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1 Introduction

In general, the proficient deployment of Internet of Things (IoT) examines the
atmosphere and performs specific operations. Hence, the responsibility of a com-
puting method which manages the IoT devices is highly effective. The IoT devices
are mainly composed of sensors, and a collection of ubiquitous sensors forms the
wireless sensor network (WSN). Initially, cloud computing (CC) depends upon
the WSN and is utilized for managing the sensor data [1]. Transmission and
computation of massive data which is passed through CC resulted in various
complexities like delayed service response time and additional energy requirement.
Moreover, the domains of a WSN has been developed extensively and demands
for practical computations and data transmission which finally enhances the IoT
management task [2]. A novel computing method has been introduced, named as fog
computing; in this process, the volume of data produced by a sensor is maximized,
and regular data processing becomes a complicated issue.

Here, fog computing is a technique applied for data management and performs
communication with the nearby field using a sensor. Since the devices in fog
computing applies near-field communication, the response speed becomes robust
and rapid when compared to CC. Besides, the sensor count assigned to a device
is minimum than CC. Under the assumption of data aggregation, the power
consumption can be reduced which has been caused because of the elimination
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Fig. 1 Architecture of fog-based WSN

of redundant data transmission among nearby devices in a sensor node. On the
other hand, the clustering-based hierarchical process offers massive benefits [3–
5]. Furthermore, fog computing services are data development, computation, and
transmission, as depicted in Fig. 1. Besides, a cloud server is helpful in extracting
features from server on the basis of data type when it was actually created. Followed
by, a server contains set of rules, pattern analysis, as well as inference for data
saving.

Data that is computed is fed into a data owner or authorized server. At this
point, data used for a service user has been saved in the form of plain text and
transmitted to observing server so that it can be applied in future. Data distribution
and applications are the predictable operations. Data which is produced in a sensor
might be an ineffective one for the user; hence, a delegation function is to assign
a centralized manager for accessing the data, and revocation function is applied to
eliminate the authentication for accessing the data as the user required.

Fog computing [6] is defined as a virtual environment which offers computation,
storage, and networking service among a device as well as CC data center.
Therefore, it has not been placed uniquely at the edge of network. The operations
like computation, storage, and networking are considered to be the building blocks
of cloud and fog. The cloud layer is considered to be the main theme of fog
computing that computes data virtualization, examination, and machine learning
(ML) and upgrades the rules and patterns from fog layer’s proxies. The proposed
fog-based WSN involves a set of two nodes, namely, advanced nodes, normal nodes,
and some FNs. The existence of advanced nodes makes the network heterogeneous,
which results in maximum energy efficiency of the network. Though the fog based
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WSN offers several benefits, there is a need to develop an energy-efficient clustering
technique to select the CHs and organize clusters.

This paper presents a new fuzzy with artificial flora optimization-based clustering
(FAFOC) algorithm for CHs selection to attain maximum energy efficiency in fog-
based WSN. The proposed FAFOC algorithm involves three major stages, namely,
node initialization, tentative CH selection, and final CH selection. Initially, the
nodes undergo random deployment, and initialization process takes place. Then,
the FAFOC selects the CHs in two stages, namely, tentative CH selection and final
CH selection. At the initial stage, all the nodes in fog-based WSN undergoes fuzzy
logic-based tentative CH selection (FL-TCHS) process which elects a set of tentative
nodes based on residual energy (RE), distance to base station (DBS), and node
centrality (NC). Then, the tentative CHs execute the artificial flora optimization-
based final CH selection (AFA-FCHS) process to select the final CHs. Once the CHs
were effectively chosen, the nearby nodes join the CHs and forms clusters. Finally,
the cluster members (CM) send the data to CHs, which then forward it to the fog
nodes subsequently to cloud. The experimental validation of the proposed FAFOC
algorithm is carried out, and the results are examined under several dimensions.

2 Related Works

Energy application management of WSN has gained massive attention from
research communities. The developers have examined all other solutions from
the application of another power sources, named as solar energy [7], and some
other research have focused on the development of power-aware protocol models
[8, 9]. Using the objective of enhancing the entire network operation effectively,
fog computing is mainly applied for extending the CC model to the network
edge [10]. Fog computing is mainly deployed for addressing the issues over
mobility, geography, and delay requirements of IoT systems [11]. Because of
the demand while installing massive interconnected devices, energy maintenance
and self-recovering applications are the two important developing attributes of fog
computing environments.

In Al-Fuqaha et al. [12], the major features behind network mechanisms of a fog
computing have been examined such as position, distribution, reliability, density of
machines, mobility support, real time, and standardization. In addition, the network
structure in fog computing devices should be independent and effective with respect
to power application as well as network resilience. Due to the network requirements,
IEEE 802.15.4 ZigBee standard from ZigBee has inspired the concentration of
developers. Diverse researchers are effective and provide the advantages of ZigBee
in various Smart City as well as Smart Farming domains. In Lee and Wang [13],
the researchers have determined the connection, packet loss rate, and transmission
throughput from indoor research region. A hybrid network model, ZigBee/5G, is
presented in [14].
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The developers have demonstrated efficiency of combining diverse protocols
which aims at limiting the energy application. Followed by, the developers from
[15] have determined and related the power energy utilization of ZigBee vs. the
Advanced and Adaptive Network Technology (ANT). Based on the survey, ANT
performs well in ZigBee with respect to power application executed by using sleep
and wake technology. Hence, it is stated that, an appropriate management of entire
system, radio, and sensors, the energy application addressed by ZigBee systems
are reduced gradually. The final outcomes make ZigBee a tremendous environment
to learn the advantages of combining energy application management models.
Moreover, the extensive application of ZigBee tends to make greater platform for
developing Smart City as well as Smart Farming applications. Recently, Piromalis
and Arvantis [16] established a reliable hardware structure for WSN and actuator
networks which has to be applied in Smart Farming domains. Likewise, the structure
of sensor node concentrates on the energy application as well as network resilience
methodologies are considered as advanced innovations on fog computing. It refers
that the newly developed models takes the structure of sensor node, with main
characteristics of fog computing model, especially geographical position, delay, as
well as energy provisioning.

Fig. 2 Block diagram of FAFOC algorithm
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3 The Proposed FAFOC Algorithm

The working process involved in the FAFOC algorithm is demonstrated in Fig.
2. The proposed FAFOC algorithm involves three major stages, namely, node
initialization, tentative CH selection, and final CH selection. At the beginning stage,
the nodes are randomly deployed and initialized, and information collection about
nearby nodes takes place. Then, the FL-TCHS process gets executed and selects the
tentative CHs. Afterwards, the tentative CHs performs the AFA-FCHS process and
elect the final CHs. Once the CHs were chosen, the datatransmission process begins
where the data from CMs to cloud takes place via CHs and fog nodes in the network.

3.1 Fuzzy Logic-Based Tentative CH Selection Process

In this section, the tentative CHs were selected using fuzzy logic with the use of
three input parameters, namely, RE, DBS, and NC [17].

(i) Residual Energy: It plays a significant role for selecting a node as CH which
spends maximum energy when compared with CM. A CH node gathers data
from members, accumulate the data gathered, and transmits to sink node or
BS. Hence, competing energy level is essential for a CH in order to execute the
predefined events.

(ii) Node Centrality (NC): Total count of one-hop adjacent nodes inside Rc of
a node is named as node degree. NC is a factor that calculates the node’s
position in the intermediate location over its neighbors. Lower NC measure
offers greater opportunity of selecting a node as CH:

NC =
√∑ND

i=1 dist2i /ND

Ntk_Dimension
(1)

In Eq. (3), ND (node degree) corresponds to count of neighbors inside
a communication radius Rc of a node, and Ntk-Dimension value is “M” in
M × M field area, as well as dist2i implies a distance with ith neighbor
node which refers that, in 100 m × 100 m, Ntk-Dimension is 100, and, in
200 m × 200 m field area, Ntk-Dimension is 200.

(iii) Distance to BS: The power conservation increases while transmitting data and
also the distance among a transmitter and receiver nodes. From the point of
power conservation, the distance among CH and BS has to be reduced:

Distance to BS = di

α·Ntk_Dimensio
,

α = dmax
Ntk_Dimensio

(2)
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In Eq. (4), di refers to the distance among node i and the BS, dmax denotes
higher distance among a node in a system and BS, and A signifies a network
dimension constant.

3.2 AFA-Based Final CH Selection Process

Once the tentative CHs are chosen, they compete for final CH selection using AFA.
The AFA method is composed of four fundamental units, namely:

• Original plants
• Offspring plants
• Position of plants
• Propagation distance

Initially, the original plant means that the crops are ready for distributing the
seeds. Secondly, the offspring plant is considered as the seed of original plant, and
it is not suitable for spreading seeds in specific duration. Thirdly, the position of the
plant refers the actual localities of the plant. Finally, propagation distance defines
the distance of seeds spreading. It is composed of three main behavioral patterns
like:

• Evolution
• Spreading
• Select

At the first stage, evolution behavior describes the possibility of time taken by
a plant for adapting with the ecological behavior. Secondly, the spreading behavior
defines the distribution of the seed. Finally, the select behavior refers that flora might
stay alive or becomes expired because of the atmosphere [18].

Evolution Behavior

The original plants distribute seeds over the circle with radius named as propagation
distance, which has been developed from propagation distances of the parent as well
as grandparent plants.

dj = d1j × ran (0, 1) × c1 + d2j × rand (0, 1) × c2 (3)

where d1j and d2j denotes the propagation distance of the grandparent and par-
ent plants, c1 and c2 defines the learning coefficients, and rand(0,1) stands for
autonomous and uniformly distributed within (0,1).

A novel grandparent propagation distance is as follows:



FAFOC: Fog-Based Energy-Efficient Clustering Technique. . . 429

d ′
1j = d2j (4)

The novel parent propagation distance is meant to be a standard deviation (SD)
among the positions of original plant as well as offspring plant:

d ′
2j =

√∑N
i=1

(
i,j − P ′

i

)2
,

N
(5)

Spreading Behavior

Initially, the AFA has produced the data randomly from original flora with N
solutions, where N plants are existed in flora. The location of the original plant
is represented by matrix Pi, where i denotes a dimension and j refers to the flora
plant count.

Pi.j = ran (0, 1) × d × 2 − d (6)

where d indicates the higher limit area and rand(0,1) denotes the array of arbitrary
values which are distributed uniformly from (0,1) .

The location of the offspring plant can be produced on the basis of a propagation
function in the following:

P ′
i,j×m = Di,j×m + Pi,j (7)

where m refers count of seeds which a single plant propagates, P ′
i,j×m means a

location of offspring plant, Pi,j stands for location of original plant, and Di,j×m

signifies a random value with the Gaussian distribution of mean 0 and variancedj.
When none of the offspring plant existed, then a new plant would be produced on
the basis of Eq. (6).

Select Behavior

The active plant can be computed using survival probability as given in the
following:

p =

∣∣∣∣∣∣∣∣

√
F

(
P ′

i,j×m

)

Fmax

∣∣∣∣∣∣∣∣
× Q

(j×m−1)
x (8)

where Q
(j×m−1)
x is Qx to the power of (j × m − 1) and Qx implies the selective

probability. It can be viewed that the fitness of offspring plants are far away from
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Table 1 Parameter setting Parameters Value

Area 100 × 100 m2

E0 0.5 J
Node count 500
Eelec 50 nJ/bit
εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

Packet size 4000 bits

actual plant. Qx estimates the searching ability capability of the method. Qx has to
be maximum for the problem which is simple to enter the local optimal solution.

Fmax refers to the higher fitness in flora, and
(
P ′

i,j×m

)
denotes the fitness of j-th

solution.
Roulette wheel selection approach has been applied for determining whether the

plant is active or not. The main objective of this model is to “accept according
probability”; which means that there may various instances and it is composed of a
potential value. Therefore, selection is completely based on value of potential score.
The maximum the score, then the higher the accepting probability becomes.

4 Performance Validation

In this section, an extensive experimental analysis is carried out, and the results are
examined under diverse aspects. The parameter settings involved in the simulation
process is shown in Table 1.

4.1 Network Lifetime Analysis

Figure 3 shows the network lifetime analysis of the FAFOC model in terms of FND,
HND, and LND. The figure portrayed that the FAFOC model has delayed the death
of the first as well as the last node in the network. It is noted that the FND of the
FAFOC model is 391 rounds, whereas the FND of FEAR, P-SEP, QACMOR, and
AFA is 75, 198, 88, and 111 rounds, respectively. At the same time, it is observed
that the FAFOC model has attained the HND of 1315 rounds, whereas the HND of
FEAR, P-SEP, QACMOR, and AFA is 455, 984, 625, and 711 rounds, respectively.
At last, it is exhibited that the FAFOC model has delayed the LND to 1989 rounds ,
whereas the LND occurs at the earlier rounds of 995, 1612, 544, and 1329 by FEAR,
P-SEP, QACMOR, and AFA algorithms.
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Fig. 3 Network lifetime analysis of FAFOC model

Figure 4 observes the performance of the FAFOC method in terms of PDR under
varying node count. The figure exhibited that the FEAR model has depicted PDR
over the compared approaches. Concurrently, the QACMOR and AFA models have
illustrated certainly higher PDR over the FEAR model. However, the P-SEP model
has tried to demonstrate moderate PDR. Yet, the highest PDR has been achieved
by the projected FAFOC algorithm. For instance, under the node count of 50, the
PDR by the presented FAFOC model is 0.847, whereas the PDR by FEAR, P-SEP,
QACMOR, and AFA is 0.777, 0.677, 0.731, and 0.747 correspondingly. Also, under
the node count of 500, the PDR by the projected FAFOC model is 0.727, while the
PDR by FEAR, P-SEP, QACMOR, and AFA is 0.657, 0.512, 0.527, and 0.567,
correspondingly.

Figure 5 showcases the performance of the FAFOC method with respect to
average residual energy under varying number of rounds. The figure demonstrated
that the FEAR method has shown minimum average residual energy over the com-
pared methods. At the same time, the QACMOR and AFA methods have illustrated
certainly superior average residual energy over the FEAR model. However, the P-
SEP model has tried to demonstrate moderate average residual energy. However,
the highest average residual energy has been attained by the presented FAFOC
algorithm. For instance, under the round of 500, the average residual energy by the
presented FAFOC model is 0.489J, while the average residual energy by FEAR, P-
SEP, QACMOR, and AFA is 0.277J, 0.4875J, 0.3925J, and 0.3425J, respectively.
Similarly, under the round number of 1500, the average residual energy by the
proposed FAFOC model is 0.35J, whereas the average residual energy by FEAR,
P-SEP, QACMOR, and AFA is 0J, 0.225J, 0.1J, and 0.09J, correspondingly.
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Fig. 4 PDR analysis of FAFOC model

Figure 6 depicts the performance of the FAFOC method with respect to packet
loss under varying node count. The figure demonstrated that the FEAR model
has shown the highest packet loss over the compared methods. At the same time,
the QACMOR and AFA models have shown certainly lower packet loss over the
FEAR model. However, the P-SEP model has tried to demonstrate minimum PDR.
However, the low packet loss has been achieved by the projected FAFOC method.
For instance, under the node count of 50, the packet loss by the projected FAFOC
model is 0.02, while the PDR by FEAR, P-SEP, QACMOR, and AFA is 0.2, 0.11,
0.056, and 0.04, correspondingly. Likewise, under the node count of 500, the PDR
by the presented FAFOC model is 0.14, but the packet loss by FEAR, P-SEP,
QACMOR, and AFA is 0.489, 0.275, 0.26, and 0.22, respectively.

5 Conclusion

This paper has developed a new FAFOC algorithm for CHs selection to attain
maximum energy efficiency in fog-based WSN. Initially, the nodes are randomly
deployed and initialized, and information collection about nearby nodes takes
place. Then, the FL-TCHS process gets executed and selects the tentative CHs.
Afterwards, the tentative CHs performs the AFA-FCHS process and elect the final
CHs. Once the CHs were chosen, the data transmission process begins where the
data from CMs to cloud takes place via CHs and fog nodes in the network. An
extensive experimental analysis is carried out, and the results are examined under
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Fig. 5 Average residual energy analysis of FAFOC model

Fig. 6 Packet loss rate analysis of FAFOC model

diverse aspects. The experimentation outcome ensured the effective performance of
the FAFPC algorithm in terms of energy efficiency, network lifetime, packet loss,
PDR, and delay. As a part of future work, the network lifetime can be lengthened
by the use of bio-inspired algorithm-based routing protocol to select the optimal
forwarding node set.
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