
Continuous Prompt Tuning for Russian:
How to Learn Prompts Efficiently

with RuGPT3?

Nikita Konodyuk1,2 and Maria Tikhonova1,2(B)

1 SberDevices, Sberbank, Moscow, Russia
tikhonova.m.iva@sberbank.ru

2 National Research University Higher School of Economics, Moscow, Russia

nekonodyuk@edu.hse.ru

Abstract. Adaptation to downstream tasks is a crucial part of the pre-
trained language model (PLM) life cycle. Fine-tuning, traditionally used
for this purpose, is an expensive procedure in terms of computation and
memory. Dramatic growth of PLM capacities has led to the emergence
of zero- and few-shot methods, which use natural language to describe
tasks. Although these methods do not modify the parameters of the
model, they rely on manual prompt design, which may be suboptimal.
To address this issue, a range of techniques for automatic prompt search
have been proposed recently.

In this paper, we present a framework for continuous prompt tuning
(CPT) in Russian. We evaluated our framework by adapting RuGPT3 to
tasks in the Russian benchmark SuperGLUE. We obtained metrics better
or comparable to fine-tuning, while training only an auxiliary model that
provides prompt embeddings, so the total number of trained parameters
accounts for less than 0.4% of that of RuGPT3. In addition, we con-
ducted experiments comparing different configurations of the framework
and explored the lower bound to which we can reduce the number of
parameters. Our source code is publicly available at
https://github.com/sberbank-ai/ru-prompts.

Keywords: Natural language processing · Language models · Model
training · Transformer models · Language model adaptation

1 Introduction

Language models, in particular, Generative Pre-trained Transformers, have
shown prominent abilities for many Natural Language Processing (NLP) tasks.
The pre-training fine-tuning paradigm for solving downstream tasks [1], which
has been the dominant approach, especially for transformer models, will be lim-
ited as long as it requires large labelled training corpora. Moreover, fine-tuning
large language models can be computationally expensive and time-consuming.

In [2] the authors present GPT3, an autoregressive language model, which
can be applied without any gradient updates or fine-tuning, with tasks and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Burnaev et al. (Eds.): AIST 2021, CCIS 1573, pp. 30–40, 2022.
https://doi.org/10.1007/978-3-031-15168-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15168-2_3&domain=pdf
http://orcid.org/0000-0003-4337-0012
http://orcid.org/0000-0003-4561-5415
https://github.com/sberbank-ai/ru-prompts
https://doi.org/10.1007/978-3-031-15168-2_3

CPT for Russian 31

few-shot demonstrations specified purely via text interaction with the model.
The methodology in [3] introduces the concept of few-shot: the model receives
several training examples and a test prompt in a text format as an input and
makes predictions based on them. The setting when the model receives no train-
ing examples and makes a prediction based only on the text prompt constructed
from a test sample is called zero-shot. To illustrate the idea of a text prompt we
present an example for the DaNetQA task1 (a question answering task for ques-
tions with binary answers yes or no from the Russian benchmark SuperGLUE)
in Fig. 1. After the format of the text prompt is defined, we sequentially unite it
with each of the answer options (that is, each of the possible labels) and measure
the perplexity of the resulting text fragment. The answer options are then sorted
by the perplexity scores, and the one with the lowest score is considered to be
a prediction. Thus, such an approach does not require any additional training
and the answer can be obtained with the use of the original pre-trained model.

Fig. 1. A text prompt constructed for a DaNetQA test sample.

These few-shot and zero-shot methods have shown promising results on a
wide range on Natural Language Processing (NLP) tasks, especially with large
generative models. However, such an approach obviously has disadvantages, one
of the most important of which is that even a slight change in the prompt format
may significantly influence the result. Since manual selection of prompt tem-
plates is not optimal, the idea naturally arises: to automatically search prompts.
Since recently methods which tune prompt-embedding in discrete and continu-
ous spaces have been actively developing.

Several attempts made in this direction focused on discrete prompt search [4–
6] and demonstrated the effectiveness of an automated approach. However, as
long as neural language models are inherently continuous, discrete search for the
prompts is likely to be sub-optimal. Thus, the next step is to search pseudo-
prompts in continuous embedding space. This idea has been explored in several
recent works [7–10] and has proved to be quite fruitful.

1 https://russiansuperglue.com/tasks/task info/DaNetQA.

https://russiansuperglue.com/tasks/task_info/DaNetQA

32 N. Konodyuk and M. Tikhonova

In this work we follow the idea of the P-tuning method introduced in [11],
where the authors use a bidirectional LSTM to learn continuous prompt embed-
dings. Namely, we present a framework for Continuous Prompt Tuning (or
simply CPT) for the Russian language. In addition, we carry out a series of
experiments on the Russian SuperGLUE benchmark [12]2 comparing CPT with
zero-shot and standard fine-tuning. We explore the influence of the number of
trainable parameters on the result. The code is publicly available in our GitHub
repository.3

Thus, the contribution of this work is three-fold: (i) we release the framework
for CPT for Russian, which can be easily adapted to various models; (ii) we
evaluate CPT for the RuGPT3 model on Russian SuperGLUE and show that
it can be regarded as a strong competitor to fine-tuning and zero-shot; (iii) we
show that the number of trainable LSTM parameters can be reduced without
significant losses in total quality.

This paper is structured as follows: Sect. 2 describes the method implemented
in the CPT framework; Sect. 3 presents the evaluation setup and the analysis
of the conducted experiments; Sect. 4 is devoted to the analysis of the model
behavior and discusses the results; and, finally, Sect. 5 concludes the paper.

2 Method

In this section we introduce CPT, deriving it from few-shot and zero-shot settings
as they are introduced in [2]. We consider a classification task and follow the
generative classification paradigm, where prediction for a prompt is inferred from
the first token generated by a model after processing the prompt.

A natural language prompt is the core element of all prompt-based methods.
It combines a description of a downstream task with optional examples that
should also be given in the format, which should be clearly understood by the
model. Manual prompt search is always a matter of trial and error and therefore
is substantially hard to formalize. Nevertheless, in the vast majority of cases,
the prompt consists of the same set of semantic blocks.

To illustrate this idea, let us consider the following example of a few-shot
prompt for a machine translation task:

Translate English to French
sea otter => loutre de mer
plush giraffe => girafe peluche
cheese => 〈MASK〉

In this case the prompt takes the following formal format:

2 https://russiansuperglue.com/.
3 https://github.com/sberbank-ai/ru-prompts.

https://russiansuperglue.com/
https://github.com/sberbank-ai/ru-prompts

CPT for Russian 33

Translate English to French
{word in english} => {word in french}
{word in english} => {word in french}
{word in english} => 〈MASK〉

In the example above we have pairs of instance queries (or objects) and
targets , where the answer for the last instance is masked, as well as special service

elements which we further refer to as task instructions (or simply TI), which help
the model understand what is required in the task. In fact, in other applications
we also encounter such elements as task context and instance context . They are
necessary in such tasks as summarization, i.e. in those where the query depends
on additional context.

Thus, the generic few-shot prompt format can be formalized as follows:

〈TI〉 〈task context〉 〈TI〉
〈TI〉 〈instance context〉 〈TI〉 〈instance query〉 〈TI〉 〈instance target〉
〈TI〉 〈instance context〉 〈TI〉 〈instance query〉 〈TI〉 〈instance target〉
〈TI〉 〈instance context〉 〈TI〉 〈instance query〉 〈TI〉 〈MASK〉

Since the zero-shot approach differs from the few-shot only in terms of the num-
ber of provided examples, the zero-shot prompt format in essence is just a trunca-
tion of the few-shot prompt format:

〈TI〉 〈instance context〉 〈TI〉 〈instance query〉 〈TI〉 〈MASK〉

For example:

Izvestno, qto Moskva byla osnovana v 1147 godu na Moskve-reke.
Vopros: Byla li Moskva osnovana v 12 veke? Otvet: 〈MASK〉

Note that everything except the task instruction is usually derived from the
dataset fields and thus is not subject to change. Task instructions, on the con-
trary, are defined by the task itself and even minor changes lead to significant per-
formance deviations. Moreover, for different models different TI may be optimal.
Although hard to discover manually, they can be trained by gradient descent, as
proposed in [8,9,11] in different variations.

We train task instructions by gradient descent, so the prompt takes the
following form:

〈learned instructions〉 Moskva byla osnovana v 1147 godu na Moskve-reke.
〈learned instructions〉 Byla li Moskva osnovana v 12 veke?
〈learned instructions〉 〈MASK〉

We follow the original methodology proposed in [11] and produce trainable
embeddings with an auxiliary BiLSTM-based model, which we also refer to as
prompt provider. Its architecture is as follows: a sequence of trainable vectors is

34 N. Konodyuk and M. Tikhonova

passed through BiLSTM and then through two-layer MLP with ReLU activa-
tion. The dimension of the output sequence of vectors is equal to the embedding
dimension of backbone model, and their number is equal to the total number
of 〈SP〉 tokens in prompt format. These embeddings are inserted to the corre-
sponding positions in the input of backbone and trained via backpropagation.

3 Experiments

In this section, we describe experiments conducted on the Russian SuperGLUE
benchmark. First, we give a brief description of the tasks on which we evaluated
CPT, then we describe the model used in the experiments, after that we specify
details about the baseline methods and, finally, present the results and their
analysis. We conclude the section with an additional series of experiments with
a different number of trainable parameters.

3.1 Data

All the experiments were conducted using the Russian general language under-
standing evaluation benchmark – RussianGLUE. It was collected and organized
analogically to the SuperGLUE methodology [13]. Russian SuperGLUE com-
prises 9 tasks divided into 5 groups:

– Textual Entailment & Natural Language Inference (NLI): TERRa,
RCB, LiDiRus;

– Common Sense: RUSSE, PARus;
– World Knowledge: DaNetQA;
– Machine Reading: MuSeRC, RuCoS;
– Reasoning: RWSD.

Below a brief description of each task is given, and aggregated information
is presented in Table 1.

TERRA Textual Entailment Recognition for Russian is aimed at captur-
ing textual entailment in a binary classification form. Given two text fragments
(premise and hypothesis), the task is to determine whether the meaning of the
hypothesis is entailed from the premise. The dataset was sampled from the Taiga
corpus [14].

RCB The Russian Commitment Bank is a 3-way classification task aimed
at recognizing textual entailment (NLI). Analogically to TERRA, each example
in RCB consists of premise and hypothesis. However, in this task a premise can
be a short paragraph, not necessarily one phrase.

LiDiRus (also referred to as a diagnostic dataset) is an expert-
constructed evaluation dataset for recognizing textual entailment tasks on paired
sentences. It is a direct translation from the English SuperGLUE diagnostic
dataset, originally introduced in [15]. It consists of 1104 sentence pairs which
are used as a test set for testing models’ capacity to solve NLI task. In addition,
the diagnostic dataset has a rich annotation of various linguistic phenomena,
partly inserted artificially to explore the possible biases and errors on a task that

CPT for Russian 35

can be considered truly universal for all languages. The annotation includes 33
features which can be devided into 4 categories: Predicate-Argument Structure,
Logic, Lexical-Semantics, and Knowledge. Such annotation makes it possible to
analyze the model behaviour with respect to linguistic features.

RUSSE is a binary classification task that involves word sense disambigua-
tion. Given a pair of sentences containing the same ambiguous word, the goal of
the model is to recognize if the word is used in the same meaning. The dataset
was constructed from RUSSE4.

PARus is a binary classification task aimed at identifying the most plausible
alternative out of two for a given premise. The correct alternatives is the dataset
are randomized so that the expected performance of random guessing yields 50%
accuracy score.

DaNetQA is a Russian question-answering dataset for questions with binary
answers (yes or no) which follows the BoolQ design. Each example consists of a
triplet of question, passage, and answer.

MuSeRC is a machine reading comprehension (MRC) task. Each sample
consists of a text paragraph, multi-hop questions based on the paragraph, and
possible answers for each question. The goal of the task is to choose all correct
answers for each question.

Table 1. Russian SuperGLUE task description. Train/Val/Test stand for example
amount (sentence pairs or texts); MCC stands for Matthews Correlation Coefficient;
EM - Exact Match.

Task Task type Task metric Train Val Test

TERRa NLI Accuracy 2616 307 3198
RCB NLI Avg. F1/Accuracy 438 220 438
LiDiRus NLI & Diagnostics MCC 0 0 1104
RUSSE Common sense Accuracy 19845 8508 18892
PARus Common sense Accuracy 400 100 500
DaNetQA World knowledge Accuracy 1749 821 805
MuSeRC Machine reading F1/EM 500 100 322
RuCoS Machine reading F1/EM 72193 7577 7257
RWSD Reasoning Accuracy 606 204 154

RuCoS is an MRC task that involves commonsense reasoning and world
knowledge. The dataset is a counterpart of ReCoRD5 for English.

RWSD The Russian Winograd Schema task is devoted to coreference res-
olution in a binary classification form. The corpus was created as a manually
validated translation of the Winograd Schema Challenge6.
4 https://russe.nlpub.org/downloads/.
5 https://sheng-z.github.io/ReCoRD-explorer/.
6 https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html.

https://russe.nlpub.org/downloads/
https://sheng-z.github.io/ReCoRD-explorer/
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html

36 N. Konodyuk and M. Tikhonova

3.2 Model

We investigate the effectiveness of CPT and conduct all the experiments using
a RuGPT37 model, a Russian adaptation of the autoregressive language model
GPT3 [2], which the authors claimed as having strong in-context learning abil-
ities and which has shown impressive results in zero- and few-shot settings in
many NLP tasks. Namely, we run the experiments on RuGPT3-Large which is
publicly available in the Hugging Face Python library8.

For a prompt provider we used an LSTM with a hidden dimension of 256 and
input dimension of 16. Thus, given that the number of parameters of RuGPT3-
Large equals 760M and the number of trainable parameters of the prompt
provider was 3M, the fraction of total trainable parameters accounts only for
0.4% of model size. Additionally, in Sect. 3.5 we experiment with different num-
bers of parameters in the prompt provider.

We cast each of the tasks described in Sect. 3.1 to a binary or ternary classi-
fication problem. Training CPT on a task involves formatting its samples in line
with the corresponding prompt format from Table 2, where 〈target〉 takes the val-
ues of “da” and “net” (which are also called label verbalizers), and additionally
“vozmo�no” in the case of ternary classification. The symbol 〈SP〉 represents a
trainable token (soft prompt). Following the original methodology from [11] we
used sequences of 3 soft prompt tokens. However, it should be noted that the
number of soft prompt tokens can be varied and the optimal choice of the num-
ber of 〈SP〉 in each sequence for each task is another area for the research. The
embeddings of trainable tokens are provided by the prompt provider. We train
the prompt provider to output such embeddings, which maximize the probability
of the right label verbalizer for each sample. As a criterion we use cross entropy
among the logits corresponding to the label verbalizers.

Table 2. Prompt formats used for training on Russian SuperGLUE tasks. The symbol
〈SP〉 represents a trainable token (soft prompt).

Task Prompt Format

DaNetQA 〈SP〉〈SP〉〈SP〉 〈passage〉 〈SP〉〈SP〉〈SP〉 〈question〉 〈SP〉〈SP〉〈SP〉 〈target〉

TERRa 〈SP〉〈SP〉〈SP〉 〈premise〉 〈SP〉〈SP〉〈SP〉 〈hypothesis〉 〈SP〉〈SP〉〈SP〉 〈target〉

LiDiRus 〈SP〉〈SP〉〈SP〉 〈sentence1〉 〈SP〉〈SP〉〈SP〉 〈sentence2〉 〈SP〉〈SP〉〈SP〉 〈target〉

MuSeRC 〈SP〉〈SP〉〈SP〉 〈paragraph〉 〈SP〉〈SP〉〈SP〉 〈question〉 〈SP〉〈SP〉〈SP〉 〈answer〉 〈SP〉〈SP〉〈SP〉 〈target〉

PARus 〈SP〉〈SP〉〈SP〉 〈premise〉 〈SP〉〈SP〉〈SP〉 〈choice2〉 〈SP〉〈SP〉〈SP〉 〈choice1〉 〈SP〉〈SP〉〈SP〉 〈target〉

RCB 〈SP〉〈SP〉〈SP〉 〈premise〉 〈SP〉〈SP〉〈SP〉 〈hypothesis〉 〈SP〉〈SP〉〈SP〉 〈target〉

RUSSE 〈SP〉〈SP〉〈SP〉 〈word〉 〈SP〉〈SP〉〈SP〉 〈sentence1〉 〈SP〉〈SP〉〈SP〉 〈sentence2〉 〈SP〉〈SP〉〈SP〉 〈target〉

RWSD 〈SP〉〈SP〉〈SP〉 〈text〉 〈SP〉〈SP〉〈SP〉 〈span1 text〉 〈SP〉〈SP〉〈SP〉 〈span2 text〉 〈SP〉〈SP〉〈SP〉 〈target〉

RuCoS 〈SP〉〈SP〉〈SP〉 〈passage〉 〈SP〉〈SP〉〈SP〉 〈statement〉 〈SP〉〈SP〉〈SP〉 〈target〉

7 https://github.com/sberbank-ai/ru-gpts.
8 https://huggingface.co/sberbank-ai/rugpt3large based on gpt2.

https://github.com/sberbank-ai/ru-gpts
https://huggingface.co/sberbank-ai/rugpt3large_based_on_gpt2

CPT for Russian 37

3.3 Baselines

In order to evaluate the proposed framework we conducted a series of exper-
iments with our RuGPT3-Large model, comparing CPT with standard fine-
tuning and zero-shot approaches.

We fine-tuned RuGPT3-Large for every task using jiant-russian (version 2.0)
library9 (a library released by the creators of the benchmark, which is aimed at
fine-tuning various models on Russian SuperGLUE) with standard parameter
configuration.

For the zero-shot method we used its modification based on the model per-
plexity. Namely, for each test sample we calculate the perplexity of the corre-
sponding prompts united with one of the possible targets using formula 1. We
then choose the best target, as the one with the lowest perplexity score.

PPL(t) = exp

⎛
⎝− 1

|t|
|t|∑
i=0

logpθ
(xi|x<i)

⎞
⎠ (1)

where t is an input text (in our case, a text prompt concatenated with one of
possible targets), |t| is the length of the text in tokens, and logpθ

(xi|x<i) is the
log-likelihood of the i-th token in t conditioned on the preceding ones.

3.4 Results

The results of the experiments are presented in Table 3. It gives an exact
representation of CPT performance compared with zero-shot and fine-tuning
approaches. It can be seen that CPT outperforms each of zero-shot and fine-
tuning on most of the tasks. Namely, it outperforms zero-shot on LiDiRus,
MuSeRC, TERRa, RUSSE, RWSD, and DaNetQA; and it shows better results
than fine-tuning on MuSeRC, TERRa, RWSD, DaNetQA and RuCoS. Thus,
CPT allows to achieve reasonable model performance without either human
assistance in prompt search or computational resources sufficient for fine-tuning.

The poor performance of CPT on RCB can be explained by the small size
of the training corpora (only 438 training samples), which is insufficient for
learning good prompts. As for RuCoS, the most plausible explanation is that
the chosen generative approach is not optimal for such a complicated type of
task. In the future we plan to use CPT with contrastive classification for this
task (see Sect. 4 for a more in-depth description of the approach), which will
hopefully yield better results.

3.5 Experiments with Different Number of Trainable Parameters

In addition, we explored how the number of trainable parameters in an LSTM
influence the model quality. Our goal was to minimize the number of trainable

9 https://github.com/RussianNLP/RussianSuperGLUE/tree/master/jiant-russian-
v2.

https://github.com/RussianNLP/RussianSuperGLUE/tree/master/jiant-russian-v2
https://github.com/RussianNLP/RussianSuperGLUE/tree/master/jiant-russian-v2

38 N. Konodyuk and M. Tikhonova

Table 3. Results of RuGPT3-Large evaluation on Russian SuperGLUE in different
settings. We score the tasks in line with the metrics specified in Table 1. The scores for
all tasks are then averaged to get the total score. For the tasks with multiple metrics,
the metrics are averaged.

Approach Total score LiDiRus RCB PARus MuSeRC TERRa RUSSE RWSD DaNetQA RuCoS

Zero-shot 51.4 12.8 30.4/42.2 63.0 72.7/52.2 52.5 57.1 62.3 57.0 64.0/63.5
Fine-tuning 50.5 23.1 41.7/48.4 58.4 72.9/33.3 65.4 64.7 63.6 60.4 21.0/20.2
CPT 48.2 14.0 17.6/35.8 47.2 74.2/38.3 67.9 62.8 66.9 60.7 32.0/31.4

parameters and, therefore, to optimize and speed up CPT training. For this
purpose we conducted a series of experiments on 4 Russian SuperGLUE tasks
(DaNetQA, PARus, RCB, and TERRa). These tasks were chosen as long as they
are considered to be most popular among all the benchmark tasks and due to
the size of their training corpora.

In the experiments we trained CPT clones, each with a different dimension of
LSTM hidden states varying from 1 to 1536. Results are presented in Table 4 and
a general picture is given in Fig. 2. It can be seen that the number of the hidden
dimensions and, therefore, the number of the trainable parameters can be signif-
icantly reduced without noticeable decrease in total quality. Moreover, an exces-
sive number of trainable parameters may seemingly lead to overfitting and a non-
optimal score. For instance, while for TERRa and DaNetQA the accuracy keeps
increasing, on PARus it reaches the optimal value on hidden dim=16 and then
decreases. We connect this behaviour with the number of training samples, which
is significantly greater for DaNetQA and TERRa, than for PARus and RCB.

If we calculate the average of the scores for the 4 tasks considered, we see that
the result for hidden dim=64 is only 7,5% worse than for the maximal size of
hidden dim=1536 while it requires 368 times fewer trainable parameters. Thus,
it can be concluded that the number of trainable parameters can be significantly
reduced without much loss in quality.

Table 4. CPT results with different LSTM hidden dimensions. “Hidden dim” stands
for the number of LSTM hidden dimensions and “Params” for the number of trainable
parameters. The average score is calculated as the mean score of 4 tasks. For RCB the
two metrics are first averaged.

hidden dim Params DaNetQA PARus RCB TERRa Average

1 3.2K 50.3 48.8 17.6/35.6 50.3 44.0
4 8.5K 53.4 47.0 20.7/32.9 50.3 44.4

16 37.5K 52.0 53.0 17.6/35.8 53.8 46.4
64 274K 54.7 51.2 17.5/35.6 54.8 46.8

256 3.2M 56.9 47.4 17.6/35.8 53.2 46.1
1024 45.7M 58.0 48.4 17.6/35.8 60.4 48.4
1536 101M 60.7 47.2 17.6/35.8 67.9 50.6

CPT for Russian 39

104 105 106 107 108
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Prompt Provider Parameters

A
cc
ur
ac
y

PARus
DaNetQA
TERRa
RCB

Fig. 2. Accuracy score for CPT with different LSTM hidden dimensions.

4 Discussion

Despite the fact that the overall RuGPT3 performance with CPT is comparable
with fine-tuning and zero-shot approaches, it shows quite a poor score on several
tasks (namely, RCB, PARus, and RuCoS). This may be explained in several
ways. For example, we suppose that the low score on RCB and PARus can be
accounted for by the small size of the training corpora (438 and 400 training
samples respectively). Such a modest dataset size is probably not enough for
learning good continuous prompts.

As for RuCoS, its low score can be explained by the fact that a generative
approach is not optimal for such a complicated task. Thus, in order to over-
come this limitation we are planning to use CPT for contrastive classification.
Compared with generative classification, this approach will utilize the relation-
ships of multiple versions of each text, for example multiple answers or multiple
prompts, thus being able to handle multiple-choice tasks in a more natural man-
ner. Another use case of contrastive classification will probably be multiclass
classification where it is hard to choose suitable label verbalizers.

Another area for future research could become imposing additional restric-
tions on prompt provider to increase interpretability of the output prompt.
Although they are practically efficient, they currently remain non-interpretable.

5 Conclusion

In this paper we propose a framework for continuous prompt tuning for the
Russian language. We use an RuGPT3 model and evaluate it on the Russian

40 N. Konodyuk and M. Tikhonova

SuperGLUE benchmark. In the experiments our method shows results compet-
itive with zero-shot and fine-tuning and even outperforms them on most of the
tasks. In addition, we explore the influence of the number of trainable LSTM
parameters and find out that it can be significantly reduced without any losses
in quality.

In the future we are planning to implement a contrastive classification app-
roach for CPT and apply the framework to other models, such as the RuT5 and
RuBERT models.

Acknowledgements. We would like to thank Sarah Caitlin Bennett for her help with
editing the paper and advice on the text structure.

References

1. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

2. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020)

3. Radford, A., Jeffrey, W., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

4. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: eliciting
knowledge from language models with automatically generated prompts. arXiv
preprint arXiv:2010.15980 (2020)

5. Reynolds, L., McDonell, K.: Prompt programming for large language models:
beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference
on Human Factors in Computing Systems, pp. 1–7 (2021)

6. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723 (2020)

7. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190 (2021)

8. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691 (2021)

9. Hambardzumyan, K., Khachatrian, H., May, J.: Warp: word-level adversarial repro-
gramming. arXiv preprint arXiv:2101.00121 (2021)

10. Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., Tang, J.: P-tuning v2: prompt tuning can
be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602 (2021)

11. Liu, X., et al.: GPT understands, too. arXiv preprint arXiv:2103.10385 (2021)
12. Shavrina, T., et al.: Russiansuperglue: a Russian language understanding evalua-

tion benchmark. arXiv preprint arXiv:2010.15925 (2020)
13. Wang, A., et al.: Superglue: a stickier benchmark for general-purpose language

understanding systems. arXiv preprint arXiv:1905.00537 (2019)
14. Shavrina, T., Shapovalova, O.: To the methodology of corpus construction for

machine learning: “taiga” syntax tree corpus and parser. In: Proceedings of
“CORPORA-2017” International Conference, pp. 78–84 (2017)

15. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: a multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2012.15723
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2010.15925
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1804.07461

	Continuous Prompt Tuning for Russian: How to Learn Prompts Efficiently with RuGPT3?
	1 Introduction
	2 Method
	3 Experiments
	3.1 Data
	3.2 Model
	3.3 Baselines
	3.4 Results
	3.5 Experiments with Different Number of Trainable Parameters

	4 Discussion
	5 Conclusion
	References

