = 0, 1, . . . , 36, we let G1(A1, B1)[i] and G2(A2, B2)[i]
be the XOR sum of the terms belonging to (A1, B1) and (A2, B2) with respect
to the i-th bit, respectively, i.e.,

G1(A1, B1)[i] := ai ⊕ ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ ai+91⊕
bi ⊕ bi+47 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91,

G2(A2, B2)[i] := ai+128 ⊕ bi+128.
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G1(A1, B1)[i] and G2(A2, B2)[i] can be computed independently from the other
pair, hence a collision on 37 bits of k0, k1, . . . , k36 can be observed.

Bit Positions 37 to 42. For i = 37, 38, . . . , 42, notice that the term ai+91 belongs
to A2. The same applies to B2. Hence, we have

G1(A1, B1)[i] := ai ⊕ ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ bi ⊕ bi+47 ⊕ (¬(bi+70 ∧ bi+85)),

G2(A2, B2)[i] := ai+91 ⊕ ai+128 ⊕ bi+91 ⊕ bi+128.

No Filter for Bit Positions 43 to 57. For i = 43, 44, . . . , 57, one of the inputs
to the AND operation, ai+85 (resp. bi+85), belongs to A2 (resp. B2), while the
other input bit, ai+70 (resp. bi+70), belongs to A1 (resp. B1). Hence, the output
of the AND operation cannot be computed independently.

Bit Positions 58 to 80 and 81 to 127. Following the same strategy, equations for
i = 58, 59, . . . , 80 are defined as

G1(A1, B1)[i] := ai ⊕ ai+47 ⊕ bi ⊕ bi+47,

G2(A2, B2)[i] := (¬(ai+70 ∧ ai+85)) ⊕ ai+91 ⊕ ai+128 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91 ⊕ bi+128,

and equations for i = 80, 81, . . . , 127 are defined as

G1(A1, B1)[i] := ai ⊕ bi,

G2(A2, B2)[i] := ai+47 ⊕ (¬(ai+70 ∧ ai+85)) ⊕ ai+91 ⊕ ai+128⊕
bi+47 ⊕ (¬(bi+70 ∧ bi+85)) ⊕ bi+91 ⊕ bi+128.

Summary. For each A1 and its query-output B1, the attacker can compute a 113-
bit value to match with G1(A1, B1)[i] for i =∈ {0, 1, . . . , 127}\{43, 44, . . . , 57}.
Similarly, for (A2, B2), the 113-bit value to match can be computed with
G2(A2, B2).

Attack Procedure. The pseudo-algorithm to recover the key of TinyJAMBU-
128 is described in Algorithm 1. For simplicity, here we assume that a table T
of size 264 is available.

Analysis. In the above attack procedure, the attacker makes 264 queries of
A1 and A2, thus the data complexity is 265 known-plaintexts. The bottleneck
of the time complexity is to compute G1(A1, B1) and G2(A2, B2), which is 265

computations of P128. The attack requires a memory of size 264 for the table.
(The table for Step 2 can be omitted by checking the collision in an online manner
when a value of G(A2, B2) is obtained.) In Step 3, 2128 pairs are examined and
2128−113 = 215 pairs will pass this filter, and a valid pair will be detected by
matching the remaining 15 bits.
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Algorithm 1. A simple slide attack on TinyJAMBU-128 with 264 memory.
1: Generate 264 distinct values for A1, obtain all the respective B1 with 264 queries,

compute G1(A1, B1) for the 113 bits, and store (A1, B1, G1(A1, B1)) in the table.
2: Generate 264 distinct values for A2, obtain all the respective B2 with 264 queries,

compute G2(A2, B2) for the 113 bits, and store (A2, B2, G2(A2, B2)) in the table.
3: Find collisions of G1(A1, B1) and G2(A2, B2) for all 264 × 264 = 2128 pairs.
4: for all pairs with G1(A1, B1) = G2(A2, B2) do
5: Derive k43, . . . , k57, with A2 = P128(A1) and also with B2 = P128(B1).
6: if k43, . . . , k57 from A2 = P128(A1) and from B2 = P128(B1) collide then
7: return K.
8: end if
9: end for

3.2 Reducing Data or Memory Complexity

Halving Data Complexity. Algorithm 1 assumes that queries in Step 1 cor-
respond to the input to P128 and queries in Step 2 correspond to the output
from P128. However, we can reuse the data of Step 1 in Step 2 and look for a
collision the same way. This would halve the data complexity from 265 to 264.

A Memoryless Variant. As in [1], the 264 memory requirement of Algorithm 1
can be removed with the standard memoryless collision-finding algorithm [13],
which exploits a cycle-detection algorithm for the query chain. To do so, we start
with a 113-bit value v0, pads it to 128 bits to get A0, and query to obtain B0.
Then, we compute either G1(A0, B0) or G2(A0, B0) depending on a bit of v0
(LSB for instance). Set the result as v1 and iterate this procedure to generate
the chain of v0, v1, v2, . . ..

On the memory side, we only store some particular values for instance store
the 100 values starting with the most 0 bits. When the chain length reaches about
2113/2, a newly computed vi will eventually collide with one of the stored values.
The exact colliding point can be found by starting from the stored points before
the observed collision. If a collision is between G1(Ai, Bi) and G2(Aj , Bj), Ai and
Aj is a slid pair candidate. If a collision is between Gb(Ai, Bi) and Gb(Aj , Bj)
for the same b ∈ {1, 2}, the algorithm is repeated from scratch by changing v0.

The procedure will be repeated twice on average to find a slid pair candidate
which makes 2 × 2113/2 = 257.5 queries. And the candidate is a slid pair with
probability 2−15, thus we need 215 candidates, which makes the total data com-
plexity of 215 ×257.5 = 272.5 adaptively-chosen-plaintext queries. For each query,
the attacker computes G1 or G2, thus the time complexity is 272.5 computations
of P128. The memory amount is negligible when there are sufficiently few stored
113-bit values.

The memoryless meet-in-the-middle attack is an extreme case to optimize
the memory complexity. A more general tradeoff for data, time, and memory
complexities can be achieved by the parallel collision search [12].
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4 Attacks Against a Larger Key

The same filter will not work for longer key versions TinyJAMBU-192 and
TinyJAMBU-256 as the permutation repeats only after a number of rounds
equal to the key length. However, we show that we can build a 113 − κ-bit filter
for 128 + κ-bit key permutation and still do a key recovery from a slid pair.

4.1 Building a Filter

Concretely, for a given pair of plaintext-ciphertext pairs (A1, B1) and (A2, B2),
we want to know whether the key for A2 = P128+κ(A1) and for B2 = P128+κ(B1)
will collide. Hence, just like in Sect. 3.1, we want to compute colliding values
separately from (A1, B1) and (A2, B2) to efficiently look for a collision.

Similarly, let us denote the bit states si for i ∈ [0, 255 + κ] such that s127 to
s0 is the input, s255+κ to s128+κ is the output and s127+κ to s128 are κ bits of
internal computations. By definition of the permutation we have:

ki = si+128 ⊕ si ⊕ si+47 ⊕ (¬(si+70 ∧ si+85)) ⊕ si+91.

We look for relations of key bits that only depend on input and output bits, that
is on si for i ∈ [0, 127] ∪ [128 + κ, 255 + κ].

First, we ignore all key bits whose AND term (¬(si+70 ∧ si+85)) is not com-
putable given either the input or output bits. There are 113 remaining key bits
that are ki for i ∈ [0, 42] ∪ [58 + κ, 127 + κ]. Indeed, every AND term is unique,
so there is no linear combination that can hope to cancel it.

Fig. 4. Construction of the 113 × (256 + κ) binary matrix M.

Then, we build a binary matrix M with 113 rows, one row for each considered
ki, and 256 + κ columns, one column for each state bit si. Let M(i, j) = 1 if sj

linearly appears in the formula for the ith retained bit key and M(i, j) = 0 oth-
erwise, as illustrated in Fig. 4. For instance, M(0, j) = 1 for j ∈ {128, 91, 47, 0}
and M(0, j) = 0 otherwise.

Then, we use row-wise Gaussian elimination on M to put zeroes on the
columns 128 to 127 + κ that correspond to internal computation state bits.
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Fig. 5. The 113×(256+κ) binary matrix M after Gaussian elimination. I is the identity
matrix, 0 is the zero matrix and E1, E2, S1, and S2 are binary matrices resulting from
the Gaussian elimination.

Assuming the 128 to 127 + κ-column submatrix is a full rank 113 × κ matrix,
we will at least recover 113 − κ rows with only zeroes on those columns that
naturally correspond to 113 − κ relevant relationships as illustrated in Fig. 5.

The linear part of each relationship is recovered by looking at the other
columns of M and the non-linear part must be also added by looking at the
corresponding key bits involved. By construction, those 113−κ relationships are
linearly independent and will involve both input and output state bits and only
those state bits. Each such row thus implies a relation between key bits, input
bits and output bits that can be summarized as R(k) = Ri(A1) ⊕ Ro(A2) =
Ri(B1) ⊕ Ro(B2); implying Ri(A1) ⊕ Ri(B1) = Ro(A2) ⊕ Ro(B2) that can be
used to efficiently filter a slid pair among many plaintext-ciphertext.

4.2 Enhancing a Filter with Chains of Queries

With the previous method, to attack P240 (κ = 112), we only have a 1-bit filter
which is insufficient. Hence we need a way to leverage on the filter.

Basic Method. We use a technique by Biryukov and Wagner [5] to increase the
number of filtering bits by generating more slid pairs. To multiply the number of
filtering bits, the attacker can generate a chain of queries. That is, after querying
A1 and receiving B1, the attacker queries B1 to obtain C1, then queries C1 to
obtain D1, and so on. A similar chain is generated from each A2. If (A1, A2)
is a slid pair, then so are (B1, B2), (C1, C2) and (D1, D2). Thus, we have the
relationship R(k) = Ri(A1)⊕Ro(A2) = Ri(B1)⊕Ro(B2) = Ri(C1)⊕Ro(C2) =
Ri(D1)⊕Ro(D2) = · · · . When the length of the chains is �, the 113−κ-bit filter
is applied to � pairs, which achieves a � · (113 − κ)-bit filter. For P240 (κ = 112),
we set � = 128 and gets a 128 · (113 − 112) = 128-bit filter to identify the right
slid pair.

Advanced Method: Splitting Longer Chains. We can further chain the
queries to efficiently create multiple chains of the required length. Concretely,
chains of length � + β values can be cut into β + 1 chains of length � (Fig. 6).
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However, comparing those β + 1 chains for any reasonable β won’t yield any
slid pairs since an n-bit permutation won’t loop until about O(2n) iterations.
Nevertheless, comparing two independent chains of length � + β, we can expect
to find a solution among the implied 2β + 2 chains with probability 2(2β +
1)/2128 (fixing the first set of chains, there are 2β + 1 starting points for the
next set of chains that will provide a slid output and the same amount for a slid
input solution). Hence a solution is expected to be found after collecting about
264/

√
4β + 2 sets of β + 1 chains, which makes for a 264(� + β)/

√
4β + 2 data

complexity optimized for β = � − 1. For � = 128, the data complexity becomes√
255/2 · 264 � 267.5.

Fig. 6. Schematic representation of splitting longer chains for � = 5 and β = 2.

4.3 Key-Recovery from Input/Output Pairs

In this section, we explain how to efficiently extract the 128 + κ-bit key from
multiple input/output pairs of P128+κ in only about κ log(κ) operations where
0 ≤ κ ≤ 113.

The key-recovery is described in Algorithm 2 which basically guesses the κ
unseen bit states one by one. Let us explain the first iteration of the algorithm.
We start by taking the matrix M after Gaussian elimination (Fig. 5) that was
allegedly used to filter the pairs (A1, A2) and (B1, B2) both belonging to the
set P. We first guess k0, the first key bit, which corresponds to the first row of
our matrix M as it linearly depends on a128 and not on the rest of the unseen
part. Hence, from k0 we can deduce a128, b128, etc. for all known slid pairs. With
the knowledge of the 128th state bit, a new AND term can be computed that
is a113 ∧ a128 corresponding to k43. Thus, we add the linear term for k43 to the
matrix M , which now contains 114 rows. Row-wise Gaussian elimination will
restore the form of Fig. 5 but with 114 rows and, hence, a (114 − κ)-bit filter.
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This additional bit of filter enables us to check whether the key guess was wrong.
If the additional filter pass for all pairs, we proceed. Otherwise, we change our
guess. Note that in the last 15 iterations, we can further deduce an additional
AND term using a known output bit.

Algorithm 2. Efficient key-recovery after filtering on TinyJAMBU-(128 + κ).
1: Let P be a list of multiple input/output pairs (S1, S2) whose internal (visible and

invisible) bit states are denoted as si for i from 0 to 255 + κ.
2: Let M be the filter producing matrix as in Fig. 5.
3: for i from 0 to κ − 1 do
4: g ← 0
5: Guess that the relation induced by the (i + 1)th row of M sums to g.
6: ∀(S1, S2) ∈ P : Deduce s128+i from the guess.
7: Add the relation of k43+i in the matrix M .
8: if i ≥ κ − 15 then
9: Add the relation of k58+i in the matrix M .

10: end if
11: Perform row-wise Gaussian elimination with respect to column 128+i to 127+κ.
12: Consider the new computable relation (two relations if i ≥ κ − 15).
13: if ∀(S1, S2) ∈ P : the relations are not equal then
14: if g = 0 then
15: g ← 1
16: Go back to Step 5
17: else
18: No consistent key can be fond. return ∅.
19: end if
20: end if
21: end for
22: For some (S1, S2) ∈ P compute k such that :
23: ki = si+128 ⊕ si ⊕ si+47 ⊕ (¬(si+70 ∧ si+85)) ⊕ si+91

24: return k

The probability of success of this algorithm mainly depends on the probability
of a wrong guess passing through the additional filter created which depends on
the number of input/output pairs we have at hand. Notice that we can further
compute additional input/output pairs by chaining the queries as in Sect. 4.2.
Gathering around log(κ) input/output pairs will detect a wrong guess with about
1−1/κ probability. Hence, it will fully recover κ bits of key with good probability
((1 − 1/κ)κ tends to e−1 � 36.8% as κ grows) and deduce the full 128 + κ bits
of key. Allowing back-tracking is probably efficient but hard to analyze. Notice
that it is possible to know whether the additional filter passed because the guess
is true or because it is independent of the guess. Indeed, the AND term we add
depend both on a newly guessed key (computed state bit) and on a known state.
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Table 2. Experimental reports about Algorithm 2. Success probability with different
size of P on 1000 trials against a theoretical estimate.

|P| 5 6 7 8 9 10 11 12 13 14

success prob. (κ = 64) 3.6 19.3 46.1 69.7 82.2 90.5 95.0 97.6 98.5 99.5

theoretical prob. (κ = 64) 4.0 20.8 46.1 68.0 82.5 90.9 95.3 97.6 98.8 99.4

success prob. (κ = 112) 0.4 4.1 19.9 44.7 69.6 83.8 90.5 95.1 97.7 99.1

theoretical prob. (κ = 112) 0.2 4.5 21.6 46.7 68.4 82.7 91.0 95.4 97.7 98.8

If the known state was 0, then the AND term does not depend on the guess
but if the known state is 1 then the AND term depends linearly on the guess.
Comparing both cases together will give us the correct guess; otherwise the filter
always verifies independently of the guess.

Experimental Reports. We implemented Algorithm 2 and verified the required
number of input/output pairs. We say Algorithm2 succeeded when it returned
the unique secret key. Table 2 summarizes the attack success probability with
different sizes of P and κ ∈ {64, 112}. The theoretical estimation of the success
probability is computed by (1−2−(|P|−1))(κ−15)×(1−2−2×(|P|−1))15. It assumes
there is a 1/2 chance to detect a bad guess per filter per additional input/output
pairs; we have one filter per step up to κ − 15 key bits, and two filters for the
last 15 key bits. The theoretical estimation of log(κ) pairs required amounts to
6 and 7 for κ = 64 and κ = 112, respectively, and has indeed a good probability
of success. The theoretical estimations well fit the success probability of our
experiments.

4.4 Application on TinyJAMBU-192

The internal permutation of TinyJAMBU-192 is the case with κ = 64. With the
technique in Sect. 4.1, we build a 113 − 64 = 49-bit basic filter further enhanced
by the technique of Sect. 4.2 with chain length � = 2. This builds a 2×49 = 98-bit
filter and reduces 2128 candidate pairs to a sufficiently small size.

The pseudo-algorithm to recover the key of TinyJAMBU-192 is described
in Algorithm 3. For simplicity, here we assume that a table T of size 265 is
available. In Step 1, we make 265 queries, in which the first 264 queries can be
known-plaintexts queries, while the last 264 queries must be adaptively-chosen-
plaintext queries. In Step 2, we compute Ri for two pairs and Ro for two pairs,
which is faster than 4 × 264 = 266 computations of P192. In Step 3, the match of
98 bits will be examined for 2128 pairs, hence 230 pairs will remain after the filter.
In Step 5, we further make 2 × 230 = 231 adaptively-chosen-plaintext queries.
Thanks to the additional 49-bit filter, only the right slid pair will remain after
this step. In Step 7, we make additional queries to collect log κ = 6 slid pairs,
which is required by the key-recovery algorithm. The complexity of the key-
recovery algorithm is 64× log 64, which is negligible. In summary, the bottleneck
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Algorithm 3. An adaptively chosen-plaintext slide attack on TinyJAMBU-192.
1: Generate 264 distinct values for A. Make 264 queries of A to obtain B, and make

264 queries of B to obtain C.
2: Compute Ri(A, B) and Ri(B, C) for the 98 bits, and compute Ro(A, B) and

Ro(B, C) for the 98 bits. Store (A, B, C, Ri(A, B)‖Ri(B, C), Ro(A, B)‖Ro(B, C))
in the table.

3: Find collisions of Ri(A, B)‖Ri(B, C) and Ro(A
′, B′)‖Ro(B

′, C′) for all 2128 pairs.

4: for all pairs with Ri(A, B)‖Ri(B, C) = Ro(A
′, B′)‖Ro(B

′, C′) do
5: Make 2 queries of C and C′ to obtain D and D′.
6: if Ri(C, D) = Ro(C

′, D′) then
7: Make additional queries to extend the chain length to be log κ = 6.
8: Run the key-recovery procedure in Sect 4.3.
9: Return K.

10: end if
11: end for

of the attack is Steps 1 and 2, which requires 265 adaptively-chosen-plaintext
queries, about 266 computational cost, and a memory to store 265 values.

5 Optimization for Attack on TinyJAMBU-256

When κ = 128, which is the parameter for TinyJAMBU-256, the technique
of Sect. 4.1 can no longer construct a filter. Thus, we need additional tricks to
attack TinyJAMBU-256. In this section, we optimize the attack on TinyJAMBU-
256 by exploiting the structure of TinyJAMBU. First, we show a method to
construct a 1-bit filter with only a 2-bit guess. In other words, the complexity
is only increased by a factor 22. Next, we show an efficient method to recover
the secret key given several plaintext-ciphertext pairs on P256. The 15-bit key,
i.e., k0, . . . , k14, is recovered by exploiting the algebraic structure, and then, the
other key bits are recovered by using Algorithm2.

5.1 1-Bit Filter with a 2-Bit Guess

The trivial extension requires an additional 16-bit guess. However, we do not
need to guess the whole 16-bit key, and only an additional 2-bit guess is enough
to obtain a 1-bit filter. Concretely, guessing the 2 bits of key k0 and k15 is enough.
We derive the following equations from the step-update function.

s128 = s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ k0

s143 = s15 ⊕ s62 ⊕ (¬(s85 ∧ s100)) ⊕ s106 ⊕ k15

By guessing k0 and k15, we can compute s128 and s143. Then, we obtain k21 ⊕
k58 ⊕ k186 ⊕ k233 from only known bits. These four key bits are computed as
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k21 = s21 ⊕ s68 ⊕ (¬(s91 ∧ s106)) ⊕ s112 ⊕ s149,

k58 = s58 ⊕ s105 ⊕ (¬(s128 ∧ s143)) ⊕ s149 ⊕ s186,

k186 = s186 ⊕ s233 ⊕ (¬(s256 ∧ s271)) ⊕ s277 ⊕ s314,

k233 = s233 ⊕ s280 ⊕ (¬(s303 ∧ s318)) ⊕ s324 ⊕ s361,

and the sum is

k21 ⊕ k58 ⊕ k186 ⊕ k233 = s21 ⊕ s68 ⊕ (¬(s91 ∧ s106)) ⊕ s112 ⊕ s58 ⊕ s105 ⊕ (¬(s128 ∧ s143))⊕
s314 ⊕ (¬(s256 ∧ s271)) ⊕ s277 ⊕ s361 ⊕ s280 ⊕ (¬(s303 ∧ s318)) ⊕ s324.

Since s128 and s143 are known by guessing k0 and k15, we can get this 1-bit filter.
We want to use this 1-bit filter to detect slid pairs. Given a pair of

plaintext-ciphertext pairs (A1, B1) and (A2, B2), we need to define the cor-
responding functions G1(A1, B1) and G2(A2, B2). Let (a0, a1, . . . , a127) and
(a256, a257, . . . , a383) denote A1 and A2, respectively. Moreover, (b0, b1, . . . , b127)
and (b256, b257, . . . , b383) denote B1 and B2, respectively. Then, two functions are
defined as

G1(A1, B1) := a21 ⊕ a68 ⊕ (¬(a91 ∧ a106)) ⊕ a112 ⊕ a58 ⊕ a105 ⊕ (¬(a128 ∧ a143))⊕
b21 ⊕ b68 ⊕ (¬(b91 ∧ b106)) ⊕ b112 ⊕ b58 ⊕ b105 ⊕ (¬(b128 ∧ b143))

G2(A2, B2) := a314 ⊕ (¬(a256 ∧ a271)) ⊕ a277 ⊕ a361 ⊕ a280 ⊕ (¬(a303 ∧ a318)) ⊕ a324⊕
b314 ⊕ (¬(b256 ∧ b271)) ⊕ b277 ⊕ b361 ⊕ b280 ⊕ (¬(b303 ∧ b318)) ⊕ b324.

Note that G1(A1, B1) depends on the guess of k0 and k15, but G2(A2, B2) is
independent of them.

5.2 Key-Recovery from Input/Output Pairs for P256

Algorithm 2 accepts κ until 113. Therefore, Algorithm2 cannot be applied to
P256 directly. On the other hand, trivial extension is possible by guessing
15(= 128 − 113)-bit key. Recall that Algorithm 2 is very efficient and the time
complexity is O(κ). Even if we additionally guess the 15-bit key, the impact on
the time complexity is negligible compared with previous steps. Although the
trivial extension is already efficient, we present a more efficient algorithm whose
time complexity is still O(κ).

In Algorithm 2, the corresponding row vector is not involved in the matrix
if either of the NAND inputs is unknown. However, in practice, only one side
of NAND inputs is known, so we can obtain an additional relationship. Consid-
ering the following NAND ¬(st ∧ st+15), the output of the NAND is always 1
independently of st+15 when st = 0. On the other hand, when st = 1, the output
of the NAND is st+15 ⊕ 1, i.e., the nonlinear output is linearized. By exploiting
this property, we can recover the first 15-bit key efficiently.

The following is a concrete case to recover k0. When (s113, s256) = (0, 0), we
can compute k6 ⊕ k43 ⊕ k171 ⊕ k218 as

k6 ⊕ k43 ⊕ k171 ⊕ k218 = s6 ⊕ s53 ⊕ (¬(s76 ∧ s91)) ⊕ s97 ⊕ s43 ⊕ s90 ⊕ s262

⊕ s299 ⊕ s265 ⊕ (¬(s288 ∧ s303)) ⊕ s309 ⊕ s346.
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As the sum removes 3 uncomputable bits, i.e., s134, s171, and s218. Moreover,
when (s113, s256) = (1, 0), we can compute k0 ⊕ k6 ⊕ k43 ⊕ k171 ⊕ k218 as

k0 ⊕ k6 ⊕ k43⊕k171 ⊕ k218 = s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ s6 ⊕ s53

⊕ (¬(s76 ∧ s91)) ⊕ s97 ⊕ s43 ⊕ s90 ⊕ 1 ⊕ (¬(s241 ∧ s256))
⊕ s262 ⊕ s299 ⊕ s265 ⊕ (¬(s288 ∧ s303)) ⊕ s309 ⊕ s346.

As the sum removes 4 uncomputable bits, i.e., s128, s134, s171, and s218. Finally,
the key bit k0 is derived by summing these two equations. This procedure requires
one input-output pairs satisfying each conditions, but the number of restricted
bits is only 2. Therefore, we can recover k0 by observing about 4 input-output
pairs. This procedure can be used to recover kx for 0 ≤ x ≤ 14. Then, the
restricted bits move to (s113+x, s256+x).

5.3 Complexity of TinyJAMBU-256

The attacker guesses 2-bit key k0 and k15 and generates a 1-bit filter. Since a
1-bit filter is insufficient to detect a unique slid pair, the filter is enhanced with
chains of queries. Thus, the attacker enhances the 1-bit filter to a 128-bit filter
and detects only a right slid pair for each 2-bit guess. Deriving the key from
a slid pair is very efficient by using Algorithm2 with the technique shown in
Sect. 5.2. Thus, the data complexity is 267.5. The time complexity is 269.5.

6 Conclusions

We have thoroughly analyzed the slide property of the keyed-permutation used as
TinyJAMBU’s underlying primitive. Our analysis shows that the slide property
can be exploited to mount actual slide attacks with near-birthday-bound com-
plexities for all proposed key sizes (128, 192, and 256 bits). The attacks exploit
multiple (undesirable) properties of the primitive and work independently from
the number of rounds repeated in the permutation.

The attacks do not directly contradict with the security goals to be achieved
by TinyJAMBU [16] but invalidate the rationale that the underlying primitive is
close to ideal. In particular, the attacks bring into question the (relatively high)
112/168/224-bit encryption/secret-key security goal for TinyJAMBU.

We emphasize that one should not treat TinyJAMBU’s primitive as a stan-
dard block cipher like Advanced Encryption Standard (AES), as TinyJAMBU’s
keyed-permutation fails to provide the expected security level (the functional-
ity of a keyed-permutation is the same as that of a block cipher.) The keyed-
permutation is a dedicated primitive that should be used exclusively in Tiny-
JAMBU’s AEAD mode of operation.
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A Discussions and More Observations

A.1 Slide Attack with Deterministic Differential Characteristics

Overall Idea. The chain of queries in Sect. 4.2 efficiently increases the num-
ber of filtering bits, but requires adaptively chosen-plaintext. Here, we discuss
another approach that was also discussed in [5] which avoids adaptively chosen-
plaintext queries and show that it can be applied to recover a 192-bit key. The
idea here is to combine differential characteristics with probability 1 with the
slide attack. Suppose that there is an input and output difference of P192 denoted
by α and β, which is satisfied with probability 1. For a slid pair (A0, B0)
and (A′

0, B
′
0) such that A′

0 = P192(A0) and B′
0 = P192(B0), we define that

A1 = A0⊕α and A′
1 = A′

0⊕β. Then the pair (A1, B1) and (A′
1, B

′
1) also satisfies

A′
1 = P192(A1) and B′

1 = P192(B1) thanks to the probability 1 differential char-
acteristic. Specifically, we obtain 2 slid pairs without using adaptively-chosen-
plaintext queries. Moreover, the number of slid pairs can further increase to 2n if
n-many probability 1 differential characteristics are available, by assuming that
it is possible to satisfy such n-many probability 1 characteristics simultaneously.
This idea for the case with n = 2 is illustrated in Fig. 7.

Fig. 7. Attacks on TinyJAMBU-192 with two deterministic differential characteristics.

Note that the previous attack on TinyJAMBU-192 in Sect. 4.4 required adap-
tively chosen-plaintext queries for not only query chains but also the bit-by-bit
key-recovery explained in Sect. 4.3. Currently, we have not found an efficient
key-recovery procedure that works in the chosen-plaintext setting. Hence, our
approach to recover a 192-bit key is to first identify the valid slid pair and then
guess the last 64 key bits. For this reason, we need to filter out all the wrong
slid-pair candidates, and it is essential to have n = 2 distinct probability 1
characteristics to have a 49 × 22 = 196-bit filter.
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Deterministic Differential Characteristic for P192. In the keyed-
permutation of TinyJAMBU, the only non-linear operation is the AND opera-
tion between s70 and s85. Recall that in each step, the key bit only impacts s127,
thus during the first 43 rounds, the input to the AND operation is only dependent
on the plaintext. Specifically, given the plaintext value, differential propagation
for the first 43 rounds is deterministic. The same can be applied in the backward
direction, i.e. given the ciphertext value, differential propagation for the last 70
rounds is deterministic. Moreover, we can set some plaintext and ciphertext bits
to 0 to prevent the input difference to AND gates from propagating.

With these observations, we searched for such characteristics for P192 by
using a refined MILP-based evaluation [14] by adding new constraints to ignore
the active AND gates for the first 43 and last 70 rounds from the objective
function. As a result, we found many probability 1 differential characteristics.3

An example is explained in Table 3.

Table 3. An example of probability 1 differential characteristic for TinyJAMBU-192.
Differential masks α, β are represented by hexadecimal numbers.

α : s127, . . . , s1, s0 0000 0000 0004 0000 0000 0008 0000 0000

β : s319, . . . , s193, s192 0000 0008 1000 0000 0080 0000 0004 0000

conditions on plaintext (A0) s97 = 0

conditions on ciphertext (A′
0) s195 = 0, s225 = 0, s232 = 0, s262 = 0

AND is active in rounds 12, 125, 140, 160, 177, and these output differences
are 0.

We confirmed that the rotated variants of the characteristic in Table 3 are
also satisfied with probability 1 for a left rotation by 1, 2, 3, 6, and 7 bits.

Application to TinyJAMBU-192. As mentioned above, using 2 characteris-
tics is sufficient for a 192-bit key. Hence, we use one in Table 3 and its left-rotated
version by 1 bit. When we choose 264 distinct values of A0, we fix s97 = 0
and s98 = 0. We also query A0 ⊕ α, A0 ⊕ (α ≪ 1), and A0 ⊕ α ⊕ (α ≪ 1)
along with A0. Similarly, when we choose 264 distinct values of A′

0, we fix 8 bits
of s195, s225, s232, s262, s196, s226, s233, s263 to 0 to satisfy the conditions on the
ciphertext, and we also query A′

0 ⊕ β, A′
0 ⊕ (β ≪ 1), and A′

0 ⊕ β ⊕ (β ≪ 1)
along with A′

0. Those would derive a 196-bit filter. Hence, we only have a right
slid pair after examining 2128 matching candidates. After detecting the slid pair,
we exhaustively guess the last 64 key bits.

The complexity is 4 × 2 × 264 = 267 chosen-plaintext queries. The computa-
tional cost is less than 4 × 2 × 4 × 264 = 269 computations of P192, which is for
computing 4 Ri or Ro functions for each query. The memory complexity is to
store the queries for A0 and associated quartets, which is 266. The memoryless
attack is made possible by incurring slightly more computational cost.
3 Run time was very short. It finished in a few seconds.
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A.2 Attacks on Non-multiple Number of Rounds

In our attacks, we assumed that the total number of rounds was a multiple of the
key-length, which is the case with P2 in all the members of TinyJAMBU. One
may wonder that the attack can be prevented by setting the number of rounds
to be a non-multiple the key-length. Here, we show that the restriction of the
number of rounds to be a multiple of the key-length can easily be lifted for the
attacks on P128 and P192 using the deterministic differential characteristics of
Sect. A.1.

Let k be the key of length klen and consider klen×m+s rounds of encryption
for some strictly positive integers m and s. Then, a slid pair (A0, B0), (A′

0, B
′
0) is

such that A′
0 = P k

klen(A0) and B′
0 = P k≪s

klen (B0). That is, B′
0 is the encryption of

B0 with klen rounds but with a circular-shifted key. In that setting, one clearly
cannot chain queries to enhance a filter because the key schedule does not cycle
back to its initial state.

Attacking klen = 128 is mostly unchanged from Sect. 3. We simply derive
equations on key bits independently for the unshifted and shifted cases that will
give us a filter. The only difference is that the 15 unexploitable key bits (bit
positions 43 to 57) are shifted in the second case, which can result in at most
30 unexploitable relationships. Nevertheless, we can always build a 98-bit filter
and perform a key-recovery with the same complexity as before.

For klen = 192, the attack is very similar to Sect. A.1. Indeed, taking the
notation of Fig. 7, we can still apply the same filter but only on the outputs
F (B0, B1) = F (B′

0, B
′
1), F (B0, B2) = F (B′

0, B
′
2), F (B0, B3) = F (B′

0, B
′
3) and

ignoring the relation induced by A0 and A′
0. The actual shift s has no effect

when only comparing relationship on outputs. More generally, in the shifted
case, having n independent differential characteristics increase the filter 2n − 1
fold (instead of 2n previously). For the 192-bit key case, a 49× 3 = 147-bit filter
is still more than enough to filter all the wrong pairs especially as A0 and A′

0

can further help us in the guess stage for the remaining key bits.

A.3 Implication on the Security of the AEAD Schemes

Our results do not easily extend to attacks on TinyJAMBU AEAD schemes
but bring their security into question. That is, they weaken the rationale to
believe 112-bit (resp., 168-bit, or 224-bit) encryption/secret-key security goal
being achieved by TinyJAMBU-128 (resp., TinyJAMBU-192, or TinyJAMBU-
256); to believe so is essentially equivalent to regarding the security goal itself
as an assumption. Neither the security of the primitive nor that of the mode
implies security of the scheme; one is assuming that the combination of the two
should achieve the security goal even though one is aware of the fact that the
primitive is far from being ideal.

In other words, one is assuming that some features of the mode should
“enhance” encryption/secret-key security to 112/168/224 bits even though the
underlying primitive is vulnerable to birthday-bound (i.e., about 64 bits in any
case) key-recovery attacks. The features may include, for example, the fact that
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“frame bits” [16]4 are inserted into states and that at most 32 bits of each state
value are controllable by adversaries.

In fact, the underlying permutations are already known to be non-ideal. For
instance, the designers show in the specifications that P1 in the AEAD mode
(see Fig. 2) has a differential property of probability 2−83. Nevertheless, we want
to state that our attacks are the first to reveal that P2 of all the versions of
TinyJAMBU is broken by a birthday-bound key-recovery attack, which make
us less confident that the security proof of the mode by the designers can be
regarded as a convincing reason for the security claim holding.

To be fair, we remark that our results do not significantly affect the privacy
security (indistinguishability) shown by the designers or the authentication secu-
rity goal stated by the designers [16]. This is due to the fact that both of these
notions are up to the birthday bound of 64 bits and that our attacks require
birthday-bound complexities.
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Abstract. The Feistel-2 (a.k.a, Feistel-KF) structure is a variant of the
Feistel structure such that the i-th round function is given by Fi(ki ⊕ x),
where Fi is a public random function and its input/output length is n/2
bits. Isobe and Shibutani showed a meet-in-the-middle attack in the clas-
sical setting with (D,T ) = (O(1), O(2n/2)) on the 3-round Feistel-2 struc-
ture where D and T are the numbers of online/offline queries, respectively.
In their attack, since two round keys are recovered simultaneously, a naive
application of Grover’s algorithm for two keys needs T = O(2n/2) in the
quantum setting. In this paper, we introduce a new known plaintext attack
and chosen plaintext attack on the 3-round Feistel-2 structure in the quan-
tum setting using Grover’s algorithm by recovering the round key one by
one in (D,T ) = (O(1), O(2n/4)). Our attack does not need any quantum
query to the encryption oracle (i.e., working in the Q1 model).

Keywords: Feistel-2 structure · Grover’s algorithm · Q1 model

1 Introduction

1.1 Feistel Structure

Feistel structure is a popular design framework of block ciphers, and it is impor-
tant both in theory and practice. The original r-round Feistel structure was
introduced by Luby and Rackoff [1]. It takes a plaintext P = (a0, b0) as an
input, where a0, b0 ∈ {0, 1}n/2. Then, it computes (ai+1, bi+1) = (bi ⊕Ri(ai), ai)
(the left half of Fig. 1) for i = 0, 1, . . . , r − 1, where Ri : {0, 1}n/2 → {0, 1}n/2 is
a keyed round function. Finally it outputs a ciphertext C = (ar, br).

Luby and Rackoff [1] supposed that each round function Ri is an independent
random function. Then, they showed that the 3-round construction is pseudo-
random up to 2n/4 queries against chosen plaintext attacks (CPA) (i.e., a dis-
tinguisher can access to the permutation oracle), and the 4-round construction
is pseudo-random up to 2n/4 queries against chosen ciphertext attacks (CCA)
(i.e., a distinguisher can access to both the permutation oracle and the inverse
permutation oracle).
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Fig. 1. Feistel/Feistel-2 structure

Fig. 2. 3-round Feistel/Feitel-2 structure

On the other hand, the Luby-Rackoff construction has a difficulty in imple-
mentations because it needs to design a key embedded random function Ri

for each round key ki. Feistel-2 (Feistel-KF) structure is an easy-to-implement
variant of Feistel structure such that each round function Ri(x) is replaced by
Fi(ki ⊕ x) (the right half of Fig. 1), where Fi : {0, 1}n/2 → {0, 1}n/2 is a public
independent random function, and ki ∈ {0, 1}n/2 is a round key. (Feistel-2 is
also known as key-alternating Feistel cipher.)

1.2 Attack Scenarios for Quantum Setting

To compare attack performances, we consider oracle queries by separating into
online and offline. An adversary needs online queries to obtain the result of
processes using secret information such as the encryption/decryption process
with the secret key. On the other hand, since public functions can be computed
by anyone, the adversary can obtain results of processes of public functions by



130 T. Daiza and K. Yoneyama

offline queries. Hereafter, we suppose that the adversary is allowed to make D
online queries and T offline queries.

In this paper, we focus on the quantum setting (i.e., the adversary has quan-
tum computational resources). Kaplan et al. [18] divide the quantum setting
into the Q1 model and the Q2 model according to the condition of the allowed
access to the encryption oracle. The Q2 model allows adversary’s online queries
to the (keyed) encryption oracle and offline queries to the other oracles both
with quantum superposition. Kuwakado and Morii [17] and Kaplan et al. [18]
showed distinguishing attacks on the 3-round Feistel structure. These distin-
guishing attacks are based on Simon’s algorithm [16] by posing superposition
states online queries to the encryption oracle. On the other hand, in the Q1
model, the adversary can only pose online queries to the encryption oracle in
a classical manner whereas it is allowed to pose offline quantum superposition
queries to the other oracles which have no information about secret keys. The Q1
model means that the adversary only make queries through a classical network
but have access to quantum computers in their local environment. Therefore,
the Q1 model is a more restricted attack scenario and relatively realistic for the
adversary than the Q2 model.

1.3 Related Work

Here, we review known attacks on the Feistel-2 structure.

Classical Setting:
Lampe and Seurin [3] showed that the 3-round Feistel-2 structure is pseudo-
random against non-adaptive CPA if D + T � 2n/4. Isobe and Shibutani [4]
showed a known plaintext attack (KPA) (i.e., a distinguisher cannot access
to the permutation oracle nor the inverse permutation oracle) on the 3-round
Feistel-2 structure along with the meet-in-the-middle approach. It works on
(D,T ) = (O(1), O(2n/2)) and needs M = O(2n/2) classical memory. Then,
they extended their attack to 4 or more rounds [5]. Guo et al. [7] showed a
Demirci-Selçuk meet-in-the-middle attack [6] on the 6-round Feistel-2 struc-
ture. Dinur et al., against more than 5 rounds, showed a dissection attack [8]
and a more memory efficient attack [9]. Daiza and Kurosawa [10] showed KPA
and CPA on the 3-round Feistel-2 structure working in DT = O(2n/2) and
M = O(1).

Q1 Model:
Hosoyamada and Sasaki [13] showed a variant of the claw-finding algorithm and
a CPA on the 6-round Feistel-2 structure by applying Grover’s algorithm [11] to
Guo et al.’s classical attack. Their attack works in (D,T ) = (O(2n/2), O(2n/2))
and needs Q = O(2n/2) qubits and M = O(2n/2) memory.

Q2 Model:
Kuwakado and Morii [17] showed that the 3-round Feistel structure is not
pseudo-random even if each Ri is a random permutation. Then, Kaplan
et al.[18] showed that the 3-round Feistel structure is not pseudo-random even
if each Ri is also a random function. Hosoyamada and Sasaki [13] showed
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quantum CPA (qCPA) on the r-round Feistel-2 structure (r ≥ 4) in time
O(n32(r−3)n/4), based on Leander and May’s method [19] (which combines
Grover’s algorithm and Simon’s algorithm). Cid et al. [20] showed qCPA in a
polynomial time on the d-branch (2d−1) round contracting Feistel-2 structure
by solving n/2 + 1-bit Simon’s problem.

1.4 Our Motivation

As in known quantum attacks, though an exponential speed up is achieved in
the Q2 model, it is difficult in the Q1 model because the technique using Simon’s
algorithm by online queries cannot be used.

The classical key recovery attack on 3-round by Isobe and Shibutani [4]
obtains two round keys simultaneously by the exhaustive search. Therefore, if
we naively adapt their attack to the Q1 model using Grover’s algorithm, it
corresponds to the Grover search of the n/2 × 2 = n-bit value in T = O(2n/2).
Since the twice encryption of the 3-round Feistel-2 structure can be regarded
as 6 rounds, the Q1 key recovery attack by Hosoyamada and Sasaki [13] can
be applied to the attack to the 3-round Feistel-2 structure. However, it needs
T = O(2n/2).

As far as we know, even against the 3-round, no Q1 key recovery attack on
the Feistel-2 structure which is (approximately) more efficient than the classical
one has been known. Therefore, as a milestone to explore the quantum security
of the Feistel-2 structure, it is important to clarify if there is an more efficient
attack on the (minimal) 3-round in the Q1 model than the classical model.

1.5 Our Contribution

In this paper, we introduce the first key recovery attacks on the 3-round Feistel-
2 structure in the Q1 model, which are more efficient than the classical ones.
Based on the classical attack by Daiza and Kurosawa [10], our attacks use
Grover’s algorithm and obtain the round key one by one. We first show a KPA
in (D,T ) = (O(1), O(2n/4)). Next, we show a CPA (although it works in the
same complexities approximately) which can decrease gates than the KPA. (see
Table 1 for the comparison with previous works.)

Paper Organization. Section 2 shows some basics of the quantum computa-
tion, Grover’s algorithm, and known related attacks. Section 3 shows our key
recovery KPA and CPA on the 3-round Feistel-2 structure in the Q1 model.
Section 4 shows the discussion on the non-triviality to improve our attacks using
another quantum algorithms. Section 5 shows a conclusion and future works.

2 Preliminaries

For x, y such that |x| = |y|, we denote x ⊕ y bit-parallel XOR.
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Table 1. Comparison among ours and known key recovery attacks on Feistel-2

round setting type D T Q M

[4] 3 classical KPA O(1) O(2n/2) - O(2n/2)

[10] 3 classical KPA O(1) O(2n/2) - O(1)

[10] 3 classical CPA O(2n/4) O(2n/4) - O(1)

[5] 4 classical CPA O(1) O(2n/2) - O(2n/2)

[7] 6 classical CPA O(23n/4) O(23n/4) - O(2n/2)

[13] r ≥ 4 Q2 qCPA O(2(r−3)n/4) O(n32(r−3)n/4) O(n2) O(n)

[20] 2d − 1 Q2 qCPA O(Poly(n)) O(Poly(n)) O(Poly(n)) O(Poly(n))

[13] 6 Q1 CPA O(2n/2) O(2n/2) O(2n/2) O(2n/2)

Ours (§3.1) 3 Q1 KPA O(1) O(2n/4) O(n) O(1)

Ours (§3.2) 3 Q1 CPA O(1) O(2n/4) O(n) O(1)

D is the number of plaintext/ciphertext pairs. T is the time complexity. Q is the qubit
size. M is the classical memory size.

Fig. 3. Quantum circuit for oracle f

2.1 Quantum Gates

In this paper, we mainly use X, H and CNOT gates. X gate is the bit-flip
operator (i.e. the quantum version of the not-element) such that X|b〉 = |b ⊕ 1〉,
where b ∈ {0, 1}. H gate (the Hadamard transform) creates a superposition such
that H|b〉 = 1√

2
(|0〉 + (−1)b|1〉), and n-bit parallel H|0〉 is also usually denoted

as
H|0〉 ⊗ · · · ⊗ H|0〉 = H⊗n|0n〉 =

1√
2n

∑

x∈{0,1}n

|x〉.

CNOT gate leads to an entangled state such that CNOT |x〉|y〉 = |x〉|y ⊕ x〉,
where x, y ∈ {0, 1}.

2.2 Quantum Oracle

For a quantum oracle Of computing the function f : {0, 1}l1 → {0, 1}l2 , Of is
given as an unitary operator Uf below (see Fig. 3).

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉,

where x ∈ {0, 1}l1 and y ∈ {0, 1}l2 .
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2.3 Grover’s Algorithm

Grover’s algorithm [11], one of the most famous quantum algorithms, is used to
search a target from a database containing N elements in time O(N1/2).

The definition of the problem to be solved by Grover’s algorithm for N = 2n

is as follows.

Definition 1 (Grover’s problem). Given function g : {0, 1}n → {0, 1} such
that g(x0) = 1 for the particular input x = x0 and g(x) = 0 for other x 
= x0,
find x0.

Grover’s algorithm runs with an unitary operator Ug which represents the
given g-oracle (like Sect. 2.2). The Ug operation is widely denoted as

Ug|x〉 = (−1)g(x)|x〉,

and this compact shape can be obtained by the following procedure:

1. Initialize a state |0n〉|1〉.
2. Apply H gate and obtain

⎛

⎝ 1√
2n

∑

x∈{0,1}n

|x〉
⎞

⎠ ⊗ 1√
2
(|0〉 − |1〉).

3. Apply Ug and obtain the following state. (Note that the last 1-bit is still the
superposition between |0〉 and |1〉.)

⎛

⎝ 1√
2n

∑

x∈{0,1}n

|x〉
⎞

⎠ ⊗
(

1√
2
(|0 ⊕ g(x)〉 − |1 ⊕ g(x)〉)

)
.

Now, if g(x) = 0, the last 1-bit state is 1√
2
(|0〉 − |1〉) = (−1)0√

2
(|0〉 − |1〉).

Otherwise, 1√
2
(|1〉 − |0〉) = (−1)1√

2
(|0〉 − |1〉). Thus, the total states can be

denoted as

1√
2n

∑

x∈{0,1}n

|x〉 ⊗ (−1)g(x)

√
2

(|0〉 − |1〉)

=
1√
2n

∑

x∈{0,1}n

(−1)g(x)|x〉 ⊗ 1√
2
(|0〉 − |1〉)

=
1√
2n

⎛

⎝−|x0〉 +
∑

x�=x0

|x〉
⎞

⎠ ⊗ 1√
2
(|0〉 − |1〉).
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Fig. 4. Grover search on a circuit

4. Then, increase the coefficient of the marked |x0〉 state by applying the diffuser
to the first n-bit. It is represented as the N × N matrix DN such that

DN =

⎡

⎢⎢⎢⎣

2
N − 1 2

N · · · 2
N

2
N

2
N − 1 · · · 2

N
...

...
. . .

...
2
N

2
N · · · 2

N − 1

⎤

⎥⎥⎥⎦ .

5. Repeat Step 3 and 4 (Grover iterations).
6. Finally, measure the first n-bit.

It is known that the probability of measuring x = x0 increases to nearly 1
when the number of repeating Grover iterations approaches

⌊
π
4

√
N + 1

2

⌋
. In this

case, the quantum complexity is O(2n/2).

2.4 Hosoyamada and Sasaki’s Claw-Finding Algorithm

Brassard et al. [12] showed a quantum algorithm finding the collision of a hash
function (claw). Then, Hosoyamada and Sasaki [13] considered the following
variant of the claw-finding problem.

Definition 2 (Hosoyamada and Sasaki’s claw-finding problem). Suppose
that function f : {0, 1}u ×{0, 1}v → {0, 1}l and function g : {0, 1}v → {0, 1}l are
given as black box, and there is the certain pair (x, y) ∈ {0, 1}u×{0, 1}v such that
f(x, y) = g(y). The g-oracle allows only classical queries. The f-oracle allows
quantum queries. (i.e. the unitary operator of f is given on the quantum circuit).
Then, find (x, y).

They proposed an algorithm [13] solving the above problem with Q = O((u+
v)2p) qubits for p ≤ v and M = O(2v) classical memory in time

O(T c
g,all + 2

u
2 +v−p · T q

f ),

where T c
g,all is the time calculating (y, g(y)) with classical queries for each y and

T q
f is time to run the unitary operator of f once.
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2.5 3-Round Feistel-2 Structure

Let P = (a0, b0) (∈ {0, 1}n/2 × {0, 1}n/2) be a plaintext. The 3-round Feistel-2
structure computes the ciphertext C = (a3, b3) as follows.

(a1, b1) ← (b0 ⊕ F0(k0 ⊕ a0), a0)

(a2, b2) ← (b1 ⊕ F1(k1 ⊕ a1), a1)

(a3, b3) ← (b2 ⊕ F2(k2 ⊕ a2), a2)

Therefore, it holds that

b3 = a2

= b1 ⊕ F1(k1 ⊕ a1)
= a0 ⊕ F1(k1 ⊕ F0(k0 ⊕ a0) ⊕ b0) (1)

a3 = b2 ⊕ F2(k2 ⊕ a2)
= a1 ⊕ F2(k2 ⊕ b1 ⊕ F1(k1 ⊕ a1))
= b0 ⊕ F0(k0 ⊕ a0)⊕
F2(k2 ⊕ F1(k1 ⊕ F0(k0 ⊕ a0) ⊕ b0) ⊕ a0). (2)

Let the function F0,F1 and F2 be public random functions. Since these functions
contain no information for the secret key, the adversary can access F0,F1 and
F2-oracles in the offline classical or quantum computation.

2.6 Isobe and Shibutani’s Classical MITM Attack on 3-Round
Feistel-2 Structure

Isobe and Shibutani [4] showed a key recovery KPA by the meet-in-the-middle
approach. Given two plaintext/ciphertext pairs (P1, C1) and (P2, C2), let P1 =
(a0, b0) and C1 = (a3, b3). Their attack works as follows.

1. For each j ∈ {0, 1}n/2, query j ⊕ a0 to F0-oracle and compute

a1,j = F0(j ⊕ a0) ⊕ b0.

Then, store (j, a1,j) in table A1.
2. For each l ∈ {0, 1}n/2, query l ⊕ b3 to F2-oracle and compute

b2,l = F2(l ⊕ b3) ⊕ a3.

Then, store (l, b2,l) in table A2.
3. From A1 and A2, find (j, l) such that a1,j = b2,l. (see Fig. 5.)
4. From the candidates (j, l), select one of them as (k0, k2) by using (P2, C2).
5. For each κ ∈ {0, 1}n/2, query κ ⊕ a1,j to F1-oracle and verify if it holds that

F1(κ ⊕ a1,j) ⊕ a0 = b3.

Set κ satisfying the above equation as k1 and output (k0, k1, k2).

In this attack, D = O(1) and the adversary makes T = O(2n/2) offline queries
to each Fi-oracle. Thus, the time complexity is O(D + T ) = O(2n/2) and the
memory size is also M = O(2n/2).
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Fig. 5. MITM Attack on 3-round by Isobe and Shibutani [4]

Fig. 6. Key-recovery part and distinguisher

2.7 Quantum DS-MITM Attack on 6-Round Feistel Constructions

Demirci-Selçuk MITM Attack. Demirci and Selçuk showed a meet-in-the-
middle attack [6]. Given the encryption/decryption oracle, the adversary exe-
cutes the distinguish part and the key-recovery part (see Fig. 6). The procedure
is as follows.

1. Choose one-round for the key-recovery part and guess the subkey there.
2. Operate the Step from 3 to 5 in the classical setting.
3. Compute the input pair and output pair of the distinguisher ΔX = (X,X ′

0),
ΔY = (Y, Y ′

0).
4. Prepare δ − 1 values by X ′

i := X ′
0 ⊕ i for i = 1, 2, · · · , δ − 1. Then, obtain the

output of the distinguisher Y ′
i for the input X ′

i.
5. For Y ′

i (i = 0, 1, · · · , δ −1), let Δi be the difference between Y and Y ′
i . Then,

store
Δ-sequence := (Δ0,Δ1, · · · ,Δδ−1)

in a list L.
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6. In the other way, for various plaintext pairs (P, P ′), make queries to prepare
(ΔP,ΔC) values where ΔP is the plaintext difference and ΔC is the cipher-
text difference. If some of these are matched with Δ-sequence at the list L,
the guessed subkey will be correct. Then, find a match at the list L.

Guo et al. [7] showed a key-recovery CPA with the DS-MITM approach on the
6-round Feistel-2 structure. Their attack works in D = O(23n/4), T = O(23n/4)
and needs M = O(2n/2) classical memory.

Quantum DS-MITM Attack on 6 Rounds in Q1 Model. Hosoyamada
and Sasaki [13] showed a key-recovery CPA on the 6-round Feistel-2 structure
in the Q1 model by applying Grover’s algorithm to Guo et al.’s attack with
the variant of the claw-finding algorithm in Sect. 2.4. Their attack works in
D = O(2n/2), T = O(2n/2) and needs Q = O(2n/2) qubits and M = O(2n/2)
classical memory.

3 Proposed Attacks

Isobe and Shibutani’s key-recovery attack [4] on the 3-round Feistel-2 structure
in Sect. 2.6 obtains two n/4-bit subkeys simultaneously by the exhaustive search.
Therefore, if we extend their classical attack to the Q1 model using the Grover’s
algorithm directly, it needs a search for 2 ∗ (n/2) = n-bit in time T = O(2n/2).

Hosoyamada and Sasaki’s quantum key-recovery attack [13] in Sect. 2.7 works
in (D,T,Q,M) = (O(n2n/2), O(n2n/2), O(n2n/2), O(n2n/2)). Since the two iter-
ated 3-round encryption is regarded as 6 rounds, their attack can also be adapted
on the 3-round Feistel-2 structure in the same complexities.

Though these known attacks need more than time T = O(2n/2), we propose
first quantum key-recovery attacks in time T = O(2n/4) in the Q1 model. Our
idea is simple but effective. We separate the Eq. (1) that

b3 = F1(k1 ⊕ F0(k0 ⊕ a0) ⊕ b0) ⊕ a0

into k1 and F0(k0 ⊕ a0). Then, we extract the input of F0 by Grover’s search to
obtain the 1st-round key k0. Our attack is a KPA and it is easily adapted to be
a CPA. These attacks work in the Q1 model because no quantum query to the
encryption oracle is necessary.

3.1 Our KPA

Let F0,F1,F2 be public random functions. The adversary can query the Fi-oracle
with a superposition in offline computations, and these are implemented as the
unitary operator on a quantum circuit.

In the attack, the adversary is given plaintext/ciphertext pairs (P1, C1),
(P2, C2) and (P3, C3). The outline is that the adversary obtains two values of
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Fig. 7. Step 1 of our KPA

Fig. 8. Step 2 of our KPA

k1 ⊕ F0(k0 ⊕ a0) ⊕ b0 corresponding to the input of F1 in Eq. (1), and removes k1
by computing XOR of them. Let Pi = (ai,0, bi,0) and Ci = (ai,3, bi,3) (i = 1, 2, 3).
The procedure is as follows.

1. For (P1, C1) and (P2, C2), compute

a1,0 ⊕ b1,3 = F1(k1 ⊕ F0(k0 ⊕ a1,0) ⊕ b1,0),

a2,0 ⊕ b2,3 = F1(k1 ⊕ F0(k0 ⊕ a2,0) ⊕ b2,0).

(See Fig. 7). Let β1,β2 be

β1 = k1 ⊕ F0(k0 ⊕ a1,0),

β2 = k1 ⊕ F0(k0 ⊕ a2,0).

2. Let t1 := a1,0 ⊕ b1,3. Obtain β1 ⊕ b1,0 such that

F1(β1 ⊕ b1,0) = t1

as follows: On the quantum circuit, we regard the following process as the
function g in Definition 1. g takes |x〉|b〉 as the input, where x ∈ {0, 1}n/2 and
b ∈ {0, 1}. Pose offline query |x〉|0n/2〉 to the F1-oracle and obtain |x〉|F1(x)〉.
g outputs |x〉|b⊕1〉 if F1(x) = t1, and outputs |x〉|b if F1(x) 
= t1 such as Fig. 8.
Hereafter, we call such a search process Grover’s search. Then, calculate β1.
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Fig. 9. Step 4 of our KPA

3. In the same way, obtain β2 such that

F1(β2 ⊕ b2,0) = a2,0 ⊕ b2,3.

4. Computes t2 := β1 ⊕ β2. By Grover’s search, obtain k′
0 ∈ {0, 1}n/2 such that

F0(k′
0 ⊕ a1,0) ⊕ F0(k′

0 ⊕ a2,0) = t2

such as Fig. 9.
5. Let k′

1 := β1 ⊕ F0(k′
0 ⊕ a1,0). Then, for (P1, C1), let t3, t4 be

t3 = F1(k′
1 ⊕ F0(k′

0 ⊕ a1,0) ⊕ b1,0) ⊕ a1,0,

t4 = F0(k′
0 ⊕ a1,0) ⊕ b1,0.

6. Obtain k′
2 ∈ {0, 1}n/2 such that

F2(k′
2 ⊕ t3) ⊕ t4 = a1,3

by Grover’s search.
7. For the candidate (k′

0, k
′
1, k

′
2), check their validity whether Eqs. (1) and (2)

hold with (P3, C3).

Analysis. In the attack, since three plaintext/ciphertext pairs are given, D =
O(1). The adversary operates Grover’s search for a n/2-bit value in Step 2,3,4
and 6, i.e., each of them works in O(2n/4). The adversary also make O(1) classical
queries to Fi-oracle in the offline computation. Therefore, the time complexity
is T = O(2n/4). Furthermore, the attack needs Q = O(n) qubits for Grover’s
search. The required classical memory size is M = O(1) because a few values
are stored.

Because Step 4 (Fig. 9) is the dominant part for the circuit size (i.e., the
number of quantum gates) of our KPA, we estimate the number of gates of Step
4 as follows.

1. For superposition state H⊗n/2|0n/2〉 and state of auxiliary bits |1n/2〉, (n/2+
1) H gates and (n/2 + 1) X gates are used.
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2. For XORing a1,0 (and a1,0 ⊕ a2,0), (2(n/2 + 1)) X gates are used on the
average.

3. For XORing t2, (n/2 + 1) X gates are used on the average.
4. For controlling the least significant bit by n/2 control bits, a mixed polarity

multiple-control Toffoli (MPMCT) gate for n/2 control bits (MPMCT (n/2+
1)) is used.1

5. For matrix DN of Grover’s algorithm, n H gates, n X gates and a
MPMCT (n/2) gate are used.

The above 2, 3, 4 and 5 are repeated by
⌊

π
4

√
2n/2 + 1

2

⌋
Grover iterations. There-

fore, the total number of gates in Step 4 is

n + 2 + {MPMCT (
n

2
+ 1) + MPMCT (

n

2
) +

7n

2
+ 3} ·

⌊
π

4

√
2n/2 +

1
2

⌋
.

The attack is failed if a Grover’s search in Step 2, 3, 4 or 6 is failed. Other
steps work in probability 1. As explained in Sect. 2.3, the probability of the
success of a Grover’s search for a n/2-bit value is nearly 1 by O(2n/4) time
complexity. Therefore, our KPA succeeds with overwhelming probability.

3.2 Our CPA

Our KPA in Sect. 3.1 is easily extended to CPA, by replacing the given plain-
text/ciphertext pairs to the process that the adversary chooses Pi and receives
Ci from the encryption oracle. Besides, the adversary obtains k1 ⊕ F0(k0) from
the first online query and let it be the next input of the encryption oracle to
remove k1. Thus, our attack is adaptive CPA. The procedure is as follows.

1. Query (a0, b0) = (0n/2, 0n/2) to the encryption oracle to receive (a3, b3), where
b3 = F1(k1 ⊕ F0(k0)).

2. Obtain β1 ∈ {0, 1}n/2 such that

F1(β1) = b3

by Grover’s search.
3. Query (a0, b0) = (0 · · · 01, β1) to the encryption oracle to receive (a3, b3),

where
b3 ⊕ a0 = F1(k1 ⊕ F0(k0 ⊕ 0 · · · 01) ⊕ β1).

If it holds β1 = k1 ⊕ F0(k0), then

b3 ⊕ a0 = F1(F0(k0 ⊕ 0 · · · 01) ⊕ F0(k0)).

4. Obtain β2 ∈ {0, 1}n/2 such that

F1(β2) = b3 ⊕ a0

by Grover’s search.
1 For example, how to efficiently dissect the MPMCT gate to atomic gates is shown

in [21].
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5. Obtain k′
0 ∈ {0, 1}n/2 such that

F0(k′
0 ⊕ 0 · · · 01) ⊕ F0(k′

0) = β2

by Grover’s search.
6. Let k′

1 := β1 ⊕ F0(k′
0). Query (a0, b0) = (F1(k′

1),F0(k′
0 ⊕ F1(k′

1))) to the
encryption oracle to receive (a3, b3), where

a3 = F0(k0 ⊕ F1(k′
1)) ⊕ F0(k′

0 ⊕ F1(k′
1))

⊕ F2(k2 ⊕ F1(k′
1) ⊕ F1(k1 ⊕ F0(k0 ⊕ F1(k′

1)) ⊕ F0(k′
0 ⊕ F1(k′

1)))).

If it holds (k′
0, k

′
1) = (k0, k1), then

a3 = F2(k2).

7. Obtain k′
2 ∈ {0, 1}n/2 such that

F2(k′
2) = a3

by Grover’s search.
8. Choose (a0, b0) ∈ ({0, 1}n/2)2 randomly and query to the encryption oracle

to receive (a3, b3). For the candidate (k′
0, k

′
1, k

′
2), check their validity whether

Eqs. (1) and (2) holds with this plaintext/ciphertext pair.

In Step 5, there is almost no process of bitwise XOR for the input of Fi-oracle
on the quantum circuit. Thus, our CPA has the advantage of decreasing quantum
gates against the KPA in Sect. 3.1, even though the (D,T,Q,M) complexities
are asymptotically same.

Analysis. In the attack, the (D,T,Q,M) complexities are asymptotically same
as our KPA in Sect. 3.1. In Step 5, there is almost no process of bitwise XOR for
the input of Fi-oracle on the quantum circuit. Thus, our CPA has the advantage
of decreasing quantum gates against the KPA. Specifically, in the dominant part
(i.e., Step 5) for the circuit size, XORing a1,0 (and a1,0 ⊕ a2,0) is not necessary.
Therefore, the total number of gates in Step 5 is

n + 2 + {MPMCT (
n

2
+ 1) + MPMCT (

n

2
) +

5n

2
+ 3} ·

⌊
π

4

√
2n/2 +

1
2

⌋
.

Also, our CPA succeeds with overwhelming probability as our KPA.

4 Non-triviality of Improving Our Attacks Using Another
Quantum Algorithm

Here, we consider how to improve efficiency of our attacks against the Feistel-2
structure in the Q1 model by using another quantum algorithms than Grover’s
one.

In the Q2 model, it is known that Simon’s algorithm [16] solves a problem
defined below in a polynomial time.
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Definition 3 (Simon’s problem). Given function f : {0, 1}n → {0, 1}m such
that f(x) = f(x ⊕ s) for all x where s ∈ {0, 1}n\{0n}, find s.

In distinguishing attacks on the Feistel-2 structure proposed by Kuwakado
and Morii [17] and Kaplan et al. [18], the adversary obtains a period of the
functions satisfying Simon’s promise by querying in superposition the encryption
oracle.

Moreover, in the Q2 model, variants of Simon’s algorithm are introduced
such as Leander and May’s method [19] (which combines Grover’s algorithm [11]
and Simon’s algorithm [16]) and Bonnetain et al.’s method [14] (which is called
nested Simon’s algorithm). Based on Leander and May’s method, Hosoyamada
and Sasaki showed qCPA on the r-round Feistel-2 structure (r ≥ 4) [13]. Based
on nested Simon’s algorithm, Cid et al. showed qCPA on the 3-round Feistel-2
structure [20].

On the other hand, Bonnetain et al. [15] extended Leander and May’s
method to the Q1 model, and showed CPA on Even-Mansour cipher [2] with
D = O(2n/6), T = O(2n/6) and Q = Poly(n) as follows. The encryption func-
tion E : {0, 1}n/2 → {0, 1}n/2 is defined as E(x) := P (k1 ⊕ x) ⊕ k2 where
P : {0, 1}n/2 → {0, 1}n/2 is a public random permutation, and (k1, k2) ∈
{0, 1}n/2 ×{0, 1}n/2 is the secret key. Let a function f : {0, 1}n/2 → {0, 1}n/2 be

f(x) := E(x) ⊕ P (x) = P (k1 ⊕ x) ⊕ k2 ⊕ P (x),

then it holds that f(x) = f(x ⊕ k1). In their attack, the adversary poses online
classical queries to build an unitary operator simulating part of the encryption
oracle. Then, the adversary runs the simulating operator and poses offline quan-
tum queries to the P -oracle for constructing above f on the quantum circuit. It is
important that the simulating operator is set before the offline query with quan-
tum superposition of full of the domain. A promising direction is to apply their
method to the 3-round Feistel-2 structure because no Q1 key recovery attack
with D = O(2n/6), T = O(2n/6) and Q = Poly(n).

Here, we consider a naive application of their method to the 3-round Feistel-2
structure. In the 3-round Feistel-2 structure, for example, a function f satisfying
Simon’s problem is given as follows. Let (a0, b0) := (x,F0(x)). Then, letting f(x)
be

f(x) := b3 ⊕ a0 = F1(k1 ⊕ F0(k0 ⊕ x) ⊕ F0(x)),

it holds that f(x) = f(x ⊕ k1). In this case, the adversary runs the simulating
operator after posing offline quantum queries. Since the number of online classical
queries has to cover the range of F0, D is more than 2n/2 and the total attack
time is more than 2n/2. Hence, improving our attacks is not trivial and some
additional technique is required.

5 Conclusion

We proposed new quantum key recovery attacks on the 3-round Feistel-2 struc-
ture by KPA and CPA in the Q1 model. For the first time, our attacks achieved
a higher efficiency in the Q1 model than the known classical attacks.



Quantum Key Recovery Attacks 143

As further research, in addition to the direction given in Sect. 4, it is inter-
esting how to realize extending nested Simon’s algorithm to the Q1 model.
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Abstract. Rainbow is an efficient variant of the unbalanced oil and vine-
gar scheme, which is a well-established digital signature scheme based on
the difficulty of solving multivariate polynomials. It has been selected as
one of the round 3 finalists in the National institute of standards and
technology (NIST) post-quantum cryptography standardization project.

To investigate the practical security several fault attacks on Rainbow
have been conducted. At PQCrypto 2011, Hashimoto et al. proposed
a fault attack with fixing random vinegar values on Rainbow. Subse-
quently, Shim et al. showed that the complexity of the fault attack can be
reduced by increasing the number of fixed random vinegar values. How-
ever, these attacks require exponential time, even though all the random
vinegar values are fixed. In this paper, a polynomial time attack is pro-
posed by further using the hidden information of the secret key, in the
case that all random vinegar values are fixed. In addition, an improved
attack is proposed in the case that some random vinegar values are fixed.
Furthermore, the complexity of the proposed attack is demonstrated to
be significantly smaller compared to that of Shim et al.’s attack. For
instance, the proposed attack reduces the complexity by a factor of 280

for the SL5 parameters of Rainbow.

Keywords: Post-quantum cryptography · Multivariate public key
cryptography · Fault attack

1 Introduction

RSA cryptography [19] and elliptic curve cryptography [15,17] have been broken
by the Shor’s algorithm [21] when a large-scale quantum computer is realized.
Therefore, in recent years, post-quantum cryptography (PQC) has been studied.

Multivariate public key cryptography (MPKC), a kind of PQC is based on
the difficulty of multivariate quadratic (MQ) problems. The unbalanced oil and
vinegar scheme (UOV) is a multivariate digital signature scheme proposed by
Kipnis et al. [13]. UOV has essentially not been broken for over 20 years. Ding
et al. [10] proposed Rainbow, which is a multilayered version of the UOV. Rain-
bow is one of the round 3 finalists in the National institute of standards and
technology (NIST) post-quantum cryptography standardization project and has
been garnering considerable attention recently.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Several cryptanalyses, such as Rank attacks [5], UOV attack [14], and Rain-
bow band separation (RBS) attack [11] have been conducted. Recently, Beullens
proposed Simple attack and Combined attack on Rainbow. As a result, the SL3
and SL5 (192 and 256 bit security) parameters are rescaled to the SL1 and SL3
(128 and 192 bit security), respectively. In addition to these cryptanalyses, phys-
ical attacks also have been studied, in recent years. Side-channel attacks, which
are a type of physical attack, include timing analysis and power analysis, as well
as fault attacks. The focus of this paper is on the fault attacks against digital
signature schemes. These attacks cause faults in the process of signature gen-
eration. Hashimoto et al. [12] proposed fault attacks with fixing random values
against MPKC. Krämer et al. [16] applied Hashimoto et al.’s results to the UOV
and Rainbow. Shim et al. [20] proposed a fault attack on Rainbow with fixing
the random vinegar values used for the signature generation of Rainbow. The
attacks proposed by Hashimoto et al., Krämer et al., and Shim et al. require
exponential time with respect to the number of variables.

In this paper, two fault attacks on Rainbow have been proposed. As a model
for the fault attacks, we consider the case that some random vinegar values that
are used in the sign algorithm of Rainbow are fixed, which is the same as the
model of Shim et al.’s attack. In this model, the two proposed attacks depend
on the number of fixed vinegar values. The first one is an attack with fixing all
random vinegar values. It is demonstrated that the attack takes only polynomial
time. The second result is an attack with fixing some random vinegar values. It
is shown that by using information from the fault, the complexity of MinRank
attack [2,7], HighRank attack [8], UOV attack, RBS attack, Intersection attack,
Rectangular MinRank attack, Simple attack, and Combined attack [6] is reduced.
As the complexity of attacks depends on the number of fixed random vinegar
values, in the proposed attack, the optimal attack is selected accordingly. The
complexity of the proposed attack is approximately 280 times smaller than that
of Shim et al.’s attack for the SL5 parameters.

2 Preliminaries

In this section, the notations used in the rest of this paper are described. Subse-
quently, a review of the construction of Rainbow and the several known attacks
on Rainbow is presented.

2.1 Notations

Let N be the set of natural numbers. Further, Fq denotes a finite field with q
elements. Let F

n
q be the set of n-dimensional vectors over Fq for n ∈ N. For

m,n ∈ N, the set of (m × n)-matrices over Fq is denoted by F
m×n
q . For a matrix

A ∈ F
m×n
q and a positive integer j ∈ {1, . . . , n}, A(j) denotes the j-th column of

A. Let A(i,j) be the (i, j)-th entry of A for positive integers i ∈ {1, . . . ,m} , j ∈
{1, . . . , n}. The transposed matrix of A is denoted by A�.
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Algorithm 1. Signature generation for a message μ ∈ {0, 1}∗

1: h ← H(μ)
2: y ← S−1(h)
3: for i ∈ V do
4: ri

$←− Fq

5: ui ← ri
6: Compute uv+1, . . . , un ∈ Fq s.t. F(u1, . . . , uv, uv+1, . . . , un) = y
7: σ ← T −1(u1, . . . , uv, uv+1, . . . , un)
8: return σ

For a finite set S, x
$←− S means that x is chosen uniformly randomly from

S. For n ∈ N, {0, 1}n denotes the set of bitstrings of length n. Let {0, 1}∗ :=⋃

n≥1

{0, 1}n.

2.2 Rainbow

In this section, the concept of Rainbow [10], a multi-layer version of UOV [13], is
explained. UOV is a digital signature scheme based on the MQ-based trapdoor
function.

First, the notation used for Rainbow is defined. The parameters of Rainbow
are (q, v, o1, o2). The number of variables is given by n := v + o1 + o2 and
the number of equations is given by m := o1 + o2. The index sets are defined
as follows. V := {1, . . . , v}, O1 := {v + 1, . . . , v + o1} and O2 := {v + o1 +
1, . . . , n}. Let W := {x ∈ F

m
q :∀ i ∈ {1, . . . , o1} , xi = 0}, O1 := {x ∈ F

n
q :∀ i ∈

{1, . . . , v} , xi = 0} and O2 := {x ∈ F
n
q :∀ i ∈ {1, . . . , v + o1} , xi = 0}. For i ∈ V ,

the variable ui is called the vinegar variable.
Next, the public key and the secret key of Rainbow are explained. The

invertible affine maps S ∈ F
m×m
q , T ∈ F

n×n
q are selected randomly. A cen-

tral map F = (F (v+1), . . . ,F (n)) : F
n
q → F

m
q is selected. o1 polynomials

(F (v+1), . . . ,F (v+o1)) are of the form

F (k)(u) = Σ
i∈O1,j∈V

α
(k)
ij uiuj + Σ

i,j∈V,i≤j
β
(k)
ij uiuj + Σ

i∈V ∪O1
γ
(k)
i ui + η(k) (1)

and o2 polynomials (F (v+o1+1), . . . ,F (n)) are of the form

F(k)(u) = Σ
i∈O2,j∈V ∪O1

α
(k)
ij uiuj + Σ

i,j∈V ∪O1,i≤j
β
(k)
ij uiuj + Σ

i∈V ∪O1∪O2
γ
(k)
i ui + η(k).

(2)
Further, the public key of Rainbow is P := S ◦ F ◦ T , and the secret key of
Rainbow consists of (S,F , T ). S, T denote the representation matrices of S, T ,
and F (k) denotes the representation matrix of a quadratic map F (k).

Note that there is no quadratic monomial of uiuj (i, j ∈ O1

⋃
O2) in (1) and

there is no quadratic monomial uiuj (i, j ∈ O2) in (2). Using this structure,
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F can be inverted as follows. First, the vinegar variables u1, . . . , uv are fixed
with random values. Then, the polynomials in (1) are linear in the first oil
variables uv+1, . . . , uv+o1 . Hence, uv+1, . . . , uv+o1 can be computed by Gaussian
elimination. Next, the polynomials in (2) are linear in the second oil variables
uv+o1+1, . . . , un. So, we can compute uv+o1+1, . . . , un by Gaussian elimination.
Using this process, F can be inverted efficiently.

Furthermore, the signature algorithm and the verification algorithm of Rain-
bow are reviewed. Let H : {0, 1}∗ → F

m
q be a hash function. To sign a mes-

sage μ ∈ {0, 1}∗, first h = H(μ) is computed. Next, v random vinegar values
r1, . . . , rv ∈ Fq are selected and substituted for the vinegar variables u1, . . . , uv.
Then, using the previous process, uv+1, . . . , un ∈ Fq s.t. F(u1, . . . , uv, uv+1, . . . ,
un) = h are computed. Subsequently, σ = T −1(u1, . . . , uv, uv+1, . . . , un) ∈ F

n
q is

computed. Algorithm 1 refers to the sign algorithm of Rainbow. A signature σ
is accepted by the verifier if P(σ) = H(μ).

Here, the relation between Rainbow and the MQ problem is discussed. The
MQ problem can be stated as finding x ∈ F

n
q such that P(x) = y given a system

of quadratic polynomials P : Fn
q → F

m
q and y ∈ F

m
q . MQ(q, n,m) denotes the

complexity of solving a system consisting of m quadratic polynomials with n
variables over Fq. To forge a Rainbow signature, it is necessary to find σ such
that the system of equations P(σ) = H(μ) is satisfied. This system can be
regarded as an instance of the MQ problem.

Finally, the complexity of solving a system of quadratic polynomials is dis-
cussed. If P is a random system of quadratic polynomials, then MQ(q, n,m) is
estimated as follows.

min
k

O

(
qk · 3

(
n − k

2

)(
dreg + n − k

dreg

)2
)

(3)

where dreg is the degree of regularity of the system [4,9]. If the system is semi-
regular, the degree of regularity dreg is the degree of the first non-positive term in
the series (1−z2)m

(1−z)n−k [3]. In this paper, the special systems of quadratic polynomials
have been treated. A case with two kinds of variables denoted by x1, . . . , xn1 and
y1, . . . , yn2 is considered. It is assumed that there are m1 quadratic polynomials
in x1, . . . , xn1 and m2 bilinear polynomials in x1, . . . , xn1 and y1, . . . , yn2 . In this
case, the complexity of solving the system is expressed as MQ(q, n1, n2,m1,m2).
Using the result of Smith-Tone et al. [18], MQ(q, n1, n2,m1,m2) is estimated as
follows.

min
k1,k2

O

(
qk1+k2 · 3

(
n1 − k1

2

) ((
a + n1 − k1

a

)(
b + n2 − k2

b

))2
)

(4)

where a, b ∈ N is the bi-degree of the first non-positive term in the series
(1−z2

1)
m1 (1−z1z2)

m2

(1−z1)n1−k1 (1−z2)n2−k2
.
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Fig. 1. Equivalent key for Rainbow

I(k) (k ∈ O1) I(k) (k ∈ O2)

Fig. 2. Structure I = {I(k)}k∈O1
⋃

O2

2.3 Equivalent Key and Good Key

In this section, the concept of equivalent keys and good keys is presented. These
keys are used in the attacks on Rainbow. First, we define an equivalent key.
We fix a structure I = {I(k)}k∈O1

⋃
O2 where I(k) ⊆ {uiuj : 1 ≤ i, j ≤ n}. We

call (S ′,F ′, T ′) an equivalent key to (S,F , T ) if S ′ ◦ F ′ ◦ T ′ = S ◦ F ◦ T and
F ′|I = F|I , that is F ′ and F share the same coefficients corresponding to the
monomials in I. The equivalent keys play the same role in the sign algorithm as
the secret key.

Figure 1 shows an example of an equivalent key for Rainbow with illustrations
of the representation matrices of an equivalent key T ′,S ′. The diagonal entries
are 1; the white cells represent 0; and the gray cells represent arbitrary values.
In this example, I(k) is the set of the quadratic monomials with zero coefficients
in F (k). Namely I(k) = {u′′

i u′′
j : v + 1 ≤ i, j ≤ v + o1}

⋃
{u′′

i u′′
j : 1 ≤ i ≤

n, v+o1 +1 ≤ j ≤ n}
⋃

{u′′
i u′′

j : v+o1 +1 ≤ i ≤ n−1, 1 ≤ j ≤ v+o1} for k ∈ O1

and I(k) = {u′′
i u′′

j : v + o1 + 1 ≤ i, j ≤ n} for k ∈ O2. In Fig. 2, the monomials in
I = {I(k)}k∈O1

⋃
O2 are represented by the shaded area.

Second, a good key is defined. We fix a structure I = {I(k)}k∈O1
⋃

O2

where I(k) ⊆ {uiuj : 1 ≤ i, j ≤ n}. In addition, we fix a partial structure
J = {J (k)}k∈O1

⋃
O2 where J (k) ⊆ I(k). We call (S ′′,F ′′, T ′′) good key to

(S,F , T ) if S ′′ ◦ F ′′ ◦ T ′′ = S ◦ F ◦ T and F ′′|J = F|J .
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T ′′
S′′

Fig. 3. Good key for Rainbow

Regarding the equivalent keys, the coefficients corresponding to all the mono-
mials in I of F ′ coincide with those of F . In contrast, regarding the good keys,
F ′′ and F share the same coefficients corresponding to certain monomials in I.
Figure 3 shows an example of a good key for Rainbow.

2.4 Known Attacks on Rainbow

In this section, several known attacks on Rainbow are presented.

MinRank Attack. This attack finds a linear combination of m matrices of
size n-by-n P (1), . . . , P (m) which has rank at most v + o1. Finding such a linear
combination is called the MinRank problem. There are a few algorithms for
solving the MinRank problem. In this paper, two algorithms are used for the
MinRank problem. The algorithm proposed by Billet et al. [7] searches for the
linear combination in o1q

v+1(m
3

3 − m2

6 ) time. Recently, Bardet et al. [2] proposed
a new algorithm called the support minors modeling. This algorithm transforms
the MinRank problem into an MQ problem. The dominant complexity is that
of solving the MQ problem using XL algorithm [9]. The concrete complexity is
described in section 2.3 of [5].

HighRank Attack. Coppersmith et al. [8] proposed HighRank attack. High-
Rank attack finds T−1O2 The complexity of HighRank attack is qo2n3.

UOV Attack. Kipnis et al. [14] proposed UOV attack on UOV. As Rainbow
is a multilayered version of UOV, Rainbow can be regarded as UOV. Therefore,
UOV attack can be applied to Rainbow. The complexity of UOV attack on
Rainbow is qn−2o2−1o42.

RBS Attack. Ding et al. [11] proposed Rainbow band separation (RBS) attack.
The RBS attack constructs a system of quadratic polynomials in the good key
of Fig. 3 and recovers an equivalent key from the solution of the equations.
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In the system, there are n − 1 quadratic polynomials in v + o1 variables of
T ′ and m bilinear polynomials in v + o1 variables of T ′ and o2 variables of S′.
Therefore, the complexity of RBS attack is MQ(q, v + o1, o2, n − 1,m).

Intersection Attack. Beullens [5] proposed Intersection attack. Intersection
attack is a generalization of RBS attack. An outline of this attack is presented
below. First, two random linear combinations of P1, . . . , Pm denoted by L1, L2

are randomly chosen. Then, the quadratic equations in x ∈ L1TO2 ∩ L2TO2

and y ∈ (S
′−1)�W are constructed. From the conditions, 3o2 − n and o1 linear

constraints can be posed on x and y respectively. These equations are solved
using XL algorithm. For n ≥ 3o2, the probability that there exists x ∈ F

n
q

such that x ∈ L1TO2 ∩ L2TO2 is 1
qn−3o2+1 . Therefore, the aforementioned

process is repeated qn−3o2+1 times. The complexity of Intersection attack is
qn−3o2+1MQ(q,min{2n − 3o2, n − 1}, o2, 3m − 2, 2n).

Rectangular MinRank Attack. Beullens [5] proposed Rectangular MinRank
attack. In this attack, the attacker uses a MinRank problem with n − o2 + 1
matrices of size n-by-m with target rank o2. This is a different type of MinRank
problem from the above MinRank attack. Rectangular MinRank attack applies
the algorithm proposed by Bardet et al. to the MinRank problem and constructs
quadratic equations. Additional quadratic equations are also constructed from
the condition x ∈ T−1O2. The dominant part of the complexity is the complexity
of solving these equations. The concrete complexity is described in section 7.1
of [5].

Simple Attack and Combined Attack. Beullens [6] proposed two new
attacks called Simple attack and Combined attack. The attacks first compute
a vector x ∈ T−1O2 efficiently. From this vector, the second layer of Rainbow
can be recovered. Then, the first layer can be regarded as a UOV map. Finally,
the UOV map is attacked using known attacks on UOV. The difference between
Simple attack and Combined attack is in the way in which x ∈ T−1O2 is found.
Simple attack constructs m − 1 quadratic equations in x, which have v − 1
variables and solves them using XL algorithm. Hence, the complexity of Simple
attack is MQ(q, v−1,m−1). Combined attack constructs the MinRank problem
similar to Rectangular MinRank attack. The number of the matrices in the Min-
Rank problem is v, the number of rows of the matrices is n − 1, the number of
columns of the matrices is m, and the target rank is o2. The concrete complexity
is described in [6]. From the solution of the MinRank problem, x ∈ T−1O2 can
be computed. Simple attack is more efficient than Combined attack if v − o1
is small. For example, the complexity of Simple attack is 269 time for the SL1
parameters where v − o1 = 4. However, for the SL3, SL5 parameters, Combined
attack is more efficient. For example, the complexity of Combined attack is 2206

and 2157 time for the SL5 and SL3 parameters. This implies that the SL5 and
SL3 parameters satisfy only 192 and 128 bit security, respectively.
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Fig. 4. Equivalent key T ′, S′ (d = v)
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Fig. 5. Equivalent key T ′, S′ (d < v)

2.5 Fault Attacks on Rainbow

In this section, fault attacks on Rainbow are explained. Hashimoto et al. [12]
studied fault attacks with fixing random values. Krämer et al. [16] applied
Hashimoto et al.’s result to UOV and Rainbow. Shim et al. [20] proposed a
new fault attack on Rainbow which is explained as follows. In this attack, the
adversary fixes d (≤ v) random vinegar values of r1, . . . , rv. From the signatures
generated with the d fixed values, the attack recovers the partial information of
an equivalent key. The information depends on the number of the fixed values
d. Therefore, the case of d = v is considered first and then the case of d < v is
considered.

The Case of d = v [20]. In this case, the adversary uses an equivalent key, as
shown in Fig. 4. From the faulty signatures, the adversary obtains the values of
T ′
1, T

′
2 surrounded by the thick lines, as depicted in Fig. 4. The unknown variables

in T ′, S′ are T ′
3, S

′
1. Shim et al. proposed the method to recover T ′

3, S
′
1 using a

good key. To recover T ′
3, S

′
1, the method constructs m quadratic equations as

follows:
((T ′−1)(n))�P (k)(T ′−1)(n) = 0 (k ∈ O1

⋃
O2) (5)
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Fig. 6. Illustration of the fault attack model

Since there are o1 unknown variables in (T ′−1)(n), Shim et al.’s attack requires
MQ(q, o1,m) time, which is the exponential time.

The Case of d < v [20]. In this case, the adversary uses an equivalent key,
as shown in Fig. 5. From the faulty signatures, the adversary obtains the values
of T ′

1, T
′
2, T

′
3 surrounded by the thick lines, as depicted Fig. 5. The unknown

variables in T ′, S′ are T ′
4, T

′
5, T

′
6, S

′
1. Shim et al. proposed the method to recover

T ′
4, T

′
5, T

′
6, S

′
1 using a good key. To recover T ′

5, T
′
6, S

′
1, the method constructs m

quadratic equations and n − 1 bilinear equations as follows:

((T ′−1)(n))�P (k)(T ′−1)(n) = 0 (k ∈ O1

⋃
O2) (6)

(ei)�(P (o1) −
∑

l∈O2

S′
(o1,l)

P (l))(T ′−1)(n) = 0 (i ∈ {1, . . . , n − 1}) (7)

where ei is a vector in F
n
q such that i-th coordinate is 1 and the other coordinates

are 0. This system is essentially the same as that of RBS attack. Hence, Shim
et al.’s attack can be considered as RBS attack. Since there are v + o1 unknown
variables in (T ′−1)(n) and o2 unknown variables in (S′−1)(o1), Shim et al.’s attack
requires MQ(q, v + o1, o2,m, n − 1) time, which is the exponential time.

3 Proposed Fault Attacks with Fixing Random Vinegar
Values

In this section, two fault attacks on Rainbow are proposed. In Sect. 3.1, the
model of the proposed fault attacks with fixing the random vinegar values in the
signature generation, which is the same model as Shim et al.’s fault attack [20] is
discussed. Since our fault attacks depend on the number of fixed vinegar values,
similar to Shim et al.’s fault attack, two cases are considered as follows. In
Sect. 3.2 and 3.3, the case that all random vinegar values (d = v) are fixed and
the case fixing only some random vinegar values (d < v) are fixed are discussed,
respectively.
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3.1 Fault Attack Model

In the following, the fault attack model on Rainbow by fixing the random vinegar
values in the signature generation is described in detail to precisely explain the
proposed fault attack. This is the same model as Shim et al.’s fault attack [20].
An illustration of the fault attack model is presented in Fig. 6. In this paper, we
focus on the algebraic attack using faulty output, and we do not consider how
to fix vinegar values physically.

At first, the signature σ on a message μ is generated by using the vinegar
values r1, . . . , rv ∈ Fq in the third line of Algorithm 1, which are randomly chosen
in Fq. We assume that the adversary accumulates N signatures σ(1), . . . , σ(N) ∈
F
n
q , and the vinegar values for i-th signature σ(i) are denoted by r

(i)
1 , . . . , r

(i)
v for

i ∈ {1, . . . , N}. Note that the messages for signatures σ(1), . . . , σ(N) ∈ F
n
q are

not used in the attack model.
Subsequently, in the fault attack model, it is assumed that the d (≤ v) values

of the random vinegar values are fixed during the signature generation, namely,
the adversary fixes the d vinegar values in red squares, as depicted in Fig. 6. The
fixed vinegar values in Fig. 6 are denoted by the values marked with an asterisk
such as r∗

j . The other v−d vinegar values of r1, . . . , rv ∈ Fq are randomly chosen
for each signature generation.

Note that by attacking certain registers of the output of the random number
generator, the values at the registers could be fixed. This is considered as one
of the cases in the fault attack model. Furthermore, the fault attack model also
includes the case of the same values being used every time to generate a signature
due to a defect of the implementer.

We remark that the algebraic way of the attack using the information about
the indices of fixed vinegar values and the faulty signatures is analyzed in this
paper. The physical way to fix vinegar values is out of the scope of this paper. The
number of faulty signatures necessary to our fault attacks depend on the number
of fixed vinegar values. This is further described in the following subsections.

3.2 Fixing All Random Vinegar Values (d = v)1

In this section, the case that all the random vinegar values are fixed by the
adversary (d = v) is considered and a polynomial time attack is proposed in this
model.

We assume that the adversary fixes all the random vinegar values r1, . . . , rv
to r∗

1 , . . . , r
∗
v . Then, a description of the signature generation is given by Algo-

rithm 2. Since the adversary fixes all the values in this case, Algorithm 2 does
not generate random vinegar values. In the proposed fault attack, the adversary
requires at least N = n − v + 1 = m + 1 signatures using Algorithm 2. Let
σ(1), . . . , σ(m+1) ∈ F

n
q be the signatures the adversary obtains. We remark that

if the adversary gets less than N faulty signatures, then the adversary cannot

1 After this paper was submitted to IWSEC 2022, Aullbach et al. [1] have
independently proposed the same attack in the case of d = v.
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Algorithm 2. Signature generation for the message μ ∈ {0, 1}∗ in the case that
all the vinegar values are fixed to r∗

1 , . . . , r
∗
v

1: h ← H(μ)
2: y ← S−1(h)
3: for i ∈ V do
4: ui ← r∗

i

5: Compute uv+1, . . . , un ∈ Fq s.t. F(u1, . . . , uv, uv+1, . . . , un) = y
6: σ ← T −1(u1, . . . , uv, uv+1, . . . , un)
7: return σ

execute the proposed attack unless the adversary applies the exhaustive search.
For each i ∈ {1, . . . ,m + 1}, the same r∗

1 , . . . , r
∗
v are reused to generate the i-th

signature σ(i).
First, the way to recover the partial information on an equivalent key is

introduced. In this case, an equivalent key as depicted in Fig. 4 is used. Let Tv

be the first v rows of T . Then, we have Tv(σ(i)) = (r∗
1 , . . . , r

∗
v)

� for all i ∈
{1, . . . , m + 1}. Let σ̃(i) := σ(i+1)−σ(1) for i ∈ {1, . . . ,m}. We have Tv(σ̃(i)) = 0
for all i ∈ {1, . . . , m}. Let Λ := (σ̃(1), . . . , σ̃(m)) ∈ F

n×m
q . Then, a basis of KerΛ

is computed. By computing the row reduced echelon form of KerΛ, T ′
1 and T ′

2

in Fig. 4 can be recovered.
Further, the approach for recovering an equivalent key T ′, S′ from T ′

1, T
′
2

is demonstrated. Note that it suffices to compute T ′
3 and S′

1. Regarding T ′,
(T ′−1)(j) are revealed for j ≤ v+o1 and (T ′−1)(j) include the unknown variables
(T ′

3)(j) for v + o1 + 1 ≤ j ≤ n.
Let I = {I(k)}k∈O1

⋃
O2 be the set of the quadratic monomials with zero

coefficients in F ′. Since (S ′,F ′, T ′) is an equivalent key, we have I(k) = {u′′
i u′′

j :
v+1 ≤ i, j ≤ v+o1}

⋃
{u′′

i u′′
j : 1 ≤ i ≤ n, v+o1+1 ≤ j ≤ n}

⋃
{u′′

i u′′
j : v+o1+1 ≤

i ≤ n − 1, 1 ≤ j ≤ v + o1} for k ∈ O1 and I(k) = {u′′
i u′′

j : v + o1 + 1 ≤ i, j ≤ n}
for k ∈ O2. Figure 2 shows I = {I(k)}k∈O1

⋃
O2 .

Next, equations in T ′−1, S′−1 are constructed. For k ∈ O1, F ′(k) = (S ′−1 ◦
P)(k) ◦ T ′−1 is considered. From the definition of S ′, the representation matrix
of (S ′−1 ◦ P)(k) is P (k) −

∑
l∈O2

S′
(k,l)P

(l). Therefore, for i, j ∈ {1, . . . , n}, we
have

(F ′(k))(i,j) = ((T ′−1)(i))�(P (k) −
∑

l∈O2

S′
(k,l)P

(l))(T ′−1)(j). (8)

From this equation, equations in (T ′−1, S′−1) are constructed and an equivalent
key (S ′, T ′) is recovered.

First, S ′ is recovered. From Fig. 2, Eq. (8) for v + 1 ≤ i ≤ j ≤ v + o1 is as
follows.

((T ′−1)(i))�(P (k) −
∑

l∈O2

S′
(k,l)P

(l))(T ′−1)(j) = 0. (9)

Since (T ′−1)(i), (T ′−1)(j) are revealed for v+1 ≤ i ≤ j ≤ v+o1, Eq. (9) is a linear
equation in S′

(k,l) (l ∈ O2). From all the pairs (i, j), o1(o1+1)
2 linear equations
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Algorithm 3. Signature generation for message μ ∈ {0, 1}∗ in the case that the
first d(< v) vinegar values are fixed to r∗

1 , . . . , r
∗
d

1: h ← H(μ)
2: y ← S−1(h)
3: for i = 1 to d do
4: ui ← r∗

i

5: for i = d + 1 to v do
6: r̃i

$←− Fq

7: ui ← r̃i
8: Compute uv+1, . . . , un ∈ Fq s.t. F(u1, . . . , uv, uv+1, . . . , un) = y
9: σ ← T −1(u1, . . . , uv, uv+1, . . . , un)

10: return σ

in o2 variables are obtained. Since we have o1(o1+1)
2 ≥ o2 for the parameters

of Rainbow, the equations can be solved and S′
(k,l) (l ∈ O2) are recovered.

Therefore, S′ can be recovered by repeating this process for all k ∈ O1.
Next, T ′ is recovered. We fix j ∈ O2. From Fig. 2, Eq. (8) for k ∈ O1, 1 ≤

i ≤ v + o1 is

((T ′−1)(i))�(P (k) −
∑

l∈O2

S′
(k,l)P

(l))(T ′−1)(j) = 0. (10)

Since S′ has already been recovered, the value of S ′−1 ◦ P is known. Therefore,
Eq. (9) is a linear equation in (T ′−1)(j). Since (T ′−1)(j) includes the unknown
variables (T ′

3)(j), this linear equation has o2 variables. From all the pairs (k, i), we
have o1(v+o1) linear equations in o2 variables. Since we have o1(v+o1) ≥ o2 for
the parameters of Rainbow, the equations can be solved and (T ′

3)(j) is recovered.
Therefore, T ′

3 can be recovered by repeating this process for all j ∈ O2. As a
result, T ′ is recovered.

From S′, T ′ and the public key P, F ′ can be computed. Therefore, the equiv-
alent key (S ′,F ′, T ′) can be recovered. Since only linear equations are solved in
this process, the proposed attack is a polynomial time algorithm.

3.3 Fixing Some Random Vinegar Values (d < v)

In this section, the case that some random vinegar values are fixed by the adver-
sary (d < v) is considered and an efficient attack is proposed in this model.

For the sake of simplicity, we assume that the first d vinegar values
r
(i)
1 , . . . , r

(i)
d ∈ Fq (i ∈ {1, . . . , N}) are fixed to r∗

1 , . . . , r
∗
d ∈ Fq, since the indices

of the vinegar variables can be changed arbitrarily. Then, the description of the
signature generation is outlined in Algorithm 3. In the proposed fault attack,
the adversary requires at least N = n − d + 1 signatures using Algorithm 3. Let
σ(1), . . . , σ(n−d+1) ∈ F

n
q be the signatures the adversary obtains. We remark that

if the adversary gets less than N faulty signatures, then the adversary cannot
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execute the proposed attack unless the adversary applies the exhaustive search.
For each i ∈ {1, . . . , n − d + 1}, to generate the i-th signature σ(i), the same
r∗
1 , . . . , r

∗
d are reused as the first d vinegar values, and the other v − d vinegar

values r
(i)
d+1, . . . , r

(i)
v are randomly chosen.

First, the approach to recover the partial information of an equivalent key
is presented. In this case, an equivalent key depicted in Fig. 5 is used. Let Td

be the first d rows of T . Then, we have Td(σ(i)) = (r∗
1 , . . . , r

∗
d)

� for all i ∈
{1, . . . , n − d + 1}. Let σ̃(i) := σ(i+1) − σ(1) for i ∈ {1, . . . , n − d}. We have
Td(σ̃(i)) = 0 for all i ∈ {1, . . . , n − d}. Let Λ := (σ̃(1), . . . , σ̃(n−d)) ∈ F

n×(n−d)
q .

A basis of KerΛ is computed. By computing the row reduced echelon form of
KerΛ, T ′

1, T
′
2, T

′
3 in Fig. 5 can be recovered.

In the following, the way to recover an equivalent key T ′, S′ from T ′
1, T

′
2, T

′
3

is demonstrated. Note that it suffices to compute T ′
4, T

′
5, T

′
6 and S′

1. First it is
shown that by using T ′

1, T
′
2, T

′
3, a public key with smaller parameters can be

constructed. Next, the complexity of the attacks described in Sect. 2.4 for new
small public key is estimated. Finally, an attack in the case of d < v is proposed.

Here, a public key with smaller parameters is constructed. In the proposed
attack, an equivalent key S′, T ′, as depicted in Fig. 5 is used. Let F ′ : Fn

q → F
m
q

be the corresponding central map. Let F̂ ′(k) and T̂ ′ be the lower right ((n −
d) × (n − d))-matrix of F ′(k) and T ′ respectively. Let F̂ ′ be the quadratic map
F
(n−d)
q → F

m
q represented by {F̂ ′(k)}k. Let T̂ ′ be the map F

(n−d)
q → F

(n−d)
q

represented by T̂ ′.
Consider an element x̂ ∈ F

(n−d)
q . For this x̂, x′ ∈ F

d
q is defined as x′ =

−(T ′
1, T

′
2, T

′
3)x̂. Let x ∈ F

v
q be (x′�, x̂�)�. Then, T ′x = (0, . . . , 0, x̂�)� is derived.

Thus, we have F ′ ◦ T ′(x) = F̂ ′ ◦ T̂ ′(x̂). Here, let P̂ : F(n−d)
q → F

m
q be P̂ :=

S ′ ◦ F̂ ′ ◦ T̂ ′. Then, we have P(x) = P̂(x̂). Thus, P̂ can be computed using
T ′
1, T

′
2, T

′
3 and a public key P. P̂ can be regarded as the public key for parameters

(q, v−d, o1, o2). Therefore, (S ′, T̂ ′) is the equivalent key to P̂. Figure 7 shows the
equivalent key for P and the right lower section surrounded by the thick lines
represents T̂ ′. Since T ′

1, T
′
2, T

′
3 are revealed, the unknown variables are T ′

4, T
′
5, T

′
6

and S′
1. Thus, it suffices to recover T̂ ′, S′, which is an equivalent key to P̂.

Here, the proposed attack in this model (d < v) is outlined. First, the known
attacks are applied to P̂. Next, we recover an equivalent key to P̂ (denoted by
S ′, F̂ ′, T̂ ′). Then, T ′ can be computed from T ′

1, T
′
2, T

′
3 and T̂ ′. Finally, we recover

the equivalent key S ′,F ′, T ′.
Now, the complexity of the attacks in Sect. 2.4 for smaller public key is esti-

mated. For RBS attack, Shim et al.’s attack, as discussed in Sect. 2.5, is addi-
tionally considered.

MinRank Attack. Here, Billet et al.’s algorithm [7] and Bardet et al.’s algo-
rithm [2] are considered. The complexity of Billet et al.’s algorithm is estimated
as o1q

(v−d)+1m3. Bardet et al.’s algorithm considers an instance of MinRank
problem with m matrices of size (n−d)-by-(n−d) with target rank (v −d)+o1.
Thus, as the number of fixed vinegar variables d increases, the size of matrices
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Fig. 7. Equivalent key T ′, S′ (d < v)

and target rank decrease. Since the complexity of solving the MinRank problem
depends on the number of matrices and the rank, the complexity of solving the
MinRank problem is reduced.

HighRank Attack. The complexity is qo2(n − d)3.

UOV Attack. The complexity is qv−d+o1−o2−1o42. This is the same result as
Hashimoto et al. [12].

RBS Attack. In this case, RBS attack can be applied to P̂ and (n−d)−1+m
quadratic equations with n−d variables can be derived. However, Shim et al. [20]
have applied RBS attack to P directly and constructed the Eqs. (6), in which
there are n−1+m quadratic equations with n−d variables. Although the number
of variables are the same, the Eqs. (6) contains more equations than the case of
applying RBS attack to P̂. Therefore, the Eqs. (6) can be solved more efficiently.
As a result, the small public key P̂ is not used and RBS attack is applied to P
directly. Further, the complexity of te proposed attack can be estimated as the
complexity of solving the Eqs. (6), which is MQ(q, (v−d)+o1, o2,m, (v−d)−1).

Intersection Attack. In this case, 2(n − d) bilinear equations in x and y, and
3m − 2 quadratic equations in x are obtained. As mentioned in Sect. 2.4, x has
min{2(n − d) − 3o2, (n − d) − 1} unknown variables, and y has o2 unknown
variables. For d ≤ n − 3o2, the process is repeated qn−d−3o2+1 times. However,
for d > n − 3o2 + 1, the equations are solved once. Therefore, the complexity is
qmax{0,(n−d)−3o2+1}MQ(q,min{2(n−d)−3o2, (n−d)−1}, o2, 3m−2, 2(n−d)).

Rectangular MinRank Attack. In this case, the MinRank problem where
the number of matrices is (n − d) − o2 + 1 and the number of rows is (n − d) − 1
is constructed. As the number of fixed vinegar variables d increases, the number
of the matrices and the size of the matrices decrease. Since the complexity of



Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values 161

solving the MinRank problem depends on the number of matrices and the size,
the complexity of solving the MinRank problem is reduced.

Simple Attack, Combined Attack. Simple attack solves m − 1 quadratic
equations in (v − d) − 1 variables. Hence, the complexity of Simple attack is
MQ(q, (v − d) − 1,m − 1). Combined attack constructs the MinRank problem
where the number of matrices is v − d and the number of rows is (n − d) − 1. In
addition, the size of UOV map in the first layer is reduced. Thus, the complexity
decreases as d increases.

Using the previous results, an attack with fixing some random vinegar val-
ues (d < v) is proposed. The attack with the smallest complexity amongst the
aforementioned attacks depends on d. Therefore, the proposed attack chooses
the optimal attack for each d and recovers an equivalent key with the attack. All
the attacks except RBS attack are applied to the small public key P̂ to get an
equivalent key for P̂. Subsequently, the equivalent key for P is recovered with
the equivalent key for P̂. If RBS attack is optimal, then an equivalent key for P
is directly recovered using RBS attack.

4 Complexity of the Proposed Attacks

In this section, the complexity of the proposed attacks with the fixing all random
vinegar values (d = v) and with the fixing some random vinegar values (d < v)
is evaluated.

4.1 Fixing All Random Vinegar Values (d = v)

In this section, the complexity of the proposed attack described in Sect. 3.2 is
estimated. It is shown that the dominant part of the complexity of our attack is
the complexity of solving the linear equations in equivalent key.

The Complexity of Recovering S′. For each k ∈ O1,
o1(o1+1)

2 Eqs. (9) in
S′
(k,l) (l ∈ O2) are solved. Therefore, the total complexity of recovering S′ is

o1 ·
(

o1(o1 + 1)
2

o22

)
= O(n5). (11)

The Complexity of Recovering T ′. For each j ∈ O2, o1(v + o1) Eqs. (10) in
(T ′−1)(j) are solved. Therefore, the total complexity of recovering T ′ is

o2 ·
(
o1(o1 + 1) · o22

)
= O(n5). (12)
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Table 1. Comparison of the complexity of Shim et al.’s attack [20] and the proposed
attack (Section 3.2) with fixing all random vinegar values (d = v)

attack complexity

Shim et al. [20] MQ(q, o1,m) exponential time
Proposed attack (Section 3.2) O(n5) polynomial time

The Complexity of Recovering F ′. For each k ∈ O1

⋃
O2, let P ′(k) be the

representation matrix of (S ′−1◦P)(k). Note that the value of P ′(k) is known since
S′ is known. Then, we have F ′(k) = (T ′−1)�P ′(k)T ′−1. Therefore, F ′(k) can be
recovered by computing the products of matrices and its complexity is O(n3).
Therefore, the total complexity of recovering F ′ is O(n4).

Therefore, the total complexity of recovering the equivalent key is O(n5),
and it is a polynomial time algorithm with respect to the number of variables of
Rainbow.

Table 1 shows the complexity of Shim et al.’s attack [20] and the proposed
attack (Sect. 3.2) in the model of fixing all random vinegar values (d = v).
Note that the outline of Shim et al.’s attack is described in Sect. 2.5 and it
requires exponential time. Therefore, the proposed polynomial-time attack is
more efficient than Shim et al.’s attack in terms of the complexity theory.

4.2 Fixing Some Random Vinegar Values (d < v)

In this section, the complexity of the proposed attack in the case of fixing
some random vinegar values (d < v) is estimated. First, the complexity of the
attacks mentioned in Sect. 3.3 is compared. The complexity for the SL5 parame-
ters (q, v, o1, o2) = (256, 96, 36, 64) is estimated. As previously mentioned, these
parameters satisfy only 192 bit security. Figure 8 shows the complexity for each
d ∈ {1, . . . , 95}. The horizontal axis in Fig. 8 refers to the number of fixed vinegar
values, and the vertical axis in Fig. 8 refers to the logarithm of the complexity.
When estimating the complexity of MinRank attack, the smaller of the com-
plexity of Billet et al.’s and Bardet et al.’s algorithms is selected. This graph
shows that for d ≤ 8, the complexity of Combined attack is the smallest; for
9 ≤ d ≤ 63 and d ≥ 89, the complexity of Simple attack is the smallest; and for
64 ≤ d ≤ 88, the complexity of UOV attack is the smallest.

The proposed attack for the SL5 parameters (q, v, o1, o2) = (256, 96, 36, 64)
proceeds as follows. For d ≤ 8, Combined attack is applied to P̂. For 9 ≤ d ≤ 63
and d ≥ 89, Simple attack is applied to P̂. For 64 ≤ d ≤ 88, an equivalent key
for P̂ is computed with UOV attack. Subsequently, an equivalent key for P is
recovered.
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Fig. 8. Comparison of the complexity of eight attacks in Section 3.3 with fixing some
random vinegar values (d < v) for SL5 parameters of Rainbow (v = 96)

Fig. 9. Comparison of the complexity of Shim et al.’s attack [20] and the proposed
attack (Section 3.3) with fixing some random vinegar values (d < v) for SL5 parameters
of Rainbow (v = 96)
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Figure 9 compares the complexity of Shim et al.’s attack and the proposed
attack. Similar to Fig. 8, the horizontal axis in Fig. 9 refers to the number of
fixed vinegar values, and the vertical axis in Fig. 9 refers to the logarithm of
the complexity. The gray dotted line represents the security level that the SL5
parameters are designed to have, and the gray broken line represents the security
level considered for Beullens’ attacks. It is confirmed in Fig. 9 that the complexity
of the proposed attack is smaller than that of Shim et al.’s attack for all d.
In particular, the complexity differs by approximately 280 times for the SL5
parameters. In conclusion, the proposed attack is more efficient than Shim et
al.’s attack.

5 Conclusion

In this paper, two fault attacks on Rainbow by fixing the random vinegar values
in the signature generation are proposed. In the case of fixing all random vinegar
values, the proposed attack is feasible in polynomial time in terms of the number
of variables. When only some random vinegar values are fixed, the complexity
of the proposed attack is significantly smaller than that of the previously most
efficient Shim et al.’s attack.

From these results, it is concluded that Rainbow is less resistant to fault
attacks than previously expected. The proposed fault attack model can be trig-
gered by fixing the random number generator, which could cause in some prac-
tical cases such as the implementer reuses the same random values during the
signature generation. Therefore, when implementing Rainbow, it is necessary
to take sufficient countermeasures against fault attacks. For example, the signer
records the values of the random values used in the past several signings to aboid
reusing these values. Future work will include applying our fault attacks to other
variants of UOV.
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16. Krämer, J., Loiero, M.: Fault attacks on UOV and rainbow. In: Polian, I.,

Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 193–214. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16350-1 11

17. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

18. Perlner, R., Smith-Tone, D.: Rainbow band separation is better than we thought.
IACR Cryptology ePrint Archive, Report 2020/702 (2020)

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

20. Shim, K.A., Koo, N.: Algebraic fault analysis of UOV and rainbow with the leakage
of random vinegar values. IEEE Trans. Inf. Forensics Secur. 15, 2429–2439 (2020)

21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/11832072_23
https://doi.org/10.1007/11832072_23
https://doi.org/10.1007/3-540-48329-2_37
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-540-68914-0_15
https://doi.org/10.1007/978-3-642-25405-5_1
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/978-3-030-16350-1_11
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31


Quantum-Resistant 1-out-of-N Oblivious
Signatures from Lattices

Jing-Shiuan You1,2, Zi-Yuan Liu1,2 , Raylin Tso1(B) , Yi-Fan Tseng1 ,
and Masahiro Mambo2

1 National Chengchi University, Taipei 11605, Taiwan
{zyliu,raylin,yftseng}@cs.nccu.edu.tw

2 Kanazawa University, Kanazawa 920-1192, Japan
mambo@ec.t.kanazawa-u.ac.jp

Abstract. As business activities and information exchange increasingly
move online, digital signatures, among other cryptographic techniques,
have been developed to help authenticate the source and integrity of dig-
ital information when transferred. Various types of signature primitives,
such as ring signatures and blind signatures, have been introduced to
satisfy privacy protection needs spanning from ensuring anonymity of a
signer to maintaining secrecy of the content to be signed from a signer.
Among different signature schemes, the 1-out-of-N oblivious signature
scheme, which was introduced by Chen (ESORICS’ 94) and later for-
malized by Tso et al. (ISPEC’ 08), provides a further basis of trust while
preserving the signature requestor’s privacy as blind signatures do. In
this scheme, a recipient first selects a set of messages, one of which being
the message he or she intends to obtain a signature for. After interacting
with a signer, while the recipient will be able to obtain a signature on
the predetermined message, the signer only knows that he or she signed
one of the messages but remains oblivious to exactly which message was
signed. However, all existing oblivious signature schemes are built upon
the hardness of number-theoretic problems, which, as Shor demonstrated
in 1994, cannot withstand attacks from quantum adversaries. To address
this problem, this work proposes a novel quantum-resistant 1-out-of-
N oblivious signature scheme based on SIS hard assumption. We also
provide security proofs to demonstrate that the security requirements
of ambiguity and strong unforgeability are satisfied under the random
oracle model. To the best of our knowledge, the proposed scheme is
the first 1-out-of-N oblivious signature that is secure against quantum
adversaries.
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1 Introduction

The increasing sophistication of computing and the Internet has been transfor-
mative for many. For example, online search [18], social media [32,38], remote
medical diagnosis [8,20], and even online voting (e-voting) [17,23,24] have
replaced their conventional offline counterparts. Despite its many benefits, infor-
mation technology has also created privacy and security challenges. In online
transactions and digital contracts, a cryptographic technique called digital sig-
natures is often adopted to guarantee the legality and authenticity of contracts
[16]. In general, a digital signature scheme must meet the following basic charac-
teristics: integrity, unforgeability, and public verifiability. On top of these criteria,
signature schemes are designed to meet specific privacy protection needs in dif-
ferent use scenarios. For instance, if the identity of the signer must be hidden
from the user, a group signature [10] or ring signature [31] can be implemented.
A ring signature scheme has N signers forming a ring. When a signer in the ring
receives a message to be signed, the signer can generate a ring signature with
his or her secret key. A verifier can validate the signature with all public keys of
the ring but will not be able to identify the signer. Group signatures are similar
to ring signatures, with the main difference being the existence of a group man-
ager, who is in charge of adding group members and has the ability to reveal the
original signer’s identity in the event of disputes. In addition, to further ensure
the signer’s anonymity, blind signatures [9] can be used when the recipient does
not want to disclose to the signer the content of the message to be signed. The
blind signature scheme allows a user to obtain a signature on a chosen message
by interacting with the signer while keeping the actual content of the message
concealed from the signer. At the end of the signature generation, the signer
has never seen the message, and neither will he or she (or a verifier) be able to
link the blinded message to its unblinded version based on information from the
interactions between the signer and the user, thus granting user anonymity.

As far as user privacy is concerned, as in the above case of blind signatures,
here we consider two more privacy protection needs on the user end. In cases
where multiple signers are available, a user may hope to obtain a signature
from a specific signer without disclosing which signer has been selected. That
is, exactly which signer the user intends to request a signature from is sensitive
information. This privacy need may occur, for example, in the case of getting
access to sensitive databases, where a user hopes to access one of the multiple
databases, each assigned to an administrator but intends to keep secret which
database will be accessed. In other cases, a user may wish to get a signature for
a specific item but does not want the signer to know which item he or she will
be granting a signature on. This can apply in the example of a software permit
purchase, where the buyer needs to obtain a certificate (a signature) from the
software provider for legal use but prefers not to disclose to the seller which
software item he or she is requesting a permit for.

To address these privacy protection requirements, Chen introduced the con-
cept of oblivious signatures in 1994 [11]. Chen proposed two classes of oblivious
signature schemes: one with N keys, and another with N messages. In the scheme
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with N keys, the signature is generated by a recipient R interacting with a group
of possible signers S1,S2, · · · ,SN (or a signer with N different keys). R sends
a message to S which is then signed with one of the N keys. The signer’s key
is denoted as the accepted key. None of the possible S can know which key was
used to sign the message. Furthermore, R can prove that he or she has obtained
a signature with one of N keys without disclosing which key was used. In the
scheme with N messages, S receives N messages from R where the recipient
needs only one signature on one specific message among the N messages. Dur-
ing the signing process, S can read the content of all of the N messages but
remains oblivious to which message he or she will be signing. Similar to the case
with N keys, R can reveal that he or she has obtained a signature on one of
these N messages without divulging which message was signed. This scheme can
preserve recipient privacy in applications such as online shopping. For example,
a recipient could choose N products but have only one of them signed by S
without revealing the chosen product.

The merit of oblivious signatures stands out when we compare them with
blind signatures. A key disadvantage of blind signatures is that the signer has
absolutely no idea what message he or she is signing and thus risks providing
a signature to information they may disapprove of. In contrast, the oblivious
signature scheme allows the signer to view the content of all messages in the
message set, providing a further basis of trust but still preserving the signature
requestor’s privacy as blind signatures do. Intuitively, one may think that the
oblivious nature of an oblivious signature can be created using a blind signature
scheme. That is, the recipient can request a blind signature on his or her pre-
processed message (a so-called blinded message) accompanied with N messages
to the signer, and claim that the content of the blinded message is the same as
that of one of N messages. With this setup, the signer does have access to what
information he or she is potentially signing. However, there is a security flaw.
The signer is solely relying on a claim made by the recipient and has no way
to verify whether the blinded message he or she signed indeed related to the N
messages. Thus this setup is less reliable and potentially problematic.

Another option one may contemplate as an alternative that achieves the
purposes of an oblivious signature scheme would be a general signature scheme
that uses 1-out-of-N oblivious transfer [12,29] to send back signatures generated
by the signer. To elaborate, the recipient can request the signer to sign a set
of messages and use a 1-out-of-N oblivious transfer to obtain a specific indexed
signature without sharing the index number with the signer. Nevertheless, this
alternative can be vulnerable to attacks by malicious signers. The malicious
signer can generate N signatures on the same message belonging to the message
set. If the signed message is not the one the recipient intends to obtain a signature
for, naturally, the recipient would initiate the signature request process again to
get the right signature. Thus by trying out one message at a time, until the signed
message is the one preselected by the recipient, at which point the recipient will
cease to initiate a new signature request process, the malicious signer will be able
to identify which message is chosen by the recipient. In this case, the alternative
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setup fails to satisfy the oblivious property, which is the essential privacy premise
an oblivious signature scheme offers.

1.1 Motivation and Contribution

To take into account the desired purposes and the security of the oblivious sig-
nature, Tso et al. [37] introduces a notion called “1-out-of-N oblivious signature
scheme.” Here, “1-out-of-N” indicates that the recipient either intends to obtain
a signature for a specific message in his or her own preselected message set or
intends to obtain a signature from a specific signer out of all possible signers.
Tso et al. also formalized the security models of the scheme and proposed a more
efficient 1-out-of-N oblivious signature scheme. Their scheme achieves a smaller
signature size and its security is based on the discrete logarithm assumption,
providing ground for further research and application. In addition, for special
circumstances where both the message and the identity of the signer are sen-
sitive, Tso [35,36] proposed a two-in-one system that combined two types of
oblivious signature schemes into a single scheme. All existing oblivious signa-
ture schemes were introduced at an earlier time, and their securities are based
on the hardness of number-theoretic problems. However, as early as 1994, Shor
[33] introduced a quantum algorithm capable of solving the discrete logarithm
problems in polynomial time, posing a major challenge to cryptographic schemes
based on discrete logarithm problems, including the existing oblivious signature
schemes. When quantum computers mature, oblivious signature schemes cur-
rently available will be broken. Several types of the quantum-resistant signature
schemes based on lattices [15,27], isogeny [7,13], codes [5,34], and hash [6,21]
assumptions have been introduced, but how to construct a quantum-resistant
1-out-of-N oblivious signature scheme remains an open problem.

Aiming to provide a solution, in this paper, we propose a novel 1-out-of-
N oblivious signature scheme from lattices. The proposed scheme is inspired
by Lyubashevesky’s lattice-based signature [26], which has well-proven security
and has been the basis for several extensions. We also present security proofs
to demonstrate that the proposed scheme has strong unforgeability and ambi-
guity under random oracle. As its security proofs rely on the lattice-based hard
assumption—short integer solution (SIS) [1], the proposed scheme is considered
quantum-resistant. Furthermore, the theoretical comparison and efficiency anal-
ysis are provided to indicate the proposed scheme can be more secure when the
execution time is reasonable.

1.2 Organization

This paper is organized as follows: Sect. 2 presents the notation used in this
paper and background regarding the techniques used in the construction and
security proofs. Section 3 defines the system model and security model of 1-
out-of-N obvious signature scheme. Section 4 describes the proposed 1-out-of-N
oblivious signature scheme using lattices. Section 5 presents the security proofs
of the proposed scheme, including strong unforgeability and ambiguity. Section 6
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provides a theoretical comparison and efficiency analysis of the proposed scheme.
Section 7 summarizes the outcomes and provides directions for future work.

2 Preliminaries

2.1 Notation

For a positive integer N , a set {1, 2, · · · , N} is denoted by [N ]. Let q be a
prime; then, elements in Zq denote integers in the range [− q−1

2 , q−1
2 ]. When

handling elements in Zq, all operations are performed modulo q. The notations
O and ω are used to indicate the order (growth rate) of functions; for example,
f(n) = O(g(n)) if positive constants c and n0 exist such that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0, and f(n) = ω(g(n)) if positive constants c and n0 exist such that
0 ≤ cg(n) < f(n) for all n ≥ n0, where f, g are polynomial functions of n. For
some n, negl(n) is refereed as to the negligible function of n, and 1 − negl(n)
means that a probability is overwhelming. Vectors and matrices are denoted by
bold letters and bold capital letters, respectively. In addition, we presume all the
vectors are column vectors, and ‖v‖ is defined as the �2 norm of the vector v.
The transpose of the vector v is denoted by v�, and [A|B] ∈ Z

m×(n+k) denotes
the concatenation of matrices A ∈ Z

m×n and B ∈ Z
m×k. For an element x and

some distribution D, the notion x
$←− D indicates that x is randomly picked in

accordance with D.

2.2 Lattices and the SIS Problem

Definition 1 (Lattices). Let b1, . . . ,bn be n linearly independent vectors in
R

n. An n-dimensional lattice Λ(B) produced by a matrix B = [b1, · · · ,bn] is
defined as:

Λ(B) :=

{
n∑

i=1

cibi | ci ∈ Z

}
.

Here, the matrix B is called the basis of lattice Λ(B).

In this paper, we only premeditate integer lattices, which means that for each
entry of each vector bi is in Zq.

Definition 2 (q-ary Lattices). Given an integer q ≥ 2 (q is often required to
be a large prime), a positive integer n, and a matrix A ∈ Z

n×m
q , we define three

sets as follows:

Λq(A) := {y ∈ Z
m | y = A�x mod q, for some x ∈ Z

n};

Λ⊥
q (A) := {y ∈ Z

m | Ay = 0 mod q};

Λu
q (A) := {y ∈ Z

m | Ay = u mod q, for some u ∈ Z
n
q }.

We say that Λu
q (A) is a coset of Λ⊥

q (A). If there is a vector t ∈ Z
m such that

At = u, then Λu
q (A) = Λ⊥

q (A) + t.
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Definition 3 (SISq,n,m,β Problem [26]). Given a random matrix A ∈ Z
n×m
q ,

the SISq,n,m,β problem is to find out a non-trivial short vector v ∈ Z
m such that

Av = 0 mod q and ‖v‖ ≤ β1.

Definition 4 (SISq,n,m,d Distribution [26]). Choose a random matrix A $←−
Z

n×m
q and a vector s $←− {−d, · · · , d}m and output (A, t), where t = As.

Definition 5 (SISq,n,m,d Search Problem [26]). Given a pair (A, t) from the
SISq,n,m,d distribution, find a s ∈ {−d, · · · , d}m such that As = t.

Definition 6 (SISq,n,m,d Decision Problem [26]). Given a pair (A, t) from
the SISq,n,m,d distribution, decide whether it came from the SISq,n,m,d distribu-
tion or it was generated uniformly at random from Z

n×m
q ×Z

n
q with non-negligible

advantage.

Theorem 1 ([22,28]). If d is polynomial in n, then there is a polynomial-time
reduction from the SISq,n,m,d search problem to the SISq,n,m,d decision problem.

Theorem 2 ([26]). If m = 2n and 4dβ
√

m ≤ q, then there is a polynomial-time
reduction from solving the SISq,n,m,d decision problem to the SISq,n,m,β problem.

2.3 The Normal Distribution and Rejection Sampling

Definition 7 (Continuous Normal Distribution). We define the function

ρm
u,σ(x) =

(
1√

2πσ2

)m

e
−‖x−u‖2

2σ2 as the continuous normal distribution over R
m

centered at u with standard deviation σ. Here we note that we omit u (i.e.,
ρm

σ (x)) when u = 0.

Definition 8 (Discrete Normal Distribution). We define the function
Dm

u,σ(x) = ρm
u,σ(x)/ρm

σ (Zm) as the discrete normal distribution over Z
m cen-

tered at u ∈ Z
m with standard deviation σ, where ρm

u,σ(Zm) =
∑
z∈Zm

ρm
σ (z).

Lemma 1 ([2,26]). For any vector v ∈ R
m and any σ, r > 0, Pr[|〈x,v〉| > r |

x $←− Dm
σ ] ≤ 2e

− r2

2‖v‖2σ2 . We have properties as following:

1. For any η > 0, Pr[|x| > ησ | x
$←− D1

σ] ≤ 2e
−η2

2 ;
2. For any x ∈ Z

m and σ ≥ 3/
√

2π, Dm
σ (x) ≤ 2−m;

3. For any η > 1, Pr[‖x‖ > ησ
√

m | x $←− Dm
σ ] ≤ ηme

m
2 (1−η2).

Rejection sampling, introduced by Lyubashevsky in [26], is used to prove the
indistinguishability of two distributions of two different signatures from differ-
ent secret keys. The main idea is to “reject” some elements of a distribution
depending on the related secret. The following theorem expresses this idea.

1 The solution v exists only when β ≥ √
mqn/m.
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Theorem 3 ([26]). Let V be a subset of Zm with that the norms of all items in
V are less than T , and H : V → R be a probability distribution. Set σ ∈ R such
that σ = ω(T

√
log m). Then there exists a constant M = O(1) such that the

statistical distance between the distribution of the output of Algorithm 1 and the
distribution of the output of Algorithm 2 is within 2−ω(log m)

M . In addition, with at
least probability 1−2−ω(log m)

M , Algorithm 1 can output something. More precisely,
for any positive α, if σ = αT , namely M = e12/α+1/(2α2), then the probability
that Algorithm 1 outputs a result within a statistical distance 2−100

M of output of
Algorithm 2 is at least 1−2−100

M .

Algorithm 1

1 : v
$←− H

2 : x
$←− Dm

v,σ

3 : output (x,v) with probability min

(
Dm

σ (x)

MDm
v,σ(x)

, 1

)

Algorithm 2

1 : v
$←− H

2 : x
$←− Dm

σ

3 : output (x,v) with probability 1/M

2.4 Forking Lemma

The forking lemma was developed in [30], and formalized in [4]. It is utilized to
prove the unforgeability of numerous signature schemes [3,15,19,26].

Definition 9 (Forking Lemma [4]). Set an integer t ≥ 1 and let H be a set
with a size larger than 2. Let A be a randomized algorithm that takes a tuple of
input (x, h1, · · · , ht) and returns a pair in which the first element is an integer
in the range {0, · · · , t} while the other referred as a side output. Let G be a
randomized algorithm termed input generator. Then, the accepting probability ζ
of A is defined as the probability that k ≥ 1 in the following experiment EFL. In
addition, there is a randomized algorithm termed forking algorithm FA associated
to A. Then, let η = Pr[b = 1 | x

$←− G; (b, out, out′) ← FA(x)], we have η ≥
ζ

(
ζ
t − 1

|H|
)
. Alternatively, we have ζ ≤ t

|H| +
√

t · η.
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Experiment EFL

1 : x
$←− G

2 : h1, · · · , ht
$←− H

3 : (k, out)
$←− A(x, h1, · · · , ht)

Algorithm FA(x)

1 : Picks coin φ for A at random

2 : h1, · · · , ht
$←− H

3 : (k, out)
$←− A(x, h1, · · · , ht; φ)

4 : If k = 0, then returns (0, 0, 0)

5 : h′
k, · · · , h′

t
$←− H

6 : (k′, out′) $←− A(x, h1, · · · , hk−1, h
′
k, · · · , h′

t; φ)

7 : If k′ = 0, then returns (0, 0, 0)

8 : If (k = k′ & hk �= h′
k), then returns (1, out, out′)

9 : Else, returns (0, 0, 0)

3 1-out-of-N Oblivious Signature

In this section, we recall the definition and security models of the 1-out-of-N
oblivious signature defined by Tso et al. [37].

3.1 Definition

A 1-out-of-N oblivious signature OSN
1 scheme has three participants: a signer

S, a recipient R, and a verifier V. Informally, R first selects a group of messages
M = {m1, · · · ,mN}, sets an index �, and states that he or she wants to obtain a
signature for message m�. For these messages, S generates corresponding “semi-
signatures,” and sends them to R. Finally, R can convert these semi-signatures
to a final result—a signature Σ for message m�. S cannot obtain any information
regarding which signed message R obtains, and R can only obtain a signature
for the chosen message m�. Moreover, any verifier V can use public information
to verify the validity of the signature.

Formally, an OSN
1 comprises four algorithms (G,Sign-S,Sign-R,V), where

G is a probabilistic polynomial-time algorithm, Sign-R and Sign-S are interac-
tive Turing machines, and V is a deterministic polynomial-time algorithm. Each
algorithm is defined as follows.

– (pk, sk) ← G(1λ): Taking a security parameter λ as input, G outputs a key
pair (pk, sk) for signer S, where pk is the public key and sk is the secret key.

– (completed/notcompleted, Σ/⊥) ← 〈Sign-S(pk, sk,M), Sign-R(pk,m�)〉: This
is an interactive signing protocol between S and R that uses the Sign-S
and Sign-R algorithms, respectively. S takes the key pair (pk, sk), and the
preselected N -message set M = {m1, . . . , m�, · · · ,mN} as inputs; R takes
the public key pk, and one message m� ∈ M as inputs. After a polynomial
number of rounds of interactions through the protocol, S outputs completed
or notcompleted and R outputs a valid signature Σ or an error ⊥.
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– 1/0 ← V(pk,m�, Σ): Taking the public key pk of signer S, a message m�, and
the signature Σ as inputs, V returns 1 if Σ is accepted, and 0 otherwise.

Completeness. After S and R have appropriately executed the signing pro-
tocol, we say that an OSN

1 scheme is complete if S outputs completed and
R outputs a signature Σ with probability at least 1 − negl(λ) such that
V(pk,m�, Σ) = 1 holds. The probability is obtained based on coin flips for G,
Sign-S, and Sign-R.

3.2 Securities Models

Here, we define the two required security properties and the corresponding secu-
rity models for the OSN

1 scheme—strong unforgeability and ambiguity.

Strong Unforgeability. This security property ensures that a malicious recip-
ient R∗ cannot forge any new signature, even after obtaining several signatures
generated through interacting with the signer S. To model this security prop-
erty, we define the following strong unforgeability game interacting between a
challenger and an adversary (i.e., R∗). In this game, Sign-R∗ is a probabilistic
polynomial-time forging algorithm in the interactive signing protocol executed
by R∗, which aims to forge a new signature Σ∗ on any message m∗.

Game - Strong Unforgeability
– Initialization. The challenger first runs (pk, sk) ← G(1λ) and then sends pk

to the adversary.
– Query. The adversary can adaptively choose a message set Mi =

{mi,1, · · · ,mi,N} and a target message mi,j ∈ Mi. Then, Sign-R∗ is exe-
cuted during in the interactive signing protocol with the challenger. (The
adversary can execute this step for an arbitrary polynomial-number of times
and can decide when to stop). After the challenger outputs completed, the
adversary can obtain a final valid signature Σi for the message mi,j ∈ Mi.

– Forgery. Finally, the adversary outputs a new signature Σ∗ on any message
m∗.

Definition 10 (Strong Unforgeability). We say that an OSN
1 scheme satis-

fies strong unforgeability if, for any probabilistic polynomial-time adversary play-
ing the strong unforgeability game, Pr[V(pk,m∗, Σ∗) = 1] < negl(n) holds.

Ambiguity. This security property ensures that a malicious signer S∗ cannot
distinguish which message that recipient R wanted to be signed. To model this
security property, we define the following ambiguity game between a challenger
and an adversary (i.e.,S∗). In this game, Sign-S∗ is a probabilistic polynomial-
time distinguishing algorithm in the interactive signing protocol executed by S∗,
which aims to distinguish which message was signed.
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Game - Ambiguity
– Initialization. The challenger first runs (pk, sk) ← G(1λ) and then sends

(pk, sk) to the adversary.
– Challenge. The adver-

sary S∗ first randomly picks {m0,m1}. Then, the challenger and the adver-
sary run the interactive signing protocol (completed/notcompleted, Σ/⊥) ←
〈Sign-S∗(pk, sk,M = {m0,m1}),Sign-R(pk,mb)〉, where b is kept secret from
S∗.

– Guess. After executing the interactive signing protocol, the adversary S∗

outputs a bit b∗ ∈ {0, 1} according to the preceding steps. It means that S∗

is not permitted to observe the eventual output of the signature Σ by R.2 If
b∗ = b, we say that adversary S∗ wins the ambiguity game.

Definition 11 (Ambiguity). We say that an OSN
1 scheme satisfies ambiguity,

for any polynomial-time adversary playing the ambiguity game, Pr[b∗ = b] −
1/2 ≤ negl(n) holds.

4 Proposed Oblivious Signature Scheme from Lattices

In this section, we propose our lattice-based 1-out-of-N oblivious signature
scheme OSN

1 based on Lyubashevsky’s lattice-based signature scheme [26].

Construction. On inputting a security parameter λ, the proposed 1-out-of-N
oblivious scheme is parametrized by n,m, q, k, d, σ, ρ which are described in the
Sect. 2.2, by a matrix B $←− Z

n×m
q , and by two collision-resistant hash functions

H : {0, 1}∗ → {êi | êi ∈ {−1, 0, 1}k, ‖êi‖1 ≤ ρ} as well as H1 : {0, 1}∗ →
{−d, · · · , d}m. The public parameters are set as {n,m, q, k, d, σ, ρ,H,H1,B}.

Key Generation. With the aforementioned public parameters described, the algo-
rithm uses the following steps to generate a key pair for the signer (pk, sk).

– Randomly chooses S $←− {−d, · · · , d}m×k and A $←− Z
n×m
q .

– Computes P ← AS ∈ Z
n×k
q .

– Outputs the signer’s public key pk := {A,P} and secret key sk := S.

Interactive Signing Protocol. The recipient R and signer S interact with a signing
protocol (Fig. 1) as follows to generate a valid signature:

2 Since the signer has obtained all messages from the recipient, if he or she is allowed
to obtain the signature, there is an inevitable attack. He or she will be able to
verify which message the signature corresponds to and find out which message was
pre-selected by the recipient.
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Fig. 1. The procedures of the proposed signing protocol.

– Assumes that R would like to obtain an oblivious signature Σ on message
m� ∈ M = {m1, · · · ,mN}. R runs Sign-R(pk,m�) as follows:

• Computes v� ← H1(m�).

• Randomly picks t $←− {−d, · · · , d}m.
• Computes c = At + Bv� ∈ Z

n
q .

• Sends tuple (c,m1, · · · ,mN ) to S.
– After receiving the request tuple, S then runs Sign-S(pk, sk,M) as follows

for i = 1, · · · , N :
• Computes vi ← H1(mi).

• Random picks yi
$←− Dm

σ and computes xi ← Ayi ∈ Z
n
q .

• Computes êi ← H(xi + c − Bvi,mi).
• Computes ŝi ← yi − Sêi.

• Outputs pairs of (êi, ŝi) with probability min
(

Dm
σ (ŝi)

MDm
Sêi,σ(ŝi)

, 1
)

, where M

is a constant.
Finally, S sends these semi-signatures {êi, ŝi}N

i=1 back to R.
– R then checks whether S generates these semi-signatures in a valid way as

follows.
• Computes δi = At + B(v� − vi), for i = 1, · · · , N .
• Accepts these semi-signatures if êi = H(Pêi + Aŝi + δi,mi), for i =

1, · · · , N . Otherwise, outputs (notcompleted,⊥) and asks S to resign these
messages again.

– If R accepts these semi-signatures, R then set ŝ∗ ← t+ ŝ� as well as ê∗ ← ê�.
Finally, R outputs a signature Σ = (ê∗, ŝ∗) on m�.
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Verification. To verify the validity of the signature, any verifier can checking
whether H(Pê∗ + Aŝ∗,m�) = ê∗. Then, it outputs 1 if the equation is satisfied,
and outputs 0 otherwise.

Completeness. Given a valid signature Σ = (ê∗, ŝ∗), the corresponding mes-
sage m� and signer’s public key pk. We have

H(Pê∗ + Aŝ∗,m�) = H(ASê� + A(t + ŝ�),m�)
= H(ASê� + At + A(y� − Sê�),m�) = H(ASê� + At + Ay� − ASê�,m�)
= H(At + Ay�,m�) = H(At + x�,m�)
= H(x� + At + Bv� − Bv�,m�) = H(x� + c − Bv�,m�)
= ê� = ê∗.

Therefore, Σ can pass the verification with overwhelming probability if function
H is collision-resistant.

Parameters Restrictions. To make the proposed scheme work correctly and
satisfy the security requirements, the following restrictions on the parameters
should be held.

– To satisfy approximate 100 bits of security, 2ρ · (
k
ρ

) ≥ 2100.
– To satisfy Lemma 3 in the security proof, σ = ω(d · ρ · √

m log m).
– To satisfy Lemma 5 in the security proof, m > 64 + n · log q/ log(2d + 1).

5 Security Proofs

In this section, we demonstrate that the proposed OSN
1 scheme satisfies strong

unforgeability and ambiguity.

5.1 Unforgeability

Theorem 4. The proposed scheme satisfies strong unforgeability if the
SISq,n,m,β problem is hard.

Proof. According to the definition of strong unforgeability, we show that if there
exists a polynomial-time forger R∗, who queries the signing oracle at most s times
and the random oracle H at most h times, winning the strong unforgeability game
with probability ζ, then there exists a polynomial-time algorithm A that can use
R∗ as a black-box to solve the SISq,n,m,β problem for β = (2ησ + 2dρ)

√
m =

Õ(dn) with probability ≈ ζ2

s(h+s) .
Our strategy is to begin by constructing two hybrids (described in Fig. 2),

that is gradually modified from the proposed signing algorithm. More concretely,
let D be a distinguisher querying the random oracle H and the signing oracle h
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Fig. 2. The procedures of the proposed signing algorithm, Hybrid 1, and Hybrid 2.

and s times, respectively, the proof sequence is divided into three steps. First, in
Lemma 2, we demonstrate that D can distinguish between the proposed signing
algorithm and Hybrid 1 with an advantage of at most s(h+s)

qn . Next, in Lemma
3, we further show that the statistical distance between the outputs of Hybrid 1
and Hybrid 2 is s · 2−100

M . Finally, in Lemma 4, we prove that if there exists an
polynomial-time forger R∗ in the Hybrid 2 environment that can succeed in forg-
ing with probability ζ, then A can solve the SISq,n,m,β problem with probability
at least approximately ζ2

s(h+s) . Throughout the proofs of unforgeability, we adopt
the following notations: mi,j denotes the jth message in the message set selected
by R∗ in the ith signing query, and (êi,j , ŝi,j) denoted the semi-signature on jth
message in the message set selected by R∗ in the ith query, where i = 1, · · · , s
and j = 1, · · · , N .

Lemma 2. Suppose that the distinguisher D query h times random oracle H
and s times signing oracle, it will get a valid matrix A with the probability at
least 1 − e−Ω(n). And the advantage of D can distinguish between the proposed
signing algorithm and Hybrid 1 is at most s(h+s)

qn .

Lemma 3. The statistical distance between the outputs of Hybrid 1 and Hybrid
2 is s · 2−ω(log m)

M , or more concretely, s · 2−100

M .

Lemma 4. If there exists an adaptively chosen message polynomial-time adver-
sary R∗ who makes at most s queries to Hybrid 2 and h queries to the random
oracle H and R∗ wins unforgeability game with probability ζ, then there exists a
A with the same polynomial-time algorithm as R∗ that given A $←− Z

n×m
q , can

find out a non-zero v ∈ Z
m such that ‖v‖ ≤ (2ησ + 2dρ)

√
m and Av = 0 with

probability at least(
1
2

− 2−100

)(
ζ − 2−100

) (
ζ − 2−100

h + s
− 2−100

)
≈ ζ2

2(h + s)
.


�



Quantum-Resistant 1-out-of-N Oblivious Signatures from Lattices 179

5.2 Ambiguity

Theorem 5. The proposed scheme satisfies ambiguity if the SISq,n,m,d decision
problem is hard.

Proof. Let S∗ be a malicious signer who wants to distinguish which message
that receiver wants to sign. The following we demonstrate that no matter which
b is chosen from the challenger in the ambiguity game, for S∗’s view, the transfer
element c = At1 + Bvb is a randomness, where vb ← H1(mb).

Without loss of generality, suppose b = 0, then S∗ obtains At1 = c − Bv0;
Otherwise, S∗ obtains At1 = c−Bv1. By Definition 6, since t1

$←− {−d, · · · , d}m,
(A, c − Bv0) and (A, c − Bv1) are two instances of the decision SIS problem.
Therefore, if the problem is hard, for S∗’s view, (A, c−Bv0) and (A, c−Bv1)
are generated uniformly at random from Z

n×m
q ×Z

n
q . In other words, c reveals no

information. The following we analyze the probability that S∗ wins the game by
directly guessing t. Since t1

$←− {−d, · · · , d}m, the probability of guessing the t1
is equal to (2d+1)−m. If we restrict the parameter m > 64+n · log q/ log(2d+1),
we have

(2d + 1)−m ≤ (2d + 1)−64 · (2d + 1)−n log q/ log(2d+1)

= (2d + 1)−64 · q−n

< 2−100 · q−n.

With the above analysis, the probability that S∗ can distinguish which message
is selected from the challenger is negligible. 
�

6 Theoretical Comparison and Efficiency Analysis

In this section, we first theoretically compare the proposed scheme with other
existing oblivious signatures in terms of the communication cost and computa-
tional cost. Then, we give a proof-of-concept implementation to demonstrate the
running time of interactive signing and verification under different sizes of the
message set.

As presented in Table 1, the communication cost of our oblivious signature
scheme is lower than Chen’s scheme [11], as our scheme only requires two steps
of communication between the signer and the recipient, which is equivalent to
that of Tso et al.’s scheme [37]. For the computational cost, shown in Table 2,
since our proposed scheme relies on lattice-based cryptosystem, its operations
are matrix multiplication operations; whereas Chen and Tso et al.’s scheme [37]
require exponentiation operations.

For the efficiency analysis, the experiment was implemented in Python3 with
SageMath3 version 9.6 on macOS Monterey 12.3.1 with Intel(R) Core(TM) i5-
9600K CPU clocked at 3.7 GHz and 32 GB of DDR4 system memory clocked

3 https://www.sagemath.org/.

https://www.sagemath.org/
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Table 1. Comparison of communication cost. N : the number of messages in the mes-
sage set; Nr: the required steps to generate a signature; S: signer; R: recipient; V:
verifier; n, q: the parameters related to SIS assumption; p, q in Chen and Tso et al.’s
works: two large primes such that q|(p − 1); k: the length of the output of the hash
function.

Schemes Nr R → S S → R R → V
Chen’s [11] 3 |q| 3N |p| + N |q| 7|p| + 2|q|

Tso et al.’s [37] 2 |q| 2N |q| 2|q|
Ours 2 n|q| N(k + n)|q| (k + n)|q|

Table 2. Comparison of computational cost. N : the number of messages in the message
set; E: the number of exponentiation operations; M : the number of matrix multiplica-
tion operations.

Schemes S R V
Chen’s [11] 3NE (2N + 10)E 8E

Tso et al.’s [37] 2NE (2N + 2)E 2E

Ours 3NM (3N + 2)M 2M

at 2667 MHz. To achieve approximate 100-bit security, the parameter set (i.e.,
n = 512; q = 225; d = 1; k = 512; η = 1.1; m = 8139; σ = 15157; M = 2.72) is
chosen following [26]. The experiment result is illustrated by Fig. 3, which shows
that the running time of generating signatures is proportional to the number
of messages in the message set; whereas the running time of verification is not
affected because only the target message needs to be verified.

(a) Generating signature (b) Verification

Fig. 3. The running time of generating signature and verification under different num-
ber of messages in the message set.
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7 Conclusion and Future Work

In this paper, we propose a 1-out-of-N oblivious signature scheme from lattices.
The security requirements are satisfied under the SIS hard assumption by using
the random oracle. To the best of our knowledge, this is the first quantum-
resistant 1-out-of-N oblivious signature instantiation.

Below we describe two possible improvements and leave them for our future
work. First, since the properties of the secret key it is more complex in terms
of privacy and how it is generated, we speculate that there is no naive trans-
formation from 1-out-of-N oblivious signature with N messages to 1-out-of-N
oblivious signature with N keys. Therefore, how to construct a quantum-resistant
1-out-of-N oblivious signature with N keys is still an open problem. Second, our
proposed scheme solely relies on Lyubashevsky’s signature [26]. Many improved
signature schemes in terms of efficiency and security have been proposed. For
example, Ducas et al. [14] adopt bimodal Gaussian rejection sampling techniques
to achieve shorter signature and public key sizes. Kiltz et al. [25] further intro-
duced how to obtain a lattice-based signature that is secure under quantum
ROM (QROM). How to construct a more efficient quantum-resistant 1-out-of-N
oblivious signature scheme that satisfies stronger security is another interesting
direction.

Acknowledgments. This research was supported by the Ministry of Science and
Technology, Taiwan (ROC), under project numbers MOST 109-2221-E-004-011-MY3,
MOST 110-2221-E-004-003-, MOST 110-2622-8-004-001-, and MOST 111-2218-E-004-
001-MBK.

A Proof of Lemma 2

Proof. For the view of D, the only difference between the proposed signing algo-
rithm and Hybrid 1 is the method of generating êi,j . More specifically, êi,j are
generated from the hash function H in our proposed signing algorithm; while in
Hybrid 1, êi,j is chosen randomly from the set {−1, 0, 1}k and then programmed
as the answer of H(Pêi,j + Aŝi,j ,mi,j) = H(Ayi,j + Ati − Bvi,j ,mi,j) = êi,j

without checking whether (Ayi,j +Ati −Bvi,j ,mi,j) were already set. Here ti is
a random vector picked by the forger R∗ in the ith signing query. Therefore, the
ability of D to distinguish between the original signing oracle and the Hybrid 1
depends on the probability of occurring collisions.

From the proposed signing algorithm, we have

êi,j = H(Pêi,j + Aŝi,j ,mi,j) = H(Ayi,j + Ati − Bvi,j ,mi,j).

Since there are qn elements in Z
n
q , the probability of generating a z such that

z = Ayi,j +At−Bvi,j equals to one of the preceding values queried in Hybrid
1 is 1

qn . That is, for any z ∈ Z
n
q , we have

Pr[z = Ayi,j + Ati − Bvi,j | z $←− Z
n
q ] =

1
qn

.
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In addition, the probability of obtaining a collision each time is at most
(h+s)

qn because at most (h + s) values of êi,j have been set. Consequently, after
querying s times of signing oracle, the probability of a collision appearing is at
most s(h+s)

qn . 
�

B Proof of Lemma 3

Proof. This lemma is almost identical to Theorem 3, the output of Theorem
3 is (ŝi,j ,vi,j = Sêi,j), whereas the outputs of both Hybrid 1 and Hybrid 2
are (êi,j , ŝi,j). For any vi,j , there always exists a êi,j ∈ {−1, 0, 1}k such that
Sêi,j = vi,j , where ‖êi,j‖1 ≤ ρ. Therefore, the distribution is almost the same
as that of êi,j in both hybrids from the distinguisher’s perspective. 
�

C Proof of Lemma 4

Proof. Let DH = {êi,� | êi,� ∈ {−1, 0, 1}k, ‖êi,�‖1 ≤ ρ} represent the range of the
random oracle H, and let t = h+s denote the scope on the number of times that
the random oracle H is queried or programmed during R∗’s attack. The oracle
can be queried by R∗ directly, or can be programmed by the signing algorithm
when A inquires about the signature of a set of messages.

Given A $←− Z
n×m
q , we pick S $←− {−d, · · · , d}m×k, r1, · · · , rt

$←− DH, a random
coin φ for the forger R∗; another random coin ψ for the signer S; and finally com-
pute the corresponding pk = (A,P = AS). Now, we use (A,P, φ, ψ, r1, · · · , rt)
as the input for the algorithm A. A initializes the forger R∗ by providing the
pk = (A,P) and the random coin φ. A executes the signing algorithm in Hybrid
2 and uses the random coin ψ for signer to generate a signature whenever R∗

queries messages to be signed. The random oracle H is programmed during sign-
ing, and the reply from H is assigned to the first unused ri in (r1, · · · , rt). A
maintains a list recording all the results of queries to H; thus, a query may
receive a previous ri as a response if the same query was performed multiple
times. Moreover, the forger R∗ can query the random oracle H directly to obtain
a reply of an unused ri in (r1, · · · , rt), except for the query that had previously
been performed. After R∗ completes these queries and outputs a counterfeit
signature with probability ζ, A simply outputs the output of R∗.

After s times of queries, R∗ outputs a signature corresponding a message mi,�,
that includes (êi,�, ŝi,�) such that ‖ŝi,�‖ ≤ ησ

√
m and êi,� = ((Pêi,�+Aŝi,�),mi,�)

with probability ζ. If (Pêi,� + Aŝi,�) was not generated by calling the random
oracle H or was not programmed by the signing algorithm, then the probability
R∗ produces a êi,� such that êi,� ← H((Pêi,� + Aŝi,�),mi,�) is only has 1/|DH|.
Thus, êi,� is equal to an ri’s with probability of 1 − 1/|DH|. Therefore, the
probability that R∗ succeeds in forging and that (Pêi,� + Aŝi,�) is one of the
ri’s is at least ζ −1/|DH|. Let such êi,� = ri; then, ri may have been obtained in
two ways: either it was programmed during signing, or it was a reply from the
random oracle queried by R∗.
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In the first case, suppose that A programmed the random oracle H((Pêi,� +
Aŝ′

i,�,m
′
i,�) = êi,� when it was signing a message m′

i,� in the ith query. After
the forger R∗ outputs an effective forged “semi-signature” (êi,�, ŝi,�) for some
(possibly different) messages mi,�, we have H((Pêi,� +Aŝ′

i,�),m
′
i,�) = H((Pêi,� +

Aŝi,�),mi,�). If mi,� �= m′
i,� or (Pêi,� + Aŝ′

i,�) �= (Pêi,� + Aŝi,�), then R∗ has
found a preimage of ri. However, this cannot occur because the hash fuction H is
collision resistant. If mi,� = m′

i,� and (Pêi,� +Aŝ′
i,�) = (Pêi,� +Aŝi,�), we obtain

A(ŝi,�−ŝ′
i,�) = 0. We know that ŝi,� �= ŝ′

i,�, otherwise (êi,�, ŝi,�) would be identical
to the previous “semi-signature” (ê′

i,�, ŝ
′
i,�). Because ‖ŝi,�‖, ‖ŝ′

i,�‖ ≤ ησ
√

m, we
obtain ‖ŝi,� − ŝ′

i,�‖ ≤ 2ησ
√

m.
For the second case, suppose rk is a reply from random oracle queried by

R∗ for some kth query. We record the signature (rk, ŝk,�) on the message mk,�

and generate fresh items r′
k, · · · , r′

t
$←− DH. We next return the algorithm A

with the refreshed inputs (A,P, φ, ψ, r1, · · · , rk−1, r′
k, · · · , r′

t). By Definition 9,
the probability that r′

k �= rk and that the answer of this random oracle r′
k was

applied in R∗’s counterfeit, is at least(
ζ − 1

|DH|
)(

ζ − 1/|DH|
h + s

− 1
|DH|

)
.

A signature (r′
k, ŝ′

k,�) for message mk,� with the aforementioned probability was
output by R∗ such that (Pê′

k,� + Aŝ′
k,�) = (Pêk,� + Aŝk,�), where ê′

k,� = r′
k

and êk,� = rk. Let P = AS, we have A(ŝk,� − ŝ′
k,� + Sêk,� − Sê′

k,�) = 0. In
addition, since ‖Sêk,�‖, ‖Sê′

k,�‖ ≤ dρ
√

m, we have ‖ŝk,� − ŝ′
k,� +Sêk,� −Sê′

k,�‖ ≤
(2ησ + 2dρ)

√
m.

Now, we require to show that (ŝk,� − ŝ′
k,� +Sêk,� −Sê′

k,�) �= 0. Before proving
this part, we must provide Lemma 5 first.

Lemma 5. Given any A ∈ Z
n×m
q , where m > 64 + n · log q/ log(2d + 1),

for any randomly chosen S $←− {−d, · · · , d}m×k, there exists another S′ ∈
{−d, · · · , d}m×k such that AS = AS′ with probability 1 − 2−100.

Proof. Treat A as a linear transformation whose range is qn. At most qn elements
S ∈ {−d, · · · , d}m do not collide with any other item in {−d, · · · , d}m. Notice
that the set {−d, · · · , d}m comprises (2d + 1) elements. Randomly select an
element that does not collide; then, the probability is at most

qn

(2d + 1)m ≤ qn

(2d + 1)64+n log q/ log(2d+1)
=

1
(2d + 1)64

< 2−100.


�
Let the cth column be the column in which êk,�,c �= ê′

k,�,c. By Lemma 5, we
know that a different secret key S′ exists with probability of at least 1 − 2−100

such that all the columns except for column c of S′ are equal to the columns of
S, such that AS′ = AS. Clearly, if ŝk,�,c − ŝ′

k,�,c + S(êk,�,c − ê′
k,�,c) = 0, then

ŝk,�,c − ŝ′
k,�,c + S′(êk,�,c − ê′

k,�,c) �= 0. That is, for every secret key S such that
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ŝk,�,c − ŝ′
k,�,c + S(êk,�,c − ê′

k,�,c) = 0, there is a distinct secret key S′ that only
differs from S in the ith column that results in ŝk,�,c−ŝ′

k,�,c+S′(êk,�,c−ê′
k,�,c) �= 0.

Because A did not use these keys as input and did not put them to the signature
oracle, R∗ does not know if we are aware of a secret key such as S or S′. Therefore,
each secret key has an equal probability of being selected. 
�
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Abstract. Homomorphic encryption (HE) is public key encryption that
enables computation over ciphertexts without decrypting them, while
it is known that HE cannot achieve IND-CCA2 security. To overcome
this issue, the notion of keyed-homomorphic encryption (KH-PKE) was
introduced, which has a separate homomorphic evaluation key and can
achieve stronger security (Emura et al., PKC 2013).

The contributions of this paper are twofold. First, the syntax of KH-
PKE assumes that homomorphic evaluation is performed for single oper-
ations, and its security notion called KH-CCA security was formulated
based on this syntax. Consequently, if the homomorphic evaluation algo-
rithm is enhanced in a way of gathering up sequential operations as a
single evaluation, then it is not obvious whether or not KH-CCA security
is preserved. In this paper, we show that KH-CCA security is in general
not preserved under such modification, while KH-CCA security is pre-
served when the original scheme additionally satisfies circuit privacy.

Secondly, Catalano and Fiore (ACM CCS 2015) proposed a conver-
sion method from linearly HE schemes into two-level HE schemes, the
latter admitting addition and a single multiplication for ciphertexts. In
this paper, we extend the conversion to the case of linearly KH-PKE
schemes to obtain two-level KH-PKE schemes.

Keywords: Keyed-homomorphic encryption · KH-CCA security ·
Catalano–Fiore conversion

1 Introduction

Homomorphic encryption (HE) [32] is a kind of public key encryption that allows
computation over encrypted data without knowing the secret key, and has several
applications such as delegated computation on the clouds. Major classes of HE
include additive HE [24,31] and multiplicative HE [16,33] that allow only a single
kind of operations, and fully HE (FHE) [8–11,15,22,23] that allows arbitrary
computation over encrypted data. Among them, there is a trade-off between
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the efficiency (for additive/multiplicative HE) and the enhanced functionality
(for FHE). As an intermediate class, there also exists leveled HE (or somewhat
HE) where a limitation on the number of possible operations exists (typically
for multiplication) while the efficiency is much better than FHE. In particular,
there exist some constructions of two-level HE (2LHE) schemes [1,7,21,25] in
which an arbitrary number of additions and a single multiplication are possible.
Besides such direct constructions of 2LHE schemes, Catalano and Fiore [13]
proposed a general conversion method from an additive HE scheme into a 2LHE
scheme (with non-compact level-two ciphertexts). We refer to this method as
“Catalano–Fiore conversion” in this paper.

For ordinary public key encryption (PKE) schemes, IND-CCA2 security is
regarded as a standard security requirement due to e.g., Bleichenbacher’s attack
[5] and the implication of non-malleability from IND-CCA2 security [3]. However,
in principle HE schemes cannot achieve IND-CCA2 security due to the ability
of unrestricted computation over ciphertexts. To resolve the issue, Emura et al.
[18,19] proposed the notion of keyed-homomorphic PKE (KH-PKE ) in which the
homomorphic evaluation on ciphertexts requires an evaluation key. They intro-
duced a security definition for KH-PKE called KH-CCA security, which, roughly
speaking, ensures IND-CCA2 security for adversaries not having the evaluation
key and IND-CCA1 security for those having the evaluation key in advance. It
is also known that KH-CCA security implies security against ciphertext validity
attacks [17].

As concrete instantiations of KH-PKE, Emura et al. [18,19] proposed a
multiplicative KH-PKE scheme based on the Decisional Diffie–Hellman (DDH)
assumption and an additive KH-PKE scheme based on the Decisional Composite
Residuosity (DCR) assumption. Multiplicative KH-PKE schemes are also pro-
posed by Libert et al. [28] based on the Decisional Linear (DLIN) assumption and
by Jutla and Roy [26] based on the Symmetric External Diffie–Hellman (SXDH)
assumption. On the other hand, for fully homomorphic versions of KH-PKE
called keyed-FHE, Lai et al. [27] proposed a construction using indistinguisha-
bility obfuscation (iO) [2] and recently Sato et al. [34,35] proposed a construction
without iO. Moreover, recently Maeda and Nuida [29] proposed a two-level KH-
PKE scheme based on the SXDH assumption. To the best of our knowledge,
these are all of the known constructions of KH-PKE schemes in the literature,
which are still few in comparison to ordinary (non-keyed) HE schemes. In par-
ticular, there exists only one known construction of leveled KH-PKE schemes.

On the other hand, we note that except for keyed-FHE, the homomorphic
evaluation algorithm in KH-PKE was formulated in a way of corresponding to a
single operation, say C1 +C2. When we perform two operations sequentially, say
(C1 + C2) + C3, some instantiation of KH-PKE (such as in [18,19]) performs a
rerandomization at the end of the computation of C ′ := C1+C2 and then another
rerandomization at the end of the computation of C ′ + C3. From the viewpoint
of efficiency, we want to gather the two operations as a single operation and
perform only one rerandomization at the end of the computation. Now, in order
to formalize such a technique, the formulation of the homomorphic evaluation
algorithm should be enlarged to also handle such sequential operations at once.
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However, as an adversary in the KH-CCA game is supposed to have oracle access
to the evaluation algorithm, and the modification of the evaluation algorithm as
above also enhances the ability of the oracle, the adversary after the modification
becomes, in theory, stronger than the original case. As a result, it is not obvious
whether or not the KH-CCA security is preserved by this modification of the
evaluation algorithm. (We note that, as a related work, Emura et al. [20] studied
similar security issues when constructing “mis-operation resistant” searchable
homomorphic encryption from keyed-homomorphic identity-based encryption.
However, their work only concerned such an issue in some concrete schemes, and
no argument was given in the same generality as the present paper.)

1.1 Our Contributions

Our contributions in this paper are twofold. First, we consider the modification
of the evaluation algorithm to handle multiple operations at once as in the last
paragraph; let E and Comp(E) denote the original and the modified KH-PKE
schemes, respectively. We show that, in general, the KH-CCA security of E does
not imply the KH-CCA security of Comp(E); under some reasonable assump-
tions, we construct a KH-CCA secure E for which Comp(E) is not KH-CCA
secure (Theorem 1). We also show that, if E is moreover circuit private, then the
KH-CCA security of E implies the KH-CCA security of Comp(E) (Theorem 2).

We explain a technical overview of our results above. As the counterexample,
from any KH-CCA secure KH-PKE scheme E0 we construct a KH-CCA secure
KH-PKE scheme E with the following property: E has a special ciphertext C0

for which given the result C + C0 of a homomorphic operation for C0 and any
ciphertext C, the original ciphertext C can be easily recovered. Now given a
challenge ciphertext C∗, a KH-CCA adversary against Comp(E) asks the evalu-
ation oracle to obtain at once the ciphertext (C∗ +C ′)+C0 where C ′ is another
ciphertext. Due to the property above, now the adversary recovers the ciphertext
C∗ + C ′ and knows its plaintext (and also knows the plaintext of C∗ by using
the plaintext of C ′) by querying C∗ + C ′ to the decryption oracle (which is not
prohibited, as C∗ + C ′ itself was not returned by the evaluation oracle). Hence
Comp(E) is not KH-CCA secure. On the other hand, the circuit privacy assumed
in Theorem 2 guarantees that there exists no such special ciphertext C0.

Secondly, we extend the Catalano–Fiore conversion for HE schemes to the
case of KH-PKE schemes, to obtain a two-level KH-PKE scheme from a linearly
KH-PKE scheme (Theorem 3). As a technical overview, we note that in the
original Catalano–Fiore conversion, a level-2 ciphertext consists of a number of
level-1 ciphertexts. Therefore, if we just apply it to a KH-PKE scheme, then a
level-2 ciphertext of the resulting scheme is malleable even without the evaluation
key, which violates the KH-CCA security. To resolve this issue, we modify level-
2 ciphertexts by encrypting the whole of each level-2 ciphertext again (where
the key for the latter encryption is included in the evaluation key). Assuming
appropriate security properties for the latter encryption, an adversary cannot
modify nor generate a level-2 ciphertext without using the evaluation key or the
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evaluation oracle. This property enables us to control the behaviors of ciphertexts
well in our security proof.

1.2 Organization of the Paper

Section 2 summarizes basic definitions and properties used in this paper.
Section 3 summarizes basic definitions for KH-PKE. In Sect. 4, we describe the
first part of our results on the extended evaluation algorithm for multiple sequen-
tial operations. Section 5 summarizes the definitions for the original Catalano–
Fiore conversion for non-keyed HE schemes. In Sect. 6, we describe the second
part of our results on the extension of the Catalano–Fiore conversion to KH-PKE
schemes.

2 Preliminaries

2.1 Basic Definitions and Properties

In this paper, “PPT” is an abbreviation of “probabilistic polynomial-time”. We
write x

$←− S to mean a uniformly random choice of an element x from a finite
set S. We say that a function f : N → R is negligible (in security parameter λ)
if for any integer k > 0, there exists an integer λk > 0 satisfying that for any
λ > λk we have |f(λ)| < λ−k. For random variables X,Y on a finite set U , their
statistical distance is defined by SD[X,Y ] =

∑
u∈U |Pr[u ← X] − Pr[u ← Y ]|.

2.2 Homomorphic Encryption

We explain the syntax for additively homomorphic encryption (HE ) consisting
of the following four PPT algorithms.

– Gen(1λ): Given the security parameter λ as input, it outputs a public key pk
and a secret key sk.

– Enc(pk,M): Given a public key pk and a plaintext M as input, it outputs a
ciphertext C.

– Dec(sk, C): Given a secret key sk and a ciphertext C as input, it outputs
either a plaintext or a failure symbol ⊥.

– Add(pk, C1, C2): Given a public key pk and ciphertexts C1, C2 as input, it
outputs either a ciphertext or ⊥.

We require an additively HE scheme to satisfy the correctness as follows: for any
(pk, sk)←Gen(1λ),

– for any plaintext M and any C ←Enc(pk,M), we have M ←Dec(sk, C);
– for any ciphertexts C1, C2, if Mi ←Dec(sk, Ci) for i = 1, 2 and C ←Add(pk,

C1, C2), then we have M1 + M2 ←Dec(sk, C).
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By linearly HE we mean additive HE together with a PPT algorithm
cMult(pk,m,C0) that, given a public key pk, a plaintext m, and a ciphertext
C0 as input, outputs either a ciphertext or ⊥. Now the correctness also requires
that for any (pk, sk)←Gen(1λ), any plaintext m, and any ciphertext C0, if
M0 ←Dec(sk, C0) and C ← cMult(pk,m,C0), then we have m · M0 ←Dec(sk, C).

By two-level HE we mean linearly HE together with the following three PPT
algorithms (we write the original algorithms Add and cMult as Add1 and cMult1,
respectively), where the ciphertexts are classified into level-1 and level-2, and
the input and output ciphertexts for Add1 and cMult1 are of level-1:

– Mult(pk, C1, C2): Given a public key pk and level-1 ciphertexts C1, C2 as input,
it outputs either a level-2 ciphertext or ⊥. The correctness requires that for
any (pk, sk)←Gen(1λ) and any level-1 ciphertexts C1, C2, if Mi ←Dec(sk, Ci)
for i = 1, 2 and C ←Mult(pk, C1, C2), then we have M1 · M2 ←Dec(sk, C).

– Add2(pk, C1, C2): Given a public key pk and level-2 ciphertexts C1, C2 as
input, it outputs either a level-2 ciphertext or ⊥. The correctness condition
is similar to the case of Add1.

– cMult2(pk,m,C0): Given a public key, a plaintext m, and a level-2 cipher-
text C0 as input, it outputs either a level-2 ciphertext or ⊥. The correctness
condition is similar to the case of cMult1.

2.3 Symmetric Key Encryption

We explain the syntax for symmetric key encryption (SKE) consisting of the
following three PPT algorithms.

– Gen(1λ): Given the security parameter λ as input, it outputs an encryption
key K.

– Enc(K,M): Given an encryption key K and a plaintext M as input, it outputs
a ciphertext C.

– Dec(K, C): Given an encryption key K and a ciphertext C as input, it outputs
either a plaintext or a failure symbol ⊥.

We require an SKE scheme to satisfy the correctness: for any K ← Gen(1λ), any
plaintext M , and any C ← Enc(K,M), we have M ← Dec(K, C).

We explain two security definitions for SKE used in this paper.

Definition 1 (IND-CPA Security). We say that an SKE scheme SE =
(Gen,Enc,Dec) is (Left-or-Right) IND-CPA secure if for any PPT adversary
A, the advantage

∣
∣
∣
∣ Pr

[
K←Gen(1λ); b $←− {0, 1}; b′ ← AO(b) : b = b′] − 1

2

∣
∣
∣
∣

is negligible in λ, where O(b) denotes an oracle that, given two plaintexts m0,m1,
returns an output of Enc(K,mb).
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Definition 2 (INT-CTXT Security). We say that an SKE scheme SE =
(Gen,Enc,Dec) is INT-CTXT secure if for any PPT adversary A, the winning
probability of A in the following game is negligible in λ:

– First, the challenger generates K←Gen(1λ) and sets List = ∅. Then A per-
forms the following two kinds of procedures, possibly adaptively and many
times:

• A sends a plaintext m to the challenger. The challenger sends an output
C of Enc(K,m) back to A and appends C to List.

• A sends a ciphertext C∗ to the challenger. When C∗ �∈ List and
Dec(K, C∗) �= ⊥, A wins the game. Otherwise, the challenger returns
to A “valid” if Dec(K, C∗) �= ⊥ and “invalid” if Dec(K, C∗) = ⊥.

We note that an SKE scheme satisfying both IND-CPA and INT-CTXT
security can be constructed from an IND-CPA secure SKE and an SUF-CMA
secure message authentication code explained in the next subsection [4].

2.4 Message Authentication Codes

We explain the syntax for message authentication codes (MACs) consisting of
the following three PPT algorithms.

– Gen(1λ): Given the security parameter λ as input, it outputs a MAC key K.
– Tag(K,M): Given a MAC key K and a plaintext M as input, it outputs a

MAC tag τ .
– Verify(K,M, τ): Given a MAC key K, a plaintext M , and a MAC tag τ as

input, it outputs 0 (“invalid”) or 1 (“valid”).

We require a MAC to satisfy the correctness: for any K←Gen(1λ), any plaintext
M , and any τ ←Tag(K,M), we have 1←Verify(K,M, τ).

We explain the security definition for MAC used in this paper.

Definition 3 (SUF-CMA Security). We say that a MAC MAC =
(Gen,Tag,Verify) is SUF-CMA secure if for any PPT adversary A, the winning
probability of A in the following game is negligible in λ:

1. The challenger generates K←Gen(1λ) and sets List = ∅.
2. A sends a plaintext m to the challenger. The challenger generates

τ ←Tag(K,m), sends (m, τ) back to A, and appends (m, τ) to List. This pro-
cedure may be performed multiple times.

3. A sends a pair (m∗, τ∗) to the challenger. A wins the game if and only if
(m∗, τ∗) �∈ List and 1←Verify(K,m∗, τ∗).

3 Keyed-Homomorphic Public-Key Encryption

We explain the syntax and the security notion for keyed-homomorphic public
key encryption (KH-PKE). The syntax for KH-PKE is given by modifying the
syntax for (non-keyed) HE in the following manner:
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– In addition to pk and sk, the key generation algorithm Gen also outputs an
evaluation key ek.

– The homomorphic evaluation algorithms, such as Add and Mult, take ek
instead of pk as a part of input.

The correctness condition for KH-PKE is basically the same as that for HE
except for the differences mentioned above.

The standard security notion for KH-PKE is explained as follows.

Definition 4 (KH-CCA Security). We say that a KH-PKE scheme is KH-
CCA secure if for any PPT adversary A, the advantage

∣
∣
∣
∣ Pr

[
(pk, sk, ek)←Gen(1λ); (M∗

0 ,M∗
1 , st) ← AO(find, pk);

b
$←− {0, 1};C∗ ←Enc(pk,M∗

b ); b′ ← AO(guess, st, C∗) : b = b′] − 1
2

∣
∣
∣
∣

is negligible in λ. Here O denotes three oracles RevEK, Dec, and Eval defined
as follows, and we set List = ∅ in the find phase and set List = {C∗} at the
beginning of the guess phase.

– RevEK: It returns the evaluation key ek. This oracle can be used only once.
– Dec: For a ciphertext C as input, it returns ⊥ if C ∈ List, and otherwise it

returns an output of Dec(sk, C). In the guess phase, this oracle cannot be used
when RevEK has been used.

– Eval: For a type of possible operation F in the scheme (such as Add, cMult,
and Mult) and a list of inputs C for F (e.g., C = (m,C0) when F = cMult) as
input, it returns an output C of F (ek,C). Moreover, if at least one ciphertext
in C is in List, then C is appended to List. This oracle cannot be used when
RevEK has been used.

We also extend the notion of circuit privacy for HE (following Catalano
and Fiore [13]) to the case of linearly KH-PKE. The definition for the case of
additively KH-PKE is similar and is omitted here.

Definition 5 (Circuit Privacy for KH-PKE). We say that a linearly KH-
PKE scheme is circuit private if there exist a PPT algorithm Sim and a negligible
function ε satisfying the following condition: for any (pk, sk, ek)←Gen(1λ),

– for any ciphertexts C1, C2, if m1 ←Dec(sk, C1) and m2 ←Dec(sk, C2), then
we have SD[Add(ek, C1, C2),Sim(1λ, ek,m1 + m2)] ≤ ε(λ);

– for any plaintext m, and any ciphertext C0, if M0 ←Dec(sk, C0), then we have
SD[cMult(ek,m,C0),Sim(1λ, ek,m · M0)] ≤ ε(λ).

4 On Extension of the Evaluation Algorithm

In this section, we introduce an extension of the evaluation algorithm in KH-
PKE schemes to multiple sequential operations, and investigate the effect to the
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security. Here we focus only on the case of additively KH-PKE for the sake of
simplicity, but similar results hold for a wider class of KH-PKE schemes as well;
see the full version of this paper.

Our extension of the evaluation algorithm for KH-PKE is defined as follows.

Definition 6. Let E be an additively KH-PKE scheme. Let C(Add) denote the
set of circuits for which the two-input addition is associated to each gate in
the circuit. Now for each n-input circuit f ∈ C(Add), we define the extended
evaluation algorithm Eval(ek, f, C1, . . . , Cn) by naturally composing the algorithm
Add in E. We write the resulting scheme with the extended evaluation algorithm
as Comp(E).

For example, if f is a circuit (C1 + C2) + C3, then

Eval(ek, f, C1, C2, C3) = Add(ek,Add(ek, C1, C2), C3) .

We also naturally extend the KH-CCA security to such a scheme Comp(E) by
modifying the evaluation oracle accordingly. A motivation of considering such
an extension Comp(E) is that the extended evaluation algorithm can sometimes
be implemented more efficiently without changing the output distribution. For
example, when the algorithm Add in the original scheme E performs a reran-
domization for each output, the computation of Eval(ek, f, C1, C2, C3) in the
example above can be simplified by omitting the first rerandomization at the
end of Add(ek, C1, C2).

Now the extension from E to Comp(E) also changes the security definition in
a direction of enhancing an oracle, hence strengthening the ability of adversaries.
Therefore, it is not obvious whether or not KH-CCA security of E implies KH-
CCA security of Comp(E). In fact, we have the following non-implication result.

Theorem 1. Assume that there exist a KH-CCA secure additively KH-PKE
scheme and an SUF-CMA secure MAC. Then there exists a KH-CCA secure
additively KH-PKE scheme E for which Comp(E) is not KH-CCA secure.

Proof (Sketch; see the full version for details). Take an additively KH-PKE
scheme E0 and a MAC MAC as in the hypothesis of the statement. We construct
an additively KH-PKE scheme E by modifying E0 as follows. The evaluation key
for E is a pair of the evaluation key for E0 and the key for MAC. The cipher-
text space of E consists of non-tagged ciphertexts (i.e., those in E0), tagged
ciphertexts (by MAC), and a special symbol S for which Dec(sk, S) := 0 and
Add(ek, S, S) := S. Enc outputs only non-tagged ciphertexts. Dec with tagged
input ciphertext works in the same way as E0 if the tag is valid, and otherwise
it rejects the input. For Add, it rejects the input if some input ciphertext has an
invalid tag. In the other case, when the input involves S, Add removes the tag
if the other ciphertext is tagged, and appends a fresh tag if the other ciphertext
is non-tagged. When the input does not involve S, Add works in the same way
as E0 (i.e., outputting a non-tagged ciphertext).
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Now the correctness of E follows from the correctness of E0 and MAC. On the
other hand, the KH-CCA security of Comp(E) does not hold; given a challenge
ciphertext C∗, an adversary can generate C0 ←Enc(pk,m0) with m0 �= 0, make
an extended evaluation query to obtain (C, τ)←Add(ek,Add(ek, C∗, C0), S)
at once, make a decryption query to obtain Dec(sk, C) which is equal to
Dec(sk, C∗) + m0 by the construction of E , and finally obtain Dec(sk, C∗) by
subtracting m0.

Our remaining task is to show that E is KH-CCA secure. For any PPT
adversary AE for the KH-CCA game of E , consider a PPT adversary BE0 that
plays the role of the challenger in the KH-CCA game of E with AE by generating
a MAC key by itself and utilizing the own queries in the KH-CCA game of E0

(for example, on receiving a query Add(C1, (C2, τ)) from AE , BE0 verifies the tag
τ , makes a query Add(C1, C2) to its challenger, and forwards the challenger’s
response to AE). Let List0 denote the list List in the KH-CCA game of E0. Now
if BE0 is able to simulate all the responses to AE ’s queries correctly, then BE0 has
the same advantage as AE , therefore the KH-CCA security of E0 implies that
the advantage of AE is negligible. Hence, in order for AE to break the KH-CCA
security of E , AE has to make, with non-negligible probability, a query that
cannot be responded by BE0 . Such a query is necessarily of the form Dec(C̃)
with C̃ = C (�= S) or (C, τ) with valid tag τ , satisfying that C̃ �∈ List (i.e., BE0

cannot reject the query) and BE0 cannot determine the plaintext for C even by
using its own decryption query.

We show that, for the purpose, AE has no advantage of using tagged cipher-
texts C̃ = (C, τ). Namely, if C̃ = (C, τ) satisfies the conditions above, then AE
should have received (C, τ) from BE0 at a previous step where BE0 generated the
valid tag τ (in response to AE ’s query of the form Add(S,C) or Add(C,S)), as
otherwise AE with the new valid tag τ would break the SUF-CMA security of
MAC. Now C was not in List at that previous step (otherwise C̃ was appended to
List at that time, a contradiction), while BE0 could not determine the plaintext
of C at that time either (otherwise BE0 would have known the plaintext of C̃
and could respond to the current query, a contradiction). Therefore, AE could
have the same effect by instead making a query Dec(C) at that previous step.

Based on the previous paragraph, the tagged ciphertexts are essentially use-
less for AE , therefore the situation is essentially equivalent to the scheme E with-
out tagged ciphertexts, which is basically the same as E0. Hence the KH-CCA
security of E0 implies that AE cannot have non-negligible advantage, concluding
the proof (see the full version of this paper for a more rigorous argument). 	


On the other hand, we give the following affirmative result on preserving the
KH-CCA security, with an additional assumption of circuit privacy.

Theorem 2. If an additively KH-PKE scheme E is KH-CCA secure and circuit
private, then Comp(E) is KH-CCA secure.

Proof (Sketch; see the full version for details). For any PPT adversary AComp

for the KH-CCA game of Comp(E), consider a PPT adversary BE that plays the
role of the challenger in the KH-CCA game of Comp(E) with AComp by utilizing
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the own queries in the KH-CCA game of E (for example, on receiving a query
Eval(f, C1, C2, C3) from AComp with f being the circuit (x1 +x2)+x3, BE makes
a query Add(C1, C2) to its challenger and obtains the response C ′, makes a query
Add(C ′, C3) to its challenger and obtains the response C ′′, and forwards C ′′ to
AComp). Let ListComp denote the list List in the KH-CCA game of Comp(E). Now if
BE is able to simulate all the responses to AComp’s queries correctly, then BE has
the same advantage as AComp, therefore the KH-CCA security of E implies that
the advantage of AComp is negligible. Hence, in order for AComp to break the KH-
CCA security of Comp(E), AComp has to make, with non-negligible probability,
a query that cannot be responded by BE . Such a query is necessarily of the form
Dec(C) satisfying that C �∈ ListComp (i.e., BE cannot reject the query) and BE
cannot determine the plaintext for C even by using its own decryption query (in
particular, C ∈ List). We call such a query by AComp an unallowable query.

Now we modify the behavior of the challenger in the KH-CCA game of E in a
way that on receiving a query of the form Add(C1, C2), the challenger computes
Sim(1λ, ek,Dec(sk, C1) + Dec(sk, C2)) instead of Add(ek, C1, C2) where the algo-
rithm Sim is as in the definition of the circuit privacy of E . By the condition of
Sim, this modification only affects the behavior of the game in a negligible way
(note that as BE is PPT, the challenger receives only polynomially many such
queries). After this modification, the behavior of AComp becomes independent of
the outputs of the algorithm Sim executed to generate intermediate ciphertexts
in each of AComp’s evaluation queries (for example, Add(C1, C2) in the case of a
query Eval(f, C1, C2, C3) with f being the circuit (x1 + x2) + x3).

We assume for the contrary that an unallowable query Dec(C) is made with
non-negligible probability, say p. Then we have C ∈ List \ ListComp as mentioned
above. Now we note that such a difference between List and ListComp arises only
when generating intermediate ciphertexts at some evaluation query by AComp.
Therefore, the algorithm Sim(1λ, ek,m) where m := Dec(sk, C) was performed
when generating some intermediate ciphertext at some previous query by AComp,
and that execution of Sim(1λ, ek,m) yielded the ciphertext C. As the behavior
of AComp is independent of that execution of Sim(1λ, ek,m) as mentioned above,
it follows that p ≤ pC where pC := Pr[C ← Sim(1λ, ek,m)].

However, the property C ∈ List implies that C is generated by a sequence
of algorithms Add starting from the challenge ciphertext C∗, therefore for each
i ∈ {0, 1}, BE can compute the plaintext mi satisfying that C would have the
plaintext mi if the challenge bit b in the KH-CCA game is b = i. We also note
that m0 �= m1, as otherwise BE could determine the plaintext of C regardless
of b and hence could respond to the unallowable query Dec(C), a contradiction.
Therefore, now BE can increase its winning probability by modifying the behavior
in a way that whenever BE detects an unallowable query Dec(C) (which is in
fact possible, as BE can know the current status of the list List while BE itself
maintains the list ListComp), BE makes a RevEK query to obtain the evaluation
key ek, and for each i ∈ {0, 1}, BE computes Ci ← Sim(1λ, ek,mi) and outputs
the bit i if Ci = C. By this modification, the winning probability increases by
p · Pr[Cb ←Sim(1λ, ek,mb) : Cb = C] = p · pC ≥ p2 (as mb = m by the definition
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of m0 and m1), which is non-negligible as well as p. This contradicts the KH-
CCA security of E . Hence an unallowable query is made with only negligible
probability. Therefore, the advantage of AComp is negligible by the KH-CCA
security of E , concluding the proof (see the full version of this paper for a more
rigorous argument). 	


5 Catalano–Fiore Conversion

In this section, we explain the original Catalano–Fiore conversion [13] for linearly
HE schemes. Below we sometimes write the algorithms Add and cMult as the
form of binary operators � and �, respectively. The Catalano–Fiore conversion is
applied to HE schemes that are public-space, meaning that a uniformly random
plaintext can be efficiently sampled. Note that many HE schemes are public-
space, and most of the known non-public-space HE schemes such as [6,7,14,30]
can be easily converted to public-space schemes.

The conversion yields a two-level HE scheme, whose level-1 ciphertexts are
the same as the original scheme and whose level-2 ciphertexts are composed of
a number of ciphertexts in the original scheme. The conversion is described as
follows.

Definition 7 (Catalano–Fiore Conversion). Let E be a linearly HE scheme
that is public-space in the sense described above. Then we define a new two-level
HE scheme CF(E) = (Gen′,Enc′,Dec′

1,Dec
′
2,Add1,Add2, cMult1, cMult2,Mult) as

follows, where for i ∈ {1, 2}, Dec′
i, Addi, and cMulti are decryption, addition,

and scalar multiplication algorithms for level-i ciphertexts, respectively.

– Gen′, Enc′, and Dec′
1: The same as Gen, Enc, and Dec.

– Dec′
2(sk, C): First, it parses the level-2 ciphertext C as C = (α, β11, β21, . . . ,

β1n, β2n) for some n, where each component of C is a ciphertext in E. It
computes

m = Dec(sk, α) +
n∑

i=1

Dec(sk, β1i) · Dec(sk, β2i)

and outputs m.
– Add1 and cMult1: The same as Add and cMult.
– Mult(pk, C1, C2): Given level-1 ciphertexts C1 and C2, it chooses plaintexts

m1 and m2 uniformly at random, sets α ←Enc(pk,m1 · m2), and for each
i = 1, 2, sets C ′

i ←Enc(pk,−mi) and βi ← Ci � C ′
i. Then it computes

γ ← α � (m2 � β1) � (m1 � β2)

(where the �’s are calculated from left to right), and outputs (γ, β1, β2).
– Add2(pk, C1, C2): First, it parses the level-2 ciphertexts C1 and C2 as

C1 = (α, β11, β21, . . . , β1i, β2i, . . . , β1n1 , β2n1) ,

C2 = (γ, δ11, δ21, . . . , δ1j , δ2j , . . . , δ1n2 , δ2n2) .
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Then it sets ε← α � γ and puts

C = (ε, β11, β21, . . . ,β1n1 , β2n1 , δ11, δ21, . . . , δ1n2 , δ2n2) .

Finally, it outputs C ′ ←Rerand(pk, C) where Rerand is as defined later.
– cMult2(pk,m,C): First, it parses the level-2 ciphertext C as C = (α, β11,

β21, . . . , β1n, β2n). Then it sets α′ ← m � α and for each k = 1, . . . , n, sets
β′
1k ← m � β1k, β′

2k ← β2k, and puts C ′ = (α′, β′
11, β

′
21, . . . , β

′
1n, β′

2n). Finally,
it outputs C ′′ ←Rerand(pk, C ′) where Rerand is as defined later.

Now the algorithm Rerand used in the construction of evaluation algorithms above
is given as follows.

– Rerand(pk, C): First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n).
For each i = 1, 2 and j = 1, . . . , n, it chooses a plaintext mij uniformly
at random and sets γij ←Enc(pk,mij). Moreover, it sets β′

ij ← βij � γij and
δj ←Enc(pk,−m1j · m2j). Then it sets

εj ← δj � ((−m2j) � β1j) � ((−m1j) � β2j)

and α′ ← α � ε1 � · · · � εn, and outputs C ′ = (α′, β′
11, β

′
21, . . . , β

′
1n, β′

2n).

6 Catalano–Fiore Conversion for KH-PKE

In this section, we extend the Catalano–Fiore conversion to the case of KH-PKE.
In Sect. 6.1, we show that the original Catalano–Fiore conversion applied to a
linearly KH-PKE scheme does not preserve KH-CCA security. In Sect. 6.2, we
describe our proposed extension of the Catalano–Fiore conversion to the case of
KH-PKE that preserves KH-CCA security under some additional condition.

We note that Catalano and Fiore also proposed in [12] a generalization of the
conversion to obtain a (slightly restricted) 2d-level HE scheme (i.e., that allows
additions and 2d − 1 multiplications) from a d-level HE scheme. Although not
discussed in this paper, our proposed conversion can be also extended to the
case of d-level KH-PKE schemes; see the full version of this paper for details.

6.1 Motivation: The Original Catalano–Fiore Conversion Fails

First, we consider a two-level KH-PKE scheme CF(E) obtained by simply apply-
ing the original Catalano–Fiore conversion to a KH-PKE scheme E . In this case,
CF(E) is in general not KH-CCA secure even if E is KH-CCA secure. Indeed,
the following properties of CF(E) are contradictory to KH-CCA security:

– An adversary without the evaluation key, given a level-1 ciphertext C, can
still generate a level-2 ciphertext (C,Enc(pk, 0),Enc(pk, 0)) with the same
plaintext as C.

– An adversary without the evaluation key, given a level-2 ciphertext C =
(α, β1, β2), can still generate another level-2 ciphertext (α, β2, β1) with the
same plaintext as C.
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6.2 Catalano–Fiore Conversion for KH-PKE

The essence of the attacks mentioned in Sect. 6.1 is that an adversary can
handle each component of a level-2 ciphertext separately. Our idea to prevent
such attacks is that we will encrypt the whole of a level-2 ciphertext again by
an appropriate SKE scheme. The resulting conversion method is described as
follows.

Definition 8 (Our Conversion for KH-PKE). Let E be a linearly KH-PKE
scheme that is public-space, and let SE = (GenSE ,EncSE ,DecSE) be an SKE
scheme. We write the algorithms Add and cMult of E as the form of binary
operators � and �, respectively. Then we define a new two-level KH-PKE
scheme CF′(E ,SE) = (Gen′,Enc′,Dec′

1,Dec
′
2,Add1,Add2, cMult1, cMult2,Mult)

as follows, where for i ∈ {1, 2}, Dec′
i, Addi, and cMulti are decryption, addi-

tion, and scalar multiplication algorithms for level-i ciphertexts, respectively.

– Gen′(1λ): It generates (pk, sk, ek) by Gen(1λ) and K by GenSE(1λ), and outputs
(pk, sk′, ek′) where sk′ = (sk,K) and ek′ = (ek,K).

– Enc′ and Dec′
1: The same as Enc and Dec.

– Dec′
2(sk

′, C): First, it computes C ′ ←DecSE(K, C) (it rejects the input if C ′ =
⊥), and parses C ′ as C ′ = α||β11||β21|| · · · ||β1n||β2n where “||” denotes the
concatenation of strings. It computes

m = Dec(sk, α) +
n∑

i=1

Dec(sk, β1i) · Dec(sk, β2i)

and outputs m.
– Add1(ek′, C1, C2) and cMult1(ek′,m,C): The same as Add(ek, C1, C2) and

cMult(ek,m,C).
– Mult(ek′, C1, C2): It chooses plaintexts m1 and m2 uniformly at random, sets

α ←Enc(pk,m1 · m2), and for each i = 1, 2, sets C ′
i ←Enc(pk,−mi) and

βi ← Ci � C ′
i. Then it computes

γ ← α � (m2 � β1) � (m1 � β2)

(where the �’s are calculated from left to right), and outputs

C ←EncSE(K, γ||β1||β2) .

– Add2(ek′, C1, C2): First, it computes C ′
1 ←DecSE(K, C1) and C ′

2 ←DecSE(K,
C2) (it rejects the input if C ′

1 = ⊥ or C ′
2 = ⊥), and parses them as

C ′
1 = α||β11||β21|| · · · ||β1n1 ||β2n1 ,

C ′
2 = γ||δ11||δ21|| · · · ||δ1n2 ||δ2n2 .

Then it sets ε← α � γ and puts

C ′ = ε||β11||β21|| · · · ||β1n1 ||β2n1 ||δ11||δ21|| · · · ||δ1n2 ||δ2n2 .

Finally, it computes C ′′ ←Rerand(ek, C ′) and outputs C ←EncSE(K, C ′′),
where Rerand is as defined later.
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– cMult2(ek′,m,C): First, it computes C ′ ←DecSE(K, C) (it rejects the input
if C ′ = ⊥), and parses C ′ as C ′ = α||β11||β21|| · · · ||β1n||β2n. Then it sets
α′ ← m�α and for each k = 1, . . . , n, sets β′

1k ← m�β1k, β′
2k = β2k, and puts

C ′
0 = α||β′

11||β′
21|| · · · ||β′

1n||β′
2n. Finally, it computes C ′′

0 ←Rerand(ek, C ′
0) and

outputs C0 ←EncSE(K, C ′′
0 ) where Rerand is as defined later.

Now the algorithm Rerand used in the construction of evaluation algorithms is
given as follows.

– Rerand(ek, S): First, it parses the input as S = α||β11||β21|| · · · ||β1n||β2n.
For each i = 1, 2 and j = 1, . . . , n, it chooses a plaintext mij uniformly
at random and sets γij ←Enc(pk,mij). Moreover, it sets β′

ij ← βij � γij and
δj ←Enc(pk,−m1j · m2j). Then it sets

εj ← δj � ((−m2j) � β1j) � ((−m1j) � β2j)

and α′ ← α � ε1 � · · · � εn, and outputs α′||β′
11||β′

21|| · · · ||β′
1n||β′

2n.

The correctness of CF′(E ,SE) follows from the correctness of E and SE and
can be verified straightforwardly. Now we have the following result on the security
of CF′(E ,SE).

Theorem 3. Let E be a linearly KH-PKE scheme that is KH-CCA secure and
circuit private, and let SE be an SKE scheme that is IND-CPA secure and INT-
CTXT secure. Then CF′(E ,SE) is KH-CCA secure.

Proof (Sketch; see the full version for details). For any PPT adversary ACF′ for
the KH-CCA game of CF′(E ,SE), consider a PPT adversary BE that plays the
role of the challenger in the KH-CCA game of CF′(E ,SE) with ACF′ by generating
the key K for SE by itself and utilizing the own queries in the KH-CCA game of E
in a way similar to the proof of Theorems 1 and 2. Let ListCF′ denote the list List in
the KH-CCA game of CF′(E ,SE). Now if BE is able to simulate all the responses
to ACF′ ’s queries correctly, then BE has the same advantage as ACF′ , therefore the
KH-CCA security of E implies that the advantage of ACF′ is negligible. Hence, in
order for ACF′ to break the KH-CCA security of CF′(E ,SE), ACF′ has to make,
with non-negligible probability, a query that cannot be responded by BE . Such
a query is necessarily a decryption query satisfying that the input ciphertext C
is not in ListCF′ and C is

– a level-1 ciphertext, and BE cannot determine the plaintext for C even by
using its own decryption query (in particular, C ∈ List); or

– a level-2 ciphertext, C ′ ←DecSE(K, C) satisfies that C ′ �= ⊥ and C ′ is cor-
rectly parsed as C ′ = α||β11||β21|| · · · ||β1n||β2n, and BE cannot determine the
plaintext for some component of C ′ even by using its own decryption query
(in particular, that component is in List).

We call such a query by ACF′ an unallowable query. We suppose that ACF′ is
chosen in a way that it makes an unallowable query as early as possible.
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We modify the behavior of the challenger in the KH-CCA game of E in
a way that on receiving an evaluation query from BE , the challenger executes
the algorithm Sim (with correct input plaintext) in the definition of the circuit
privacy of E instead of the evaluation algorithm itself. By the condition of Sim,
this modification only affects the behavior of the game in a negligible way (note
that as BE is PPT, the challenger receives only polynomially many such queries).

Moreover, we modify the behavior of BE in a way that at every time of
computing EncSE(K, c) for some c (in responding to ACF′ ’s evaluation query
with level-2 output ciphertext), BE chooses a string c′ with |c′| = |c| uniformly
at random and computes EncSE(K, c′) instead. By the IND-CPA security of SE ,
this modification only affects the behavior of ACF′ in a negligible way. After
the modification, the behavior of ACF′ becomes independent of the outputs of
the algorithm Sim executed by the challenger during BE ’s response to ACF′ ’s
evaluation queries.

We show that the first unallowable query made by ACF′ is with level-1 input
ciphertext. Assume for the contrary that it is with level-2 input ciphertext, say
C. Then C has been generated by BE in responding to ACF′ ’s previous query,
as otherwise the valid ciphertext C in SE that was not previously generated by
EncSE would break the INT-CTXT security of SE . Now the input ciphertexts
of that previous query were not in ListCF′ , as otherwise C has been appended
to ListCF′ at that query, contradicting the condition for unallowable query. On
the other hand, for at least one input ciphertext, say C0, of that previous query,
BE could not determine the plaintext for C0, as otherwise BE could determine
the plaintext for the output ciphertext C as well, contradicting the condition
for unallowable query. This implies that ACF′ could make an unallowable query
with input ciphertext C0 at that previous step, contradicting the assumption that
ACF′ makes an unallowable query as early as possible. Hence the first unallowable
query made by ACF′ is with level-1 input ciphertext.

We assume for the contrary that an unallowable query Dec(C), where C is a
level-1 ciphertext C as discussed above, is made with non-negligible probability,
say p. Then we have C ∈ List \ ListCF′ by the condition for unallowable query.
Now we note that such a difference between List and ListCF′ arises only when BE
makes some evaluation query in order to respond to ACF′ ’s evaluation query with
level-2 output ciphertext. Therefore, the algorithm Sim(1λ, ek,m) where m :=
Dec(sk, C) was performed at some previous query by ACF′ , and that execution of
Sim(1λ, ek,m) yielded the ciphertext C. As the behavior of ACF′ is independent
of that execution of Sim(1λ, ek,m) as mentioned above, it follows that p ≤ pC

where pC := Pr[C ←Sim(1λ, ek,m)].
However, the property C ∈ List implies that C is generated by a sequence

of evaluation algorithms starting from the challenge ciphertext C∗, therefore for
each i ∈ {0, 1}, BE can compute the plaintext mi satisfying that C would have
the plaintext mi if the challenge bit b in the KH-CCA game is b = i. We also note
that m0 �= m1, as otherwise BE could determine the plaintext of C regardless
of b and hence could respond to the unallowable query Dec(C), a contradic-
tion. Therefore, now BE can increase its winning probability by modifying the
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behavior in a way that whenever BE detects an unallowable query Dec(C) (which
is in fact possible, as BE can know the current status of the list List while BE
itself maintains the list ListCF′), BE makes a RevEK query to obtain the evaluation
key ek, and for each i ∈ {0, 1}, BE computes Ci ← Sim(1λ, ek,mi) and outputs
the bit i if Ci = C. By this modification, the winning probability increases by
p · Pr[Cb ← Sim(1λ, ek,mb) : Cb = C] = p · pC ≥ p2 (as mb = m by the defini-
tion of m0 and m1), which is non-negligible as well as p. This contradicts the
KH-CCA security of E . Hence an unallowable query is made with only negligi-
ble probability. Therefore, the advantage of ACF′ is negligible by the KH-CCA
security of E , concluding the proof (see the full version of this paper for a more
rigorous argument). 	

Remark 1. Similarly to the case of the original Catalano–Fiore conversion, we
can also show that CF′(E ,SE) is circuit private if E is circuit private. Here we
note that CF′(E ,SE) have two classes of ciphertexts, level-1 and level-2 cipher-
texts, that are easily distinguishable (even if they have the same plaintext),
and different level-2 ciphertexts may have different sizes, which become easily
distinguishable as well. Therefore, in order to discuss the circuit privacy for
CF′(E ,SE), we must modify the definition of circuit privacy, in a way that the
algorithm Sim also takes the level of the ciphertext and its size (for the level-2
case) as a part of input; that is, roughly speaking, ciphertexts of the same level
and the same size are indistinguishable to each other. See the full version of this
paper for a proof of the circuit privacy of CF′(E ,SE).

7 Conclusion

In this paper, first we showed that when extending the number of inputs for the
homomorphic evaluation algorithm in a KH-PKE scheme, the KH-CCA security
is not necessarily preserved; while the KH-CCA security is preserved when the
original scheme also satisfies circuit privacy. Secondly, we extended the Catalano–
Fiore conversion to the case of KH-PKE schemes, which results in conversion
from linearly KH-PKE schemes to two-level KH-PKE schemes. This conversion
is applicable to KH-PKE schemes with various security assumptions such as the
DDH and the DCR assumptions for linearly KH-PKE schemes.

A drawback of our proposed conversion method (which is common to the
original Catalano–Fiore conversion) is that in the resulting scheme, the homo-
morphic evaluation for level-2 ciphertexts increases the size of the ciphertext. In
the original paper [13] of Catalano and Fiore, they proposed a primitive called 2S-
DCED (two-server delegation of computation on encrypted data), and based on
it, they constructed a two-server protocol for resolving the issue of non-compact
ciphertexts. It is a future research topic to investigate possible extensions of
their technique to our case of KH-PKE schemes. On the other hand, the original
Catalano–Fiore conversion is known to preserve some more properties in addi-
tion to the IND-CPA security and circuit privacy. Studying similar properties in
the case of our proposed conversion method is also a future research topic.
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Abstract. Due to the fact that classical computers cannot efficiently
obtain random numbers, it is common practice to design cryptosystems
in terms of real random numbers and then replace them with cryp-
tographically secure pseudorandom ones for concrete implementations.
However, as pointed out by the previous work (Nuida, PKC 2021), this
technique may lead to compromise of security in secure multiparty com-
putation (MPC) protocols, due to the property that a seed for a pseu-
dorandom generator (PRG) is visible by an adversary in the context
of MPC. Although this work suggested to use information-theoretically
secure protocols (together with PRGs with high min-entropy) to alle-
viate the problem, yet it is preferable to base the security on com-
putational assumptions rather than the stronger information-theoretic
ones. By observing that the contrived constructions in the aforemen-
tioned work use MPC protocols and PRGs that are closely related to
each other, we notice that it may help to alleviate the problem by using
protocols and PRGs that are “unrelated” to each other. In this paper,
we propose a notion called “computational irrelevancy” to formalise the
term “unrelated” and under this condition provide a security guarantee
under computational assumptions.

Keywords: Secure multiparty computation · pseudorandom
generators · relativisation

1 Introduction

It is a widely known fact that classical computers are not able to generate random
numbers. When necessary, random numbers are generated from noise of the envi-
ronment, OS statistics, user inputs, etc. However, in most cryptographic schemes
where very long random bit sequences are required, these random sources are not
efficient enough to generate them. To this end, pseudorandom generators (PRGs)
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are used to expand a short real random bit sequence into a long one that looks
random. In order to provide randomness for cryptographic purposes, it is rec-
ommended to use PRGs satisfying a standard cryptographic security condition,
where the output distribution of the PRG is computationally indistinguishable
from a uniformly random bit sequence.

Under the observation that if the use of PRGs compromises security of a
cryptographic scheme then the scheme can be modified to a distinguisher against
the PRGs, one may näıvely believe that when a cryptographically secure PRG
is used in a secure cryptographic scheme, the resulting scheme is also secure.
However, this näıve reduction only works in settings where the seeds for the
PRGs are not explicitly known to the adversaries, since the distinguishers in the
security notion for PRGs are formalised in a way of not viewing the seed for
the PRG. In fact, as pointed out by a recent work [9], the security definition
of secure multiparty computation (MPC) protocols (in the semi-honest model)
forms a counterexample of the näıve reduction. Indeed, protocol-PRG pairs are
explicitly constructed by [9] in a way that the protocol and the PRG are secure
themselves but the protocol becomes insecure when the PRG is used. Since it has
become so common a paradigm in cryptography to design cryptographic schemes
in terms of real random numbers and use the output of PRGs for concrete
implementations, it is urgent to find ways to avoid such problems.

To this end, it is proved also in [9] that using PRGs with very high min-
entropy can help avoiding the problem provided that the original MPC proto-
col is information-theoretically secure. This requirement of information-theoretic
security for the underlying MPC protocol is in fact a significant disadvantage
of the previous result, since it is believed that achieving information-theoretic
security for all parties is very hard and with severe limitations. For example, it is
shown in [2] that, in terms of boolean functions, information-theoretic security
for majority of the participating parties is achievable for only a limited subset of
boolean functions. Therefore, instead of requiring information-theoretic security
for the underlying protocols, it is more desirable to ensure security in terms of
computational security assumptions.

By taking a close look at the constructions of the counterexamples in [9],
it is easy to observe that these contrived constructions use MPC protocols and
PRGs that are closely related to each other; the PRG for each counterexample
was artificially designed in order to compromise the security of the specific MPC
protocol when applied. One may develop an intuition that it helps to alleviate
the problem to use PRGs “unrelated” to the MPC protocol. However, to realize
the intuition as the form of a theorem, we have to formalise the meaning that a
PRG and an MPC protocol are “unrelated”.

1.1 Our Contributions

In this paper, we propose new sufficient conditions for an MPC protocol and a
PRG to ensure that the use of the PRG to generate randomness for a party in the
protocol does not compromise the security. The proposed sufficient conditions
are more practical than the one in the previous work [9] in a way that our
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conditions require the protocol to have only computational security, while the
condition in [9] requires the protocol to have information-theoretic security.

In order to develop such sufficient conditions, it might be helpful as mentioned
above to formalise the meaning that a PRG and a protocol are “unrelated”. To
this end, in this paper we propose a notion called “computational irrelevancy”
by utilising a paradigm called “relativisation”, which is intensely studied in the
literature of complexity theory. As an informal description, an MPC protocol or
a PRG is considered computationally irrelevant from a PRG if the security of the
former is preserved even if the corresponding distinguisher is given oracle access
to the inverter of the latter. See Sect. 3 for the details. We note that as a related
work, [3] discussed a notion called “computationally independent one-way func-
tions” to avoid problems in interactive proof systems. Some relation between our
notion of computational irrelevancy (extended from PRGs to one-way functions)
and the computationally independent one-way functions is studied in Sect. 6.3.

Based on the notion of computational irrelevancy, we provide sufficient con-
ditions for an MPC protocol and a PRG to preserve the security as mentioned
above. Here we focus on the simplest (and non-trivial) case where there exists a
single corrupted party P and the same party uses a PRG R in an MPC protocol
π. Roughly speaking, our proposed sufficient condition for this case is as follows:

– π is computationally secure and is computationally irrelevant from R.
– The simulator in the security definition for π simulates the view of P in a way

that it uses a part of its random tape as the randomness part of the simulated
view as is. (We note that this technical condition is common to the previous
work [9].)

– Among the bit strings of the same length as outputs of R, the ratio of the
size of the range of R is asymptotically larger than an inverse polynomial.

– The output distribution of R is computationally indistinguishable from the
uniform distribution over the range of R (instead of the bit strings of the
same length as outputs of R, as in the usual security definition for PRGs)
even if the distinguisher is given access to the oracle that inverts R.

The precise statement for the case of a single corrupted party (and possibly
multiple PRGs) as well as the proof is given in Sect. 4. Moreover, in contrast
to the previous work [9] where only the case of a single adversary is studied,
we extend the result to a more general case where there exist many corrupted
parties. The result is given in Sect. 5. We also discuss some relation between the
sufficient conditions in our result here and the sufficient conditions in the result
of [9]; see Sect. 6.1 for the details.

Regarding the computational irrelevancy condition in our proposed sufficient
conditions, constructing protocols that are computationally secure even assum-
ing access to the oracles inverting some PRGs apparently requires some com-
putational problems that are hard even with access to some oracles. A class of
problems called “the gap-problems”, proposed by [10], can be considered a class
of computational problems that are hard relative to an oracle solving the corre-
sponding decision problem. This class of problems proved to be very useful and
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cryptographic schemes have been constructed and security of existing schemes
has been proved under the computational hardness assumptions of these prob-
lems (e.g., [6,7,10]). In addition, the relativisation paradigm has been used to
prove some negative results in the literature of cryptography (e.g., [5]). Hence
here we argue that such relativised computational problems are interesting in
their own right and security or computational hardness assumptions relative to a
family of the inverters of some PRGs, which are essential for the concrete imple-
mentations of our proposed sufficient conditions, are hopefully further studied
in future works.

2 Preliminaries

2.1 Basic Notations

In this paper, for a finite set S, we write s ←R S to denote that s is assigned
a uniformly sampled value from the set S. Let “PPT” be an abbreviation of
“probabilistic polynomial-time”. We say that a function f : N → R≥0 is negligible
if for any positive polynomial p, there exists a λ0 ∈ N for which for any λ > λ0

we have f(λ) < 1/p(λ). We say that a function f : N → R≥0 is noticeable if there
exists a positive polynomial p and a λ0 ∈ N for which for any λ > λ0 we have
f(λ) ≥ 1/p(λ).

2.2 Pseudorandom Generators

We review the definition of pseudorandom generators (PRGs) and their security
definition as well as introduce notations about PRGs for later use.

Definition 1. A deterministic polynomial-time algorithm is called a pseudoran-
dom generator (PRG) if on input (1λ, s) where λ ∈ N and s is a bit string of
fixed length, it outputs a bit string r of fixed length |r| > |s|. Here λ is called the
security parameter, s is called the seed, and lin(λ) := |s| and lout(λ) := |r| are
called the input length and output length, respectively. When multiple PRGs are
used, we use lin(λ, i) and lout(λ, i) to denote the input length and output length
of the PRG indexed by i.

Definition 2. A PRG R is said to be uniformly (resp. non-uniformly) secure
if for any PPT uniform (resp. non-uniform) distinguisher D, the advantage

∣
∣
∣Pr

[

D(1λ,R(1λ, s))
]

− Pr
[

D(1λ, r)
]
∣
∣
∣

is negligible where s ←R {0, 1}lin(λ) and r ←R {0, 1}lout(λ).
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2.3 Secure Multiparty Computation

We review security definitions for multiparty computation (MPC) protocols.
While the notion of secure multiparty computation was first conceived and for-
malised by Yao [11,12], the modern formalisation of security of MPC protocols
that is used in more recent literature was proposed by [4]. In this paper, we shall
deal with the semi-honest adversarial model in [4].

Definition 3. Let π be an n-party protocol and �f = (f1, f2, . . . , fn) be a proba-
bilistic functionality to be computed by π. Let I = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}
(i1 < i2 < · · · < im). We say π is secure against coalition of parties Pi with
i ∈ I, or simply, secure against parties PI := (Pi)i∈I , if there exists a PPT
simulator S for which for any PPT non-uniform distinguisher D, the advantage

∣
∣
∣Pr

[

D
(

S(1λ, �xI , �fI(�x)), �f(�x)
)

= 1
]

− Pr
[

D
(

VIEWI(�x;�r), π(1λ, �x;�r)
)

= 1
]
∣
∣
∣

is negligible where

– xi is an input of party Pi, �x = (x1, x2, . . . , xn), and �xI = (xi1 , xi2 , . . . , xim
);

– �f(�x) = (f1(�x), f2(�x), . . . , fn(�x)) and �fI(�x) = (�fi1(�x), �fi2(�x), . . . , �fim
(�x));

– ri is a random bit sequence used by Pi and �r = (r1, r2, . . . , rn);
– VIEWi(�x;�r) denotes the view of Pi consisting of xi, ri, and a list of messages

�mi(1λ, �x;�r) received by Pi during an execution of the protocol π with input �x
and randomness �r; and

– VIEWI(�x;�r) = (VIEWi1(�x;�r),VIEWi2(�x;�r), . . . ,VIEWim
(�x;�r)).

3 Formalising Computational Irrelevancy

In this section, we formalise what is meant by saying that a PRG R (or a family
of PRGs) is computationally irrelevant to an MPC protocol π or to another
PRG R′. Roughly speaking, our proposed condition here is that the ability of
inverting the PRG R does not affect the security of π or R′. To explain it more
clearly, we introduce relativised versions (with respect to some oracles) of the
security of MPC protocols and of PRGs.

Definition 4. In the setting of Definition 3, we additionally let O be a family
of oracles. We say the protocol π is secure against parties PI relative to O if the
condition in Definition 3 holds even if the distinguisher D is given access to the
oracles O.

Definition 5. In the setting of Definition 2, we additionally let O be a family
of oracles. We say the PRG R is uniformly (resp. non-uniformly) secure relative
to O if the condition in Definition 2 holds even if the distinguisher D is given
access to the oracles O.
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Then our notion of computational irrelevancy is described by using these
definitions and an oracle IR that inverts an output of a given PRG R. More
precisely, given a security parameter 1λ and an input string r ∈ {0, 1}lout(1

λ), if
there exists a seed s ∈ {0, 1}lin(1λ) satisfying R(1λ, s) = r then the oracle IR
returns such an s chosen uniformly at random, and otherwise it returns ⊥.

Based on the definition of IR, we say a family of PRGs (Rj)j is computation-
ally irrelevant to a secure MPC protocol π (resp. a secure PRG R′) if π (resp.
R′) is still secure relative to the oracle family (IRj

)j .

4 Main Theorem: Case of a Single Adversary

In this section, we state and prove our main theorem for the case where there
exists a single adversary Pi among the n parties. To state our theorem, we assume
without loss of generality that every party Pj uses its own PRG Rj to generate
the party’s randomness in a protocol π. In fact, when some party does not use
a PRG, we instead regard the party as using an identity function id as its PRG;
this does not affect our assumption about the computational irrelevancy, since
any PRG is computationally irrelevant to id (due to the information-theoretic
security of id) and id is computationally irrelevant to any protocol and any PRG
(due to the fact that inverting id is a trivial operation). Let π ◦ �R denote the
protocol where each party Pj first generates rj ← Rj(1λ, sj) from a uniformly
random seed sj and then executes the protocol π using rj as its randomness.

4.1 Additional Definitions

We prepare some additional definitions used in the statement of our theorem.
The first definition here basically states that a random output of a PRG looks
uniformly random over its range, instead of over all bit strings of the fixed length
as in the original definition.

Definition 6. Let R be a PRG. Let range(R, λ) denote the set of all outputs of
R under security parameter λ:

range(R, λ) :=
{

R(1λ, s) | s ∈ {0, 1}lin(λ)
}

.

Let O be a family of oracles. We say R is uniformly (resp. non-uniformly)
indistinguishable in its range relative to O if for any PPT uniform (resp. non-
uniform) distinguisher D,

∣
∣
∣Pr

[

DO (

1λ,R(1λ, s)
)

= 1
]

− Pr
[

DO (

1λ, r
)

= 1
]
∣
∣
∣

is negligible where s ←R {0, 1}lin(λ), r ←R range(R, λ), and DO indicates that
D is given access to the oracles O.
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The second definition here basically states that the simulator in the security
of an MPC protocol outputs its own random bits as is to generate the corrupted
party’s random tape. Note that this definition is introduced by the previous work
[9] and is proved to be necessary also in the setting of the previous work.

Definition 7 ([9]). Let π be an n-party protocol that is secure against Pi with
simulator S. We say S is with raw randomness if there exists a PPT algorithm
T for which for any λ ∈ N we have

S(1λ, xi, fi(�x); ri, τi) =
〈

ri, T (1λ, xi, fi(�x), ri; τi)
〉

where the notation 〈ri, y〉 means that components of the tuple (ri, y) are rear-
ranged in a way that ri corresponds to the simulated random tape part.

4.2 The Statement

We state our first main theorem as follows. See Sects. 3 and 4.1 for the termi-
nology used in the statement. The proof is given in the next subsection.

Theorem 1. Let π be an n-party protocol, and �R = (Rj)n
j=1 be a family of

non-uniformly secure PRGs. Let i ∈ {1, 2, . . . , n}. Suppose that the following
conditions hold:

– π is secure against party Pi relative to IRi
with raw randomness (in partic-

ular, Ri is computationally irrelevant to π).
– |range(Ri, λ)| /2lout(λ,i) is noticeable.
– Ri is non-uniformly indistinguishable in its range relative to IRi

.

Then π ◦ �R is secure against party Pi with raw randomness.

Remark 1. We note that the last condition “Ri is non-uniformly indistinguish-
able in its range relative to IRi

” in the statement is not a contradictory con-
dition. If the term “in its range” were not put, then the use of the oracle IRi

could trivially distinguish an output of Ri from a uniformly random bit string
r since the oracle can determine whether r is in the range of Ri. However, the
term “in its range” changes the setting in a way that r is always in the range of
Ri, therefore the trivial attack above is not applicable to the current setting.

Remark 2. If we require π ◦ �R to be also secure relative to IRi
, then we have to

suppose moreover that Ri is also computationally irrelevant to other PRGs Rj ,
j �= i, i.e., Rj is also secure relative to IRi

. The proof is basically the same as
the proof given below.

4.3 Proof of Theorem 1

Here we give a proof of Theorem 1. Our proof consists of the following two parts:
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1. If π is secure against party Pi relative to IRi
with raw randomness, then the

protocol π〈i〉 obtained by replacing party Pi’s randomness with an output of
Ri is also secure against party Pi relative to IRi

with raw randomness.
2. If π is secure against party Pi with raw randomness, then for any j �= i, the

protocol π〈j〉 obtained by replacing party Pj ’s randomness with an output of
Rj is also secure against party Pi with raw randomness.

If these two claims are proved, then the original statement follows by recursively
applying the part 1 (to replace party Pi’s randomness) and then the part 2 n−1
times (to replace the other parties’ randomness one by one).

For the part 2, the seed of the PRG Rj is not explicitly known to the adver-
sary Pi, therefore we can perform a standard security reduction. We present this
in the following lemma for completeness.

Lemma 1. In the setting of Theorem 1, for any j �= i, the protocol π〈j〉 defined
as above is secure against party Pi with raw randomness.

Proof. Let S be the simulator for party Pi in the security of π. We show that
this simulator can also be used to prove the security of π〈j〉. For any PPT distin-
guisher D against S and any input �x, by the triangle inequality, the advantage
of D for the case of protocol π〈j〉 is bounded from above by the sum of

∣
∣
∣
∣
Pr

[

D(S(1λ, xi, fi(�x)), �f(�x)) = 1
]

−Pr
[

D(xi, ri, �mi(1λ, �x; 〈rj〉j), π(1λ, �x; 〈rj〉j)) = 1
]
∣
∣
∣
∣

and
∣
∣
∣
∣
Pr

[

D(xi, ri, �mi(1λ, �x; 〈rj〉j), π(1λ, �x; 〈rj〉j)) = 1
]

−Pr
[

D(xi, ri, �mi(1λ, �x;
〈

Rj(1λ, sj)
〉

j
), π(1λ, �x;

〈

Rj(1λ, sj)
〉

j
)) = 1

]
∣
∣
∣
∣

,

where ri ←R {0, 1}lout(λ,i), rj ←R {0, 1}lout(λ,j), sj ←R {0, 1}lin(λ,j), and 〈a〉j in
the randomness part of the inputs means that party Pj takes randomness a and
others take uniformly distributed random bits (as specified in π). The former
quantity is negligible by the security of π against Pi, while the latter quantity
is negligible by the non-uniform security of Rj . �


Thus the problem is reduced to prove the part 1 above. To prove the part
1, let S be the simulator for party Pi in the security of π. Since S is with
raw randomness, we can write S(1λ, xi, fi(�x); ri, τi) =

〈

ri, T (1λ, xi, fi(�x), ri; τi)
〉

.
Consider a simulator S̃ defined as

S̃(1λ, xi, fi(�x); si, τi) :=
〈

si, T (1λ, xi, fi(�x),Ri(1λ, si); τi)
〉

.
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For any PPT distinguisher D̃ (with oracle access to IRi
) against S̃, define

distinguisher D (with oracle access to IRi
) against S as in Algorithm 1, which

is PPT as well as D̃.

Algorithm 1. Distinguisher D against S
1: procedure DIRi (x†

i , r
†
i , �m†

i , y
†
i )

2: s†i ← IRi(r
†
i )

3: if s†i �= ⊥ then
4: return D̃IRi (x†

i , s
†
i , �m†

i , y
†
i )

5: else
6: return 0
7: end if
8: end procedure

Let ri ←R {0, 1}lout(λ,i), and let E be the event IRi
(ri) �= ⊥, i.e., ri is in the

range of Ri. Since D outputs 0 when E does not occur, the advantage of D is
equal to Pr [E] · adv′

D where

adv′
D :=

∣
∣
∣Pr

[

DIRi (S(1λ, xi, fi(�x); ri, τi), �f(�x)) = 1 | E
]

−Pr
[

DIRi (xi, ri, �mi(1λ, �x; 〈ri〉i), π(1λ, �x; 〈ri〉i)) = 1 | E
]
∣
∣
∣

(here 〈a〉i in the randomness part of the inputs means that party Pi takes ran-
domness a and others take uniformly distributed random bits (as specified in
π)). Since Pr [E] is noticeable by the second assumption in the theorem and
Pr [E] · adv′

D is negligible by the security of π, it follows that adv′
D is negligible.

Note that the conditional distribution of ri conditioned on the event E is the
uniform distribution over range(Ri, λ). Then by the definitions of D and S̃, we
have

adv′
D =

∣
∣
∣Pr

[

D̃IRi (S̃(1λ, xi, fi(�x); IRi
(r†

i ), τi), �f(�x)) = 1
]

−Pr
[

D̃IRi (xi, IRi
(r†

i ), �mi(1λ, �x;
〈

r†
i

〉

i
), π(1λ, �x;

〈

r†
i

〉

i
)) = 1

]∣
∣
∣

where r†
i ←R range(Ri, λ) (here the security parameter 1λ in IR is omitted).

Now since Ri is non-uniformly indistinguishable in its range relative to IRi
by

the third assumption in the theorem, it follows that replacing the r†
i ’s in the

equality for adv′
D above by Ri(s

†
i ) with s†

i ←R {0, 1}lin(λ,i) (where the security
parameter 1λ in Ri is omitted) yields only negligible difference for the value of
the right-hand side from the original. That is, the following

adv′′
D :=

∣
∣
∣Pr

[

D̃IRi (S̃(1λ, xi, fi(�x); IRi
(Ri(s

†
i )), τi), �f(�x)) = 1

]

−Pr
[

D̃IRi (xi, IRi
(Ri(s

†
i )), �mi(1λ, �x;

〈

Ri(s
†
i )

〉

i
), π(1λ, �x;

〈

Ri(s
†
i )

〉

i
)) = 1

]∣
∣
∣

is negligible as well as adv′
D. Moreover, we use the following lemma.



Pseudo- and Real Randomness in MPC Protocols 217

Lemma 2. In the setting, IRi
(Ri(s

†
i )) is uniformly random over {0, 1}lin(λ,i).

Proof. Let ξ ∈ {0, 1}lin(λ,i), ζ := Ri(ξ), and let c be the number of ξ′ ∈
{0, 1}lin(λ,i) with Ri(ξ′) = ζ. Then

Pr
[

IRi
(Ri(s

†
i )) = ξ

]

= Pr
[

Ri(s
†
i ) = ζ

]

· Pr [IRi
(ζ) = ξ]

=
c

2lin(λ,i)
· 1
c

=
1

2lin(λ,i)
.

Hence the claim holds. �


By putting si := IRi
(Ri(s

†
i )) which is uniformly random over {0, 1}lin(λ,i)

as above, we have Ri(s
†
i ) = Ri(si) and hence

adv′′
D =

∣
∣
∣Pr

[

D̃IRi (S̃(1λ, xi, fi(�x); si, τi), �f(�x)) = 1
]

−Pr
[

D̃IRi (xi, si, �mi(1λ, �x; 〈Ri(si)〉i), π(1λ, �x; 〈Ri(si)〉i)) = 1
]∣
∣
∣ .

By the definition of the protocol π〈i〉, this is nothing but the advantage of the
distinguisher D̃IRi for the simulator S̃ in the security of π〈i〉, which is negligible
as above. Therefore π〈i〉 is secure against party Pi relative to IRi

with raw
randomness. This completes the proof of Theorem 1.

5 Main Theorem: Case of Multiple Adversaries

In this section, we state and prove our main theorem for the case where there
exist multiple colluding adversaries PI , I ⊂ {1, 2, . . . , n} among the n parties.
Similarly to Sect. 4, we assume without loss of generality that every party Pj

uses its own PRG Rj to generate the party’s randomness in a protocol π.
To state the theorem, we extend the definition of raw randomness (Definition

7) to the case of multiple adversaries.

Definition 8. Let π be an n-party protocol that is secure against parties PI ,
I = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}, with simulator S. We say S is with raw
randomness if there exists a PPT algorithm T for which for any λ ∈ N we have

S(1λ, �xI , �fI(�x); ri1 , ri2 , . . . , rim
, τ)

=
〈

ri1 , ri2 , . . . , rim
, T (1λ, �xI , �fI(�x), ri1 , ri2 , . . . , rim

; τ)
〉

where the notation 〈ri1 , ri2 , . . . , rim
, y〉 means that components of the tuple (ri1 ,

ri2 , . . . , rim
, y) are rearranged in a way that each rik

corresponds to the simulated
random tape part.

Now we state our second main theorem as follows.



218 N. Heseri and K. Nuida

Theorem 2. Let π be an n-party protocol, and �R = (Rj)n
j=1 be a family of

non-uniformly secure PRGs. Let I ⊂ {1, 2, . . . , n}. Suppose that the following
conditions hold:

– π is secure against parties PI relative to (IRj
)j∈I with raw randomness.

– For any i ∈ I, |range(Ri, λ)| /2lout(λ,i) is noticeable.
– For any i ∈ I, Ri is non-uniformly indistinguishable in its range relative to

(IRj
)j∈I .

Then π ◦ �R is secure against parties PI with raw randomness.

Remark 3. Similarly to Remark 2, if we require π◦ �R to be also secure relative to
(IRj

)j∈I , then we have to suppose moreover that (Rj)j∈I is also computationally
irrelevant to other PRGs Rk, k �∈ I.

Proof (Theorem 2). We reduce the problem to the case of Theorem 1 by con-
sidering an (n − |I| + 1)-party protocol π̃ obtained from π in a way that now
a single party P̃, with input �xI and randomness �rI := (ri)i∈I , simulates all the
protocol executions by parties PI in π. Now:

– Let R̃ be the PRG obtained by concatenating the outputs of PRGs Ri, i ∈ I.
Then a hybrid argument implies that R̃ is non-uniformly secure as well as
the PRGs Ri, i ∈ I.

– The ability of the oracle IR̃ inverting R̃ is polynomial-time equivalent to the
family of oracles (IRi

)i∈I . Hence π̃ is also secure against party P̃ relative to
IR̃ with raw randomness. Indeed, given a simulator S for π, a simulator S̃
for π̃ is obtained by just ignoring internal messages for parties PI (that is,
messages in π from some party inside I to some party inside I).

– The ratio
∣
∣
∣range(R̃, λ)

∣
∣
∣ /2lout(λ) (where lout(λ) denotes the output length

of R̃) is the product of all |range(Ri, λ)| /2lout(λ,i), i ∈ I. Hence the ratio
∣
∣
∣range(R̃, λ)

∣
∣
∣ /2lout(λ) is also noticeable.

– By the equivalence of IR̃ and (IRi
)i∈I , each Ri (i ∈ I) is non-uniformly

indistinguishable in its range relative to IR̃. Hence by a hybrid argument, R̃
is also non-uniformly indistinguishable in its range relative to IR̃.

Thus the protocol π̃ satisfies the assumptions in Theorem 1, therefore π̃ ◦ �R′

(where �R′ is the family of PRG R̃ and the other PRGs Rk, k �∈ I) is secure
against party P̃ with raw randomness. Moreover, we note that the internal mes-
sages for parties PI in π can be recovered from the other messages and the
randomness for parties PI . Due to this property, a simulator (with raw random-
ness) to prove the security of π ◦ �R against parties PI can be constructed from
the simulator in the security of π̃ ◦ �R′ against party P̃. This completes the proof
of Theorem 2. �
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6 Related Works

6.1 Relation to Information-Theoretic Assumptions

We discuss the relation between our proposed sufficient conditions to preserve
the security and the information-theoretic ones used in the previous work [9].
Since [9] only considered the case of a single adversary, we compare its result
with Theorem 1 (rather than Theorem 2). We note that [9] only considered two-
party protocols, but its result is easily extendible to n-party protocols (with a
single adversary), therefore below we deal with the n-party version of the result
in [9]. The statement in [9] is as follows.

Theorem 3 ([9]). Let π be an n-party protocol. Let i ∈ {1, 2, . . . , n}, and let R
be a PRG used by party Pi. Let π ◦i R denote the protocol obtained from π by
replacing party Pi’s randomness with a random output of R. Suppose that the
following conditions hold:

– π is information-theoretically secure against party Pi with raw randomness,
i.e., the real and the simulated views have negligible statistical distance.

– lout(λ) − H∞(R(1λ, ·)) ∈ O(log λ), where H∞(R(1λ, ·)) is the min-entropy of
R defined as

H∞(R(1λ, ·)) := − max
r∈{0,1}lout(λ)

log2 Pr
[

R(1λ, s) = r
]

where s ←R {0, 1}lin(λ).

Then π ◦i R is information-theoretically secure against party Pi with raw ran-
domness.

Theorem 3 assumes information-theoretically secure protocols with raw ran-
domness. This is a stronger assumption than the first assumption of Theorem
1 since it is a well-known fact that statistical closeness implies computational
indistinguishability and its proof relativises to any family of oracles.

Next we show that the min-entropy condition on the PRG in Theorem 3 is
stronger than our second assumption of Theorem 1.

Proposition 1. Let R be a PRG. If lout(λ) − H∞(R(1λ, ·)) ∈ O(log λ), then
|range(R, λ)| /2lout(λ) is noticeable.

Proof. By definition, we may focus on the range of R when considering min-
entropy:

H∞(R(1λ, ·)) = − max
r∈range(R,λ)

log2 Pr
[

R(1λ, s) = r
]

.

For a finite set, the uniform distribution yields the highest min-entropy among
all distributions over this set, thus

H∞(R(1λ, ·)) ≤ − max
r∈range(R,λ)

log2 Pr
[

Urange(R,λ) = r
]

= log2 |range(R, λ)|
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where US denotes the uniform distribution over a finite set S. The assumption in
the proposition can be rewritten as 2lout(λ)/2H∞(R(1λ,·)) ≤ p(λ) for some positive
polynomial p and any sufficiently large λ’s. Thus

2lout(λ)

|range(R, λ)| =
2lout(λ)

2log2|range(R,λ)| ≤ 2lout(λ)

2H∞(R(1λ,·)) ≤ p(λ) .

Taking the inverse on both sides yields the desired result. �


6.2 On Random Oracle Vs. Hash Function Ensembles

Here we note that the technique used above seems unlikely to resolve the prob-
lem that occurs when a random oracle is replaced with a hash function ensemble
[1]. For a cryptosystem that is secure under the random oracle model, if we want
to prove (based on this fact) the security when the random oracle is replaced
with a hash function ensemble with similar techniques, we have to rely on some
computational indistinguishability between them. However, no well-known secu-
rity requirements (one-wayness, collision resistance, etc.) on hash functions seem
to provide such indistinguishability in any sense. A seemingly promising indis-
tinguishability requirement might be that

∣
∣
∣
∣

Pr
Ok,s←R{0,1}k

[

DOk(1k, s)
]

− Pr
s←R{0,1}k

[

Dfs(1k, s)
]
∣
∣
∣
∣

be negligible, where Ok denotes (the distribution of) random oracles outputting
strings of length lout(k) and fs denotes the element with index s of a hash
function ensemble. Note that we have to pass the seed s to the distinguisher
since all parties (including adversaries) are supposed to know the seed in an
implementation of random oracles by hash functions. However, a distinguisher
can easily distinguish the two by computing fs(x) itself with arbitrary x and
compare with the result of the oracle query.

Since both adversaries and appropriate users (or honest parties) have access
to the same random oracle or hash functions, one may think that the notion
of indistinguishability, which assumes that the random bits are private to each
party, is anyway not suitable to be used in the random oracle vs. hash function
setting. A less näıve notion called “indifferentiability”, proposed by [8], is a
generalisation of indistinguishability to deal with public and private interfaces.
However, even this notion cannot be applied to the random oracle vs. hash
function setting – no hash function ensemble is indifferentiable from a random
oracle.

Thus we can see there seems to exist a huge gap between the random oracle
model and reality (in the sense that even trivial algorithms can distinguish them).
Indeed, [1] presents stronger negative results on the random oracle vs. hash
functions than does [9] on real randomness vs. pseudorandomness.



Pseudo- and Real Randomness in MPC Protocols 221

6.3 Relation to Computational Independency of One-Way
Functions

It has been noticed by previous works that use of closely related cryptographic
primitives may cause problems. [3] discussed a notion called “computationally
independent one-way functions” to avoid the problems in interactive proof sys-
tems. Here we briefly discuss the relationship between our proposed computa-
tional irrelevancy of pairs of PRGs (Sect. 3) and computational independency of
pairs of one-way functions proposed by [3].

A straightforward adaptation of the computational irrelevancy for one-way
functions can be formalised as follows.

Definition 9. Let f be a one-way function, and let O be a family of oracles.
We say f is one-way relative to O if for any PPT inverter I for f , the success
probability

Pr
[

IO (

1λ, f(x)
)

∈ f−1(f(x))
]

is negligible where x ←R {0, 1}λ.

Definition 10. Let f1 and f2 be one-way functions. We say f1 and f2 are com-
putationally irrelevant if for each i ∈ {1, 2}, fi is one-way relative to If3−i

, where
the oracle If is the inverter of f specified in the same way as in Sect. 3.

For comparison, we restate the definition of pairs of computationally inde-
pendent one-way functions.

Definition 11 ([3]). Let f1 and f2 be one-way functions. We say f1 and f2 are
computationally independent if the following conditions hold:

– (CI-a) g(x) := (f1(x), f2(x)) is also one-way.
– (CI-b) For i ∈ {1, 2} and for any PPT algorithm A, the probability

Pr
[

A
(

1λ, fi(x)
)

= f3−i(x)
]

is negligible where x ←R {0, 1}λ.

Our computational irrelevancy extended to one-way functions does not cap-
ture the condition (CI-a) since we originally considered PRGs only and different
PRGs are supposed to use different seeds anyway. On the other hand, the com-
putational irrelevancy is a stronger property than the condition (CI-b).

Proposition 2. For pairs of one-way functions f1, f2, the computational irrel-
evancy implies (CI-b), i.e. if they are computationally irrelevant, then for
i ∈ {1, 2} and for any PPT algorithm A, the probability

Pr
[

A
(

1λ, fi(x)
)

= f3−i(x)
]

is negligible where x ←R {0, 1}λ.
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Proof. Assume for some i ∈ {1, 2}, there exists a PPT algorithm A that given
fi(x) computes f3−i(x) with non-negligible probability. Then given access to the
oracle If3−i

, an inverter of fi can be obtained by calling A on fi(x) and calling
If3−i

on the output of A. The success probability is the same as that of A, which
is non-negligible as above, therefore fi is not one-way relative to If3−i

. �


7 Conclusion

In this paper, we formalised the notion of computational irrelevancy between
PRGs and MPC protocols using the relativisation paradigm. Also, based on this
notion, for both the case of a single adversary and the case of multiple adversaries
in the semi-honest model, we provided sufficient conditions under which security
of an MPC protocol is preserved even if PRGs are used for generating the parties’
randomness. Our sufficient conditions are more practical than that proposed in
the previous work [9] in a way that our conditions require an MPC protocol to
have only computational security, while the condition in [9] requires the protocol
to have information-theoretic security.

It remains open to construct protocols and PRGs that satisfy these computa-
tional irrelevancy conditions. We note here that constructing such examples the-
oretically is very easy. For example, in terms of protocols that are irrelevant from
PRGs, information-theoretically secure ones always satisfy these conditions; for
the ones that are not necessarily information-theoretically secure, replacing the
underlying computational hardness assumptions with the ones relativised to the
inverters of PRGs directly results in the protocols with the desired properties.
However, whether these relativised assumptions can be considered “reasonable”
requires further study in the literature. Since, as noted before, the relativisation
paradigm has been of great interest in both complexity theory and cryptog-
raphy and proved to be useful in previous works, we optimistically hope that
subsequent works will stress this open problem.
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Abstract. The research area of card-based cryptography, which relies
on a deck of physical cards to perform cryptographic functionalities, has
been growing in recent years, ranging from basic secure computations,
such as secure AND and XOR evaluations, to more complex tasks, such as
Yao’s Millionaires’ problem and zero-knowledge proof. In this paper, we
propose a card-based “secure sorting” protocol; although sorting is prob-
ably the most fundamental problem in computer science, secure sorting
has not been addressed in the field of card-based cryptography yet. Given
a sequence of face-down cards representing a collection of keys with val-
ues (to be sorted), our proposed protocol sorts them without leaking any
information. As imagined, secure sorting provides many applications;
for instance, we show how to apply our protocol to implementing an
auction. Since many algorithms for computational problems (say, graph
algorithms) use sorting as subroutines, we expect that our secure sorting
protocol will be useful when constructing card-based secure computa-
tions regarding computational problems.

1 Introduction

A secure computation allows players (holding individual private inputs) to obtain
the output value of a predetermined function while keeping information about
the individual inputs secret. Since Yao [42] proposed a secure computation solv-
ing the Millionaires’ problem in 1982, various secure computation protocols have
been proposed (refer to [3,6] for survey). While such cryptographic protocols are
typically designed to be run on computers, there is another research direction
where protocols should be run on daily physical tools (instead of computers).
Because such physical cryptographic protocols are executed by human hands,
they have the advantage that players do not need to trust a computer as a black
box and that the correctness and security can be easily understood (cf. [11,14]).
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1.1 Card-Based Cryptography

Among physical cryptographic protocols, many card-based protocols using a deck
of physical cards, such as ♣ ♣ · · · ♥ ♥ · · · , have been constructed since Den
Boer [5] proposed the first card-based protocol, called the “five-card trick.” Actu-
ally, the research area of card-based cryptography has been growing in recent years
[22,23], ranging from basic secure computations, such as secure AND and XOR
evaluations (e.g., [1,4,16,20,24,25,27,30,41]), to more complex tasks, such as
Yao’s Millionaires’ problem [21,26,29], secure ranking [40], and zero-knowledge
proof (e.g., [2,8,35–37]).

1.2 Secure Sorting with Cards

In this study, we consider the fact that secure sorting (e.g., [7,10]) has not been
addressed in card-based cryptography yet although sorting is probably the most
fundamental problem in computer science. Thus, we propose a card-based secure
sorting protocol for the first time. Given a sequence of cards representing a collec-
tion of keys with values (to be sorted), our proposed protocol sorts them without
leaking any information. We describe the problem and goal more concretely, as
follows.

Given a sequence of n pairs

(1, x1), (2, x2), (3, x3), . . . , (n, xn), (1)

we want to sort them by taking the second elements x1, x2, . . . , xn as keys: that
is, we want to obtain a sorted sequence

(σ−1(1), xσ−1(1)), (σ−1(2), xσ−1(2)), (σ−1(3), xσ−1(3)), . . . , (σ−1(n), xσ−1(n)) (2)

such that a permutation σ ∈ Sn satisfies the following:

xσ−1(i) ≥ xσ−1(i+1) for every i ∈ {1, . . . , n − 1}, (3)

where Sn is the symmetric group of degree n.
In addition, we want to hide the individual values x1, x2, . . . , xn themselves

as well as the sorted sequence. As typically done in card-based cryptography, we
use a pair of face-down cards ? ? to commit a one-bit value according to the
following encoding:

♣ ♥ = 0, ♥ ♣ = 1. (4)

Thus, assuming that x1, x2, . . . , xn are m-bit values for some positive integer
m, i.e., x1, x2, . . . , xn ∈ {0, 1}m, each xi is assumed to be committed to 2m
face-down cards:

? ? ← xi[1]

? ? ← xi[2]
...

...

? ? ← xi[m],
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where x[j], 1 ≤ j ≤ m, means the j-th bit of an m-bit value x ∈ {0, 1}m

(throughout the paper). We call this a commitment to xi ∈ {0, 1}m, denoted by

? ?

? ?
...

? ?
︸ ︷︷ ︸

xi

.

Since the first elements in the sequence (1) above serve indices, we prepare
numbered cards 1 2 · · · n (whose backs are also ? ) and place them along
with n commitments to x1, x2, . . . , xn ∈ {0, 1}m, as follows:

1 2 . . . n

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

. . . ? ?
︸ ︷︷ ︸

xn

.

(5)

This should be the input to a secure sorting protocol.
Given an input arrangement (5), after turning over the n numbered cards (on

the first row), a secure sorting protocol should output the following arrangement
without leaking any information about the input:

?
σ−1(1)

?
σ−1(2)

. . . ?
σ−1(n)

? ? ? ? . . . ? ?
...

...
...

? ?
︸ ︷︷ ︸

xσ−1(1)

? ?
︸ ︷︷ ︸

xσ−1(2)

. . . ? ?
︸ ︷︷ ︸

xσ−1(n)

,

(6)

such that the permutation σ ∈ Sn satisfies the condition (3) above. Here,

?
i

(appearing on the first row in the arrangement (6)) for i, 1 ≤ i ≤ n, represents
a face-down numbered card whose face is i . Thus, the arrangement (6) serves
a hidden form of the sorted sequence (2).
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1.3 Contribution

In this paper, we present a concrete construction of a card-based secure sorting
protocol. In other words, we construct a protocol that performs secure sorting
using a physical deck of cards. Specifically, given an input arrangement as shown
in (5) together with some additional cards, our protocol transforms it into an
output arrangement as shown in (6) via a series of actions such as shuffling and
revealing cards.

Actually, our protocol performs a stable sort, meaning that the resulting
permutation σ satisfies the following property in addition to the condition (3):

for every i ∈ {1, . . . , n − 1}, if xσ−1(i) = xσ−1(i+1), σ−1(i) < σ−1(i + 1).

That is, our protocol preserves the original order if two input com-
mitments have the same value. For example, if the input sequence is
(1, 10), (2, 11), (3, 11), (4, 10), the output will be (2, 11), (3, 11), (1, 10), (4, 10)
because the order of (1, 10) and (4, 10) as well as the order of (2, 11) and (3, 11)
should be kept.

Beyond just the purpose of sorting, our protocol has many applications. For
example, consider an auction (sealed bid), and we would like to ensure that the
information on the prices other than the successful bidder’s one is not leaked to
anyone. This can be achieved by our proposed secure sorting protocol (as will be
seen in Sect. 4.1). In addition, a wide range of functions can be implemented by
our protocol, from basic secure computations such as the multi-input AND com-
putation and majority decision, to the Millionaires’ problem and secret lottery
protocol [39]. That is, our protocol serves a generic protocol in a sense.

1.4 Related Work

As mentioned above, in the field of card-based cryptography, basic operations
such as logical computation [1,5,9,13,17–19,25] and applied computation pro-
tocols covering a wide range of applications have been proposed. The applied
computation protocols include: a millionaire protocol [21,26,29] that reveals who
is richer between two players while keeping their money information secret, a
ranking protocol [40] that outputs only the ranking information while keeping
the money information of multiple players secret, and a card-based covert lot-
tery protocol [39], which determines the first and second moves of a game based
on two players’ secret preferences. In addition, there are applications to zero-
knowledge proofs, which prove the existence of a solution to a puzzle problem
without divulging any information about the solution [31–34,37].

2 Preliminaries

In this section, we explain a deck of cards and shuffling operations which will be
used in our proposed protocol.
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2.1 Deck of Cards

As already seen, we use black cards ♣ ♣ · · · , red cards ♥ ♥ · · · , and num-
bered cards 1 2 · · · n . In addition, our protocol uses white cards · · ·
and marker cards � � · · · . We assume that the sizes of all these cards are the
same, and their backs, denoted by ? , are identical. That is, they are indistin-
guishable except for designs on their fronts.

2.2 Pile-Scramble Shuffle

A pile-scramble shuffle [12] is a shuffling action that completely randomizes
the order of multiple piles consisting of the same number of cards. For a
positive integer d, applying a pile-scramble shuffle to a sequence of d piles
(pile1, pile2, . . . , piled) results in (pileπ−1(1), pileπ−1(2), . . . , pileπ−1(d)), where π ∈
Sd is a uniformly distributed random permutation:

1 2 d

? ? . . . ?

? ? . . . ?

? ? . . . ?
...

...
...

? ? . . . ?

→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ? . . . ?

? ? . . . ?

? ? . . . ?
...

...
...

? ? . . . ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

→

π−1(1) π−1(2) . . . π−1(d)

? ? . . . ?

? ? . . . ?

? ? . . . ?
...

...
...

? ? . . . ? .

Note that no one can know which permutation was applied.
Implementation methods for a pile-scramble shuffle have been discussed in

the literature, e.g., [12,40]. A typical implementation is to use envelopes; each
pile of cards is fixed by using envelopes, and then players jointly shuffle them by
hands (until the players are all satisfied).

2.3 Pile-Shifting Shuffle

Another shuffling action is a pile-shifting shuffle, which cyclically and randomly
shifts the order of piles consisting of the same number of cards [28,38]. For a pos-
itive integer d, by applying a pile-shifting shuffle to d piles (pile1, pile2, . . . , piled),
we obtain (pile1+(r%d), pile1+(1+r%d), . . . , pile1+(d+r%d)), where r ∈ {0, 1, . . . , d −
1} is a random number, and % denotes the remainder.

Similar to the pile-scramble shuffle explained in Sect. 2.2, a pile-shifting shuf-
fle can be implemented by using envelopes.

2.4 Koch–Walzer Sort Protocol

In 2022, Koch and Walzer [15] proposed the “coupled sorting sub-protocol” that
sorts multiple piles of cards according to the order of given numbered cards.
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We note that the distribution of the numbers written on the numbered cards is
known in their protocol; in contrast, our protocol sorts multiple commitments
to multi-bit values whose distribution is unknown; below is the more specific
explanation.

Let us apply their idea to the input arrangement (5); turn over all the num-
bered cards, apply a pile-scramble shuffle to the arrangement, reveal all the
commitments, and sort the whole piles according to the order of the revealed
values:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 2 n

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ? ? ? . . . ? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

→

? ? ?

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ? ? ? . . . ? ?

→

? ? ?

♥ ♣ ♥ ♣ . . . ♣ ♥
♣ ♥ ♥ ♣ . . . ♣ ♥

...
...

...

♣ ♥ ♣ ♥ . . . ♥ ♣

→

? ? ?

♥ ♣ ♥ ♣ . . . ♣ ♥
♥ ♣ ♣ ♥ . . . ♣ ♥

...
...

...

♣ ♥ ♣ ♥ . . . ♥ ♣ .

Then, we obtain sorted indices

?
σ−1(1)

?
σ−1(2)

. . . ?
σ−1(n)

,

but the distribution of the key values x1, x2, . . . , xn are leaked. It is non-trivial
to sort the arrangement (5) without leaking any information; we will construct
a protocol to overcome this difficulty.

3 Our Proposed Secure Sorting Protocol

In this section, we construct a card-based secure sorting protocol. In Sect. 3.1,
we illustrate an overall flow of our protocol. In Sect. 3.2, by showing a working
example, we present the idea of how to securely sort commitments. In Sect. 3.3,
we give the complete description of our protocol. In Sect. 3.4, we prove the secu-
rity of our protocol.

3.1 Overall Flow

Take the sequence
(1, 1011), (2, 0110), (3, 1101)
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Table 1. Overall flow of our protocol

(a) (b) (c)

1 2 3

1st-bit → ♥ ♣ ♣ ♥ ♥ ♣
2nd-bit → ♥ ♣ ♥ ♣ ♣ ♥
3rd-bit → ♣ ♥ ♥ ♣ ♥ ♣
4th-bit → ♥ ♣ ♣ ♥ ♥ ♣

1 3 2

♥ ♣ ♥ ♣ ♣ ♥
♥ ♣ ♣ ♥ ♥ ♣
♣ ♥ ♥ ♣ ♥ ♣
♥ ♣ ♥ ♣ ♣ ♥

1 2 3

♥ ♣ ♣ ♥ ♥ ♣
♥ ♣ ♥ ♣ ♣ ♥
♣ ♥ ♥ ♣ ♥ ♣
♥ ♣ ♣ ♥ ♥ ♣

(d) (e)

2 3 1

♣ ♥ ♥ ♣ ♥ ♣
♥ ♣ ♣ ♥ ♥ ♣
♥ ♣ ♥ ♣ ♣ ♥
♣ ♥ ♥ ♣ ♥ ♣

3 1 2

♥ ♣ ♥ ♣ ♣ ♥
♣ ♥ ♥ ♣ ♥ ♣
♥ ♣ ♣ ♥ ♥ ♣
♥ ♣ ♥ ♣ ♣ ♥

as a working example (to be sorted). As mentioned in Sect. 1.2, we use commit-
ments (consisting of face-down cards) to represent such an input: That is, we
now have

1 2 3

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ?
︸ ︷︷ ︸

1011

? ?
︸ ︷︷ ︸

0110

? ?
︸ ︷︷ ︸

1101

(7)

as an input arrangement, whose front sides satisfy (a) in Table 1.
In our protocol, we sort the commitments (together with the numbered cards

on the first row) bit by bit in a stable manner. Thus, we first apply a stable sort
based on the first bit, i.e., the least significant bit; then, the resulting sequence
is

(1, 1011), (3, 1101), (2, 0110),

which corresponds to (b) in Table 1. Next, we apply a stable sort based on the
second bit, resulting in

(1, 1011), (2, 0110), (3, 1101),

which corresponds to (c) in Table 1. In the same manner, we have

(2, 0110), (3, 1101), (1, 1011)
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corresponding to (d) and then

(3, 1101), (1, 1011), (2, 0110)

corresponding to (e).
In this way, we sort the input arrangement. In the next subsection, we show

how to transform the arrangement without leaking any information about the
input.

3.2 How to Securely Sort

Assume that we want to perform a stable sort based on the first bits, given
the arrangement (7) above. We here use additional white cards and
numbered cards 1 1 2 2 3 3 .

First, place the three white cards as follows, and turn over the cards on the
first row:

1 2 3

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ?
︸ ︷︷ ︸

1011

? ?
︸ ︷︷ ︸

0110

? ?
︸ ︷︷ ︸

1101

→

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? .

Next, after turning over the additional numbered cards 1 1 2 2 3 3 , we
apply a pile-scramble shuffle as follows:

?
1
?
1
?
2
?
2
?
3
?
3

→
[

? ? ? ? ? ?
]

→ ?
r1

?
r1

?
r2

?
r2

?
r3

?
r3

,

where (r1, r2, r3) is a random rearrangement of (1, 2, 3) generated by the pile-
scramble shuffle. Then, place these six cards above the arrangement, as follows:

?
r1

?
r1

?
r2

?
r2

?
r3

?
r3

? ? ? ? ? ?

1st-bit → ? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? .

We say that a column is white if its second cards is ; thus, in this case, the
second, forth, and sixth columns are white.
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Remember that we want to perform a stable sort based on the first bits;
however, we cannot open the cards corresponding to the first bits (i.e., the cards
on the third row), of course. Therefore, we apply a pile-scramble shuffle to each
commitment (together with the four cards above it):

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ?

? ?

? ?

? ?

? ?

? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ?

? ?

? ?

? ?

? ?

? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ?

? ?

? ?

? ?

? ?

? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As known from the encoding rule (4), now, revealing the cards on the third
row does not leak any information (because each bit value was negated with a
probability of exactly 1/2); therefore, reveal those cards:

? ? ? ? ? ?

? ? ? ? ? ?

♥ ♣ ♥ ♣ ♣ ♥
? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? .

Then, we perform a stable sort according to the revealed values (based on
♥>♣) while keeping the order of cards inside each column unchanged:

? ? ? ? ? ?

? ? ? ? ? ?

♥ ♥ ♥ ♣ ♣ ♣
? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? .
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Next, using the existing technique [40] (as the details will be explained in
Step 5. of our protocol presented in Sect. 3.3), we take out all the white columns:

? ? ? ? ? ?

? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? .

Finally, reveal all the cards on the first row, and move each white column so
that the commitment is restored. Note that the cards in the first row are shuffled
so that no information is leaked when they are turned over:

3 3 1 1 2 2

? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? .

3.3 Description of Our Protocol

In this subsection, we give the complete description of our secure sorting proto-
col.

Given an arrangement as shown in Eq. (5) along with additional n white
cards · · · and 2n numbered cards 1 1 2 2 · · · n n , our protocol
proceeds as follows.

1. To the input arrangement, add the n white cards as below, and turn over all
the cards on the first row:

1 2 . . . n

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

. . . ? ?
︸ ︷︷ ︸

xn

→

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ? ? ? . . . ? ? .

(8)

Set j := 1.
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2. Turn over the additional 2n numbered cards 1 1 2 2 . . . n n , and apply
a pile-scramble shuffle as follows:

?
1
?
1

?
2
?
2

· · · ?
n
?
n

→
[

? ?

∣

∣

∣

∣
? ?

∣

∣

∣

∣
· · ·

∣

∣

∣

∣
? ?

]

→

?
r1

?
r1

?
r2

?
r2

· · · ?
rn

?
rn

,

where (r1, r2, . . . , rn) is a random rearrangement of (1, 2, . . . , n) generated by
the pile-scramble shuffle. Then, place these 2n cards above the arrangement
(8), as follows:

?
r1

?
r1

?
r2

?
r2

. . . ?
rn

?
rn

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ? ? ? . . . ? ? .

3. Apply a pile-scramble shuffle to the (2i − 1)-th and 2i-th columns for every
i, 1 ≤ i ≤ n:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ?

? ?

? ?
...

...

? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ?

? ?

? ?
...

...

? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. . .

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

? ?

? ?

? ?
...

...

? ?

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

→

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?

? ? ? ? . . . ? ?
...

...
...

? ? ? ? . . . ? ? .

4. Reveal the cards corresponding to the j-th bits and perform a stable sort as
follows:

? ? · · · ? ?

? ? · · · ? ?
...

...
...

...

j-th bit ♥ ♣ · · · ♣ ♥
...

...
...

...

? ? · · · ? ?

→

? · · · ? ? · · · ?
? · · · ? ? · · · ?
...

...
...

...

♥ · · · ♥ ♣ · · · ♣
...

...
...

...

? · · · ? ? · · · ? .
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5. Take out all the white columns, as follows:
(a) Turn all the face-up cards face down, and place to the left a new column

consisting of marker cards, as follows:

� ? · · · ? ? · · · ?
� ? · · · ? ? · · · ?
� ? · · · ? ? · · · ?
...

...
...

...
...

� ? · · · ? ? · · · ? .

(b) Turn all the face-up cards face-down, and apply a pile-shifting shuffle
to the whole columns. Then, turn over the card on the second row of
the first column; if it is a white card , then the column is white and
hence, remove it. If the total number of removed white columns reaches
n, proceed to the next step. Otherwise, return to the beginning of this
step.

6. Reveal all the cards on the first row; then, ignore the marker column. Restore
each commitment by placing the white columns at the appropriate positions:

2 4 · · · 3 3 5 · · · 1

? ? · · · ? ? ? · · · ?
? ? · · · ? ? ? · · · ?
...

...
...

...
...

...

? ? · · · ? ? ? · · · ?

→

2 2 4 4 · · · 3 3

? ? ? ? · · · ? ?

? ? ? ? · · · ? ?
...

...
...

...
...

...

? ? ? ? · · · ? ? .

7. Remove the cards in the first row.
8. Set j := j + 1. If j < m, return to Step 2.

3.4 Security

Information about inputs and outputs is generally leaked when revealing cards
in card-based protocols; thus, we focus on Steps 4, 5, and 6 of our protocol.
In Step 4, we reveal the n bit-values on the j-th bit. Since each bit-value
is randomized by the shuffle in Step 3, no information about the values is
leaked. In Step 5(b), because a pile-shifting shuffle is applied before the sec-
ond card is revealed, the revealed card does not leak information. Similarly, in
Step 6, no information leaks. In conclusion, the proposed protocol is information-
theoretically secure.
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3.5 Optimization

Because Steps 5(b) has a repetition, our protocol is a Las-Vegas protocol. We
note that our protocol can be converted to a finite-runtime protocol by applying
the existing technique used in the secure ranking protocols [40].

Remember that in Step 5(b), we extract the n white columns from the 2n+1
ones. The above-mentioned technique enables us to achieve the same task in
finite runtime using two pile-scramble shuffles, n pile-shifting shuffles, and n2

additional cards.

4 Applications of Card-Based Secure Sorting

In this section, we show how to apply our secure sorting protocol proposed in
Sect. 3 to achieving an auction and secure computation of threshold functions.
Recall that the proposed protocol outputs an arrangement shown in Eq. (6).

4.1 Auction

Let auction be the functionality of auction. Since auction only needs to output
the maximum bid price and its bidder, it can be written as follows using a
permutation σ corresponding to a stable sort:

auction(x1, . . . , xn) = (xσ−1(1), σ
−1(1)).

That is, auction can be realized by revealing the first commitment and its num-
bered card after executing our secure sorting protocol; the former indicates the
price and the latter indicates the winner. In the case where there is a player who
bids the same price as the winning bid price, the player can confirm by turning
the second price and the numbered card. Therefore, ties can also be detected.
Alternatively, using the existing XOR and OR protocols (e.g., [25]), the players
can determine whether the second commitment has the same value as the first
one without revealing its value.

4.2 Secure Threshold Function Evaluation

We define a threshold function thrtn that outputs 1 if and only if the sum of n
bits x1, . . . , xn ∈ {0, 1} is greater than or equal to t ∈ {1, . . . , n}:

thrtn(x1, . . . , xn) :=

{

1 if
∑n

i=1 xi ≥ t,

0 otherwise.

Using the permutation σ corresponding to a stable sort, we have the following:

thrtn(x1, . . . , xn) = xσ−1(t).

Therefore, thrtn can be realized by turning over the t-th commitment after exe-
cuting the proposed protocol with m = 1.
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5 Conclusion

In this paper, we proposed a card-based secure sorting protocol. The protocol
itself is useful as well as it can provide various applications. The protocol is based
on the representation of each player’s value as a binary string, and sorts the
values bit by bit from the least significant bit. As examples of the application of
our protocol, we showed how to implement an auction and secure computations
of threshold functions. This protocol can also be applied to a computation similar
to a ranking computation [40] and to a covert lottery protocol [39] (although we
omit the details).
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4. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

5. Den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

6. Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to secure multi-
party computation. Found. Trends Privacy Secur. 2(2–3), 70–246 (2018). https://
doi.org/10.1561/3300000019

7. Goodrich, M.T.: Randomized shellsort: a simple data-oblivious sorting algorithm.
J. ACM 58(6), 1–26 (2011). https://doi.org/10.1145/2049697.2049701

8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9

9. Haga, R., Hayashi, Y., Miyahara, D., Mizuki, T.: Card-minimal protocols for
three-input functions with standard playing cards. In: Progress in Cryptology–
AFRICACRYPT 2022. LNCS, Springer, Cham (2022, to appear)

https://doi.org/10.1007/s00354-020-00110-2
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://ir.cwi.nl/pub/23529
https://ir.cwi.nl/pub/23529
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/2049697.2049701
https://doi.org/10.1007/s00224-008-9119-9


238 R. Haga et al.

10. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 15

11. Hanaoka, G.: Towards user-friendly cryptography. In: Phan, R.C.-W., Yung, M.
(eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 481–484. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7 24

12. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

13. Isuzugawa, R., Toyoda, K., Sasaki, Yu., Miyahara, D., Mizuki, T.: A card-minimal
three-input AND protocol using two shuffles. In: Chen, C.-Y., Hon, W.-K., Hung,
L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 668–679. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-89543-3 55

14. Koch, A.: The landscape of security from physical assumptions. In: 2021 IEEE
Information Theory Workshop (ITW), Los Alamitos, CA, USA, pp. 1–6. IEEE
(2021). https://doi.org/10.1109/ITW48936.2021.9611501

15. Koch, A., Walzer, S.: Private function evaluation with cards. New Gener. Comput.
40, 115–147 (2022). https://doi.org/10.1007/s00354-021-00149-9

16. Koch, A., Walzer, S.: Private function evaluation with cards. New Gener. Comput.
40, 115–147 (2022). https://doi.org/10.1007/s00354-021-00149-9

17. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND proto-
col with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.)
CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79416-3 14

18. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy pro-
tocols using only random cuts. In: ASIA Public-Key Cryptography Workshop,
APKC 2021, pp. 13–22. ACM, New York (2021). https://doi.org/10.1145/3457338.
3458297

19. Kuzuma, T., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based single-shuffle pro-
tocols for secure multiple-input AND and XOR computations. In: ASIA Public-
Key Cryptography, pp. 51–58. ACM, New York (2022). https://doi.org/10.1145/
3494105.3526236

20. Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players
using private operations. New Gener. Comput. 40, 67–93 (2022). https://doi.org/
10.1007/s00354-021-00148-w

21. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020).
https://doi.org/10.1016/j.tcs.2019.11.005

22. Mizuki, T.: Preface: special issue on card-based cryptography. New Gener. Comput.
39, 1–2 (2021). https://doi.org/10.1007/s00354-021-00127-1

23. Mizuki, T.: Preface: special issue on card-based cryptography 2. New Gener. Com-
put. 40, 47–48 (2022). https://doi.org/10.1007/s00354-022-00170-6

24. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 36

25. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-319-61273-7_24
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-89543-3_55
https://doi.org/10.1109/ITW48936.2021.9611501
https://doi.org/10.1007/s00354-021-00149-9
https://doi.org/10.1007/s00354-021-00149-9
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1016/j.tcs.2019.11.005
https://doi.org/10.1007/s00354-021-00127-1
https://doi.org/10.1007/s00354-022-00170-6
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-02270-8_36


Card-Based Secure Sorting Protocol 239

26. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve mil-
lionaires’ problem with two kinds of cards. New Gener. Comput. 39, 73–96 (2021).
https://doi.org/10.1007/s00354-020-00118-8

27. Niemi, V., Renvall, A.: Secure multiparty computations without computers.
Theor. Comput. Sci. 191(1–2), 173–183 (1998). https://doi.org/10.1016/S0304-
3975(97)00107-2

28. Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Pile-shifting scramble for card-
based protocols. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(9),
1494–1502 (2018). https://doi.org/10.1587/transfun.E101.A.1494

29. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the million-
aires’ problem using private input operations. In: Asia Joint Conference on Infor-
mation Security (AsiaJCIS), pp. 23–28 (2018). https://doi.org/10.1109/AsiaJCIS.
2018.00013

30. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using pri-
vate operations. New Gener. Comput. 39, 19–40 (2021). https://doi.org/10.1109/
AsiaJCIS.2018.00013

31. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol.
12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64348-5 19

32. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP
for connectivity: applications to Nurikabe and Hitori. In: De Mol, L., Weiermann,
A., Manea, F., Fernández-Duque, D. (eds.) CiE 2021. LNCS, vol. 12813, pp. 373–
384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80049-9 37

33. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical
zero-knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Com-
put. 285, 104858 (2021). https://doi.org/10.1016/j.ic.2021.104858. https://www.
sciencedirect.com/science/article/pii/S0890540121001905

34. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connec-
tivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40,
1–23 (2022). https://doi.org/10.1007/s00354-022-00155-5

35. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP
for Sudoku. New Gener. Comput. 40, 49–65 (2022). https://doi.org/10.1016/j.tcs.
2021.09.034

36. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Ripple Effect. Theor.
Comput. Sci. 895, 115–123 (2021). https://doi.org/10.1016/j.tcs.2020.05.036

37. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.
1016/j.tcs.2020.05.036

38. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE
Trans. Fundam. E100.A(9), 1900–1909 (2017). https://doi.org/10.1587/transfun.
E100.A.1900

39. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS,
vol. 12596, pp. 257–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-69255-1 17

40. Takashima, K., et al.: Card-based protocols for secure ranking computations.
Theor. Comput. Sci. 845, 122–135 (2020). https://doi.org/10.1016/j.tcs.2020.09.
008

https://doi.org/10.1007/s00354-020-00118-8
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1587/transfun.E101.A.1494
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-80049-9_37
https://doi.org/10.1016/j.ic.2021.104858
https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1587/transfun.E100.A.1900
https://doi.org/10.1587/transfun.E100.A.1900
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1016/j.tcs.2020.09.008
https://doi.org/10.1016/j.tcs.2020.09.008


240 R. Haga et al.

41. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime XOR proto-
col with only random cut. In: ACM Workshop on ASIA Public-Key Cryptography,
APKC 2020, pp. 2–8. ACM, New York (2020). https://doi.org/10.1145/3384940.
3388961

42. Yao, A.C.: Protocols for secure computations. In: Foundations of Computer Sci-
ence, Washington, DC, USA, pp. 160–164. IEEE Computer Society (1982). https://
doi.org/10.1109/SFCS.1982.88

https://doi.org/10.1145/3384940.3388961
https://doi.org/10.1145/3384940.3388961
https://doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1109/SFCS.1982.88


Author Index

Becker, Hanno 3

Daiza, Takanori 128

Fujii, Shota 85

Haga, Rikuo 224
Hayashi, Yuichi 224
Heseri, Nariyasu 208
Hosoyamada, Akinori 107
Hwang, Vincent 3

Kannwischer, Matthias J. 3
Kato, Taku 147
Kawaguchi, Nobutaka 85
Kiyomura, Yutaro 147
Kuzuno, Hiroki 66

Li, Zhenzhen 47
Liu, Zi-Yuan 166

Mambo, Masahiro 166
Miyahara, Daiki 224
Mizuki, Takaaki 224

Nuida, Koji 189, 208

Panny, Lorenz 3
Persichetti, Edoardo 24

Randrianarisoa, Tovohery H. 24

Sasaki, Yu 107
Shen, Sihao 47
Shigemoto, Tomohiro 85
Shinagawa, Kazumasa 224
Shinoda, Yuto 224
Shinoki, Hirotomo 189
Sibleyras, Ferdinand 107
Song, Wei 47

Takagi, Tsuyoshi 147
Todo, Yosuke 107
Toyoda, Kodai 224
Tseng, Yi-Fan 166
Tso, Raylin 166

Yamauchi, Toshihiro 66, 85
Yang, Bo-Yin 3
Yasuda, Kan 107
Yoneyama, Kazuki 128
You, Jing-Shiuan 166


	 Preface
	 Organization
	 Contents
	Mathematical Cryptography
	Efficient Multiplication of Somewhat Small Integers Using Number-Theoretic Transforms
	1 Introduction
	1.1 Results

	2 Preliminaries
	2.1 RSA
	2.2 FFT-Based Integer Multiplication
	2.3 Number-Theoretic Transforms
	2.4 Modular Reductions and Multiplications
	2.5 Implementation Targets

	3 Implementations
	3.1 High-Level Strategy
	3.2 Parameter Choices
	3.3 Chunking and Dechunking
	3.4 Modular Exponentiation and Table Lookup
	3.5 Implementation Details for Cortex-M3
	3.6 Implementation Details for Cortex-M55

	4 Results
	4.1 Benchmark Environment
	4.2 NTT and FNT Performance
	4.3 Modular Arithmetic: Multiplication, Squaring, Exponentiation

	A  Reduction Algorithms for Cortex-M3 and Cortex-M55
	B  On Precomputing the Montgomery Constant
	C  Table Lookup
	D  Pipeline Efficiency of Cortex-M55 Implementation
	E  High-level Multiplication Structure
	References

	On Linear Complexity of Finite Sequences: Coding Theory and Applications to Cryptography
	1 Introduction
	1.1 Overview
	1.2 Our Contribution

	2 Linear-Feedback Shift Registers
	3 Coding Theory Using Linear Complexity
	4 Linear Complexity Coset Weight Problems
	5 Properties of Linear Complexity
	6 Cryptographic Applications
	A  The Berlekamp-Massey Algorithm
	B  Optimal Sets of Sequences
	C  Application for Decoding Reed-Solomon Codes
	References

	System Security and Threat Intelligence
	Methods of Extracting Parameters of the Processor Caches
	1 Introduction
	2 Background
	2.1 Cache Architecture
	2.2 Cache Side-Channel Attacks

	3 Threat Model
	4 Measuring Cache Access Latency
	4.1 Random Cache Scan
	4.2 A Portable Timer

	5 Methodology of Extraction
	5.1 Cache Size and Latency of All Levels
	5.2 Size of a Cache Block
	5.3 Number of Cache Ways and Sets
	5.4 Replacement Policy

	6 Experiment Results
	7 Conclusion
	References

	KDPM: Kernel Data Protection Mechanism Using a Memory Protection Key
	1 Introduction
	2 Background
	2.1 Memory Protection Key
	2.2 Kernel Vulnerability

	3 Threat Model
	3.1 Environment
	3.2 Scenario

	4 Design
	4.1 Concept
	4.2 Approach

	5 Implementation
	5.1 Protected Kernel Data Management
	5.2 Implementation 1
	5.3 Implementation 2

	6 Evaluation
	6.1 Security Capability
	6.2 Performance Evaluation
	6.3 Evaluation Environment
	6.4 Security Capability Evaluation Result
	6.5 Performance Evaluation Result

	7 Discussion
	7.1 Security Capability Consideration
	7.2 Performance Consideration
	7.3 Limitation
	7.4 Portability

	8 Related Work
	8.1 Comparison

	9 Conclusion
	References

	CyNER: Information Extraction from Unstructured Text of CTI Sources with Noncontextual IOCs
	1 Introduction
	2 Background and Challenges
	2.1 Cyber Threat Intelligence
	2.2 NLP
	2.3 Challenges

	3 Design and Implementation
	3.1 Basic Idea and Overview
	3.2 Information Gathering
	3.3 Preprocessing
	3.4 Pretraining
	3.5 CTI Classification
	3.6 Named Entity Recognition
	3.7 Relation Extraction
	3.8 STIX Generation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Dataset
	4.3 Result
	4.4 IOC Coverage
	4.5 Time-Series

	5 Discussion
	5.1 Practicality
	5.2 Limitation
	5.3 Research Ethics

	6 Related Work
	7 Conclusion
	A  Source of CTI
	B  Refang Rules
	References

	Symmetric-Key Cryptography
	Birthday-Bound Slide Attacks on TinyJAMBU's Keyed-Permutations for All Key Sizes
	1 Introduction
	1.1 Our Contributions

	2 Specifications
	2.1 Keyed-Permutation Pn
	2.2 AEAD Mode
	2.3 Security Claim
	2.4 Self-similarity of Pn

	3 Slide Attacks on TinyJAMBU-128
	3.1 Overview of the Simple Slide Attack
	3.2 Reducing Data or Memory Complexity

	4 Attacks Against a Larger Key
	4.1 Building a Filter
	4.2 Enhancing a Filter with Chains of Queries
	4.3 Key-Recovery from Input/Output Pairs
	4.4 Application on TinyJAMBU-192

	5 Optimization for Attack on TinyJAMBU-256
	5.1 1-Bit Filter with a 2-Bit Guess
	5.2 Key-Recovery from Input/Output Pairs for P256
	5.3 Complexity of TinyJAMBU-256

	6 Conclusions
	A  Discussions and More Observations
	A.1  Slide Attack with Deterministic Differential Characteristics
	A.2  Attacks on Non-multiple Number of Rounds
	A.3  Implication on the Security of the AEAD Schemes

	References

	Quantum Key Recovery Attacks on 3-Round Feistel-2 Structure Without Quantum Encryption Oracles
	1 Introduction
	1.1 Feistel Structure
	1.2 Attack Scenarios for Quantum Setting
	1.3 Related Work
	1.4 Our Motivation
	1.5 Our Contribution

	2 Preliminaries
	2.1 Quantum Gates
	2.2 Quantum Oracle
	2.3 Grover's Algorithm
	2.4 Hosoyamada and Sasaki's Claw-Finding Algorithm
	2.5 3-Round Feistel-2 Structure
	2.6 Isobe and Shibutani's Classical MITM Attack on 3-Round Feistel-2 Structure
	2.7 Quantum DS-MITM Attack on 6-Round Feistel Constructions

	3 Proposed Attacks
	3.1 Our KPA
	3.2 Our CPA

	4 Non-triviality of Improving Our Attacks Using Another Quantum Algorithm
	5 Conclusion
	References

	Post-quantum Cryptography
	Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Rainbow
	2.3 Equivalent Key and Good Key
	2.4 Known Attacks on Rainbow
	2.5 Fault Attacks on Rainbow

	3 Proposed Fault Attacks with Fixing Random Vinegar Values
	3.1 Fault Attack Model
	3.2 Fixing All Random Vinegar Values (d=v)After this paper was submitted to IWSEC 2022, Aullbach et al. ch8newspsfault have independently proposed the same attack in the case of d=v. 
	3.3 Fixing Some Random Vinegar Values (d<v)

	4 Complexity of the Proposed Attacks
	4.1 Fixing All Random Vinegar Values (d=v)
	4.2 Fixing Some Random Vinegar Values (d<v)

	5 Conclusion
	References

	Quantum-Resistant 1-out-of-N Oblivious Signatures from Lattices
	1 Introduction
	1.1 Motivation and Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Lattices and the SIS Problem
	2.3 The Normal Distribution and Rejection Sampling
	2.4 Forking Lemma

	3 1-out-of-N Oblivious Signature
	3.1 Definition
	3.2 Securities Models

	4 Proposed Oblivious Signature Scheme from Lattices
	5 Security Proofs
	5.1 Unforgeability
	5.2 Ambiguity

	6 Theoretical Comparison and Efficiency Analysis
	7 Conclusion and Future Work
	A  Proof of Lemma 2
	B  Proof of Lemma 3
	C  Proof of Lemma 4
	References

	Advanced Cryptography
	On Extension of Evaluation Algorithms in Keyed-Homomorphic Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Basic Definitions and Properties
	2.2 Homomorphic Encryption
	2.3 Symmetric Key Encryption
	2.4 Message Authentication Codes

	3 Keyed-Homomorphic Public-Key Encryption
	4 On Extension of the Evaluation Algorithm
	5 Catalano–Fiore Conversion
	6 Catalano–Fiore Conversion for KH-PKE
	6.1 Motivation: The Original Catalano–Fiore Conversion Fails
	6.2 Catalano–Fiore Conversion for KH-PKE

	7 Conclusion
	References

	Computational Irrelevancy: Bridging the Gap Between Pseudo- and Real Randomness in MPC Protocols
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Basic Notations
	2.2 Pseudorandom Generators
	2.3 Secure Multiparty Computation

	3 Formalising Computational Irrelevancy
	4 Main Theorem: Case of a Single Adversary
	4.1 Additional Definitions
	4.2 The Statement
	4.3 Proof of Theorem 1

	5 Main Theorem: Case of Multiple Adversaries
	6 Related Works
	6.1 Relation to Information-Theoretic Assumptions
	6.2 On Random Oracle Vs. Hash Function Ensembles
	6.3 Relation to Computational Independency of One-Way Functions

	7 Conclusion
	References

	Card-Based Secure Sorting Protocol
	1 Introduction
	1.1 Card-Based Cryptography
	1.2 Secure Sorting with Cards
	1.3 Contribution
	1.4 Related Work

	2 Preliminaries
	2.1 Deck of Cards
	2.2 Pile-Scramble Shuffle
	2.3 Pile-Shifting Shuffle
	2.4 Koch–Walzer Sort Protocol

	3 Our Proposed Secure Sorting Protocol
	3.1 Overall Flow
	3.2 How to Securely Sort
	3.3 Description of Our Protocol
	3.4 Security
	3.5 Optimization

	4 Applications of Card-Based Secure Sorting
	4.1 Auction
	4.2 Secure Threshold Function Evaluation

	5 Conclusion
	References

	Author Index



