
Learning to Generate Synthetic Training
Data Using Gradient Matching

and Implicit Differentiation

Dmitry Medvedev(B) and Alexander D’yakonov

Lomonosov Moscow State University, Moscow, Russia

dm.medvedev97@gmail.com

Abstract. Using huge training datasets can be costly and inconvenient.
This article explores various data distillation techniques that can reduce
the amount of data required to successfully train deep networks. Inspired
by recent ideas, we suggest new data distillation techniques based on gen-
erative teaching networks, gradient matching, and the Implicit Function
Theorem. Experiments with the MNIST image classification problem
show that the new methods are computationally more efficient than pre-
vious ones and allow to increase the performance of models trained on
distilled data.

Keywords: Data distillation · Gradient matching · Implicit
differentiation · Generative teaching network

1 Introduction

In machine learning, the purpose of data distillation [1] is to compress the origi-
nal dataset while maintaining the performance of the models trained on it. The
generalizability of the dataset is also needed. By this we mean the ability to
train models of architectures that were not involved in the distillation process.
Since training with less data is usually faster, distillation can be useful in prac-
tice. For example, it can be used to speed up a neural architecture search (NAS)
task. Acceleration is achieved through the faster training of candidates. In many
recent works [1,3,5–7], distillation is formulated as an optimization problem
with the objects of a new dataset as parameters for optimization. Therefore, to
distill the dataset for an image classification task, pixels of images have to be
optimized. First, all new objects are initialized with random noise, then these
objects are used to train a student (i.e., a randomly selected network). Then
the student misclassification loss is calculated on real data. Finally, a gradient
descent step is used to update the synthetic objects. Gradients can be calculated
by backpropagating the error through the entire student’s learning process. The
step of this procedure can be very time-consuming and memory-intensive, so
there is a need for an alternative. In [2], the authors use the Implicit Function

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Burnaev et al. (Eds.): AIST 2021, CCIS 1573, pp. 138–150, 2022.
https://doi.org/10.1007/978-3-031-15168-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15168-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-15168-2_12


Learning to Generate Synthetic Training Data 139

Theorem to solve the memory consumption problem. In [3], the data distilla-
tion problem has been reformulated to use gradient matching loss and speed
up the optimization of synthetic objects and reduce memory usage. There is an
alternative to optimizing the pixels of synthetic data. In [4], the authors suggest
to optimize parameters of the generator model (a generative teaching network
or GTN) to produce synthetic data from noise and labels. The disadvantage is
that the authors used backpropagation through the learning process for opti-
mization. Inspired by recent ideas in the field of data distillation, we propose
replacing it with gradient matching or with implicit differentiation to make the
procedure less computationally expensive. We have found that this allows not
only to reduce memory costs but also to create more efficient and generalizable
datasets. In addition, we investigate the use of augmentation in the distillation
procedure and in models’ learning on distilled data.

The paper is divided into 7 sections. We first analyse the first data distilla-
tion algorithm [1] and discuss its problems in Sect. 2. A brief description of the
algorithms for implicit differentiation [2] and gradient matching [3] can be found
in Sects. 3 and 4. Section 5 presents the generative teaching network architecture
that we use in our work. Section 6 contains the results of experiments with the
MNIST image classification benchmark. In Sect. 6.1 we compare the results of all
the described distillation methods, limiting the distillation time to a constant.
In Sects. 6.2 and 6.3 we show results of new distillation techniques when training
a generator with gradient matching and implicit differentiation, respectively. In
Sect. 6.4 we study the use of augmentation by distillation, and in Sect. 6.5 we
check the generalization of the data obtained with the new methods. Finally, we
present our findings in Sect. 7. The code can be found on our GitHub page.1

2 Backpropagation Through the Student’s Learning
Process

Let λ be teacher parameters. These can be either GTN network’s parameters,
or synthetic objects’ parameters (e.g. pixels of synthetic images). To update λ,
we must first train the student network θ on synthetic data, minimizing the task
specific loss LS (e.g. cross-entropy), and then get the loss on real data LT . To
take care of generalizability, student’s initialization goes from preset distribution
p(θ0). Afterall, the optimization problem for λ can be formulated as follows:

λ∗ := argmin
λ

Eθ0∼p(θ0)L∗
T , where (1)

L∗
T :=LT (θ∗(λ)), θ∗(λ) := argmin

θ
LS(λ, θ).

To resolve the first problem (1) we can calculate gradient of LT with respect
to λ to do the gradient descent step. In this work, we use cross-entropy loss as

1 https://github.com/dm-medvedev/EfficientDistillation.

https://github.com/dm-medvedev/EfficientDistillation


140 D. Medvedev and A. D’yakonov

LT and there is an explicit dependence only on θ and parameters of real data,
so ∂LT

∂λ = 0 and ∂L∗
T

∂λ = ∂LT
∂θ

∂θ∗

∂λ . Thus, the main part is the calculation of ∂θ∗

∂λ .
Where the dependence of θ∗ on λ comes from a student’s training procedure. The
first distillation algorithm was suggested in [1] and it is based on the assumption
that the student’s learning procedure is differentiable. This means that we can
backpropogate gradient through it. We will denote it as unroll. This algorithm
can be implemented using the Higher library [10]. It allows to backpropogate
through many optimizers, in our paper we use SGD with momentum [8]. This
distillation method is both time and space consuming. To perform a single step
of updating λ it is necessary to perform N student optimization steps, while all
intermediate results (copies of the student weights) must be stored in memory.
There is also a problem with the generalization of resulting synthetic dataset, the
performance of models whose architectures were not involved in the distillation
process is much lower. This negative effect can be mitigated by sampling the
initialization and student architecture.

Note that the procedure of student’s training on the resulting synthetic
dataset can be carried out in different ways. New data, parameterized with
λ, can be used as a single large batch or it can be split into several smaller
ones. This split can be useful to reduce memory consumption per training step.
Instead of random sampling of distilled objects, the authors of the original work
propose to attach each of them to a specific batch. These batches would have the
same order in each epoch. In our paper, we use the same schemes. Let ic (input
count) be the number of batches of the synthetic dataset, note that it must be
divisor of N . In our experiments we try limit values ic = 1 and ic = 10.

3 Implicit Differentiation

This method suggested in [2] is based on the Implicit Function Theorem:

Theorem 1 (Cauchy, Implicit Function Theorem). Let ∂LS
∂θ (λ, θ) : Λ ×

Θ → Θ, be a continuously differentiable function. Fix a point (λ
′
, θ

′
) with

∂LS
∂θ (λ

′
, θ

′
) = 0. If the Jacobian matrix ∂2LS

∂θ2 is invertible, then there exists
an open set U ⊆ Λ containing λ

′
such that there exists a unique continu-

ously differentiable function θ∗ : U → Θ, such that θ∗(λ
′
) = θ

′
and ∀λ ∈

U, ∂LS
∂θ (λ, θ∗(λ)) = 0. Moreover, the partial derivatives of θ∗ in U are given by

the matrix product:

∂θ∗

∂λ
(λ) = −

[
∂2LS
∂θ2

(λ, θ∗(λ))

]−1
∂2LS
∂θ∂λ

(λ, θ∗(λ)). (2)

So, if there was an efficient way to invert the matrix, we would simply
have used (2), after the student θ has reached a local minimum, assuming
∂LS
∂θ (λ, θ∗(λ)) ≈ 0. But the inversion operation is time costly, so the authors

used the approximation by the Neumann series taking the first few elements and
controlling convergence with a hyperparameter α (see (3)).



Learning to Generate Synthetic Training Data 141

The resulting algorithm (see Algorithm 1) has no problems with memory
consumption since there is no need to store copies of the student θ. And, despite
the several subsequent approximations, the experimental results show that the
method has a competitive performance (see Table 4). Note that grad in Algo-
rithm 1 denotes the dot product between the Jacobian of the given function
(func) at the given point (wrt) and a vector (vec). Another interesting detail
of this method is that there is no dependence on which optimizer is used to
train the student, and on the order (curriculum) of batches of synthetic data.
So, in our paper we only use a single large batch of synthetic data. The original
work [2] lacks a detailed description of the experimental results, so it can be
found in our paper (see Sect. 6.3). We used the open-source code2 as the basis
for the implementing the method.

[
∂2LS
∂θ2

(λ, θ∗(λ))

]−1

≈ α

N∑
j=0

[
I − α

∂2LS
∂θ2

(λ, θ∗(λ))

]j

. (3)

Algorithm 1. Distillation with implicit differentiation.
1: Input: teacher’s parameters λ, student’s initialization distribution p(θ0), the num-

ber of distillation epochs K, the number of student’s learning steps ζθ, real data
T , learning rate η.

2: for k = 1, ..., K do
3: BT ∼ T , θ ∼ p(θ0)
4: for n = 1, ..., ζθ do
5: θ −= η ∂LS(λ,θ)

∂θ

6: LT = ClassificationLoss(BT , θ)
7: v = ∂LT

∂θ
; p = v

8: for j = 1, ..., N do � N — number of elements in (3)
9: v −= α · grad

(
func = ∂LS

∂θ
,wrt = θ,vec = v

)

10: p += v

11: ∇λLT = −α · grad
(
func = ∂LS

∂θ
,wrt = λ,vec = p

)

12: Update(λ, ∇λLT ) � update with any optimizer
return λ

4 Gradient Matching

The gradient matching method (GM) was proposed in [3], and it solves a dif-
ferent problem than the general one (1). The main difference is that we want
not only to train the student θ to achieve a good performance on real data but
also to get such a solution as if it was trained on real data. To formulate this let
D(∇θLS ,∇θLT ) be the function of how close one tensor is to another.

2 https://github.com/AvivNavon/AuxiLearn.

https://github.com/AvivNavon/AuxiLearn


142 D. Medvedev and A. D’yakonov

The distance function D is just the sum (in our paper for GTN experiments
we used the mean) of the cosine distance functions for each student layer θl. Let
A and B be gradient tensors with respect to layer parameters. Let i be the index
of the output axis (e.g. for a convolutional layer this is the index of the output
channel). Ai and Bi are flat gradient vectors corresponding to each output ele-
ment indexed by i. The most interesting detail here is that the authors [3] suggest
to update λ after each step of student optimization, so now we don’t need to
wait until it reaches a local minimum, as it was before. The authors also propose
not to store student copies and to minimize D

(∇θLS(λ, θt−1),∇θLT (θt−1)
)

for
each step separately. So there is no backpropagation through optθ. Both of these
proposals make the gradient matching method very computational effective.

λ∗ = argmin
λ

Eθ0∼Pθ0

[ N−1∑
n=1

D
(∇θLS(λ, θn),∇θLT (θn)

)]
, where: (4)

D(∇θLS ,∇θLT ) =
L∑

l=1

d(∇θlLS ,∇θlLT ), d(A,B) =
dim(A)∑

i=1

(
1 − Ai · Bi

‖Ai‖‖Bi‖

)

Algorithm 2. Gradient matching.
1: Input: teacher’s parameters λ and synthetic objects S(λ), student’s initialization

distribution p(θ0), the number of distillation epochs K, the number of student’s
learning steps ζθ, real data T , learning rate ηθ, the number of inner loop steps N .

2: for k = 0, ..., K − 1 do
3: θ0 ∼ pθ0

4: for n = 0, ..., N − 1 do
5: BT ∼ T , BS ∼ S(λ)
6: LT = ClassificationLoss(BT , θn), LS = ClassificationLoss(BS , θn)
7: L(λ) = D(∇θLS(λ, θn), ∇θLT (θn))
8: Update(λ, ∇λL(λ))
9: θn+1 ← optθ(LS(λ, θn), ζθ, ηθ)

10: Output: λ

The peculiarity of this loss function is that the gradient of one synthetic
object depends on other objects from the same batch, because of a normalization
operation in the d equation (4). It makes the optimization problem harder and
can cause negative effects (see Table 2). So authors decided to distill objects
separately for each class. Note that the gradient matching is independent of the
student training optimization algorithm. There is only one assumption that the
direction should be based on the gradient. Another aspect is that the curriculum
(the order of the synthetic batches in the student’s learning procedure) can be



Learning to Generate Synthetic Training Data 143

learned with this distillation method. We used an open-source code3 as the
implementation of this method.

5 Generative Teaching Network

The idea first appeared in [4], where the authors suggested to use the generator
as the teacher λ. The input of the generator is a concatenation of noise and one
hot encoded label (for conditional generation). In the original paper, the authors
use backpropagation through the student’s learning process to train the genera-
tor, which is inconvenient for practical use due to high memory consumption, so
in our paper, we show that the same or even better results can be achieved more
efficiently by using gradient matching or implicit differentiation. Experimental
results in [4] show that using a generator can help to improve students’ perfor-
mance. In our paper, we check if we can improve distillation performance using
larger generators. Note that the size of the generator in our experiments is con-
trolled by the k hyperparameter (see Fig. 1). The generator consists of two linear
layers and two convolutional layers. The output size of the first layer is k. And
	k/2
 × width × height of picture is the output size of the second layer. 	k/4

is the number of output channels of the first convolution. Hereinafter, unless
otherwise indicated, we use the following notation: DD (Data Distillation) is a
distillation, when the parameters of the teacher λ are pixels of synthetic images,
and GTN is a distillation using a generator. Note that the generator has two
modes: GTN-rnd is a generator with random noise as input, (GTN-lrn) is a
generator with a learned input.

no
is

e
la

be
l

Li
ne

ar
 (d

, k
)

Li
ne

ar
 (k

, k
/2

 *
 w

id
th

 *
 h

ig
ht

)

C
on

v2
d 

(k
/2

, k
/4

)

C
on

v2
d 

(k
/4

, 1
)

Le
ak

yR
el

u

Le
ak

yR
el

u

Le
ak

yR
el

u

Ta
nh

Fig. 1. Generator’s architecture; k is a hyperparameter to control network’s size, d = 64
is a generator’s input.

6 Experiments

6.1 Distillation with Time Limit

The neural architecture search (NAS) is one of the most promising areas for
distillation and it is important to note that the time spent on distillation should
3 https://github.com/VICO-UoE/DatasetCondensation.

https://github.com/VICO-UoE/DatasetCondensation


144 D. Medvedev and A. D’yakonov

be added to the time spent on the NAS, this idea was also mentioned in the
review4 of [4]. So, in this section, we check the performance of all known dis-
tillation methods. We think that it is fair to distill the data by all methods for
the same limited time. We have chosen a time limit of ≈15 min, and it is based
on common sense and the time spent on the NAS in similar experiments [3].
Note that this limit may not be accurate, as the distillation takes an integer
number of steps, where each step takes a non-deterministic time. To check the
performance we use the following scheme. First we train teacher λ with three
restarts. The number of steps is determined by the time limit indicated above.
Then, to get the final results we train five randomly initialized students θ for
each of the three teachers. Each student’s training takes 1000 optimization steps.
In our work we use the MNIST [9] benchmark and make the same preparations
as in [4]. We extract part of the training data for validation (10 thousand images)
and use it to get the best teacher hyperparameters. We use |BT | = 256 batch
size of training data. For the most of our experiments we use ConvNet [12] as
a student. As student’s optimizer we use SGD with momentum with the same
parameters as suggested in [3]. We use the same teacher optimizers as in the orig-
inal papers [1,3,4]. The volume of synthetic data can be controlled by the ipc
(images per class) parameter. For each table in this paper, the largest numbers
in the column are shown in bold.

Table 1. The mean and standard deviation of test accuracy for different distillation
algorithms.

Method + Teacher Accuracy Params GPU (MiB)

GM + DD (K = 60, ζθ = 50) 94.9 ± 0.1 78.4 K ≈2390

Unroll + DD (ic = 1) 88.4 ± 0.3 78.4 K ≈4432

Unroll + DD (ic = 10) 79.2 ± 0.7 784 K ≈4426

Unroll + GTN-lrn (ic = 1) 92.0 ± 0.3 1.646 M ≈4480

Unroll + GTN-lrn 91.6 ± 0.5 (ic = 10) 1.704 M ≈4480

Unroll + GTN-rnd 91.7 ± 0.3 1.640 M ≈4480

Table 1 shows the mean and standard deviation of test accuracy, reached by
students trained on distilled data. Note that there is only one difference from
previous works: we use time limit for each distillation procedure, so there is a
degradation in performance. For this experiment, we use K = 1000, N = 10 as
default hyperparameters values. To check the memory consumption we use a
special tool,5 which can measure the GPU memory usage. Note that using of
the unroll distillation procedure consumes memory the most. The third column
shows the number of teacher parameters, and although GTN (k = 64) is twice
as large as DD, there is not much difference in memory usage.
4 https://openreview.net/forum?id=HJg ECEKDr.
5 https://pytorch.org/docs/stable/cuda.html#torch.cuda.max memory reserved.

https://openreview.net/forum?id=HJg_ECEKDr
https://pytorch.org/docs/stable/cuda.html#torch.cuda.max_memory_reserved


Learning to Generate Synthetic Training Data 145

6.2 Training Generator with Gradient Matching

In this section we explore the use of the gradient matching to train the teacher
generator. We first check the hyperparameters for this distillation method. N
controls the frequency of the student’s reinitialization, ζθ controls the speed
at which the teacher’s parameters are updated. Figure 2 (a–d) shows the non-
trivial relationship between performance and the hyperparameter choice. We
assume that such a dependence can be caused by the time limit and the fact that
increasing the values of these hyperparameters may cause longer convergence.
Note that in previous works [1,3,4] where no time limit was used, increasing ipc
always resulted in better performance.

Fig. 2. Dependence of student’s performance and hyperparameters of distillation pro-
cedure. Next parameters used as default: ipc = 10, ic = 1, N = 10, ζθ = 10, k = 64.

Table 2. Mean and standard deviation of test accuracy for different distillation algo-
rithms.

Method + Teacher Accuracy Params GPU (MiB)

GM + DD 95.6 ± 0.1 78.4 K ≈2390

GM + DD (not per class) 86.9 ± 1.5 78.4 K ≈2370

GM + GTN-lrn 95.2 ± 0.1 1.646 M ≈2454

GM + GTN-lrn (not per class) 93.4 ± 0.3 1.646 M ≈2434

Figure 2 (e) shows that the fixation of the generator input is really important
for gradient matching distillation because teacher training (optimization of λ)
diverges when using random input. Another important aspect mentioned above



146 D. Medvedev and A. D’yakonov

Table 3. Mean and standard deviation of test accuracy for different distillation algo-
rithms.

Method + Teacher Accuracy Params GPU (MiB)

GM + GTN-lrn (k = 16, ipc = 100) 94.2 ± 0.4 172.2 K ≈4192

GM + GTN-lrn (k = 32, K = 50) 95.9 ± 0.2 449.7 K ≈3610

GM + GTN-lrn (K = 50) 96.4 ± 0.1 1.672 M ≈3640

GM + GTN-lrn (k = 128, K = 50) 96.8 ± 0.1 6.533 M ≈3770

GM + GTN-rnd (ipc = 10, K = 110) 29.0 ± 6.1 1.640 M ≈2454

is that the gradient must be calculated per class. Table 2 shows the results for
per class case and not. It seems that per class distillation gives significantly
better results. Figure 2 (f) shows the accuracy achieved with data distilled with
generators of different sizes (marked with different k), and without a generator
(DD). This plot depicts the dependency between the number of synthetic images
per class (ipc) and student’s performance on a test set. It seems that the correct
size selection for the generator allows to get a better performance. More detailed
results can be found in Tables 2 and 3. For experiment in Table 2, we use ipc =
10, ic = 1, N = 10, K = 110, ζθ = 10 and k = 64 for GTN as default
hyperparameters values. For experiment in Table 3, we use k = 64, ipc = 50,K =
35, N = 10, and ζθ = 10. Tables 2 and 3 show the GPU memory usage. It seems
that ipc has a greater impact on memory usage than k, which is another benefit
of using GTN. Note that the memory usage can be reduced by changing the ic
value to optimize more synthetic images using smaller batches. Note that such
a change can slow down the convergence.

6.3 Distillation with Implicit Differentiation

Fig. 3. The relation of the distillation method’s hyperparameters and test performance.
We use as default: ipc = 10, N = 10, ζθ = 10, and k = 64.

The method was proposed in [2], and we will abbreviate it as IFT (Implicit Func-
tion Theorem). As mentioned above (see Sect. 3), there is no detailed description
of the results in the original paper, so they can be found in this section. Figure 3
(a–c) shows the relationship between the hyperparameters of the distillation



Learning to Generate Synthetic Training Data 147

method and the student’s performance on the test. We assume that these results
can be explained by the fact that increasing the values of these hyperparameters
decreases the frequency of λ update, which negatively affects the performance.
The only exception is ζθ.

Figure 3 (d) shows results for distillation using a generator with the random
input (GTN-rnd). Such a generator can produce as much data as we need, but
it can not converge when trained with gradient matching. It seems that such
distillation becomes possible using implicit differentiation.

Table 4 shows the best results for each method. For this experiment, we use
K = 1080, ζθ = 50, ipc = 10, and N = 10 as default hyperparameters values.
The performance seems to be the same or even better compared to backpropa-
gation through the training procedure unroll (see Table 1). Note the difference
in memory usage in both tables. Also note that the implicit differentiation dis-
tillation is inferior to the gradient matching distillation.

We think this may be connected with the difference in the frequency of λ
update. To do one update using IFT, we first have to train the student, which is
not needed in case of GM. It is also important to note that this method is very
sensitive to α and ζθ, and in some DD cases it starts to diverge after several
iterations. Meanwhile the use of GTN makes the procedure more stable and
allows for a more generalizable dataset (see Table 6).

Fig. 4. Synthetic images for MNIST classification task obtained with different dis-
tillation methods: a) GM+DD, b) IFT+DD, c) GM+GTN-lrn, d) IFT+GTN-lrn, e)
GM+GTN-rnd, f) IFT+GTN-rnd. We use the same hyperparameters as mentioned in
Table 5. Hyperparameters for GM+GTN-rnd are described in caption of Table 4.



148 D. Medvedev and A. D’yakonov

Table 4. Mean and standard deviation of test accuracy for different distillation algo-
rithms.

Method + Teacher Accuracy Params GPU (MiB)

IFT + DD (K = 500) 93.5 ± 0.5 78.4 K ≈2726

IFT + GTN-lrn (ζθ = 10) 92.4 ± 0.2 1.646 M ≈2726

IFT + GTN-rnd (ζθ = 10) 90.9 ± 0.3 1.640 M ≈2726

Figure 4 shows part of the final synthetic dataset for GM (see a, c and e)
and IFT (see b, d and f). The greatest difference is obtained when data distilled
without a generator (see a, b). Synthetic data obtained using implicit differen-
tiation looks less realistic and therefore can be used for federative learning [13].
Also note that the images distilled using a generator are more contrast.

6.4 Distillation with Augmentation

In previous works, augmentation has been used in different ways. In [4] it takes
place during distillation (let’s call it train augmentation) by applying transfor-
mations to real images BT . In [1,3] it is used when teaching student on syn-
thetic data (let’s call it test augmentation). In our study, we decided to compare
augmentation techniques. Table 5 shows the test performance for various distil-
lation and augmentation techniques. It seems that for the MNIST classification
problem only test augmentation gives improvements (see Tables 2, 3, 4). To
augment images we use random crop and rotation. For this experiment, we use
K = 1080, ipc = 10, ζθ = 10, and N = 10 as default hyperparameters values.

Table 5. The mean and standard deviation of test accuracy for different distillation
algorithms and different augmentations.

Method + Teacher Test Aug. Train Aug. Test + Train Aug.

GM+DD (ic = 1, K = 110) 96.1± 0.4 94.8± 0.1 93.9± 0.5

GM+GTN-lrn (k = 128, ipc = 50, K = 50) 97.4 ± 0.1 96.2 ± 0.2 95.5 ± 0.4

IFT+DD (ζθ = 50, K = 500) 92.3± 0.9 91.4± 0.5 89.2± 1.5

IFT+GTN-lrn 93.0± 0.2 91.4± 0.3 91.4± 0.4

IFT+GTN-rnd 92.2± 0.3 89.7± 0.3 90.9± 0.6

6.5 Generalizability

The generalization problem of distilled data was first mentioned in [1] and then
studied in [4] and [7].



Learning to Generate Synthetic Training Data 149

Table 6. The mean and standard deviation of test accuracy for different distillation
algorithms and student’s architectures.

Method + Teacher LeNet AlexNet VGG11 MLP

GM+DD 94.1 ± 0.6 95.0 ± 0.2 95.8 ± 0.3 88.6 ± 0.4

GM+GTN-lrn 95.5 ± 0.3 96.7 ± 0.2 97.4 ± 0.1 86.8 ± 0.3

IFT+DD 74.0 ± 7.8 68.6 ± 8.9 86.5 ± 1.6 50.9 ± 8.3

IFT+GTN-lrn 91.5 ± 1.0 82.5 ± 14.9 93.0 ± 0.4 79.9 ± 0.6

IFT+GTN-rnd 88.3 ± 2.3 85.3 ± 3.9 92.1 ± 0.4 74.4 ± 1.1

The problem is that such data can’t guarantee convergence for students which
didn’t participate in the distillation procedure. And this problem is of great
importance, since the main practical use of synthetic data is the NAS. For this
experiment, we use K = 1080, ipc = 10, ζθ = 10, and N = 10 as default hyper-
parameters values. Table 6 shows the results of students with different architec-
tures trained on data distilled with different methods. For distillation we used
ConvNet student’s architecture, all results were obtained with test augmenta-
tion. It seems that the best generalizability can be obtained using GTN and
GM. For a comparison with ConvNet see the second column of Table 5.

7 Conclusion

This work explores all the latest ideas in dataset distillation field suggested in [1–
4]. We honestly compared the performance of all known methods, limiting their
running time. We also proposed new methods based on the joint use of gener-
ators and memory efficient methods. Experiments with the MNIST benchmark
show that selecting the correct size for the generator allows to achieve better
performance for gradient matching distillation, and improves the generalizabil-
ity of implicit differentiation distillation. This paper also presents the results of
augmentation impact on distillation. We also provide a detailed description of
the experimental results for implicit differentiation distillation, as we could not
find them in the original work [2]. As future work, we would like to experiment
with much more diverse datasets and architectures. We also want to improve the
distilled data generalizing ability using stochastic depth networks [11]. We are
also interested in experiments with bringing the distribution of synthetic objects
closer to the original one.

Acknowledgments. This research has been supported by the Interdisciplinary Scien-
tific and Educational School of Moscow University “Brain, Cognitive Systems, Artificial
Intelligence”.

References

1. Wang, T., Zhu, J., Torralba, A., Efros, A.A.: Dataset distillation. CoRR
arXiv:1811.10959 (2018)

http://arxiv.org/abs/1811.10959


150 D. Medvedev and A. D’yakonov

2. Lorraine, J., Vicol, P., Duvenaud, D.: Optimizing millions of hyperparameters by
implicit differentiation. CoRR arXiv:1911.02590 (2019)

3. Zhao, B., Mopuri, K.R., Bilen, H.: Dataset condensation with gradient matching.
CoRR arXiv:2006.05929 (2020)

4. Such, F.P., Rawal, A., Lehman, J., Stanley, K.O., Clune, J.: Generative teaching
networks: accelerating neural architecture search by learning to generate synthetic
training data. CoRR arXiv:1912.07768 (2019)

5. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter opti-
mization through reversible learning. CoRR arXiv:1502.03492 (2015)

6. Sucholutsky, I., Schonlau, M.: Soft-label dataset distillation and text dataset dis-
tillation. CoRR arXiv:1910.02551 (2019)

7. Medvedev, D., D’yakonov, A.: New properties of the data distillation method when
working with tabular data. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020.
LNCS, vol. 12602, pp. 379–390. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72610-2 29

8. Polyak, B.: Some methods of speeding up the convergence of iteration methods.
USSR Comput. Math. Math. Phys. 4, 1–17 (1964)

9. MNIST Handwritten Digit Database. http://yann.lecun.com/exdb/mnist/.
Accessed 17 Apr 2021

10. Grefenstette, E., et al.: Generalized inner loop meta-learning. CoRR
arXiv:1910.01727 (2019)

11. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger K.: Deep networks with stochas-
tic depth. CoRR arXiv:1603.09382 (2016)

12. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting.
CoRR arXiv:1804.09458 (2018)

13. Zhou, Y., Pu, G., Ma, X., Li, X., Wu, D.: Distilled one-shot federated learning.
CoRR arXiv:2009.07999 (2020)

http://arxiv.org/abs/1911.02590
http://arxiv.org/abs/2006.05929
http://arxiv.org/abs/1912.07768
http://arxiv.org/abs/1502.03492
http://arxiv.org/abs/1910.02551
https://doi.org/10.1007/978-3-030-72610-2_29
https://doi.org/10.1007/978-3-030-72610-2_29
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1910.01727
http://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1804.09458
http://arxiv.org/abs/2009.07999

	Learning to Generate Synthetic Training Data Using Gradient Matching and Implicit Differentiation
	1 Introduction
	2 Backpropagation Through the Student's Learning Process
	3 Implicit Differentiation
	4 Gradient Matching
	5 Generative Teaching Network
	6 Experiments
	6.1 Distillation with Time Limit
	6.2 Training Generator with Gradient Matching
	6.3 Distillation with Implicit Differentiation
	6.4 Distillation with Augmentation
	6.5 Generalizability

	7 Conclusion
	References




