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Abstract. GPUsno longer only support graphical applications and gaming. These
are becoming cheap and powerful tools for scientific and general-purpose compu-
tations. They provide amassively parallel environment with the support of a single
instruction multiple data (SIMD) programming model. Making finite element cal-
culations is also a time-consuming process in some cases due to many elements or
a large degree of freedom. The FEM simulation is essential to check the analytical
or measured mechanical stresses, deformations, etc. In making structural optimi-
sation, one needs several iterations and combining the optimisation with FEM,
increasing the calculation time. GPU programming is a good solution for this. In
the article, we show the applicability of the combination of GPU, optimisation,
and FEM simulation.

Keywords: Evolutionary optimisation · Finite element method · Parallel
computation

1 Introduction

Nowadays, graphic cards (video cards, GPU) are cheap and efficient hardware for
general-purpose parallel computation. They are used for scientific computations, for
topology optimisation [1] or structural optimisation [2], and for manufacturing tech-
nologies. They provide a massively parallel environment with the support of a single
instruction multiple data (SIMD) programming model. Nowadays, larger software ven-
dors – such asMathWorks – are increasingly developing frameworks based on theCUDA
API (application programming interface) that offer more convenient and user-friendly
tools than the original CUDA Runtime API.

Nature-inspired, population-based, iterative, evolutionary algorithms – such as
flower pollination algorithm [3], particle swarm optimisation [4], firefly algorithm [5],
etc. – are powerful numerical optimisation methods. Their importance and effectiveness
are underlined by the fact that they are used in several places in vehicle research to
design optimal aerodynamics for UAVs (unmanned aerial vehicles) [6], for performance
optimisation of formula vehicles [7], for optimising the manufacturing of vehicles [8]
etc.
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The finite element method (FEM) is a universal tool for analysing structures and
determines mechanical stress and deformations inside the structure. In this paper, we
connect an evolutionary algorithm – differential evolution – with FEM. The method
is presented through the optimisation of the truss structure. Computational capacity is
demanded by both the evolutionary method and FEM. Therefore, we present a possible
parallelisation using MATLAB software and the obtained results.

2 Differential Evolution

Stron and Price introduced original differential evolution (DE) in [1]. DE improves the
nD dimensional x individuals of np element population through a series of iteration steps

x = [
x1 x2 x3 · · · xnD

]T ∈ S ⊂ R
nD (1)

where S is searching space. Ideally, the initial population randomly covers the entire
search space. Each variable in an individual is a uniformly distributed random number
in the search space.

DE generates the new entity in each iteration step by performing three operations
repeatedly. These are called mutation, crossover, and selection operations [9].

During the mutation operation, a Gvi mutant is generated for each Gxi individual of
G generation using one of the following five strategies [10]:

• DE/rand/1:

Gvi = Gxr1 + F
(
Gxr2 − Gxr3

)
(2)

• DE/best/1:

Gvi = Gxb + F
(
Gxr1 − Gxr2

)
(3)

• DE/current to best/2:

Gvi = Gxi + F
(
Gxb − Gxi

)
+ F

(
Gxr1 − Gxr2

)
(4)

• DE/best/2:

Gvi = Gxb + F
(
Gxr1 − Gxr2

)
+ F

(
Gxr3 − Gxr4

)
(5)

• DE/rand/2:

Gvi = Gxr1 + F
(
Gxr2 − Gxr3

)
+ F

(
Gxr4 − Gxr5

)
(6)

where r1 �= r2 �= r3 �= r4 �= r5 ∈ [
1, np

]
are random indices, F ∈ [0, 2) is the scaling

factor, and Gxb is individual with the best fitness value in each G generation.
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The mutation is followed by a “binomial” crossover operation that combines the
newly created Gvi mutant with the Gxi individual

Guj,i =
{

Gvj,i Uj(0, 1) ≤ CR or j = jR
Gxj,i otherwise

(7)

where Uj(0, 1) ∈ [0, 1) is uniformly distributed random number, CR ∈ [0, 1) is the
crossover rate, and jR ∈ [1, nD] is a random index.

During selection, if the fitness value of the newly generated Gui is better than that
of the Gxi, it will be included in the new generation; if not, the algorithm drops it

G+1xi =
{
Gui F(Gui) ≤ F(Gxi)
Gxi otherwise

(8)

The operation of differential evolution, and hence the success of the optimisation,
is greatly influenced by the mutation strategy chosen, the value of the scaling factor F ,
and the CR crossing ratio.

3 Finite Element Model of Truss Structure

The connection between members of tubular trusses is frequently modelled as pin con-
nection inelastic analysis. The preferred value of eccentricities of the intersection of
member’s center lines is [1, 12].

e ≤ 0.25D or e ≤ 0.25H0 (9)

where e is eccentricity, D is the outside diameter of a circular hollow section, and H0 is
a typical size of rectangular hollow section. In this case, primary bending moments are
produced by these eccentricities. Excessive moments are generated in brace members
when rigid connections are considered. Usage of these is not recommended also for
welded joints [1, 12]. The axial force distribution in a rigid joint is like pinned joint.

The structure could be analysed with the pushed-pulled element model (shortly in
the following rod or truss model) with finite element methods (FEM) if the condition of
inequality (9) is met. In most cases, it is sufficient to examine the structure in a plane
relevant to the load. If this was insufficient and the spatial analysis had to be performed,
the presented method could be easily adapted to a spatial case. In this paper, we will
only discuss planar problems.
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Fig. 1. Truss element model.

The model of the truss element is shown in Fig. 1. An approximation of the
displacement within the rod element with a kinematically admissible function [13]

eu(ξ) =
[

ξi−ξ
eL

ξj−ξ
eL

][ eu
′
i

eu
′
j

]

= [
eNi(ξ) eNj(ξ)

]
[

eu
′
i

eu
′
j

]

= eNeu
′

(10)

where eL is the length of the rod element, eN is the matrix of shape functions, and eu
′
is

the vector of nodal displacement interpreted in element connected ξ coordinate system.
In the global x − y coordinate system, nodal displacements could be described in the
following form

eu = [
euix euiy eujx eujy

]T
. (11)

The transformation between the two-coordinate system could be made with the
transformation matrix

eT =
[
eT11 eT12 0 0
0 0 eT23 eT24

]
(12)

where

eT11 = eT23 =
eujx − euix

eL
and eT12 = eT24 =

eujy − euiy
eL

(13)

eu
′ = eTeu (14)

Elongation of truss element is

eε = deu(ξ)

dξ
= 1

eL

[−1 1
]eu

′
(15)

and stress in the axial direction is

eσ = Eeε = E
eL

[−1 1
]eu

′
(16)
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where E is elastic modulus. The strain energy of truss element with eA cross-sectional
area is

eU = 1

2

∫

L

eAeσ eεdξ = 1

2
eu

′T
eAE
eL

[
1 −1

−1 1

]
eu

′ = 1

2
eu

′T eK
′eu

′
(17)

where eK
′
is the stiffness matrix of the element. The work of external forces is

eW =
∫

L

eu(ξ)pdξ = eu
′T ef

′
(18)

where ef
′
is the vector of external forces reduced to nodes. The total potential energy of

one element could be written in the following form

e�p = eU − eW = 1

2
eu

′T eK
′ eu − eu

′T ef
′

(19)

It could be rewrittenwith quantities,which are introduced in the global coordinate system

e�p = 1

2
euT eKeu − euT ef (20)

where

eK = eTT eK
′ eT and ef = eTT ef

′
(21)

Introducing the u all node displacement vectors and the f all node load vectors as
the total potential energy of the whole structure is

�p = 1

2
uT (Ku − f ) (22)

where K stiffness matrix of the complete structure according to the rules of element
alignment, which is detailed described in [13, 14].

Many truss structures are built from different rods with different cross-sectional
properties. These rods could be grouped by AE product. From the stiffens K matrix
introduced initially in (22), these AE product can be extracted by cross-sectional groups

K = A1E1K1 + A2E2K2 + · · · + AiEiKi + · · · + AnGEnGKnG =
∑nG

i=1
AiEiKi

(23)

where nG is the number of cross-sectional groups, and Ki is stiffness matrix of ith group.
If the unknown quantities of the optimisation are typical cross-section dimensions (for
example, D outside diameter and t wall thickness for circular hollow section), pre-
processing of FEM is enough to do it once before the first iteration step of optimisation.

According to the principle of minimum total potential energy [15, 16], the δ� first
variation of � total potential energy is zero. After applying boundary conditions, we get
an algebraic equation system of FEM

δ�p = δuT
∂�p

∂u
= δuT (Ku − f ) = 0 (24)
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u = K−1f . (25)

Post-processing of the result of Eq. (25) is necessary for further calculations. Axial
stress of elements could be determined by

eσ =
eE
eL

[−eT11 −eT12 eT11 eT12
]eu (26)

4 The Optimisation Problem

Optimisation of truss structures are constrained optimisation problem

min.f (x) x = [
x1 x2 · · · xD

]T ∈ R

gi(x) ≤ 1 1 ≤ i ≤ q
hj(x) = 0 1 ≤ j ≤ r

(27)

where x is the vector of unknowns – in this paper, vector of typical dimensions of cross-
section –, f (x) is the objective function to be optimised, gi(x) are inequality constraints,
hj(x) are equality constraints, q and r are the numbers of constraints.

In this paper, the target function of optimisation is the weight of the structure

f (x) = ρ
∑ne

e=1
eAeL (28)

where ne is the number of truss elements, where ρ is the density of steel.
The structure must meet strength and stability requirements. In the present case,

three criteria have been analysed. In the case of pulled rods, the resistance to tensile
stress, and in the case of pushed rods, the buckling and finally the local buckling. The
cross-sectional utilisation factor can well characterise these characteristics.

A definition of an inequality condition can interpret the tensile and compressive
strength of pushed-pulled rods if the stress from the load is interpreted as a sign. Negative
tension means pressure, while positive means tension.

gIi =
{

γM 0|eσ |
χ fy

≤ 1 eσ < 0
γM 0|eσ |

fy
≤ 1 eσ ≥ 0

(29)

where fy is yield strength, γM 0 is a safety factor according to [17], and χ is buckling
factor also according to [17]

χ =
⎧
⎨

⎩

1 λ ≤ 0, 2
1

φ+
√

φ2+λ
2

λ > 0, 1 (30)

where φ is a factor

φ = 0, 5
(
1 + 0, 21

(
λ − 0, 2

) + λ
2
)

(31)
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λ is a slenderness factor

λ = πkL

√
A

Ix

√
fy
E

(32)

where Ix is the second-order moment of the used cross-section, k is the deflection length
factor, which is k = 1 for intermediate bars and k = 0.7 for the gripped bars.

The limit of local buckling depends on the shape of the cross-section. A different
formula should be used for a different shape [11]. Currently, we use local buckling of
circular hollow section

gIIi = Dfy
21150t

≤ 1 (33)

This formula is valid only if the unit of fy yield stress is in MPa, and the unit of D
diameter and unit of t wall thickness is mm.

Using Eqs. (28), (29) and (33), the fitness function to be optimised

F(x) = ρ
∑ne

e=1
eAeL +

∑ne

i=1
p(gIi(x)) +

∑nG

i=1
p(gIIi(x)) (34)

where p is the static penalty function

p(x) =
{

0 g(x) ≤ 1
106g(x) g(x) > 1

(35)

and x is the vector of unknowns (vector of independent variables). For example, in the
case of a circular tube, un-knowns are characteristic dimensions of the cross-section

x = [
d1 d2 · · · dnG t1 t2 · · · tnG

]T
(36)

5 Parallelisation with CUDA and MATLAB

Nvidia corporation offers CUDA Driver API [18] and CUDA Runtime API [19] to pro-
gram their graphics cards for general-purpose computation. There are many types of
graphics cards on the market, with different computation capabilities and performance.
The codec containing our unique calculationmust be scalable [20], and it should automat-
ically detect the used hardware capabilities [21]. Implementing this feature is sometimes
more challenging than implementing our custom calculation. As an intermediate layer
between CUDA and our code, MATLAB offers much simpler possibilities for imple-
menting our parallel computation [22]. However, this ease of use comes at a price, so
the computation speed increase will never be as great as using only native CUDA.

MATLAB gives a reach toolset and many features to make operations with vectors
andmatrices. It offers many possible ways to rewrite original loop-based, scalar oriented
operations to vector-matrix operations. This process is called “vectorisation”.
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To illustrate the differences between the two types of operations, let the population
be given as follows for circular hollow section tubes

X =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

D1,1 D1,2 · · · D1,j · · · D1,np

D2,1 D2,2 · · · D2,j · · · D2,np
...

...
...

...

Di,1 Di,2 · · · Di,j · · · Di,np
...

...
...

...

DnG,1 DnG,2 · · · DnG,j · · · DnG,np

t1,1 t1,2 · · · t1,j · · · t1,np
t2,1 t2,2 · · · t2,j · · · t2,np
...

...
...

...

ti,1 ti,2 · · · ti,j · · · ti,np
...

...
...

...

tnG,1 tnG,2 · · · tnG,j · · · tnG,np

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=
[
D
t

]
(37)

whereDi,j is diameter of ith cross-sectional group for jth the individual in the population,
ti,j is thewall thickness of ith cross-sectional group for jth the individual in the population.
For example, the loop-based, scalar oriented implementation of Eq. (33) could be seen
in Listing 1.

In contrast, the implementation in Listing 2 of the same equation covers a vectorised
form.



764 S. Nagy et al.

The striking difference between the two code snippets is that the latter is much
shorter and more transparent. Sometimes, scalar-oriented operation vectorisation may
not be formulated with element-wise operations (such as.*,./,. ,̂ etc.). In such cases,
arrayfun() could be a good tool. The point is that the scalar operation inside the
loop core must be organised into a separate function (see in Listing 3). arrayfun()
will call this function one at a time as many times as many elements in the vector or
matrix passed as a parameter.

Provide tools for vectorising operations performed on multidimensional matrices
using “page-wised” functions and operations. These detailed descriptions could be found
in [22] for length reasons; these are not detailed in this paper.

MATLAB can always start the loop-based approach on only one thread, as illustrated
in Listing 1. The situation is different with vectorised operations. It can automatically
detect repetitive operations where only the data to be processed changes and automati-
cally discover the capabilities of the runtime environment to perform them on multiple
threads. In the simplest case, when using multi-core processors, it automatically – unless
the opposite is set – takes advantage of the possibility of running on multiple cores in
parallel. This automation also works for GPUs if the type of all variables in the expres-
sion is gpuarray. It automatically creates the required kernel functions based on the
expressions and starts them on the required and possible number of threads, considering
the capabilities of the GPU.

All the expressions and functions presented in previous chapters are easy to vectorise.
This allows complete optimisation – evolutionary algorithm, FEM solver and fitness
function calculation – to be calculated using GPU in parallel. If all steps and operations
are calculated with a GPU, the host machine only manages them; it is enough to move
data between the host and GPU at the beginning and end of the optimisation.
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6 Comparison of Sequential and Parallel Optimisation

The dimensionless computation speed up between sequential and parallel processing is
defined as follows

∇ = tseq
tpar

(38)

where tseq is the average computation time of iteration steps using only sequential pro-
cessing, tpar is the average computation time of iteration steps using only sequential
processing. For measuring tseq computation time, we used 1 pcs CPU thread, and for
measuring tpar computation we used as many as possible thread on Geforce GTX 1050
Ti type graphics card.

The structure shown in Fig. 2 was optimised to determine the previously defined
rate increase. This is a truss structure with deltoid-shaped stiffeners. Applied loads were
F1 = 332.94 kN , F2 = 437.46 kN and F3 = 338.08 kN . Node 1 and 7 were fixed,
that means any displacement in these points is not allowed. Cross-section of all rods
was a circular tube, where we optimised of outside diameter and wall thickness of tubes
according to Eq. (36). Rods of the structure were divided into three cross-sectional
groups. The first group contains rods 1–10. Horizontal rods (11–16) are in the second
group. Finally, rods in the third group are rods of deltoid shape (17–26).

In our simulation, we have simulated optimisation with different numbers of indi-
viduals in the population which are used by SaDE. The dimensionless speed up achieved

Fig. 2. Sketch of optimised structure for comparison of sequential optimisation and parallel
optimisation
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is illustrated in Fig. 3, with different np population sizes. We did not inspect the quality
of optima in this paper; we inspected only the difference in computation time.

0.100
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Fig. 3. Dimensionless speed up with different population sizes and numbers of nodes.

7 Conclusion

An evolutionary algorithm is presented in this paper, the differential evolution. This
algorithm relates to the finite element method for optimising truss-like structures subject
to static stresses, overall buckling and local buckling. This is a powerful approach for
optimising any truss structure automatically.

Evolutionary optimisation is a population-based iterative numerical method. That
means the fitness function should be calculated many times; meanwhile, that could be
a resource-demanding task and take a long time. One way to increase the speed of
calculations is parallel computation with GPU. MATLAB offers user-friendly methods
and tools for doing it. We have analysed dimensionless speed up of optimisation with
tools of MATLAB.

The available speed up depends on the size of the population Speed up increases
approximately exponentially in the function of population size (see in Fig. 2). If the
population size is small, there is no reason for parallelisation.

In future exploration, it could be interesting to inspect speed up in the function of
the number of elements and number of nodes with fixed and varied size populations.
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