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Preface

The 13th International Conference on Theory and Application of Diagrams (Diagrams
2022) was held at the Sapienza University of Rome during September 13–17, 2022.
The conference was co-located with the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2022).

After two years of online conferences, Diagrams 2022 was planned from the begin-
ning as a fully physical event. While this added additional uncertainty to the orga-
nization, we envisioned that a physical event would foster natural collaboration and
communication among researchers in the Diagrams community more strongly.

Submissions to Diagrams 2022 were solicited in the form of long papers. short
papers, posters, and abstract submissions. Each submission received at least three peer
reviews. Afterwards, the authors were given the opportunity to respond to the reviews
in the form of a rebuttal. During the lively discussion among the Program Committee,
both the reviews and the rebuttal were taken into account. This robust process ensured
that only the highest-quality papers were accepted for presentation at the conference.
We thank all members of the Program Committee for their hard work and the time they
spent on the discussion.

Diagrams 2022 received 58 submissions across the Main, Philosophy, and Psychol-
ogy and Education tracks. Out of all these submissions, 11 were accepted as long papers,
19 as short papers, and five as posters. Furthermore, one submission was accepted as a
full abstract, one as a short abstract, and, one as a non-archived poster. This programwas
complemented by four tutorials, and a workshop on “Diagrams of Life and Evolution”.

The conference included two keynote presentations by prestiguous researchers in
the Diagrams community:

– Gem Stapleton on “The Power of Diagrams: Observation, Inference and Overspeci-
ficity”. This keynote was shared with VL/HCC.

– Sun-Joo Shin on “Visual Representation and Abductive Reasoning”.

In addition, Diagrams 2022 hosted an Inspirational Early Career Researcher speaker,
who was invited to open the Graduate Symposium. We were delighted to host Lorenz
Demey from KU Leuven to give this talk with the title “From Aristotelian Diagrams to
Logical Geometry”.

Of course, the organization would not have been possible without the help of many
others. First of all, we would like to thank Paolo Bottoni and Francesco Sapio for their
outstanding work as local organizers. Furthermore, we thank Amy Fox for her help as
the Publicity Chair, Petrucio Viana for his work as the Proceedings Chair, and Reetu
Bhatthacharjee for her support to the next generation of researchers by serving as the
Graduate SymposiumChair. Our institutions, CNRS,LancasterUniversity Leipzig,West
Chester University, University of Bologna, and Université de Bourgogne, provided us
with additional support, for which we are thankful.



vi Preface

Finally, we would like to thank the Steering Committee for their continuous support
throughout the organization of the conference, and in particular the Chair of the Steering
Committe, Amirouche Moktefi, who was always willing to help with additional advice.

July 2022 Valeria Giardino
Sven Linker

Richard Burns
Francesco Bellucci

Jean-Michel Boucheix



Organization

Program Committee

Mohanad Alqadah Umm Al-Qura University, Saudi Arabia
Amrita Basu Jadavpur University, India
Francesco Bellucci (Co-chair) University of Bologna, Italy
Reetu Bhattacharjee Scuola Normale Superiore di Pisa, Italy
Andrew Blake University of Brighton, UK
Ben Blumson National University of Singapore, Singapore
Leonie M. Bosveld-De Smet University of Groningen, The Netherlands
Jean-Michel Boucheix (Co-chair) Université de Bourgogne, France
Richard Burns (Co-chair) West Chester University, USA
Peter Chapman Edinburgh Napier University, UK
Peter Cheng University of Sussex, UK
Daniele Chiffi Tallinn University of Technology, Estonia
Lopamudra Choudhury Jadavpur University, India
James Corter Columbia University, USA
Gennaro Costagliola Università di Salerno, Italy
Silvia De Toffoli Princeton University, USA
Erica de Vries Université Grenoble Alpes, France
Aidan Delaney Bloomberg, UK
Lorenz Demey KU Leuven, Belgium
Maria Giulia Dondero Université de Liège, Belgium
George Englebretsen Bishop’s University, Canada
Jacques Fleuriot University of Edinburgh, UK
Amy Fox University of California, San Diego, USA
Valeria Giardino (General Chair) CNRS, Ecole Normale Supérieure, France
Nathan Haydon Tallinn University of Technology, Estonia
Mateja Jamnik University of Cambridge, UK
Mikkel Willum Johansen University of Copenhagen, Denmark
Yasuhiro Katagari Future University Hakodate, Japan
John Kulvicki Dartmouth College, USA
Brendan Larvor University of Hertfordshire, UK
John Lee University of Edinburgh, UK
Javier Legris Universidad de Buenos Aires, Argentina
Jens Lemanski FernUniversität in Hagen, Germany
Sven Linker (Co-chair) Lancaster University in Leipzig, Germany
Emmanuel Manalo Kyoto University, Japan
Kim Marriott Monash University, Australia



viii Organization

Mark Minas Universität der Bundeswehr München, Germany
Amirouche Moktefi Tallinn University of Technology, Estonia
Martin Nöllenburg Vienna University of Technology, Austria
Mario Piazza Scuola Normale Superiore di Pisa, Italy
Ahti Pietarinen Tallinn University of Technology, Estonia
Margit Pohl Vienna University of Technology, Austria
Uta Priss Ostfalia University, Germany
Joao Queiroz Federal University of Juiz de Fora, Brazil
Peter Rodgers University of Kent, UK
Dirk Schlimm McGill University, Canada
Stephanie Schwartz Millersville University, USA
Sumanta S. Sharma Shri Mata Vaishno Devi University, India
Atsushi Shimojima Doshisha University, Japan
Hans Smessaert KU Leuven, Belgium
Gem Stapleton University of Cambridge, UK
Yuri Uesaka University of Tokyo, Japan
Jean Van Bendegem Vrije Universiteit Brussel, Belgium
Peggy Van Meter Pennsylvania State University, USA
Petrucio Viana Federal Fluminense University, Brazil
Reinhard von Hanxleden Christian-Albrechts-Universität zu Kiel, Germany
Michael Wybrow Monash University, Australia

Additional Reviewers

Kasperowski, Maximilian
Petzold, Jette
Raggi, Daniel
Rentz, Niklas
Smola, Filip



Contents

Theoretical Perspectives

Introducing the Diagrammatic Semiotic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Tuomo Hiippala and John A. Bateman

On Computing Optimal Linear Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Alexander Dobler and Martin Nöllenburg

Visual Proofs as Counterexamples to the Standard View of Informal
Mathematical Proofs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Simon Weisgerber

Representational Interpretive Structure: Theory and Notation . . . . . . . . . . . . . . . . 54
Peter C.-H. Cheng, Aaron Stockdill, Grecia Garcia Garcia,
Daniel Raggi, and Mateja Jamnik

Mixing Colors, Mixing Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
José-Martín Castro-Manzano

Normatively Determined Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Matteo Pascucci and Claudio E. A. Pizzi

A Diagram Must Never Be Ten Thousand Words: Text-Based
(Sentential) Approaches to Diagrams Accessibility Limit Users’ Potential
for Normative Agency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

David Barter and Peter Coppin

History

Combing Graphs and Eulerian Diagrams in Eristic . . . . . . . . . . . . . . . . . . . . . . . . . 97
Reetu Bhattacharjee and Jens Lemanski

Taming the Irrational Through Musical Diagrams – from Boethius
to Oresme and Nemorarius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Daniel Muzzulini

A Database of Aristotelian Diagrams: Empirical Foundations for Logical
Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Lorenz Demey and Hans Smessaert



x Contents

Origami and the Emergence of Hybrid Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Francesca Ferrara and Giulia Ferrari

On Lambert Quadrilaterals and Why They Cannot Be Diagrams
(According to Lambert) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Theodor Berwe

Cognition and Diagrams

Euler vs Hasse Diagrams for Reasoning About Sets: A Cognitive Approach . . . . 151
Dimitra Bourou, Marco Schorlemmer, and Enric Plaza

Evaluating Colour in Concept Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Sean McGrath, Andrew Blake, Gem Stapleton, Anestis Touloumis,
Peter Chapman, Mateja Jamnik, and Zohreh Shams

Tables as Powerful Representational Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Dirk Schlimm

Why Scholars Are Diagramming Neural Network Models . . . . . . . . . . . . . . . . . . . 202
Guy Clarke Marshall, Caroline Jay, and André Freitas

A Formal Model of Aspect Shifting: The Case of Dot Diagrams . . . . . . . . . . . . . . 210
Atsushi Shimojima and Dave Barker-Plummer

How to Visually Represent Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Axel Arturo Barceló Aspeitia

Aspect Shifting in Aristotelian Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Hans Smessaert and Lorenz Demey

Epistemic Roles of Diagrams in Short Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Henrik Kragh Sørensen and Mikkel Willum Johansen

Diagrams and Applications

Ancillary Diagrams: A Substitute for Text in Multimedia Resources? . . . . . . . . . 245
Richard Lowe and Jean-Michel Boucheix

Diagrams for Learning to Lead in Salsa Dancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Erica de Vries

The Use of Diagrams in Planning for Report Writing . . . . . . . . . . . . . . . . . . . . . . . 268
Emmanuel Manalo and Laura Ohmes



Contents xi

Logical Diagrams

From Euler Diagrams to Aristotelian Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Lorenz Demey and Hans Smessaert

Visualizing Polymorphisms and Counter-Polymorphisms in S5 Modal
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Pedro Falcão

Representing Formulas of Propositional Logic by Cographs, Permutations
and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Michał Sochański
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Introducing the Diagrammatic Semiotic
Mode

Tuomo Hiippala1(B) and John A. Bateman2

1 University of Helsinki, Helsinki, Finland
tuomo.hiippala@helsinki.fi

2 Bremen University, Bremen, Germany

bateman@uni-bremen.de

Abstract. As the use and diversity of diagrams across many disciplines
grows, there is an increasing interest in the diagrams research commu-
nity concerning how such diversity might be documented and explained.
In this article, we argue that one way of achieving increased reliability,
coverage, and utility for a general classification of diagrams is to draw on
recently developed semiotic principles developed within the field of mul-
timodality. To this end, we sketch out the internal details of what may
tentatively be termed the diagrammatic semiotic mode. This provides
a natural account of how diagrammatic representations organising lines
of research integrate natural language, various forms of graphics, dia-
grammatic elements such as arrows, lines and other expressive resources
into coherent organisations, while still respecting the crucial diagram-
matic contributions of visual organisation. We illustrate the proposed
approach using two recent diagram corpora and show how a multimodal
approach supports the empirical analysis of diagrammatic representa-
tions, especially in identifying diagrammatic constituents and describing
their interrelations in a manner that may be generalised across diagram
types and be used to characterise distinct kinds of functionality.

Keywords: Diagrams · Semiotics · Multimodality · Corpora ·
Annotation

1 Introduction

Diagrams appear to be playing an ever greater range of roles in a similarly
increasing range of application contexts. Several authors have consequently
called for more efforts to characterise this diversity so as to establish more finely
articulated accounts of just what kinds of diagrams there are and how they might
serve different communicative and cognitive functions. Norman, for example,
considers a two-dimensional characterisation in terms of ‘discretion’ and ‘assimi-
lability’ to distinguish more clearly the role of diagrams among the traditionally
drawn categories of descriptions, diagrams, and depiction [18]. Smessaert and
Demey offer a typology of types of diagrams used in linguistics, focusing on more

c© The Author(s) 2022
V. Giardino et al. (Eds.): Diagrams 2022, LNAI 13462, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-15146-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15146-0_1&domain=pdf
http://orcid.org/0000-0002-8504-9422
http://orcid.org/0000-0002-7209-9295
https://doi.org/10.1007/978-3-031-15146-0_1
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content-oriented ‘linguistic parameters’ and specific semiotically-motivated dia-
grammatic parameters distinguishing iconic and symbolic representations [21].
Johansen et al. offer a typology of mathematical diagrams based on their use by
mathematicians, identifying ‘resemblance’, ‘abstract’ and ‘Cartesian’ diagrams
[15]. And Purchase and colleagues propose a multidimensional classification of
infographics by analysing how users grouped a selection of 60 infographics [19].

Work of this kind raises important research questions, including questions of
the particular cognitive capabilities demanded or supported by distinct diagram
types [15, p. 107], the ways in which diagram usage has developed and expanded
over time [15, p. 106], and how studies might be extended to address entire
collections of diagrams, thereby focusing and organising lines of research on a
broader scale than hitherto [19, p. 210]. Strengthening the empirical basis for
diagrams research by drawing on broader sets of examples and providing more
finely articulated characterisations of the properties of diagrams that go beyond
existing categories, such as the fundamental distinctions offered by Peirce in
terms of iconicity, indexicality and symbolicity and so on, are consequently now
well established as aims. As Johansen et al. argue, Peirce’s functional definition,
particular of iconicity, “is too broad and does not allow for making cognitively
and practically meaningful distinctions in the category of diagrams” [15, p. 107].
Nevertheless, developing convincing classifications of diagrams – even in specific
areas – has proved challenging.

Both the conceptually-based development of frameworks [8,15,18,21,24] and
more bottom-up clustering based on human judgements [19] continue to face
issues of exhaustivity, discriminability, and reliability. Several significant prob-
lems are noted by Johansen et al.:

“Although such a classification gave a more fine-grained resolution in the
diagram classification . . . it turned out to be difficult to carry out in prac-
tice . . . Consequently, counting the number of diagrams of a specific type
requires making judgements based on the visual appearance of diagrams
to classify them correctly.” [15, p. 116]

Indeed, “we also encountered cases where we had to involve the textual or intel-
lectual context of diagrams to classify them, and in other cases, we could only
give educated guesses.” [15, p. 116]. Moreover, even in Purchase et al.’s ‘user-
based’ classification, the Likert scores used to evaluate the infographics were
found to be poor predictors of class with “their values bear[ing] little relation to
the groupings created by the participants” [19, p. 216]; again, visual grouping of
diagrams appeared to give stronger results.

Consequently, despite the generally positive reports and indications of con-
siderable utility of working with diagram collections, it is less clear whether the
classifications proposed to date can be scaled-up in a reliable fashion. Certain
gaps appear to occur due to the context-dependent nature of any functional
categories employed. In this article, therefore, we address these issues from a
complementary perspective and argue that the resulting multiply-dimensioned
classification promises a more robust approach to diagram classification,
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capable not only of respecting visual appearance in a systematic and philo-
sophically sound fashion, but also of providing a principled approach to context-
dependent interpretations as well.

This approach draws on classification work in the field of multimodality
research, an emerging discipline that studies how communication builds on
appropriate combinations of multiple modes of expression, such as natural lan-
guage, illustrations, drawings, photography, gestures, layout and many more [6].
One product of this work is a battery of theoretical concepts that strongly sup-
port empirical analysis of complex communicative situations and artefacts. We
describe how this can now be applied directly to the analysis of diagrams within
the context of the challenges set out above. For this, we define what we ten-
tatively term the diagrammatic semiotic mode. This bridges discussions in the
diagrams research and multimodality communities by introducing an explicitly
multimodal, discourse-oriented perspective to diagrams research. We illustrate
this in relation to two recently published multimodal diagram corpora.

2 A Multimodal Perspective on Diagrams

The framework of multimodality adopted here offers a common set of concepts
and an explicit methodology for supporting empirical research regardless of the
‘modes’ and materials involved [6]. The result is capable of addressing all forms of
multimodal representation, including diagrammatic representations of all kinds.
The core theoretical concept within the framework is that of the semiotic mode,
a graphical definition of which we show on the left-hand side of Fig. 1. Here we
see three distinct ‘semiotic strata’ that the model claims are always needed for
a fully developed semiotic mode to operate [3].

material
substrate

regularities
of form

expressive
resources

discourse semantics

{

A theoretical model of a semiotic mode The diagrammatic semiotic mode

Any expressive resources able to exist on a

Label?
- part?
- whole?

layout 
space

illust-
rations

written 
language

lines and 
arrows

Any materiality with a 2D spatial 
extent that may be manipulated 
using digital or physical tools

Discourse semantic 
mechanisms that 
support the contextual 
interpretation of 
expressive resources 
and their combinations

Fig. 1. A theoretical model of a semiotic mode and a sketch of the fundamentals for a
diagrammatic semiotic mode [12, p. 408]
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Starting from the lower portion of the inner circle, the model requires that all
semiotic modes work with respect to a specified materiality which a community
of users regularly ‘manipulates’ in order to leave traces for communicative pur-
poses; second, these traces are organised (paradigmatically and syntagmatically)
to form expressive resources that characterise the material distinctions that are
specifically pertinent for the semiotic mode at issue; and finally, those expres-
sive resources are mobilised in the service of communication by a corresponding
discourse semantics, whose operation we show in a moment.

In general, no ordering is imposed on the flow of information across these
three strata, although methodologically it can often be beneficial to begin with
the more observable material traces. Different semiotic modes also provide dif-
fering degrees of constraint at the various levels: for example, whereas the semi-
otic mode of verbal language offers substantial form-driven constraints guiding
discourse interpretation, pictorial semiotic modes often require more discourse
constraints when selecting between perceptually plausible readings – Bateman,
Wildfeuer and Hiippala [6, p. 33] discuss an example offered by Gombrich [9,
p. 7] further from this perspective, showing how variability in interpretation is
naturally supported. Finally, the model places no restrictions on the kinds of
materiality that may be employed; for current purposes, however, we illustrate
the approach by focusing on static two-dimensional diagrams. As Bateman [4]
shows, however, the approach generalises equally to both dynamic and 3D cases.

Building on this scheme, we set out on the right-hand side of the figure an
initial characterisation of the specific properties of the diagrammatic semiotic
mode. The 2D materiality of this mode not only allows the creation of spatial
organisations in the form of layout, but is also a prerequisite for realising many of
the further expressive resources commonly mobilised in diagrams, such as writ-
ten language and arrows, lines, glyphs and other diagrammatic elements, which
also inherently require (at least) a 2D material substrate. An example of the
corresponding expressive resources typical of the diagrammatic mode is offered
by the “meaningful graphic forms” identified by Tversky et al. [25, p. 222], such
as circles, blobs and lines. These can also be readily combined into larger syntag-
matic organisations in diagrams such as route maps, as Tversky et al. illustrate
[25, p. 223]; Engelhardt and Richards offer a similar set of ‘building blocks’ [8, p.
201]. However, theoretically, the diagrammatic semiotic mode can in fact draw
on any expressive resource capable of being realised on a materiality with a 2D
spatial extent, although in practice these choices are constrained by what the
diagram attempts to communicate and the sociohistorical development of spe-
cific multimodal genres by particular communities of practice [2,10]. Finally, it
is the task of the third semiotic stratum of discourse semantics to make the use
of expressive resources interpretable in context.

Embedding expressive resources into the discourse organisations captured by
a discourse semantics is crucial to our treatment and a key extension beyond tra-
ditional semiotic accounts. Essentially, this enables the account to do full justice
to the Peircean embedding of iconic forms within conventionalised usages [22].
It is this addition that explains formally how (and why) fundamental graphic
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forms, such as those identified by Engelhardt and Richards, Tversky et al. and
others, may receive different interpretations in different contexts of use – a prob-
lem noted for several of the classifications introduced above – while also allowing
certain intrinsic properties of those forms (such as connectivity and direction-
ality) to play central roles in finding interpretations as well. The combination
of materiality, expressive forms and discourse interpretations then provides a
robust foundation for considerations of diagrammatic reasoning quite generally.

3 Multimodal Diagram Corpora

We now illustrate the potential of a characterisation of diagrams drawing on our
multimodal framework for dealing with collections of diagrams by considering
two concrete, interrelated diagram corpora: AI2D [16] and AI2D-RST [11]. These
corpora build on one another, as AI2D-RST covers a subset of AI2D. We describe
the corpora and how they have been characterised and show how an increasing
orientation to multimodality successively raises the accuracy and utility of the
classification applied. We will argue that the characterisation provided supports
a general methodology for building classifications for collections of diagrams.

3.1 The Allen Institute for Artificial Intelligence Diagrams Dataset

The Allen Institute for Artificial Intelligence Diagrams dataset (AI2D) was devel-
oped to support research on computational processing of diagrams [16]. AI2D
contains a total of 4903 diagrams that represent topics in elementary school nat-
ural sciences, ranging from life and carbon cycles to human physiology and food
webs, to name just a few of the 17 categories in the dataset. Because the diagram
images were scraped from the web using school textbook chapter headings as
search terms, the corpus covers a wide range of diagrams created by producers
with various degrees of expertise with the diagrammatic semiotic mode, such as
students, teachers and professional graphic designers. As the diagrams have been
removed from their original context during scraping, little may be said about
the medium they originated in. For this reason, it may be suggested that AI2D
approximates how diagrams are used in learning materials realised using various
media.

AI2D models four types of diagram elements: text, blobs (graphic elements),
arrows and arrowheads. Although these elements cover the main expressive
resources mobilised in these diagrams, no further distinctions are made between
drawings, illustrations, photographs and other visual expressive resources [12].
Each diagram in the dataset is nevertheless provided with several layers of
description. Instances of the four diagram element types were first segmented
from the original diagram images by crowdsourced workers [16, p. 243]. The
elements identified during this layout segmentation provide a foundation for a
Diagram Parse Graph (DPG), which represents the diagram elements as nodes
and semantic relations between elements as edges. Ten relations are used, draw-
ing from the framework proposed by Engelhardt [7]. Crowdsourcing annotations
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is a promising way of creating larger-scale collections of classified diagrams – it
also, however, demands that the classifications constructed are sufficiently clear
and well-defined to avoid the drawbacks observed by other approaches reported
in the introduction above [11, pp. 683–684].

Figure 2 shows as an example the treatment given to a diagram originally
scraped from the web, diagram #4210 in AI2D. Below the original shown at the
top of the figure, we see the diagram’s crowdsourced layout segmentation and,
at the bottom, its corresponding DPG. The original diagram represents a rock
cycle, that is, transitions between different types of rock, using a combination of
an illustration (a cross-section) whose parts are described using written language.
These parts set up the stages of the rock cycle, which are then related to one
another using arrows.

For the formation of the AI2D corpus, annotators were instructed to iden-
tify units and relationships. As the resulting layout segmentation image in the
middle of the figure shows, text blocks and arrowheads were segmented using
rectangular bounding boxes, whereas more complex shapes for arrows and vari-
ous types of graphics were segmented using polygons. The layout segmentation
illustrates a common problem with crowdsourced annotations: annotators tend
to segment diagrams to quite uneven degrees of detail. Here the entire cross-
section is assigned to a single blob (B0), although a more accurate description
would be to segment separate parts of the cross-section, such as magma and var-
ious layers of rock. We will see shortly how such omissions readily compromise
the accurate description of semantic relations in the DPG.

Referring again to the layout segmentation and DPG in the figure, we can see
for example that the semantic relations carried by the edges in the DPG cover
arrowHeadTail between arrow A2 and arrowhead H2 in the upper part of the
diagram, which together act as a connector in an interObjectLinkage relation
between text blocks T1 (‘Magma flows to surface ...’) and T2 (‘Weathering and
erosion’). As these relations illustrate, Engelhardt’s [7] relations cover local rela-
tions holding between diagram elements that are positioned close to one another
or connected using arrows or lines. They neglect, however, the relations needed
to describe the global organisation of the diagram, that is, relations between
units that are made up of multiple elements [16, p. 239]. Crowdsourcing coher-
ent graph-based descriptions of diagrams thus turns out to be a challenging task.
AI2D DPGs often include isolated nodes and multiple connected components, as
exemplified by the DPG in Fig. 2. Furthermore, the DPG does not feature a cyclic
structure, although the diagram clearly describes a rock cycle. The AI2D annota-
tion scheme provides the relation definitions necessary for describing this process
in principle, such as interObjectLinkage and intraObjectRegionLabel

[16, p. 239], but annotators following a more shallow visual grouping would not
be led to this option from the diagram at hand. As we shall see, this is one of
many problems that an explicit discourse semantic orientation can address.

The crowdsourced annotators were not explicitly instructed to decompose
cross-sections or other visual expressive resources capable of demarcating mean-
ingful regions, which results in an insufficiently detailed layout segmentation.
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Fig. 2. Original diagram image (top), layout segmentation (middle) and Diagram Parse
Graph (bottom) for diagram #4210 in the AI2D corpus. In the layout segmentation,
the original image has been converted into grayscale to highlight the crowd-sourced
layout segmentation. Each layout segment is coloured according to diagram element
type (blue: text; red: blob; arrow: green; arrowhead: orange) and assigned a unique
identifier. These colours and identifiers are carried over to the Diagram Parse Graph.
(Color figure online)



10 T. Hiippala and J. A. Bateman

The blob B0, which covers the entire cross-section shown in the diagram, is as a
consequence not segmented into its component parts – i.e., the stages of the rock
cycle with labels such as ‘Magma’ (T5) and ‘Metamorphic rock forms from heat
and pressure’ (T8) even though each of these picks out a particular region of the
cross-section through visual containment [7, p. 47] as necessary for defining the
stages of the cycle. The cross-section (B0) instead constitutes a single unit and
so an otherwise applicable relation such as intraObjectRegionLabel cannot
be used to pick out corresponding regions simply because those regions are not
present in the inventory of identified elements. As such, the description is not
sufficiently detailed to represent a cyclic structure.

These challenges relating to decomposing diagrammatic representations
relate to the well-known problem of identifying ‘units’ mentioned above and
discussed in multimodality theory for many visually-based semiotic modes. In
general an annotator, be that an expert analyst or a crowdsourced non-expert
worker, will not know on purely visual grounds whether it is necessary, or bene-
ficial, to segment areas presented in a diagram. As we shall see, this is precisely
where we need to engage a corresponding notion of discourse semantics for the
semiotic mode at issue. The discourse semantics simultaneously supports decom-
posing larger units into component parts and resolving their potential interrela-
tions, always with the goal of maximising discourse coherence [5, p. 377]. In the
next section, we show how this approach can be used for a more effective design
of a multimodal corpus of diagrams.

3.2 AI2D-RST – A Multimodally-Motivated Annotation Schema

The second corpus considered here, AI2D-RST, covers 1000 diagrams taken from
the AI2D corpus and is annotated using a new schema by experts specifically
trained in the use of that schema [11]. The primary goal here was precisely to
compare the original corpus, with its style of classification, to a corpus adopting
a classification more explicitly anchored into the requirements raised by the
diagrammatic semiotic mode. The development of AI2D-RST was motivated by
the observation that the AI2D annotation schema introduced above conflates
descriptions of different types of multimodal structure, such as implicit semantic
relations and explicit connections signalled using arrows and lines, into a single
DPG [13]. These can now be separated multimodally so as to better understand
how such structures contribute to diagrammatic representations.

To achieve this, AI2D-RST represents each diagram using three distinct
graphs corresponding to three distinct, but mutually complementary, layers of
multimodally motivated annotations: grouping, connectivity and discourse struc-
ture. Figure 3 shows examples of all three graphs for the diagram from Fig. 2. To
begin, the grouping layer (top right) organises diagram elements that are likely
to be perceived as belonging together into visual perceptual groups loosely based
on Gestalt properties [26]. The resulting organisation is represented using a hier-
archical tree graph, with grouping nodes with the prefix ‘G’ added to the graph
as parents to nodes grouped together during annotation. Such grouping nodes
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can be picked up in subsequent annotation layers to refer to a group of dia-
gram elements and thereby serve as a foundation for the description of both the
connectivity and discourse structure layers.

Fig. 3. The original crowd-sourced layout segmentation from AI2D (top left) and AI2D-
RST grouping (top right), connectivity (bottom left; with two subgraphs) and discourse
structure (bottom right) graphs for diagram #4210. Note that unlike AI2D, AI2D-RST
does not model arrowheads as individual units, which is why they are absent from the
graphs. This information can be retrieved from the original AI2D annotation if needed.

The connectivity layer (bottom left) is represented using a cyclic graph, in
which edges represent visually explicit connections signalled using arrows and
lines in the diagram. As the connectivity graph in Fig. 3 shows, it is important
that these cover explicit connections only since this reveals the diagram to leave
several gaps in its characterisation of the rock cycle, namely between the stages
represented using text blocks T7 (‘Magma cools beneath surface ...’) and T1
(‘Magma flows to surface ...’), and between T2 (‘Weathering and erosion) and
T3 (‘Transport’). It is consequently left to the viewer to fill in such connections
during discourse interpretation. Not including such connections in the descrip-
tion of connectivity allows us to capture discrepancies between explicit visual
signals, such as arrows and lines, and implicit meanings that are only derivable
from the discourse structure.



12 T. Hiippala and J. A. Bateman

In AI2D-RST, such implicit discourse relations are handled by the third
layer, that of discourse structure, which uses Rhetorical Structure Theory (RST)
[17,23] to describe semantic relations between diagram elements. RST was orig-
inally developed as a theory of text organisation and coherence in the 1980s
[17] and has frequently been applied subsequently to the description of discourse
semantics in multimodality research as well [2]. Originally, RST attempted to
describe why well-formed texts appear coherent, or why individual parts of a text
appear to contribute towards a common communicative goal [23], and so this is a
relatively natural perspective to take on diagrams and other forms of multimodal
communication. RST defines a set of ‘rhetorical relations’ that are intended to
capture the communicative intentions of the designer, as judged by an analyst.
AI2D-RST applies these relations to diagrams from the AI2D dataset to pro-
vide an alternative annotation schema offering a more multimodally informed
description of the intended functions of diagrammatic representations [11].

The relations defined by RST are added to the discourse structure graph
of diagrams in the corpus as nodes prefixed with the letter ‘R’ as shown in
the graph bottom right in Fig. 3; the edges of the graph describe which role an
element takes in the discourse relation, namely nucleus (‘n’) or satellite (‘s’).
This notion of nuclearity is a key criterion in definitions of semantic relations in
RST. Following the original RST definitions, AI2D-RST represents the discourse
structure layer using a strict tree graph: if a diagram element is picked up as a
part of multiple rhetorical relations, a duplicate node is added to the graph to
preserve the formal requirement of tree structure.

In Fig. 3, the specific rhetorical relations in the bottom right graph include
identification (R1–R6), cyclic sequence (R7) and background (R8).
Since AI2D-RST still builds on the inventory of diagram elements provided by
the original layout segmentation in AI2D, this requires some compromises in the
RST analysis. Here the original annotator of the diagram had concluded that
most text instances serve to identify what the arrows stand for, namely stages
of the rock cycle. The image showing the cross-section (B0), in turn, is placed
in a background relation to the cyclic sequence relation. The definition of
a background relation [17] states that the satellite (B0) increases the ability
to understand the nucleus (R7), which is the top-level relation assigned to the
diagram’s representation of the entire cycle.

Although this offers a first incremental step for including discourse informa-
tion in a diagram corpus, building directly on the original AI2D corpus and its
segmentation is also a severe limitation. In fact, this offers only a rather crude
description of the discourse structure of the diagram in Fig. 3 because the cross-
section B0 is actually providing far more information. This information is crucial
for understanding what the diagram is attempting to communicate but we cannot
know that such a decomposition is necessary without considering the rhetorical
discourse organisation of the diagram as a whole. The particular decomposition
of diagrams must often be pursued in a top-down direction therefore, emphasising
the discourse structure from the outset [5]. Without methodologically prioritis-
ing the analysis of discourse structure, it is difficult to know which aspects of
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the diagrammatic mode are being drawn on and which elements should actually
be included in the description of discourse structure.

This is one of the basic problems underlying several of the limitations dis-
cussed for previous diagram classifications above. A visually-accessible cross-
section such as the one shown in Fig. 2 is, in fact, very likely to use illustration
or other expressive resources capable of representing and demarcating meaning-
ful regions in 2D layout space [20]. This possibility makes the question of whether
the capability is actually being drawn on pertinent and, if the capability is used,
raises further the issue of the extent to which the illustration must be decom-
posed so as to achieve the inventory of elements needed for making appropriate
inferences about the discourse structure. Analytical problems arising from the
original layout segmentation are consequently still being propagated from AI2D
to AI2D-RST.

3.3 Next Step: Adding Discourse-Driven Decomposition
to AI2D-RST

To solve the analytical problems described above, we propose an alternative,
discourse-driven layout segmentation that overcomes the limitations discussed
above by incorporating the distinctions provided by our definition of a semiotic
mode (see Fig. 1). Figure 4 shows a decomposition motivated by discourse struc-
ture for diagram #4210, which picks out relevant parts of the cross-section. In
contrast to the crowdsourced segmentation in Fig. 2, the cross-section has been
decomposed with the goal of maximising the coherence of discourse structure,
which involves making available all the elements needed for such a represen-
tation of the diagram and its communicative intentions using the AI2D-RST
annotation schema.

This is shown in Fig. 4, which applies the AI2D-RST annotation schema to
the diagram elements identified through discourse-driven decomposition. When
provided with a sufficient inventory of diagram elements, the grouping graph
more accurately reflects key structural properties of the diagram. The grouping
graph (top right) contains two subgraphs, whose root nodes G10 and I0 cor-
respond to the cross-section and cycle, respectively. Keeping in mind that the
grouping graph seeks to capture visual groupings, this already provides a strong
cue for two visually distinct configurations, which the AI2D-RST annotation
schema refers to as macro-groups. These constitute established configurations of
the diagrammatic mode that may be flexibly combined in diagrams [11, p. 681].
To summarise, the grouping graph then already pulls these macro-groups apart
and provides a foundation for their further analysis. We will shortly show how
these macro-groups are integrated in the discourse structure graph.

The connectivity graph (bottom left) reveals that the diagram makes perhaps
surprisingly limited use of arrows and lines as an expressive resource despite
the intention that the diagram represents a cycle. This is one of the typical
complicating factors contributing to the problems for annotation mentioned in
the introduction above. The diagram does use arrows to set up connections
between some individual elements and their groups, but the connectivity graph



14 T. Hiippala and J. A. Bateman

T1

T2

T3

T4

T8

T0T0
T5

T7

T6

A0

A1

A2

A3

A5A4
B0

B1
B2 B3

B4

B6

B5
B7

Fig. 4. A discourse-driven decomposition of diagram layout (top left) with grouping
(top right), connectivity (bottom left) and discourse structure (bottom right) graphs
for diagram #4210.

does not exhibit a cyclic structure. Some arrows, such as A2, have clear sources
(T1; ‘Magma flows to surface ...’) and targets (T2; ‘Weathering and erosion’),
whereas other arrows, such as A4, do not. This encourages two alternative frames
of interpretation for arrows [1]: some clearly signal transitions between stages
(A2, A3), whereas others indicate the overall direction of the cycle (A4, A0).

The disconnections in the connectivity graph raise a crucial question: how
does an interpretation involving a cyclic structure emerge if it is not clearly
signalled using arrows? The answer to this question lies in the discourse structure
of the graph as a whole, which here relies largely on written language as an
expressive resource. This allows the diagram to describe stages of the rock cycle
explicitly using clausal structures, e.g. “Metamorphic rock forms from heat and
pressure”, but does not express the relationships diagrammatically using arrows.
The verbal descriptions are instead placed in relation with specific regions of the
cross-section, as shown in the discourse structure graph (bottom right).

The discourse structure graph illustrates how the cross-section and the cycle,
which form separate subgraphs in the grouping graph, are tightly integrated
in the discourse structure graph, capturing their joint contribution towards a
shared communicative goal and moving beyond the information in visual group-
ing alone. The specific rhetorical relations in Fig. 4 and criteria for their applica-
tion, based loosely on Bateman [2, pp. 149–162], are given in abbreviated form in
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Table 1. Beginning from the top of the table, several identification relations
are used to name regions (R1) and arrows (R6, R3). In relation R3, identifi-
cation is extended to both arrows A0 and A1, which are joined together using
the joint relation R2. elaboration relations R4–R5 and R7–R9, which assign
descriptions to specific regions of the cross-section. This explains most of the
phenomena depicted in the diagram.

Table 1. Rhetorical relations in the discourse structure graph in Fig. 4

Identifier(s) Relation Nucleus Satellite

R1, R3, R6 identification Identified Identifier

R2 joint No constraints No constraints

R4–5, R7–9 elaboration Basic information Additional information

R10 disjunction Two or more alternatives –

R11 cyclic sequence Repeated steps –

All of these descriptions contribute towards an interpretation involving a
cycle, which requires not only world knowledge, but is also supported using
cohesive ties between lexical elements, such as the nouns ‘magma’ and ‘rock’
and the verb ‘to form’. The cycle itself is represented by the cyclic sequence

relation R11, which joins together the individual descriptions that form its steps.
The cycle also includes two possible alternatives, that is, whether magma cools
below or above ground to form rocks, which is also explicitly captured by the
disjunction relation R10 visible in the figure.

This analysis illustrates several of the methodological benefits of adopting
a discourse-driven approach to unpacking the structure of diagrammatic rep-
resentations. We can now move in a principled fashion beyond visual grouping
and the individual sources of information in any diagram analysed to produce
classifications more sensitive to the likely functions of the diagram as a whole.

4 Discussion

We now briefly discuss some of the principal implications of our analysis for
diagrams research more generally. The analysis has shown how a multimodal
perspective can yield valuable insights into diagrammatic representations by
drawing on the broader basis provided by an appropriately differentiating view
of the diagrammatic semiotic mode. Instead of building pre-defined inventories
of diagrammatic elements, for example, which are rapidly exhausted when faced
with data that do not fall neatly into the categories defined, one can focus
more on mapping the expressive resources available to the diagrammatic semiotic
mode and describing the kinds of discourse structures they participate in.

This can be approached both empirically and with respect to existing propos-
als for the graphical elements and properties of diagrams. A recent example of
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such a proposal is that of Engelhardt and Richards, who seek to define “universal
building blocks of all types of diagrams and information graphics” [8, p. 201].
However, this still excludes “context-related aspects” of diagram use [8, p. 203],
which, as we have seen above, can be problematic when characterising larger
collections of diagrams. A multimodal perspective is inherently geared towards
addressing all of the aforementioned aspects of diagrammatic representations
and naturally spans from form to contextually-motivated use. Furthermore, such
frameworks can be applied reliably to diagrams, as exemplified by substantial
inter-annotator agreement achieved for the AI2D-RST corpus [11, pp. 674–679].

Multimodality research can also contribute towards a deeper understanding
of signification in diagrams, as this is precisely the work that expressive resources
perform as part of the diagrammatic mode. As our analysis shows, diagrams
that represent cycles do not necessarily need to draw on arrows for this purpose:
the diagrammatic mode provides alternatives, such as written language, whose
structural features (here: cohesive ties) may be used to cue a discourse seman-
tic interpretation involving cyclicity. This allows a fine-grained decomposition of
the proposed building blocks of diagrammatic representations [8,14]. Conversely,
multimodality research is likely to benefit from the concepts developed in dia-
grams research for producing systematic descriptions of expressive resources.
This will, however, require a significant effort in triangulating what has been
done previously in multimodality and diagrams research, and aligning their the-
oretical concepts as necessary. Previous approaches to diagram classification as
described above are the logical place to start such investigations.

Finally, our findings also carry implications for the computational modelling
of diagrams. In particular, problems with the AI2D annotation [16] echo the
need remarked on for mathematical diagrams above by Johansen and colleagues
for domain expertise in describing the diagrammatic mode in order to achieve a
description that respects its specific features. When applied to diagrams, com-
puter vision tasks such as instance-level semantic segmentation and visual ques-
tion answering must acknowledge particular characteristics of the diagrammatic
mode. They should not be based simply on assumptions concerning how such
tasks are defined for processing pictorial representations, since pictures con-
stitute a quite different family of semiotic modes and exhibit rather different
properties. Particularly important here is the issue of the appropriate level of
semantic segmentation, that is, to what extent the mode in question needs to
be decomposed into its components. Developing appropriate descriptions of the
diagrammatic mode for computational modelling is therefore a task that needs
to involve research communities working on both diagrams and multimodality.

5 Conclusion

We have introduced a multimodal perspective on diagrammatic representations,
and presented a description of the diagrammatic semiotic mode, exemplifying
the proposed approach using two recent multimodal diagram corpora. Multi-
modal analysis involves decomposing diagrammatic representations into their
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component parts, and we have argued for supporting decompositions driven by
discourse structure – that is, what the diagrammatic representations attempt to
communicate and how their organisations explicitly guide readers to candidate
interpretations. Capturing segmentations of this kind explicitly in appropriately
designed corpora ensures that the necessary diagrammatic elements are avail-
able for further analysis. We suggest that given the widespread use of diagrams
and their variation in different domains, an extensive programme of corpus-
driven research of the kind we have proposed is now essential for developing an
empirically-motivated account of the diagrammatic semiotic mode.
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Abstract. Linear diagrams are an effective way to visualize set-based
data by representing elements as columns and sets as rows with one
or more horizontal line segments, whose vertical overlaps with other
rows indicate set intersections and their contained elements. The effi-
cacy of linear diagrams heavily depends on having few line segments.
The underlying minimization problem has already been explored heuris-
tically, but its computational complexity has yet to be classified. In this
paper, we show that minimizing line segments in linear diagrams is equiv-
alent to a well-studied NP-hard problem, and extend the NP-hardness
to a restricted setting. We develop new algorithms for computing linear
diagrams with minimum number of line segments that build on a travel-
ing salesperson (TSP) formulation and allow constraints on the element
orders, namely, forcing two sets to be drawn as single line segments, giv-
ing weights to sets, and allowing hierarchical constraints via PQ-trees.
We conduct an experimental evaluation and compare previous algorithms
for minimizing line segments with our TSP formulation, showing that a
state-of-the art TSP-solver can solve all considered instances optimally,
most of them within few milliseconds.

Keywords: Linear diagrams · Consecutive ones · TSP · NP-hardness ·
Algorithm benchmarking

1 Introduction

Many real-world datasets represent set systems, and there is a vast landscape of
different visualization techniques for set-based data. Two well-known techniques
are Euler and Venn Diagrams that draw sets as closed curves and set intersections
are represented by intersections of the boundaries of these curves. For a detailed
survey of these and other set visualizations we refer to Alsallakh et al. [1].

The set visualization that we study in this paper are linear diagrams. It
has been demonstrated that they are simple and effective, and have advantages
when compared with other set visualizations [7,21,29]. Linear diagrams represent
elements as columns and sets as rows of a matrix or table, where in each row there
are one or more horizontal line segments indicating which elements are contained
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(a) Random ordering of the overlaps.

(b) An overlap ordering that minimizes the total number of line segments.

Fig. 1. Linear diagrams representing the Simpsons.

in a specific set. Vertical overlaps of these line segments in different rows show set
intersections, and the corresponding elements. Figure 1a shows a linear diagram
representing a Simpsons data set introduced by Jacobsen et al. [18]. For example,
the set Blue Hair contains the elements Jacquelin Bouvier, Marge, and Milhouse,
and is drawn with three line segments. Mr. Burns is contained in the sets Evil,
Male, and Power Plant, as represented by the corresponding vertical overlap of
the line segments in these three rows with the column of Mr. Burns.

Linear diagrams can be drawn in many ways, e.g., by choosing different
permutations of the rows/sets and columns/overlaps. It has been shown that
there are several quality criteria for linear diagrams, while the most important
one is finding an ordering of the elements that minimizes the number of line
segments [26]. For example, the linear diagram depicted in Fig. 1b shows the
same set system as before, but with an ordering of the overlaps that minimizes
the number of line segments, here using 8 segments instead of 23.

The underlying computational problem of finding an ordering of the overlaps
that minimizes line segments seems hard, as for n overlaps, there are n! different
orderings of these overlaps. Finding orderings that minimize line segments is
mainly done via heuristics in the literature [6,17,26]. The main topic of this
paper is computing optimal linear diagrams – those which realize the minimum
possible number of line segments that have to be drawn.

Related Work. Several user studies were performed to compare the efficacy of
linear diagrams and other diagram types; they showed that linear diagrams per-
form equally well or better than other diagram types including Euler and Venn
diagrams [7,21,27]. Linear diagrams have then been used, e.g., to visualize sets
over time [24], and Lamy et al. [20] extended linear diagrams to allow multiple
sets per row.
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Existing algorithms for minimizing line segments in linear diagrams are of
heuristic nature, i.e., they may often find good solutions, but do not provide
proven guarantees on the solution quality. Rodgers et al. [26] presented a simple
heuristic that first defines a pair-wise similarity between two overlaps based
on the number of sets they have in common. Then, this heuristic iteratively
builds an overlap ordering aiming to group similar overlaps next to each other.
Chapman et al. [6] compared different heuristics based on simulated annealing,
a travelling salesperson (TSP) formulation, and other variants of the heuristic of
Rodgers et al. [26]. A GitHub project [17] provides an implementation of linear
diagrams in Python. The underlying algorithm tries to minimize the number
of line segments by applying multiple runs of an iterative greedy heuristic, each
with a different pair-wise similarity measure between overlaps that is augmented
by random seeds.

Contribution and Structure. We further investigate the computational problem
of computing optimal linear diagrams. Section 2 defines general preliminaries
and notation for permutations, matrices, and graphs. In Sect. 3, we describe
how the problem of computing optimal linear diagrams can be modelled as a
known problem on binary matrices, thus bridging the gap missing in the lit-
erature. This problem is known to be NP-complete; we further strengthen this
NP-completeness result by showing that computing optimal linear diagrams is
even NP-complete for set systems where each set contains exactly two elements
and each element is contained in exactly three sets. Moreover, we present further
literature on matrix problems that are relevant with regard to linear diagrams.

In Sect. 4, we present a way to compute optimal linear diagrams by reducing
the problem to TSP, thus, completing the work of Chapman et al. [6]. They also
presented an algorithm based on a TSP formulation, but this algorithm some-
times produces non-optimal overlap orderings. We further expand on this for-
mulation, showing that we can model specific constraints on the overlap orders.
Namely, we can force up to two sets to be drawn as single line segments while
still minimizing the number of line segments. This is particularly interesting for
allowing interactivity in linear diagrams [5]. We also show how to model con-
straints based on weighted sets and hierarchical ordering constraints represented
by PQ-trees, which is of interest for certain set visualization tasks.

In Sect. 5, we conduct an experimental evaluation of our algorithms from
Sect. 4, and compare them with the state-of-the art heuristics. We show that a
state-of-the-art TSP-solver can solve all considered instances optimally, most of
them within few milliseconds. We also verify that the considered heuristics from
the literature perform well with regard to the number of line segments, where
the average optimality gaps of the heuristics are less than ten percent.

2 Preliminaries

Let A be a matrix with m rows and n columns; we set nA = n and mA = m.
We write Ai,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n for the entry of A at row i and
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column j. Furthermore, by rA
i and cA

j we denote the i-th row and j-th column
of A, respectively. A matrix is a binary matrix if all its entries are either 0 or 1.
If it is clear from the context, we might omit explicitly mentioning the matrix A
in the above notations.

We denote by [k] the set of elements {1, . . . , k}. A permutation π : [k] → X
is a bijective function from [k] to a set X. Sometimes we write permutations π
as sequences of elements, that is, π = (x1, . . . , xn) is the permutation such that
π(i) = xi for 1 ≤ i ≤ n. We denote by Πk the set of all permutations from [k]
to [k]. For two permutations π1 = (x1, . . . , xn) and π2 = (y1, . . . , ym), we denote
by π1 �π2 their concatenation (x1, . . . xn, y1, . . . , ym). For two sets Π1 and Π2 of
permutations, we define Π1 � Π2 = {π1 � π2 | π1 ∈ Π1, π2 ∈ Π2}.

For a matrix A and a permutation π : [nA] → [nA] we denote by π(A) the
matrix such that π(A)i,j = Ai,π(j). Equivalently π(rA

i ) = rA
π(i) for a row rA

i .
By “a permutation of the columns of the matrix A” we mean a permutation
π : [nA] → [nA].

A block of consecutive ones in a row rA
i of a matrix A with n columns is a

maximal non-empty sequence Ai,p, Ai,p+1, . . . , Ai,q satisfying

– Ai,j = 1 for all p ≤ j ≤ q,
– p = 1 or Ai,p−1 = 0, and
– q = n or Ai,q+1 = 0.

For a row rA
i , cons1(rA

i ) is the number of blocks of consecutive ones in rA
i .

Additionally, splits(rA
i ) (the number of gaps between the blocks) is defined as

cons1(rA
i ) − 1 if rA

i contains a 1-entry, and 0 otherwise. We define cons1(A) =∑mA

i=1 cons1(r
A
i ) for a matrix A. Equivalently, splits(A) =

∑mA

i=1 splits(r
A
i ). Let cA

i

and cA
j be two columns of a binary matrix. By dh(cA

i , cA
j ) we denote the Hamming

distance between cA
i and cA

j , that is, the number of rows with different values.
In this paper we assume graphs G as simple and undirected. By V (G)

and E(G) we denote the vertex set and edge set of G, respectively. For a
binary matrix A, let G(A) be the complete graph that consists of the vertices
V = {vi | cA

i is a column in A}. If we talk about a vertex vi with index i in G(A),
we mean the vertex vi that corresponds to column cA

i .
Sometimes we consider graphs G(A) obtained from a matrix A with a

quadratic and symmetric distance matrix D of size |V (G)| × |V (G)|, such
that Di,j is the length of the edge between vi and vj . A tour T in G(A) is
a sequence of vertices (vi1 , . . . , vin) that contains each vertex of G(A) exactly
once. (We do not require adjacency, as G(A) is complete.) The length of T

in G(A) under a distance matrix D is Din,i1 +
∑n−1

k=1 Dik,ik+1 . Finding a tour of
minimum length in G(A) under a distance matrix D is known as the Travelling
Salesperson Problem (TSP) and is NP-complete [25].

3 Complexity of Linear Diagrams

The most important quality aspect supporting the cognitive effectiveness of lin-
ear diagrams is the number of line segments [26]. To minimize the number of
line segments that have to be drawn, we have to find an appropriate horizontal
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ordering of the overlaps. There is a one-to-one correspondence between lin-
ear diagrams and binary matrices: Let (S,U) be a set system with universe
U = {u1, . . . , un} and sets S = {S1, . . . , Sm}, hence, for all i ∈ [m], Si ⊆ U .
The system S can be represented by a binary matrix A s.t. Ai,j = 1 if and
only if element uj belongs to set Si. The rows and columns of A are exactly the
rows and columns of the linear diagram, respectively. Line segments in the linear
diagram correspond to blocks of consecutive ones in the matrix A. The problem
of finding a horizontal ordering of the overlaps that minimizes the number of
line segments is equivalent to the problem of finding a permutation π ∈ Πn that
minimizes cons1(π(A)).

A matrix A is said to have the consecutive ones property (C1P) if there
is a permutation π ∈ ΠnA

with splits(π(A)) = 0. There are several linear-
time algorithms for testing if a matrix has the C1P and for computing the
corresponding permutation, the first due to Booth and Lueker [3]. Thus, we can
decide in linear time if a linear diagram can be drawn such that each set is
represented by exactly one line segment.

Most of the time though, linear diagrams cannot be drawn in this way. In
this case we want to minimize the number of required line segments. The corre-
sponding binary matrix problem is known as consecutive block minimization in
the literature, its decision problem is given below.

Consecutive Block Minimization
Instance: A binary matrix A and a non-negative integer k.
Question: Does there exist a permutation π ∈ ΠnA

such that
cons1(π(A)) ≤ k?

The problem has been shown to be NP-complete [19], even if each row contains
exactly two ones [13]. We give here an alternative proof of NP-completeness for
binary matrices with two ones per row and three ones per column, thus further
strengthening the NP-completeness result.

Theorem 1. Consecutive Block Minimization is NP-complete for matri-
ces with two ones per row and three ones per column.

Proof. Membership in NP is evident. For hardness, we give a reduction from
Hamiltonian Path on graphs of degree 3, which is NP-complete [11]. Hamil-
tonian Path asks for a given graph G, if there is a path in G that visits every
vertex exactly once. Let G be an instance of Hamiltonian Path such that
E(G) = {e1, . . . , em} and V (G) = {v1, . . . , vn} and G has degree 3. We construct
an instance (A, k) of Consecutive Block Minimization as follows. Let A be
the incidence matrix of G, which has nA = |V (G)| columns and mA = |E(G)|
rows with Ai,j = 1 if and only if vi ∈ ej . Clearly, this matrix has two ones per
row, as each edge contains two vertices and 3 ones per column, as G has degree
3. We show that G contains a Hamiltonian path if and only if there exists a
permutation π of the columns of A such that cons1(π(A)) ≤ 2 · m − (n − 1).

“⇒”: Let P = (v�1 , v�2 , . . . , v�n) be a Hamiltonian path in G. We claim that
π = (�1, �2, . . . , �n) satisfies cons1(π(A)) ≤ 2 · m − (n − 1). Consider the edges
{v�i , v�i+1} for 1 ≤ i ≤ n − 1, which exist because P is a path. As v�i and v�i+1



On Computing Optimal Linear Diagrams 25

are consecutive in P , the columns cA
�i

and cA
�i+1

are consecutive in π(A). Thus,
the row in A corresponding to the edge {v�i , v�i+1} contributes to exactly one
block of consecutive ones. The remaining m − (n − 1) rows can contribute to
at most two blocks of consecutive ones as they only contain two 1-entries each.
Together, there are at most n − 1 + 2 · (m − (n − 1)) = 2 · m − (n − 1) blocks of
consecutive ones in π(A).

“⇐”: Let π = (�1, �2, . . . , �n) be a permutation of the columns of A that
satisfies cons1(π(A)) ≤ 2 · m − (n − 1). We claim that P = (v�1 , v�2 , . . . , v�n) is
a Hamiltonian path in G. There are at least n − 1 blocks of consecutive ones of
size two in π(A) as otherwise cons1(π(A)) > 2 · m − (n − 1). As G is a simple
graph, no two rows of A contain ones in the same columns and thus each of these
blocks of consecutive ones has to start at a different column. By the pigeonhole
principle, for each 1 ≤ i ≤ n − 1, there exists such a block of consecutive ones
that starts at the i-th column of π(A). Hence, {v�i , v�i+1} is an edge in G for all
1 ≤ i ≤ n − 1, and P is a Hamiltonian path. �	

Consecutive Block Minimization has been further studied from an algo-
rithmic view. Several heuristic methods for finding permutations π with small
cons1(π(A)) have been given [14,15,28]. Haddadi and Layouni [16] transformed
Consecutive Block Minimization to a travelling salesperson problem, we
will go into more details on their results in Sect. 4.

Further variations of consecutive-ones problems that could be interesting for
linear diagrams have been studied, mostly giving hardness results or polynomial
algorithms assuming that some underlying parameters of the problems are con-
stant: It has been shown that the problem of finding a permutation π of the
columns of a binary matrix A such that for all i ∈ [mA], cons1(rA

i ) ≤ k ∈ N

is NP-complete [12], which translates to the problem of having at most k line
segments per set in a linear diagram. Another more involved problem has been
studied, called Gapped Consecutive Ones, in which we are given a binary
matrix A and want to find a permutation π of the columns of A such that for
all i ∈ [mA], cons1(rA

i ) ≤ k ∈ N, and the gaps between two consecutive blocks
of ones in a row of π(A) is at most some maximum gap parameter δ [8,22,23].
Here gaps refer to maximal blocks of zeros between two blocks of ones.

Furthermore, there is literature devoted to turning a binary matrix into a
binary matrix that has the C1P by deleting rows, deleting columns, or flipping
entries (turning 1-entries into 0-entries and/or turning 0-entries into 1-entries).
Dom et al. [10] give a summary of results.

4 TSP Model

In this section, we describe the procedure of minimizing the number of line
segments in a linear diagram by using a TSP model, and give a runtime opti-
mization. We also show how to incorporate further constraints into this model.

4.1 Solving Linear Diagrams with TSP

We now present how to solve the task of minimizing the number of line segments
drawn in a linear diagram. Let us start with the key lemma for our model.
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Lemma 1 ([16]). Let A be a binary matrix with n columns and let A′ be the
binary matrix obtained from A by appending a column of zeros to the right of A.
Let (vi1 , vi2 , . . . , vin+1) be a tour of length L in G(A′) under distance matrix
Di,j = dh(cA′

i , cA′
j ). Assume that vik = vn+1, corresponding to the appended col-

umn of zeros, and let π = (ik+1, . . . in+1, i1, . . . , ik−1). Then L = 2 ·cons1(π(A)).

As discussed in Sect. 3, the task of minimizing line segments in linear dia-
grams is the same as finding a permutation π of the columns of a binary
matrix A that minimizes cons1(π(A)). One way to find such a permutation
is with a TSP-model as outlined by Lemma 1: Let A be a binary matrix with
n columns. We construct the binary matrix A′ by appending a column of zeros
to the right of A. From the matrix A′, we construct the complete graph G(A′),
such that vertices correspond to columns in A′. A distance matrix D for G(A′)
is constructed such that Di,j is the Hamming distance dh(cA′

i , cA′
j ). We then

compute a TSP tour (vi1 , vi2 , . . . , vin+1) of minimal length in G(A′). Assume
that vik is the vertex corresponding to the column cA′

nA′ . Then, by Lemma 1,
π = (ik+1, . . . , in+1, i1, . . . , ik−1) is the permutation with minimal cons1(π(A)).
The intuition for this is that choosing an edge {vi, vj} of small length in G(A′)
is the same as starting or ending few consecutive blocks of ones (corresponding
to line segments in a linear diagram) when going from the column ci to cj . With
this argumentation each block of consecutive ones is started and ended exactly
once, and the length of the tour is 2 · cons1(π(A)). Note that adding the extra
column at the end is necessary, as otherwise it could be that some consecutive
blocks of ones, those that start at the first column or end at the last column, are
“not counted in the tour”.

There is a small runtime optimization that can be applied to decrease the size
of the graph G(A′). Columns of A that have ones in the same rows, their Ham-
ming distance being zero, can be collapsed into a single column. The above pro-
cedure may be applied to compute the desired permutation of columns, and then
the collapsed columns can be expanded again to appear consecutively. Clearly,
this does not influence the number consecutive blocks of ones in the resulting
matrix. In terms of set systems, this corresponds to collapsing multiple over-
laps that contain the same sets into a single representative. In an optimal linear
diagram, such overlaps would never be separated.

We tested this method of computing optimal column orderings by applying
a state-of-the art TSP-solver. We will report on experimental results for real-
world and previously considered set visualization instances in Sect. 5. Note that
the same procedure has already been applied to instances from consecutive block
minimization [28].

4.2 Priorities for Sets

In some contexts certain sets in a linear diagram might be considered more
important than others. We would want to compute a linear diagram, in which
these sets are drawn with a single line segment, but the other sets should be
drawn with as few line segments as possible. It is clear that forcing more than
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two sets to be drawn as one line segment is not always possible, as there are
binary matrices with three rows that do not have the C1P. We can solve the
problem on binary matrices as a TSP model due to the following result.

Lemma 2. Let A be a binary matrix with n columns and exactly p 1-entries
and let C1, . . . , Cq ⊆ {c1, . . . , cnA

} be a family of non-empty sets of columns
of A satisfying

∃π ∈ Πn∀k ∈ [q] : the columns inCk appear consecutively in π(A).

Let A′ be the matrix obtained from A by appending a column of zeros. We con-
sider the graph G(A′) with distance matrix D s.t.

Di,j = dh(ci, cj) + (2p + 1) ·
q∑

k=1

|1Ck
(ci) − 1Ck

(cj)|,

where 1Ck
is the indicator function for set Ck. Let T = (vi1 , vi2 , . . . , vin+1) be

a tour of minimal length in G(A′) under distance matrix D. Let vik = vn+1,
corresponding to the appended column of zeros. Then the permutation π =
(ik+1, . . . , in+1, i1, . . . , ik−1) has the following properties

(1) For all k ∈ [q] the columns in Ck appear consecutively in π(A).
(2) Of all π′ ∈ Πn that satisfy (1), π is the one with minimum cons1(π(A)).

Proof. Let π be the permutation as defined above. We first show by contradic-
tion that π satisfies (1). Assume to the contrary that π does not satisfy (1) and
consider any permutation π′ of the columns of A that satisfies (1). This per-
mutation exists by assumption. Consider the tour T ′ = (vn+1) � π. The length
of T ′ is at most 2q(2p+1)+ 2p, as there can be at most p consecutive blocks of
ones in π′(A), each contributing two to the length of T ′. The value 2q(2p + 1)
is due to the fact that we “leave” or “enter” vertices corresponding to the set of
columns Ck, 1 ≤ k ≤ q, exactly twice. To the contrary, the length of T is at
least 2(q + 1)(2p + 1). Hence, T cannot be a tour of minimal length, yielding a
contradiction. It is clear that π also satisfies (2), as increases in the length of the
tour T , also increases the number of consecutive ones of the matrix π(A) due to
the same reasoning as in Lemma 1. �	
We can directly apply the above lemma to find a permutation of the columns of
a matrix A with minimum blocks of consecutive ones among the permutations π

that have cons1(rπ(A)
i1

)) = cons1(rπ(A)
i1

) = 1 for i1, i2 ∈ mA: We simply define
C1 = {j ∈ [nA] | Ai1,j = 1} and C2 = {j ∈ [nA] | Ai2,j = 1}, and apply
the reduction to TSP as outlined in Lemma 2. Clearly, C1 and C2 satisfy the
requirements of Lemma 2, as a matrix with two rows always has the C1P. In our
experiments we show how adding these constraints affects the runtime and the
number of blocks of consecutive ones. Note, however, that the result of Lemma 2
allows us to constrain column orders of a matrix in far more general ways.
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4.3 A Weighted Version

The shortcoming of the approach described in Sect. 4.2 is that we can only
restrict two sets to be drawn in one line segment. If we want to involve more sets
in this, we can use a model with weighted sets (corresponding to rows in a binary
matrix A). Then, if a weight of row rA

i is bigger than a weight of rA
j , it is “worse”

to have more blocks of consecutive ones for rA
i than it is for rA

j . Formally, we are
given a binary matrix A and a weight function f : [mA] → N, and we want to
find a permutation π of the columns of A that minimizes

∑mA

i=1 f(i)cons1(rπ(A)
i ).

Solving this problem is straight-forward with a TSP-model: We construct the
matrix A′ by appending a column of zeros to the right of A. We then create
a distance matrix D for G(A′) such that Di,j =

∑mA

k=1 f(k)|A′
k,i − A′

k,j |. This
distance matrix corresponds to weighted Hamming distances. Then, we simply
find the tour T of minimal total distance in G(A′) under D, and obtain the
desired permutation π from T as in Lemma 1. We conduct experiments for this
weighted version of consecutive block minimization in Sect. 5.

4.4 Hierarchical Constraints

We now to present an algorithm that allows for more general constraints on
the allowed column orders of a binary matrix, restricting column orders by PQ-
trees. We adopt the definition of PQ-trees of Burkard et al. [4], as our algorithm
directly applies their results. A PQ-tree T over the set [n] is a rooted, ordered
tree whose leaves are pairwise distinct elements of [n] and whose internal nodes
are distinguished as either P -nodes or Q-nodes. The set leaf(T ) denotes the
leaves of T .

Every PQ-tree T represents a set Π(T ) of permutations of leaf(T ) as follows.
If T consists of a single leaf i ∈ [n], then Π(T ) = {(i)}. Otherwise, the root r(T )
of T is a P -node or a Q-node. Let v1, . . . , vm denote the children of r(T ), ordered
from left to right, and let Ti denote the maximal subtrees rooted at vi, 1 ≤ i ≤ m.
If r(T ) is a P -node, then

Π(T ) =
⋃

ψ∈Πm

Π(Tψ(1)) � Π(Tψ(2)) � · · · � Π(Tψ(m)),

and if r(T ) is a Q-node, then

Π(T ) = Π(T1) � Π(T2) � · · · � Π(Tm) ∪ Π(Tm) � Π(Tm−1) � · · · � Π(T1).

Informally, children of P -nodes can be permuted arbitrarily, while children of Q-
nodes can only be reversed.

For applications of PQ-trees we refer to Booth and Lueker [3]. They can be
used to model allowed column orders of a binary matrix or, equivalently, the
orders of overlaps in a linear diagram; for example, if overlaps illustrated by a
linear diagram have some hierarchical relations between them and should not
be permuted arbitrarily, then we might represent this by a PQ-tree accordingly.
If the maximum degree of the PQ-tree T that represents column orders of a
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nA + 1

T

P

Fig. 2. Construction of PQ-tree in Theorem 2.

binary matrix A has small maximum degree, then the permutation π ∈ Π(T )
that minimizes cons1(π(A)) can be computed efficiently.

Theorem 2. Let A be a binary matrix and let T be a PQ-tree of maximum
degree d such that Π(T ) ⊆ ΠnA

. The permutation π ∈ Π(T ) that minimizes
cons1(π(A)) can be found in time O(max(mA · n2

A, 2d · n3
A)).

Proof. We apply a result of Burkard et al. [4] that states that for a PQ-tree T
with maximum degree d, and an n×n distance matrix D, the shortest TSP tour
for the matrix D contained in Π(T ) can be computed in O(2d ·n3) overall time.

Let A be a binary matrix and let T be a PQ-tree of maximum degree d such
that Π(T ) ⊆ ΠnA

. Let A′ be the binary matrix obtained from A by appending a
column of zeros to the right of A. We construct a PQ-tree T ′ such that Π(T ′) ⊆
ΠnA+1. The PQ-tree T ′ consists of a P -node that has two children: The leaf
nA + 1 and the tree T rooted at r(T ), see Fig. 2. Notice that the maximum
degree of T ′ is at most d + 1. Let D be the distance matrix corresponding to
edge weights Di,j = dh(cA′

i , cA′
j ) in G(A′). Due to the result of Burkard et al. we

can find in time O(2d ·n3
A) a tour of minimum length in G(A′) that is contained

in Π(T ′). By Lemma 1 and the construction of T ′, we can obtain from this tour
a permutation π ∈ Π(T ) that minimizes cons1(π(A)). We need mA · n2

A time
to construct the distance matrix D, thus we need to account for the possibility
that mA · n2

A > 2d · n3
A, taking the maximum of both. �	

5 Experiments

In this section, we present an experimental evaluation of the algorithms proposed
in Sect. 4, comparing them with state-of-the art heuristics.

5.1 Setup and Test Data

Setup. All experiments were performed on a desktop machine with an Intel i7-
8700K processor. The implementations of algorithms were done in Python 3.7.
To solve our TSP models, we used the Concorde TSP solver1 with the QSopt
linear programming solver2. The code is available online [9].
1 https://www.math.uwaterloo.ca/tsp/concorde.html.
2 http://www.math.uwaterloo.ca/~bico/qsopt/.

https://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/~bico/qsopt/
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Test Data. We consider binary matrices from two different sources. The first
set of instances, referred to as T1, is taken from Chapman et al. [6] and is
available online3. These instances consist of 440 binary matrices with 5 sets and
10 overlaps up to 50 sets and 70 overlaps. Chapman et al. [6] provide results of
their algorithms for minimizing line segments for these instances.

The second set of instances, referred to as T2, comes from a work by Jacobsen
et al. [18] and is available online4. The set systems represented by these instances
are taken out from a large real-world dataset coming from the Kaggle “What’s
Cooking” competition [2]. The sizes of these instances range from 20 overlaps
and 6 sets to 160 overlaps and 20 sets. Overall, there are a total of 4060 instances.

5.2 Computing Optimal Linear Diagrams

The first set of experiments considers the task of computing optimal linear dia-
grams, or equivalently, finding column orderings of the instances that minimize
the number of blocks of consecutive ones.

Algorithms. We include comparisons of the following algorithms.

– TSPConcorde: This algorithm from Sect. 4.1uses our TSP model and the
Concorde TSP solver to solve the problem optimally. The reported runtimes
include generating input files for the Concorde solver and reading its output.

– HeuristicRodgers: This algorithm is a python implementation of a greedy
algorithm by Rodgers et al. [26]. A pairwise similarity measure between over-
laps is defined, and then an overlap order is computed iteratively, trying to
place similar overlaps next to each other. Rodgers et al. provide an online
demo that implements this algorithm5.

– Supervenn: This algorithm is from a recent GitHub project [17]. For a set
of 10000 seeds it defines a pairwise similarity measure between overlaps and
then applies a heuristic to compute an overlap order.

– BestChapman: Chapman et al. [6] compare several heuristic methods to com-
pute overlap orderings of linear diagrams that minimize the drawn line seg-
ments. They report the number of line segments of overlap orders computed
by their algorithms for test set T1. As they do not provide the code for all
algorithms, and the explanation of the remaining algorithms is incomplete,
we had to restrict the evaluation of their approaches to test set T1. For an
instance of T1, we assume that the algorithm BestChapman is any algorithm
of Chapman et al. that computes an overlap ordering with the least amount
of blocks of consecutive ones. They do not provide the runtimes of their algo-
rithms in their abstract [6], so we cannot either.

3 https://doi.org/10.17869/enu.2021.2748170.
4 https://osf.io/nvd8e/.
5 http://www.eulerdiagrams.com/linear/generator/.

https://doi.org/10.17869/enu.2021.2748170
https://osf.io/nvd8e/
http://www.eulerdiagrams.com/linear/generator/
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Table 1. Results for test set T1. White columns depict the mean relative/absolute
optimality gaps (except TSPConcorde); gray columns depict the mean runtimes. For
the algorithms of Chapman we do not know the runtimes.

#columns

TSPConcorde HeuristicRodgers Supervenn Best
Chapman

blocks / t gap t gap t gap
row [ms] [rel./abs.] [ms] [rel./abs.] [ms] [rel./abs.]

10 1.7 7 3.3/0.9 0 1.6/0.8 853 0.0/0.0
20 2.8 13 6.0/3.0 1 3.3/1.8 1360 0.0/0.0
30 4.0 22 6.0/5.2 1 3.4/3.1 1861 0.2/0.3
50 6.0 69 6.9/9.3 4 3.7/5.6 2969 0.4/0.5
70 7.9 340 8.1/13.3 7 4.7/8.0 4192 0.5/0.8

Comparison. TSPConcorde by design computes optimal column orderings.
Hence, we report the relative and absolute optimality gaps for the other algo-
rithms. That is, let blocks(A, I) be the number of blocks of consecutive ones of
a column ordering computed by algorithm A for instance I. Then the relative
optimality gap in percent is 100 ·( blocks(A,I)

blocks(TSPConcorde,I) −1) and the absolute opti-
mality gap is blocks(A, I) − blocks(TSPConcorde, I). For a set of instances, we
report these value averaged. For TSPConcorde we provide the average number of
consecutive blocks of ones per row, as the optimality gap is always zero. We also
provide the mean runtime for the same set of instances. Results are broken down
by the number of columns, as the factorial of the number of columns determines
the size of the possible search space for an algorithm.

Test Set T1. Table 1 shows the results for test set T1. The simple heuristic of
Rodgers et al. [26] has the smallest runtimes, while also performing worst with
regard to optimality gaps. The runtimes of Supervenn are rather high, while the
optimality gaps are lower when compared to HeuristicRodgers, resulting from
the 10000 runs of a heuristic, each skewed with a different seed value. While the
problem of consecutive block minimization is NP-complete, TSPConcorde solved
all instances optimally. The average runtime for the largest class of instances
from T1 is still less than a second. It is worth mentioning that optimality gaps
of mostly under 10% indicate that the heuristics are quite good.

The heuristics of Chapman et al. [6] solved 340 of the 440 instances opti-
mally. For the remaining instances, the maximum difference between the optimal
number of consecutive blocks and their best solution is 3. This yields the fairly
small optimality gaps for BestChapman, while we expect that these values would
increase for larger instances, a pattern that just starts to appear in Table 1.

Test Set T2. Table 2 shows results for test set T2. TSPConcorde is able to solve
all instances optimally, the mean runtime still being well below 100ms, even
for instances with up to 160 columns. For Supervenn and HeuristicRodgers we
see similar results as in the previous test set. While Supervenn has slightly
better optimality gaps, HeuristicRodgers takes only a thousandth of the time of
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Table 2. Results for test set T2. White columns depict the mean relative/absolute
optimality gaps (except TSPConcorde); gray columns depict the mean runtimes.

#columns
TSPConcorde HeuristicRodgers Supervenn

blocks / t gap t gap t

row [ms] [rel./abs.] [ms] [rel./abs.] [ms]

20-50 1.7 17 8.4/2.0 1 7.7/1.8 1949
55-80 1.8 23 10.0/2.5 2 8.4/2.2 3642
85-110 1.9 36 10.9/2.8 4 9.2/2.5 5408
115-140 2.0 82 11.1/3.1 6 9.8/2.8 7782
145-160 2.0 71 10.7/3.0 9 9.8/2.9 10133

HeuristicRodgers Supervenn TSPConcorde

Algorithm
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Fig. 3. Violin and box plot showing runtimes for all instances from T1 and T2.

Supervenn. Again, optimality gaps increase with increasing number of columns
to about 10% compared to the optimal solutions.

Runtimes. Figure 3 shows a boxplot and violin plot of the runtimes of the three
algorithms HeuristicRodgers, Supervenn, and TSPConcorde for the combined
test set T1 ∪T2. The y-axis is scaled logarithmically. It again reflects that Super-
venn takes much longer than HeuristicRodgers, while the runtimes for both
algorithms do not contain outliers as their runtime is rather “deterministic”, in
the sense that their runtime is accurately represented as a polynomial function
of the number of columns of an instance. On the contrary, the runtimes of TSP-
Concorde contain a multitude of outliers, while most runtimes are still below
100ms. Only two instances take more than 10 s to solve.

5.3 Constraints

Next, we present experiments on how constraints on the column order affect the
runtime and the number of blocks of TSPConcorde. Namely, we implemented
the constraints from Sects. 4.2 and 4.3 that either specify that two sets/rows
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Table 3. Results for test set T1 and constrained versions. White columns depict mean
relative/absolute optimality gaps (except TSPConcorde); gray columns depict mean
runtimes.

#columns

TSPConcorde TSPConcordeFS TSPConcordeW
blocks / t gap t gap t

row [ms] [rel./abs.] [ms] [rel./abs.] [ms]

10 1.7 7 4.1/1.7 8 2.6/0.9 7
20 2.8 13 4.8/3.7 17 4.5/3.0 11
30 4.0 22 6.2/6.7 37 6.5/5.9 25
50 6.0 69 6.4/10.2 104 8.7/12.1 61
70 7.9 340 7.0/14.8 210 9.4/16.7 84

TSPConcorde TSPConcordeFS TSPConcordeW
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Fig. 4. Runtimes of constrained algorithms for all instances from T1 and T2.

have to be represented as a single line segment/consecutive blocks of ones, or
give specific weights to sets. The evaluation for both constraints works as follows.

– Two sets as single line segment: We pick uniformly at random for each instance
in our test set T1 ∪ T2 two sets that have to be drawn as a single line seg-
ments, and then apply the reduction to TSP described in Sect. 4.2, and solve
the resulting TSP-instance with the Concorde TSP-solver. We identify this
approach by TSPConcordeFS for “f ixed sets”.

– Weighted sets: For each matrix A in the test set T1 ∪ T2 we specify a weight
function f : [mA] → N that assigns to each set a unique integer weight in [mA]
uniformly at random. Then, we apply the reduction to TSP as described in
Sect. 4.3 and solve the resulting TSP-instance with the Concorde TSP-solver.
We identify this approach by TSPConcordeW for “weighted”.

Table 3 shows runtimes and optimality gaps for test set T1. We observe that
adding constraints does not influence runtimes of the TSP solver significantly.
Furthermore, by adding constraints we may not be able to reach the optimal
number of line segments anymore and see a maximum optimality gap of 10%. The
results for test set T2 are similar. Figure 4 shows a box and violin plot of runtimes
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for TSPConcorde and the constrained versions thereof, further suggesting that
adding constraints does not significantly influence runtimes.

6 Conclusion

We have studied the algorithmic complexity of computing optimal linear dia-
grams and observed that it is equivalent to a related problem on binary matrices.
Despite its NP-completeness, even in a restricted setting, we have formulated a
TSP model for solving the problem optimally. In an experimental study, we have
seen that a state-of-the-art TSP solver can in fact solve a large set of instances
obtained from our model optimally, most of them within few milliseconds. Hence
it is feasible to strive for optimal linear diagrams in most practical settings and
thus reduce the number of line segments by up to 10% compared to the best
heuristics, which, otherwise, are faster by one to two orders of magnitude.
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Abstract. A passage from Jody Azzouni’s article “The Algorithmic-
Device View of Informal Rigorous Mathematical Proof” in which he
argues against Hamami and Avigad’s standard view of informal mathe-
matical proof with the help of a specific visual proof of 1/2+1/4+1/8+
1/16 + · · · = 1 is critically examined. By reference to mathematicians’
judgments about visual proofs in general, it is argued that Azzouni’s
critique of Hamami and Avigad’s account is not valid. Nevertheless, by
identifying a necessary condition for the visual proof to be considered
a proper proof in the first place, and suggesting an appropriate way to
establish its correctness, it is shown how Azzouni’s assessment of the
epistemic process associated with the visual proof can turn out to be
essentially correct. From this, it is concluded that although visual proofs
do not constitute counterexamples to the standard view in the sense sug-
gested by Azzouni, at least the visual proof mentioned above shows that
this view does not cover all the ways in which mathematical truth can
be justified.

Keywords: Visual proofs · Mathematical rigor · Standard view ·
Mathematical practice

1 Introduction

The relation between informal mathematical proofs and formal derivations in
(suitable) formal systems is a much debated topic in the philosophy of math-
ematics in general and the philosophy of mathematical practice in particular.
Here I concentrate on the epistemological side of the topic and am concerned
with the question whether and, if so, to what extent this relation has something
to do with how mathematicians’ informal proofs secure mathematical knowl-
edge. The focus is on a specific “derivational account of informal mathematical
proof” together with a particular critique of it. According to the derivationists,
as named by Tanswell [25], the rigor and correctness of informal proofs depend
(in some sense) on associated formal derivations.

c© The Author(s) 2022
V. Giardino et al. (Eds.): Diagrams 2022, LNAI 13462, pp. 37–53, 2022.
https://doi.org/10.1007/978-3-031-15146-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15146-0_3&domain=pdf
http://orcid.org/0000-0002-5227-0841
https://doi.org/10.1007/978-3-031-15146-0_3


38 S. Weisgerber

While Jody Azzouni has defended a derivational account of informal math-
ematical proof himself [4], he has developed an alternative approach to infor-
mal rigorous proof in his recent article [7] which he calls “the algorithmic-
device view.” In this article, he explains why derivational accounts of mathe-
matical proofs do not work and argues for the “superiority” of his algorithmic-
device view. He argues explicitly against a specific derivational account, namely
Hamami and Avigad’s standard view of informal mathematical rigor and proof,
among other things with the help of the visual/diagrammatic proof of the fact
that 1/2 + 1/4 + 1/8 + 1/16 + · · · = 1 shown in Fig. 1.1 Note that when the
talk is of “Hamami and Avigad’s standard view” I am referring to two sepa-
rate papers, namely [20] and [3]. Insofar as Avigad’s work can be understood
as an augmentation of Hamami’s model of the “standard view of mathematical
rigor” which we will see later, and for the purposes of this text, it is convenient
to talk about “Hamami and Avigad’s derivational account/standard view,” as
sometimes Azzouni himself does.

1/2

1/4

1/8

1/16

Fig. 1. A visual proof of 1/2 + 1/4 + 1/8 + 1/16 + · · · = 1.

In the following, I will critically examine Azzouni’s account of the visual proof
and the conclusions he draws regarding Hamami and Avigad’s standard view. In
particular, using mathematicians’ evaluations of visual proofs in general, which
play a fundamental role in Hamami and Avigad’s standard view, I will argue that
Azzouni’s criticism of their account is not valid. Nevertheless, by identifying a
necessary condition for the visual proof to be considered a proper proof in the
first place, and suggesting an appropriate way to establish its correctness, I will
argue that his assessment of the epistemic process associated with the visual
proof proves to be essentially correct. From this, I will conclude that although
visual proofs do not constitute “counterexamples” to the standard view in the
sense suggested by Azzouni, at least the one presented in Fig. 1 shows that this
view does not cover all the ways in which mathematical truth can be justified.

1 A possible description of what is going on in the figure can be found in the initial
paragraphs of Sect. 5.
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After having introduced, in Sect. 2, Azzouni’s account of the visual proof and
his critique towards Hamami and Avigad’s standard view, their work is briefly
discussed in Sect. 3. Section 4 is about how mathematicians themselves regard
visual proofs. This is followed by a critical examination of Azzouni’s critique in
Sect. 5, which discusses, inter alia, the conditions under which the visual proof
can turn out to be a proper proof (5.1) and what this means for the standard
view (5.2).

2 Azzouni’s Counterexample to the Standard View

In [7], Azzouni uses the visual proof of 1/2 + 1/4 + 1/8 + 1/16 + · · · = 1 shown
in Fig. 1 to argue against Hamami and Avigad’s standard view. In particular, he
argues that this proof constitutes a counterexample to the “normativity thesis”
which is “in a way” part of Avigad’s standard view. We will see to what extent
this is true in Sect. 3, where I will discuss their standard view in more detail. In
Azzouni’s own words:

I’ve suggested in earlier work [5] – in a way related to Avigad’s [3] approach
to a normative role for formal derivations – that transcribability to a formal
derivation has, in the contemporary setting, become a norm for informal
rigorous proof. I want to end this section by revisiting considerations that
cut against that idea. The problem is that there are informal rigorous
mathematical proofs that are counterexamples to the normativity thesis.
[7, p. 77]

Besides in this passage, he does not mention the expression “normativity thesis”
again. Since he writes shortly after that whether “derivations correspond to
informal proofs” is actually a norm is “ultimately, a sociological matter” [7,
pp. 77f.], I take him to mean by the normativity thesis something like “the
transcribability to a formal derivation should be considered a norm for informal
rigorous proof.” In the earlier work he is referring to in the indented quote above,
he explains that

The first point to observe is that formalized proofs have become the norms
of mathematical practice. And that is to say: should it become clear that
the implications (of assumptions to conclusion) of an informal proof cannot
be replicated by a formal analogue, the status of that informal proof as a
successful proof will be rejected. [. . . ] The norm is this: There is a formal
analogue of a purported informal mathematical proof or else the latter
fails to be a proof. [5, p. 14]

Based on this passage, I present the following characterization as a first
attempt to specify what this thesis might amount to:

(NT*) Should it become clear that the implications (of assumptions to conclu-
sion) of an informal rigorous proof cannot be replicated by a formal analogue,
the status of that informal rigorous proof as a successful proof should be
rejected.
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His reasoning for the visual proof being a counterexample to the normativity
thesis is as follows (cf. [7, p. 77]): (i) “Phenomenologically – notice – this proof
is utterly convincing as it stands” and (ii) “there is no sense in which it looks
like it needs to be completed or filled in” from which he concludes that (iii)
“neither epistemically nor normatively does this proof and many other informal
rigorous proofs [. . . ] need supplementation of any sort.” Finally, he states that
(iv) this and many other informal rigorous mathematical proofs do not them-
selves “indicate the existence of formalizations that, in turn, justify why they’re
true: their content, that is, does nothing of this sort.”2

Because of this—especially because of his statement (iv) —and the fact that
the implications of the visual proof can in fact be captured and to a certain degree
replicated by a formal analogue, which is also admitted by Azzouni himself,3 the
following appears to be a more appropriate characterization of the normativity
thesis:

(NT) The transcribability to a formal derivation should be considered a norm
for informal rigorous proof, i.e., an informal rigorous proof should indicate
the existence of a formal counterpart that, in turn, justifies why it is true.

Besides the reference to an “indication relation” between informal rigorous
proofs and their formal counterparts in the sense that an informal proof should
indicate the existence of a formal analogue, there is a second essential component
of Azzouni’s “normativity thesis,” namely that it deals exclusively with informal
rigorous proofs. In accordance with this, he describes the visual proof shown in
Fig. 1 as a rigorous one. With respect to the (alleged) rigorousness of visual
proofs, Azzouni explains in [6] that

it’s been quite common, historically, to describe diagrammatic proofs as
lacking ‘in rigor’. This is so to the extent that, in the nineteenth century,
if not before, it seemed reasonable to expunge diagrams altogether from
mathematical proof along with reliance on ‘intuition’. [6, p. 324]

2 Notice that statement (iv) is closely related to one of Tanswell’s five “minimal
desiderata” of any derivational account of informal proofs, namely (Content) (cf.
[25, pp. 297f.]), which are all approved by Azzouni. That is to say that any deriva-
tional account needs to provide an explanation for each of these aspects of mathemat-
ical practice in general or informal mathematical proofs in particular. In Azzouni’s
words, (Content) says that “[a]ny derivational explanation must explain how the
perceived content of an informal rigorous mathematical proof – what the sentences
of that proof are experienced to say – determines which formal proof(s) it indicates”
[7, p. 10].

3 In [6], Azzouni explains with respect to this visual proof that he does not want to
deny “that there is a sense in which the (visual) concepts involved in the pictorial-
proof have been embedded or reconstrued in the ε-δ proof” [6, p. 330], where for the
“ε-δ proof” he has in mind the standard proof with ε-δ techniques such as the one
presented in [12]. So, it seems that according to Azzouni, the now-standard proof
is an appropriate semi-formal analogue of the visual proof, which, in turn, can be
replicated rather straightforwardly by a formal analogue itself.
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In this article, however, Azzouni argues that it is false to claim that diagram-
matic proofs lack in rigor. He identifies several factors which people mistakenly
regard as reasons to deny rigor to them. In particular, he argues against the
suggestion that these proofs are not rigorous or defective because they involve
unarticulated mathematical content. Although he does not give a very detailed
account of mathematical rigor, I take him to implicitly assume something like
the following sufficient condition for (informal) rigorousness that is related to his
statement (ii) from above (cf. [6, p. 333], where also the following expressions
in quotation marks come from): If there are no missing steps in the mathemat-
ical content of a proof—where the content does not need to be “explicit” (e.g.
“explicated by axioms”), but which is nevertheless “playing a role enabling the
proof procedure”—then this proof should count as rigorous. Except for one qual-
ification, I think that statements (ii) and (iii) show that Azzouni in [7] still
holds on to this view. Since he states in footnote 142 on page 77 of [7], that if
“language-based transcriptions of something we see visually” are treated to be
more explicit or as making something explicit in the first place, then only by
fiat, let me reformulate the condition as follows:

(R) If there are no missing steps in the content of a proof—where the content
does not necessarily have to be presented in a language-based form, but which
is nevertheless playing a role enabling the proof-procedure—then this proof
counts as rigorous.

Furthermore, with respect to the visual proof, Azzouni argues that (v)

The epistemic process, rather, is the exact reverse of what normative
and descriptive derivational accounts hypothesize. The intuitively effec-
tive procedures such proofs exhibit right on their surfaces, when preserved
formally, simultaneously preserve the epistemic qualities (the phenomenol-
ogy) of those informal proofs. The formalization inherits, that is, what it
is about the informal proof that convinces us – what justifies our being
convinced of the result of the proof. It’s not, that is, that the formaliza-
tion reveals what’s convincing about that proof or that the formalization
justifies that proof. [7, p. 77]

He concludes that (vi)a6 this “is enough to show that – at least with respect
to many informal rigorous mathematical proofs – derivation accounts are intrin-
sically misleading” (ibid.).

The “intuitively effective (recognition) procedures” which are mentioned in
statement (v), lie at the heart of Azzouni’s algorithmic-device view of informal
rigorous mathematical proofs. These are procedures that “mathematicians grasp
directly and not via formal transcriptions of those procedures into the medium
of formal languages” [7, p. 20]. The notion of “intuitive” involved in the char-
acterization is meant to refer to something which is computable or executable
by a human being while an “effective procedure” or “effective method” which is
expressible as a finite set of precise instructions is closely related to the notion
of an algorithm [7, pp. 11–17].

Let us now take a closer look at Hamami and Avigad’s account(s).
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3 The Standard View of Mathematical Rigor and Proof

In a recent article, Yacin Hamami [20] offers an elaborated formulation of, what
he calls, “the standard view of mathematical rigor” [20, p. 411]. He traces this
view back to the work by Saunders Mac Lane and Bourbaki. Hamami differ-
entiates between a descriptive and a normative part of the standard view. The
descriptive part—which might be called an account of informal mathematical
rigor—is meant to “provide a characterization of the process by which mathe-
matical proofs are judged to be rigorous in mathematical practice, i.e., by which
the quality of being rigorous is attributed to mathematical proofs in mathemat-
ical practice” [20, p. 420]. His general characterization of a descriptive account
of mathematical rigor is given as follows [20, pp. 420f.]:

A mathematical proof P is rigorousM
⇔

P can be verified by a typical agent in mathematical practice M, using the
resources commonly available to the agents engaged in M.

⇔
Every mathematical inference I in P can be verified by a typical agent in
mathematical practice M, using the resources commonly available to the

agents engaged in M.

Hamami’s particular description of the descriptive part of the standard view
expresses the last specification of the characterization above in terms of decom-
position and verification processes. That is to say that when confronted with a
proof P , agents in a practice M verify specific proof steps by decomposing these
steps into smaller steps (if needed) until they can verify them with the help of
mathematical inference rules that were acquired during their former studies [20,
pp. 422ff.].

Hamami explains that in general, “a normative account of mathematical rigor
stipulates one or more conditions that a mathematical proof ought to satisfy in
order to qualify as rigorous” [20, p. 411]. The specific normative part of the
standard view is now given by the following characterization [20, p. 428]: A
mathematical proof P is rigorous in the normative sense if and only if it “can
be routinely translated into a formal proof.” It is with respect to this part of the
view that Hamami claims that it is “almost an orthodoxy among contemporary
mathematicians” [20, p. 409]. He develops in his article a precise conception of
the notion of “routine translation” by first differentiating between four “levels of
granularity” and then elaborating three successive translations, i.e., algorithmic
procedures, each from one level of granularity to the next finer level. At the
coarsest level, which he calls the “vernacular level,” the mathematical proof “is
a sequence of inferences as commonly presented in the ordinary mathematical
texts of mathematical practice M” [20, p. 429].

With the help of the machinery presented in his article, Hamami can show
that if a proof is informally rigorous, it is also rigorous in the normative sense,
i.e., it can be routinely translated into a formal proof [20, pp. 433f.].
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In [3], in which the philosopher and mathematician Jeremy Avigad defends
the standard view, he explains that according to this view, “an informal mathe-
matical statement is a theorem if and only if its formal counterpart has a formal
derivation” and that a judgment as to the correctness of a mathematical proof
“is tantamount to a judgment as to the existence of a formal derivation, and
whatever psychological processes the mathematician brings to bear, they are
reliable insofar as they track the correspondence” [3, p. 7379, emphasis added].
Avigad further explains that informal proof texts are “high-level sketches that
are intended to indicate the existence of formal derivations” [3, p. 7381, empha-
sis original] and that informal proofs “work” in this way [3, p. 7394]. To be sure,
when Avigad talks about “informal proofs” he is referring to informal mathemat-
ical proofs that are in line with mathematicians’ contemporary proof practice.
Since he explicitly mentions Hamami’s work, among others, as an example in
which his general viewpoint has been articulated [3, p. 7379] (another example
is Burgess’s account expressed in [13] where he characterizes rigor as, among
other things, “[t]he quality whose presence in a purported proof makes it a gen-
uine proof by present-day journal standards” [13, p. 2]), we may take him to
be talking about informal rigorous proofs. Together with Avigad’s statements
above, one can see that the normativity thesis (NT) is indeed—at least “in a
way”—part of his standard view, which is in accordance with Azzouni’s assess-
ment. (Notice the subtle difference that while Avigad speaks of the existence of
formal derivations, Hamami (only) speaks of the existence of a routine transla-
tion which is able to turn a proof P into a formal one (cf. [20, p. 432, footnote
25]).)

Now, with respect to Hamami’s model of informal rigor, i.e., the descriptive
part of the standard view, Avigad, while broadly accepting it, nevertheless has
some reservations. He believes that

Hamami’s model is essentially correct: when we read an informal math-
ematical proof, we really do try to expand inferences in order to gain
confidence that a much more detailed version could be given, down to the
kinds of basic inferences that twentieth century logic has shown can be
reduced to axiomatic primitives. At the same time, we can be convinced
by an informal proof without carrying out a fully detailed expansion, and
it is too much to ask that we reach the point where each inference is an
instance of a known theorem or an explicit rule we have stored in memory.
[3, pp. 7393f.]

In order to bridge this gap with respect to Hamami’s criterion of informal rigor,
Avigad discusses in his article several strategies, such as modularize, general-
ize and visualize, which are employed by mathematicians to ensure reliable and
robust assessments concerning the correctness of informal mathematical proofs.
In fact, he presents these “common features of mathematical practice” as “nor-
mative dictates, strategies that one might urge upon an aspiring young mathe-
matician” [3, p. 7388].
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Since the judgments and evaluations of (contemporary) mathematicians play
a fundamental role in Hamami’s (and Avigad’s) descriptive part of the standard
view, we will now have a look at how mathematicians themselves regard visual
proofs such as the one shown in Fig. 1.

4 Mathematicians on Visual Proofs

How do (contemporary) mathematicians regard visual proofs? Roger Nelsen, for
instance, who has edited three volumes on “proofs without words” (PWWs) (as
visual proofs are often referred to in the mathematical literature), states in the
introduction of the first volume in which Fig. 1 can be found on page 118, that
“[o]f course, ‘proofs without words’ are not really proofs” [21, p. vi]. This state-
ment is somewhat weakened in the introduction of the second volume, where he
explains that “[o]f course, some argue that PWWs are not really ‘proofs’” but
goes on by quoting a passage by James Brown from his “Philosophy of Math-
ematics – An Introduction to the World of Proofs and Pictures” [12] in which
Brown states that “pictures can prove theorems” [22, p. x]. However, this is again
relativized in [2], where Nelsen and his co-author Claudi Alsina describe PWWs
as “pictures or diagrams that help the reader see why a particular mathematical
statement may be true, and also to see how one might begin to go about proving
it true” [2, p. 118].

As another example, consider the two mathematicians Peter Borwein and
Loki Jörgenson who write in their article “Visible Structures in Number Theory”
(for which they won a “Paul R. Halmos – Lester R. Ford Award” from the
“Mathematical Association of America” which recognizes “authors of articles of
expository excellence published in The American Mathematical Monthly” [24])
that

The value of visualization hardly seems to be in question. The real issue
seems to be what it can be used for. Can it contribute directly to the body
of mathematical knowledge? Can an image act as a form of “visual proof”?
Strong cases can be made to the affirmative [they mention two references,
one of which is an article again by James Brown; S.W.] (including in
number theory), with examples typically in the form of simplified, heuristic
diagrams such as Fig. [2 a) (see below); S.W.]. These carefully crafted
examples call into question the epistemological criteria of an acceptable
proof. [10, pp. 898f.]

Note that although Borwein and Jörgenson seem inclined to grant specific dia-
grams the status of “visual proofs” (“strong cases can be made”), they never-
theless refer to them as “heuristic diagrams.”

Besides what these individual mathematicians have to say about visual
proofs, there is also a survey study conducted by Weber and Czocher [26] in
which the executors asked ninety-four mathematicians from universities in the
United Kingdom to judge the visual proof shown in Fig. 2 b)—in addition to an



Visual Proofs and the Standard View of Proofs 45

empirical, a computer-based and two “prototypical” proofs—regarding its valid-
ity. When the participants were asked “If you were forced to choose, would you
say that this argument is a valid proof?,” 38% chose “This is not a valid proof”
[26, pp. 259f.]. Note that this visual proof is quite different from the proofs
shown in Fig. 1 and 2 a) which raises the question whether the evaluations of
mathematicians concerning this specific visual proof should be considered rep-
resentative of a whole class of proofs. However, the general handling of visual
proofs, especially the fact that they are almost all listed in the mathematical
literature under the heading of PWWs, suggests this.4

1/2

1/2

1/4

1/4

1/8

1/8
1/16

1/16

a) b)

Fig. 2. a) A visual proof of (1/2)2 + (1/4)2 + (1/8)2 + (1/16)2 + · · · = 1/3.
b) A visual proof that n odd implies n2 ≡ 1 (mod 8) [23, p. 8].

These findings suggest that the general status of visual proofs, i.e., whether
they should count as “proper” or “valid” proofs, is (at least to some degree)
controversial among (contemporary) mathematicians. Obviously, whether these
“proofs” should count as “rigorous proofs”—insofar as one can legitimately (or
wants to in the first place) distinguish between valid and rigorous proofs—is

4 In the introduction of [1], the authors write that

Mathematical drawings related to proofs have been produced since antiquity
in China, Arabia, Greece and India but only in the last thirty years has there
been a growing interest in so-called “proofs without words.” Hundreds of these
have been published in Mathematics Magazine and The College Mathematics
Journal, as well as in other journals, books and on the World Wide Web.
Popularizing this genre was the motivation for the second author of this book
in publishing the collections [21,22]. [1, p. ix]

The visual proof shown in Fig. 2 b) appears in this work on page 145 as a proof of
8Tn + 1 = (2n + 1)2, where Tn = 1 + 2 + · · · + n denotes the nth triangular number.
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then not less controversial.5 This assessment is consistent with Azzouni’s own
statement which we have already seen in Sect. 2 that “it’s been quite common,
historically, to describe diagrammatic proofs as lacking ‘in rigor’” [6, p. 324].6

5 Azzouni’s Critique Towards the Standard View
Revisited

In this section, I have a closer look at Azzouni’s critique of the normativity thesis
and Hamami and Avigad’s standard view in general. Before I go into more detail
on this, however, let me give one possible description of what is going on in Fig. 1,
which will play a role later on.

The numbers written on the rectangles suggest that these rectangles stem
from a successive bisecting process. We might imagine two squares with the
same area (for convenience, we may assume that they have an edge length of
1) where we use parts of the first square to cover parts of the second square.
The process starts by bisecting the first square in order to get two rectangles
and using one of them to cover the left side of the second square (this square
is meant to be positioned as the one in Fig. 1). Now, we halve the remaining
rectangle of the first “square” to get two smaller squares, and use one of them to
cover the lower right corner of the second square, and so on and so forth, so that
the second square is covered more and more by the parts of the first “square.”
By referring to the areas of the rectangles, this process can be represented as
follows (where the last summand in each case denotes the area of the remaining
part of the first “square,” respectively the part of the second square that is not
yet covered):

5 One can speculate that Weber and Czocher’s study shows even more than what has
been said so far. Mathematicians were also asked to evaluate the visual proof shown
in Fig. 2 b) with respect to a “more fine-grained view of validity” as Weber and
Czocher call it. In that regard, even 78% of the participants characterize this proof
as invalid in at least some contexts. I think it is not too much of a stretch to suggest
that probably many were thinking of mathematical contexts in which rigorous proof
is required. But this is pure speculation, as participants were not asked to specify
the contexts more precisely.

6 The case of visual proofs or proofs without words discussed here is a rather extreme
one. Many recent studies in the philosophy of mathematical practice do not focus
on these particular diagrams, but on those that play an important role in (contem-
porary) mathematical reasoning and that can even be part of a published modern
proof (see, for instance, [15], [19] and [16]). See also footnote 8 in this context.
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and so forth, so that in the nth step we have 1 = (
∑n

k=1(1/2)k) + (1/2)n or,
equivalently, 1 − (1/2)n =

∑n
k=1(1/2)k. That is, in each step, the last summand

of the previous step is expressed as the summation of its bisection with its
bisection. This process could in principle be performed infinitely often, so that
the last summand (or the remaining area of the first “square,” respectively the
part of the second square that is not yet covered) becomes infinitesimally small
and the series 1/2+1/4+1/8+1/16+. . . should be assigned the value 1 (if any at
all). Note that I propose here “to make the jump to an infinite summation” as a
“modern reader is inclined to” do, as expressed by David Bressoud in his “radical
approach” to real analysis [11, p. 11], while this would have been avoided, for
instance, by the Greeks of the classical era, such as Archimedes [11, pp. 9ff.].

5.1 Figure 1 and the Corresponding Epistemic Process

I think that Azzouni’s characterization of the epistemic process with respect
to the visual proof shown in Fig. 1 which he gives in (v), in particular that it
is not the case that a formalization would reveal what is convincing about the
visual proof in the first place or that it justifies this proof, is essentially correct.
However, I think there is an implicit assumption by Azzouni that needs to be
made explicit and argued for in a proper way to give a full explanation of why
his characterization in (v) is appropriate.

With that in mind, let us distinguish between an intuitive, pre-formal notion
of something that could in principle be repeated infinitely often or that refers
to infinity in one way or another and an exact, i.e., “rigorous” (with respect to
modern standards) mathematical definition thereof, such as the modern defini-
tion of an infinite series or the sum of a convergent infinite series. Let us write
the “mathematical theorem” suggested by the visual proof which corresponds
to the first, pre-formal understanding as “1/2 + 1/4 + 1/8 + · · · = 1,” where
the dots “. . . ” are referring to the involved (potential) infinite process, and let
“
∑∞

k=1(1/2)k = 1” denote the theorem which appears in modern mathematical
textbooks or exercise sheets. The description of what is going on in Fig. 1 which
I gave above shows that it is quite reasonable to judge the figure as a proof of
“1/2 + 1/4 + 1/8 + · · · = 1” or why one is inclined to judge it as “utterly con-
vincing” as Azzouni does in (i). But of course Azzouni wants the visual proof
to be understood as a proof of “

∑∞
k=1(1/2)k = 1” and his comments (v) and
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(vi) are to be interpreted in this sense (see also [6, pp. 329f.]). This means that
he has to assume some sort of link between these two interpretations, probably
something like the following:

(Lim) The (an) intuitive notion of the sum of the series involved in the intuitively
effective procedure that Fig. 1 exhibits right on its surface is compatible with
the now-standard, “rigorous” definition of the sum as the limit of the sequence
of partial sums using the ε-δ terminology.

By “compatible with” I mean that the now-standard definition should not rule
out the (an) intuitive notion of the sum of the series which one is inclined to
read into the diagram.

So I claim that the correctness of (Lim) is a necessary condition for Fig. 1
to constitute a (visual) proof of the mathematical theorem “

∑∞
k=1(1/2)k = 1.”

If there were no such connection between the visual proof and the mathematical
theorem that appears in current textbooks, I cannot see how the former could
ever constitute a proof of the latter.

Now, how can we know that (Lim) is correct? One way would be to simply
verify that the now-standard ε-δ technique proves this series to be convergent.
Azzouni claims in (v), however, that it is not the formalization of the visual
proof that justifies it, but the diagram itself. This would not follow if we justified
(Lim)—which, as I have just pointed out, is a necessary condition for the visual
proof to constitute a proof of the mathematical theorem “

∑∞
k=1(1/2)k = 1”—

with reference to the semi-formal version of it. Note that if this were the only
way to establish (Lim), the visual proof could not be considered a real proof
either, since one would have to prove the theorem by another method before
one could prove it using the diagram. I submit, however, that there is another
way of justifying (Lim) which does not lead to this result so that Azzouni’s
evaluation of the epistemic process in (v) can still turn out to be valid: One can
also establish (Lim) by showing that mathematicians in the development of the
calculus tried to capture the (main) intuitions underlying the visual proof shown
in Fig. 1—possibly in the form of the equations (1)—with their definitions of the
sum of a series.

Even though the following two excerpts from the history of mathematics
might not necessarily prove the correctness of (Lim) themselves, they strongly
suggest that one can justify (Lim) in the way just described: For instance, in
his “De seriebus divergentibus” from 1760 (which was roughly a century before
“[w]ith Weierstrass, the now-accepted ε-δ terminology became part of the lan-
guage of rigorous analysis” [14, p. 620]), Leonhard Euler refers to the series
1 + 1/2 + 1/4 + 1/8 + · · · = 2 in his characterization of a convergent series as a
clear example of this “phenomenon”:

And now, series are said to be convergent when their terms steadily become
smaller and at length completely vanish, such as this one: 1 + 1/2 + 1/4 +
1/8+1/16+1/32 + etc., whose sum is in fact = 2, without any doubt. For
as you add in more terms, you draw closer to 2; thus the sum of 100 terms
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falls short of 2 by a very small amount, indeed a fraction with numerator
1 and a denominator made up of 30 digits. Therefore, with such a series,
there is no doubt that it indeed has a sum and that the sum which is
assigned in analysis is correct. [8, p. 143]

As another example, consider Cauchy’s still “unrigorous” definition (with
respect to modern standards) of the convergence of series presented in his “Cours
d’Analyse” from 1821. Especially when the calculations or relations indicated by
the visual proof are written as in (1), one can see how they fit nicely with this
definition: Cauchy calls a series convergent if and only if its sequence of partial
sums sn “tends to a certain limit s for increasing values of n” [9, p. 3] where
by “limit” he means that “[w]hen the values successively attributed to the same
variable approach indefinitely a fixed value, eventually differing from it by as
little as one could wish, that fixed value is called the limit of all the others”
[9, p. 2]. Immediately after the presentation of his definition of the convergence
of series, Cauchy briefly discusses “one of the simplest sequences” which is the
geometric progression 1, x, x2, x3, . . . for which one finds that

1 + x + x2 + · · · + xn−1 =
1

1 − x
− xn

1 − x

and whose sum is 1/(1 − x) if the magnitude of x is less than unity [9, p. 3]. If
we start with the term u1 = x (or subtract the value 1) and set x = 1/2, we of
course get the series that is currently being discussed.

Let me conclude this section with a comment on Azzouni’s statement (vi).
Insofar as mathematicians throughout history tried to capture with their defi-
nitions of the convergence of series the intuitive notion of the sum of the series
involved in the intuitively effective procedure that Fig. 1 exhibits right on its sur-
face as the historical findings from above suggest (at least to a certain degree), I
think that an account of informal mathematical proof would in fact be “intrin-
sically misleading”—as Azzouni states in (vi)—if it suggested that the truth of
the visual proof can be justified only by its formalization. However, that Hamami
and Avigad’s account is not susceptible to the accusation of being “intrinsically
misleading” in this respect will be shown, inter alia, in the next section.

5.2 Visual Proofs as Counterexamples to the Standard View?

As we have already seen in Sect. 2, Azzouni argues in [7] against the normativity
thesis (NT) with the help of the visual proof shown in Fig. 1 which is meant
to constitute a counterexample towards it. Insofar as (NT) is part of the stan-
dard view (which it actually appears to be as indicated in Sect. 3), does this
imply that the visual proof constitutes a counterexample to this view itself? I
claim that the answer is no, even if one were to agree with Azzouni’s estimation
expressed in (iv), that the visual proof does not indicate a formalization—which
seems not to be uncontroversial, since it is a general statement about all possi-
ble “indication relations” (where his own from his earlier work [4] and Hamami’s
“routine translation” are only two of them).
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The reason for this is that crucial to Hamami and Avigad’s models of infor-
mal rigor is the assessment of proofs by mathematicians themselves (keyword
“descriptive part”). The findings of Sect. 4—especially the quotations of the indi-
vidual mathematicians—suggest that even the general status of visual proofs
among mathematicians is controversial, i.e., whether Fig. 1, for example, quali-
fies as a proof of “

∑∞
k=1(1/2)k = 1” (referring to the interpretation introduced

in Sect. 5.1) in the first place, not to mention whether they should be considered
rigorous.7

As we have seen in Sect. 3, Hamami’s descriptive part of the standard view
is meant to characterize the process by which “a typical agent in mathematical
practice M” attributes the quality of being rigorous to mathematical proof. But
even if one granted that the creation of PWWs constituted one of these prac-
tices, Nelsen’s statements above suggest that “a typical agent” of this practice
would not characterize these proofs as rigorous. Due to Avigad’s generally affir-
mative attitude towards Hamami’s account and his own focus on contemporary
mathematical practice and its practitioners, I take this to mean that the visual
proof shown in Fig. 1 does not constitute a counterexample to (NT) from the
perspective of the standard view, since this view is simply not concerned with
this genre of proofs. This also means that if Fig. 1 would indeed constitute a
counterexample to (NT) as claimed by Azzouni, this interpretation of the nor-
mativity thesis would not be part of the standard view, since it would deal with
a different notion of informal rigorous proof, (partially) expressed, for instance,
in (R).

As I have argued in Sect. 5.1, the visual proof shown in Fig. 1 can indeed
be seen as a proper proof of the mathematical theorem “

∑∞
k=1(1/2)k = 1,”

although one has to establish the correctness of the necessary condition (Lim)
first without having to confirm that the now-standard ε-δ technique proves this
series to be convergent. In light of this, the corresponding epistemic process
as described by Azzouni in (v) turns out to be essentially correct. However,
this does not imply that Hamami and Avigad’s account of the standard view is
intrinsically misleading. This is due to the same reason that the visual proof is
not a counterexample to the normativity thesis from the point of view of their
account: It is not intrinsically misleading with respect to visual proofs, because
it does not deal with that type of proof. What it shows, however, is that the
standard view does not cover all the ways in which mathematical truth can be
justified. Hamami starts his investigation with the words

Mathematical proof is the primary form of justification of mathematical
knowledge. But in order to count as a proper mathematical proof, and
thereby to function properly as a justification for a piece of mathematical
knowledge, a mathematical proof must be rigorous. [20, p. 409]

7 My speculation in footnote 5 even suggests that a criterion such as (R) and/or that
visual proofs satisfy the necessary condition for (R) that there must be no missing
steps in the content of the proofs—which Azzouni addresses with his statement
(ii) regarding the visual proof shown in Fig. 1—are not commonly accepted by
mathematicians.
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However, as the discussion of the “epistemic process” of the visual proof of Fig. 1
has shown, an informal mathematical proof can be proper—in the sense that it
functions properly as a justification for a piece of mathematical knowledge—
without being rigorous (in Hamami’s descriptive sense).8

6 Conclusion

We have seen that, according to Azzouni, the visual proof shown in Fig. 1 con-
stitutes a counterexample to the “normativity thesis” that is part of Avigad’s
standard view and which says that the transcribability to a formal derivation
should be considered a norm or standard of correctness for informal rigorous
proof. It has been argued, however, that from the point of view of Hamami and
Avigad’s standard view, the visual proof does not constitute a counterexample to
this thesis and thereby no counterexample to their standard view in general. This
is the case, because the standard view is not concerned with this genre of proofs:
Crucial to the view are the judgments about the rigorousness of a mathemati-
cal argument by the mathematicians themselves. And many comments made by
mathematicians and a survey study suggested that even the general status of
visual proofs is controversial, not to mention whether they should be considered
rigorous.

Furthermore, we have seen that from an evaluation of the epistemic process
associated with the visual proof, Azzouni concludes that with respect to this
specific one and many other informal proofs the standard view is “intrinsically
misleading.” This conclusion was rejected for the same reason that the visual
proof is not a counterexample to the normativity thesis from the perspective
of the standard view : It is not intrinsically misleading with respect to visual
proofs, because it does not deal with that type of proof. I further identified the
need for a connection between the intuitive notion of the sum of the series one

8 Note that although we have seen that visual/diagrammatic proofs are not too much
of a problem for Hamami and Avigad’s standard view, there is a legitimate concern,
especially with respect to Hamami’s model: His characterization of the standard
view appears to preclude any mathematical diagram from being an essential part of
a rigorous mathematical proof. That this would indeed be a real deficit confirms a
quick look at, for instance, contemporary homological-algebraic, category-theoretical
or knot-theoretical proof practice. While adapting Hamami’s account to diagrams
from homological-algebraic and category-theoretical proof practice, such as com-
mutative diagrams and the accompanying method of “diagram-chasing,” appears
to be relatively unproblematic, since these can be expressed rather straightfor-
wardly with the help of sequences of equations—which is also mentioned by Avi-
gad (cf. [3, p. 7380])—more work seems to be necessary concerning what Silvia De
Toffoli calls “geometric-topological diagrams,” such as knot diagrams [18]. A promis-
ing first step of how one might try to adapt the standard view is by distinguishing
between the criterion of informal rigor itself and criteria of acceptability for rigorous
proofs as suggested by her in [17] which appears to fit nicely with Avigad’s augmen-
tation of Hamami’s model of informal rigor which I have briefly mentioned at the
end of Sect. 3. However, this is not the right place to go into this in more detail.
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is inclined to read into the diagram and the now-standard, rigorous definition
of it, as a necessary condition for the visual proof to constitute a proper proof,
and suggested a way in which one can establish its correctness, namely with the
help of the history of mathematics, that also proves Azzouni’s assessment of the
epistemic process to be essentially correct. From this, I concluded that although
visual proofs do not show that the standard view is intrinsically misleading, at
least the one mentioned above shows that this view does not cover all the ways
in which mathematical truth can be justified.

Acknowledgment and Copyright. This research was funded in whole by the Aus-
trian Science Fund (FWF) [DOC 5 doc.funds]. For the purpose of open access,
the author has applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

References

1. Alsina, C., Nelsen, R.: Math Made Visual - Creating Images for Understanding
Mathematics. The Mathematical Association of America, Washington (2006)

2. Alsina, C., Nelsen, R.: An invitation to proofs without words. Eur. J. Pure Appl.
Math. 3(1), 118–127 (2010)

3. Avigad, J.: Reliability of mathematical inference. Synthese 198(8), 7377–7399
(2020). https://doi.org/10.1007/s11229-019-02524-y

4. Azzouni, J.: The derivation-indicator view of mathematical practice. Philos. Math.
III(12), 81–105 (2004)

5. Azzouni, J.: Why do informal proofs conform to formal norms? Found. Sci. 14,
9–26 (2009)

6. Azzouni, J.: That we see that some diagrammatic proofs are perfectly rigorous.
Philosophia Mathematica (III) 21(3), 323–338 (2013)

7. Azzouni, J.: The Algorithmic-Device View of Informal Rigorous Mathematical
Proof. In: Sriraman, B. (ed.) Handbook of the History and Philosophy of Mathe-
matical Practice, pp. 1–82. Springer, Cham. (2020). https://doi.org/10.1007/978-
3-030-19071-2 4-1

8. Barbeau, E., Leah, P.: Euler’s 1760 paper on divergent series. Hist. Math. 3(2),
141–160 (1976)

9. Birkhoff, G.: A Source Book in Classical Analysis. Harvard University Press, Cam-
bridge (1973)

10. Borwein, P., Jörgenson, L.: Visible structures in number theory. Am. Math. Mon.
108(10), 897–910 (2001)

11. Bressoud, D.: A Radical Approach to Real Analysis, 2nd edn. The Mathematical
Association of America, Washington (2007)

12. Brown, J.: Philosophy of Mathematics - An Introduction to the World of Proofs
and Pictures. Routledge, London (1999)

13. Burgess, J.: Rigor and Structure. Oxford University Press, Oxford (2015)
14. Burton, D.: The History of Mathematics - An Introduction, 7th edn. McGraw-Hill,

New York (2011)
15. Carter, J.: Diagrams and proofs in analysis. Int. Stud. Philos. Sci. 24(1), 1–14

(2010)
16. De Toffoli, S.: ‘Chasing’ the diagram the use of visualizations in algebraic reasoning.

Rev. Symbol. Logic 10(1), 158–186 (2017)

https://doi.org/10.1007/s11229-019-02524-y
https://doi.org/10.1007/978-3-030-19071-2_4-1
https://doi.org/10.1007/978-3-030-19071-2_4-1


Visual Proofs and the Standard View of Proofs 53

17. De Toffoli, S.: Reconciling rigor and intuition. Erkenntnis 86, 1783–1802 (2021)
18. De Toffoli, S.: What are mathematical diagrams? Synthese 200(86), 1–29 (2022)
19. De Toffoli, S., Giardino, V.: An inquiry into the practice of proving in low-

dimensional topology. In: Lolli, G., Panza, M., Venturi, G. (eds.) From Logic to
Practice, pp. 315–336. Springer (2015). https://doi.org/10.1007/978-3-319-10434-
8 15

20. Hamami, Y.: Mathematical rigor and proof. Rev. Symbol. Logic 15(2), 409–449
(2022)

21. Nelsen, R.: Proofs without Words - Exercises in Visual Thinking. The Mathemat-
ical Association of America, Washington (1993)

22. Nelsen, R.: Proofs without Words II - More Exercises in Visual Thinking. The
Mathematical Association of America, Washington (2000)

23. Nelsen, R.: Visual gems of number theory. Math Horizons 15(3), 7–31 (2008)
24. Paul R. Halmos - Lester R. Ford Awards, https://www.maa.org/programs-and-

communities/member-communities/maa-awards/writing-awards/paul-halmos-
lester-ford-awards. Accessed June 2022

25. Tanswell, F.: A problem with the dependence of informal proofs on formal proofs.
Philosophia Mathematica (III) 23(3), 295–310 (2015)

26. Weber, K., Czocher, J.: On mathematicians’ disagreements on what constitutes a
proof. Res. Math. Educ. 21(3), 251–270 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-10434-8_15
https://doi.org/10.1007/978-3-319-10434-8_15
https://www.maa.org/programs-and-communities/member-communities/maa-awards/writing-awards/paul-halmos-lester-ford-awards
https://www.maa.org/programs-and-communities/member-communities/maa-awards/writing-awards/paul-halmos-lester-ford-awards
https://www.maa.org/programs-and-communities/member-communities/maa-awards/writing-awards/paul-halmos-lester-ford-awards
http://creativecommons.org/licenses/by/4.0/


Representational Interpretive Structure: Theory
and Notation

Peter C.-H. Cheng1(B) , Aaron Stockdill1 , Grecia Garcia Garcia1 ,
Daniel Raggi2 , and Mateja Jamnik2

1 University of Sussex, Brighton, UK
{p.c.h.cheng,a.a.stockdill,g.garcia-garcia}@sussex.ac.uk

2 University of Cambridge, Cambridge, UK
{daniel.raggi,mateja.jamnik}@cl.cam.ac.uk

Abstract. Acognitive theory of the interpretive structure of visual representations
(RIST ) was proposed by Cheng (2020), which identified four classes of schemas
that specify how domain concepts are encoded by graphical objects. A notation
(RISN) for building RIST models as networks of these schemas was also intro-
duced. This paper introduces common RIST/RISN network structures – idioms
– that occur across varied representations. A small-scale experiment is presented
in which three participants successfully modelled their own interpretation of three
diverse representations using RIST/RISN and idioms.

Keywords: Cognition · Representations · Interpretation · Schemas · Idioms

1 Introduction

To advance the study of Diagrams, and visual representations in general, the field
requires a comprehensive cognitive account of how readers of representations interpret
representations. Such a theory is needed for multiple reasons.

(A) Although it is tempting to assume, say, for the sake of theoretical analysis, that
a representation has one ‘correct’ reading, this mask the full diversity of the readers’
interpretations. It is unlikely that two readers of a given representationwill naturally con-
struct identical interpretations. So, some approach to systemically describe those varied
interpretations could be valuable; for example, the mastery of visual representations is
critical in STEM subjects, so there is pedagogic utility in being able to characterise what
differs between novice and competent readers of a target representation.

(B) The particular content of any given topic can be encoded in quite distinct rep-
resentations, with dramatic differential impacts on problem solving and learning across
those representations (e.g., [3, 10, 22]). Thus, an approach to estimating the relative
cognitive benefits of alternative interpretations of representations could be useful. For
instance, such measures could be deployed in the development of automated systems to
select effective representations tailored to individuals and classes of problems (e.g., [8,
20]).
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(C) Related to the previous point, but more fundamental, is the issue of how even to
compare representations with substantially different formats that encode the same infor-
mational content. Conventionally, comparison of alternative representations involves
laborious task analyses (e.g., [2, 3]) or cognitive modelling (e.g., [10, 11]), or empirical
studies (e.g., [2, 3, 22]). Instead, an approach at an intermediate level of abstraction could
obviate the toil of ultra-fine-grained analyses and costly experiments. The approach will
require the formulation of generic, format-independent, theoretical constructs that are
applicable to all representations. Such constructs could serve as “natural” explanatory
entities for interpretations. For these reasons, a cognitive theory of the structure of
interpretations of representations is a worthy goal.

A contrast with linguistics is instructive. Linguistics has produced accounts of the
interpretation of natural language which specify cognitive structures and processes of
meaning extraction from verbal representations (e.g., [9, 16]). Many accounts of the
nature of diagrams address structure (e.g., [10, 17, 18, 21, 22]) but comparatively less
attention has been paid to how individuals interpret or comprehend diagrams ([11, 12]).

Our purpose here is to take the next step towards a general cognitive theory of the
interpretation of representations, by testing the “sketch” of the theory developed by
Cheng [4], which we will call Representational Interpretative Structure Theory (RIST).
The RIST sketch proposed that the human interpretation of representations deploys
four elementary types of mental schemas. Critically, the schemas coordinate informa-
tion about concepts from a target topic with information about how those concepts are
encoded in the graphical components of the representations. To operationalise RIST,
Cheng [4] also outlined a graphical notation for constructing models of interpretations
under RIST, which we will call RISN (RIS Notation). RIST and RISN1 are described in
Sect. 2 of this paper.

In Sect. 2 we introduce RIST and RISN, and take the opportunity to increase the
precision of the definition of RIST’s components and to more tightly specify how RISN
captures particular interpretive constructs. In Sect. 3, we introduce and describe pat-
terns of elementary schemas – idioms – that commonly occur in interpretations, which
we discovered in RIST/RISN networks across diverse representations. Idioms have the
potential to meet the requirement that RIST identifies “design patterns” as standard
interpretive structures for constructing RISN models [4]. As noted above (reason A),
different readers of a given representation will naturally construct alternative interpreta-
tions of that representation, so the requirement that RIST accounts for, and for RISN to
model, alternative interpretations is investigated in a small-scale experiment in Sect. 4.
Drawing these advances together, in Sect. 5, we will briefly consider how RIST and
RISN may yield estimates of the cognitive cost of making alternative interpretations of
a representation (reason B), and how RIST and RISN may provide a neutral approach
to the cognitive analysis of representations that is independent of the particular format
of representations (reason C).

1 Pronounced like “wrist” (/ ôIst/) and “risen” (/ ôIz�n/), respectively.
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Fig. 1. William Playfair’s line graph, in Commercial and Political Atlas, 1786.

2 Representation Interpretation Theory/Notation – RIST/RISN

To introduce RIST and RISN [4], we adopt a running example of the analysis of the
interpretation of a famous diagram – Playfair’s line graph, Fig. 1. Following Cheng’s [4]
analysis guidelines, Fig. 2 annotates the important graphical components of Playfair’s
line graph, and Fig. 3 is a RISN model of the graph2.

2.1 Four Schemas

RIST hypothesises that four schemas underpin our ability to interpret representations3.
The fundamental purpose of these schemas is to tightly coordinate concepts from the
target topic with the graphic objects in the representation that stand for those concepts.
Networks of these schemas encode the rich hierarchical structure of the encoding rela-
tions that constitutes an interpretation of a representation. RISN is a system formodelling
such networks; Fig. 3 is an example. At the highest level is the Representation schema,
capturing an entire representation. R-Scheme schemas capture intermediate level sub-
structures. R-Dimension schemas deal with varying quantities; they describe R-symbol
domains. TheR-symbol schema identifies the ‘unitary’ concepts of the target topic. Their
depiction inRISNmodels is shown inFig. 4 and examples are scattered throughout Fig. 3.
Let us consider them in turn, in reverse order.

2 Figure 3 was drawn in a web browser tool, RIS Editor (RISE), that was specifically developed
for creating RISN models. The tool will be presented in a paper to follow.

3 A schema is a mental knowledge representation for a category defined by a set of attributes
(slots) for which a particular instance of a concept is assigned values (fillers); e.g., [16].
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Fig. 2. Playfair’s line graph as annotated for modelling (by R1).

Fig. 3. Model of the interpretation of Playfair’s line graph (by R1). Colour shadings are for
reference and not part of the model (Color figure online).

R-symbols 4.R-symbols are the ‘fixed’ elements of a representation. Their role is to code
the association of concept with the graphic object representing it. In RISN, R-symbols
are rounded rectangles, with labels identifying the concept and graphical object (Fig. 4d).
In Fig. 2, the overlaid annotations with labels beginning with a “T’ are instances of R-
symbols, and these labels are written in the slots of the corresponding R-symbol icons
in Fig. 3. The graphic object may also be described (e.g., altitude). For textual graphic

4 R-symbol supersedes Token used in [4] for reasons of notational and theoretical consistency.
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objects, the text in quotes may be written in the R-symbol icons (e.g., “1770” in Fig. 3).
Critically, through the structure of its R-symbol schema, RIST asserts the distinction
between what is being represented, the concept, and what is it is being represented by,
the graphical object: they should not be conflated. For example, in Playfair’s line graph
the graphic object “80” on the y-axis, labelled T2.2 represents the concept ‘£80,000’.

Fig. 4. The four schemas as icons: (a) Representation; (b) R-Scheme; (c) R-Dimensions (S =
quantity scale alignment); (d) R-symbol; (e) class R-symbol.

R-Dimensions. This schema encodes concepts about attributes, features or dimensions
of the topic that are variable in that theymay be assigned alternative values. R-dimension
concepts are more general than those encoded by R-symbols. These concepts concern
the variability of some feature or attribute of the topic. In the schema for R-dimensions,
RIST simultaneously distinguishes the concept of variable quantities from its graphic
object whilst also declaring their association. R-dimensions are drawn as a trapezium,
with labels for the concept and graphic object, Fig. 4c. In the line graph model, Fig. 3,
five global R-dimensions are identified: Year-D1 (x-axis); Money-D2 (y-axis); Trade
type-D3 (z-axis for trade curves); Trade volume-D7 (area); Data point-D4.

An R-dimension’s concept is analogous to a mathematical type: R-dimensions
range over R-symbols. R-symbols belong to at least one R-dimension; e.g., the Year
R-dimension possess R-symbols for individual or a group of actual year values.

Given the underpinning role of quantity scales in inference, RIST requires that RISN
models identify the quantity scale [19] for both the concept and the graphic object of each
R-dimension. Whether each is a nominal, ordinal, interval or ratio scale is registered
by a letter – N, O, I or R, respectively – appended to the concept and graphical object
labels in the R-dimension icon (see Fig. 4c). Mismatches between concept and graph
object quantity scales, which may hinder interpretation, are thus made apparent.

R-Schemes. R-Schemes capture complex structures within the representations, from
large structures that span the entire representation, to local structures that organize just
a few R-symbols. While R-Dimensions collect many R-symbols of a similar kind, R-
Schemes are typically heterogeneous: they link together different R-Dimensions, R-
symbols, or other R-Schemes, into some larger structure. R-Schemes are drawn as a
rectangle in RISN (Fig. 4b). The RISN model (Fig. 3) for the interpretation of Playfair’s
graph (Fig. 1) has an overarching R-scheme composed of five R-dimensions.

Representations. At the highest level is the Representation schema. Representation
schemas are drawn as lozenges (Fig. 4a). This schema defines a complete represen-
tation and a RISN model always has a Representation schema at its root. However,
sub-Representations can occur in other parts of a RISN model, when there is a distinct
nested representation within a larger representation (see anchoring below).
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2.2 Linking Schemas

RIST conceptualizes interpretations of representations as rich hierarchical networks of
relations among the four schemas. With the schemas defined, we can begin linking them
together. RISN models must be connected. Here, we introduce a more precise definition
of the three kinds of links proposed: hierarchy, anchoring, and equivalence.

Hierarchy. This most fundamental link asserts when one schema is conceptually
enclosed by another. For example, R-symbols enclosed under R-Dimensions will repre-
sent a specific value from that R-dimension. The hierarchy link can be formed between
any two schemas, with the following exceptions:

– The ‘child’ of a hierarchy link is never a Representation schema, because a
Representation schema stands for a complete representation (but see anchoringbelow).

– An R-symbol schema can only be the parent of another R-symbol schema, because
they are the base-level components of RIST/RISN (but see anchoring below).

– An R-dimension schema cannot be the parent of an R-Scheme schema, because R-
dimensions only range over R-symbols.

We notate hierarchy using a thin solid line (no arrow heads). The hierarchy link is
directed: the direction is indicated by connecting to the parent schema from below, and
the child schema from above. Some subsequent properties of RISN models are:

– All schemas, except for the root Representation schema, must have at least one parent
schema.

– All schemas must have at least one child, except for R-symbol schemas and non-root
Representation schemas: they are the ‘leaves’ of a RISN model.

– A schema may not be the parent of any schemas that are its ancestors – that is, RISN
models are acyclic. However, a schema may have multiple parents, and so parallel
paths may exist.

Anchoring. Anchoring links denote a new substructure that exists as a direct result of
the parent R-symbols. Anchoring is a rich relation where a new concept emerges. We
denote anchoring using solid thin line, with a bullet terminal at the parent. The link is
thus directed, with the direction being shown by the position of the bullet. The parents
must be R-symbol schemas, but there is no restriction on the children except that they are
not an ancestor of the parent – that is, anchors must not introduce cycles into the RISN
model. For example, in Fig. 3 (left), the sequence of hierarchy and anchor relations from
the D3 R-dimension through to the D5.1 R-symbol, via D4.2/3, D4.a and D5, expresses
the notion that export data points are identified by the export curve and that it is only
meaningful to speak of a specific rate of change of the curve with reference to a particular
data point. Anchoring is more than just a sub-R-symbol relationship, such as a segment
of a line, or the digits in a number.

A (sub-)Representation schema may be anchored to an R-symbol; for example, a
Representation Schema for Hindu-Arabic numbers can be added to some of the leaf
nodes in Fig. 3, if we wish to elaborate the inner workings of that numeration system.
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Equivalence. It is useful to register cases of repeated symbols for concepts (e.g., the
two ‘x’ in x× 2= x+ 3), because of their potential impact to the cognitive efficacy of a
representation. Further, a single sophisticated concept in a representationmaybe encoded
by quite different subnetworks of schemas in a RISN model; for instance, imagine that
the areas for trade against and in favour in Fig. 1 are equal. The equivalence link captures
the ‘mental bookkeeping’ that occurs during such interpretations, in which the reader
must hold in mind the relationships between different parts of the representation. It is
not intended to capture “mathematical” equivalence – although it may do, if this is part
of the mental bookkeeping. Equivalence links are undirected and represented by a thick,
dashed line with no terminals. There are no restrictions on what can be connected via
the equivalence relation, allowing cycles in RISN models.

That completes the summary of RIST and RISN. We have outlined RIST’s “words”
and “grammar” for composing “sentences” that express interpretations of representa-
tions. RIST makes strong claims about the fundamental mental knowledge structures
we use to interpret representations (the four schemas) and how interpretation occurs
(construction of networks of those schemas). In this paper, the adequacy of the theory
has been enhanced by more rigorously specifying RIST’s components; in particular, the
circumstances under which each type of link is applicable. Some of the ambiguity in
Cheng’s original theory sketch [4] has been eliminated, which provides greater constraint
on the permissible schema networks.

3 Idioms: Higher-Order Structures

Consider an analogy. Chemical theory is successful because it identifies elements and has
rules by which atomsmay be composed into molecules, but moreover it provides general
categories of structures and processes; benzene rings, alcohol groups, or multi-bonded
carbon atoms are substructures of organic molecules, each providing local information
about the molecule as a whole. Similarly, we observe substructures of schemes within
RIST models. Through many applications of RIST to diverse representations, both sen-
tential and diagrammatic, we observed repeated substructures capturing common ideas
emerge naturally: we call these idioms. Idioms serve dual purposes: first, they are an
aid to interpreting RISN models; second, they can serve as guides when building RISN
models. Three particularly common classes of idioms are introduced and described here:
collections, R-dimension idioms, and coordinate systems.

Fig. 5. Templates for (a) pick, (b) filter, (c) for-each, and (d) reduce.



Representational Interpretive Structure: Theory and Notation 61

3.1 Collections

We have found, frequently, that R-symbols are not just ‘one-off’ symbols within a
representation: there are many points on a chart, many regions in an Euler diagram,
and so forth. To capture this regularity, we allow for class R-symbols, Fig. 4e. However,
we might want to discuss R-symbols as a group, or talk in general about the R-symbols
without specifying an R-symbol in the class. We define four idioms on collections of
representations: pick, filter, for-each, and reduce. Some readers might note that these
names were inspired by functional programming, and draw helpful analogies [1].

The simplest collection idiom is pick: a single R-symbol is extracted from the class
of R-symbols. This idiom can identify a single R-symbol as being of particular interest
in an interpretation. We connect a new R-symbol(s) below the dimension and exclude
it from the sibling class R-symbol, shown in Fig. 5a. An example in the Playfair’s line
graph model is shown by the purple shading in Fig. 3 (and Fig. 9).

When the model requires some subset of the R-symbol collection, we use the filter
idiom. While all the R-symbols in a collection might belong to the same R-Dimension,
that R-Dimension might be very general: sometimes, a specific subset is more useful in
some context. In effect, this is a sub-R-Dimension, so is notated by introducing new sub-
R-Dimensions below the original R-Dimension, Fig. 5b. The name of the filter idiom
is inspired by the filter function common in programming languages: given a collection
of values, extract just the values that match some predicate. For example, in the orange
shading in Fig. 3, if a modeller wanted to just talk about the ‘import data point’ then
only this schema would have been drawn, and thus considered as a filter idiom.

Often, some interpretation is true for all R-symbols in a class, regardless of which
specific R-symbol is being considered. In RISN, we call this idiom for-each, Fig. 5c:
any schemas under a class R-symbol in the model are true for all members of the class.
We can draw analogy to the standard mathematical phrase ‘without loss of generality’:
something true for every member of a set. For example, in the model of Playfair’s line
graph, Fig. 3 (left), the anchoring of the ‘Export data’ class R-symbol under the ‘Year
values’ class R-symbol expresses the idea that each year has an export data value. In
functional programming, this would be a map.

For the sake of clarity, class R-symbols merit further comment in the context of
the for-each idiom. Class R-symbols are limited in how they connect to descendent
schemas: like single R-symbols, they connect either to sub-R-symbols, or via anchoring.
We discussed both types of connection in Sect. 2. In both cases, they apply to each
individual concept included in the class R-symbol, not to the ‘class’ of R-symbols. For
example, in Fig. 3, we have a class R-symbol ‘Year values’ under the ‘Year’ R-dimension
plus individual R-symbols for year ‘1754’ and four others. It would have been incorrect
to make the ‘1754’ R-symbol a child of the ‘Year values’ class R-symbol as it is not a
sub-R-symbol of every R-symbol in the class ‘Year values’.

Finally, when the individual R-symbols within the class are not specifically inter-
esting, but the grouping of them is, we reduce them to a single R-symbol capturing the
concept of the collection of R-symbols, Fig. 5d. The R-symbol for the concept of the
collection is at the top, the class R-symbol for all the members of the collection is at
the bottom of the structure, and in between we include an R-Dimension to identify the
aspect common to the members that define the category.
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This idiom is inverse to for-each: while for-each allows us to consider every mem-
ber of a collection identically but individually, reduce allows us to consider the entire
collection as a single unit. A common use for the reduce idiom is in plots of data, where
there are emergent structures that exist only as collections of ‘simpler’ R-symbols. For
example, in Fig. 9 below (grey shading), the ‘Value of exports in a year’ class R-symbol
is reduced to the ‘Line of exports’ R-symbol via the ‘Value of Exports’ R-dimension.

Together, these collection idioms provide succinct, expressive modelling options for
collections of R-symbols.

Fig. 6. (a) General model of sum R-dimensions. (b) Example using weekdays.

3.2 R-Dimension Idioms

As mentioned earlier, we may think of an R-Dimension as a ‘type’ of R-symbols –
all the R-symbols that are under the same R-Dimension in the hierarchy fill the same
semantic role in the representation. Taking inspiration from this ‘type’ analogy, we
present two idioms named after algebraic data types [6]: sumR-Dimensions, and product
R-Dimensions.

A sum R-Dimension is an R-Dimension that has two or more sub-R-Dimensions.
Just as a sum type is the union of its constituents, a sum R-Dimension is the union of
the sub-R-Dimensions. We encode a sum R-Dimension in RISN in the obvious way: the
sum R-Dimension is directly above its sub-R-Dimensions in the hierarchy. Figure 6a
presents the general idiom, while Fig. 6b is a diary example from a “week to a view”
diary that differentiates weekday andweekend blocks. An example of sumR-dimensions
in the Playfair line graph model, orange shading in Fig. 3, states that all datapoints are
comprised of export plus import datapoints (see Fig. 10 for another example).

A product R-Dimension is an R-Dimension that combines two or more R-
Dimensions. Just as a product type is the cartesian product of constituent types, the
R-symbols of a product R-Dimension can be considered as some combination of the
R-symbols of the constituent R-Dimensions. The direct analog in algebraic data types
would be a tuple type. Product R-Dimensions are encoded in RISN as being directly
under their constituent R-Dimensions in the hierarchy. The general idiom is shown in
Fig. 7a, and an alternative shortcut of the idiom is in Fig. 7b for convenience. Figure 7c
is an example about citations that code the idea that combining author’s surname, an
ordinal quantity, with a year of publication, an interval quantity, produces a citation,
which is an ordinal quantity. An example in the Playfair line graph model, green shading
in Fig. 3, captures the idea that a datapoint for equal amounts of trade occurs when the
data points for export and import data are identical.
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For both sum and product R-Dimensions, the quantity scales of their resulting R-
dimensions require careful consideration; the interaction in particular for a product R-
dimension is complex, with no simple domain-independent rules governing the quantity
scale of the resulting R-dimension.

AlthoughR-Dimension idiomswere presented in isolation, they can compose in pow-
erful ways.With these R-Dimension structures for sums and products, we have a concise,
powerful way to model rich interpretations by composing R-symbols or decomposing
R-schemes.

Fig. 7. (a) General model of product R-dimension. (b) Alternative shortcut for (a). (c) Example
model of citations as product of author and year.

3.3 Coordinate Systems

Representations are often structured around coordinate systems: literally, systems that
coordinate information. In addition to the obvious cases – such as tables, and the Carte-
sian axes of graphs – coordinate systems occur when one or more R-Dimensions provide
an indexing system for one, or more, R-Dimensions for sets of data. Coordinate systems
setup linked conceptual and graphical spaces within which individuals are located. In
practice, we find two idioms for modelling coordinate systems; explicit and implicit.
In the case of explicit coordinate systems, the modeller specifically identifies a fixed
set of R-dimensions that constitute the coordinate system that are distinct from the R-
dimension(s) that categorises the dataset(s). A template for this case is shown in Fig. 8a.
Information visualisations with graphical objects that define quantities, such as axes
with scales or legends setting up categories, are typically interpreted as explicit coordi-
nate systems. Alphanumerical index systems, such as book classification schemes, are
explicit coordinate systems. Books in an unorder collection are indexed byR-dimensions
for subject areas, sub-topics, author, year and the like.

In contrast, in an implicit coordinate system the distinction between what is an
indexing R-dimension and a data R-dimension is not taken by the interpreter to be fixed
but interchangeable.What counts as data depends on the user’s current context. Figure 8b
shows the template for this idiom; the nested R-Scheme has gone, so the R-Dimensions
all occur at the same level. The particular interpretation for Playfair’s line graph in Fig. 3
includes an implicit coordinate system (yellow rectangle), because the modeller did not
wish to single out points in the graph as the only dataset. Rather, the ‘Data point’ R-
dimension is used as an index along with the ‘Money’ R-dimension to make a coordinate
system dealing with ‘Trade directions’ and ‘Trade differences’ (centre left).
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Fig. 8. (a) Template for a nested (explicit) coordinate system for a 2D representation. (b) Template
of flat (implicit) coordinate system for a 2D representation.

Summary. Idioms, common sub-network structures of RIST schemas, have been dis-
covered and each possess distinctive interpretive functions. This provides some reassur-
ance about the potential validity, or at least utility, of schemas and relations proposed by
RIST. Idioms introduce a new layer of interpretations between the elementary schemas
and whole networks, which imposes theoretically desirable constrains on the space of
possible network structures for modelling. In turn, this suggests that attempts to model
the interpretations of representations could profitably focus on interpretive functions of
idioms, an idea that is to be outlined in the last section.

4 Diversity of Interpretations

So far, we have presented refinements to RIST’s schema relations and introduced idioms
to encode particular interpretive functions, both of which improve the adequacy of the
theory. This section considers our first, albeit small-scale, empirical test of RIST and
the capabilities of RISN. In particular, we wish to show that the theory and modelling
notation are able to capture the alternative interpretations of a representation made by
different readers, as mentioned in the Introduction. In the test, three of the authors
(“reviewers”), who are experienced users of representational systems, independently
created RISNmodels for 3 different representations. The representations were Playfair’s
line graph (Fig. 1), the Home tab fromMicrosoft PowerPoint’s toolbar, and a chart about
monetary flows in an economy depicted as a hydraulic model5. They were selected due
to their diversity in both their form and function. Here, just the model for Playfair’s line
graph will be examined in detail, see Fig. 3, Fig. 9 and Fig. 10, but we summarize the
outcomes of the other two representations.

5 ‘The Round Flow of Money Income and Expenditure, 1922’: https://commons.wikimedia.org/
wiki/File:The_Round_Flow_of_Money_Income_and_Expenditure,_1922.jpg.

https://commons.wikimedia.org/wiki/File:The_Round_Flow_of_Money_Income_and_Expenditure,_1922.jpg


Representational Interpretive Structure: Theory and Notation 65

Fig. 9. Interpretation of Playfair’s line graph by R2. Colour shadings are for reference and not
part of the model (Color figure online).

All reviewers had experience creating RISN models. They reviewed the guidelines
for RIST/RISN before starting the task. They were instructed to model their own inter-
pretation of the content of the representations. R1, R2 & R3, started by annotating the
original line graph, Fig. 1: R1’s annotations are shown in Fig. 2, where T, D, and S
labels stand for R-symbols, R-Dimensions, and R-schemes, respectively. The review-
ers’ RISN models for the line graph are shown in Figs. 3, 9 and 10. For reference, we
highlighted parts of the models with coloured shadings. After finishing their individ-
ual models, the reviewers discussed the models and made edits that just corrected the
invalid schema relations, which were few in number. We wished to determine if the
models revealed meaningful differences in the reviewers’ interpretations, and what the
principal differences were.

R1’s overall interpretation treats that representation as a complex coordinate system
with five R-dimensions (Fig. 3, yellow shading). The concept of trade balance, ‘Equal
trade’ R-symbol, depends on four of the R-dimensions, directly or indirectly, so is
central to the network of schemas conceptually and happens to be positioned centrally
in the diagram. Derived quantities, such as ‘Trade volume (over a period of time)’ and
‘Rate (of change of trade)’, are defined within the overarching coordinate system as a
sub-R-dimension anchored on an R-symbol of some other R-dimension.

R2’s interpretation has global coordinate system which incorporates the two graph
axes as sub-system alongside an R-dimension for the lines in the graph (Fig. 9). Other
R-dimensions, which were primary for R1, are derived concepts in R2’s interpretation,
defined relative to the context of particular values of the overarching coordinate system.

R3’s model (Fig. 10) contrasts to R1 and R2 in terms of its overall interpretation. It
gives the concepts of trade ‘Balance’ and ‘Region’ primacy and uses them to examine the
relation of imports and exports relative to England. The coordinate system for the graph
axes is seen as subservient to those ideas and is providing specific values as required.
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Fig. 10. Interpretation of Playfair’s line graph by R3. Colour shadings are for reference and not
part of the model (Color figure online).

Comparing the topology of the models, all three models have approximately simi-
lar depth, but R1’s model has greater breadth, which reflects concepts not in R2 and
R3’s interpretation. Examining the range and priority of concepts, R3’s interpretation
focuses on the topic’s conceptual content – what is represented – whereas R1 and R2 are
oriented more towards the means by which the line graph conveys the information – how
the content is represented – using a global, high-level, coordinate system.

The idioms introduced in Sect. 3 provide a useful level of abstraction for our analysis
of the models; like molecules being understood through their functional groups, we
can understand our RISN models through their idioms. The coloured areas in Figs. 3,
9 and 10 exemplify some of them. The coordinate system idiom (in yellow) appears
across all models, as described in the summaries above, but at different levels. The
sum R-dimension is present in two of models: examples are shown Fig. 3 and Fig. 10
(orange shading). R1 splits the ‘Data points’ global R-dimension into exclusive sub-
R-dimensions for ‘Export’ and ‘Import’ data. R3 divides trade ‘Balance’ into the three
categories of ‘Negative’, ‘Positive’ and ‘Neutral’. R1 and R2 also make equivalent
distinctions related to trade balance, but a lower level.

There are also differences among how reviewers use idioms. All three use coordinate
systems (Figs. 3, 9 and 10, yellow shading) and the ‘for-each’ idiom (blue shading),
but their primacy in the interpretations varies. For R1 and R2, the coordinate takes
precedence, with the ‘for-each’ idiom serving a narrower role. In contrast, R3 gives
the ‘for-each’ idiom priority and hangs a coordinate system under that idiom. Another
case is that of important “trade balance” concept, which is encoded in different ways
by all three reviewers: R1 uses a product R-dimension idiom (Fig. 3, light green); R2
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has a single R-symbol for a concept anchored on other R-symbols (Fig. 9, ‘Crossing
of Imports/Export values’); and for R3 it is an R-symbol of a sub-R-dimension of the
primary ‘Balance’ R-dimension.

Similar observations apply to the PowerPoint toolbar and the economic flowchart
modelling. For example, for the PowerPoint toolbar, R2’s model includes the use of
R-schemes for concepts extensively, whereas R1 and R3 tend to categorize and group
concepts with R-dimensions. In spite of this, there is little variation in terms of the depth
of themodels across reviewers. Themodels for the economic flow are also diverse across
reviewers. R3’s model focusses on the topic, R2’s model focusses more on the structure
of the diagram, and R1’s model is a mixture.

The modelling activities were followed by a session of reflection by the reviewers.
From instances of ambiguity among the reviewer interpretations, it was apparent that
there are some specific limitations to RISN expressiveness that need to be addressed. In
particular, the semantics of the relation links between R-dimension and class R-symbol
schemas needs clarifying, and when R-dimensions and class R-symbols have “common
elements” or are disjoint.

5 Discussion

We presented Representational Interpretive Structure Theory, RIST. It proposes that
interpretation of representations is cognitively grounded in four schemas whose primary
function is to associate (a) concepts from the to-be represented target domain with (b)
graphical objects in the representation that stand for those concepts. RIST specifies a
small number of relations that link these schemas. RIST contends that an interpretation
of a representation consists of a network of schemas that are linked by the relations.
Different interpretations have alternative network structures. By examining numerous
networks that model diverse representations, idioms were discovered that are common
to representations with distinct formats. Idioms appear to perform specific interpretive
functions and operate at an intermediate level between the elementary schemas and
complete networks for whole representations.

RISN is a modelling notation for RIST, which possess distinct modelling symbols
for each class of schemas. The symbols are connected together with lines that stand
for relations between the schemas. RIST schema networks are modelled as networks of
RISN symbols.

A small-scale experiment was conducted in which three reviewers produced models
of their own interpretations of three heterogenous representations. The RISN networks
produced across the different representations were varied and the networks produced by
different reviewers, of the same representation, were also distinctive. The models varied
both in the content and in their topology. Further, close examination of the models
reveals that the overall interpretations are readily explicable in terms of the idioms. In
other words, a reviewer could use the idioms to guide their understanding of the meaning
of a RISN model produced by another reviewer. Some idioms were shared across all the
reviewer’s models for a given representation and in other cases different idioms were
deployed in the interpretations of alternative reviews on the same representation. Thus,
this small study provides some tentative preliminary evidence of the acceptability of
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RIST and the utility of RISN. However, further studies are needed in order to make
more definite claims. Such studies are planned.

The Introduction proposed three desiderata for a cognitive theory of the interpretation
of representations. The first concerns the facility tomodel alterative interpretationsmade
by different individuals. The present study begins to demonstrate that RIST/RISN has
this capability. Further, although anecdotal, the authors recognise that R1 has particular
expertise with Cartesian plots, so it is no surprise that R1’s model of the line graph had a
greater breadth than the models of R2 and R3, as it included a greater range of concepts.
Also, R3 was the least familiar with PowerPoint, so it is also not unexpected that the
network models of R1 and R2 were broader. All this suggests that RIST/RISN could be
used in an approach to model differences in the interpretative structure of learners with
different level of experience of target representations.

The outcome of the small study also suggests that it may be feasible to model
the different interpretive structures of alternative representations of the same subject
matter. RIST/RISN might provide a useful method for the evaluation of alternative
representations for particular topics. Thiswould satisfy the second and third requirements
described in the Introduction.

Finally, we note that this research was conducted as part of a wider project that is
developing automated systems for the selection of representations for individual problem
solvers with varying levels of competence on different classes of problems [13–15]. One
aspect of the project is to devise a measure of the cognitive cost of representations [5],
which can be used to assess the relative difficulty a user will likely experience with
alternative representations. We note that RIST/RISN may provide an addition route to
such assessments though the analysis of the contents of the schemas and the nature of
their networks.
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Abstract. In this contribution we combine some term logics as to pro-
duce a synthetic term logic. We accomplish this goal by following a
color mixing metaphor: the way color addition and substraction work
are pretty much like joints and meets between logics, and so we can
think of combining logics as a process of color mixing.
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1 Introduction

Combining logics is a quite interesting task: it is a regular practice and yet
a required exercise. It is a pervasive habit in the sense that we use combined
logics virtually all the time, but it is also an imperative since it is instrumental
for solving problems [1]. Typically, however, the combination of logics is done
with respect to Fregean-Tarskian-Kripkean systems [5], but since logic needs
not be constrained by this received view [4,8], in this contribution we combine
some term logics as to produce a synthetic term logic. We accomplish this goal
by following a color mixing metaphor: the way color addition and substraction
work are pretty much like joints and meets between logics, and so we can think
of combining (term) logics as a process of color mixing. To reach this goal we
briefly sketch four logics designed to capture four aspects of natural language
reasoning—assertion, numeracy, modality, and relevance—and we assign said
logics a color; then, using the aforementioned metaphor, we produce a synthetic
logic.

2 Term Logics

Assertoric syllogistic is a term logic that captures a basic notion of assertion
using categorical statements. A categorical statement is a statement of the form
〈Quantity S Quality P〉 where Quantity = {All, Some}, Quality = {is, is not},
and S and P are term-schemes. From the standpoint of Sommers & Englebret-
sen’s (assertoric) Term Functor Logic (TFLα, from now on) [4,8], we say a cat-
egorical statement is a statement of the form ±S±P where ± are functors, and
S and P are term-schemes.
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Given this language (say, LTFLα = 〈T ,±〉, where T = {A,B,C, . . .} is a set
of terms, and ± is shorthand for + and − functors), TFLα offers a sense of
validity as follows [4, p. 167]: a syllogism is valid (in TFLα) iff 1) the algebraic
sum of the premises is equal to the conclusion, and 2) the number of particular
conclusions (viz., zero or one) is equal to the number of particular premises.
These components define a pair TFLα = 〈LTFLα , (1, 2)〉 where “(1, 2)” stands for
rules 1 and 2 of TFLα. We will assign TFLα the (achromatic) color black.

Murphree’s Numerical Term Logic (TFLν) is a term logic that tries to
capture numeracy by representing and performing inference with numerical
quantifiers [7]. In this logic, a numerical statement is a statement of the
form 〈Quantity n S Quality P〉 where Quantity =

{
All, All but, At most,

At least, Some
}
, n ∈ R

+, Quality = {is, is not}, and S and P are term-
schemes. Formally, since TFLν is a conservative extension of TFLα, we say a
numerical statement in TFLν is a statement of the form ±nS ±ε P where ± are
functors, n, ε ∈ R

+, and S and P are term-schemes.
Consequently, given this language (LTFLν = 〈T ,±,R+〉), TFLν offers the

next notion of validity: a syllogism is valid (in TFLν) iff 1) the algebraic sum of
the premises is equal to the conclusion, 2) the number of particular conclusions
(viz., zero or one) is equal to the number of particular premises, and 3) either
(a) the value of a universal conclusion is equal to the sum of the values of the
universal premises, or (b) the value of a particular conclusion is equal to the
difference of the universal premise minus the particular. We will assign this logic
(i.e. TFLν = 〈LTFLν , (1, 2, 3)〉) the color blue.

Englebretsen’s Modal Term Functor Logic (TFLμ) tries to capture modal-
ity by extending TFLα with � and � [3]. So, given a term T, TFLμ allows
the next combinations: +� + T (i.e. � + T), +� − T (i.e. � − T), −� + T
(i.e. −�T), −� − T, and, as usual, the operator � is defined as −�−.
Thus, we can say a de dicto modal statement is a statement of the form
〈Modality (Quantity S Quality P)〉; and a de re modal statement is a state-
ment of the form 〈Quantity S Quality Modality P〉 where Modality = {�, �},
Quantity = {All, Some}, Quality = {is, is not}, and S and P are term-
schemes. Thus, formally, a modal statement in TFLμ is a statement of one of
the following forms: μ(±S ± P)|±S ± P|±S ± μP where ± are functors, μ is a
modality, and S and P are term-schemes.

Given this language (LTFLμ = 〈T ,±,M〉, where M = {�, �}), we have
the next notion of validity: a syllogism is valid (in TFLμ) iff 1) the algebraic
sum of the premises is equal to the conclusion, 2) the number of particular
conclusions (viz., zero or one) is equal to the number of particular premises, 4)
the conclusion is not stronger than any premise (peiorem), and 5) the number
of de dicto-� premises is not greater than the number of de dicto-� conclusions.
We will assign this logic (i.e. TFLμ = 〈LTFLμ , (1, 2, 4, 5)〉) the color red.

Relevance Term Logic (TFLρ) is an extension of TFLα that captures a notion
of relevance by following some insights of the Aristotelian sense of causal rele-
vance (cf. [9]). It represents pieces of complex discourse (insofar as they include
at least two premises and one conclusion) with mood and figure (because the
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order of statements and terms matters) in which a conclusion that is different
from the premises (thus avoiding petitio principii) necessarily (and hence deduc-
tively) follows from and depends on said premises (thus avoiding irrelevance,
non causa ut causa). In this logic we say a relevant statement is a statement
of the form 〈Quantity S Quality P Flag〉 where Quantity = {All, Some},
Quality = {is, is not}, S and P are term-schemes, and Flag = {pi, c} for
i ∈ {1, 2, 3, . . .} is a set of (premise or conclusion) flags. So, formally, we say a
relevant statement is a statement of the form ±S ± Pf where ± are functors, S
and P are term-schemes, and f is a flag.

With this language (LTFLρ = 〈T ,±,F〉, where F is a set of flags), TFLρ offers
a notion of validity as follows: a syllogism is valid (in TFLρ) iff 1) the algebraic
sum of the premises is equal to the conclusion, 2) the number of particular
conclusions (viz., zero or one) is equal to the number of particular premises, and
6) all the flags of the premises are reclaimed for reaching the conclusion while
the flags of the conclusion are different to the flags of the premises. We will
assign this logic (i.e. TFLρ = 〈LTFLρ , (1, 2, 6)〉 the color green.

3 Mixing Colors, Mixing Logics

In general, color mixing can be done in either of two ways: by addition or by
substraction. The addition process is understood by the tenets of the RGB
model (���), while substraction is given by the postulates of the CMY model
(���). All details aside, additive colors produce white (�) when combined,
while subtractive colors produce black (�) (Table 1). In an integrated mixture
model (Table 2), the coherent combinations of colors can only be displayed in
six arrangements which correspond to each path of the Küppers’ rhombohedral
model so that, bottom-up, we have the RGB model of addition, and top-down,
the CMY model of substraction (Fig. 1).

Table 1. Additive/Substractive mixture
models [6].

Additive color Mixture Substractive color

� � ���
� � ��
� � ��
� � ��

�� � �
�� � �
�� � �

��� � �

Table 2. Integrated mixture
model [6].

Combinations

�–�–�–�
�–�–�–�
�–�–�–�
�–�–�–�
�–�–�–�
�–�–�–�
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�

� ��

� � �

�

Fig. 1. Küppers’ rhombohedral color space [6]. Solid lines represent the paths of the
integrated mixture model. Dotted lines represent complementary colors, that is, colors
that produce white if combined. (Color figure online)

After a while, it does not take much time to realize that the structure of
this model induces a lattice, an order of colors. Thus, a metaphor comes to
mind: addition and substraction between colors is analogous to joints and meets
between logics, and so we can think of combining logics as a process of color
mixing. To work with this metaphor, start by recalling that the different term
logics we have displayed try to capture different, basic aspects of natural lan-
guage reasoning, namely, assertion (TFLα), numeracy (TFLν), modality (TFLμ)
and causal relevance (TFLρ). Each logic is like a color hue. Now, given the struc-
ture of each logic, we can combine them by addition (joint-combination) and
substraction (meet-combination) of syntactical elements and rules in such a
way that TFLαν = TFLν , TFLαμ = TFLμ, TFLαρ = TFLρ, TFLανμ = TFLνμ,
TFLανρ = TFLνρ, TFLαμρ = TFLμρ and, finally, TFLανμρ.

In order to see these combinations, use the colors we have previously assigned
to each logic and notice that additive logics produce a particular, top logic
when combined; while substractive logics produce a particular, bottom logic
(Table 3) and, in the same way we have an integrated mixture model, we have six
arrangements which correspond to each path of Küppers’ rhombohedral model
(Table 4). Consequently, this model induces a lattice of term logics such that
TFLα is the bottom logic, and TFLανμρ is the top logic. Thus, we can see that
these combined logics set up an order in such a way that (TFL,⊆) is a hierarchy
of term logics (Fig. 2).

If this metaphor makes sense then we can also say, although trivially, that
for term logics Li,Lj ,Lk, the following combinations hold:

– Association of logics: Li ∪ (Lj ∪ Lk) = (Li ∪ Lj) ∪ Lk, and Li ∩ (Lj ∩ Lk) =
(Li ∩ Lj) ∩ Lk.

– Commutation of logics: Li ∪ Lj = Lj ∪ Li, and Li ∩ Lj = Lj ∩ Li.
– Idempotence of logics: Li ∪ Li = Li, and Li ∩ Li = Li.
– Absorption of logics: Li ∪ (Li ∩ Lj) = Li, and Li ∩ (Li ∪ Lj) = Li.
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– Distribution of logics: Li∪(Lj∩Lk) = (Li∪Lj)∩(Li∪Lk), and Li∩(Lj∪Lk) =
(Li ∩ Lj) ∪ (Li ∩ Lk).

– Extrema:
⋂8

i=1 Li = TFLα, and
⋃8

i=1 Li = TFLανμρ.
– Complementary logics: Li ∪ Li = TFLανμρ, and Li ∩ Li = TFLα.

Table 3. Additive/Substractive mixture models.

Additive logic Mixture Substractive logic

TFLα TFLα TFLμρTFLνμTFLνρ

TFLν TFLν TFLνμTFLνρ

TFLρ TFLρ TFLμρTFLνρ

TFLμ TFLμ TFLμρTFLνμ

TFLνTFLρ TFLνρ TFLνρ

TFLνTFLμ TFLνμ TFLνμ

TFLρTFLμ TFLμρ TFLμρ

TFLνTFLρTFLμ TFLνμρ TFLνμρ

Table 4. Integrated mixture
model.

Combinations

TFLνμρ–TFLμρ–TFLμ–TFLα

TFLνμρ–TFLμ–TFLνμ–TFLα

TFLνμρ–TFLνμ–TFLν–TFLα

TFLνμρ–TFLν–TFLνρ–TFLα

TFLνμρ–TFLνρ–TFLρ–TFLα

TFLνμρ–TFLρ–TFLμρ–TFLα

〈LTFLα , (1, 2)〉

〈LTFLν , (1, 2, 3)〉 〈LTFLρ , (1, 2, 6)〉〈LTFLμ , (1, 2, 4, 5)〉

〈LTFLνμ , (1, 2, 3, 4, 5)〉 〈LTFLνρ , (1, 2, 3, 6)〉 〈LTFLμρ , (1, 2, 4, 5, 6)〉

Fig. 2. A lattice of languages and rules.

Now, let us focus on the top logic, which is a synthethic logic,
and say a synthetic statement in TFLανμρ is a statement of the form
μ(±nS ±ε P)f |±nS ±ε Pf |±nS ± μεPf where μ are modalities, ± are functors,
n, ε ∈ R

+, f is a flag, and S and P are term-schemes. Hence, following our expo-
sition pattern, we can say a syllogism is valid (in TFLανμρ) iff rules 1 through 6
hold.
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Given this brief exposition, one could think the notion of validity for this
logic is constrained to monadic or syllogism-like inferences, but that would be a
hasty conclusion. We can extend said notion of validity either by enlarging the
rules of inference [4] or by implementing tableaux proof methods [2]: since we are
interested in diagrammatic procedures, we will follow the second path. So, we
can follow our procedural metaphor and mix tableaux rules as in Diagram 1.1.

−nA ±ε BNf

−nA
i
Nf ±εB

i
Nf

v = n

+nA ±ε BNf

+nA
i
Nf

±εB
i
Nf ′

v = n

�Ai
Nf

Ai
Kf

�Ai
Nf

Ai
Kf

+nANf

+k≤nANf

Diagram 1.1. TFLανμρ expansion rules

For this synthetic system we say a branch is open if and only if there are no
terms of the form ±Ai

Nf and ∓Ai
Nf on it; a branch is semi-open (resp. semi-

closed) if and only if there are terms of the form ±Ai
Nf and ∓Ai

Nf ; otherwise
it is closed. An open branch is indicated by writing ∞ at the end of it; a semi-
open (semi-closed) branch is indicated by writing ∝f,f (resp. ∝f,f ); and a closed
branch, as usual, is denoted by ⊥f,f ′ .

As an example, consider a multipremissed inference that encompasses asser-
tion (plus relations), numeracy (both exceptive and non-exceptive), modality
(both de dicto and de re) and causal relevance: call it a synthetic syllogism
(Table 5, Diagram 1.2).

Table 5. A synthetic syllogism.

Statement TFLανμρ

1. Necessarily all but 2 A give 4 B to some C �(−2A+ (+G+4 B+ C))0p1

2. At least 5 D are necessarily A +5D+ �A0p2

3. Every B is E −0B+ E0p3

� Possibly 3 D give 4 E to some possible C �(+3D+ (+G+4 E+ �C))0c
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1. �(−2A+ (+εG+4 B+ε C))0p1

2. +5D+ �εA0p2

3. −0B+ε E0p3

� �(+3D+ (+εG+4 E+ �εC))0c

4. − � (+3D+ (+εG+4 E+ �εC))0c

5. � − (+3D+ (+εG+4 E+ �εC))0c

6. +5D
1
0p2

7. +�εA
1
0p2′

8. +3D
1
0p2

9. +εA
1
0p2′

10. +2A
1
0p2′

11. −2A+ (+εG+4 B+ε C)0p1

12. −2A
1
0p1

⊥p1,p2′

+(+εG+4 B+ε C)
1
0p1

13. +εG
1
0p1

14. +4B
1
0p1′

15. +εC
1
0p1′′

16. +0B
1
0p1′

17. −(+3D+ (+εG+4 E+ �εC))0c

18. −3D − (+εG+4 E+ �εC))0c

19. −3D
1
0c

⊥p2,c

−(+εG+4 E+ �εC)
1
0c

20. −εG − (+4E+ �εC)
1
0c

21. −εG
1
0c

⊥p1,c

−(+4E+ �εC)
1
0c

22. −4E − �εC
1
0c

23. −B1
0p3

⊥p3,p1′

+εE
1
0p3

24. +4E
1
0p3

25. −4E
1
0c

⊥p3,c

− �ε C
1
0c

26. � −ε C
1
0c

27. −εC
1
0c

⊥p1′′ ,c

v = 5 − 2+ 4 − 3 − 4 = 0

Diagram 1.2. A valid synthetic syllogism.
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4 Conclusions

In this contribution we have combined some term logics as to produce a synthetic
term logic. We accomplished this goal by following a color mixing metaphor.
We sketched four logics designed to capture four aspects of natural language
reasoning and then, using the aforementioned metaphor, we produced a synthetic
logic.

Finally, due to reasons of space, we would like to close this contribution with
a statement of the following results:

Theorem 1 (Relevance-completeness for TFLανμρ). An inference is rele-
vant in TFLανμρ iff there is a closed complete tableau with v = 0 for said infer-
ence.

Theorem 2 (Validity-completeness for TFLανμρ). An inference is valid in
TFLανμρ iff there is a semi-closed/semi-open complete tableau with v = 0 for
said inference.
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Abstract. In the present work we provide a logical analysis of nor-
matively determined and non-determined propositions. The normative
status of these propositions depends on their relation with another
proposition, here named reference proposition. Using a formal lan-
guage that includes a monadic operator of obligation, we define eight
dyadic operators that represent various notions of “being normatively
(non-)determined”; then, we group them into two families, each form-
ing an Aristotelian square of opposition. Finally, we show how the two
resulting squares can be combined to form an Aristotelian cube of oppo-
sition.

Keywords: Normatively determined propositions · Aristotelian
squares · Aristotelian cubes · Modal logic · Deontic logic

1 Introduction

Formal logic has been used for decades in the analysis of normative concepts,
shedding light on their properties and relations. In the area of normative rea-
soning, logic has been employed to deal with several families of concepts. Just
to mention a few of these, much has been written about the notions of obliga-
tion, permission, prohibition (see, e.g., the surveys by Åqvist [1] or Hilpinen and
McNamara [6]), right and duty (see, e.g., Lindahl [7] or Makinson [8]). Other
concepts, such as the ones of power, liability and responsibility, are receiving
increasing attention (see, e.g., Glavaničová and Pascucci [5], Markovich [9] or
Pascucci and Sileno [10]). In the present work we propose an inquiry on a topic
that has not received attention in the logical literature, namely the formal char-
acterization of normatively determined propositions.

Saying that a proposition B is determined by a proposition A, in general,
means that either (i) B holds in all circumstances in which A holds or (ii) B
holds in no circumstances in which A holds. In this informal definition A can be
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said to be the reference proposition (i.e., the proposition with reference to which
the status of B is assessed). It can be easily checked that “being determined” is
a bilateral notion, since, according to the above definition, B is determined by
A iff ¬B is determined by A (where ¬ is the classical operator of negation).1

Here we propose to focus on a deontic variant of the notion at issue. Let
N be a set of normatively relevant scenarios: a proposition B is normatively
determined by a proposition A in N iff either (i) the truth of A implies the truth
of B in every scenario of N or (ii) the truth of A implies the falsity of B in every
scenario of N. Consequently, a proposition B is normatively non-determined by
a proposition A in N iff the truth of A is conjoined with the truth of B in some
scenarios of N and with the falsity of B in other scenarios of N. The framework
introduced here will not be committed to any particular choice of normatively
relevant scenarios; in the simplest interpretation, one can take them to be the
normatively ideal scenarios (along the lines of Åqvist [1]).

Determination is a crucial issue in the normative domain, since sets of norms
are associated with layers: norms belonging to one layer may depend on norms
belonging to an upper-level layer. Logical accounts of normative conditionals and
contrary-to-duty reasoning (see Hilpinen and McNamara [6] for an extended dis-
cussion) capture some aspects of this; yet, the notion of normative determination
offers a broader perspective, since it covers other forms of dependency among
norms. In fact, one can distinguish various kinds of determination for a propo-
sition B on the basis of the normative status of a proposition A (the reference
proposition). Here we will focus on the following two issues:

– whether the normative status assigned to A is that of an obligation or of a
permission;

– whether the normative status of A is claimed to be of a certain kind or simply
supposed to be of a certain kind.

Combining these options with the two possible ways in which the normative
status of B depends on the normative status of A, namely “being determined by
A” or “being non-determined by A”, one gets as a result a set of eight normative
relations between A and B.

The following are a few examples of claims taken from everyday normative
discourse illustrating the meaning of some of the notions at issue:

1. it is obligatory to pay for the goods at the time of delivery and it is permitted
(although not obligatory) to use a credit card.

2. it is obligatory to pay for the goods in advance but it is forbidden to pay via
a bank transfer.

3. if an online payment for the goods is permitted, then one can pay via a bank
transfer or with a different method.

1 More precisely, “being determined” is a dyadic notion of non-contingency. An
axiomatic characterization of dyadic non-contingency has been recently proposed
by Pizzi [13]. For more on the logic of (non-)contingency, see Cresswell [2].
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In example (1) the proposition that one pays with a credit card is not normatively
determined by the proposition that one pays at the time of delivery. Indeed, we
know that a customer has to pay at the time of delivery but also that she can
choose whether to pay with a credit card or not (neither of the two options
is forced). In example (2) the proposition that one pays via a bank transfer is
normatively determined by the proposition that one pays in advance. Indeed, we
know that customers have to pay in advance and this forces them to avoid using
a bank transfer; hence, this option is ruled out.2 In example (3) the proposition
that one uses a bank transfer is not normatively determined by the proposition
that one pays online. Indeed, if we suppose that a customer is allowed to pay
online, then she can choose between using a bank transfer or a different method.

These relations will be analysed via a language of propositional modal logic
in terms of dyadic deontic operators. Two Aristotelian squares of opposition will
be drawn which, in turn, will clarify logical connections between pairs of the
normative relations at issue. Finally, we will show how the two squares can be
combined in order to form an Aristotelian cube of opposition. Aristotelian dia-
grams are known for their didactic efficacy. A long-term objective of the present
work is contributing to the development of graphical interfaces based on these
diagrams for human-machine interaction. For instance, imagine that a user spec-
ifies a set of normative statements in a simplified language (as initial hypotheses)
and gives it as input to a program that builds an Aristotelian diagram out of this
set; then, the user can explore the displayed diagram and make inferences from
the nodes associated with the initial hypotheses to other nodes, by following the
available paths of edges. For the user, this may be an effective help in reasoning
on normative problems (e.g., on the content of a contract).

2 Formal Setting

The formal language which will be used here consists of (i) a set of propositional
variables, denoted by a, b, c, etc., (ii) the monadic operators ¬ (negation) and �
(obligation), (iii) the dyadic operator → (material implication). We take ♦ (per-
mission) to be a shorthand for ¬�¬ and other propositional connectives, such as
∧ (conjunction), ∨ (disjunction) and ↔ (material equivalence) to be defined in
terms of the primitive ones, as usual. Arbitrary formulas will be denoted by A,
B, C, etc. If N is the chosen set of normatively relevant scenarios, we read �A
as “A is true in all scenarios of N”, which essentially means that A is obligatory.
Furthermore, we read ♦A as “A is true in some scenarios of N”, which essentially
means that A is permitted.
2 Since “being normatively determined” is a bilateral notion, in examples (1)-(3), if a
proposition B is normatively (non-)determined by a proposition A, then so is ¬B.
For instance, in example (2) both the proposition that one pays via a bank transfer
and the proposition that one does not pay via a bank transfer are normatively
determined by the reference proposition that one pays in advance, since the latter
excludes one of the two alternatives and forces the other. Furthermore, we highlight
that our analysis covers also cases of (non-)determination with respect to forbidden
propositions, as long as one defines “A is forbidden” as “¬A is obligatory” (�¬A).
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The following is a list of definitions for the auxiliary modal operators repre-
senting the eight dyadic modalities that will be the object of our inquiry:

– �(A,B) := ♦A ∧ (�(A → B) ∨ �(A → ¬B)), meaning that A is permitted
and B is normatively determined by A.

– �∗(A,B) := �A ∧ (�(A → B) ∨ �(A → ¬B)), meaning that A is obligatory
and B is normatively determined by A.

– �(A,B) := ♦A → (�(A → B)∨�(A → ¬B)), meaning that if A is permitted,
then B is normatively determined by A.

– �∗(A,B) := �A → (�(A → B) ∨ �(A → ¬B)), meaning that if A is obliga-
tory, then B is normatively determined by A.

– �(A,B) := ♦A ∧ (♦(A ∧ B) ∧ ♦(A ∧ ¬B)), meaning that A is permitted and
B is not normatively determined by A.3

– �∗(A,B) := �A∧ (♦(A∧B)∧♦(A∧¬B)), meaning that A is obligatory and
B is not normatively determined by A.

– �(A,B) := ♦A → (♦(A ∧ B) ∧ ♦(A ∧ ¬B)), meaning that if A is permitted,
then B is not normatively determined by A.

– �∗(A,B) := �A → (♦(A∧B) ∧ ♦(A∧ ¬B)), meaning that if A is obligatory,
then B is not normatively determined by A.

Notational conventions for dyadic operators are as follows: (i) operators express-
ing the claim that the reference proposition A has a certain status are white
triangles (∧ is the main operator in the definiens), whereas those expressing
the supposition that A has a certain status are black triangles (→ is the main
operator in the definiens); (ii) operators saying that B is determined by A are
up-pointing triangles, whereas those saying that B is non-determined by A are
down-pointing triangles (cf. the use of the symbols ‘delta’ and ‘nabla’ by authors
working on contingency logic, such as Cresswell [2]); (iii) operators treating the
reference proposition A as an obligation (rather than a permission) are distin-
guished by ∗.

The three examples discussed in Sect. 1 can be rendered as follows (d = one
pays for the goods at the time of delivery, c = one pays with a credit card, b =
one pays via a bank transfer, a = one pays in advance, o = one pays online):

1. �d ∧ (♦(d ∧ c) ∧ ♦(d ∧ ¬c));
2. �a ∧ �¬b;
3. ♦o → (♦(o ∧ b) ∧ ♦(o ∧ ¬b)).
Notice that the formula encoding (1) corresponds to �∗(d, c) and the formula
encoding (3) corresponds to �(o, b); moreover, in any normal modal system, the
formula encoding (2) entails �∗(a, b).

There are several ways of grouping the eight dyadic modalities. Here we take
�(A,B) and �(A,B) to be the basic notions: they express the conjunction of a
statement describing a normative relation between A and B with the statement
that A represents a permission. We will use each of these two operators to build
an Aristotelian square of opposition.
3 In normal modal systems �(A,B) boils down to ♦(A ∧ B) ∧ ♦(A ∧ ¬B).
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3 Geometrical Representations

In Pizzi [12] an Aristotelian square of opposition over a logical system S, or
simply an Aristotelian S-square, is a 4-tuple of formulas Q = (W,X, Y, Z), where
each formula in the 4-tuple is said to be a vertex of Q and the pairs of formulas
(W,X), (Y,Z), (W,Y ) and (X,Z) are the edges of Q. The first formula W in Q
is said to be its origin. The logical relations in an Aristotelian S-square Q are
as follows: W and X represent contrary propositions in S; Y and Z subcontrary
propositions in S; W and Y , as well as X and Z connected propositions (more
precisely, Y is a subalternant of W and Z is a subalternant of X) in S; W and Z,
as well as X and Y , contradictory propositions in S.4 We will be here working
within modal system KD, i.e., the smallest normal system closed under the
schema �A → ♦A and whose models are serial5.

Fig. 1. �-rooted (left) and �-rooted (right) Aristotelian KD-squares

Figure 1 graphically represents two Aristotelian KD-squares of opposition,
one having �(A,B) at its origin, the other having �(A,B) at its origin. The
former will be said to be a �-rooted square, the latter a �-rooted square. In each
square an arrow from one vertex to another stands for subalternation, a full line
between two vertices for contradiction, a dashed line between two vertices for
contrariety and a dotted line between two vertices for subcontrariety.

The construction of the �-rooted square can be justified as follows. In KD,
from the assumption �(A,B), namely ♦A∧ (�(A → B)∨�(A → ¬B)), one can
infer �A → (♦A ∧ (�(A → B) ∨ �(A → ¬B))) via the Propositional Calculus
(PC), whence �A → (�(A → B) ∨ �(A → ¬B)), namely �∗(A,B), again via
PC. By contrast, the inference from �∗(A,B) to �(A,B) is not supported by
KD, since any KD-model including a world w that has access to no worlds
is such that �∗(A,B) is true at w and �(A,B) is false at w. This means that
�∗(A,B) is a subalternant of �(A,B) in KD. Moreover, ♦A → (♦(A∧B)∧♦(A∧
¬B)) is equivalent to ¬(♦A∧(�(A → B)∨�(A → ¬B))) thanks to the definition

4 We assume familiarity with the meaning of the Aristotelian relations at issue. For
details, see Pizzi [11,12].

5 For details, see Åqvist [1]. For Aristotelian squares built on non-normal modal sys-
tems, see Demey [3].
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of ♦ and PC. This means that �(A,B) and �(A,B) are contradictories in KD.
Finally, ♦A∧(�(A → B)∨�(A → ¬B)) entails ¬(�A∧(♦(A∧B)∧♦(A∧¬B))),
since �(A → B)∨�(A → ¬B) is equivalent to ¬(♦(A∧B)∧♦(A∧¬B)); however,
¬(♦A∧(�(A → B)∨�(A → ¬B))) is equivalent to ♦A → (♦(A∧B)∧♦(A∧¬B))
and the latter does not entail �A ∧ (♦(A ∧ B) ∧ ♦(A ∧ ¬B)); for instance, any
KD-model including a world w having access to a unique world v where A is
false is such that ♦A → (♦(A∧B)∧♦(A∧¬B)) is true at w and �A∧(♦(A∧B)∧
♦(A ∧ ¬B)) is false at w. This means that �(A,B) and �∗(A,B) are contraries
in KD. The fact that �∗(A,B) and �(A,B) are sub-contraries in KD follows
from the rest.6

In the case of the �-rooted square, the construction can be justified as follows.
In KD, starting with the assumption �(A,B), namely ♦A∧ (♦(A∧B) ∧ ♦(A∧
¬B)), one can infer �A → (♦A ∧ (♦(A ∧ B) ∧ ♦(A ∧ ¬B))) via PC, whence
(again, via PC) �A → (♦(A∧B) ∧ ♦(A∧ ¬B)), namely �∗(A,B). By contrast,
the inference from �∗(A,B) to �(A,B) is not supported by KD, since any KD-
model including a world w that has access to a single world v where A is false
is such that �∗(A,B) is true at w and �(A,B) is false at w. This means that
�∗(A,B) is a subalternant of �(A,B) in KD. Moreover, ♦A ∧ (♦(A ∧ B) ∧
♦(A∧ ¬B)) is equivalent to ¬(♦A → (�(A → B) ∨ �(A → ¬B))) thanks to the
definition of ♦ and PC. This means that �(A,B) and �(A,B) are contradictories
in KD. Finally, ♦A∧(♦(A∧B)∧♦(A∧¬B)) entails ¬(�A∧(�(A → B)∨�(A →
¬B))), since �(A → B)∨�(A → ¬B) is equivalent to ¬(♦(A∧B)∧♦(A∧¬B));
however, ¬(♦A ∧ (♦(A ∧ B) ∧ ♦(A ∧ ¬B))) is equivalent to ♦A → (�(A →
B)∨�(A → ¬B)) and the latter does not entail �A∧(�(A → B)∨�(A → ¬B));
for instance, any KD-model including a world w that has access to a unique
world v where A is false is such that ♦A → (�(A → B)∨�(A → ¬B)) is true at
w and �A ∧ (�(A → B) ∨ �(A → ¬B)) is false at w. This means that �(A,B)
and �∗(A,B) are contraries in KD. The fact that �∗(A,B) and �(A,B) are
sub-contraries in KD follows from the rest.

The two squares can be combined in system KD to form an Aristotelian
cube. The notion of an Aristotelian cube has been defined in various ways (see,
for instance, Dubois, Prade and Rico [4]). Here we follow Pizzi [11] and first
introduce the notion of a semiaristotelian square. A semiaristotelian S-square is
a 4-tuple Q = (W,X, Y, Z), where each edge represents one of the Aristotelian
relations of connectedness, contrariety, subcontrariety and contradiction.7 An
Aristotelian S-cube is a set K = {Q1, ..., Q6} where:

– every Qi, for 1 ≤ i ≤ 6, is a semiaristotelian square;
– for some j, k s.t. 1 ≤ j �= k ≤ 6, Qj, Qk are Aristotelian S-squares;
– each edge of each square in K is also an edge of some other square in K.

6 As observed by Pizzi [13], the notion of absolute (non-)determination may be defined
in terms of dyadic (non-)determination by replacing the reference proposition with
a tautology �. For instance: �(�, B).

7 Thus, a semiaristotelian S-square is a square whose edges are associated with some
of the relations holding between the edges of an Aristotelian S-square.
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Looking at the graphical representation of the cube in Fig. 2, the two formulas
occupying corners W and W ′, as well as the two formulas occupying corners
X and X ′ are contraries in KD. For instance, in such system �(A,B) logically
entails ¬�(A,B), whereas ¬�(A,B) does not entail �(A,B). Furthermore, the
two formulas occupying corners Y and Y ′, as well as the two formulas occu-
pying corners Z and Z ′ are sub-contraries in KD. For instance, in such system
¬�∗(A,B) entails �∗(A,B), whereas �∗(A,B) does not entail ¬�∗(A,B). Thus,
the squares (W,W ′,X,X ′), (W,W ′, Y, Y ′), (X,X ′, Z, Z ′) and (Y, Y ′, Z, Z ′) are
all semiaristotelian and one can conclude that the cube at issue is an Aristotelian
KD-cube, according to the definition in Pizzi [11].

Yet, the 16 relations graphically represented in Fig. 2 are not the only rela-
tions between pairs of vertices of the two squares. Indeed, the total number of
relations on 8 formulas is (8 × (8 − 1))/2 = 28 and the following 12 hold too:
�(A,B) is a subalternant of �∗(A,B); �(A,B) is a subalternant of �∗(A,B);
�∗(A,B) is a subalternant of �(A,B); �∗(A,B) is a subalternant of �(A,B);
�(A,B) and �∗(A,B) are subcontraries; �(A,B) and �∗(A,B) are subcon-
traries; �(A,B) and �∗(A,B) are contraries; �(A,B) and �∗(A,B) are con-
traries; �(A,B) is a subalternant of �(A,B); �(A,B) is a subalternant of
�(A,B); �∗(A,B) is a subalternant of �∗(A,B); �∗(A,B) is a subalternant
of �∗(A,B).

Fig. 2. Aristotelian KD-cube for the eight dyadic operators

4 Final Remarks

Our logical analysis of normatively determined and non-determined propositions
can be extended in many respects. From the point of view of Aristotelian dia-
grams, alternative combinations of the operators introduced here can be taken
into account. For instance, consider the formulas �(A,B) and �(A,B) at the
origins of the two Aristotelian squares in Fig. 1: it might be possible to build
other Aristotelian squares having the same origins, by finding new formulas C
and D that are respectively contrary to �(A,B) and to �(A,B) in system KD
or in stronger systems. Dyadic operators can be also used to define the monadic
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operators � and ♦, as shown by Pizzi [13]. For instance, in normal modal sys-
tems ♦A is definable as �(A,A). Moreover, �(A,B) entails �(A,A) (i.e., ♦A)
whereas there is no entailment in the opposite direction: thus, ♦A is a subalter-
nant of �(A,B). In the light of the latter observation, one can check whether it
is possible to build Aristotelian squares and cubes involving both monadic and
dyadic operators.
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Abstract. Web Content Accessibility Guidelines (WCAG) require digital dia-
grams to be tagged with screen readable text descriptions for access by blind and
partially sighted individuals (BPSI). The aim of these guidelines is to comply with
human rights-based accessibility legislation, which aims to preserve the norma-
tive agency of BPSI (the ability to reflect on, evaluate and act upon a conception
of what constitutes a worthwhile life for themselves). However, theories from
the Diagrams community suggest that text and diagrams offer distinctly different
constraints. For example, Shimojima’s Constraint Hypothesis (the relationship
of structural constraints to target problem constraints in a mode of representa-
tion establish the variance of inferential potential) and the interrelated free ride
phenomenon (additional inferences can be made in a representation if the rela-
tionship of constraints is a good match). Therefore, a guideline that requires the
text description of a diagram (such as via the WCAG) might limit the normative
agency diagram users who are BPSI. Despite the apparent necessity of providing
non-visual alternatives of diagrammatic properties for accessibility, they are rarely
explored or developed sufficiently to be consistently provided to BPSI. Thus, we
argue that the affordances of diagrammatic representations provide possibilities
for normative agency that are lost if not represented non-visually in diagrams
designed for accessibility.

Keywords: Free Rides ·Minimum Provision of Information · Accessibility ·
Normative Agency

1 Introduction

Diagrams display spatial and topological relations of ideas, phenomena, and the mate-
rial world and are thus in many cases an indispensable, part of everyday reasoning,
decision making, communication and expression for many people [1, 2]. The Diagrams
community, in their attempt to better understand why a diagram is “worth ten thousand
words” [1], aims to demonstrate how diagrams offer beneficial features not provided
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by sentences alone [3, 4]. Unfortunately, blind and partially sighted individuals (BPSI)
experience text descriptions of diagrams inmost cases [5–7]. Human rights-based acces-
sibility requirements, such as the Web Content Accessibility Guidelines (WCAG) [7],
aim to extend human rights principles of autonomy and agency to digital media by
requiring visual content to be accessible via alternative (non-visual) formats. However,
because WCAG [7] offers no technical way to distinguish diagrams relative to sen-
tences, most diagrams are made accessible through screen-readable text descriptions
(or interpretations) of diagrams [3, 4]. Previously, we demonstrated how sentences are
more effective for conveying abstract conceptual categories whereas diagrams are more
effective for conveying concrete structures (specific spatial-topological arrangements)
[3, 4]. However, many potential impacts on audiences who cannot sufficiently access
them [3, 4] have yet to be explored in depth.

In this paper, we propose that there is a need for a technical understanding of the
affordances, or constraints, of diagrams as opposed to text descriptions for accessibil-
ity experts. Several traditional theories from the diagrams community demonstrate that
diagrams have distinct properties that provide information that text descriptions cannot.
These include the distinction between “diagrammatic and sentential representations” [1],
Shimojima’s [2] concept of a Constraint Hypothesis (the relationship of structural con-
straints to target problem constraints in a mode of representation establish the variance
of inferential potential) and phenomenon of “free rides” (additional inferences can be
made in a representation if its structural constraints match the constraints of the targets
of representation effectively). Reliance on text descriptions to present diagrams to BPSI
for accessibility often results in perceptual ambiguity [3, 4, see Fig. 1] and with it, a
reduction of possibilities for action [8]. This ambiguity results from an inappropriate
relationship of constraints within the problem context that calls for diagrammatic repre-
sentations [1] in the first place. We argue that it is feasible to set the stage for future work
on accessibility standards through this technical understanding of diagram affordances
for accessibility. This effort should be incentivized when considering how the potential
“normative agency” [9] a BPSI might possess is limited relative to sighted individuals
by limiting their possibilities for action [8]. After all, accessibility specialists are guided
by standards to use text descriptions for diagram accessibility so predominantly.

2 Diagrammatic Representation and “Free Rides”

The disadvantages of limiting the provision of pictures, diagrams, charts and icons for
accessibility to text descriptions is noted by Coppin [4]. The existence of pictorial and
diagrammatic representations implies that a complete translation into text or speech
cannot be sufficient, as otherwise, it would be unnecessary in the first place [4]. This
echoes the work of Shimojima [2], who describes a “Constraint Hypothesis,” which
predicts that coding information into a two-dimensional plane with geometric and topo-
logical relations provides additional informationwithout requiring additional inferences.
This is a “free ride”, a phenomenon that exemplifies how diagrams offer “consequential
information with little inferential effort [that is] observable from [a diagram], not just
inferable” [10]. For this information to be observable from a representation, there must
be an appropriate match of representational choices to goals or problems that necessitate
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the use of a diagram [2]. A relationship of structural constraints of diagrams to target
problem constraints [2] in the context of accessibility for BPSI must further consider the
constraints of the sensory modalities available to this audience.

Fig. 1. Per Coppin [3, p. 108], this demonstrates “perceptual ambiguity”, as the abstract
conceptual category “house” (top) produces many possible concrete perceptual categories
(bottom).

Coppin [3] adds that this relationship of constraints upon a structure of representation
with its target problem also functions in the context of symbolic representations, such
as text. However, both diagrammatic and symbolic representations have a drawback of
conceptual (see Fig. 2) and perceptual ambiguity (see Fig. 1), respectively [3]. Conse-
quently, these forms of representation are not equivalent in their information providing
capacities. The free ride [2] may therefore have a constraint of conceptual ambiguity
[3]. However, understanding the free ride’s constraints and how they may be effec-
tively complemented by other representation methods to increase may account for this
issue. For example, one may label a picture or diagram, and in doing so, use symbolic
representations in combination with pictorial and diagrammatic [1, 3].

Fig. 2. Per Coppin [3, p.104], this demonstrates “conceptual ambiguity”, as the concrete per-
ceptual category of the image (top) produces many possible abstract conceptual categories
(bottom).
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Minimizing perceptual ambiguity means utilizing the spatial and topological rela-
tions among marks (a diagram [1]) to represent the spatial and topological properties of
an item. To minimize conceptual ambiguity, one should rely on conventions that refer
to familiar abstract meanings to a target audience [3]. The perceptual certainty of a dia-
grammatically represented item recruits capabilities to perceive and act in the physical
world [8]. For example, the choice of whether to eat an apple is structured by the cer-
tainty with which one perceives that eating the apple is a beneficial or harmful action
(is the apple rotten or is it fresh?). These options can be conveyed visually or through
the physical properties that characterize an apple as “rotten”. This demonstrates that our
understanding of diagrammatic properties can be expanded to other sensory modalities,
such as through 3D models and spatial audio [11]. The possibilities for action are there-
fore also a result of a relationship of constraints between the structural constraints (of
the diagram) and the target problem’s constraints (environment) [3, 8, 12].

With an understanding of this idea, wemay view diagrams as possessing affordances
and producing possibilities for action [8]. However, are the geometric and topological
properties of diagrams (and their “free rides”) afforded consistently to BPSI? Do BPSI
have sufficient access to the quantity and certainty of information in diagrams to possess
equal potential for choices and actions by interpreting them?

3 Accessibility Issues of Diagrams

BPSI have faced challenges with digital information access needs limiting them mainly
to symbolic representations, such as alternative text andBraille, rather than diagrammatic
representations (e.g. raised line diagrams, which are costly and quickly made obsolete
when used for digital documents: discussed in [13]). High costs and a lack of guidelines
for multi-sensory representations [13–15] limited the use of these alternatives in the past,
however, barriers to making the necessary representational choices have been reduced.
The possibilities for providing cross-sensory correlates for diagrammatic properties has
only increased in options and decreased in cost over time [14, 16, 17].

In conjunction with this issue, note that a majority of practitioners and researchers in
the accessible diagrams and data visualizations fields prioritize symbolic representations
for information access needs of BPSI [5, 18, 19]. Examples of this approach include:
a presentation delivered at the data visualizations conference “Outlier 2021”, which
demonstrated a standard approach used for graphics accessibility at Microsoft [5]. It
overviews graphics delivered in speech through a screen reader, including descriptions of
the meaning that a user should acquire from the visual properties (produced by mapping
large quantities of data to a chart). Second, perceptual and linguistic processing in BPSI
were shown to be linked in Fryer [18]. Linguistic audio descriptions were claimed to be
capable of producing an equivalent to multi-sensory experiences for them [18]. Finally,
Lundgard and Satyanarayan [19] only argue for better informed accessibility standards
for using natural language to describe complex images. The authors did not address
whether this complexity makes representation solely through language appropriate in
the first place [19]. Text descriptions for accessibility support a multitude of information
perception and interpretation tasks [6] and uphold accessibility standards that minimize
costs and barriers to availability [7]. However, considering how limited and perceptually
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ambiguous (see Fig. 1) strictly symbolic forms of representation of diagrams are [3],
representational choices and related standards should be reconsidered to provide greater
equity in information provision for BPSI.

These limitations persist in practice despite some examples that represent diagram-
matic properties non-visually and show promise for more effective and beneficial out-
comes for accessibility. In Bassett-Bouchard et al. [16], a web application provides a
sonification of financial charts that translate diagrammatic properties into non-linguistic
sounds. Pitch and tempo convey positive or negative relationships between chart values
and a mean over time, or the change rate of data values at any set of points on the chart
[16]. Biggs et al. [20] explored binaural audio labeling via an augmented reality applica-
tion for a 3D scale model map of a playground. The project leveraged the constraints of
spatial audio and cross-sensory tangible interactions that assist BPSI with way finding
and orientation relative to the features of the playground without needing visual repre-
sentation [20]. Finally, an audio-tactile globe [21] provided cross-sensory interactions
through spatial-topological properties of the Earth’s land masses and bodies of water
combined with auditory labels. It augments the perceptual specificity (see Fig. 2) of
the shapes of continents with the conceptual specificity of the continents’ and oceans’
names (see Fig. 1) to communicate geography insights to BPSI in an alternative format
to the diagrammatic representations of visual maps [21].

In each case, effective representations are constructed for BPSI by recognizing what
is afforded by the relationship of constraints between representation options and their
abilities. This builds upon the Constraint Hypothesis [2], since using and combining
different sensory modalities have inherent constraints that may guide design decisions.
For example, whereas visual perception effectively processes a visual diagram composed
of items indexed to different elevations of a rectangle [1], audio perception is more
effective for detecting items at different directions on a virtual ground plane. An audio
diagram should translate visual relations to auditory relations of this kind. Doing so
would provide additional possibilities for action [8] compared to text descriptions alone
and foster equivalent access to information for BPSI as users with sight. With only
text descriptions for accessibility, however, their available action-possibilities [8] would
be comparatively limited, considering that their sole resource for action would be a
conceptually specific interpretation [3, see Fig. 1] provided for them.

The examples above demonstrate scenarios in which BPSI possess an equal potential
for “normative agency” by virtue of having the same available resources for making
choices and taking action in pursuit of what they consider worthwhile [9] as their peers
with sight. Without these resources, they have limited potential normative agency [9]
in comparison, making said restriction a possible issue of human rights that should be
explored in addition to the challenges of accessibility.

4 Relationships of Constraints, Possibilities for Action,
and Connections with Human Rights

Philosophies of human rights [22] relate strongly to the perception-action cycle and the
behaviour of organisms in an environment [8, 12]. An organism’s available choices for
action are built upon the relationship between themselves and the environment that they
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occupy [8], establishing them as an agent that “competently inhabit[s their surround-
ings]” [12]. A relationship of constraints emerges, including those of perceptual affor-
dances [8], perception of information, and the representation-structure-to-target-problem
constraints theorized to provide “free rides” [2].

In this context of human rights, consider the relationship of constraints that yields
a “social contract” [22]. This theory explains that without a society, humans and their
status as agents give them “natural rights” that would cause conflict (over resources,
territory, etc. [22]). However, humans are not known to have existed in such a “state of
nature”, rather than form societies [22]. A “social contract”, implies that all members of
a society agree to cede an equal aggregate of their “natural rights” to achieve peace and
security, and minimize the threat of individuals’ agency causing conflict [22].

“Natural rights” meaning to be ceded equally in a society [22] emphasizes why
agency is an important criterion for developing diagrammatic representation practices
for accessibility. To support this agency for BPSI more equally relative to those with
sight, understanding what actions are available, which are taken, and why they are taken
is critical. For a human being in an environment, in a society, and in engagement with a
problem concerning information that possesses topological and geometric relations, the
provision of more or less information to users solely on the basis of differing abilities
clearly indicates unequal, limited agency potential.

5 Providing Normative Agency with Accessible Diagram Design

To address this inequality in potential agency, we propose a consideration of the term
“normative agency” and its components, as outlined in Griffin [9]. “Normative agency”
is defined here as having the capacity to “choose one’s own path through life… [in
pursuit of] what one sees as … worthwhile” [9]. How this pursuit can be supported
by the design of diagrams for accessibility can be determined by examining the three
structural components of “normative agency” that are defined byGriffin [9]. First, it must
support “autonomy”, the phenomenon of averting domination or control by someone or
something external to the agent [9]. Second, it must comply with “minimum provision of
resources and capabilities”, which includes minimum standards for access to education
and information allowing agents to choose between and take actions that are informed by
accurate information [9]. Finally, diagrams must not conflict with the agent’s “liberty”,
the quality of being free from being “forcibly stop[ped] … from pursuing one[‘s chosen
path for] … a worthwhile life” [9].

From this perspective, the norms and standards of accessible diagram design in
research and practice [5–7, 18, 19] are clearly compromising the normative agency [9] of
BPSI when one considers the inequity of information accessible to them when restricted
solely to text descriptions [4]. The normative agency component of “autonomy” [9]
emphasizes the need for users to interpret the meaning of diagrammatic properties for
themselves. If they cannot, they are restricted to a biased interpretation likely provided
by the creator of the representation. Similarly, the “minimum provision of resources and
capabilities” component includes “minimum education and information” for the purpose
of ensuring that “one’s choice[s are] real … and having chosen, one must be able to act”
[9]. This again shows the relation to the perception-action cycle, as these actions that
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emerge from having the necessaryminimum information become possibilities for action,
as though they were affordances [8, 12].

Note that the capacity for agency differs between individuals: for example, a factor
such as age (children develop to possess greater capacity for agency as they gain life
experience) [9]. There are also differences in abilities that specifically affect the capacity
for agency, such as developmental disabilities that impair judgment and decisionmaking,
requiring in many cases supervision and having decisions made by caretakers to avert
inappropriate risks [9]. However, BPSI would have equal potential for normative agency
[9] as any sighted individual if neither is impacted by disabilities with these effects. That
potential is unfulfilled if living in an environment in which as a standard, diagrams lack
the necessary properties to materialize their potential agency [4, 9].

Consequently, this effect should set the stage for the standards of diagram design
to change. This practice can be improved by using approaches that provide first-hand
interpretation of diagrammatic properties for BPSI whenever necessary [1, 16, 20, 21],
which can be achievedwith ever-decreasing cost [13, 16, 17]. The implications for future
work on accessibility standards for diagram design are that the potential for normative
agency [9] for BPSI equal to that of their peers with sight must be a consideration
when the target problem places it at risk of limitations from the choice to represent
diagrammatic properties solely with text descriptions.

6 Conclusion

The concepts reviewed in this paper aim to set the stage for the development of non-visual
diagrammatic representation approaches when designing accessible diagrams for blind
and partially sighted individuals (BPSI). Diagrams have distinct properties [1, 2] that text
descriptions cannot sufficiently replace if provided as the sole accessibility approach,
as the resulting perceptual ambiguity causes a loss of information [3, 4]. This technical
understanding of the affordances [8] of diagrammatic properties has not significantly
affected the standards in research or practice of diagram design for accessibility [5–7,
18, 19], despite the consequences of BPSI having limited potential normative agency
[9] relative to their peers with sight as a result. While they do not represent standards of
non-visual diagram design, there are numerous examples that demonstrate the potential
for representing diagrammatic properties [1, 3] in forms that may be perceived firsthand,
without reliance on text descriptions [16, 20, 21].
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Abstract. In this paper, we analyze and discuss Schopenhauer’s n-
term diagrams for eristic dialectics from a graph-theoretical perspective.
Unlike logic, eristic dialectics does not examine the validity of an isolated
argument, but the progression and persuasiveness of an argument in the
context of a dialogue or even controversy. To represent these dialogue sit-
uations, Schopenhauer created large maps with concepts and Euler-type
diagrams, which from today’s perspective are a specific form of graphs.
We first present the original method with Euler-type diagrams, then give
the most important graph-theoretical definitions, then discuss Schopen-
hauer’s diagrams graph-theoretically and finally give an example of how
the graphs or diagrams can be used to analyze dialogues.

Keywords: Arthur schopenhauer · Logic diagrams · Graph-theory ·
Eristic · Dialectics · Euler diagrams

1 Introduction

In several phases of his work, the post-Kantian philosopher Arthur Schopen-
hauer (1788–1860) was not only intensively concerned with logic, but also with
eristic. Whereas formal logic is for him primarily the study of the correct use of
concepts, judgements, and inferences, eristic examines the techniques and arti-
fices of deliberately using them incorrectly in order to emerge victorious in a
debate. Logic is thus a monological discipline, whereas eristic is a dialogical one.

Although the two disciplines pursue different goals, Schopenhauer uses sim-
ilar diagrams for visualisation in both fields. In recent years, Schopenhauer’s
logic diagrams in particular have been intensively researched: V. Pluder and
also A.-S. Heinemann have pointed out that Schopenhauer’s logic was pioneer-
ing, among others because of the Euler-type diagrams used [8,18]. L. Demey has
shown that Schopenhauer’s logic is built compositionally from a certain number
of basic diagrams. These basic diagrams use circles to depict all possible posi-
tional relations in space and also depict oppositional relations [6]. M. Dobrzański
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and K. Matsuda have illustrated how Schopenhauer’s diagrams can be used to
map and analyse semantic and ontological relations [7,14].

Schopenhauer’s eristic diagrams are less known so far and only two research
approaches can be found from the last decades: A. Moktefi and J. Lemanski have
shown that Schopenhauer used some of the basic diagrams in eristic, and he was
perhaps the first to introduce diagrams for n-terms [12]. M. Tarrazo has argued
that these diagrams can be seen as a visualization of fuzzy logic [24].

Schopenhauer wrote several treatises on eristic, but not all of them contain
diagrams (for details cf. [22, Sect. 10.2]). In the texts without diagrams, Schopen-
hauer describes mainly eristic fallacies, artifices or stratagemata so that one can
protect oneself from those argumentation partners who deliberately use such
techniques to deceive others and achieve their goal [3,9]. Although Schopen-
hauer’s eristic diagrams are hardly known, the interest in Schopenhauer’s texts
on eristic, which do not contain diagrams, is all the greater in recent years: There
are research approaches to these texts in the field of argumentation theory [17],
proof theory [4], communication ethics [10], and pedagogy [13]. These texts on
eristic are also used in the area of social sciences, especially in the field of law,
economics and politics (cf. e.g. [2,23]).

This paper is a contribution to a large-scale research on diagrams in eris-
tic, which began with the works mentioned above. Here, we discuss a graph-
theoretical interpretation of eristic diagrams since it is striking that these dia-
grams for n-terms have a structure similar to a graph. Individual areas of these
diagrams have also already been called ‘routes’ or ‘paths’ by scholars [15]. Beyond
that, there is a long tradition in research of representing argumentation processes
as graphs, e.g. the classic methods of argument maps by Whately, Wigmore,
Toulmin or Dung [19] or current ones such as ConvGraph [16].

So it is not unlikely that Schopenhauer also had an idea in mind when he
drew the diagrams, which today we would perhaps implement primarily in terms
of graph theory. However, even if Schopenhauer was well versed in the math-
ematics of his time, his early 19th-century drawings predate the beginnings of
graph theory by many years. Thus, a graph-theoretic interpretation cannot rely
on Schopenhauer’s descriptions of the diagram. It is our task to present and dis-
cuss the different graph-theoretic interpretation possibilities and then to select,
combine and apply the best of them.

The present paper is motivated by the hope of soon having a diagrammatic
tool or argument map that combines the best of both worlds – Euler-type circle
diagrams and graph theory. Apart from that, however, it may simply offer a suit-
able means of describing eristic diagrams. Our roadmap is as follows: In Sect. 2,
we introduce eristic diagrams and summarize some of the previous research on
diagrams. Section 3 defines the elements of graph theory that we use in subse-
quent sections. Then, in Sect. 4, we present two graph-theoretic interpretations
of the eristic diagrams and discuss advantages and problems. In Sect. 5, we bring
together the diagrams and a particular graph-theoretical interpretation to map
an exemplary controversy between two dialogue partners. However, as we also
emphasize in conclusion of Sect. 6 this is only one way of combining graphs
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and Euler-type diagrams to apply the new technique of argument mapping in
human-human or human-machine interaction.

2 Current Research Results and Problems

In this section, we introduce Schopenhauer’s eristic diagrams and combine this
with a presentation of results and problems that have been discussed in research
in recent years.

Schopenhauer sees eristic as a discipline separate from logic. However, since
eristic takes many components from logic (such as diagrams), one can say that
eristic is an extension of logic by a new subject area. In the chapters on logic,
Schopenhauer starts with five basic diagrams in 1819 [21, §9] and with six basic
diagrams in later manuscripts of the 1820s. These six basic diagrams show the
position of two circles in space to each other or to a third one (then including
arc, sector, and segment). Each of these diagrams denotes the relationship of two
concepts to each other or in relation to a third. Schopenhauer speaks of ‘repre-
sentations of possible relations’ [20, p. 272] which can also be called ‘relational
diagrams’, or RD in short. The six RD are shown in Fig. 1.

Fig. 1. Schopenhauer’s Relational Diagrams (RD) taken from [20, 269–284] (Euler dia-
grams = {RD2, RD3, RD5}; Gergonne relations = Euler diagrams ∪ {RD1}; Partition
diagrams = {RD4, RD6}).

A concept is symbolized by a circle (often called ‘sphere’ by Schopenhauer)
or, as in RD6, by a semicircle. This can be concretized by some examples, but
for our purposes it is sufficient to explain RD2, RD3 and RD5. A more detailed
description of the RDs can be found in [11].

RD2 shows that the concept indicated by the inner circle is completely contained
in the other. For example, the term ‘cat’ is completely contained in the con-
cept ‘animal’.

RD3 shows that two concepts are completely separate and have no commonality.
For example, the concepts ‘good’ and ‘evil’ (as understood by Schopenhauer).

RD5 shows that two concepts are partially connected or have some commonality.
As an example, we can take the terms ‘red’ and ‘flower’, because there are
things that are only red, but are not a flower, that are both or that are only
a flower, but not red.
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Schopenhauer uses these three diagrams, RD2, RD3, RD5, and transfers them to
eristic. Therewith he constructs diagrams to show two different perspectives: On
the one hand an “in-depth view”, on the other hand, a “superficial view”. The
in-depth view shows the actual, neutral or factual relations between two or more
terms employing one RD, whereas the superficial view shows a distorted, sub-
jective, biased or prejudiced relation by resorting to another RD. The superficial
relation is the one that may seem plausible at first, i.e. when viewed superfi-
cially, but is often only used and accepted by one dialog partner, maybe only to
intentionally deceive another.

The sphere of a concept A, which lies partly in another B, but partly also
in C quite different from this one, can now be represented according to its
subjective intention as lying entirely in the sphere B, or in C, just as the
speaker prefers [20].

Schopenhauer describes here that the thorough relation of two terms corresponds
to RD5, but a dialog partner may treat the terms as if RD2 is present. One can
imagine this change of the relations or views at the two diagrams of Fig. 2. In
this case, the dialog partner represents A ⊂ B (right diagram of Fig. 2) instead
of A∩B (left diagram of Fig. 2). Similarly, the dialog partner represents B ⊂ C
instead of B ∩ C, which finally leads to the superficial perspective A ⊂ C. And
if the dialogue partner does this intentionally, then it is not simply a dialectical
or dialogical process, but an attempt at deception, which is to be investigated
by the discipline of eristic.

Fig. 2. Interchange of RDs

In his later works, Schopenhauer believes that this interchange of RDs is the
basic principle of the entire eristic [20, p. 365]. In several treatises, Schopenhauer
listed eristic artifices, which are intentionally committed fallacies, sophisms, par-
alogisms, etc., which are repeatedly used by dishonest discussion partners for the
purpose of being right [3,17]. According to Schopenhauer’s opinion, these eristic
artifices can all be traced back to the interchange of RDs, which is why the dia-
grammatic representation of eristic was of great importance to him. This can be
seen in the diagrams for n-terms, which have a strong resemblance to modern
argument maps.

In Fig. 3, one finds such a diagram, which shows the in-depth view of several
terms. These diagrams show numerous spheres of terms, the relationships of these
terms in the form of RDs. An interchange of the RDs is not to be seen, but initially
only the in-depths perspective on possible propositions of arguments, which in
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sum depict possible dialogues. Thus they are not only applicable to eristic, but
can also be used as an argument map for any kind of dialogue. Schopenhauer,
however, initially reads these diagrams in a very specific way, namely for their
use in eristic. Figure 3 is supposed to show, according to Schopenhauer,

how the conceptual spheres interlock in manifold ways and thus give room
for arbitrariness to pass from each concept to this or that other. [. . . ] I
have chosen the concept of travel as an illustrative example. Its sphere
reaches into the area of four others, from each of which the persuader can
pass over at will: these reach again into other spheres, some of them at
the same time into two and more, through which the persuader takes his
way at will, always as if it were the only one, and then finally, depending
on his intention, arrives at good or evil. [20]

Fig. 3. Schopenhauer’s Argument Maps: (a) taken from Berlin Lectures, StB PK, Na
50, NL Schopenhauer, 1428, Bl. 170 (urn:nbn:de:hebis:30:2-417557); (b) taken from
Schopenhauer’s hand copy of The World as Will and Representation, § 9, Fondation
Martin Bodmer, S. 73 (urn:nbn:de:hebis:30:2-259336).

Schopenhauer explains that the eristic diagram describes how a possible dia-
logue partner P starts from the term in the centre and then uses several term
connections, usually represented by RD5, to finally arrive in the periphery, i.e.,
on the far left or right of the diagram. Once the other dialogue partner Q has
accepted this path, P can conclude that the term in the centre is a component
of the periphery term. Let us take Fig. 3 again as an example: P wants to argue
that travel is something evil. So he uses multiple RD5 as a path from ‘travelling’
to ‘evil’. If Q has accepted this, P can conclude that traveling is something evil.
P thus presents the relation of travel and evil in the conclusion as RD2, whereas,
according to Fig. 3, it is actually both terms that are connected only by RD5.
(We will take up this example again in Sect. 5 and then see that graph theory
offers us many possibilities to describe and analyse this example more precisely.)

The few interpreters of this diagram mentioned above seem to share this
interpretation. However, it is problematic that numerous RD3 appear in Fig. 3,
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which only in a few cases make sense from the logical perspective or often even
seem irritating. In logic, RD3 (and RD4) indicate contrary relations between two
terms or classes (and RD6 shows contradictory relations [6]). However, this does
not make sense for all RD3 in Fig. 3, so RD3 have little crucial meaning in eristic:
True, terms such as good and bad are shown to be logically correct in RD3 because
they are contrary terms. However, most of the terms that stand between the
middle term and the peripheral terms within a sequence of RD5 are usually not
contrary [15, sect. 5]: In Fig. 4, for example, we see several RDs in a section of
the diagram, but terms such as ‘profitable’ and ‘good’ are not usually taken as
being contradictory.

Fig. 4. RD2, RD3, and RD5 in the top left area of Fig. 3b

3 Graph Theory

We have seen in previous section that Schopenhauer established six fundamental
relation diagrams, RD (Fig. 1) in logic. In eristic, we find at least three RDs again.
However, it turned out that RD2 and RD3 were problematic and one would have
to either clarify their meaning or ignore them altogether in the eristic diagram.
If they are ignored, only a series of RD5s is relevant, which seem to make up the
core idea of the diagram. Now, however, one can argue that if usually only RD5 in
Fig. 3 is important, then perhaps one can get a clearer idea of Fig. 3 by ignoring
the circles altogether and interpreting all RD5 as edges and vertices. That is, one
turns what appear to be Euler-type eristic diagrams for n-terms into a graph.
This will indeed be discussed in more detail in Sect. 4 (and we can anticipate
that we will later argue for linking diagrams and graphs together). However, in
order to make such a graph-theoretic interpretation of Fig. 3, we revisit certain
important graph theoretic notions that we need for our interpretation in Sect. 4.
In the following we define most of these notions in a much simpler way than
their actual mathematical definition. Graph can be defined as

an ordered triple G = (V(G), E(G), IG), where V(G) is a nonempty set,
E(G) is a set disjoint from V(G), and IG is an “incidence” relation that
associates with each element of E(G) an unordered pair of elements (same
or distinct) of V(G) [1].
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The sets, V(G) and E(G) are called ‘Vertex set’ and ‘Edge set’ respectively.
We write IG(e) = {u, v}, when the edge ‘e’ is connected by the two vertices ‘u’
and ‘v’. Here, u and v are called the ‘end vertices’ of the edge e. A ‘degree’ of
a vertex is basically the number of edges incident on it. Two vertices are called
‘adjacent’ if and only if they are end vertices on an edge. Two edges are called
‘adjacent’ if and only if they have a common end vertex.

A ‘path’ is defined as an alternating sequences of vertices and edges where
neither edges nor vertices appears more than once. A graph G is said to be
‘connected’ if for every pair of vertices in G there is at least one path between
them. Otherwise, G is said to be a ‘disconnected’ graph. Subgraph is defined as
follows:

A graph H is called a subgraph of G if V(H) ⊆ V(G), E(H) ⊆ E(G); and
IH is the restriction of IG to E(H). If H is a subgraph of G; then G is said
to be a supergraph of H: A subgraph H of a graph G is a proper subgraph
of G if either V(H) �= V(G) or E(H) �= E(G) [1].

For example, in Fig. 5, V(G) = {v1, v2, v3, v4} and E(G) = {e1, e2, e3, e4}
are the vertex set and edge set of the graph G respectively. Here, IG(e1) = {v1,
v2}, IG(e2) = {v1, v3} and so on. The degree of the vertices v1 and v3 is two,
whereas, the degrees of the vertices v2 and v4 are three and one respectively.
Except for v1 and v4, every other vertices is adjacent to one another. The two
edges e2 and e4 are not adjacent. Rest of the edges are adjacent to one another.
One example of a path in G is v1e1v2e4v4. Graph G is a connected graph as for
every pair of vertices {vi, vj} (1 ≤ i ≤ 4, 1 ≤ j ≤ 4 and i �= j), there exist a path
between them. Graph H is a subgraph of G [see Fig. 5].

Fig. 5. Example of Graph and Subgraph

The Graph G in Fig. 5 is an undirected graph, where the incidence relation
IG(ek) associates the edge ek to an unorderderd pair of vertices (vi, vj). For a
‘directed graph’, the incidence relation associates every edge onto some ‘ordered
pair’ of vertices. In directed graph, every edge is represented by an line segment
with an arrow to from one vertex to another vertex. In a directed graph, a
‘source vertex’ is the vertex where the number of incoming edges is zero and
a ‘sink vertex’ is the vertex where the number of outgoing edges is zero. For
example, Fig. 6, represents a directed graph, where v1 is the source vertex and
v2 and v3 are both sink vertices.
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Fig. 6. Example of directed graph

4 Interpretations and Discussion

As shown in Sect. 2, Schopenhauer gave little information on how to interpret
Fig. 3. Since there was no graph theory in the early 19th century either, Schopen-
hauer could not provide any precise statements about it. There are probably
many ways of interpreting Fig. 3 in terms of graph theory. For example, three cri-
teria such as (1) directed/ undirected graph, (2) connected/ unconnected graph,
(3) display of all RDs/ display only RD5, result in 6 possible graph-theoretical
interpretations. In the following, we will introduce only two interpretations (I),
which we will then discuss. We cannot present these two interpretations in every
detail either, but we only want to clarify certain aspects for the reader in order
to awaken an understanding of how we combine the Euler-type diagrams and
graph in the next chapter. We have chosen the following two interpretations as
we think they are the most suitable to be applied. As envisaged in Sect. 3, only
RD5s will be considered as showing dialogue transition.1

(I1) The first interpretation assumes that the concepts are the vertices and the
edges connect the concepts with each other. Figure 3 shows almost only RD5
and in RD5s, curves represents concepts and their intersection represents the
relation or connection between the concepts. Similarly, in a graph, edges acts
like the intersection of the curves as it is also connects the concepts that
are represented by vertices. Since ‘travelling’ is the source vertex and ‘good’
and ‘evil’ are the sink vertices, this results in a connected directed graph,
as shown in Fig. 7.

(I2) In the second interpretation, we assume that the vertices are represented by
the intersections of RD5 and edges connects these vertices with one another.
Here we have four source vertices which we obtained by the intersection
of the circle ‘travelling’ with four adjacent conceptual spheres, namely
‘healthy’, ‘expansive’, ‘ample opportunity for storing experience’ and ‘dis-
pelling boredom’. This interpretation results in a disconnected directed
graph, as shown in Fig. 8. Here, each edge and vertex are traversed only
once for a single path.

Both interpretations assume a directed graph, since there is a source vertex and
several possible sink vertices, but (I1) and (I2) differ in whether the graph is

1 In the following we use the graph-theoretical labels v and e only if we directly refer
to the graphs and not to the RDs.
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Fig. 7. (I1)

Fig. 8. (I2)
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connected or not. Each of the two interpretations could have certain advan-
tages and disadvantages, which might even vary depending on the application
of Schopenhauer’s eristic diagram.

In the following, we would like to present and discuss some possible advan-
tages (A) and problems (P) of (I1) or Fig. 7 and (I2) or Fig. 8 in order to represent
a dialogue.

(A1) (I2) seems to highlight the propositions of arguments under discussion
(whereas (I1) put more emphasis on the concepts). The reason is that in
the approach mentioned in Fig. 8 takes each intersection of the circles as
the vertex of the graph. Now as we have argued in Sect. 2, a circle in this
n-term diagrams represent a ‘concept’ not a propositions of an argument
or a particular dialogue. An argument is only represented when two circle
have a specific relation represented through a RD diagram. Thus, one can
claim that Fig. 7 fails to represent the transition of dialogue which is the
primary motive of this n-term diagram. In sum, Fig. 7 seems to be more
suitable for concept maps [5], but Fig. 8 seems to be better for depicting a
dialogue as in argument maps.

(A2) In (I2) or Fig. 8, there are four vertices (coloured as brown, blue, violate and
pink) which are not connected with each other and from each of these four
vertices generates four subgraphs of the main one which are not connected
to one another. In a dialogue, for example, P have at least four different
ways to convince Q whether ‘travelling’ is either good or bad. If suppose P
beliefs that travelling is bad then P can consider the subgraph Fig. 9 which
is the shortest path from ‘travelling’ to ‘evil’. The disconnected graph (I2)
thus shows the possibilities of having different opinions in the form of
subgraphs better than the connected graph (I1) does.

(A3) Each path in (I2) could immediately indicate the direction, i.e. whether
the path leads from ‘traveling’ to ‘good’ or to ‘evil’. Thus, already at the
first transition, the path of the dialogue would be clearly foreseeable. If
Fig. 8 were used as an argument map, this would have the advantage that
the course of the dialogue would be recognizable by its direction: In Fig. 8,
the brown and green path are neutral at first, since they only go up or
down and only approach good or evil later. But even with this advantage,
as soon as a path turns to the right or to the left (e.g. as the pink one), the
neutrality is removed and an ‘ethical value’ (good or evil) of the depicted
argument arises. This is one of the problem of (I2), that will be discussed
in the following.

(A4) Both (I1) and (I2) have a great advantage over the diagrams (Fig. 3)
because the directed graphs can accurately represent the flow of the dia-
logue. They show the beginning and the end of a series of propositions or
arguments. However, as mentioned in (A1), the (I1) graph does not show
the transition accurately. Therefore, (I2) has advantages over (I1). More-
over, the definitions in graph theory allow a more precise description of
individual elements than do the diagrams.

But there are also certain problems that accrue to one or both interpretations,
which we would now like to address.
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Fig. 9. Example of dialogue transition to show ‘Travelling is bad’

(P1) We have to keep the following in mind. If dialogue transition strictly
depends on RD5 diagrams, we cannot connect two vertices by an edge unless
the circles where these vertices lies are connected by RD5. For example, in
Fig. 10, the vertex v1 can be connected with vertex v2 as the circle C1 is in
RD5 relation with the circle C2. But we cannot connect v1 with v3 as C1 is
not in a RD5 relation with the circle C3 but in a RD3 relation. Of course, this
reduces the entire diagram to only one RD, which means that the expressiv-
ity is not very high. One can even argue that the original diagram (Fig. 3)
shows more possible arguments than (I1) or (I2).

(P2) However, if one wanted to try to solve (P1) graph theoretically, one would
run into a new problem. If we imagine a connected graph in which all RDs
are entered, the expressivity is similar to Fig. 3, but the graph would be very
confusing. We would have a network of numerous RD3s and RD5s that would
be almost impossible to trace. Although one could introduce RD3s into
graphs by a rule, e.g. that all vertices that are not directly connected by an
edge map an RD3, this would only be implicit information. The expressivity
of the original diagram thus seems to be higher than one of the graph-
theoretical interpretations.

(P3) As noted above, (I2) bears most resemblance to an argument map as used
today in many different variations in fields such as critical thinking, argu-
mentation theory, argument mapping etc. [25], [19]. Overall, however, there
are unfortunately numerous points that (I2) do not fulfil and which are also
important for Schopenhauer’s eristic as well as for most argument maps
today: the graphs show arguments, but it do not show which dialogue
partner made the argument and how another reacted to it. The graph also
does not show the interchange of RDs that was discussed in Sect. 2. The
graph also does not show a counter-argument, e.g. an attack by another
dialogue partner. In some cases, it is already sufficient to use the diagrams
from Sect. 2 with the graph, but in other cases more diagrammatic elements
must be used to meet all requirements.
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Fig. 10. Importance of RD5 in eristic

5 An Example of a Controversy

Schopenhauer’s n-term diagrams can be interpreted in terms of graph theory,
as we have seen in Sect. 4. This gives clearer possibilities of description by the
definitions mentioned in Sect. 3 as well as some advantages mentioned in Sect. 4.

Nevertheless, the graphs discussed in Sect. 4 also have disadvantages, which
concern expressivity, for example. If Schopenhauer’s diagrams were to be com-
pletely replaced by graphs, as argued in Sect. 3, there would be some advantages,
but also some disadvantages and problems, which would ultimately lead potential
users to use graph systems that are already established in the field of argumen-
tation, e.g. Toulmin, Scriven, Dung maps, etc. [19]. Our goal should therefore
be to combine the best of both worlds and to adapt the graphs and diagrams in
such a way that they are well-suited for the respective purpose.

The n-term diagrams were actually intended to be applied to Schopenhauer’s
own treatises on eristic. Nevertheless, the diagrams and graphs of eristic can
also be applied in many other areas of human-to-human or human-to-machine
interaction [19]. In this section, we will stay in the field of human agents and try
to represent a fictitious controversy with Schopenhauer’s diagrams and graphs.
(However, it should be taken into account that one can also analyse or even plan
possible arguments with Schopenhauer’s diagrams and, on the other hand, other
areas such as political debates, sales talks, negotiations, legal pleadings can be
represented with the help of Schopenhauer’s eristic.)

In our fictitious controversy, however, we stay in eristic with the topic of
‘travelling’ using Schopenhauer’s example. Thus, we take up the fictional dia-
logue between P and Q already announced in Sect. 2, in which P wants to argue
that travelling is something evil. The dialogue could go as follows:
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Q K1 Dear P, what do you actually think about travelling?

P K2 I’d like to tell you. Travelling gives you plenty of opportunities to store experience.

Q K3 You could say that.

P K4 But experiences can also be dangerous.

Q K5 Well...

P K6 And everything that is dangerous is also injurious.

Q K7 No, I have to disagree. For one thing, it has nothing to do with travelling, and
for another, not everything that is dangerous is also injurious. Dangerous
experiences can also bring honour, and that is not injurious.

P K8 Yes, I agree with you. But this honour can also
cause envy, so that you incur hatred.

Q K9 That is possible, of course.

P K10 If you incur hatred, that is something pernicious, and
so travelling is an evil.

The entire dialogue consists of 10 actions (K), whereby not every action
represents an argument: K1 is a question, K3 and K5 are agreements. On the
other hand, in some cases there are several arguments in one action: whereas
K2, K4, K6 represent only one argument, K7, K8, K10 each contain several
arguments (a, b, c, . . .).

K7 even plays a special role overall: here an attack or counter-argument
is found. Q does not initially accept P’s argument in K6. Q notices that P
could have the intention to connect ‘travelling’ with something evil. Therefore,
Q anticipates such an argument K7a (For one thing,...), excludes it, and negates
K6 in K7b explicitly (and for another...). As a counter-argument, Q falls back on
K4, which Q still accepted in K5, and turns it to the positive, i.e. K7c (Dangerous
experience can also bring honour). At the same time, Q uses K7c to refer to RD3
between ‘bringing honour’ and ‘is injurious’, i.e. K7d.

In K8, P recognises the chance that the positive argument put forward by
Q in K7c can still lead to the goal, even though Q has rejected K6. In order
not to give Q too much leeway for the new argument K7c, P turns it to the
negative, K8a (But this honour can), and immediately connects it with the next
argument, K8b (so that you...), which is presented as a consequence. Q seems to
have been caught off guard by this in K9. Q at least admits that K8 is possible.

This then allows P to present a series of arguments in K10, i.e. K10a, K10b,
which finally appears as a consequence of the whole controversy and also as an
answer to K1: travelling is an evil. Should P have the last word with K10 in the
dialogue and if Q not contradict, the conclusion (K10b) should be accepted by
both.

Let us look again at the transition from K6 to K7. What is expressed here
is what we called the interchange of RDs in Sect. 2. This concerns the transition
between ‘dangerous’ and ‘injurious’, which is evaluated differently by P and Q,
which is why the controversy comes to a head here: P argues in K6 that the
transition between ‘dangerous’ and ‘injurious’ is justified. P’s argument is even
so strong that it can be seen as an exaggeration: P makes an RD2 out of the
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RD5 between the two terms; for if everything that is dangerous is injurious, then
‘dangerous’ is also completely contained in ‘injurious’. But Q does not accept
this transition: Q points out that there are dangerous experiences that are not
harmful and gives a counterexample that even constructs an RD3 argument.

This illustrates the interchange of RDs that expresses between the two speak-
ers regarding a particular argument. Since we have chosen our example in such
a way that P intentionally wanted to deceive Q with K6, i.e. an intentional
interchange from RD5 to RD2 was intended by Q in order to quickly support the
main argument (travelling is something evil), the fictional dialogue can be taken
as an example of eristic.

Our aim in this section, however, is now to apply the diagrams and their
graph-theoretical interpretations to represent the dialogue just presented. To
represent this dialogue, K1−K10, we now use Schopenhauer’s original diagram,
Fig. 3, which represents the RDs, and an overlying subgraph of (I2), which is
to represent the concrete course in the diagram. The result is Fig. 11 Here the
broken line represent the path taken by P and the straight line represent the path
taken by Q. We thus see in Fig. 11 two argument transitions: first the path that
P takes, but which ends at ‘dangerous’ and ‘injurious’ without having reached
the goal. The second path then continues via Q’s argument until P reaches the
sink node at ‘evil’2. The argument K7c remains implicit in Fig. 11, but could be
supplemented by further diagrammatic elements.

Fig. 11. Dialogue Graph

This connection of diagram and subgraph should enable a reader to read
out a fictitious dialogue from Fig. 11 which, although it does not correspond to
the flow of words of K1 − K10, can at least reproduce the arguments, i.e. the
dialectical essence of the controversy.

2 The first step in Fig. 11 have both dotted and straight lines as P and Q both agrees
on the argument ‘travelling’ is ‘ample opportunity for storing experience’, viz. K2
and K3.



Combing Graphs and Eulerian Diagrams in Eristic 111

6 Summary and Outlook

In this paper, our aim has been to develop a graph-theoretical interpretation
of the Eulerian diagrams that Schopenhauer uses in eristic and to combine the
advantages of both. In doing so, we have found that there are numerous ways
in which Schopenhauer’s diagrams can be read and also how they can be used.
While Schopenhauer primarily had application in eristic in mind, however, the
diagrams can initially only show possibilities of dialogue progressions. We have
understood these possible dialogues as subgraphs of a main graph, which can
describe the structure of the diagrams more precisely than the diagrams do.
Nevertheless, we have also seen that the Euler-type diagrams have the advantage
of displaying numerous relations between terms and arguments that would no
longer be intuitively understandable in complex graphs or networks.

Having explained Schopenhauer’s diagrams in Sect. 2, defined the basic
graph-theoretical terms in Sect. 3 and presented some possible graph-theoretical
interpretations of the diagrams in Sect. 4, we have presented in Sect. 5, using an
exemplary controversy, how graph and diagram can be combined to represent
the course of conversation. However, numerous other applications in the field of
human-human or human-machine interaction are conceivable with the help of
this technique: Pointing out alternative or counterfactual arguments, strategi-
cally planning the course of arguments, analysing possible false conclusions, etc.
This versatility is likely to be particularly applicable in areas where arguments
play a central role in communication, such as law, politics, commerce, the sci-
ences. In this context, Schopenhauer’s eristic diagrams occupy a special position
to all argument maps known so far: they combine the intuitive advantages of
graphs with those of Euler-type diagrams. Moreover, their interpretation possi-
bilities and extensions are numerous, so that one can adapt the diagram graphs
depending on the field of application.

Acknowledgements. This research benefited from the research grant “Quod erat
videndum: heuristic, logical and cognitive aspects of diagrams in mathematical rea-
soning” as part of the research project MIUR - “Departments of Excellence”, call
2017 - Faculty of Humanities at Scuola Normale Superiore, Pisa, Italy received by
Reetu Bhattacharjee in 2022. The research of the second author was supported by the
project ‘History of Logic Diagrams in Kantiansm’ (AZ.10.22.1.037PH) from the Fritz
Thyssen-Stiftung.

References

1. Balakrishnan, R., Ranganathan, K.: A Textbook of Graph Theory. Springer, New
York (2012)

2. C. Rocha, E. Solano, J.M.: The Bolsonaro paradox. Latin American societies (cur-
rent challenges in social sciences). In: D. Béchet, A.D. (ed.) The New Brazilian
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Deussen and F. Mockrauer). Piper & Co. (1913)

21. Schopenhauer, A.: The World as Will and Representation. 2 vols, ed. and transl.
by J. Norman, A. Welchman, and C. Janaway. Cambridge University Press (2010)

22. Schubbe, D., Koßler, M. (eds.): Schopenhauer-Handbuch. Leben - Werk - Wirkung.
2nd ed. Metzler (2018)

https://doi.org/10.1007/978-3-642-31262-5_2
https://doi.org/10.1007/978-3-030-33090-3_12
https://doi.org/10.1007/978-3-030-33090-3_12
https://doi.org/10.1007/978-3-030-33090-3_3
https://doi.org/10.1007/978-3-030-33090-3_11
https://doi.org/10.1007/978-3-319-91376-6_67
https://doi.org/10.1007/978-3-030-33090-3_8
https://doi.org/10.1007/978-3-030-33090-3_9


Combing Graphs and Eulerian Diagrams in Eristic 113

23. Stelmach, B.: Methods of Legal Reasoning. Springer (2006)
24. Tarrazo, M.: Schopenhauer’s prolegomenon to fuzziness. Fuzzy Optim. Decis. Mak-

ing 3, 227–254 (2004)
25. Thomas, S.N.: Practical Reasoning in Natural Language. Prentice-Hall (1986)



Taming the Irrational Through Musical
Diagrams – from Boethius to Oresme

and Nemorarius

Daniel Muzzulini(B)

Zurich University of the Arts, Zurich, Switzerland
daniel.muzzulini@zhdk.ch

Abstract. Boethius and his followers used diagrammatic methods to esti-
mate musical intervals with epimoric ratios, they determined geometric num-
ber sequences with triangular tables, and they treated the converse problem of
dividing musical intervals equally. The collection of mathematical manuscripts
Codex Basel F II 33 (ca. 1360) contains treatises by Nicolaus Oresme, Jordanus
Nemorarius and others. Images in Nemorarius’ treatise combine number triangles
into complex spider webs and they display recursive algorithms. Oresme diagrams
make use of irrational ratios. These little known images and their relationship to
music theory are the focus of this paper.

Keywords: Ratios of ratios · Geometric proportions · Recursion · Pythagorean
music theory

1 Ratios, Measuring Intervals and Proportions

Musical ratio theory in the Pythagorean tradition is a theory of positive rational numbers
that focuses on multiplication rather than addition. The mathematics required to address
the topics of addingmusical intervals and ofmultiplyingmusical intervals by numbers or
dividing them equally by numbers involves magnitude comparisons of rational numbers,
geometric sequences as well as fractional powers of integers and rational numbers.

Traditionally, the natural numbers are discrete quantities which do not exhibit
metrical structures per se. They are means for counting, and ratios are relationships
between pairs of countable quantities. Since Boethius (ca. 480–525), arc diagrams
are used to visualize whole numbers and their relationships. This widespread mode
of representation, typically assigns numbers to positions on a line – in ascending
or descending order – and ratios to semi-circular arcs within undirected graphs (see
Fig. 1, 5 and 6). The ratio interpretation of musical intervals was rejected by Aristox-
enus (c. 375–335 BC), who maintained a geometrical sensualistic approach to inter-
vals not anchored in Pythagorean ratios. Instead he admitted microtonal division of
intervals as if they were spatial distances [1, 2, 12]. The collocation “proportio pro-
portionum” (ratio of ratios) [7, 18] coined in the 14th century raises the ratio the-
ory to a higher level, by proclaiming a comprehensive theory for musical intervals
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generalizing the Pythagorean ratio concept and accounting for the perceptual space
metaphor of musical pitches and intervals [8, 13].

Measuring the length of a line means comparing it to a unit length defined by con-
vention – by expressing it as a multiple of the unit. If there were a smallest and hence
indivisible musical interval of which all the others were integer multiples, this interval
could serve as a musical unit interval. The so-called Pythagorean comma was some-
times considered indivisibly small – at least perceptually. Rather than being a proper
musical interval to be sung or played, it served as a tertium comparationis for larger
musical intervals and pitch configurations. For this purpose, Jacobus Leodiensis in the
14th century proposed a division of the octave into 53 micro-intervals or commas so that
measuring intervals comes close to counting commas. [11].

2 Epimoric Ratios as a Measure for Musical Intervals

The musical octave, defined with the proportion 1 : 2, plays a crucial role in Western
musical pitch systems. Pitches one or more octaves apart are usually considered closely
related to eachother and–presented simultaneously – theyoften seem tomerge to a single
sound. Traditional harmonic theory is developed to a wide extent within the frame of
an octave. Epimoric ratios are fractions defined by successive numbers. Throughout the
course of history epimoric ratios of small numbers were used to explain the perceptual
phenomenon of consonance. All internal ratios within the proportion 12 : 9 : 8 : 6
are epimoric because of 12/8 = 9/6 = 3/2, 12/9 = 8/6 = 4/3. In medieval source this
division of the octave, which relates the whole tone to the consonances within the octave,
is frequently visualized with a symmetric arc diagrams (see Fig. 1).

Fig. 1. Symmetric division of the octave Aa into two fourths, AD and Ea, and a whole tone DE.
Connecting arcs corresponds to adding musical intervals.

The epimoric ratios can be used to partition the “octave space”. Because they form
a sequence of decreasing rational numbers approaching one (the unison)

2/1 > 3/2 > 4/3 > 5/4 > . . .

they provided a convenient way to measure and compare small musical intervals at a
time where decimal fractions and logarithms were not yet invented. A method to find for
a given interval the closest epimoric ratios was described by Boethius and sometimes
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visualized in medieval treatises (see Fig. 2). Walter Odington (ca. 1253–1328) in De
speculatione musice illustrates the estimation of the Pythagorean comma.

75/74 < 531, 441/524, 288 < 74/73

in this way [17].

13 

l   256               243      0

l  260                   247                  234              0 
20 × 13             19 × 13           18 × 13

Fig. 2. Epimoric estimation for the Pythagorean semitone. The terms 243 and 256 are compared
with multiples of their difference. Therefore, 20/19 < 256/243 < 19/18.

The horizontal lines represent monochord strings of equal length l and tension, the
ticks are fret positions for the respective sounds. The reasoning uses the difference of
the terms under consideration (13 for the semitone, 7153 for the Pythagorean comma)
and compares the terms with the closest multiples of the difference [4].

3 Boethius Triangles and Nemorarius Webs

The medieval copies of Boethius’ writings on arithmetic and music contain matrix like
triangular tables of numbers (see Fig. 3). They are diagrammatical tools to calculate
geometrical sequences of epimoric common factors. We call them Boethius triangles
although they probably go back to Nicomachus of Gerasa, a main source for Boethius’
writings on arithmetic and music [9].

1 8 64 512 4096 32,768 262,144

9 72 576 4608 36,864 294,912

81 648 5184 41,472 331,776

729 5832 46,656 373,248

6,561 52,488 419,904

a 8 a
+ a  59,049 472,392

9 a 531,441

Fig. 3. Boethius triangle for the common ratio 9/8. The small interpretive diagram at the bottom
shows that the table can be created from the numbers in the first row with additions only (a stands
for the value in any cell).

The numbers in the last column contain the proportion for a pile of six Pythagorean
tones (9/8). The quotient of the last term of this column (531,441) and twice the first (2
× 262,144 = 524,288) defines the Pythagorean comma, the tiny difference between six



Taming the Irrational Through Musical Diagrams 117

tones and an octave: 531,441/524,288. It was explained in the previous section that it is
of similar size as the epimoric intervals for 75/74 and 74/73.

Beside the powers of 8 in the first row there are no further multiplications required
in order to create the table at arbitrary depth. Medieval copies of Boethius’ writings and
related texts usually have diagrams for the common factors 3/2, 4/3 and 5/4, sometimes
also for 9/8 as for example an early 10th century copy of Boethius’ “De institutione
musica” [5].

The positions of the matrix elements viewed as locations in a (discrete) system of
coordinates permit a geometric interpretation of the related interval arithmetic. Hereby,
vector addition corresponds to the addition of musical intervals, and the multiplication
of a vector by an integer is equivalent with the multiplied musical interval vector of the
same direction. In other words, the tables can serve as two dimensional look-up tables
for various geometric sequences and combinations of intervals. This interpretation is
implied in some medieval triangles for the common factor 3/2 used to describe binary
and ternary rhythmic divisions [14, 20].

Fig. 4. Nemorarius combines three Boethius triangles for “dupli” (2/1), “sesquialteri” (3/2) and
“sesquiteri” (4/3) to a web of geometric sequences. The lower part of the picture is an early “Pascal
triangle”. Source: Basel Universitätsbibliothek (UBH F II 33, fol. 83r).

A diagram by Jordanus Nemorarius [15] shows that the totality of the Boethius
triangles can be calculated iteratively and completely without multiplication (see Fig. 4).
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The left part serves to calculate the powers of 2, the octaves. The powers of 2 can be
used to calculate the sequences for the fifths (3/2) in the middle and the powers of 3,
which in turn can be used to calculate the sequences of fourths (4/3) and powers of 4,
etc.

Nemorariuswas aware that the binomial coefficients, the numbers in Pascal’s triangle
(see the lower part of Fig. 4), are useful for the iterative calculation of powers when
the base is increased. Whereas powers of epimoric ratios can be determined without
multiplications at all, the more general case of non-epimoric ratios is based on sums
weighted by the binomial coefficients. Nemorarius solves this task for selected ratios
with a full spider web combining six triangular parts.

4 Geometric Division of the Pythagorean Tetraktys in Theory
and Practice

It is known since antiquity that the proportion 16 : 17 : 18 divides the whole tone (18/16
= 9/8) unequally and that the true “geometric” mean of 16 and 18 cannot be written
as a ratio of integers [3]. The division of the whole tone A : B “epogdovs” (9/8 =
18/16) by two epimoric ratios “sesquisextadecima” (17/16) and “sesquisept’decima”
(18/17) is incompatible with the geometrical division A:D:B (see Fig. 5). By equating
radius and interval size, this arc diagram from an early 10th century Boethius copy
reveals logarithmic insights into music: The horizontal spacing expresses interval sizes
so that the arcs belonging to the geometrically halved tones and labelled “medietas”
are equal diameters visualizing equal perceptual distance. The difference between the
two unequal semitones, 18/17 and 17/16, is exaggerated in the drawing, possibly for
didactical reasons.

Fig. 5. The arc diagram, transcribed from a late 10th century Boethius copy [5], addresses the
problem of halving the Pythagorean tone.

Nicolaus Oresme applies the novel concept of fractional powers to the very heart
of the Pythagorean dogma, the numbers and intervals of the tetraktys, that is, the set of
pair relationships between the first four natural numbers, and he ventures to illustrate his
transformed tetraktys as an ordinary arc diagram. In other words, he applies the square
root function to the set X = {1, 2, 3, 4} and to the ratios formed by number pairs from
X (see Fig. 6).



Taming the Irrational Through Musical Diagrams 119

Two other arc diagrams in the same treatise by Oresme concern the problem of
tripling the cube, and the calculation of regular polygons inscribed and circumscribed
to a circle of a fixed radius. They use musical terminology to denote irrational ratios.
Oreseme’s “Algorismus proportionum” was rediscovered and published only in the 19th
century [6]. To our knowledge, his diagrams and their ability to describe finite systems
with irrational proportions have hardly been noted in the literature.

Fig. 6. Besides the octave, all intervals in the diagram transcribed from a 14th century manuscript
of Nicole Oresme’s “Algorismus proportionum” form irrational ratios [6, 19]. The numbers are
obtained by applying the square root function to the numbers and ratios in the standard tetraktys
1 : 2 : 3 : 4.

How Jordanus Nemorarius determined the square root of two, the bisected octave,
algorithmically, is illustrated in the “flowchart” shown in Fig. 7.

Fig. 7. Jordanus Nemorarius’ algorithm to determine the twelve tempered tritonus
√
2 from the

Pythagorean fifth 3/2 in an early printed edition by Jacobus Faber Stapulensis (1496). Source:
Basel Universitätsbibliothek (UBH AM V 8:2, VIII).
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Musically speaking, he begins with the perfect fifth (3/2) of the Pythagoreans and
approaches the tritonus recursively: an irrational ratio, which simply did not exist in the
Pythagorean universe.

The sequence of ratios b/a = 3/2 = 1.5, d/c = 7/5 = 1.4, f/e = 17/12 = 1.4171, h/g
= 41/29 = 1.414 approaches the square root of two in an oscillating manner. This can
be seen by comparing the squares and doubled squares of the terms of the ratios, shown
in the lower part of the chart:

2 · 5 − 1 = 72, 2 · 12 + 1 = 172, 2 · 29 − 1 = 412

Therefore, the original ratios are close to the diameter/side ratio of a square. The
rules to derive the two sequences of numbers can be read from the chart (and are better
explained in the manuscript):

a + c = d , c + d = e, c + e = f , e + f = g, e + g = h

The procedure to determine the ratios is similar to the recursion in the well-known
Fibonacci sequence, which approaches the ratio of the golden section in the same way.
Because they avoid multiplications the calculations could be done easily with Roman
numerals – as it was done in the Basel manuscript [15].

5 Conclusion

Mathematicians in the 14th century used diagrammatic means to illustrate and explain
their algorithms needed in arithmetic and music theory. Walter Odington, for instance,
visualized Boethius’ ratio estimations based on epimoric ratios with a generally valid
diagram.

Boethius used number triangles asmeans to find the proportions of number sequences
whose successive terms form epimoric ratios. These proportions can be used to describe
uniform musical ladders and they are suited to measure other intervals. Boethius’ trian-
gles were picked up and generalized to arbitrary ratios by Jordanus Nemorarius. These
novel mathematical concepts and methods were taken up and refined only in the 16th
century by Michael Stifel [21] and Simon Stevin [22], paving the way to exponential
and logarithmic functions in the modern sense.

The multiplication of a musical interval with a number n is equivalent to raising its
ratio to the power of k, and dividing a musical interval by n is equivalent to extracting
the n-th root of the ratio or raising it to the fractional power 1/n. With fractional powers,
however, the Pythagorean number concept is left behind. Nicolaus Oresme was able to
formally describe fractional powers of rational numbers and their rules. In his diagrams
summarizing the solution of geometrical problems he gives algebraic results in amusical
language.

The value of diagrams in historical music-theoretical sources has long been under-
rated, and only recently have they been duly acknowledged in philosophy [10]. In this
text, musical and mathematical diagrams were examined as objects in their own right.
The images are interpreted by excluding the surrounding text and historical context as
much as possible. The art of diagramming is also an art of reduction – to bring the essen-
tial to the point and into an aesthetic form with lines, numbers – and almost without
words.
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Abstract. Aristotelian diagrams, such as the square of opposition, are
among the oldest and most well-known types of logical diagrams. Within
the burgeoning research program of logical geometry, we have been devel-
oping a comprehensive database of Aristotelian diagrams that occur
in the extant literature: Leonardi.DB (the Leuven Ontology for Aris-
totelian Diagrams, and its corresponding Database). This paper presents
an (intermediate) report on this development. We describe the philo-
sophical background and main motivations for Leonardi.DB, focusing
on how the database provides a solid empirical foundation for theoreti-
cal research within logical geometry. We also discuss some of the main
methodological and technical aspects of the database development. As a
proof-of-concept, we provide some examples of the new kinds of research
that will be facilitated by Leonardi.DB, e.g. regarding broad trends in
the usage and visual properties of Aristotelian diagrams.

Keywords: Aristotelian diagram · Square of opposition · Logical
geometry · Leonardi.DB · Diagram database · Semantic Web

1 Introduction

Aristotelian diagrams are among the oldest and most well-known types of logical
diagrams. The most famous example is the square of opposition (cf. Fig. 1), but
there also exist many other, more complex examples. These diagrams have a rich
history in philosophy and logic, and nowadays they are also used extensively in
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Fig. 1. Squares of opposition for propositional logic and first-order logic.

various other disciplines that deal with logical reasoning, such as linguistics,
psychology and artificial intelligence [3,20]. Furthermore, in the past 15 years, it
has become increasingly clear that Aristotelian diagrams are not only useful tools
to explain or illustrate some logical notion, but can also be fruitfully studied as
objects of independent mathematical and philosophical interest. This has given
rise to the burgeoning research program of logical geometry.

One of the main aims of this research program has been to develop a com-
prehensive database of Aristotelian diagrams that occur in the extant literature.
This has recently led to Leonardi.DB, i.e., the Leuven Ontology for Aristotelian
Diagrams, and its corresponding Database, which is now fully available online.1

The goal of this paper is to present a new (intermediate) report on this develop-
ment.2 Sect. 2 describes the philosophical background and main motivations for
the development of this database. Section 3 describes some of its main method-
ological and technical (Semantic Web) aspects. Finally, Sect. 4 provides some
examples of the new kinds of research that have become possible, and sketches
some avenues for future research.

2 Background and Motivation

Aristotelian diagrams are widely used across reasoning-related disciplines. After
a relative decline in popularity in the 20th century,3 they have witnessed a
renewed surge of interest in the first two decades of the 21st century. To a
considerable extent, this interest has crystallized around the SQUARE [1,2], and
recently also the DIAGRAMS conference series. For example, recent research has
focused on the role of Aristotelian diagrams in authors such as John Buridan
[5] and Arthur Schopenhauer [14] and topics such as privative negation [12]
and Hohfeld’s legal concepts [16]. In logical geometry, Aristotelian diagrams are
studied as objects of independent interest. From a logical perspective, we study
the Boolean properties of these diagrams [18], the interface between opposition
and implication relations [10,20], and their broader category-theoretic setting
[26]. From a visual-geometric perspective, we study Aristotelian diagrams in
terms of notions such as symmetry groups [7], central symmetry [19], vertex-first
projections [21] and Euclidean distance [8]; from a visual-cognitive perspective,
1 Cf. https://leonardi.logicalgeometry.org/.
2 A first and very preliminary report can be found in [25].
3 See [13] for the broader religious-cultural context of this temporary setback.

https://leonardi.logicalgeometry.org/
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we focus on notions such as free rides [22] and derivative meaning [23]. Finally,
there is ongoing research on the interface of Aristotelian diagrams with other
types of logical diagrams, such as Hasse, duality and Euler diagrams [4,6,9,11].

Until now, systematic research on Aristotelian diagrams has largely remained
an armchair enterprise. When a new theory about some logical, geometric, cogni-
tive or other feature of Aristotelian diagrams is developed, it is checked against
and/or illustrated by means of a small and well-delineated set of very well-
known applications. Similarly, historical and philosophical reflection also starts
from that same limited stock of well-known Aristotelian diagrams, coming from
the historical canon of philosophy (e.g. Buridan, Schopenhauer).

To address this situation, we are currently developing a comprehensive
database, which aims to collect all Aristotelian diagrams that have ever appeared
in the extant literature, along with rich metadata annotations. This database
will include the well-known Aristotelian diagrams mentioned above, but the vast
majority of diagrams will come from lesser-known authors and applications.
After all, it can reasonably be assumed that the distribution of Aristotelian dia-
grams throughout the literature obeys a version of Zipf’s law [15]: the occurrence
frequency of an Aristotelian diagram is inversely proportional to its frequency
rank. We thus hypothesize that there is a small number of diagrams that are
used very frequently (clearest example: the square of opposition), but that the
overwhelming majority of diagrams is used less often. If the database is to be
truly comprehensive in nature, it should not only include the small sample of
frequently-used diagrams, but also the much larger number of rarely-used dia-
grams.

Once the database is sufficiently comprehensive, we envisage it will deliver
three main benefits. First of all, it will provide a firm empirical basis for logi-
cal geometry, and thus help us to avoid idle armchair theorizing. Rather than
developing, illustrating and testing our theories on the basis of a limited stock
of well-known diagrams, we will be forced to take the lesser-known cases into
account as well, which will lead to more empirically informed and nuanced theo-
ries. Secondly, we even expect to discover altogether new types of logical behavior
in Aristotelian diagrams. After all, if a certain phenomenon only occurs in some
lesser-known diagrams, then it will likely have gone unnoticed until now. How-
ever, by forcing us to take these lesser-known diagrams into account as well, the
database will allow us to discover the new type of behavior after all. Finally,
historical and philosophical research on Aristotelian diagrams often focuses on
broader trends in the usage of Aristotelian diagrams across time periods or across
scientific disciplines. For example, at the beginning of this section we already
mentioned that in the 20th century, there was somewhat of a decline in the use
of Aristotelian diagrams, and noted that [13] explains this in religious-cultural
terms. To investigate this further, we first need to get a clearer quantitative
picture of the situation: is there indeed a (statistically significant) decline in
the use of Aristotelian diagrams in the 20th century? A comprehensive diagram
database will enable us to carry out precisely such quantitative analyses.
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3 Methodological and Technical Aspects

In this section we will describe some of the main methodological and technical
aspects of the database that we are currently developing. The database is based
on the Leuven Ontology for Aristotelian Diagrams (Leonardi), which was devel-
oped specifically for this purpose. The ontology consists of four main categories:

1. persons: e.g. authors, editors, translators, early Modern printers, etc.
2. sources: e.g. monographs, edited volumes, book chapters, journal articles,

medieval manuscripts, incunabula, etc.
3. organization: e.g. publishing houses, libraries, national archives, etc.
4. diagrams: most importantly, the actual Aristotelian diagrams

Persons, sources and organizations are clearly auxiliary categories, and are thus
annotated with only fairly basic metadata. For example, persons get annotated
with their dates of birth and death, if these are known, and also with the
most important renderings of their name. The latter is particularly relevant for
medieval and early Modern people, e.g. Jean Buridan vs. Johannes Buridanus,
or more extremely, Juraj Dragǐsić vs. Georgius Benignus. Whenever possible,
we also provide links with other important datasets, e.g. the CERL Thesaurus
concerning European book heritage.4 The ontology is designed primarily to facil-
itate rich annotation of the actual diagrams. Every diagram in the database is
annotated along the following dimensions:

1. administrative: e.g. dates of initial data entry and last modification, etc.
2. bibliographic: e.g. author, source, page/folio number, etc.
3. logical: e.g. Aristotelian family, Boolean complexity, formulas unique up to

logical equivalence, presence of logical errors in the diagram, etc.
4. geometric: e.g. geometric shape, central symmetry, colinearity, etc.
5. vertices: e.g. words/symbols, logical system, linguistic/conceptual field,

shape, presence of mnemonic support (e.g. the typical vowels A, E, I, O),
etc.

6. edges: e.g. words/symbols, solid/dashed/dotted lines, arrowheads, etc.
7. style: e.g. presence of color, embellishments, etc.
8. additional info: e.g. research notes, connections with other diagrams, etc.

The Leonardi ontology has been implemented according to Semantic Web
standards such as the Resource Description Framework (RDF), Linked Open
Data (LOD) and (a computationally tractable subset of) the Web Ontology
Language (OWL). More technical details and motivation are provided in our
earlier paper [25]. Figure 2 displays a small but important part of the ontology,
which can be used to describe a diagrams’ vertices, edges, shape and general style
features. The full ontology can be accessed online at https://logicalgeometry.org/
assets/pdf/leonardi-schemata.pdf.

4 See https://data.cerl.org/thesaurus/ search?lang=en. Note that these other datasets
concern people, books, etc.; setting aside Leonardi.DB, we currently do not know of
any comprehensive database which primarily consists of (logical) diagrams.

https://logicalgeometry.org/assets/pdf/leonardi-schemata.pdf
https://logicalgeometry.org/assets/pdf/leonardi-schemata.pdf
https://data.cerl.org/thesaurus/_search?lang=en
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Fig. 2. A small part of the Leonardi ontology.

Data collection has thus far proceeded in a fairly straightforward fashion: we
have focused on the numerous diagrams that are readily available, e.g. in research
papers, textbooks, (digitized versions of) medieval manuscripts, incunabula,
early Modern printed books, etc. In a later stage, data collection and processing
will be done in a more comprehensive fashion, e.g. by systematically perus-
ing bibliographic resources such as Risse’s Bibliographia Logica [17] and online
databases such as those of the Bibliothèque nationale de France (BnF) and the
Bayerische Staatsbibliothek (BSB). We will return to this point in Sect. 4.

Leonardi.DB is freely available online (cf. Footnote 1), as a service to the
wider research community, but also in order to further increase its empirical
coverage. In particular, database users are encouraged to submit new diagrams
(along with the relevant metadata) that they have created or discovered in
the extant literature. All data can be explored and queried via a user-friendly
graphical user interface (GUI), and can be exported in various formats (Bib-
TeX, HTML, RDF); cf. Fig. 3 for a simple example. The data can be queried
and filtered in full detail using the RDF query language SPARQL. However, in
order to optimize user-friendliness, the database GUI also enables quite advanced
searches by simply clicking some buttons and ticking some boxes. We mention
just one example. Suppose that a given diagram D in the database cannot be
dated precisely; the most accurate dates that are available are the range 1000–
1200. Now suppose that the user wants to query the database to return all
diagrams from the period 1100–1500. Should D be among the results for this
query? According to a loose interpretation, D should be included, since it is
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Fig. 3. A concrete diagram in Leonardi.DB, together with its annotation.

possible that D was created within the period specified in the query (mathe-
matically: [1000; 1200] ∩ [1100; 1500] �= ∅); however, according to a strict inter-
pretation, D should not be included, since it is not certain that D was created
during the specified period (mathematically: [1000; 1200] �⊆ [1100; 1500]). When-
ever the user wants to query the database based on chronological constraints like
these, the GUI provides a simple checkbox that they can tick in order to indicate
whether they want to adopt the ‘loose’ or rather the ‘strict’ interpretation.

4 New and Future Research Directions

At the time of writing (3 March 2022), Leonardi.DB contains annotations for
2461 Aristotelian diagrams (along with 1676 persons, 273 organizations, and
1616 sources). Although these numbers are not even close to the level of com-
prehensiveness that we are ultimately aiming for, the data volume and diversity
are already sufficiently high to allow us to illustrate some of the new kinds of
research that are facilitated by the diagram database. To make matters concrete,
consider the following statement, taken from an earlier paper on logical geometry
which was presented at DIAGRAMS 2016:

we will only deal with Aristotelian diagrams in which negation is visually
represented by means of central symmetry [. . . ] both the logical condition
(closed under negation) and the geometrical condition (central symmetry)
are satisfied in nearly every Aristotelian diagram [7, p. 71]
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Furthermore, when assessing this statement, it might make sense to set aside the
last few decades, when more and more ‘exotic’ Aristotelian diagrams have begun
to be studied (in the context of logical geometry and its immediate predecessors).
Querying Leonardi.DB yields the following numerical results:

Before 1950 After 1951

Closed under negation, central symmetry 484 1584 2068

Closed under negation, no central symmetry 25 141 166

Not closed under negation 23 204 227

532 1929 2461

We thus find that (2068 + 166)/2461 = 90.8% of all Aristotelian diagrams are
closed under negation, and 2068/2461 = 84% visualize negation by means of cen-
tral symmetry. Furthermore, if we only consider the diagrams produced before
1950, these numbers further increase to 95.7% and 91%, respectively. Time
period is clearly statistically significant; χ2(2, N = 2461) = 25.78; p < 0.00001.
Furthermore, by further exploring the diagrams that are closed under negation
but do not visualize this by means of central symmetry, we observed that many
of them nevertheless do obey a kind of ‘local’ central symmetry. For example,
in a cube diagram, we often found central symmetry within the front and back
faces (so that the negation of the upper left front vertex occurs at the lower right
front vertex, rather than at the lower right back vertex, as global central sym-
metry would require). This nicely illustrates how Leonardi.DB not only allows
us to make more quantitatively precise statements about Aristotelian diagrams,
but also triggers entirely new research questions and hypotheses.

In future research, we plan to scale up data collection and annotation through
machine learning algorithms. The Aristotelian diagrams that have already been
manually annotated are sufficiently representative to constitute a good training
set. We hope to draw inspiration from the work of Sørensen and Johansen [24]:
they have developed a regional convoluted neural network (r-CNN) within the
Python-based deep learning platform Keras, which can quite accurately detect
diagrams in a corpus of mathematical texts.
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Abstract. The paper discusses the emergence of hybrid diagrams in the context
of origami practice with respect to the study of the crease pattern, a particular
diagram that can be associated with any origami model. We introduce the expres-
sion “hybrid diagram” to refer to a 2D diagram that embeds physical parts of the
origami model and information about transformations occurred in space, or to an
origami model on which attempts to grasp parts of the crease pattern appear. We
focus on some university students working with the crease pattern for a given
origami model. A first analysis of the work of these students allows for a pre-
liminary characterization of hybrid diagrams: they encapsulate relations between
the 3D model and the crease pattern and reveal the entanglement of diagrammatic
activity with the gestural and thematerial. Drawing on the cognitive perspective of
semiotic representations by R. Duval and diagrammatic thinking by C. Peirce, we
interpret the emergence of hybrid diagrams as relevant to the conversion between
different (mathematical) registers.

Keywords: Origami · Crease pattern · Hybrid diagram ·Mathematical thinking

1 Origami and Diagrams

In this paper we use the idea of “hybrid diagram” drawing on observations made in the
context of a teaching experiment that involved a group of university students in activities
with origami models and the crease pattern, a diagram that consists of all or most of the
creases that are folded in the final origami model.

Themaking of an origami consists in repeatedly folding one ormore squared sheets of
paper to obtain other (three-dimensional) shapes which can resemble animals or flowers,
as well as recall geometric shapes or patterns. Far from being just a recreational activity,
in recent years it has had important applications in many fields, like the aero-spatial and
medical field. From an educational perspective, a major interest in paper folding lies in
the possibility of exploring geometric properties throughmaterial activity. The geometry
of origami has its mathematical formalization in a set of seven axioms, which identify
the ways in which it is possible to create a fold. These axioms have become famous as
Huzita-Justin or Huzita-Hatori Axioms [9]. The list is also complete [2]. Most of the
movements that contribute to the creation of an origami model are based on axioms,
making the underlying mathematical theory particularly rich and interesting from the
didactic point of view for they allow the discovery and study of mathematical relations
in a concrete context (e.g., [6] and [8]).
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Most of the available books on origami illustrate the process of making a model
through instruction diagrams. In such diagrams, the sheet of paper is shown generally
as a square, and each step of the construction is accompanied by arrows that indicate the
direction of the movements to be performed and by marks that capture the position and
type of fold (valley or mountain creases). The instruction diagrams provide an iconic
representation of the steps in the construction, while the final model incorporates all the
transformations made by paper folding. The relationships between an origami model
and the set of transformations undergone by the sheet of paper through the activity of
folding is captured by another diagram: the crease pattern. Some beautiful examples of
crease patterns are available on the site of the origamist Robert J. Lang [12]. In the initial
page of the website, Lang points out how in a crease pattern, one can see everything that
is hidden in the folded work.

Intuitively, we can revisit the definition of crease pattern given by Hull [7], introduc-
ing it as the plane diagram that consists of the lines representing the fundamental valley
and mountain folds, i.e., all the folds that are folded in the origami in its final form. An
example of an origami model and the relative crease pattern is given in Fig. 1.

Fig. 1. The crease pattern and the model of the Pajarita, a classical origami. The vertexes of the
crease pattern are circled in the first diagram.

The crease pattern is therefore a plane diagram that contains important information
about the nature of the folds composing the final model, but only the expert eye can
“reconstruct” (or imagine) a model starting from its crease pattern. Even the reverse
process (i.e., building the crease pattern starting from a folded origami model) is not
obvious, because it requires a considerable effort of three-dimensional visualization. It
is not sufficient, indeed, to reopen the origami model and highlight the traces of the
folds. Two distinctions must be made: (1) fundamental folds must be recognized and
distinguished from those that are folded in the construction but no longer in the final
model; (2) these fundamental folds can be valley ormountain creases. FollowingHull [7],
in a crease pattern generally valley folds are represented with dashed lines and mountain
folds with dash-dot lines. Moreover, when drawing a crease pattern while looking at the
relative origami model, it is necessary to “always look at the sheet of paper from the
same side”, since when the sheet is turned upside down, mountain folds become valley
folds and vice versa.
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In a crease pattern, which is a square-shaped diagram within which folds are repre-
sented through segments, we call a vertex each point inside the square where at least two
distinct lines concur (see Fig. 1 again). In our work we have focused our attention on the
characteristics of particular origami, called flat origami. Intuitively, a flat origami can be
closed in a book without creating further folds and without removing any fundamental
fold: it is therefore an object that, despite being three-dimensional, since it is made up
of multiple layers folded over each other, can be treated as two-dimensional.

Studying the crease pattern is of interest for many reasons. We select here two of
them, which are relevant to this paper. First, the crease pattern shows what is hidden in
the model once folded, therefore it opens a different window on the creation process of
an origami and the relations among folds in the origami. Secondly, properties of a flat
origami can be illustrated and expressed through the crease pattern, so this is a space for
rich mathematical explorations.

In this paper, we will focus on some students working on the task of drawing the
crease pattern of an origami model, and we will describe the emergence of types of
diagrams in their activity, which we call hybrid diagrams. We will present a qualitative
analysis of the students’ activity that shows how such diagrams emerge and sustain the
mathematical exploration. In the next section we will frame these ideas drawing on
research in mathematics education on semiotic representation.

2 Semiotic Representation in Mathematical Thinking

Duval [5] stresses the importance of semiotic representation for any mathematical activ-
ity. He introduces semiotic representation in relation to the attempt of better under-
standing the difficulties that students have with comprehension of mathematics, and
their nature. One specificity of mathematical thinking exactly is the cognitive activity
required by mathematics, which makes use of semiotic systems of representation. Signs,
or semiotic systems of representation, play a role not only to designate mathematical
objects or to communicate but also to work on, and with, mathematical objects. For
Duval, no kind of mathematical process is performed without using a semiotic system
of representation: mathematical processes always involve “substituting some semiotic
representation for another” (p. 107, emphasis in the original). Therefore, in mathemati-
cal activity what matters is not representations but the transformation of representations.
Semiotic activity is so relevant to mathematics (and mathematics education) because
signs and semiotic representations allow access to mathematical objects. Ambiguity can
emerge when learners must distinguish objects and their representations. According to
Duval, the ability to change from one representation system to another is critical to
progress and problem solving. Mathematical activity has different semiotic represen-
tation systems, called registers: the verbal, the numerical, the graphical, the symbolic,
each providing specific possibilities for performing mathematical processes. There are
two different types of transformations of semiotic representations: treatments and con-
versions. Treatments occur within the same register and can be carried out depending
on the possibilities of semiotic transformation which are specific to the register used.
Conversions instead are transformations of representation that consist of changing a
register without changing the objects, like when we pass from the algebraic notation for
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a function to its graph. Briefly speaking, these transformations capture changes in or of
register.

Today, semiotic activity inmathematics is regarded asmore complex than just imply-
ing treatments of and conversions between the semiotic registers à la Duval and has
been expanded to incorporating bodily-based signs, like gesture, gazes, tones of voice,
sketches, tool usages, and so on, so that we speak ofmultimodal or sensuousmathemati-
cal cognition [11],meaning thatmathematical cognition involvesmultiplemodalities and
senses, besides registers. Thus, we refer to semiotic sets instead of registers. Arzarello
[1], for example, has introduced the notion of semiotic bundle to capture the relationships
in and within different semiotic sets. In this paper, we consider diagrams as one possible
semiotic resource that is activated in mathematical thinking. In so doing, we must refer
to Peirce’s theory of cognitive activity and his attempt to rescue the import of perception
[10]. Peirce considers diagrammatic thinking as central to discovery of new conceptual
relations, which remained hidden before or beyond the realm of our attention and are
instead made apparent by perceptual inspection.

What matters to us in respect to Peirce’s consideration of diagrams is therefore the
role that they can play in reasoning aboutmathematical relations.We are not interested in
the appearance of diagrams butmore in their nature (how they emerge) and function (why
they emerge), because this helps us to better investigate cognitive activity inmathematics.
In addition, the history of mathematics shows that relevant mathematical ideas were
discovered or advanced with a productive semiotic activity involving an interplay of
gestures and diagrams [3]. Borrowing from these ideas, we see diagrams as a semiotic
set consisting of graphs, sketches, figures, and any form of visual thinking expressed in
the written. Focus is put on the emergence of kinds of diagrams in mathematical activity,
which we call hybrid diagrams.

3 The Emergence of Hybrid Diagrams

3.1 The Mathematical Activity

For this paper, whose purpose is to present and discuss the emergence of hybrid dia-
grams in the context of mathematical paper folding, we centre our attention on a specific
task. Some university students were asked to draw the crease pattern corresponding to
each step of the construction process of an origami model. This task is relevant to the
issue of conversion between different registers in mathematics, considering the origami
model and the crease pattern as two different registers for the same object. The teach-
ing experiment was aimed at creating the opportunity for university students to engage
with origami and their representations and explore the features of flat origami regarding
the mathematical properties of their crease pattern. The experiment was designed by the
authors and carried out during the first semester of the academic year 2020/21, when uni-
versity courses were held online because of the Covid pandemic. It engaged 29 master’s
degree students in mathematical explorations of origami models using 7 worksheets and
the Google Meet platform. The conditions of distance teaching and learning are relevant
to our research study. Initially, main interest was in the creation and study of mathemat-
ical activities involving origami to make the students explore non-elementary properties
of flat origami. Additional interest arose concerning the understanding of the way in
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which the online environment could trigger new strategies for mathematical exploration
and communication. Data for the analysis mostly consists of the video recordings of
the Google Meet rooms in which the students worked in groups to face the tasks of the
worksheets. Also, the written materials produced by the groups were uploaded to online
shared folders. Our qualitative analysis employed techniques from micro-ethnography
[13] to understand how the students make sense of the paper folding activities.

The first two worksheets focused on the creation and analysis of the crease patterns
of two simple origami: the triangle base and the square base, which generally are the
basis of folds for more complex origami constructions. In the third worksheet, the focus
was on the analysis of the crease pattern created by another group and on the concept
of vertex in the crease pattern. Worksheet 4 was divided into two parts (a and b) and
centred on the request to create the sequence of crease patterns corresponding to the
various steps of the construction of the “crane”. The tasks of worksheets 5 to 7 finally
guided the investigation of flat origami and the exploration and discovery of the theorems
of Maekawa and Kawasaki, which advance peculiar properties of the flat origami’s
crease pattern. In this paper, we draw attention to the request given by the first part of
Worksheet 4. The students were given the instruction diagrams for the origami model
and a sequence of squares, which each group was asked to fill in with the crease pattern
at each construction step. The first step was the crease pattern of the square base, which
the students had already encountered. The last step was the complete crease pattern of
the crane (Fig. 2). The students were also asked to assign a different role to different
members of the group, as a folder or sketcher.

Fig. 2. The crease pattern (left) of the crane (right).

3.2 The Work of Two Groups

In this section we analyse the work of two groups (1 and 2). Group 1 is made up of three
female students (S, G, H) and one male student (A). In solving the worksheet, S and A
create the origami, while G and H create the crease pattern at each step (Fig. 3c).

Interestingly, S, in addition to building the model, draws the crease pattern directly
on the model step by step, re-opening it and tracing the basic lines on paper, where it
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is possible to see the trace of the crease and therefore detect both the position and the
nature of the fold (Fig. 3a).

To check the correspondence with what the groupmates do on paper, the model is
often opened and closed again, but only halfway (Fig. 3b), as the model is substantially
symmetric, for almost the whole process, with respect to the diagonals of the square.

We see that the group creates a type of hybrid diagram, given by the origamiwith folds
added andmarkedwith the same notation used in the crease pattern.We consider it hybrid
because we recognize that the characteristics of origami are crucially merged with those
of the crease pattern, and the model then is manipulated with different interest and in
new ways (for example, just half-opened). The model thus modified can be conceived as
a diagram, since the set of relations it contains becomes predominant perceptually other
than semiotically, and such information is conveyed through appropriate conventions.
The diagram is hybrid also in that it combines the material nature of the model with the
usual way of representing the nature of the folds in a plane drawing.

We observe that the diagram is used by the students to operate a conversion between
the register of the origami model and that of the crease pattern, which entails to check
relations and modifications in space and in the plane and to discern the fundamental
folds and their nature.

Fig. 3. (a) - (b) The hybrid diagram of group 1, then folded in half; (c) the crease pattern of the
crane created by group 1.

Group 2 works in a different manner: a student (M) shares his tablet screen, in par-
ticular the window of a graphic editor software through which he modifies the assigned
worksheet drawing the crease pattern; the rest of the group work on the origami model.
The group is convinced that they are not allowed to reopen the model and observe the
position of the folds with respect to the initial square. Therefore, they all proceed by
imagining the changes occurred in the ongoing crease pattern, without comparing this
directly with the folds traced on the paper sheet.

Each time the group works on a new crease pattern, M copies and pastes the crease
pattern created in the previous step and then adds the changes directly on that diagram.
The new added lines are of a different colour (Fig. 4a; as already done by group 1 in the
hybrid diagram) and the online worksheet is rotated several times through the editor to
show the crease pattern in the same position in which the other members of the group
hold the origami. New folds are often first drawn as segments and, only later, the nature
of the fold is captured by means of the appropriate marks.



138 F. Ferrara and G. Ferrari

Fig. 4. (a) - (b) - (c) Lines and arrows added by group 2 on the crease pattern.

Other signs are also drawn on the crease pattern to support the students’ conjectures:
in particular, arrows refer to the folding movement (Fig. 4b) or materialize parts of the
origami in that passage, as they look like in the 3D space (Fig. 4c).

We observe the emergence of a “hybrid” diagram also in the case of group
2: the crease pattern, phase by phase, incorporates folding movements or captures
representations of elements of the three-dimensional model.

3.3 Conclusions

Although at the very end the crease pattern of the crane produced by the groups is not
entirely correct, we observe that the emergence of hybrid diagrams fosters the students’
mathematical reasoning on the conversion between the origami and the crease pattern.
In this paper, we analyse these diagrams focusing on the work of two groups. The ways
in which we talk about the hybrid nature of the diagrams for the two groups are dual of
each other. In the case of the first group, the 3Dmodel incorporates qualities of the plane
representation. In the case of the second group, during the process of diagramming, the
crease pattern is transiently inhabited by arrows that literally bring in foldingmovements
or new elements that mirror actual parts of the 3D origami. This seems to be an important
characteristic of a hybrid diagram,which is provisionally arranged to incorporate aspects
that usually belong to different registers and do not appear together.

In this sense, we see hybrid diagrams as semiotic and cognitive tools to operate a
conversion, borrowing fromDuval’s language, between the register of the origamimodel
and that of the crease pattern. The crease pattern crystallizes the process of folding,which
essentially is a movement that happens in space but leaves a material trace, a material
modification on the piece of paper. This is probably the reason why hybrid diagrams
either capture movements (group 2) or are manipulated to perform such movements
while controlling the nature and position of the folds (group 1). This way of addressing
students’ diagramming and gesturing aligns with de Freitas and Sinclair’s [4] vision of
them “as inventive and creative acts by which “immovable mathematics” can come to
be seen as a deeply material enterprise” (p. 134).

Moreover, a hybrid diagram is nonstandard (does not belong entirely to one system
of representation or another) and open to new modification and configuration. These
features fundamentally evoke the dynamic character that Châtelet [3] sees as constitutive
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of diagrams. Tracing the emergence of hybrid diagrams allows us to better illuminate
the semiosis that is at play in the process of conversion in mathematics.

Despite the huge interest in the field of origami practice and its relationship with
mathematics, research that focuses on the cognitive side of this relationship is missing.
Other studies, even in other contexts, might enhance the characterization of hybrid
diagrams and help elucidate their role in mathematical thinking. Further qualitative
research is needed to enlarge understanding of hybrid diagrams and their cognitive and
didactical relevance. Wider implications could build on these first observations to better
characterize hybrid diagrams and their cognitive value in mathematical activity.
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Abstract. Johann Heinrich Lambert characterizes geometrical dia-
grams by the fact that in them the “thing itself”, its concept and the
corresponding sign coincide. Remarkably, in one of his geometrical works,
the Theory of Parallel Lines, he makes use of objects that challenge this
very characterization. In his attempt to proof the parallel axiom, Lam-
bert introduces a set a set of peculiar quadrilaterals, the so-called Lam-
bert quadrilaterals, which depict non-Euclidean objects. This is baffling,
since Lambert explicitly states at the beginning of the Theory of Parallel
Lines to proceed “purely symbolically”. However, he repeatedly refers to
what appear to be diagrams in the form of Lambert quadrilaterals. In
my talk I address this puzzle. I argue that if we take Lambert’s remarks
on geometrical diagrams seriously, non-Euclidean Lambert quadrilater-
als cannot possibly be diagrams in the strict sense, since they neither
represent a concept nor a “thing itself”. Instead, they can be considered
as symbolic representations.

Keywords: History of mathematics · Semiotics · J. H. Lambert ·
Non-euclidean geometry

1 Introduction

In the context of the history of diagrams, polymath J. H. Lambert (1728–1777),
is well known for his linear diagrams [3,9,13]. This paper, however, focuses on
Lambert’s notion of geometrical diagrams. I investigate what role diagrams play
in Lambert’s foundation of geometry. For this purpose I take a look on an exam-
ple which is an excellent basis for discussing what constitutes a geometrical
diagram for Lambert. Namely, his Theory of Parallel Lines, which he wrote in
1766, but which was published only after his death in 1786.

Here, Lambert tries to prove the parallel axiom via a proof of contradiction
similar to Saccherie half a century earlier. The parallel axiom states, as Lambert
puts it, “that, when two lines CD, BD are intersected by a third, and the two
inner angels DCB, DBC taken together, are less than two right angles, then the
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two lines CD, BD meet on the side of D, or the side where theses angles are
found”. [7, §1, trans. Ewald].1

Although Lambert does at no point doubt the truth of this principle, it is,
“by no means as clear and evident as the others”. Thus, “one somehow feels that
it is capable of proof, that there must exist a proof of it” [7, §1, trans. Ewald]. He
is not alone in this. The parallel axiom has been considered a source of discontent
since antiquity [1, p. 599], because it is a dark spot on the otherwise clear field
of geometry. Therefore, already in Lambert’s time, the parallel axiom has a long
history of failed proof attempts. So the issue at stake is not a sub-problem within
geometry, but a vital flaw in its foundations.

To overcome this difficulty, Lambert attempts a proof by contradiction. He
develops three different ‘hypotheses’, one of which corresponds to Euclidean
geometry, the other two to a hyperbolic and spherical geometry. He then tries
to proof the first one by deriving contradictions from the latter. Such a proof,
Lambert states, proceeds “purely symbolically”:

And since Euclid’s postulates and other axioms have been expressed in
words, it can and should be demanded that the proof never appeals to
the thing itself [die Sache selbst], but that the proof should be carried out
purely symbolically—when it is possible. In this respect, Euclid’s postu-
lates are as it were like so many algebraic equations which one already has
in front of oneself and from which one is to compute x, y, z, etc. without
looking back to the thing itself [7, §11, trans. Ewald].

Lambert’s claim not to refer to the thing itself, but to operate with symbols,
i.e. words or even characters, suggests at first glance that he will refrain from
using diagrams. This is especially plausible if one considers that his claim origi-
nates from a time in which there was a strong urge to detach geometry from all
visual reference and to dispense completely with diagrams.

However, if we take a look at the Theory of Parallel Lines, we are surprised to
find that this does not appear to be the case here. Lambert opens his proof with
the introduction of a figure, a quadrilateral, on which the three different hypothe-
ses within his proof are subsequently based. The so-called Lambert quadrilateral
ABDC, in which three of the angles are right angles. The fourth angle BDC is
90◦C in Euclidean geometry, and smaller or larger than 90 ◦C in a hyperbolic
or spherical geometry (see Fig. 1). Given his previous claim to proceed purely
symbolically, Lambert extensively utilizing diagrams seems puzzling.

The simplest explanation is to assume Lambert to be inconsistent. After all,
Lambert did not publish his work for certain reasons. So how seriously should
we take his remarks? Perhaps he himself was dissatisfied with the approach. I
believe, however, that there is more behind this puzzle. A second possible expla-
nation would be that our first, intuitive understanding of what Lambert means
by his characterization of his procedure is mistaken. Perhaps our contemporary
1 The parallel axiom, which Lambert addresses as the 11th principle, originally served

as a postulate in Euclid’s Elements for all we know. However, since Clavius’s edition
of the Elements in 1589, it was common to consider postulate 5 as an axiom [11].
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Fig. 1. So-called Lambert quadrilaterals [7, § 29].

understanding of a symbolic proof does not correspond to Lambert’s. Perhaps,
and this is the line of reasoning I want to follow here, our contemporary under-
standing of a what a diagram is does not match that of Lambert.

In fact, a closer look at Lambert’s philosophical writings shows that he has a
very strict and specific understanding of what diagrams are and do in geometry.
Applying this understanding of geometrical diagrams, it follows that Lambert
quadrilaterals are not diagrams at all, but rather types of symbolic knowledge.
Hence, there is no inconsistency on the part of Lambert, but a mistaken expec-
tation on our part, regarding what diagrams are in the first place.2

I proceed as follows: I will first examine the nature of geometrical diagrams
according to Lambert as presented in his philosophical writings. Subsequently, I
will have a closer look at the Lambert quadrilaterals. As I just described, I argue
that they do not meet the previously developed criteria and therefore cannot
be considered geometrical diagrams in the strict sense. Third, I outline and
discuss a suggestion on how to understand them instead. I argue that Lambert
quadrilaterals can be understood as a form of symbolic knowledge.

2 Lambert’s Methodological Remarks on Geometrical
Diagrams

Lambert considers geometry a paradigm of a proper axiomatized science in gen-
eral. In this regard, he is a child of his time. In the 17th and 18th centuries, the
geometric method (mos gemetricus) was regarded by innumerable thinkers as
the ideal of science. In his methodological and philosophical writings, Lambert
himself is concerned with designing a blueprint for science based on the example
of geometry. Against this background, it is easy to understand why geometry
plays such an important role in his philosophical work. In contrast to, say, Wolff,
the renowned mathematician Lambert is quite aware of the flaws of geometry
and the problems connected to the parallel axiom. His project of a universal
science stands and falls with the possibility of a well-founded geometry.

Likewise, it is typical for the time that Lambert does not claim a transfer of
the geometrical method to other sciences. Instead, geometry is considered as an
example of a universal method which is applied first in geometry [8, § 22]. Why
is that the case? Lambert pinpoints the main reason as follows:
2 Lambert does not use the term ‘diagram’ in his writings, which was uncommon in

the 18th century. Instead, he speaks of ‘figures’ both in reference to geometric figures
and to logic diagrams. For consistency, I will nevertheless use ‘diagrams’ throughout.
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It was easy for Euclid to give definitions and define the use of his words.
He could put lines, angles and figures in front of the eyes and thus directly
connect words, concepts and things. The word was only the name of the
thing, and because one could see it before one’s eyes, one could not doubt
the possibility of the concept [6, § 12].

The decisive advantage of geometry is that here words, concepts and things
are immediately connected. Understanding what he means by this and how dia-
grams contribute requires some background on Lambert’s epistemological beliefs.

Lambert advocates a representationalist epistemology. He distinguishes
between the thing itself, the idea representing it (the concept), and the sign,
which in turn stands as a representative for the concept. We form general con-
cepts by means of abstraction and refer to them by signs or symbols, for example,
words, although signs are by no means limited to words. Most often, the relation
between sign and concept is arbitrary in that it is based on convention.

Whenever we imagine something corresponding to an abstract concept, the
imagination creates a concrete image, an individual instance of the abstract con-
cept, so to speak, e.g. a concrete triangle with defined place, size and position.
While the representation of a thing is usually not identical with the represented
thing (an imagined dog is not a dog), this is not the case with geometrical objects.
To imagine a triangle is to “trace it in thought along the outline of the figure
. . . just about as if we wanted to draw it” [5, Alethiologie § 17]. Thus, whenever
we imagine a triangle, we represent the thing itself. In the case of geometric
objects, there is no surplus of the thing over the representation. The geometrical
diagram then is the result of a construction, accomplished in thought. In this
sense, Lambert understands the diagram as a mental object. At the same time, of
course, the diagram is also a sign. A drawn, i.e. sensually perceivable triangle, is
an immediate sign for the concept of the triangle and the thing itself. No media-
tion is necessary here unlike in the case of words based on arbitrary conventions.
Consequently, every diagram-based proof in geometry is also a symbolic proof.
But conversely, of course, not every symbolic proof is also diagrammatic.

Due to diagrams, Euclid could “directly connect words, concepts and things”
[6, § 12]. This gives geometry an immense advantage over other sciences, in which
objects can neither be produced at will, nor do the concepts have immediate
signs. This advantage, however, is not what elevates geometry to a science. Dia-
grammaticity in this sense is not a necessary condition for science. It merely
made things easier for Euclid. Why this is the case becomes clear, if we consider
a possible objection against Euclid’s way of proceeding as well as the counter
argument, which can be brought forward against it following Lambert.

“The figure thus represented the concept whole and pure”, Lambert writes
[6, § 12]. This is odd, as we have seen that a figure always represents an individu-
alized instance of a geometrical object. Under these circumstances, how can one
arrive at universal concepts on the basis of diagrams? In Lambert’s terminology,
this question concerns the “universal possibility” of geometric concepts. The
imagined or drawn diagram may prove beyond doubt the possibility of a partic-
ular triangle, but it cannot prove the general possibility of all triangles which
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correspond to the concept. This exposes, at least for Lambert, a more funda-
mental problem, which Katherine Dunlop reconstructs as a skeptical objection
against geometry [2]. Lambert brings into play a fictional radical skeptic who
notoriously questions the universal possibility of geometrical objects in a sort
of hyperbolic doubt [8, § 79]. Euclid meets the skeptic by stating the rules of
construction of geometrical figures in the form of problems. He begins with the
construction of an equilateral triangle in prop. 1, book 1 of the Elements, which
requires only the postulates. On this basis he proves that it is possible to draw
a straight line of a given length and in the consequence to construct further
triangles. The skeptic may then doubt a theorem as much as he likes. Euclid’s
proof shows him how he can construct every possible figure himself (in thought
or on paper) and therefore he cannot possibly uphold his doubt.

The basis for the construction are the postulates, which Lambert also calls
“general, unconditional, and in themselves thinkable or simple possibilities or
doabilites [Tulichkeiten]” [6, § 12]. For this reason, Lambert repeatedly empha-
sizes the importance of postulates for the Euclidean method of proof, especially
in his criticism of Wolff, who almost completely banishes postulates and prob-
lems from geometry. The “categorical in his theorems”, as Lambert puts it in
the Theory of Parallel Lines, Euclid takes “not from definitions, but actually
and primarily from the postulates” [7, § 7]. A rigorous geometric proof in Lam-
bert’s eyes is therefore not based on particular and therefore inevitably concrete
diagrams, but on the universal rules of construction, which show how all pos-
sible diagrams can be constructed. From this follows that geometrical diagrams
are in principle dispensable. Provided that the rules of construction established
by the postulates retain their validity, the diagrams can be replaced at will by
other signs, for example by words. Using diagrams as signs increases the clarity
of geometry due to their immediate relation to the concepts, but it is not a
necessary condition for their certainty.

Against this background we can now take another look at Lambert quadri-
laterals. My thesis is that Lambert does not consider these quadrilaterals named
after him as geometrical diagrams in the sense just developed. Why this is the
case, I will show in the following.

3 Lambert Quadrilaterals Versus Geometrical Diagrams

If Lambert quadrialterals were geometrical diagrams, they would have to com-
bine sign, concept and representation of the thing itself in the aforementioned
way. That Lambert could have hold such a view seems to me exceedingly implau-
sible for two reasons.

First, it would imply that the general possibility of Lambert diagrams would
have to be ensured by a construction based on the Euclidean postulates. Just like
a triangle, the Lambert quadrilaterals would have to be vindicated against the
objection of the skeptic questioning their general possibility. It seems blatantly
impossible to me that Lambert could have considered this to be possible. The
entire indirect proof attempt within the Theory of Parallel Lines is based on
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the idea that contradictions can be derived from the non-Euclidean hypotheses,
which are, after all, based on the Lambert quadrilaterals, in combination with
Euclid’s principles.

Second, it would have to be possible to form a concept of the Lambert quadri-
laterals. To Lambert, this presupposes that the concept does not contain a log-
ical contradiction, because “insofar as someone thinks something erroneous, he
indeed thinks nothing, or as much as nothing” [6, § 196]. The contradiction is,
as Lambert phrases it, the “criterion of the unthinkable and in itself impossible”
[6, § 108]. The Lambert quadrilaterals, however, contradict the parallel axiom—
again, this is the whole idea of the indirect proof—the truth of which Lambert
does not doubt.

So we can conclude: Lambert diagrams cannot be constructed by the means of
Euclidean postulates, nor can they be represented. Therefore, they do not satisfy
the epistemological criteria Lambert places on geometric diagrams. Lambert
nevertheless addresses the quadrilaterals in his proof as “figures”. If the previous
reasoning is correct, he does not use the term in the specific sense that sign,
concept and the thing itself coincide. This seems anything but unlikely. In the
18th century, the German term ‘Figur’ was not limited to geometric figures, but
was also used, prominently for example by Wolff in his German Metaphysics, to
denote signs in a much broader sense [12]. This interpretation is also supported
by the fact that Lambert uses dashed lines for the line DC that constitutes
the non-Euclidean variants (see Fig. 1). Unlike the regular lines, which are the
result of an imagined or real movement (of the pen on paper), this is not true
for the dashed lines. Rather, they can be understood to indicate something
unrepresentable, unimaginable, and impossible.

If Lambert quadrilaterals cannot be diagrams according to Lambert’s own
criteria, what might they be instead? A clue is given already by Lambert’s claim,
that his proof “never appeals to the thing itself” but proceeds “purely symboli-
cally” [my emphasis]. Whereas diagrams to Lambert are also signs, the Lambert
quadrilaterals are mere signs in that they lack any corresponding concept. In
the third book of his New Organon, Semiotics, Lambert deals with a type of
knowledge that fits this description perfectly. It operates on the basis of signs,
but abstracts completely from the representation of the thing itself. Lambert
calls this type of knowledge “symbolic knowledge”.

4 Lambert Quadrilaterals as Symbolic Knowledge

In the tradition of Leibniz’s characteristica universalis, Lambert develops a semi-
otic approach to science according to which the “theory of the thing” should
be reduced to the “theory of the signs”. In the process, the mediating level
of representation is eliminated. Thus, “the dark knowledge of concepts can be
exchanged with the intuitive knowledge, with the sensation and clear represen-
tation of signs” [6, § 24]. Symbolic knowledge does not only offer the possibility
to exclude a main source of errors in the form of concepts, but moreover pro-
vides a positive potential. With the help of symbols we can operate with objects



146 T. Berwe

which exceed the limits of our imagination by far. Lambert mentions in a letter
to Kant from October 13th, 1770 as an example both infinite series and, more
interesting in our context, thought constructs like imaginary numbers.

No one has yet formed himself a clear representation of all the members
of an infinite series, and no one is going to do so in the future. But we
are able to do arithmetic with such series, to give their sum, and so on,
by virtue of the laws of symbolic knowledge. We thus extend ourselves far
beyond the borders of our actual thinking. The sign

√−1 represents an
unthinkable nonthing. And yet it can used very well in finding theorems
[10, 109 f.].

Symbolic knowledge allows us to denote the conceptual impossible. And this
is because the expressive power of language goes far beyond the range of possible
concepts. It is only subject to certain rules according to which we construct the
signs. That means that the signs have to be well formed. Semantically such a
sign has no meaning. It does not represent a thing, but a “thing impossible in
itself, a nonthing, non-ens”.

I suggest to understand Lambert’s proof attempt as symbolical insofar as
it includes elements of symbolic knowledge in this sense. Lambert carries out
the proof of contradiction starting from hypotheses, which we can make use of
merely in a mode of a symbolic knowledge. Lambert quadrilaterals with obtuse
and acute angle are “unthinkable nonthings” in the same vein as the square root
of a negative number. We can use these symbols in operations or in proofs to
arrive at new theorems or, in the case of the indirect proof in the Theory of
Parallel Lines, contradictions. But we cannot possibly obtain a representation
of them, let alone put them in front of our eyes as concrete figures.3

5 Conclusion

An examination of Lambert’s philosophical writings reveals that his approach
in the Theory of Parallel Lines is methodologically quite coherent, although the
proof itself is of course invalid. Today we know that a proof of the parallel axiom
is not possible, at the latest since Beltrami proved the consistency of hyperbolic
geometry in 1868. Lambert understands geometrical diagrams in a very specific
sense that is closely related to his epistemology. Against this background, it is
unlikely that he regarded Lambert quadrilaterals as diagrams in this sense.

To conclude, I will take a very brief look at the relation between symbolic and
diagram-based proofs. From our contemporary perspective, it is quite natural to
relate Lambert’s remark about a “purely symbolical” proof to this relation which
is nowadays often regarded as a strict opposition. Proofs that use diagrams are
often contrasted with ‘rigorous’, i.e. formal or symbolic proofs.

3 Note that it is irrelevant whether these signs are actual drawings (i.e. Fig. 1 above)
or consist of words. To Lambert, a verbal description of a Lambert quadrilateral
yields symbolic knowledge in exactly the same manner as a drawn figure.



On Lambert Quadrilaterals and Why They Cannot Be Diagrams 147

For Lambert, however, the matter is more complex and the contrast between
diagram-based and symbolic proof is not as clear-cut. As mentioned above, a
diagram-based proof is also symbolical in that it involves symbols or signs in the
form of diagrams. But as long as these diagrams are geometrical, they provide us
at the same time with the representation of the thing itself and thus cannot be
an element in a proof that is “purely symbolical”. As a matter of fact, this is the
great value of geometrical diagrams according to Lambert. A “purely symbolical”
proof, on the other hand, must do completely without diagrams. However, it
does not necessarily have to contain elements like the Lambert quadrilaterals
that are categorically beyond our imagination. That Lambert reaches for such
an instrument is rather due to the extraordinary difficulty associated with the
parallel axiom, which he believes he can only overcome in this way.
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Abstract. The literature on diagrammatic reasoning includes theoretical and
experimental work on the effectiveness of diagrams for conveying information.
One influential theoretical contribution to this field proposes that a notation that
is more effective than another would have an observational advantage over it; that
is, it would make certain pieces of information observable—by means of some
visual, meaning-carrying relationships—that were not observable in the other.
Although the notion of observational advantage captures a relevant aspect of the
benefit of using one notation over another, we present here an example where
this notion is not sufficient to distinguish between a more and a less effective
diagram. We suggest to take the theory of observational advantage one step fur-
ther by linking it to cognitive theories of human conceptualisation and reasoning.
Following our previous work, we propose that the act of observing facts about
set theory from the geometry of a diagram can be modeled as a conceptual blend
of image schemas with parts of the geometric configuration of a diagram. Image
schemas are elementary mental structures that crystallize early embodied experi-
ences, allowing agents to make sense of what they perceive by conceptualising it
in terms of these structures (e.g., CONTAINER, LINK, SCALE etc.). With our app-
roach, we can extend the theory of observational advantage to take into account
the cognitive complexity of the act of observation. Concretely, we present an
example of an Euler and a Hasse diagram, and we posit that, while their obser-
vational advantage is equivalent, the Hasse diagram requires a much more com-
plex network of conceptual blends to model certain observations made from it.
Thus, to reason about certain set-theoretic claims, a Hasse diagram is less cog-
nitively effective than an Euler diagram with equivalent observational advantage.
We believe our approach contributes to the theoretical discussion on what factors
affect the effectiveness of a diagram, and provides new avenues for the explo-
ration of how the embodied experiences of the users contribute to the way they
reason with diagrams.
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1 Introduction

What makes a certain choice of representation better suited than another for conveying
the same information? Stapleton et al. made a contribution towards a general theory
that may provide an answer to this question [27]. They put forward a formal theory of
‘observation’ and ‘observational advantage’ that distinguishes between the information
that is observable in, and the one that needs to be inferred from, a given representation.
This theory allows to formally prove the observational advantage of Euler diagrams
over set-theoretic sentences when it comes to conveying information about set-theoretic
claims concerning set equality and inclusion. In order to achieve that, Stapleton et al.
resort to an abstract notation for Euler diagrams that is detached from cognitive aspects
of the act of observing and making sense of a diagram. This leaves open the possi-
bility of some diagrammatic formalisms where observation is much more cognitively
costly, having an equivalent observational advantage, and thus be judged as equally
effective. For instance, as we will show in this paper, Hasse and Euler diagrams can
have equivalent observational advantage over set-theoretic sentences. Thus, to account
for the cognitive aspects of observation, we will model the act of observing and making
sense of a diagram as a network of conceptual blends of image schemas with the geo-
metric configuration of the diagram, and show that observation on the Hasse diagram
is modeled with a much more complex network of blends. We believe the latter fact
indicates that the observation act has a higher cognitive cost for the user.

Our work is based on various theories of cognitive science. First, the notion of
sense-making refers to how agents actively create meaning by perceiving and act-
ing within their environment [20,28]. Image schemas are mental structures acquired
through infancy, as humans interact with their environment, and reflect the basic struc-
ture of sensorimotor contingencies experienced repeatedly, such as CONTAINER, LINK,
and PATH [13,15]. Conceptual blending is a theory that posits that novel meaning
emerges as we integrate existing concepts with each other [11]. Integrating all these
theories, and applying them to the domain of diagrammatic reasoning, our proposal is
the following: The geometry of a diagram is not meaningful on its own. We make sense
of it, and reason with it, by integrating with it certain image schemas that are suitable
to actively draw conclusions about its semantics [1–3].

To realise the above proposal, we must decide which image schemas are blended
with each diagram, which can be done by following the approach that the advocates
of the theories of image schemas and conceptual blending have followed for language.
In this literature (e.g., [11,16]), in order to argue that humans make sense of certain
concepts by integrating certain image schemas with them, it is shown that:

– the components of the image schema correspond, in a one-to-one manner, to the
components of the concept to be made sense of,

– there is a transfer of a more detailed inferential structure, that allows reasoning about
the new concept.

For example, to explain the concept of being depressed, a conceptual metaphor is
described using the CONTAINER schema to convey the experience of being trapped,
when one says: “I am in a deep depression.” By uttering this sentence, we put in corre-
spondence the inside of a CONTAINER with the state of being depressed, and the outside
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of the CONTAINER with the non-depressed mental state. The inferences here originate
in our embodied experience with containers: if I am inside a depressed state, I cannot be
outside of it; if my depression is deep, then getting out of it will be hard. Transferring
this approach from language to diagrams, in this paper we will show that:

– certain image schemas can be put in correspondence, in a way that is almost one-to-
one, with the geometric configuration of certain diagrams

– certain blends of these image schemas with certain mathematical diagrams are apt
to model the sense-making of the latter, because they can give rise to inferences that
are valid in the reference domain of these diagrams.

Integrating image schemas with the geometry of our diagrams, using the guide-
lines described above, we will be able to compare the resulting networks of conceptual
blends. Our hypothesis is that, between two diagrams for both of which such networks
exist, the most cognitively effective one would be that with the simplest network of
blends. We will argue that users reason about sets with Hasse diagrams by conceptu-
alising them as vertically linked paths along a scale, and with Euler diagrams by con-
ceptualising them as a configuration of containers that may contain other containers.
We present an Euler and a Hasse diagram that have equivalent observational advantage
with respect to set-theoretical notation, but we argue the Euler diagram is more cogni-
tively effective than the Hasse one because the network of conceptual blends modeling
observation with it is much simpler. We believe our approach reaps the benefits of a
formal but abstract approach, such as that of Stapleton et al. [27], while accounting for
the cognitive aspects of reasoning when comparing the effectiveness of two diagrams.

2 Background

The term sense-making is defined within the framework of enactive cognition, which
takes cognition and sense-making to refer to the process of an autonomous agent bring-
ing its own meaning upon its environment, as a result of trying to grow and sustain
itself [20,28]. This process is dependent on the embodiment of the agent, because a
specific body—including a brain, sensory organs, and actuators—constrains the ways
an agent can perceive, and interact with, its environment. Cognition and sense-making
are therefore understood as emerging through the interaction of an embodied agent with
its environment.

One concrete way to approach sense-making is through image schemas and concep-
tual blending. Image schemas are mental structures formed early in life, constituting
structural contours of repeated sensorimotor contingencies, such as CONTAINER, SUP-
PORT, VERTICALITY and BALANCE [13,15]. They are not acquired by learning a set of
propositions, rules, or criteria, but by experiencing, for instance, our bodies being bal-
anced, trying to maintain our balance, supporting an object, etc. Repeated experiences
of the same kind lead to the formation of a mental structure capturing what is invari-
ant and shared among them. The most important function of image schemas is their
capacity to structure our experience. For example, we can perceive bees as being in a
swarm, through the CONTAINER and COUNT-MASS schemas, even though there is no
single physical object in the environment, corresponding to ‘swarm’ [17, p. 31]. Image
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schemas are Gestalts; they consist of a set of necessary components with a specific rela-
tional structure, whereby each component becomes meaningful only through its rela-
tion to all the others [17, p. 31]. By way of this structure, agents can—unconsciously
but systematically—integrate image schemas with their experience, thus making sense
and drawing meaning out of it. In order to fulfill this function, the image-schematic
structure has to be preserved during this integration [17, p. 42]. Consequently, when
putting image schemas in correspondence with the geometry of a diagram, it would be
desirable to put in correspondence as many elements of the image schemas as possible,
and in a one-to-one manner, with the geometrical shapes. Finding the right schema for
a given state of a affairs is unconscious and immediate, but is nonetheless a cognitive
process that uses our mental resources.

The image schemas of relevance for our case study are: LINK, PATH, VERTICALITY,
SCALE, and CONTAINER. We will now discuss their cognitive structure according to
the literature, and explain what kind of geometrical configurations they should be put
in correspondence with. However, these correspondences are not written in stone, but
are flexible and could change depending on the context the diagrams are used in. We
have previously described and formalised similar correspondences for Hasse, Euler, and
some more diagrams [3].

LINK. This schema can capture associations of various types, ranging from a physical
chain tying two objects together, to two events abstractly linked by occurring at the
same time. The prototypical LINK schema associates two distinct, usually contiguous,
entities linked with each other through a link. Therefore, the LINK schema structure
comprises two objects of the same type (entities), and a third object of a different type
(link). Being in this particular configuration makes it so that the two entities have the
property of being ‘linked’. This structure fits well with a geometrical configuration of
two regions or points that both intersect with a line. The objects identified as linked
entities are typically “spatially contiguous within our perceptual field.” [13, p. 118],
which holds for points linked by a line.

PATH. This schema gives rise to our understanding of things moving from one point
to the other [13, pp. 113–114]. It underlies the conceptualisation of objects following
trajectories through space, irrespective of the details of the trajectory [18]. The PATH

schema has the cognitive structure of a sequence of pairwise adjacent locations, naming
the first one as a source and the last one as a goal. There can optionally be a trajector
on some location of the path [13,15]. The structure of the schema necessitates that,
if someone is on a certain location of the path, then they have already traversed all
prior locations, and that contiguous locations serially lead from the source to the goal
without branching. Given its structure, we believe the PATH schema should be put in
correspondence with a series of shapes that are neighboring with each other in some
way, and the source and the goal with shapes that do not have the same neighboring
relation with any shape. This description is quite general, and could apply to almost any
diagram. We will later see how it can be applied it to the diagrams studied here.

VERTICALITY. This schema obtains its structure from our experience of standing
upright with our bodies resisting gravity, or from perceiving upright objects like trees. It
comprises the axis of an upright object, the axis reflecting the trajectory an object would
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follow if free-falling, or an axis that is merely mentally visualised by an observer upon a
scene [25]. Regarding the latter case, for example, when observing the sun on the hori-
zon, the horizon is the base, and a visualised vertical axis runs upward from it, reaching
the sun. This axis is always unique, and has an up-down polarity, so it is associated with
a base at the bottom, or the ground, as a reference point. The base corresponds to the
point where the axis meets the ground, or, if discussing an upright object, to the bottom
part of an object by which it can stand [25]. Given the above, the VERTICALITY schema
could be put in correspondence with diagrams with configurations along a vertical axis.
More precisely, there must be a single shape that is geometrically lower than all others,
serving as a base, and a geometric configuration resembling a vertical axis, e.g., shapes
being one above the other.

SCALE. This image schema pertains to a gradient of quantity, and has the following
four properties: a fixed directionality, a cumulative property (if one has 15 euros, they
also have 10), it can be open or closed, i.e., have a specific endpoint or not, and finally,
numerical gradients or normative judgements can be projected on it [13, pp. 122–123].
The SCALE schema is proposed to underlie the MORE-IS-UP metaphor, whereby a
higher position in the vertical axis implies a higher quantity of something; that is, a
larger number of rocks, or amount of water, means the top/surface reaches a higher
position. Thus, the fixed directionality of SCALE is always upward [13, p. 121]. How-
ever, we believe that horizontal or circular scales (e.g., rulers and measuring tapes, or
mechanical weighting scales respectively) also satisfy the other properties of SCALE

and so perhaps SCALE is not inherently vertical, and a separate VERTICALITY schema
is additionally involved in the MORE-IS-UP metaphor. Therefore, for us SCALE simply
comprises an order of several discrete levels. Given the above, a SCALE schema could
be put in correspondence with a geometrical structure of shapes that have a graded prop-
erty. Such a structure could comprise, for example, shapes with a color or size grading,
or shapes that are positioned one above the other, one to the right of the other, etc.

CONTAINER. This schema captures the structure of entities that are hollow, and can
enclose and protect other entities in various ways, ranging from a fence enclosing a plot
of land, to a balloon enclosing the air inside it. CONTAINER consists of a boundary,
separating an inside and an outside, and this structure gives it certain properties; that is,
an entity can be either in the inside or on the outside of a boundary, but not both. Also,
several axioms hold, such as: if object A is inside boundary B, and boundary B is inside
boundary C, then object A is inside boundary C; if object A is inside boundary B, and
boundary B is outside boundary C, then object A is outside boundary C [17, p. 44]. We
can see that the boundary of a CONTAINER can be put in correspondence very naturally
with a closed curve of any shape on the 2D plane. The inside and outside regions of
the CONTAINER also correspond naturally with the areas inside and outside the curve in
this 2D space, respecting all the aforementioned properties of CONTAINER [17, pp. 45,
122].

In our approach, sense-making as the integration of image schemas with our expe-
rience can be described though the theory of conceptual blending, following [11, pp.
104–105]. Conceptual blending operates on mental spaces, which we introduce below
based on the descriptions of Fauconnier [10] and Gärdenfors [12]. Mental spaces
are mental representations that structure our perception and action. They comprise
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coherent and integrated chunks of information, containing entities, and relations or
properties that characterise them. Mental spaces can be constructed from knowledge
we have acquired previously, or from current experience, including exposure to lan-
guage. Therefore, they operate in working memory but long-term memory can play an
important role in their construction. Last but not least, the elements of one mental space
can be put in correspondence with those of others, allowing cognitive access to them.

The central claim of the theory of conceptual blending is that a systematic process
of building correspondences between different, preexisting mental spaces—called input
spaces—can result in the emergence of novel meaning. This process gives rise to a new
mental space—called blended space—that contains some elements of the input spaces
with new relations among them. To construct a blend, some pairs of entities, relations, or
attributes from input spaces must be put in correspondence with each other, and related
in a new way, or even merged with each other, in the blend. This process leads to the
emergence of novel structure and thus novel meaning. The entire network comprising
the input spaces, the blended space, the generic space—reflecting the common structure
among input and blended spaces—as well as the correspondences among all spaces, is
called the integration network. Meaning emerges in the integration network as a whole.

Now we can put the aforementioned theories in the context of sense-making of dia-
grams. An enactive cognition approach to diagrammatic reasoning would entail that no
geometric configuration is meaningful in itself, but it prompts the user to unconsciously
structure it into a meaningful diagram by activating suitable frames, and integrating
them appropriately with the configuration. The logical approaches taken to diagram-
matic reasoning are very different from this paradigm. Such approaches formally study
the informational content, and the effectiveness of diagrams for reasoning. To that end,
a mapping between the syntax (geometric configuration) and the semantics of the dia-
gram is typically assumed [19]. The theory of observational advantage put forward by
Stapleton et al. [27], which stems from Shimojima’s early work on the effectiveness
of representations [26], follows an equally abstract approach. We believe such abstract
approaches overlook the active, embodied role of the user in diagrammatic reasoning.
Indeed, in agreement with enactive cognition, it has been suggested that the interpre-
tation of diagrams entails a constructive and imaginative process on the part of the
user [7,19]. We wish to extend the theory of Stapleton et al. [27] to take into account
the embodied and enactive aspect of our capacity to understand diagrams, and explain
observation as emerging from the structure of the image schemas.

3 Related Work

In this section we will briefly summarise the theory of observational advantage of Sta-
pleton et al. [27], and a cognitively-inspired framework for the analysis of represen-
tations, developed by Cheng et al. [6]. The former work put forth a formal criterion
to compare the effectiveness of two notations of any kind; including diagrammatic
or sentential. First, any notation has some meaning-carrying relationships among its
components, i.e., visuo-spatial relationships that express a certain meaning. A mathe-
matical diagrammatic notation, in particular, is drawn with certain meaning-carrying
relationships intended to express some sentences in another notation, e.g., logical or
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set-theoretical. In some cases drawing this notation can result in the appearance of
additional meaning-carrying relationships that allow reading even more sentences, that
would require additional inference steps in the second notation, directly off of the first
one. In this case, the first notation has an observational advantage over the second. For
example, someone intending to express the sentences P∩Q = /0 and R ⊆ P with an
Euler diagram, will have to draw a diagram that is topologically equivalent to that of
Fig. 1(a),1 and will, in doing so, inadvertently also express that R∩Q= /0. In contrast, to
obtain that R∩Q= /0 from the sentential notation, an inference step is required. Obser-
vation is therefore seen as a kind of immediate inference rule by which we extract, by
merely looking at the notation, some atomic fact (that evaluates to either true or false)
that is already ‘within’ that notation. Finally, a notation can also be observationally
complete with respect to a set of facts (in the same or other notation), meaning that
any inferences that can be drawn from these statements can be observed from the first
notation.

With these definitions of ‘observation’ and ‘observational advantage’, Stapleton
et al. go about proving the observational advantage of Euler diagrams [27] over set-
theoretical sentential notation. This is done in a very abstract way, disconnected from
the embodied, enactive nature of observation and from the spatial properties of the
geometry. The visuo-spatial relationship of a ‘region’ r1 being contained in a ‘region’
r2 is not a visuo-spatial relationship anymore in this abstract treatment of Euler dia-
grams. As we will see in the next section, this gives rise to the possibility of defining an
alternative diagrammatic notation with an equivalent abstract observational advantage,
but in which observation would arguably have a higher cognitive cost.

Regarding other work with similar goals to ours, Cheng et al. [6] develop a com-
prehensive formal framework for characterising the formal and cognitive properties of
representations, ultimately aiming to build an AI system to automatically select effec-
tive representations for particular problem solving tasks. They systematically classify
cognitive properties of representation systems, allowing them also to discuss cogni-
tive cost, and thus effectiveness, of using a certain representation system for solving a
problem. Important variables assessed have to do with both the components of the rep-
resentation (e.g., symbols, sentences etc.) and their characteristics, as well as cognitive
processes from symbol parsing to problem solving.

4 Approach

In this section we introduce an Euler and a Hasse diagram that have equivalent obser-
vational advantage, in that, any entailment about sets that can be observed in one dia-
gram can be also be observed in the other. However, the act of observing a particular
set-theoretic claim is more complicated in the Hasse diagram. We will show this by
describing the act of observation in these diagrams as integration networks that make the
conceptual blends of the image schemas with the geometrical elements of the diagram
explicit, and show that the integration network corresponding to the Hasse diagram is
more complex then the one corresponding to the Euler diagram.

1 This is because the meaning-carrying relationships of Euler diagrams are topological ones.
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Fig. 1. Observationally complete Euler and Hasse diagrams (and thus of equivalent observational
advantage) that are semantically equivalent to the set of set-theoretical sentences S = {P∩Q=
/0,R ⊆ P}.

4.1 Working Example

Take, for example, the set of set-theoretic sentences S = {P∩Q = /0,R ⊆ P} over
a set of labels L = {P,Q,R} (two additional symbols, /0 and U , are also part of the
syntax, to denote the empty set and the universal set, respectively). An observationally
complete Euler diagram that is semantically equivalent2 toS is shown in Fig. 1(a). All
set-theoretic sentences that are entailed byS can be observed from this Euler diagram.
We can also draw a semantically equivalent Hasse diagram for S , such as the one
shown in Fig. 1(b). This Hasse diagram represents the lattice of all regions of the Euler
diagram, generated as the lattice of sets closed under finite union and intersections,
such that A∨B = A∪B and A∧B = A∩B.3 Put more simply, the nodes of the second
level from the bottom of the Hasse diagram, correspond to the four minimal disjoint
sets R, P \R, P∪Q, and Q. The bottom level corresponds to their intersection, which
is empty, the third level is generated by all possible unions of the minimal disjoint
sets, and finally the top level is generated by the unions of the previous unions. As
with the Euler diagram of in Fig. 1(a), all set-theoretic sentences that are entailed byS
can be observed from the Hasse diagram of Fig. 1(b). In what follows, we will describe
these observations using integration networks of image schemas with the geometry, and
compare the complexity of the integration networks corresponding to the two diagrams.

4.2 Enactive Observation in Hasse Diagrams

To observe if a certain set-theoretic claim S ⊆ T or S = T holds in a given Hasse dia-
gram (where S and T are labels or complex set-theoretic expressions formed using the

2 Two (sets of) statements are semantically equivalent if they have the same models.
3 Formally, all labels inL are attached to some of the lattice elements (i.e., there exists a label-
ing function λ : L → L, where L denotes this lattice of regions), the maximum is labeled
with the additional symbol U , and the minimum is labeled with the additional symbol /0. In
general, given an Euler diagram whose curves are labeled with labels L , the corresponding
Hasse diagram will represent a lattice with 2n elements, where 0 ≤ n ≤ 2|L |.



Euler vs Hasse Diagrams 159

operators ∩, ∪, \, and x), we must first identify the nodes of the Hasse diagram rep-
resenting set-expressions S and T , and then check if there is an upward path between
these nodes (for set inclusion) or if they are the same (for set equality). The existence
of an upward path can be immediately ruled out if the nodes representing S and T are
distinct nodes at the same level of the Hasse diagram. Let us denote this identification
task with a function node that assigns to each set-theoretic expression S over a set of
labels L a node node(S) in the Hasse diagram:

– if S ∈ L , then node(S) = λ (S), the node labeled with S
– if S= S1 ∪S2, then

• if there is a downward path from node(S1) to node(S2), then node(S) =
node(S1)

• if there is a upward path from node(S1) to node(S2), then node(S) = node(S2)
• if there is neither an upward nor a downward path between node(S1) and
node(S2), then node(S) is the lowest of all those nodes that are on a meeting
point between an upward path from node(S1) to node(U), and a upward path
from node(S2) to node(U)

– if S= S1 ∩S2, then
• if there is a downward path from node(S1) to node(S2), then node(S) =

node(S2)
• if there is a upward path from node(S1) to node(S2), then node(S) = node(S1)
• if there is neither an upward nor a downward path between node(S1) and
node(S2), then node(S) is the highest of all those nodes that are on a meet-
ing point between a downward path from node(S1) to node( /0), and a downward
path from node(S2) to node( /0)

– if S= S1 \S2, then
• if there is a downward path from node(S1) to node(S2), then

∗ if node(S2) = node( /0), then node(S) = node(S1)
∗ if node(S2) �= node( /0), then node(S) is the highest among all those nodes
(excluding node(S1)) that are on all downward paths from node(S1) to
node( /0) that do not go through node(S2)

• if there is a upward path from node(S1) to node(S2), then node(S) = node( /0);
• if there is neither an upward nor a downward path between node(S1) and
node(S2), then

∗ if node(S1 ∩ S2) �= node( /0), then node(S) is the highest among all those
nodes (excluding node(S1)) that are on all downward paths from node(S1)
to node( /0) that do not go through node(S1 ∩S2)

∗ if node(S1 ∩S2) = node( /0), then node(S) = node(S1)
– if S= S1, then

• if node(S1) = node( /0), then node(S) = node(U),
• if node(S1) �= node( /0), then node(S) is the highest among all those nodes
(excluding node(U)) that are on all downward paths from node(U) to node( /0)
that do not go through node(S1)

As is evident from the above description, we can observe set-theoretic claims in a given
Hasse diagram by realising these observations in an enactive, experiential way through
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the image schemas LINK, PATH, VERTICALITY, and SCALE. Notice that all operations
between sets are expressed as spatial relations between the objects in the diagram, there-
fore satisfying the definition of observation. We thus describe the cognitive process of
observation as constructing a network of blends involving some instances of the afore-
mentioned image schemas, and parts of the geometric configuration of the Hasse dia-
gram.

Apart from the PATH schema, a VERTICALITY schema is also involved. Specifi-
cally, the base of the VERTICALITY schema is put in correspondence with the point that
is geometrically lowest. This schema provides the polarity required in order to disam-
biguate which correspondences of the source and the goal of a PATH schema are needed
in order to go ‘upwards’ or ‘downwards’; that is, to go upward, we put in correspon-
dence the source with the point closer to the base, i.e., lower, and the goal with the point
further from the base, i.e., higher. To move downward, we build the reverse correspon-
dence. The LINK schema also plays a crucial role because what counts as a path, given
the desired interpretation of a Hasse diagram, is formed only by those points connected
by lines, not e.g., merely neighboring points, as the PATH schema structure dictates.
Therefore, adjacency on the path is determined by lines drawn between node locations.
In summary, we can model observations on the Hasse diagram through the involvement
of a VERTICALITY schema to specify upward and downward orientation, several LINK

schemas blended on pairs of nodes that are connected by some line, and also a PATH

schema blended on the sequence of linked node locations from a source location (node)
to a target location, capturing our experiential understanding of advancing, step by step,
node by node, along the lines of the Hasse diagram.

Concretely, to observe, for instance, whether Q ⊆ P\R, we need to check if we can
reach a target location node(P\R) starting from a source location node(Q) by travers-
ing a path of contiguous node locations going upwards. SinceQ is already denoted in the
diagram, there is no need to locate it by way of our enactive cognition. We would, how-
ever, need to identify the target location node(P\R) in the Hasse diagram. To do so, we
would need to check first if we can reach node(R) on a downward path from node(P),
blending the base of the VERTICALITY schema to the lowest node, i.e., node( /0), and a
LINK schema and a PATH schema on the edge from node(P) to node(R) of the Hasse
diagram, so that we can “walk down the path” from node(P) to node(R). Since this
is possible, we next need to find all downward paths from node(P) to node( /0) that do
not go through node(R). This blends a VERTICALITY schema, two LINK schemas and
a PATH schema on the Hasse diagram, in order to traverse the two steps on the path
from node(P) to node( /0) via the node location that is not labeled with R. The high-
est location on our path down (excluding node(P)) is the node we were looking for.
Subsequently, we return to our original question, whether Q ⊆ P \R. Now, we have
to check whether there is an upward path from node(Q) to the node we have identi-
fied as node(P \R). Here, the SCALE schema comes into play. The way this particu-
lar Hasse diagram is drawn,4 a user can easily put in correspondence the base of the

4 This Hasse diagram represents a poset that is ranked, meaning that all its maximal chains have
the same finite length. This is why it can be represented as a lattice, and is thus guaranteed to
have what we call here ‘levels,’ corresponding to elements with the same rank, i.e., elements
that are the same number of steps away from the minimum element.
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VERTICALITY schema with the geometrically lowest shape of the Hasse diagram, i.e.,
the node representing /0, and one level of a SCALE to each group of points that are on the
same horizontal plane.5 This way, the user can observe that node(Q) and the node we
identified as node(P \R) are on the same level. Our embodied experience with paths,
scales and the vertical dimension equips us with the knowledge that if two objects are
on the same level of a vertical scale, it is impossible to traverse an upward path from
one towards the other. Thus, it is immediately clear to us that there is no upward path
from node(Q) to node(P\R) and therefore Q ⊆ P\R does not hold.

To summarise: although the fact that Q �⊆ P \R is observable from the Hasse dia-
gram, it requires from the user to walk many paths with different source and target loca-
tions, stepping through several linked node locations, sometimes following an upwards,
sometimes a downwards orientation, and finding the highest node locations traversed.
From our description it is evident that a complex network of blends involving many
instances of the PATH, LINK, VERTICALITY and SCALE schemas, and correspondences
with many different shapes, is involved.

4.3 Enactive Observation in Euler Diagrams

To observe if a certain set-theoretic claim S ⊆ T or S = T holds in a given Euler dia-
gram, as the one in Fig. 1(a), we must first identify the regions of the Euler diagram
representing set-expressions S and T , and then check if the first region is inside the sec-
ond (for set inclusion), or if they are the same region (for set identity). Let us denote this
identification task with a function region that assigns to each set-theoretic expression S
over a set of labels L a region region(S) in the Euler diagram:

– if S ∈ L , then region(S) is the region inside the closed curve labeled with S
– if S= S1∪S2, then region(S) is the region made up of the combination of the insides
of region(S1) and region(S2)

– if S = S1 ∩S2, then region(S) is the region that is both inside region(S1) and inside
region(S2)

– if S= S1 \S2, then region(S) is the part of region(S1) outside of region(S2)
– if S= S1, then region(S) is the region outside region(S1)

As is evident from the above description, any set-theoretic claim in a given Euler dia-
gram is enactively observed by way of the CONTAINER image schema. We model this
cognitive process as a network of conceptual blends involving some instances of the
CONTAINER schema and parts of the geometric configuration of the Euler diagram.

For instance, to observe Q ⊆ P \R, we need to check if region(Q) is contained in
region(P\R). This points to two instances of the CONTAINER schema blended upon the
geometric configuration of the Euler diagram, capturing our sense-making of the inside,
boundary, and outside of region(P\R), and of region(Q), together with the containment
relationship between the two CONTAINER schemas. Concretely, the integration network
involved is as follows: first, to identify P \R, we put in correspondence the boundary
of one CONTAINER schema with the curves labeled P and R, the inside with the area

5 The VERTICALITY here is necessary in order to put in correspondence horizontal planes to
levels; SCALE in itself does not necessarily correspond to vertical configurations.
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between curves P and R, and the outside with the area outside curve P and the area inside
curve R. With this blend, we model the way we observe region(P\R) in the diagram as
a container. Subsequently, to check if Q ⊆ P \R, we construct another blend between
a second CONTAINER schema and the same geometrical configuration. This time the
boundary, inside and outside of the CONTAINER will correspond to the curve labeled
Q, its interior, and its exterior. Checking whether Q ⊆ P\R amounts to observing that
the boundary of the CONTAINER schema we put in correspondence with the former is
located on the outside of the CONTAINER schema we put in correspondence with the
latter. This observation again comes from our experience with containers, leading to the
realisation that if Q is on the outside of P \R then it cannot be on its inside, and thus
Q ⊆ P\R does not hold.

Regarding the complexity of the integration network required to model the obser-
vations of Q ⊆ P \R from the Euler versus from the Hasse diagram, we can note that
the integration network for the Euler diagram contains fewer different image schemas,
fewer instances of image schemas, the diagram geometry itself contains much fewer ele-
ments, and the correspondences are also fewer. Concerning the blended space, blending
the boundaries of CONTAINER schemas with the closed curves in a diagram imbues
the latter with a sense of enclosure and separation. This sense emerges in the concep-
tual blends, where geometrical and image-schematic elements are integrated with each
other, into elements that are simultaneously geometric and image-schematic. As we
have seen, what constitutes the interior, boundary and exterior of a configuration of
closed curves representing a set-theoretic expression, such as P\R, arises in the way a
CONTAINER schema is blended with said configuration; not from the geometry itself.

5 Discussion

The predominant logical approaches to diagrammatic reasoning and effectiveness usu-
ally view the diagram as a mapping between an abstract geometry and an abstract
semantics. These approaches seem to overlook the enactive cognitive processes on
the user’s part, despite the fact that the term effectiveness can only be conceptualised
and tested with respect to a user. We believe the user’s embodied experiences—whose
invariants are crystallized in the form of image schemas—can help bridge that gap.
Using them, we can propose a conceptual model of the sense-making of a diagram as
the integration of image schemas with the geometry of a diagram. This way, we can
provide a more cognitively-plausible approach to diagrammatic reasoning whereby the
users act cognitively upon the geometry of the diagram.

According to our framework, the effectiveness of Euler diagrams for representing
set inclusion and disjointness (demonstrated in behavioral experiments [5,24]) can be
explained as follows: The geometry of an Euler diagram can be put in correspondence
with instances of the CONTAINER schema. Through the process of constructing these
correspondences, and thus integration networks, facts like R∩Q= /0 in Fig. 1(a) become
immediately apparent. This integration network models how a user cognitively struc-
tures set P as a container, surrounding curve R, enveloping it, thus preventing its exit-
ing and coming into contact with set Q—in agreement with [21]. Furthermore, it has
been proposed that classes and Boolean logic are conceptualised via the CONTAINER
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schema [17]. Elements are understood as being in or out of a class, and Boolean logic
has intersections and unions, which also emerge from a blend with the CONTAINER

schema. Moreover, the CONTAINER schema corresponds very naturally to Euler dia-
grams, therefore making them apt to visualise such semantics [17, pp. 45, 122].6

In contrast, when reasoning with the Hasse diagram, we think about paths, links,
the vertical orientation, and levels of scales. Some indication that image schemas are
implicitly used to cognitively structure diagrams is provided by the informal language
researchers use when describing how Hasse diagrams should be used for reasoning
[4,8,9,21,22]. Researchers talk about Hasse diagrams, and the posets they represent, as
having top/bottom elements and arrows pointing upward (VERTICALITY). They men-
tion implications or entailments going upwards, line segments running upwards, and of
diagrams having upward paths (PATH, VERTICALITY). Reasoning is done by following
upward/downward edges and upward/downward sequences of lines (PATH, VERTICAL-
ITY, LINK). Each line is said to connect an ordered pair of objects, and edges are said
to connect adjacent nodes/elements and to form sequences (PATH, LINK). Moreover,
nodes and edges can be traversed, lines can be followed or traced, and arrows can form
sequences with consecutive points (PATH). Finally, posets have levels and a largest and
smallest element (SCALE).

Additional support comes from behavioral experiments showing that being upright,
as opposed to slanted, explicitly showing levels (i.e., having points placed on horizon-
tal parallels), and having non-crossed lines, makes Hasse diagrams faster to interpret
[14,23]. These findings are consistent with our claims that observation in Hasse dia-
grams can be modelled as blends of VERTICALITY, SCALE, LINK and PATH. Arguably,
being upright, showing levels, and having non-crossed lines, makes it easier to put the
structures of VERTICALITY, SCALE, and LINK with PATH respectively, in correspon-
dence with the geometry of a Hasse diagram. Regarding the non-crossed lines, perhaps
crossings result in some ambiguity because there are two possible ways to link pair-
wise the four points involved in the crossing, making sense of them as being adjacent
in a path. Theoretical work on diagrammatic reasoning also asserts that Hasse diagrams
prioritise visualising the structure of the order they represent, through a vertical organ-
isation, and explicit visualisation of levels [8]. Levels corresponding to elements with
the same rank are geometrically orthogonal to the vertical axis. In fact, this axis is the
one intended to be interpreted, and elements of the same rank are indeed not compa-
rable semantically with respect to the ordering. This description seems consistent with
our description of how VERTICALITY and SCALE may structure the geometrical con-
figuration of a Hasse diagram.

Arguably, there is no definitive way to prove that a user reasons with Hasse and
Euler diagrams with the image schemas we have claimed. Therefore, our approach is
to show that these integration networks model all the possible observations that Hasse
and Euler diagrams allow. In previous work we have followed the same approach to
model the inferences we can draw from various diagrams [3]. In the present paper, we
specifically discuss facts that emerge as observations, not simply inferences. Moreover,
we use our framework to study a case where the observational advantage is equivalent

6 Lakoff and Nuñez mention Venn diagrams in their work, but actually utilise Euler diagrams in
their figures [17].
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between two diagrammatic representations, but arguably one is much more effective
than the other for showing certain information. The reason for this discrepancy could
be the mathematical abstraction of the theory of observational advantage. In contrast,
our framework accounts for the user as an embodied actor by modeling observation as
a conceptual integration network of various image schemas with the diagram geometry.
We propose that one diagram may be more cognitively effective than another because
the observations it affords can be modeled with a simpler conceptual integration net-
work. Complexity manifests in several ways; we note that the different image schemas,
and the different image schema instances, are much more in the integration network for
the Hasse diagram. The geometric elements of the diagram itself are also much more,
and the integration network overall has much more mental spaces, and more correspon-
dences, than in the case of the Euler diagram. Since mental spaces and their correspon-
dences are proposed to be realised and manipulated in the mind in some way, we con-
jecture that higher complexity of the integration network modeling the sense-making
of a diagram, would correlate with a higher utilisation of the cognitive resources of the
user reasoning with that diagram, and thus lower effectiveness of the diagram [10].

An additional contribution of our work is defining in more detail what Stapleton
et al. call ‘meaning-carrying relationships’ [27]. The definition of observation that Sta-
pleton et al. use includes this term, forcing them to address concrete geometric and
cognitive properties of the diagram; a meaning-carrying relationship is defined as a
visuo-spatial relationship between syntactic elements of a visual representation, that
expresses a certain meaning. The term visuo- implies an agent with a certain body and
perceptual faculties. Cheng et al. [6] also take as a given which relations between sym-
bols of a given representation are meaningful, and should be used for inference. One of
our contributions here is that what counts as a meaning-carrying relationship, or valid
inference, can be explained in terms of blends with image schemas. At the level of dis-
crete shapes like closed curves, lines etc., a wide range of spatial relationships hold;
shapes can be related by having the same or different size, color and shape, by show-
ing symmetry with respect to certain axes, and by their relative position. Someone who
has been trained on how to read Euler diagrams knows that only topological relations
are meaning-carrying. In contrast, in Hasse diagrams, relative position and topologi-
cal intersection of lines with points is meaning-carrying, but topological intersection
between lines is not. Focusing on the right meaning-carrying relationships and utilis-
ing them correctly for reasoning can be challenging for novices. Thus, we believe our
approach can have future applications relating to guiding novices on how to use dia-
grams. Moreover, our theoretical contributions include showing how meaning-carrying
relationships can become salient through blending apt image schemas with the geome-
try of a diagram, making explicit their experiential origins, and finally, providing new
avenues for evaluating the cognitive effectiveness of diagrams.

6 Conclusions and Future Work

In this paper we explore the notions of observational advantage and meaning-carrying
relation of Stapleton et al. [27] in a more cognitively-inspired way. In this, and most dia-
grammatic reasoning work, the specific meaning-carrying relations involved are taken
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as a given, and treated abstractly. In contrast, we believe our framework explores how
they can emerge through the interplay of image schemas—which crystallize our early
embodied experiences—with the diagram geometry. Our model simply accounts for the
differences of the image schemas at play, keeping all else equal. We do not model all
processes and factors that could affect the cognitive cost, e.g., the user’s experience with
the diagrammatic formalism, domain knowledge and cognitive strategies. We study two
examples of diagrammatic notations, Hasse and Euler diagrams, with equivalent obser-
vational advantage over sentential set-theoretical notation, whereby an Euler diagram
is arguably more cognitively effective for many set-theoretic claims than a Hasse dia-
gram. We show that their difference, according to our framework, is the complexity of
the integration network modeling how observations on these diagrams become possi-
ble. In this paper we discuss the integration networks reflecting only one example of
observation. However, we describe how various types of observation about sets can be
made with both Euler and Hasse diagrams, and it seems likely that the integration net-
works modeling most of them would be much simpler in the case of the Euler diagram.
Nonetheless, depending on how the observational advantage and the meaning-carrying
relations are defined, it might be the case that certain sentences regarding the empty set
are not observable from the Euler diagram but only from the Hasse diagram [22, p. 10].

In previous work, we have used first-order logic to formalise and implement the
integration networks reflecting reasoning with several diagrammatic formalisms [1–3].
Image schemas provide pointers to the meaning-carrying spatial relations of diagrams,
and a cognitive explanation of how an embodied agent uses those relations to reason
about the semantics the diagrams represent. Our framework could be used to guide stu-
dents on which spatial relations of a diagram they must draw meaning from, by mak-
ing explicit a blend with some image schema. Moreover, by analysing the integration
network modeling observations with a particular diagram, we could compare their cog-
nitive effectiveness. The above could be developed into computational systems, as we
have already shown that such conceptual blends can be implemented [1–3].
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Abstract. This paper is the first to establish the impact of colour on
users’ ability to interpret the informational content of concept diagrams,
a logic designed for ontology engineering. Motivation comes from results
for Euler diagrams, which form a fragment of concept diagrams: manipu-
lating curve colours affects user performance. In particular, using distinct
curve colours yields significant performance benefits in Euler diagrams.
Naturally, one would expect to obtain similar empirical results for con-
cept diagrams, since colour is a graphical feature to which we are per-
ceptually sensitive. Thus, this paper sets out to test this expectation by
conducting a crowdsourced empirical study involving 261 participants.
Our study suggests that manipulating curve colours no longer yields sig-
nificant performance differences in this syntactically richer logic. Conse-
quently, when using colour to visually group syntactic elements with com-
mon semantic properties, we ask how different do the elements’ shapes
need to be in order for there to be significant performance benefits arising
from using colours?

Keywords: Concept diagrams · Euler diagrams · Perception · Colour

1 Introduction

There is a growing body of evidence that diagrams can help people with log-
ical reasoning, with research primarily focusing on logics with low expressive-
ness [19,22,23,25]. As particular examples, diagrams have been found to aid
some students with deductive reasoning tasks as compared to standard symbolic
logic [25], and Euler diagrams have been shown to increase accuracy when per-
forming syllogistic reasoning tasks [23]. In addition, fMRI studies have found, in
the context of reasoning, that diagrams provide cognitive offloading and there-
fore aid cognition, as compared to stylized natural language [22]. Most directly
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related to this paper is work by Alharbi et al. which suggests that concept dia-
grams1 support more effective interpretation of information than both OWL
(strictly, the Manchester OWL syntax) and description logic [3]. In summary,
the prior work covered here compares diagrammatic representations of infor-
mation with competing notations. The takeaway message is that diagrammatic
logics have been shown to effectively support users with tasks, thus giving them
an accessibility advantage over their symbolic and textual counterparts. By con-
trast, this paper sets out to understand the impact of manipulating colour in
concept diagrams, in order to increase their efficacy in logical reasoning tasks.

Euler diagrams are the underlying notation of concept diagrams, as well
as many other diagrammatic logics [19,22,23,25]. It is known that reducing
clutter in Euler diagrams improves cognition [4,27], as does ensuring that they
possess so-called well-formedness properties [21]. There is no reason to suppose
that low clutter and possessing well-formedness properties are not beneficial for
concept diagrams. Measures of clutter in concept diagrams were explored in [13].
Empirical research has also focused on the graphical features of Euler diagrams.
Prior work, such as [6], provides a series of empirically-informed guidelines that
point towards effective graphical choices, such as how to use colour, choose curve
shapes, and orient diagrams. The guide most relevant to this paper is that for
colour: draw Euler diagrams with curves that have no fill and different colours
for each represented set. An immediate question arises, which we address in this
paper: does this guide also apply to concept diagrams?

The study on which this colour-guide, for Euler diagrams, is based was lim-
ited to around eight curves. It is estimated that between eight and ten colours
can be rapidly distinguished at a time by the human eye [11,20,28]. Whilst the
reasons for this are not known [11], it is hypothesized that because humans are
only able to store this number of items in their short-term memory [18]. There-
fore, since concept diagrams can often include more than ten syntactic elements,
varying the hues assigned to them may no longer bring performance advantages.
It is important to ascertain whether manipulating colour in concept diagrams
can be done in such a way that performance is significantly improved. Appealing
to [5], for our study we defined three colour treatments for concept diagrams: (1)
monochrome, all diagrammatic elements were black, (2) dichrome, selected dia-
grammatic elements were blue and the remaining were green (as in [12,14,24]),
and (3) polychrome, different colours were assigned to the syntactic elements;
none of the curves used a colour fill. Thus, treatment (3) follows the prior guid-
ance and could be expected to outperform (1) and (2), but with the caveat that
using more than eight to ten colours may have the potential to be detrimental.

Section 2 summarises concept diagrams. Section 3 describes our study design,
with its execution and results covered in Sect. 4. We discuss our results in Sect. 6.
The data and materials can be downloaded from [1].

1 Concept diagrams were developed specifically for ontology engineering. Other visual
‘ontology’ notations include SOVA [15], which is based on node-link diagrams and,
thus, is syntactically very different from concept diagrams.
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2 A Brief Introduction to Concept Diagrams

Concept diagrams include a variety of syntactic elements in order to convey
information [24]. We evaluate a fragment of the notation (we do not need the full
expressive power: concept diagrams are a second-order logic). We introduce, by
example, the syntax needed for our study. Figure 1 shows two concept diagrams.
On the left, the diagram contains one curve inside another to express that (the
set of) Korrigans is a subset of Spirits: all Korrigans are Spirits. The righthand
diagram contains two non-overlapping curves to express that the sets Demon and
Elf are disjoint. The boxes are used to indicate the boundaries of each diagram.
So, in Fig. 2 there are two juxtaposed diagrams; each individual diagram carries
no meaning in this case, and the fact that there are two non-overlapping curves,
Mermaid and Giant, does not convey any information since the respective curves
are inside distinct rectangles. That is, spatial relationships only convey meaning
inside a common bounding box.

In Fig. 3, there are also two diagrams. The lefthand diagram comprises two
boxes, each enclosing some syntax, with an arrow between them. This solid arrow,
labelled scares, is sourced on Boggart and targets an unlabelled curve which is
a subset of Midget, asserting that Boggarts scare only Midgets. The righthand
diagram is structurally similar but uses a dashed arrow labelled by annoys anno-
tated with ‘≥ 1’, which is a symbolic device used to convey cardinality infor-
mation in the following way: Goblins annoy at least one thing in the arrow’s
target set. The arrow’s target set is inside Fairy, so we can provide the arrow’s
meaning in a more succinct way: Goblins annoy at least one Fairy. The use of a
dashed arrow does not provide ‘only’ information as we saw in the case of the
solid arrow.

As well as being sourced on curves, arrows can be sourced on the enclosing
box. This box is taken to represent the universal set, so we can talk about
everything or, more simply, things. Two examples are given in Fig. 4. On the left,
the solid arrow targets a subset of Puck: things chase only Pucks. Essentially, a
diagram with this syntactic construction is expressing a range axiom: the range
of chase is Puck. In the diagram on the right, the arrow’s label, likes, has an
annotation: -. The use of - is to indicate that we mean the inverse of the binary
relation likes. Thus, the diagram is expressing that things ‘like inverse’ only
Nisses. This is equivalent to Only Nisses like things which is a domain axiom.
Using these basic constructions, more complex diagrams can be formed, like that

Spirit

Korrigan

Demon Elf

Fig. 1. Subset and disjointness.

Mermaid Giant

Fig. 2. Non-disjointness.
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Boggart
scares

Midget Goblin Fairyannoys 1

Fig. 3. Diagrams involving arrows.

chases

Puck Nisse

likes -

Fig. 4. Range and domain.

Puck

guides follows

Midget

Halfling Elf

Goblin

Boggart Demon

scares -

hates

Fairy

Nymph

SelkieFairy

annoys likes -

watches chases1 1

Fig. 5. A more complex diagram which expresses many different statements. (Color
figure online)

in Fig. 5 which uses multiple colours for its syntactic elements. It expresses many
facts, such as:

– All Halflings are Midgets.
– No Goblin is a Demon.
– Pucks follow only Halflings.

– Elfs chase at least one Fairy.
– Things guide only Pucks.
– Only Demons scare things.

Diagrams with this level of complexity were used to collect performance data.

3 Study Design

We will now describe our between-group study design including: the information
conveyed by the diagrams, the colour treatments, participant training, strate-
gies to manage learning effects, performance phase questions, our approach to
data collection, and the statistical methods employed. Our study comprised the
following phases:

1. Training phase: participants were shown a series of simple diagrams along
with their meanings.

2. Learning effect phase: participants were asked two questions, similar to those
in the next phase.

3. Performance phase: participants were asked six questions, from which we
recorded accuracy and time data.

Each question in the learning effect phase and the performance phase was
multiple choice. Before we can describe the three phases, we need to consider
the information that was to be conveyed by the performance phase diagrams.
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3.1 Information to be Conveyed

Concept diagrams are an expressive logic, capable of defining a broad range of
axioms. It is not feasible, or even possible, to cover the rich variety of axioms that
one can define using concept diagrams in an empirical study. Given the moti-
vation for developing concept diagrams was to model ontologies, we selected six
commonly occurring ontology statement (axiom) types, as was done in a study
into the relative efficacy of OWL and description logic in [2]. This restriction pro-
vided controlled variation whilst ensuring the ecological validity of the results.
The six selected statement types (to which we assign the names shown in bold)
are written here using English, where A and B are classes (sets) and p is a
property (binary relation)2:

1. Subset: All A are B; example: All Selkies are Fairies. This type of statement
is used to define class hierarchies in an ontology.

2. Disjointness: No A is a/an B; example: No Halfling is an Elf. This type of
statement occurs when classes are required to not share individuals.

3. Only: A p only B; example: Selkies hate only Goblins. This type of statement
is used to place a restriction on a property, p: viewing p as a binary relation,
if the domain of p is restricted to A, its image must be a subset of B.

4. Some: A p at least one B; example: Elves chase at least one Fairy. This type
of statement is used to define features of individuals that lie in A.

5. Domain: Only A p things; example: Only Demons scare things. This type of
statement identifies the domain of a property (binary relation).

6. Range: Things p only A; example: Things annoy only Fairies. This type of
statement identifies the range of a property.

In what follows, we always write the six types of statements following the con-
ventions illustrated in the examples just given. To generate the eight diagrams
needed for the learning effect and performance phases, we needed a systematic
approach to selecting the information that they would convey, reflecting the six
statement types. Alharbi et al. designed a study to compare sentences expressing
these six statement types, focusing on description logic and the Manchester OWL
syntax [2]. With permission, we adapted their study materials3 for our purposes.
Their study used eight sets of 14 statements; we used each set of statements to
produce a single diagram, one for each question. Each set of statements had ten
named sets, eight binary relations, four Subset statements and two of each of
the other types of statements; more Subset statements were needed since they
were necessary for what we call indirect statements to be derived; for an indirect
statement, see Sect. 3.3, Fig. 10, where we need to use the information that Ogre
2 We acknowledge the blurring between syntax and semantics here; strictly speaking,
A and B are monadic predicates and p is a dyadic predicate.

3 Whilst [2] reports on OWL and DL, their study also included a third treatment:
concept diagrams. None of the diagrams used in our studies were syntactically iden-
tical to Alharbi et al.’s diagrams; we adjusted the layouts and represented Some
statements differently. Our training material was not the same as that provided by
Alharbi et al., in part since we followed a crowdsourced approach.
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is a subset of Enchanter to deduce that Ogres guide only Nisses. An example of
a diagram representing 14 statements can be seen in Fig. 5.

3.2 Colour Treatments

To test whether multiple colour use in concept diagrams brings significant perfor-
mance benefits over other colour treatments, we identified three different ways of
assigning colour. We used colourbrewer [10] to define our colours, ensuring suit-
ability for visualizing qualitative or categorical information rather than sequen-
tial or diverging information:

Monochrome: all syntactic elements are coloured the same. We chose to use
black, which is often employed when drawing Euler diagrams, see Figs. 1, 2, 3
and 4.

Dichrome: two colours are used for the syntactic elements. We chose to use blue
with green arrows, the de facto standard for concept diagrams [12,14,24], see
Figs. 6,7, 8, 9, 10, 11, 12 and 13.

Polychrome: each set and binary relation takes a unique colour hue, see Fig. 5.
Our tasks involved ten sets and eight binary relations, so we needed 18 colours
in total. Colourbrewer can only generate sets of up to 12 colours. We generated
a set of 10 colours for the named sets and a disjoint set of eight colours for the
arrows. Unlabelled curves that were arrow targets took the same colour as their
targeting arrow.

3.3 Training Diagrams and Explanations

It was necessary to provide participants with training in the semantics of concept
diagrams. We chose to use a sequence of syntactically simple diagrams to explain
how the diagrams expressed the six statement types. It should be noted that
the training across participant groups differed only due to the nature of the
treatment to which they were exposed. For each statement type, we included
two training diagrams, which we call a direct version and an indirect version.
The direct version corresponds to information that would naturally be expressed
by a single axiom. For example, All Selkies are Nymphs and All Nymphs are
Fairies are expressed by the diagram in Fig. 5 (see the bottom right box). Indirect
statements correspond to information that would normally need to be inferred
from axioms but which is readily visible in a diagram. Using the two statements
All Selkies are Nymphs and All Nymphs are Fairies as a textual example, one can
infer the indirect statement All Selkies are Fairies. Referring again to Fig. 5, All
Selkies are Fairies is naturally expressed by the diagram via circle containment,
by virtue of expressing the two statements from which it can be inferred. We
now explain the training provided.

Subset Statements. Participants were exposed to two subset training diagrams,
with the direct version being shown in Fig. 6. The meaning of the diagram was
stated using the convention illustrated in Sect. 3.1, as can be seen in Fig. 6. The
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indirect subset training diagram can be seen in Fig. 7. In the remaining parts of
this subsection, we omit the (simpler) training given for the direct statements
which adopted a style similar to that illustrated here.

Fig. 6. Training for direct Subsets. Fig. 7. Training for indirect Subsets.

Fig. 8. Training for indirect Disjoint-
ness.

Fig. 9. Training for multiple box use.

Disjointness Statements. Figure 8 shows the indirect disjointness training dia-
gram, which conveys information by the presence of the curves within a single
box. An important feature of concept diagrams is the use of multiple enclos-
ing boxes. This allows a less cluttered representation of classes when they are
not known to be disjoint [16]; high levels of clutter leads to less effective dia-
grams [4,12]. It was important to train the participants that diagrams exploit
distinct boxes in order to avoid expressing a relationship between the represented
classes. Figure 9 shows how this was done.

Only Statements. Indirect statements in the case of Only axioms can arise in two
ways, depending on the source and the target of the arrow. Referring to Fig. 10,
focusing on the arrow source, we see that Ogre is a subset of Enchanter and,
since Enchanters guide only Nisses, we can infer that Ogres guide only Nisses.
Regarding the target, since Nisses are Demons, we can infer that Enchanters
guide only Demons. These indirect statements are perhaps less obvious than
those we saw for subset and disjointness statements. In the source case this is,
in part, because there is no arrow emanating from Ogre.

Some Statements. Indirect statements in the case of Some axioms can also arise
in two ways, depending on the source and the target of the arrow. Focusing
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on the arrow source in Fig. 11, we see that Ogre is a subset of Giant and, since
Giants like at least one Halfling, we can infer that Ogres like at least one Halfling.
Regarding the target, since all Halflings are Mermaids, we can infer that Giants
like at least one Mermaid. These indirect statements are, as in the case of Only
statements, perhaps less obvious than those we saw in the case of subset and
disjointness.

Fig. 10. Training for indirect Only. Fig. 11. Training for indirect Some.

Fig. 12. Training for indirect Domain. Fig. 13. Training for indirect Range.

Domain Statements. Indirect statements in the case of Domain axioms can only
arise in one way, from the target of the arrow. We do not get any indirect Domain
statements arising from the source, since Domain axioms are always defined over
the universal set which is represented by the enclosing box. In Fig. 12, Goblin
is a subset of Fairy and, since only Goblins track things, we can infer that only
Fairies track things; that is, if the domain of tracks is Goblin and all Goblins are
Fairies then the domain can also be viewed as Fairy.

Range Statements. Indirect statements in the case of Range axioms can also
only arise in one way, depending on the target of the arrow. We do not get
any indirect Range statements arising from the source, since Range axioms are
always defined over the universal set via arrows sourced on the enclosing box.
In Fig. 13, Sylph is a subset of Nisse and, since things hate only Sylphs, we can
infer that things hate only Nisses. That is, if the range of tracks is Sylph and all
Sylphs are Nisses then the range can also be viewed as Nisse.
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3.4 Learning Effect Questions

Recall, from Sect. 3.1, each of the six main phase tasks was derived from a set
of 14 statements. This meant that the diagrams used in the performance phase
were syntactically more complex and more expressive than the relatively simple
training diagrams (for example, contrast Figs. 1 and 5). Therefore, two questions
were included to reduce the impact of any learning effect that may be present.
The diagrams for these questions were derived from Alharbi et al.’s two sets of 14
statements used to train participants in their study [2], which are different from
those used in the main phase tasks. These two questions were associated with
ten checkboxes of which seven should be selected; all checkboxes were deselected
when presented to the participants. In total, this gave 14 correct answers across
the two questions, one for each of the six direct statements, one for each of
the Subset, Disjoint, Range and Domain indirect statements, and two each for
the Only and Some indirect statements; for Only and Some indirect, there were
two variants of true statement depending on whether the arrow source or target
was used to make the derivation. This left six false statements, across the two
questions, one for each of the six statement types. This ensured that participants
had been exposed to each type of checkbox (direct, indirect and false) for each
statement type before performance data was gathered and the two ways in which
Only and Some indirect statements could arise. The participants were unaware
that the data collected for these two questions would not be used in the analysis.
See Table 1 for an illustration.

3.5 Performance Phase Questions

Given the six sets of 14 statements, from which diagrams were derived for the
performance phase, we needed to identify suitable sets of checkbox responses for
each of them. Again following [2], each type of textual statement occurred as a
correct answer six times. This meant we needed 36 statements which appeared
as correct answers. For each type of textual statement, we included three direct

Table 1. Nine options, six of which are correct.

Option Checkbox type Checkmark

Elves chase at least one Fairy Some – direct �
All Selkies are Fairies Subset – indirect �
Things guide only Elves Range - false

Selkies hate only Goblins Only – indirect �
All Boggarts are Midgets Subset – false

No Halfling is an Elf Disjoint – indirect �
Only Demons scare things Domain – direct �
Pucks follow only Goblins Only – false

Things annoy only Fairies Range – direct �
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versions of the task and three indirect versions. As we are also interested in
ensuring that people do not read incorrect information from diagrams, we also
included each type of statement as an incorrect answer three times. This gave a
total of 54 checkboxes, which were distributed across the six tasks. Thus, each
task was associated with nine checkboxes; six of the statements were correct and
three were incorrect. Table 1 presents an example of nine statements, their type
and the required checkmark (or not). Thus, Table 1 illustrates a correct response
to a task. The nine statements were each predicated with an unchecked checkbox
when initially presented to a parfticipant.

3.6 Data Collection Method

We adopted a between-groups design. Participants were randomly assigned to a
group and were paid £3.25 for their participation. Prolific Academic was used
to crowdsource participants from the general population. It is recognised that in
crowdsourced studies, participants do not always give questions their full atten-
tion, or have difficulties with the language used, and this is hard to control [8].
Varying techniques can be employed for avoiding the recruitment of participants
who may have issues with the language or do not give questions their full atten-
tion. We chose to limit the participant pool to those who are fluent in English, as
well as including other pre-screening criteria covered in Sect. 4. We also included
two questions, designed to catch inattentive participants, that were trivial to
answer if the associated text was read. Answering either of these two questions
incorrectly meant that the participant was classified as inattentive. The first of
these questions was included in the training phase and the second one was in
the performance phase. The inattentive participants were unable to proceed with
the study as soon as they answered one of these two questions incorrectly and
any data collected up to that point was not retained.

In each phase of the study, each diagram and its associated question was dis-
played on a unique page. Participants could not return to pages and subsequent
pages were not revealed until the ‘Next page’ button was clicked. The training
pages were presented in a fixed order for each participant and, as just indicated,
included one of the inattentive questions. The order was: Subset, Subset-indirect,
Disjoint, Disjoint-indirect, Disjoint-multiple boxes, Only, Only-indirect, inatten-
tive question, Some, Some-indirect, Domain, Domain-indirect, Range, Range-
indirect. It was felt that this order began training people using simpler concepts
since there were no arrows in the first five diagrams. Once the participant clicked
the next button, they were asked to answer the two questions included to reduce
learning effect. After that, the next two questions were randomly selected from
the six performance phase questions, followed by the second inattentive question,
and then the remaining four performance phase questions in a random order.

3.7 Statistical Analysis Method

We view accuracy as more important than time: one representation of infor-
mation is judged to be more effective than another if users can perform tasks
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significantly more accurately with it. If no significant accuracy difference exists
and performance is significantly quicker then the quicker notation is judged to be
more effective. For the analysis, we employed two local odds ratios generalized
equation models [26] to analyse the accuracy data. For the time data, we used a
generalized estimation model [17] that allowed us to estimate whether the time
taken to provide answers was significantly different. Alternative models such as
ANOVA were not deemed appropriate as our data violated their assumptions.

Table 2. Summary of the pilot data.

Group No. of
partici-
pants

Accuracy
rate

Mean time

Overall 30 81.17% 2m 52.98 s

M 10 85.37% 3m 11.10 s

D 10 80.37% 2m 46.66 s

P 10 77.78% 2m 38.18 s

Table 3. Main study performance data.

Group No. of
partici-
pants

Accuracy
rate

Mean time

Overall 261 80.11% 2m 48.17 s

M 81 77.98% 2m 52.81 s

D 89 80.96% 2m 54.74 s

P 91 81.16% 2m 37.60 s

4 Study Execution and Statistical Analysis

Here we describe our pilot study before presenting the statistical analysis yielding
an overall comparison between treatment types and a comparison by task type.

4.1 Pilot Study

When running a pilot study, we pre-screened participants. Pre-screening criteria
included having a Prolific approval rate of 95% or higher, the requirement to
have completed at least 5 studies on Prolific previously, being fluent in English,
and being aged between 18 and 100 (this was imposed by Prolific). This left a
pool of 27561 potential participants, out of 63577, so over half were disqualified.
Further, we indicated that the study would be supported on desktop and tablet
devices, but not mobile devices; Prolific does not guarantee that this means
participants will refrain from using a mobile device. A total of 39 participants
began the pilot study. Of these, two were classified as inattentive, three timed-
out after 50 min, a further three withdrew before completion, and one did not
have their data saved due to a read/write error. This left us with data from 30
participants.

The overall accuracy rate and the average time to answer each performance
phase question during the pilot study are given in Table 2, accompanied by
a breakdown for each group. The pilot data do not indicate a ceiling or floor
effect, which would have suggested that the tasks were either too easy or too
hard to reveal significant differences. That is, the pilot data suggest that the
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tasks require some cognitive effort to perform but are not so difficult that the
participants are essentially guessing the answers.

We noted a very high error rate for Disjoint-false checkboxes: overall, the
Disjoint-false accuracy rate was 27.78%, with the Monochrome and Polychrome
groups both scoring 23.33% and the Dichrome group getting 36.67% correct.
Ticking a Disjoint-false checkbox would suggest that the participant believed two
sets are disjoint when in fact they are not. This could be due to misunderstanding
the information provided by multiple rectangle use, so we added further text to
the associated training page: “In particular, because Mermaid and Giant are
in different rectangles, the diagram does not tell us that no Mermaid is a
Giant and does not tell us that no Giant is a Mermaid.” We also observed
that the accuracy rates were low overall for Domain (50.00%) and Domain-
indirect questions (37.78%) but we suspected that this was due to the difficulty
of understanding the use of inverse. As such no change was made to the study
based on this observation.

4.2 Main Study

For the main study, we included an additional pre-screening criterion: no partic-
ipant who took part in the pilot could take part in the main study. Three partic-
ipants self-reported as colourblind, one in each group4. The statistical analysis is
performed on the entire data set; we did not perform a subsequent analysis with
the colourblind participants removed. The accuracy rates and mean times are
summarised in Table 3. The overall accuracy rate, 80.11%, can be considered
high as participants were unlikely to be familiar with concept diagrams prior
to taking part. Whilst the accuracy rates and mean times can be seen as an
indicator of relative performance across groups, it is important to note that the
statistical methods employed do not compare these data: the statistical meth-
ods that compare means (e.g. ANOVA), do not account for correlated responses
from participants and make other assumptions that our data violate.

Learning Effect Questions. We evaluated whether the learning effect ques-
tions yielded significantly lower accuracy performance than the six performance
phase questions. Based on a Wald test, the learning effect questions had statis-
tically significant lower overall accuracy rate than the performance phase ques-
tions (0.8011 vs. 0.7571 with p-value < 0.001). This suggests that participants
did improve their accuracy performance during these first two questions. This
does not, however, mean that the learning effect was eliminated but suggests that
it was reduced by the inclusion of these two questions. It is not appropriate to
compare the times taken for the learning effect questions with the performance
phase questions due to their differing number of checkboxes (ten versus nine).

4 The impact of the three colourblind participants on the data collected was not sig-
nificant.



180 S. McGrath et al.

Statistical Analysis: Overall Comparison. Here we report on the over-
all comparison between the three colour treatment groups. Using a Generalised
Estimating Equations (GEE) based [26] statistical model for the accuracy data,
we estimated a 95% confidence interval (CI) for the odds of providing a correct
answer with one treatment compared to another. Recall that a correct answer
means either correctly ticking a checkbox (where the associated statement is
true) or correctly not ticking a checkbox (where the associated statement is false).
We computed p-values to determine whether the treatments gave rise to signifi-
cantly different accuracy performance. The estimated odds of correctly answer-
ing questions with Dichrome was 1.20 (to 2d.p.) times that of Monochrome
with a 95% CI of (0.94,1.53) and p-value of 0.1363 (to 4d.p.). Therefore, there
was no significant difference in accuracy performance between Dichrome and
Monochrome. Results for the other pairwise comparisons are given in Table 4:
there were no significant differences overall in accuracy across treatments.

Using a GEE based statistical model for the time data, we estimated a 95% CI
for the ratio of the time (measured in seconds) needed to complete a task with one
treatment compared to another. The derived CI and its corresponding p-value
allowed us to determine whether two treatments were significantly different. The
model estimated that the time needed to complete a task with Dichrome was
1.11 times (2d.p.) that with Monochrome with a 95% CI of (0.89, 1.37) and p-
value of 0.3553. Therefore, there is no significant difference in time performance
between Dichrome and Monochrome. Results for the other pairwise comparisons
are given in Table 5. The analysis revealed no significant differences overall
in time taken across the three treatments. Therefore, our accuracy and time

Table 4. Overall comparison: accu-
racy.

Treatments Odds CI p-value

D versus M 1.20 (0.94, 1.53) 0.1363

D versus P 0.99 (0.78, 1.24) 0.9145

M versus P 0.82 (0.64, 1.05) 0.1174

Table 5. Overall comparison: time.

Treatments Ratio CI p-value

D versus M 1.11 (0.89, 1.37) 0.3553

D versus P 1.12 (0.92, 1.36) 0.2606

M versus P 1.01 (0.82, 1.24) 0.9179

Table 6. Comparison of treatments by accuracy by statement type.

Treatments Odds CI p-value Most accurate

Only – direct

Dichrome versus Polychrome 0.58 (0.33, 0.99) 0.0474 Polychrome

Only – indirect

Dichrome versus Polychrome 0.57 (0.33, 0.98) 0.0436 Polychrome

Some – false

Monochrome versus Dichrome 2.15 (1.05, 4.41) 0.0364 Monochrome

Monochrome versus Polychrome 2.09 (1.04, 4.22) 0.0391 Monochrome
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analysis consistently indicate that there is no overall difference in the three colour
treatments: the overall ranking is Monochrome = Dichrome = Polychrome.

Statistical Analysis: Comparison by Checkbox Type. When seeking to
establish whether significant performance differences exist for each of the three
variants (direct, indirect, false) of each of the six statement types, we can only
consider the accuracy data as it was not meaningful to collect time date for
individual checkboxes. As with the overall analysis, we produced a GEE based
statistical model. Results for the pairwise comparisons where significant differ-
ences were observed are given in Table 6. We can see from the significant results
that in two cases Dichrome is significantly less accurate than Polychrome. In the
two other cases, Monochrome is significantly more accurate than both Dichrome
and Polychrome.

5 Discussion

We observed that for Only and Only-indirect statements, Polychrome outper-
formed Dichrome. In these cases, the correct response would have been to select
the associated checkbox. These results indicate that Dichrome did not facilitate
the extraction of the respective information as well as Polychrome. Surprisingly,
however, we also observed that using black curves and arrows was significantly
more effective in the case of Some-false tasks; these are tasks where the response
is incorrect if the associated checkbox is ticked. These results indicate that the
Dichrome and Polychrome treatments, which were statistically indistinguishable
from each other, did not facilitate the extraction of the respective information
as well as Monochrome. Of course, it would be remiss not to remark on the fact
that we only had four significant results out of the 60 statistical tests conducted.
One would expect to obtain three type-I errors when conducting this number of
tests, at the 5% level. Thus, we cannot say with any confidence that any of the
treatments significantly differ.

It is particularly surprisingly that we obtained notable evidence that the
choice of colour treatment made no difference for those tasks with checkboxes
whose associated statements only involved sets (i.e. Subset or Disjoint state-
ments). Here, we expected the polychrome treatment to yield superior task
performance because only the information conveyed by the underlying Euler
diagrams was necessary for the task. However our observations suggest that, for
diagrams with a high level of complexity, the effectiveness of multiple colours for
the curves in the underlying Euler diagram is indeed diminished; the Polychrome
treatment required 18 colours. Perceptual theory suggests that up to eight to ten
colours can be rapidly distinguished by the human eye, after which the percep-
tual distinction between these colours diminishes [11]. Therefore, we posit that
a reduction in the ability to easily distinguish between 10 or more colours has
compromised the efficacy that we otherwise anticipated using the Polychrome
treatment. Moreover, efficacy is compromised to such an extent that there was



182 S. McGrath et al.

no benefit of using multiple colours, compared to Monochrome, and sometimes
performance was actually inferior (noting the caveat concerning type-I errors).

In the case of Monochrome, graphical shape is the only differentiator between
syntactic elements that represents sets (circles) and those which represents
binary relations (arrows). Similarity theory [9] indicates that using different syn-
tactic devices for semantically different entities is sensible: using syntactically
similar entities leads to increased search times when seeking to find a particular
piece of ‘target’ syntax. Thus, in the Monochrome case, shape is the only graph-
ical property that may aid a visual search through the diagram when seeking to
establish the truth of a given statement. Now, colour can also be used to group
syntactic devices that have some semantic commonality, as seen in Dichrome
treatment: colours are assigned to syntactic items that represent semantically
different types of things: blue curves represent sets and green arrows represent
binary relations. In this sense, colour is being used to reinforce the semantic dif-
ferentiation of syntactic devices via shapes when performing visual search. Thus,
we see that using two colours or two shapes has the potential to aid information
extraction, with the Dichrome treatment exploiting both and the monochrome
treatment exploiting only shape. It is known that colour is a more salient graph-
ical property than form [7], indicating that the use of two colours may be more
beneficial than just the use of different shapes. However, our study suggests that
using two shapes and two colours (Dichrome) is not more effective than using
two shapes and just black (Monochrome). We posit that circles and arrows have
sufficiently different visual characteristics meaning that the additional graphical
element of colour does not bring about performance benefits.

6 Conclusion

Based on prior research into Euler diagrams [5], there was evidence to suggest
that manipulating colour in concept diagrams had the potential to impact user
task performance. However, the case was not clear-cut: concept diagrams express
more complex statements than Euler diagrams, exploiting a more diverse set of
graphical symbols with which to make statements. Indeed, being designed for use
in ontology engineering, the kinds of statements that concept diagrams express
can require each diagram to include many syntactic elements, as in Fig. 5. These
facts suggested that further empirical insight was required in order to understand
the role that colour plays in the effective interpretation of concept diagrams. Our
study suggests that colour is no longer a useful visual variable to manipulate
when seeking to improve user task performance, at least for the kinds of tasks
we have evaluated. The take-away message from our study is that, whilst colour
is a useful graphical property to manipulate for Euler diagrams, the benefits may
be lost in the case of concept diagrams.

The discussion in Sect. 5 alludes to the fact that one reason using two colours
may not yield performance benefits – when used consistently with graphical
shape to segregate syntactic elements that have differing semantic properties –
is that circles and arrows have distinctly different shapes. Thus, our research
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raises an important question: when using colour to visually group syntactic ele-
ments that have a common semantic property, how different do the elements’
shapes need to be in order for there to be performance benefits arising from using
colours? This question is not relevant for just concept diagrams, but all diagram-
matic notations that employ a range of graphical shapes to convey information.
Finally, we note a further avenue for research is to explore the role of interaction
in facilitating information extraction from concept diagrams.
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Abstract. Tables are widely used for storing, retrieving, communicat-
ing, and processing information, but in the literature on the study of
representations they are still somewhat neglected. The strong structural
constraints on tables allow for a clear identification of their characteristic
features and the roles these play in the use of tables as representational
and cognitive tools. After introducing syntactic, spatial, and semantic
features of tables, we give an account of how these affect our perception
and cognition on the basis of fundamental principles of Gestalt psychol-
ogy. Next are discussed the ways in which these features of tables support
their uses in providing a global access to information, retrieving infor-
mation, and visualizing relational structure and patterns. The latter is
particularly important, because it shows how tables can contribute to
the generation of new knowledge. In addition, tables also provide effi-
cient means for manipulating information in general and in structured
notations. In sum, tables are powerful and efficient representational tools.

Keywords: Tables · Diagrams · Cognition · Gestalt psychology

1 Introduction

In the wake of the groundbreaking analysis of the use of diagrams by Larkin and
Simon [15], the computational efficacy of a representational system for solving
particular tasks has become an important criterion for the assessment of such
systems. According to Giardino, this raises the question of how this efficacy ‘hap-
pens to emerge from the interaction between more spontaneous abilities and the
production of cultural artifacts’ [6, p. 81]. While by far the most work in this
area has been done on diagrams, understood more generally, in the present paper
a somewhat neglected kind of representation is discussed, namely tables. As we
shall see below, tables are fairly constrained representations, which explains per-
haps why they have not received much attention to so far. If they are mentioned
at all, tables are mainly discussed together with other kinds of representations, —
e. g., in [7] they are considered together with graphs and illustrations, in [11] and
[21] as instances of a much broader category of diagrams, — so that their specific
features have often been glossed over. A noteworthy exception are the analyses
of relational tables by Shimojima and his colleagues [19,20,26].

The main questions addressed in this paper are: what are the specific fea-
tures of tables and how do these contribute to the particular uses of tables?
c© The Author(s) 2022
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The structural constraints of tables allow for an explicit identification of their
syntactic, spatial, and semantic features and, in turn, of the roles these play in
the use of tables as representational and cognitive tools.

In the discussion we attempt to navigate between the Scylla of studying very
specific kinds of systems and tasks, which can lead to concrete insights, but raises
the question of their generalizability, and the Charybdis of trying to cover a wide
range of different systems and thereby running the risk of leading to a high-level
analysis that has only little to say about specific cases. In the following, we begin
by giving an overview of what we consider tables to be, of their main syntactic,
spatial, and semantic features and of the effects of these features on perception
and cognition (Sect. 2). We then turn to studying the relation of these features
to the, so to speak, passive uses of tables: for the general presentation of infor-
mation, information retrieval, and the visualization of relational structure and
patterns (Sects. 3–5). The latter is particularly important, because it shows how
tables can contribute to the detection of new patterns and generation of new
knowledge. In Sects. 6–8, active interactions with tables are discussed, namely
operations on tables, tabular manipulations of structured notations, and oper-
ations on infinite tables. Together, these discussions aim to shed some light on
the power of tables as representational tools and on how this comes about.

2 Tables and Their Features

Definition. Tables are defined here in terms of syntactic, spatial, and semantic
features. First, a table is a two-dimensional arrangement of n× k items, so that
the position of each cell of the table can be uniquely indexed by a pair 〈x, y〉 of
positive integers, with x ≤ n and y ≤ k. Second, tables are presented spatially
as horizontal rows and vertical columns. Third, it is a characteristic feature of a
table that its rows and columns exhibit some semantic unity, i. e., that each row
and column can be understood as forming a meaningful entity.1 An arrangement
of cells into rows and columns that lacks this kind of semantic unity is an array
or a grid [8]. Examples of particular representations that make use of columns
(or rows), but lack the semantic unity of their rows (or columns, respectively),
or that are simply grids are abaci, bar charts, and cellular automata.

Syntactic and Spatial Features of Tables. According to the definition given
above, a table is an array of cells, such that some of them are adjacent (neigh-
bors); the individual indices of neighboring cells differ only by 1. Figure 1 contains
an example of a table showing the indices of each cell (on the left) and the rela-
tive indices of the neighbors of the cell 〈x, y〉.2 Due to the spatial structure of a
table, the cells are typically presented in a rectangle and we can easily determine
the rows and columns, as well as various diagonals: cells, whose indices that have
the same x-coordinate form a row, those with the same y-coordinate a column.

1 Such collections of multiple components of a diagram that ‘form a unit with semantic
significance’ are called ‘global objects’ in [26, p. 261].

2 The corner of the table in which cell 〈1, 1〉 is positioned is arbitrary.
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1, 1 1, 2 1, k

2, 1 2, 2 2, k
...

...
. . .

...

n, 1 n, 2 n, k

x − 1, y − 1 x − 1, y x − 1, y + 1
↑

x, y − 1 x, y x, y + 1
↓

x+ 1, y − 1 x+ 1, y x+ 1, y + 1

Fig. 1. Indices of an n × k table (on the left) and indices of neighboring cells.

Two cells that differ by 1 in both of their coordinates are diagonal. It is a crucial
aspect of tables that their syntactic features are directly related to their spatial
features, which will be relevant in our discussion in Sect. 2.

In many cases, the presentation of a table is augmented by labels for the rows
and columns, which can be used either to denote the rows and columns, or to
convey information about the type of their content. Particular presentations of
tables frequently also make use of horizontal or vertical lines, coloring or shading
of alternate rows or columns, and different spacing between rows and columns
to emphasize the semantic unity of the entries and to guide the reading of the
table [28, p. 81–95].

Semantic Features of Tables. We can also distinguish certain types of tables
on the basis of the content of their cells: in a homogeneous table all cells are of
the same type (e. g., numbers); in a relational table all cells can take only two
values, such as empty/nonempty, 0/1, or true/false. Such tables are also called
‘feature tables’ and are discussed in [19]. More important for their practical use,
however, is the ordering of the data in some of the rows or columns. Accordingly,
Wainer’s first rule for the preparation of useful tables is: ‘Order the rows and
columns in a way that makes sense’ [31]. Indeed, hardly any tables we come
across do not exhibit some kind of ordering of their rows or columns: ledgers are
ordered by date, timetables by time, directories by last name, duty rosters by
time and name, inventory lists by item codes, etc. This is a semantic feature,
because it does not depend on the spatial arrangement of the cells, but on their
content. The ordering (or sorting) of a table implies a certain direction of reading
(‘directedness’ is one of the basic aspects of the ‘grammar’ of diagrams in [11,
p. 71–73]), which in turn has the effect that a particular cell is identified as
the origin, which is typically where one would start reading the entries. As the
example of a Japanese train schedule reproduced in [28, p. 47] shows, the origin
does not have to be in one of the corners of the table. The rows and columns,
together with the origin and directions of reading constitute what Tufte calls
the ‘viewing architecture’ of a table [29, p. 159].

Effects on Perception and Cognition. Since tables are often perceived as a
whole, Gestalt psychology provides us with a useful framework for their study.
In particular, we will appeal to the Gestalt principles of similarity, proximity,
good continuation, and symmetry [5,17]. The spatial arrangement of a table
immediately makes us perceive the rows and columns as individual entities. For
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example, if the columns have entries of different types, e. g., text, dates, numbers,
then we tend to perceive these entries as belonging together (i. e., as forming
a column), due to the Gestalt principle of similarity. By the same principle,
coloring can be used so that we perceive the items as belonging together and
thereby forming a unit. In addition, we can also employ judicious spacing: if
the rows are closer together than the columns, then, according to the Gestalt
principle of proximity, we perceive the items above each other as being connected,
i. e., the columns stand out, and vice versa. This phenomenon is illustrated by
the following arrangements:

◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦
◦◦◦◦◦
◦◦◦◦◦
◦◦◦◦◦

Not only does the presentation of cell items guide our perception towards
the rows and columns, but it also suggests certain axes for reading and moving
through the table. That the ordering of entries suggests a particular starting cell
(origin) and a direction for reading was already mentioned above. The proximity
of neighboring cells similarly suggests a movement in horizontal, vertical, and
diagonal directions (indicated by the arrows in Fig. 1, right), and the Gestalt
principle of good continuation or continuity of direction, then, continues to guide
our perception along that line.

Materiality. Timetables, which are often adduced as prototypical examples of
tables are static, printed on paper or displayed on a computer screen. This limits
our possible interactions with them to a mainly passive use of retrieving informa-
tion. Nevertheless, the particular form and kind of material makes a difference
even in this case, e. g., when the table extends over many pages. Moreover, we can
also produce tables ourselves, e. g., ledgers, which allows us to further extend and
manipulate them. Spreadsheet software allows even further possibilities, such as
including formulas that refer to the values of other cells and sorting the entire
table according to the entries of a specific row or column.

3 Access to Global Information

After the introduction of the main features of tables, we shall now address how
these features contribute to the use of tables as cognitive tools. We begin with the
access to global information, before turning to different algorithms for accessing
particular cells (Sect. 4) and the visualization of relational patterns (Sect. 5).

Early examples of the arrangement of data into tables are ledgers, e. g., to
record the sales in a store [8, p. 125–146].3 Historically, such ledgers often con-
sisted of sheets that could be spread on a table (their modern cousins, called
‘spreadsheets’, are discussed below, in Sect. 6). In a typical ledger, each row rep-
resents an individual sale, recording the date, item, buyer, and price. In addition
to simply recording the information, the tabular arrangement offers some very
specific ways of assessing it:
3 See [1] for many examples of the use of tables in the history of mathematics.
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(1) It affords a quick overview of the data,

e. g., regarding the total number of sales, the distribution of customers and prices.
Such an overview also allows for

(2) the identification of singularities,

such as particularly large numbers in a place-value system, or empty cells in an
otherwise filled table; they stand out, because they violate the Gestalt principle
of similarity and are therefore immediately perceived. Thus, in practical terms,

(3) such an arrangement makes it easier to detect missing data

(as the corresponding cells are empty) than a linear presentation. Moreover,

(4) it provides for means to check for the correctness of the data,

e. g., dates must have a fixed form; cells in a number-column cannot contain
letters; numerical values within a column are typically allowed only within a
certain range; if a column is sorted, violations of the order can be detected. Note,
that these checks can be performed purely syntactically, i. e., without knowledge
of the specific meanings of the entries.

4 Information Retrieval

In discussions about the advantages of tabular representations, it is frequently
claimed, on the basis of an appeal to the reader’s intuition, that they make
it easier to locate information (see, e. g., [6, p. 80]). Consider the example of a
timetable, such as the following departure times at a bus station:

8:00 8:20 8:40
9:00 9:30

10:00 10:20 10:40

Clearly, this information could be represented linearly, but with a tabular repre-
sentation it is easy to find the next departure time by first finding the appropriate
row on the basis of the entries in the left-most column and then going through
the columns. Thus, in addition to the quick overview of the data that is provided
by a table, we have identified another important advantage of tables, namely the

(5) quick access to specific cells.

This property underlies the long-lasting use of tables to represent astronomical
data in science and logarithmic tables, as well as addition and multiplication
tables in mathematics.

Before moving on, we should pause for a moment and reflect once more
on the previous claim. After all, binary search is in general the best algorithm
for searching for an entry in an ordered list, so let us briefly look at how the
representation of the data interacts with the complexity of search algorithms
and whether tables really offer an advantage over linear representations.
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To find an element in a sorted list consisting of n · k elements using binary
search takes log2(n · k) steps in the worst case. Now, if these elements are
arranged in a n × k table, applying a binary search to the rows takes log2 n
steps and applying it again to the columns in that row takes another log2 k
steps, resulting in a total of log2 n + log2 k steps. This, however, is equivalent
to log2(n · k). Thus, when using binary search, it makes no difference whether
the data is presented as a table or linearly, so we cannot explain the intuition
behind the efficacy of tables for information retrieval on the basis of this search
algorithm. (We analyzed only the worst case scenario, but considerations about
average cases are analogous.)

While considerations of computational complexity provide a useful means of
comparison between different representations, if we want to use them to tell us
something about the efficacy of representations for human use, we must also
take into account the plausibility of the assumptions on which they rely, in this
case that each computational step has the same cost. In practice, however, this
assumption is frequently unjustified. Consider, for example, the task of searching
for a particular name in an old-fashioned telephone book. Given that the entries
are sorted by name, we could do a binary search: Open the book in the middle
and determine whether the name we are looking for occurs in the first half or in
the second; then, go to the relevant half and repeat the procedure, by looking
again at the page in the middle of that half of the book, and so on. Instead of
applying this procedure, however, what many people will do is to flip through
the book until one reaches pages whose entries begin with the same letter as the
name we are looking for. Then, one flips back or forth page by page, depending on
where one expects the name to be. In terms of complexity theory, this procedure
corresponds more or less to a linear search through the phone book, which in
general involves vastly more steps than a binary search. However, the physical
operation of ‘flipping through the pages’ might well be easier and quicker than
‘open the book in the middle of a given block of pages’, which would be a good
reason for many people’s preference for using a linear search algorithm.

So, if we use a linear search algorithm, how does the presentation of the
data affect the complexity of the search? A linear search in a sorted list of n · k
elements takes n · k steps in the worst case. However, a linear search of the rows
takes at most n steps and a linear search of the columns another k, resulting in
a total of n + k steps. Here, the difference is considerable, as n + k is usually
much smaller than n · k. (In a n × n table, the difference is between 2n and n2

steps, i. e., between linear and quadratic complexity classes.) In other words,
when performing a linear search (which presumably comes more naturally to
most of us), using a table to represent the data yields much faster search results,
just as our intuitions predicted.

In addition to the material conditions that can affect the ease with which
certain operations can be carried out, a linear search algorithm might also be
preferred because it exploits features of our perceptual apparatus, which allows
the scanning of individual elements of a list at a glance (in particular if the list is
small), whereas determining the middle element of a list would require additional
reasoning. In fact, for lists of relatively short length the actual differences in
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necessary steps are fairly small and complexity considerations become relevant
only with large numbers of elements. Moreover, to rows or columns that are not
sorted, as is the case for ledgers and many other tables, binary search cannot
be applied at all. Thus, with regard to locating elements, there is a considerable
interaction between physical, perceptual, and cognitive constraints, with the
content and structural features of the representation.

5 Visualization of Relational Structure and Patterns

As I have argued above, the spatial arrangement of a table allows us to easily
perceive some of the items as belonging together (in particular, those arranged
in rows, columns, and diagonals). Furthermore, symmetries stand out frequently,
too, as the recognition of symmetries is also a Gestalt principle. In short, tables

(6) facilitate the perception of particular patterns in the data.

If these patterns also correspond to meaningful properties of the represented
subject matter, this amounts to an immediate visualization of structural infor-
mation contained in the data.

Even in the absence of deep structural relations, merely displaying data in
a table can focus a researcher’s attention to a connection between the ordering
of the table and particular features of the data. For example, such connections
were found in the tables used for the classification of chemical substances by
Doumas and Boullay (1828), which is discussed by Klein in order to illustrate
the role of ‘paper tools’ in the creation of scientific knowledge [9]. Polya quotes
Jacob Bernoulli (1713) as noting that ‘This table of numbers has eminent and
admirable properties’; in his book on problem solving, Polya himself frequently
suggests to arrange mathematical formulas ‘in suitable tables’ [16, vol. 2, p. 193]
and encourages the student to ask: ‘Do you notice something worth noticing—
some law or pattern or regularity?’ [16, vol. 2, p. 152].4

In order to account for the fact that images and graphs can represent informa-
tion at various levels of abstraction in a way that makes it immediately available
to the users, Kulvicki introduced a notion of ‘extractability’ of information that
is based on a correlation between what is ‘syntactically’ and what is ‘semantically
salient’ [12]. As we shall see in the following example of tabular representations
of binary operations, the specific (syntactic) patterns are straightforwardly rec-
ognizable and their correlation to (semantic) properties of the operations that
are represented can be easily established. Thus, Kulvicki’s analysis of images
(as opposed to linguistic representations) seems to apply to tables just as well;
indeed, in most examples that he gives himself, the information is actually rep-
resented in a table.

To illustrate the previous claim, let us look at some simple examples in which
tables that represent the results of binary operations contain easily identifiable

4 Of course, patterns can also emerge from arrangements that are not tables, as Ulam’s
famous patterns of the distribution of prime numbers show [22].
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+3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

×3 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

→

Fig. 2. Tables for addition and multiplication modulo 3, truth table for implication.

syntactic patterns that correspond to properties of the operations: the results of
addition and multiplication modulo 3 are shown in the first two labeled homo-
geneous tables in Fig. 2. Here some observations about the distribution of the
values in the tables: (i) Each entry consists of one of the values 0, 1, 2, which are
also the input values for the operations according to the labels; this corresponds
to the fact that the operations are closed, i. e., they do not return any value that
is not among the inputs. (ii) The fact that the top line of the +3-table corre-
sponds exactly to the labels indicates that the element 0 is the left-identity of
the operation, just as 1 is the left-identity of ×3. These elements are also right-
identities, as the elements in their columns match exactly the column labels.
These observations together establish 0 as the identity element for +3, and 1
as the identity element for ×3. (iii) Because the identity element for +3 occurs
in each row and each column, the operation has an inverse, which is not the
case for ×3. These observations identify +3 as a group operation. (iv) The fact
that the entries are symmetrical with respect to the main diagonal from top
left to bottom right indicates that both operations +3 and ×3 are commutative.
Applying the same analysis to the truth-table for classical implication (shown
in Fig. 2, right) yields that the operation is also closed, has a left-identity (T),
but no right-identity, has no inverse operation, and is not commutative.

Tables that exhibit particular patterns are also easier to memorize, as the his-
torian of mathematics Swetz remarks: ‘Multiplication facts were organized into
tables, traditionally called Pythagorean tables, in which the numerical patterns
might be better observed and remembered’ [25, p. 84].

6 Operations on Tables

We turn now to the ways in which one can actively engage with tables by per-
forming operations on cells or groups of cells.

Functions on Cells. The notion of ‘derivative meaning’ was introduced by Shi-
mojima as ‘the additional informational relation derivable from, but not included
in, the system’s basic semantic conventions’ of a representation [20, p. 114]. For
the case of tables, the basic semantic conventions are those that give the mean-
ings of the values in individual cells. Typical derived information that can be
obtained in a table involves those values that are contained in entire rows and
columns, for example: how many elements are contained in a row or column, the
sum of the elements, the average, or other statistical or arithmetical functions.
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Name T1 T2 T3

A 50 75 85
B 30 50 55
C 40 85 65

Name T1 T2 T3 Sum

A 50 75 85 210
B 30 50 55 144
C 40 85 65 180

Avg. 40 70 68

Fig. 3. Simple tabular arrangement of test results with derived meanings.

As a simple illustration, consider the results of three tests (T1, T2, and T3)
of three students (A, B, C), as shown in the left table in Fig. 3. This table is
used to derive additional information, namely the sums of the results for each
student and the averages of each test, recorded in the table on the right. We can
readily see that the average of the first test is considerably lower than the other
two, and that student A had the highest overall score. I take it that this use of
tables is familiar and hardly surprising, but the question arises: why do tables
lend themselves to this usage? The answer brings us back to the features of
tables introduced in Sect. 2. Due to the semantic unity of the rows and columns,
to determine the average result of a test or sum of the results of an individual
student, only the values in a single column (or row, respectively) have to be
consulted; the spatial arrangement makes this task easier, because all cells that
have to be taken into consideration are direct vertical (or horizontal, respectively)
neighboring cells. This simplifies the symbolic expression that is used to refer to
the range of these cells (when formulas on the cells are entered in a spreadsheet)
and facilitates shifting the focus of one’s attention (in case the derived meanings
are obtained ‘by hand’). Thus, it is the combination of the syntactic, spatial,
and semantic characteristics of tables, together with the effect these have on our
perception, that underlies the ease in which derived information can be obtained
from a tabular representation.5

Spreadsheets. Operations on tables that can be expressed as functions on cells
are an essential feature of spreadsheets. However, in addition to simply automat-
ing operations that could otherwise also be done by hand, spreadsheets also offer
the ability of sorting a table according to the values in a row or column. To
achieve this with traditional tables, one would have to create a new, separate
table. The fact that spreadsheets allow for in-place sorting, or, to use Stenning’s
term, an ‘agglomerative’ mode of reasoning [23, p. 41], puts some pressure on
considering the difference between tables and spreadsheets as merely one per-
taining to their materiality. Rather, it seems that tables and spreadsheets are

5 Turing’s general analysis of computation also begins with a two-dimensional writing
surface: ‘Computing is normally done by writing certain symbols on paper. We may
suppose this paper is divided into squares like a child’s arithmetic book. In elemen-
tary arithmetic the two-dimensional character of the paper is sometimes used’ [30,
p. 239]. Although, Turing does not consider this to be an essential feature of com-
putations and thus restricts his model to a one-dimensional tape. Nevertheless, a
Turing Machine can also move its head only to adjacent cells on the tape.
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really two different kinds of representations. However, we must leave this issue
as a topic for future discussion.

Matrices. The study of equations in terms of tabular arrangements of their
coefficients was practiced already in ancient China [2], but matrices, as genuine
mathematical objects became popular only in the nineteenth century. While
they can be understood generally as arrays of numbers, in many applications
their rows and columns represent clearly discernible semantic units. Moreover,
although many operations on matrices, such as transposition and matrix mul-
tiplication, are formally defined in terms of the indices of the elements, they
are often conceived, taught, and memorized in terms of operations on rows and
columns, thereby appealing directly to the spatial structure of matrices.

7 Tabular Manipulations of Structured Notations

In the previous sections I have argued that the overlapping of the syntactic and
spatial features of tables with the semantic unity of the rows and columns allows
for, among other things, an immediate perception of patterns and a straightfor-
ward formulation of operations on the data. So far, however, we have considered
cells as containing only basic elements, e. g., linguistic and numeric items. We
come now to a new aspect of the power of tables as representational tools, namely
in the case that the cells contain only parts of more complex expressions.

Due to their recursive grammar and compositional semantics, expressions in
most mathematical notations are themselves structured. Because of this, we can
not only use tables to represent the relations between different expressions, but
also to represent the relations of the symbols that constitute an expression. Take
numerals, for example. We have already seen examples where numerals were ele-
ments in a table, but we can also use a tabular arrangement for the numerals
themselves. For the sake of illustration, let us first consider a more exotic exam-
ple, namely Roman numerals, and then turn to more familiar algorithms for the
decimal place-value system and algebraic equations.

Roman Numerals. In the left table of Fig. 4 we see the standard, linear repre-
sentation of two Roman numerals in the purely additive format. We can perceive
at a glance that the first one takes up more space, thus presumably has more
symbols, but because of the different width of the symbols (‘M’ vs. ‘I’), we cannot
be completely sure about that. On the right side of the figure the same numer-
als are represented in a tabular format, in which each row contains a numeral
expression and there is a column for each group of letters. Here we immediately

Linear representation

MDCCCLXXII
MMCXXXVI

Tabular representation

M D CCC L XX II
MM C XXX V I

Fig. 4. Linear and tabular representations of Roman numerals.



Tables as Powerful Representational Tools 195

recognize that the second numeral has two M’s and thus represents a greater
value than the first. The readability of the numerals is greatly enhanced by the
tabular representation. Since additions of such numerals are done letter-by-letter
(with subsequent simplifications), adding numerals in this format can be done
column-wise, thus simplifying the procedure considerably. Indeed, in their dis-
cussion of addition and multiplication algorithms for Roman numerals, Schlimm
and Neth use such a tabular representation [18].

Addition and Multiplication Algorithms. Most likely we are so familiar
with our paper-and-pencil algorithms using the Indo-Arabic decimal place-value
system that we tend to overlook the basic assumptions that make them possible
in the first place. In particular, most addition algorithms presuppose that the
numerals are written underneath each other in a right-aligned way (compare
the additions shown in Fig. 5). In fact, if the numerals were left-aligned or not
written underneath each other at all, the formulation of an addition algorithm
would be much more complex, since it cannot rely on the column-wise processing
of the digits. Thus, the (correct) tabular arrangement of the numerals is crucial
for our familiar, simple, and efficient addition algorithm.

The tabular arrangement of the addends also plays a crucial role in common
multiplication algorithms. Notice the placement of the intermediate results of
the addends shown in the first two multiplications in Fig. 6. Here, ‘115’ and ‘92’
are not right-aligned, because they are obtained by multiplication of single digits
that have different power-10 factors. In this way, however, the usual column-wise
addition algorithm can still be applied. (Historically, this algorithm was known
as ‘chessboard multiplication’, clearly in reference to the tabular arrangement
[24, p. 205].) In the third multiplication shown in Fig. 6, the intermediate results
are right-aligned, which has the consequence that we have to add the digits
diagonally, instead of column-wise (which is indicated by the shading of the
diagonal). An even more refined algorithm, sometimes called ‘lattice multiplica-
tion’, can be found in the Treviso Arithmetic of 1478 [24] (shown in the fourth
example in Fig. 6). Here, no intermediate handling of carries is necessary, as the
intermediate results of the single-digit multiplications are simply written out,
which requires more diagonals to be considered when adding these intermediate
results. What is important for our discussion is that all of these algorithms make
essential use of the fact that a tabular arrangement of the intermediate results
allows for a straightforward computation of the final result by processing single
digit addition either column-wise or diagonally.

9 2 1
+1 1 5 3

2 0 7 4

9 2 1
+1 1 5 3

2 0 7 4

921 + 1153 = 2074

Fig. 5. Simple additions with Indo-Arabic numerals.
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2 3 × 4 5

1 1 5
9 2

1 0 3 5

2 3 × 4 5

9 2
1 1 5

1 0 3 5

2 3 ×
9 2 4

1 1 5 5

1 0 3 5

2 3 ×
1

8 2 4
1 1
0 5 5

1 0 3 5

Fig. 6. Simple multiplications with Indo-Arabic numerals.

Algebraic Equations. To counter the impression that the advantages of the
use of tables for structured notations applies only to numerals, let us briefly
look at another example, namely algebraic equations. Consider the equations
x2 + 3x = 2 and y2 = −3y + 2. A reader with some mathematical experience
might be able to parse them quickly, but, in general, the relations between the
two equations are easier to detect if they are presented as follows:

x2 +3x = 2
y2 = −3y +2

The tabular form of this presentation is determined by the following features:
Each of the two rows represents an equation and even without any labels we can
readily discern the columns, organized in terms of the powers of the variables,
the signs for arithmetical operations, and the equality symbol. By scanning the
columns we quickly realize the following differences: In the first column, the
elements differ only in the names of the variables (‘x’ and ‘y’), but not in their
power; a term corresponding to ‘3x’ is missing in the second equation, while a
term corresponding to ‘−3y’ is missing in the first equation; these two terms
occur on different sides of the column with the equation sign and they differ in
their leading sign (‘+’ vs. ‘−’). With the additional knowledge that a term can
be ‘pushed’ to the other side of the equality symbol while reversing the leading
sign, we can see that the two equations express the same condition for the free
variable and that they only differ in the particular name of this variable (‘x’ and
‘y’). These considerations about the manipulation of algebraic equations are in
accord with the ‘perceptual account of symbolic reasoning’ [13], which is mainly
based on empirical work by Landy and Goldstone. In fact, examples given to
illustrate this account use a the tabular representation of equations (see, e. g.,
Fig. 1 in [14, p. 1073]).

8 Operations on Infinite Tables

So far we have considered only finite, two-dimensional tables, but some of their
characteristic features remain in place if we generalize the concept to infinitely
many rows and/or columns, as will be illustrated in the following two proofs.6

6 Extending tables to three or more dimensions is beyond the scope of this paper.
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1
1

1
2

1
3

1
4

1
5

1
6

. . .

2
1

2
2

2
3

2
4

2
5

· · ·
3
1

3
2

3
3

· · ·
4
1

4
2

· · ·
...

1
1

→ 1
2

1
3

→ 1
4

1
5

→ 1
6

2
1

2
2

2
3

2
4

2
5

↓
3
1

3
2

3
3 . .

.

4
1

4
2

...

Fig. 7. Tables illustrating the argument for the denumerability of the rationals.

Dovetailing. It is a surprising fact that follows from Cantor’s definition of
infinite cardinalities, which asserts that two sets have the same cardinality if
and only if they can be put into a 1-1 correspondence, that the set of rational
numbers has the same cardinality as the set of natural numbers. To establish
this, one has to produce a 1-1 correspondence between them, such as

1 2 3 4 5 6 . . .

1
1

1
2

2
1

3
1

2
2

1
3 . . .

An untrained reader might wonder what exactly the rule is that establishes the
correspondence (i. e., which rational numbers follow in the sequence and are
correlated to 7, 8, and 9?) and whether this table actually contains all fractions.
A different arrangement of the fractions gives an answer to these questions in an
intuitive way. The table on the left side of Fig. 7 shows an arrangement of the
rational numbers, represented as fractions, and the table on the right illustrates
how one can count the fractions, i. e., establish a 1-1 correspondence between the
natural numbers and the rational numbers. (In fact, the table also shows that
some rational numbers are counted more than once, since the fractions 1

1 and 2
2 ,

for example, represent the same rational number, so additional restrictions must
be imposed to make this work).

Diagonalization. The well-known presentation of the argument that the real
numbers between 0 and 1 are uncountable, i. e., that it is impossible to estab-
lish a 1-1 correlation between them, begins by assuming that it is possible to
have a 1-1 mapping f between the natural numbers and the real numbers in
question. This is illustrated by a table in which we have the natural numbers
as labels for the rows and each element of the decimal expansion of the cor-
responding real numbers in one column each (as shown in Fig. 8, left; this is
another example of a tabular representation of a structured notation, discussed
in the previous section). The construction of a real number that cannot be in
this table is obtained by changing the first element in the decimal expansion of
the first real number in the table, the second element of the expansion of the
second number, and so on; these elements are marked in the table on the right
of Fig. 8 by boxes. The name of this proof technique, ‘diagonalization’, clearly
refers to the tabular arrangement shown and the fact that this presentation has
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N R

1 0. 1 2 3 4 5 . . .
2 0. 5 0 0 0 0 . . .
3 0. 3 3 3 3 3 . . .
4 0. 1 2 1 2 1 . . .
...

...
. . .

N R

1 0. 1 2 3 4 5 . . .

2 0. 5 0 0 0 0 . . .

3 0. 3 3 3 3 3 . . .

4 0. 1 2 1 2 1 . . .
...

...
. . .

Fig. 8. Part of the argument of the uncountability of R.

become the default in textbooks on set theory can be taken as evidence for its
pedagogical value (e. g., [4, p. 132]; for the historical development of Cantor’s
proofs, see [27]).

9 Discussion

Tables as Effective Representations. Because of the semantic unity of the
rows and columns of a table, any element is (semantically) related to other
elements in two different ways, which also correspond to the syntactic (rows
and columns) and spatial arrangement of the elements. Thus, when we see two
elements next to each other, we also ‘see’ their semantic connection: syntactic
movement (e. g., in a row) corresponds to spatial movement (e. g., to the right)
and the realization that part of the meaning of the element stays the same and
part of it changes. This alignment of syntax, semantics, and visual appearance
is what makes tables so versatile and powerful representations. For example, we
have identified the following aspects of tables in our discussion: (1) They afford
a quick overview of the data, (2) allow for the identification of singularities,
(3) make it easier to detect missing data, (4) provide for means to check for the
correctness of the data, (5) provide quick access to specific cells, and (6) facilitate
the perception of particular patterns in the data. Moreover, tables facilitate
the expression of functions on their elements and can be used to simplify the
manipulations of structured notations.

What is involved in retrieving the information represented in a table is deeply
embedded in our reading habits along vertical and horizontal axes (from left to
right, from top to bottom) and our background knowledge of ordered sequences
(alphabet, numerals, cultural conventions such as the order of first name/last
name). The Gestalt principles of proximity, similarity, good continuation, and
symmetry, underlie our spontaneous perceptual and cognitive reactions to tab-
ular representations. Due to the two-dimensional organization, binary relations
that hold between the elements appear as visual patterns that can be immedi-
ately recognized. In this way, tables can be said to translate abstract relations
into a perceivable form. If structural relations hold between the components of
expressions in some notation, then a tabular arrangement can support the under-
standing of these expressions as well as their manipulations. Just as formulas can
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be productive tools in science [9] and numerals can be tools for operating with
numbers [10], tables are a powerful tool for our processing of information.

Tables and Diagrams. One motivation to take a closer look at tables, to
determine their characteristic features, and to study how these contribute to
the efficiency of this kind of representation, has been their relative simplicity
and the fact that they are rather constrained. This lack of generality was offset
by a clear identification of their structural (syntactic and spatial) and semantic
features, and how these affect our perception and our ability to reason with them.
If diagrams are understood from a semiotic point of view as structured signs,
then tables are simply a particular, well-defined category of diagrams. However,
diagrams that are frequently discussed in the literature (e. g., [3,6,15,20]) are
often more general than tables (pace Stenning, who considers directly interpreted
diagrams to be subject to more constraints than tables [23, p. 45]), since they do
not require any vertical or horizontal arrangement of their elements, and as more
expressive, since they typically use lines or arrows to represent relations between
elements. Nevertheless, it also seems that, whenever possible, such diagrams
are presented in such a way that they look very much like tables! The most
striking examples are commutative diagrams, in which the elements are arranged
in rows and columns in such a way that these also exhibit a semantic unity (see,
e. g., [20, p. 122], [3, p. 3,18]). This suggests that it might be fruitful to use the
characteristic features of tables identified above and their effects on perception
and cognition also as ingredients of a more general discussion of diagrams.
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Abstract. Complex models, such as neural networks (NNs), are com-
prised of many interrelated components. In order to represent these
models, eliciting and characterising the relations between components
is essential. Perhaps because of this, diagrams, as “icons of relation”,
are a prevalent medium for signifying complex models. Diagrams used
to communicate NN architectures are currently extremely varied. The
diversity in diagrammatic choices provides an opportunity to gain insight
into the aspects which are being prioritised for communication and into
the conceptualisations of the diagram creators.
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models

1 Introduction

Diagrams are a signifier, cognitive aid, and mediator of communication. In
describing software systems, diagrams often provide a level of abstraction that
facilitates an understanding of the overall structure, and the relation between
the computational artefacts of the system. Software system diagrams have a dual
role bridging between cognition and communication of humans, and representa-
tion of mechanisms entailed by machines. In the field of AI, which feature many
NN models, the pace of development is high, and as such conferences are the
most prestigious academic venues. In their scholarly proceedings, we find that the
majority of papers include a system architecture diagram by way of structural
explanation. This is common across Computer Science and other model-centric
domains. What is less common is the variety of these representations, even when
compared with other research and engineering domains. Despite being based
on similar and mathematically-well-formalised computational artefacts, such as
neural networks, their supporting diagrams have very low consistency. In this
paper, we utilise the opportunity provided by the lack of convention to gain
insight into the way the creators of NN models are choosing to communicate their
models. This follows Even-Ezra’s examination of the insight medieval scholastic
diagrams may provide into the thinking of their creators [3].
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This study is motivated by a number of questions. Why are diagrams being
used to describe NNs? Why are the diagrams so heterogeneous? Progress is made
to this end through drawing together recent empirical results [8–11], supported
by the following synthesis and reasoning: (i) There is a relation between content
included in NN diagrams and their role in the scholarly community as concep-
tual models, and (ii) There are visual encoding prioritisations which align with
subcategories within mental models theories.

2 Background

2.1 Neural Models

AI is materialised as software, written in a programming language, and often
based on neural networks. A neural network takes an input (usually text, num-
bers, images or video), and then processes this through a series of layers, to
create an output (usually classification or prediction). Each layer contains a set
of nodes which hold information and transmit signals to nodes in other layers
according to their weights and connectivity. Specific mathematical functions or
operations are also used in these models, such as sigmoid, concatenate, softmax,
max pooling, and loss. Different architectures are used for addressing different
types of tasks: Convolutional Neural Networks (CNN), inspired by the human
visual system, are commonly used for processing images, and Long Short Term
Memory networks (LSTM), a type of Recurrent Neural Network (RNN) which
are designed for processing sequences, are often used for text. These neural net-
works “learn” a function, but have to be trained to do so. Training consists
of providing inputs and expected outputs, so the model can learn how a func-
tion should be inductively approximated. The model is then tested with unseen
inputs, to see if it is able to process these correctly. The explicit data perspec-
tive (focused on vectors and matrices) and the functional perspective are fairly
distinct and complementary ways of conceptualising the parts of the models,
which is part of the problem of communicating in this area. The architectural
perspective on the model can be to a greater or lesser extent encompassing the
data manipulations, which leads to a broad spectrum of possible representa-
tions. Neural networks can also be considered as a set of transitions between
latent states (a different way of conceptualising the data). The computation of
these latent vectors are at the center of the data representation induced by a NN
and are optimised by algorithms such as gradient descent via back-propagation
which are sufficiently conventional to be omitted from non-pedagogical diagrams.
The functions are not highly heterogeneous, but the architectures are heteroge-
neous due to the diversity in which its fundamental parts can be composed and
configured. An example diagram can be found in Fig. 1.

The diagrams relate the constituting parts of a model at a certain level of
abstraction, defining an architecture for the model. The models themselves are
comprised of different types of layers and different sizes or parameters for the
layers, which are usually encoded in diagrams. The configuration, dependencies
between latent dimensions, and attributes of layers are included as the diagrams
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Fig. 1. An example diagram, used by Li et al. [6], using labels for Form, graphical
objects variously for Form and State, input and output for Purpose

are utilised by authors attempting to produce a description of these latent states
using graphical components. There are fundamental and complex aspects of
NNs which are not commonly included in diagrams. Authors put substantial
thought into the nature of the loss function, and how to decompose the set of
components of the loss, but this is done outside the diagram and articulated
through mathematical notation. The mathematics of NN’s are well established
and have an established representational language. At the system level, diagrams
are used but conventions are not well established.

2.2 Mental Models and Mental Operations for NN Diagrams

All three primary mental operations of Apprehension, Judgement, and Inference
[5] are at play in using NN diagrams for research. Apprehension, being the form-
ing of a picture in one’s mind, is important for depicting and understanding the
model. An example of Judgement could be “this is relevant”, and Inference “this
is a contribution”. We focus on the creation of mental representation, i.e. Appre-
hension. Clark and Chalmers [1] proposed the “Extended Mind Theory” which
encompasses diagrams, proposing that diagramming shapes (and is shaped by)
cognitive processes. With specific reference to the Computer Science domain,
Guarino et al. state that “we may say that a computer program is a conceptual
model of the computer’s internal behavior, but only as long as its program-
ming language’s primitives denote concepts concerning computer behavior. If
they rather denote data, we conclude that such a computer program is not a
conceptual model.” Diagrams make cognitively accessible the models and the
computational artefacts of which they are comprised, and therefore have a role
to play in the ethics of NNs and AI more broadly. In this way, diagrams are
a mechanism for establishing transparency and managing risks around how the
model operates.
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3 Diagram Content Relates to Conceptual Models

3.1 Heterogeneity in Representation

In principle, the primary purpose of diagrams in scholarly publications is commu-
nicative. The authors are attempting to communicate through a diagrammatic
medium some kind of relational structure. Diagrams are ideally suited to this
task, and are used for this purpose in many domains [7]. However, there are other
social aspects. Without passing too critical an eye over the scientific endeavour,
having a efficient diagram in communicative terms (both aesthetically and tech-
nically) may improve perception of a paper, thereby making it more likely to pass
through peer review. While the visual encoding methods are quite unconstrained
and heterogeneous, it is conventional to include an architecture diagram if the
paper presents a novel model. The subsequent discussion attempts to make steps
towards understanding the reasons for, and consequences of, this heterogeneity.

Perhaps due to the complexity of NNs, there are a number of diagrammatic
representational choices that are made by different authors attempting to express
different things. This has been shown by Marshall et al. [11], using VisDNA, a
grammar of graphics [2], to demonstrate the heterogeneity of visual encoding
principles employed in this domain. In an interview study, Marshall et al. [8]
identify heterogeneous use cases and preferences associated with NN diagrams.
The modal use case mentioned by all participants was “how the system works”.
Confusions reported were around the “flow” of reading the diagram, the pur-
pose of the system, and gaps or lacks of specificity within the diagram. The
interview study also found a huge range of diagramming tools are used to create
these diagrams, and identified themes in usage. Three major themes were identi-
fied, covering visual ease of use, appropriate content and expectation matching.
“Visual ease of use” related to clear navigation, aesthetics, consistency within
the diagram and having distinct process stages. “Appropriate content” referred
to either wanting more or less information in a diagram, or preferring mul-
tiple different diagrams to display different information. These contradictions
within these themes reflects the different priorities users had for specificity or
an instantiated example. “Expectation matching” found that users want con-
sistency across the diagram and within the domain, and to have symbols or
abbreviations explained.

Given the social nature of research, it would be practically easier for authors
to directly copy existing styles than devise their own. We argue that there
must be a compelling reason for authors to be creating such different diagram-
matic representations. A partial explanation for heterogeneity could be a lack of
appropriate diagramming tools. In a recent interview study involving technical
domain experts, Ma’ayan et al. [7] found that “To illustrate concepts effectively,
experts find appropriate visual representations and translate concepts into con-
crete shapes. This translation step is not supported explicitly by current dia-
gramming tools”. This does not explain why NN diagrams are so heterogeneous
compared to diagrams in other scholarly domains, nor does it explain the lack
of informal conventions.
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We hypothesis that a particular representational aspect is prioritised by the
author either because it shows what they think is important, or because it is
what they would want to see in a diagram authored by their peers. In either
case the priority is effective communication. Differences in prioritisation may
be causing the creation of bespoke diagrammatic encodings. When representing
NNs, the diagram author can prioritise different aspects:

– Abstraction levels in computer systems:
• Function: Operations which occur, representation transformations, and

the purpose of parts of the model
• Data: The data model, type, dimensionality and how it is manipulated
• Mathematics: Including specific mathematical functions
• Code: Important class names and the order in which they are called

– Contextual uses related to scholarly rhetoric:
• Example: Showing the steps of an example input through that model
• Contribution: Focusing on the scientific novelty of the approach, giving

much more detail in that area
• Index to text: Using a label structure to allow for easier referencing

These representational priorities result in different content being displayed
through different visual encoding mechanisms. It is usual to have aspects of
several of these priorities, as it is not the case that the prioritisation of one
aspect necessarily inhibits another. In terms of how the diagrams are presented
within a paper, some papers include multiple diagrams, either by multiple fig-
ures or sub-figures. Often, sub-figures or detailing boxes are used to give both
schematic and detailed views within the same diagram. Dependencies are often
indicated by arrows. Diagrams almost always represent important content in
natural language, such as labels or descriptions.

3.2 NN Models, Mental Models, Conceptual Models and Diagrams

Guarino et al. [4] states that “we may say that a computer program is a con-
ceptual model of the computer’s internal behavior, but only as long as its pro-
gramming language’s primitives denote concepts concerning computer behavior.
If they rather denote data, we conclude that such a computer program is not
a conceptual model.” Applying to NN diagrams, it is variable whether the dia-
gram is a conceptual model. In this work we use mental models as a metaphor for
mental conceptualisation, as is common practice in human-computer interaction.
The conceptual model (the diagram artefact) has a communicative purpose to
articulate concepts and the relationships between concepts. Diagrams are often
used for representing the creator’s conceptual model, and aid learning and rea-
soning [7].

The focus of this work is the diagrammatic metaphor being used for what
is represented, rather than the visual encoding. Bringing types of NN diagrams
closer to mental models, we can draw parallels with mental model categories
[12] and types of diagram observed, as in Fig. 2. Diagrams may have aspects of
multiple categories.
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Fig. 2. Representational choices in diagrams of NNs

– Function: Explaining how the model operates by emphasising functional
aspects, such as mapping, input and output. Operations used as a verb.
For example, “word or sentence embedding” (a general term) rather than
“BERT” (a specific architecture for embedding). This type often includes
example input and output. Title, caption, other language or images may be
used to describe the task.

– Contribution (Purpose): Omits the majority of information other than that
required to understand the sub-section of the model that contains the novelty
of the model or approach.

– Schematic (Form): Describes the model at a high level, uses probably a block-
style without iconic graphical objects. It is succinct, expressive and general,
comprised of the representational and functional choices, how they are struc-
tured and composed, with emphasis on the dependencies between compo-
nents. The physical structure analogy is perhaps closest to the classes and
modules of code, and the shape of the data. Does not include mathematical
or data details. Differing from Function, it commonly uses specific terms such
as “BERT” rather than “word or sentence embedding”. Also often aggregates
graphical objects into modules. (In order to be “state” (i.e. what it is doing)
the block diagram should be a verb).

– Data manipulation (State): Includes data dimensions, and usually a visual
representation of the data itself. It describes what the model does to the
data, so this also includes where operations are primarily labelled arrows
(rather than inside blocks).

– Example: How example data transforms. Includes example input, output and
intermediate steps. Usually better relates to Function (how it operates) rather
than Form (what it looks like), but this depends on the graphical objects used.
It is useful to disambiguate this, particularly for Image Processing, where
often the diagram is a visual representation of the data manipulation. In one
sense this is the Form of the example data manipulation, and in another
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sense the Function of the model on a single example. It is the latter that we
are concerned with, in our assertion that the diagrammatic representation is
signifying the model rather than the example. Note also that the inclusion of
intermediate step as using the same example is important. Many diagrams
include example inputs and outputs, but in the processing of the model they
do not utilise the example and the diagram can be “schematic”).

Sometimes the diagrammatic representations found in conference proceed-
ings contain errors. In addition to typographic errors, these can be visualisation
errors, in the sense that the diagrams may cause confusion or inaccurately reflect
the reality of the underlying model. For example, the circles representing vec-
tors can represent a precise number of objects, or not. Figure 1 shows an example
where the pairs of circles represent two LSTM output vectors (a common rep-
resentational choice), while the three circles of P̂ do not represent three vectors
but rather j vectors, where j is the number of words in the sentence. The omis-
sion of the ellipsis following the embedding layer appears to have led to this
visual encoding choice. This unmeaningful 3-vector is repeated perhaps more
dangerously in the final concatenation before “multi-feedforward”. This can be
understood by careful reading of the words and formulae in the text, but could
be misleading, as found in an interview study by Marshall et al. [8].

The types of representment employed are of particular interest. Our hypoth-
esis is that the diagrams, and the variety we see exhibiting the above prin-
cipalities, are a result of the range of cognitive functions being employed by
different users. At present, scholars are not using a consistent visual language to
communicate. No suitable representation providing as cognitive support such as
symbolic equations gave to the mathematicians of ancient Babylon, or the letter
x gave to Descartes, has been sought nor found. Another important aspect is
reproducibility. Circuit diagrams and other standard diagrammatic representa-
tions, often implemented or overseen by professional bodies, have also enabled
this standard form of communication and reproducibility across many domains,
including Computer Science.

4 Conclusion

We argue that the heterogeneity in diagrammatic representations of NNs is due
to the inherent complexity of what is being represented and a lack of obvious
visual representational choice for the model themselves. In the case of many other
scientific and engineering disciplines, a standard has quickly emerged. It may be
that we are too early in the life of “NN science and engineering” to see this,
and instead are able to gain insight from the heterogeneity. The heterogeneity
seen today is a manifestation of a lack of conventional model elements and visual
encoding principles.

NNs are a new medium, which at its most granular representational level
are not easily interpretable. Currently there is heterogeneity in diagrammatic
representation. Diagrams are a useful, and efficient, way of understanding NNs.
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Diagrams are a fundamental signification layer, encoding the design and meta-
description of these emerging models. We have hypothesised the diagrams used at
present to have relationship to mental models. Interventions designed to improve
NN diagrams could aid scholars by providing cognitive support for communicat-
ing and reasoning about NN models.
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Abstract. Many diagrams can be read in different ways, allowing read-
ers to extract different kinds of information about the represented sit-
uation from the same representation. Such diagrams are often used to
solve problems that require the combination of information from differ-
ent views. This has been widely remarked upon in the literature and is
sometimes referred to as aspect shifting. However, we know of no formal
account of the phenomenon, or what an “aspect” of a diagram might be.

In this paper, we give such an account. In an application of our pre-
vious work, we describe a theory of representation systems in which the
same representation token can be interpreted within multiple distinct
representation systems. Each gives a different view of the underlying
domain, accounting for multiple readability. We also describe how these
different representation systems can be combined into a single overar-
ching system which allows inference across the different aspects given
by the component systems. This accounts for why just apprehending a
diagram can be a substantial inferential step.

1 Introduction

Many diagrams can be read in different ways, allowing readers to extract dif-
ferent kinds of information about the represented situation from one and the
same representation. We say that these diagrams admit multiple readings [3,9].
Further, many problems can be solved by combining information of the differ-
ent kinds drawn from the same diagram. This phenomenon is widely remarked
upon [2,5,7], and Giaquinto [4] analyzed it using the term aspect shifting. How-
ever, we know of no formal account of either multiple readings or aspect shifting,
except the one implicit in Jamnik’s computational model [5].

In an extension of our model of abstract reading of diagrams [8], we propose
such an account. There are two basic ideas in our proposal. The first accounts for
multiple readings by viewing a representation token as participating simultane-
ously in different representation systems. Each provides its own semantics to the
diagram token. The second is that these systems can be combined into a single
representation system, unifying all of the information, and it is in this combined
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-15146-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15146-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-15146-0_17


A Formal Model of Aspect Shifting 211

◦ ◦ ◦ ◦
◦ ◦ ◦ •
◦ ◦ • •
◦ • • •
• • • •

Fig. 1. The dot diagram typically used in the proof that T (4) = 4×(4+1)
2

.

representation system that problems involving multiple views can be solved. We
call the formal operation that combines representation systems superposition.

In this paper, we consider the case of “dot diagrams”. These diagrams repre-
sent particular integers by the number of dots they contain. Many proofs from
algebra can be given in this representation, [6]. Figure 1 is an example of the dot
diagram used in one such proof. We have used open and closed dots to facilitate
perception, but there is no semantic significance to these styles.

The proof appeals to two different ways of viewing this diagram. First, we
can view the diagram as a sequence of 4 vertical columns of dots. Each column
contains 4+1 dots, for a total of 4× (4+1) dots. This indicates that the integer
that the diagram represents is 4 × (4 + 1). For the second view, notice that the
diagram can be divided into two equal triangles, each consisting of 4 + 3 + 2 + 1
dots. This number is the fourth triangular number, written T (4). This indicates
that the integer that the diagram represents is 2 × T (4). Since these views allow
us to see the same number both as 4 × (4 + 1) and as 2 × T (4), we can see that
4 × (4 + 1) = 2 × T (4). This step requires a switch of the two views on the
diagram described above, instantiating aspect shifting. It is immediate from this
equation that T (4) = 4×(4+1)

2 .

2 Representation Systems

Our model of representation is based on Barwise and Seligman’s general theory
of information flow, channel theory, [1].

In our terminology, a diagram is a representation that carries information
about a particular target. The target for a dot diagram is a single positive inte-
ger (1, 2, 3, . . .). A representation is constructed to convey information about a
represented target. Readers can obtain information about the target by the cor-
rect interpretation of a representation. Since readers obtain information from the
representation, we often call it the source of the system. Information is reliably
conveyed by the adoption and maintenance of semantic constraints.

The general semantic constraint concerning the diagram in Fig. 1 is that if it
is composed of sub-groups of dots d1, . . . , dn, the target number is characterizable
as the sum of the numbers of dots in d1, . . . , dn. When the semantic constraint
is successfully followed, readers of this representation can safely read off this
information about the target situation.

In our model, a representation system, say R, consists of two classifications
related by two semantic relations ⇒R and →R . It is depicted in Fig. 2.
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typ(S) =⇒ typ(T)

|=S |=T

tok(S) −→ tok(T)

Fig. 2. The structure of a representation system, R, where two classifications S and
T are related by two semantic relations ⇒R and →R .

A classification consists of a set of tokens to be classified, a set of types by
which they are classified, and a binary relation specifying which tokens have
which types. If S is a classification, then typ(S) and tok(S) are respectively the
set of types and the set of tokens of classification S. When a token d is of type
σ in classification S, we write d |=S σ, using the binary relation |=S associated
with classification S.

A representation system requires two classifications: a source classification,
in which representations are classified by types (on the left in Fig. 2), and a
target classification, in which the objects that the representations are about are
classified by types (on the right in Fig. 2).

Take a representation system used in our sample proof, where we view dot
diagrams as a sequence of columns of dots with equal height and interpret them
accordingly. In this system, which we call Rcol, the set of source tokens to be
classified consists of the dot diagrams of the kind illustrated in Fig. 1.

In Rcol, the diagrams are classified by the number and height of the columns
that they display. Specifically, the source types of this system take the form
σn,n+1
col , meaning “composed of n columns each of n + 1 dots.” Not every dot

diagram is characterizable in this way, and those that are not are left unclassified.
The diagram in Fig. 1 is of type σ4,4+1

col , we express this fact as d |=Scol
σ4,4+1
col .

The system’s target classification, Tcol, classifies positive integers in a cor-
responding manner. The classification models a particular way of grasping these
numbers, i.e., grasping them as the sum of n terms of the form n + 1, i.e.,∑n

i=1(n+1). If a target token can be characterized in this way, then we say that
it is of type τn,n+1

col . Integers that cannot be characterized as such a sum are left
unclassified.

One of the semantic relations involved in a representation system R is ⇒R ,
which captures the semantic constraints that are maintained by people using the
system. The semantic constraints of Rcol are that if a diagram is of type σn,n+1

col ,
then the number it represents is of type τn,n+1

col . We can write this set of semantic
constraints as σn,n+1

col ⇒col τn,n+1
col . They hold as constraints because people try

not to produce a diagram of type σn,n+1
col when the number they represent is not

of type τn,n+1
col . In general, we call a relation ⇒R the indication relation of the

representation system R and say that σ indicates τ in R whenever σ ⇒R τ .
Thus, ⇒R is a binary relation between the sets of types, as shown in Fig. 2.
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The other semantic relation involved in the representation system R is →R .
If there is a representational act that obtains information about a target token
w and produces a representation r to convey that information about w, then the
relation r →R w holds. So, →R is a relation between sets of tokens, as depicted
in Fig. 2. We say that r is a representation of w in system R.

A representation system R, then, is written formally as 〈S,T,⇒R ,→R〉,
where S and T are the source and target classifications, respectively; ⇒R is the
indication relation, and →R is the representation relation.

3 Modeling Aspect Shifting

Our example proof requires that we take different views of the same represen-
tation token. These views correspond to two different representation systems,
namely, system Rcol introduced above, and system Rtri introduced below.

Representation system Rtri has the same sets of source and target tokens as
Rcol. It lets us view dot diagrams as consisting of two triangles comprising the
same number of dots and interpret them accordingly. The source classification
Stri of this system classifies the dot diagrams with the set of types of the form
σ
2,T (k)
tri , meaning “composed of two triangles each of T (k) dots”. Not every dot

diagram admits such a partition and those that do not are unclassified in Stri.
On the target side, classification Ttri features types of the form τ

2,T (k)
tri .

They characterize a number as the sum of two identical triangular numbers, i.e.,
T (k)+T (k) for some k. Not all positive integers are characterizable in this way,
and those that are not are left unclassified in Ttri.

The semantic constraint of system Rtri is σ
2,T (k)
tri ⇒tri τ

2,T (k)
tri , meaning that

if a diagram consists of two triangles each of T (k) dots, the represented number
is characterizable as T (k) + T (k).

It is significant to note that a diagram can be represented as a pair of triangles
of size T (k) without requiring any extra effort on the part of the author of
the diagram as long as they adhere to the syntactic convention to shape their
diagrams into rectangular arrays of the appropriate dimension. If a diagram
has a k × (k + 1) columnar structure, then it necessarily also consists of a pair
of triangles each containing T (k) dots. This geometric constraint underlies the
demonstration that the diagram provides.

We propose that a switch between these different representation systems in
interpretation is the shift referred to in the notion of aspect shifting.

Figure 3 gives the overview, where each system is depicted as a thick hori-
zontal line with its source classification on the left and its target classification
on the right. System Rcol occupies the upper row, while Rtri, is depicted in the
lower part of the figure. The arrows drawn between some pairs of classifications
denote “infomorphisms” between classifications [1].

The key idea is classifications that classify the same set of tokens with differ-
ent sets of types, where certain instances of classification under the view of one
classification are equivalent to certain instances under the view of another. For
example, the fact d |=Scol

σ4,4+1
col under classification Scol is equivalent to the
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Scol Tcol

Stri Ttri

Rcol

fcol gcol

Rtri

ftri gtri

Fig. 3. Systems of representation, Rcol, and Rtri, involved in our sample proof. Each
thick line represents two semantic relations in a suppressed manner.

fact d |=Stri
σ
2,T (4)
col under classification Stri. Similar relations hold of the target

side, between certain facts under classifications Tcol and Ttri. Thus, to complete
our model, we need to explicitly mark which facts under one classification are
equivalent to which facts under another. That is what infomorphisms do.

The notion of infomorphism was originally developed to mathematically cap-
ture different “perspectives” that can be taken on same facts, [1]. Formally, an
informorphism is a pair of contra-variant functions between classifications. An
infomorphism f from classification A to classification B is written f : A � B,
and the component functions are written fˇ and f ,̂ where fˇ is a function from
the tokens of B to the tokens of A, while fˆ is a function from the types of A to
the types of B. The pair of functions fˇ and fˆ make an infomorphism if for all
tokens t ∈ tok(B) and types σ ∈ typ(A), t |=B f (̂σ) if and only if f (̌t) |=A σ.
This property is fundamental to infomorphism f , as it lets f do its job to mark
the equivalence between facts under different classifications A and B.

Figure 3 depicts four infomorphisms, fcol, ftri, gcol, and gtri, responsible for
the aspect shift in our sample proof. We exemplify these infomorphisms by con-
sidering fcol : Scol � Stri.

As we mentioned above, the fact d |=Scol
σ4,4+1
col under classification Scol is

equivalent to the fact d |=Stri
σ
2,T (4)
tri under Stri. The equivalence is actually

more general, holding on all dot diagrams and between the types of the form
σn,n+1
col and σ

2,T (n)
tri . Infomorphism fcol marks this general equivalence. It consists

of the identity function fcolˇ from tok(Stri) to tok(Scol) and the function fcolˆ
from typ(Scol) into typ(Stri) that maps σn,n+1

col to σ
2,T (n)
tri for all positive inte-

gers n. It is routine to verify that fcol is an infomorphism. The fundamental
property of fcol then says that for all dot diagrams di ∈ tok(Stri) and all types
σn,n+1
col ∈ typ(Scol), the facts di |=Stri

fcol (̂σn,n+1
col ) and fcol (̌di) |=Scol

σn,n+1
col

are equivalent, that is, di |=Stri
σ
2,T (n)
tri and di |=Scol

σn,n+1
col are equivalent.

This way, infomorphism fcol marks the situation where the fact of the form
di |=Scol

σn,n+1
col under classification Scol is just a different way of viewing the

fact of the form di |=Stri
σ
2,T (n)
dim under classification Stri. In other words, it

prescribes which facts under Stri are accessible from which facts under Scol if
one switches one’s way of viewing diagrams.

Infomorphism gcol : Tcol � Ttri does the same job on the target side, and
prescribes that facts of the form i |=Ttri

τ
2,4(n)
tri are accessible from the facts

of the form i |=Tcol
τn,n+1
col if one switches one’s way of viewing numbers. The

remaining two infomorphisms, ftri and gtri, depicted in Fig. 3 work similarly.
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With this setup, an aspect shift can be seen as a shift of representation
systems that are connected via infomorphisms. Take the case of a shift from Scol

to Stri. One sees the fact d |=Scol
σ4,4+1
col under the view of classification Scol

and interpret it with semantic constraint ⇒col to obtain information 20 |=Tcol

τ4,4+1
col . This much is done under representation system Rcol. As infomorphism

fcol marks, the fact d |=Stri
σ
2,T (4)
tri is accessible from the fact d |=Scol

σ4,4+1
col by

a switch of view, and if one actually performs the switch, seeing the fact d |=Stri

σ
2,T (4)
tri under classification Stri and interpreting it with semantic constraint ⇒tri

to obtain information 20 |=Ttri
τ
2,T (4)
tri , then one is using system Rtri. An aspect

shift in our sample proof can be thus modeled as shifts between representation
systems Rcol and Rtri via infomorphisms.

Shifts between source classifications Scol and Stri are shifts of how we per-
ceptually decompose the given diagram, and so often significantly easier than
shifts between target classifications Tcol and Ttri, which involve shifts of how we
conceptually “decompose” a number in the abstract. Yet, they can bring about
a shift of entire representation systems between Rcol and Rtri and provide an
alternative conceptualization of the number in question. The presence of dia-
gram d facilitates the aspect shifts necessary and thus our understanding of the
proof.

4 Modeling Aspect Integration

In the story that we have told above, the same tokens in the source and the
target can be classified in different ways. The tokens are shared by the different
representation systems but the types used to classify them differ. However, this
story has a problem, namely how tasks that involve multiple views can be solved.

The construction and comprehension of our sample proof are such tasks.
With system Rcol, we interpret type σ4,4+1

col holding of our diagram d and obtain
information τ4,4+1

col about our target number 20. After shifting our representation
system to Rtri, we interpret type σ

2,T (4)
tri of the same diagram and obtain infor-

mation τ
2,T (4)
tri about the same number. Note that the types τ4,4+1

col and τ
2,T (4)
tri

we have obtained at different stages belong to separate classifications Tcol and
Ttri of our target number, and crucially, neither classification has both of these
types. According to our theory, this means that there is no view in which we can
simultaneously attribute these types to our target number. But there must be
such a view, for in the final part of the proof, we integrate information τ4,4+1

col

and τ
2,T (4)
tri about the number and, as they respectively mean that “characteriz-

able as
∑4

i=1(4 + 1)” and “characterizable as T (4) + T (4)”, reach the equation
∑4

i=1(4 + 1) = T (4) + T (4), and then T (4) = 4×(4+1)
2 by algebra.

The notions of classification and infomorphism let us extend our model nat-
urally to capture this integrating view. As Fig. 4 shows, the main component of
the extension is an overarching representation system, depicted in the uppermost
part. It “superposes” component systems Rcol and Rtri, and in particular gives
access to the complete set of types from each representation system.
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Scol ⊕ Stri Tcol ⊕ Ttri

Scol Tcol

Stri Ttri

Rcol⊕tri

Rcol

φcol

fcol

γcol

gcol

Rtri

φtri

ftri

γtri

gtri

Fig. 4. Superposition of Rcol and Rtri into a representation system, Rcol⊕tri, which
integrates the two views provided by Rcol and Rtri.

Generally, two classifications A and B can be superposed if they classify the
same set of tokens with disjoint sets of types typ(A) and typ(B). The super-
posed classification A ⊕ B will classify those same set of tokens with the union
typ(A) ∪ typ(B) of these sets of types. Its types classify tokens just in the same
way they do in the original classifications. Thus, given a token t ∈ tok(A ⊕ B)
and a type α ∈ typ(A ⊕ B), t |=A⊕B α if and only if either α ∈ typ(A) and
t |=A α, or else α ∈ typ(B) and t |=B α.

Thus, A ⊕ B puts types from different classifications under one umbrella and
captures a more diversified way of viewing diagram tokens than the restricted
ways of viewing under A and B. Since classifications Scol and Stri have the
same set of tokens while classifying them with disjoint sets of types, there is a
superposed classification Scol ⊕ Stri. Similarly for the target side, and there is
a superposed classification Tcol ⊕ Ttri of classifications Tcol and Ttri.

As a representation system, the superposed system Rcol⊕tri comes with two
semantic relations. The indication relation ⇒col⊕tri is just the union of the indi-
cation relations of the component systems. The representation relation →col⊕tri

is identical to →col, which is identical to →tri.
Now, it is immediate from the definition of classification Scol ⊕ Stri that any

fact of the form di |=Scol⊕Stri
σn,n+1
col in this classification is equivalent to the fact

di |=Scol
σn,n+1
col in classification Scol. We can mark this general equivalence with

an infomorphism, say φcol, shown in Fig. 4 as the arrow from Scol to Scol ⊕ Stri.
At the token level, φcolˇ is just the identity function from tok(Scol) ⊕ tok(Stri)
to tok(Scol). At the type level, φcolˆ maps every type σn,n+1

col in typ(Scol) to its
copy σn,n+1

col in typ(Scol ⊕ Stri). By the fundamental property of φcol, we have:

di |=Scol⊕Stri
φcol (̂σn,n+1

col ) if and only if φcol (̌di) |=Scol
σn,n+1
col

But the left side is equivalent to di |=Scol⊕Stri
σn,n+1
col by the definition of φcolˆ

and the right side is equivalent to di |=Scol
σn,n+1
col by the definition of φcol .̌

Thus, we have the equivalence of di |=Scol⊕Stri
σn,n+1
col and di |=Scol

σn,n+1
col ,

successfully marked by infomorphism φcol.
The other informorphisms, φtri, γcol, and γtri, drawn in Fig. 4 work similarly,

each marking a general equivalence relation between facts in a superposed clas-
sification and facts in one of its component classifications. This tells that aspect
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shifting is possible to and fro between the superposed system Rcol⊕tri and the
component systems Rcol and Rtri.

5 Conclusion

In this paper we have described a formal model of the semantic base that under-
pins multiple readings and aspect shifting. To review our main points, a diagram
token admits multiple readings when the token participates in multiple repre-
sentation systems, each making it convey a different type of information about
the same target object. Switches of views underlying aspect shifting can occur
when facts under different classification schema are equivalent, and the notion of
infomorphism from [1] is useful in marking such equivalence across classifications.

Aspect shifting based on a diagram consists of switches of views of equiva-
lent facts across the source and target classifications of disparate representation
systems. In particular, the aspect shifting in the example involves (1) a shift
between the specialized systems, and (2) a shift toward an overarching system.

Because of our perceptual abilities, multiple views of a diagram are more
apparent to us than the corresponding multiple views of the target, resulting
in diagrams triggering shifts of representation systems and revealing new truths
that are otherwise hard to see about the target. The perceptual grasp of equiv-
alence of facts about a diagram can be transferred to the represented number,
and can explain the characteristic persuasiveness of the proof in question.

Our model does not cover all kinds of shifts of views involved in our sample
proof. An important question remains how to model the semantic base for shifts
of global views of the entire diagram to local views of its sub-parts. Although
shifts of this kind are not aspect shifts in the usual sense, they do play an
important role in the proof, and their analysis is deferred to future research.
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Abstract. How does the compositional arrangement of elements in a complex
image, like a diagram, a picture or a map, represent the structural features of its
content? In this paper I argue that they do so iconically, through the exploitation of
relations of visual similarity and dissimilarity. I develop the general claim that our
interpretation of this sort of images is guided by the implicit defeasible assumption
that things that are patently related represent things that are relevantly related in
a similar way. I also identify the usual intrinsic and extrinsic mechanisms we use
to represent structural features and illustrate them with an example from real life:
a recent infographic from a popular science magazine.

Keywords: Structure · Iconicity · Semantics · Infographics · Interpretation

1 Introduction

Most times, when we use an image to represent something we do not want our audience
to just identify the image’s reference. Instead we want to convey complex ideas and
information. This means that most times, what we want to represent visually will have
a structure. In maps, for example, we do not just want to represent towns, rivers, roads,
etc. but we want these elements of the landscape to be properly connected between them,
i.e., we want to show not only that there is a road, a beach and a town, but that the road
goes from the beach to the town and back. The question that drives this work is: how do
we communicate this aspect of our content through visual representation?

In recent work, Greenberg [1] has identified a striking feature of many complex
visual representations, i.e., that they usually convey structural features iconically, not
symbolically. Greenberg found that, in general, the semantic rules linking the relevant
features of our representations with the structural features of their referents involve a
very small set of general conditions. Consecuently, the number of syntactic and semantic
categories in these semantic rules is very low [2]. This means that, in order to determine
the structural content of our visual representations we usually do not use anything like
a dictionary, that is, a set of meaning conventions linking features of the image with
features of what it stands for. The aim of this paper is to shed some light on why this is
so.

My answer fits and must be understood within a broader Gricean picture of visual
representations according to which conventions play a very small role in their inter-
pretation. In other words, we seldom decode visual representations according to some
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previously fixed symbolic conventions, but instead make sense of them by detecting the
representational intentions behind them. This means that the inferential process through
which we extract structural information from an image usually follows a relevantist
process similar to the one guiding pragmatic inferences in linguistic communication [3].

This hermeneutic process might involve conventions, but many of them will be
inferred, not learned, and circumscribed to the particular images being interpreted in a
way that might not extend to other, novel representations. This means that even when our
experience with previous visual representations is helpful in the interpretation of novel
representations, the reason might have less to do with representational codes and more
with the fact that similar communicative problems require similar solutions, so that so-
called representational codes might be better understood not as dictionaries of arbitrarily
assigned conventional meanings, but more as general strategies to solve communicative
tasks.

2 The Golden Rule of Iconic Representation

The main hermeneutic hypothesis I want to argue for here is that in extracting structural
information fromacomplex image,wepostulate defeasible interpretative hypotheses that
aim tomake sense of particular structural features of the image. For example, ifwe see the
same character repeated in a single image, we assume that it represents the same element
in all its occurrences. This assumption can be defeated by other considerations, but it
nevertheless guides our search for meaning. In particular, I will develop the hypothesis
that when interpreting complex images, we are centrally guided by the general principle
that things that are patently related represent things that are also relevantly related, a
principle I will call the golden rule.

The key notion here, of course is that of a patent relation or difference, which is a
generalization of the relevantist concept of ostension [3]. Broadly stated, a fact is patent
in my sense if it is complex enough to denote an intentional act of ostension – commonly,
one that left the patent fact as its trace. For example, most of what we call “order” or
“structure” does not just happen naturally, but is the result of intentional human effort.
Thus,whenwefind objects displayed in patent order, it is rational to assume that someone
placed them that way, knowing that wewould notice andwonder why shemade the effort
of displaying them that way. In a well designed visual image, one not only notices the
elements that compose the image, but also notices that (at least some of) the way in
which they are composed is not random but follows some planned order that calls for
an explanation. In other words, we notice how the elements are composed and ask why,
i.e., what communicative or aesthetic purpose did the designer pursue in her effort to
visually organize the elements of her composition that way and not another.

For a structural feature to be patent in this sense, it must be easily detectable and
naturally assumed as intentional. This requires differences and similarities of the right
magnitude [8].Making them too smallmight confuse the interpreterwhomight either just
miss them or think that they are not intentional.Making them too large, on the other hand,
introduces noise, making one’s audience wonder why the difference is that big instead
of just noticeable enough. In this regards, it is unfortunately easy to make the mistake of
assuming that there is something like a normal audience whose cognitive and contextual
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circumstances determinewhat is salient or easily detectable, but in actuality audiences are
very diverse, and ignoring their diversity commonly results not only in communicative
failure, but also in further marginalization of minority bodies. For example, many color
differences are not easily detectable by colorblind people, and nearsightedness can make
small differences in size difficult to detect. That is why accessibility is essential to good
design. It is not a luxury item or an add-on to good design, but a non-negotiable necessary
condition [9].

Given our tendency to follow this general rule while generating interpretational
hypotheses, it is not surprising that image makers have developed a plethora of mech-
anisms to exploit it for communicative purposes. In other words, assuming the general
explanatory hypothesis that the patent structural features of our visual images usually
manifest our communicative intentions to represent analogous structural features allows
us to account for many design principles used in all sorts of visual representations, from
diagrams and maps to formulas and infographics, as I hope to show in the remainder of
the text.

3 Mechanisms of Structural Representation

Derived from the aforementioned general principle – that things that are patently
related/similar/different represent things that are relevantly related/similar/different–,
we can identify the following general rules: First, in order to represent a structured sys-
tem, it is necessary to represent its component elements. Structure cannot be represented
unless we represent also what is structured. This is usually achieved by using itemized
elements like points, geometric figures, letters, etc. One can even use textual labels. As
customary, I will call these “characters”. They correspond to what Greenberg calls the
first order elements of the system, and thus can be as iconic or symbolic as desired [1].
Much can and has been written about how to choose basic characters in order to make
their identification and their reference clear, but none of that is relevant to our purposes
here, i.e., not how these elements get their referents, but how the relations between these
referents are represented. Two sorts of mechanisms are usually used to represent these:
intrinsic and extrinsic, depending on whether they rely on internal features of how the
elements themselves are represented or involve the introduction of new graphic elements
to the image.

3.1 Intrinsic and Extrinsic Mechanisms

Intrinsicmechanismsof structural representation exploit similarities, relations anddiffer-
ences among the characters themselves to represent similarities, relations and differences
among the elements they represent: for example, using letters of same or similar color,
size, direction, etc. to indicate that the elements represented by those letters are related or
of the same kind, while using letters of contrasting color, size, direction, etc. to indicate
that they are unrelated or of different kinds [8]. Besides these perceptual similarities and
differences, designers, artists and visual communicators usually also use other, more top
down intrinsic mechanisms. For example, one might use lower case letters to represent
different elements of a single kind and then use the distinction between vowels and
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consonants, or the early and later letters in the customary alphabetic order to introduce a
sub-distinction between them. As a matter of fact, this is very common in algebra, where
lower case letters are commonly used to represent numerical values, but the early letters,
a, b, c,… are used to represent constant values and the later letters x, y, z,… are used
to represent variables. Both sorts of mechanisms, perceptual and top-down, are intrinsic
because they pertain to how the characters themselves are represented independently
of how they are spatially and temporally distributed or what other elements accompany
them.

Extrinsicmechanisms, in turn, can be of twokinds: Thefirst one consists in exploiting
the spatio-temporal location of the characters to establish external relations between
them. Thus, for example, we can represent two objects as being more similar to a third
one by locating the (characters that represent the) first two closer to each other than to
the third one [10]. We can also use the center of the image to highlight a character and/or
move another to the periphery to represent its lower status.

The second sort consists in introducing new elements to mark the relations or dif-
ferences between the characters. For example, we can encircle characters that are of a
kind, draw a line separating characters that are different, an arrow joining characters
that are related, etc. Parentheses, underlining, asterisks, shading, crossing, etc. are also
commonly used to represent structural features this way. These mechanisms are extrin-
sic because they do not rely on intrinsic features of how the characters themselves are
represented and instead require the addition of new graphic elements to the image.

3.2 Recursion for Higher Order Representation

We can use the intrinsic features of the mechanisms we use to represent basic structural
features to represent structural features of a higher order [11]. Notice that most of the
aforementioned mechanisms, both internal and external, have an intrinsic structure.
Spatio-temporal location is the obvious example [12], but differences in size, color, etc.
are also structured. Thus, for example, if one uses connecting lines of different widths,
one would be signaling not only that the relations represented by each sort of line are
of three different kinds, but also that these three kinds are themselves ordered in a way
that reflects the width order of the lines. Thus, for example, we can use thicker lines to
represent stronger relations and thinner lines to represent weaker ones, etc. Regarding
lines, one of the most well-known mechanism used to exploit their internal structures
is arrows. Arrows are nothing but lines with a marked edge and this asymmetry is what
makes them so useful to represent asymmetric relations. A line connecting two elements
A and B signals that A and B are related, but an arrow from A to B also signals that the
relation is asymmetric, i.e., that the role that A plays in the relation is different that the
role B plays. Finally, we can also introduce new extrinsic elements, for example, lines to
link lines that link lines, etc. to represent relations between relations between relations,
etc.

Yet one of the most powerful tools we have devised to allow for the representation
of higher order structural features is indexing (famously studied by Netz on his work on
Euclidean diagrams [13]) i.e., using more than one mechanism (usually two different
sort of marks) to represent the same relation or kind in order to multiply the possible
similarities that canbe exploited. For example,we canuse a circle to group someelements
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and then attach a letter or some other symbol to the circle, so that then we can use the
features of the letter and of the circle to denote higher order structural features of the
represented group. Thus, for example, adding a numerical index to different connecting
lines can help us represent a hierarchical order among the relations represented by the
lines.

4 A Simple Example

Fig. 1. Detail from Phil Ellis, “The Lazy Brain” 2018.

To illustrate these mechanisms, let me use some simple examples. Since my claim
is that these mechanisms are already grounding the visual representation of structure in
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many of our images, we must find them in effect on regular everyday visual represen-
tations. For example, consider the following infographic, designed by Phil Ellis, from
Dean Burnett’s article “The Lazy Brain” on the BBC Science Focus magazine 2018
issue on the evolutionary value of efficiency (Fig. 1) [14]. Without being a specially
innovative or otherwise extraordinary visual representation, it is still a quite successful
one, and thus serves perfectly as illustration of how structure is usually depicted.

The first thing to notice is that even though the structured elements are represented
by textual labels (the error of confabulation, for example, is represented by the label
“Confabulation”), if we do not read the labels, the image still manages to successfully
communicate a lot of structural information. Even if we do not know what those labels
represent, we can see in the image how they are related. Apart from the abundant text,
and except for the picture of the brain at the center, the rest of the elements play structural
roles. As predicted bymy account, some of them are intrinsic and other extrinsic, some of
them are first order and others are higher order. Themain intrinsicmechanisms the image
uses to represent structural relations are orientation and location. Most noticeably, the
orientation of the labels closer to the external edge of the image form a ring. This, in part,
tells us that they all have something in common: “Fading affect bias”, “Negativity bias”,
“Prejudice”, etc. are stuff of the same kind or play a similar role in the system represented
by the image. The same happens for the next ring, closer to the center of the image: “We
reduce events and lists to…”, “We discard specifics to form generalities…”, etc. all
represent stuff of the same kind, different from that of “Negativity bias”, “Prejudice”,
etc.

There is more structural information we can also obtain just from the orientation of
the text. For example, “We favor simple-looking options…” has the same orientation as
“Law of triviality” and this orientation is closer to the orientation of “Delmore effect”
and “Bike-shredding effect” that to the orientation of “Suggestibility”. This suggests that
“We favor simple-looking options…” must be somehow related to “Law of triviality”
and perhaps also to “Delmore effect” and “Bike-shredding effect” in a way that it is not
treated to “Suggestibility”, etc. And this is just orientation. The infographic also uses
location as well as similarities and differences in case – upper and lower – to suggest all
sorts of relations among the elements represented by the textual labels.

Notice that I have changed the language I am using to describe the content of the
image, from talking about what the image “tells” us to what it “suggests”. This is because
somevisual elements aremore salient that others and somevisual elementsmore strongly
denote intentionality than others. In our example, the fact that the elements in the outer
ring form a unity is strongly communicated because it is communicated by many mech-
anisms reinforcing one another: location, orientation, size and case. Small differences in
orientation, on their own, in contrast, can only suggest differences among their referents.

Let us focus now on the extrinsic mechanisms that are also at play in the image. In
this regards, the most obvious are the lines connecting elements in the external ring with
elements in the inner ring and the color shading at the center of the image. Once again,
their communicative role is very straightforward: the lines tell you that the elements
represented at their edges are somehow related, while the color blocks tell us that the
elements represented on top of them are also somehow of a same kind.
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So far we have been focusing only on first order structural elements, but second order
elements also play an important role in this image. The color blocks at the center of the
image, for example, are shaped to form a thick ring around the center. Thus, besides
representing that the elements enclosed in each shaded surface belong to some sort of
unity, this communicates a similarity among the different groups corresponding to each
colored surface. Thus, we know that “We discard specifics to form generalities” and “We
reduce events and lists to their key elements”, “We edit and reinforce some memories
after the fact”, etc. are somehow related to “WHAT SHOULD WE REMEMBER?”
because they are all inside the same colored patch (black in Fig. 1, but blue in Ellis’
original image). So far, all that information is first order structural information. But if
we factor second-order similarities, we can infer further structure. We can infer that the
way “Negative bias” is related to “We discard specifics to form generalities” is the same
way that “Cryptomemories” is related to “We edit and reinforce some memories…”,
even if we do not know what this relation is!

As I had stated above, representing a relation between elements this way suggest no
further structure among the elements besides the one already conveyed by other intrinsic
or extrinsic mechanisms. In this case, this means that even though “We discard specifics
…”, “We reduce events and lists …”, “We edit and reinforce some memories…”, and
“WHAT SHOULDWE REMEMBER?” are all located within the same dark patch, and
thus their referents must be somehow related, this last element, WHAT SHOULD WE
REMEMBER?”, must play a different, special role among them, because unlike the
others, it is written in upper case and has a radically different orientation. This intrinsic
difference in the way the elements in the blue patch are represented defeats the default
assumption that everything inside a singular color patch must be somehow the same.

Finally, the infographic also includes indexes. Next to the blue patch, closer to the
brain icon, we can see a numeral “3” in a blue circle. Both the color and the location
of this visual element point towards it being linked to whatever is represented in the
blue patch. The numeral “3” is then used in the accompanying text to make reference
to this information outside the image. This is a textbook example of indexing as char-
acterized by Netz [13]. Similar color circles with numerals accompany the other color
patches, reinforcing the message that these different patches correspond to information
of the same second-order kind. Thus we can see in a common infographic the use of
mechanisms of all the kinds we had identified above and thus a clear illustration of how
the general principle of using patent visual relations to represent analogous structural
relations can be used to visually represent the structural features of our target systems.
It remains an open question how general this phenomenon is and, in particular, whether
it extends to other non-diagrammatic systems of representation. I will leave its answer
for a future time.
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Abstract. Aristotelian diagrams represent logical relations of oppo-
sition and implication between formulas or concepts. In this paper
we investigate the cognitive mechanism of Aspect Shifting in order to
describe various families of Aristotelian diagrams. Aspect shifting occurs
when an ‘ambiguous’ visual representation triggers a perceptual change
from one perspective or interpretation to another. In a first part, we con-
sider aspect shifting which takes place on the level of Aristotelian subdi-
agrams and which switches focus precisely between the oppositional and
the implicational perspective. In a second part, aspect shifting is involved
in focussing on the ways in which smaller (but complete) Aristotelian
diagrams—in particular, Aristotelian squares—are embedded inside big-
ger diagrams—in particular Aristotelian hexagons. In both parts, special
attention is paid to the iterative nature of the aspect shifting.

Keywords: Aspect shifting · Gestalt switch · Opposition/implication
relations · Aristotelian diagram · Subdiagram

1 Introduction

Aspect Shifting. The overall aim of this paper is to investigate the cognitive
mechanism of Aspect Shifting in order to describe various families of Aristotelian
diagrams. The drawing in Fig. 1(a)—which is ‘ambiguous’ between a leftward
facing duck and a rightward facing hare—was first studied by the American
psychologist Joseph Jastrow [7]. The drawing in Fig. 1(b)—standardly referred
to as Schröder’s stairs after the German natural scientist Heinrich G. F. Schröder
[10]—is ‘reversible’ between the view from above descending from left to right,
and the view from below rising from right to left.

In contemporary psychology of perception, such drawings illustrate the mech-
anism of perceptual multistability: “under stimulation conditions that

The second author holds a Research Professorship (BOFZAP) from KU Leuven. This
research was funded through the research project ‘BITSHARE: Bitstring Semantics for
Human and Artificial Reasoning’ (IDN-19-009, Internal Funds KU Leuven).

c© Springer Nature Switzerland AG 2022
V. Giardino et al. (Eds.): Diagrams 2022, LNAI 13462, pp. 226–234, 2022.
https://doi.org/10.1007/978-3-031-15146-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15146-0_19&domain=pdf
http://orcid.org/0000-0002-8186-0170
http://orcid.org/0000-0002-0176-1958
https://doi.org/10.1007/978-3-031-15146-0_19


Aspect Shifting in Aristotelian Diagrams 227

Fig. 1. (a) Duck-hare (b) Schröder’s stairs (c) triangular number proof.

elicit perceptual multistability, visual perception continuously vacillates between
alternative interpretations of the same, unchanged, sensory stimulus, therefore
allowing a complete dissociation of sensory representation from subjective per-
ception [...]. When viewing this stimulus, we realize that two possible interpre-
tations [...] are randomly switching back and forth in our perception” [9, p. 123].
For example, with the Schröder’s stairs in Fig. 1(b), “the [A] surface [...] that
appears in front suddenly moves to the back and disappears from perception
only to be replaced by the perception of the [B] surface that was previously [...]
at the back [...]. Within a given temporal window, only one surface is consciously
perceived, a phenomenon reflecting the struggle of our visual system to settle on
a unique conscious interpretation of the visual stimulus” [9, p. 123].

Inspired by Jamnik [6] and Giaquinto [4], Shimojima [12, pp. 149–154] argues
for the importance of this phenomenon of perceptual multistability (sometimes
also referred to as Gestalt switch) in the realm of diagrammatic proofs for
mathematical theorems, by analysing the example of the so-called triangular
numbers. Given a positive integer k, the triangular number T (k) is the sum
of the first k positive integers.1 It is a theorem of natural number arithmetic
that T (k) = k×(k+1)

2 . The diagrammatic proof of this theorem is illustrated in
Fig. 1(c) for T (2), T (3) and T (4) respectively. It starts by drawing two dot tri-
angles of magnitude k—i.e. with k dots on each of its sides—vertically stacked
with their hypothenuses aligned. The resulting dot rectangle contains 2 × T (k)
dots, and can also be decomposed into k columns, each containing k + 1 dots—
i.e. as k × (k + 1) dots. This makes k × (k + 1) equal to 2 × T (k), and thus
T (k) = k×(k+1)

2 . Giaquinto [4] stresses the importance for mathematical discov-
ery of this general process of viewing a figure in two ways—both as a rectangle
of equal columns and as composed of two equal triangles—and calls it aspect

shifting, the term which we also adopt in the present paper.2

Aristotelian Relations and Diagrams. In the framework of Logical Geom-
etry [3,14] a central object of investigation is the so-called ‘Aristotelian square’
or ‘square of opposition’, visualising Aristotelian relations, i.e. logical rela-
tions of opposition and implication. Two propositions α and β are said to be:

1 Thus T (2) = 1 + 2 = 3, T (3) = 1 + 2 + 3 = 6, T (4) = 1 + 2 + 3 + 4 = 10, and so on.
2 In the theory of Shimojima [12, p. 154], aspect shifting involves a layered consequence

tracking relation with constraints between two decomposition types of one figure.
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Fig. 2. (a) Classical square (b) degenerate square (c) coding conventions (d) hour-glass
= OG perspective (e) bow-tie = IG perspective. (Color figure online)

a. contradictory CD(α,β) iff α and β cannot be true together and
α and β cannot be false together

b. contrary CR(α,β) iff α and β cannot be true together but
α and β can be false together

c. subcontrary SCR(α,β) iff α and β can be true together but
α and β cannot be false together

d. in subalternation SA(α,β) iff α entails β but β doesn’t entail α

In order to draw an Aristotelian diagram (AD for short), we first of all
need a fragment F of a language L, i.e. a subset of formulas of that language.
The formulas in F are typically assumed to be contingent and pairwise non-
equivalent, and the fragment is standardly closed under negation: if formula
ϕ belongs to F , then its negation ¬ϕ also belongs to F . For the language of
the modal logic S5 (with operators � for necessity and ♦ for possibility), for
instance, a first fragment F1 could be {�p, ¬�p, ♦p, ¬♦p}. An Aristotelian
diagram AD for F1 is then defined as a diagram that visualises an edge-labeled
graph G. Figure 2(a) presents the AD for F1. The vertices of G are the elements
of F1, whereas the edges of G are labeled by all the Aristotelian relations holding
between those elements, using the coding conventions in Fig. 2(c).

Furthermore, we have added the bitstring encoding of the formulas
involved, in order to facilitate the analysis further on. For this particular frag-
ment, these bitstrings consist of four bitpositions βn, which have the value 1 or
0, and which correspond to four anchor formulas αn—together constituting a
partition Π of logical space [3].3 Formulas are classified as level one (L1), level
two (L2) or level three (L3) according to the number of values 1 in their bitstring.

The basic building block of any AD is the so-called pair of contradictory

formulas (or PCD). With the classical square in Fig. 2(a), the two PCDs

3 In this case Π = {α1, α2, α3, α4} = {�p, ¬�p ∧ p, ♦p ∧ ¬p, ¬♦p} and for every
formula ϕ ∈ F1, its bitstring β(ϕ) = β1β2β3β4 is such that βn = 1 iff S5 |= αn → ϕ.
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constituting the diagonals of the square connect a L1 and a L3 formula. In
Fig. 2(b), by contrast,—which is the AD for the fragment F2 = {p, ¬p, �p ∨
¬♦p, ¬�p ∧ ♦p} and which is called a degenerate square—the two diagonal
PCDs connect two L2 formulas. More importantly, however, the four pairs of
formulas/vertices along the edges of such a degenerate square do not stand in
any Aristotelian relation whatsoever (they are said to be unconnected [14]).

The Aristotelian geometry AG = {CD,CR,SCR,SA} is not uniform in
the sense that the first three relations are defined in terms of propositions ‘being
true/false together’, whereas the fourth is defined in terms of entailment. In [14]
we have argued that AG is ‘hybrid’ between two other geometries, namely an
opposition geometry (OG) and an implication geometry (IG).

In Sect. 2 we explore the phenomenon of aspect shifting in the realm of Aris-
totelian diagrams. We first consider Aristotelian subdiagrams for opposition and
implication, which allow us to distinguish between two families of Aristotelian
hexagons. Secondly, we go into the ways in which classical Aristotelian squares
are systematically embedded inside these two families of hexagons. In Sect. 3 we
draw conclusions and mention some questions for future research.

2 Aspect Shifting with Aristotelian (sub)diagrams

Aspect Shifting in the Square. The most basic type of aspect shifting in
ADs occurs within the classical square in Fig. 2(a), and holds between the ‘hour-
glass’ perspective in Fig. 2(d) and the ‘bow-tie’ perspective in Fig. 2(e). As with
the earlier examples of perceptual multistability, these two perspectives on the
square cannot be maintained simultaneously. The two PCD diagonals—which
were already shown to be the only common elements in the classical and the
degenerate squares in Fig. 2(a–b)—also turn out to be the only common elements
in the hour-glass versus the bow-tie perspective in Fig. 2(d–e). Since the hour-
glass combines the two diagonal CD relations with the two horizontal opposition
relations of CR and SCR, it will be called the OG-perspective. Conversely, since
the bow-tie combines the two diagonal CD relations with the two vertical impli-
cation arrows of SA, it will be called the IG-perspective. It is important to stress
that the hour-glass and bow-tie are not themselves Aristotelian diagrams, since
not all available Aristotelian relations are explicitly represented: the hour-glass
ignores the two SA arrows, whereas the bow-tie ignores CR and SCR. These two
more elementary shapes are thus called Aristotelian subdiagrams (AsD).4

Aspect Shifting in the Sherwood-Czeżowski Hexagon. If we compare
the original Aristotelian square for the modal fragment F1 = {�p, ¬�p, ♦p,
¬♦p} in Fig. 2(a) with the hexagonal diagram in Fig. 3(a), we observe that an
extra PCD—namely the third diagonal connecting the two L2 formulas {p,¬p}—
crosses the original square horizontally. We refer to this diagram as a Sherwood-

Czeżowski hexagon (SC for short) [2,8,13]. The most prominent feature of

4 The hour-glass and bow-tie AsDs have been studied in great detail in our Diagrams
2020 paper [15] in terms of Shimojima’s cognitive potential of Free Rides [12].
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Fig. 3. (a) SC hexagon (b) vase = OG perspective (c) butterfly = IG perspective.
(Color figure online)

Fig. 4. SC hexagon: OG perspective = hour-glass (a) left (b) center (c) right; versus
IG perspective = bow-tie (d) left (e) center (f) right. (Color figure online)

the SC hexagon—serving as a diagnostic for establishing the particular Aris-
totelian family of hexagons—are the two obtuse triangular shapes defined by
three subalternation relations.5 With all their arrows pointing downwards, these
two triangles represent the ‘transitive closure’ of the SA relation. They also play a
crucial role in the aspect shifting which occurs with the SC hexagon between the
‘inner’ blue/green (rhombic) ‘vase’ perspective in Fig. 3(b) and the ‘outer’ black
‘butterfly’ perspective in Fig. 3(c), which again cannot be maintained simultane-
ously. Again, the PCD diagonals are shared between the two perspectives. The
vase in Fig. 3(b) extends the OG hour-glass perspective in Fig. 2(d), whereas the
butterfly in Fig. 3(c) extends the IG bow-tie perspective in Fig. 2(e).

Next to the high-level two-way aspect shifting between vase and butterfly in
Fig. 3(b–c), we observe a process of iteration, triggering a low-level three-way
aspect shifting between the three hour-glass shapes in Fig. 4(a–c) and the three
bow-tie shapes in Fig. 4(d–f). Once the overall OG versus IG perspective is fixed,
it becomes harder to focus on more than one of the three smaller shapes at once.

5 In our Diagrams 2021 paper [16] identifying such triangular shapes is analysed in
terms of Shimojima’s cognitive potential of Derivative Meaning [12].
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Fig. 5. (a) JSB hexagon (b) star = OG perspective (c) shield = IG perspective. (Color
figure online)

Fig. 6. JSB hexagon: OG perspective = hour-glass (a) left up (b) center (c) right up;
versus IG perspective = bow-tie (d) left up (e) center (f) right up. (Color figure online)

Aspect Shifting in the Jacoby-Sesmat-Blanché Hexagon. Comparing
the square for the fragment F1 in Fig. 2(a) with the hexagonal diagram in
Fig. 5(a), we observe that the third PCD diagonal connecting the two L2 formu-
las {�p ∨ ¬♦p, ♦p ∧ ¬�p} crosses the original square vertically. We refer to this
diagram as a Jacoby-Sesmat-Blanché hexagon (JSB for short) [1,5,11,13].
With this JSB the high-level two-way aspect shifting takes place between the
inner, blue/green ‘star’ perspective in Fig. 5(b) and the outer, black ‘shield’
perspective in Fig. 5(c), which again cannot be maintained simultaneously, but
have the three PCD diagonals in common. Like the hour-glass and vase, the star
AsD—with its CR and SCR triangles6—has an OG perspective ignoring the SA
arrows, whereas the shield AsD resembles the bow-tie and butterfly in that it has

6 See [16] for an analysis of these triangular shapes in terms of Derivative Meaning
[12]. The ‘undirected’ triangles for the symmetric relations CR/SCR in Fig. 5(b)
crucially differ from ‘directed’ triangles for the asymmetric SA relations in Fig. 3(c).
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Fig. 7. SC hexagon: AG perspective = square (a) left (b) center (c) right; versus JSB
hexagon: AG perspective = square (d) left up (e) center (f) right up. (Color figure
online)

an IG perspective ignoring CR and SCR.7 Once again, a process of iteration now
triggers a low-level three-way aspect shifting between the three hour-glass shapes
in Fig. 6(a–c) and between the three bow-tie shapes in Fig. 6(d–f). Once the over-
all OG versus IG perspective is fixed, it again becomes harder to focus on more
than one of the three smaller shapes at once. Notice that with the SC hexagon
in Fig. 4(a–f), this aspect shifting only involves ‘minimal’ 30◦ (counter)clockwise
rotations, i.e. all hour-glasses and bow-ties are basically ‘upright’. With the JSB
hexagon in Fig. 6(a–f), by contrast, much more ‘radical’ 120◦ (counter)clockwise
rotations are involved, with two out of the three hour-glasses and bow-ties almost
being ‘upside down’, and hence less easily perceivable.8

Aspect Shifting with Embedded Aristotelian Diagrams. So far, high-level
aspect shifting with Aristotelian hexagons concerned a two-way split between an
OG and an IG perspective, inside of which—by iteration and rotation—a low-
level three-way aspect shifting takes place. This overall constellation is ‘reversed’
with the SC hexagon in Fig. 7(a–c) and the JSB hexagon in Fig. 7(d–e). The
high-level three-way aspect shifting adopts an AG perspective by focussing—
again basically one at a time—on the three different ways in which a complete
classical Aristotelian square is embedded inside these hexagons.9 For each of
these embedded squares, the iteration process then triggers a low-level two-way
aspect shifting between the respective OG hour-glass perspectives in Fig. 4(a–c)
and Fig. 6(a–c) and the IG bow-tie perspectives in Fig. 4(d–f) and Fig. 6(d–f).

7 Notice that it is perfectly possible in theory to highlight other subparts for aspect
shifting, as long as the crucial property of closure under negation is observed.

8 They are problematic for the Apprehension Principle by which the structure/content
of the visualisation should be readily/accurately perceived or comprehended [17].

9 Differences between ‘minimal’ SC and ‘radical’ JSB rotations directly carry over.
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3 Conclusion

The present study of the mechanism of aspect shifting in Aristotelian diagrams
constitutes a next step in a recent research line inspired by the theory of cog-
nitive potentials of Shimojima [12], elaborating on the notions of Free rides
[15] and Derivative meaning [16]. By studying the Aristotelian diagrams from
the perspective of perception and cognition, we also try to take a next step
in establishing an exhaustive typology of diagram families, as well as a place
for Aristotelian diagrams (and logical geometry) within the broader realm of
logical diagrams research. Two topics for further research immediately suggest
themselves at this point, namely (i) more (experimental) research concerning the
differences in perceivability related to the degree of rotation involved in various
types of hexagons, and (ii) extending aspect shifting to embedded squares versus
hexagons in Aristotelian octagons.
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Abstract. Recent case studies in the philosophy of mathematical prac-
tice have pointed out that certain types of diagrams play epistemic roles
in mathematical proofs. To complement such case studies and provide a
quantitative basis for further analysis and discussions, we undertake an
empirical study based on a large and contemporary corpus of mathemati-
cal texts. Following an a priori assumption that diagrams in short proofs
carry more epistemic warrant, we focus on 1- or 2-sentence proofs that
refer to diagrams, and we build a corpus of such proofs from the arXiv.
Based on this corpus we analyze and develop a typology of such proofs in
order to conduct selected qualitative close-readings of diagrams in their
argumentative contexts. This leads us to discuss tensions between visual
and syntactical aspects of diagrams that suggest that hybrid diagrams
play distinct roles in mathematical practice.

1 Introduction

The philosophical study of diagrams in mathematical practice has recently
gained new impetus through detailed studies of their prevalence and support for
mathematical cognition. Recent quantitative investigations have shown that dia-
grams were relatively frequent in mathematical publications throughout the past
century despite the fact that such prominent mathematicians as David Hilbert
considered them to be insufficient as epistemic support for mathematical claims.
Diagrams were relatively frequent around 1900, but between 1910 and 1950 the
prevalence of diagrams in mathematics publications decreased noticeably. After
1950, their use increased again especially due to the use of commutative dia-
grams in emerging fields such as category theory and K-theory, before the use of
diagrams found in publications diversified towards the end of the past and into
the 21st century [9].

Today, a wide variety of different diagrams are commonly used in mathemat-
ical publications, but despite their prevalence the epistemic roles of diagrams in
contemporary mathematical practice are still in need of investigation.

The connection between diagrams and logical inference was investigated in
the 1990s [e.g. 13]. These studies clearly demonstrated the epistemic potential in
diagrammatic reasoning, but they were somewhat removed from mathematical

c© Springer Nature Switzerland AG 2022
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practice. More recent studies have addressed this issue through case studies ana-
lyzing the roles that knot, commutative, and similar diagrams play in concrete
mathematical practice [5]. The overall conclusion is that such diagrams can play
integral roles in both proving and understanding mathematical theorems. With
a key term coined by De Toffoli, certain diagrams have a hybrid nature in the
sense that they share features with both algebraic and geometric representations
[4]. Such diagrams are designed for the typographical layout to support intuitive,
visual reasoning, while simultaneously being part of a formalism that supports
syntactic considerations and manipulations. Diagrams of this type thus offer a
compromise between demands for (formal) rigour and the cognitive economy
afforded by visual intuition. For that reason hybrid diagrams have the potential
to play special epistemic roles in mathematical argumentation.

In the following we investigate various epistemic roles played by diagrams
in mathematical proofs. We do so by first assessing the frequency of hybrid
diagrams among the diagrams used for epistemic purposes in short mathemat-
ical proofs before we turn to close readings of two cases chosen to be rich in
information and perspectives.

2 Methods and Materials

2.1 Preparing the Corpus

Mathematical manuscripts uploaded to the arXiv provide a comprehensive cor-
pus of texts for digital studies of mathematical practice. Each manuscript is
provided with metadata about its date of uploading and self-ascribed research
field chosen from 32 mathematical categories. Additionally, LATEX source files
are openly available for almost all of the manuscripts. In our project we have
built a pipeline for processing these LATEX source files, which contain substan-
tial structural information, into contexts corresponding to structural elements
of mathematical research publications. Among these contexts, the proof context
contains structural components that pertain to proving statements (which are
captured in theorem contexts etc.). Thus we have direct access to structural ele-
ments of mathematical texts which are intended as demonstrations. Moreover,
we can identify and process other LATEX instructions which correspond to dia-
grams constructed using special advanced figure-drawing packages for LATEX.
Combining these two elements of our pipeline—the proof context and the source
for mathematical diagrams—we are able to automatically extract those diagrams
that feature (directly, i.e. not by reference only) in short proofs, defined as only
consisting of one or two sentences. We detect the length of proofs in terms of
sentences using a standard NLP sentence tokenizer.

For the current project, we built a corpus of all the manuscripts uploaded to
arXiv in 2021 within the mathematics section; this comes to 34 426 papers of
which our pipeline gives us access to the structural information of 32 276 papers
(93.8%). This total corpus contains no less than 335 113 proofs, but we chose to
focus on only short proofs which contain or refer to diagrams. Thus, our inclusion
criteria are:
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1. Either the proof text contains (at least) one of the indicator words diagram,
figure, sketch or drawing (or derived forms), or

2. the proof contains (at least) one of the follow LATEX constructs:
(a) Either the command \xymatrix, or
(b) any one of the environments tikzpicture, tikzcd, psmatrix,

pspicture, knot or ytableau, which are frequently used to typeset dia-
grams of various sorts, or

(c) a graphics file included by the command \includegraphics.

When we extracted the proofs meeting these criteria, we ended with 900
proofs, containing 366 identified diagrams and referring to more diagrams outside
the proof context. These short proofs with their diagrams were then extracted
and compiled using LATEX into a document which provided the basis for our
subsequent, qualitative and human-centred analyses.

2.2 Coding and Categorization

Of the 268 single-sentence proofs in the corpus 215 were coded and categorized in
NVivo using a mixed theoretical and grounded approach: Instances that include
diagrams were first categorized according to types known from the literature (see
Sect. 1) while instances not including diagrams were categorized using grounded
categories that emerged during the first round of coding [2]. A second round of
coding was performed to ensure consistency with the final code book. Subse-
quently, instances that include diagrams were further categorized according to
their type, if the type could be discerned. Instances where the type could not be
discerned were categorized as either other hybrid or other non-hybrid depending
on a judgement of the epistemic role of the diagram (see Table 1).

Instances that did not include diagrams but referred to them were categorized
with the following emergent categories:

– 1D diagram: One dimensional diagram such as exact sequence. These are not
included in the analysis as diagrams in this paper [see [8], for discussion].

– Hypothetical diagrams: Reference to a diagram that could be made or imag-
ined, often with instructions or reference to similar diagrams in the literature.

– Chart. The indicator word “figure” picked up the use of charts. These are not
considered diagrams in this analysis.

– Not diagram, other : Indicator words refer to the literature or are used in a
non-visual sense.

Three instances were further removed from the data set as they could not be
identified in the current online versions on arXiv, presumably because the paper
had been revised. Three more instances were further removed as the diagram
referred to did not play a clear epistemic role in the proof.

This categorization was complete and unique in the sense that all instances
were coded as belonging to precisely one of the categories described above.
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3 Types and Uses of Diagrams in Short Proofs

Based on our quantitative study of the 2021 corpus, a few initial observations
can be made. First, and unsurprisingly, we found that the prevalence of short
proofs that refer to diagrams varies considerably across mathematical fields.
On average, in category theory, almost every second paper contains such as
proof; and in K-theory and homology, algebraic topology, quantum algebra, and
geometric topology more than 10% of papers include short proofs referring to
diagrams. On the other hand, such proofs were much rarer in (most) other fields.

We also tested whether larger prevalence of short proofs referring to diagrams
led to other features that we could hypothesize, such as perhaps fewer equations,
shorter proofs in general, etc. but it seemed to have no significant impact.

We did not directly analyze the function of the concrete diagrams categorized
as commutative, graphs and knots, but diagrams of these types are generally
associated with hybrid functions. Given this assumption, it is clear from the
overall distribution of diagram types (Table 1) that hybrid diagrams were the
dominating type in our sample, with commutative diagrams as the most common
sub-type. This being said, instances including non-hybrid diagrams formed a
substantive minority.

Table 1. Instances including diagrams:
Distribution of diagram types.

Diagram type #

Commutative 102

Graph 7

Knot 1

Other hybrid 18

Other non-hybrid 20

Total 147

Table 2. Instances not including dia-
grams: Distribution of categories.

Category #

1D-diagram 8

Chart 2

Hypothetical diagram 29

Not diagram (other) 23

Total 62

In the categories of non-diagrams (Table 2) it is especially worth noting the
prevalence of hypothetical diagrams. This was an emergent category we did not
expect, and its presence in the data set illustrates the diverse roles diagrams play
in mathematical epistemic practice. To explore the category further, we only give
two examples from the data set, leaving many more for separate discussion:

Proof [of four identities]. They can be checked by diagram computation
[10, p. 22].

Proof. The statement (4.2) is immediate from a picture, for example Figure
16 in [external reference], using that between any such pair of points, there
is almost surely a unique maximizing path [12, p. 15].
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The two examples are extreme cases illustrating the breadth of the category
as we used it. In the first case diagrams are merely stipulated, while in the second
particular features of a diagram type known in the literature is hinted at. These
hypothetical diagrams are invoked but not present in the argumentation, and
as such they are placeholders for gaps in the proofs that are left to the reader
[see also 1], just as tedious calculations or computer experiments are sometimes
used.

4 Epistemic Roles of Diagrams

To further explore the data set, we chose two cases for close analysis. Following
the method of information-oriented selection we sought two abnormal cases [6,
p. 230], one belonging to the category “Other non-hybrid diagrams” and the
other to the category “Other hybrid diagrams”.

4.1 Case Study 1

The paper “Lamps in Slim Rectangular Planar Semimodula Lattices” was
uploaded by G. Czédli onto arXiv in January 2021 and classified as dealing
with rings and algebras [3]. It contains 11 figures of diagrams, all but two of
which include the central object of the paper, the so-called lamps.

The paper was included in our corpus because its single-sentence proof of
Lemma 3.1 contains the indicator word ‘figure’ [3, p. 18]:

Proof. The proof is trivial by Fig. 1 and (2.10). ��

G4 . CZÉDLI

Figure 1. S
(1)
7 , S

(2)
7 , S

(3)
7 , and S

(4)
7

Fig. 1. Figure 1 in [3, p. 4].

The figure, to which the proof refers, occurs many pages earlier in the paper
and is reproduced here in Fig. 1. It came with a brief introduction, pointing to
an earlier paper:

For example, the lattices S
(n)
7 for n ∈ N

+ := {1, 2, 3, . . . }, defined in Czédli
[2] and presented here in Fig. 1 for n ≤ 4, are slim rectangular lattices.
[3, p. 3]
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The reference ‘(2.10)’ in the proof refers to a statement about lamps:

[E]very internal lamp comes to existence from a multifork extension. Fur-
thermore, if a lamp K comes by a multifork extension at a 4-cell Hi, then
CircR(I) is a geometric region determined by Hi; [3, p. 12]

This explanation provides another way of describing the formation of lamps
and their properties, cast in a different language and invoking carefully named
objects and processes.

Based on this short case, we first notice that Czédli’s figure plays an epistemic
role in his proof as it is part of making the proof “trivial”. Yet, although the
figure suggests a pattern of expansion, there is nothing to suggest that the figure
is dynamic or supports any form of syntactical reasoning, so it does not seem
to classify as a hybrid diagram. When Czédli introduced his Fig. 1, he spoke
of it as an example, suggesting that the epistemic role of the figure lies mainly
in suggesting instances of these objects along with the processes of generalizing
such instances. This would help the reader to construct mental representations.
Thus, this case suggests a situation in which a diagram plays an epistemic role
by exposing co-exact features and abstracting away from complications [11]. It
serves as an integral part of the reasoning by fostering familiarity with the object
and expressing key insights in the form of generation of (a family) of lamps.

4.2 Case Study 2

In February 2021, K. Wada uploaded his paper “CF-moves for virtual links”
to the arXiv [15]. The paper was classified as general topology, and in it Wada
studied transformations of virtual links, which are generalizations of knots. As is
the case with knots, virtual links have a specific syntax which Wada illustrated
along with the lists of Reidemeister moves R1–R3 and V1–V4 and the so-called
CF-move [15, p. 1]. These introductions were given using the first four of a total
of 16 figures in the paper which spans 14 pages.

This paper was included in our collection because of the 1-sentence proof of
its Lemma 2.1 [15, p. 4]:

Proof. The proof in the case εε′ = 1 follows from Figure 2.4, and that in
the case εε′ = −1 follows from Figure 2.5. ��
The figures immediately follow the proof, and Wada’s Fig. 2.4 is shown here

as Fig. 2. This figure shows a dynamic and linear structure with a clear syntax:
It is to be read from top-left to bottom-left as a process in which one virtual
link is transformed into another through a sequence of operations (R2, R3, CF,
CF, R2). This epistemic use of diagrams is well-known also in other branches
of knot theory [5], but in this example, the syntax of links is adapted, and the
operations go beyond standard Reidemeister moves.

Therefore, this case illustrates that Wada’s Fig. 2.4 plays an epistemic role
as a hybrid diagram. But it also highlights how new syntax and manipulations
are to be introduced visually before they can be brought to use, even in simple
proofs such as this [see also 7].
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R2 R3

CF

R2 CF

ε ε ε ε

ε

−ε

ε
−ε

ε ε

−ε −ε −ε −ε

−ε

ε ε −ε

ε
ε

Figure 2.4. Proof of Lemma 2.1 in the case εε = 1

Fig. 2. Figure 2.4 in [15, p. 5].

5 The Epistemic Role of Diagrams in Short Proofs

The purpose of this study was to shed light on the epistemic roles that diagrams
play in mathematical practice. In our approach, we combined quantitative and
qualitative corpus studies to gain additional content for discussions about dia-
grams in mathematical practice and begin methodological triangulation.

We operationalized the notion of diagrams having high epistemic warrant
by focusing on diagrams that appear or are referred to in short (one- or two-
sentence proofs). This proxy proved to be effective in that the vast majority of
those proofs we identified indeed rely essentially on a diagram for their argument.

Unsurprisingly, the prevalence of diagrams in short proofs varies across dis-
ciplines, and we have found empirical support for the intuition that fields like
category theory and K-theory rely more on diagram-based proofs than other
fields.

Furthermore, our qualitative coding of the identified instances led to some
expected and a few quite surprising results. The vast majority of diagrams iden-
tified were commuting diagrams which are known to have a hybrid function in
mathematical proofs [4]. More surprisingly, we also found other forms of hybrid
diagrams, in the form of knot diagrams (case study 2), combinatorial manipula-
tions and several other types of diagram. Thus our project has added detail and
discussion to the notion of hybrid diagrams.

As noted in the introduction, hybrid diagrams are in line with an episte-
mology emphasizing formal rigour. Seen in this light the use of such diagrams
as epistemic warrant in proof contexts is less surprising. On the other hand we
were quite surprised to see a substantial amount of non-hybrid diagrams playing
somewhat similar epistemic roles (case study 1). This suggests that the use of
diagrams in mathematical proofs in some cases challenges a traditional episte-
mology emphasizing formal rigour, for instance by using co-exact features of a
diagrams as steps in a proof (see case study 1). Finally, from a methodological
viewpoint, our process has shown a successful implementation of what we refer
to as our research agenda—the Copenhagen Program for using ML in studying
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diagrams: We have a) used a large corpus of texts to form a broad and (rela-
tively) varied collection of diagrams to study [see also 14]. Thereafter, we have b)
used (in this case) qualitative methods to categorize instances in the collection,
leading us to eventually c) undertake close-readings of selected instances which
we can claim are somewhat representative through our efforts in a) and b). This
encapsulates our entire approach to question-driven quantitative and qualitative
corpus studies in the philosophy of mathematical practice.
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Abstract. Multimedia resources conventionally convey their subject matter
through a combination of descriptive and depictive representations. However,
responsibility for explaining that content is typically skewed heavily towards mul-
timedia’s descriptive components. This theoretical paper considers likely percep-
tual and cognitive processing requirements for internalizing these two sources of
information during mental model construction. It uses the example of a multime-
dia resource consisting of written text and an accompanying overview picture to
propose that much of the role usually allocated to text in such a resource could
conceivably be reallocated to a set of ancillary diagrams. This proposal is based
on an analysis suggesting that these diagrams are a better foundation for men-
tal model building than is text. Consequently, replacing the text in a multimedia
resource with appropriately designed ancillary diagrams should result in superior
understanding. Likely benefits and costs of this approach as well as possibilities
for its further development are discussed.

Keywords: Multimedia explanation · Internal and external representations ·
Ancillary diagrams ·Mental model construction

1 Introduction

Our current information-rich society is one in which visual forms of information are
increasingly pervasive. Along with this rise in our reliance on such visualizations, the
way that society uses verbal information has also been changing significantly. These
changes are particularly evident in the growth of short form text-based communications
(mobile phone text messaging, social media platforms, news websites, etc.). There has
also been a complementary rapid uptake of various types of static and dynamic visuals
across these avenues of communication. However, one area that has lagged somewhat
behind this trend is that of explanatorymultimedia (as commonly foundwith technology-
based educational and training resources, electronic productmanuals etc.). Inmultimedia
resources, words (written or spoken) still typically carry the primary responsibility for
presenting information to the target audience. Although it is certainly true that such
resources are usually generously illustrated these days, the included pictorial material
is rarely relied on for conveying the bulk of the content – that remains largely the job of
the text.
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In this chapter, we propose that the ‘over-reliance’ on text-based explanation evident
in much current multimedia design may limit a resource’s effectiveness for developing
understanding. Historically, researchers and practitioners have advocated replacing text
with pictures for audiences who are not native speakers of a local language or whose
language skills are otherwise deficient [1]. However, this is not the theme of the present
chapter. We do not propose doing away with text because the target audience lacks a
basic level of comprehension of text per se. Instead, we argue for visualizations to be
given greater explanatory responsibility than they have had hitherto, and for the role
of text used together with explanatory visuals to be re-conceptualized. Our proposal is
that static or animated diagrams (provided that they are properly designed) could fulfil
much the same role as has traditionally been done by explanatory text, and that the
purpose of text could be changed to one of supporting visual interpretation of these
ancillary diagrams. The rationale for suggesting such changes is based on differences in
the extent to which the fundamental characteristics of descriptive (textual) and depictive
(pictorial) representations align with those posited for mental models [2, 3]. We raise
the possibility that our proposed changes to the design of multimedia resources could
substantially improve their effectiveness for fostering understanding.

1.1 An Example

The example of a manual caulking gun (Fig. 1) will be used to illustrate the proposal
being put forward in this chapter.

Fig. 1. Caulking gun overview picture

Let us suppose for the purposes of our discussion that we wish to develop a multi-
media resource to explain how the mechanism of a caulking gun allows this device to
perform its overall function. Caulking guns are typically used in housing construction
and maintenance to extrude a continuous bead of viscous caulking compound (such as
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silicone sealant) that fills gaps between adjacent non-mating surfaces. After a cartridge
of caulking compound is fitted into the gun, its contents are progressively extruded by
means of successive squeezes of the trigger. Successful functioning of the caulking gun
system relies on the interaction of the mechanism’s two main sub systems:

1. The ‘push’ sub system that moves the drive rod through the cartridge so that its
plunger pushes out the caulking compound. With each squeeze of the trigger, this
sub system ejects a dose of the cartridge contents.

2. The ‘catch’ sub system that ensures the drive rod progressively moves through the
cartridge so that all the contents are ultimately ejected. It does this because the grip
that the catch plate exerts on the drive rod prevents the rod from slipping backwards
after each trigger press.

The ‘push’ and ‘catch’ sub systems perform their individual roles that together con-
tribute to the mechanism’s proper overall functioning via two complementary causal
chains. Each of these chains consists of a series of components that propagate activity
between primary cause and ultimate effect by means of inter-component contact inter-
actions. For example, consider the chain of events that occurs when the initial cause
(a squeeze of the trigger) leads to the final overall effect (extrusion of some caulking
compound). When the trigger is given its first squeeze, the ‘push’ causal chain begins
with depression of the trigger towards the fixed handle of the gun. As the pivoted trigger
rotates, the movement of its push bar in contact with the push plate causes that plate to
change from a vertical to an angled orientation. This angling of the push plate in turn
causes it to grip the drive rod then push it a limited distance along inside the cylinder so
that the first dose of the caulking compound is ejected by the plunger. In concert with the
operation of this ‘push’ causal chain, a second parallel ‘catch’ causal chain operates by
which the tendency of the drive rod to retreat to the original position it occupied before
the trigger squeeze (cause) is counteracted by grip from the catch plate that arrests its
movement (effect). Successful functioning of the caulking gun mechanism depends on
a coordinated and finely calibrated interplay between these two causal chains. Funda-
mental to this interplay is the relationship of a long, strong push spring (impinging on
the push plate) to a short, weaker catch spring (impinging on the catch plate).

It is clear from the above account that despite the caulking gun being a common,
easily operated device, the mechanism responsible for the gun’s functionality is rather
sophisticated. From the point of view of comprehending precisely how this mechanism
works, this actually makes it quite complex. Consequently, designing an effective expla-
nation to help people fully understand the way its numerous individual components
(about a dozen of them) contribute individually and collectively to its overall function-
ing presents a considerable challenge. Currently, a popular response to such a challenge
would be to develop a multimedia resource that uses a combination of descriptive and
depictive information to explain this content.

This ‘text plus picture’ approach to multimedia has several common present day
variants that can involve modifications such as using spoken rather than written text or
using animated rather than static pictures [4]. Nevertheless, the way that multimedia
resources of this type are currently designed still typically reflects their heritage from
traditional printed textbooks where text was the primary carrier of information and
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pictures were generally treated as subservient adjuncts to the text-based explanation. In
the next section, we consider various types of representation on the basis of a relatively
straightforward multimedia implementation consisting of a written text that explains the
functioning of a caulking gun accompanied by an overview picture (as per Fig. 1) that
shows its main parts.

2 Representations

Representations have a ‘stand-for’ relationship with their referents (i.e., the subject mat-
ter to which they refer). They can be either external to a person (such as printed and
spoken text, or static and dynamic pictures) or internal (such as mental images, proposi-
tional knowledge, ormentalmodels) [5–7]. Comprehension of the subjectmatter referred
to by external representations requires the operation of ‘bottom-up’ perceptual and cog-
nitive processes to extract then internalize relevant aspects of the available information.
This internalized information is complemented ‘top-down’ by stored knowledge gained
from prior experience to construct a mental representation of the referent subject matter.
Ideally, this mental representation is a coherent knowledge structure that captures the
subject matter sufficiently well to act as a basis for successful task performance.

Table 1 summarizes some key attributes of the types of representation that are the
focus of this paper: mental models, depictive representations (pictures), and descriptive
representations (text). It should be referred to when reading the following sections.

Table 1. Comparison of mental models, depictive and descriptive representations.

2.1 External Versus Internal Representations

A mental model is a particular type of internal knowledge structure that individuals can
acquire via bottom-up and top-down processing. A good understanding of a topic is
assumed to be the result of constructing a high quality mental model. These internal
representations have been posited to consist of mental tokens and relationships that are
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organized in an analog, quasi-visuospatial manner that reflects the information structure
of the subject matter they represent [6, 7]. A high quality mental model is one having
a close correspondence with its referent subject matter and that therefore makes it very
useful in tasks such as prediction and inference. One crucial factor that can determine
the quality of a mental model formed from an external representation is the level of
processing challenge involved in internalizing that information source [8–10]. More
specifically, mental model construction is likely to be facilitated if differences between
characteristics of the type of external representation upon which it will be based, and
the characteristics posited for mental models, are kept to a minimum. The greater the
differences between these two classes of representation, the more demanding will be the
processing required and the higher the possibility of errors. In particular, if an external
representation requires a substantial amount of preliminary processing in order to make
the information it is carrying readily compatible with the requirements for mental model
building, the likely outcome will be a lower quality internal representation.

2.2 Descriptive Versus Depictive Representations

The words comprising a piece of text are constituted from agreed sub sets of alphabetic
symbols organized in a particular sequence. Groupings of these words are in turn are
arranged according to rules of syntax and semantic constraints. Their physical layout in
space is linear and ordered left to right, top to bottom. In terms of the visual nature of
the individual elements and their spatial arrangement, none of these levels of descrip-
tive representation directly maps onto the visuospatial structure of the subject matter it
represents. Descriptive representations can therefore be thought of as arbitrary in the
sense that there is essentially no discernible one-to-one correspondence between the
representation and its referents [2]. However, mental models supposedly represent their
referents in a far more analog fashion. The external subject matter that is modelled inter-
nally via these knowledge structures is represented by tokens (mental entities that stand
for the external referent entities) arranged in a relational organization paralleling the
key referent relationships. In other words, a mental model is partly isomorphic in that
it has a high degree of correspondence at a fundamental level with the referent subject
matter it represents. It follows that a person engaged in reading a piece of text about
content that is markedly visuospatial in nature must carry out extensive conversion of
that representation in order to process it into a form that is well suited for mental model
construction. This transformational ‘side-task’ can be a very resource intensive process
in its own right and hence tie up capacity that could otherwise be devoted to themain task
of mental model construction. Table 2 summarizes some types of conversion activities
that a reader of text may need to carry out during this transformational processing.
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Table 2. A list of possible activities required for text-to-visuospatial conversion.

In contrast, the visuospatial properties of a well-designed depictive representation of
the same content already closelymatch those of its referent subjectmatter. It typically has
a high degree of one-to-one correspondence to its referent in terms of both the entities it
portrays and how those entities are related to one another. Unlike text, there are few arbi-
trary conventions (such as linearity and sequencing rules) that intrude to distort the layout
of the represented information. Instead, in all but the most extreme cases of abstraction
and manipulation in diagrammatic depictions, mapping between representation and ref-
erent is relatively straight forward. This means that the task of going from a depictive
representation to a mental model is likely to involve far less side-task transformational
processing than would be the case for a corresponding descriptive representation. In the
next sections, we expand on how differences in descriptive and depictive representations
fundamentally affect the way they are processed in a multimedia context.

2.3 Reconciling Representations: Processing Implications

Consider a conventional multimedia resource that presents complex, unfamiliar subject
matter via a text and an accompanying overview picture. The text shown in Fig. 2
addresses the ‘push’ subsystem of the caulking gun mechanism using such an approach.

A person encountering this combination must make many back-and-forth compar-
ison transitions between the text component and the picture component while trying
to build a coherent unified mental representation of the referent system. This involves
repeated shifts of attention and attentional adjustments in order to process corresponding
or complementary target aspects of these two very different types of representation. In
addition to navigating these transitions, the individual must also perform various mental
conversions in order that the information carried by these two very different media can
be reconciled and then combined on a common representational basis (see Table 2).
Both the continual to-and-fro activity and the ever-present requirement for such conver-
sions are resource-intensive processing activities. For subject matter of any complexity,
they result in this being a very demanding form of processing, both perceptually and
cognitively.
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Fig. 2. Multimedia presentation of caulking gun subsystem

Now consider how the situation (and concomitant processing demands) would likely
change if the textwas replaced by ancillary diagrams depicting the same content aswould
normally be presented by that text. We hypothesize that although some back-and-forth
comparison transitions would still be needed, fewer of them should likely be required
and they would impose a much smaller processing overhead. This is because of the far
greater similarity between the diagrams and the picture than between text and picture.
As a result, search within the diagrammatic depictions would be substantially lower
than within the body of text and would be less demanding. Then, once corresponding
representations of the same information items were located, much less processing would
be required to reconcile them.

Keeping in mind the limits on human information processing, the second scenario
should be considerably less demanding and therefore likely to leave more process-
ing resources free for mental model building than would the text-based scenario. Fur-
ther, because any inter-representational conversions that are required would be far more
modest, there should be less danger of errors creeping inwith the diagram-based scenario.

3 Constructing a Mental Model: Diagrams Instead of Text?

In this section, we consider in more detail the task of constructing a mental model from
an overview picture accompanied by ancillary diagrams (rather than text). To assist our
consideration of this task, we devised Fig. 3 as a notional way to show some key features
of a mental model in concrete form. Note that we do not claim Fig. 3 to be anything
more than a hypothetical expression of these features. It is intended solely to facilitate
comparison between amental model and the type of ancillary diagrams discussed above.
This is an important point tomake because there is currently no definitive account of how
mental models are actually manifested in the mind. Johnson-Laird [6, 7, 10] considered
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them to be analog representations that preserved structural aspects of the referent and
although grounded in perception, were abstract and not modal-specific. Their abstract
nature means that rather than representing particular situations (the case with mental
images), mental models represent sets of situations.

Despite Fig. 3 being a much simplified representation of the caulking gun that lacks
veridical detail, it nevertheless bears a close structural resemblance to the gun’s mecha-
nism. Although it preserves the fundamental relationships between the entities that exist
in a real caulking gun, abstract tokens are used in place of the referent’s entities. Further,
the representation singles out the functional role of key aspects (e.g., the pivots) and
captures certain properties that are relevant to how the device operates (e.g., the tokens
representing entities that are fixed versus those that aremoveable). For the sake of clarity,
Fig. 3 does not attempt to be comprehensive - other aspects could be added that would
probably bring it closer to a ‘real’ mental model (such as information about the direction
and extent entities canmove, sequencing information, etc.). However, the purpose of this
realization is merely to help demonstrate that using ancillary diagrams in multimedia
resources may be a more effective way to support mental model construction than the
conventional use of text.

Fig. 3. Possible information in a mental model of the caulking gun mechanism (hypothetical)

Let us assume that Fig. 3 is a not unreasonable concrete expression of what an
individual is trying to construct when processing a multimedia resource on the caulking
gunmechanism.We can then use Fig. 3 as a basis for hypothesizing about the processing
routes and activities that might be involved if an individual was to be given ancillary
diagrams (instead of text) as a basis for mental model construction. The type of situation
envisaged here is that the block of text provided in Fig. 2 would be replaced by several
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diagrams intended to serve the same content presentation purpose. Figure 4 shows a
possible implementation of such a combination.

Fig. 4. Ancillary diagrams used in place to text to accompany overview picture

Note that the ancillary diagrams incorporate various features that are designed to
boost their explanatory power (e.g., colour coding, transparency, additional symbols,
alignment to aid inter-diagram comparisons, etc.). For comparison purposes, Fig. 5
places the first ancillary diagram beside the information set constituting the hypothetical
mental model.

Fig. 5. Ancillary diagram/mental model comparison

Although they are various superficial differences between the two representations,
at a deeper structural level they have a great deal in common. This makes it relatively
easy to map between their corresponding aspects. It is also quite possible to do similar
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mapping with the other two ancillary diagrams shown in Fig. 4 if the mental model is
progressively ‘run’ forwards in time. For example, the relation between the solid line
token representing the trigger and its adjacent pivot token in the mental model allows
domain general information about how a lever rotates when a force is applied to one of
its arms to predict how the push bar will move when the trigger is pressed.

However, for the situation being addressed here (i.e., constructing an internal rep-
resentation from external ones), the circumstances are reversed. In that case, the person
studying the overview-plus-ancillary diagrams composite would be using those depic-
tions to abstract a representationally efficient generalization about this type of behavior
in order to incorporate it into a developing mental model. We can envisage this would
involve comparing the three successive ancillary diagrams and inferring that the trigger
can move smoothly towards the handle by rotating around its pivot. The mental model
would be constructed to represent this aspect of the caulking gun’s functionality in a
parsimonious manner as a continuous process (rather than as a series of discrete stages
as shown in the ancillary diagrams). During this mental model construction activity,
instance-specific information shown in the ancillary diagrams that would tend to limit
the potential generalizability (and hence power) of the developing representation would
presumably be omitted. For example, aspects such as the cartridge holder, the particular
shaping of the trigger and handle, the small hook that constrains the top end of the catch
plate, etc., would either be dispensed with completely or tokenized to maximize their
generalizability. This would mean that the mental model could be applied not only to the
particular instance of a caulking gun shown in Fig. 1, but also to a host of other superfi-
cially different but functionally similar design variants of this device that are available
in the market place.

4 Repurposing Multimedia’s Text Components

If empirical studies were to show that replacing text with ancillary diagrams did indeed
improve the understandings developed from multimedia explanations, does this mean
that text would then be redundant for such resources? Our view is that this should not be
the case. Rather, we suggest that text’s traditional role of presenting the content could be
replaced by a new, very different and potentiallymost beneficial role. This alternative role
would be to guide users of a multimedia resource in how to optimize their interactions
with the ancillary diagrams (in coordination with the overview picture). Research has
shown that if pictorial materials are presented without sufficient guidance as to how they
should be interrogated, interpreted, and inter-related, understanding of their contents
may be compromised [11, 12]. This potential deficiency can be related to the fact that,
unlike text, there is a lack of standardized reading conventions and approaches that can
be applied across all instances of pictorial representation.

Well written text, irrespective of the topic, leads the reader systematically through the
presentation of its subject matter by taking advantage of its standardized linear structure
and syntactical rules. However, there are no corresponding constraints on how pictures
are to be ‘read’ because the presented information is structured according to the structure
of the depicted subject matter (and not according to a universally applicable set of con-
ventions and rules). Consequently, individuals who lack background knowledge about
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the subject matter portrayed in a depictive representation may prioritize which aspects
they attend to and how they sequence their interrogation of those aspects according to
the depiction’s superficial perceptual characteristics [c.f. 13]. This may result in key
information going un-noticed and errors of interpretation.

Because depictive representations such as the ancillary diagrams being addressed
here lack the inbuilt features for supporting appropriate navigation etc. that are present
for text, it would make sense to accompany them with some form of add-on guidance. In
contrast to text’s limitations for representing visuospatial information, it can be a highly
effective way to convey sequenced procedural instructions. Our suggestion therefore
is that rather than removing text from multimedia resources altogether, it instead be
repurposed as a way of guiding the viewer through appropriate and fruitful processing
of the ancillary diagrams that we suggest might take over text’s traditional role. An
illustration of how such an approach might be implemented is given in Fig. 6.

Fig. 6. Guiding text could support interrogation of depictive representations

Another justification for changing the role of text to guiding interrogation of ancillary
diagrams (instead of presenting content) is that this could largely avoid the issue of
requiring possession of domain-specific background knowledge (almost unavoidable
when text is used to present content). Most text-based explanations of content that is in
some ways complex or unfamiliar implicitly assumes a certain existing level of relevant
background knowledge (often wrongly, which hinders the reader’s interpretation). It is
really very challenging for a text author to provide for a range of readers who have
widely differing prior knowledge of relevance to the particular content involved.

Converting from a text explanation of some content to an analog representation
typically requires the person to elaborate the entities mentioned. So, if the text mentions
a spring, the reader will need to ‘flesh out’ that item in order to convert it… such as
what shape springs usually are, what they are made of, how they behave when subjected
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to force, their ability to return to their original shape/size once the force is removed,
etc. A person who lacks such’spring-specific’ background knowledge could be at a real
disadvantage with a text-based explanation of our caulking gun mechanism. However,
this issue could be tackledwith additional ancillary diagrams.A broader issuewarranting
empirical investigation is the generalizability of this approach to other types of subject
matter, such as non-mechanical (biological) content.

If text was instead used for guidance, not content presentation, it would rely only
on domain general background knowledge, such as what is meant when someone is
asked to focus attention on a specific area of a diagram, notice a particular aspect of that
diagram, or compare two of its aspects, etc. These guiding instructions are extremely
generic and are universally applicable, irrespective of the content involved. It would be
almost unheard of that someone would not understand what they were required to do
having received such an instruction. Even if guiding text introduced some unfamiliar
type of interrogation activity, it would be easy to explain what was intended without
relying on the person having specialist background knowledge.

5 Ancillary Diagrams: Animated Alternatives

Considering the practicalities of using a set of ancillary diagrams instead of text to
accompany an overview picture of the referent subject matter raises some potential
limitations of this approach. One of these limitations arises from the static nature of
such diagrams (which means that relevant dynamics must be portrayed indirectly rather
than directly). Representing dynamics via static diagrams requires extra information
over and above that necessary to depict only visuospatial aspects of the referent subject
matter [12]. For example, to convey information about changes in components over time,
multiple ancillary diagrams of the caulking gun mechanism were used in Fig. 4. This
approach addresses such changes for the trigger, push plate, push spring, drive rod, etc.
Further, within-diagram additions are also necessary, such as the inclusion of arrows (to
show the force applied to the trigger that causes it tomove) and the dotted line (to indicate
the change in orientation of the push plate). These extras not only increase the number of
depictions that a viewer must deal with but also result in those displays becoming more
cluttered. Both types of addition can therefore raise the processing demands imposed on
viewers. Another potential downside of these static ancillary diagrams is that the viewer
is required to correctly interpret their extra dynamics-related information (e.g., viamental
animation). This interpretation relies on the viewer possessing and successfully applying
appropriate background knowledge about the conventions used to indicate dynamics
via a static depiction. For viewers who are young or who lack such knowledge, this
requirement can result in difficulties and interpretation errors.

Using animations instead of static diagrams may offer a way to avoid these potential
problems. It could reduce or eliminate the need not only for multiple diagrams, but also
for within-diagram additions. Further, it provides an opportunity to make explicit the
relationship between the information in an overview depiction and in its accompanying
ancillary diagrams. For example, animation could be used to single out a target sub
system from the overview depiction and convert it into an ancillary diagram. It could
also be used in a related way to show the origin of ancillary diagrams that provide views
of the subject matter that are different from those given in the overview depiction.
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However, research indicates that animations are by no means a universal panacea.
Ironically, the very strength they have in terms of being able to represent dynamics
directly can be problematicwhen it comes to viewers extracting task relevant information
from animated displays [14]. Avoiding such problems seems to rely on fundamentally
changing how animations are designed so that the way they present information is more
closely attuned with human information processing capacities. The Composition App-
roach to animation design has been developed to address the mismatch between these
two aspects that too often compromises the effectiveness of conventionally designed
(‘Comprehensive’) animations. This novel approach is founded on the Animation Pro-
cessing Model (APM) that characterizes the construction of a mental model from an
animation in terms of five interdependent processing phases [15].

If animated rather than static depictions were to be used as ancillary diagrams in
the approach canvassed above, it is important that their design be optimized in terms
of providing support for mental model construction. One important consideration in
designingmore effective animations is the fine-grained, content-specific characterization
of likely perceptual and cognitive challenges that could arise frompresenting information
about the referent subject matter in a temporally veridical manner. Complex, unfamiliar
dynamic subjectmatter tends to have features thatmakes it difficult for viewers to process
successfully if an animated representation faithfully reproduces its actual dynamics. This
typically occurs if the dynamics involve substantial simultaneity, as is the case with the
caulking gun example. Here, the ‘push’ causal chain and the ‘catch’ causal chain have an
intimate functional relationship (the gun will not work as it should unless both operate
properly and in concert).However, if an animationwas actually to depict these twocentral
aspects of the gun simultaneously (i.e., as they would occur in real life), a likely result
would be inadequate viewer processing of the presented information. Consequently, the
quality of a mental model built from exposure to this animation would probably be
severely compromised.

Empirical research indicates the benefits of a Composition Approach to animation
design in which counterproductive simultaneity is removed by sequential rather than
parallel presentation of such information [16, 17]. A necessary pre-cursor to this design
approach is a thorough analysis of the referent subject matter that can reveal which
of its aspects have the potential to impose excessive information processing demands
on the viewer if presented in a veridical manner. The results of such an Event Unit
Analysis [18] can then be taken into account in the design of an animation to tailor its
presentation characteristics to those of the particular subject matter being addressed.
Event Unit Analysis is therefore a content-specific technique whose results will differ
according to the nature of the subject matter involved.

6 Discussion and Conclusion

A dominant concern of orthodox approaches to multimedia design is to find ways of
staging presentation of their constituent descriptive and depictive representations so that
their combination works as effectively as possible. Typically however, these approaches
do not fundamentally question the roles that are assigned to these two broad types
of representation within such combinations. In this paper, we considered the potential
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effectiveness of multimedia resources from the perspective of the extent to which their
design was likely to provide support for an individual’s construction of high quality
mental models. From an analysis of their likely processing demands, we concluded
that descriptive representations (e.g., text) should be far less suited to conveying con-
tent information than depictive representations. Using the example of a caulking gun
mechanism, we explored an alternative approach to multimedia design that replaced
explanatory text with ancillary diagrams and repurposed text as a guiding resource for
supporting more effective processing of the depictive content presentation. Results from
a recent pilot study indicate that the use of ancillary diagrams (as exemplified in Fig. 4)
can be an effective alternative to a conventional multimedia design. Potential limitations
of this approach were flagged, and a suggestion made that they could be circumvented
by using animated instead of static ancillary diagrams [19]. Cautions about the pos-
sibility of negative effects from conventionally designed animations were raised and
the use of Composition Approaches and Event Unit Analysis introduced to ameliorate
these effects. The theoretical proposals put forward in this paper are intended to stimulate
empirical research intomore principledways to design explanatorymultimedia. Suitable
experiments could range from straightforward comparisons of the relative effectiveness
of text versus ancillary diagram accompaniments in multimedia, to the potential of more
tokenized animated ancillary diagrams for fostering higher quality mental models [18].
However, we recommend that this research gives more consideration to the benefits of
‘working backwards’ from posited attributes of high quality mental models rather than
merely ‘working forwards’ from the characteristics of the external representations that
supply the raw material from which those internal representations are built.
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Abstract. Diagrammatic and symbolic notations play a role in the performing
arts, such as music, dance, and drama. Some notations for documenting move-
ment of the human body in time have been developed for research and practice.
However, contrary to music and drama, learning to dance does not require the
mastery of dance notations. The goal of the paper is to examine the potential
of diagrammatic notational schemes for learning to lead in salsa dancing. First,
goals and functions of dance notation are considered and an existing diagrammat-
ical system is examined as a representational system. Subsequently, a systematic
analysis of moves between salsa position diagrams is undertaken and learning
tasks are suggested for empirical study.

Keywords: Dance notation · Performing arts ·Modelling moves and positions

1 Introduction

Diagrammatic and symbolic notations play a role in the performing arts, such as music,
dance, and drama. However, whereas actors learn to read a script and musicians learn
to read sheet music, notational schemes are much less used for learning to dance. This
paper focuses on linear salsa, a partnered dance with simple moves and positions at
beginner salsa performance and extremely sophisticated patterns at advanced levels. An
existing diagrammatic scheme for salsa positions [9] is presented and analyzed on its
representational properties. Moreover, using the scheme for learning to lead requires
enlarging the set of positions and developing a systematic way of describing genuine
salsa moves. Finally, directions for empirical testing of the usefulness of salsa position
diagrams for learning to lead in salsa dancing will be outlined.

2 About Functions of Diagrams in Dance

The documentation of performance arts in notations, diagrams, scores, and sketches,
has been theorized by Goodman [5]. Dance notation is the documenting of human
dance movement using symbols similar to what musical notation is to music and what
the written word is to drama. As highly complex organisms, humans can adopt an
infinite number of positions by moving individual body parts and exploit subtle bodily
expressions. Moreover, humans move in three-dimensional space individually or two or
more dancers can coordinate amongst them to move in patterns. As a consequence of
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this complexity, any notational system can only take into account a very small subset of
all positions, moves and expressions. Thus, as a modelling device, a dance notation is a
discretization of continuous movement for a particular purpose.

According to Goodman [5], the primary function of a score in the arts is to specify
the essential properties that a particular performance must have in order to belong to the
work. Thus, dance notation is used to document a choreography or a dance composition.
Other functions emerged for research purposes, such as the construction of a formal
model of positions and transitions for studying human movement, programming robots,
or for teaching robots how to dance [2, 6, 7]. Indeed, partnered dances involve moving
as a couple, which is an interesting case of non-verbal communication [2].

Learning a specific style of dancing entails learning to adopt its bodily positions and
to execute its moves. Positions and moves are the elementary components of a dance
designated by generic or specific names, e.g., first position, handshake position, pas de
bourrée, grapevine, box step, and enchufa. Nowadays, dance moves and positions are
accessible on the Internet with keywords “how to” or “moves and positions” associated
to the name of a dance, such as hip-hop, ballet, salsa, country, tango, etc. Search results
primarily display text, pictures, how-to-videos, and on-line classes. Diagrammatic or
notational systems are not habitually used in teaching and learning to dance.

3 Learning to Lead in Advanced Salsa Dancing

Salsa, as a patterned dance, involves a lead and a follow (most frequently, but not neces-
sarily, a man and awoman). The lead takes the follow through a series of moves and turns
to salsa music. The basic step occurs on beats 1, 2, 3 and 5, 6, and 7 in an eight count
rhythm (two bars of four beats each). Linear salsa, as opposed to circular Cuban salsa,
involves moving on an imaginary line, also called slot. Figure 1 shows an elementary
move using von Renesse and Eck’s diagrammatic notation [9]. From basic position, the
lead makes way by stepping backwards out of the slot, guides the follow across the body,
and steps back into the slot to basic position rotated 180°. Although highly schematic,
the diagram contains all crucial information from a salsa dance perspective: identifica-
tion of lead and follow, their orientation, handholds (connecting arcs), and changes in
position during the eight counts.

Fig. 1. Top view of a Cross Body Lead (CBL) for switching places in the slot (dotted line).

Beginner salsa performance has very fewmoves and requires only basic communica-
tion skills. Beginners learn elementary moves by imitation and practice in salsa classes.
Although partner changes during the lesson ensure that any lead dances with any follow,
leading actually plays only a minor role during classes because all dancers practice the
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same move at the same time. At the end of a lesson, student dancers film the learned
moves for future reference (examples available online, e.g., video1 with basic steps and
several CBLs from 0:00 to 0:17, followed by a sophisticated pattern).

Salsa dancers share a repertoire of positions and moves that constitutes the language
of salsa. The goal of learning is not just to execute salsa moves as a couple, but to be able
to participate in “social dancing”. Social dancing is spontaneous much like improvising
when playing an instrument (numerous videos available online through keyword search
“salsa social dancing”). In order to participate in social dancing, one has to learn to lead
or to follow any salsa move with any partner in any setting. Learning intermediate and
advanced salsa therefore entails extending one’s “alphabet of moves” [2], and learning
to dance with familiar and unfamiliar partners without a planned sequence of moves.
Indeed, the lead extemporaneously decides on each move in the flow of the activity. An
important skill for leads is thus to recall and initiate moves, and to communicate them to
the follow through body language. However, beginner leads tend to instigate the same
moves over and over again out of habit2. How could salsa diagrams help to overcome
this difficulty in learning to lead?

4 An Existing Notational Scheme for Salsa Positions

Von Renesse and Eck [9] developed a notational scheme from a mathematical point
of view. Their aim was to systematically explore the repertoire of different positions
available to the salsa dancer. The discretization proceeds by considering the beginning
and end positions of the eight beats in salsa music (see Fig. 1). Moreover, positions that
require very small adjustments to transition from one to the other are not relevant either
from a dance or from a mathematical perspective. For example, hand and feet positions
and slight angular differences in the bodies of the dancers are not modelled. Thus, each
of the positions is discrete for a large set of slightly different positions, comparable to
knots in knot theory [2, 6, 7]. To obtain a mathematical knot, one starts with a string,
ties a knot, and then joins the ends [1]. Similarly, two dancers start with one handhold,
take intricate positions, and close the human string by the second handhold.

Figure 2 shows some salsa diagrams and their formal notation. The lead (filled circle)
and follow (blank circle) face their partner or turn their back (coded 1 and 0 respectively).
There can be zero, one or two handholds (coded RL for lead’s right to follow’s left hand)
and zero, one, or two crossings of the arms (coded CL

R for one crossing left over right
starting from the lead). When an arm is out of view of a partner, it is noted by vertical
location B (Back as in c and j or Belly as in f and i) for waist level and H (Head as in f) for
head level. Von Renesse and Eck [9] established all essentially different positions of two
dancers, both hands held, at most one crossing of the arms, and at most one dancer with
an arm behind the body. They found a total of 156 different positions both physically
possible and danceable (see Fig. 2d, f, h, i, j, k, and l).

1 Crazy Lion Productions: Super Mario, Salsa on1 Partnerwork@HotSalsaWeekend, https://
www.youtube.com/watch?v=oJpF7z5yWA4.

2 Dance Dojo: How to Remember Salsa Moves (the mistake that’s holding you back), https://
www.youtube.com/watch?v=6W58JLb04AA.

https://www.youtube.com/watch?v=oJpF7z5yWA4
https://www.youtube.com/watch?v=6W58JLb04AA
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(1, 1, RR, --, 0)
a. Handshake

(1, 1, RL, --, 0)
b.

(1, 1, RLB, --, 0)
c. Hammerlock (follow)

(1, 1, RL, LR, 0)
d. Open position

(1, 1, RL, LR, CRLLR)
e.

(1, 0, RLB, LRH, CLR)
f.

(1, 1, RL, LR, CLRRL)
g.

(1, 1, RR, LL, CRL) 
h. Cross hold

(1, 0, RR, LLB, CRL)
i.

(1, 1, RL, LBR, CRL)
j. Hammerlock (lead)

(1, 1, RR, LL, CLR) 
k. Reverse cross hold

(1, 0, RR, LL, 0)
l. Titanic

Fig. 2. Salsa positions in diagrammatic and formal notation (adapted from [9]).

5 Analyzing the Diagrammatical Scheme

Salsa position diagrams belong to the category of extrinsic representational systems [8].
In contrast to intrinsic representations, structures in extrinsic representations exist solely
by virtue of a truth-preserving correspondence with a state of affairs in the represented
world [8]. In other words, all position diagrams need to be verified because the diagram-
matic formalism in and of itself allows states of affairs which cannot exist in the real
world. Let us examine the diagrams in Fig. 3. A diagramwith three crossings of the arms
(Fig. 3a) seems rather awkward, but both physically possible and danceable in advanced
salsa dancing. In contrast, a position with two crossings of the arms as in Fig. 3b can be
adopted by two dancers by touching finger tips, but the lead has no danceable move for
leading the dancers into or out of the position. It is therefore highly unlikely to naturally
occur in dancing. Finally, Fig. 3c. is a diagram of an impossible position since it cannot
be taken due to morphological constraints (arms are not long enough for two handholds
in hammerlock position).

Interpretation of the salsa position diagrams requires internal rules, i.e. some infor-
mation is not encoded in the diagram and needs to be memorized by the dancers [11]. In
particular, the view from above does not allow appreciating the vertical position of the
handholds. Although not important in distinguishing between static positions, the height
of the handholds is crucial for selecting moves for two reasons. First, whereas an arm
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in front can be moved freely from head to belly level and vice versa, an arm in the back
(hammerlock) can be neither raised nor lowered. The lead has to take this into account
and guide into and out of a hammerlock position by simultaneously turning the follow
and stretching the arm downwards. Second, Von Renesse and Ecke [9] integrated the
height of the handholds in their model because it affects the sheer possibility, as well as
the outcome, of moves and turns.

 
(1, 1, RR, LL, CL

R
R

L
L

R) 
a. Advanced position 

(1, 1, RBL, LBR, CL
R

 R
L) 

b. Unlikely position 
(1, 1, RBLB, LBRB, CL

R
L

R) 
c. Impossible position 

Fig. 3. Complex salsa diagrams: positions need to be verified by posing or actual salsa dancing.

6 Enlarging the Set of Salsa Positions

For learning to lead in salsa dancing, the set of positions has to be completed to include
the following frequently occurring positions.

• No handholds. The set of positions with no handholds contains four positions (2x2)
because both the lead and the follow can either face their partner or turn their back.

• Single handhold. The set of positions with a single handhold such as in Fig. 2a, b,
and c. This set can be obtained by multiplying the number of relative orientations of
the two dancers (4), the number of single handholds (4) and the number of handhold
positions (no dancer has an arm hidden from the partner, either lead or follow has a
hidden arm either at waist or at head level (5). A total of 4x4x5 = 80 positions were
drawn and verified.

• Two handholds with two arm crossings. Two frequent positions have two crossings
of the arms. Starting from basic position (Fig. 2d), these are obtained by a full turn of
either the lead or the follow with both handholds passing above the head to the right
(produces Fig. 2g) or to the left (produces Fig. 2e).

The enlarged set for intermediate salsa dancing englobes 156 + 4 + 80 + 2 = 242
positions.

7 Characterizing Genuine Salsa Moves

Von Renesse and Ecke [9] modelled a space of transition spaces starting from basic
position (Fig. 2d) generating all positions obtained by one or more half turns of the
follower to the left or to the right. However, these are only minimal dance moves which
are not representative of the repertoire of actual moves. The current purpose of learning
to lead in salsa dancing does require such a systematic characterization of genuine salsa
moves. Indeed, several variables can be identified that define salsa moves as transitions
between salsa positions (see Table 1 for example moves to be applied to Fig. 2).
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• Slot change (no change, pass on lead’s left or lead’s right). At the end of the move,
both dancers may end up in the same slot position, i.e. they stay in place. Alternatively,
the lead may instigate a slot change which involves travelling in the slot by leading
the follow to pass either on the lead’s left (as in Fig. 1) or on the lead’s right.

• Individual dancer turns. Lead and/or follow may turn in multiples of 180° with a
maximum of two turns for most nonprofessional dancers. Thus, lead and follow each
have nine options for turning: no turn, or a half turn, a whole turn, a one and a half
turn, or a double turn either to the left or to the right.

Table 1. List of twenty elementary moves and their names. The letters for initial (In.) and final
(Fi) positions refer to Fig. 2 (* rotated 180°, ** turn executed by couple in closed position).

Handholds Slot Turns

Nr In. Right Left Change Lead Follow Fi. Name

1 a up - none 0° 1 R a right turn

2 b up - none 1 R 0° b lead right turn

3 b up down - none 0° 2 R c double right turn

4 d up up none 0° 1 R g right turn

5 d up down none 1 R 0° j lead right turn

6 d up up none 0° 1 L e left turn

7 h up up none 0° 1 R k right turn

8 h up up none 1 R 0° k lead right turn

9 k up up none 0° 1 L h left turn

10 b - - none 1 R** 1 R** b natural turn

11 d - - on left ½ L ½ L d* cross body lead

12 d - - on left ½ R ½ L d* CBL variation

13 a up - on left ½ L ½ R a* walk

14 d up up on left ½ L 1½ L e inside turn

15 e up up on left ½ L 1½ R d outside turn

16 d down up on left ½ L 1½ L f inside turn

17 h up down on left ½ L 1 L i inside turn & check

18 k up up on left ½ L 1 L l butterfly or titanic

19 a up - on right ½ R 1½ R a reverse outside turn

20 d - - on right ½ R ½ R d* reverse CBL

• Height of the handholds. The effect of a turn depends on the height of the handholds
(down or up). When a handhold is up, the arms go over the head of the dancers, when
it is down, the arms of the dancers loop around their bodies resulting in a different
final position. There are at least four configurations for this variable: both hands up,
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left up & right down, left down & right up, both hands down. For the current purpose,
we do not consider changes in the height of a handhold during a move (this occurs in
intermediate salsa, see Table 1 move number 3).

• Handhold changes. There are at least seven handhold configurations, i.e. no handhold
(1), one handhold (4), two handholds (3). During a move, the lead can let go of
a handhold, change hands, or ask for a handhold. This is necessary for switching
between positions, for example between the parallel handhold position and one of the
crossed handholds (e.g., change from Fig. 2d to h or to k). For the current purpose,
we consider at most one change in handhold configuration during a move.

Table 1 shows twenty of the most common moves. The initial position and the par-
ticular combination of values on all variables determines the final position. For example,
moves 14 and 16 only differ in the height of the right handhold, but they produce strik-
ingly different final positions. The question arises whether an exhaustive list of moves
can be established. At beginner level, learned patterns, even very sophisticated ones,
start from a very small set of elementary positions such as Fig. 2a, b, or d. but any
position in the set of 242 can in principle be designated as the initial position of a move.
Furthermore, three of the four variables can be independently and systematically varied
to create an exhaustive set of combinations (3 slot changes x 9 lead turns x 9 follow turns
= 243 different moves). However, their actual practicability depends on the initial posi-
tion (242 different positions), the height of the handholds, and whether or not handhold
changes are taken into account. The systematic variation of all values of all variables
would produce over 1.5M different moves that all need to be checked in actual dancing.
In comparison, the Tower of Hanoi studied by Zhang and Norman [11] has only 27 legal
out of 60 positions of three disks on three pegs, and at most three legal out of six moves
from any position. In salsa, the list of potential moves is extremely large and there is no
straightforward way of enumerating and verifying all of them.

8 Directions for Future Research

The analysis and elaboration of a diagrammatical scheme showed the complexity of
salsa as a performance art and the immense magnitude of the space of positions and
moves. Three approaches could build on the systematic charting of the salsa space.

First, empirical study may focus on memory for salsa positions and moves. Such
an approach may proceed by comparing diagrammatic and formal notations, as well
as pictures and text. Moreover, adopting the classical paradigm for studying chess [4],
diagrams could serve in the study of memory for salsa positions. The tasks include
presenting dancers of varying skill with an unfamiliar position and ask them to think
aloud as they analyze the position and chosewhatmove tomake.Moreover, more skillful
dancers should show superior recall when presented with the more complex positions.
Comparing leads and follows of similar level of skill would inform about the specificity
of leading in partnered dances.

Second, video is the more appropriate learning technology for sensory-motor pro-
cedures, such as tying a knot and first aid procedures. Studies into learning with videos
often comprise a learning phase for understanding and encoding, and a recall phase
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including a demonstration of the procedure [3]. Thus, future research could compare
leads and follows learning with video and with diagrams for salsa patterns of different
length and complexity.

Finally, the specificity of leading resides in the necessity of selecting moves in the
flow of sensory-motor activity. Although under time constraints, salsa dancing can be
seen as crisscrossing a landscape and compared to chess as complex decision making
or search in a position space [4]. Future research could study spatial knowledge of salsa
positions and moves by “learning through navigation”, i.e. by dancing, compared to
learning from a map [10] of position diagrams and moves. Indeed, mental simulation
tasks could be an effective strategy for learning to lead. From a given initial position,
dancers could be asked to apply as manymoves as possible and predict the final position.
Dancers may also be asked to generate all the moves that allow going back and forth
between two positions. As a concluding remark, the study of diagrams in learning to lead
in salsa dancing will require appropriate performance measures to complement those
for conceptual understanding and execution of short sensory-motor procedures.
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Abstract. In this study, we investigated 32 undergraduate university students’
use of diagrams in planning to write two coursework reports. For both reports,
the students were asked to submit a diagrammatic plan for what they were going
to write. Prior to their first plan, no instruction was provided about how to use
diagrams for planning. However, prior to the second plan, the students were pro-
vided instruction on the use of sketchnoting, which is one method for creating
visual notes and organizing ideas. For the first plan, only 31% actually submit-
ted a diagram plan, with the majority submitting a text-based plan. However, for
the second plan, the proportion who submitted a diagram plan increased to 66%,
but they also reported experiencing more difficulty in creating their plans com-
pared to those who submitted text-based plans. The students’ plans and reports
were scored for various quality features, analysis of which revealed that, for the
second report, diagram plans had a better logical structure than text plans. More
importantly, second reports created with diagram plans were also found to have
a better logical structure than those created with text plans. The findings indicate
that many students require instruction to be able to create diagrammatic plans, but
that creating such plans can be helpful in structuring their written work.

Keywords: Diagrammatic plans · Report writing · Diagram use instruction ·
Sketchnoting

1 Introduction

To write effectively, it is generally considered beneficial to plan before and during actual
text production. In that planning, the writer needs to critically consider the purpose of
the writing and the needs of the intended audience, and to generate ideas and organize
those in a cohesive manner (i.e., decide what to say, in what order, and how to say it)
[1]. Poor planning can negatively impact the logical flow and comprehensibility of the
written work, and its capacity to meet the intended purpose [2].

There are different ways to plan what to write. For example, Flower and colleagues
distinguished between three approaches to planning based on how the writing is struc-
tured: schema-driven (following an externally-sourced schema for structuring the out-
put), knowledge-driven (focused on conveying what the writer knows), and constructive
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(aimed at addressing the writing task requirements) [3]. On the other hand, Isnard and
Piolat examined three approaches based on the form of organization used: free organi-
zation of ideas (i.e., no guidance or constraints), organization of ideas into an outline
(i.e., text format), and graphic organization of ideas (i.e., requiring the production of
diagrams to connect ideas) [4]. When considering the cognitive processes that diagrams
can facilitate, constructing a diagrammatic plan would appear to present some useful
advantages over a text-based plan. For instance, diagrams have the capacity of grouping
together all information that needs to be used together [5], which is important in planning
as relationships between ideas can become more explicit and apparent, which in turn
can enable necessary inferences to be drawn and a holistic overview to be apprehended.
Empirical findings from a couple of studies have also indicated that diagrams can facili-
tate critical reasoning [6, 7]. As critical thought is important at least in academic writing,
diagram use may prove beneficial when planning what to write.

However, evidence from the few studies that have examined the value of diagram-
matic planning have not supported the notion of such advantages. For example, in the
Isnard and Piolat study which was conducted with university students, those in the
graphic organization group did not generate any more ideas compared to those in the
other groups [4]. In other areas of research concerning the use of self-constructed dia-
grams for various learning purposes (e.g., problem solving, communication), numerous
problems have been identified, including students’ inability to appropriately use dia-
grams to meet task requirements [8, 9]. Such problems are considered hindrances to
realizing the benefits that diagram use can bring to a wide variety of learning tasks. There
are a number of studies that have shown however that with appropriate and adequate
instruction, those problems can be overcome [10].

The extent to which problems in diagram use might exist where planning in writing
is concerned has not been adequately examined. The present study therefore aimed at
filling in gaps in current understanding. It addressed the following questions:

(i) Are students able to create diagrammatic plans for reports they have to write? Does
the provision of instruction make a difference?

(ii) How do students view the construction of a plan for their reports? Do those views
vary according to the kind of plan they create?

(iii) Are there qualitative differences between diagram and text plans?
(iv) Are there detectable quality differences between reports constructed with diagram

plans compared to text plans?
(v) What factors influence students’ decisions in planning methods to use?

In this study, instruction provided was based on the sketchnoting method for note
taking and organizing information. Sketchnotes are visual notes which contain “a mix of
handwriting, drawings, hand-drawn typography, shapes, and visual elements like arrows,
boxes & lines” [11: p. 2]. They can be used to summarize information, collect ideas,
and to prepare plans for learning activities [12]. The potential of sketchnoting is seen,
for example, in synthesizing information, drawing connections, and identifying patterns
[13], which makes the method potentially useful for planning in writing.
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The difference compared to other diagrammatic plans is that the sketchnote plan
consists not only of diagrammatic structures (e.g., arrows, lines, boxes), but also draw-
ings/illustrations (e.g., people, objects, situations),which clarify, supplement, or enhance
the written notes aesthetically [11]. The use of drawings/diagrams in notes is not new
(e.g., Darwin and da Vinci used them in their legendary notes). What is new and inno-
vative about sketchnoting is the application of the idea that everyone can draw and that
even stick figures can represent ideas and knowledge. This helps enable learners who
want to use drawings but have previously not felt confident.

2 Method

Ethics approval for this study was obtained in the first author’s institution. The partic-
ipants were 32 Japanese undergraduate university students (females = 20) who were
taking a course in education taught by the first author, all of whom consented to the use
of their coursework for this research. The course was conducted in English, which was a
foreign language for the students, but they all had at least an adequate command of it. In
the course, the students had to write two reports (each requiring a summary of a research
article and an appraisal of that article) and, for each report, they were asked to construct
a diagrammatic plan for their report and submit that ahead of the report deadline. The
reports were the same in value: each counted 15% toward the students’ final grade (3%
of which was allotted to the quality of their plan).

Apart from being asked to create a diagrammatic plan prior to the first report, no
other instruction or guidance was provided. However, during the grading of the first
report (including the plan for it), the students were provided comments to let them know
in cases where their plan was not a diagram. Plans were considered as diagrammatic if
they included visual elements such as boxes or other shapes, illustrations, arrows and
other lines to indicate various relationships. Plans that included only words, phrases,
sentences, and/or bulleted points on their own were considered as text plans.

Between the two reports, the second author provided two 90-min instruction sessions
on the use of sketchnoting [11]. The students were shown examples of sketchnotes, and
informed about their usefulness in reflection, and in creating plans and writing reports
[12, 14]. Theywere taught how to draw and use visual forms (e.g., shapes, boxes, arrows,
illustrations) to represent and organize information, and they were given exercise sheets
to practice drawing and create their own sketchnotes.

For this research, we analyzed the plans and reports the students produced. Together
with their plans, the students were also asked to respond to three questions about how
easy/difficult they found creating their plans, how much they liked/dislikes them, and
how useful they considered them. We examined their responses to these. In addition,
at the end of the course, we invited the students to participate in a brief interview and
two students volunteered. We also analyzed their responses to questions we asked about
planning.

We categorized the students’ plans as either text or diagram plans and, if the latter,
whether theywere sketchnote-type or not.We then scored the plans for content, including
the number of key points and views/opinions included, and the presence of various
features (e.g., word connectors, lines, arrows, boxes, etc.). We scored the two reports
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for essentially the same content and features. These categories for scoring were based
on those used in previous similar research [4]. In addition, we gave each plan and report
overall scores for clarity of logical flow (Logic) and message conveyed (Message). The
scoring of logical flow focused on the summary of the research article, while that for
clarity of message focused on the students’ appraisal/opinion of that article.

To ensure reliability in scoring, we first drew up and discussed the scoring definitions
and rubrics to use. Then we independently scored an initial batch of students’ plans and
reports, compared and discussed our scoring, and made adjustments to the definitions
and rubrics. We then scored half each of the remaining plans and reports. We duplicated
scoring on 25% of all the data to determine inter-scorer reliability, which we found to
be satisfactory. All categorical scoring had perfect congruence (Cohen’s κ = 1.00). The
scale-based scoring all returned Cronbach’s α values above .70, except for the scoring
of Logic in Plan 1 (α = .67), which we re-scored, after which we reached perfect
agreement. A research assistant with no vested interest in the outcomes of this research
also independently scored the same 25% of data, and all reliability indicators (Cohen’s
κ and Cronbach’s α values) reached acceptable agreement levels.

3 Results and Discussion

3.1 Students’ Ability to Create Diagrammatic Plans

For the first report plan (Plan 1), 10 of the 32 students (31.25%) created a diagram
plan, while 19 students (59.38%) submitted a text plan. Three (9.38%) did not submit a
plan. For the second report plan (Plan 2), which was after the sketchnoting instruction,
the number who submitted a diagram plan increased to 21 (65.63%), while those who
submitted a text plan decreased to 6 (18.75%). Five students (15.63%) did not submit a
plan. Of the 21 diagram plans submitted, 7 (21.88% of the total) were sketchnote-type
plans. Examples of those different types of plans are shown in Fig. 1.

McNemar’s test showed that the pattern of change in students’ construction of a
diagrammatic plan was significant, χ2 (1, N = 32) = 8.07, p = .005. This means
that, following instruction, the proportion of students who constructed a diagram plan
significantly increased. These findings, first of the initially low proportion of students
able or willing to construct diagrams, and second of increases in those able to construct
diagrams following instruction, are congruent with previous empirical findings about
diagram use in mathematical word problem solving and in writing explanations [10,
15]. They confirm that student limitations in diagram use – in this case, in planning –
can largely be overcome with the provision of appropriate and adequate instruction
[10].
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Fig. 1. Examples of the students’ diagram (A), sketchnote-type (B), and text (C) plans

3.2 Views About Plan Construction

As noted earlier, the students were asked about their experiences of ease/difficulty and
liking of construction, and usefulness of their plans. They were asked to answer on 1 to
5 scales (e.g., very difficult to very easy), and to briefly explain their answers. In Plan
1, no statistically significant differences were found. However, in Plan 2, students who
created a diagram plan indicated that they found it more difficult (M = 2.79, SD= 1.25)
compared to those who created a text plan (M = 4.33, SD= .58), and the difference was
marginally significant with a large effect size, F(1, 16) = 4.22, p = .058, η2 = .220.
Content analysis of explanations revealed a number of sources of those difficulties,
including understanding the content of the research paper they had to write about, and
integrating visual elements, such as illustrations, into the diagram plans. Those who
created sketchnote plans reported that it was time consuming and challenging to ensure
the plan was easy to understand. In contrast, while those who created text plans also
noted some difficulties in summarizing key points, they also indicated familiarity with
creating such plans, which made the planning easy for them.

Studentswho created a diagramplan (including sketchnotes) viewed creating the plan
as “helpful” because it assisted them in correctly understanding the content and structure
of the paper they were writing about. Moreover, they felt that the diagram helped them to
write a well-structured report and to write “smoothly”. Similarly, a number of students
who constructed a text plan perceived the plan theymade as helpful even if theymodified
the plan while they were writing.

Reasons for liking or disliking the creation of the plans were related to students’
experiences of difficulty and helpfulness. For example, students indicated they liked
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diagramming (including sketchnoting) because it helped to organize their thoughts, and
to clarify connections between their own opinion and the content of the research paper.

3.3 Qualitative Differences Between Diagram and Text Plans

Regarding Plan 1, when comparing diagram plans and text plans, understandably, there
were significantly higher inclusions of lines, arrows, and other visual connectors (Lines)
in diagram plans (M = 7.00, SD= 5.92) compared to text plans (M = 1.21, SD= 1.75),
F(1, 28) = 19.30, p < .001, η2 = .417; and of Boxes in diagram plans (M = 7.50, SD
= 4.86) compared to text plans (M = .68, SD = 2.36), F(1, 28) = 26.29, p < .001), η2

= .493. In the number of Key points included, there was also a marginally significant
advantage of text plans (M = 4.74, SD = 2.35) compared to diagram plans (M = 3.20,
SD = 2.20), F(1, 28) = 2.92, p = .099, η2 = .097 (medium effect size).

After instruction, in Plan 2, the diagram plan advantage remained for Lines (diagram
planM = 8.05, SD = 6.80; text planM = .83, SD = 2.04), F(1, 26) = 6.42, p = .018),
η2 = .204; and for Boxes (diagram planM = 8.00, SD = 4.51; text planM = 1.50, SD
= 3.67), F(1, 26 = 10.41, p = .003), η2 = .294. There was also a significantly higher
count of Sequencing and grouping for diagram plans (M = 3.48, SD = 1.94) compared
to text plans (M = 1.50, SD = .84), F(1, 26)= 5.79, p= .024, η2 = .188. Furthermore,
the marginally significant difference in number of Key points included was no longer
present: in fact, the mean number of Key points in diagram plans (M = 6.19, SD= 3.36)
was higher than in text plans (M = 4.50, SD = 4.34), but not significantly so.

These qualitative differences between diagram and text plans suggest two important
points. The first is that diagrams by their very nature may facilitate the manifestation
of certain useful plan features such as connection and grouping of information [cf. 5].
The second is that, if students are not familiar with diagram use, they may construct
diagram plans that are inferior to text plans (e.g., as in Plan 1, they may include fewer
key points).With instruction, however, such disadvantages appear possible to overcome:
as the results here indicate, in Plan 2, the diagram plans were no longer inferior to text
plans where inclusion of Key points was concerned.

3.4 Differences Between Reports Constructed with Diagram and Text Plans

When comparing the overall scores for Logic (i.e., clarity of logical flow) and Message
(i.e., clarity of message conveyed) of diagram plans and text plans for Report 1, no
significant differences were found. Likewise, when comparing Report 1s created with
diagram plans, text plans, and no plan, no significant differences were found.

However, diagram plans for Report 2 had a significantly higher Logic score (M =
4.19, SD = .75) compared to the text plans (M = 3.17, SD = .98), F(1, 26)= 7.61, p=
.011, η2 = .233 (i.e., large size effect). Perhaps more importantly, a significant effect was
found when comparing Report 2 Logic scores according to whether they were created
with diagram plans, text plans, or no plan, F(2, 31 = 4.48, p = .020), η2 = .236 (i.e.,
large size effect). Simple main effects using Fisher’s LSD revealed that the Logic scores
of reports written with a diagram plan (M = 4.62, SD = .50) were significantly higher
compared to the scores of reports with a text plan (M = 4.00, SD = .63), p = .023, and
the scores of reports with no plan (M = 4.00, SD = .71), p = .033.
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This finding is important because it suggests that, following the provision of instruc-
tion, many students were able to construct diagram plans that were deemed as having
a clearer logical flow and structure. More importantly, there is evidence to suggest that
those plans led to reports that were also superior in logical flow and structure.

3.5 Factors that Influenced Students’ Decisions on Planning Methods to Use

The responses of the two students who volunteered to be interviewed revealed that the
instruction influenced their decision to use diagrams in two ways. Firstly, the instruction
enabledboth students to drawcrucial visual elements: “I hadno confidence inmydrawing
skills. So before, I wrote only sentences or words, but by learning about sketchnoting
I understood that I only have to draw simple illustrations like arrows or squares or
circles” (Student 2). Secondly, the instruction to create a visual plan itself was decisive
for the use of sketchnoting for Student 1: “I also wrote notes in literal [meaning text]
first as I always do and then I drew the drawings because you told me that I should
use drawings, sketchnoting when submitting the visual plan”. Their ability level also
affected the students’ decisions. For example, Student 2 who created a diagram but not
a sketchnote explained: “I can draw simple illustration if someone teaches me, ‘Please
draw this illustration’, but it is difficult for me to create original illustrations”. Time
consideration was closely related to ability level, as shown in a statement by the same
student: “I am not good at drawing complex illustrations or drawings, so it takes me a
lot of time”.

Furthermore, certain goals can go hand in hand with the use of certain graphical
elements. For example, Student 1 reported that she used different boxes in order to
organize the content. Finally, habits also determined the decision for using a certain
method. For example, Student 1 mentioned that she used a text plan before creating the
sketchnote because that is what she always does before writing.

3.6 Conclusion

The findings of this study suggest that when appropriate instruction is provided, the
majority of students can effectively use diagrams for planning reports they are going
to write. Perhaps more importantly, evidence was found indicating that diagrammatic
planning benefitted not only the functionality of the plans that were constructed, but
also the quality of the reports that were written. The benefits were congruent with what
previous research has indicated as the computational efficiencies that diagram use brings
to information processing [5]: in the present study’s case, better logical structuring
appears to have been facilitated in both the plans and the reports.

However, even after instruction, constructing diagram plans was still generally expe-
rienced by the students asmore difficult compared to constructing text plans. Thismay be
attributable to inadequate experience and practice in such construction. Similar findings
have previously been reported in cases where sketchnoting had been taught for use in
note taking andmemorization. Students perceived sketchnoting as interesting and useful,
but they also found it more difficult and time consuming compared to methods they were
more familiar with and had previously employed [16]. This problem may be possible
to resolve through the provision of more detailed instruction and practice [15] – which
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ought to be examined in future research. Likewise, it would be beneficial to investigate
which thinking and writing processes diagrammatic planning may be able to facilitate
particularly in relation to the requirements of the writing tasks administered. Flower and
colleagues, for example, noted variations in approaches to planning according to how
the writing is structured [2, 3]. It would therefore be useful to examine the extent to
which diagrams may facilitate the objectives corresponding to those structural forms. In
this study, we only found effects on logical flow, but depending on the writing task and
diagram use instruction provided, other effects may be possible.
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Japan Society for the Promotion of Science.
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Abstract. Euler and Aristotelian diagrams are both among the most
well-studied kinds of logical diagrams today. Despite their central sta-
tus, very little research has been done on relating these two types of
diagrams. This is probably due to the fact that Euler diagrams typically
visualize relations between sets, whereas Aristotelian diagrams typically
visualize relations between propositions. However, recent work has shown
that Aristotelian diagrams can also perfectly be understood as visualiz-
ing relations between sets, and hence it becomes natural to ask whether
there is any kind of systematic relation between Euler and Aristotelian
diagrams. In this paper we provide an affirmative answer: we show that
every Euler diagram for two non-trivial sets gives rise to a well-defined
Aristotelian diagram. Furthermore, depending on the specific relation
between the two sets visualized by the Euler diagram, the resulting Aris-
totelian diagram will also be fundamentally different. We will also link
this with well-known notions from logical geometry, such as the informa-
tion ordering on the seven logical relations between non-trivial sets, and
the notion of Boolean complexity of Aristotelian diagrams.

Keywords: Euler diagram · Aristotelian diagram · Square of
opposition · Logical geometry · Information ordering · Boolean
complexity

1 Introduction

Euler diagrams are among the most well-studied kinds logical diagrams today
[1,20,24,26,27]. They have a rich history, which obviously includes the work
of Leonhard Euler in the eighteenth century, but also goes back much further,
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Fig. 1. (a) Euler diagram for Horse ⊂ Animal; (b) the corresponding square of oppo-
sition. (Solid, dashed and dotted lines respectively stand for contradiction, contrariety
and subcontrariety; arrows stand for subalternation.)

at least to medieval manuscripts from the eleventh century [11,16–18]. Simi-
larly, Aristotelian diagrams (such as the square of opposition) are also studied
intensively today, especially in the burgeoning research program of logical geom-
etry [3,9,10,25], and they, too, can boast a long and well-documented history
[13,21,23]. The history of both types of diagrams is further described in [22].

Despite their central status, very little research has been done thus far
on relating Euler and Aristotelian diagrams.1 One explanation for this lacuna
might be that Euler diagrams typically visualize a relation between sets/terms,
whereas Aristotelian diagrams typically visualize relations between proposi-
tions/sentences. However, recent work has shown that the mathematical back-
ground structure required for obtaining a well-defined Aristotelian diagram is
that of a Boolean algebra, and it does not matter whether this is an algebra con-
sisting of propositions or of terms (or yet some other notion) [4]. Consequently,
it becomes a mathematically well-defined and conceptually natural question to
ask whether there is any kind of systematic connection between Euler and Aris-
totelian diagrams. Our goal in this paper is to provide an affirmative answer
to this question. In particular, we will show how each Euler diagram for two
(non-trivial) sets gives rise to a well-defined Aristotelian diagram. Furthermore,
depending on the specific relation between the two sets visualized by the Euler
diagram, the resulting Aristotelian diagram will also be fundamentally different.

The paper is organized as follows. Section 2 presents a motivating example
and describes some of the necessary theoretical background. Section 3 contains
the main results of this paper, and shows how each two-set Euler diagram gives
rise to an Aristotelian diagram. Section 4 presents some further discussion of
these results, and mentions some questions for future research.

1 A notable exception, albeit in a very different direction than the one we will take in
this paper, is the work of Bernhard [2].
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2 Motivating Example and Theoretical Background

Consider the Euler diagram shown in Fig. 1(a). What does this diagram represent
or visualize? The standard answer is that the diagram visualizes two sets, Horse
and Animal (which exist inside some domain of discourse D), and the relation
Horse ⊂ Animal, i.e., Horse is a strict subset of Animal. Relative to a Boolean
algebra of sets, this means that there exists a subalternation from Horse to
Animal.2 However, according to a less standard answer, the diagram in Fig. 1(a)
shows more than what has just been mentioned. First of all, by showing the
set Horse inside the domain of discourse D, it also shows, if only implicitly,
the complement set Horse = D\Horse. The same goes for the set Animal and
its complement Animal = D\Animal. Secondly, the Euler diagram also shows,
again only implicitly, five more relationships that these two new complement
sets enter into:

– Horse ∩ Horse = ∅ and Horse ∪ Horse = D,
i.e., Horse and Horse are contradictory to each other,

– Animal ∩ Animal = ∅ and Animal ∪ Animal = D,
i.e., Animal and Animal are contradictory to each other,

– Horse ∩ Animal = ∅ and Horse ∪ Animal �= D,
i.e., Horse and Animal are contrary to each other,

– Animal ∩ Horse �= ∅ and Animal ∪ Horse = D,
i.e., Animal and Horse are subcontrary to each other,

– Animal ⊂ Horse, i.e., there is a subalternation from Animal to Horse.

Taken together, these four sets and the six relations holding among them can be
visualized by means of a square of opposition, as shown in Fig. 1(b).3 This Aris-
totelian diagram thus contains exactly the same information (i.e., the same sets
and the same relations among them) as the Euler diagram in Fig. 1(a). The only
difference between both diagrams is that the Euler diagram strongly emphasizes
two sets, viz. Horse and Animal, and one relation, viz. the subalternation from
Horse to Animal, while strongly ‘downplaying’ the two other sets and the five
other relations. By contrast, the Aristotelian diagram attributes equal status

2 Given an arbitrary Boolean algebra B, we say that x and y are contradictory iff
x∧B y = ⊥B and x∨B y = �B, that they are contrary iff x∧B y = ⊥B and x∨B y �= �B,
that they are subcontrary iff x ∧B y �= ⊥B and x ∨B y = �B, and that they are in
subalternation iff x <B y. If B happens to consist of subsets of some given set D,
this means that X and Y are contradictory iff X ∩Y = ∅ and X ∪Y = D, that they
are contrary iff X ∩ Y = ∅ and X ∪ Y �= D, that they are subcontrary iff X ∩ Y �= ∅
and X ∪ Y = D, and that they are in subalternation iff X ⊂ Y . See [4, Section 2]
for further explanation and motivation.

3 This square might look a bit strange, since it contains sets rather than propositions.
However, we emphasize once again that Aristotelian relations (and thus also dia-
grams) can be defined relative to arbitrary Boolean algebras, regardless of whether
these algebras consist of propositions, sets, or something else. The square of oppo-
sition in Fig. 1(b) is thus perfectly well-defined, just like any other, more ordinary-
looking square of opposition that contains propositions rather than sets.
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to all four sets and all six relations alike.4 Some of these ideas were already
mentioned in passing in a recent, more historically oriented paper:5

one can view the original Euler diagram in Fig. [1(a)] as a visual represen-
tation of both proper inclusion relations—albeit, perhaps, with different
degrees of visual perspicuity. More generally, from this alternative perspec-
tive, the single Euler diagram in Fig. [1(a)] at once visualizes six relations
among Horse, Animal, D\Horse and D\Animal, all six of which are also
visualized by the classical square of opposition in Fig. [1(b)].

[5, p. 192, references to figures updated to the present paper]

In this paper, we will investigate these ideas more systematically. More specif-
ically, we will show that this kind of transformation not only works for Euler
diagrams representing a subalternation relation, but also for Euler diagrams
depicting any other kind of relation between two sets. In [25] it is shown that
every pair of non-trivial6 sets X and Y (within a domain of discourse D) stands
in exactly one of the following seven relations:7

1 contradiction (CD): X ∩ Y = ∅ and X ∪ Y = D,

2 contrariety (C ): X ∩ Y = ∅ and X ∪ Y �= D,

3 subcontrariety (SC ): X ∩ Y �= ∅ and X ∪ Y = D,

4 bi-implication (BI ): X ⊆ Y and X ⊇ Y , i.e. X = Y ,

5 left-implication (LI ): X ⊆ Y and X �⊇ Y , i.e. X ⊂ Y ,

6 right-implication (RI ): X �⊆ Y and X ⊇ Y , i.e. X ⊃ Y ,

7 unconnectedness (UN ): X ∩ Y �= ∅
X �⊆ Y

and
and

X ∪ Y �= D
X �⊇ Y

and

The first three relations are sometimes called opposition relations, while the next
three are the implication relations. Note that left-implication corresponds to the
ordinary Aristotelian relation of subalternation. Unconnectedness can be viewed
4 In earlier work [7,8], we have argued that the idea that a square of opposition

attributes exactly the same status to all six relations should be somewhat nuanced.
For example, based on principles like center/periphery or on considerations regarding
distance, one could argue that contradiction (on the two diagonals, in the center of
the square) is visualized more prominently than the other relations (on the edges,
at the periphery of the square). However, these subtle differences in an Aristotelian
diagram completely vanish in comparison to the more drastic differences in emphasis
that occur in Euler diagrams—e.g. the explicit subalternation from Horse to Animal
versus the more implicit subcontrariety between Animal and Horse in Fig. 1(a).

5 The theoretical core of [5] consists of its Sections 3, 4 and 5. The present paper can
be viewed as building upon Section 3, while [19] elaborates on Sections 4 and 5.

6 Given a domain of discourse D, a set X is said to be non-trivial iff ∅ �= X �= D.
7 These seven relations could also be defined for arbitrary Boolean algebras instead of

just for sets. However, for the purposes of this paper this will not be necessary.
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Fig. 2. Information ordering on the seven relations between two non-trivial sets [25].

as the absence of any other relation: X and Y are unconnected iff they do not
stand in any of the other relations. These seven relations constitute a refinement
of the five so-called ‘Gergonne relations’, which are perhaps more widely known
[12,14]. The Gergonne relations X = Y , X ⊂ Y and X ⊃ Y straightforwardly
correspond to BI, LI and RI, respectively; furthermore, the Gergonne relation
X ∩ Y = ∅ corresponds to CD ∪ C, and X ∩ Y �= ∅ corresponds to SC ∪
UN. Finally, these seven relations are ordered according to their information
levels [25]: it can be shown that contradiction and bi-implication are the most
informative relations, unconnectedness is the least informative, and the four
other relations’ information levels are in between. This information ordering is
shown in Fig. 2.

3 The Seven Euler Diagrams for Two Sets and Their
Corresponding Aristotelian Diagrams

We will now consider Euler diagrams for each of the seven possible relations
between two (non-trivial) sets, and investigate what kind of Aristotelian dia-
gram they give rise to. We start with the implication relation of left-implication,
which boils down to re-examining the motivating example from the previous
section. The Euler diagram in Fig. 3(a) shows a left-implication (i.e., subalter-
nation) from A to B. In order to highlight the six relations that are shown by
this diagram, we will use thick black and grey ellipses for resp. A and B, and
thick black and grey dashed lines, together with a thickened rectangle for the
domain of discourse, for their complements, resp. A and B.8 Using this high-
lighting convention, Fig. 3(c) and (d) show the very same Euler diagram as in
(a), but now highlighting the subalternations from A to B and from B to A,
respectively. Similarly, Fig. 3(e) highlights the contrariety between A and B,
while Fig. 3(f) highlights the subcontrariety between A and B. Finally, Fig. 3(g)
and (h) highlight the contradictions between A and A and between B and B,
8 The overall idea is thus that a set corresponds to the region delimited by a thick solid

line (either an ellipse or the outer rectangle), subtracting (if necessary/applicable)
the region inside the thick dashed line.
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respectively. We emphasize once more that Figs. 3(c–h) should not be viewed as
six separate Euler diagrams, but rather as six ways of looking at one and the
same Euler diagram, viz. the one in Fig. 3(a). Needless to say, some of these six
relations—e.g. the subalternation from A to B highlighted in Fig. 3(c)—are far
easier to process than some of the others—e.g. the subcontrariety between A
and B shown in Fig. 3(f). Taken together, these six relations (all of which are
Aristotelian) constitute the classical square of opposition shown in Fig. 3(b).

Secondly, we consider the implication relation of right-implication. The Euler
diagram in Fig. 4(a) shows a right-implication from A to B, i.e. a subalternation
from B to A. Using the same convention as before, Fig. 4(c) and (d) show the very
same Euler diagram as in (a), but now highlighting the subalternations from B to
A and from A to B, respectively. Similarly, Fig. 4(e) highlights the subcontrariety
between A and B, while Fig. 4(f) highlights the contrariety between A and B.
Finally, Fig. 4(g) and (h) highlight the contradictions between A and A and
between B and B, respectively. Taken together, these six relations (all of which
are Aristotelian) constitute the classical square of opposition shown in Fig. 4(b).

Thirdly, we switch over to the opposition relations, and consider the relation
of contrariety. The Euler diagram in Fig. 5(a) shows a contrariety between A and
B. Figure 5(c) highlights the contrariety between A and B, while Fig. 5(d) high-
lights the subcontrariety between A and B. Similarly, Fig. 5(e) and (f) highlight
the subalternations from A to B and from B to A, respectively. Finally, Fig. 5(g)
and (h) highlight the contradictions between A and A and between B and B,
respectively. Taken together, these six relations (all of which are Aristotelian)
constitute the classical square of opposition shown in Fig. 5(b).

Fourthly, we consider the opposition relation of subcontrariety. The Euler
diagram in Fig. 6(a) shows a subcontrariety between A and B. Figure 6(c) high-
lights the subcontrariety between A and B, while Fig. 6(d) highlights the contra-
riety between A and B. Similarly, Fig. 6(e) and (f) highlight the subalternations
from B to A and from A to B, respectively. Finally, Fig. 6(g) and (h) highlight
the contradictions between A and A and between B and B, respectively. Taken
together, these six relations (all of which are Aristotelian) constitute the classical
square of opposition shown in Fig. 6(b).

Fifthly, we switch back to the implication relations, and consider the relation
of bi-implication. The Euler diagram in Fig. 7(a) shows a bi-implication between
A and B. Figure 7(c) and (d) highlight the bi-implications between A and B
and between A and B, respectively. Similarly, Fig. 7(e) and (f) highlight the
contradictions between A and B and between A and B, respectively. Finally,
Fig. 7(g) and (h) highlight the contradictions between A and A and between B
and B, respectively. Taken together, these six relations constitute the pair of
contradictories (PCD) shown in Fig. 7(b). This PCD contains two identical sets
at both of its vertices, which correspond to the bi-implications A/B and A/B
(which are themselves not Aristotelian). The single solid line corresponds to four
contradiction relations A/A, A/B, B/A and B/B (which are Aristotelian).

Sixthly, we switch back one more time to the opposition relations, and con-
sider the relation of contradiction. The Euler diagram in Fig. 8(a) shows a con-
tradiction between A and B. Figure 8(c) and (d) highlight the contradictions
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Fig. 3. (a) Euler diagram for the left-implication from A to B. (b) The corresponding
classical square of opposition. (c–h) Highlighting the six relations among A, B, A and
B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 4. (a) Euler diagram for the right-implication from A to B. (b) The corresponding
classical square of opposition. (c–h) Highlighting the six relations among A, B, A and
B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 5. (a) Euler diagram for the contrariety between A and B. (b) The corresponding
classical square of opposition. (c–h) Highlighting the six relations among A, B, A and
B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 6. (a) Euler diagram for the subcontrariety between A and B. (b) The correspond-
ing classical square of opposition. (c–h) Highlighting the six relations among A, B, A
and B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 7. (a) Euler diagram for the bi-implication between A and B. (b) The corre-
sponding PCD. (c–h) Highlighting the six relations among A, B, A and B in the Euler
diagram (note: the four CD are Aristotelian relations, but the two BI are not).
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between A and B and between A and B, respectively. Similarly, Fig. 8(e) and (f)
highlight the bi-implications between A and B and between A and B, respec-
tively. Finally, Fig. 8(g) and (h) highlight the contradictions between A and A
and between B and B, respectively. Taken together, these six relations (four Aris-
totelian CD and two non-Aristotelian BI ) constitute another PCD, as shown in
Fig. 8(b).

Finally, we consider the relation of unconnectedness, which is neither a gen-
uine opposition relation nor a genuine implication relation. The Euler diagram in
Fig. 9(a) shows an unconnectedness between A and B. Figure 9(c) and (d) high-
light the unconnectedness between A and B and between A and B, respectively.
Similarly, Fig. 9(e) and (f) highlight the unconnectedness between A and B and
between A and B, respectively. Finally, Fig. 9(g) and (h) highlight the contradic-
tions between A and A and between B and B, respectively. Taken together, these
six relations constitute the so-called ‘degenerate square of opposition’ shown in
Fig. 9(b). Apart from its two diagonals of contradiction, this Aristotelian dia-
gram does not have any Aristotelian relations to visualize (because the four other
pairs of sets are unconnected, i.e., do not stand in any Aristotelian relation).

4 Discussion and Future Research

In the previous section we have considered the seven possible relations between
two (non-trivial) sets, and shown how the Euler diagrams for each of these
seven relations systematically give rise to a well-defined Aristotelian diagram;
cf. parts (a) and (b) of Figs. 3, 4, 5, 6, 7, 8 and 9. The resulting Aristotelian
diagrams turn out be of various types: we obtained four classical squares of
opposition, but also two pairs of contradictories (PCDs) and one degenerate
square of opposition. Using recent terminology from logical geometry, we say
that these constitute three distinct Aristotelian families, which are pairwise not
Aristotelian isomorphic [3,9].

It turns out that these findings can be linked to other interesting notions
from logical geometry, such as the information ordering on the seven relations,
which was already mentioned in Sect. 2 (in particular, cf. Fig. 2), and also the
notion of Boolean complexity of Aristotelian diagrams.9 Specifically, we observe
the following connections:

– the two most informative relations, i.e. contradiction and bi-implication, give
rise to a PCD (cf. Figs. 7 and 8), which has a Boolean complexity of 2,

– the four intermediately informative relations, i.e. contrariety, subcontrariety,
left-implication and right-implication, give rise to a classical square of oppo-
sition (cf. Figs. 3, 4, 5 and 6), which has a Boolean complexity of 3,

9 A detailed discussion of the notion of Boolean complexity (or bitstring length) falls
outside the scope of this paper. Very roughly, the idea is that the Boolean complexity
of a diagram D is the smallest number n of bits that are required to faithfully encode
D. Formally, given a Boolean algebra B and diagram D = {x1, . . . , xn}, we have
n = |{±x1 ∧B · · · ∧B ±xn | ±x1 ∧B · · · ∧B ±xn �= ⊥B}| (where +x = x and −x = ¬Bx);
see [9] for much more mathematical details, motivation and examples.
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Fig. 8. (a) Euler diagram for the contradiction between A and B. (b) The correspond-
ing PCD. (c–h) Highlighting the six relations among A, B, A and B in the Euler
diagram (note: the four CD are Aristotelian relations, but the two BI are not).
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Fig. 9. (a) Euler diagram for the unconnectedness between A and B. (b) The corre-
sponding degenerate square of opposition. (c–h) Highlighting the six relations among
A, B, A and B in the Euler diagram (note: the two CD are Aristotelian relations, but
the four UN are not).
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– the least informative relation, i.e. unconnectedness, gives rise to a degenerate
square of opposition (cf. Fig. 9), which has a Boolean complexity of 4.

We thus find an inverse correlation between (i) the information level of the
relation visualized by the Euler diagram and (ii) the Boolean complexity of the
corresponding Aristotelian diagram.

The true significance of these results is not yet fully understood at this point,
but they clearly illustrate the theoretical fruitfulness of this approach within log-
ical geometry. Furthermore, and even more importantly, by systematically link-
ing Aristotelian diagrams with Euler diagrams, we have taken an important next
step in charting the place of Aristotelian diagrams (and thus of logical geometry)
within the broader landscape of logical diagrams research.10 Since there exists
a vast amount of work on diagrammatic reasoning with Euler diagrams, estab-
lishing a bridge to Aristotelian diagrams will hopefully inspire new, analogous
work on diagrammatic reasoning with Aristotelian diagrams as well.

Thus far we have focused exclusively on (Aristotelian diagrams corresponding
to) Euler diagrams for two non-trivial sets A and B. This suggests several avenues
for further research; we finish this paper by mentioning three of them:

– What happens if we remove the restriction that the sets should be non-
trivial, in other words, if we allow that A = D or A = ∅ or B = D or
B = ∅? The Euler diagrams for these cases should be fairly straightforward,
but the corresponding Aristotelian diagrams will violate the condition (which
is usually considered to be fundamental in logical geometry) that Aristotelian
diagrams should only contain non-trivial elements.

– What about Aristotelian diagrams corresponding to Euler diagrams for more
than two sets? A special case is when these multiple sets constitute a partition
of the domain of discourse; it is known that in this special case, the corre-
sponding Aristotelian diagram will be a (strong) α-structure [5,19]; however,
there are currently no results yet about the general case.

– What about other types of diagrams, e.g. spider diagrams [15]? Can these
also be transformed into well-defined Aristotelian diagrams?
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Abstract. We present a graphical representation that allows us to easily
determine if a certain modal function is or is not a polymorphism of a
given relation. While doing so, we provide a comparison between two
ways (a calculative and a diagrammatic one) to analyze a claim about
the Sheferness criterion in the theory of clones of (S5) modal functions.
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1 Introduction

We exhibit a rather complex logical/mathematical problem involving calcula-
tions that are pretty laborious when done by ordinary means, but which can be
readily seen using diagrams.

In his excellent paper ‘On functional completeness in the modal logic S5’ [8]
the Moldavian logician M. F. Ratsa commits a slight imprecision: he claims that
a certain formula (f21) is an example of an exclusive polymorphism (in a sense
to be defined precisely) of a certain relation (R21). We use an extension of the
technique presented in an earlier paper [5] in order to show that his claim is
incorrect (the technique is not necessary but, as we expect to show, useful), and
we provide an alternative formula.

We start by giving an interpretation of S5 formulas as operations on n-
dimensional cubes (we will focus on n ≤ 4); then we define the relation expressed
by a formula. Next, we define the notion of polymorphism of a relation, after
giving a list of relations whose polymorphisms are maximal clones of modal
operations. All these notions and results can be found in [8].

We then proceed to the elaboration and refutation of the claim about f21,
and we finish our paper presenting the above-mentioned alternative formula. We
try to keep this material self-contained, but acquaintance with [5] can be helpful
while interpreting the diagrams presented here.

2 Modal Formulas as Operations on Cubes

Following Ratsa, we will associate formulas of propositional S5 to operations
on the structures A1, A2, and A3 (cf. Fig. 1). We can think of each An as an
c© Springer Nature Switzerland AG 2022
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n-dimensional cube or (using the familiar notion of a proposition as a set of
possible worlds) as the set of all propositions in a model with n possible worlds.

An interesting way to interpret the structures An is thinking of them as the
set of all bitstrings (i.e. sequences of 0’s and 1’s) of length n (cf. [2]). In fact,
the bitstrings of length n can be seen as a sort of characteristic function of
the propositions in the models with n possible worlds; e.g. in the model with
two possible worlds the necessary proposition will be characterized as 11, the
contingent propositions as 10 and 01, and the impossible proposition as 00.

One advantage of thinking of propositions as bitstrings is that it is simple
to define how boolean (and modal) operations behave on bitstrings, and if we
wish we can translate these definitions back into the more philosophical realm
of propositional operations.

The boolean operations on bitstrings can be defined in terms of bitwise
(usual) boolean operations. Let B = b1, ..., bn and S = s1, ..., sn be bitstrings of
length n. We define the bitstring negation ¬B as the bitstring whose terms are,
respectively, ¬b1, ...,¬bn; and we define the bitstring conjunction B ∧ S as the
bitstring whose terms are, respectively, b1 ∧ s1, ... , bn ∧ sn. The modal operator
� has the rule: �B = B if B has 1 in every bit, otherwise �B = the bitstring
of same length as B which has 0 in every bit.

Since we are here dealing with Ratsa’s results, we also present the names he
uses to refer to the elements of the structures A1, A2, and A3. The elements of
A1 he calls simply 1 and 0. As for the elements of A2: 1 stands for 11, ρ stands
for 10, σ stands for 01, and 0 stands for 00. For A3: 1 stands for 111, ω stands
for 110, ν stands for 101, σ stands for 011, ρ stands for 100, μ stands for 010,
ε stands for 001, and 0 stands for 000. Ratsa also has names for the elements
of A4 but, since we will not enter into details about A4 here, we will omit them.

On top of all that, we decided (cf. Fig. 1) to give colors to the elements of
each structure! The choice of colors is quite arbitrary, but we tried to organize
them. The colorful colors in A3 are arranged almost like a rainbow, going from
infrared to ultraviolet. The choice of black for 0 was suggested by the fact that
the RGB code for black is (0, 0, 0). This use of colors allows us to represent
operations over these structures (cf. Figs. 2 and 3).

Fig. 1. Structures A1, A2, and A3
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Fig. 2. A1, A2, and A3 under the effect of ¬. It is helpful to notice that the comple-
mentary elements of each structure (other than 0 and 1) have names that are either
graphically similar (ω, ε / σ, ρ) or phonetically similar (ν, μ).

Fig. 3. The graph representation of a binary operation on a structure A is a function
from the edges of the complete bipartite graph whose parts are copies of A to the
elements of A. We ‘abbreviate’ this representation by giving colors to the elements
of A and to the edges themselves. Here we see the action of ∧ over (A1)

2, (A2)
2, and

(A3)
2. Much of the work done in this paper uses these graphs; most of the explanations

on the graphs are given in the captions following their figures.
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3 Modal Formulas as Relations on Cubes

For any formula φ(p1, ..., pn) of propositional S5, and any m-dimensional cube
Am, we can think of the Am-relation expressed by φ as the set of n-tuples
〈t1, ..., tn〉 ∈ (Am)n such that φ(t1, ..., tn) = 1. For instance, the formula p � q
expresses the A1-relation of difference {〈0, 1〉, 〈1, 0〉} (it also represents the rela-
tion of complementarity for every A – cf. Fig. 8). Also, the formula p → q
expresses the A1-relation less than or equal to {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}. To give
an example involving modality and a bigger cube, we note that the formula
p ↔ �q expresses the A2-relation {〈0, 0〉, 〈0, ρ〉, 〈0, σ〉 〈1, 1〉}. We give plenty of
other examples in the next section.

4 Ratsa’s Relations

The relations presented in this section (together with a pair of relations on A4,
omitted here for the sake of simplicity) constitute a functional completeness
criterion for sets of operations of propositional S5. The proof of this fact is
beyond the scope of this paper (details can be checked in [8] or in [4]), but some
elaboration on it will be found in the next sections.

We start by considering some A1-relations. Here E4(p, q, r, s) means: there is
an even number of truths among p, q, r, s (a definition of E4 in terms of the
usual connectives is: E4(p, q, r, s) =df (p ↔ q) ↔ (r ↔ s)). When defining a
relation, we simply state a formula that expresses it. There is a correspondence
between relations and matrices, to be clarified in the next section.

R0 =df ¬p,R1 =df p,R2 =df p � q,R3 =df p → qR4 =df E4(p, q, r, s).

The corresponding A1-matrices are:

M0 =
[
0
]

M1 =
[
1
]

M2 =
[
0 1
1 0

]

M3 =
[
0 0 1
0 1 1

]

M4 =

⎡

⎢
⎢
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1

⎤

⎥
⎥
⎦

We proceed to consider some A2-relations. Here 	p reads ‘it is contingent
that p’ and is defined as ♦p ∧ ♦¬p; 
p reads ‘it is rigid that p’ and is defined as
¬ 	 p; 	+p reads ‘it is contingently true that p’ and is defined as 	p ∧ p; 	−p
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reads ‘it is contingently false that p’ and is defined as 	p ∧ ¬p; ¬ 	− p reads ‘it
is not contingently false that p’; ¬ 	+ p reads ‘it is not contingently true that
p’. (Roderick Batchelor devised this notation for the more exotic unary modal
functions. See [1].)

R5 =df 	−p, R6 =df ¬ 	− p, R7 =df 	p, R8 =df �(p ↔ �q), R9 =df

�(p ↔ ♦q), R10 =df (�p ∧ q) ∨ (¬♦p ∧ ¬q), R11 =df �(p ↔ �q) ∨ �(p ↔ ♦q),
R12 =df �(p ↔ �q) ∨ �(¬p ↔ ♦q), R13 =df �(¬p ↔ �q) ∨ �(p ↔ ♦q),
R14 =df �(	+p ↔ 	+q), R15 =df 
p ↔ 
q, R16 =df (p ↔ q) ∨ (	p ↔ 	q),
R17 =df 
p ∨
q, R18 =df 
p ∧ 
r ∧ ((p ↔ r) ∨
q), R19 =df 
p∧ 
r ∧ ((p ↔
r) ∨ 	q).

The corresponding A2-matrices are:

M5 =
[
ρ
]

M6 =
[
0 σ 1

]

M7 =
[
ρ σ

]

M8 =
[
0 0 0 1
0 ρ σ 1

]

M9 =
[
0 1 1 1
0 ρ σ 1

]

M10 =
[
0 0 1 1
0 ρ σ 1

]

M11 =
[
0 0 0 1 1 1
0 ρ σ ρ σ 1

]

M12 =
[
0 0 0 0 1 1
0 ρ σ 1 0 1

]

M13 =
[
0 0 1 1 1 1
0 1 0 ρ σ 1

]

M14 =
[
0 0 ρ σ 1 1
0 1 ρ σ 0 1

]

M15 =
[
0 0 ρ ρ σ σ σ 1 1
0 1 ρ σ ρ ρ σ 0 1

]

M16 =
[
0 ρ ρ σ σ 1
0 ρ σ ρ σ 1

]

M17 =
[
0 0 0 0 ρ ρ σ σ 1 1 1 1
0 ρ σ 1 0 1 0 1 0 ρ σ 1

]

M18 =

⎡

⎣
0 0 0 0 0 0 1 1 1 1 1 1
0 0 ρ σ 1 1 0 0 ρ σ 1 1
0 1 0 0 0 1 0 1 1 1 0 1

⎤

⎦
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M19 =

⎡

⎣
0 0 0 0 0 0 1 1 1 1 1 1
0 ρ ρ σ σ 1 0 ρ ρ σ σ 1
0 0 1 0 1 0 1 0 1 0 1 1

⎤

⎦

Finally, we consider the A3-relations corresponding to the following matrices.
We do not have S5 formulas expressing these relations.

M20 =
[
0 ρ μ ν σ 1

]

M21 =
[
0 ρ μ ε ω ν σ 1
0 σ σ σ ρ ρ ρ 1

]

M22 =
[
0 ρ μ ε ω ν σ 1
0 ρ ν ω ε μ σ 1

]

M23 =
[
0 ρ μ ε ω ν σ 1
0 σ ω ν μ ε ρ 1

]

5 Polymorphisms and Counter-Polymorphisms

We say that an n-ary operation f(p1, ..., pn) is a polymorphism of an m-ary
A-relation R if for every αij(i = 1, ...,m; j = 1, ..., n) ∈ A:
if

R(α11, α21, ..., αm1) ∧ R(α12, α22, ..., αm2) ∧ ... ∧ R(α1n, α2n, ..., αmn)

then

R(f(α11, α12, ..., α1n), f(α21, α22, ..., α2n), ... , f(αm1, αm2, ..., αmn)).

In this definition, the relation R can be replaced by a matrix M whose
columns are the m-sequences of elements of A satisfying R (say, arranged in
the ‘alphabetical’ order induced by the order: 0, ρ, μ, ε, ω, ν, σ, 1). We say that a
matrix M ′ is a submatrix of a matrix M if all columns of M ′ are columns of M .
If M ′ is a submatrix of M we may write M ′ ⊆ M . Given an n-ary formula f and
a matrix M with n columns, by f(M) we mean the column generated applying
f in each row of M . If c is a column of matrix M we may write c ∈ M (or, if
that is not the case, c /∈ M). Using these notions, the above definition can be
restated (equivalently, but perhaps more clearly) as follows:

A formula f is a counter-polymorphism of matrix M if there is an M ′ ⊆ M
such that f(M ′) /∈ M .

A formula f is a polymorphism of matrix M if f is not a counter-
polymorphism of M . If f is a polymorphism of M , we may write f ∈ Pol(M).

Given a formula f and a family of relations R∗ = 〈R1, ..., Rk〉, the polymor-
phic profile of f w.r.t. R∗ is the k-tuple whose i-th term is 1 if f ∈ Pol(Ri), and
0 otherwise. We say that f is an exclusive polymorphism of Ri (w.r.t. R∗) if the
polymorphic profile of f has a single occurrence of 1, in its i-th place.
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Let R∗ be the family of the relations in Sect. 4 supplemented by the omitted
A4-relations R24 and R25. Ratsa established that a set of modal operations F
is functionally complete (i.e. sufficient to define every modal operation) if, for
every relation r ∈ R∗ there is an operation f ∈ F such that f /∈ Pol(r).

In the reminder of this paper we only consider the family of relations pre-
sented in Sect. 4, so when we say the polymorphic profile of f we mean the
polymorphic profile of f w.r.t. the family of relations in Sect. 4.

6 Diagrams for Polymorphisms and Counter-
Polymorphisms on A1

In this section we consider a simpler version of the diagrams that will be pre-
sented in the end of this paper. In Figs. 4 and 5 we consider the polymorphic
profile of the functions ∧ and ↓ w.r.t. the relations R0 – R4. These are the
relations whose sets of polymorphisms are precisely the pre-complete systems of
two-valued functions, determined by Emil Post in [7].

Fig. 4. The action of ∧ on (A1)
2 (on the left) and its polymorphic profile (on the right).

We can see that ∧ is a polymorphism of R0 since the line connecting the black nodes
in the left part is black; it is also a polymorphism of R1 since the line connecting the
white nodes in the left part is white; it is a counter-polymorphism of R2 since, as the
figure indicates 0∧1 = 0 and 1∧0 = 0, i.e. we can use arguments which are different to
get values that are equal; it is a polymorphism of R3, as the absence of lines connecting
the copies of M3 indicates, and is a counter-polymorphism of R4, since (as indicated)
with ∧ we can construct, using arguments in M4, a column of values that is not in M4.
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Fig. 5. ↓ and its polymorphic profile. It is well known that Peirce’s arrow is a function in
terms of which every other truth-function can be defined. This follows immediately from
the fact that it is a counter-polymorphism of all relations R0 – R4, which characterize
the maximal pre-complete systems of truth-functions.

7 Ratsa’s Alleged Exclusive Polymorphism

Ratsa claims that a certain formula (which we call f21) is an exclusive poly-
morphism of the relation R21 (or, what is the same, of the matrix M21). He is
interested in such a formula because it helps him to prove that his criterion for
determining if a single function is functionally complete (i.e. if it is a Sheffer
function for S5) is as good as it can be (cf. [8], p. 278).

To properly present Ratsa’s formula, we introduce some preliminary notions
(which are interesting in themselves). We start by defining the straightforward
propositional relations of independence, connection, compatibility, and incompat-
ibility :

Ind(p, q) =df ♦(p ∧ q) ∧ ♦(p ∧ ¬q) ∧ ♦(¬p ∧ q) ∧ ♦(¬p ∧ ¬q).
Con(p, q) =df ¬Ind(p, q).
Comp(p, q) =df ♦(p ∧ q).
Incomp(p, q) =df ¬♦(p ∧ q).

It is interesting to notice that for Ai(i ∈ {1, 2, 3}) the Ai-relation expressed
by Ind(p, q) = ∅. In order to find a pair of independent propositions, we need
to resort to A4 (this fact is noted w.r.t. bitstrings in [2], except that what we
call independence is there called unconnectedness. In their terminology: ‘uncon-
nectedness requires bitstrings of length at least 4’).

Since the compatibility relation will be significant in our next definition,
we give an explicit characterization of its A3-instances, from which the other
instances may be derived. We start the characterization by listing some compat-
ible elements of (A3)2: 〈μ, ω〉, 〈μ, σ〉, 〈ε, ν〉, 〈ε, σ〉, 〈ν, ω〉, 〈ν, ρ〉, 〈ν, σ〉, 〈ω, ρ〉, 〈ω, σ〉
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and we finish it by noticing that everything different from 0 is compatible with
1 and with itself, and that compatibility is a symmetric relation.

The modal profile of a pair of propositions p, q is the 4-tuple Modpro(p, q) =df

〈Comp(p, q), Comp(p,¬q), Comp(¬p, q), Comp(¬p,¬q)〉.
To present f21 we need to introduce some formulas used in its definition.

S(p, q) =df �(p ∨ q) ∨ �(p → q) ∨ �(q → p).
V (p, q) =df S(p, q) ∧ S(p,¬q) ∧ S(¬p, q) ∧ S(¬p,¬q).

S ‘says’ that p and q are connected even if we disregard its (possible) incom-
patibility (or equivalently: there is at least one 0 in the last three entries of
Modpro(p, q)), while V ‘says’ that p and q are strongly connected, i.e., either (at
least) one of them is rigid, or they are both contingent but then either �(p ↔ q)
or �(p � q) (this is equivalent to say that sum of the terms of Modpro(p, q) is
less than 3).

Ratsa’s formula is:

f21 = (V (p, q) → ((p → q) ∧ ¬�q)) ∧ (((p ↔ S(p, q)) ∧ (q → S(p, q))) ∨ V (p, q)).

To see that this is not an exclusive polymorphism of R21 it is enough to notice
that it is not a polymorphism of R21. This is obvious given that {〈ρ, σ〉, 〈μ, σ〉} ⊆
R21 and f21(ρ, μ) = ε, f21(σ, σ) = 1 and that 〈ε, 1〉 /∈ R21. This last claim can
perhaps be more easily checked by considering Fig. 10, where we present the
action of f21 over A1, A2, and A3, and its polymorphic profile.

8 Moody Truth-Functions

The definition in this section is essentially the same found in [3], p. 35. Recall
the definition of Modpro, given in the last section.

The moody truth-functional representation of a binary modal operation f is
a sequence of eight binary truth-functions 〈f1, f2, f3, f4, f5, f6, f7, f8〉, together
with the proviso:

if Modpro(p, q) = 〈1, 1, 1, 1〉, apply f1;
if Modpro(p, q) = 〈1, 1, 1, 0〉 or 〈0, 0, 0, 1〉, apply f2;
if Modpro(p, q) = 〈1, 1, 0, 1〉 or 〈0, 0, 1, 0〉, apply f3;
if Modpro(p, q) = 〈1, 0, 1, 1〉 or 〈0, 1, 0, 0〉, apply f4;
if Modpro(p, q) = 〈0, 1, 1, 1〉 or 〈1, 0, 0, 0〉, apply f5;
if Modpro(p, q) = 〈1, 1, 0, 0〉 or 〈0, 0, 1, 1〉, apply f6;
if Modpro(p, q) = 〈1, 0, 1, 0〉 or 〈0, 1, 0, 1〉, apply f7;
if Modpro(p, q) = 〈1, 0, 0, 1〉 or 〈0, 1, 1, 0〉, apply f8.

Since we are here ignoring A4, when using moody truth-functions, we will
restrict ourselves to the 7-tuples corresponding to f2 − f8.

We claim that the operation expressed by 〈�,∧,↔, ↑,∧, ↓,→〉 is an exclusive
polymorphism of R21. We support our claim with Fig. 11 and with the captions
of the figures preceding it.
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Fig. 6. The projection of the first argument (π2
1) is a universal polymorphism. We take

advantage of the space left by the absence of counter-polymorphisms of this operation
to present the framework we are working with. On the right side of this figure you can
see (pairs of) the translation into colors (following Fig. 1) of the relations presented in
Sect. 6.
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Fig. 7. The negation of the second argument ¬π2
2 over A1, A2 and A3 and its polymor-

phic profile. Notice that the counter-polymorphisms are indicated by horizontal lines
connecting relevant columns of the matrices. Notice also that the polymorphic profile
of ¬π2

2 w.r.t. R0 – R4 (0, 0, 1, 0, 1) is complementary of that of ∧ (1, 1, 0, 1, 0) (cf.
Fig. 4).
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Fig. 8. This graph represents the action of �. It is interesting that the white lines on
the left side represent precisely the relation of complementarity in the structures A1,
A2 and A3.
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Fig. 9. This is the representation of the very well known (boolean) operation ↑ (the
Sheffer stroke). Notice that it is an exclusive polymorphism of R10.
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Fig. 10. f21 over A1, A2 and A3 and its polymorphic profile.
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Fig. 11. 〈�, ∧, ↔, ↑, ∧, ↓, →〉 is an exclusive polymorphism of M21.
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9 Conclusion

We are glad to give an exoteric presentation of a somewhat esoteric result, and
we hope that this paper is not too enigmatic. We believe that the techniques
presented here are also useful in the investigations on clones of k-valued functions
(cf. [6]) and we expect to give some new results on this matter soon.
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Abstract. The paper presents how formation trees, a type of syntax
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1 Introduction

In this paper I present three diagrammatic methods of representing the structure
of semantic dependencies between occurrences of literals in formulas of clas-
sical propositional logic. The discussed representations – cographs, bar-charts
based on permutations, and tables – are constructed using formation trees, a
type of syntax trees for formulas. Each representation type carries information
about satisfying assignments in a way analogous to disjunctive normal forms.
Their crucial characteristic is that they can be seen as representing the informa-
tion simultaneously for a formula and its negation, thereby carrying information
about validity.

The idea of representing logical formulas and Boolean functions as cographs
is not new, and can be traced at least to [7]. In recent years, a group of logicians
in particular D. Hughes and L. Strassburger, have used the interpretation of
logical formulas as cographs to construct a new type of proof system for clas-
sical propositional logic, called “combinatorial proof”. The method has been
introduced in [6] and developed (among others) in [5].1 The approach taken in
this paper is different in several ways. Firstly, formation trees are used, which
allow construction of the cograph representation for formulas with broad class
1 Proof of a formula, in this context, consists in finding a particular homomorphism

between graphs, and so has been characterised by Hughes as “graphical” [6].
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of connectives. Secondly, new representation of logical formulas are introduced:
permutations, permutation-based bar charts and T-tables. Thirdly, the repre-
sentations are not used to provide a proof method, but to extract information
about the structure of semantic dependencies between occurrences of literals.

The next two sections introduce the representation types in some formal
detail, omitting proofs of their properties. The reader can refer to [1] in which
cographs and permutations are discussed in a more formal and comprehen-
sive form, with applications to computational logic and the theory of synthetic
tableaux. The final section compares all the discussed representation types in
terms of (among others) their cognitive potentials and observational advantages.

2 Formation Trees

All the representations analysed in the paper are constructed using formation
trees, a type of syntax trees with inner nodes labelled with formulas of α and β
type according to Smullayn’s notation. The idea of labelling syntax trees in this
way comes from Dorota Leszczyńska-Jasion and is described in more detail in
[1] and [2], with application to computational logic.

To start with, classical propositional logic is defined in a standard way, with
logical connectives ¬,→,∧,∨ and propositional variables denoted by the symbols
p, q, r, . . . . A literal is a propositional variable or its negation. Furthermore,
formulas expressed in this language may be divided into four types according
to Smullyans uniform notation: literals, formulas of the form ‘¬¬A’, α-formulas
and β-formulas, see Table 1 (please note, that contrary to Smullyan, formulas of
type ‘¬¬A’ are not treated as an α- or a β-formula).

Table 1. Uniform notation after [4].

α α1 α2 β β1 β2

A ∧ B A B ¬(A ∧ B) ¬A ¬B

¬(A ∨ B) ¬A ¬B A ∨ B A B

¬(A → B) A ¬B A → B ¬A B

Formation trees are finite trees labelled with formulas such that:

1. if a node of the tree is labelled with a formula of the form ‘¬¬B’, then the
node has exactly one child labelled with B,

2. if a node of the tree is labelled with an α-formula (β-formula), then the node
has exactly two children labelled with α1, α2 (β1, β2, respectively).

Figure 1 depicts a formation tree T for the formula

¬[(¬p → (¬r ∧ q)) → ¬(q ∨ ¬p)]
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Fig. 1. Formation tree for the formula ¬[(¬p → (¬r∧q)) → ¬(q∨¬p)] and its negation.

further denoted as F1, as well as a formation tree TN for ¬F1. Please note that,
in general, formation tree for a formula ¬F may be obtained by negating all the
formulas in inner nodes and leaves in the formation tree for F .

If T is a formation tree, the set of occurrences of literals in the leaves of T
will be denoted by L(T ). In case of the formula F1, L(T ) = {p,¬r, q1, q2,¬p}.
This set is of particular interest to us, as all the introduced representation types
contain elements that directly refer to it.

Further, if x, y are leaves of T , their lowest common ancestor is the
lowest inner node in T that has both x and y as descendants. If the lowest
common ancestor of x and y in T is an inner node of type α, we will call x and
y semantically dependent in T ; if their lowest common ancestor is an inner
node of type β, we will call x and y semantically independent. If we consider
the formation tree for F1 depicted on Fig. 1, the lowest common ancestor of ¬r
and q2 is α1 and the lowest common ancestor of p and q1 is β1; thus ¬r and
q2 are semantically dependent whereas p and q1 are not. Finally, we will call
C ⊆ L(T ) a maximal α-clique in T if it fulfills the following two conditions:

1. ∀x, y ∈ C: x and y are semantically dependent
2. ∀x ∈ L(T ) \ C ∃y ∈ C: x and y are semantically independent

The set of all maximal α-cliques of a formula F will be denoted by MF ; for
example, MF1 = {{p, q2}, {p,¬p}, {¬r, q1, q2}, {¬r, q1,¬p}}.

We will further call a maximal α-clique consistent if it does not contain
contradictory literals; for example, {p, q2} is consistent, while {p,¬p} is not. The
crucial property of any consistent maximal α-clique C is that every valuation that
satisfies C also satisfies the formula F for which T was constructed. Intuitively,
it is enough to know the values of literals in C to know that F is satisfied,
regardless of all the values assigned to other variables.

The set MF may be used to construct a disjunctive normal form (DNF) of F ,
with every maximal α-clique corresponding to one of the terms of the DNF. For
example, such DNF for F1, after omitting inconsistent maximal α-cliques and
repetitions of literals in particular terms and the subscripts, is the following:

(p ∧ q) ∨ (¬r ∧ q) ∨ (¬r ∧ q ∧ ¬p)
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The DNF of ¬F1 constructed in a similar way has the form:

(¬p ∧ r) ∨ (¬p ∧ ¬q) ∨ (¬q ∧ p)

It can be shown that the DNF based on MF is equivalent to F . One important
consequence of this fact is that a formula is a tautology if and only if all the
elements of M¬F are inconsistent (see [1] for further details; this fact is also used
in construction of the “combinatorial proof” system in [6]).

In the next section, three types of diagrammatic representations will be intro-
duced, constructed using information about semantic (in)dependency contained
in formation trees. The representations enable, among others, locating maximal
α-cliques and thereby visually checking the validity of formulas of classical logic.

3 Graphs, Permutations and T -tables

The first representation type, graphs, are familiar combinatorial objects: a graph
G is a pair (V,E), where V is the set of vertices and E is the set of edges, E ⊆
{{vi, vj} : vi, vj ∈ V }. If T is a formation tree, a semantic graph GT = (V,E)
is a simple, undirected, labeled graph such that V = L(T ) and for v1, v2 ∈ V ,
{v1, v2} ∈ E if v1, v2 are semantically dependent in T . Labels of the semantic
graph GT correspond to the occurrences of literals in L(T ). If G is a semantic
graph for F , then its complement, labelled by G, is a semantic graph for ¬F ,
with all the occurrences of literals in labels switched to their complements. Note
that many formulas may correspond to the same semantic graph. Thus, semantic
graphs can be seen as representing semantic information common to a class of
formulas. Figure 2 depicts semantic graphs for the formulas F1 and ¬F1.

The crucial property of semantic graphs is that they are cographs [5,6], that
is graphs that can be generated recursively from single-vertex graphs by join and
disjoint union operations. If G1 = (V1, E1) and G2 = (V2, E2) then the disjoint
union of G1 and G2 is the graph G = (V1 ∪ V2, E1 ∪ E2). Join of G1 and G2 is a
graph G created by adding edges between all vertices from G1 and G2.2 Please
note, that if TF is a formation tree for a formula F , maximal α-cliques of TF

correspond to maximal cliques in GF . Additionally, maximal α-cliques of T¬F

correspond to maximal independent sets of GF , after switching all the literals
to their complements. In what follows, I will refer to maximal cliques, skipping
the α.3

2 In discrete mathematics, cographs are often represented by cotrees and parse trees,
the latter corresponding to formation trees. Parse trees are binary trees, with inner
nodes of types 1 and 0, corresponding to α– and β–nodes of the formation tree. Their
structure mirrors the recursive procedure of construction of cographs, with 1-nodes
corresponding to join operation and 0-nodes to disjoint union. See [3,7] for other
properties of cographs.

3 A clique in a graph G is a complete induced subgraph H of G. A maximal clique
is a clique that cannot be extended to a greater clique by adding new vertices. An
independent set in a graph G is a subgraph H of G such that no v1, v2 ∈ H are
adjacent. Similarly, a maximal independent set in G is one that cannot be extended
by adding new vertices to it.
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Fig. 2. Semantic graphs corresponding to F1 and ¬F1 and a permutation chart for F1.
(Color figure online)

Information about semantic (in)dependency of occurrences of literals con-
tained in the formation trees can also be represented by permutations and
permutation-based bar charts. It is known that every cograph is a permuta-
tion graph [3], hence any cograph G with n vertices corresponds to a permu-
tation π = [π1, π2, ..., πn]. In case of semantic (co)graphs, the resulting permu-
tations will additionally be labelled with occurrences of literals. For a given
semantic graph G = G(T ) we can construct πG recursively from the forma-
tion tree T using the function Perm. To do that, let us introduce a function
C : L(T ) 
→ {1, 2, ..., n}, where n = |L(T )|, such that every leaf of T is labelled
according to its position from left to right in T (for leftmost leaf x, C(x) = 1,
etc.). Then πG is defined as follows, where X�Y denotes the concatenation of
two sequences forming a permutation:

Perm(x) = [C(x)]
Perm(α) = Perm(α2)�Perm(α1)
Perm(β) = Perm(β1)�Perm(β2)

Permutation representation π of a semantic graph G(T ) = G[π] has several
important properties. First of all, if leaves x and y of T are semantically depen-
dant, their order in π is reversed. Maximal cliques of G[π] correspond to decreas-
ing subsequences of π; the latter are such subsequences S = [πi1 , πi2 , ..., πik ], that
πir > πis for r < s and such that S cannot be enlarged by adding new elements
from π in a way that this property still holds. For example, F1 is represented
by the permutation [4, 5, 1, 3, 2] and its decreasing subsequences are [4, 1], [5, 1],
[4, 3, 2] and [5, 3, 2] (they correspond, respectively to maximal α-cliques: {p, q2},
{p,¬p}, {¬r, q1, q2} and {¬r, q1,¬p}). Further, maximal independent sets of G
correspond to increasing subsequences of π (defined in an analogous way).

Permutations are linear and in this sense it is debatable whether they can
be considered as diagrams. However, one can represent them in a 2-dimensional
form by drawing simple bar charts. In Fig. 2 permutation for F1 is depicted,
together with the labelling and the associated chart. Maximal cliques and max-
imal independent sets can be read off the chart by visually tracing decreasing
and increasing subsequences (an example is indicated with color).



Representing Formulas of Propositional Logic 317

Fig. 3. Construction process of the T -table for F1.

The third method of representing semantic (in)dependency makes use of
tables, defined recursively using formation trees. The definition draws from [8],
which presents a method of representing any cograph as a Ferrers diagram, a type
of dot diagram used to represent and reason about partitions. In the remaining
part of this section, an extension of this idea is proposed that allows expressing
similar semantic information as semantic graphs and permutations, with use of
a different 2-dimensional language.

We say that a table X is of size n × m if X has n rows and m columns.
Let X ⊗α Y denote the following operation on tables X and Y , where X is
of size n × m and Y of size k × l: first duplicate each column of X l times,
obtaining m subtables of size n × l, placed next to each other horizontally; next
we attach a copy of Y below each such subtable, obtaining the resultant table
of size (n + k) × (ml̇), denoted by X ⊗α Y . Secondly, let X ⊗β Y denote the
following operation on similar tables X and Y : first duplicate each row of X k
times, obtaining n subtables of size m × k, placed next to each vertically; next
we attach a copy of Y to the right of each such subtable, obtaining the table
of size (nk̇) × (m + l), denoted by X ⊗β Y . The defined operations can be used
to formulate a quasi -formal recursive method of constructing a table based on a
formation tree T , further denoted as T -tables:

Table(x) = x
Table(α) = α1 ⊗α α2

Table(β) = β1 ⊗β β2

Note that x denotes the leaf of T and x denotes a table consisting of one cell
containing the label of x (occurrence of literal). Figure 3 depicts an example of
the construction process, with an additional step added, in which cells containing
the same occurrence of a literal are merged in order to improve readability.

In consequence of the construction process of the T -tables, cliques are
arranged vertically and independent sets horizontally. To read off a maximal
clique from the diagram, one has to start with any rectangle in the top row,
and proceed downwards, by subsequently taking rectangles such that share a
side (not just a point) in the vertical orientation. This way we obtain a sequence
of rectangles that corresponds (after omitting possible repetitions) to a set of
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occurrences of literals that is a maximal clique. Maximal independent sets can be
obtained in a similar way, proceeding in a horizontal orientation. The construc-
tion process ensures that all the maximal cliques (and maximal independent
sets) can be read off the diagram, and each clique (independent set) is in fact
maximal.4

4 Summary and Conclusion

Semantic graphs, permutation charts and T -tables make use of formation trees
to represent information about semantic (in)dependency of literals occurring in
its leaves in a diagrammatic form. The building blocks of all three diagrams are
representations of occurrences of literals: vertices in semantic graphs, numbers
and bars in permutations charts and cells (or sets of cells) in T -tables. In graphs,
semantic dependency is represented by the presence of an edge between the
vertices, in permutation charts by the relative height of the bars and in T -
tables by vertical alignment of relevant cells. It seems that maximal cliques
and maximal independent sets are easier to read off from permutation charts
than graphs, and easiest to read off from T -tables (although such comparison
is subjective). This is due to the fact that checking vertical alignment of cells
seems to involve smaller cognitive cost than looking for sets of edges in a graph
or decreasing sequences of bars. Additionally, relevant visual properties of graphs
are becoming difficult to read off very quickly with rising graph size, whereas the
two other representation types retain readability also for relatively big formulas.

Semantic information contained in all the representation types is important
and useful in at least two ways, which may be seen as their cognitive poten-
tials. Firstly, maximal cliques point at minimal sets of literals, such that their
satisfiability implies the satisfiability of the formula. Such information is crucial
in many applications, for example in Binary Decision Diagrams or SAT. Sec-
ondly, visual inspection of the independent sets may be used to check validity
of the formula. Further, all representations have potential to generate “deriva-
tive meaning” [9], in that they represent some global, or high-level, aspects of
formulas; for example, connected components of a graph inform which sets of
occurrences of literals are semantically dependent and the shape of a T -table
may indicate whether there are more maximal cliques or independent sets. In a
final example, Fig. 4 depicts all three diagrams for the following formula:

((p ∧ q) → r) → ((p → r) ∨ (q → r))

Validity of the formula may be checked by inspecting all independent sets, all
increasing sequences or all horizontally aligned sequences of rectangles.

4 Note that each horizontal path crosses each vertical path in exactly one point (occur-
rence of a literal). This is consistent with an interesting property of cographs: any
maximal clique of a cograph intersects any maximal independent set in a single
vertex.
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Fig. 4. Three diagrammatic representations of ((p ∧ q) → r) → ((p → r) ∨ (q → r)) .

Semantic graphs, permutation charts and T -tables can also be compared to
other representations of logical formulas in terms of their observational advan-
tages, as discussed in [10]. Firstly, they allow direct observability of statements
about semantic dependency and in consequence about satisfiability and validity
that cannot be observed from the standard representation of formulas of classical
propositional logic. On the other hand, all the diagrams represent in a compact
form similar information as that contained in disjunctive normal form, maximal
cliques corresponding to terms. Their crucial advantage over DNF is that they
allow simultaneous representation of the terms of a DNF for a formula and a
DNF for its negation, as every maximal independent set in TF corresponds to
a maximal clique in T¬F , after switching all the literals to their complements.
This parallel reading may be seen as a kind of aspect shift.
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Abstract. In assertoric syllogism, Aristotle was concerned with pairs
of premises that may or may not produce a valid conclusion. Medievals
and contemporaries are interested in the number of valid syllogisms and
figures. This paper proposes the notion of diagrammatic isomorphism
using Venn-Peirce diagrams to offer remarkable insight into the theory
of syllogisms. The exercise aims to realign the debates on the assertoric
syllogistic to its primogenitor’s path.
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1 Historical Preliminaries

Aristotle meticulously worked out cases wherever a pair of premises produced a
valid conclusion(concludent pair) and dispensed such pairs that cannot produce
a syllogism(inconcludent pair) [20]. In later antiquity, Aristotle’s ‘assertoric’ syl-
logisms were called ‘categorical’ syllogisms’ [4], which has a well-documented
history from a ‘discourse’ to a ‘consequence’ and from a ‘demonstration’ to an
‘argument form’ [8,23,31]. Aristotle discussed the formation of 14 syllogisms
valid in three figures [17,20], after considering 48 pairs of premises [16]. Ariston
of Alexandria introduced ‘subaltern’ syllogisms into the Aristotelian syllogistic
[4]. Later, Galen added the fourth figure [24] though it is marred with some con-
troversies [26]. The medieval analysis added ‘subaltern’ moods and the fourth
figure, which resulted in 24 valid syllogisms in four figures.

Syllogistic witnessed many debates, regarding the number and relevance of
figures [11,13,22,25,27], where either these studies highlight the ‘symmetry’ of
the fourth figure or relegate it to a ‘transformed first figure.’ A recent study
suggested that eight syllogisms are valid using the notion of distinct and indis-
tinct moods [27], whereas only six are claimed as basic syllogisms using indirect
proof and inversion [7]. A fascinating study reveals that there can be as many
as 262,144 syllogisms, out of which only 48 are valid [34]. Nevertheless, logicians
mostly agree that there are 256 syllogisms in four figures out of which 15 are
valid as found in logic manuals [6,10,15,30]. Admittedly, this math is intrigu-
ing, and its numbers – enticing. In this study, we explore syllogisms through
Venn-Peirce diagrams to put an end to this above enticement.
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2 Venn-Peirce Diagrams for Syllogisms

There was some confusion in the past regarding Euler and Venn diagrams as they
both used closed curves. Interestingly, Peirce himself discussed ‘Venn diagrams’
under the heading of Euler diagrams [29]. However, Venn criticized Euler’s dia-
grams at great length before suggesting his diagrams [32]. Moreover, Euler and
Venn’s systems appeal to different methods of representation [19]. What we refer
to as Venn diagrams for syllogistic incorrectly – are actually ‘Venn-Peirce’ dia-
grams [18,19,21,32,33]. In short, Venn gave us ‘shading’ to depict emptiness
for universal propositions and Peirce gave us ‘X’ mark to show existence for
particular propositions (Fig. 1).

Fig. 1. Venn-Peirce diagrams for propositions

Both Euler and Venn-Peirce diagrams display many diagrammatic properties
like free rides [28], well-matchedness [9], etc. Another property, called ‘counter-
part equivalence’ (CE) was initially proposed for Euler diagrams, where “[we]
call two diagrams D and D′ counterpart equivalent if and only if every minimal
region of D has a counterpart in D′ and every minimal region of D′ has a coun-
terpart in D” [12]. For example, the following two diagrams, as shown in Fig. 2,
are counterpart equivalent:

Fig. 2. CE in Euler diagram

Both the diagrams in Fig. 2 represent the same information i.e., B intersect
with both A and C, while A along with the intersection part of A and B are fully
contained in C. CE is also a fundamental property of Venn-Peirce diagrams. For
instance, Fig. 3. represents ‘all M is P’ and ‘all S is M’:
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Fig. 3. CE in Venn-Peirce diagram

CE depicts the equivalence of two or more sets of information although the
diagrams do not seem congruent. In the next section, we reintroduce and expand
the notion of diagrammatic congruence for Venn-Peirce diagrams using CE .

2.1 On Diagrammatic Congruence

“Two or more moods are diagrammatically congruent if they have identical
Venn-Peirce diagram” [27]. The notion of diagrammatic congruence (DC) was
proposed keeping in mind the idea of the Venn-Peirce framework for syllogisms.
Hence, the definition mentions moods and Venn-Peirce diagrams. Broadly, any
two diagrams D and D′ are diagrammatically congruent, if they are identical.
Identical here must be understood as isomorphic or homomorphic, as discussed
in [2,14]. For example, EIO-1, EIO-2, EIO-3, and EIO-4 (i.e., Ferio, Festino,
Ferison, and Fresison) are diagrammatically congruent, as shown in Fig. 4:

Fig. 4. DC of EIO-1,2,3,4

It may be noted that EIO-1,2,3,4 are considered as separate syllogisms. Sim-
ilarly, EAE-1 and EAE-2 (i.e. Celarent and Cesare) are also diagrammatically
congruent as shown in Fig. 5:

Fig. 5. DC of EAE-1,2
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EIO-1,2,3, and 4 can be symbolically shown equivalent by using simple con-
version and commutation respectively. The same is true for EAE-1 and 2. Inter-
estingly, EIA, EIE, and EII (which are invalid) also have the same Venn-Peirce
diagram as EIO. Similarly, EAA, EAI, and EAO (which are also invalid) are
diagrammatically congruent to EAE. This anomaly and seemingly discomfort-
ing observation can well be understood by appealing to the fact that Venn-Peirce
(or any diagrammatic technique) draws the premises (and never the conclusion)
of a syllogism. With this observation in mind, let us enlarge and extend the
scope of DC and introduce a new notion called ‘diagrammatic isomorphism.’

2.2 Diagrammatic Isomorphism (DI)
Two or more illustrations are diagrammatically isomorphic, if and only if they
have identical Venn-Peirce diagrammatic depiction, irrespective of them being
valid or invalid. DI supersedes its predecessor DC. It is plain from the above
that EIA, EIE, EII, and EIO from any figure have the following diagram (Fig. 6):

Fig. 6. DI of EIA, EIE, EII and EIO

We notice that the ‘pair of premises’ play a crucial role in forming a syllogism
using Venn-Peirce diagrams. There are 16 possible pairs (AA, AE, AI, AO, EA,
EE, EI, EO, IA, IE, II, IO, OA, OE, OI and OO) of premises 4 figures. Thus,
there are 16 × 4 = 64 possible pairs of premises to be considered—an exercise,
which we undertake that is beyond the notion of validity or invalidity.

3 Beyond Validity and Invalidity

We find that there is more to just the notions of validity and invalidity while
re-examining A, E, I, and O propositions using Venn-Peirce diagrams. First, E
and I propositions remain diagrammatically identical even if we replace their
subject and predicate terms. However, A and O types of propositions have non-
identical depictions. Second, the middle term’s position in the major premise
and the minor premise changes twice. Precisely, the position of the middle term
in the case of major premises in the first and third figures is the same and in the
second and fourth figures. Moreover, the position of the middle term in the case
of minor premises in the first and second figures is the same, and in the third
and fourth figures, it remains the same. Computing the above, we obtain:

a. AA, AO, OA, and OO have four iterations since A and O are diagram-
matically incongruent as shown in Fig. 7.
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Fig. 7. DI for AA, AO, OA and OO using Venn-Peirce diagrams

b. AE, AI, EA, EO, IA, IO, OE, and OI have two iterations as one premise
is diagrammatically congruent, and the other is diagrammatically incongruent
as shown in Fig. 8.

Fig. 8. DI for AE, AI, EA, EO, IA, IO, OE and OI using Venn-Peirce diagrams

c. EE, EI, IE, and II have just one iteration each since both E, and I have
diagrammatically congruent illustrations as shown in Fig. 9.

Thus, the actual number of premise pairs in four figures (iterations) to be
considered will be (a + b + c) i.e., [(4 × 4) + (8 × 2) + 4] = 36. This treatment
is neither unique nor novel if we recall an important fact in traditional syllogis-
tic, which has skipped our attention for a while. In his theory of the syllogism,
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Fig. 9. DI for EE, EI, IE and II using Venn-Peirce diagrams

Aristotle was deeply interested in pairs of propositions, which entail a valid con-
clusion [3]. In numerous passages (say, from 26a10 up to 68b10) of Analytica
Priora, we find expressions such as ‘there will be a syllogism’, ‘there is a syllo-
gism’, ‘a syllogism is formed’, ‘a syllogism is possible’, vis-à-vis expressions like
‘there will be no syllogism’, ‘a syllogism is not possible’, etc. [17]. This line of
argument and analysis suggested by Aristotle is the same as a concludent and an
inconcludent pair of premises. For e.g., EI is a concludent pair of premises (as O
can be validly inferred from EI), whereas EE is an inconcludent pair. With time,
this information evanesced along with its perusal, and what came to the fore was
the number of syllogisms, number of figures, number of valid moods, etc. These
possible depictions of syllogisms (or pairs of premises) using the Venn-Peirce
framework bring us back to an impinging question which is, “Does Venn-Peirce
diagrams depict a syllogism (in Aristotle’s sense) or just a pair of propositions”?
To this, Buridan observes, “It seems to me that Aristotle takes a syllogism not
to be composed of premises and conclusion, but composed only of premises from
which a conclusion can be inferred [5].”

Buridan’s reading of Aristotle clarifies syllogism’s valued exploration of con-
cludent and inconcludent pairs. A Venn-Peirce diagram certainly depicts a pair
of propositions, but so does any (diagrammatic) system of syllogistic reasoning.
The ratiocinator is also asked to decide whether the conclusion follows from it.
If the conclusion can be made explicit by drawing the premises, the syllogism
has formed (or is valid), else it is not. This shows the need to delve beyond
the notions of validity and invalidity to do justice to the theory of syllogisms.
Questions like, whether Darapti or Bramantip are valid? or why Aristotle did
not mention Barbari, if he knows Barbara is valid? can all be answered, provided
that we pick the call of concludent pair of premises. If the notions of validity
or invalidity of a syllogism are important, then the concepts of concludent and
inconcludent pair of premises are pivotal. Once we understand how a syllogism
becomes valid or why it fails to become valid, we address the root cause of the
issue rather than dealing with its effect.

4 Concluding Remarks

An analytical and diagrammatic exercise on the pairs of premises (of a syllo-
gism) is required to understand the trajectory of syllogistic reasoning. Successes
(valid syllogisms) often hide certain critical information, which failures (invalid
syllogisms) reveal. Several passages of Analytica Priora, suggest that Aristotle
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was interested in how syllogism forms and may not form. He was interested in
the notion of validity (formation of a syllogism) and wanted to demonstrate the
reason for invalidity (i.e., the error occurring while reasoning). Bacon correctly
pointed out that “truth emerges more quickly from error than from confusion
[1]”. The overemphasis on ‘how many’ (or the number of syllogisms, figures) is a
later outcry. It has taken off the essence of syllogism. Our inquiry should focus
on how syllogisms form. Once we address this, the rest all fall in place. The
findings of this paper are reiterated below:

First, there are very few syllogisms (valid or invalid) contrary to our pre-
vailing belief. Second, the notion of DI allows us to infer identical Venn-Peirce
diagrammatic depictions, valid in one case and invalid in many others. Third,
there is no visual representation or iteration (of a syllogism), which is exclusively
valid; however, some illustrations are solely invalid. Fourth, the notion of con-
cludent and inconcludent pairs (of premises) is much more significant than the
validity or invalidity of syllogisms. Lastly, there are eight concludent pairs, AA,
AE, AI, AO, EA, EI, IA, and OA; the other eight possible pairs are EE, EO, IE,
II, IO, OE, OI, and OO are inconcludent.

Acknowledgment. The author sincerely expresses gratitude to the anonymous
reviewers for their comments and suggestions on an earlier draft.
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Abstract. The square of opposition is a type of diagram that graph-
ically represents the Aristotelian relations between sentences or formu-
las. It has been noted in the literature that certain extensions of the
square have several Boolean subtypes. However, the traditional Aris-
totelian relations themselves cannot be used to distinguish these different
subtypes. Furthermore, the traditional Aristotelian relations are relations
between two individual formulas. In this paper I propose a very natu-
ral generalization, resting on elementary set-theoretical notions, of these
relations to sets of formulas of arbitrary size. I show that this generaliza-
tion can be used to construct new diagrams, viz. generalized squares of
opposition, that can express information that could not be expressed by
the traditional squares. Furthermore, I show that the generalized Aris-
totelian relations can be used to classify Boolean subtypes of extensions
of the square that could not be distinguished by the traditional relations.

Keywords: Square of opposition · Aristotelian relations · Logical
geometry

1 Introduction

The square of opposition and its extensions, together called the Aristotelian dia-
grams, have been used to teach logic, to investigate logical and philosophical
questions, and have found applications in research domains as varied as com-
puter science, psychology and linguistics. For these reasons, the square and its
extensions have themselves become the object of research in the domain of logical
geometry [1].

Logical geometry studies both the Aristotelian diagrams and the logical rela-
tions they depict, known as the four Aristotelian relations. Each of the Aris-
totelian relations expresses a logical relation between two individual formulas.
In this paper, I propose a generalization of each of the four Aristotelian relations
to sets of formulas. I show that this generalization can be used to construct new
diagrams and to distinguish different subtypes of existing Aristotelian diagrams.

The paper is structured as follows. In Sect. 2 the traditional Aristotelian
relations and the square of opposition are presented. In the next section (Sect. 3)
c© Springer Nature Switzerland AG 2022
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p q

p ∧ q ¬p ∧ ¬q

p q

a.

p

p ¬p

p

b.

Fig. 1. (a) a traditional square of opposition for classical propositional logic, and (b)
one for the modal logic S5.

I propose a generalization of the Aristotelian relations and show how they can be
used to construct a new generalized square of opposition. Section 4 expands on
this and proves that the new generalizations are not reducible to the traditional
relations. I then show (Sect. 5) how the generalizations can be used to distinguish
different Boolean subtypes of Aristotelian diagrams that have been studied in the
literature, but cannot be distinguished with the traditional Aristotelian relations.
Finally, Sect. 6 gives a short summary and mentions some possible directions for
further research.

2 The Traditional Aristotelian Relations

The four traditional Aristotelian relations are formally defined in Definition 1.
When this does not lead to confusion, I will drop the reference to the logic S. I
will also use the abbreviations CD(ϕ,ψ), C(ϕ,ψ), SC(ϕ,ψ) and SA(ϕ,ψ).

Definition 1. Let S be a logical system, which is assumed to have Boolean oper-
ators and a model-theoretic semantics |=. The formulas ϕ,ψ ∈ LS are

S-contradictory iff |= ¬(ϕ ∧ ψ) and |= ϕ ∨ ψ
S-contrary iff |= ¬(ϕ ∧ ψ) and �|= ϕ ∨ ψ
S-subcontrary iff �|= ¬(ϕ ∧ ψ) and |= ϕ ∨ ψ
inS-subalternation iff |= ϕ → ψ and �|= ψ → ϕ

We can represent these Aristotelian relations graphically in a square of oppo-
sition. Two such squares are depicted in Fig. 1. The contradiction relation is
represented with a solid line, the contrariety relation with a dashed line, the
subcontrariety relation with a dotted line and subalternation with an arrow.

3 Generalizing the Aristotelian Relations and Squares

3.1 Generalized Aristotelian Relations

In this section we give a generalization of the classical Aristotelian relations of
Definition 1. One way of looking at the first three relations in Definition 1 is to
treat them not as relations between two individual formulas, but as properties
of a two-element set of formulas. For example, we can say that Γ = {ϕ,ψ} is
contradictory iff any model of S validates exactly one formula in Γ iff the class
of all models of S is partitioned by Γ . Of course, this idea of the class of models
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being partitioned does not need to be limited to two-element sets. We can define
it for sets of formulas of arbitrary size. This is a very natural generalization
of the contradiction relation to sets of formulas. As it turns out, the relations
of contrariety and subcontrariety can be generalized in a similar way, by using
elementary set-theoretical notions (Definition 4). However, before doing so we
first give two preliminary Definitions (Definitions 2 and 3).1

Definition 2. Let MS be the class consisting of all models of S.
[[ϕ ]]S =df {M ∈ MS | M |= ϕ}
[[Γ ]]S =df {[[ϕ ]]S | ϕ ∈ Γ}

Definition 3. A set Γ consisting of sets is
disjoint iff for all Δ,Θ ∈ Γ such that Δ �= Θ, Δ ∩ Θ = ∅
a covering of a set Δ iff Δ ⊆ ⋃

Γ

Definition 4. Let Γ ⊆ L, such that |Γ | > 1. Then Γ is:

contradictory iff [[Γ ]] is a partition of M, i.e. is disjoint and a covering of M
contrary iff [[Γ ]] is disjoint, but is not a covering of M
subcontrary iff [[Γ ]] is not disjoint, but is a covering of M

The case for subalternation is slightly different. The relations CD, C and SC
are, in the terminology of [4], opposition relations, whereas SA is an implication
relation. The opposition relations are symmetric, e.g. C(ϕ,ψ) iff C(ψ,ϕ). In
contrast, the relation SA is asymmetric: if SA(ϕ,ψ), then not SA(ψ,ϕ). Thus it
makes sense that the generalizations of the opposition relations should be unary
relations, but the generalization of SA should remain a binary relation. Keeping
this in mind I propose Definition 5 as the generalization of SA.

Definition 5. Let Γ,Δ ⊆ L, such that Γ �= ∅ �= Δ. Then:
Γ and Δ are in subalternation iff

⋃
[[Γ ]] ⊂ ⋃

[[Δ ]].

Informally, SA(Γ,Δ) can be read as ‘if a formula in Γ is true, then a formula in
Δ is true, but not vice versa’. Similarly, CD(Γ ) can be read as ‘there is always
exactly one formula in Γ that is true’, C(Γ ) as ‘no two formulas in Γ can be
true together, but all formulas in Γ can be false together’, and SC(Γ ) as ‘there
is always at least one formula in Γ that is true, and it is possible that multiple
formulas in Γ are true together’. Of course, Definitions 4 and 5 are only an actual
generalization of the classical Aristotelian relations if: CD(ϕ,ψ) iff CD({ϕ,ψ}),
C(ϕ,ψ) iff C({ϕ,ψ}), SC(ϕ,ψ) iff SC({ϕ,ψ}) and SA(ϕ,ψ) iff SA({ϕ}, {ψ}).
This is easily checked by comparing Definition 1 with Definitions 4 and 5.

3.2 Generalized Squares of Opposition

Given the generalized Aristotelian relations, we can draw new generalized squares
of opposition with sets of formulas at the vertices (instead of individual formu-
las). The general format of a generalized square of opposition is depicted in
1 Again, we omit the subscript S when no ambiguity is possible.
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Θ

Γ Δ

Σ

a. b.

p q, p q

{p ∧ ¬s ∧ r, p ∧ ¬s ∧ ¬r} {¬p ∧ q, ¬p ∧ ¬q}

p s, p

Fig. 2. (a) general format of a generalized square of opposition and (b) one example

♦q q, q ♦ q, ♦q ♦ q

{ p ∧ ♦¬s, ♦¬p ∧ s, ♦¬p ∧ ♦¬s} { r ∧ ¬r}

p s

Fig. 3. A generalized square of opposition for the modal logic K

Fig. 2a. The solid lines signify that the union of the two sets at the vertices is
contradictory. A dashed line signifies that the union of the two sets is contrary,
the dotted line that the union is subcontrary and the arrow from a set Γ to a
set Θ signifies that SA(Γ,Θ). Figures 2b and 3 show two concrete examples of
generalized Aristotelian squares.

4 The Generalization is a Proper Generalization

In Sect. 3.1 we have seen that Definitions 4 and 5 are a generalization, meaning
that the generalized relations say at least as much as the traditional relations.
In this section I show that the generalized Aristotelian relations are a proper
generalization: they say strictly more than the original relations, i.e. the gener-
alized relations cannot be reduced to the original relations. I discuss two ways
one might expect such a reduction to work, and I prove that neither of these
two reductions holds. Section 4.1 proves that the generalized relations are not
reducible to Aristotelian relations between disjunctions, and Sect. 4.2 proves that
the generalized relation holding of a set Γ cannot be reduced to statements about
the traditional Aristotelian relations between all of the formulas in Γ .

4.1 Generalized Relations and Relations Between Disjunctions

It follows from Definition 5 that SA(Γ,Δ) iff SA(
∨

Γ,
∨

Δ). Thus, the general-
ization of SA is reducible to the traditional SA relation. Suppose that for every
R ∈ {CD,C,SC} and non-empty Γ,Δ ⊆ L, R(Γ ∪ Δ) iff R(

∨
Γ,

∨
Δ). In that

case all generalized relations would be reducible to the traditional relations,
and would not say anything really new. As the left side of Theorem 1 shows,
one might initially be inclined to think that this reduction would go through.
However, the “not the other way round”-results of Theorem 1 show that the
generalized relations are not reducible to the traditional relations in this way.
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Theorem 1. Let Γ,Δ ⊆ L be finite and let Γ �= ∅ �= Δ. In addition, assume
there are no ϕ ∈ Γ and ψ ∈ Δ such that |= ϕ ↔ ψ, then:

CD(Γ ∪ Δ) implies CD(
∨

Γ,
∨

Δ) but not the other way round
C(Γ ∪ Δ) implies C(

∨
Γ,

∨
Δ) but not the other way round

SC(
∨

Γ,
∨

Δ) implies SC(Γ ∪ Δ) but not the other way round
SA(Γ,Δ) iff SA(

∨
Γ,

∨
Δ)

Proof. We only prove the cases for CD(Γ∪Δ) and SC(
∨

Γ,
∨

Δ). The other cases
are then left safely to the reader. For the first implication, suppose that Γ and Δ
are as in Theorem 1, and that CD(Γ ∪Δ). By Definition 4, [[Γ ∪Δ ]] is a partition
of M. Hence, every model of the logic makes at most one ϕ ∈ Γ ∪ Δ true; since
there are no ϕ ∈ Γ and ψ ∈ Δ such that |= ϕ ↔ ψ, Γ and Δ are disjoint;
thus ϕ /∈ Γ or ϕ /∈ Δ. Hence, |= ¬(∨ Γ ∧ ∨

Δ). Since [[Γ ∪ Δ ]] is a partition
of M, every model makes at least one ϕ ∈ Γ ∪ Δ true. Thus, |= ∨

Γ ∨ ∨
Δ.

By Definition 1, CD(
∨

Γ,
∨

Δ). For the other direction, consider Γ = {p, q} and
Δ = {¬p ∧ ¬q}. Then CD(p ∨ q,¬p ∧ ¬q), but not CD({p, q,¬p ∧ ¬q}).

For the other case, suppose that SC(
∨

Γ,
∨

Δ). By Definition 1, �|= ¬(∨ Γ ∧∨
Δ) (1) and |= ∨

Γ ∨∨
Δ (2). By (1), [[Γ ∪Δ ]] is not disjoint. By (2), [[Γ ∪Δ ]]

is a covering of M. By Definition 4, SC(Γ ∪Δ). For the other direction, consider
Γ = {¬p,¬p ∧ q} and Δ = {p}. Then SC({¬p,¬p ∧ q, p}), but not SC(¬p, p).

4.2 Generalized Relations and Sets of Traditional Relations

In the previous section, one strategy for reducing the generalized relations to the
traditional relations was proven not to work. However, there is another possible
strategy. Perhaps the generalized Aristotelian relations, as holding of a set Γ ,
determine the original Aristotelian relations as holding between all of the pairs
of formulas in Γ , and vice versa. Theorems 2 and 3 show this to be untrue.

Theorem 2. There exist sets Γ,Δ such that the formulas of Γ stand in precisely
the same traditional Aristotelian relations as those of Δ, and yet Γ and Δ do
not stand in the same generalized Aristotelian relation.

Proof. Consider Γ = {p ∧ q, p ∧ ¬q,¬p} and Δ = {p ∧ q, p ∧ ¬q,¬p ∧ ¬q}. For all
distinct ϕ,ψ ∈ Γ , C(ϕ,ψ) and for all distinct ϕ,ψ ∈ Δ, C(ϕ,ψ). However, it is
also easy to check that CD(Γ ), while C(Δ).

Theorem 3. There exist sets Γ,Δ such that Γ and Δ stand in the same gener-
alized Aristotelian relation, and yet the formulas in Γ do not stand in the same
traditional Aristotelian relations as those of Δ.

Proof. Consider Γ = {p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q} and Δ = {p, q,¬p,¬q}. By
Definition 4, SC(Γ ) and SC(Δ). However, for all distinct ϕ,ψ ∈ Γ it holds that
SC(ϕ,ψ), while for no distinct ϕ,ψ ∈ Δ does it hold that SC(ϕ,ψ).
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a. ¬γ

α

¬β

γ

β

¬α

b. p ∨ ¬♦p

p

♦p

p p

¬♦p

¬ p

c. ¬p ∨ p

p

♦p

p p

¬♦p

¬ p

Fig. 4. (a) general format of a JSB hexagon, (b) a strong and (c) a weak JSB hexagon

Theorem 2 clearly illustrates that the Aristotelian relations holding between the
formulas in a set do not uniquely determine the generalized Aristotelian relation
holding of that set itself. Conversely, Theorem 3 proves that the generalized Aris-
totelian relation holding of a set does not uniquely determine the Aristotelian
relations holding between the formulas in that set. Thus, the generalized Aris-
totelian relations are not reducible in this way.

From the fact that the Definitions 4 and 5 are a generalization of Definition 1,
it follows that the generalized relations can be used to express all the information
that can be expressed with the traditional Aristotelian relations. In addition,
this section has shown that the traditional Aristotelian relations cannot express
everything that the generalized relations can express. Thus we can conclude that
the generalized relations are a proper generalization of, and thus say strictly more
than, the traditional relations.

5 Using the Generalized Relations to Classify Traditional
Diagrams

In this section I show that we can use the generalized Aristotelian relations to
classify existing logical diagrams. Section 5.1 describes how the generalized Aris-
totelian relations can be used to differentiate weak and strong Jacoby-Sesmat-
Blanché hexagons, and Sect. 5.2 explains how the generalized relations can be
used to differentiate different kinds of Buridan octagons.

5.1 Jacoby-Sesmat-Blanché hexagons

The diagram in Fig. 4a shows the general form of a JSB hexagon. As in Fig. 1,
the connecting lines in Fig. 4 represent the traditional Aristotelian relations. I
use the symbols α, β, γ and their negations to refer to the formulas in those
positions in the hexagon.

The other two diagrams in Fig. 4 are examples of JSB hexagons. These dia-
grams belong to two different Boolean subtypes of JSB hexagons. Diagram 4b is
a strong JSB hexagon, and Diagram 4c is a weak JSB hexagon. A JSB hexagon is
strong iff the disjunction of the formulas on its contrariety triangle is a tautology,
i.e. iff |= α ∨ β ∨ γ. Otherwise, the JSB hexagon is weak [1,2].
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a. α

β1

β2

γ

¬γ

¬β2

¬β1

α

b. p ∧ ¬ p

♦p ∧ ¬ p

p

p

¬♦p

¬p

p ∨ ¬♦p

p p

Fig. 5. (a) general format of a Buridan octagon and (b) one example

The traditional Aristotelian relations cannot be used to distinguish the weak
and strong JSB hexagons. After all, they are Aristotelian isomorphic [1]: any
two formulas in a strong hexagon stand in the same Aristotelian relation as any
two formulas that are on the same positions in a weak hexagon. In contrast,
Theorems 4 and 5 prove that the generalized Aristotelian relations can be used
to distinguish strong and weak JSB hexagons.

Theorem 4. For any JSB hexagon D: D is strong iff CD({α, β, γ}).
Proof. For the left to right direction, suppose that diagram D is a strong JSB
hexagon. By the definition of a strong JSB hexagon, |= α ∨ β ∨ γ. Hence,
[[{α, β, γ} ]] is a covering. Since D is a JSB hexagon, C({α, β}), C({β, γ}) and
C({γ, α}). By Definition 1, |= ¬(α ∧ β), |= ¬(β ∧ γ) and |= ¬(γ ∧ β). Hence,
[[{α, β, γ} ]] is disjoint. By Definition 4, CD({α, β, γ}). For the right to left direc-
tion, suppose CD({α, β, γ}). By Definition 4, |= α ∨ β ∨ γ.

Theorem 5. For any JSB hexagon D: D is weak iff C({α, β, γ}).
Proof. For the left to right direction, suppose D is a weak JSB hexagon. Hence,
�|= α ∨ β ∨ γ. Thus, [[{α, β, γ} ]] is not a covering of M. Since C(α, β), C(β, γ),
and C(γ, α), [[{α, β, γ} ]] is disjoint. By Definition 4, C({α, β, γ}). For the right
to left direction, suppose C({α, β, γ}). By Definition 4, �|= α ∨ β ∨ γ.

5.2 Buridan Octagons

We now turn our attention to Buridan octagons. The diagram in Fig. 5a shows
the general format of a Buridan octagon, and the diagram in Fig. 5b shows one
example of such an octagon. As is the case for JSB hexagons, different Boolean
subtypes of Buridan octagons have been distinguished. In [1] the four subtypes
of Buridan octagons of Definition 6 are identified.2

Definition 6. A Buridan octagon is of subtype
1 iff |= α ↔ (β1 ∧ β2) and |= γ ↔ (β1 ∨ β2)
2 iff |= α ↔ (β1 ∧ β2) and �|= γ ↔ (β1 ∨ β2)
3 iff �|= α ↔ (β1 ∧ β2) and |= γ ↔ (β1 ∨ β2)
4 iff �|= α ↔ (β1 ∧ β2) and �|= γ ↔ (β1 ∨ β2)

2 The subtypes 2. and 3. are each other’s mirror image and could be folded into one
category. They are Boolean isomorphic [1].
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These four different subtypes cannot be distinguished by the Aristotelian
relations. Once again, they are Aristotelian isomorphic [1]: any two formulas in
one Buridan octagon stand in the same Aristotelian relation as two formulas in
the same positions in any other Buridan octagon. However, the different sub-
types of Buridan octagons can be differentiated with the generalized Aristotelian
relations (Theorem 6).

Theorem 6. A Buridan octagon is of subtype
1. iff SC({α,¬β1,¬β2}) and SC({¬γ, β1, β2})
2. iff SC({α,¬β1,¬β2}) and not SC({¬γ, β1, β2})
3. iff not SC({α,¬β1,¬β2}) and SC({¬γ, β1, β2})
4. iff not SC({α,¬β1,¬β2}) and not SC({¬γ, β1, β2})

Proof. I prove that |= α ↔ (β1 ∧ β2) iff SC({α,¬β1,¬β2}). The other cases are
safely left to the reader. For the left to right direction, suppose that |= α ↔
(β1 ∧ β2). It follows that {α,¬β1,¬β2} is a covering of M. By the properties of
a Buridan octagon, neither CD(¬β1, ¬β2) nor C(¬β1, ¬β2). By Definition 1, the
set {α,¬β1,¬β2} is not disjoint. By Definition 4, SC({α,¬β1,¬β2}).

For the right to left direction, suppose SC({α,¬β1,¬β2}). By Definition 4,
{α,¬β1,¬β2} is a covering of M. Hence |= α∨¬β1∨¬β2. Thus, |= (β1∧β2) → α.
By SA(α, β1), SA(α, β2), and Definition 1, |= α → (β1 ∧ β2).

6 Conclusion

In this paper I have presented a generalization of the Aristotelian relations that
are depicted by squares of opposition. I have shown that this generalization can
be used to construct new generalized squares of opposition. In addition, I have
illustrated that the generalized relations can be used to distinguish different
Boolean subtypes of well-known extensions of the square of opposition.

This opens up several avenues for further research. Firstly, it would be worth-
while to investigate whether Boolean subtypes of other extensions of the square
of opposition (e.g. the Moretti octagon [2,3]) can also be distinguished by the
generalized Aristotelian relations. Secondly, we might want to explore the prop-
erties of extensions of the generalized square of opposition, e.g. generalized JSB
hexagons. Lastly, in this paper I have only presented one generalization of the
Aristotelian relations. It is possible to construct other generalizations. It could
be fruitful to construct and compare these other possible generalizations.

Acknowledgements. I would like to thank Lorenz Demey, Hans Smessaert, Jan
Heylen and Joost Vennekens for valuable comments on earlier versions of this paper.
This research was financially supported by the BITSHARE-project (IDN-19-009, Inter-
nal Funds KU Leuven).



Generalizing Aristotelian Relations and Diagrams 337

References

1. Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical
fragments. J. Philos. Log. 47(2), 325–363 (2018)

2. Lemanski, J., Demey, L.: Schopenhauer’s partition diagrams and logical geome-
try. In: Basu, A., Stapleton, G., Linker, S., Legg, C., Manalo, E., Viana, P. (eds.)
Diagrams 2021. LNCS (LNAI), vol. 12909, pp. 149–165. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-86062-2_13

3. Moretti, A.: The geometry of logical opposition. Ph.D. thesis, Université de Neuchâ-
tel (2009)

4. Smessaert, H., Demey, L.: Logical geometries and information in the square of oppo-
sitions. J. Logic Lang. Inform. 23(4), 527–565 (2014)

https://doi.org/10.1007/978-3-030-86062-2_13


John Cook Wilson’s Hanging Plants:
A Contribution to the History of Early

Logic Trees

Dave Beisecker1 and Amirouche Moktefi2(B)

1 Department of Philosophy, University of Nevada, Las Vegas, USA
beiseckd@unlv.nevada.edu

2 Ragnar Nurkse Department of Innovation and Governance, Tallinn University of Technology,
Tallinn, Estonia

amirouche.moktefi@taltech.ee

Abstract. It is known that Lewis Carroll’s method of Trees anticipated modern
decision procedures using Tree and Tableau devices. We present another method
independently designed by John Cook Wilson in the mid-1890s. This forgotten
episode offers an interesting case of simultaneous invention and directs attention to
the specific kind of problems tackled by early mathematical logicians and the need
for such methods of solution. For the purpose, we briefly sketch Carroll’s method
of Trees. Then, we present CookWilson’s logic andmotivations.We subsequently
introduce the main graphical conventions of his method. Finally, we apply it to a
complex problem and compare it with Carroll’s Trees.

Keywords: Trees · Lewis Carroll · John Cook Wilson · Logic diagram · Sorites

1 Introduction

The use of Trees in logic is old [9]. However, modern tree-like decision procedures were
developed from themid-1950s onwards by EvertWillemBeth, JaakkoHintikka, Richard
Jeffrey, Raymond Smullyan and others [3]. Lewis Carroll’s method of Trees, developed
in the mid-1890s, is often regarded as a precursor of these modern methods [2, 4, 5, 16,
19, 21]. The idea of Carroll’s method of Trees is simple: one postulates an entity and
draws its necessary inferences in search for a contradiction. It has been suggested that
Carroll might have been influenced by his reading of Christine Ladd-Franklin’s work [1,
10, 14]. Yet, it was Carroll’s merit to offer a visual implementation of this method for the
solution of complex problems. In this paper, we show that Carroll was not alone in this
line of research. Indeed, we present a hitherto unknown tree-like method independently
developed by John CookWilson in the mid-1890s. It has the same procedure as Carroll’s
but makes use of different visual conventions.
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2 Carroll’s Method of Trees

Carroll invented his method of Trees in 1894 [20, p. 155]. However, he did not expose it
in the first part of his logic treatise, issued two years later. Indeed, he planned its inclusion
in subsequent parts, which he never completed. The method eventually appeared in an
edition of Carroll’s Nachlass in 1977 [5]. There, it is described as follows:

Its essential feature is that it involves aReductio ad Absurdum. That is, we begin by
assuming, argumenti gratia, that the aggregate of the Retinends (which we wish to
prove to be aNullity) is an Entity: from this assumption we deduce a certain result:
this result we show to be absurd: and hence we infer that our original assumption
was false, i.e. that the aggregate of the Retinends is a Nullity. [5, p. 280]

This procedure was used to solve Sorites problems involving a high number of
premises. Such complex problems played an essential role in the shaping of early math-
ematical logic. Indeed, logicians engaged in a friendly contest to compare the merits
of their systems for the solution of such problems [15]. Venn precisely invented his
diagrams due to his dissatisfaction with earlier Eulerian schemes [18]. It is for the same
purpose that Carroll designed his method of Trees. Let us illustrate Carroll’s method by
solving a problem involving seven premises, as shown in (Fig. 1). Here, x′ stands for
non-x. To ease illustration, we dropped the existential import, as it does not bear on our
discussion. The purpose is to find what conclusion follows form this set of premises.

(1) There is no h m k.
(2) There is no d’ e’ c’. 
(3) There is no h k’ a’. 
(4) There is no b l h’. 
(5) There is no c k m’.
(6) There is no h c’ e.
(7) There is no b a k’.

Fig. 1. Carroll’s method of Trees [5, p. 292–295]

In the premises, b, d′ and l are the terms that do not appear with opposite signs, their
aggregation forms the root of the tree. We postulate the existence of a ‘Thing’ that has
the attributes b d′ l. Premise (4) states that whatever is b l is necessarily h. Hence, our
‘Thing’ must also be h. We write h under the root. Premise (1) states that whatever is h
is necessarily (m k)′. Hence, it is either k′ or m′ k. Consequently, we place alternative
branches under h: one branch for k′ and the other for m′ k. Let us first consider the
branch k′. Premise (7) states that whatever is b k′ is necessarily a′. Hence, our ‘Thing’
that has (so far) the attributes b d′ l h k′ has also the attribute a′. However, Premise (3)
states that whatever is h k′ is necessarily a. Hence, our ‘Thing’, which already has the
attribute a′, has also the attribute a. We place both a and a′ under k′ in the tree. Since
their coexistence is inconsistent, we place ‘O’ under a a′ to indicate the end of this first
branch. Let us, now, consider the other branch m′ k. Premise (5) states that whatever is
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m′ k is necessarily c′. We write c′ underm′ k in the tree. Premise (6) states that whatever
is h c′ is necessarily e′. Hence, our ‘Thing’ that has (so far) the attributes b d′ l h m′ k c′
has also the attribute e′. However, Premise (2) states that whatever is d′ c′ is necessarily
e. Hence, our ‘Thing’, which already has the attribute e′, has also the attribute e. We
place both e and e′ under c′ in the tree. Since their coexistence is inconsistent, we place
‘O’ under e e′ to indicate the end of this second branch. Since all branches of the tree
have been shown to be lead to inconsistency, it follows that the root is forbidden. Hence,
the conclusion of the argument is: “There is no b d′ l”.

3 Cook Wilson’s Hanging Plants

Although hardly remembered today, Cook Wilson played in his time a key role in
the British philosophical scene and had an important influence on subsequent Oxford
philosophers [11]. He was theWykeham Professor of Logic at the University of Oxford
from 1889 to his death in 1915. His logical studies appeared posthumously in 1926
[7]. Cook Wilson’s modern reputation as a logician is rather poor. Peter Geach even
described him as an “execrably bad logician” [8, p. 123]. This disesteem seems to rest
primarily on Cook Wilson’s opposition to modern mathematical logic.

Indeed, CookWilson objected to the new logic and criticised its mathematical inspi-
ration and dress. Given that it is the business of logic to study the (inference) methods
of other sciences, “it is incredible that any particular scientific method, for example the
mathematical, should be the method of logic itself” [7, p. 636]. Cook Wilson did not
utterly object to the idea of a symbolic logic. However, he argued that such symbol-
ism should be suggested by the kind of problems logicians tackle, rather than being
imported from another discipline. Indeed, “it is a mistake to suppose that the symbolism
adapted to one science is likely to suit another” [7, p. 640]. Interestingly, Cook Wilson
did not stop at this criticism. Indeed, he believed that “mathematicians like to say the
philosophers who disagree with them don’t understand the mathematics” [7, p. xl]. To
beat mathematical logicians at their own game, he studied their systems and constructed
his own, which he held to be superior to theirs. Cook Wilson claimed that his calculus
“solves with ease and simplicity all the problems attacked by the symbolic logicians
whose calculus is in comparison very cumbrous” [7, p. xcv].

Carroll famously constructed devilish problems, which he circulated for opinion
among his colleagues, including Cook Wilson. The two men exchanged on various
topics inmathematics from themid-1880s onwards [17]. In 1892, they engaged in a fierce
dispute on hypotheticals, which expanded to a large controversy among British logicians
[13]. In subsequent years, they challenged each other to solve complex problems of their
invention [12]. Cook Wilson admitted that Carroll “was clever in the construction of
difficult problems” [7, p. 638], but claimed that Carroll “was astonished […] as he freely
said, at the way in which [Cook Wilson] solved all such problems” [7, p. xcv].

CookWilson revealed one of his methods in a letter to Carroll on 3 November 1896:

“Your mention of a method of ‘Trees’ makes me wonder whether you have really
been using a quasi-graphic method, identical with one which I have used for years.
I suppose ‘Trees’ have branches and this makes me curious.
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I should rather have called my method a method of ‘Hanging Plants’ but my
‘Hanging Plant’ inverted becomes a ‘Tree’”. [6].

CookWilson apparently invented his method before being acquainted with Carroll’s.
In his (unpublished) letter, he sketched the construction of his ‘hanging plants’ and
applied it to a problem (no 32), involving twelve premises, which Carroll had sent him
[5, p. 403]. Three versions of his solution were included: a graph constructed upwards
like a tree, another graph developed downwards like a hanging plant, and finally an
alternative version of the hanging plant where the “connexion of premises [is] shown
more fully” [6].

Cook Wilson’s account reveals the key conventions of his method. Its principle is
similar to Carroll’s method of Trees. One sets an aggregate of attributes as the root of a
graph and draws necessary inferences from the premises.When a necessary contradiction
is reached, the root is denied. In this respect, Carroll and Cook Wilson’s methods might
be said to be the very same. However, their visualizations of this procedure differ. In the
following, we present and comment on Cook Wilson’s main conventions.

4 Conventions

The nodes of the graph are called ‘Fruits’. Positive terms are encircled while negatives
are squared, as shown in (Fig. 2). These devices, introduced to “aid the eye” [6], are
superfluous since signs are already indicated on terms. Hence, these shapes do not play a
non-redundant role in the graph. Contradictions are detected when a term is found once
affirmed and once negated, i.e. once circled and once squared. As such, these shapes
may be said to play some role in conveying the contradiction to the eye.

Fig. 2. Representation of the terms x (left) and x′ (right).

It is unclear how the root ought to be represented. Alternative conventions are found
in Cook Wilson’s illustrations, as shown in (Fig. 3). One option consists in depicting
terms (and their shapes) separately. Here, nothing formally distinguishes the root from
the fruits. In a second option, the root’s terms (and their shapes) are jointly enclosed.
The third option consists in concatenating the terms and encircling them within a single
shape. Here, the specificity of the root is stressed since it (alone) contains an aggregate
of terms, whereas each ‘Fruit’ contains a single term.

Fig. 3. Alternative representations of the root x y′
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Cook Wilson used arrows to depict inferences, as shown in (Fig. 4). One kind of
arrows has an arrowhead directed to the fruit that is produced. We are told that the
“arrowhead shows something necessary follows from what is above it (in conjunction
with the root or some other necessary fruit)” [6]. For instance, a headed arrow from x to
y simply expresses “x is y”. Multiple (independent) headed arrows may leave or arrive
at the same node. This form of branching is interpreted as a conjunction of inferences.
Finally, when several terms jointly entail another, the separate arrows that leave the
antecedent terms merge before reaching (with a single arrowhead) the consequent term.

x is y x is (y and z) (x or y) is z (x and y) is z x is (y or z)

Fig. 4. Representation of inferences

A second kind of arrows, with no arrowheads, expresses alternatives. Suppose x
necessarily entails either y or z. Here, one draws a headed arrow which points at a
branch that terminates (with no arrowheads) at y one side and z on the other, as shown
in (Fig. 4).

At this stage, some essential differences with Carroll’s conventions appear. Indeed,
Cook Wilson’s system seems (more) visual and makes a use of arrows similar to that of
contemporary argument graphs.Carroll rather adopted somewhat symbolic notations that
dispense with most of the arrows. Inference itself is indicated by placing the consequent
term under its antecedent. The only branching found in Carroll’s is divergent, stands for
alternatives, and resembles Cook Wilson’s. Other kinds of branching are circumvented.
On the one hand, (divergent) conjunctive branching is avoided by aggregating terms.
For instance, if x is known to entail y and z, one places the aggregate y z under x. On
the other hand, convergent branching is absent in Carroll’s system. For instance, if it
is known that, on different branches, terms x and y independently entail z, one would
expand each branch separately and simply place one occurrence of z under x and another
under y. If premises allow so, Cook Wilson would rather point his arrows at a single
occurrence of z. Although each set of conventions has its merits and shortcomings, their
dissimilarities produce important visual differences. In particular, CookWilson’s graphs
prove far ‘bushier’ than Carroll’s are.

Fig. 5. Alternative representations of contradiction
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When a contradiction is reached, namely a term and its opposite are affirmed, Cook
Wilson connects those opposites with a double-headed arrow to express their contra-
diction. Three versions are found in Cook Wilson’s illustrations, as shown in (Fig. 5).
Although these variations are not essential, they attest to Cook Wilson’s concern for the
visualization of each step in his procedure.

5 Application

Let us illustrate John CookWilson’s method by addressing the same problem we solved
earlier with Carroll’s trees.We obtain the hanging plant, shown in (Fig. 6). The procedure
is quasi-similar to Carroll’s, as one readily observes from the order in which terms
appear and the contradictions that are reached. To aid conviction, we develop here the
construction of the hanging plant.

(1) There is no h m k.
(2) There is no d’ e’ c’. 
(3) There is no h k’ a’. 
(4) There is no b l h’. 
(5) There is no c k m’.
(6) There is no h c’ e.
(7) There is no b a k’.

Fig. 6. Cook Wilson’s Hanging Plant (our solution).

Again, we place b d′ l at the root. Premise (4) states that whatever is b l is necessarily
h. Hence, our root b d′ l is h. We draw a headed arrow from the root to a circled fruit h.
To accommodate further premises, we divide by dichotomy h into alternative branches
k and k′. Let us first consider the branch k′. Premise (7) states that whatever is b k′ is
necessarily a′. Since b and k′ are necessary fruits (in this branch), they entail a′. We draw
an arrow from k′ to a squared a′. Premise (3) states that whatever is h k′ is necessarily
a. Since h and k′ are necessary fruits (in this branch), they entail a. We draw an arrow
from k′ to a circled a. Here, we have a and a′ as necessary fruits. We draw a double-
headed arrow between them to mark their contradiction and end this branch. Now, we
consider the other branch k. Premise (1) states that whatever is h k is necessarily m′.
We draw an arrow from k to a squared fruit m′. Premise (5) states that whatever is k
m′ is necessarily c′. Since k and m′ are necessary fruits (in this branch), they entail c′.
We draw an arrow from m′ to a squared c′. Premise (6) states that whatever is h c′ is
necessarily e′. Since h and c′ are necessary fruits (in this branch), they entail e′. We draw
an arrow from c′ to a squared e′. Premise (2) states that whatever is d′ c′ is necessarily e.
Since d′ and c′ are necessary fruits (in this branch), they entail e. We draw an arrow from
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c′ to a circled e. Here, we have e and e′ as necessary fruits. We draw a double-headed
arrow between them to mark their contradiction and end this second branch. Since all
alternative branches of the plant have been shown to be lead to inconsistency, it follows
that the root is forbidden. Hence, the conclusion of the argument is: “There is no b d′ l”.

The main difference between Carroll and Cook Wilson concerns the treatment of
disjunctive branching, as shown in the portions of graphs in (Fig. 7). Here, Premise (1)
asserts that h is (m k)′. Thus, h is either m k′ or m′ k′ or m′ k. Carroll commonly used
a binary branching. Here, m k′ and m′ k′ are merged to form k′ on one side while the
compound termm k′ occupies the other side. CookWilson’s conventions do not a priori
forbid expressing the disjunction of three terms. However, the fruits in his graphs do not
seem to contain compound terms. Hence, CookWilson first divides h by dichotomy into
k or k′, then explores each branch separately. Here, Premise (1) asserts that No h k is
necessarily m′, hence, it is possible to derive m′ as a necessary fruit in this branch. From
this point, Carroll and Cook Wilson’s methods proceed similarly again.

Carroll’s Tree Cook Wilson’s Hanging Plant

Fig. 7. Disjunctive branching

A look at the graphs suggests another key difference. Indeed, Carroll kept a trace of
the premises used at each step whereas CookWilson did not. This absence is aggravated
by the partial depiction of inferences. Consider the derivation ofm′ in the plant. Premise
(1) states that h and k jointly entail m′. Thus, we ought to draw convergent arrows that
leave h and k, merge and reach m′ with an arrowhead, as shown in (Fig. 8-a). However,
CookWilson does not require this complete scheme. It suffices, indeed, to connectm′ to
one of its antecedents, here k, in such a way as to express its necessity. In this example,
m′ could not be connected to h alone since the necessity of m′ holds only within the k
branch of the alternative. Let us now consider the derivation of c′. Premise (5) states that
k andm′ jointly entail c′, as shown in (Fig. 8-b). However, CookWilsonmerely demands

Fig. 8. (Complete) representation of inferences
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an arrow that connects c′ to either k or m′. Indeed, the aim of the procedure is to derive
the fruits until contradiction is found. Keeping trace of the construction is not required
by the search itself, although it is helpful to revise or communicate the graph. It should
also be reminded that, unlike Carroll’s Trees, Cook Wilson’s plants do not demand that
every branch is ended. It suffices to establish the necessity of a contradiction, e.g. a
necessary contradiction in each side of an alternative, if any.

Carroll did not depict full inferences either, since terms are placed under their prede-
cessors without reference to those that entailed them. Yet, it is easy to reconstruct each
step of the procedure. It is also possible to drawHanging Plants displaying full inferences
but that would needlessly increase their bushiness, and thus, their inconveniency.

Let us conclude with a trivial difference between Trees and Hanging Plants. Both
graphs grow head-downwards but only Cook Wilson’s appellation is suggestive of this
direction. Carroll justified the use of ‘Trees’ by the practice of genealogy writers: “A
Genealogical “Tree” always grows downwards: then why may not a Logical “Tree” do
likewise?” [5, p. 281]. Yet, there is more to this difference of naming. Indeed, Carroll’s
graphs have a ‘trunk’ because he places new terms under their antecedents and abstains
from introducing branches whenever possible. Contrariwise, Cook Wilson’s plants fre-
quently require branching, possibly even at the root. This feature, regardless of their
direction, also makes Cook Wilson’s graphs closer to hanging plants than to trees1.
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Abstract. It is known that early modern logic tackled complex problems involv-
ing a high number of terms. For the purpose, John Venn, and several of his follow-
ers, designed algorithms for the construction of complex logic diagrams. This task
proved difficult because diagrams tend to lose their visual advantage beyond five
or six terms. In this paper, we discuss Charles S. Peirce’s work to overcome this
difficulty. In particular, we reconstruct his algorithm for the purpose and compare
it with those of his contemporaries Venn and Lewis Carroll.

Keywords: Peirce · Venn diagram · Carroll diagram · Complex diagrams

1 Introduction

Charles S. Peirce (1839–1914) made significant contributions to the tradition of Euler
and Venn diagrams. Recently, Ahti-Veikko Pietarinen’s [22] opened the way to several
studies that explored Peirce’s work in this area [3, 4, 23]. This paper is a contribution in
this direction. It addresses Peirce’s procedures for the construction of complex diagrams,
a topic that is overlooked in both diagram and Peirce studies.

The old syllogistic hardly needed such complex diagrams since the Syllogism has
only three terms and complex arguments, known as Sorites, were commonly treated as a
series of syllogisms. One of themerits of Boolean logic which developed in Peirce’s time
was precisely to expand the old doctrine. It aimed at notations and methods that would
produce the conclusion that follows for an argument involving any number of terms [7].
This task occupied post-Boolean logicians who invented symbolic, diagrammatic and
even mechanical methods for the purpose together with sets of complex problems to test
these methods. On the one hand, the supporters of the new logic engaged in a friendly
contest to compare the merits and shortcomings of their solutions. On the other hand,
they challenged the opponents of the new logic to solve such problems with the old
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methods [13]. The solution of such complex problems was regarded as both the business
of the new logic and the justification of its mathematical dress [17].

It was precisely for tackling such complex elimination problems that John Venn
designed his diagrams. In the following, we first sketch Venn’s procedure to adapt his
diagramswhen the number of terms increases. Then, we address Peirce’s own algorithms
to construct complex diagrams. Finally, we compare Peirce’s method with those of Venn
and Lewis Carroll to assess its merits and shortcomings.

2 Venn’s Diagrams for n Terms

Unlike earlier Eulerian diagrams, Venn’s method consists in two steps: first, one draws
a ‘primary diagram’ that represents the possible subclasses of a term. Then, cells are
marked to express actual knowledge about those subclasses. For a number of terms n,
Venn’s primary diagram consists of 2n compartments exhibiting all the combinations
between those terms. For n = 1, Venn uses a circle whose interior stands for the affir-
mation of the term. For additional terms, it suffices to add closed figures, “subject to the
one condition that each is to intersect once and once only all the existing subdivisions
produced by those which had gone before” [24, p. 8]. For n > 3, Venn suggested an
inductive algorithm to draw continuous diagrams, with “comb-like” shapes [25, p. 118,
6]. This method produces the diagrams shown in (Fig. 1).

n = 1 n = 2 n = 3 n = 4 n = 5

Fig. 1. Venn diagrams constructed with the inductive method

However, when n > 3, Venn was unhappy with these schemes. Indeed, he preferred
the use of “only symmetrical figures, such as should not merely be an aid to the sense of
sight, but should also be to some extent elegant in themselves” [24, p. 8]. Consequently,
he designed alternative diagrams, shown in (Fig. 2).

n = 4 n = 5

Fig. 2. Venn diagrams for four and five terms

For four terms, Venn simply made four ellipses intersect in such a way as to obtain
“the simplest and neatest figure” that would exhibit desired subdivisions [24, p. 7].
Finally, for five terms, he introduced an annulus that stood for the fifth term, and hence
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broke its negative into two disjoint areas: the outer region and the inside ellipse. Venn
admitted this shortcoming but argued that this diagram remains superior to alternative
methods “to grapple effectively with five terms and the thirty-two possibilities which
they yield” [24, p. 7]1.

For six terms, which is the highest number he addressed, Venn reluctantly suggested
using two 5-term diagrams, one for the affirmation of the sixth term and the other for
its negation. Venn reverted here the method that guided the construction of his previous
figures. Indeed, hitherto, Venn added a curve for each term to divide into two all existing
cells. This technique amounts to inserting a 1-term diagram for the nth term inside each
cell of an (n− 1)-term diagram. However, for his sixth term, Venn did the opposite since
he rather inserted the existing 5-term diagram in each cell of a 1-term diagram standing
for the sixth term. Venn admitted that this scheme “to some extent loses the advantage
of the coup d’oeil afforded by a single figure” [24, p. 8].

3 Peirce’s Algorithm

Peirce was familiar with Venn’s diagrams, which he regarded as an amended version of
Eulerian diagrams. In his manuscript “On logical graphs” (1903)2, he identified several
limitations of Euler’s diagrams and suggested amendments to overcome them [20].
Despite their shortcomings, Peirce praised Euler’s diagrams in the form that includes
both Venn’s and Peirce’s own amendments. He notably acknowledged their utility for
the solution of complex problems:

“Complicated questions of non-relative deductive reasoning are rare, it is true;
still, they do occur, and if they are garbed in strange disguises, will now and then
make the quickest minds hesitate or blunder. Euler’s diagrams are the best aid in
such cases, being natural, little subject to mistake, and everyway satisfactory. It is
true that there is a certain difficulty in applying them to problems involving many
terms; but it is an easy art to learn to break such problems up into manageable
fragments.” [20, p. 59]

In the design of his complex diagrams, Peirce applied this strategy of breaking
up complex problems into ‘manageable fragments’. Indeed, although he unhesitatingly
adopted Venn’s diagrams up to four terms, he rejected Venn’s proposals for higher
numbers. Instead, he suggested the following procedure of construction:

“With more than four terms the system becomes cumbrous; yet, by having on
hand lithographed blank forms showing the four-term figure on a large scale […]
all the compartments containing repetitions of one figure, whether that for one
term, for two terms, for three or for four, and considering corresponding regions

1 Hugh MacColl immediately contended that his algebraic methods were superior to Venn dia-
grams for such complex problems [10]. Venn strongly opposed MacColl’s work. This hostility
led MacColl to abandon his logical studies for over thirteen years [2].

2 This manuscript (MS 479) is accessible on the Peirce Archive repository (https://rs.cms.hu-ber
lin.de/peircearchive/pages/search.php). In this paper, page numbers refer to the file titles.

https://rs.cms.hu-berlin.de/peircearchive/pages/search.php
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of all sixteen of the large compartments to represent together the extension of one
term, it is possible without much inconvenience to increase the number of terms
to eight” [20, pp. 36–37].

Peirce did not produce diagrams to exemplify this procedure, except for one 8-term
diagram. However, it is easy to provide illustrations of the missing diagrams. In each
case, a large 4-term diagram stands for the first four terms. Then, a small diagram is
inserted in each cell to represent the remaining terms. For five terms, the small diagram
represents one term; for six, two; for seven, three. For eight terms, the small diagram is
itself a 4-term diagram. Hence, we obtain the diagrams shown in (Fig. 3).

n = 5 n = 6

n = 7 n = 8

Fig. 3. Peirce’s complex diagrams

Peirce’s algorithm has several advantages. It is simple, ensures continuity between
the figures and, importantly, requires little since it merely reproduces, within each cell,
the already known expansion from 1- to 4-term diagrams. The trick consists in having a
diagram in which each cell contains another diagram. This technique amounts to having
a Venn diagram of Venn diagrams.

Evidently, these (discontinuous) schemes have limitations that are inevitable when
the number of terms increases3. Peirce did not consider diagrams for more than eight
terms. For the purpose, he rather suggested making “a list of the regions numbered in the
dichotomous system of arithmetical notation, one numerical place being appropriated to
each term” [20, pp. 36–37]. This technique is reminiscent of pre-Venn procedures, such
as William S. Jevons’ Logical alphabet [8].

4 Peirce’s Alternative Diagram

To solve complex problems, Peirce acknowledged the merits of algebraic methods for
those who have acquired sufficient expertise and practice. Yet, he did not discourage

3 Interestingly, Peirce also knew Venn’s inductive method to construct continuous complex
diagrams [6, p. 31]. Yet, he preferred to proceed with discontinuous figures.
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the usage of diagrams. We are rather reminded that “the diagrams are always ready.”
[20, p. 60]. To illustrate their applicability, Peirce provided a diagrammatic solution to a
problem which he held to be “more complicated than anybody is likely to meet with in
a long life, elsewhere than in a logic-book” [20, p. 60]. This problem was first published
by his former student Christine Ladd-Franklin:

“Six children, a, b, c, d, e, f , are required to obey the following rules: (1) onMonday
and Tuesday no four can go out together; (2) on Thursday, Friday, and Saturday,
no three can stay in together; (3) on Tuesday, Wednesday and Saturday, if b and c
are together, then a, b, e, and f must remain together; (4) on Monday and Saturday
b cannot go out unless either d, or c, e, and f stay at home. b and f are first to
decide what they will do, and cmakes his decision before a, d or e. Find (∝) when
c must go out, (β) when he must stay in, and (γ ) when he can do as he pleases”
[9, p. 58].

Peirce treats each day separately by considering what the rules tell us on those chil-
dren’s constraints on that day. Hence, each day involves six terms which are the courses
of events in which those children a, b, c, d, e, f stay at home, respectively. For instance,
the term a indicates that the child a is inside the house while not-a rather designates
the circumstances in which the child a is outside. Since six terms are involved in the
argument, Peirce makes use of a 6-term diagram for each day. Surprisingly, however,
Peirce did not employ the 6-term scheme which he designed with his algorithm, namely
a 4-term diagram with a 2-term diagram in each cell. Peirce rather preferred the use of
an alternative diagram made of a 3-term diagram containing another 3-term diagram in
each cell, as shown in (Fig. 4).

Fig. 4. Peirce’s alternative 6-term diagram

The construction of this alternative diagram resembles that of the previous diagrams.
Indeed, it also consists in inserting a smallm-term diagram in a (6-m)-term large diagram.
The difference merely pertains to the distribution of the terms, indicated by the value of
m. Previously, Peirce held m = 2, while, in this alternative scheme, m = 3.

Peirce did not justify this change. He simply proceeds with the new diagram and
solves the problem at hand. In brief, he selects for each day the rules that apply on it.
Then, he marks the cells that are forbidden by those rules. For instance, we are told that
on Monday “no four can go out together”. Accordingly, Peirce marked all the cells that
are outside at least four terms in the diagram of that day. After reporting all the data,
Peirce reads what each diagram tells on each child’s presence in the house. Peirce’s
final answer is not important for our purpose since we are merely concerned with the
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construction of his diagrams. Yet, we observe that his answer coincides with those of
Ladd-Franklin’s algebraic method [9, p. 61].

Although Peirce did not state what motivated the usage of this alternative 6-term
diagram, it is interesting to note the resemblance between it and Peirce’s 8-term diagram.
Indeed, these are the only complex diagrams, for more than four terms, found in Peirce’s
manuscript. Both are constructed with similar-looking Venn diagrams. For a number
of terms n, a small (n/2)-term diagram is inserted in each cell of a large (n/2)-term
diagram. This common feature gives an elegant appearance to each diagram. Peirce did
not indicate whether this feature reflects a general method of construction. If it is so, one
needs to keep in mind that such a procedure has a limited scope of application since it
does not apply to diagrams involving an odd number of terms.

5 Comparison with Venn and Carroll

Peirce was not alone in his attempt to construct adequate complex diagrams. Indeed,
the publication of Venn diagrams in 1880 opened the way to several rival schemes
that aimed at overcoming Venn’s difficulties when the number of terms increased [19].
Early candidates included Allan Marquand’s tables [14] and Alexander Macfarlane’s
stripes [11]. Both readily abandoned continuous figures to ensure the regularity of their
diagrams [18]. Later, Carroll offered a new method of construction for up to ten terms
[5]. Carroll’s complex diagrams are commonly regarded to be superior to Venn’s [12,
27, p. 197].

Carroll used simple figures for up to four terms. His diagrams resemble Venn’s but
include an outside square that encloses the logical universe. This square is dichotomously
divided to tackle successive terms, up to n = 4, as shown in (Fig. 5).

n = 1 n = 2 n = 3 n = 4

Fig. 5. Carroll diagrams for one, two, three and four terms

To construct 5-, 6-, 7- and 8-term diagrams, Carroll simply inserts a small 1-, 2-, 3-
and 4-term diagram, respectively, in each cell of a large 4-term diagram, as shown in
(Fig. 6)4. Carroll did not illustrate diagrams for more than eight terms but he suggested
a method for their construction5.
4 Like Venn, Carroll constructed continuous 5-term diagrams [26, p. 434]. Yet, he also eventually
preferred a discontinuous figure. It is unclear why his published version has a diagonal line in
each cell of a 4-term diagram. This orientation does not match with subsequent figures. In a
private leaflet, Carroll rather used a horizontal line [1, p. 58].

5 For 9 terms, Carroll places two 8-term diagrams next to each other, one for the ninth term
and the other for its negative. This amounts to inserting an 8-term diagram in each cell of a
1-term diagram. For ten terms, he suggested inserting an 8-term diagram in each cell of a 2-term
diagram. Carroll stops at ten but this plan evidently can be pursued [12].
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n = 5 n = 6 n = 7 n = 8

Fig. 6. Carroll diagrams for five, six, seven and eight terms

It is interesting to compare the methods of Venn, Carroll and Peirce for the construc-
tion of complex diagrams. In (Table 1), their procedures (for n > 4) are summarized for
convenience. Up to four terms, Carroll and Peirce followed Venn’s technique of adding
a curve to represent the last term. All three abandoned continuous figures at five terms
but Carroll and Peirce’s approach differ from Venn’s. Indeed, the latter represented the
fifth term with a single figure while the formers ‘dispersed’ it within the sixteen cells
of a 4-term diagram. For six terms, all three logicians adopted ‘fragmented’ diagrams,
with varying repartitions of terms. Peirce notably offered two possible configurations.
Venn does not go beyond six terms. Carroll and Peirce continue up to eight terms with
similar algorithms but Carroll alone continues up to ten terms.

Table 1. Summary of the methods (a × b indicates an a-term diagram of b-term diagrams)

n Venn (1880) Carroll (1897) Peirce (1903) Peirce’s
alternative
(1903)

5 4 × 1 4 × 1 4 × 1

6 1 × 5 4 × 2 4 × 2 3 × 3

7 4 × 3 4 × 3

8 4 × 4 4 × 4 4 × 4

9 1 × 8

10 2 × 8

This appraisal shows that Peirce shared his predecessors’ preference for regular
(albeit discontinuous) diagrams to ease manipulation. In this respect, his alternative
diagrams, which make use of similar-looking figures, can be regarded as a shift in this
direction.Althoughhe adoptedVenn’s schemes for up to four terms, Peirce departed from
Venn in his treatment of higher numbers of terms. He rather independently developed an
original algorithm that proves similar to Carroll’s6. As such, Peirce cannot make claims

6 It is unclear the extent to which these logicians knew each other’s work. Carroll referred to Venn
in his late writings but there is no evidence that the latter influenced the early development of
Carroll’s diagrams [16]. Peirce certainly knew Venn’s (early) writings but there is no evidence
that he knew Carroll’s. His only mention of it is a handwritten note on Carroll’s barbershop
paradox [21, p. 650] (see [15]).
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for priority. However, his work shows that Carroll’s algorithm of construction is not
rooted in the specific characteristics of his diagrams. Indeed, it may be said that Peirce
has equally applied Carroll’s algorithm to Venn’s diagrams.
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Abstract. Marlo diagrams are a novelmethodof representing logical propositions
that the author has used successfully with hundreds of high school students for
instructional purposes. The examples of construction and conversion of complex
diagrams that we offer in this work have a double objective: on the one hand,
we hope that the reader becomes familiar with our notation, which, due to its
novelty, is complex for those not initiated in our diagrams. On the other hand, we
want to illustrate how our graphic conversions are articulated with those of natural
language, always preserving the conclusions that follow from the premises.

Keywords: Logic diagrams · Quantification of predicate · First order logic

1 How to Build and Convert Complex Propositions in the Marlo
Diagram

Marlo diagrams [1, 2] are a renewed and improved version of theDoctrine of theQuantifi-
cation of the Predicate which, although abandoned due to its limitations at the time, also
allowed Charles Stanhope and William Stanley Jevons to build the first logic machines
in history [6]. Following this doctrine, we can represent both the classical propositions
of the syllogism and any other proposition of first-order logic in the following way: the
total-partial association of the possible combinations of one variable with another. For
example, A → B, means that: toto A = at least part of B. You should keep in mind
that when we say that All Londoners are English, we mean that at least “part” of the
English are equal to “all” Londoners. So, we just need to remember now that in our
notation we add a subscript x to express that all possible combinations of a variable (a)
are of a single type (b). However, the associated variables without subscript x must be
considered in a particular way. Then, axb means toto A = part B, that is, A → B. If we
want to represent the proposition No A is B or A → ¬B, then we will write bx¬a: toto
A = part ¬B. For example, if we say that No vegetarians eat meat, we say that Part
of the people who do not eat meat is equal to all vegetarians. And at the same time,
we affirm that All people who eat meat are part of the people who are not vegetarian
(remember that part means at least part). The disyunction A ∨ B means toto ¬B = part
A. At this point, we recommend the reader visit the web version of Marlo’s diagram [7],
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read the instructions, run classic inference examples, and solve the proposed exercises
starting from number one. This will make it easier to understand how these diagrams
work. Figure 1 shows how to convert and transform the model of No vegetarians eat
meat. Recall that when converting we only change the order of the variables while when
transforming we permute the subscript x between the variables and, at the same time,
we change the quality of the variables.

Fig. 1. Four equivalent models for the conditional proposition V → ¬M.

We always place the letter that represents the subject of the propositions in the center
of the models. If this subject is universal, we do not divide the model. But if the subject is
particular, then we divide the model. Therefore, in model 1 of Fig. 1 we observe that All
v are ¬m. However, in model 2 of Fig. 1 we observe that part of the people who do not
eat meat are vegetarians, but the possibility of not eating meat without being a vegetarian
is also represented in the upper region of¬m, which is not determined nor as v or¬v. On
the other hand, when the letter that represents the predicate is taken universally, it is only
located within the model of the subject. But if only part of the predicate is associated
with the subject, then this predicate must also be placed outside the subject model with
a question mark. For example, in model 1 in Fig. 1, ¬m is also placed outside v because
the propositionNo vegetarian eats meat still allows us to assume that it is possible not to
eat meat and not to be a vegetarian (¬m?). Remember that, just like in Venn diagrams,
the exterior of any ϕ region in Marlo diagrams always represents¬ϕ. Of course, we also
apply the rule that any region of a model ϕ contains ϕ. For example, all subclasses of
dogs are dogs. If we now look at model 2 in Fig. 1, we can see that the predicate v is
not placed outside ¬m model because it is impossible to think that there are vegetarians
who eat meat. In this way, the only v that appears inside the ¬m model now means that
toto v is ¬m. No other kind of v is possible. And if we have understood how to build
simple propositions, we can try to move on to the construction and conversion of more
complex diagrams by considering the toto-partial relations that the premises establish
between its variables (see Fig. 2).
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Fig. 2. Examples of conversion of complex models in Marlo diagram.

Now, you must remember that letters that occupy the same region of a model or that
are written together and at the same level outside the model are necessarily associated.
On the contrary, letters that are placed in different regions within a model or at different
levels outside the model are not necessarily associated, although they are potentially
combinable. In the first row of diagrams of Fig. 2, starting from the premises No vege-
tarians eat meat and All vegetarians eat potatoes, we reach the same conclusions from
different perspectives (we will not explain again here the inference processes that allow
us to synthesize all the information in A1[1]). Model A1 results in model A2 from the
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perspective of¬m. And A2 results in A3 from the perspective of people who eat potatoes
(p). The same dynamic is followed in rows B and C. Remember that to convert diagrams
in Fig. 2, we must first consider how many letters are in the model we started from. For
example, in Model A1 we have three letters: v, ¬m, and p. We then ask the diagram,
one by one, how many types of each letter are there. We must start this process with the
variable that we have chosen as the subject of the new model. Model B1 synthesizes
the information contained in the premisesOnly among vegetarians are there vegans and
Some vegans eat carrots. Now, model B1 results in model B2 from the perspective of
b. All b is v, that is, all vegans are vegetarians. For its part, Model C1 synthesizes the
information contained in three premises: No vegans eat honey. All vegans eat lentils.
Only among vegans are there people who eat apples. It is interesting to note how the
proposition expressed in C4 All people who eat apples eat lentils was already contained
in C1.We can think of this as a good example of the integration betweenMarlo’s diagram
conversions and the way we use natural language when reasoning.

In conclusion:Marlo diagrams are a newmethod of representing logical propositions
that is based on the Quantification of the Predicate and that since 2014 has allowed its
author to obtain very good results in the classroomwith hundreds of high school students
[2]. Let us remember that William Hamilton also claimed the didactic benefits of this
doctrine [4], which also allowed Stanhope and Jevons to build the first logic machines
in history and inspired Boole to create his logic [3–5]. But empirical studies are still in
the design phase, and definitive answers about the advantages of Marlo diagrams and
other questions such as what kinds of users can benefit most from them will take several
years. Meanwhile, the author can only present his work and the reasons that, based on
his twenty years of professional experience and the history of Philosophy [6], he has
to believe that it is worth recovering this logical perspective and explicitly representing
uncertain statements. Therefore, it is up to the reader at this point to decide whether these
diagrams effectively facilitate the drawing of parallels with natural language reasoning
and whether this can contribute to strengthening logical competence.
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Abstract. The way we choose to draw the networks on the plane (lay-
out) is found to be important for the readability of networks by humans.
In this study, we examine how different layouts affect our perception of
specific properties of small networks of 16 nodes each. We compare a
simple grid layout to the planar and force-directed layouts, which are
some of the most well-established layout algorithms. We also introduce
an alternative ‘improved’ grid layout, which optimizes the outcome lay-
out in terms of specific aesthetics. When people had to decide whether
a network is a tree given a node-link diagram, the layout significantly
affected their performance. The same pattern appeared for the detec-
tion of the connectedness property. However, when people had to detect
two properties at a time, the layout didn’t affect their performance. The
results show that the layout we choose for representing a network is cru-
cial for our perception of some of the network’s basic properties. However,
when people had to detect more than one property at a time, the chosen
layout didn’t seem to significantly affect their performance.

Keywords: Graph drawing · Perception · Graph layout · Network
visualization

1 Introduction

Node-link diagrams are commonly used to visually represent entities (nodes)
and their relationships (links), also known as networks. They are widely used to
visualize and communicate linked data. There is a great amount of graph draw-
ing algorithms that generate such visual representations of graphs (also called
layouts). These algorithms usually aim to optimize some visual characteristics
(or ‘aesthetics’) of the drawing, that are found to affect the readability of the
graph [1,2]. Previous empirical studies explored the perception of node-link dia-
grams in terms of their aesthetics, usability and readability [3]. The first study
to investigate the effect of different layouts on the human perception of specific
c© Springer Nature Switzerland AG 2022
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(a) Grid (b) (c) Planar (d) Spring

Fig. 1. The four layouts.

graph properties was published by Soni et al. [4]. They used graphs of order
100 for all the experiments, which resulted in stimuli that looked like clouds
of lines and dots. Hence, their approach can not necessarily be generalised for
the perception of other graph properties. Kypridemou et al. [5,6] explored the
perception of graph properties in much smaller graphs of 16 nodes.

In this study, we further extend the previous work of Kypridemou et al. on
graphs of the same size (16 nodes), using some common properties (connected-
ness, tree), as well as a new property that is expressed as a combination of two
other properties. We compare a simple grid layout with well known planar and
spring layouts. We also introduce an alternative ‘improved’ grid layout, which
reduces the number of crossings while keeping most of the simplicity of the orig-
inal grid layout. We use signal detection theory (SDT) [7] to analyse the d prime
(d′) and bias (c) dependent variables that will give us a better understanding of
the sensitivity and the bias of participants’ performance.

2 Method

The experiment consisted of three different tasks, which we call Treeness, Con-
nectedness and Multi. For the Treeness task, participants had to detect whether
the given graph was a tree or not. For the Connectedness task, participants had
to decide whether the represented graph was connected or not. Finally, for the
Multi task, participants had to decide whether the graph ‘has at least one of the
following features: a) a loop/cycle of length 3 or b) at least a node with degree
higher than 4’.

All stimuli were drawings of planar simple graphs of 16 nodes each, which
were visually represented as node-link diagrams using the following layouts: a
random grid layout (Grid), an improved version of a grid layout (Grid i), a planar
layout (Planar), and a spring layout (Spring). Exemplar stimuli for each of the
four layouts are provided in Fig. 1. A more extensive description of the specific
algorithms and procedures used for drawing each of the layouts can be found in
[8]. The resulting 200 drawings of each task were depicted as node-link diagrams
of red dots of fixed size and black lines of fixed thickness (Fig. 1). Figure 2 shows
the sequence events of a trial. In the study participated 16 participants (7 male,
9 female, 18 to 41 years old), with no prior knowledge on graphs.
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Fig. 2. Event sequence of one of the experiment’s trials.

(a) Treeness (b) Connectedness (c) Multi

Fig. 3. Violin plots of sensitivity (d′) per layout for each property.

3 Results and Discussion

The qualitative results about the specific strategies used in each task are
described in [8]. The results of the SDT analysis are shown in Figs. 3 and 4.
For the treeness property, there was a significant main effect of layout on the
sensitivity (F (3, 45) = 32.81; p < 0.001) and the bias (F (3, 45) = 7.18; p < 0.001)
metrics. Similarly, for the connectedness task, the layout was found to have a
significant main effect on the sensitivity (F (3, 45) = 191.64; p < 0.001) and the
bias (F (3, 45) = 55.62; p < 0.001) metrics. For the multi task, the layout was not
found to have any significant main effect on the performance for the sensitivity
metric (F (3, 45) = 2.32; p > 0.05), but there was a significant main effect of the
layout on the bias metric (F (3, 45) = 14.42; p < 0.001). Additional statistical
analyses are described in [8].

The results on the treeness and the connectedness properties are consistent
with the previous findings of Kypridemou et al. [5] on the same tasks on graphs
of the same size. This indicates that the findings are generalised from comparison
tasks to detection tasks. Furthermore, the SDT framework of this study provided
more in-depth understanding of the ability of the participants to detect the
signals on the stimuli. The two versions of the grid layouts biased the participants
towards identifying non-connected graphs as connected. This bias is probably
because these two layouts tend to draw the two connected components of the non-
target graphs as overlapping shapes, which makes the graphs look as connected.
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(a) Treeness (b) Connectedness (c) Multi

Fig. 4. Violin plots of bias per layout for each property.

The Multi task revealed some new findings, extending the previous study.
The results show that the layout we choose for representing a network is crucial
for our perception of some of the network’s basic properties. However, when the
task becomes harder and people have to detect more than one property at a
time, the chosen layout doesn’t seem to significantly affect performance.

There is a large variety of other graph properties to be explored in future
work. The results of such studies could lead to better understanding as per which
layouts are most appropriate for visualizing graphs, when the aim is for humans
to be able to detect specific graph properties. Looking towards this direction,
graph visualization will not be discussed as a one-solution-fits-all approach, but
will rather be a more customized solution per case, given the task at hand.
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Abstract. Diagrams are considered a powerful strategy for understanding and
problem-solving. Self-explanation is believed to be behind the effectiveness of dia-
grams. However, it is not clear to what extent students engage in self-explanation.
The possibility that students do not always engage in self-explanation is suggested
by empirical studies showing that diagrams do not always produce efficacious out-
comes. Ichikawa [1] also argued that it is unclear how students interpret diagrams
and discussed the need to have students explain themselves using diagrams. In
science learning, diagrams effectively help students learn the principles behind
phenomena. Having students use diagrams to explain phenomena may help them
understand the principles of the phenomena correctly and integrate their knowl-
edge effectively across subject areas. Therefore, in this study, we developed lesson
instructions in which students were required to explain the phenomenon using dia-
grams after the teacher had explained it. Students were also given the opportunity
to solve the problem collaboratively after the explanation had been provided. The
study involved 71 8th-grade students in one school. Fifty-eight same grade stu-
dents from a traditional public school also participated in the study and served as
the control group. A “basic knowledge test”, which tested students’ knowledge in
a fill-in-the-blank format, and a “principle understanding test” and “transfer test,”
which tested students’ knowledge in an explanation format, were administered.
The results demonstrated no significant difference in the basic knowledge test,
but the score in the principle understanding test and the transfer knowledge test
was higher for the students who received the experimental instruction. This study
indicates that deeper understanding is facilitated by combining the experience of
using diagrams with peer explanation.

1 Introduction

While the traditional goal of education has focused on solving problems efficiently,
recent changes in global educational goals havemade it more essential to promote deeper
learning among students. This “deeper learning” involves conceptual understanding and
the transfer of learned knowledge in different contexts.
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Diagramsmay play an important function in achieving this goal. Diagrams have been
considered a valuable strategy for problem-solving and suitable tools for communica-
tion. However, they may also be important as a tool to promote deeper understanding.
In particular, diagrams may help in learning the principles behind phenomena in sci-
ence learning (e.g., [2]). They may help students understand phenomena correctly and
integrate knowledge effectively across subject areas.

As for the reason why diagrams contribute to promoting deeper learning, Ainsworth
and Th Loizou [3] argued that diagrams facilitate self-explanation. However, some stud-
ies have shown that diagrams are not always effective (e.g., [4]), so not everyone spon-
taneously self-explains when using the diagrams taught. Ichikawa [1] also argued that it
is unclear how students interpret diagrams and discusses the need for students to explain
what they have learned using diagrams.

When considering how diagrams are used in the classroom, many teachers actively
use them in instruction. However, the activity in which students themselves explain the
principle with the use of diagrams is not always done sufficiently. For example, although
teachers teach problem solving well with the use of diagrams in Japan, not much time is
given to students for them to explain what they have learned using diagrams as teachers
do, or to solve applied problems using diagrams. However, under these circumstances,
students may not correctly understand the principles underpinning the phenomena. If
teachers want to share the principles behind the phenomena with more students, they
need to allow students to explain themselves with diagrams.

Based on the awareness of these issues, in this study, educational psychologists
and teachers in school collaboratively designed and conducted a science class in which
students got opportunities to explain the principle behind the phenomena they were
learning with diagrams. The important point is that the teacher explains to students by
using diagrams and ensures that the students themselves have the opportunity to explain
using diagrams.We also examined the effect of the instruction compared to the traditional
style of instruction in schools (i.e., this study is a practice-based research).

2 Outline of Practice Proposed in this Study

This practice was conducted at a public junior high school in the Kanto region of Japan.
The class concerned a one-hour science class for 8th-grade students. The first instruc-
tional plan was written by the second and third authors, who are public school teachers,
and it was later modified in discussions with other authors including psychologists.

There were two major topics to be covered in the class. One was “sea winds and land
winds”, and the other was “monsoons”. A common principle can explain both. More
specifically, due to the difference in specific heat between the ground and water, during
relatively hot weather (daytime or summer), an updraft rises from the ground (land or
content) and a downdraft is generated in the water (ocean), and that causes the wind
to blow from the ocean to the land. On the other hand, during relatively cold periods
(night time and winter), updrafts are generated in the water (ocean) and downdrafts are
generated on the ground (land and continents), and that causes winds to blow from the
land to the sea. Visual representation for understanding this was given.

Students with only a shallow understanding might memorize this content as a one-
to-one correspondence, so that they just remember the facts of “sea breezes during the
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day” and “land breezes at night”. Theymight also memorize that “the Japanese monsoon
blows from the southwest in summer and from the northeast in winter”. On the other
hand, students with deeper understanding comprehend the principle behind the winds
through strategies such as diagram use so that they can remember and reconstruct those
wind movements from the principle and remember the contents for a longer time.

The explanations of the phenomena and the principle are usually included in the
textbook,which is often accompaniedbydiagrams, andmany teachers explain to students
with the use of diagrams in class. However, as mentioned in the introduction, it is not
sufficient for many students to simply listen to the explanations by a teacher. It might be
necessary to give students opportunities to explain the principle and the phenomena by
themselveswith diagrams. Therefore, in this practice, activitieswere incorporated during
which students explained the content to their peers with the use of diagrams. The content
relating to seasonal winds is not only covered in the 8th-grade science class but also in
social studies. For example, the monsoon in India is included in the 7th-grade social
studies curriculum. However, it is thought that such deep understanding across subjects
is not sufficiently covered in class. Therefore, activities that required consideration of
the monsoon in other areas of the world, with diagram use, were also included in the
class session as applied problem-solving.

The “thinking-after-instruction” approach proposed by Ichikawa [1] was used in
these teaching methods. This teaching method consists of four stages: teacher’s expla-
nation, checking comprehension, deepening understanding, and reflection (Fig. 1). This
frameworkwas used to design the lesson.More specifically, the following flowof lessons
was conducted. (1) The teacher explained the phenomena of sea wind and land wind,
and the principle that explained the wind movement direction. (2) The students checked
their understanding of “sea wind and land winds” with each other. Specifically, using
diagrams, the students checked whether they could explain the phenomena and the
principle behind them in their own words (see Fig. 1). (3) The teacher explained the
phenomena and the principle of the Japanese monsoon. (4) The students checked their
understanding of the Japanese monsoon with each other. Using diagrams, they checked
whether they could explain the phenomena and the principle behind them in their own
words. (5) Students worked in groups to think about the monsoons in Southeast Asia,
India, and Africa. (6) Representative students were asked to explain the phenomena and
the principle by taking on the role of TV newscasters. (7) As a reflection activity, the
teacher asked the students to write on paper what they understood, what they still did
not understand well, and what they wanted to know more about.

This study also took data from classes from a normal public school in Tokyo to
obtain comparable control group data. Seventy-one students participated in the survey
in the practicing school and 58 students in the base-line group. The teacher explained
the phenomena and a principle in the classes, and the students were asked to solve the
problems in class or at home. For the students in this “base-line group”, the teacher
explained the principle (as would be typical in most classrooms). There was no activity
in which the students themselves explained the principle using diagrams. In addition,
the importance of diagrams was not specifically mentioned, and the applied problem-
solving was not included. To examine the effectiveness of this practice, a post-test was
conducted 1 to 2 weeks after implementing the lesson.
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Fig. 1. A student explaining to other students using diagrams

3 Evaluation and Discussion

The post-test comprised three parts: the first part was a “basic knowledge test” which is
fill-in-the-blank question; the second was a “principle understanding test” and the third
was a “transfer test” that required descriptive answers. The first part was a question,
in which students were asked to answer “sea wind” or “land wind” for daytime wind
and night time wind. The second part had a question that asked students to explain the
principle of why such differences in the wind occur according to the day/night time. The
third part had a question requiring integrating the knowledge they learned in science and
social study, in which students were asked to explain why the direction of the monsoon
is different between Japan and India. The results are shown in Fig. 2. No difference was
found in the “basic knowledge test”. On the other hand, “principle understanding test”
and “transfer test” scores were higher in the classes where the practice was implemented
than in the control group. Detailed results are shown in Fig. 2.

This study conducted a practice incorporating a learning activity in which students
themselves explainedusingdiagrams.The results showed that the students’ deeper under-
standing, such as explaining a principle, was promoted compared to the regular classes.
The principle behind the phenomena was taught in both schools. In the control group,
the teacher only used diagrams to explain. As a result, only some students who reached
a deeper understanding on their own could explain the principle. On the other hand, in
classeswith practice developed in this study,manymore studentswere able to explain the
principle even though they were given only a few minutes to explain it using diagrams.
In addition, the transfer test indicated that students got a comprehensive understanding
across subjects. The present study was practice-based, and many areas have not been
rigorously tested between the experimental and control groups. It is desirable to conduct
a more detailed investigation of the effects of students’ own explanations using diagrams
in the future.
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(a) Basic Knowledge Test (b) Principle Understanding Test (c) Transfer Test

Fig. 2. Results of post-tests
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Abstract. Universal quantifiers have been the subject of much work in
symbolic and diagrammatic logic. However, little attention is paid to the
question of how they can be visually grounded, that is, depicted in real
images such as photographs. To investigate this question, we focus on
universal quantifiers such as “all” and “every” used in an image caption-
ing dataset and present a qualitative analysis of these expressions. The
analysis revealed that although the use of universal quantifiers in image
captions is rare, there are interesting patterns in their usage in terms of
the semantics of visual representations. We distinguish two ways in which
universal quantifiers are used in image captions. One is object-based quan-
tification, which involves quantification over multiple discrete objects in
a definite domain. The other is region-based quantification, where some
property is ascribed to a salient continuous region in an image. We com-
pare these two ways of visually representing universal quantification with
two major representation systems studied in diagrammatic logic.

Keywords: Visual representation · Universal quantifier ·
Photograph · Image caption · Grounding · Object · Region

1 Introduction

Universal quantifiers have been used as important tools and the subject of logical
formalization. This is true not only for symbolic logic but also for diagrammatic
logic [12] and spatial logic [1]. For example, Euler diagrams have been inten-
sively studied as visual representations of logical statements [8,13]. However,
while there are various ways to represent universal quantifiers in symbolic and
diagrammatic systems, it is not fully clear how they can be depicted by real
images such as photographs; less attention is paid to the question of how uni-
versal quantifiers can be visually grounded. The aim of this study is to address
this question. Recently, photographs have been studied intensively in relation
to machine learning techniques to automatically generate captions describing
images, and large amounts of human-generated caption data have been collected
in the Vision and Language research [3,4]. It was often claimed that logical
c© Springer Nature Switzerland AG 2022
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expressions such as universal quantifiers are rarely found among textual cap-
tions for images [14]. To our knowledge, however, little is known about what
relationship holds between logical expressions and images.

We collect caption data of universal quantifiers and analyze what pattern
exists in the type of photographs that ordinary people give sentences containing
universal quantifiers (cf. [7]). This study is a sequel to [9–11], whose overall goal
is to understand the visual grounding of logical concepts and the spectrum of
symbolic and visual representations, thereby seeking to provide an explanatory
theory of representations and broaden the realm of the study of diagrams.

2 Analyzing Textual Descriptions of Image Contents

We used the Microsoft COCO dataset [6] (164,000 images for training) and
their caption annotation data for our analysis. In this dataset, five captions were
independently given to a single image by different annotators via crowdsourc-
ing. Thus, the higher the match among the caption contents, the more reliable
the linkage between the image and the caption. We extracted images accord-
ing to whether or not there were at least three out of five captions containing
expressions for universal quantifiers; we call it 3/5 criteria.

Among the various ways in which universal quantifiers are realized in natural
language [15], we use all and every as representative expressions in English. We
searched captions containing these two expressions. We removed captions that
come from road/traffic signs (such as stop! all way). There were only seven items
satisfying the 3/5 criteria. Figure 1 shows all the images and the captions.

Although the use of universal quantifiers in image captions is rare as is
expected, there are interesting patterns in their usage; we can distinguish two
types of the uses of all/every. One type is object-based universal quantifica-
tion, which involves quantification over objects in a domain and thus can be
represented in the form all objects in a domain have a property F. Typically,
quantifiers of this type are associated with count nouns in the plural form such
as all four paws. In Fig. 1, this type of quantifier is shown in red. All the captions
in (a) are of this type. The quantifier expression everything in (f-2) and (f-4) can
also be classified as object-based.

Another type is region-based quantification, which can be paraphrased as the
entire region has a property F. A characteristic of region-based quantification is
that the quantifier is associated with a noun in the singular form that specifies
an area to which some property is ascribed. In Fig. 1, this type of quantifier is
shown in blue. All the captions in (b), (c), and (d) are of this type. The quanti-
fier expression everywhere is classified as region-based. The same situation can
sometimes be described in terms of object-based and region-based quantification;
thus, images (e-g) were a mixed case annotated with both types of quantifiers.

Compared to existing representation systems in diagrammatic logic, object-
based quantification used in image captions have much in common with that
used in Tarski’s World [2], the type of quantification that visually refers to mul-
tiple discrete objects. On the other hand, region-based quantification in image
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(a) 1. A brown bear on all four paws is looking up.
2. A small brown bear on all fours, standing in the dirt and facing forward.
3. A brown bear stands on all fours and looks upward.
4. A BROWN ADULT BEAR IS LOOKING AT YOU
5. A brown bear is looking at the camera.

(b) 1. graffiti all over a bathroom wall, trashcan and toilet
2. A public bathroom with a lot of graffiti everywhere.
3. a bathroom still in use with graffiti all over the walls
4. Public bathroom with graffiti and garbage everywhere.
5. A graffiti ridden bathroom on toilet and trash

(c) 1. A truck is covered all over in graffiti
2. a truck with graffiti written all over it
3. A truck painted with pop art all over it
4. A delivery truck covered in graffiti driving down a street.
5. A truck parked in a lot and covered with graffiti

(d)
1. A kitchen with all white cupboards and appliances.
2. There is a kitchen decorated in all white
3. an all white kitchen showing a stove refrigerator and microwave
4. A kitchen is completely adorned in white all around.
5. The kitchen is clean and ready for us to use.

(e) 1. A bathroom all in white, toilet, sink, tub and window.
2. The sink, bathtub, toilet, walls, and floor are all white in this bathroom.
3. A bathroom decorated all in white sits in an uninhabited house.
4. A white bathroom with white walls and white tile floor.
5. A white toilet sitting next to a sink and tub.

(f) 1. A clean kitchen with all wooden cabinetry in it
2. Everything in the kitchen and dining area is made of wood.
3. Open bar area inside a house made all of wood.
4. A kitchen and dining room where everything is wood.
5. A kitchen with many wood cabinets and a wood table

(g)
1. there are many lights that are on in all of the buildings
2. The buildings on the street are all covered in bright lights.
3. A nighttime shot of the Las Vegas strip and all the neon signs.
4. a street at night cars and signs and lights
5. Night time street view of hotels and lighted signs on the Vegas Strip.

Fig. 1. Photograph images expressing all and/or every with full five captions
(#COCO-ID, #flickr-ID, Author): (a) #238960, #2363513312, Steven Martin, (b)
#306560, #8311906187, Ezmo Dreams, (c) #487353, #4667382943, ercwttmn, (d)
#424337, #4780553791, M W, (e) #289654, #7536472060, BJBEvanston, (f) #66327,
#8180557127, Mitch Barrie, (g) #61732, #6462876055, john flanigan. Words in red
and blue indicate object-based and region-based universal quantification, respectively.
(Color figure online)

captions is comparable to topological representations used in Euler diagrams [8]
and Region Connection Calculus [5]; it ascribes a property or a relation to the
salient area (region) in an image or a diagram.

Furthermore, a closer look reveals that in these images, a single definite object
can be seen in its entirety such as the bear in (a) and the truck in (c) or a closed
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definite region is captured such as the bathroom in (b) and the kitchens in (d)
and (f). The number of images satisfying the criteria reduced to 2/5 was 71. In
these examples, it is still often the case that an image contains a single definite
object or a closed definite region: 59 items (83.1%). We can also see that definite
objects and closed regions are crucially used in diagrammatic logic systems, such
as grid boards in Tarski’s World and rectangles to divide planes in Euler and
Venn diagrams.

In future work, we plan to analyze more image captions by using image
datasets other than COCO (e.g., NLVR2 [14], where two images are presented
at a time) and use video captioning dataset [16] in order to obtain a variety of
descriptions.
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Abstract. The present work compared the use of visual representations in text-
books for teaching basic probability. Textbook chapters on basic probability were
compared across three educational systems for high school students (U.S. regular-
level, U.S. advanced-level (AP), and Chinese regular-level). Results revealed great
disagreements in the use of visual representations by textbook types: Although
more visualizations are present in both types of U.S. textbooks, the regular-level
textbook shows a higher tendency for using pictorial images, which are visual rep-
resentations irrelevant to problem solving. The advanced-level U.S. textbook and
the regular-level Chinese textbook both use schematic visual representations (e.g.,
diagrams) more often when visualizing problems. Use of visual representations
also seems to be linked with specific problem-solving stages. The current study
findings offer insights for instructional design and warrant further evaluation of
the efficacy of mathematics textbook design for visual aids.
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1 Introduction

Visual representations have been widely used as tools for math problem solving includ-
ing probability [1–4]. However, their effects on math problem solving vary by visual
representation types. Pictorial images, which focus on the concrete entities described in
a problem, have been found to impair problem solving because they contain distract-
ing information irrelevant to the essential information for problem solving [2, 3]. On
the other hand, structurally congruent schematic visual representations (e.g., diagrams),
which represent the essential problem structure and elements while removing irrelevant
details, are linked with higher problem-solving success [1–3].

Current knowledge about how standard instructional resources such as textbooks use
visual representations to teach probability remains scarce. Meanwhile, textbook analy-
ses conducted in some other critical school math domains have revealed inconsistency
between the ways target content is presented in widely used textbooks and evidence-
based recommendations for instructional design [e.g., 5]. Therefore, this work aimed
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to explore whether textbooks for teaching probability have followed evidence-based
principles when designing visual representations for the learning content.

This exploratory investigation focused on comparing textbooks used for teaching
high school probability in three educational systems: (1) the U.S. regular-level, intended
for the regular high school math curriculum in the U.S.; (2) the U.S. advanced-level,
for U.S. high school students who take Advanced Placement (AP) statistics; and (3) the
Shanghai (China) regular-level, used for the regular high school math curriculum in the
region. Of particular interest are the comparisons of the U.S. regular-level textbook with
the other two types, one targeting a more advanced level of probability education in the
U.S. educational system and the other also targeting the regular high school level but
from a top performing educational system on international math assessment measures
like PISA [6]. The comparison results may provide useful insights for instructional
design of visual aids for formal school math education in domains such as high school
probability.

We asked two main research questions: First, when these textbooks accompany
probability problems with visual representations, what types of visual representations
(effective vs. ineffective for problem solving) do they primarily rely on? Second, is the
use of schematic visual representations (e.g., diagrams) for probability problems similar
and consistent across the textbook types?

2 Method

For each textbook type, a representative textbook (student edition) was chosen based on
popular market share of their textbook publishers (for the U.S. textbooks) or dominant
use of its textbook series in the region (for the Shanghai textbook): enVision Algebra 2
for the U.S. regular level [7], Introduction to Statistics and Data Analysis (AP Edition)
for the U.S. AP level [8], andMathematics for Grade 12 for the Shanghai textbook [9]. A
qualified problem instance must be from the probability chapters in these textbooks and
presents an opportunity to seek a mathematically based solution or answer to the given
problem instance. Such problems include worked example problems that demonstrate
step-by-step solution procedures as well as exercise and review problems for practice.
Each problem was coded by whether it is accompanied by any visual representation and
if visualized, the type (see Fig. 1 for examples).

Fig. 1. An example problem with pictorial and schematic visual representations comparable to
instances found in the textbooks
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A problem was coded as pictorially represented if it is accompanied by any visual
representation that depicts the real-world appearance of the concrete entities described in
the problem [2]. A problem was coded as schematically visualized if a schematic visual
representation is used to encode or organize the mathematical structure or elements
of the problem [2]. Schematic visual representations found in the textbooks include
trees, tables, Venn diagrams, networks, other graph types (e.g., distribution graphs), and
schematic outcome/sample space listings. A problem may be accompanied by multiple
types of visual representations. Therefore, each visual type was coded independently
with dichotomous codes (yes or no).

3 Results and Discussion

A total of 827 problem instances affording problem-solving opportunities were found
across the three textbooks (U.S. regular: n = 292; U.S. AP: n = 373; and Shanghai
regular: n = 162). Most of these problems (n = 766) present opportunities that may
prompt students to develop a solution first. But 61 problems only involve the execution
of a given solution, which is typically the last problem-solving stage after a solution has
become available [4] (e.g., Calculate 10C3, a problem instance for students to just learn
or practice how to calculate the formula for combination step by step). Almost all the
execution-only problems were found in the Shanghai textbook (n= 60) and none in the
U.S. AP textbook.

The main analysis was conducted including all problem instances (n= 827), regard-
less of the problem-solving stages they may involve. The two U.S. textbooks showed
more similar frequencies of visualizing problems (U.S. regular: 43.5%;U.S.AP: 46.4%),
whereas it is much less often for the Shanghai textbook (20.4%) to do so, χ2(2) =
33.723, p < .001, Cramer’s V = .202 (medium effect). However, a closer examination
focusing on the types of visual representations used for those visualized problems sug-
gested dramatically different visual design preferences by textbooks. Where problems
are accompanied by visual representations (n= 333), the U.S. regular textbook has most
heavily relied on the use of pictorial images (n = 76 out of 127 visualized problems,
or 59.8%), compared to 45.5% (n = 15 out of 33 visualized problems) by the Shanghai
textbook, and a much more limited use of such representations by the U.S. AP textbook
(n= 30 out of 173 visualized problems, or 17.3%), χ2(2)= 58.504, p < .001, Cramer’s
V = .419 (large effect). We also compared the use of schematic visual representations
for visualized problems by textbooks: n= 65 (51.2%) by the U.S. regular textbook, n=
150 (86.7%) by the U.S. AP textbook, and 26 (78.8%) by the Shanghai textbook, χ2(2)
= 46.977, p < .001, Cramer’s V = .376 (large effect).

To check whether the observed difference by textbooks were a result from including
execution-only problems, we conducted an additional analysis just on problems that
present solution development opportunities (n=766). Textbookdifferences in the overall
visualization tendency remained a similar pattern: 43.6% of the problems are visualized
by theU.S. regular textbook, 46.4%by theU.S. AP textbook, and now up to 32.4%by the
Shanghai textbook,χ2(2)= 6.419, p= .040,Cramer’s V = .092 (small effect). Textbook
differences in pictorial and schematic visual representation for their visualized problems
remained the same as found in the main analysis, because none of the execution-only
problems have visual representations.
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Thus, the current work found great disagreements across textbook types in how
they visualize probability problems. The U.S. regular textbook shows a higher tendency
for visualizing problems with pictorial representations that relevant research has found
ineffective and sometimes even harmful for problem solving [2]. And although it has
provided schematic visual representations like diagrams for about half of its visualized
problem instances, this rate was not as high as those of the U.S. AP or the Shanghai text-
books. An interesting finding from this exploratory work is that no visual representation
was given to problems that only require solution execution. Thismay suggest that the util-
ity of visual representations for probability problem solving is stage dependent. It seems
that visual (including diagram) representations are much more likely to be provided
at the stage of solution development than at the stage of solution execution. This find-
ing, showing the textbook designers’ perspective, is consistent with a similar tendency of
visualization strategies for probability problem solving observed in solvers [4]. However,
the current results should be carefully interpreted because almost all those execution-only
problems were linked with a single textbook. Future research is needed to systematically
investigate this matter to evaluate whether the stage-visualization interaction pattern in
probability problem solving is generalizable.
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