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Abstract. We present a graphical representation that allows us to easily
determine if a certain modal function is or is not a polymorphism of a
given relation. While doing so, we provide a comparison between two
ways (a calculative and a diagrammatic one) to analyze a claim about
the Sheferness criterion in the theory of clones of (S5) modal functions.
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1 Introduction

We exhibit a rather complex logical/mathematical problem involving calcula-
tions that are pretty laborious when done by ordinary means, but which can be
readily seen using diagrams.

In his excellent paper ‘On functional completeness in the modal logic S5’ [8]
the Moldavian logician M. F. Ratsa commits a slight imprecision: he claims that
a certain formula (f21) is an example of an exclusive polymorphism (in a sense
to be defined precisely) of a certain relation (R21). We use an extension of the
technique presented in an earlier paper [5] in order to show that his claim is
incorrect (the technique is not necessary but, as we expect to show, useful), and
we provide an alternative formula.

We start by giving an interpretation of S5 formulas as operations on n-
dimensional cubes (we will focus on n ≤ 4); then we define the relation expressed
by a formula. Next, we define the notion of polymorphism of a relation, after
giving a list of relations whose polymorphisms are maximal clones of modal
operations. All these notions and results can be found in [8].

We then proceed to the elaboration and refutation of the claim about f21,
and we finish our paper presenting the above-mentioned alternative formula. We
try to keep this material self-contained, but acquaintance with [5] can be helpful
while interpreting the diagrams presented here.

2 Modal Formulas as Operations on Cubes

Following Ratsa, we will associate formulas of propositional S5 to operations
on the structures A1, A2, and A3 (cf. Fig. 1). We can think of each An as an
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n-dimensional cube or (using the familiar notion of a proposition as a set of
possible worlds) as the set of all propositions in a model with n possible worlds.

An interesting way to interpret the structures An is thinking of them as the
set of all bitstrings (i.e. sequences of 0’s and 1’s) of length n (cf. [2]). In fact,
the bitstrings of length n can be seen as a sort of characteristic function of
the propositions in the models with n possible worlds; e.g. in the model with
two possible worlds the necessary proposition will be characterized as 11, the
contingent propositions as 10 and 01, and the impossible proposition as 00.

One advantage of thinking of propositions as bitstrings is that it is simple
to define how boolean (and modal) operations behave on bitstrings, and if we
wish we can translate these definitions back into the more philosophical realm
of propositional operations.

The boolean operations on bitstrings can be defined in terms of bitwise
(usual) boolean operations. Let B = b1, ..., bn and S = s1, ..., sn be bitstrings of
length n. We define the bitstring negation ¬B as the bitstring whose terms are,
respectively, ¬b1, ...,¬bn; and we define the bitstring conjunction B ∧ S as the
bitstring whose terms are, respectively, b1 ∧ s1, ... , bn ∧ sn. The modal operator
� has the rule: �B = B if B has 1 in every bit, otherwise �B = the bitstring
of same length as B which has 0 in every bit.

Since we are here dealing with Ratsa’s results, we also present the names he
uses to refer to the elements of the structures A1, A2, and A3. The elements of
A1 he calls simply 1 and 0. As for the elements of A2: 1 stands for 11, ρ stands
for 10, σ stands for 01, and 0 stands for 00. For A3: 1 stands for 111, ω stands
for 110, ν stands for 101, σ stands for 011, ρ stands for 100, μ stands for 010,
ε stands for 001, and 0 stands for 000. Ratsa also has names for the elements
of A4 but, since we will not enter into details about A4 here, we will omit them.

On top of all that, we decided (cf. Fig. 1) to give colors to the elements of
each structure! The choice of colors is quite arbitrary, but we tried to organize
them. The colorful colors in A3 are arranged almost like a rainbow, going from
infrared to ultraviolet. The choice of black for 0 was suggested by the fact that
the RGB code for black is (0, 0, 0). This use of colors allows us to represent
operations over these structures (cf. Figs. 2 and 3).

Fig. 1. Structures A1, A2, and A3
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Fig. 2. A1, A2, and A3 under the effect of ¬. It is helpful to notice that the comple-
mentary elements of each structure (other than 0 and 1) have names that are either
graphically similar (ω, ε / σ, ρ) or phonetically similar (ν, μ).

Fig. 3. The graph representation of a binary operation on a structure A is a function
from the edges of the complete bipartite graph whose parts are copies of A to the
elements of A. We ‘abbreviate’ this representation by giving colors to the elements
of A and to the edges themselves. Here we see the action of ∧ over (A1)

2, (A2)
2, and

(A3)
2. Much of the work done in this paper uses these graphs; most of the explanations

on the graphs are given in the captions following their figures.
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3 Modal Formulas as Relations on Cubes

For any formula φ(p1, ..., pn) of propositional S5, and any m-dimensional cube
Am, we can think of the Am-relation expressed by φ as the set of n-tuples
〈t1, ..., tn〉 ∈ (Am)n such that φ(t1, ..., tn) = 1. For instance, the formula p � q
expresses the A1-relation of difference {〈0, 1〉, 〈1, 0〉} (it also represents the rela-
tion of complementarity for every A – cf. Fig. 8). Also, the formula p → q
expresses the A1-relation less than or equal to {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}. To give
an example involving modality and a bigger cube, we note that the formula
p ↔ �q expresses the A2-relation {〈0, 0〉, 〈0, ρ〉, 〈0, σ〉 〈1, 1〉}. We give plenty of
other examples in the next section.

4 Ratsa’s Relations

The relations presented in this section (together with a pair of relations on A4,
omitted here for the sake of simplicity) constitute a functional completeness
criterion for sets of operations of propositional S5. The proof of this fact is
beyond the scope of this paper (details can be checked in [8] or in [4]), but some
elaboration on it will be found in the next sections.

We start by considering some A1-relations. Here E4(p, q, r, s) means: there is
an even number of truths among p, q, r, s (a definition of E4 in terms of the
usual connectives is: E4(p, q, r, s) =df (p ↔ q) ↔ (r ↔ s)). When defining a
relation, we simply state a formula that expresses it. There is a correspondence
between relations and matrices, to be clarified in the next section.

R0 =df ¬p,R1 =df p,R2 =df p � q,R3 =df p → qR4 =df E4(p, q, r, s).

The corresponding A1-matrices are:

M0 =
[
0
]

M1 =
[
1
]

M2 =
[
0 1
1 0

]

M3 =
[
0 0 1
0 1 1

]

M4 =

⎡

⎢
⎢
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1

⎤

⎥
⎥
⎦

We proceed to consider some A2-relations. Here 	p reads ‘it is contingent
that p’ and is defined as ♦p ∧ ♦¬p; 
p reads ‘it is rigid that p’ and is defined as
¬ 	 p; 	+p reads ‘it is contingently true that p’ and is defined as 	p ∧ p; 	−p
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reads ‘it is contingently false that p’ and is defined as 	p ∧ ¬p; ¬ 	− p reads ‘it
is not contingently false that p’; ¬ 	+ p reads ‘it is not contingently true that
p’. (Roderick Batchelor devised this notation for the more exotic unary modal
functions. See [1].)

R5 =df 	−p, R6 =df ¬ 	− p, R7 =df 	p, R8 =df �(p ↔ �q), R9 =df

�(p ↔ ♦q), R10 =df (�p ∧ q) ∨ (¬♦p ∧ ¬q), R11 =df �(p ↔ �q) ∨ �(p ↔ ♦q),
R12 =df �(p ↔ �q) ∨ �(¬p ↔ ♦q), R13 =df �(¬p ↔ �q) ∨ �(p ↔ ♦q),
R14 =df �(	+p ↔ 	+q), R15 =df 
p ↔ 
q, R16 =df (p ↔ q) ∨ (	p ↔ 	q),
R17 =df 
p ∨
q, R18 =df 
p ∧ 
r ∧ ((p ↔ r) ∨
q), R19 =df 
p∧ 
r ∧ ((p ↔
r) ∨ 	q).

The corresponding A2-matrices are:

M5 =
[
ρ
]

M6 =
[
0 σ 1

]

M7 =
[
ρ σ

]

M8 =
[
0 0 0 1
0 ρ σ 1

]

M9 =
[
0 1 1 1
0 ρ σ 1

]

M10 =
[
0 0 1 1
0 ρ σ 1

]

M11 =
[
0 0 0 1 1 1
0 ρ σ ρ σ 1

]

M12 =
[
0 0 0 0 1 1
0 ρ σ 1 0 1

]

M13 =
[
0 0 1 1 1 1
0 1 0 ρ σ 1

]

M14 =
[
0 0 ρ σ 1 1
0 1 ρ σ 0 1

]

M15 =
[
0 0 ρ ρ σ σ σ 1 1
0 1 ρ σ ρ ρ σ 0 1

]

M16 =
[
0 ρ ρ σ σ 1
0 ρ σ ρ σ 1

]

M17 =
[
0 0 0 0 ρ ρ σ σ 1 1 1 1
0 ρ σ 1 0 1 0 1 0 ρ σ 1

]

M18 =

⎡

⎣
0 0 0 0 0 0 1 1 1 1 1 1
0 0 ρ σ 1 1 0 0 ρ σ 1 1
0 1 0 0 0 1 0 1 1 1 0 1

⎤

⎦
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M19 =

⎡

⎣
0 0 0 0 0 0 1 1 1 1 1 1
0 ρ ρ σ σ 1 0 ρ ρ σ σ 1
0 0 1 0 1 0 1 0 1 0 1 1

⎤

⎦

Finally, we consider the A3-relations corresponding to the following matrices.
We do not have S5 formulas expressing these relations.

M20 =
[
0 ρ μ ν σ 1

]

M21 =
[
0 ρ μ ε ω ν σ 1
0 σ σ σ ρ ρ ρ 1

]

M22 =
[
0 ρ μ ε ω ν σ 1
0 ρ ν ω ε μ σ 1

]

M23 =
[
0 ρ μ ε ω ν σ 1
0 σ ω ν μ ε ρ 1

]

5 Polymorphisms and Counter-Polymorphisms

We say that an n-ary operation f(p1, ..., pn) is a polymorphism of an m-ary
A-relation R if for every αij(i = 1, ...,m; j = 1, ..., n) ∈ A:
if

R(α11, α21, ..., αm1) ∧ R(α12, α22, ..., αm2) ∧ ... ∧ R(α1n, α2n, ..., αmn)

then

R(f(α11, α12, ..., α1n), f(α21, α22, ..., α2n), ... , f(αm1, αm2, ..., αmn)).

In this definition, the relation R can be replaced by a matrix M whose
columns are the m-sequences of elements of A satisfying R (say, arranged in
the ‘alphabetical’ order induced by the order: 0, ρ, μ, ε, ω, ν, σ, 1). We say that a
matrix M ′ is a submatrix of a matrix M if all columns of M ′ are columns of M .
If M ′ is a submatrix of M we may write M ′ ⊆ M . Given an n-ary formula f and
a matrix M with n columns, by f(M) we mean the column generated applying
f in each row of M . If c is a column of matrix M we may write c ∈ M (or, if
that is not the case, c /∈ M). Using these notions, the above definition can be
restated (equivalently, but perhaps more clearly) as follows:

A formula f is a counter-polymorphism of matrix M if there is an M ′ ⊆ M
such that f(M ′) /∈ M .

A formula f is a polymorphism of matrix M if f is not a counter-
polymorphism of M . If f is a polymorphism of M , we may write f ∈ Pol(M).

Given a formula f and a family of relations R∗ = 〈R1, ..., Rk〉, the polymor-
phic profile of f w.r.t. R∗ is the k-tuple whose i-th term is 1 if f ∈ Pol(Ri), and
0 otherwise. We say that f is an exclusive polymorphism of Ri (w.r.t. R∗) if the
polymorphic profile of f has a single occurrence of 1, in its i-th place.
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Let R∗ be the family of the relations in Sect. 4 supplemented by the omitted
A4-relations R24 and R25. Ratsa established that a set of modal operations F
is functionally complete (i.e. sufficient to define every modal operation) if, for
every relation r ∈ R∗ there is an operation f ∈ F such that f /∈ Pol(r).

In the reminder of this paper we only consider the family of relations pre-
sented in Sect. 4, so when we say the polymorphic profile of f we mean the
polymorphic profile of f w.r.t. the family of relations in Sect. 4.

6 Diagrams for Polymorphisms and Counter-
Polymorphisms on A1

In this section we consider a simpler version of the diagrams that will be pre-
sented in the end of this paper. In Figs. 4 and 5 we consider the polymorphic
profile of the functions ∧ and ↓ w.r.t. the relations R0 – R4. These are the
relations whose sets of polymorphisms are precisely the pre-complete systems of
two-valued functions, determined by Emil Post in [7].

Fig. 4. The action of ∧ on (A1)
2 (on the left) and its polymorphic profile (on the right).

We can see that ∧ is a polymorphism of R0 since the line connecting the black nodes
in the left part is black; it is also a polymorphism of R1 since the line connecting the
white nodes in the left part is white; it is a counter-polymorphism of R2 since, as the
figure indicates 0∧1 = 0 and 1∧0 = 0, i.e. we can use arguments which are different to
get values that are equal; it is a polymorphism of R3, as the absence of lines connecting
the copies of M3 indicates, and is a counter-polymorphism of R4, since (as indicated)
with ∧ we can construct, using arguments in M4, a column of values that is not in M4.
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Fig. 5. ↓ and its polymorphic profile. It is well known that Peirce’s arrow is a function in
terms of which every other truth-function can be defined. This follows immediately from
the fact that it is a counter-polymorphism of all relations R0 – R4, which characterize
the maximal pre-complete systems of truth-functions.

7 Ratsa’s Alleged Exclusive Polymorphism

Ratsa claims that a certain formula (which we call f21) is an exclusive poly-
morphism of the relation R21 (or, what is the same, of the matrix M21). He is
interested in such a formula because it helps him to prove that his criterion for
determining if a single function is functionally complete (i.e. if it is a Sheffer
function for S5) is as good as it can be (cf. [8], p. 278).

To properly present Ratsa’s formula, we introduce some preliminary notions
(which are interesting in themselves). We start by defining the straightforward
propositional relations of independence, connection, compatibility, and incompat-
ibility :

Ind(p, q) =df ♦(p ∧ q) ∧ ♦(p ∧ ¬q) ∧ ♦(¬p ∧ q) ∧ ♦(¬p ∧ ¬q).
Con(p, q) =df ¬Ind(p, q).
Comp(p, q) =df ♦(p ∧ q).
Incomp(p, q) =df ¬♦(p ∧ q).

It is interesting to notice that for Ai(i ∈ {1, 2, 3}) the Ai-relation expressed
by Ind(p, q) = ∅. In order to find a pair of independent propositions, we need
to resort to A4 (this fact is noted w.r.t. bitstrings in [2], except that what we
call independence is there called unconnectedness. In their terminology: ‘uncon-
nectedness requires bitstrings of length at least 4’).

Since the compatibility relation will be significant in our next definition,
we give an explicit characterization of its A3-instances, from which the other
instances may be derived. We start the characterization by listing some compat-
ible elements of (A3)2: 〈μ, ω〉, 〈μ, σ〉, 〈ε, ν〉, 〈ε, σ〉, 〈ν, ω〉, 〈ν, ρ〉, 〈ν, σ〉, 〈ω, ρ〉, 〈ω, σ〉
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and we finish it by noticing that everything different from 0 is compatible with
1 and with itself, and that compatibility is a symmetric relation.

The modal profile of a pair of propositions p, q is the 4-tuple Modpro(p, q) =df

〈Comp(p, q), Comp(p,¬q), Comp(¬p, q), Comp(¬p,¬q)〉.
To present f21 we need to introduce some formulas used in its definition.

S(p, q) =df �(p ∨ q) ∨ �(p → q) ∨ �(q → p).
V (p, q) =df S(p, q) ∧ S(p,¬q) ∧ S(¬p, q) ∧ S(¬p,¬q).

S ‘says’ that p and q are connected even if we disregard its (possible) incom-
patibility (or equivalently: there is at least one 0 in the last three entries of
Modpro(p, q)), while V ‘says’ that p and q are strongly connected, i.e., either (at
least) one of them is rigid, or they are both contingent but then either �(p ↔ q)
or �(p � q) (this is equivalent to say that sum of the terms of Modpro(p, q) is
less than 3).

Ratsa’s formula is:

f21 = (V (p, q) → ((p → q) ∧ ¬�q)) ∧ (((p ↔ S(p, q)) ∧ (q → S(p, q))) ∨ V (p, q)).

To see that this is not an exclusive polymorphism of R21 it is enough to notice
that it is not a polymorphism of R21. This is obvious given that {〈ρ, σ〉, 〈μ, σ〉} ⊆
R21 and f21(ρ, μ) = ε, f21(σ, σ) = 1 and that 〈ε, 1〉 /∈ R21. This last claim can
perhaps be more easily checked by considering Fig. 10, where we present the
action of f21 over A1, A2, and A3, and its polymorphic profile.

8 Moody Truth-Functions

The definition in this section is essentially the same found in [3], p. 35. Recall
the definition of Modpro, given in the last section.

The moody truth-functional representation of a binary modal operation f is
a sequence of eight binary truth-functions 〈f1, f2, f3, f4, f5, f6, f7, f8〉, together
with the proviso:

if Modpro(p, q) = 〈1, 1, 1, 1〉, apply f1;
if Modpro(p, q) = 〈1, 1, 1, 0〉 or 〈0, 0, 0, 1〉, apply f2;
if Modpro(p, q) = 〈1, 1, 0, 1〉 or 〈0, 0, 1, 0〉, apply f3;
if Modpro(p, q) = 〈1, 0, 1, 1〉 or 〈0, 1, 0, 0〉, apply f4;
if Modpro(p, q) = 〈0, 1, 1, 1〉 or 〈1, 0, 0, 0〉, apply f5;
if Modpro(p, q) = 〈1, 1, 0, 0〉 or 〈0, 0, 1, 1〉, apply f6;
if Modpro(p, q) = 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉, apply f7;
if Modpro(p, q) = 〈1, 0, 0, 1〉 or 〈0, 1, 1, 0〉, apply f8.

Since we are here ignoring A4, when using moody truth-functions, we will
restrict ourselves to the 7-tuples corresponding to f2 − f8.

We claim that the operation expressed by 〈�,∧,↔, ↑,∧, ↓,→〉 is an exclusive
polymorphism of R21. We support our claim with Fig. 11 and with the captions
of the figures preceding it.
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Fig. 6. The projection of the first argument (π2
1) is a universal polymorphism. We take

advantage of the space left by the absence of counter-polymorphisms of this operation
to present the framework we are working with. On the right side of this figure you can
see (pairs of) the translation into colors (following Fig. 1) of the relations presented in
Sect. 6.
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Fig. 7. The negation of the second argument ¬π2
2 over A1, A2 and A3 and its polymor-

phic profile. Notice that the counter-polymorphisms are indicated by horizontal lines
connecting relevant columns of the matrices. Notice also that the polymorphic profile
of ¬π2

2 w.r.t. R0 – R4 (0, 0, 1, 0, 1) is complementary of that of ∧ (1, 1, 0, 1, 0) (cf.
Fig. 4).
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Fig. 8. This graph represents the action of �. It is interesting that the white lines on
the left side represent precisely the relation of complementarity in the structures A1,
A2 and A3.
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Fig. 9. This is the representation of the very well known (boolean) operation ↑ (the
Sheffer stroke). Notice that it is an exclusive polymorphism of R10.
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Fig. 10. f21 over A1, A2 and A3 and its polymorphic profile.
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Fig. 11. 〈�, ∧, ↔, ↑, ∧, ↓, →〉 is an exclusive polymorphism of M21.
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9 Conclusion

We are glad to give an exoteric presentation of a somewhat esoteric result, and
we hope that this paper is not too enigmatic. We believe that the techniques
presented here are also useful in the investigations on clones of k-valued functions
(cf. [6]) and we expect to give some new results on this matter soon.
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