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Abstract. Political authorities in democratic countries regularly con-
sult the public on specific issues but subsequently evaluating the con-
tributions requires substantial human resources, often leading to inef-
ficiencies and delays in the decision-making process. Among the solu-
tions proposed is to support human analysts by thematically grouping
the contributions through automated means. While supervised machine
learning would naturally lend itself to the task of classifying citizens’
proposal according to certain predefined topics, the amount of training
data required is often prohibitive given the idiosyncratic nature of most
public participation processes. One potential solution to minimise the
amount of training data is the use of active learning. While this semi-
supervised procedure has proliferated in recent years, these promising
approaches have never been applied to the evaluation of participation
contributions. Therefore we utilise data from online participation pro-
cesses in three German cities, provide classification baselines and subse-
quently assess how different active learning strategies can reduce man-
ual labelling efforts while maintaining a good model performance. Our
results show not only that supervised machine learning models can reli-
ably classify topic categories for public participation contributions, but
that active learning significantly reduces the amount of training data
required. This has important implications for the practice of public par-
ticipation because it dramatically cuts the time required for evaluation
from which in particular processes with a larger number of contributions
benefit.

Keywords: Topic classification · Public participation · Active
learning · Natural language processing

1 Introduction

Democratic authorities are regularly using public participation to consult and
involve citizens in order to inform political decisions and increase public support
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[8]. While their function and effectiveness is open to debate [19], they enjoy
considerable popularity among the public that regularly contributes hundreds
or even thousands of proposals to such consultations. As a consequence, policy-
makers and their administrations regularly face the problem of how to make sense
of the diversity of statements that the public provides while at the same time
maintaining the high standards of transparency and due process required for such
important democratic processes. Usually this requires human analysts to read
each contribution, detect duplicates, identify common themes, and categorise
contributions accordingly before preparing conclusions from the input. This is a
time consuming effort that often leads to inefficiencies and delays in the decision-
making process [2,7,23].

While human assessment should not be abandoned, given the relevance of
citizens‘ input to the democratic decision-making, technical solutions have long
been proposed as a means to reduce the workload of human evaluators [18].
Here we focus on approaches to support analysts by using Natural Language
Processing (NLP) techniques to categorise disparate contributions into groups
that share certain thematic properties. As we review below, both supervised as
well as unsupervised machine learning strategies have been applied to this task
with mixed results. Given that categorisation of citizen contributions generally
follows certain pre-defined goals such as sorting according to particular topics
or administrative responsibilities, categorisation schemes are not arbitrary but
constructed before the participation process. As a consequence, we assume that
supervised machine learning approaches like classification are better suited to
the task than completely unsupervised procedures that aim to detect latent
structures in the data. However, these supervised procedures require manually
labelled training data, calling into questions any efficiency gains that motivated
automation in the first place. This demand would not constitute a barrier if
models could be pre-trained and subsequently applied. Yet, regularly public
participation processes are distinct and require tailored categorisation schemes.
This idiosyncratic nature means models need to be customised for each process,
requiring substantial amounts of training data.

A potential solution to minimise the amount of data is the use of active learn-
ing, a semi-supervised procedure that (to the best of our knowledge) has been
applied to the evaluation of participation contributions only once [20]. While
since that study almost 15 years ago, active learning strategies (and NLP in gen-
eral) have advanced, these promising technologies have not been applied to the
analysis of citizen participation. Therefore we systematically assess how different
active learning strategies can reduce manual labelling efforts while maintaining
a good model performance. To this end we study data from online participation
processes in three German cities that consulted citizens on improvements for
cycling. Specifically, we investigate different supervised machine learning mod-
els in order to establish what classification quality can be achieved without
active learning (RQ1). We use this as a baseline to investigate how much man-
ual labelling effort can be saved through active learning (RQ2). However, given
that our focus is on enabling a practical application of these models, we also test
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how time-efficient the different categorisation approaches are to assess whether
these could be used in realistic scenarios (RQ3).

We start by discussing previous NLP approaches to structuring contribu-
tions thematically (2) before introducing our dataset (3) and the active learning
techniques applied (4). We evaluate the results of different query strategies and
classifiers (5) and discuss their implications for practical application (6). Finally,
the concluding section summarises the results and outlines avenues for further
research (7).

2 Approaches to Thematically Structure Contributions

Organising citizens’ contributions thematically is a basic step in the evaluation
of public participation processes and so far two machine learning strategies have
been proposed to support this task. These are unsupervised approaches, mainly
topic modeling, on the one hand, and supervised classification algorithms on the
other.

Unsupervised machine learning algorithms cluster similar content by discov-
ering hidden patterns in the data. As these rely on unlabelled datasets, they
require no previous manual coding which makes them attractive to use. Sev-
eral such algorithms have been applied in previous work, including k-means and
k-medoids clustering [23,25], non-negative matrix factorization [2], associative
networks [24] and correlation explanation topic modeling [5]. By far the most
popular is topic modeling with Latent Dirichlet Allocation (LDA) (see for exam-
ple [2,10,11,15,16]).

Much of the work mentioned above shows that the detection of meaningful
topics by unsupervised learning is subject to major limitations. To start with,
for algorithms such as LDA and k-means the number of topic clusters to be
identified must be specified in advance. This risks that the number of topics
is somewhat arbitrary. What is more, while an approximate number of topics
can be found with strategies such as experimenting with different values using
human judgment or statistical measures, this requires considerable manual anal-
ysis effort [10,23]. An even more serious limitation are the topic clusters that
emerge. Even with an appropriate number of topics to be found, there is still no
guarantee that the algorithms will return those topics that are required by the
user.

However, human evaluators of participation processes generally already have
a good idea of what categories they are interested in. The reason is that such
processes are initiated in order to consult the public on a specific topic such
as a proposed infrastructure project or a legal text. Therefore, even before the
process begins, there are a number of categories on which the analysts expect
input and this pre-defined categorisation scheme can then later be refined when
contributions are reviewed. As a consequence, we argue that it is more suitable
to benefit from this prior knowledge in order to provide clusters of interest
rather than to rely on latent structures that might not be relevant to the user.
This is exactly the function of supervised machine learning which we therefore
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consider more appropriate to support categorising contributions thematically
[1,4,6,13,14].

Given a set of labelled training data, supervised models are trained to clas-
sify citizen contributions into categories that have been previously defined by
the user. Most works relied on conventional approaches such as support vector
machines, but more recent works also included neural networks and transformer
models like BERT. Some promising results have been obtained, but only under
the condition that a sufficient amount of previously (usually manually) cate-
gorised data is available for training the models. This may be true in certain
cases, such as in the use case described by Kim et al. [13] who used a categori-
sation by administrative unit for a city platform that is available to citizens in
the long term. Once trained, the model can support officials by being used to
automatically classify new requests that are constantly coming in.

However, many participation processes are singular events that have a spe-
cific objective and only run for a short period of time. Therefore, regularly ana-
lysts have to adapt the thematic categories of the evaluation to the respective
process. This usually makes the transfer of trained models impossible. Rather,
the classification models must be trained anew for each process with appropri-
ate data, which requires to label (at least part of) the contributions from the
process under consideration. This additional human labelling effort must not be
underestimated as the previously introduced studies show that relied on training
datasets consisting of several thousand data points. Yet, as is not least docu-
mented by our dataset, many of the consultation processes, e.g. in municipalities,
do not even generate these large numbers of contributions. While hundreds or
a few thousands of contributions pose substantial burden to administration to
evaluate, fully supervised machine learning may not remedy the situation when
analysts would still have to code a large share of the dataset in order to train
a classifier. As a consequence, supervised machine learning might not offer an
efficiency benefit for a whole range of practical applications in the area of public
participation.

In order to provide a feasible solution also for processes with a lower number
of contributions, Purpura et al. [20] motivated a human-in-the-loop approach.
Active learning aims to reduce the amount of required training data by select-
ing a minimal subset that provides the greatest performance gain in training a
classification model. The algorithm works in close collaboration with the user,
who gradually categorises small parts of the dataset until the model performs
satisfactorily. The authors were able to confirm that active learning can reduce
manual labelling efforts while maintaining a high model performance. Never-
theless, depending on the number of categories (17 or 39), still more than 600
respectively more than 800 sentences had to be labelled manually until an accu-
racy of 70% was reached - a score which is comparable to the results of many
of the works on supervised classification introduced above. In summary, it was
thus evident that the use of active learning is promising, but the approaches still
need to be improved.

Since the study of Purpura et al., the research on NLP and on active learning
has evolved. Our goal is to apply state-of-the-art methods to citizen contributions
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and to evaluate to what extent the advanced methods can further reduce the
amount of training data needed. In addition, we also assess the runtime of these
models as another potential barrier for practical application.

3 The Cycling Dialogues Datasets

In this paper we focus on contributions collected from citizens in three nearly
identical participation processes in the German municipalities of Bonn, Ehren-
feld (a district of Cologne) and Moers. In each city, the authorities consulted the
public in order to identify planning measures that would improve the situation
for cyclists. To do so, from September to October 2017 citizens were invited to
propose measures for particular locations using a map-based online participation
platform. Before the process, the local traffic planning authorities of the three
cities that initiated these consultations developed a set of eight categories, repre-
senting different aspects for improvement such as cycle path quality or lighting.
These would subsequently be used in order to process the proposals from citizens.

Initially, each contribution was assigned to a single (primary) category by
the citizens when submitting the contribution. This assignment was checked
by the moderators of the online platform and adjusted if necessary. After the
online participation phase, an analyst went through the contributions from all
three processes again and checked the categorisation. In rare cases this led to re-
assignment of primary categories. What is more, for those contributions whose
content would qualify for more than one category, in addition to the primary
category further secondary categories where assigned. The share of multi-labelled
contributions regarding the eight main categories amounts to 10% in Bonn and
Moers, and 15% in Ehrenfeld. Among these, only few contributions had more
than two labels assigned (Bonn: 21, Ehrenfeld: 10, Moers: 3).

We use this categorisation as the basis for our study and investigate how
to accurately and efficiently predict the correct label(s) for each contribution.
While one could certainly insist that this body of data lacks intersubjectivity,
it represents a scenario that regularly occurs in practical applications as indi-
vidual analysts code large parts or even the entire contributions on their own.
Nevertheless, although the categorisation is ultimately based on one individual
analyst and may contain a somewhat subjective bias on his part, it is by no
means arbitrary because it also incorporates the judgement of different people
(citizen and moderators). We thus argue that it is certainly sufficient for most
of the use cases where this categorisation is the starting point of further pro-
cessing of contributions. More important for our study is that the labels reflect
a consistent assignment [20] which is certainly the case as all were reviewed by
a single person.

The coded dataset comprises a total of 3, 139 contributions. Cycling Dialogue
Bonn has received the most contributions with 2, 314, whereas Cycling Dialogue
Ehrenfeld and Cycling Dialogue Moers account for 366 and 459 unique contri-
butions respectively. The contributions contain an average of 4.83 (Bonn), 4.66
(Ehrenfeld) and 4.78 (Moers) sentences. Table 1 gives insights into the thematic
priorities within the eight categories. Cycling traffic management and cycle path
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Table 1. Overview of datasets and distribution of topic categories by single labels and
multiple labels respectively.

Categories Primary labels Primary & secondary labels

Bonn Ehrenfeld Moers Bonn Ehrenfeld Moers

Cycling traffic management 1, 020 (44.1%) 195 (53.3%) 222 (48.4%) 1, 056 (45.6%) 204 (55.7%) 229 (49.9%)

Signage 150 (6.5%) 16 (4.4%) 19 (4.1%) 182 (7.9%) 20 (5.5%) 27 (5.9%)

Obstacles 319 (13.8%) 35 (9.6%) 31 (6.8%) 364 (15.7%) 45 (12.3%) 33 (7.2%)

Cycle path quality 449 (19.4%) 58 (15.8%) 111 (24.2%) 519 (22.4%) 71 (19.4%) 118 (25.7%)

Traffic lights 178 (7.7%) 34 (9.3%) 47 (10.2%) 197 (8.5%) 39 (10.7%) 51 (11.1%)

Lighting 37 (1.6%) 1 (0.3%) 10 (2.2%) 47 (2.0%) 2 (0.5%) 15 (3.3%)

Bicycle parking 108 (4.7%) 22 (0.6%) 9 (2.0%) 112 (4.8%) 26 (7.1%) 9 (2.0%)

Misc 53 (2.3%) 5 (1.4%) 10 (2.2%) 84 (3.6%) 25 (6.8%) 27 (5.9%)

Total documents 2, 314 366 459 2, 314 366 459

quality attracted the most interest in all datasets, followed by either obstacles or
traffic lights. The (larger) differences in the amount of contributions as well as
the (smaller) difference in the distribution of categories can be attributed to both
contextual factors such as city size or local infrastructure, and individual-level
factors such as the participating stakeholders.

A noteworthy characteristic of the datasets is that some categories are only
rarely represented. For example, lighting occurs only twice in Ehrenfeld and
bicycle parking occurs only 9 times in Moers. Although this is likely to make
classification more difficult, such uneven distributions by topic are not at all the
exception in citizen comments, making the results of the evaluation with regard
to the rarely occurring classes of great interest.

In contrast to the work of Purpura et al. [20], here we categorise entire
contributions rather than individual sentences within these. This is motivated
by the fact that this is also the approach chosen by practitioners in the field of
citizen participation (see for example [2,23]). What is more, in our dataset the
contributions contain just about five sentences on average and thus are relatively
short in comparison to the average length of 41.55 sentences reported by Purpura
et al. [20].

4 Methodology

In the following, we introduce the concept of active learning and describe the
techniques selected to be part of our study. These are various specific strate-
gies for selecting the data points to be labelled as well as suitable classification
algorithms.

We consider two types of classification problems, both of which will be
addressed in the evaluation. On the one hand, we want to identify the the-
matic focus, i.e. the primary category, of the contributions. To do this, we solve
a single-label classification problem in which a decision function is learned that
maps each input vector to exactly one class. Second, we are interested to see to
what extent all associated topics of a contribution can be recognised. In such
a multi-label classification problem, the input vectors can be mapped to one or
more classes.
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4.1 Active Learning

The goal of active learning is to quickly learn a good decision function for clas-
sifying data points to save manual labelling effort. Optimally, the subset of data
to be labelled should be minimal while the prediction accuracy is maximised.
Being an interactive process, the human expert is sequentially consulted by the
computer to (in our case) categorise samples of contributions whose labelling
can be of most use in training the model.

In each iteration of the process, the k most informative data points are
selected using some query strategy. Subsequently, these samples are manually
labelled and added to the pool of so far labelled data points (i.e. from earlier
iteration rounds). The classification model is then retrained with all labelled
samples and evaluated. If the classification performance is sufficient (according
to some stopping criterion), the active learning process terminates.

Specific to each active learning approach is therefore on the one hand the
choice of query strategy and on the other hand the choice of classifier.

4.2 Query Strategies

Active learning attempts to find a minimal training dataset that simultaneously
maximises the classification performance. Therefore, the challenge is to select
those data points whose labelling provides the greatest benefit for training of
the classifier in each iteration. Query strategies attempt to find an approximate
solution to this problem and here we investigate four different query strategies.

Random Sampling (RS) is a query strategy that randomly selects data points
from a pool of unlabelled samples. In this very basic strategy, there is no prioriti-
sation of samples regarding their value for the training. While we can anticipate
that this naive approach will not yield the best results, we are interested in seeing
what improvements the more targeted strategies can achieve in comparison.

Query by Committee (QBC) [22] is a query strategy in which the disagree-
ment between a committee of classifiers serves as a measure of information gain.
To this end, the classifiers, previously trained on already labelled samples, cat-
egorise each unlabelled sample and subsequently the predictions are used to
calculate a disagreement score (e.g. 0 if all predictions match). The unlabelled
samples are then ranked in descending order based on their disagreement scores,
and the top-k (i.e. those that the committee was least confident about) are
forwarded to the human annotator.

In our experiments, we use a committee of three classifiers and define the
disagreement score of a sample as the number of distinct class predictions minus
one. We follow the course of action by Purpura et al. [20], but dispense with the
specifications for hierarchical schemas.1 If assignment to more than one category
is allowed, we sum up the class-wise disagreement scores.
1 We also forgo the computationally expensive additional clustering that has been

suggested as an extension because of runtime considerations.
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Minimum Expected Entropy (MEE) [12] is a query strategy that tries to
minimise the prediction uncertainty of unlabelled data points by selecting those
with the largest expected uncertainty to be labelled first. The prediction uncer-
tainty of a data point is estimated with the entropy measure. Given a discrete
random variable X, H(X) takes a value between 0 and 1 depending on the
probability distribution over the variable’s possible values (e.g. the prediction
outcome of the current classification model for the different categories C):

H(X) = −
∑

c∈C

P (X = c) log2 P (X = c)

Contrastive Active Learning (CAL) [17] is a recent approach to improve
querying by selecting so-called contrastive samples. These are samples that are
close to each other in the feature space (e.g. share a similar vocabulary), but for
which the current classification model’s predictions are very different. Similar
samples are found using the k-nearest neighbour algorithm and the difference
in prediction probabilities is measured using the Kullback-Leibler divergence.
The authors could show that CAL can perform equivalently or even better than
a range of query strategies such as entropy for several tasks, including topic
classification.

4.3 Classifier

In addition to the choice of a suitable query strategy, the choice of the classi-
fier is crucial for the success of active learning. We therefore compare different
classifiers, including both classical and state-of-the-art approaches. Following
the setup from [20], we consider support vector machines (SVM), the maximum
entropy classifier (MaxEnt), and the naive Bayes classifier (NB), some of which
are known to perform well across a range of classification tasks. We also test an
ensemble classifier that combines SVM, MaxEnt and NB. The textual contribu-
tions were transformed into tf-idf-weighted term vectors to obtain a machine-
readable format. Non-word tokens were excluded, the words were lower-cased
and lemmatised. To further reduce the dimensionality of the feature vectors, we
also removed less discriminative words, i.e. words that occurred only once or in
more than 80% of the contributions in the respective dataset. We furthermore
include BERT (Bidirectional Encoder Representations from Transformers) in
the comparison, one of the most popular transformer models. Within the last
few years, transformer models have contributed significantly to the improvement
of results in various NLP applications, and more recently they have also been
considered for use in active learning [9]. In this work, we initialise BERT with
the case-sensitive gbert-base model2, a pre-trained language model for German,
and encode the textual contributions accordingly.

2 Model available at https://huggingface.co/deepset/gbert-base.

https://huggingface.co/deepset/gbert-base
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5 Evaluation

We address three research questions, starting by investigating how well the auto-
mated topic classification of citizen contributions already works. Keeping this
knowledge of the potential and limitations of topic classification in mind, we
turn our attention to the savings in manual labelling efforts through the use
of active learning. Finally, we analyse the runtime of the approaches and thus
consider a second key aspect for their practical applicability.

We answer the questions for public participation processes on cycling in the
cities of Bonn, Ehrenfeld and Moers. This allows us to make a direct comparison
between three thematically similar processes that differ, however, in the number
of citizen ideas collected and the distribution along the categories. In order to
obtain reliable results, especially with the small datasets, the experiments were
realised with a 5-fold cross-validation of 80%−20% splits for training and testing
the classification model. The model score will be reported as the average out-
come of the five runs and the standard deviation will be indicated. We measure
category-wise performance with the F 1 score, the harmonic mean of model pre-
cision and recall for the respective class. For assessing model performance on a
global level, we compute the proportion of correct predictions using accuracy for
single-label classifications and micro-averaged F 1 for multi-label classifications.
Micro-averaged F1 is a common measure, and for single-label scenarios, it is
equivalent to accuracy.

5.1 RQ1: What Classification Quality Can Be Achieved Without
Active Learning?

First of all, we are interested in how well topic classification can work on our
datasets in general. Table 2 shows the results for each of the five classifiers pre-
sented above, for single-label and for multi-label classification respectively. To
improve the model fit on the datasets, we tuned hyperparameters in each cross-
validation split (see Appendix A for more details).

The results are encouraging: the primary thematic focus of citizens’ contribu-
tions could be correctly predicted in 75% to 80% of the cases, depending on the
dataset. If all related topic categories were to be found, similarly good outcomes
were achieved with between 72% and 80% of the predicted labels matching the
human annotation. As expected, BERT can improve the accuracy respectively
the micro-averaged F1 score, in our setting by up to 0.11 compared to Max-
Ent, the best performing among the other models. The effects are particularly
remarkable for rarely occurring categories, such as bicycle parking in Moers,
where only seven to eight matching contributions were available for training
the model (the remaining contributions were part of the test set). This clearly
emphasises the strengths of the pre-trained language model, which stores pre-
viously learned knowledge about semantic relationships between words. Com-
paring the results for the different classification tasks, i.e. single-labelling and
multi-labelling, shows that most classifiers perform similarly well in both appli-
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Table 2. Results of single-label and multi-label topic classification.

Single-Label Classification

Cycling traffic
Signage Obstacles

Cycle path Traffic
Lighting

Bicycle
Misc Accuracy

management quality lights parking

F
1

B
o
n
n

SVM 0.75(0.02) 0.45(0.14) 0.65(0.07) 0.71(0.03) 0.73(0.04) 0.74(0.11) 0.82(0.10) 0.03(0.07) 0.71(0.02)

MaxEnt 0.76(0.02) 0.44(0.10) 0.65(0.08) 0.72(0.02) 0.72(0.03) 0.77(0.11) 0.84(0.07) 0.12(0.13) 0.71(0.02)

NB 0.68(0.02) 0.05(0.05) 0.39(0.14) 0.57(0.02) 0.30(0.06) 0.00(0.00) 0.15(0.09) 0.00(0.00) 0.56(0.02)

Ensemble 0.76(0.01) 0.44(0.12) 0.66(0.08) 0.71(0.02) 0.73(0.03) 0.73(0.09) 0.83(0.08) 0.03(0.07) 0.71(0.02)

BERT 0.80(0.03) 0.58(0.06) 0.71(0.04) 0.75(0.04) 0.80(0.03) 0.81(0.10) 0.90(0.04) 0.06(0.13) 0.76(0.02)

E
h
re
n
fe
ld

SVM 0.76(0.04) 0.10(0.22) 0.66(0.13) 0.34(0.18) 0.68(0.05) 0.00(0.00)* 0.62(0.19) 0.00(0.00) 0.66(0.04)

MaxEnt 0.75(0.05) 0.20(0.18) 0.68(0.11) 0.40(0.21) 0.69(0.07) 0.00(0.00)* 0.84(0.12) 0.00(0.00) 0.67(0.03)

NB 0.66(0.04) 0.00(0.00) 0.19(0.25) 0.06(0.08) 0.04(0.10) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.49(0.05)

Ensemble 0.77(0.03) 0.10(0.22) 0.65(0.14) 0.36(0.18) 0.68(0.05) 0.00(0.00)* 0.78(0.08) 0.00(0.00) 0.68(0.04)

BERT 0.83(0.02) 0.36(0.25) 0.66(0.14) 0.63(0.10) 0.73(0.09) 0.00(0.00)* 0.84(0.10) 0.00(0.00) 0.75(0.03)

M
oe
rs

SVM 0.78(0.05) 0.25(0.23) 0.46(0.15) 0.66(0.10) 0.74(0.24) 0.33(0.31) 0.27(0.37) 0.00(0.00) 0.70(0.05)

MaxEnt 0.78(0.04) 0.31(0.17) 0.37(0.13) 0.67(0.09) 0.78(0.07) 0.59(0.38) 0.67(0.41) 0.00(0.00) 0.71(0.03)

NB 0.72(0.03) 0.00(0.00) 0.00(0.00) 0.67(0.03) 0.44(0.14) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.62(0.03)

Ensemble 0.77(0.05) 0.25(0.23) 0.40(0.21) 0.67(0.09) 0.74(0.24) 0.37(0.34) 0.13(0.30) 0.00(0.00) 0.70(0.05)

BERT 0.84(0.03) 0.52(0.17) 0.59(0.09) 0.81(0.10) 0.91(0.08) 0.70(0.45) 0.73(0.43) 0.00(0.00) 0.80(0.03)

Multi-Label Classification

Cycling traffic
Signage Obstacles

Cycle path Traffic
Lighting

Bicycle
Misc Micro-avg F1

management quality lights parking

F
1

B
o
n
n

SVM 0.77(0.02) 0.45(0.10) 0.66(0.03) 0.70(0.01) 0.76(0.05) 0.67(0.23) 0.79(0.07) 0.18(0.14) 0.71(0.01)

MaxEnt 0.75(0.01) 0.46(0.06) 0.64(0.01) 0.69(0.02) 0.76(0.04) 0.79(0.14) 0.80(0.09) 0.28(0.14) 0.70(0.01)

NB 0.65(0.01) 0.15(0.05) 0.37(0.05) 0.65(0.02) 0.37(0.06) 0.04(0.09) 0.19(0.12) 0.17(0.13) 0.52(0.01)

Ensemble 0.75(0.02) 0.45(0.10) 0.64(0.04) 0.69(0.05) 0.73(0.09) 0.59(0.25) 0.76(0.11) 0.24(0.17) 0.69(0.02)

BERT 0.81(0.01) 0.48(0.17) 0.71(0.02) 0.78(0.03) 0.78(0.03) 0.83(0.09) 0.89(0.04) 0.39(0.07) 0.77(0.01)

E
h
re
n
fe
ld

SVM 0.45(0.41) 0.00(0.00) 0.39(0.17) 0.29(0.19) 0.45(0.34) 0.00(0.00) 0.54(0.32) 0.20(0.17) 0.43(0.26)

MaxEnt 0.73(0.04) 0.25(0.25) 0.50(0.12) 0.45(0.06) 0.68(0.08) 0.18(0.25) 0.62(0.29) 0.15(0.14) 0.61(0.04)

NB 0.77(0.05) 0.00(0.00) 0.21(0.16) 0.26(0.09) 0.17(0.12) 0.00(0.00) 0.11(0.16) 0.24(0.18) 0.49(0.02)

Ensemble 0.74(0.02) 0.08(0.18) 0.28(0.27) 0.23(0.16) 0.55(0.19) 0.00(0.00) 0.33(0.41) 0.06(0.13) 0.56(0.07)

BERT 0.82(0.03) 0.33(0.21) 0.65(0.11) 0.57(0.13) 0.76(0.07) 0.20(0.45) 0.77(0.20) 0.24(0.15) 0.72(0.02)

M
oe
rs

SVM 0.78(0.02) 0.30(0.20) 0.25(0.16) 0.69(0.11) 0.82(0.10) 0.46(0.36) 0.33(0.47) 0.00(0.00) 0.69(0.04)

MaxEnt 0.79(0.07) 0.23(0.13) 0.29(0.09) 0.68(0.09) 0.82(0.07) 0.63(0.18) 0.67(0.41) 0.00(0.00) 0.70(0.04)

NB 0.75(0.06) 0.05(0.11) 0.08(0.11) 0.62(0.09) 0.49(0.07) 0.00(0.00) 0.00(0.00) 0.13(0.12) 0.58(0.03)

Ensemble 0.78(0.04) 0.24(0.14) 0.28(0.18) 0.71(0.03) 0.81(0.09) 0.58(0.35) 0.40(0.55) 0.11(0.25) 0.70(0.04)

BERT 0.88(0.05) 0.41(0.34) 0.56(0.24) 0.82(0.06) 0.93(0.03) 0.55(0.16) 1.00(0.00) 0.00(0.00) 0.80(0.04)

cations. This suggests that predicting all associated labels of a contribution is
by no means more difficult than the recognition of the primary topic.

All models had problems with recognising contributions that were grouped in
the misc category, which is not surprising due to the missing thematic coherence
of the content. It should also be noted that in Ehrenfeld the category lighting
occurs too infrequently to allow evaluation in the single-label case.

5.2 RQ2: How Much Manual Labelling Effort Can Be Saved
Through Active Learning?

It is evident from the results for RQ1 that even smaller datasets have the poten-
tial to provide enough information to train good topic classification models.
With the application of active learning, we are now taking a closer look at this
potential.

In our experiments, the active learning process (implemented using the small-
text library [21]) is initialised with 20 randomly drawn samples (i.e. contribu-
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(a) Single-Label Classification (b) Multi-Label Classification

Fig. 1. Accuracy respectively micro-averaged F1 scores for active learning per iteration.

tions). Then, in each active learning loop, 20 unlabelled samples are retrieved
with the respective query strategy and added to the pool of labelled data. We
compare the two best performing classifiers from RQ1 and first evaluate them
with RS to have a baseline. QBC and MEE follow a similar strategy of selecting
samples (by disagreement of a committee and uncertainty in prediction, respec-
tively). With respect to the work of [20], we combine MaxEnt with QBC. A
combination of BERT and QBC, on the other hand, was rejected because of
runtime considerations since in addition to the costly transformer model, three
further models would have to be trained per active learning iteration. Instead, we
use the well-known MEE query strategy with BERT. Furthermore, we explore
whether the recently developed query strategy CAL can further improve active
learning with BERT. To keep model training time low, hyperparameter tun-
ing for BERT is limited to selecting the best model from 10 training epochs.
For MaxEnt, we compare a gridsearch-optimised model against one with fixed
hyperparameters.
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An overview of the results is provided in Fig. 1. Since the learning curve in
Bonn levelled off after a few hundred samples, we stopped the time-consuming
experiment at this point and only report the results until then.

All BERT variants are superior to MaxEnt, not only because of the accuracy
they can achieve but also because they learn faster. While all query strategies
work well with BERT, MEE and CAL show an advantage over RS especially
in multi-labelling. For single-label classification, the best strategy approximates
the maximum accuracy scores from full supervision (averaging 0.77) already with
500 (Bonn), 180 (Ehrenfeld), and 120 (Moers) labelled samples. For multi-label
classifications, the pool of labelled data to achieve the best micro-averaged F1

scores (averaging 0.76) could be reduced to 440 (Bonn), 160 (Ehrenfeld), and
200 (Moers).

5.3 RQ3: How Time-Efficient Are the Different Categorisation
Approaches?

(a) Single-Label Classification

(b) Multi-Label Classification

Fig. 2. Time duration of active learning iterations in seconds.

Not only the quality of the results but also the runtime is relevant if such an
approach is to be developed for use by practitioners. Figure 2 reports how long
the individual iterations, i.e. loops, of active learning take. This reflects the time
a user has to wait between coding sessions. BERT-based experiments were run
on Google Colab with Tesla P100-PCIE-16GB GPU and 2.2 GHz Intel Xeon
CPU processor. The other classifiers were evaluated on a local machine with 1.8
GHz Intel Core i7-8565U CPU processor.

Encouragingly in terms of applicability, no iteration in the observation inter-
val lasts longer than five minutes. Taking into account the findings from RQ2, to
achieve these results on average a human analyst would have to wait less than
three minutes (Bonn) or even less than one minute (Ehrenfeld, Moers) between
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the coding sessions. At the same time, however, we can observe that BERT is
more computationally intensive than MaxEnt, even though we severely limited
hyperparameter tuning in our experiments.

6 Discussion

Based on the evaluation summarised above we can now answer the research
questions and discuss their implications.

For the first research question (RQ1), the results show that supervised machine
learning can predict the correct label(s) on average for about 77% of the cases. We
believe that this accuracy is already sufficient for most of the practical use cases
because this categorisation is only the starting point of further manual processing
of contributions. During this further processing possible misclassification would be
detected and could easily be corrected. A number of issues are particularly note-
worthy about this level of accuracy. First of all, the classification works equally
well for single and multi-labelling. What is more, BERT as a current state-of-the-
art approach offers the best results - not only because it achieves higher accu-
racy, but also because it works more reliably for categories with few contributions
than the other classifiers evaluated. Finally, we test the models on three different
datasets that vary in size and we can show that these results can be achieved also
on datasets that contain only a few hundred contributions.

These results already show that automated classification through supervised
models could be useful in supporting human evaluation of contributions. How-
ever, as discussed in the introduction, the main barrier to its practical application
is that full supervision requires the manual labelling of large parts of the data.
In our evaluation, this accuracy was achieved through coding a share of 80% of
the entire dataset, an approach also pursued in several studies that focused on
maximising the accuracy of approaches but neglected the drawback of manual
labelling effort (e.g. [4]).

To address this shortcoming, as a second research question (RQ2) we inves-
tigated the potential of different active learning strategies to reduce manual
labelling efforts. Our results show conclusive evidence that active learning can
indeed obtain a similar performance while requiring only a fraction of the data
to be manually coded. For the three datasets it was sufficient to manually
label about 20% (Bonn), 50% (Ehrenfeld), and 30% (Moers) to achieve about
the same level of accuracy as with full supervision. Naturally, these efficiency-
improvements grow with the size of the dataset. Active learning significantly
reduces manual labelling efforts and outperforms the previously used approaches
for topic classification of participation contributions [20].

However, this would only offer a useful support for practice if these models
can be realistically computed in common administrative settings. Therefore we
also investigated the time-efficiency of the different categorisation approaches
(RQ3). As it turns out, all of these require only a few minutes per iteration to
compute. However, it should be noted that these time benchmarks depend on
specific hardware (e.g. GPU and processor). The implications for practical use
will need to be investigated in future work.
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To put these figures in perspective and estimate the efficiency gains, we opti-
mistically assume that it would take a human 30 s to code a single contribution.
Using the dataset of Bonn and the results of the single-labelling experiments,
fully manual coding of the entire 2, 314 contributions would thus require 19 h
and 17 min of labour. In contrast, training a machine learning model with active
learning requires the labelling of only 500 data points (about 22% of the cor-
pus) to achieve a performance that would be comparable to a model with full
supervision in training. This would amount to 4 h and 10 min of manual coding
time with machine assistance. We might add a human analyst’s waiting time in
between manual annotation sessions that is required in the active learning pro-
cess for the computation of the next set of samples to be labelled. However, this
only increases total time by 1 h (on average about 150 s for the 24 iterations).
What is more, this time can be used to carry out other tasks or to provide the
necessary breaks in coding session to the human analyst. This means the time
required to label the whole dataset with active learning amounts to 5 h 10 min
in contrast to more than 19 h.

Even if we take into account that the machine learning model would produce
a number of misclassifications (based on the results from RQ1 we assume this to
be the case for about one in four samples, i.e. 580) which would require manual
correction once each result is processed by the human analysts, with about 4 h
and 50 min of additional work this still amounts to a substantial reduction in
time required: Instead of more than 19 h, it would take just 10 h (including one
hour of waiting time). Relying on the same assumptions the total time required
is reduced by 20% in Ehrenfeld and 50% in Moers through active learning.
While the actual efficiency gains will depend on a number of factors (size of
corpus, coding time per data point, computing time per iteration, amount of
training data required, model accuracy), we believe that in any realistic scenario
active learning will always represent a significant reduction in time required from
human analysts.

In sum, our results show not only that supervised machine learning models
can reliably classify topic categories for public participation contributions, but
also that by utilising active learning this can be achieved with manually labelling
only a comparatively small part of the data. This has important implications for
the practice of public participation because once implemented, these models
substantially cut the time required for manual coding.

7 Conclusion and Future Work

Public consultations are popular instruments in democratic policy-making but
the subsequent evaluation of the (written) contributions requires considerable
human resources. While supervised machine learning offers a way to support
analysts in thematically grouping citizen ideas, often the amount of training data
required is prohibitive given the idiosyncratic nature of most public participation
processes. One possible solution to minimise the manual labelling effort is the
use of active learning. However, the merits of this semi-supervised method for
evaluating participation data have received little attention so far.
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In this study, we researched the application of active learning based on online
participation processes in three German cities. We first explored the capabilities
of automated topic classification in general. Building on this, we investigated how
much manual labelling effort can be saved through active learning and how time-
efficient the different approaches are. Our results show that supervised machine
learning models can reliably classify topic categories for public participation
contributions. When combined with active learning, the amount of training data
required can be significantly reduced while keeping algorithmic runtime low.
These findings can be of great benefit to the practice of public participation,
as they significantly reduce the time required for the thematic pre-sorting of
submissions to participation processes.

Despite these exciting findings, some questions remain unanswered that need
to be addressed in future work. So far, the coding of our dataset reflects primar-
ily the assessment of a single analyst. Although this is a realistic application sce-
nario, future research should attempt to evaluate predictions based on labels with
(higher) intercoder reliability. It could well be that the actual model accuracy is
even higher if misclassifications in the training data are avoided. Furthermore, we
limited hyperparameter tuning for BERT to reduce computation time. For real-
world implementation, we strongly recommend fine-tuning the BERT model to
increase model accuracy if a higher runtime is acceptable. Similarly, we would like
to evaluate other transformer architectures as well as further query strategies, in
particular those specifically designed for deep neural network models (e.g. [3]).

Likewise, we need to address possible limitations of our approaches, such
as applicability to long texts and runtime dependency on the GPU. Finally,
classes with few contributions deserve a more thorough investigation, examining
how effectively they can be found through the various query strategies in active
learning and what impact a failure of detection has on the utility in practical
application. Eventually, our long-term goal is to make these approaches available
as software to make their use feasible for practitioners.3

Acknowledgements. This publication is based on research in the project
CIMT/Partizipationsnutzen, which is funded by the Federal Ministry of Education
and Research of Germany as part of its Social-Ecological Research funding priority,
funding no. 01UU1904. Responsibility for the content of this publication lies with the
author.

Appendix A: Hyperparameter Tuning

For SVM, we apply a gridsearch over the hyperparameters C ∈ [0.1, 1, 10, 100],
γ ∈ [1, 0.1, 0.01, 0.001], and with either the RBF or the linear kernel. For MaxEnt,
we search for C ∈ [10, 100, 1000] in combination with the L1 or the L2 norm for
penalty. In the Ensemble classifier, we reduce the number of hyperparameter
combinations to keep the duration of the experiments within reasonable limits
and thus do not consider C ∈ [0.1] and γ ∈ [0.01, 0.001] for SVM.

3 The datasets and the code that was used to run the experiments are available at
https://github.com/juliaromberg/egov-2022.

https://github.com/juliaromberg/egov-2022
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BERT is trained using the AdamW optimizer with a learning rate of 2e − 5
and ε = 1e−8. Training runs for 10 epochs, from which the best model is selected
using a validation set. In the non-active setup we tested batch sizes of 2, 4 and 8.
We found that a batch size of 2 gave the best results (RQ1) and for this reason,
we opted for this batch size in the active learning experiments (RQ2).

References

1. Aitamurto, T., Chen, K., Cherif, A., Galli, J.S., Santana, L.: Civic CrowdAnalytics:
making sense of crowdsourced civic input with big data tools. In: Proceedings of
the 20th International Academic Mindtrek Conference, AcademicMindtrek 2016,
pp. 86–94. Association for Computing Machinery, New York (2016)

2. Arana-Catania, M., et al.: Citizen participation and machine learning for a better
democracy. Digit. Gov. Res. Pract. 2(3), 1–22 (2021)

3. Ash, J.T., Chicheng, Z., Akshay, K., John, L., Alekh, A.: Deep batch active learning
by diverse, uncertain gradient lower BoundsDeep batch active learning by diverse,
uncertain gradient lower bounds. In: International Conference on Learning Repre-
sentations 2020 (ICLR 2020) (2020)

4. Balta, D., Kuhn, P., Sellami, M., Kulus, D., Lieven, C., Krcmar, H.: How to stream-
line AI application in government? A case study on citizen participation in Ger-
many. In: Lindgren, I., et al. (eds.) EGOV 2019. LNCS, vol. 11685, pp. 233–247.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27325-5 18

5. Cai, G., Sun, F., Sha, Y.: Interactive visualization for topic model curation. In:
Proceedings of the ACM IUI 2018 Workshop on Exploratory Search and Interactive
Data Analytics (2018)

6. Cardie, C., Farina, C., Aijaz, A., Rawding, M., Purpura, S.: A study in rule-specific
issue categorization for e-rulemaking. In: Proceedings of the 9th International Con-
ference on Digital Government Research, pp. 244–253 (2008)

7. Chen, K., Aitamurto, T.: Barriers for crowd’s impact in crowdsourced policymak-
ing: civic data overload and filter hierarchy. Int. Public Manag. J. 22(1), 99–126
(2019)

8. Dryzek, J.S., et al.: The crisis of democracy and the science of deliberation. Science
363(6432), 1144–1146 (2019)

9. Ein-Dor, L., et al.: Active learning for BERT: an empirical study. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 7949–7962. Association for Computational Linguistics (2020)

10. Hagen, L.: Content analysis of e-petitions with topic modeling: how to train and
evaluate LDA models? Inf. Process. Manag. 54(6), 1292–1307 (2018)
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